Sample records for jak kinase inhibitors

  1. Janus kinase (JAK) inhibitors in the treatment of inflammatory and neoplastic diseases.

    PubMed

    Roskoski, Robert

    2016-09-01

    The Janus kinase (JAK) family of non-receptor protein-tyrosine kinases consists of JAK1, JAK2, JAK3, and TYK2 (tyrosine kinase-2). Each of these proteins contains a JAK homology pseudokinase (JH2) domain that regulates the adjacent protein kinase domain (JH1). JAK1/2 and TYK2 are ubiquitously expressed whereas JAK3 is found predominantly in hematopoietic cells. The Janus kinase family is regulated by numerous cytokines including interleukins, interferons, and hormones such as erythropoietin, thrombopoietin, and growth hormone. Ligand binding to cytokine and hormone receptors leads to the activation of associated Janus kinases, which then mediate the phosphorylation of the receptors. The SH2 domain of STATs (signal transducers and activators of transcription) binds to the receptor phosphotyrosines thereby promoting STAT phosphorylation by the Janus kinases and consequent activation. STAT dimers are translocated to the nucleus where they participate in the regulation of the expression of thousands of proteins. JAK-STAT dysregulation results in autoimmune disorders such as rheumatoid arthritis, ulcerative colitis, and Crohn disease. JAK-STAT dysregulation also plays a role in the pathogenesis of myelofibrosis, polycythemia vera, and other myeloproliferative illnesses. An activating JAK2 V617F mutation occurs in 95% of people with polycythemia vera and in a lower percentage of people with other neoplasms. JAK1/3 signaling participates in the pathogenesis of inflammatory afflictions while JAK1/2 signaling participates in the development of several malignancies including leukemias and lymphomas as well as myeloproliferative neoplasms. Tofacitinib is a pan-JAK inhibitor that is approved by the FDA for the treatment of rheumatoid arthritis and ruxolitinib is a JAK1/2 inhibitor that is approved for the treatment of polycythemia vera and myelofibrosis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. JAK2 inhibition sensitizes resistant EGFR-mutant lung adenocarcinoma to tyrosine kinase inhibitors

    PubMed Central

    Gao, Sizhi P.; Chang, Qing; Mao, Ninghui; Daly, Laura A.; Vogel, Robert; Chan, Tyler; Liu, Shu Hui; Bournazou, Eirini; Schori, Erez; Zhang, Haiying; Brewer, Monica Red; Pao, William; Morris, Luc; Ladanyi, Marc; Arcila, Maria; Manova-Todorova, Katia; de Stanchina, Elisa; Norton, Larry; Levine, Ross L.; Altan-Bonnet, Gregoire; Solit, David; Zinda, Michael; Huszar, Dennis; Lyden, David; Bromberg, Jacqueline F.

    2016-01-01

    Lung adenocarcinomas with mutant epidermal growth factor receptor (EGFR) respond to EGFR-targeted tyrosine kinase inhibitors (TKIs), but resistance invariably occurs. We found that the Janus kinase (JAK)/signal transduction and activator of transcription 3 (STAT3) signaling pathway was aberrantly increased in TKI-resistant EGFR-mutant non–small cell lung cancer (NSCLC) cells. JAK2 inhibition restored sensitivity to the EGFR inhibitor erlotinib in TKI-resistant cell lines and xenograft models of EGFR-mutant TKI-resistant lung cancer. JAK2 inhibition uncoupled EGFR from its negative regulator, suppressor of cytokine signaling 5 (SOCS5), consequently increasing EGFR abundance and restoring the tumor cells’ dependence on EGFR signaling. Furthermore, JAK2 inhibition led to heterodimerization of mutant and wild-type EGFR subunits, the activity of which was then blocked by TKIs. Our results reveal a mechanism whereby JAK2 inhibition overcomes acquired resistance to EGFR inhibitors and support the use of combination therapy with JAK and EGFR inhibitors for the treatment of EGFR-dependent NSCLC. PMID:27025877

  3. Heterodimeric JAK-STAT Activation as a Mechanism of Persistence to JAK2 Inhibitor Therapy

    PubMed Central

    Koppikar, Priya; Bhagwat, Neha; Kilpivaara, Outi; Manshouri, Taghi; Adli, Mazhar; Hricik, Todd; Liu, Fan; Saunders, Lindsay M.; Mullally, Ann; Abdel-Wahab, Omar; Leung, Laura; Weinstein, Abby; Marubayashi, Sachie; Goel, Aviva; Gönen, Mithat; Estrov, Zeev; Ebert, Benjamin L.; Chiosis, Gabriela; Nimer, Stephen D.; Bernstein, Bradley E.; Verstovsek, Srdan; Levine, Ross L.

    2012-01-01

    The identification of somatic activating mutations in JAK21–4 and in the thrombopoietin receptor (MPL)5 in the majority of myeloproliferative neoplasm (MPN) patients led to the clinical development of JAK2 kinase inhibitors6,7. JAK2 inhibitor therapy improves MPN-associated splenomegaly and systemic symptoms, but does not significantly reduce or eliminate the MPN clone in most MPN patients. We therefore sought to characterize mechanisms by which MPN cells persist despite chronic JAK2 inhibition. Here we show that JAK2 inhibitor persistence is associated with reactivation of JAK-STAT signaling and with heterodimerization between activated JAK2 and JAK1/TYK2, consistent with activation of JAK2 in trans by other JAK kinases. Further, this phenomenon is reversible, such that JAK2 inhibitor withdrawal is associated with resensitization to JAK2 kinase inhibitors and with reversible changes in JAK2 expression. We saw increased JAK2 heterodimerization and sustained JAK2 activation in cell lines, murine models, and patients treated with JAK2 inhibitors. RNA interference and pharmacologic studies demonstrate that JAK2 inhibitor persistent cells remain dependent on JAK2 protein expression. Consequently, therapies that result in JAK2 degradation retain efficacy in persistent cells and may provide additional benefit to patients with JAK2-dependent malignancies treated with JAK2 inhibitors. PMID:22820254

  4. Inhibitors of JAK-family kinases: an update on the patent literature 2013-2015, part 2.

    PubMed

    Kettle, Jason G; Åstrand, Annika; Catley, Matthew; Grimster, Neil P; Nilsson, Magnus; Su, Qibin; Woessner, Richard

    2017-02-01

    Janus kinases (JAKs) are a family of four enzymes; JAK1, JAK2, JAK3 and tyrosine kinase 2 (TYK2) that are critical in cytokine signalling and are strongly linked to both cancer and inflammatory diseases. There are currently two launched JAK inhibitors for the treatment of human conditions: tofacitinib for Rheumatoid arthritis (RA) and ruxolitinib for myeloproliferative neoplasms including intermediate or high risk myelofibrosis and polycythemia vera. Areas covered: This review covers patents claiming activity against one or more JAK family members in the period 2013-2015 inclusive, and covers 95 patents from 42 applicants, split over two parts. The authors have ordered recent patents according to the primary applicant's name, with part 2 covering J through Z. Expert opinion: Inhibition of JAK-family kinases is an area of growing interest, catalysed by the maturity of data on marketed inhibitors ruxolitinib and tofacitinib in late stage clinical trials. Many applicants are pursuing traditional fast-follower strategies around these inhibitors, with a range of chemical strategies adopted. The challenge will be to show sufficient differentiation to the originator compounds, since dose limiting toxicities with such agents appear to be on target and mechanism-related and also considering that such agents may be available as generic compounds by the time follower agents reach market.

  5. Inhibitors of JAK-family kinases: an update on the patent literature 2013-2015, part 1.

    PubMed

    Kettle, Jason G; Åstrand, Annika; Catley, Matthew; Grimster, Neil P; Nilsson, Magnus; Su, Qibin; Woessner, Richard

    2017-02-01

    Janus kinases (JAKs) are a family of four enzymes; JAK1, JAK2, JAK3 and tyrosine kinase 2 (TYK2) that are critical in cytokine signalling and are strongly linked to both cancer and inflammatory diseases. There are currently two launched JAK inhibitors for the treatment of human conditions: tofacitinib for Rheumatoid arthritis (RA) and ruxolitinib for myeloproliferative neoplasms including intermediate or high risk myelofibrosis and polycythemia vera. Areas covered: This review covers patents claiming activity against one or more JAK family members in the period 2013-2015 inclusive, and covers 95 patents from 42 applicants, split over two parts. The authors have ordered recent patents according to the primary applicant's name, with part 1 covering A through to I. Expert opinion: Inhibition of JAK-family kinases is an area of growing interest, catalysed by the maturity of data on marketed inhibitors ruxolitinib and tofacitinib in late stage clinical trials. Many applicants are pursuing traditional fast-follower strategies around these inhibitors, with a range of chemical strategies adopted. The challenge will be to show sufficient differentiation to the originator compounds, since dose limiting toxicities with such agents appear to be on target and mechanism-related and also considering that such agents may be available as generic compounds by the time follower agents reach market.

  6. Selective JAK inhibitors in development for rheumatoid arthritis.

    PubMed

    Norman, Peter

    2014-08-01

    The JAK kinases are a family of four tyrosine receptor kinases that play a pivotal role in cytokine receptor signalling pathways via their interaction with signal transducers and activators of transcription proteins. Selective inhibitors of JAK kinases are viewed as of considerable potential as disease-modifying anti-inflammatory drugs for the treatment of rheumatoid arthritis. This article provides a review of the clinical development and available clinical results for those JAK inhibitors currently under investigation. Phase II data for four JAK inhibitors (baricitinib, decernotinib, filgotinib and INCB-039110) are contrasted with that reported for the recently approved JAK inhibitor tofacitinib. The preclinical data on these, in addition to peficitinib, ABT-494, INCB-047986 and AC-410 are also discussed, as are some of the inhibitors in preclinical development. JAK inhibitors are effective in the treatment of rheumatoid arthritis as evidenced by several inhibitors enabling the majority of treated patients to achieve ACR20 responses, with baricitinib and INCB-039110 both effective when administered once daily. JAK inhibitors differ in isoform specificity profiles, with good efficacy achievable by selective inhibition of either JAK1 (filgotinib or INCB-039110) or JAK3 (decernotinib). It remains to be seen what selectivity provides the optimal side-effect profile and to what extent inhibition of JAK2 should be avoided.

  7. Discovery and Optimization of a Novel Series of Highly Selective JAK1 Kinase Inhibitors.

    PubMed

    Grimster, Neil P; Anderson, Erica; Alimzhanov, Marat; Bebernitz, Geraldine; Bell, Kirsten; Chuaqui, Claudio; Deegan, Tracy; Ferguson, Andrew D; Gero, Thomas; Harsch, Andreas; Huszar, Dennis; Kawatkar, Aarti; Kettle, Jason Grant; Lyne, Paul D; Read, Jon A; Rivard Costa, Caroline; Ruston, Linette; Schroeder, Patricia; Shi, Jie; Su, Qibin; Throner, Scott; Toader, Dorin; Vasbinder, Melissa Marie; Woessner, Richard; Wang, Haixia; Wu, Allan; Ye, Minwei; Zheng, Weijia; Zinda, Michael

    2018-06-01

    Herein, we report the discovery and characterization of a novel series of pyrimidine based JAK1 inhibitors. Optimization of these ATP competitive compounds was guided by X-ray crystallography and a structure-based drug design approach, focusing on selectivity, potency, and pharmaceutical properties. The best compound, 24, displayed remarkable JAK1 selectivity (~1000-fold vs JAK2,3 and TYK2), as well as a good kinase selectivity profile. Moreover, a dose-dependent reduction in pSTAT3, a downstream marker of JAK1 inhibition, was observed when 24 was examined in vivo.

  8. Design and synthesis of carbazole carboxamides as promising inhibitors of Bruton’s tyrosine kinase (BTK) and Janus kinase 2 (JAK2)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Qingjie; Batt, Douglas G.; Lippy, Jonathan S.

    Four series of disubstituted carbazole-1-carboxamides were designed and synthesised as inhibitors of Bruton’s tyrosine kinase (BTK). 4,7- and 4,6-disubstituted carbazole-1-carboxamides were potent and selective inhibitors of BTK, while 3,7- and 3,6-disubstituted carbazole-1-carboxamides were potent and selective inhibitors of Janus kinase 2 (JAK2).

  9. Structure-based design of oxygen-linked macrocyclic kinase inhibitors: discovery of SB1518 and SB1578, potent inhibitors of Janus kinase 2 (JAK2) and Fms-like tyrosine kinase-3 (FLT3)

    NASA Astrophysics Data System (ADS)

    Poulsen, Anders; William, Anthony; Blanchard, Stéphanie; Lee, Angeline; Nagaraj, Harish; Wang, Haishan; Teo, Eeling; Tan, Evelyn; Goh, Kee Chuan; Dymock, Brian

    2012-04-01

    Macrocycles from our Aurora project were screened in a kinase panel and were found to be active on other kinase targets, mainly JAKs, FLT3 and CDKs. Subsequently these compounds became leads in our JAK2 project. Macrocycles with a basic nitrogen in the linker form a salt bridge with Asp86 in CDK2 and Asp698 in FLT3. This residue is conserved in most CDKs resulting in potent pan CDK inhibition. One of the main project objectives was to achieve JAK2 potency with 100-fold selectivity against CDKs. Macrocycles with an ether linker have potent JAK2 activity with the ether oxygen forming a hydrogen bond to Ser936. A hydrogen bond to the equivalent residues of JAK3 and most CDKs cannot be formed resulting in good selectivity for JAK2 over JAK3 and CDKs. Further optimization of the macrocyclic linker and side chain increased JAK2 and FLT3 activity as well as improving DMPK properties. The selective JAK2/FLT3 inhibitor 11 (Pacritinib, SB1518) has successfully finished phase 2 clinical trials for myelofibrosis and lymphoma. Another selective JAK2/FLT3 inhibitor, 33 (SB1578), has entered phase 1 clinical development for the non-oncology indication rheumatoid arthritis.

  10. Prospect of JAK2 inhibitor therapy in myeloproliferative neoplasms

    PubMed Central

    Atallah, Ehab; Verstovsek, Srdan

    2016-01-01

    The discovery of the Janus kinase (JAK)2 V617F mutation in patients with myeloproliferative neoplasms was a major milestone in understanding the biology of those disorders. Several groups simultaneously reported on the high incidence of this mutation in patients with myeloproliferative neoplasms: almost all patients with polycythemia vera harbor the mutation and about 50% of patients with essential thrombocythemia and primary myelofibrosis have the mutation, making the development of JAK2 tyrosine kinase inhibitors an attractive therapeutic goal. In addition, inhibition of JAK2 kinase may have a therapeutic role in other hematologic malignancies, such as chronic myeloid leukemia or lymphoma. A number of molecules that inhibit JAK2 kinase have been described in the literature, and several are being evaluated in a clinical setting. Here, we summarize current clinical experience with JAK2 inhibitors. PMID:19445582

  11. Mutant JAK3 phosphoproteomic profiling predicts synergism between JAK3 inhibitors and MEK/BCL2 inhibitors for the treatment of T-cell acute lymphoblastic leukemia

    PubMed Central

    Degryse, S; de Bock, C E; Demeyer, S; Govaerts, I; Bornschein, S; Verbeke, D; Jacobs, K; Binos, S; Skerrett-Byrne, D A; Murray, H C; Verrills, N M; Van Vlierberghe, P; Cools, J; Dun, M D

    2018-01-01

    Mutations in the interleukin-7 receptor (IL7R) or the Janus kinase 3 (JAK3) kinase occur frequently in T-cell acute lymphoblastic leukemia (T-ALL) and both are able to drive cellular transformation and the development of T-ALL in mouse models. However, the signal transduction pathways downstream of JAK3 mutations remain poorly characterized. Here we describe the phosphoproteome downstream of the JAK3(L857Q)/(M511I) activating mutations in transformed Ba/F3 lymphocyte cells. Signaling pathways regulated by JAK3 mutants were assessed following acute inhibition of JAK1/JAK3 using the JAK kinase inhibitors ruxolitinib or tofacitinib. Comprehensive network interrogation using the phosphoproteomic signatures identified significant changes in pathways regulating cell cycle, translation initiation, mitogen-activated protein kinase and phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/AKT signaling, RNA metabolism, as well as epigenetic and apoptotic processes. Key regulatory proteins within pathways that showed altered phosphorylation following JAK inhibition were targeted using selumetinib and trametinib (MEK), buparlisib (PI3K) and ABT-199 (BCL2), and found to be synergistic in combination with JAK kinase inhibitors in primary T-ALL samples harboring JAK3 mutations. These data provide the first detailed molecular characterization of the downstream signaling pathways regulated by JAK3 mutations and provide further understanding into the oncogenic processes regulated by constitutive kinase activation aiding in the development of improved combinatorial treatment regimens. PMID:28852199

  12. Modulation of activation-loop phosphorylation by JAK inhibitors is binding mode dependent

    PubMed Central

    Bonenfant, Débora; Rubert, Joëlle; Vangrevelinghe, Eric; Scheufler, Clemens; Marque, Fanny; Régnier, Catherine H.; De Pover, Alain; Ryckelynck, Hugues; Bhagwat, Neha; Koppikar, Priya; Goel, Aviva; Wyder, Lorenza; Tavares, Gisele; Baffert, Fabienne; Pissot-Soldermann, Carole; Manley, Paul W.; Gaul, Christoph; Voshol, Hans; Levine, Ross L.; Sellers, William R.; Hofmann, Francesco; Radimerski, Thomas

    2016-01-01

    JAK inhibitors are being developed for the treatment of rheumatoid arthritis, psoriasis, myeloproliferative neoplasms and leukemias. Most of these drugs target the ATP-binding pocket and stabilize the active conformation of the JAK kinases. This type-I binding mode leads to an increase in JAK activation-loop phosphorylation, despite blockade of kinase function. Here we report that stabilizing the inactive state via type-II inhibition acts in the opposite manner, leading to a loss of activation-loop phosphorylation. We used X-ray crystallography to corroborate the binding mode and report for the first time the crystal structure of the JAK2 kinase domain in an inactive conformation. Importantly, JAK inhibitor-induced activation-loop phosphorylation requires receptor interaction, as well as intact kinase and pseudokinase domains. Hence, depending on the respective conformation stabilized by a JAK inhibitor, hyperphosphorylation of the activation-loop may or may not be elicited. PMID:22684457

  13. Recent Progress in JAK Inhibitors for the Treatment of Rheumatoid Arthritis.

    PubMed

    Nakayamada, Shingo; Kubo, Satoshi; Iwata, Shigeru; Tanaka, Yoshiya

    2016-10-01

    Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by synovial inflammation and joint destruction. Considerable advance in the treatment of RA has been made following the advent of biological disease-modifying anti-rheumatic drugs (DMARDs). However, these biologics require intravenous or subcutaneous injection and some patients fail to respond to biological DMARDs or lose their primary response. Various cytokines and cell surface molecules bind to receptors on the cell surface, resulting in the activation of various cell signaling pathways, including phosphorylation of kinase proteins. Among these kinases, the non-receptor tyrosine kinase family Janus kinase (JAK) plays a pivotal role in the pathological processes of RA. Several JAK inhibitors have been developed as new therapies for patients with RA. These are oral synthetic DMARDs that inhibit JAK1, 2, and 3. One JAK inhibitor, tofacitinib, has already been approved in many countries. Results of phase III clinical trials using a JAK1/2 inhibitor, baricitinib, have shown feasible efficacy and tolerable safety. Both drugs are effective in patients who showed inadequate response to biological DMARDs as well as synthetic DMARDs. In addition, clinical phase III trials using filgotinib and ABT-494, specific JAK1 inhibitors, are currently underway. JAK inhibitors are novel therapies for RA, but further studies are needed to determine their risk-benefit ratio and selection of the most appropriate patients for such therapy.

  14. Tricyclic Covalent Inhibitors Selectively Target Jak3 through an Active Site Thiol*

    PubMed Central

    Goedken, Eric R.; Argiriadi, Maria A.; Banach, David L.; Fiamengo, Bryan A.; Foley, Sage E.; Frank, Kristine E.; George, Jonathan S.; Harris, Christopher M.; Hobson, Adrian D.; Ihle, David C.; Marcotte, Douglas; Merta, Philip J.; Michalak, Mark E.; Murdock, Sara E.; Tomlinson, Medha J.; Voss, Jeffrey W.

    2015-01-01

    The action of Janus kinases (JAKs) is required for multiple cytokine signaling pathways, and as such, JAK inhibitors hold promise for treatment of autoimmune disorders, including rheumatoid arthritis, inflammatory bowel disease, and psoriasis. However, due to high similarity in the active sites of the four members (Jak1, Jak2, Jak3, and Tyk2), developing selective inhibitors within this family is challenging. We have designed and characterized substituted, tricyclic Jak3 inhibitors that selectively avoid inhibition of the other JAKs. This is accomplished through a covalent interaction between an inhibitor containing a terminal electrophile and an active site cysteine (Cys-909). We found that these ATP competitive compounds are irreversible inhibitors of Jak3 enzyme activity in vitro. They possess high selectivity against other kinases and can potently (IC50 < 100 nm) inhibit Jak3 activity in cell-based assays. These results suggest irreversible inhibitors of this class may be useful selective agents, both as tools to probe Jak3 biology and potentially as therapies for autoimmune diseases. PMID:25552479

  15. Tricyclic Covalent Inhibitors Selectively Target Jak3 through an Active Site Thiol

    DOE PAGES

    Goedken, Eric R.; Argiriadi, Maria A.; Banach, David L.; ...

    2014-12-31

    The action of Janus kinases (JAKs) is required for multiple cytokine signaling pathways, and as such, JAK inhibitors hold promise for treatment of autoimmune disorders, including rheumatoid arthritis, inflammatory bowel disease, and psoriasis. However, due to high similarity in the active sites of the four members (Jak1, Jak2, Jak3, and Tyk2), developing selective inhibitors within this family is challenging. In this paper, we have designed and characterized substituted, tricyclic Jak3 inhibitors that selectively avoid inhibition of the other JAKs. This is accomplished through a covalent interaction between an inhibitor containing a terminal electrophile and an active site cysteine (Cys-909). Wemore » found that these ATP competitive compounds are irreversible inhibitors of Jak3 enzyme activity in vitro. They possess high selectivity against other kinases and can potently (IC 50 < 100 nM) inhibit Jak3 activity in cell-based assays. Finally, these results suggest irreversible inhibitors of this class may be useful selective agents, both as tools to probe Jak3 biology and potentially as therapies for autoimmune diseases.« less

  16. Tricyclic Covalent Inhibitors Selectively Target Jak3 through an Active Site Thiol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goedken, Eric R.; Argiriadi, Maria A.; Banach, David L.

    The action of Janus kinases (JAKs) is required for multiple cytokine signaling pathways, and as such, JAK inhibitors hold promise for treatment of autoimmune disorders, including rheumatoid arthritis, inflammatory bowel disease, and psoriasis. However, due to high similarity in the active sites of the four members (Jak1, Jak2, Jak3, and Tyk2), developing selective inhibitors within this family is challenging. In this paper, we have designed and characterized substituted, tricyclic Jak3 inhibitors that selectively avoid inhibition of the other JAKs. This is accomplished through a covalent interaction between an inhibitor containing a terminal electrophile and an active site cysteine (Cys-909). Wemore » found that these ATP competitive compounds are irreversible inhibitors of Jak3 enzyme activity in vitro. They possess high selectivity against other kinases and can potently (IC 50 < 100 nM) inhibit Jak3 activity in cell-based assays. Finally, these results suggest irreversible inhibitors of this class may be useful selective agents, both as tools to probe Jak3 biology and potentially as therapies for autoimmune diseases.« less

  17. Inhibition of the signalling kinase JAK3 alleviates inflammation in monoarthritic rats

    PubMed Central

    Kim, Byung-Hak; Kim, Myunghwan; Yin, Chang-Hong; Jee, Jun-Goo; Sandoval, Claudio; Lee, Hyejung; Bach, Erika A; Hahm, Dae-Hyun; Baeg, Gyeong-Hun

    2011-01-01

    BACKGROUND AND PURPOSE Many cytokines associated with autoimmune disorders and inflammation have been shown to activate the signalling kinase JAK3, implying that JAK3 plays key roles in the pathogenesis of these diseases. Therefore, investigating the alterations of JAK3 activity and the efficacy of selective JAK3 antagonists in animal models of such disorders is essential to a better understanding of the biology of JAK3 and to assess the potential clinical benefits of JAK3 inhibitors. EXPERIMENTAL APPROACH Through high-throughput cell-based screening using the NCI compound library, we identified NSC163088 (berberine chloride) as a novel inhibitor of JAK3. Specificity and efficacy of this compound were investigated in both cellular and animal models. KEY RESULTS We show that berberine chloride has selectivity for JAK3 over other JAK kinase members, as well as over other oncogenic kinases such as Src, in various cellular assays. Biochemical and modelling studies strongly suggested that berberine chloride bound directly to the kinase domain of JAK3. Also phospho-JAK3 levels were significantly increased in the synovial tissues of rat joints with acute inflammation, and the treatment of these rats with berberine chloride decreased JAK3 phosphorylation and suppressed the inflammatory responses. CONCLUSIONS AND IMPLICATIONS The up-regulation of JAK3/STATs was closely correlated with acute arthritic inflammation and that inhibition of JAK3 activity by JAK3 antagonists, such as berberine chloride, alleviated the inflammation in vivo. PMID:21434883

  18. CYT387, a selective JAK1/JAK2 inhibitor: in vitro assessment of kinase selectivity and preclinical studies using cell lines and primary cells from polycythemia vera patients.

    PubMed

    Pardanani, A; Lasho, T; Smith, G; Burns, C J; Fantino, E; Tefferi, A

    2009-08-01

    Somatic mutations in Janus kinase 2 (JAK2), including JAK2V617F, result in dysregulated JAK-signal transducer and activator transcription (STAT) signaling, which is implicated in myeloproliferative neoplasm (MPN) pathogenesis. CYT387 is an ATP-competitive small molecule that potently inhibits JAK1/JAK2 kinases (IC(50)=11 and 18 nM, respectively), with significantly less activity against other kinases, including JAK3 (IC(50)=155 nM). CYT387 inhibits growth of Ba/F3-JAK2V617F and human erythroleukemia (HEL) cells (IC(50) approximately 1500 nM) or Ba/F3-MPLW515L cells (IC(50)=200 nM), but has considerably less activity against BCR-ABL harboring K562 cells (IC=58 000 nM). Cell lines harboring mutated JAK2 alleles (CHRF-288-11 or Ba/F3-TEL-JAK2) were inhibited more potently than the corresponding pair harboring mutated JAK3 alleles (CMK or Ba/F3-TEL-JAK3), and STAT-5 phosphorylation was inhibited in HEL cells with an IC(50)=400 nM. Furthermore, CYT387 selectively suppressed the in vitro growth of erythroid colonies harboring JAK2V617F from polycythemia vera (PV) patients, an effect that was attenuated by exogenous erythropoietin. Overall, our data indicate that the JAK1/JAK2 selective inhibitor CYT387 has potential for efficacious treatment of MPN harboring mutated JAK2 and MPL alleles.

  19. Repurposed JAK1/JAK2 Inhibitor Reverses Established Autoimmune Insulitis in NOD Mice.

    PubMed

    Trivedi, Prerak M; Graham, Kate L; Scott, Nicholas A; Jenkins, Misty R; Majaw, Suktilang; Sutherland, Robyn M; Fynch, Stacey; Lew, Andrew M; Burns, Christopher J; Krishnamurthy, Balasubramanian; Brodnicki, Thomas C; Mannering, Stuart I; Kay, Thomas W; Thomas, Helen E

    2017-06-01

    Recent advances in immunotherapeutics have not yet changed the routine management of autoimmune type 1 diabetes. There is an opportunity to repurpose therapeutics used to treat other diseases to treat type 1 diabetes, especially when there is evidence for overlapping mechanisms. Janus kinase (JAK) 1/JAK2 inhibitors are in development or clinical use for indications including rheumatoid arthritis. There is good evidence for activation of the JAK1/JAK2 and signal transducer and activator of transcription (STAT) 1 pathway in human type 1 diabetes and in mouse models, especially in β-cells. We tested the hypothesis that using these drugs to block the JAK-STAT pathway would prevent autoimmune diabetes. The JAK1/JAK2 inhibitor AZD1480 blocked the effect of cytokines on mouse and human β-cells by inhibiting MHC class I upregulation. This prevented the direct interaction between CD8 + T cells and β-cells, and reduced immune cell infiltration into islets. NOD mice treated with AZD1480 were protected from autoimmune diabetes, and diabetes was reversed in newly diagnosed NOD mice. This provides mechanistic groundwork for repurposing clinically approved JAK1/JAK2 inhibitors for type 1 diabetes. © 2017 by the American Diabetes Association.

  20. Combination of PIM and JAK2 inhibitors synergistically suppresses cell proliferation and overcomes drug resistance of myeloproliferative neoplasms

    PubMed Central

    Greco, Rita; Li, Zhifang; Sun, Fangxian; Barberis, Claude; Tabart, Michel; Patel, Vinod; Schio, Laurent; Hurley, Raelene; Chen, Bo; Cheng, Hong; Lengauer, Christoph; Pollard, Jack; Watters, James; Garcia-Echeverria, Carlos; Wiederschain, Dmitri; Adrian, Francisco; Zhang, JingXin

    2014-01-01

    Inhibitors of JAK2 kinase are emerging as an important treatment modality for myeloproliferative neoplasms (MPN). However, similar to other kinase inhibitors, resistance to JAK2 inhibitors may eventually emerge through a variety of mechanisms. Effective drug combination is one way to enhance therapeutic efficacy and combat resistance against JAK2 inhibitors. To identify potential combination partners for JAK2 compounds in MPN cell lines, we performed pooled shRNA screen targeting 5,000 genes in the presence or absence of JAK2 blockade. One of the top hits identified was MYC, an oncogenic transcription factor that is difficult to inhibit directly, but could be targeted by modulation of upstream regulatory elements such as kinases. We demonstrate herein that PIM kinase inhibitors efficiently suppress MYC protein levels in MPN cell lines. Overexpression of MYC restores the viability of PIM inhibitor-treated cells, revealing causal relationship between MYC down-regulation and cell growth inhibition by PIM compounds. Combination of various PIM inhibitors with a JAK2 inhibitor results in significant synergistic growth inhibition of multiple MPN cancer cell lines and induction of apoptosis. Mechanistic studies revealed strong downregulation of phosphorylated forms of S6 and 4EBP1 by JAK2/PIM inhibitor combination treatment. Finally, such combination was effective in eradicating in vitro JAK2 inhibitor-resistant MPN clones, where MYC is consistently up-regulated. These findings demonstrate that simultaneous suppression of JAK2 and PIM kinase activity by small molecule inhibitors is more effective than either agent alone in suppressing MPN cell growth. Our data suggest that JAK2 and PIM combination might warrant further investigation for the treatment of JAK2-driven hematologic malignancies. PMID:24830942

  1. JAK2 inhibitor therapy in myeloproliferative disorders: rationale, preclinical studies and ongoing clinical trials.

    PubMed

    Pardanani, A

    2008-01-01

    The recent identification of somatic mutations such as JAK2V617F that deregulate Janus kinase (JAK)-signal transducer and activator of transcription signaling has spurred development of orally bioavailable small-molecule inhibitors that selectively target JAK2 kinase as an approach to pathogenesis-directed therapy of myeloproliferative disorders (MPD). In pre-clinical studies, these compounds inhibit JAK2V617F-mediated cell growth at nanomolar concentrations, and in vivo therapeutic efficacy has been demonstrated in mouse models of JAK2V617F-induced disease. In addition, ex vivo growth of progenitor cells from MPD patients harboring JAK2V617F or MPLW515L/K mutations is also potently inhibited. JAK2 inhibitors currently in clinical trials can be grouped into those designed to primarily target JAK2 kinase (JAK2-selective) and those originally developed for non-MPD indications, but that nevertheless have significant JAK2-inhibitory activity (non-JAK2 selective). This article discusses the rationale for using JAK2 inhibitors for the treatment of MPD, as well as relevant aspects of clinical trial development for these patients. For instance, which group of MPD patients is appropriate for initial Phase I studies? Should JAK2V617F-negative MPD patients be included in the initial studies? What are the likely consequences of 'off-target' JAK3 and wild-type JAK2 inhibition? How should treatment responses be monitored?

  2. Triazolopyridines as selective JAK1 inhibitors: from hit identification to GLPG0634.

    PubMed

    Menet, Christel J; Fletcher, Stephen R; Van Lommen, Guy; Geney, Raphael; Blanc, Javier; Smits, Koen; Jouannigot, Nolwenn; Deprez, Pierre; van der Aar, Ellen M; Clement-Lacroix, Philippe; Lepescheux, Liên; Galien, René; Vayssiere, Béatrice; Nelles, Luc; Christophe, Thierry; Brys, Reginald; Uhring, Muriel; Ciesielski, Fabrice; Van Rompaey, Luc

    2014-11-26

    Janus kinases (JAK1, JAK2, JAK3, and TYK2) are involved in the signaling of multiple cytokines important in cellular function. Blockade of the JAK-STAT pathway with a small molecule has been shown to provide therapeutic immunomodulation. Having identified JAK1 as a possible new target for arthritis at Galapagos, the compound library was screened against JAK1, resulting in the identification of a triazolopyridine-based series of inhibitors represented by 3. Optimization within this chemical series led to identification of GLPG0634 (65, filgotinib), a selective JAK1 inhibitor currently in phase 2B development for RA and phase 2A development for Crohn's disease (CD).

  3. CYT387, a novel JAK2 inhibitor, induces hematologic responses and normalizes inflammatory cytokines in murine myeloproliferative neoplasms

    PubMed Central

    Tyner, Jeffrey W.; Bumm, Thomas G.; Deininger, Jutta; Wood, Lisa; Aichberger, Karl J.; Loriaux, Marc M.; Druker, Brian J.; Burns, Christopher J.; Fantino, Emmanuelle

    2010-01-01

    Activating alleles of Janus kinase 2 (JAK2) such as JAK2V617F are central to the pathogenesis of myeloproliferative neoplasms (MPN), suggesting that small molecule inhibitors targeting JAK2 may be therapeutically useful. We have identified an aminopyrimidine derivative (CYT387), which inhibits JAK1, JAK2, and tyrosine kinase 2 (TYK2) at low nanomolar concentrations, with few additional targets. Between 0.5 and 1.5μM CYT387 caused growth suppression and apoptosis in JAK2-dependent hematopoietic cell lines, while nonhematopoietic cell lines were unaffected. In a murine MPN model, CYT387 normalized white cell counts, hematocrit, spleen size, and restored physiologic levels of inflammatory cytokines. Despite the hematologic responses and reduction of the JAK2V617F allele burden, JAK2V617F cells persisted and MPN recurred upon cessation of treatment, suggesting that JAK2 inhibitors may be unable to eliminate JAK2V617F cells, consistent with preliminary results from clinical trials of JAK2 inhibitors in myelofibrosis. While the clinical benefit of JAK2 inhibitors may be substantial, not the least due to reduction of inflammatory cytokines and symptomatic improvement, our data add to increasing evidence that kinase inhibitor monotherapy of malignant disease is not curative, suggesting a need for drug combinations to optimally target the malignant cells. PMID:20385788

  4. Newer treatments of psoriasis regarding IL-23 inhibitors, phosphodiesterase 4 inhibitors, and Janus kinase inhibitors.

    PubMed

    Wcisło-Dziadecka, Dominika; Zbiciak-Nylec, Martyna; Brzezińska-Wcisło, Ligia; Bebenek, Katarzyna; Kaźmierczak, Agata

    2017-11-01

    The rapid progress of genetic engineering furthermore opens up new prospects in the therapy of this difficult-to-treat disease. IL-23 inhibitors, phosphodiesterase 4 (PDE4) inhibitors, and Janus kinase (JAK) inhibitors are currently encouraging further research. Two drugs which are IL-23 inhibitors are now in phase III of clinical trials. The aim of the action of both drugs is selective IL-23 inhibition by targeting the p19 subunit. Guselkumab is a fully human monoclonal antibody. Tildrakizumab is a humanized monoclonal antibody, which also belongs to IgG class and is targeted to subunit p19 of interleukin 23 (IL-23). Phosphodiesterase inhibitors exert an anti-inflammatory action and their most common group is the PDE4 family. PDE4 inhibits cAMP, which reduces the inflammatory response of the pathway of Th helper lymphocytes, Th17, and type 1 interferon which modulates the production of anti-inflammatory cytokines such as IL-10 interleukins. The Janus kinase (JAK) signaling pathway plays an important role in the immunopathogenesis of psoriasis. Tofacitinib suppresses the expression of IL-23, IL-17A, IL-17F, and IL-22 receptors during the stimulation of lymphocytes. Ruxolitinib is a selective inhibitor of JAK1 and JAK2 kinases and the JAK-STAT signaling pathway. This article is a review of the aforementioned drugs as described in the latest available literature. © 2017 Wiley Periodicals, Inc.

  5. A novel somatic JAK2 kinase-domain mutation in pediatric acute lymphoblastic leukemia with rapid on-treatment development of LOH.

    PubMed

    Sadras, Teresa; Heatley, Susan L; Kok, Chung H; McClure, Barbara J; Yeung, David; Hughes, Timothy P; Sutton, Rosemary; Ziegler, David S; White, Deborah L

    2017-10-01

    We report a novel somatic mutation in the kinase domain of JAK2 (R938Q) in a high-risk pediatric case of B-cell acute lymphoblastic leukemia (ALL). The patient developed on-therapy relapse at 12 months, and interestingly, the JAK2 locus acquired loss of heterozygosity during treatment resulting in 100% mutation load. Furthermore, we show that primary ALL mononuclear cells harboring the JAK2 R938Q mutation display reduced sensitivity to the JAK1/2 ATP-competitive inhibitor ruxolitinib in vitro, compared to ALL cells that carry a more common JAK2 pseudokinase domain mutation. Our findings are in line with previous reports that demonstrate that mutations within the kinase domain of JAK2 are associated with resistance to type I JAK inhibitors. Importantly, given the recent inclusion of ruxolitinib in trial protocols for children with JAK pathway alterations, we predict that inter-patient genetic variability may result in suboptimal responses to JAK inhibitor therapy in a subset of cases. The need for alternate targeted and/or combination therapies for patients who display inherent or developed resistance to JAK inhibitor therapy will be warranted, and we propose that kinase-mutants less sensitive to type I JAK inhibitors may present a currently unexplored platform for investigation of improved therapies. Copyright © 2017. Published by Elsevier Inc.

  6. Molecular docking, 3D QSAR and dynamics simulation studies of imidazo-pyrrolopyridines as janus kinase 1 (JAK 1) inhibitors.

    PubMed

    Itteboina, Ramesh; Ballu, Srilata; Sivan, Sree Kanth; Manga, Vijjulatha

    2016-10-01

    Janus kinase 1 (JAK 1) plays a critical role in initiating responses to cytokines by the JAK-signal transducer and activator of transcription (JAK-STAT). This controls survival, proliferation and differentiation of a variety of cells. Docking, 3D quantitative structure activity relationship (3D-QSAR) and molecular dynamics (MD) studies were performed on a series of Imidazo-pyrrolopyridine derivatives reported as JAK 1 inhibitors. QSAR model was generated using 30 molecules in the training set; developed model showed good statistical reliability, which is evident from r 2 ncv and r 2 loo values. The predictive ability of this model was determined using a test set of 13 molecules that gave acceptable predictive correlation (r 2 Pred ) values. Finally, molecular dynamics simulation was performed to validate docking results and MM/GBSA calculations. This facilitated us to compare binding free energies of cocrystal ligand and newly designed molecule R1. The good concordance between the docking results and CoMFA/CoMSIA contour maps afforded obliging clues for the rational modification of molecules to design more potent JAK 1 inhibitors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Targeting Janus tyrosine kinase 3 (JAK3) with an inhibitor induces secretion of TGF-β by CD4+ T cells

    PubMed Central

    Cetkovic-Cvrlje, Marina; Olson, Marin; Ghate, Ketaki

    2012-01-01

    Regulatory T cells (Tregs) are critical for the peripheral maintenance of the autoreactive T cells in autoimmune disorders such as type 1 diabetes (T1D). Pharmacological inhibition of Janus tyrosine kinase 3 (JAK3) has been proposed as a basis for new treatment modalities against autoimmunity and allogeneic responses. Targeting JAK3 with an inhibitor has previously been shown to exhibit protective action against the development of T1D in non-obese diabetic (NOD) mice. As the mechanism of such preventative action has been unknown, we hypothesized that JAK3 inhibition induces generation of Tregs. Here, we show that the JAK3 inhibitor 4-(4′-hydroxyphenyl)-amino-6,7-dimethoxyquinazoline (WHI-P131) suppresses proliferation of short-term cultured NOD CD4+ T cells through induction of apoptosis, while promoting survival of a particular population of long-term cultured cells. It was found that the surviving cells were not of the CD4+CD25+FoxP3+ phenotype. They secreted decreased amounts of IL-10, IL-4 and interferon (IFN)-γ compared to the cells not exposed to the optimal concentrations of JAK3 inhibitor. However, an elevated transforming growth factor (TGF)-β secretion was detected in their supernatants. In vivo treatment of prediabetic NOD mice with WHI-P131 did not affect the frequency and number of splenic and pancreatic lymph node CD4+FoxP3+ Tregs, while generating an elevated numbers of CD4+FoxP3− TGF-β-secreting T cells. In conclusion, our data suggest an induction of TGF-β-secreting CD4+ T cells as the underlying mechanism for antidiabetogenic effects obtained by the treatment with a JAK3 inhibitor. To our knowledge, this is the first report of the JAK3 inhibitor activity in the context of the murine Tregs. PMID:22728763

  8. The JAK2 Inhibitor, AZD1480, Potently Blocks Stat3 Signaling and Oncogenesis in Solid Tumors

    PubMed Central

    Hedvat, Michael; Huszar, Dennis; Herrmann, Andreas; Gozgit, Joseph M.; Schroeder, Anne; Sheehy, Adam; Buettner, Ralf; Proia, David; Kowolik, Claudia M.; Xin, Hong; Armstrong, Brian; Bebernitz, Geraldine; Weng, Shaobu; Wang, Lin; Ye, Minwei; McEachern, Kristen; Chen, Huawei; Morosini, Deborah; Bell, Kirsten; Alimzhanov, Marat; Ioannidis, Stephanos; McCoon, Patricia; Cao, Zhu A.; Yu, Hua; Jove, Richard; Zinda, Michael

    2009-01-01

    Summary Persistent activation of Stat3 is oncogenic and is prevalent in a wide variety of human cancers. Chronic cytokine stimulation is associated with Stat3 activation in some tumors, implicating cytokine receptor-associated Jak family kinases. Using Jak2 inhibitors, we demonstrate a central role of Jaks in modulating basal and cytokine-induced Stat3 activation in human solid tumor cell lines. Inhibition of Jak2 activity is associated with abrogation of Stat3 nuclear translocation and tumorigenesis. The Jak2 inhibitor, AZD1480, suppresses the growth of human solid tumor xenografts harboring persistent Stat3 activity. We demonstrate the essential role of Stat3 downstream of Jaks by inhibition of tumor growth using shRNA targeting Stat3. Our data support a key role of Jak kinase activity in Stat3-dependent tumorigenesis. PMID:19962667

  9. Comprehensive review of JAK inhibitors in myeloproliferative neoplasms

    PubMed Central

    Sonbol, Mohamad Bassam; Firwana, Belal; Zarzour, Ahmad; Morad, Mohammad; Rana, Vishal

    2013-01-01

    Myeloproliferative neoplasms (MPNs) are clonal hematopoietic stem-cell disorders, characterized phenotypically by the abnormal accumulation of mature-appearing myeloid cells. Polycythemia vera, essential thrombocythemia, primary myelofibrosis (also known as ‘BCR-ABL1-negative’ MPNs), and chronic myeloid leukemia (CML) are the primary types of MPNs. After the discovery of the BCR-ABL1 fusion protein in CML, several oncogenic tyrosine kinases have been identified in ‘BCR-ABL1-negative’ MPNs, most importantly, JAK2V617F mutation. The similarity in the clinical characteristics of the BCR-ABL1-negative MPN patients along with the prevalence of the Janus kinase mutation in this patient population provided a strong rationale for the development of a new class of pharmacologic inhibitors that target this pathway. The first of its class, ruxolitinib, has now been approved by the food and drug administration (FDA) for the management of patients with intermediate- to high-risk myelofibrosis. Ruxolitinib provides significant and sustained improvements in spleen related and constitutional symptoms secondary to the disease. Although noncurative, ruxolitinib represents a milestone in the treatment of myelofibrosis patients. Other types of JAK2 inhibitors are being tested in various clinical trials at this point and may provide better efficacy data and safety profile than its predecessor. In this article, we comprehensively reviewed and summarized the available preclinical and clinical trials pertaining to JAK inhibitors. PMID:23610611

  10. Janus kinase 2 inhibitors in myeloproliferative disorders.

    PubMed

    Lucia, Eugenio; Recchia, Anna Grazia; Gentile, Massimo; Bossio, Sabrina; Vigna, Ernesto; Mazzone, Carla; Madeo, Antonio; Morabito, Lucio; Gigliotti, Vincenzo; De Stefano, Laura; Caruso, Nadia; Servillo, Pasquale; Franzese, Stefania; Bisconte, Maria Grazia; Gentile, Carlo; Morabito, Fortunato

    2011-01-01

    JAK2 is an obligatory kinase for the proliferation and differentiation of erythroid cells and megakaryocytes thus representing a relevant therapeutic target for agents that specifically inhibit its activity particularly in myeloproliferative disorders (MPD) harboring JAK2(V617F) mutations. We discuss the physiopathology of the JAK2 signaling pathway and review clinical trials of JAK2 inhibitors for the treatment of MPD using papers and meeting abstracts published up to September 2010. This review helps in understanding the potential role of JAK2 inhibitors in MPD clinical trials and provides a comprehensive review regarding their efficacy and safety in these disorders. JAK2 inhibitors may prove to be useful only for suppressing disease manifestations. However, unlike drugs such as IFN which are capable of eliminating the malignant clone, JAK2 inhibitors are unable to eradicate the disease. In fact, results to date indicate that although these inhibitors reduce splenomegaly and alleviate constitutional symptoms irrespective of JAK2 mutational status, most have only a modest impact on the JAK2(V617F) allele burden. Considering the relevant risk of serious complications in patients undergoing splenectomy, these drugs could find a suitable indication in patients with myelofibrosis awaiting bone marrow transplantation.

  11. Recent patents in the discovery of small molecule inhibitors of JAK3.

    PubMed

    Wilson, Lawrence J

    2010-05-01

    Protein kinase enzymes have become increasingly important as the target of many disease modification drug discovery programs. Disruption of JAK3 function results in quantitative and qualitative deficiencies in both B- and T-cell compartments of the immune system of JAK3 deficient mice and development of severe combined immunodeficiency in humans with the JAK3 genetic aberration. JAK3 plays a specific role in immune function and lymphoid development and it only resides in the hematopoietic system, thus the rationale for selective targeting. Inhibitors of JAK3 have shown utility in many different autoimmune disorders, including allograft rejection during transplantation, acute lymphoblastic leukemia, Type 1 diabetes, rheumatoid arthritis and allergic and asthmatic diseases. These inhibitors are making their way into clinical trials with profound effects, thus, validating the target and strategy. A review that covers around 90 patents and patent applications made in the last 10 years in the area involving JAK3 inhibitors is provided. Specifically, what this content will provide is the genus, highlighted compounds of particular interest, filing organization and some biological measure of these compounds as inhibitors of this protein kinase or none if it is not provided. Some information from original research articles appearing in peer reviewed literature is provided, but this article is not a review of the literature. Furthermore, an overview of the current clinical status and future outcomes of this field is provided as summary. A strong understanding for the current state of the art in patents dealing with inhibitors of JAK3 including genus and species designations, potential commercial interest of this target in the pharmaceutical community, depth of coverage by numbers of examples and selected proof of action against the target. Also, a brief understanding of the biology and pharmacology involved in the processes involving the research, discovery, characterization

  12. Treatment and management of myelofibrosis in the era of JAK inhibitors

    PubMed Central

    Keohane, Clodagh; Radia, Deepti H; Harrison, Claire N

    2013-01-01

    Myelofibrosis (MF) can present as a primary disorder or evolve from polycythemia vera (PV) or essential thrombocythemia (ET) to post-PV MF or post-ET MF, respectively. MF is characterized by bone marrow fibrosis, splenomegaly, leukoerythroblastosis, extramedullary hematopoiesis, and a collection of debilitating symptoms. Until recently, the therapeutic options for patients with MF consisted of allogeneic hematopoietic stem cell transplant (alloHSCT), the use of cytoreductive agents (ie, hydroxyurea), splenectomy and splenic irradiation for treatment of splenomegaly, and management of anemia with transfusions, erythropoiesis-stimulating agents (ESAs), androgens, and immunomodulatory agents. However, with increased understanding of the pathogenesis of MF resulting from dysregulated Janus kinase (JAK) signaling, new targeted JAK inhibitor therapies, such as ruxolitinib, are now available. The purpose of this article is to review the clinical features of MF, discuss the use and future of JAK inhibitors, reassess when and how to use conventional MF treatments in the context of JAK inhibitors, and provide a perspective on the future of MF treatment. PMID:23990704

  13. Treatment and management of myelofibrosis in the era of JAK inhibitors.

    PubMed

    Keohane, Clodagh; Radia, Deepti H; Harrison, Claire N

    2013-01-01

    Myelofibrosis (MF) can present as a primary disorder or evolve from polycythemia vera (PV) or essential thrombocythemia (ET) to post-PV MF or post-ET MF, respectively. MF is characterized by bone marrow fibrosis, splenomegaly, leukoerythroblastosis, extramedullary hematopoiesis, and a collection of debilitating symptoms. Until recently, the therapeutic options for patients with MF consisted of allogeneic hematopoietic stem cell transplant (alloHSCT), the use of cytoreductive agents (ie, hydroxyurea), splenectomy and splenic irradiation for treatment of splenomegaly, and management of anemia with transfusions, erythropoiesis-stimulating agents (ESAs), androgens, and immunomodulatory agents. However, with increased understanding of the pathogenesis of MF resulting from dysregulated Janus kinase (JAK) signaling, new targeted JAK inhibitor therapies, such as ruxolitinib, are now available. The purpose of this article is to review the clinical features of MF, discuss the use and future of JAK inhibitors, reassess when and how to use conventional MF treatments in the context of JAK inhibitors, and provide a perspective on the future of MF treatment.

  14. Efficacy of the JAK2 inhibitor INCB16562 in a murine model of MPLW515L-induced thrombocytosis and myelofibrosis.

    PubMed

    Koppikar, Priya; Abdel-Wahab, Omar; Hedvat, Cyrus; Marubayashi, Sachie; Patel, Jay; Goel, Aviva; Kucine, Nicole; Gardner, Jeffrey R; Combs, Andrew P; Vaddi, Kris; Haley, Patrick J; Burn, Timothy C; Rupar, Mark; Bromberg, Jacqueline F; Heaney, Mark L; de Stanchina, Elisa; Fridman, Jordan S; Levine, Ross L

    2010-04-08

    The discovery of JAK2 and MPL mutations in patients with myeloproliferative neoplasms (MPNs) provided important insight into the genetic basis of these disorders and led to the development of JAK2 kinase inhibitors for MPN therapy. Although recent studies have shown that JAK2 kinase inhibitors demonstrate efficacy in a JAK2V617F murine bone marrow transplantation model, the effects of JAK2 inhibitors on MPLW515L-mediated myeloproliferation have not been investigated. In this report, we describe the in vitro and in vivo effects of INCB16562, a small-molecule JAK2 inhibitor. INCB16562 inhibited proliferation and signaling in cell lines transformed by JAK2 and MPL mutations. Compared with vehicle treatment, INCB16562 treatment improved survival, normalized white blood cell counts and platelet counts, and markedly reduced extramedullary hematopoeisis and bone marrow fibrosis. We observed inhibition of STAT3 and STAT5 phosphorylation in vivo consistent with potent inhibition of JAK-STAT signaling. These data suggest JAK2 inhibitor therapy may be of value in the treatment of JAK2V617F-negative MPNs. However, we did not observe a decrease in the size of the malignant clone in the bone marrow of treated mice at the end of therapy, which suggests that JAK2 inhibitor therapy, by itself, was not curative in this MPN model.

  15. Efficacy of the JAK2 inhibitor INCB16562 in a murine model of MPLW515L-induced thrombocytosis and myelofibrosis

    PubMed Central

    Koppikar, Priya; Abdel-Wahab, Omar; Hedvat, Cyrus; Marubayashi, Sachie; Patel, Jay; Goel, Aviva; Kucine, Nicole; Gardner, Jeffrey R.; Combs, Andrew P.; Vaddi, Kris; Haley, Patrick J.; Burn, Timothy C.; Rupar, Mark; Bromberg, Jacqueline F.; Heaney, Mark L.; de Stanchina, Elisa; Fridman, Jordan S.

    2010-01-01

    The discovery of JAK2 and MPL mutations in patients with myeloproliferative neoplasms (MPNs) provided important insight into the genetic basis of these disorders and led to the development of JAK2 kinase inhibitors for MPN therapy. Although recent studies have shown that JAK2 kinase inhibitors demonstrate efficacy in a JAK2V617F murine bone marrow transplantation model, the effects of JAK2 inhibitors on MPLW515L-mediated myeloproliferation have not been investigated. In this report, we describe the in vitro and in vivo effects of INCB16562, a small-molecule JAK2 inhibitor. INCB16562 inhibited proliferation and signaling in cell lines transformed by JAK2 and MPL mutations. Compared with vehicle treatment, INCB16562 treatment improved survival, normalized white blood cell counts and platelet counts, and markedly reduced extramedullary hematopoeisis and bone marrow fibrosis. We observed inhibition of STAT3 and STAT5 phosphorylation in vivo consistent with potent inhibition of JAK-STAT signaling. These data suggest JAK2 inhibitor therapy may be of value in the treatment of JAK2V617F-negative MPNs. However, we did not observe a decrease in the size of the malignant clone in the bone marrow of treated mice at the end of therapy, which suggests that JAK2 inhibitor therapy, by itself, was not curative in this MPN model. PMID:20154217

  16. CHZ868, a Type II JAK2 Inhibitor, Reverses Type I JAK Inhibitor Persistence and Demonstrates Efficacy in Myeloproliferative Neoplasms

    PubMed Central

    Meyer, Sara C.; Keller, Matthew D.; Chiu, Sophia; Koppikar, Priya; Guryanova, Olga A.; Rapaport, Franck; Xu, Ke; Manova, Katia; Pankov, Dmitry; O’Reilly, Richard J.; Kleppe, Maria; McKenney, Anna Sophia; Shih, Alan H.; Shank, Kaitlyn; Ahn, Jihae; Papalexi, Eftymia; Spitzer, Barbara; Socci, Nick; Viale, Agnes; Mandon, Emeline; Ebel, Nicolas; Andraos, Rita; Rubert, Joëlle; Dammassa, Ernesta; Romanet, Vincent; Dölemeyer, Arno; Zender, Michael; Heinlein, Melanie; Rampal, Rajit; Weinberg, Rona Singer; Hoffman, Ron; Sellers, William R.; Hofmann, Francesco; Murakami, Masato; Baffert, Fabienne; Gaul, Christoph; Radimerski, Thomas; Levine, Ross L.

    2015-01-01

    Summary Although clinically tested JAK inhibitors reduce splenomegaly and systemic symptoms, molecular responses are not observed in most myeloproliferative neoplasms (MPN) patients. We previously demonstrated that MPN cells become persistent to type I JAK inhibitors that bind the active conformation of JAK2. We investigated if CHZ868, a type II JAK inhibitor, would demonstrate activity in JAK inhibitor persistent cells, murine MPN models, and MPN patient samples. JAK2- and MPL-mutant cell lines were sensitive to CHZ868, including type I JAK inhibitor persistent cells. CHZ868 showed significant activity in murine MPN models and induced reductions in mutant allele burden not observed with type I JAK inhibitors. These data demonstrate that type II JAK inhibition is a viable therapeutic approach for MPN patients. PMID:26175413

  17. JAK inhibitors in autoinflammation.

    PubMed

    Hoffman, Hal M; Broderick, Lori

    2018-06-11

    Interferonopathies are a subset of autoinflammatory disorders with a prominent type I IFN gene signature. Treatment of these patients has been challenging, given the lack of response to common autoinflammatory therapeutics including IL-1 and TNF blockade. JAK inhibitors (Jakinibs) are a family of small-molecule inhibitors that target the JAK/STAT signaling pathway and have shown clinical efficacy, with FDA and European Medicines Agency (EMA) approval for arthritic and myeloproliferative syndromes. Sanchez and colleagues repurposed baricitinib to establish a significant role for JAK inhibition as a novel therapy for patients with interferonopathies, demonstrating the power of translational rare disease research with lifesaving effects.

  18. TG101209, a small molecule JAK2-selective kinase inhibitor potently inhibits myeloproliferative disorder-associated JAK2V617F and MPLW515L/K mutations.

    PubMed

    Pardanani, A; Hood, J; Lasho, T; Levine, R L; Martin, M B; Noronha, G; Finke, C; Mak, C C; Mesa, R; Zhu, H; Soll, R; Gilliland, D G; Tefferi, A

    2007-08-01

    JAK2V617F and MPLW515L/K represent recently identified mutations in myeloproliferative disorders (MPD) that cause dysregulated JAK-STAT signaling, which is implicated in MPD pathogenesis. We developed TG101209, an orally bioavailable small molecule that potently inhibits JAK2 (IC(50)=6 nM), FLT3 (IC(50)=25 nM) and RET (IC(50)=17 nM) kinases, with significantly less activity against other tyrosine kinases including JAK3 (IC(50)=169 nM). TG101209 inhibited growth of Ba/F3 cells expressing JAK2V617F or MPLW515L mutations with an IC(50) of approximately 200 nM. In a human JAK2V617F-expressing acute myeloid leukemia cell line, TG101209-induced cell cycle arrest and apoptosis, and inhibited phosphorylation of JAK2V617F, STAT5 and STAT3. Therapeutic efficacy of TG101209 was demonstrated in a nude mouse model. Furthermore, TG101209 suppressed growth of hematopoietic colonies from primary progenitor cells harboring JAK2V617F or MPL515 mutations.

  19. JAK inhibitors: A broadening approach in rheumatoid arthritis.

    PubMed

    Lam, S

    2016-08-01

    Pfizer's Xeljanz (tofacitinib citrate) was the first Janus kinase (JAK) inhibitor to reach the market for rheumatoid arthritis (RA) following its U.S. approval in November 2012, and it has since gained approval in more than 45 countries as a second-line therapy for RA after failure of disease-modifying antirheumatic drugs (DMARDs). This emerging category has heralded an attractive new class of oral treatment options in RA, with a notable opportunity in patients who stop responding to DMARDs, but they are facing a challenging market. Despite RA affecting approximately 23.7 million people worldwide, Xeljanz faces a market dominated by the anti-tumor necrosis factor (anti-TNF) biologicals, which have robust long-term safety and efficacy. The availability of biosimilars of these market leaders is also intensifying competition, and a high price and uncertainty over long-term safety is currently tempering the market for the JAK inhibitors. Copyright 2016 Prous Science, S.A.U. or its licensors. All rights reserved.

  20. Perspectives for the use of structural information and chemical genetics to develop inhibitors of Janus kinases

    PubMed Central

    Haan, Claude; Behrmann, Iris; Haan, Serge

    2010-01-01

    Abstract Gain-of-function mutations in the genes encoding Janus kinases have been discovered in various haematologic diseases. Jaks are composed of a FERM domain, an SH2 domain, a pseudokinase domain and a kinase domain, and a complex interplay of the Jak domains is involved in regulation of catalytic activity and association to cytokine receptors. Most activating mutations are found in the pseudokinase domain. Here we present recently discovered mutations in the context of our structural models of the respective domains. We describe two structural hotspots in the pseudokinase domain of Jak2 that seem to be associated either to myeloproliferation or to lymphoblastic leukaemia, pointing at the involvement of distinct signalling complexes in these disease settings. The different domains of Jaks are discussed as potential drug targets. We present currently available inhibitors targeting Jaks and indicate structural differences in the kinase domains of the different Jaks that may be exploited in the development of specific inhibitors. Moreover, we discuss recent chemical genetic approaches which can be applied to Jaks to better understand the role of these kinases in their biological settings and as drug targets. PMID:20132407

  1. SOCS3 tyrosine phosphorylation as a potential bio-marker for myeloproliferative neoplasms associated with mutant JAK2 kinases

    PubMed Central

    Elliott, Joanne; Suessmuth, Yvonne; Scott, Linda M.; Nahlik, Krystyna; McMullin, Mary Frances; Constantinescu, Stefan N.; Green, Anthony R.; Johnston, James A.

    2009-01-01

    JAK2 V617F, identified in the majority of patients with myeloproliferative neoplasms, tyrosine phosphorylates SOCS3 and escapes its inhibition. Here, we demonstrate that the JAK2 exon 12 mutants described in a subset of V617F-negative MPN cases, also stabilize tyrosine phosphorylated SOCS3. SOCS3 tyrosine phosphorylation was also observed in peripheral blood mononuclear cells and granulocytes isolated from patients with JAK2 H538QK539L or JAK2 F537-K539delinsL mutations. JAK kinase inhibitors, which effectively inhibited the proliferation of cells expressing V617F or K539L, also caused a dose-dependent reduction in both mutant JAK2 and SOCS3 tyrosine phosphorylation. We propose, therefore, that SOCS3 tyrosine phosphorylation may be a novel bio-marker of myeloproliferative neoplasms resulting from a JAK2 mutation and a potential reporter of effective JAK2 inhibitor therapy currently in clinical development. PMID:19229050

  2. Dual kinase-bromodomain inhibitors for rationally designed polypharmacology

    PubMed Central

    Ciceri, Pietro; Müller, Susanne; O’Mahony, Alison; Fedorov, Oleg; Filippakopoulos, Panagis; Hunt, Jeremy P.; Lasater, Elisabeth A.; Pallares, Gabriel; Picaud, Sarah; Wells, Christopher; Martin, Sarah; Wodicka, Lisa M.; Shah, Neil P.; Treiber, Daniel K.; Knapp, Stefan

    2014-01-01

    Concomitant inhibition of multiple cancer-driving kinases is an established strategy to improve the durability of clinical responses to targeted therapies. The difficulty of discovering kinase inhibitors with an appropriate multi-target profile has, however, necessitated the application of combination therapies, which can pose significant clinical development challenges. Epigenetic reader domains of the bromodomain family have recently emerged as novel targets for cancer therapy. Here we report that several clinical kinase inhibitors also inhibit bromodomains with therapeutically relevant potencies and are best classified as dual kinase/bromodomain inhibitors. Nanomolar activity on BRD4 by BI-2536 and TG-101348, clinical PLK1 and JAK2/FLT3 kinase inhibitors, respectively, is particularly noteworthy as these combinations of activities on independent oncogenic pathways exemplify a novel strategy for rational single agent polypharmacological targeting. Furthermore, structure-activity relationships and co-crystal structures identify design features that enable a general platform for the rational design of dual kinase/bromodomain inhibitors. PMID:24584101

  3. JAK inhibitors for the treatment of myeloproliferative neoplasms and other disorders

    PubMed Central

    Vainchenker, William; Leroy, Emilie; Gilles, Laure; Marty, Caroline; Plo, Isabelle; Constantinescu, Stefan N.

    2018-01-01

    JAK inhibitors have been developed following the discovery of the JAK2V617F in 2005 as the driver mutation of the majority of non- BCR-ABL1 myeloproliferative neoplasms (MPNs). Subsequently, the search for JAK2 inhibitors continued with the discovery that the other driver mutations ( CALR and MPL) also exhibited persistent JAK2 activation. Several type I ATP-competitive JAK inhibitors with different specificities were assessed in clinical trials and exhibited minimal hematologic toxicity. Interestingly, these JAK inhibitors display potent anti-inflammatory activity. Thus, JAK inhibitors targeting preferentially JAK1 and JAK3 have been developed to treat inflammation, autoimmune diseases, and graft-versus-host disease. Ten years after the beginning of clinical trials, only two drugs have been approved by the US Food and Drug Administration: one JAK2/JAK1 inhibitor (ruxolitinib) in intermediate-2 and high-risk myelofibrosis and hydroxyurea-resistant or -intolerant polycythemia vera and one JAK1/JAK3 inhibitor (tofacitinib) in methotrexate-resistant rheumatoid arthritis. The non-approved compounds exhibited many off-target effects leading to neurological and gastrointestinal toxicities, as seen in clinical trials for MPNs. Ruxolitinib is a well-tolerated drug with mostly anti-inflammatory properties. Despite a weak effect on the cause of the disease itself in MPNs, it improves the clinical state of patients and increases survival in myelofibrosis. This limited effect is related to the fact that ruxolitinib, like the other type I JAK2 inhibitors, inhibits equally mutated and wild-type JAK2 (JAK2WT) and also the JAK2 oncogenic activation. Thus, other approaches need to be developed and could be based on either (1) the development of new inhibitors specifically targeting JAK2V617F or (2) the combination of the actual JAK2 inhibitors with other therapies, in particular with molecules targeting pathways downstream of JAK2 activation or the stability of JAK2 molecule. In

  4. Production and crystallization of recombinant JAK proteins.

    PubMed

    Lucet, Isabelle S; Bamert, Rebecca

    2013-01-01

    JAK kinases are critical mediators in development, differentiation, and homeostasis and accordingly, have become well-validated targets for drug discovery efforts. In recent years, the integration of X-ray crystallography in kinase-focused drug discovery programs has provided a powerful rationale for chemical modification by allowing a unique glimpse of a bound inhibitor to its target. Such structural information has not only led to an improved understanding of the key drivers of potency and specificity of several JAK-specific compounds but has greatly facilitated and accelerated the design of compounds with improved pharmacokinetic properties.JAK kinases are traditionally difficult candidates to express in significant quantities, generally requiring eukaryotic expression systems, protein engineering, mutations to yield soluble, homogeneous samples suitable for crystallization studies. Here we review the key methods utilized to express, purify, and crystallize the JAK kinases and provide a detail description of the methods that we have developed to express, purify, and crystallize recombinant JAK1 and JAK2 proteins in the presence of small molecule inhibitors.

  5. The Stilbenoid Tyrosine Kinase Inhibitor, G6, Suppresses Jak2-V617F-mediated Human Pathological Cell Growth in Vitro and in Vivo*

    PubMed Central

    Kirabo, Annet; Embury, Jennifer; Kiss, Róbert; Polgár, Tímea; Gali, Meghanath; Majumder, Anurima; Bisht, Kirpal S.; Cogle, Christopher R.; Keserű, György M.; Sayeski, Peter P.

    2011-01-01

    Using structure-based virtual screening, we previously identified a novel stilbenoid inhibitor of Jak2 tyrosine kinase named G6. Here, we hypothesized that G6 suppresses Jak2-V617F-mediated human pathological cell growth in vitro and in vivo. We found that G6 inhibited proliferation of the Jak2-V617F expressing human erythroleukemia (HEL) cell line by promoting marked cell cycle arrest and inducing apoptosis. The G6-dependent increase in apoptosis levels was concomitant with increased caspase 3/7 activity and cleavage of PARP. G6 also selectively inhibited phosphorylation of STAT5, a downstream signaling target of Jak2. Using a mouse model of Jak2-V617F-mediated hyperplasia, we found that G6 significantly decreased the percentage of blast cells in the peripheral blood, reduced splenomegaly, and corrected a pathologically low myeloid to erythroid ratio in the bone marrow by eliminating HEL cell engraftment in this tissue. In addition, drug efficacy correlated with the presence of G6 in the plasma, marrow, and spleen. Collectively, these data demonstrate that the stilbenoid compound, G6, suppresses Jak2-V617F-mediated aberrant cell growth. As such, G6 may be a potential therapeutic lead candidate against Jak2-mediated, human disease. PMID:21127060

  6. Aggressive B-cell lymphomas in patients with myelofibrosis receiving JAK1/2 inhibitor therapy.

    PubMed

    Porpaczy, Edit; Tripolt, Sabrina; Hoelbl-Kovacic, Andrea; Gisslinger, Bettina; Bago-Horvath, Zsuzsanna; Casanova-Hevia, Emilio; Clappier, Emmanuelle; Decker, Thomas; Fajmann, Sabine; Fux, Daniela A; Greiner, Georg; Gueltekin, Sinan; Heller, Gerwin; Herkner, Harald; Hoermann, Gregor; Kiladjian, Jean-Jacques; Kolbe, Thomas; Kornauth, Christoph; Krauth, Maria-Theresa; Kralovics, Robert; Muellauer, Leonhard; Mueller, Mathias; Prchal-Murphy, Michaela; Putz, Eva Maria; Raffoux, Emmanuel; Schiefer, Ana-Iris; Schmetterer, Klaus; Schneckenleithner, Christine; Simonitsch-Klupp, Ingrid; Skrabs, Cathrin; Sperr, Wolfgang R; Staber, Philipp Bernhard; Strobl, Birgit; Valent, Peter; Jaeger, Ulrich; Gisslinger, Heinz; Sexl, Veronika

    2018-06-14

    Inhibition of Janus-kinase 1/2 (JAK1/2) is a mainstay to treat myeloproliferative neoplasms (MPN). Sporadic observations reported the co-incidence of B-cell non-Hodgkin lymphomas during treatment of MPN with JAK1/2 inhibitors. We assessed 626 MPN patients including 69 with myelofibrosis receiving JAK1/2 inhibitors for lymphoma development. B-cell lymphomas evolved in 4/69 patients (5.8%) upon JAK1/2 inhibition compared to 2/557 (0.36%) with conventional treatment (16-fold increased risk). A similar 15-fold increase was observed in an independent cohort of 929 MPN patients. Considering primary myelofibrosis only (N=216), 3 lymphomas were observed in 31 inhibitor-treated patients (9.7%) versus 1/185 controls (0.54%). Lymphomas were of aggressive B-cell type, extra-nodal or leukemic with high MYC expression in the absence of JAK2 V617F or other MPN-associated mutations. Median time from initiation of inhibitor therapy to lymphoma diagnosis was 25 months. Clonal immunoglobulin gene rearrangements were already detected in the bone marrow during myelofibrosis in 16.3% of patients. Lymphomas occurring during JAK1/2 inhibitor treatment were preceded by a pre-existing B-cell clone in all 3 patients tested. Sequencing verified clonal identity in 2 patients. The effects of JAK1/2 inhibition were mirrored in Stat1 -/- mice: 16/24 mice developed a spontaneous myeloid hyperplasia with the concomitant presence of aberrant B-cells. Transplantations of bone marrow from diseased mice unmasked the outgrowth of a malignant B-cell clone evolving into aggressive B-cell leukemia-lymphoma. We conclude that JAK/STAT1 pathway inhibition in myelofibrosis is associated with an elevated frequency of aggressive B-cell lymphomas. Detection of a pre-existing B-cell clone may identify individuals at risk. Copyright © 2018 American Society of Hematology.

  7. The Janus Kinase (JAK) FERM and SH2 Domains: Bringing Specificity to JAK-Receptor Interactions.

    PubMed

    Ferrao, Ryan; Lupardus, Patrick J

    2017-01-01

    The Janus kinases (JAKs) are non-receptor tyrosine kinases essential for signaling in response to cytokines and interferons and thereby control many essential functions in growth, development, and immune regulation. JAKs are unique among tyrosine kinases for their constitutive yet non-covalent association with class I and II cytokine receptors, which upon cytokine binding bring together two JAKs to create an active signaling complex. JAK association with cytokine receptors is facilitated by N-terminal FERM and SH2 domains, both of which are classical mediators of peptide interactions. Together, the JAK FERM and SH2 domains mediate a bipartite interaction with two distinct receptor peptide motifs, the proline-rich "Box1" and hydrophobic "Box2," which are present in the intracellular domain of cytokine receptors. While the general sidechain chemistry of Box1 and Box2 peptides is conserved between receptors, they share very weak primary sequence homology, making it impossible to posit why certain JAKs preferentially interact with and signal through specific subsets of cytokine receptors. Here, we review the structure and function of the JAK FERM and SH2 domains in light of several recent studies that reveal their atomic structure and elucidate interaction mechanisms with both the Box1 and Box2 receptor motifs. These crystal structures demonstrate how evolution has repurposed the JAK FERM and SH2 domains into a receptor-binding module that facilitates interactions with multiple receptors possessing diverse primary sequences.

  8. Identification of azabenzimidazoles as potent JAK1 selective inhibitors.

    PubMed

    Vasbinder, Melissa M; Alimzhanov, Marat; Augustin, Martin; Bebernitz, Geraldine; Bell, Kirsten; Chuaqui, Claudio; Deegan, Tracy; Ferguson, Andrew D; Goodwin, Kelly; Huszar, Dennis; Kawatkar, Aarti; Kawatkar, Sameer; Read, Jon; Shi, Jie; Steinbacher, Stefan; Steuber, Holger; Su, Qibin; Toader, Dorin; Wang, Haixia; Woessner, Richard; Wu, Allan; Ye, Minwei; Zinda, Michael

    2016-01-01

    We have identified a class of azabenzimidazoles as potent and selective JAK1 inhibitors. Investigations into the SAR are presented along with the structural features required to achieve selectivity for JAK1 versus other JAK family members. An example from the series demonstrated highly selective inhibition of JAK1 versus JAK2 and JAK3, along with inhibition of pSTAT3 in vivo, enabling it to serve as a JAK1 selective tool compound to further probe the biology of JAK1 selective inhibitors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Network pharmacology of JAK inhibitors

    PubMed Central

    Moodley, Devapregasan; Yoshida, Hideyuki; Mostafavi, Sara; Asinovski, Natasha; Ortiz-Lopez, Adriana; Symanowicz, Peter; Telliez, Jean-Baptiste; Hegen, Martin; Clark, James D.; Mathis, Diane; Benoist, Christophe

    2016-01-01

    Small-molecule inhibitors of the Janus kinase family (JAKis) are clinically efficacious in multiple autoimmune diseases, albeit with increased risk of certain infections. Their precise mechanism of action is unclear, with JAKs being signaling hubs for several cytokines. We assessed the in vivo impact of pan- and isoform-specific JAKi in mice by immunologic and genomic profiling. Effects were broad across the immunogenomic network, with overlap between inhibitors. Natural killer (NK) cell and macrophage homeostasis were most immediately perturbed, with network-level analysis revealing a rewiring of coregulated modules of NK cell transcripts. The repression of IFN signature genes after repeated JAKi treatment continued even after drug clearance, with persistent changes in chromatin accessibility and phospho-STAT responsiveness to IFN. Thus, clinical use and future development of JAKi might need to balance effects on immunological networks, rather than expect that JAKis affect a particular cytokine response and be cued to long-lasting epigenomic modifications rather than by short-term pharmacokinetics. PMID:27516546

  10. Efficacy of NS-018, a potent and selective JAK2/Src inhibitor, in primary cells and mouse models of myeloproliferative neoplasms.

    PubMed

    Nakaya, Y; Shide, K; Niwa, T; Homan, J; Sugahara, S; Horio, T; Kuramoto, K; Kotera, T; Shibayama, H; Hori, K; Naito, H; Shimoda, K

    2011-07-01

    Aberrant activation of Janus kinase 2 (JAK2) caused by somatic mutation of JAK2 (JAK2V617F) or the thrombopoietin receptor (MPLW515L) plays an essential role in the pathogenesis of myeloproliferative neoplasms (MPNs), suggesting that inhibition of aberrant JAK2 activation would have a therapeutic benefit. Our novel JAK2 inhibitor, NS-018, was highly active against JAK2 with a 50% inhibition (IC(50)) of <1 n, and had 30-50-fold greater selectivity for JAK2 over other JAK-family kinases, such as JAK1, JAK3 and tyrosine kinase 2. In addition to JAK2, NS-018 inhibited Src-family kinases. NS-018 showed potent antiproliferative activity against cell lines expressing a constitutively activated JAK2 (the JAK2V617F or MPLW515L mutations or the TEL-JAK2 fusion gene; IC(50)=11-120 n), but showed only minimal cytotoxicity against most other hematopoietic cell lines without a constitutively activated JAK2. Furthermore, NS-018 preferentially suppressed in vitro erythropoietin-independent endogenous colony formation from polycythemia vera patients. NS-018 also markedly reduced splenomegaly and prolonged the survival of mice inoculated with Ba/F3 cells harboring JAK2V617F. In addition, NS-018 significantly reduced leukocytosis, hepatosplenomegaly and extramedullary hematopoiesis, improved nutritional status, and prolonged survival in JAK2V617F transgenic mice. These results suggest that NS-018 will be a promising candidate for the treatment of MPNs.

  11. Jak2 FERM Domain Interaction with the Erythropoietin Receptor Regulates Jak2 Kinase Activity▿

    PubMed Central

    Funakoshi-Tago, Megumi; Pelletier, Stéphane; Moritake, Hiroshi; Parganas, Evan; Ihle, James N.

    2008-01-01

    Janus kinases are essential for signal transduction by a variety of cytokine receptors and when inappropriately activated can cause hematopoietic disorders and oncogenesis. Consequently, it can be predicted that the interaction of the kinases with receptors and the events required for activation are highly controlled. In a screen to identify phosphorylation events regulating Jak2 activity in EpoR signaling, we identified a mutant (Jak2-Y613E) which has the property of being constitutively activated, as well as an inactivating mutation (Y766E). Although no evidence was obtained to indicate that either site is phosphorylated in signaling, the consequences of the Y613E mutation are similar to those observed with recently described activating mutations in Jak2 (Jak2-V617F and Jak2-L611S). However, unlike the V617F or L611S mutant, the Y613E mutant requires the presence of the receptor but not Epo stimulation for activation and downstream signaling. The properties of the Jak2-Y613E mutant suggest that under normal conditions, Jak2 that is not associated with a receptor is locked into an inactive state and receptor binding through the FERM domain relieves steric constraints, allowing the potential to be activated with receptor engagement. PMID:18160720

  12. Structure-Function Correlation of G6, a Novel Small Molecule Inhibitor of Jak2

    PubMed Central

    Majumder, Anurima; Govindasamy, Lakshmanan; Magis, Andrew; Kiss, Róbert; Polgár, Tímea; Baskin, Rebekah; Allan, Robert W.; Agbandje-McKenna, Mavis; Reuther, Gary W.; Keserű, György M.; Bisht, Kirpal S.; Sayeski, Peter P.

    2010-01-01

    Somatic mutations in the Jak2 protein, such as V617F, cause aberrant Jak/STAT signaling and can lead to the development of myeloproliferative neoplasms. This discovery has led to the search for small molecule inhibitors that target Jak2. Using structure-based virtual screening, our group recently identified a novel small molecule inhibitor of Jak2 named G6. Here, we identified a structure-function correlation of this compound. Specifically, five derivative compounds of G6 having structural similarity to the original lead compound were obtained and analyzed for their ability to (i) inhibit Jak2-V617F-mediated cell growth, (ii) inhibit the levels of phospho-Jak2, phospho-STAT3, and phospho-STAT5; (iii) induce apoptosis in human erythroleukemia cells; and (iv) suppress pathologic cell growth of Jak2-V617F-expressing human bone marrow cells ex vivo. Additionally, we computationally examined the interactions of these compounds with the ATP-binding pocket of the Jak2 kinase domain. We found that the stilbenoid core-containing derivatives of G6 significantly inhibited Jak2-V617F-mediated cell proliferation in a time- and dose-dependent manner. They also inhibited phosphorylation of Jak2, STAT3, and STAT5 proteins within cells, resulting in higher levels of apoptosis via the intrinsic apoptotic pathway. Finally, the stilbenoid derivatives inhibited the pathologic growth of Jak2-V617F-expressing human bone marrow cells ex vivo. Collectively, our data demonstrate that G6 has a stilbenoid core that is indispensable for maintaining its Jak2 inhibitory potential. PMID:20667821

  13. Efficacy of NS-018, a potent and selective JAK2/Src inhibitor, in primary cells and mouse models of myeloproliferative neoplasms

    PubMed Central

    Nakaya, Y; Shide, K; Niwa, T; Homan, J; Sugahara, S; Horio, T; Kuramoto, K; Kotera, T; Shibayama, H; Hori, K; Naito, H; Shimoda, K

    2011-01-01

    Aberrant activation of Janus kinase 2 (JAK2) caused by somatic mutation of JAK2 (JAK2V617F) or the thrombopoietin receptor (MPLW515L) plays an essential role in the pathogenesis of myeloproliferative neoplasms (MPNs), suggesting that inhibition of aberrant JAK2 activation would have a therapeutic benefit. Our novel JAK2 inhibitor, NS-018, was highly active against JAK2 with a 50% inhibition (IC50) of <1 n, and had 30–50-fold greater selectivity for JAK2 over other JAK-family kinases, such as JAK1, JAK3 and tyrosine kinase 2. In addition to JAK2, NS-018 inhibited Src-family kinases. NS-018 showed potent antiproliferative activity against cell lines expressing a constitutively activated JAK2 (the JAK2V617F or MPLW515L mutations or the TEL–JAK2 fusion gene; IC50=11–120 n), but showed only minimal cytotoxicity against most other hematopoietic cell lines without a constitutively activated JAK2. Furthermore, NS-018 preferentially suppressed in vitro erythropoietin-independent endogenous colony formation from polycythemia vera patients. NS-018 also markedly reduced splenomegaly and prolonged the survival of mice inoculated with Ba/F3 cells harboring JAK2V617F. In addition, NS-018 significantly reduced leukocytosis, hepatosplenomegaly and extramedullary hematopoiesis, improved nutritional status, and prolonged survival in JAK2V617F transgenic mice. These results suggest that NS-018 will be a promising candidate for the treatment of MPNs. PMID:22829185

  14. The oral HDAC inhibitor pracinostat (SB939) is efficacious and synergistic with the JAK2 inhibitor pacritinib (SB1518) in preclinical models of AML

    PubMed Central

    Novotny-Diermayr, V; Hart, S; Goh, K C; Cheong, A; Ong, L-C; Hentze, H; Pasha, M K; Jayaraman, R; Ethirajulu, K; Wood, J M

    2012-01-01

    Acute myeloid leukemia (AML) is currently treated with aggressive chemotherapy that is not well tolerated in many elderly patients, hence the unmet medical need for effective therapies with less toxicity and better tolerability. Inhibitors of FMS-like tyrosine kinase 3 (FLT3), JAK2 and histone deacetylase inhibitors (HDACi) have been tested in clinical studies, but showed only moderate single-agent activity. High efficacy of the HDACi pracinostat treating AML and synergy with the JAK2/FLT3 inhibitor pacritinib is demonstrated. Both compounds inhibit JAK-signal transducer and activator of transcription (STAT) signaling in AML cells with JAK2V617F mutations, but also diminish FLT3 signaling, particularly in FLT3-ITD (internal tandem duplication) cell lines. In vitro, this combination led to decreased cell proliferation and increased apoptosis. The synergy translated in vivo in two different AML models, the SET-2 megakaryoblastic AML mouse model carrying a JAK2V617F mutation, and the MOLM-13 model of FLT3-ITD-driven AML. Pracinostat and pacritinib in combination showed synergy on tumor growth, reduction of metastases and synergistically decreased JAK2 or FLT signaling, depending on the cellular context. In addition, several plasma cytokines/growth factors/chemokines triggered by the tumor growth were normalized, providing a rationale for combination therapy with an HDACi and a JAK2/FLT3 inhibitor for the treatment of AML patients, particularly those with FLT3 or JAK2 mutations. PMID:22829971

  15. Multifaceted Intervention by the Hsp90 Inhibitor Ganetespib (STA-9090) in Cancer Cells with Activated JAK/STAT Signaling

    PubMed Central

    Proia, David A.; Foley, Kevin P.; Korbut, Tim; Sang, Jim; Smith, Don; Bates, Richard C.; Liu, Yuan; Rosenberg, Alex F.; Zhou, Dan; Koya, Keizo; Barsoum, James; Blackman, Ronald K.

    2011-01-01

    There is accumulating evidence that dysregulated JAK signaling occurs in a wide variety of cancer types. In particular, mutations in JAK2 can result in the constitutive activation of STAT transcription factors and lead to oncogenic growth. JAK kinases are established Hsp90 client proteins and here we show that the novel small molecule Hsp90 inhibitor ganetespib (formerly STA-9090) exhibits potent in vitro and in vivo activity in a range of solid and hematological tumor cells that are dependent on JAK2 activity for growth and survival. Of note, ganetespib treatment results in sustained depletion of JAK2, including the constitutively active JAK2V617F mutant, with subsequent loss of STAT activity and reduced STAT-target gene expression. In contrast, treatment with the pan-JAK inhibitor P6 results in only transient effects on these processes. Further differentiating these modes of intervention, RNA and protein expression studies show that ganetespib additionally modulates cell cycle regulatory proteins, while P6 does not. The concomitant impact of ganetespib on both cell growth and cell division signaling translates to potent antitumor efficacy in mouse models of xenografts and disseminated JAK/STAT-driven leukemia. Overall, our findings support Hsp90 inhibition as a novel therapeutic approach for combating diseases dependent on JAK/STAT signaling, with the multimodal action of ganetespib demonstrating advantages over JAK-specific inhibitors. PMID:21533169

  16. Anti-angiogenic and anti-metastatic activity of JAK inhibitor AZD1480

    PubMed Central

    Xin, Hong; Herrmann, Andreas; Reckamp, Karen; Zhang, Wang; Pal, Sumanta; Hedvat, Michael; Zhang, Chunyan; Liang, Wei; Scuto, Anna; Weng, Shaobu; Morosini, Deborah; Cao, Zhu A.; Zinda, Michael; Figlin, Robert; Huszar, Dennis; Jove, Richard; Yu, Hua

    2011-01-01

    STAT3 has important functions in both tumor cells and the tumor microenvironment to facilitate cancer progression. The STAT regulatory kinase JAK has been strongly implicated in promoting oncogenesis of various solid tumors, including through the use of JAK kinase inhibitors such as AZD1480. However, direct evidence that JAK drives STAT3 function and cancer pathogenesis at the level of the tumor microenvironment has yet to be established clearly. In this study, we show that AZD1480 inhibits STAT3 in tumor-associated myeloid cells, reducing their number and inhibiting tumor metastasis. Myeloid cell-mediated angiogenesis was also diminished by AZD1480, with additional direct inhibition of endothelial cell function in vitro and in vivo. AZD1480 blocked lung infiltration of myeloid cells and formation of pulmonary metastases in both mouse syngeneic experimental and spontaneous metastatic models. Furthermore, AZD1480 reduced angiogenesis and metastasis in a human xenograft tumor model. Although the effects of AZD1480 on the tumor microenvironment were important for the observed anti-angiogenic activity, constitutive activation of STAT3 in tumor cells themselves could block these anti-angiogenic effects demonstrating the complexity of the JAK/STAT signaling network in tumor progression. Together, our results indicated that AZD1480 can effectively inhibit tumor angiogenesis and metastasis mediated by STAT3 in stromal cells as well as tumor cells. PMID:21920898

  17. Methotrexate Is a JAK/STAT Pathway Inhibitor

    PubMed Central

    Thomas, Sally; Fisher, Katherine H.; Snowden, John A.; Danson, Sarah J.; Brown, Stephen; Zeidler, Martin P.

    2015-01-01

    Background The JAK/STAT pathway transduces signals from multiple cytokines and controls haematopoiesis, immunity and inflammation. In addition, pathological activation is seen in multiple malignancies including the myeloproliferative neoplasms (MPNs). Given this, drug development efforts have targeted the pathway with JAK inhibitors such as ruxolitinib. Although effective, high costs and side effects have limited its adoption. Thus, a need for effective low cost treatments remains. Methods & Findings We used the low-complexity Drosophila melanogaster pathway to screen for small molecules that modulate JAK/STAT signalling. This screen identified methotrexate and the closely related aminopterin as potent suppressors of STAT activation. We show that methotrexate suppresses human JAK/STAT signalling without affecting other phosphorylation-dependent pathways. Furthermore, methotrexate significantly reduces STAT5 phosphorylation in cells expressing JAK2 V617F, a mutation associated with most human MPNs. Methotrexate acts independently of dihydrofolate reductase (DHFR) and is comparable to the JAK1/2 inhibitor ruxolitinib. However, cells treated with methotrexate still retain their ability to respond to physiological levels of the ligand erythropoietin. Conclusions Aminopterin and methotrexate represent the first chemotherapy agents developed and act as competitive inhibitors of DHFR. Methotrexate is also widely used at low doses to treat inflammatory and immune-mediated conditions including rheumatoid arthritis. In this low-dose regime, folate supplements are given to mitigate side effects by bypassing the biochemical requirement for DHFR. Although independent of DHFR, the mechanism-of-action underlying the low-dose effects of methotrexate is unknown. Given that multiple pro-inflammatory cytokines signal through the pathway, we suggest that suppression of the JAK/STAT pathway is likely to be the principal anti-inflammatory and immunosuppressive mechanism-of-action of low

  18. Tofacitinib and analogs as inhibitors of the histone kinase PRK1 (PKN1).

    PubMed

    Ostrovskyi, Dmytro; Rumpf, Tobias; Eib, Julia; Lumbroso, Alexandre; Slynko, Inna; Klaeger, Susan; Heinzlmeir, Stephanie; Forster, Michael; Gehringer, Matthias; Pfaffenrot, Ellen; Bauer, Silke Mona; Schmidtkunz, Karin; Wenzler, Sandra; Metzger, Eric; Kuster, Bernhard; Laufer, Stefan; Schüle, Roland; Sippl, Wolfgang; Breit, Bernhard; Jung, Manfred

    2016-09-01

    The histone kinase PRK1 has been identified as a potential target to combat prostate cancer but selective PRK1 inhibitors are lacking. The US FDA -approved JAK1-3 inhibitor tofacitinib also potently inhibits PRK1 in vitro. We show that tofacitinib also inhibits PRK1 in a cellular setting. Using tofacitinib as a starting point for structure-activity relationship studies, we identified a more potent and another more selective PRK1 inhibitor compared with tofacitinib. Furthermore, we found two potential PRK1/JAK3-selectivity hotspots. The identified inhibitors and the selectivity hotspots lay the basis for the development of selective PRK1 inhibitors. The identification of PRK1, but also of other cellular tofacitinib targets, has implications on its clinical use and on future development of tofacitinib-like JAK inhibitors. [Formula: see text].

  19. Discovery of a Highly Selective JAK2 Inhibitor, BMS-911543, for the Treatment of Myeloproliferative Neoplasms

    PubMed Central

    2015-01-01

    JAK2 kinase inhibitors are a promising new class of agents for the treatment of myeloproliferative neoplasms and have potential for the treatment of other diseases possessing a deregulated JAK2-STAT pathway. X-ray structure and ADME guided refinement of C-4 heterocycles to address metabolic liability present in dialkylthiazole 1 led to the discovery of a clinical candidate, BMS-911543 (11), with excellent kinome selectivity, in vivo PD activity, and safety profile. PMID:26288683

  20. Protein kinase inhibitors in the treatment of inflammatory and autoimmune diseases

    PubMed Central

    Patterson, H; Nibbs, R; McInnes, I; Siebert, S

    2014-01-01

    Protein kinases mediate protein phosphorylation, which is a fundamental component of cell signalling, with crucial roles in most signal transduction cascades: from controlling cell growth and proliferation to the initiation and regulation of immunological responses. Aberrant kinase activity is implicated in an increasing number of diseases, with more than 400 human diseases now linked either directly or indirectly to protein kinases. Protein kinases are therefore regarded as highly important drug targets, and are the subject of intensive research activity. The success of small molecule kinase inhibitors in the treatment of cancer, coupled with a greater understanding of inflammatory signalling cascades, has led to kinase inhibitors taking centre stage in the pursuit for new anti-inflammatory agents for the treatment of immune-mediated diseases. Herein we discuss the main classes of kinase inhibitors; namely Janus kinase (JAK), mitogen-activated protein kinase (MAPK) and spleen tyrosine kinase (Syk) inhibitors. We provide a mechanistic insight into how these inhibitors interfere with kinase signalling pathways and discuss the clinical successes and failures in the implementation of kinase-directed therapeutics in the context of inflammatory and autoimmune disorders. PMID:24313320

  1. How we treat myelofibrosis after failure of JAK inhibitors.

    PubMed

    Pardanani, Animesh; Tefferi, Ayalew

    2018-06-04

    The introduction of JAK inhibitors, leading to regulatory approval of ruxolitinib, represents a major therapeutic advance in myelofibrosis. Most patients experience reduction in splenomegaly and improved quality of life from symptom improvement. It is a paradox however that, despite inhibition of signaling downstream of disease-related driver mutations, JAK inhibitor treatment is not associated with consistent molecular or pathologic responses in myelofibrosis. Furthermore, there are important limitations to JAK inhibitor therapy including development of dose-limiting cytopenias and/or non-hematological toxicities such as neuropathy or opportunistic infections. Over half the patients discontinue treatment within three years of starting treatment. While data are sparse, clinical outcome after JAK inhibitor 'failure' is likely poor; consequently, it is important to understand patterns of failure to select appropriate salvage treatment(s). An algorithmic approach, particularly one that incorporates cytogenetics/molecular data, is most helpful in selecting stem cell transplant candidates. Treatment of transplant-ineligible patients relies on a problem-based approach that includes use of investigational drugs, or consideration of splenectomy or radiotherapy. Data from early-phase ruxolitinib combination studies, despite promising pre-clinical data, has not shown clear benefit over monotherapy thus far. Development of effective treatment strategies for myelofibrosis patients failing JAK inhibitors remains a major unmet need. Copyright © 2018 American Society of Hematology.

  2. Repigmentation in vitiligo using the Janus kinase inhibitor tofacitinib may require concomitant light exposure.

    PubMed

    Liu, Lucy Y; Strassner, James P; Refat, Maggi A; Harris, John E; King, Brett A

    2017-10-01

    Vitiligo is an autoimmune disease in which cutaneous depigmentation occurs. Existing therapies are often inadequate. Prior reports have shown benefit of the Janus kinase (JAK) inhibitors. To evaluate the efficacy of the JAK 1/3 inhibitor tofacitinib in the treatment of vitiligo. This is a retrospective case series of 10 consecutive patients with vitiligo treated with tofacitinib. Severity of disease was assessed by body surface area of depigmentation. Ten consecutive patients were treated with tofacitinib. Five patients achieved some repigmentation at sites of either sunlight exposure or low-dose narrowband ultraviolet B phototherapy. Suction blister sampling revealed that the autoimmune response was inhibited during treatment in both responding and nonresponding lesions, suggesting that light rather than immunosuppression was primarily required for melanocyte regeneration. Limitations include the small size of the study population, retrospective nature of the study, and lack of a control group. Treatment of vitiligo with JAK inhibitors appears to require light exposure. In contrast to treatment with phototherapy alone, repigmentation during treatment with JAK inhibitors may require only low-level light. Maintenance of repigmentation may be achieved with JAK inhibitor monotherapy. These results support a model wherein JAK inhibitors suppress T cell mediators of vitiligo and light exposure is necessary for stimulation of melanocyte regeneration. Copyright © 2017 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  3. JAK inhibitors suppress t(8;21) fusion protein-induced leukemia

    PubMed Central

    Lo, Miao-Chia; Peterson, Luke F.; Yan, Ming; Cong, Xiuli; Hickman, Justin H.; DeKelver, Russel C.; Niewerth, Denise; Zhang, Dong-Er

    2014-01-01

    Oncogenic mutations in components of the JAK/STAT pathway, including those in cytokine receptors and JAKs, lead to increased activity of downstream signaling and are frequently found in leukemia and other hematological disorders. Thus, small-molecule inhibitors of this pathway have been the focus of targeted therapy in these hematological diseases. We previously showed that t(8;21) fusion protein AML1-ETO and its alternatively spliced variant AML1-ETO9a (AE9a) enhance the JAK/STAT pathway via down-regulation of CD45, a negative regulator of this pathway. To investigate the therapeutic potential of targeting JAK/STAT in t(8;21) leukemia, we examined the effects of a JAK2-selective inhibitor TG101209 and a JAK1/2-selective inhibitor INCB18424 on t(8;21) leukemia cells. TG101209 and INCB18424 inhibited proliferation and promoted apoptosis of these cells. Furthermore, TG101209 treatment in AE9a leukemia mice reduced tumor burden and significantly prolonged survival. TG101209 also significantly impaired the leukemia-initiating potential of AE9a leukemia cells in secondary recipient mice. These results demonstrate the potential therapeutic efficacy of JAK inhibitors in treating t(8;21) AML. PMID:23812420

  4. Identification of Tyrosine 972 as a Novel Site of Jak2 Tyrosine Kinase Phosphorylation and its Role in Jak2 Activation

    PubMed Central

    McDoom, Issam; Ma, Xianyue; Kirabo, Annet; Lee, Kuang-Yung; Ostrov, David A.; Sayeski, Peter P.

    2013-01-01

    Jak2 is a 130 kDa tyrosine kinase that is important in a number of cellular signaling pathways. Its function is intrinsically regulated by the phosphorylation of a handful of its 49 tyrosines. Here, we report that tyrosine 972 (Y972) is a novel site of Jak2 phosphorylation, and hence auto-regulation. Specifically, we found that Y972 is phosphorylated and confirmed that this residue resides on the surface of the protein. Using expression plasmids that expressed either wild type Jak2 or a full length Jak2 cDNA containing a single Y972F substitution mutation, we investigated the consequences of losing Y972 phosphorylation on Jak2 function. We determined that the loss of Y972 phosphorylation significantly reduced both Jak2 total tyrosine phosphorylation and phosphorylation of Y1007/Y1008. Additionally, Y972 phosphorylation was shown to be important for maximal kinase function. Interestingly, in response to classical cytokine activation, the Jak2-Y972F mutant exhibited a moderately impaired level of activation when compared to wild type protein. However, when Jak2 was activated via a GPCR ligand, the ability of the Y972F mutant to activate was completely lost, therefore suggesting a differential role of Y972 in Jak2 activation. Finally, we found that phosphorylation of Y972 enhances Jak2 kinase function via a mechanism that appears to stabilize the active conformation of the protein. Collectively, our results suggest that Y972 is a novel site of Jak2 phosphorylation and plays an important differential role in ligand-dependent Jak2 activation via a mechanism that involves stabilization of the Jak2 active conformation. PMID:18636744

  5. Molecular modeling-driven approach for identification of Janus kinase 1 inhibitors through 3D-QSAR, docking and molecular dynamics simulations.

    PubMed

    Itteboina, Ramesh; Ballu, Srilata; Sivan, Sree Kanth; Manga, Vijjulatha

    2017-10-01

    Janus kinase 1 (JAK 1) belongs to the JAK family of intracellular nonreceptor tyrosine kinase. JAK-signal transducer and activator of transcription (JAK-STAT) pathway mediate signaling by cytokines, which control survival, proliferation and differentiation of a variety of cells. Three-dimensional quantitative structure activity relationship (3 D-QSAR), molecular docking and molecular dynamics (MD) methods was carried out on a dataset of Janus kinase 1(JAK 1) inhibitors. Ligands were constructed and docked into the active site of protein using GLIDE 5.6. Best docked poses were selected after analysis for further 3 D-QSAR analysis using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) methodology. Employing 60 molecules in the training set, 3 D-QSAR models were generate that showed good statistical reliability, which is clearly observed in terms of r 2 ncv and q 2 loo values. The predictive ability of these models was determined using a test set of 25 molecules that gave acceptable predictive correlation (r 2 Pred ) values. The key amino acid residues were identified by means of molecular docking, and the stability and rationality of the derived molecular conformations were also validated by MD simulation. The good consonance between the docking results and CoMFA/CoMSIA contour maps provides helpful clues about the reasonable modification of molecules in order to design more efficient JAK 1 inhibitors. The developed models are expected to provide some directives for further synthesis of highly effective JAK 1 inhibitors.

  6. The JH2 domain and SH2-JH2 linker regulate JAK2 activity: A detailed kinetic analysis of wild type and V617F mutant kinase domains.

    PubMed

    Sanz Sanz, Arturo; Niranjan, Yashavanthi; Hammarén, Henrik; Ungureanu, Daniela; Ruijtenbeek, Rob; Touw, Ivo P; Silvennoinen, Olli; Hilhorst, Riet

    2014-10-01

    JAK2 tyrosine kinase regulates many cellular functions. Its activity is controlled by the pseudokinase (JH2) domain by still poorly understood mechanisms. The V617F mutation in the pseudokinase domain activates JAK2 and causes myeloproliferative neoplasms. We conducted a detailed kinetic analysis of recombinant JAK2 tyrosine kinase domain (JH1) and wild-type and V617F tandem kinase (JH1JH2) domains using peptide microarrays to define the functions of the kinase domains. The results show that i) JAK2 follows a random Bi-Bi reaction mechanism ii) JH2 domain restrains the activity of the JH1 domain by reducing the affinity for ATP and ATP competitive inhibitors iii) V617F decreases affinity for ATP but increases catalytic activity compared to wild-type and iv) the SH2-JH2 linker region participates in controlling activity by reducing the affinity for ATP. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. JAK and MPL mutations in myeloid malignancies.

    PubMed

    Tefferi, Ayalew

    2008-03-01

    The Janus family of non-receptor tyrosine kinases (JAK1, JAK2, JAK3 and tyrosine kinase 2) transduces signals downstream of type I and II cytokine receptors via signal transducers and activators of transcription (STATs). JAK3 is important in lymphoid and JAK2 in myeloid cell proliferation and differentiation. The thrombopoietin receptor MPL is one of several JAK2 cognate receptors and is essential for myelopoiesis in general and megakaryopoiesis in particular. Germline loss-of-function (LOF) JAK3 and MPL mutations cause severe combined immunodeficiency and congenital amegakaryocytic thrombocytopenia, respectively. Germline gain-of-function (GOF) MPL mutation (MPLS505N) causes familial thrombocytosis. Somatic JAK3 (e.g. JAK3A572V, JAK3V722I, JAK3P132T) and fusion JAK2 (e.g. ETV6-JAK2, PCM1-JAK2, BCR-JAK2) mutations have respectively been described in acute megakaryocytic leukemia and acute leukemia/chronic myeloid malignancies. However, current attention is focused on JAK2 (e.g. JAK2V617F, JAK2 exon 12 mutations) and MPL (e.g. MPLW515L/K/S, MPLS505N) mutations associated with myeloproliferative neoplasms (MPNs). A JAK2 mutation, primarily JAK2V617F, is invariably associated with polycythemia vera (PV). The latter mutation also occurs in the majority of patients with essential thrombocythemia (ET) or primary myelofibrosis (PMF). MPL mutational frequency in MPNs is substantially less (<10%). In general, despite a certain degree of genotype - phenotype correlations, the prognostic relevance of harbouring one of these mutations, or their allele burden when present, remains dubious. Regardless, based on the logical assumption that amplified JAK-STAT signalling is central to the pathogenesis of PV, ET and PMF, several anti-JAK2 tyrosine kinase inhibitors have been developed and are currently being tested in humans with these disorders.

  8. Development, Optimization and Structure-Activity Relationships of Covalent-Reversible JAK3 Inhibitors Based on a Tricyclic Imidazo[5,4-d]pyrrolo[2,3-b]pyridine Scaffold.

    PubMed

    Forster, Michael; Chaikuad, Apirat; Dimitrov, Teodor; Döring, Eva; Holstein, Julia; Berger, Benedict-Tilman; Gehringer, Matthias; Ghoreschi, Kamran; Müller, Susanne; Knapp, Stefan; Laufer, Stefan A

    2018-05-31

    Janus kinases are major drivers of immune signaling and have been the focus of anti-inflammatory drug discovery for more than a decade. Because of the invariable co-localization of JAK1 and JAK3 at cytokine receptors, the question if selective JAK3 inhibition is sufficient to effectively block downstream signaling has been highly controversial. Recently, we discovered the covalent-reversible JAK3 inhibitor FM-381 (23) featuring high isoform and kinome selectivity. Crystallography revealed that this inhibitor induces an unprecedented binding pocket by interactions of a nitrile substituent with arginine residues in JAK3. Herein we describe detailed structure activity relationships necessary for induction of the arginine pocket and the impact of this structural change on potency, isoform selectivity and efficacy in cellular models. Furthermore, we evaluated the stability of this novel inhibitor class in in vitro metabolic assays and were able to demonstrate an adequate stability of key compound 23 for in vivo use.

  9. The role of the JAK/STAT signal pathway in rheumatoid arthritis

    PubMed Central

    Malemud, Charles J.

    2018-01-01

    Proinflammatory cytokine activation of the Janus kinase/signal transducers and activators of transcription (JAK/STAT) signal transduction pathway is a critical event in the pathogenesis and progression of rheumatoid arthritis. Under normal conditions, JAK/STAT signaling reflects the influence of negative regulators of JAK/STAT, exemplified by the suppressor of cytokine signaling and protein inhibitor of activated STAT. However, in rheumatoid arthritis (RA) both of these regulators are dysfunctional. Thus, continuous activation of JAK/STAT signaling in RA synovial joints results in the elevated level of matrix metalloproteinase gene expression, increased frequency of apoptotic chondrocytes and most prominently ‘apoptosis resistance’ in the inflamed synovial tissue. Tofacitinib, a JAK small molecule inhibitor, with selectivity for JAK2/JAK3 was approved by the United States Food and Drug Administration (US FDA) for the therapy of RA. Importantly, tofacitinib has demonstrated significant clinical efficacy for RA in the post-US FDA-approval surveillance period. Of note, the success of tofacitinib has spurred the development of JAK1, JAK2 and other JAK3-selective small molecule inhibitors, some of which have also entered the clinical setting, whereas other JAK inhibitors are currently being evaluated in RA clinical trials. PMID:29942363

  10. The rationale for Janus kinase inhibitors for the treatment of spondyloarthritis.

    PubMed

    Veale, Douglas J; McGonagle, Dennis; McInnes, Iain B; Krueger, James G; Ritchlin, Christopher T; Elewaut, Dirk; Kanik, Keith S; Hendrikx, Thijs; Berstein, Gabriel; Hodge, Jennifer; Telliez, Jean-Baptiste

    2018-04-03

    The pathogenesis of SpA is multifactorial and involves a range of immune cell types and cytokines, many of which utilize Janus kinase (JAK) pathways for signaling. In this review, we summarize the animal and pre-clinical data that have demonstrated the effects of JAK blockade on the underlying molecular mechanisms of SpA and provide a rationale for JAK inhibition for the treatment of SpA. We also review the available clinical trial data evaluating JAK inhibitors tofacitinib, baricitinib, peficitinib, filgotinib and upadacitinib in PsA, AS and related inflammatory diseases, which have demonstrated the efficacy of these agents across a range of SpA-associated disease manifestations. The available clinical trial data, supported by pre-clinical animal model studies demonstrate that JAK inhibition is a promising therapeutic strategy for the treatment of SpA and may offer the potential for improvements in multiple articular and extra-articular disease manifestations of PsA and AS.

  11. VX-509 (decernotinib) is a potent and selective janus kinase 3 inhibitor that attenuates inflammation in animal models of autoimmune disease.

    PubMed

    Mahajan, Sudipta; Hogan, James K; Shlyakhter, Dina; Oh, Luke; Salituro, Francesco G; Farmer, Luc; Hoock, Thomas C

    2015-05-01

    Cytokines, growth factors, and other chemical messengers rely on a class of intracellular nonreceptor tyrosine kinases known as Janus kinases (JAKs) to rapidly transduce intracellular signals. A number of these cytokines are critical for lymphocyte development and mediating immune responses. JAK3 is of particular interest due to its importance in immune function and its expression, which is largely confined to lymphocytes, thus limiting the potential impact of JAK3 inhibition on nonimmune physiology. The aim of this study was to evaluate the potency and selectivity of the investigational JAK3 inhibitor VX-509 (decernotinib) [(R)-2-((2-(1H-pyrrolo[2,3-b]pyridin-3-yl)pyrimidin-4-yl)amino)-2-methyl-N-(2,2,2-trifluoroethyl)butanamide] against JAK3 kinase activity and inhibition of JAK3-mediated signaling in vitro and JAK3-dependent physiologic processes in vivo. These results demonstrate that VX-509 potently inhibits JAK3 in enzyme assays (Ki = 2.5 nM + 0.7 nM) and cellular assays dependent on JAK3 activity (IC50 range, 50-170 nM), with limited or no measurable potency against other JAK isotypes or non-JAK kinases. VX-509 also showed activity in two animal models of aberrant immune function. VX-509 treatment resulted in dose-dependent reduction in ankle swelling and paw weight and improved paw histopathology scores in the rat collagen-induced arthritis model. In a mouse model of oxazolone-induced delayed-type hypersensitivity, VX-509 reduced the T cell-mediated inflammatory response in skin. These findings demonstrate that VX-509 is a selective and potent inhibitor of JAK3 in vitro and modulates proinflammatory response in models of immune-mediated diseases, such as collagen-induced arthritis and delayed-type hypersensitivity. The data support evaluation of VX-509 for treatment of patients with autoimmune and inflammatory diseases such as rheumatoid arthritis. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  12. Improved targeting of JAK2 leads to increased therapeutic efficacy in myeloproliferative neoplasms

    PubMed Central

    Bhagwat, Neha; Koppikar, Priya; Keller, Matthew; Marubayashi, Sachie; Shank, Kaitlyn; Rampal, Raajit; Qi, Jun; Kleppe, Maria; Patel, Hardik J.; Shah, Smit K.; Taldone, Tony; Bradner, James E.; Chiosis, Gabriela

    2014-01-01

    The discovery of JAK2/MPL mutations in patients with myeloproliferative neoplasms (MPN) led to clinical development of Janus kinase (JAK) inhibitors for treatment of MPN. These inhibitors improve constitutional symptoms and splenomegaly but do not significantly reduce mutant allele burden in patients. We recently showed that chronic exposure to JAK inhibitors results in inhibitor persistence via JAK2 transactivation and persistent JAK–signal transducer and activator of transcription signaling. We performed genetic and pharmacologic studies to determine whether improved JAK2 inhibition would show increased efficacy in MPN models and primary samples. Jak2 deletion in vivo led to profound reduction in disease burden not seen with JAK inhibitors, and deletion of Jak2 following chronic ruxolitinib therapy markedly reduced mutant allele burden. This demonstrates that JAK2 remains an essential target in MPN cells that survive in the setting of chronic JAK inhibition. Combination therapy with the heat shock protein 90 (HSP90) inhibitor PU-H71 and ruxolitinib reduced total and phospho-JAK2 and achieved more potent inhibition of downstream signaling than ruxolitinib monotherapy. Combination treatment improved blood counts, spleen weights, and reduced bone marrow fibrosis compared with ruxolitinib alone. These data suggest alternate approaches that increase JAK2 targeting, including combination JAK/HSP90 inhibitor therapy, are warranted in the clinical setting. PMID:24470592

  13. Identification of Small Molecule Inhibitors of Phosphatidylinositol 3-Kinase and Autophagy*

    PubMed Central

    Farkas, Thomas; Daugaard, Mads; Jäättelä, Marja

    2011-01-01

    Macroautophagy (hereafter autophagy) is a lysosomal catabolic pathway that controls cellular homeostasis and survival. It has recently emerged as an attractive target for the treatment of a variety of degenerative diseases and cancer. The targeting of autophagy has, however, been hampered by the lack of specific small molecule inhibitors. Thus, we screened two small molecule kinase inhibitor libraries for inhibitors of rapamycin-induced autophagic flux. The three most potent inhibitors identified conferred profound inhibition of autophagic flux by inhibiting the formation of autophagosomes. Notably, the autophagy inhibitory effects of all three compounds were independent of their established kinase targets, i.e. ataxia telangiectasia mutated for KU55933, protein kinase C for Gö6976, and Janus kinase 3 for Jak3 inhibitor VI. Instead, we identified phosphatidylinositol 3-kinase (PtdIns3K) as a direct target of KU55933 and Gö6976. Importantly, and in contrast to the currently available inhibitors of autophagosome formation (e.g. 3-methyladenine), none of the three compounds inhibited the cell survival promoting class I phosphoinositide 3-kinase-Akt signaling at the concentrations required for effective autophagy inhibition. Accordingly, they proved to be valuable tools for investigations of autophagy-associated cell death and survival. Employing KU55399, we demonstrated that autophagy protects amino acid-starved cells against both apoptosis and necroptosis. Taken together, our data introduce new possibilities for the experimental study of autophagy and can form a basis for the development of clinically relevant autophagy inhibitors. PMID:21930714

  14. JAK2 and MPL protein levels determine TPO-induced megakaryocyte proliferation vs differentiation

    PubMed Central

    Besancenot, Rodolphe; Roos-Weil, Damien; Tonetti, Carole; Abdelouahab, Hadjer; Lacout, Catherine; Pasquier, Florence; Willekens, Christophe; Rameau, Philippe; Lecluse, Yann; Micol, Jean-Baptiste; Constantinescu, Stefan N.; Vainchenker, William; Solary, Eric

    2014-01-01

    Megakaryopoiesis is a 2-step differentiation process, regulated by thrombopoietin (TPO), on binding to its cognate receptor myeloproliferative leukemia (MPL). This receptor associates with intracytoplasmic tyrosine kinases, essentially janus kinase 2 (JAK2), which regulates MPL stability and cell-surface expression, and mediates TPO-induced signal transduction. We demonstrate that JAK2 and MPL mediate TPO-induced proliferation arrest and megakaryocytic differentiation of the human megakaryoblastic leukemia cell line UT7-MPL. A decrease in JAK2 or MPL protein expression, and JAK2 chemical inhibition, suppress this antiproliferative action of TPO. The expression of JAK2 and MPL, which progressively increases along normal human megakaryopoiesis, is decreased in platelets of patients diagnosed with JAK2- or MPL-mutated essential thrombocytemia and primary myelofibrosis, 2 myeloproliferative neoplasms in which megakaryocytes (MKs) proliferate excessively. Finally, low doses of JAK2 chemical inhibitors are shown to induce a paradoxical increase in MK production, both in vitro and in vivo. We propose that JAK2 and MPL expression levels regulate megakaryocytic proliferation vs differentiation in both normal and pathological conditions, and that JAK2 chemical inhibitors could promote a paradoxical thrombocytosis when used at suboptimal doses. PMID:25143485

  15. Resolution of bone marrow fibrosis in a patient receiving JAK1/JAK2 inhibitor treatment with ruxolitinib.

    PubMed

    Wilkins, Bridget S; Radia, Deepti; Woodley, Claire; Farhi, Sarah El; Keohane, Clodagh; Harrison, Claire N

    2013-12-01

    Ruxolitinib, a JAK1/JAK2 inhibitor, is currently the only pharmacological agent approved for the treatment of myelofibrosis. Approval was based on findings from two phase 3 trials comparing ruxolitinib with placebo (COMFORT-I) and with best available therapy (COMFORT-II) for the treatment of primary or secondary myelofibrosis. In those pivotal trials, ruxolitinib rapidly improved splenomegaly, disease-related symptoms, and quality of life and prolonged survival compared with both placebo and conventional treatments. However, for reasons that are currently unclear, there were only modest histomorphological changes in the bone marrow, and only a subset of patients had significant reductions in JAK2 V617F clonal burden. Here we describe a patient with post-polycythemia vera myelofibrosis who received ruxolitinib at our institution (Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom) as part of the COMFORT-II study. While on treatment, the patient had dramatic improvements in splenomegaly and symptoms shortly after starting ruxolitinib. With longer treatment, the patient had marked reductions in JAK2 V617F allele burden, and fibrosis of the bone marrow resolved after approximately 3 years of ruxolitinib treatment. To our knowledge, this is the first detailed case report of resolution of fibrosis with a JAK1/JAK2 inhibitor. ClinicalTrials.gov Identifier: NCT00934544.

  16. Janus kinase inhibitors for the treatment of inflammatory bowel diseases: developments from phase I and phase II clinical trials.

    PubMed

    D'Amico, Ferdinando; Fiorino, Gionata; Furfaro, Federica; Allocca, Mariangela; Danese, Silvio

    2018-06-23

    A new pharmacological class, janus kinases (JAK) inhibitors, has been shown to be effective and safe for the treatment of inflammatory bowel diseases (IBD). The aim of this review is to provide an overview of the JAK inhibitors currently under investigation in phase I and II clinical trials for patients with Crohn's disease (CD) and ulcerative colitis (UC), and the possible future perspectives for the treatment of IBD patients with this class of drugs. Areas covered: This review describes the JAK-STAT pathway and analyzes the efficacy and safety of new small molecules such as filgotinib, upadacitinib, TD-1473, peficitinib and Pf-06651600/Pf-06700841, showing data from phase I and II trials. Expert Opinion: JAK inhibitors, if approved by the regulatory authorities, could represent a novel and intriguing drug class. In the next years the approach to patients with IBD will become increasingly personalized.

  17. Results of a phase 2 study of pacritinib (SB1518), a JAK2/JAK2(V617F) inhibitor, in patients with myelofibrosis

    PubMed Central

    Seymour, John F.; Roberts, Andrew W.; Wadleigh, Martha; To, L. Bik; Scherber, Robyn; Turba, Elyce; Dorr, Andrew; Zhu, Joy; Wang, Lixia; Granston, Tanya; Campbell, Mary S.; Mesa, Ruben A.

    2015-01-01

    Pacritinib (SB1518) is a Janus kinase 2 (JAK2), JAK2(V617F), and Fms-like tyrosine kinase 3 inhibitor that does not inhibit JAK1. It demonstrated a favorable safety profile with promising efficacy in phase 1 studies in patients with primary and secondary myelofibrosis (MF). This multicenter phase 2 study further characterized the safety and efficacy of pacritinib in the treatment of patients with MF. Eligible patients had clinical splenomegaly poorly controlled with standard therapies or were newly diagnosed with intermediate- or high-risk Lille score. Patients with any degree of cytopenia were eligible. Thirty-five patients were enrolled. At entry, 40% had hemoglobin <10 g/dL and 43% had platelets <100 000× 109/L. Up to week 24, 8 of 26 evaluable patients (31%) achieved a ≥35% decrease in spleen volume determined by magnetic resonance imaging and 14 of 33 (42%) attained a ≥50% reduction in spleen size by physical examination. Median MF symptom improvement was ≥50% for all symptoms except fatigue. Grade 1 or 2 diarrhea (69%) and nausea (49%) were the most common treatment-emergent adverse events. The study drug was discontinued in 9 patients (26%) due to adverse events (4 severe). Pacritinib is an active agent in patients with MF, offering a potential treatment option for patients with preexisting anemia and thrombocytopenia. This trial was registered at www.clinicaltrials.gov as #NCT00745550. PMID:25762180

  18. Design and Synthesis of a Pan-Janus Kinase Inhibitor Clinical Candidate (PF-06263276) Suitable for Inhaled and Topical Delivery for the Treatment of Inflammatory Diseases of the Lungs and Skin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Peter; Storer, R. Ian; Sabnis, Yogesh A.

    By use of a structure-based computational method for identification of structurally novel Janus kinase (JAK) inhibitors predicted to bind beyond the ATP binding site, a potent series of indazoles was identified as selective pan-JAK inhibitors with a type 1.5 binding mode. Optimization of the series for potency and increased duration of action commensurate with inhaled or topical delivery resulted in potent pan-JAK inhibitor 2 (PF-06263276), which was advanced into clinical studies.

  19. JAK2 and MPL protein levels determine TPO-induced megakaryocyte proliferation vs differentiation.

    PubMed

    Besancenot, Rodolphe; Roos-Weil, Damien; Tonetti, Carole; Abdelouahab, Hadjer; Lacout, Catherine; Pasquier, Florence; Willekens, Christophe; Rameau, Philippe; Lecluse, Yann; Micol, Jean-Baptiste; Constantinescu, Stefan N; Vainchenker, William; Solary, Eric; Giraudier, Stéphane

    2014-09-25

    Megakaryopoiesis is a 2-step differentiation process, regulated by thrombopoietin (TPO), on binding to its cognate receptor myeloproliferative leukemia (MPL). This receptor associates with intracytoplasmic tyrosine kinases, essentially janus kinase 2 (JAK2), which regulates MPL stability and cell-surface expression, and mediates TPO-induced signal transduction. We demonstrate that JAK2 and MPL mediate TPO-induced proliferation arrest and megakaryocytic differentiation of the human megakaryoblastic leukemia cell line UT7-MPL. A decrease in JAK2 or MPL protein expression, and JAK2 chemical inhibition, suppress this antiproliferative action of TPO. The expression of JAK2 and MPL, which progressively increases along normal human megakaryopoiesis, is decreased in platelets of patients diagnosed with JAK2- or MPL-mutated essential thrombocytemia and primary myelofibrosis, 2 myeloproliferative neoplasms in which megakaryocytes (MKs) proliferate excessively. Finally, low doses of JAK2 chemical inhibitors are shown to induce a paradoxical increase in MK production, both in vitro and in vivo. We propose that JAK2 and MPL expression levels regulate megakaryocytic proliferation vs differentiation in both normal and pathological conditions, and that JAK2 chemical inhibitors could promote a paradoxical thrombocytosis when used at suboptimal doses. © 2014 by The American Society of Hematology.

  20. The Jak2 Inhibitor, G6, Alleviates Jak2-V617F-Mediated Myeloproliferative Neoplasia by Providing Significant Therapeutic Efficacy to the Bone Marrow1

    PubMed Central

    Kirabo, Annet; Park, Sung O; Majumder, Anurima; Gali, Meghanath; Reinhard, Mary K; Wamsley, Heather L; Zhao, Zhizhuang Joe; Cogle, Christopher R; Bisht, Kirpal S; Keserü, György M; Sayeski, Peter P

    2011-01-01

    We recently developed a Janus kinase 2 (Jak2) small-molecule inhibitor called G6 and found that it inhibits Jak2-V617F-mediated pathologic cell growth in vitro, ex vivo, and in vivo. However, its ability to inhibit Jak2-V617F-mediated myeloproliferative neoplasia, with particular emphasis in the bone marrow, has not previously been examined. Here, we investigated the efficacy of G6 in a transgenic mouse model of Jak2-V617F-mediated myeloproliferative neoplasia. We found that G6 provided therapeutic benefit to the peripheral blood as determined by elimination of leukocytosis, thrombocytosis, and erythrocytosis. G6 normalized the pathologically high plasma concentrations of interleukin 6 (IL-6). In the liver, G6 eliminated Jak2-V617F-driven extramedullary hematopoiesis. With respect to the spleen, G6 significantly reduced both the splenomegaly and megakaryocytic hyperplasia. In the critically important bone marrow, G6 normalized the pathologically high levels of phospho-Jak2 and phospho-signal transducer and activator of transcription 5 (STAT5). It significantly reduced the megakaryocytic hyperplasia in the marrow and completely normalized the M/E ratio. Most importantly, G6 selectively reduced the mutant Jak2 burden by 67%on average, with virtual elimination of mutant Jak2 cells in one third of all treated mice. Lastly, clonogenic assays using marrow stem cells from the myeloproliferative neoplasm mice revealed a time-dependent elimination of the clonogenic growth potential of these cells by G6. Collectively, these data indicate that G6 exhibits exceptional efficacy in the peripheral blood, liver, spleen, and, most importantly, in the bone marrow, thereby raising the possibility that this compound may alter the natural history of Jak2-V617F-mediated myeloproliferative neoplasia. PMID:22131881

  1. Cytokine receptor signaling is required for the survival of ALK− anaplastic large cell lymphoma, even in the presence of JAK1/STAT3 mutations

    PubMed Central

    Chen, Jing; Zhang, Yong; Petrus, Michael N.; Xiao, Wenming; Nicolae, Alina; Raffeld, Mark; Pittaluga, Stefania; Bamford, Richard N.; Nakagawa, Masao; Ouyang, Sunny Tianyi; Epstein, Alan L.; Kadin, Marshall E.; Del Mistro, Annarose; Woessner, Richard; Jaffe, Elaine S.; Waldmann, Thomas A.

    2017-01-01

    Activating Janus kinase (JAK) and signal transducer and activator of transcription (STAT) mutations have been discovered in many T-cell malignancies, including anaplastic lymphoma kinase (ALK)− anaplastic large cell lymphomas (ALCLs). However, such mutations occur in a minority of patients. To investigate the clinical application of targeting JAK for ALK− ALCL, we treated ALK− cell lines of various histological origins with JAK inhibitors. Interestingly, most exogenous cytokine-independent cell lines responded to JAK inhibition regardless of JAK mutation status. JAK inhibitor sensitivity correlated with the STAT3 phosphorylation status of tumor cells. Using retroviral shRNA knockdown, we have demonstrated that these JAK inhibitor-sensitive cells are dependent on both JAK1 and STAT3 for survival. JAK1 and STAT3 gain-of-function mutations were found in some, but not all, JAK inhibitor-sensitive cells. Moreover, the mutations alone cannot explain the JAK1/STAT3 dependency, given that wild-type JAK1 or STAT3 was sufficient to promote cell survival in the cells that had either JAK1or STAT3 mutations. To investigate whether other mechanisms were involved, we knocked down upstream receptors GP130 or IL-2Rγ. Knockdown of GP130 or IL-2Rγ induced cell death in selected JAK inhibitor-sensitive cells. High expression levels of cytokines, including IL-6, were demonstrated in cell lines as well as in primary ALK− ALCL tumors. Finally, ruxolitinib, a JAK1/2 inhibitor, was effective in vivo in a xenograft ALK− ALCL model. Our data suggest that cytokine receptor signaling is required for tumor cell survival in diverse forms of ALK− ALCL, even in the presence of JAK1/STAT3 mutations. Therefore, JAK inhibitor therapy might benefit patients with ALK− ALCL who are phosphorylated STAT3+. PMID:28356514

  2. The Amelioration of Myelofibrosis with Thrombocytopenia by a JAK1/2 Inhibitor, Ruxolitinib, in a Post-polycythemia Vera Myelofibrosis Patient with a JAK2 Exon 12 Mutation.

    PubMed

    Ikeda, Kazuhiko; Ueda, Koki; Sano, Takahiro; Ogawa, Kazuei; Ikezoe, Takayuki; Hashimoto, Yuko; Morishita, Soji; Komatsu, Norio; Ohto, Hitoshi; Takeishi, Yasuchika

    2017-01-01

    Less than 5% of patients with polycythemia vera (PV) show JAK2 exon 12 mutations. Although PV patients with JAK2 exon 12 mutations are known to develop post-PV myelofibrosis (MF) as well as PV with JAK2V617F, the role of JAK inhibitors in post-PV MF patients with JAK2 exon 12 mutations remains unknown. We describe how treatment with a JAK1/2 inhibitor, ruxolitinib, led to the rapid amelioration of marrow fibrosis, erythrocytosis and thrombocytopenia in a 77-year-old man with post-PV MF who carried a JAK2 exon 12 mutation (JAK2H538QK539L). This case suggests that ruxolitinib is a treatment option for post-PV MF in patients with thrombocytopenia or JAK2 exon 12 mutations.

  3. Sequential activation of JAKs, STATs and xanthine dehydrogenase/oxidase by hypoxia in lung microvascular endothelial cells.

    PubMed

    Wang, Guansong; Qian, Pin; Jackson, Fannie R; Qian, Guisheng; Wu, Guangyu

    2008-01-01

    Xanthine dehydrogenase/oxidase (XDH/XO) is associated with various pathological conditions related to the endothelial injury. However, the molecular mechanism underlying the activation of XDH/XO by hypoxia remains largely unknown. In this report, we determined whether the Janus kinases (JAKs) and signal transducers and activators of transcription (STATs) signaling pathway is involved in hypoxia-induced activation of XDH/XO in primary cultures of lung microvascular endothelial cells (LMVEC). We found that hypoxia significantly increased interleukin 6 (IL6) production in a time-dependent manner in LMVEC. Hypoxia also markedly augmented phosphorylation/activation of JAKs (JAK1, JAK2 and JAK3) and the JAK downstream effectors STATs (STAT3 and STAT5). Hypoxia-induced activation of STAT3 was blocked by IL6 antibodies, the JAK inhibitor AG490 and the suppressor of cytokine signaling 3 (SOCS3), implying that hypoxia-promoted IL6 secretion activates the JAK/STAT pathway in LMVEC. Phosphorylation and DNA-binding activity of STAT3 were also inhibited by the p38 MAPK inhibitor SB203580 and the phosphatidylinositol 3-kinase inhibitor LY294002, suggesting that multiple signaling pathways involved in STAT activation by hypoxia. Importantly, hypoxia promoted XDH/XO activation in LMVEC, which was markedly reversed by inhibiting the JAK-STAT pathway using IL6 antibodies, AG490 and SOCS3. These data demonstrated that JAKs, STATs and XDH/XO were sequentially activated by hypoxia. These data provide the first evidence indicating that the JAK-STAT pathway is involved in hypoxia-mediated XDH/XO activation in LMVEC.

  4. Advances in the Development of Janus Kinase Inhibitors in Inflammatory Bowel Disease: Future Prospects.

    PubMed

    Flamant, Mathurin; Rigaill, Josselin; Paul, Stephane; Roblin, Xavier

    2017-07-01

    Inflammatory bowel disease (IBD) is caused by a dysregulation of the immune system, inducing the production of proinflammatory cytokines and adhesion molecules. A better understanding of the mucosal immune response in IBD has led to the development of new drugs directed at inflammatory cytokines and leukocyte-trafficking molecules. Beyond tumor necrosis factor antagonists and anti-integrin molecules, which act by blocking the interaction between gut-specific lymphocytes and their receptor on vascular endothelium, the Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway represents a new target in IBD. JAK inhibitors are small molecules able to selectively target the activity of specific JAKs that play a role in signal transmission via interleukins. This review presents an overview of the role of the JAK/STAT signaling pathway and updated information for JAK molecules, which are promising drugs in IBD. Currently developed to treat ulcerative colitis and Crohn's disease, tofacitinib (in a phase III study) and filgotinib (in a phase II study), respectively, are the JAK inhibitors in the most advanced stage of development for IBD. However, the utility of, and adverse events associated with, these new drugs remain to be determined and clarified (in particular, the risk of herpes zoster infections), depending on the efficacy and tolerance determined from definitive studies. The availability of these drugs could enhance the therapeutic approach to IBD in the coming years, and reinforce the concept of personalized medicine for IBD patients.

  5. Oncogenic activation of JAK3-STAT signaling confers clinical sensitivity to PRN371, a novel selective and potent JAK3 inhibitor, in natural killer/T-cell lymphoma.

    PubMed

    Nairismägi, M -L; Gerritsen, M E; Li, Z M; Wijaya, G C; Chia, B K H; Laurensia, Y; Lim, J Q; Yeoh, K W; Yao, X S; Pang, W L; Bisconte, A; Hill, R J; Bradshaw, J M; Huang, D; Song, T L L; Ng, C C Y; Rajasegaran, V; Tang, T; Tang, Q Q; Xia, X J; Kang, T B; Teh, B T; Lim, S T; Ong, C K; Tan, J

    2018-05-01

    Aberrant activation of the JAK3-STAT signaling pathway is a characteristic feature of many hematological malignancies. In particular, hyperactivity of this cascade has been observed in natural killer/T-cell lymphoma (NKTL) cases. Although the first-in-class JAK3 inhibitor tofacitinib blocks JAK3 activity in NKTL both in vitro and in vivo, its clinical utilization in cancer therapy has been limited by the pan-JAK inhibition activity. To improve the therapeutic efficacy of JAK3 inhibition in NKTL, we have developed a highly selective and durable JAK3 inhibitor PRN371 that potently inhibits JAK3 activity over the other JAK family members JAK1, JAK2, and TYK2. PRN371 effectively suppresses NKTL cell proliferation and induces apoptosis through abrogation of the JAK3-STAT signaling. Moreover, the activity of PRN371 has a more durable inhibition on JAK3 compared to tofacitinib in vitro, leading to significant tumor growth inhibition in a NKTL xenograft model harboring JAK3 activating mutation. These findings provide a novel therapeutic approach for the treatment of NKTL.

  6. Virtual screening and optimization of Type II inhibitors of JAK2 from a natural product library.

    PubMed

    Ma, Dik-Lung; Chan, Daniel Shiu-Hin; Wei, Guo; Zhong, Hai-Jing; Yang, Hui; Leung, Lai To; Gullen, Elizabeth A; Chiu, Pauline; Cheng, Yung-Chi; Leung, Chung-Hang

    2014-11-21

    Amentoflavone has been identified as a JAK2 inhibitor by structure-based virtual screening of a natural product library. In silico optimization using the DOLPHIN model yielded analogues with enhanced potency against JAK2 activity and HCV activity in cellulo. Molecular modeling and kinetic experiments suggested that the analogues may function as Type II inhibitors of JAK2.

  7. JAK-STAT Pathway Activation in Malignant and Non-Malignant Cells Contributes to MPN Pathogenesis and Therapeutic Response

    PubMed Central

    Kleppe, Maria; Kwak, Minsuk; Koppikar, Priya; Riester, Markus; Keller, Matthew; Bastian, Lennart; Hricik, Todd; Bhagwat, Neha; McKenney, Anna Sophia; Papalexi, Efthymia; Abdel-Wahab, Omar; Rampal, Raajit; Marubayashi, Sachie; Chen, Jonathan J.; Romanet, Vincent; Fridman, Jordan S.; Bromberg, Jacqueline; Teruya-Feldstein, Julie; Murakami, Masato; Radimerski, Thomas; Michor, Franziska; Fan, Rong; Levine, Ross L.

    2015-01-01

    The identification of JAK2/MPL mutations in patients with myeloproliferative neoplasms (MPN) led to the clinical development of JAK kinase inhibitors, including ruxolitinib. Ruxolitinib reduces splenomegaly and systemic symptoms in myelofibrosis (MF) and improves overall survival; however the mechanism by which JAK inhibitors achieve efficacy has not been delineated. MPN patients present with increased levels of circulating pro-inflammatory cytokines, which are mitigated by JAK inhibitor therapy. We sought to elucidate mechanisms by which JAK inhibitors attenuate cytokine-mediated pathophysiology. Single cell profiling demonstrated that hematopoietic cells from MF models and patient samples aberrantly secrete inflammatory cytokines. Pan-hematopoietic Stat3 deletion reduced disease severity and attenuated cytokine secretion, with similar efficacy as observed with ruxolitinib therapy. By contrast, Stat3 deletion restricted to MPN cells did not reduce disease severity or cytokine production. Consistent with these observations, we found that malignant and non-malignant cells aberrantly secrete cytokines and JAK inhibition reduces cytokine production from both populations. PMID:25572172

  8. Safety profile of protein kinase inhibitors in rheumatoid arthritis: systematic review and meta-analysis.

    PubMed

    Salgado, Eva; Maneiro, Jose R; Carmona, Loreto; Gomez-Reino, Juan J

    2014-05-01

    To summarise the adverse events (AE) reported in patients with rheumatoid arthritis (RA) treated with protein kinase inhibitors (PKi), and identify family and molecule-related AEs. Systematic review of the PKi used in clinical trials (CTs) in RA. Medline, Embase, Cochrane Library, Web of Knowledge, and international abstracts of congress were reviewed, (up to 31 October 2012). Search was limited to interventional studies of PKi used in CTs in RA, written in English, and reporting frequencies of AE. Diseases with similar comorbidity burden also were included. Frequency of AE, serious AE (SAE), death and discontinuation due to  AEs (DCAE) were recorded. Risk of bias was assessed. Meta-analysis was carried using pooled relative risk (RR) with 95% CI as effect measure. The search produced 4410 hits. Forty-one articles reporting data on 21 PKi of the Janus kinase (JAK), SYK, p38 and cKit families were selected for detailed analysis. In patients treated with p38 inhibitors, RR for dizziness was 2.36 (1.20 to 4.63), and in patients treated with c-Kit inhibitors, RR for oedema was 3.43 (1.58 to 7.42). In patients treated with the JAK inhibitor tofacitinib, RR for hypercholesterolaemia was 1.70 (1.10 to 2.63) that was dose related. In patients treated with the Syk inhibitor fostamatinib, pooled RR for hypertransaminasaemia, hypertension, diarrhoea and neutropenia were 2.93 (1.02 to 8.43), 2.80 (1.58 to 5.99), 5.20 (3.19 to 8.49) and 9.24 (2.22 to 38.42), respectively. Serious infections and malignancies were not significantly more frequent in PKi-treated patients than in comparator groups. Event rates of serious infections and malignancies with PKi are not different from biologics. In addition, PKi have a unique safety profile related to target and off-target inhibition of kinases, at times dose related.

  9. Roles of germline JAK2 activation mutation JAK2 V625F in the pathology of myeloproliferative neoplasms.

    PubMed

    Wu, Qing-Yun; Ma, Meng-Meng; Fu, Lin; Zhu, Yuan-Yuan; Liu, Yang; Cao, Jiang; Zhou, Ping; Li, Zhen-Yu; Zeng, Ling-Yu; Li, Feng; Wang, Xiao-Yun; Xu, Kai-Lin

    2018-05-18

    Janus tyrosine kinase 2 (JAK2) mediates downstream signaling of cytokine receptors in all hematological lineages, constitutively active somatic JAK2 mutations play key roles in the pathology of myeloproliferative neoplasms (MPNs). Recently, germline JAK2 mutations are also associated with triple-negative MPNs. A novel germline mutation JAK2 V625F is reported to be involved in a subset of MPNs patients. However, the pathogenesis of this mutation caused MPN is still unclear. In this study, the homology models of JAK2 V625F showed that the newly formed interaction between F625 and Y613 disrupted the JAK2 JH1-JH2 domain interactions was responsible for its activation, when F625 and Y613 interaction was disrupted, its activity significantly decreased. While, when this interaction was repaired whether by forming hydrogen bond or salt bond, it would cause JAK2 activation. Biochemical studies also demonstrated that JAK2 V625F mutation led to JAK2-STAT5 pathway activation and promoted the proliferation of BaF3 cells. Thus, our results herein provide clues to understand the mechanism JAK2 V625F mutation caused MPNs and give information for the development of JAK2 mutation specific inhibitors. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Janus Kinase Inhibitors for the Treatment of Rheumatoid Arthritis.

    PubMed

    Turan, Senir; Walker, Scot

    2017-11-01

    Rheumatoid arthritis (RA) is a disease where the immune system attacks the linings of the joints, resulting in joint pain, stiffness, swelling, and destruction. Although many products are available for the treatment of RA, limitations such as adverse reactions and tolerance greatly affect adherence. Many of the current biologic disease-modifying antirheumatic drugs on the market are injectables, leaving a void to be filled for a product that can be taken orally. The most advanced of these approaches, the Janus kinase (JAK) inhibitors, are oral drugs that have not only made a breakthrough in RA, but also other skin conditions.

  11. The JAK inhibitor tofacitinib suppresses synovial JAK1-STAT signalling in rheumatoid arthritis

    PubMed Central

    Boyle, D L; Soma, K; Hodge, J; Kavanaugh, A; Mandel, D; Mease, P; Shurmur, R; Singhal, A K; Wei, N; Rosengren, S; Kaplan, I; Krishnaswami, S; Luo, Z; Bradley, J; Firestein, G S

    2015-01-01

    Objective Tofacitinib is an oral Janus kinase (JAK) inhibitor for the treatment of rheumatoid arthritis (RA). The pathways affected by tofacitinib and the effects on gene expression in situ are unknown. Therefore, tofacitinib effects on synovial pathobiology were investigated. Methods A randomised, double-blind, phase II serial synovial biopsy study (A3921073; NCT00976599) in patients with RA with an inadequate methotrexate response. Patients on background methotrexate received tofacitinib 10 mg twice daily or placebo for 28 days. Synovial biopsies were performed on Days -7 and 28 and analysed by immunoassay or quantitative PCR. Clinical response was determined by disease activity score and European League Against Rheumatism (EULAR) response on Day 28 in A3921073, and at Month 3 in a long-term extension study (A3921024; NCT00413699). Results Tofacitinib exposure led to EULAR moderate to good responses (11/14 patients), while placebo was ineffective (1/14 patients) on Day 28. Tofacitinib treatment significantly reduced synovial mRNA expression of matrix metalloproteinase (MMP)-1 and MMP-3 (p<0.05) and chemokines CCL2, CXCL10 and CXCL13 (p<0.05). No overall changes were observed in synovial inflammation score or the presence of T cells, B cells or macrophages. Changes in synovial phosphorylation of signal transducer and activator of transcription 1 (STAT1) and STAT3 strongly correlated with 4-month clinical responses (p<0.002). Tofacitinib significantly decreased plasma CXCL10 (p<0.005) at Day 28 compared with placebo. Conclusions Tofacitinib reduces metalloproteinase and interferon-regulated gene expression in rheumatoid synovium, and clinical improvement correlates with reductions in STAT1 and STAT3 phosphorylation. JAK1-mediated interferon and interleukin-6 signalling likely play a key role in the synovial response. Trial registration number NCT00976599. PMID:25398374

  12. The role of JAK1/2 inhibitors in the treatment of chronic myeloproliferative neoplasms.

    PubMed

    Keohane, Clodagh; Mesa, Ruben; Harrison, Claire

    2013-01-01

    In 2005, the description of the JAK2V617F mutation for the first time provided a molecular key to enable more rapid diagnosis and target for novel therapeutics in the myeloproliferative neoplasms. In 2007, the first-in-class agent INC18424, ruxolitinib, JAKafi, or JAKAVI was first tested in patients with intermediate-risk 2 or high-risk myelofibrosis regardless of whether they possessed the JAK2V617F mutation. Patients treated with this agent had major reduction in splenomegaly as well as impressive reduction, and in some cases resolution, of symptoms. This study was followed by the two Controlled Myelofibrosis Study with Oral JAK Inhibitor Therapy (COMFORT) trials (the first-ever phase III trials in myelofibrosis), which confirmed results in these aspects were superior to either placebo or standard care, and updated results show a survival advantage with this therapy. This paper discusses these results and data from other JAK inhibitors while speculating on the future of these therapies. It also reflects on the fact that the true targets and agents' mode of action are uncertain. Unlike targeted therapy for chronic myeloid leukemia (CML), these agents do not deliver molecular remission, and it is not clear whether their predominant benefit is mediated via JAK2, JAK1, or both. Nonetheless, the advent of the JAK inhibitor is a welcome advance and has made a dramatic improvement to the therapeutic landscape of these conditions.

  13. Preclinical characterization of GLPG0634, a selective inhibitor of JAK1, for the treatment of inflammatory diseases.

    PubMed

    Van Rompaey, Luc; Galien, René; van der Aar, Ellen M; Clement-Lacroix, Philippe; Nelles, Luc; Smets, Bart; Lepescheux, Liên; Christophe, Thierry; Conrath, Katja; Vandeghinste, Nick; Vayssiere, Béatrice; De Vos, Steve; Fletcher, Stephen; Brys, Reginald; van 't Klooster, Gerben; Feyen, Jean H M; Menet, Christel

    2013-10-01

    The JAKs receive continued interest as therapeutic targets for autoimmune, inflammatory, and oncological diseases. JAKs play critical roles in the development and biology of the hematopoietic system, as evidenced by mouse and human genetics. JAK1 is critical for the signal transduction of many type I and type II inflammatory cytokine receptors. In a search for JAK small molecule inhibitors, GLPG0634 was identified as a lead compound belonging to a novel class of JAK inhibitors. It displayed a JAK1/JAK2 inhibitor profile in biochemical assays, but subsequent studies in cellular and whole blood assays revealed a selectivity of ∼30-fold for JAK1- over JAK2-dependent signaling. GLPG0634 dose-dependently inhibited Th1 and Th2 differentiation and to a lesser extent the differentiation of Th17 cells in vitro. GLPG0634 was well exposed in rodents upon oral dosing, and exposure levels correlated with repression of Mx2 expression in leukocytes. Oral dosing of GLPG0634 in a therapeutic set-up in a collagen-induced arthritis model in rodents resulted in a significant dose-dependent reduction of the disease progression. Paw swelling, bone and cartilage degradation, and levels of inflammatory cytokines were reduced by GLPG0634 treatment. Efficacy of GLPG0634 in the collagen-induced arthritis models was comparable to the results obtained with etanercept. In conclusion, the JAK1 selective inhibitor GLPG0634 is a promising novel therapeutic with potential for oral treatment of rheumatoid arthritis and possibly other immune-inflammatory diseases.

  14. Identification of highly potent BTK and JAK3 dual inhibitors with improved activity for the treatment of B-cell lymphoma.

    PubMed

    Ge, Yang; Wang, Changyuan; Song, Shijie; Huang, Jiaxin; Liu, Zhihao; Li, Yongming; Meng, Qiang; Zhang, Jianbin; Yao, Jihong; Liu, Kexin; Ma, Xiaodong; Sun, Xiuli

    2018-01-01

    The BTK and JAK3 receptor tyrosine kinases are two validated and therapeutically amenable targets in the treatment of B-cell lymphomas. Here we report the identification of several classes of pyrimidine derivatives as potent BTK and JAK3 dual inhibitors. Among these molecules, approximately two thirds displayed strong inhibitory capacity at less than 10 nM concentration, and four compounds (7e, 7g, 7m and 7n) could significantly inhibit the phosphorylation of BTK and JAK3 enzymes at concentrations lower than 1 nM. Additionally, these pyrimidine derivatives also exhibited enhanced activity to block the proliferation of B-cell lymphoma cells compared with the representative BTK inhibitor ibrutinib. In particular, two structure-specific compounds 7b and 7e displayed stronger activity than reference agents in cell-based evaluation, with IC 50 values lower than 10 μM. Further biological studies, including flow cytometric analysis, and a xenograft model for in vivo evaluation, also indicated their efficacy and low toxicity in the treatment of B-cell lymphoma. These findings provide a new insight for the development of novel anti-B-cell lymphoma drugs with multi-target actions. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  15. A highly selective, orally active inhibitor of Janus kinase 2, CEP-33779, ablates disease in two mouse models of rheumatoid arthritis

    PubMed Central

    2011-01-01

    Introduction Janus kinase 2 (JAK2) is involved in the downstream activation of signal transducer and activator of transcription 3 (STAT3) and STAT5 and is responsible for transducing signals for several proinflammatory cytokines involved in the pathogenesis of rheumatoid arthritis (RA), including interleukin (IL)-6, interferon γ (IFNγ) and IL-12. In this paper, we describe the efficacy profile of CEP-33779, a highly selective, orally active, small-molecule inhibitor of JAK2 evaluated in two mouse models of RA. Methods Collagen antibody-induced arthritis (CAIA) and collagen type II (CII)-induced arthritis (CIA) were established before the oral administration of a small-molecule JAK2 inhibitor, CEP-33779, twice daily at 10 mg/kg, 30 mg/kg, 55 mg/kg or 100 mg/kg over a period of 4 to 8 weeks. Results Pharmacodynamic inhibition of JAK2 reduced mean paw edema and clinical scores in both CIA and CAIA models of arthritis. Reduction in paw cytokines (IL-12, IFNγ and tumor necrosis factor α) and serum cytokines (IL-12 and IL-2) correlated with reduced spleen CII-specific T helper 1 cell frequencies as measured by ex vivo IFNγ enzyme-linked immunosorbent spot assay. Both models demonstrated histological evidence of disease amelioration upon treatment (for example, reduced matrix erosion, subchondral osteolysis, pannus formation and synovial inflammation) and reduced paw phosphorylated STAT3 levels. No changes in body weight or serum anti-CII autoantibody titers were observed in either RA model. Conclusions This study demonstrates the utility of using a potent and highly selective, orally bioavailable JAK2 inhibitor for the treatment of RA. Using a selective inhibitor of JAK2 rather than pan-JAK inhibitors avoids the potential complication of immunosuppression while targeting critical signaling pathways involved in autoimmune disease progression. PMID:21510883

  16. JAK2 mutations and clinical practice in myeloproliferative neoplasms.

    PubMed

    Tefferi, Ayalew

    2007-01-01

    With the discovery in the last 3 years of novel Janus kinase 2 (JAK2) and thrombopoietin receptor (MPL) mutations, the pathogenetic understanding of and clinical practice for myeloproliferative neoplasms (MPNs) have entered a new era. Each one of these newly discovered mutations, including JAK2V617F, MPLW515L, and a JAK2 exon 12 mutation, has been shown to result in constitutive activation of JAK-STAT signaling and also induce a MPN phenotype in mice. Thus, JAK2 is now considered to be a legitimate target for drug development in MPNs, and small molecule JAK2 inhibitors have already gone through successful preclinical testing, and early-phase human trials in primary myelofibrosis have already begun. Furthermore, JAK2 mutation screening has now become a front-line diagnostic test in the evaluation of both "erythrocytosis" and thrombocytosis and the 2001 World Health Organization diagnostic criteria for polycythemia vera, essential thrombocythemia, and primary myelofibrosis have now been revised to incorporate JAK2V617F mutation screening.

  17. Phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) and Janus kinase/signal transducer and activator of transcription (JAK/STAT) follicular signalling is conserved in the mare ovary.

    PubMed

    Hall, Sally E; Upton, Rose M O; McLaughlin, Eileen A; Sutherland, Jessie M

    2017-09-26

    The mare ovary is unique in its anatomical structure; however, the signalling pathways responsible for physiological processes, such as follicular activation, remain uncharacterised. This provided us with the impetus to explore whether signalling molecules from important folliculogenesis pathways, phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) and Janus kinase/signal transducer and activator of transcription (JAK/STAT), are conserved in the mare ovary. Messenger RNA expression of six genes important in follicle development was measured using quantitative polymerase chain reaction and protein localisation of key pathway members (PI3K, AKT1, phosphatase and tensin homologue (PTEN), JAK1, STAT3 and suppressor of cytokine signalling 4 (SOCS4)) was compared in tissue from fetal and adult mare ovaries. Tissue from adult ovaries exhibited significantly increased levels of mRNA expression of PI3K, AKT1, PTEN, JAK1, STAT3 and SOCS4 compared with tissue from fetal ovaries. PI3K, AKT1, JAK1 and STAT3 demonstrated redistributed localisation, from pregranulosa cells in fetal development, to both the oocyte and granulosa cells of follicles in the adult ovary, whilst negative feedback molecules PTEN and SOCS4 were only localised to the granulosa cells in the adult ovary. These findings suggest that the PI3K/AKT and JAK/STAT signalling pathways are utilised during folliculogenesis in the mare, similarly to previously studied mammalian species, and may serve as useful biomarkers for assessment of ovary development in the horse.

  18. Crystal structures of spleen tyrosine kinase in complex with novel inhibitors: structural insights for design of anticancer drugs.

    PubMed

    Lee, Sang Jae; Choi, Jang-Sik; Han, Byeong-Gu; Kim, Hyoun Sook; Song, Ho-Juhn; Lee, Jaekyoo; Nam, Seungyoon; Goh, Sung-Ho; Kim, Jung-Ho; Koh, Jong Sung; Lee, Byung Il

    2016-10-01

    Spleen tyrosine kinase (SYK) is a cytosolic nonreceptor protein tyrosine kinase that mediates key signal transduction pathways following the activation of immune cell receptors. SYK regulates cellular events induced by the B-cell receptor and Fc receptors with high intrinsic activity. Furthermore, SYK has been regarded as an attractive target for the treatment of autoimmune diseases and cancers. Here, we report the crystal structures of SYK in complex with seven newly developed inhibitors (G206, G207, O178, O194, O259, O272, and O282) to provide structural insights into which substituents of the inhibitors and binding regions of SYK are essential for lead compound optimization. Our kinase inhibitors exhibited high inhibitory activities against SYK, with half-maximal inhibitory concentrations (IC 50 ) of approximately 0.7-33 nm, but they showed dissimilar inhibitory activities against KDR, RET, JAK2, JAK3, and FLT3. Among the seven SYK inhibitors, O272 and O282 exhibited highly specific inhibitions against SYK, whereas O194 exhibited strong inhibition of both SYK and FLT3. Three inhibitors (G206, G207, and O178) more efficiently inhibited FLT3 while still substantially inhibiting SYK activity. The binding mode analysis suggested that a highly selective SYK inhibitor can be developed by optimizing the functional groups that facilitate direct interactions with Asn499. The atomic coordinates and structure factors for human SYK are in the Protein Data Bank under accession codes 4XG2 (inhibitor-free form), 4XG3 (G206), 4XG4 (G207), 5GHV (O178), 4XG6 (O194), 4XG7 (O259), 4XG8 (O272), and 4XG9 (O282). © 2016 Federation of European Biochemical Societies.

  19. HSP90 is a therapeutic target in JAK2-dependent myeloproliferative neoplasms in mice and humans

    PubMed Central

    Marubayashi, Sachie; Koppikar, Priya; Taldone, Tony; Abdel-Wahab, Omar; West, Nathan; Bhagwat, Neha; Caldas-Lopes, Eloisi; Ross, Kenneth N.; Gönen, Mithat; Gozman, Alex; Ahn, James H.; Rodina, Anna; Ouerfelli, Ouathek; Yang, Guangbin; Hedvat, Cyrus; Bradner, James E.; Chiosis, Gabriela; Levine, Ross L.

    2010-01-01

    JAK2 kinase inhibitors were developed for the treatment of myeloproliferative neoplasms (MPNs), following the discovery of activating JAK2 mutations in the majority of patients with MPN. However, to date JAK2 inhibitor treatment has shown limited efficacy and apparent toxicities in clinical trials. We report here that an HSP90 inhibitor, PU-H71, demonstrated efficacy in cell line and mouse models of the MPN polycythemia vera (PV) and essential thrombocytosis (ET) by disrupting JAK2 protein stability. JAK2 physically associated with both HSP90 and PU-H71 and was degraded by PU-H71 treatment in vitro and in vivo, demonstrating that JAK2 is an HSP90 chaperone client. PU-H71 treatment caused potent, dose-dependent inhibition of cell growth and signaling in JAK2 mutant cell lines and in primary MPN patient samples. PU-H71 treatment of mice resulted in JAK2 degradation, inhibition of JAK-STAT signaling, normalization of peripheral blood counts, and improved survival in MPN models at doses that did not degrade JAK2 in normal tissues or cause substantial toxicity. Importantly, PU-H71 treatment also reduced the mutant allele burden in mice. These data establish what we believe to be a novel therapeutic rationale for HSP90 inhibition in the treatment of JAK2-dependent MPN. PMID:20852385

  20. A natural product-like JAK2/STAT3 inhibitor induces apoptosis of malignant melanoma cells

    PubMed Central

    Zhong, Hai-Jing; Dong, Zhen-Zhen; Vellaisamy, Kasipandi; Lu, Jin-Jian; Chen, Xiu-Ping; Chiu, Pauline; Kwong, Daniel W. J.; Han, Quan-Bin; Ma, Dik-Lung

    2017-01-01

    The JAK2/STAT3 signaling pathway plays a critical role in tumorigenesis, and has been suggested as a potential molecular target for anti-melanoma therapeutics. However, few JAK2 inhibitors were being tested for melanoma therapy. In this study, eight amentoflavone analogues were evaluated for their activity against human malignant melanoma cells. The most potent analogue, compound 1, inhibited the phosphorylation of JAK2 and STAT3 in human melanoma cells, but had no discernible effect on total JAK2 and STAT3 levels. A cellular thermal shift assay was performed to identify that JAK2 is engaged by 1 in cell lysates. Moreover, compound 1 showed higher antiproliferative activity against human melanoma A375 cells compared to a panel of cancer and normal cell lines. Compound 1 also activated caspase-3 and cleaved PARP, which are markers of apoptosis, and suppressed the anti-apoptotic Bcl-2 level. Finally, compound 1 induced apoptosis in 80% of treated melanoma cells. To our knowledge, compound 1 is the first amentoflavone-based JAK2 inhibitor to be investigated for use as an anti-melanoma agent. PMID:28570563

  1. JAK kinases are required for the bacterial RNA and poly I:C induced tyrosine phosphorylation of PKR

    PubMed Central

    Bleiblo, Farag; Michael, Paul; Brabant, Danielle; Ramana, Chilakamarti V; Tai, TC; Saleh, Mazen; Parrillo, Joseph E; Kumar, Anand; Kumar, Aseem

    2013-01-01

    Discriminating the molecular patterns associated with RNA is central to innate immunity. The protein kinase PKR is a cytosolic sensor involved in the recognition of viral dsRNA and triggering interferon-induced signaling. Here, we identified bacterial RNA as a novel distinct pattern recognized by PKR. We show that the tyrosine phosphorylation of PKR induced by either bacterial RNA or poly I:C is impaired in mutant cells lacking TYK2, JAK1, or JAK2 kinases. PKR was found to be a direct substrate for the activated JAKs. Our results indicated that the double-stranded structures of bacterial RNA are required to fully activate PKR. These results suggest that bacterial RNA signaling is analogous in some respects to that of viral RNA and interferons and may have implications in bacterial immunity. PMID:23236554

  2. KIDFamMap: a database of kinase-inhibitor-disease family maps for kinase inhibitor selectivity and binding mechanisms

    PubMed Central

    Chiu, Yi-Yuan; Lin, Chih-Ta; Huang, Jhang-Wei; Hsu, Kai-Cheng; Tseng, Jen-Hu; You, Syuan-Ren; Yang, Jinn-Moon

    2013-01-01

    Kinases play central roles in signaling pathways and are promising therapeutic targets for many diseases. Designing selective kinase inhibitors is an emergent and challenging task, because kinases share an evolutionary conserved ATP-binding site. KIDFamMap (http://gemdock.life.nctu.edu.tw/KIDFamMap/) is the first database to explore kinase-inhibitor families (KIFs) and kinase-inhibitor-disease (KID) relationships for kinase inhibitor selectivity and mechanisms. This database includes 1208 KIFs, 962 KIDs, 55 603 kinase-inhibitor interactions (KIIs), 35 788 kinase inhibitors, 399 human protein kinases, 339 diseases and 638 disease allelic variants. Here, a KIF can be defined as follows: (i) the kinases in the KIF with significant sequence similarity, (ii) the inhibitors in the KIF with significant topology similarity and (iii) the KIIs in the KIF with significant interaction similarity. The KIIs within a KIF are often conserved on some consensus KIDFamMap anchors, which represent conserved interactions between the kinase subsites and consensus moieties of their inhibitors. Our experimental results reveal that the members of a KIF often possess similar inhibition profiles. The KIDFamMap anchors can reflect kinase conformations types, kinase functions and kinase inhibitor selectivity. We believe that KIDFamMap provides biological insights into kinase inhibitor selectivity and binding mechanisms. PMID:23193279

  3. Phase 1 study of the PI3Kδ inhibitor INCB040093 ± JAK1 inhibitor itacitinib in relapsed/refractory B-cell lymphoma.

    PubMed

    Phillips, Tycel J; Forero-Torres, Andres; Sher, Taimur; Diefenbach, Catherine S; Johnston, Patrick; Talpaz, Moshe; Pulini, Jennifer; Zhou, Li; Scherle, Peggy; Chen, Xuejun; Barr, Paul M

    2018-04-25

    Because both phosphatidylinositol 3-kinase δ (PI3Kδ) and Janus kinase (JAK)-signal transducer and activator of transcription pathways contribute to tumor cell proliferation and survival in B-cell malignancies, their simultaneous inhibition may provide synergistic treatment efficacy. This phase 1 dose-escalation/expansion study assessed the safety, efficacy, pharmacokinetics, and pharmacodynamics of INCB040093, a selective PI3Kδ inhibitor, as monotherapy or combined with itacitinib (formerly INCB039110), a selective JAK1 inhibitor, in adult patients with relapsed or refractory (R/R) B-cell lymphomas. Final results are reported. Overall, 114 patients were treated (monotherapy, n=49; combination therapy, n=72 [7 patients crossed-over from monotherapy to combination]). INCB040093 100 mg twice daily (monotherapy) and INCB040093 100 mg twice daily + itacitinib 300 mg once daily (combination) were the recommended phase 2 doses. One dose-limiting toxicity (gastrointestinal bleed secondary to gastric diffuse large B-cell lymphoma [DLBCL] regression) occurred with monotherapy. The most common serious adverse events with monotherapy were pneumonia (n=5) and pyrexia (n=4), and with combination Pneumocystis jiroveci pneumonia (n=5), pneumonia (unrelated to Pneumocystis jiroveci ; n=5), and pyrexia (n=4). Grade ≥3 transaminase elevations were less common with combination. INCB040093 was active across the B-cell lymphomas; 63% of patients (5/8) with follicular lymphoma responded to monotherapy. Adding itacitinib provided promising activity in select subtypes, with responses of 67% (14/21) in classic Hodgkin lymphoma (vs 29% [5/17] with monotherapy) and 31% (4/13) in non-germinal center B-cell-like DLBCL. INCB040093 with/without itacitinib was tolerated and active in this study, and is a promising treatment strategy for patients with select R/R B-cell lymphomas. ClinicalTrials.gov: #NCT01905813. Copyright © 2018 American Society of Hematology.

  4. Role of JAK-STAT signaling in the pathogenesis of myeloproliferative disorders.

    PubMed

    Levine, Ross L; Wernig, Gerlinde

    2006-01-01

    The identification of JAK2V617F mutations in polycythemia vera (PV), essential thrombocytosis (ET), and myelofibrosis (MF) represents an important advance in our understanding of these myeloproliferative disorders (MPD). Most, if not all, patients with PV and a significant number of patients with ET and MF are JAK2V617F positive, and the mutation likely arises in the hematopoietic stem cell compartment. JAK2V617F is a constitutively active tyrosine kinase that is able to activate JAK-STAT signaling most efficiently when co-expressed with the erythropoietin receptor (EPOR), the thrombopoietin receptor (MPL), or the granulocyte colony-stimulating factor receptor (GCSFR). Data from murine models supports the central role of JAK2V617F in the pathogenesis of MPD, as expression of JAK2V617F in a bone marrow transplantation assay results in polycythemia and myelofibrosis in recipient mice. Activation of JAK-STAT signaling by JAK2V617F in some, but not all MPD patients with ET and MF led to the identification of the constitutively active MPLW515L allele in ET and MF. Small molecule inhibitors of JAK-STAT signaling are currently being developed, which offer potential for molecularly targeted therapy for patients with PV, ET, and MF. Despite these advances, many questions remain regarding the role of a single disease allele in three phenotypically distinct MPD, the potential clinical efficacy of JAK2 inhibitors, and the identity of oncogenic alleles in JAK2V617F/MPLW515-negative MPD.

  5. Cinnamic Acid Derivatives as Inhibitors of Oncogenic Protein Kinases--Structure, Mechanisms and Biomedical Effects.

    PubMed

    Mielecki, Marcin; Lesyng, Bogdan

    2016-01-01

    Cinnamic acid belongs to phenolic-acid class of polyphenols, one of the most abundant plant secondary metabolites. These substances are widely studied because of plethora of their biological activities. In particular, their inhibition of protein kinases contributes to the pleiotropic effects in the cell. Protein kinases are essential in controlling cell signaling networks. Selective targeting of oncogenic protein kinases increases clinical anticancer efficacy. Cinnamic acid and related compounds have inspired researchers in the design of numerous synthetic and semisynthetic inhibitors of oncogenic protein kinases for the past three decades. Interest in cinnamoyl-scaffold-containing compounds revived in recent years, which was stimulated by modern drug design and discovery methodologies such as in vitro and in silico HTS. This review presents cinnamic acid derivatives and analogs for which direct inhibition of protein kinases was identified. We also summarize significance of the above protein kinase families - validated or promising targets for anticancer therapies. The inhibition mode may vary from ATP-competitive, through bisubstrate-competitive and mixedcompetitive, to non-competitive one. Kinase selectivity is often correlated with subtle chemical modifications, and may also be steered by an additional non-cinnamoyl fragment of the inhibitor. Specific cinnamic acid congeners may synergize their effects in the cell by a wider range of activities, like suppression of additional enzymes, e.g. deubiquitinases, influencing the same signaling pathways (e.g. JAK2/STAT). Cinnamic acid, due to its biological and physicochemical properties, provides nature-inspired ideas leading to novel inhibitors of oncogenic protein kinases and related enzymes, capable to target a variety of cancer cells.

  6. Calcineurin inhibitors recruit protein kinases JAK2 and JNK, TLR signaling and the UPR to activate NF-κB-mediated inflammatory responses in kidney tubular cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    González-Guerrero, Cristian, E-mail: cristian.gonzalez@fjd.es; Ocaña-Salceda, Carlos, E-mail: carlos.ocana@fjd.es; Berzal, Sergio, E-mail: sberzal@fjd.es

    The calcineurin inhibitors (CNIs) cyclosporine (CsA) and tacrolimus are key drugs in current immunosuppressive regimes for solid organ transplantation. However, they are nephrotoxic and promote death and profibrotic responses in tubular cells. Moreover, renal inflammation is observed in CNI nephrotoxicity but the mechanisms are poorly understood. We have now studied molecular pathways leading to inflammation elicited by the CNIs in cultured and kidney tubular cells. Both CsA and tacrolimus elicited a proinflammatory response in tubular cells as evidenced by a transcriptomics approach. Transcriptomics also suggested several potential pathways leading to expression of proinflammatory genes. Validation and functional studies disclosed thatmore » in tubular cells, CNIs activated protein kinases such as the JAK2/STAT3 and TAK1/JNK/AP-1 pathways, TLR4/Myd88/IRAK signaling and the Unfolded Protein Response (UPR) to promote NF-κB activation and proinflammatory gene expression. CNIs also activated an Nrf2/HO-1-dependent compensatory response and the Nrf2 activator sulforaphane inhibited JAK2 and JNK activation and inflammation. A murine model of CsA nephrotoxicity corroborated activation of the proinflammatory pathways identified in cell cultures. Human CNIs nephrotoxicity was also associated with NF-κB, STAT3 and IRE1α activation. In conclusion, CNIs recruit several intracellular pathways leading to previously non-described proinflammatory actions in renal tubular cells. Identification of these pathways provides novel clues for therapeutic intervention to limit CNIs nephrotoxicity. - Highlights: • Molecular mechanisms modulating CNI renal inflammation were investigated. • Kinases, immune receptors and ER stress mediate the inflammatory response to CNIs. • Several intracellular pathways activate NF-κB in CNIs-treated tubular cells. • A NF-κB-dependent cytokine profile characterizes CNIs-induced inflammation. • CNI nephrotoxicity was associated to

  7. Update on Janus Kinase Antagonists in Inflammatory Bowel Disease

    PubMed Central

    Boland, Brigid S.; Sandborn, William J.; Chang, John T.

    2014-01-01

    Janus kinase (JAK) inhibitors have emerged as a novel orally administered small molecule therapy for the treatment of ulcerative colitis and possibly Crohn’s disease. These molecules are designed to selectively target the activity of specific JAKs and offer a targeted mechanism of action without risk of immunogenicity. Based on data from clinical trials in rheumatoid arthritis and phase 2 studies in inflammatory bowel disease, tofacitinib and other JAK inhibitors are likely to become a new form of medical therapy for the treatment of inflammatory bowel disease. PMID:25110261

  8. Hyperactivation of JAK1 tyrosine kinase induces stepwise, progressive pruritic dermatitis

    PubMed Central

    Yasuda, Takuwa; Fukada, Toshiyuki; Nishida, Keigo; Nakayama, Manabu; Matsuda, Masashi; Miura, Ikuo; Fukuda, Shinji; Kabashima, Kenji; Nakaoka, Shinji; Bin, Bum-Ho; Kubo, Masato; Hasegawa, Takanori; Ohara, Osamu; Koseki, Haruhiko; Wakana, Shigeharu

    2016-01-01

    Skin homeostasis is maintained by the continuous proliferation and differentiation of epidermal cells. The skin forms a strong but flexible barrier against microorganisms as well as physical and chemical insults; however, the physiological mechanisms that maintain this barrier are not fully understood. Here, we have described a mutant mouse that spontaneously develops pruritic dermatitis as the result of an initial defect in skin homeostasis that is followed by induction of a Th2-biased immune response. These mice harbor a mutation that results in a single aa substitution in the JAK1 tyrosine kinase that results in hyperactivation, thereby leading to skin serine protease overexpression and disruption of skin barrier function. Accordingly, treatment with an ointment to maintain normal skin barrier function protected mutant mice from dermatitis onset. Pharmacological inhibition of JAK1 also delayed disease onset. Together, these findings indicate that JAK1-mediated signaling cascades in skin regulate the expression of proteases associated with the maintenance of skin barrier function and demonstrate that perturbation of these pathways can lead to the development of spontaneous pruritic dermatitis. PMID:27111231

  9. Hyperactivation of JAK1 tyrosine kinase induces stepwise, progressive pruritic dermatitis.

    PubMed

    Yasuda, Takuwa; Fukada, Toshiyuki; Nishida, Keigo; Nakayama, Manabu; Matsuda, Masashi; Miura, Ikuo; Dainichi, Teruki; Fukuda, Shinji; Kabashima, Kenji; Nakaoka, Shinji; Bin, Bum-Ho; Kubo, Masato; Ohno, Hiroshi; Hasegawa, Takanori; Ohara, Osamu; Koseki, Haruhiko; Wakana, Shigeharu; Yoshida, Hisahiro

    2016-06-01

    Skin homeostasis is maintained by the continuous proliferation and differentiation of epidermal cells. The skin forms a strong but flexible barrier against microorganisms as well as physical and chemical insults; however, the physiological mechanisms that maintain this barrier are not fully understood. Here, we have described a mutant mouse that spontaneously develops pruritic dermatitis as the result of an initial defect in skin homeostasis that is followed by induction of a Th2-biased immune response. These mice harbor a mutation that results in a single aa substitution in the JAK1 tyrosine kinase that results in hyperactivation, thereby leading to skin serine protease overexpression and disruption of skin barrier function. Accordingly, treatment with an ointment to maintain normal skin barrier function protected mutant mice from dermatitis onset. Pharmacological inhibition of JAK1 also delayed disease onset. Together, these findings indicate that JAK1-mediated signaling cascades in skin regulate the expression of proteases associated with the maintenance of skin barrier function and demonstrate that perturbation of these pathways can lead to the development of spontaneous pruritic dermatitis.

  10. JAK/STAT signaling pathway-mediated immune response in silkworm (Bombyx mori) challenged by Beauveria bassiana.

    PubMed

    Geng, Tao; Lv, Ding-Ding; Huang, Yu-Xia; Hou, Cheng-Xiang; Qin, Guang-Xing; Guo, Xi-Jie

    2016-12-20

    Innate immunity was critical in insects defensive system and able to be induced by Janus kinase/signal transducer and activator of transcription cascade transduction (JAK/STAT) signaling pathway. Currently, it had been identified many JAK/STAT signaling pathway-related genes in silkworm, but little function was known on insect innate immunity. To explore the roles of JAK/STAT pathway in antifungal immune response in silkworm (Bombyx mori) against Beauveria bassiana infection, the expression patterns of B. mori C-type lectin 5 (BmCTL5) and genes encoding 6 components of JAK/STAT signaling pathway in silkworm challenged by B. bassiana were analyzed using quantitative real time PCR. Meanwhile the activation of JAK/STAT signaling pathway by various pathogenic micro-organisms and the affect of JAK/STAT signaling pathway inhibitors on antifungal activity in silkworm hemolymph was also detected. Moreover, RNAi assay of BmCTL5 and the affect on expression levels of signaling factors were also analyzed. We found that JAK/STAT pathway could be obviously activated in silkworm challenged with B. bassiana and had no response to bacteria and B. mori cytoplasmic polyhedrosis virus (BmCPV). However, the temporal expression patterns of JAK/STAT signaling pathway related genes were significantly different. B. mori downstream receptor kinase (BmDRK) might be a positive regulator of JAK/STAT signaling pathway in silkworm against B. bassiana infection. Moreover, antifungal activity assay showed that the suppression of JAK/STAT signaling pathway by inhibitors could significantly inhibit the antifungal activity in hemolymph and resulted in increased sensitivity of silkworm to B. bassiana infection, indicating that JAK/STAT signaling pathway might be involved in the synthesis and secretion of antifungal substances. The results of RNAi assays suggested that BmCTL5 might be one pattern recognition receptors for JAK/STAT signaling pathway in silkworm. These findings yield insights for better

  11. Biology and Clinical Management of Myeloproliferative Neoplasms and Development of the JAK Inhibitor Ruxolitinib

    PubMed Central

    Mascarenhas, J; Mughal, TI; Verstovsek, S

    2012-01-01

    Myeloproliferative neoplasms (MPN) are debilitating stem cell-derived clonal myeloid malignancies. Conventional treatments for the BCR-ABL1-negative MPN including polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF) have, so far, been unsatisfactory. Following the discovery of dysregulated JAK-STAT signaling in patients with MPN, many efforts have been directed toward the development of molecularly targeted therapies, including inhibitors of JAK1 and JAK2. Ruxolitinib (previously known as INCB018424; Incyte Corporation, Wilmington, Delaware, USA) is a rationally designed potent oral JAK1 and JAK2 inhibitor that has undergone clinical trials in patients with PV, ET, and PMF. Ruxolitinib was approved on November 16, 2011 by the United States Food and Drug Administration for the treatment of intermediate or high-risk myelofibrosis (MF), including patients with PMF, post-PV MF, and post-ET MF. In randomized phase III studies, ruxolitinib treatment resulted in significant and durable reductions in splenomegaly and improvements in disease-related symptoms in patients with MF compared with placebo or best available therapy. The most common adverse events were anemia and thrombocytopenia, which were manageable and rarely led to discontinuation. This review addresses the cellular and molecular biology, and the clinical management of MPN. PMID:22830345

  12. Stimulation of the amino acid transporter SLC6A19 by JAK2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhavsar, Shefalee K.; Hosseinzadeh, Zohreh; Merches, Katja

    Highlights: Black-Right-Pointing-Pointer The amino acid transporter SLC6A19 is upregulated by Janus kinase-2 JAK2. Black-Right-Pointing-Pointer The {sup V617F}JAK2 mutant, causing myeloproliferative disease, is more effective. Black-Right-Pointing-Pointer JAK2 inhibitor AG490 reverses stimulation of SLC6A19 by {sup V617F}JAK2. Black-Right-Pointing-Pointer JAK2 enhances SLC6A19 protein insertion into the cell membrane. Black-Right-Pointing-Pointer SLC6A19 may contribute to amino acid uptake into {sup V617F}JAK2 expressing tumor cells. -- Abstract: JAK2 (Janus kinase-2) is expressed in a wide variety of cells including tumor cells and contributes to the proliferation and survival of those cells. The gain of function mutation {sup V617F}JAK2 mutant is found in the majority of myeloproliferativemore » diseases. Cell proliferation depends on the availability of amino acids. Concentrative cellular amino acid uptake is in part accomplished by Na{sup +} coupled amino acid transport through SLC6A19 (B(0)AT). The present study thus explored whether JAK2 activates SLC6A19. To this end, SLC6A19 was expressed in Xenopus oocytes with or without wild type JAK2, {sup V617F}JAK2 or inactive {sup K882E}JAK2 and electrogenic amino acid transport determined by dual electrode voltage clamp. In SLC6A19-expressing oocytes but not in oocytes injected with water or JAK2 alone, the addition of leucine (2 mM) to the bath generated a current (I{sub le}), which was significantly increased following coexpression of JAK2 or {sup V617F}JAK2, but not by coexpression of {sup K882E}JAK2. Coexpression of JAK2 enhanced the maximal transport rate without significantly modifying the affinity of the carrier. Exposure of the oocytes to the JAK2 inhibitor AG490 (40 {mu}M) resulted in a gradual decline of I{sub le}. According to chemiluminescence JAK2 enhanced the carrier protein abundance in the cell membrane. The decline of I{sub le} following inhibition of carrier insertion by brefeldin A (5 {mu}M) was

  13. The Small Molecule Inhibitor G6 Significantly Reduces Bone Marrow Fibrosis and the Mutant Burden in a Mouse Model of Jak2-Mediated Myelofibrosis

    PubMed Central

    Kirabo, Annet; Park, Sung O.; Wamsley, Heather L.; Gali, Meghanath; Baskin, Rebekah; Reinhard, Mary K.; Zhao, Zhizhuang J.; Bisht, Kirpal S.; Keserű, György M.; Cogle, Christopher R.; Sayeski, Peter P.

    2013-01-01

    Philadelphia chromosome–negative myeloproliferative neoplasms, including polycythemia vera, essential thrombocytosis, and myelofibrosis, are disorders characterized by abnormal hematopoiesis. Among these myeloproliferative neoplasms, myelofibrosis has the most unfavorable prognosis. Furthermore, currently available therapies for myelofibrosis have little to no efficacy in the bone marrow and hence, are palliative. We recently developed a Janus kinase 2 (Jak2) small molecule inhibitor called G6 and found that it exhibits marked efficacy in a xenograft model of Jak2-V617F–mediated hyperplasia and a transgenic mouse model of Jak2-V617F–mediated polycythemia vera/essential thrombocytosis. However, its efficacy in Jak2-mediated myelofibrosis has not previously been examined. Here, we hypothesized that G6 would be efficacious in Jak2-V617F–mediated myelofibrosis. To test this, mice expressing the human Jak2-V617F cDNA under the control of the vav promoter were administered G6 or vehicle control solution, and efficacy was determined by measuring parameters within the peripheral blood, liver, spleen, and bone marrow. We found that G6 significantly reduced extramedullary hematopoiesis in the liver and splenomegaly. In the bone marrow, G6 significantly reduced pathogenic Jak/STAT signaling by 53%, megakaryocytic hyperplasia by 70%, and the Jak2 mutant burden by 68%. Furthermore, G6 significantly improved the myeloid to erythroid ratio and significantly reversed the myelofibrosis. Collectively, these results indicate that G6 is efficacious in Jak2-V617F–mediated myelofibrosis, and given its bone marrow efficacy, it may alter the natural history of this disease. PMID:22796437

  14. Targeting cancer with kinase inhibitors

    PubMed Central

    Gross, Stefan; Rahal, Rami; Stransky, Nicolas; Lengauer, Christoph; Hoeflich, Klaus P.

    2015-01-01

    Kinase inhibitors have played an increasingly prominent role in the treatment of cancer and other diseases. Currently, more than 25 oncology drugs that target kinases have been approved, and numerous additional therapeutics are in various stages of clinical evaluation. In this Review, we provide an in-depth analysis of activation mechanisms for kinases in cancer, highlight recent successes in drug discovery, and demonstrate the clinical impact of selective kinase inhibitors. We also describe the substantial progress that has been made in designing next-generation inhibitors to circumvent on-target resistance mechanisms, as well as ongoing strategies for combining kinase inhibitors in the clinic. Last, there are numerous prospects for the discovery of novel kinase targets, and we explore cancer immunotherapy as a new and promising research area for studying kinase biology. PMID:25932675

  15. Loss of mutL homolog-1 (MLH1) expression promotes acquisition of oncogenic and inhibitor-resistant point mutations in tyrosine kinases.

    PubMed

    Springuel, Lorraine; Losdyck, Elisabeth; Saussoy, Pascale; Turcq, Béatrice; Mahon, François-Xavier; Knoops, Laurent; Renauld, Jean-Christophe

    2016-12-01

    Genomic instability drives cancer progression by promoting genetic abnormalities that allow for the multi-step clonal selection of cells with growth advantages. We previously reported that the IL-9-dependent TS1 cell line sequentially acquired activating substitutions in JAK1 and JAK3 upon successive selections for growth factor independent and JAK inhibitor-resistant cells, suggestive of a defect in mutation avoidance mechanisms. In the first part of this paper, we discovered that the gene encoding mutL homolog-1 (MLH1), a key component of the DNA mismatch repair system, is silenced by promoter methylation in TS1 cells. By means of stable ectopic expression and RNA interference methods, we showed that the high frequencies of growth factor-independent and inhibitor-resistant cells with activating JAK mutations can be attributed to the absence of MLH1 expression. In the second part of this paper, we confirm the clinical relevance of our findings by showing that chronic myeloid leukemia relapses upon ABL-targeted therapy correlated with a lower expression of MLH1 messenger RNA. Interestingly, the mutational profile observed in our TS1 model, characterized by a strong predominance of T:A>C:G transitions, was identical to the one described in the literature for primitive cells derived from chronic myeloid leukemia patients. Taken together, our observations demonstrate for the first time a causal relationship between MLH1-deficiency and incidence of oncogenic point mutations in tyrosine kinases driving cell transformation and acquired resistance to kinase-targeted cancer therapies.

  16. JAK2/STAT5 inhibition by nilotinib with ruxolitinib contributes to the elimination of CML CD34+ cells in vitro and in vivo

    PubMed Central

    Gallipoli, Paolo; Cook, Amy; Rhodes, Susan; Hopcroft, Lisa; Wheadon, Helen; Whetton, Anthony D.; Jørgensen, Heather G.; Bhatia, Ravi

    2014-01-01

    Chronic myeloid leukemia (CML) stem cell survival is not dependent on BCR-ABL protein kinase and treatment with ABL tyrosine kinase inhibitors cures only a minority of CML patients, thus highlighting the need for novel therapeutic targets. The Janus kinase (JAK)2/signal transducer and activator of transcription (STAT)5 pathway has recently been explored for providing putative survival signals to CML stem/progenitor cells (SPCs) with contradictory results. We investigated the role of this pathway using the JAK2 inhibitor, ruxolitinib (RUX). We demonstrated that the combination of RUX, at clinically achievable concentrations, with the specific and potent tyrosine kinase inhibitor nilotinib, reduced the activity of the JAK2/STAT5 pathway in vitro relative to either single agent alone. These effects correlated with increased apoptosis of CML SPCs in vitro and a reduction in primitive quiescent CML stem cells, including NOD.Cg-Prkdcscid IL2rgtm1Wjl /SzJ mice repopulating cells, induced by combination treatment. A degree of toxicity toward normal SPCs was observed with the combination treatment, although this related to mature B-cell engraftment in NOD.Cg-Prkdcscid IL2rgtm1Wjl /SzJ mice with minimal effects on primitive CD34+ cells. These results support the JAK2/STAT5 pathway as a relevant therapeutic target in CML SPCs and endorse the current use of nilotinib in combination with RUX in clinical trials to eradicate persistent disease in CML patients. PMID:24957147

  17. The JAK2 pathway is activated in idiopathic pulmonary fibrosis.

    PubMed

    Milara, Javier; Hernandez, Gracia; Ballester, Beatriz; Morell, Anselm; Roger, Inés; Montero, P; Escrivá, Juan; Lloris, José M; Molina-Molina, Maria; Morcillo, Esteban; Cortijo, Julio

    2018-02-06

    Idiopathic pulmonary fibrosis (IPF) is the most rapidly progressive and fatal fibrotic disorder, with no curative therapies. The signal transducer and activator of transcription 3 (STAT3) protein is activated in lung fibroblasts and alveolar type II cells (ATII), thereby contributing to lung fibrosis in IPF. Although activation of Janus kinase 2 (JAK2) has been implicated in proliferative disorders, its role in IPF is unknown. The aim of this study was to analyze JAK2 activation in IPF, and to determine whether JAK2/STAT3 inhibition is a potential therapeutic strategy for this disease. JAK2/p-JAK2 and STAT3/pSTAT3 expression was evaluated using quantitative real time-PCR, western blotting, and immunohistochemistry. Compared to human healthy lung tissue (n = 10) both proteins were upregulated in the lung tissue of IPF patients (n = 12). Stimulating primary ATII and lung fibroblasts with transforming growth factor beta 1 or interleukin (IL)-6/IL-13 activated JAK2 and STAT3, inducing epithelial to mesenchymal and fibroblast to myofibroblast transitions. Dual p-JAK2/p-STAT3 inhibition with JSI-124 or silencing of JAK2 and STAT3 genes suppressed ATII and the fibroblast to myofibroblast transition, with greater effects than the sum of those obtained using JAK2 or STAT3 inhibitors individually. Dual rather than single inhibition was also more effective for inhibiting fibroblast migration, preventing increases in fibroblast senescence and Bcl-2 expression, and ameliorating impaired autophagy. In rats administered JSI-124, a dual inhibitor of p-JAK2/p-STAT3, at a dose of 1 mg/kg/day, bleomycin-induced lung fibrosis was reduced and collagen deposition in the lung was inhibited, as were JAK2 and STAT3 activation and several markers of fibrosis, autophagy, senescence, and anti-apoptosis. JAK2 and STAT3 are activated in IPF, and their dual inhibition may be an attractive strategy for treating this disease.

  18. Kinase inhibitor profiling reveals unexpected opportunities to inhibit disease-associated mutant kinases

    PubMed Central

    Duong-Ly, Krisna C.; Devarajan, Karthik; Liang, Shuguang; Horiuchi, Kurumi Y.; Wang, Yuren; Ma, Haiching; Peterson, Jeffrey R.

    2016-01-01

    Summary Small-molecule kinase inhibitors have typically been designed to inhibit wild-type kinases rather than the mutant forms that frequently arise in diseases such as cancer. Mutations can have serious clinical implications by increasing kinase catalytic activity or conferring therapeutic resistance. To identify opportunities to repurpose inhibitors against disease-associated mutant kinases, we conducted a large-scale functional screen of 183 known kinase inhibitors against 76 recombinant, mutant kinases. The results revealed lead compounds with activity against clinically important mutant kinases including ALK, LRRK2, RET, and EGFR as well as unexpected opportunities for repurposing FDA-approved kinase inhibitors as leads for additional indications. Furthermore, using T674I PDGFRα as an example, we show how single-dose screening data can provide predictive structure-activity data to guide subsequent inhibitor optimization. This study provides a resource for the development of inhibitors against numerous disease-associated mutant kinases and illustrates the potential of unbiased profiling as an approach to compound-centric inhibitor development. PMID:26776524

  19. Targeting the Interleukin-6/Jak/Stat Pathway in Human Malignancies

    PubMed Central

    Sansone, Pasquale; Bromberg, Jacqueline

    2012-01-01

    The Janus kinase/signal transducer and activator of transcription (Jak/Stat) pathway was discovered 20 years ago as a mediator of cytokine signaling. Since this time, more than 2,500 articles have been published demonstrating the importance of this pathway in virtually all malignancies. Although there are dozens of cytokines and cytokine receptors, four Jaks, and seven Stats, it seems that interleukin-6–mediated activation of Stat3 is a principal pathway implicated in promoting tumorigenesis. This transcription factor regulates the expression of numerous critical mediators of tumor formation and metastatic progression. This review will examine the relative importance and function of this pathway in nonmalignant conditions as well as malignancies (including tumor intrinsic and extrinsic), the influence of other Stats, the development of inhibitors to this pathway, and the potential role of inhibitors in controlling or eradicating cancers. PMID:22355058

  20. The two faces of Janus kinases and their respective STATs in mammary gland development and cancer.

    PubMed

    Wagner, Kay-Uwe; Schmidt, Jeffrey W

    2011-01-01

    Since its discovery as "just another kinase" more than twenty years ago, the family of JAK tyrosine kinases and their respective Signal Transducers and Activators of Transcription (STATs) has been a center of attention in the areas of signal transduction, development, and cancer. The subsequent designation of JAKs as Janus kinases after the mythical two-faced Roman God of the doorways accurately portrays the analogous and sometimes contrasting molecular and biological characteristics of these tyrosine kinases. The two "faces" of JAKs are their structurally similar kinase and pseudo-kinase domains. As essential parts of various transmembrane receptor complexes, these tyrosine kinases function at cellular gateways and relay signals from growth factors to their respective intracellular targets. The multifaceted nature of JAKs becomes evident from their ability to activate specific STATs during distinct phases of normal mammary gland development. Studies in breast cancer cells and genetically engineered mouse models also show that JAK/STAT signaling possesses a "two-faced" role during breast cancer initiation and progression. This review will highlight recent findings about important biological functions of JAKs and STATs during normal mammogenesis, with particular emphasis on the Jak2/Stat5 pathway as well as Jak1/2/Stat3 signaling complexes. In addition, we will discuss how the importance of these signaling networks changes during carcinogenesis. With JAK inhibitors currently under development to treat myeloproliferative disorders, determining the essential functions of JAKs at particular stages of disease initiation and progression is of critical importance to predict the efficacy of these agents for targeted therapies against breast cancer.

  1. Comprehensive assay of kinase catalytic activity reveals features of kinase inhibitor selectivity

    PubMed Central

    Anastassiadis, Theonie; Deacon, Sean W.; Devarajan, Karthik; Ma, Haiching; Peterson, Jeffrey R.

    2011-01-01

    Small-molecule protein kinase inhibitors are central tools for elucidating cellular signaling pathways and are promising therapeutic agents. Due to evolutionary conservation of the ATP-binding site, most kinase inhibitors that target this site promiscuously inhibit multiple kinases. Interpretation of experiments utilizing these compounds is confounded by a lack of data on the comprehensive kinase selectivity of most inhibitors. Here we profiled the activity of 178 commercially available kinase inhibitors against a panel of 300 recombinant protein kinases using a functional assay. Quantitative analysis revealed complex and often unexpected kinase-inhibitor interactions, with a wide spectrum of promiscuity. Many off-target interactions occur with seemingly unrelated kinases, revealing how large-scale profiling can be used to identify multi-targeted inhibitors of specific, diverse kinases. The results have significant implications for drug development and provide a resource for selecting compounds to elucidate kinase function and for interpreting the results of experiments that use them. PMID:22037377

  2. Aggression behaviour induced by oral administration of the Janus-kinase inhibitor tofacitinib, but not oclacitinib, under stressful conditions.

    PubMed

    Fukuyama, Tomoki; Tschernig, Thomas; Qi, Yulin; Volmer, Dietrich A; Bäumer, Wolfgang

    2015-10-05

    Janus kinase (JAK) inhibitors have recently been developed for allergic diseases. We focused on the 2 different JAK inhibitors, tofacitinib (selective for JAK3) and oclacitinib (selective for JAK1 and 2), to clarify the mechanism of anti-inflammatory and anti-itching potency of these drugs. In the process of detecting anti-itching potency, we observed that tofacitinib treated mice showed aggression behaviour. The objective of the study reported here was to investigate the aggressive behaviour induced by tofacitinib by using a mouse model of allergic dermatitis and the resident-intruder test. For the allergic dermatitis model, female BALB/c mice were sensitised and challenged topically with toluene-2,4-diisocyanate (TDI). Vehicle, tofacitinib or oclacitinib, was administered orally 30 min before TDI challenge. Scratching, aggression and standing behaviours were monitored in the 60 min period immediately following challenge of TDI. Another group of male BALB/c mice treated with vehicle, tofacitinib or oclacitinib was evaluated in the resident-intruder test and brains were obtained to determine blood brain barrier penetration. In the allergic dermatitis model, a significant increase in aggression and standing behaviour was only obvious in the tofacitinib treatment group. There was no effect in non-sensitised mice, but similar aggression was also induced by tofacitinib in male resident-intruder test. Penetration of blood-brain barrier was observed both in tofacitinib and oclacitinib treated mice. These results suggest that aggression was induced by tofacitinib under some kind of stressful environment. This study indicates a possible role of the JAK-STAT pathway in modulation of aggression behaviour. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. The two faces of Janus kinases and their respective STATs in mammary gland development and cancer

    PubMed Central

    Wagner, Kay-Uwe; Schmidt, Jeffrey W.

    2011-01-01

    Since its discovery as “just another kinase” more than twenty years ago, the family of JAK tyrosine kinases and their respective Signal Transducers and Activators of Transcription (STATs) has been a center of attention in the areas of signal transduction, development, and cancer. The subsequent designation of JAKs as Janus kinases after the mythical two-faced Roman God of the doorways accurately portrays the analogous and sometimes contrasting molecular and biological characteristics of these tyrosine kinases. The two “faces” of JAKs are their structurally similar kinase and pseudo-kinase domains. As essential parts of various transmembrane receptor complexes, these tyrosine kinases function at cellular gateways and relay signals from growth factors to their respective intracellular targets. The multifaceted nature of JAKs becomes evident from their ability to activate specific STATs during distinct phases of normal mammary gland development. Studies in breast cancer cells and genetically engineered mouse models also show that JAK/STAT signaling possesses a "two-faced" role during breast cancer initiation and progression. This review will highlight recent findings about important biological functions of JAKs and STATs during normal mammogenesis, with particular emphasis on the Jak2/Stat5 pathway as well as Jak1/2/Stat3 signaling complexes. In addition, we will discuss how the importance of these signaling networks changes during carcinogenesis. With JAK inhibitors currently under development to treat myeloproliferative disorders, determining the essential functions of JAKs at particular stages of disease initiation and progression is of critical importance to predict the efficacy of these agents for targeted therapies against breast cancer. PMID:22279417

  4. Cardiovascular Safety of Biologics and JAK Inhibitors in Patients with Rheumatoid Arthritis.

    PubMed

    Kang, Eun Ha; Liao, Katherine P; Kim, Seoyoung C

    2018-05-30

    Increased cardiovascular (CV) risk and associated mortality in rheumatoid arthritis (RA) are not fully explained by traditional CV risk factors. This review discusses the epidemiology and mechanisms of increased CV risk in RA and treatment effects on CV risk focusing on biologic disease-modifying anti-rheumatic drugs (DMARDs) and JAK inhibitors. Intermediary metabolic changes by inflammatory cytokines are observed in body composition, lipid profile, and insulin sensitivity of RA patients, leading to accelerated atherosclerosis and increased CV risk. Successful treatment with DMARDs has shown beneficial effects on these metabolic changes and ultimately CV outcomes, in proportion to the treatment efficacy in general but also with drug-specific mechanisms. Recent data provide further information on comparative CV safety between biologic DMARDs or JAK inhibitors as well as their safety signals for non-atherosclerotic CV events. CV benefits or safety signals associated with DMARD treatments can differ despite similar drug efficacy against RA, suggesting that both anti-inflammatory and drug-specific mechanisms are involved in altering CV risk.

  5. Hierarchy of protein tyrosine kinases in interleukin-2 (IL-2) signaling: activation of syk depends on Jak3; however, neither Syk nor Lck is required for IL-2-mediated STAT activation.

    PubMed

    Zhou, Y J; Magnuson, K S; Cheng, T P; Gadina, M; Frucht, D M; Galon, J; Candotti, F; Geahlen, R L; Changelian, P S; O'Shea, J J

    2000-06-01

    Interleukin-2 (IL-2) activates several different families of tyrosine kinases, but precisely how these kinases interact is not completely understood. We therefore investigated the functional relationships among Jak3, Lck, and Syk in IL-2 signaling. We first observed that in the absence of Jak3, both Lck and Syk had the capacity to phosphorylate Stat3 and Stat5a. However, neither supported IL-2-induced STAT activation, nor did dominant negative alleles of these kinases inhibit. Moreover, pharmacological abrogation of Lck activity did not inhibit IL-2-mediated phosphorylation of Jak3 and Stat5a. Importantly, ligand-dependent Syk activation was dependent on the presence of catalytically active Jak3, whereas Lck activation was not. Interestingly, Syk functioned as a direct substrate of Jak1 but not Jak3. Additionally, Jak3 phosphorylated Jak1, whereas the reverse was not the case. Taken together, our data support a model in which Lck functions in parallel with Jak3, while Syk functions as a downstream element of Jaks in IL-2 signaling. Jak3 may regulate Syk catalytic activity indirectly via Jak1. However, IL-2-mediated Jak3/Stat activation is not dependent on Lck or Syk. While the essential roles of Jak1 and Jak3 in signaling by gammac-utilizing cytokines are clear, it will be important to dissect the exact contributions of Lck and Syk in mediating the effects of IL-2 and related cytokines.

  6. JAK family members: Molecular cloning, expression profiles and their roles in leptin influencing lipid metabolism in Synechogobius hasta.

    PubMed

    Wu, Kun; Tan, Xiao-Ying; Xu, Yi-Huan; Shi, Xi; Fan, Yao-Fang; Li, Dan-Dan; Liu, Xu

    2017-01-01

    Janus kinase (JAK) is a family of non-receptor tyrosine kinases that participate in transducing cytokine signals from the external environment to the nucleus in various biological processes. Currently, information about their genes structure and evolutionary history has been extensively studied in mammals as well as in several fish species. By contrast, limited reports have addressed potential role of diverse JAK in signaling responses to leptin in fish. In this study, we identified and characterized five JAK members of Synechogobius hasta. Compared to mammals, more members of the JAK family were found in S. hasta, which provided evidence that the JAK family members had arisen by the whole genome duplications during vertebrate evolution. For protein structure, all of these members possessed similar domains compared with those of mammals. Their mRNAs were expressed in a wide range of tissues, but at the different levels. Incubation in vitro of freshly isolated hepatocytes of S. hasta with different concentrations of recombinant human leptin decreased the intracellular triglyceride content and lipogenic genes expression, and increased mRNA expression of several JAK and lipolytic genes. AG490, a specific inhibitor of JAK, reversed leptin-induced effects on TG content and JAK2a, JAK2b, hormone-sensitive lipase (HSL2) and acetyl-CoA carboxylase (ACCa), indicating that the JAK2a/b may have mediated the actions of leptin on lipid metabolism at transcriptional level. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. CBL family E3 ubiquitin ligases control JAK2 ubiquitination and stability in hematopoietic stem cells and myeloid malignancies

    PubMed Central

    Lv, Kaosheng; Jiang, Jing; Donaghy, Ryan; Riling, Christopher R.; Cheng, Ying; Chandra, Vemika; Rozenova, Krasimira; An, Wei; Mohapatra, Bhopal C.; Goetz, Benjamin T.; Pillai, Vinodh; Han, Xu; Todd, Emily A.; Jeschke, Grace R.; Langdon, Wallace Y.; Kumar, Suresh; Hexner, Elizabeth O.

    2017-01-01

    Janus kinase 2 (JAK2) is a central kinase in hematopoietic stem/progenitor cells (HSPCs), and its uncontrolled activation is a prominent oncogenic driver of hematopoietic neoplasms. However, molecular mechanisms underlying the regulation of JAK2 have remained elusive. Here we report that the Casitas B-cell lymphoma (CBL) family E3 ubiquitin ligases down-regulate JAK2 stability and signaling via the adaptor protein LNK/SH2B3. We demonstrated that depletion of CBL/CBL-B or LNK abrogated JAK2 ubiquitination, extended JAK2 half-life, and enhanced JAK2 signaling and cell growth in human cell lines as well as primary murine HSPCs. Built on these findings, we showed that JAK inhibitor (JAKi) significantly reduced aberrant HSPCs and mitigated leukemia development in a mouse model of aggressive myeloid leukemia driven by loss of Cbl and Cbl-b. Importantly, primary human CBL mutated (CBLmut) leukemias exhibited increased JAK2 protein levels and signaling and were hypersensitive to JAKi. Loss-of-function mutations in CBL E3 ubiquitin ligases are found in a wide range of myeloid malignancies, which are diseases without effective treatment options. Hence, our studies reveal a novel signaling axis that regulates JAK2 in normal and malignant HSPCs and suggest new therapeutic strategies for treating CBLmut myeloid malignancies. PMID:28611190

  8. JAK2 aberrations in childhood B-cell precursor acute lymphoblastic leukemia

    PubMed Central

    de Goffau-Nobel, Willemieke; Hoogkamer, Alex Q.; Boer, Judith M.; Boeree, Aurélie; van de Ven, Cesca; Koudijs, Marco J.; Besselink, Nicolle J.M.; de Groot-Kruseman, Hester A.; Zwaan, Christian Michel; Horstmann, Martin A.; Pieters, Rob; den Boer, Monique L.

    2017-01-01

    JAK2 abnormalities may serve as target for precision medicines in pediatric B-cell precursor acute lymphoblastic leukemia (BCP-ALL). In the current study we performed a screening for JAK2 mutations and translocations, analyzed the clinical outcome and studied the efficacy of two JAK inhibitors in primary BCP-ALL cells. Importantly, we identify a number of limitations of JAK inhibitor therapy. JAK2 mutations mainly occurred in the poor prognostic subtypes BCR-ABL1-like and non- BCR-ABL1-like B-other (negative for sentinel cytogenetic lesions). JAK2 translocations were restricted to BCR-ABL1-like cases. Momelotinib and ruxolitinib were cytotoxic in both JAK2 translocated and JAK2 mutated cells, although efficacy in JAK2 mutated cells highly depended on cytokine receptor activation by TSLP. However, our data also suggest that the effect of JAK inhibition may be compromised by mutations in alternative survival pathways and microenvironment-induced resistance. Furthermore, inhibitors induced accumulation of phosphorylated JAK2Y1007, which resulted in a profound re-activation of JAK2 signaling upon release of the inhibitors. This preclinical evidence implies that further optimization and evaluation of JAK inhibitor treatment is necessary prior to its clinical integration in pediatric BCP-ALL. PMID:29163799

  9. Synergistic effect of pacritinib with erlotinib on JAK2-mediated resistance in epidermal gowth factor receptor mutation-positive non-small cell lung Cancer.

    PubMed

    Ochi, Nobuaki; Isozaki, Hideko; Takeyama, Masami; Singer, Jack W; Yamane, Hiromichi; Honda, Yoshihiro; Kiura, Katsuyuki; Takigawa, Nagio

    2016-06-10

    The combination effect of pacritinib, a novel JAK2/FLT3 inhibitor, with erlotinib, the epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI), on non-small cell lung cancer cells with EGFR activating mutations was investigated. The combination showed synergistic effects on JAK2-mediated EGFR TKI-resistant PC-9/ER3 cells in some cases. The combination markedly suppressed pAKT and pERK although pSTAT3 expression was similar regardless of treatment with the pacritinib, pacritinib + erlotinib, or control in PC-9/ER3 cells. Receptor tyrosine kinase array profiling demonstrated that pacritinib suppressed MET in the PC-9/ER3 cells. The combined treatment of pacritinib and erlotinib in PC-9/ER3 xenografts showed more tumor shrinkage compared with each drug as monotherapy. Western blotting revealed that pMET in tumor samples was inhibited. These results suggest MET suppression by pacritinib may play a role in overcoming the EGFR-TKI resistance mediated by JAK2 in the PC-9/ER3 cells. In conclusion, pacritinib combined with EGFR-TKI might be a potent strategy against JAK2-mediated EGFR-TKI resistance. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Managing side effects of JAK inhibitors for myelofibrosis in clinical practice.

    PubMed

    Saeed, Iram; McLornan, Donal; Harrison, Claire N

    2017-07-01

    Myelofibrosis (MF) is characterized by bone marrow fibrosis, abnormalities in peripheral counts, extramedullary hematopoiesis, splenomegaly and an increased risk of transformation to acute myeloid leukaemia. The disease course is often heterogeneous and management can range from observation alone through to allogeneic stem cell transplantation. As of 2017, the only approved medication for MF remains the JAK Inhibitor (JAKi), ruxolitinib (Novartis Pharmaceuticals, Basel, Switzerland; Incyte, Wilmington, Detroit, USA) although several others have reached advanced stages of clinical trials. Areas covered: In this review, we focus on the management of both common and uncommon side effects arising from the use of currently approved and clinical trial JAKi. Most of the discussion concerns ruxolitinib although we also cover both pacritinib (CTI BioPharma) and momelotinib (Gilead Sciences, Foster City, California) which have been in recent large, multinational phase III trials. The various approaches to management of JAKi-related side effects are discussed - with particular emphasis to anaemia, thrombocytopaenia and infection risk. Expert commentary: JAK inhibitors are effective in many individuals with MF and have revolutionized the current treatment paradigm. The side effect profile, in the most, is predictable and manageable with high degrees of clinical surveillance and dose modifications.

  11. p21-activated kinase inhibitors.

    PubMed

    Rudolph, Joachim; Crawford, James J; Hoeflich, Klaus P; Chernoff, Jonathan

    2013-01-01

    The p21-activated kinases (PAKs) are Ser/Thr kinases in the STE20 kinase family with important roles in regulating cytoskeletal organization, cell migration, and signaling. The PAK enzyme family comprises six members subdivided into two groups: Group I, represented by PAK1, 2, and 3, and Group II, represented by PAK 4, 5, and 6, based on sequence and structural homology. Individual PAK isoforms were found to be overexpressed and amplified in a variety of human cancers, and in vitro and in vivo studies using genetically engineered systems as well as small-molecule tool compounds have suggested therapeutic utility of PAKs as oncology targets. The identification of potent and kinome-selective ATP-competitive PAK inhibitors has proven challenging, likely caused by the openness and unique plasticity of the ATP-binding site of PAK enzymes. Progress in achieving increased kinase selectivity has been achieved with certain inhibitors but at the expense of increased molecular weight. Allosteric inhibitors, such as IPA-3, leverage the unique Group I PAK autoregulatory domain for selective inhibition, and this approach might provide an outlet to evade the kinase selectivity challenges observed with ATP-competitive PAK inhibitors. © 2013 Elsevier Inc. All rights reserved.

  12. JAK3 as an Emerging Target for Topical Treatment of Inflammatory Skin Diseases.

    PubMed

    Alves de Medeiros, Ana Karina; Speeckaert, Reinhart; Desmet, Eline; Van Gele, Mireille; De Schepper, Sofie; Lambert, Jo

    2016-01-01

    The recent interest and elucidation of the JAK/STAT signaling pathway created new targets for the treatment of inflammatory skin diseases (ISDs). JAK inhibitors in oral and topical formulations have shown beneficial results in psoriasis and alopecia areata. Patients suffering from other ISDs might also benefit from JAK inhibition. Given the development of specific JAK inhibitors, the expression patterns of JAKs in different ISDs needs to be clarified. We aimed to analyze the expression of JAK/STAT family members in a set of prevalent ISDs: psoriasis, lichen planus (LP), cutaneous lupus erythematosus (CLE), atopic dermatitis (AD), pyoderma gangrenosum (PG) and alopecia areata (AA) versus healthy controls for (p)JAK1, (p)JAK2, (p)JAK3, (p)TYK2, pSTAT1, pSTAT2 and pSTAT3. The epidermis carried in all ISDs, except for CLE, a strong JAK3 signature. The dermal infiltrate showed a more diverse expression pattern. JAK1, JAK2 and JAK3 were significantly overexpressed in PG and AD suggesting the need for pan-JAK inhibitors. In contrast, psoriasis and LP showed only JAK1 and JAK3 upregulation, while AA and CLE were characterized by a single dermal JAK signal (pJAK3 and pJAK1, respectively). This indicates that the latter diseases may benefit from more targeted JAK inhibitors. Our in vitro keratinocyte psoriasis model displayed reversal of the psoriatic JAK profile following tofacitinib treatment. This direct interaction with keratinocytes may decrease the need for deep skin penetration of topical JAK inhibitors in order to exert its effects on dermal immune cells. In conclusion, these results point to the important contribution of the JAK/STAT pathway in several ISDs. Considering the epidermal JAK3 expression levels, great interest should go to the investigation of topical JAK3 inhibitors as therapeutic option of ISDs.

  13. High mobility group box 1 induces the activation of the Janus kinase 2 and signal transducer and activator of transcription 3 (JAK2/STAT3) signaling pathway in pancreatic acinar cells in rats, while AG490 and rapamycin inhibit their activation.

    PubMed

    Wang, Guoliang; Zhang, Jingchao; Dui, Danhua; Ren, Haoyuan; Liu, Jin

    2016-11-10

    The pathogenesis of severe acute pancreatitis (SAP) remains unclear. The Janus kinase and signal transducer and activator of transcription (JAK/STAT) pathway is important for various cytokines and growth factors. This study investigated the effect of the late inflammatory factor high mobility group box 1 (HMGB1) on the activation of JAK2/STAT3 in pancreatic acinar cells and the inhibitory effects of AG490 (a JAK2 inhibitor) and rapamycin (a STAT3 inhibitor) on this pathway. Rat pancreatic acinar cells were randomly divided into the control, HMGB1, AG490, and rapamycin groups. The mRNA levels of JAK2 and STAT3 at 10, 30, 60, and 120 minutes were detected using reverse transcription polymerase chain reaction (RT-PCR). The protein levels of JAK2 and STAT3 at 60 and 120 minutes were observed using Western blotting. Compared with the control group, the HMGB1 group exhibited significantly increased levels of JAK2 mRNA at each time point; STAT3 mRNA at 30, 60, and 120 minutes; and JAK2 and STAT3 proteins at 60 and 120 minutes (p < 0.01). Compared with the HMGB1 group, the AG490 and rapamycin groups both exhibited significantly decreased levels of JAK2 mRNA at each time point (p < 0.05); STAT3 mRNA at 30, 60, and 120 minutes (p < 0.01); and JAK2 and STAT3 proteins at 60 and 120 minutes (p < 0.01). HMGB1 induces the activation of the JAK2/STAT3 signaling pathway in rat pancreatic acinar cells, and this activation can be inhibited by AG490 and rapamycin. The results of this study may provide new insights for the treatment of SAP.

  14. A phase 2 study of ruxolitinib, an oral JAK1 and JAK2 Inhibitor, in patients with advanced polycythemia vera who are refractory or intolerant to hydroxyurea.

    PubMed

    Verstovsek, Srdan; Passamonti, Francesco; Rambaldi, Alessandro; Barosi, Giovanni; Rosen, Peter J; Rumi, Elisa; Gattoni, Elisabetta; Pieri, Lisa; Guglielmelli, Paola; Elena, Chiara; He, Shui; Contel, Nancy; Mookerjee, Bijoyesh; Sandor, Victor; Cazzola, Mario; Kantarjian, Hagop M; Barbui, Tiziano; Vannucchi, Alessandro M

    2014-02-15

    Polycythemia vera (PV) is a myeloproliferative neoplasm associated with somatic gain-of-function mutations of Janus kinase-2 (JAK2). Therapeutic options are limited in patients with advanced disease. Ruxolitinib, an oral JAK1/JAK2 inhibitor, is active in preclinical models of PV. The long-term efficacy and safety of ruxolitinib in patients with advanced PV who are refractory or intolerant to hydroxyurea were studied in a phase 2 trial. Response was assessed using modified European LeukemiaNet criteria, which included a reduction in hematocrit to <45% without phlebotomy, resolution of palpable splenomegaly, normalization of white blood cell and platelet counts, and reduction in PV-associated symptoms. Thirty-four patients received ruxolitinib for a median of 152 weeks (range, 31 weeks-177 weeks) or 35.0 months (range, 7.1 months-40.7 months). Hematocrit <45% without phlebotomy was achieved in 97% of patients by week 24.Only 1 patient required a phlebotomy after week 4. Among patients with palpable splenomegaly at baseline, 44% and 63%, respectively, achieved nonpalpable spleen measurements at weeks 24 and 144. Clinically meaningful improvements in pruritus, night sweats, and bone pain were observed within 4 weeks of the initiation of therapy and maintained with continued treatment. Ruxolitinib treatment also reduced elevated levels of inflammatory cytokines and granulocyte activation. Thrombocytopenia and anemia were the most common adverse events.Thrombocytopenia of grade 3 or anemia of grade 3 (according to National Cancer Institute Common Terminology Criteria for Adverse Events,version 3.0) occurred in 3 patients each (9%) (1 patient had both) and were managed with dose modification. Ruxolitinib was generally well tolerated and provided rapid and durable clinical benefits in patients with advanced PV who were refractory or intolerant to hydroxyurea.

  15. Kinase activation through dimerization by human SH2-B.

    PubMed

    Nishi, Masahiro; Werner, Eric D; Oh, Byung-Chul; Frantz, J Daniel; Dhe-Paganon, Sirano; Hansen, Lone; Lee, Jongsoon; Shoelson, Steven E

    2005-04-01

    The isoforms of SH2-B, APS, and Lnk form a family of signaling proteins that have been described as activators, mediators, or inhibitors of cytokine and growth factor signaling. We now show that the three alternatively spliced isoforms of human SH2-B readily homodimerize in yeast two-hybrid and cellular transfections assays, and this is mediated specifically by a unique domain in its amino terminus. Consistent with previous reports, we further show that the SH2 domains of SH2-B and APS bind JAK2 at Tyr813. These findings suggested a model in which two molecules of SH2-B or APS homodimerize with their SH2 domains bound to two JAK2 molecules, creating heterotetrameric JAK2-(SH2-B)2-JAK2 or JAK2-(APS)2-JAK2 complexes. We further show that APS and SH2-B isoforms heterodimerize. At lower levels of SH2-B or APS expression, dimerization approximates two JAK2 molecules to induce transactivation. At higher relative concentrations of SH2-B or APS, kinase activation is blocked. SH2-B or APS homodimerization and SH2-B/APS heterodimerization thus provide direct mechanisms for activating and inhibiting JAK2 and other kinases from the inside of the cell and for potentiating or attenuating cytokine and growth factor receptor signaling when ligands are present.

  16. Pharmacokinetics and Pharmacokinetic/Pharmacodynamic Modeling of Filgotinib (GLPG0634), a Selective JAK1 Inhibitor, in Support of Phase IIB Dose Selection.

    PubMed

    Namour, Florence; Diderichsen, Paul Matthias; Cox, Eugène; Vayssière, Béatrice; Van der Aa, Annegret; Tasset, Chantal; Van't Klooster, Gerben

    2015-08-01

    Filgotinib (GLPG0634) is a selective inhibitor of Janus kinase 1 (JAK1) currently in development for the treatment of rheumatoid arthritis and Crohn's disease. While less selective JAK inhibitors have shown long-term efficacy in treating inflammatory conditions, this was accompanied by dose-limiting side effects. Here, we describe the pharmacokinetics of filgotinib and its active metabolite in healthy volunteers and the use of pharmacokinetic-pharmacodynamic modeling and simulation to support dose selection for phase IIB in patients with rheumatoid arthritis. Two trials were conducted in healthy male volunteers. In the first trial, filgotinib was administered as single doses from 10 mg up to multiple daily doses of 200 mg. In the second trial, daily doses of 300 and 450 mg for 10 days were evaluated. Non-compartmental analysis was used to determine individual pharmacokinetic parameters for filgotinib and its metabolite. The overall pharmacodynamic activity for the two moieties was assessed in whole blood using interleukin-6-induced phosphorylation of signal-transducer and activator of transcription 1 as a biomarker for JAK1 activity. These data were used to conduct non-linear mixed-effects modeling to investigate a pharmacokinetic/pharmacodynamic relationship. Modeling and simulation on the basis of early clinical data suggest that the pharmacokinetics of filgotinib are dose proportional up to 200 mg, in agreement with observed data, and support that both filgotinib and its metabolite contribute to its pharmacodynamic effects. Simulation of biomarker response supports that the maximum pharmacodynamic effect is reached at a daily dose of 200 mg filgotinib. Based on these results, a daily dose range up to 200 mg has been selected for phase IIB dose-finding studies in patients with rheumatoid arthritis.

  17. Desensitization of the growth hormone-induced Janus kinase 2 (Jak 2)/signal transducer and activator of transcription 5 (Stat5)-signaling pathway requires protein synthesis and phospholipase C.

    PubMed

    Fernández, L; Flores-Morales, A; Lahuna, O; Sliva, D; Norstedt, G; Haldosén, L A; Mode, A; Gustafsson, J A

    1998-04-01

    Signal transducers and activators of transcription (Stat) proteins are latent cytoplasmic transcription factors that are tyrosine phosphorylated by Janus kinases (Jak) in response to GH and other cytokines. GH activates Stat5 by a mechanism that involves tyrosine phosphorylation and nuclear translocation. However, the mechanisms that turn off the GH-activated Jak2/Stat5 pathway are unknown. Continuous exposure to GH of BRL-4 cells, a rat hepatoma cell line stably transfected with rat GH receptor, induces a rapid but transient activation of Jak2 and Stat5. GH-induced Stat5 DNA-binding activity was detected after 2 min and reached a maximum at 10 min. Continued exposure to GH resulted in a desensitization characterized by 1) a rapid decrease in Stat5 DNA-binding activity. The rate of decrease of activity was rapid up to 1 h of GH treatment, and the remaining activity declined slowly thereafter. The activity of Stat5 present after 5 h is still higher than the control levels and almost 10-20% with respect to maximal activity at 10 min; and 2) the inability of further GH treatment to reinduce activation of Stat5. In contrast, with transient exposures of BRL-4 cells to GH, Stat5 DNA-binding activity could repeatedly be induced. GH-induced Jak2 and Stat5 activities were independent of ongoing protein synthesis. However, Jak2 tyrosine phosphorylation and Stat5 DNA-binding activity were prolonged for at least 4 h in the presence of cycloheximide, which suggests that the maintenance of desensitization requires ongoing protein synthesis. Furthermore, inhibition of protein synthesis potentiated GH-induced transcriptional activity in BRL-4 cells transiently transfected with SPIGLE1CAT, a reporter plasmid activated by Stat5. GH-induced Jak2 and Stat5 activation were not affected by D609 or mepacrine, both inhibitors of phospholipase C. However, in the presence of D609 and mepacrine, GH maintained prolonged Jak2 and Stat5 activation. Transactivation of SPIGLE1 by GH was

  18. Tyrosine phosphorylation of Jak2 in the JH2 domain inhibits cytokine signaling.

    PubMed

    Feener, Edward P; Rosario, Felicia; Dunn, Sarah L; Stancheva, Zlatina; Myers, Martin G

    2004-06-01

    Jak family tyrosine kinases mediate signaling by cytokine receptors to regulate diverse biological processes. Although Jak2 and other Jak kinase family members are phosphorylated on numerous sites during cytokine signaling, the identity and function of most of these sites remains unknown. Using tandem mass spectroscopic analysis of activated Jak2 protein from intact cells, we identified Tyr(221) and Tyr(570) as novel sites of Jak2 phosphorylation. Phosphorylation of both sites was stimulated by cytokine treatment of cultured cells, and this stimulation required Jak2 kinase activity. While we observed no gross alteration of signaling upon mutation of Tyr(221), Tyr(570) lies within the inhibitory JH2 domain of Jak2, and mutation of this site (Jak2(Y570F)) results in constitutive Jak2-dependent signaling in the absence of cytokine stimulation and enhances and prolongs Jak2 activation during cytokine stimulation. Mutation of Tyr(570) does not alter the ability of SOCS3 to bind or inhibit Jak2, however. Thus, the phosphorylation of Tyr(570) in vivo inhibits Jak2-dependent signaling independently of SOCS3-mediated inhibition. This Tyr(570)-dependent mechanism of Jak2 inhibition likely represents an important mechanism by which cytokine function is regulated.

  19. Autophosphorylation of JAK2 on tyrosines 221 and 570 regulates its activity.

    PubMed

    Argetsinger, Lawrence S; Kouadio, Jean-Louis K; Steen, Hanno; Stensballe, Allan; Jensen, Ole N; Carter-Su, Christin

    2004-06-01

    The tyrosine kinase JAK2 is a key signaling protein for at least 20 receptors in the cytokine/hematopoietin receptor superfamily and is a component of signaling by insulin receptor and several G-protein-coupled receptors. However, there is only limited knowledge of the physical structure of JAK2 or which of the 49 tyrosines in JAK2 are autophosphorylated. In this study, mass spectrometry and two-dimensional peptide mapping were used to determine that tyrosines 221, 570, and 1007 in JAK2 are autophosphorylated. Phosphorylation of tyrosine 570 is particularly robust. In response to growth hormone, JAK2 was rapidly and transiently phosphorylated at tyrosines 221 and 570, returning to basal levels by 60 min. Analysis of the sequences surrounding tyrosines 221 and 570 in JAK2 and tyrosines in other proteins that are phosphorylated in response to ligands that activate JAK2 suggests that the YXX[L/I/V] motif is one of the motifs recognized by JAK2. Experiments using JAK2 with tyrosines 221 and 570 mutated to phenylalanine suggest that tyrosines 221 and 570 in JAK2 may serve as regulatory sites in JAK2, with phosphorylation of tyrosine 221 increasing kinase activity and phosphorylation of tyrosine 570 decreasing kinase activity and thereby contributing to rapid termination of ligand activation of JAK2.

  20. Autophosphorylation of JAK2 on Tyrosines 221 and 570 Regulates Its Activity

    PubMed Central

    Argetsinger, Lawrence S.; Kouadio, Jean-Louis K.; Steen, Hanno; Stensballe, Allan; Jensen, Ole N.; Carter-Su, Christin

    2004-01-01

    The tyrosine kinase JAK2 is a key signaling protein for at least 20 receptors in the cytokine/hematopoietin receptor superfamily and is a component of signaling by insulin receptor and several G-protein-coupled receptors. However, there is only limited knowledge of the physical structure of JAK2 or which of the 49 tyrosines in JAK2 are autophosphorylated. In this study, mass spectrometry and two-dimensional peptide mapping were used to determine that tyrosines 221, 570, and 1007 in JAK2 are autophosphorylated. Phosphorylation of tyrosine 570 is particularly robust. In response to growth hormone, JAK2 was rapidly and transiently phosphorylated at tyrosines 221 and 570, returning to basal levels by 60 min. Analysis of the sequences surrounding tyrosines 221 and 570 in JAK2 and tyrosines in other proteins that are phosphorylated in response to ligands that activate JAK2 suggests that the YXX[L/I/V] motif is one of the motifs recognized by JAK2. Experiments using JAK2 with tyrosines 221 and 570 mutated to phenylalanine suggest that tyrosines 221 and 570 in JAK2 may serve as regulatory sites in JAK2, with phosphorylation of tyrosine 221 increasing kinase activity and phosphorylation of tyrosine 570 decreasing kinase activity and thereby contributing to rapid termination of ligand activation of JAK2. PMID:15143187

  1. Brain penetrant kinase inhibitors: Learning from kinase neuroscience discovery.

    PubMed

    Shi, Yuan; Mader, Mary

    2018-06-15

    A recent review of kinase inhibitors in clinical trials for brain cancer noted differences in the properties of these compounds relative to the mean property parameters associated with drugs marketed for CNS-associated conditions. However, many of these kinase drugs arose from opportunistic observations of brain activity, rather than design or flow schemes focused on optimizing CNS penetration. Thus, this digest examines kinase inhibitors that have been developed specifically for neurodegenerative indications such as Alzheimer's or Parkinson's disease, and considers design, flow scheme, and the physicochemical properties associated with compounds that have demonstrated brain penetrance. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. A screen for kinase inhibitors identifies antimicrobial imidazopyridine aminofurazans as specific inhibitors of the Listeria monocytogenes PASTA kinase PrkA

    PubMed Central

    Schaenzer, Adam J.; Wlodarchak, Nathan; Drewry, David H.; Zuercher, William J.; Rose, Warren E.; Striker, Rob; Sauer, John-Demian

    2017-01-01

    Bacterial signaling systems such as protein kinases and quorum sensing have become increasingly attractive targets for the development of novel antimicrobial agents in a time of rising antibiotic resistance. The family of bacterial Penicillin-binding-protein And Serine/Threonine kinase-Associated (PASTA) kinases is of particular interest due to the role of these kinases in regulating resistance to β-lactam antibiotics. As such, small-molecule kinase inhibitors that target PASTA kinases may prove beneficial as treatments adjunctive to β-lactam therapy. Despite this interest, only limited progress has been made in identifying functional inhibitors of the PASTA kinases that have both activity against the intact microbe and high kinase specificity. Here, we report the results of a small-molecule screen that identified GSK690693, an imidazopyridine aminofurazan-type kinase inhibitor that increases the sensitivity of the intracellular pathogen Listeria monocytogenes to various β-lactams by inhibiting the PASTA kinase PrkA. GSK690693 potently inhibited PrkA kinase activity biochemically and exhibited significant selectivity for PrkA relative to the Staphylococcus aureus PASTA kinase Stk1. Furthermore, other imidazopyridine aminofurazans could effectively inhibit PrkA and potentiate β-lactam antibiotic activity to varying degrees. The presence of the 2-methyl-3-butyn-2-ol (alkynol) moiety was important for both biochemical and antimicrobial activity. Finally, mutagenesis studies demonstrated residues in the back pocket of the active site are important for GSK690693 selectivity. These data suggest that targeted screens can successfully identify PASTA kinase inhibitors with both biochemical and antimicrobial specificity. Moreover, the imidazopyridine aminofurazans represent a family of PASTA kinase inhibitors that have the potential to be optimized for selective PASTA kinase inhibition. PMID:28821610

  3. A screen for kinase inhibitors identifies antimicrobial imidazopyridine aminofurazans as specific inhibitors of the Listeria monocytogenes PASTA kinase PrkA.

    PubMed

    Schaenzer, Adam J; Wlodarchak, Nathan; Drewry, David H; Zuercher, William J; Rose, Warren E; Striker, Rob; Sauer, John-Demian

    2017-10-13

    Bacterial signaling systems such as protein kinases and quorum sensing have become increasingly attractive targets for the development of novel antimicrobial agents in a time of rising antibiotic resistance. The family of bacterial P enicillin-binding-protein A nd S erine/ T hreonine kinase- A ssociated (PASTA) kinases is of particular interest due to the role of these kinases in regulating resistance to β-lactam antibiotics. As such, small-molecule kinase inhibitors that target PASTA kinases may prove beneficial as treatments adjunctive to β-lactam therapy. Despite this interest, only limited progress has been made in identifying functional inhibitors of the PASTA kinases that have both activity against the intact microbe and high kinase specificity. Here, we report the results of a small-molecule screen that identified GSK690693, an imidazopyridine aminofurazan-type kinase inhibitor that increases the sensitivity of the intracellular pathogen Listeria monocytogenes to various β-lactams by inhibiting the PASTA kinase PrkA. GSK690693 potently inhibited PrkA kinase activity biochemically and exhibited significant selectivity for PrkA relative to the Staphylococcus aureus PASTA kinase Stk1. Furthermore, other imidazopyridine aminofurazans could effectively inhibit PrkA and potentiate β-lactam antibiotic activity to varying degrees. The presence of the 2-methyl-3-butyn-2-ol (alkynol) moiety was important for both biochemical and antimicrobial activity. Finally, mutagenesis studies demonstrated residues in the back pocket of the active site are important for GSK690693 selectivity. These data suggest that targeted screens can successfully identify PASTA kinase inhibitors with both biochemical and antimicrobial specificity. Moreover, the imidazopyridine aminofurazans represent a family of PASTA kinase inhibitors that have the potential to be optimized for selective PASTA kinase inhibition.

  4. The discovery of tricyclic pyridone JAK2 inhibitors. Part 1: hit to lead.

    PubMed

    Siu, Tony; Kozina, Ekaterina S; Jung, Joon; Rosenstein, Craig; Mathur, Anjili; Altman, Michael D; Chan, Grace; Xu, Lin; Bachman, Eric; Mo, Jan-Rung; Bouthillette, Melaney; Rush, Thomas; Dinsmore, Christopher J; Marshall, C Gary; Young, Jonathan R

    2010-12-15

    This paper describes the discovery and design of a novel class of JAK2 inhibitors. Furthermore, we detail the optimization of a screening hit using ligand binding efficiency and log D. These efforts led to the identification of compound 41, which demonstrates in vivo activity in our study. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Trichostatin A, a histone deacetylase inhibitor, suppresses JAK2/STAT3 signaling via inducing the promoter-associated histone acetylation of SOCS1 and SOCS3 in human colorectal cancer cells.

    PubMed

    Xiong, Hua; Du, Wan; Zhang, Yan-Jie; Hong, Jie; Su, Wen-Yu; Tang, Jie-Ting; Wang, Ying-Chao; Lu, Rong; Fang, Jing-Yuan

    2012-02-01

    Aberrant janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling is involved in the oncogenesis of several cancers. Suppressors of cytokine signaling (SOCS) genes and SH2-containing protein tyrosine phosphatase 1 (SHP1) proteins, which are negative regulators of JAK/STAT signaling, have been reported to have tumor suppressor functions. However, in colorectal cancer (CRC) cells, the mechanisms that regulate SOCS and SHP1 genes, and the cause of abnormalities in the JAK/STAT signaling pathway, remain largely unknown. The present study shows that trichostatin A (TSA), a histone deacetylase (HDAC) inhibitor, leads to the hyperacetylation of histones associated with the SOCS1 and SOCS3 promoters, but not the SHP1 promoter in CRC cells. This indicates that histone modifications are involved in the regulation of SOCS1 and SOCS3. Moreover, upregulation of SOCS1 and SOCS3 expression was achieved using TSA, which also significantly downregulated JAK2/STAT3 signaling in CRC cells. We also demonstrate that TSA suppresses the growth of CRC cells, and induces G1 cell cycle arrest and apoptosis through the regulation of downstream targets of JAK2/STAT3 signaling, including Bcl-2, survivin and p16(ink4a) . Therefore, our data demonstrate that TSA may induce SOCS1 and SOCS3 expression by inducing histone modifications and consequently inhibits JAK2/STAT3 signaling in CRC cells. These results also establish a mechanistic link between the inhibition of JAK2/STAT3 signaling and the anticancer action of TSA in CRC cells. Copyright © 2011 Wiley Periodicals, Inc.

  6. Skin problems and EGFR-tyrosine kinase inhibitor

    PubMed Central

    Kozuki, Toshiyuki

    2016-01-01

    Epidermal growth factor receptor inhibition is a good target for the treatment of lung, colon, pancreatic and head and neck cancers. Epidermal growth factor receptor-tyrosine kinase inhibitor was first approved for the treatment of advanced lung cancer in 2002. Epidermal growth factor receptor-tyrosine kinase inhibitor plays an essential role in the treatment of cancer, especially for patients harbouring epidermal growth factor receptor activating mutation. Hence, skin toxicity is the most concerning issue for the epidermal growth factor receptor-tyrosine kinase inhibitor treatment. Skin toxicity is bothersome and sometimes affects the quality of life and treatment compliance. Thus, it is important for physicians to understand the background and how to manage epidermal growth factor receptor-tyrosine kinase inhibitor-associated skin toxicity. Here, the author reviewed the mechanism and upfront preventive and reactive treatments for epidermal growth factor receptor inhibitor-associated skin toxicities. PMID:26826719

  7. CXCL12/CXCR4 pathway is activated by oncogenic JAK2 in a PI3K-dependent manner

    PubMed Central

    Abdelouahab, Hadjer; Zhang, Yanyan; Wittner, Monika; Oishi, Shinya; Fujii, Nobutaka; Besancenot, Rodolphe; Plo, Isabelle; Ribrag, Vincent; Solary, Eric; Vainchenker, William; Barosi, Giovanni; Louache, Fawzia

    2017-01-01

    JAK2 activation is the driver mechanism in BCR-ABL-negative myeloproliferative neoplasms (MPN). These diseases are characterized by an abnormal retention of hematopoietic stem cells within the bone marrow microenvironment and their increased trafficking to extramedullary sites. The CXCL12/CXCR4 axis plays a central role in hematopoietic stem cell/ progenitor trafficking and retention in hematopoietic sites. The present study explores the crosstalk between JAK2 and CXCL12/CXCR4 signaling pathways in MPN. We show that JAK2, activated by either MPL-W515L expression or cytokine stimulation, cooperates with CXCL12/CXCR4 signaling to increase the chemotactic response of human cell lines and primary CD34+ cells through an increased phosphatidylinositol-3-kinase (PI3K) signaling. Accordingly, primary myelofibrosis (MF) patient cells demonstrate an increased CXCL12-induced chemotaxis when compared to controls. JAK2 inhibition by knock down or chemical inhibitors decreases this effect in MPL-W515L expressing cell lines and reduces the CXCL12/CXCR4 signaling in some patient primary cells. Taken together, these data indicate that CXCL12/CXCR4 pathway is overactivated in MF patients by oncogenic JAK2 that maintains high PI3K signaling over the threshold required for CXCR4 activation. These results suggest that inhibition of this crosstalk may contribute to the therapeutic effects of JAK2 inhibitors. PMID:28903325

  8. Activation of the protein tyrosine phosphatase SHP2 via the interleukin-6 signal transducing receptor protein gp130 requires tyrosine kinase Jak1 and limits acute-phase protein expression.

    PubMed

    Schaper, F; Gendo, C; Eck, M; Schmitz, J; Grimm, C; Anhuf, D; Kerr, I M; Heinrich, P C

    1998-11-01

    Stimulation of the interleukin-6 (IL-6) signalling pathway occurs via the IL-6 receptor-glycoprotein 130 (IL-6R-gp130) receptor complex and results in the regulation of acute-phase protein genes in liver cells. Ligand binding to the receptor complex leads to tyrosine phosphorylation and activation of Janus kinases (Jak), phosphorylation of the signal transducing subunit gp130, followed by recruitment and phosphorylation of the signal transducer and activator of transcription factors STAT3 and STAT1 and the src homology domain (SH2)-containing protein tyrosine phosphatase (SHP2). The tyrosine phosphorylated STAT factors dissociate from the receptor, dimerize and translocate to the nucleus where they bind to enhancer sequences of IL-6 target genes. Phosphorylated SHP2 is able to bind growth factor receptor bound protein (grb2) and thus might link the Jak/STAT pathway to the ras/raf/mitogen-activated protein kinase pathway. Here we present data on the dose-dependence, kinetics and kinase requirements for SHP2 phosphorylation after the activation of the signal transducer, gp130, of the IL-6-type family receptor complex. When human fibrosarcoma cell lines deficient in Jak1, Jak2 or tyrosine kinase 2 (Tyk2) were stimulated with IL-6-soluble IL-6R complexes it was found that only in Jak1-, but not in Jak 2- or Tyk2-deficient cells, SHP2 activation was greatly impaired. It is concluded that Jak1 is required for the tyrosine phosphorylation of SHP2. This phosphorylation depends on Tyr-759 in the cytoplasmatic domain of gp130, since a Tyr-759-->Phe exchange abrogates SHP2 activation and in turn leads to elevated and prolonged STAT3 and STAT1 activation as well as enhanced acute-phase protein gene induction. Therefore, SHP2 plays an important role in acute-phase gene regulation.

  9. Skin problems and EGFR-tyrosine kinase inhibitor.

    PubMed

    Kozuki, Toshiyuki

    2016-04-01

    Epidermal growth factor receptor inhibition is a good target for the treatment of lung, colon, pancreatic and head and neck cancers. Epidermal growth factor receptor-tyrosine kinase inhibitor was first approved for the treatment of advanced lung cancer in 2002. Epidermal growth factor receptor-tyrosine kinase inhibitor plays an essential role in the treatment of cancer, especially for patients harbouring epidermal growth factor receptor activating mutation. Hence, skin toxicity is the most concerning issue for the epidermal growth factor receptor-tyrosine kinase inhibitor treatment. Skin toxicity is bothersome and sometimes affects the quality of life and treatment compliance. Thus, it is important for physicians to understand the background and how to manage epidermal growth factor receptor-tyrosine kinase inhibitor-associated skin toxicity. Here, the author reviewed the mechanism and upfront preventive and reactive treatments for epidermal growth factor receptor inhibitor-associated skin toxicities. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. The dual Syk/JAK inhibitor cerdulatinib antagonises B-cell receptor and microenvironmental signaling in chronic lymphocytic leukemia

    PubMed Central

    Blunt, Matthew D; Koehrer, Stefan; Dobson, Rachel; Larrayoz, Marta; Wilmore, Sarah; Hayman, Alice; Parnell, Jack; Smith, Lindsay; Davies, Andrew; Johnson, Peter W; Conley, Pamela B; Pandey, Anjali; Strefford, Jon C; Stevenson, Freda K; Packham, Graham; Forconi, Francesco; Coffey, Greg; Burger, Jan A; Steele, Andrew J

    2017-01-01

    Purpose B-cell receptor (BCR)-associated kinase inhibitors such as ibrutinib have revolutionised the treatment of chronic lymphocytic leukemia (CLL). However, these agents are not curative and resistance is already emerging in a proportion of patients. Interleukin-4 (IL-4), expressed in CLL lymph nodes, can augment BCR-signalling and reduce the effectiveness of BCR-kinase inhibitors. Therefore simultaneous targeting of the IL-4- and BCR-signalling pathways by cerdulatinib, a novel dual Syk/JAK inhibitor currently in clinical trials (NCT01994382), may improve treatment responses in patients. Experimental Design PBMCs from CLL patients were treated with cerdulatinib alone or in combination with venetoclax. Cell death, chemokine and cell signalling assay were performed and analysed by flow cytometry, immunoblotting, Q-PCR and ELISA as indicated. Results At concentrations achievable in patients, cerdulatinib inhibited BCR- and IL-4-induced downstream signalling in CLL cells using multiple read-outs and prevented anti-IgM- and nurse-like cell (NLC)-mediated CCL3/CCL4 production. Cerdulatinib induced apoptosis of CLL cells, in a time- and concentration-dependent manner, and particularly in IGHV unmutated samples with greater BCR-signalling capacity and response to IL-4, or samples expressing higher levels of sIgM, CD49d+ or ZAP70+. Cerdulatinib overcame anti-IgM, IL-4/CD40L or NLC-mediated protection by preventing upregulation of MCL-1- and BCL-XL, however BCL-2 expression was unaffected. Furthermore in samples treated with IL-4/CD40L, cerdulatinib synergised with venetoclax in vitro to induce greater apoptosis than either drug alone. Conclusion Cerdulatinib is a promising therapeutic for the treatment of CLL either alone or in combination with venetoclax, with the potential to target critical survival pathways in this currently incurable disease. PMID:27697994

  11. Preclinical characterization of the selective JAK1/2 inhibitor INCB018424: therapeutic implications for the treatment of myeloproliferative neoplasms

    PubMed Central

    Quintás-Cardama, Alfonso; Vaddi, Kris; Liu, Phillip; Manshouri, Taghi; Li, Jun; Scherle, Peggy A.; Caulder, Eian; Wen, Xiaoming; Li, Yanlong; Waeltz, Paul; Rupar, Mark; Burn, Timothy; Lo, Yvonne; Kelley, Jennifer; Covington, Maryanne; Shepard, Stacey; Rodgers, James D.; Haley, Patrick; Kantarjian, Hagop

    2010-01-01

    Constitutive JAK2 activation in hematopoietic cells by the JAK2V617F mutation recapitulates myeloproliferative neoplasm (MPN) phenotypes in mice, establishing JAK2 inhibition as a potential therapeutic strategy. Although most polycythemia vera patients carry the JAK2V617F mutation, half of those with essential thrombocythemia or primary myelofibrosis do not, suggesting alternative mechanisms for constitutive JAK-STAT signaling in MPNs. Most patients with primary myelofibrosis have elevated levels of JAK-dependent proinflammatory cytokines (eg, interleukin-6) consistent with our observation of JAK1 hyperactivation. Accordingly, we evaluated the effectiveness of selective JAK1/2 inhibition in experimental models relevant to MPNs and report on the effects of INCB018424, the first potent, selective, oral JAK1/JAK2 inhibitor to enter the clinic. INCB018424 inhibited interleukin-6 signaling (50% inhibitory concentration [IC50] = 281nM), and proliferation of JAK2V617F+ Ba/F3 cells (IC50 = 127nM). In primary cultures, INCB018424 preferentially suppressed erythroid progenitor colony formation from JAK2V617F+ polycythemia vera patients (IC50 = 67nM) versus healthy donors (IC50 > 400nM). In a mouse model of JAK2V617F+ MPN, oral INCB018424 markedly reduced splenomegaly and circulating levels of inflammatory cytokines, and preferentially eliminated neoplastic cells, resulting in significantly prolonged survival without myelosuppressive or immunosuppressive effects. Preliminary clinical results support these preclinical data and establish INCB018424 as a promising oral agent for the treatment of MPNs. PMID:20130243

  12. The Pim kinases: new targets for drug development.

    PubMed

    Swords, Ronan; Kelly, Kevin; Carew, Jennifer; Nawrocki, Stefan; Mahalingam, Devalingam; Sarantopoulos, John; Bearss, David; Giles, Francis

    2011-12-01

    The three Pim kinases are a small family of serine/threonine kinases regulating several signaling pathways that are fundamental to cancer development and progression. They were first recognized as pro-viral integration sites for the Moloney Murine Leukemia virus. Unlike other kinases, they possess a hinge region which creates a unique binding pocket for ATP. Absence of a regulatory domain means that these proteins are constitutively active once transcribed. Pim kinases are critical downstream effectors of the ABL (ableson), JAK2 (janus kinase 2), and Flt-3 (FMS related tyrosine kinase 1) oncogenes and are required by them to drive tumorigenesis. Recent investigations have established that the Pim kinases function as effective inhibitors of apoptosis and when overexpressed, produce resistance to the mTOR (mammalian target of rapamycin) inhibitor, rapamycin . Overexpression of the PIM kinases has been reported in several hematological and solid tumors (PIM 1), myeloma, lymphoma, leukemia (PIM 2) and adenocarcinomas (PIM 3). As such, the Pim kinases are a very attractive target for pharmacological inhibition in cancer therapy. Novel small molecule inhibitors of the human Pim kinases have been designed and are currently undergoing preclinical evaluation.

  13. Development of Heat Shock Protein (Hsp90) Inhibitors To Combat Resistance to Tyrosine Kinase Inhibitors through Hsp90-Kinase Interactions.

    PubMed

    Wang, Meining; Shen, Aijun; Zhang, Chi; Song, Zilan; Ai, Jing; Liu, Hongchun; Sun, Liping; Ding, Jian; Geng, Meiyu; Zhang, Ao

    2016-06-23

    Heat shock protein 90 (Hsp90) is a ubiquitous chaperone of all of the oncogenic tyrosine kinases. Many Hsp90 inhibitors, alone or in combination, have shown significant antitumor efficacy against the kinase-positive naïve and mutant models. However, clinical trials of these inhibitors are unsuccessful due to insufficient clinical benefits and nonoptimal safety profiles. Recently, much progress has been reported on the Hsp90-cochaperone-client complex, which will undoubtedly assist in the understanding of the interactions between Hsp90 and its clients. Meanwhile, Hsp90 inhibitors have shown promise against patients' resistance caused by early generation tyrosine kinase inhibitors (TKIs), and at least 13 Hsp90 inhibitors are being reevaluated in the clinic. In this regard, the objectives of the current perspective are to summarize the structure and function of the Hsp90-cochaperone-client complex, to analyze the structural and functional insights into the Hsp90-client interactions to address several existing unresolved problems with Hsp90 inhibitors, and to highlight the preclinical and clinical studies of Hsp90 inhibitors as an effective treatment against resistance to tyrosine kinase inhibitors.

  14. Physiological Jak2V617F expression causes a lethal myeloproliferative neoplasm with differential effects on hematopoietic stem and progenitor cells.

    PubMed

    Mullally, Ann; Lane, Steven W; Ball, Brian; Megerdichian, Christine; Okabe, Rachel; Al-Shahrour, Fatima; Paktinat, Mahnaz; Haydu, J Erika; Housman, Elizabeth; Lord, Allegra M; Wernig, Gerlinde; Kharas, Michael G; Mercher, Thomas; Kutok, Jeffery L; Gilliland, D Gary; Ebert, Benjamin L

    2010-06-15

    We report a Jak2V617F knockin mouse myeloproliferative neoplasm (MPN) model resembling human polycythemia vera (PV). The MPN is serially transplantable and we demonstrate that the hematopoietic stem cell (HSC) compartment has the unique capacity for disease initiation but does not have a significant selective competitive advantage over wild-type HSCs. In contrast, myeloid progenitor populations are expanded and skewed toward the erythroid lineage, but cannot transplant the disease. Treatment with a JAK2 kinase inhibitor ameliorated the MPN phenotype, but did not eliminate the disease-initiating population. These findings provide insights into the consequences of JAK2 activation on HSC differentiation and function and have the potential to inform therapeutic approaches to JAK2V617F-positive MPN. Copyright 2010 Elsevier Inc. All rights reserved.

  15. Specific Jak3 Downregulation in Lymphocytes Impairs γc Cytokine Signal Transduction and Alleviates Antigen-driven Inflammation In Vivo

    PubMed Central

    Gómez-Valadés, Alicia G; Llamas, María; Blanch, Sílvia; Perales, José C; Román, Juan; Gómez-Casajús, Lluís; Mascaró, Cristina

    2012-01-01

    Jak3, one of the four members comprising the Jak family of cytosolic tyrosine kinases, has emerged as a promising target for nontoxic immunotherapies. Although a number of Jak inhibitors has already demonstrated efficacy, they suffer from secondary effects apparently associated to their pan-Jak activity. However, whether selective Jak3 inhibition would afford therapeutic efficacy remains unclear. To address this question we have investigated the immunosuppressive potential of selective Jak3 intervention in lymphocytes using RNA interference (RNAi) technology in vitro and in vivo. Using synthetic small interference RNA (siRNA) sequences we achieved successful transfections into human and mouse primary T lymphocytes. We found that Jak3 knockdown was sufficient to impair not only interleukin-2 (IL-2) and T cell receptor (TCR)-mediated cell activation in vitro, but also antigen-triggereds welling, inflammatory cell infiltration, and proinflammatory cytokine raise in vivo. Furthermore, Jak1 (which mediates γc cytokine signaling in conjunction with Jak3) cosilencing did not provide higher potency to the aforementioned immunosuppressant effects. Our data provides direct evidences indicating that Jak3 protein plays an important role in γc cytokine and antigen-mediated T cell activation and modulates Th1-mediated inflammatory disorders, all in all highlighting its potential as a target in immunosuppressive therapies. PMID:23344234

  16. Significant reduction of acute cardiac allograft rejection by selective janus kinase-1/3 inhibition using R507 and R545.

    PubMed

    Deuse, Tobias; Hua, Xiaoqin; Taylor, Vanessa; Stubbendorff, Mandy; Baluom, Muhammad; Chen, Yan; Park, Gary; Velden, Joachim; Streichert, Thomas; Reichenspurner, Hermann; Robbins, Robert C; Schrepfer, Sonja

    2012-10-15

    Selective inhibition of lymphocyte activation through abrogation of signal 3-cytokine transduction emerges as a new strategy for immunosuppression. This is the first report on the novel Janus kinase (JAK)1/3 inhibitors R507 and R545 for prevention of acute allograft rejection. Pharmacokinetic and in vitro enzyme inhibition assays were performed to characterize the drugs. Heterotopic Brown Norway-Lewis heart transplantations were performed to study acute cardiac allograft rejection, graft survival, suppression of cellular host responsiveness, and antibody production. Therapeutic and subtherapeutic doses of R507 (60 and 15 mg/kg 2 times per day) and R545 (20 and 5 mg/kg 2 times per day) were compared with those of tacrolimus (Tac; 4 and 1 mg/kg once per day). Plasma levels of R507 and R545 were sustained high for several hours. Cell-based enzyme assays showed selective inhibition of JAK1/3-dependent pathways with 20-fold or greater selectivity over JAK2 and Tyrosine kinase 2 kinases. After heart transplantation, both JAK1/3 inhibitors reduced early mononuclear graft infiltration, even significantly more potent than Tac. Intragraft interferon-γ release was significantly reduced by R507 and R545, and for interleukin-10 suppression, they were even significantly more potent than Tac. Both JAK1/3 inhibitors and Tac were similarly effective in reducing the host Th1 and Th2, but not Th17, responsiveness and similarly prevented donor-specific immunoglobulin M antibody production. Subtherapeutic and therapeutic R507 and R545 doses prolonged the mean graft survival and were similarly effective as 1 and 4 mg/kg Tac, respectively. In combination regimens, however, only R507 showed highly beneficial synergistic drug interactions with Tac. Both R507 and R545 are potent novel immunosuppressants with favorable pharmacokinetics and high JAK1/3 selectivity, but only R507 synergistically interacts with Tac.

  17. Discovery of N-(3-(5-((3-acrylamido-4-(morpholine-4-carbonyl)phenyl)amino)-1-methyl-6-oxo-1,6-dihydropyridin-3-yl)-2-methylphenyl)-4-(tert-butyl)benzamide (CHMFL-BTK-01) as a highly selective irreversible Bruton's tyrosine kinase (BTK) inhibitor.

    PubMed

    Liang, Qianmao; Chen, Yongfei; Yu, Kailin; Chen, Cheng; Zhang, Shouxiang; Wang, Aoli; Wang, Wei; Wu, Hong; Liu, Xiaochuan; Wang, Beilei; Wang, Li; Hu, Zhenquan; Wang, Wenchao; Ren, Tao; Zhang, Shanchun; Liu, Qingsong; Yun, Cai-Hong; Liu, Jing

    2017-05-05

    Currently there are several irreversible BTK inhibitors targeting Cys481 residue under preclinical or clinical development. However, most of these inhibitors also targeted other kinases such as BMX, JAK3, and EGFR that bear the highly similar active cysteine residues. Through a structure-based drug design approach, we discovered a highly potent (IC 50 : 7 nM) irreversible BTK inhibitor compound 9 (CHMFL-BTK-01), which displayed a high selectivity profile in KINOMEscan (S score (35) = 0.00) among 468 kinases/mutants at the concentration of 1 μM. Compound 9 completely abolished BMX, JAK3 and EGFR's activity. Both X-ray crystal structure and cysteine-serine mutation mediated rescue experiment confirmed 9's irreversible binding mode. 9 also potently inhibited BTK Y223 auto-phosphorylation (EC 50 : <30 nM), arrested cell cycle in G0/G1 phase and induced apoptosis in U2932 and Pfeiffer cells. We believe these features would make 9 a good pharmacological tool to study the BTK related pathology. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  18. Examining the Chirality, Conformation and Selective Kinase Inhibition of 3-((3R,4R)-4-methyl-3-(methyl(7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino)piperidin-1-yl)-3-oxopropanenitrile (CP-690,550)

    PubMed Central

    Jiang, Jian-kang; Ghoreschi, Kamran; Deflorian, Francesca; Chen, Zhi; Perreira, Melissa; Pesu, Marko; Smith, Jeremy; Nguyen, Dac-Trung; Liu, Eric H.; Leister, William; Costanzi, Stefano; O’Shea, John J.; Thomas, Craig J.

    2009-01-01

    Here, we examine the significance that stereochemistry plays within the clinically relevant Janus Kinase 3 (Jak3) inhibitor CP-690,550. A synthesis of all four enantiopure stereoisomers of the drug was carried out and an examination of each compound revealed that only the enantiopure 3R, 4R isomer was capable of blocking Stat5 phosphorylation (Jak3 dependent). Each compound was profiled across a panel of over 350 kinases which revealed a high level of selectivity for the Jak family kinases for these related compounds. Each stereoisomer retained a degree of binding to Jak3 and Jak2 and the 3R, 4S and 3S, 4R stereoisomers were further revealed to have binding affinity for selected members of the STE7 and STE20 subfamily of kinases. Finally, an appraisal of the minimum energy conformation of each stereoisomer and molecular docking at Jak3 was performed in an effort to better understand each compounds selectivity and potency profiles. PMID:19053756

  19. Oncogenic Receptor Tyrosine Kinases Directly Phosphorylate Focal Adhesion Kinase (FAK) as a Resistance Mechanism to FAK-kinase Inhibitors

    PubMed Central

    Marlowe, Timothy A.; Lenzo, Felicia L.; Figel, Sheila A.; Grapes, Abigail T.; Cance, William G.

    2016-01-01

    Focal adhesion kinase (FAK) is a major drug target in cancer and current inhibitors targeted to the ATP-binding pocket of the kinase domain have entered clinical trials. However, preliminary results have shown limited single-agent efficacy in patients. Despite these unfavorable data, the molecular mechanisms which drive intrinsic and acquired resistance to FAK-kinase inhibitors are largely unknown. We have demonstrated that receptor tyrosine kinases (RTKs) can directly bypass FAK-kinase inhibition in cancer cells through phosphorylation of FAK’s critical tyrosine 397 (Y397). We also showed that HER2 forms a direct protein-protein interaction with the FAK-FERM-F1 lobe, promoting direct phosphorylation of Y397. Additionally, FAK-kinase inhibition induced two forms of compensatory RTK reprogramming: 1) the rapid phosphorylation and activation of RTK signaling pathways in RTKHigh cells and 2) the long-term acquisition of RTKs novel to the parental cell line in RTKLow cells. Finally, HER2+ cancer cells displayed resistance to FAK-kinase inhibition in 3D–growth assays using a HER2 isogenic system and HER2+ cancer cell lines. Our data indicate a novel drug resistance mechanism to FAK-kinase inhibitors whereby HER2 and other RTKs can rescue and maintain FAK activation (pY397) even in the presence of FAK-kinase inhibition. These data may have important ramifications for existing clinical trials of FAK inhibitors and suggest that individual tumor stratification by RTK expression would be important to predict patient response to FAK-kinase inhibitors. PMID:27638858

  20. Antagonistic activities of the immunomodulator and PP2A-activating drug FTY720 (Fingolimod, Gilenya) in Jak2-driven hematologic malignancies

    PubMed Central

    Oaks, Joshua J.; Santhanam, Ramasamy; Walker, Christopher J.; Roof, Steve; Harb, Jason G.; Ferenchak, Greg; Eisfeld, Ann-Kathrin; Van Brocklyn, James R.; Briesewitz, Roger; Saddoughi, Sahar A.; Nagata, Kyosuke; Bittman, Robert; Caligiuri, Michael A.; Abdel-Wahab, Omar; Levine, Ross; Arlinghaus, Ralph B.; Quintas-Cardama, Alfonso; Goldman, John M.; Apperley, Jane; Reid, Alistair; Milojkovic, Dragana; Ziolo, Mark T.; Marcucci, Guido; Ogretmen, Besim; Neviani, Paolo

    2013-01-01

    FTY720 (Fingolimod, Gilenya) is a sphingosine analog used as an immunosuppressant in multiple sclerosis patients. FTY720 is also a potent protein phosphatase 2A (PP2A)–activating drug (PAD). PP2A is a tumor suppressor found inactivated in different types of cancer. We show here that PP2A is inactive in polycythemia vera (PV) and other myeloproliferative neoplasms characterized by the expression of the transforming Jak2V617F oncogene. PP2A inactivation occurs in a Jak2V617F dose/kinase-dependent manner through the PI-3Kγ-PKC–induced phosphorylation of the PP2A inhibitor SET. Genetic or PAD-mediated PP2A reactivation induces Jak2V617F inactivation/downregulation and impairs clonogenic potential of Jak2V617F cell lines and PV but not normal CD34+ progenitors. Likewise, FTY720 decreases leukemic allelic burden, reduces splenomegaly, and significantly increases survival of Jak2V617F leukemic mice without adverse effects. Mechanistically, we show that in Jak2V617F cells, FTY720 antileukemic activity requires neither FTY720 phosphorylation (FTY720-P) nor SET dimerization or ceramide induction but depends on interaction with SET K209. Moreover, we show that Jak2V617F also utilizes an alternative sphingosine kinase-1–mediated pathway to inhibit PP2A and that FTY720-P, acting as a sphingosine-1-phosphate-receptor-1 agonist, elicits signals leading to the Jak2-PI-3Kγ-PKC-SET–mediated PP2A inhibition. Thus, PADs (eg, FTY720) represent suitable therapeutic alternatives for Jak2V617F MPNs. PMID:23926298

  1. The role of JAK-3 in regulating TLR-mediated inflammatory cytokine production in innate immune cells.

    PubMed

    Wang, Huizhi; Brown, Jonathan; Gao, Shegan; Liang, Shuang; Jotwani, Ravi; Zhou, Huaxin; Suttles, Jill; Scott, David A; Lamont, Richard J

    2013-08-01

    The role of JAK-3 in TLR-mediated innate immune responses is poorly understood, although the suppressive function of JAK3 inhibition in adaptive immune response has been well studied. In this study, we found that JAK3 inhibition enhanced TLR-mediated immune responses by differentially regulating pro- and anti- inflammatory cytokine production in innate immune cells. Specifically, JAK3 inhibition by pharmacological inhibitors or specific small interfering RNA or JAK3 gene knockout resulted in an increase in TLR-mediated production of proinflammatory cytokines while concurrently decreasing the production of IL-10. Inhibition of JAK3 suppressed phosphorylation of PI3K downstream effectors including Akt, mammalian target of rapamycin complex 1, glycogen synthase kinase 3β (GSK3β), and CREB. Constitutive activation of Akt or inhibition of GSK3β abrogated the capability of JAK3 inhibition to enhance proinflammatory cytokines and suppress IL-10 production. In contrast, inhibition of PI3K enhanced this regulatory ability of JAK3 in LPS-stimulated monocytes. At the transcriptional level, JAK3 knockout lead to the increased phosphorylation of STATs that could be attenuated by neutralization of de novo inflammatory cytokines. JAK3 inhibition exhibited a GSK3 activity-dependent ability to enhance phosphorylation levels and DNA binding of NF-κB p65. Moreover, JAK3 inhibition correlated with an increased CD4(+) T cell response. Additionally, higher neutrophil infiltration, IL-17 expression, and intestinal epithelium erosion were observed in JAK3 knockout mice. These findings demonstrate the negative regulatory function of JAK3 and elucidate the signaling pathway by which JAK3 differentially regulates TLR-mediated inflammatory cytokine production in innate immune cells.

  2. JAK signaling globally counteracts heterochromatic gene silencing.

    PubMed

    Shi, Song; Calhoun, Healani C; Xia, Fan; Li, Jinghong; Le, Long; Li, Willis X

    2006-09-01

    The JAK/STAT pathway has pleiotropic roles in animal development, and its aberrant activation is implicated in multiple human cancers. JAK/STAT signaling effects have been attributed largely to direct transcriptional regulation by STAT of specific target genes that promote tumor cell proliferation or survival. We show here in a Drosophila melanogaster hematopoietic tumor model, however, that JAK overactivation globally disrupts heterochromatic gene silencing, an epigenetic tumor suppressive mechanism. This disruption allows derepression of genes that are not direct targets of STAT, as evidenced by suppression of heterochromatin-mediated position effect variegation. Moreover, mutations in the genes encoding heterochromatin components heterochromatin protein 1 (HP1) and Su(var)3-9 enhance tumorigenesis induced by an oncogenic JAK kinase without affecting JAK/STAT signaling. Consistently, JAK loss of function enhances heterochromatic gene silencing, whereas overexpressing HP1 suppresses oncogenic JAK-induced tumors. These results demonstrate that the JAK/STAT pathway regulates cellular epigenetic status and that globally disrupting heterochromatin-mediated tumor suppression is essential for tumorigenesis induced by JAK overactivation.

  3. JAK signaling globally counteracts heterochromatic gene silencing

    PubMed Central

    Shi, Song; Calhoun, Healani C; Xia, Fan; Li, Jinghong; Le, Long; Li, Willis X

    2011-01-01

    The JAK/STAT pathway has pleiotropic roles in animal development, and its aberrant activation is implicated in multiple human cancers1–3. JAK/STAT signaling effects have been attributed largely to direct transcriptional regulation by STAT of specific target genes that promote tumor cell proliferation or survival. We show here in a Drosophila melanogaster hematopoietic tumor model, however, that JAK overactivation globally disrupts heterochromatic gene silencing, an epigenetic tumor suppressive mechanism4. This disruption allows derepression of genes that are not direct targets of STAT, as evidenced by suppression of heterochromatin-mediated position effect variegation. Moreover, mutations in the genes encoding heterochromatin components heterochromatin protein 1 (HP1) and Su(var)3-9 enhance tumorigenesis induced by an oncogenic JAK kinase without affecting JAK/STAT signaling. Consistently, JAK loss of function enhances heterochromatic gene silencing, whereas overexpressing HP1 suppresses oncogenic JAK-induced tumors. These results demonstrate that the JAK/STAT pathway regulates cellular epigenetic status and that globally disrupting heterochromatin-mediated tumor suppression is essential for tumorigenesis induced by JAK overactivation. PMID:16892059

  4. The 'retro-design' concept for novel kinase inhibitors.

    PubMed

    Müller, Gerhard; Sennhenn, Peter C; Woodcock, Timothy; Neumann, Lars

    2010-07-01

    Protein kinases are among the most attractive therapeutic targets for a broad range of diseases. This feature review highlights and classifies the main design principles employed to generate active and selective kinase inhibitors. In particular, emphasis is focused on a fragment-based lead-generation approach, which constitutes a novel design method for developing type II kinase inhibitors with distinct binding kinetic attributes. This 'retro-design' strategy relies on a customized fragment library, and contrasts the traditional approach used in the design of type II inhibitors.

  5. Inhibition of TYK2 and JAK1 Ameliorates Imiquimod-Induced Psoriasis-like Dermatitis by Inhibiting IL-22 and the IL-23/IL-17 axis

    PubMed Central

    Works, Melissa G.; Yin, Fangfang; Yin, Catherine C.; Yiu, Ying; Shew, Kenneth; Tran, Thanh-Thuy; Dunlap, Nahoko; Lam, Jennifer; Mitchell, Tim; Reader, John; Stein, Paul L.; D’Andrea, Annalisa

    2014-01-01

    Psoriasis is a chronic autoimmune disease affecting the skin and characterized by aberrant keratinocyte proliferation and function. Immune cells infiltrate the skin and release proinflammatory cytokines that play important roles in psoriasis. The Th17 network, including IL-23 and IL-22, has recently emerged as a critical component in the pathogenesis of psoriasis. IL-22 and IL-23 signaling is dependent on the JAK family of protein tyrosine kinases, making Janus kinase (JAK) inhibition an appealing strategy for the treatment of psoriasis. Here we report the activity of SAR-20347, a small molecule inhibitor with specificity for JAK1 and Tyrosine Kinase 2 (TYK2) over other JAK family members. In cellular assays, SAR-20347 dose-dependently (1 nM-10 μM) inhibited JAK1 and/or TYK2 dependent signaling from the IL-12/IL-23, IL-22, and IFN-α receptors. In vivo, TYK2 mutant mice or treatment of wild type mice with SAR-20347 significantly reduced IL-12 induced IFN-γ production and IL-22-dependent Serum Amyloid A (SAA) to similar extents, indicating that in these models, SAR-20347 is probably acting through inhibition of TYK2. In an imiquimod-induced psoriasis model, the administration of SAR-20347 led to a striking decrease in disease pathology, including reduced activation of keratinocytes, and proinflammatory cytokine levels compared to both TYK2 mutant mice and wild type controls. Taken together, these data indicate that targeting both JAK1 and TYK2-mediated cytokine signaling is more effective than TYK2 inhibition alone in reducing psoriasis pathogenesis. PMID:25156366

  6. Oncogenic Receptor Tyrosine Kinases Directly Phosphorylate Focal Adhesion Kinase (FAK) as a Resistance Mechanism to FAK-Kinase Inhibitors.

    PubMed

    Marlowe, Timothy A; Lenzo, Felicia L; Figel, Sheila A; Grapes, Abigail T; Cance, William G

    2016-12-01

    Focal adhesion kinase (FAK) is a major drug target in cancer and current inhibitors targeted to the ATP-binding pocket of the kinase domain have entered clinical trials. However, preliminary results have shown limited single-agent efficacy in patients. Despite these unfavorable data, the molecular mechanisms that drive intrinsic and acquired resistance to FAK-kinase inhibitors are largely unknown. We have demonstrated that receptor tyrosine kinases (RTK) can directly bypass FAK-kinase inhibition in cancer cells through phosphorylation of FAK's critical tyrosine 397 (Y397). We also showed that HER2 forms a direct protein-protein interaction with the FAK-FERM-F1 lobe, promoting direct phosphorylation of Y397. In addition, FAK-kinase inhibition induced two forms of compensatory RTK reprogramming: (i) the rapid phosphorylation and activation of RTK signaling pathways in RTK High cells and (ii) the long-term acquisition of RTKs novel to the parental cell line in RTK Low cells. Finally, HER2 +: cancer cells displayed resistance to FAK-kinase inhibition in 3D growth assays using a HER2 isogenic system and HER2 + cancer cell lines. Our data indicate a novel drug resistance mechanism to FAK-kinase inhibitors whereby HER2 and other RTKs can rescue and maintain FAK activation (pY397) even in the presence of FAK-kinase inhibition. These data may have important ramifications for existing clinical trials of FAK inhibitors and suggest that individual tumor stratification by RTK expression would be important to predict patient response to FAK-kinase inhibitors. Mol Cancer Ther; 15(12); 3028-39. ©2016 AACR. ©2016 American Association for Cancer Research.

  7. The selectivity of protein kinase inhibitors: a further update

    PubMed Central

    Bain, Jenny; Plater, Lorna; Elliott, Matt; Shpiro, Natalia; Hastie, C. James; Mclauchlan, Hilary; Klevernic, Iva; Arthur, J. Simon C.; Alessi, Dario R.; Cohen, Philip

    2007-01-01

    The specificities of 65 compounds reported to be relatively specific inhibitors of protein kinases have been profiled against a panel of 70–80 protein kinases. On the basis of this information, the effects of compounds that we have studied in cells and other data in the literature, we recommend the use of the following small-molecule inhibitors: SB 203580/SB202190 and BIRB 0796 to be used in parallel to assess the physiological roles of p38 MAPK (mitogen-activated protein kinase) isoforms, PI-103 and wortmannin to be used in parallel to inhibit phosphatidylinositol (phosphoinositide) 3-kinases, PP1 or PP2 to be used in parallel with Src-I1 (Src inhibitor-1) to inhibit Src family members; PD 184352 or PD 0325901 to inhibit MKK1 (MAPK kinase-1) or MKK1 plus MKK5, Akt-I-1/2 to inhibit the activation of PKB (protein kinase B/Akt), rapamycin to inhibit TORC1 [mTOR (mammalian target of rapamycin)–raptor (regulatory associated protein of mTOR) complex], CT 99021 to inhibit GSK3 (glycogen synthase kinase 3), BI-D1870 and SL0101 or FMK (fluoromethylketone) to be used in parallel to inhibit RSK (ribosomal S6 kinase), D4476 to inhibit CK1 (casein kinase 1), VX680 to inhibit Aurora kinases, and roscovitine as a pan-CDK (cyclin-dependent kinase) inhibitor. We have also identified harmine as a potent and specific inhibitor of DYRK1A (dual-specificity tyrosine-phosphorylated and -regulated kinase 1A) in vitro. The results have further emphasized the need for considerable caution in using small-molecule inhibitors of protein kinases to assess the physiological roles of these enzymes. Despite being used widely, many of the compounds that we analysed were too non-specific for useful conclusions to be made, other than to exclude the involvement of particular protein kinases in cellular processes. PMID:17850214

  8. JAK2 mediates lung fibrosis, pulmonary vascular remodelling and hypertension in idiopathic pulmonary fibrosis: an experimental study.

    PubMed

    Milara, Javier; Ballester, Beatriz; Morell, Anselm; Ortiz, José L; Escrivá, Juan; Fernández, Estrella; Perez-Vizcaino, Francisco; Cogolludo, Angel; Pastor, Enrique; Artigues, Enrique; Morcillo, Esteban; Cortijo, Julio

    2018-06-01

    Pulmonary hypertension (PH) is a common disorder in patients with idiopathic pulmonary fibrosis (IPF) and portends a poor prognosis. Recent studies using vasodilators approved for PH have failed in improving IPF mainly due to ventilation ( V )/perfusion ( Q ) mismatching and oxygen desaturation. Janus kinase type 2 (JAK2) is a non-receptor tyrosine kinase activated by a broad spectrum of profibrotic and vasoactive mediators, but its role in PH associated to PH is unknown. The study of JAK2 as potential target to treat PH in IPF. JAK2 expression was increased in pulmonary arteries (PAs) from IPF (n=10; 1.93-fold; P=0.0011) and IPF+PH (n=9; 2.65-fold; P<0.0001) compared with PA from control subjects (n=10). PA remodelling was evaluated in human pulmonary artery endothelial cells (HPAECs) and human pulmonary artery smooth muscle cells (HPASMCs) from patients with IPF in vitro treated with the JAK2 inhibitor JSI-124 or siRNA-JAK2 and stimulated with transforming growth factor beta. Both JSI-124 and siRNA-JAK2 inhibited the HPAEC to mesenchymal transition and the HPASMCs to myofibroblast transition and proliferation. JAK2 inhibition induced small PA relaxation in precision-cut lung slice experiments. PA relaxation was dependent of the large conductance calcium-activated potassium channel (BK Ca ). JAK2 inhibition activated BK Ca channels and reduced intracellular Ca 2+ . JSI-124 1 mg/kg/day, reduced bleomycin-induced lung fibrosis, PA remodelling, right ventricular hypertrophy, PA hypertension and V / Q mismatching in rats. The animal studies followed the ARRIVE guidelines. JAK2 participates in PA remodelling and tension and may be an attractive target to treat IPF associated to PH. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  9. Regulation of T cell homeostasis by JAKs and STATs.

    PubMed

    Ross, Jeremy A; Nagy, Zsuzsanna S; Cheng, Hanyin; Stepkowski, Stanislaw M; Kirken, Robert A

    2007-01-01

    Regulation of T cell homeostasis is critical for maintaining normal immune function. An imbalance in T cell proliferation can result in disorders ranging from cancer and autoimmunity to immunodeficiencies. Full activation of T cells requires three sequential signals, where signal 3, which is delivered by multiple cytokines, regulates proliferation, differentiation, and survival/death. Signaling from cytokines through their receptors is primarily delivered by two molecular families, namely Janus tyrosine kinases (JAKs) and signal transducers and activators of transcription (STATs). Invaluable knowledge about JAKs and STATs has arisen from studies of mice made genetically deficient in these molecules, analyses of tumor models, and studies of expression patterns by proteomics/genomics, which all have begun to define the role of JAKs and STATs in survival versus apoptosis. These findings also have suggested ways in which JAKs and STATs may be manipulated for therapeutic intervention in lymphoid-derived diseases. This review seeks to focus on the role of JAK tyrosine kinases and STAT transcription factors in mediating the lymphocyte life cycle and how they might be manipulated for therapeutic applications.

  10. Tofacitinib, an Oral Janus Kinase Inhibitor: Perspectives in Dermatology.

    PubMed

    Kostovic, Kresimir; Gulin, Sandra J; Mokos, Zrinka B; Ceovic, Romana

    2017-05-31

    Tofacitinib (formerly known as CP-690,550, CP690550, tasocitinib), a novel selective immunosuppressant, is a small molecule classified as Janus kinase inhibitor. The aim of this review article is to present updated data summary on the tofacitinib in the field of dermatology. We undertook a structured search of bibliographic databases for peer-reviewed scientific articles, including review articles, original research articles as well as case report articles based on inclusion/exclusion criteria. Technical reports on tofacitinib from U.S. Food and Drug Administration and European Medical Agency were also included. Forty-three papers were included in this review. We report current data on tofacitinib chemical properties, pharmacology, non-clinical toxicity, as well as efficacy and safety in potential new indications in dermatology: psoriasis, alopecia areata, vitiligo, atopic dermatitis and nail dystrophy associated with alopecia areata. JAK/STAT pathway has an important role in the pathogenesis of psoriasis, alopecia areata, atopic dermatitis, and vitiligo. Despite encouraging efficacy, due to concerns about the overall safety profile of tofacitinib, additional studies will have to determine the adequate risk-to-benefit ratio. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Inactivation of JAK2/STAT3 Signaling Axis and Downregulation of M1 mAChR Cause Cognitive Impairment in klotho Mutant Mice, a Genetic Model of Aging

    PubMed Central

    Park, Seok-Joo; Shin, Eun-Joo; Min, Sun Seek; An, Jihua; Li, Zhengyi; Hee Chung, Yoon; Hoon Jeong, Ji; Bach, Jae-Hyung; Nah, Seung-Yeol; Kim, Won-Ki; Jang, Choon-Gon; Kim, Yong-Sun; Nabeshima, Yo-ichi; Nabeshima, Toshitaka; Kim, Hyoung-Chun

    2013-01-01

    We previously reported cognitive dysfunction in klotho mutant mice. In the present study, we further examined novel mechanisms involved in cognitive impairment in these mice. Significantly decreased janus kinase 2 (JAK2) and signal transducer and activator of transcription3 (STAT3) phosphorylation were observed in the hippocampus of klotho mutant mice. A selective decrease in protein expression and binding density of the M1 muscarinic cholinergic receptor (M1 mAChR) was observed in these mice. Cholinergic parameters (ie, acetylcholine (ACh), choline acetyltransferase (ChAT), and acetylcholinesterase (AChE)) and NMDAR-dependent long-term potentiation (LTP) were significantly impaired in klotho mutant mice. McN-A-343 (McN), an M1 mAChR agonist, significantly attenuated these impairments. AG490 (AG), a JAK2 inhibitor, counteracted the attenuating effects of McN, although AG did not significantly alter the McN-induced effect on AChE. Furthermore, AG significantly inhibited the attenuating effects of McN on decreased NMDAR-dependent LTP, protein kinase C βII, p-ERK, p-CREB, BDNF, and p-JAK2/p-STAT3-expression in klotho mutant mice. In addition, k252a, a BDNF receptor tyrosine kinase B (TrkB) inhibitor, significantly counteracted McN effects on decreased ChAT, ACh, and M1 mAChR and p-JAK2/p-STAT3 expression. McN-induced effects on cognitive impairment in klotho mutant mice were consistently counteracted by either AG or k252a. Our results suggest that inactivation of the JAK2/STAT3 signaling axis and M1 mAChR downregulation play a critical role in cognitive impairment observed in klotho mutant mice. PMID:23389690

  12. Janus-kinase-2 relates directly to portal hypertension and to complications in rodent and human cirrhosis.

    PubMed

    Klein, Sabine; Rick, Johanna; Lehmann, Jennifer; Schierwagen, Robert; Schierwagen, Irela Gretchen; Verbeke, Len; Hittatiya, Kanishka; Uschner, Frank Erhard; Manekeller, Steffen; Strassburg, Christian P; Wagner, Kay-Uwe; Sayeski, Peter P; Wolf, Dominik; Laleman, Wim; Sauerbruch, Tilman; Trebicka, Jonel

    2017-01-01

    Angiotensin II (AngII) activates via angiotensin-II-type-I receptor (AT1R) Janus-kinase-2 (JAK2)/Arhgef1 pathway and subsequently RHOA/Rho-kinase (ROCK), which induces experimental and probably human liver fibrosis. This study investigated the relationship of JAK2 to experimental and human portal hypertension. The mRNA and protein levels of JAK2/ARHGEF1 signalling components were analysed in 49 human liver samples and correlated with clinical parameters of portal hypertension in these patients. Correspondingly, liver fibrosis (bile duct ligation (BDL), carbon tetrachloride (CCl 4 )) was induced in floxed-Jak2 knock-out mice with SM22-promotor (SM22 Cre+ -Jak2 f/f ). Transcription and contraction of primary myofibroblasts from healthy and fibrotic mice and rats were analysed. In two different cirrhosis models (BDL, CCl 4 ) in rats, the acute haemodynamic effect of the JAK2 inhibitor AG490 was assessed using microsphere technique and isolated liver perfusion experiments. Hepatic transcription of JAK2/ARHGEF1 pathway components was upregulated in liver cirrhosis dependent on aetiology, severity and complications of human liver cirrhosis (Model for End-stage Liver disease (MELD) score, Child score as well as ascites, high-risk varices, spontaneous bacterial peritonitis). SM22 Cre+ - Jak2 f/f mice lacking Jak2 developed less fibrosis and lower portal pressure (PP) than SM22 Cre- -Jak2 f/f upon fibrosis induction. Myofibroblasts from SM22 Cre+ -Jak2 f/f mice expressed less collagen and profibrotic markers upon activation. AG490 relaxed activated hepatic stellate cells in vitro. In cirrhotic rats, AG490 decreased hepatic vascular resistance and consequently the PP in vivo and in situ. Hepatic JAK2/ARHGEF1/ROCK expression is associated with portal hypertension and decompensation in human cirrhosis. The deletion of Jak2 in myofibroblasts attenuated experimental fibrosis and acute inhibition of JAK2 decreased PP. Thus, JAK2 inhibitors, already in clinical use for other

  13. Molecular insights into regulation of JAK2 in myeloproliferative neoplasms

    PubMed Central

    Hubbard, Stevan R.

    2015-01-01

    The critical role of Janus kinase-2 (JAK2) in regulation of myelopoiesis was established 2 decades ago, but identification of mutations in the pseudokinase domain of JAK2 in myeloproliferative neoplasms (MPNs) and in other hematologic malignancies highlighted the role of JAK2 in human disease. These findings have revolutionized the diagnostics of MPNs and led to development of novel JAK2 therapeutics. However, the molecular mechanisms by which mutations in the pseudokinase domain lead to hyperactivation of JAK2 and clinical disease have been unclear. Here, we describe recent advances in the molecular characterization of the JAK2 pseudokinase domain and how pathogenic mutations lead to constitutive activation of JAK2. PMID:25824690

  14. The arrival of JAK inhibitors: advancing the treatment of immune and hematologic disorders

    PubMed Central

    Furumoto, Yasuko; Gadina, Massimo

    2013-01-01

    Altered production of cytokines can result in pathologies ranging from autoimmune diseases to malignancies. The Janus Kinases family is a small group of receptor-associated signaling molecules that is essential to the signal cascade originating from type I and type II cytokine receptors. Inhibition of tyrosine kinases enzymatic activity using small molecules has recently become a powerful tool for treatment of several malignancies. Twenty years after the discovery of these enzymes, two inhibitors for this class of kinases have been approved for clinical use and others are currently in the final stage of development. Here we review the principles of cytokines signaling, we summarize our current knowledge of the approved inhibitors, and briefly introduce some of the inhibitors that are currently under development. PMID:23743669

  15. The Future of Janus Kinase Inhibitors in Inflammatory Bowel Disease

    PubMed Central

    De Vries, L.C.S.; Wildenberg, M.E.; De Jonge, W.J.

    2017-01-01

    Abstract Inflammatory bowel diseases, such as ulcerative colitis and Crohn’s disease, are disabling conditions characterised by chronic, relapsing inflammation of the gastrointestinal tract. Current treatments are not universally effective or, in the case of therapeutic antibodies, are hampered by immune responses. Janus kinase inhibitors are orally delivered small molecules that target cytokine signalling by preventing phosphorylation of Janus kinases associated with the cytokine receptor. Subsequently, phosphorylation of signal transducers and activators of transcription that relay Janus kinase signalling and transcription of cytokines in the nucleus will be diminished. Key cytokines in the pathogenesis of inflammatory bowel diseases are targeted by Janus kinase inhibitors. Several Janus kinase inhibitors are in development for the treatment of inflammatory bowel diseases. Tofacitinib, inhibiting signalling via all Janus kinase family members, was effective in phase 2 and 3 trials in moderate-severe ulcerative colitis. GSK2586184, a Janus kinase 1 selective inhibitor, induced clinical and endoscopic response in ulcerative colitis; however, the study was discontinued at an early stage due to liver toxicity observed in systemic lupus patients receiving the drug. Filgotinib, a Janus kinase 1 selective inhibitor investigated in treatment of Crohn’s disease, was superior to placebo. As adverse events associated with the broad immunological effect of these agents have been reported, the future application of these drugs is potentially limited. We will discuss the treatment efficacy of Janus kinase inhibition in inflammatory bowel diseases, how current Janus kinase inhibitors available target immune responses relevant in inflammatory bowel disease, and whether more specific kinase inhibition could be effective. PMID:28158411

  16. The Future of Janus Kinase Inhibitors in Inflammatory Bowel Disease.

    PubMed

    De Vries, L C S; Wildenberg, M E; De Jonge, W J; D'Haens, G R

    2017-07-01

    Inflammatory bowel diseases, such as ulcerative colitis and Crohn's disease, are disabling conditions characterised by chronic, relapsing inflammation of the gastrointestinal tract. Current treatments are not universally effective or, in the case of therapeutic antibodies, are hampered by immune responses. Janus kinase inhibitors are orally delivered small molecules that target cytokine signalling by preventing phosphorylation of Janus kinases associated with the cytokine receptor. Subsequently, phosphorylation of signal transducers and activators of transcription that relay Janus kinase signalling and transcription of cytokines in the nucleus will be diminished. Key cytokines in the pathogenesis of inflammatory bowel diseases are targeted by Janus kinase inhibitors. Several Janus kinase inhibitors are in development for the treatment of inflammatory bowel diseases. Tofacitinib, inhibiting signalling via all Janus kinase family members, was effective in phase 2 and 3 trials in moderate-severe ulcerative colitis. GSK2586184, a Janus kinase 1 selective inhibitor, induced clinical and endoscopic response in ulcerative colitis; however, the study was discontinued at an early stage due to liver toxicity observed in systemic lupus patients receiving the drug. Filgotinib, a Janus kinase 1 selective inhibitor investigated in treatment of Crohn's disease, was superior to placebo. As adverse events associated with the broad immunological effect of these agents have been reported, the future application of these drugs is potentially limited. We will discuss the treatment efficacy of Janus kinase inhibition in inflammatory bowel diseases, how current Janus kinase inhibitors available target immune responses relevant in inflammatory bowel disease, and whether more specific kinase inhibition could be effective. © European Crohn’s and Colitis Organisation (ECCO) 2017.

  17. Activation of JAK3, but not JAK1, is critical to interleukin-4 (IL4) stimulated proliferation and requires a membrane-proximal region of IL4 receptor alpha.

    PubMed

    Malabarba, M G; Kirken, R A; Rui, H; Koettnitz, K; Kawamura, M; O'Shea, J J; Kalthoff, F S; Farrar, W L

    1995-04-21

    The tyrosine kinases JAK1 and JAK3 have been shown to undergo tyrosine phosphorylation in response to interleukin-2 (IL), IL4, IL7, and IL9, cytokines which share the common IL2 receptor gamma-chain (IL2R gamma), and evidence has been found for a preferential coupling of JAK3 to IL2R gamma and JAK1 to IL2R beta. Here we show, using human premyeloid TF-1 cells, that IL4 stimulates JAK3 to a larger extent than JAK1, based upon three different evaluation criteria. These include a more vigorous tyrosine phosphorylation of JAK3 as measured by anti-phosphotyrosine immunoblotting, a more marked activation of JAK3 as determined by in vitro tyrosine kinase assays and a more manifest presence of JAK3 in activated IL4-receptor complexes. These observations suggest that IL4 receptor signal transduction does not depend on equimolar heterodimerization of JAK1 and JAK3 following IL4-induced heterodimerization of IL4R alpha and IL2R gamma. Indeed, when human IL4R alpha was stably expressed in mouse BA/F3 cells, robust IL4-induced proliferation and JAK3 activation occurred without detectable involvement of JAK1, JAK2, or TYK2. The present study suggests that JAK1 plays a subordinate role in IL4 receptor signaling, and that in certain cells exclusive JAK3 activation may mediate IL4-induced cell growth. Moreover, mutational analysis of human IL4R alpha showed that a membrane-proximal cytoplasmic region was critical for JAK3 activation, while the I4R motif was not, which is compatible with a role of JAK3 upstream of the recruitment of the insulin receptor substrate-1/4PS signaling proteins by IL4 receptors.

  18. Sevoflurane postconditioning protects the myocardium against ischemia/reperfusion injury via activation of the JAK2–STAT3 pathway

    PubMed Central

    Wu, Jianjiang; Yu, Jin; Xie, Peng; Maimaitili, Yiliyaer; Wang, Jiang; Yang, Long; Ma, Haiping; Zhang, Xing; Yang, Yining

    2017-01-01

    Background Sevoflurane postconditioning (S-post) has similar cardioprotective effects as ischemic preconditioning. However, the underlying mechanism of S-post has not been fully elucidated. Janus kinase signaling transduction/transcription activator (JAK2–STAT3) plays an important role in cardioprotection. The purpose of this study was to determine whether the cardioprotective effects of S-post are associated with activation of the JAK2–STAT3 signal pathway. Methods An adult male Sprague–Dawley (SD) rat model of myocardial ischemia/reperfusion (I/R) injury was established using the Langendorff isolated heart perfusion apparatus. At the beginning of reperfusion, 2.4% sevoflurane alone or in combination with AG490 (a JAK2 selective inhibitor) was used as a postconditioning treatment. The cardiac function indicators, myocardial infarct size, lactic dehydrogenase (LDH) release, mitochondrial ultrastructure, mitochondrial reactive oxygen species (ROS) generation rates, ATP content, protein expression of p-JAK, p-STAT3, Bcl-2 and Bax were measured. Results Compared with the I/R group, S-post significantly increased the expression of p-JAK, p-STAT3 and Bcl-2 and reduced the protein expression of Bax, which markedly decreased the myocardial infarction areas, improved the cardiac function indicators and the mitochondrial ultrastructure, decreased the mitochondrial ROS and increased the ATP content. However, the cardioprotective effects of S-post were abolished by treatment with a JAK2 selective inhibitor (p < 0.05). Conclusion This study demonstrates that the cardioprotective effects of S-post are associated with the activation of JAK2–STAT3. The mechanism may be related to an increased expression of p-JAK2 and p-STAT3 after S-post, which reduced mitochondrial ROS generation and increased mitochondrial ATP content, thereby reducing apoptosis and myocardial infarct size. PMID:28392989

  19. The role of JAK2 abnormalities in hematologic neoplasms

    PubMed Central

    Alabdulaali, Mohammed K.

    2009-01-01

    In 2005, an activating mutation in the Janus kinase 2 (JAK2) was identified in a significant proportion of patients with myeloproliferative neoplasms, mainly polycythemia vera, essential thrombocythemia and primary myelofibrosis. Many types of mutations in the JAK-STAT pathway have been identified, the majority are related to JAK2. Currently JAK2 mutations are important in the area of diagnosis of myeloid neoplasms, but its role beyond the confirmation of clonality is growing and widening our knowledge about these disorders. In addition to that, clinical trials to target JAK2-STAT pathway will widen our knowledge and hopefully will offer more therapeutic options. In this review, we will discuss the role of JAK2 abnormalities in the pathogenesis, diagnosis, classification, severity and management of hematologic neoplasms.

  20. Extended-spectrum antiprotozoal bumped kinase inhibitors: A review.

    PubMed

    Van Voorhis, Wesley C; Doggett, J Stone; Parsons, Marilyn; Hulverson, Matthew A; Choi, Ryan; Arnold, Samuel L M; Riggs, Michael W; Hemphill, Andrew; Howe, Daniel K; Mealey, Robert H; Lau, Audrey O T; Merritt, Ethan A; Maly, Dustin J; Fan, Erkang; Ojo, Kayode K

    2017-09-01

    Many life-cycle processes in parasites are regulated by protein phosphorylation. Hence, disruption of essential protein kinase function has been explored for therapy of parasitic diseases. However, the difficulty of inhibiting parasite protein kinases to the exclusion of host orthologues poses a practical challenge. A possible path around this difficulty is the use of bumped kinase inhibitors for targeting calcium-dependent protein kinases that contain atypically small gatekeeper residues and are crucial for pathogenic apicomplexan parasites' survival and proliferation. In this article, we review efficacy against the kinase target, parasite growth in vitro, and in animal infection models, as well as the relevant pharmacokinetic and safety parameters of bumped kinase inhibitors. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. In Vivo Administration of a JAK3 Inhibitor during Acute SIV Infection Leads to Significant Increases in Viral Load during Chronic Infection

    PubMed Central

    Takahashi, Yoshiaki; Byrareddy, Siddappa N.; Albrecht, Christina; Brameier, Markus; Walter, Lutz; Mayne, Ann E.; Dunbar, Paul; Russo, Robert; Little, Dawn M.; Villinger, Tara; Khowawisetsut, Ladawan; Pattanapanyasat, Kovit; Villinger, Francois; Ansari, Aftab A.

    2014-01-01

    The studies reported herein are the first to document the effect of the in vivo administration of a JAK3 inhibitor for defining the potential role of NK cells during acute SIV infection of a group of 15 rhesus macaques (RM). An additional group of 16 MHC/KIR typed RM was included as controls. The previously optimized in vivo dose regimen (20 mg/kg daily for 35 days) led to a marked depletion of each of the major NK cell subsets both in the blood and gastro-intestinal tissues (GIT) during acute infection. While such depletion had no detectable effects on plasma viral loads during acute infection, there was a significant sustained increase in plasma viral loads during chronic infection. While the potential mechanisms that lead to such increased plasma viral loads during chronic infection remain unclear, several correlates were documented. Thus, during acute infection, the administration of the JAK3 inhibitor besides depleting all NK cell subsets also decreased some CD8+ T cells and inhibited the mobilization of the plasmacytoid dendritic cells in the blood and their localization to the GIT. Of interest is the finding that the administration of the JAK3 inhibitor during acute infection also resulted in the sustained maintenance during chronic infection of a high number of naïve and central memory CD4+ T cells, increases in B cells in the blood, but decreases in the frequencies and function of NKG2a+ NK cells within the GIT and blood, respectively. These data identify a unique role for JAK3 inhibitor sensitive cells, that includes NK cells during acute infection that in concert lead to high viral loads in SIV infected RM during chronic infection without affecting detectable changes in antiviral humoral/cellular responses. Identifying the precise mechanisms by which JAK3 sensitive cells exert their influence is critical with important implications for vaccine design against lentiviruses. PMID:24603870

  2. Renovascular hypertension associated with JAK2 V617F positive myeloproliferative neoplasms treated with angioplasty: 2 cases and literature review.

    PubMed

    Mishima, Eikan; Suzuki, Takehiro; Takeuchi, Yoichi; Seiji, Kazumasa; Fukuhara, Noriko; Takase, Kei; Harigae, Hideo; Abe, Takaaki; Ito, Sadayoshi

    2018-04-01

    Myeloproliferative neoplasms (MPNs) with Janus kinase 2 (JAK2) mutation are associated with a high risk for occlusive vascular diseases. We report 2 cases of renovascular hypertension associated with JAK2 V617F mutation-positive MPNs and provide a literature review. In Case 1, a 63-year-old woman had resistant hypertension, massive proteinuria, and erythrocytosis. Evaluations revealed right renal artery stenosis causing renovascular hypertension and polycythemia vera with JAK2 V617F mutation. Renin-angiotensin system inhibitors and subsequent angioplasty controlled the blood pressure and the proteinuria resolved. In Case 2, a 74-year-old woman had resistant hypertension and thrombocytosis. Evaluations confirmed left renal artery stenosis and essential thrombocythemia with JAK2 V617F. Angioplasty cured the hypertension. A literature review of 18 cases revealed the following as the most common characteristics of MPN-associated renovascular hypertension: manifests primarily in women; is associated with untreated polycythemia vera and essential thrombocythemia, concomitant leukocytosis, and JAK2 mutation positivity; and is responsive to angioplasty. This report demonstrates that JAK2 mutation-positive MPNs are a less common but important underlying cause of adult renovascular hypertension. ©2018 Wiley Periodicals, Inc.

  3. Evolution of JAK-STAT Pathway Components: Mechanisms and Role in Immune System Development

    PubMed Central

    Liongue, Clifford; O'Sullivan, Lynda A.; Trengove, Monique C.; Ward, Alister C.

    2012-01-01

    Background Lying downstream of a myriad of cytokine receptors, the Janus kinase (JAK) – Signal transducer and activator of transcription (STAT) pathway is pivotal for the development and function of the immune system, with additional important roles in other biological systems. To gain further insight into immune system evolution, we have performed a comprehensive bioinformatic analysis of the JAK-STAT pathway components, including the key negative regulators of this pathway, the SH2-domain containing tyrosine phosphatase (SHP), Protein inhibitors against Stats (PIAS), and Suppressor of cytokine signaling (SOCS) proteins across a diverse range of organisms. Results Our analysis has demonstrated significant expansion of JAK-STAT pathway components co-incident with the emergence of adaptive immunity, with whole genome duplication being the principal mechanism for generating this additional diversity. In contrast, expansion of upstream cytokine receptors appears to be a pivotal driver for the differential diversification of specific pathway components. Conclusion Diversification of JAK-STAT pathway components during early vertebrate development occurred concurrently with a major expansion of upstream cytokine receptors and two rounds of whole genome duplications. This produced an intricate cell-cell communication system that has made a significant contribution to the evolution of the immune system, particularly the emergence of adaptive immunity. PMID:22412924

  4. Model Based Targeting of IL-6-Induced Inflammatory Responses in Cultured Primary Hepatocytes to Improve Application of the JAK Inhibitor Ruxolitinib.

    PubMed

    Sobotta, Svantje; Raue, Andreas; Huang, Xiaoyun; Vanlier, Joep; Jünger, Anja; Bohl, Sebastian; Albrecht, Ute; Hahnel, Maximilian J; Wolf, Stephanie; Mueller, Nikola S; D'Alessandro, Lorenza A; Mueller-Bohl, Stephanie; Boehm, Martin E; Lucarelli, Philippe; Bonefas, Sandra; Damm, Georg; Seehofer, Daniel; Lehmann, Wolf D; Rose-John, Stefan; van der Hoeven, Frank; Gretz, Norbert; Theis, Fabian J; Ehlting, Christian; Bode, Johannes G; Timmer, Jens; Schilling, Marcel; Klingmüller, Ursula

    2017-01-01

    IL-6 is a central mediator of the immediate induction of hepatic acute phase proteins (APP) in the liver during infection and after injury, but increased IL-6 activity has been associated with multiple pathological conditions. In hepatocytes, IL-6 activates JAK1-STAT3 signaling that induces the negative feedback regulator SOCS3 and expression of APPs. While different inhibitors of IL-6-induced JAK1-STAT3-signaling have been developed, understanding their precise impact on signaling dynamics requires a systems biology approach. Here we present a mathematical model of IL-6-induced JAK1-STAT3 signaling that quantitatively links physiological IL-6 concentrations to the dynamics of IL-6-induced signal transduction and expression of target genes in hepatocytes. The mathematical model consists of coupled ordinary differential equations (ODE) and the model parameters were estimated by a maximum likelihood approach, whereas identifiability of the dynamic model parameters was ensured by the Profile Likelihood. Using model simulations coupled with experimental validation we could optimize the long-term impact of the JAK-inhibitor Ruxolitinib, a therapeutic compound that is quickly metabolized. Model-predicted doses and timing of treatments helps to improve the reduction of inflammatory APP gene expression in primary mouse hepatocytes close to levels observed during regenerative conditions. The concept of improved efficacy of the inhibitor through multiple treatments at optimized time intervals was confirmed in primary human hepatocytes. Thus, combining quantitative data generation with mathematical modeling suggests that repetitive treatment with Ruxolitinib is required to effectively target excessive inflammatory responses without exceeding doses recommended by the clinical guidelines.

  5. Secoisolariciresinol diglucoside prevents the oxidative stress-induced apoptosis of myocardial cells through activation of the JAK2/STAT3 signaling pathway.

    PubMed

    Huang, Guiqiong; Huang, Xiaofang; Liu, Min; Hua, Yue; Deng, Bo; Jin, Wen; Yan, Wen; Tan, Zhangbin; Wu, Yifen; Liu, Bin; Zhou, Yingchun

    2018-06-01

    Myocardial cell apoptosis mediated by oxidative stress has previously been identified as a key process in ischemic heart disease. Secoisolariciresinol diglucoside (SDG), a polyphenolic plant lignan primarily found in flaxseed, has been demonstrated to effectively protect myocardial cells from apoptosis. In the present study, the role of the Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) was investigated in mediating the protective effect of SDG. Findings of the present study revealed that treatment with H2O2 reduced cell viability and induced apoptosis in H9C2 rat cardiomyocytes. However, SDG was able to reduce the effect of H2O2 in a dose‑dependent manner. H2O2 reduced the expression level of phosphorylated STAT3 and inhibited the levels of B‑cell lymphoma‑extra‑large and induced myeloid leukemia cell differentiation protein, which are the STAT3 target genes. Conversely, SDG rescued phosphorylation of STAT3 and increased the levels of STAT3 target genes. Treatment with SDG alone led to a dose‑dependent increased phosphorylation of JAK2 and STAT3, without activating Src. Furthermore, the anti‑apoptotic effects of SDG were partially abolished by a JAK2/STAT3 inhibitor. In addition, molecular docking revealed that SDG may bind to the protein kinase domain of JAK2, at a binding energy of ‑8.258 kcal/mol. Molecular dynamics simulations revealed that JAK2‑SDG binding was stable. In conclusion, activation of the JAK2/STAT3 signaling pathway contributed to the anti‑apoptotic activity of SDG, which may be a potential JAK2 activator.

  6. Genetic studies reveal an unexpected negative regulatory role for Jak2 in thrombopoiesis

    PubMed Central

    Meyer, Sara C.; Keller, Matthew D.; Woods, Brittany A.; LaFave, Lindsay M.; Bastian, Lennart; Kleppe, Maria; Bhagwat, Neha; Marubayashi, Sachie

    2014-01-01

    JAK inhibitor treatment is limited by the variable development of anemia and thrombocytopenia thought to be due to on-target JAK2 inhibition. We evaluated the impact of Jak2 deletion in platelets (PLTs) and megakaryocytes (MKs) on blood counts, stem/progenitor cells, and Jak-Stat signaling. Pf4-Cre–mediated Jak2 deletion in PLTs and MKs did not compromise PLT formation but caused thrombocytosis, and resulted in expansion of MK progenitors and Lin−Sca1+Kit+ cells. Serum thrombopoietin (TPO) was maintained at normal levels in Pf4-Cre–positive Jak2f/f mice, consistent with reduced internalization/turnover by Jak2-deficient PLTs. These data demonstrate that Jak2 in terminal megakaryopoiesis is not required for PLT production, and that Jak2 loss in PLTs and MKs results in non-autonomous expansion of stem/progenitors and of MKs and PLTs via dysregulated TPO turnover. This suggests that the thrombocytopenia frequently seen with JAK inhibitor treatment is not due to JAK2 inhibition in PLTs and MKs, but rather due to JAK2 inhibition in stem/progenitor cells. PMID:25115888

  7. The Janus kinase inhibitor tofacitinib inhibits TNF-α-induced gliostatin expression in rheumatoid fibroblast-like synoviocytes.

    PubMed

    Kawaguchi, Yohei; Waguri-Nagaya, Yuko; Tatematsu, Naoe; Oguri, Yusuke; Kobayashi, Masaaki; Nozaki, Masahiro; Asai, Kiyofumi; Aoyama, Mineyoshi; Otsuka, Takanobu

    2018-01-15

    Gliostatin (GLS) is known to have angiogenic and arthritogenic activity, and GLS expression levels in serum from patients with rheumatoid arthritis (RA) are significantly correlated with the disease activity. Tofacitinib is a novel oral Janus kinase (JAK) inhibitor and is effective in treating RA. However, the mechanism of action of tofacitinib in fibroblast-like synoviocytes (FLSs) has not been elucidated. The purpose of this study was to investigate the modulatory effects of tofacitinib on serum GLS levels in patients with RA and GLS production in FLSs derived from patients with RA. Six patients with RA who had failed therapy with at least one TNF inhibitor and were receiving tofacitinib therapy were included in the study. Serum samples were collected to measure CRP, MMP-3 and GLS expression. FLSs derived from patients with RA were cultured and stimulated by TNFα with or without tofacitinib. GLS expression levels were determined using reverse transcription-polymerase chain reaction (RT-PCR), EIA and immunocytochemistry, and signal transducer and activator of transcription (STAT) protein phosphorylation levels were determined by western blotting. Treatment with tofacitinib decreased serum GLS levels in all patients. GLS mRNA and protein expression levels were significantly increased by treatment with TNF-α alone, and these increases were suppressed by treatment with tofacitinib, which also inhibited TNF-α-induced STAT1 phosphorylation. JAK/STAT activation plays a pivotal role in TNF-α-mediated GLS up-regulation in RA. Suppression of GLS expression in FLSs has been suggested to be one of the mechanisms through which tofacitinib exerts its anti-inflammatory effects.

  8. The Potential Role of Aurora Kinase Inhibitors in Haematological Malignancies

    PubMed Central

    Farag, Sherif S.

    2011-01-01

    Summary Aurora kinases play an important role in the control of the cell cycle and have been implicated in tumourigenesis in a number of cancers. Among the haematological malignancies, overexpression of Aurora kinases has been reported in acute myeloid leukaemia, chronic myeloid leukaemia, acute lymphoblastic leukaemia, multiple myeloma, aggressive non-Hodgkin lymphoma and Hodgkin lymphoma. A large number of Aurora kinase inhibitors are currently in different stages of clinical development. In addition to varying in their selectivity for the different Aurora kinases, some also have activity directed at other cellular kinases involved in important molecular pathways in cancer cells. This review summarizes the biology of Aurora kinases and discusses why they may be good therapeutic targets in different haematological cancers. We describe preclinical data that has served as the rationale for investigating Aurora kinase inhibitors in different haematological malignancies, and summarize published results from early phase clinical trials. While the anti-tumour effects of Aurora kinase inhibitors appear promising, we highlight important issues for future clinical research and suggest that the optimal use of these inhibitors is likely to be in combination with cytotoxic agents already in use for the treatment of various haematological cancers. PMID:21980926

  9. Model Based Targeting of IL-6-Induced Inflammatory Responses in Cultured Primary Hepatocytes to Improve Application of the JAK Inhibitor Ruxolitinib

    PubMed Central

    Sobotta, Svantje; Raue, Andreas; Huang, Xiaoyun; Vanlier, Joep; Jünger, Anja; Bohl, Sebastian; Albrecht, Ute; Hahnel, Maximilian J.; Wolf, Stephanie; Mueller, Nikola S.; D'Alessandro, Lorenza A.; Mueller-Bohl, Stephanie; Boehm, Martin E.; Lucarelli, Philippe; Bonefas, Sandra; Damm, Georg; Seehofer, Daniel; Lehmann, Wolf D.; Rose-John, Stefan; van der Hoeven, Frank; Gretz, Norbert; Theis, Fabian J.; Ehlting, Christian; Bode, Johannes G.; Timmer, Jens; Schilling, Marcel; Klingmüller, Ursula

    2017-01-01

    IL-6 is a central mediator of the immediate induction of hepatic acute phase proteins (APP) in the liver during infection and after injury, but increased IL-6 activity has been associated with multiple pathological conditions. In hepatocytes, IL-6 activates JAK1-STAT3 signaling that induces the negative feedback regulator SOCS3 and expression of APPs. While different inhibitors of IL-6-induced JAK1-STAT3-signaling have been developed, understanding their precise impact on signaling dynamics requires a systems biology approach. Here we present a mathematical model of IL-6-induced JAK1-STAT3 signaling that quantitatively links physiological IL-6 concentrations to the dynamics of IL-6-induced signal transduction and expression of target genes in hepatocytes. The mathematical model consists of coupled ordinary differential equations (ODE) and the model parameters were estimated by a maximum likelihood approach, whereas identifiability of the dynamic model parameters was ensured by the Profile Likelihood. Using model simulations coupled with experimental validation we could optimize the long-term impact of the JAK-inhibitor Ruxolitinib, a therapeutic compound that is quickly metabolized. Model-predicted doses and timing of treatments helps to improve the reduction of inflammatory APP gene expression in primary mouse hepatocytes close to levels observed during regenerative conditions. The concept of improved efficacy of the inhibitor through multiple treatments at optimized time intervals was confirmed in primary human hepatocytes. Thus, combining quantitative data generation with mathematical modeling suggests that repetitive treatment with Ruxolitinib is required to effectively target excessive inflammatory responses without exceeding doses recommended by the clinical guidelines. PMID:29062282

  10. Virtual screening of selective multitarget kinase inhibitors by combinatorial support vector machines.

    PubMed

    Ma, X H; Wang, R; Tan, C Y; Jiang, Y Y; Lu, T; Rao, H B; Li, X Y; Go, M L; Low, B C; Chen, Y Z

    2010-10-04

    Multitarget agents have been increasingly explored for enhancing efficacy and reducing countertarget activities and toxicities. Efficient virtual screening (VS) tools for searching selective multitarget agents are desired. Combinatorial support vector machines (C-SVM) were tested as VS tools for searching dual-inhibitors of 11 combinations of 9 anticancer kinase targets (EGFR, VEGFR, PDGFR, Src, FGFR, Lck, CDK1, CDK2, GSK3). C-SVM trained on 233-1,316 non-dual-inhibitors correctly identified 26.8%-57.3% (majority >36%) of the 56-230 intra-kinase-group dual-inhibitors (equivalent to the 50-70% yields of two independent individual target VS tools), and 12.2% of the 41 inter-kinase-group dual-inhibitors. C-SVM were fairly selective in misidentifying as dual-inhibitors 3.7%-48.1% (majority <20%) of the 233-1,316 non-dual-inhibitors of the same kinase pairs and 0.98%-4.77% of the 3,971-5,180 inhibitors of other kinases. C-SVM produced low false-hit rates in misidentifying as dual-inhibitors 1,746-4,817 (0.013%-0.036%) of the 13.56 M PubChem compounds, 12-175 (0.007%-0.104%) of the 168 K MDDR compounds, and 0-84 (0.0%-2.9%) of the 19,495-38,483 MDDR compounds similar to the known dual-inhibitors. C-SVM was compared to other VS methods Surflex-Dock, DOCK Blaster, kNN and PNN against the same sets of kinase inhibitors and the full set or subset of the 1.02 M Zinc clean-leads data set. C-SVM produced comparable dual-inhibitor yields, slightly better false-hit rates for kinase inhibitors, and significantly lower false-hit rates for the Zinc clean-leads data set. Combinatorial SVM showed promising potential for searching selective multitarget agents against intra-kinase-group kinases without explicit knowledge of multitarget agents.

  11. Discovery of Type II Inhibitors of TGFβ-Activated Kinase 1 (TAK1) and Mitogen-Activated Protein Kinase Kinase Kinase Kinase 2 (MAP4K2)

    PubMed Central

    2015-01-01

    We developed a pharmacophore model for type II inhibitors that was used to guide the construction of a library of kinase inhibitors. Kinome-wide selectivity profiling of the library resulted in the identification of a series of 4-substituted 1H-pyrrolo[2,3-b]pyridines that exhibited potent inhibitory activity against two mitogen-activated protein kinases (MAPKs), TAK1 (MAP3K7) and MAP4K2, as well as pharmacologically well interrogated kinases such as p38α (MAPK14) and ABL. Further investigation of the structure–activity relationship (SAR) resulted in the identification of potent dual TAK1 and MAP4K2 inhibitors such as 1 (NG25) and 2 as well as MAP4K2 selective inhibitors such as 16 and 17. Some of these inhibitors possess good pharmacokinetic properties that will enable their use in pharmacological studies in vivo. A 2.4 Å cocrystal structure of TAK1 in complex with 1 confirms that the activation loop of TAK1 assumes the DFG-out conformation characteristic of type II inhibitors. PMID:25075558

  12. Regulatory effect of calcineurin inhibitor, tacrolimus, on IL-6/sIL-6R-mediated RANKL expression through JAK2-STAT3-SOCS3 signaling pathway in fibroblast-like synoviocytes

    PubMed Central

    2013-01-01

    Introduction This study investigated whether the calcineurin inhibitor, tacrolimus, suppresses receptor activator of NF-κB ligand (RANKL) expression in fibroblast-like synoviocytes (FLS) through regulation of IL-6/Janus activated kinase (JAK2)/signal transducer and activator of transcription-3 (STAT3) and suppressor of cytokine signaling (SOCS3) signaling. Methods The expression of RANKL, JAK2, STAT3, and SOCS3 proteins was assessed by western blot analysis, real-time PCR and ELISA in IL-6 combined with soluble IL-6 receptor (sIL-6R)-stimulated rheumatoid arthritis (RA)-FLS with or without tacrolimus treatment. The effects of tacrolimus on synovial inflammation and bone erosion were assessed using mice with arthritis induced by K/BxN serum. Immunofluorescent staining was performed to identify the effect of tacrolimus on RANKL and SOCS3. The tartrate-resistant acid phosphatase staining assay was performed to assess the effect of tacrolimus on osteoclast differentiation. Results We found that RANKL expression in RA FLS is regulated by the IL-6/sIL-6R/JAK2/STAT3/SOCS3 pathway. Inhibitory effects of tacrolimus on RANKL expression in a serum-induced arthritis mice model were identified. Tacrolimus inhibits RANKL expression in IL-6/sIL-6R-stimulated FLS by suppressing STAT3. Among negative regulators of the JAK/STAT pathway, such as CIS1, SOCS1, and SOCS3, only SOCS3 is significantly induced by tacrolimus. As compared to dexamethasone and methotrexate, tacrolimus more potently suppresses RANKL expression in FLS. By up-regulating SOCS3, tacrolimus down-regulates activation of the JAK-STAT pathway by IL-6/sIL-6R trans-signaling, thus decreasing RANKL expression in FLS. Conclusions These data suggest that tacrolimus might affect the RANKL expression in IL-6 stimulated FLS through STAT3 suppression, together with up-regulation of SOCS3. PMID:23406906

  13. Controlling nuclear JAKs and STATs for specific gene activation by IFN{gamma}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noon-Song, Ezra N.; Ahmed, Chulbul M.; Dabelic, Rea

    2011-07-08

    Highlights: {yields} Gamma interferon (IFN{gamma}) and its receptor subunit, IFNGR1, interact with the promoter region of IFN{gamma}-associated genes along with transcription factor STAT1{alpha}. {yields} We show that activated Janus kinases pJAK2 and pJAK1 also associate with IFNGR1 in the nucleus. {yields} The activated Janus kinases are responsible for phosphorylation of tyrosine 41 on histone H3, an important epigenetic event for specific gene activation. -- Abstract: We previously showed that gamma interferon (IFN{gamma}) and its receptor subunit, IFNGR1, interacted with the promoter region of IFN{gamma}-activated genes along with transcription factor STAT1{alpha}. Recent studies have suggested that activated Janus kinases pJAK2 andmore » pJAK1 also played a role in gene activation by phosphorylation of histone H3 on tyrosine 41. This study addresses the question of the role of activated JAKs in specific gene activation by IFN{gamma}. We carried out chromatin immunoprecipitation (ChIP) followed by PCR in IFN{gamma} treated WISH cells and showed association of pJAK1, pJAK2, IFNGR1, and STAT1 on the same DNA sequence of the IRF-1 gene promoter. The {beta}-actin gene, which is not activated by IFN{gamma}, did not show this association. The movement of activated JAK to the nucleus and the IRF-1 promoter was confirmed by the combination of nuclear fractionation, confocal microscopy and DNA precipitation analysis using the biotinylated GAS promoter. Activated JAKs in the nucleus was associated with phosphorylated tyrosine 41 on histone H3 in the region of the GAS promoter. Unphosphorylated JAK2 was found to be constitutively present in the nucleus and was capable of undergoing activation in IFN{gamma} treated cells, most likely via nuclear IFNGR1. Association of pJAK2 and IFNGR1 with histone H3 in IFN{gamma} treated cells was demonstrated by histone H3 immunoprecipitation. Unphosphorylated STAT1 protein was associated with histone H3 of untreated cells. IFN

  14. Surfactant protein C dampens inflammation by decreasing JAK/STAT activation during lung repair.

    PubMed

    Jin, Huiyan; Ciechanowicz, Andrzej K; Kaplan, Alanna R; Wang, Lin; Zhang, Ping-Xia; Lu, Yi-Chien; Tobin, Rachel E; Tobin, Brooke A; Cohn, Lauren; Zeiss, Caroline J; Lee, Patty J; Bruscia, Emanuela M; Krause, Diane S

    2018-05-01

    Surfactant protein C (SPC), a key component of pulmonary surfactant, also plays a role in regulating inflammation. SPC deficiency in patients and mouse models is associated with increased inflammation and delayed repair, but the key drivers of SPC-regulated inflammation in response to injury are largely unknown. This study focuses on a new mechanism of SPC as an anti-inflammatory molecule using SPC-TK/SPC-KO (surfactant protein C-thymidine kinase/surfactant protein C knockout) mice, which represent a novel sterile injury model that mimics clinical acute respiratory distress syndrome (ARDS). SPC-TK mice express the inducible suicide gene thymidine kinase from by the SPC promoter, which targets alveolar type 2 (AT2) cells for depletion in response to ganciclovir (GCV). We compared GCV-induced injury and repair in SPC-TK mice that have normal endogenous SPC expression with SPC-TK/SPC-KO mice lacking SPC expression. In contrast to SPC-TK mice, SPC-TK/SPC-KO mice treated with GCV exhibited more severe inflammation, resulting in over 90% mortality; there was only 8% mortality of SPC-TK animals. SPC-TK/SPC-KO mice had highly elevated inflammatory cytokines and granulocyte infiltration in the bronchoalveolar lavage (BAL) fluid. Consistent with a proinflammatory phenotype, immunofluorescence revealed increased phosphorylated signal transduction and activation of transcription 3 (pSTAT3), suggesting enhanced Janus kinase (JAK)/STAT activation in inflammatory and AT2 cells of SPC-TK/SPC-KO mice. The level of suppressor of cytokine signaling 3, an anti-inflammatory mediator that decreases pSTAT3 signaling, was significantly decreased in the BAL fluid of SPC-TK/SPC-KO mice. Hyperactivation of pSTAT3 and inflammation were rescued by AZD1480, a JAK1/2 inhibitor. Our findings showing a novel role for SPC in regulating inflammation via JAK/STAT may have clinical applications.

  15. Design, Synthesis and Inhibitory Activity of Photoswitchable RET Kinase Inhibitors

    NASA Astrophysics Data System (ADS)

    Ferreira, Rubén; Nilsson, Jesper R.; Solano, Carlos; Andréasson, Joakim; Grøtli, Morten

    2015-05-01

    REarranged during Transfection (RET) is a transmembrane receptor tyrosine kinase required for normal development and maintenance of neurons of the central and peripheral nervous systems. Deregulation of RET and hyperactivity of the RET kinase is intimately connected to several types of human cancers, most notably thyroid cancers, making it an attractive therapeutic target for small-molecule kinase inhibitors. Novel approaches, allowing external control of the activity of RET, would be key additions to the signal transduction toolbox. In this work, photoswitchable RET kinase inhibitors based on azo-functionalized pyrazolopyrimidines were developed, enabling photonic control of RET activity. The most promising compound displays excellent switching properties and stability with good inhibitory effect towards RET in cell-free as well as live-cell assays and a significant difference in inhibitory activity between its two photoisomeric forms. As the first reported photoswitchable small-molecule kinase inhibitor, we consider the herein presented effector to be a significant step forward in the development of tools for kinase signal transduction studies with spatiotemporal control over inhibitor concentration in situ.

  16. Guanidinium-based derivatives: searching for new kinase inhibitors.

    PubMed

    Diez-Cecilia, Elena; Kelly, Brendan; Perez, Concepcion; Zisterer, Daniela M; Nevin, Daniel K; Lloyd, David G; Rozas, Isabel

    2014-06-23

    Considering the structural similarities between the kinase inhibitor sorafenib and 4,4'-bis-guanidinium derivatives previously prepared by Rozas and co., which display interesting cytotoxicity in cancer cells, we have studied whether this activity could result from kinase inhibition. Five new families have been prepared consisting of unsubstituted and aryl-substituted 3,4'-bis-guanidiniums, 3,4'-bis-2-aminoimidazolinium and 3-acetamide-4'-(4-chloro-3-trifluoromethylphenyl)guanidinium derivatives. Cytotoxicity (measuring the IC50 values) and apoptosis studies in human HL-60 promyelocytic leukemia cells were carried out for these compounds. Additionally, their potential inhibitory effect was explored on a panel of kinases known to be involved in apoptotic pathways. The previously prepared cytotoxic 4,4'-bis-guanidiniums did not inhibit any of these kinases; however, some of the novel 3,4'-substituted derivatives showed a high percentage inhibition of RAF-1/MEK-1, for which the potential mode of binding was evaluated by docking studies. The interesting antitumour properties showed by these compounds open up new exciting lines of investigation for kinase inhibitors as anticancer agents and also highlights the relevance of the guanidinium moiety for protein kinase inhibitors chemical design. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  17. Achieving neuroprotection with LRRK2 kinase inhibitors in Parkinson disease.

    PubMed

    West, Andrew B

    2017-12-01

    In the translation of discoveries from the laboratory to the clinic, the track record in developing disease-modifying therapies in neurodegenerative disease is poor. A carefully designed development pipeline built from discoveries in both pre-clinical models and patient populations is necessary to optimize the chances for success. Genetic variation in the leucine-rich repeat kinase two gene (LRRK2) is linked to Parkinson disease (PD) susceptibility. Pathogenic mutations, particularly those in the LRRK2 GTPase (Roc) and COR domains, increase LRRK2 kinase activities in cells and tissues. In some PD models, small molecule LRRK2 kinase inhibitors that block these activities also provide neuroprotection. Herein, the genetic and biochemical evidence that supports the involvement of LRRK2 kinase activity in PD susceptibility is reviewed. Issues related to the definition of a therapeutic window for LRRK2 inhibition and the safety of chronic dosing are discussed. Finally, recommendations are given for a biomarker-guided initial entry of LRRK2 kinase inhibitors in PD patients. Four key areas must be considered for achieving neuroprotection with LRRK2 kinase inhibitors in PD: 1) identification of patient populations most likely to benefit from LRRK2 kinase inhibitors, 2) prioritization of superior LRRK2 small molecule inhibitors based on open disclosures of drug performance, 3) incorporation of biomarkers and empirical measures of LRRK2 kinase inhibition in clinical trials, and 4) utilization of appropriate efficacy measures guided in part by rigorous pre-clinical modeling. Meticulous and rational development decisions can potentially prevent incredibly costly errors and provide the best chances for LRRK2 inhibitors to slow the progression of PD. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.

  18. JAK-STAT signalling and the atrial fibrillation promoting fibrotic substrate

    PubMed Central

    Chen, Yu; Surinkaew, Sirirat; Naud, Patrice; Qi, Xiao-Yan; Gillis, Marc-Antoine; Shi, Yan-Fen; Tardif, Jean-Claude; Dobrev, Dobromir; Nattel, Stanley

    2017-01-01

    Aims Left-atrial (LA) fibrosis is an important feature of many atrial fibrillation (AF) substrates. The JAK-STAT system contributes to cardiac remodelling, but its role in AF is unknown. Here we investigated JAK-STAT changes in an AF-model and their potential contributions to LA-fibrosis. Methods and results LA-remodelling was studied in dogs with heart failure (HF) induced by ventricular tachypacing (VTP, 240 bpm), and in mice with left-ventricular (LV) dysfunction due to myocardial infarction (MI). The selective STAT-3 inhibitor S3I-201 was administered to fibroblasts in vitro or mice in vivo (10 mg/kg/d, osmotic mini-pump). HF-dogs developed LA-selective fibrosis and AF-susceptibility at 1-week VTP. The mRNA-expression of platelet-derived growth factor (PDGF, a JAK-STAT activator) isoforms A, C and D, as well as JAK2, increased in LA fibroblasts from 1-week VTP. HF upregulated protein-expression of PDGF-receptor-β and phosphorylated (activated) signal transducer and activator of transcription 3 (STAT3) in LA. PDGF-AB stimulation of LA fibroblasts increased PDGFR-α, STAT3 and phosphorylated-STAT3 expression, as well as collagen-1 and fibronectin-1 protein secretion (by 1.6- to 20-fold), with smaller changes in LV fibroblasts. Phosphorylated-STAT3 and collagen upregulation were suppressed by the JAK2 inhibitor AG-490, PDGF receptor inhibitor AG1296 and STAT3-inhibitor SI3-201. In vivo S3I-201 treatment of MI-mice attenuated LA-fibrosis, LA-dilation and P-wave duration changes versus vehicle-control. Conclusions HF activates the LA JAK-STAT system and enhances PDGF-signalling. JAK-STAT inhibition reduces the profibrotic effects of PDGF stimulation on canine fibroblasts in vitro while attenuating in vivo LA-fibrosis and remodelling in post-MI mice, suggesting that the JAK/STAT pathway contributes to LA-fibrogenesis and might be a potential target for LA-fibrosis prevention. PMID:28158495

  19. Novel mutant-selective EGFR kinase inhibitors against EGFR T790M

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Wenjun; Ercan, Dalia; Chen, Liang

    2010-01-12

    The clinical efficacy of epidermal growth factor receptor (EGFR) kinase inhibitors in EGFR-mutant non-small-cell lung cancer (NSCLC) is limited by the development of drug-resistance mutations, including the gatekeeper T790M mutation. Strategies targeting EGFR T790M with irreversible inhibitors have had limited success and are associated with toxicity due to concurrent inhibition of wild-type EGFR. All current EGFR inhibitors possess a structurally related quinazoline-based core scaffold and were identified as ATP-competitive inhibitors of wild-type EGFR. Here we identify a covalent pyrimidine EGFR inhibitor by screening an irreversible kinase inhibitor library specifically against EGFR T790M. These agents are 30- to 100-fold more potentmore » against EGFR T790M, and up to 100-fold less potent against wild-type EGFR, than quinazoline-based EGFR inhibitors in vitro. They are also effective in murine models of lung cancer driven by EGFR T790M. Co-crystallization studies reveal a structural basis for the increased potency and mutant selectivity of these agents. These mutant-selective irreversible EGFR kinase inhibitors may be clinically more effective and better tolerated than quinazoline-based inhibitors. Our findings demonstrate that functional pharmacological screens against clinically important mutant kinases represent a powerful strategy to identify new classes of mutant-selective kinase inhibitors.« less

  20. JAK inhibition alleviates the cellular senescence-associated secretory phenotype and frailty in old age

    PubMed Central

    Xu, Ming; Tchkonia, Tamara; Ding, Husheng; Ogrodnik, Mikolaj; Lubbers, Ellen R.; Pirtskhalava, Tamar; White, Thomas A.; Johnson, Kurt O.; Stout, Michael B.; Mezera, Vojtech; Giorgadze, Nino; Jensen, Michael D.; LeBrasseur, Nathan K.; Kirkland, James L.

    2015-01-01

    Chronic, low grade, sterile inflammation frequently accompanies aging and age-related diseases. Cellular senescence is associated with the production of proinflammatory chemokines, cytokines, and extracellular matrix (ECM) remodeling proteases, which comprise the senescence-associated secretory phenotype (SASP). We found a higher burden of senescent cells in adipose tissue with aging. Senescent human primary preadipocytes as well as human umbilical vein endothelial cells (HUVECs) developed a SASP that could be suppressed by targeting the JAK pathway using RNAi or JAK inhibitors. Conditioned medium (CM) from senescent human preadipocytes induced macrophage migration in vitro and inflammation in healthy adipose tissue and preadipocytes. When the senescent cells from which CM was derived had been treated with JAK inhibitors, the resulting CM was much less proinflammatory. The administration of JAK inhibitor to aged mice for 10 wk alleviated both adipose tissue and systemic inflammation and enhanced physical function. Our findings are consistent with a possible contribution of senescent cells and the SASP to age-related inflammation and frailty. We speculate that SASP inhibition by JAK inhibitors may contribute to alleviating frailty. Targeting the JAK pathway holds promise for treating age-related dysfunction. PMID:26578790

  1. Preclinical evaluation of local JAK1 and JAK2 inhibition in cutaneous inflammation.

    PubMed

    Fridman, Jordan S; Scherle, Peggy A; Collins, Robert; Burn, Timothy; Neilan, Claire L; Hertel, Denise; Contel, Nancy; Haley, Patrick; Thomas, Beth; Shi, Jack; Collier, Paul; Rodgers, James D; Shepard, Stacey; Metcalf, Brian; Hollis, Gregory; Newton, Robert C; Yeleswaram, Swamy; Friedman, Steven M; Vaddi, Kris

    2011-09-01

    JAKs are required for signaling initiated by several cytokines (e.g., IL-4, IL-12, IL-23, thymic stromal lymphopoietin (TSLP), and IFNγ) implicated in the pathogenesis of inflammatory skin diseases such as psoriasis and atopic dermatitis (AD). Direct antagonism of cytokines, such as IL-12 and IL-23 using ustekinumab, has proven effective in randomized studies in psoriasis patients. We hypothesized that local inhibition of cytokine signaling using topical administration of INCB018424, a small molecule inhibitor of JAK1 and JAK2, would provide benefit similar to systemic cytokine neutralization. In cellular assays, INCB018424 inhibits cytokine-induced JAK/signal transducers and activators of transcription (STAT) signaling and the resultant production of inflammatory proteins (e.g., IL-17, monocyte chemotactic protein-1, and IL-22) in lymphocytes and monocytes, with half-maximal inhibitory concentration values <100  nM. In vivo, topical application of INCB018424 resulted in suppression of STAT3 phosphorylation, edema, lymphocyte infiltration, and keratinocyte proliferation in a murine contact hypersensitivity model and inhibited tissue inflammation induced by either intradermal IL-23 or TSLP. Topical INCB018424 was also well tolerated in a 28-day safety study in Gottingen minipigs. These results suggest that localized JAK1/JAK2 inhibition may be therapeutic in a range of inflammatory skin disorders such as psoriasis and AD. Clinical evaluation of topical INCB018424 is ongoing.

  2. 2-Aminobenzimidazoles as potent Aurora kinase inhibitors.

    PubMed

    Zhong, Min; Bui, Minna; Shen, Wang; Baskaran, Subramanian; Allen, Darin A; Elling, Robert A; Flanagan, W Michael; Fung, Amy D; Hanan, Emily J; Harris, Shannon O; Heumann, Stacey A; Hoch, Ute; Ivy, Sheryl N; Jacobs, Jeffrey W; Lam, Stuart; Lee, Heman; McDowell, Robert S; Oslob, Johan D; Purkey, Hans E; Romanowski, Michael J; Silverman, Jeffrey A; Tangonan, Bradley T; Taverna, Pietro; Yang, Wenjin; Yoburn, Josh C; Yu, Chul H; Zimmerman, Kristin M; O'Brien, Tom; Lew, Willard

    2009-09-01

    This Letter describes the discovery and key structure-activity relationship (SAR) of a series of 2-aminobenzimidazoles as potent Aurora kinase inhibitors. 2-Aminobenzimidazole serves as a bioisostere of the biaryl urea residue of SNS-314 (1c), which is a potent Aurora kinase inhibitor and entered clinical testing in patients with solid tumors. Compared to SNS-314, this series of compounds offers better aqueous solubility while retaining comparable in vitro potency in biochemical and cell-based assays; in particular, 6m has also demonstrated a comparable mouse iv PK profile to SNS-314.

  3. Responses to Cytokines and Interferons that Depend upon JAKs and STATs.

    PubMed

    Stark, George R; Cheon, HyeonJoo; Wang, Yuxin

    2018-01-02

    Many cytokines and all interferons activate members of a small family of kinases (the Janus kinases [JAKs]) and a slightly larger family of transcription factors (the signal transducers and activators of transcription [STATs]), which are essential components of pathways that induce the expression of specific sets of genes in susceptible cells. JAK-STAT pathways are required for many innate and acquired immune responses, and the activities of these pathways must be finely regulated to avoid major immune dysfunctions. Regulation is achieved through mechanisms that include the activation or induction of potent negative regulatory proteins, posttranslational modification of the STATs, and other modulatory effects that are cell-type specific. Mutations of JAKs and STATs can result in gains or losses of function and can predispose affected individuals to autoimmune disease, susceptibility to a variety of infections, or cancer. Here we review recent developments in the biochemistry, genetics, and biology of JAKs and STATs. Copyright © 2018 Cold Spring Harbor Laboratory Press; all rights reserved.

  4. Discovery of Type II Inhibitors of TGFβ-Activated Kinase 1 (TAK1) and Mitogen-Activated Protein Kinase Kinase Kinase Kinase 2 (MAP4K2)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Li; Nomanbhoy, Tyzoon; Gurbani, Deepak

    Here, we developed a pharmacophore model for type II inhibitors that was used to guide the construction of a library of kinase inhibitors. Kinome-wide selectivity profiling of the library resulted in the identification of a series of 4-substituted 1H-pyrrolo[2,3-b]pyridines that exhibited potent inhibitory activity against two mitogen-activated protein kinases (MAPKs), TAK1 (MAP3K7) and MAP4K2, as well as pharmacologically well interrogated kinases such as p38α (MAPK14) and ABL. Further investigation of the structure–activity relationship (SAR) resulted in the identification of potent dual TAK1 and MAP4K2 inhibitors such as 1 (NG25) and 2 as well as MAP4K2 selective inhibitors such as 16more » and 17. Some of these inhibitors possess good pharmacokinetic properties that will enable their use in pharmacological studies in vivo. Lastly, a 2.4 Å cocrystal structure of TAK1 in complex with 1 confirms that the activation loop of TAK1 assumes the DFG-out conformation characteristic of type II inhibitors.« less

  5. Discovery of Type II Inhibitors of TGFβ-Activated Kinase 1 (TAK1) and Mitogen-Activated Protein Kinase Kinase Kinase Kinase 2 (MAP4K2)

    DOE PAGES

    Tan, Li; Nomanbhoy, Tyzoon; Gurbani, Deepak; ...

    2014-07-17

    Here, we developed a pharmacophore model for type II inhibitors that was used to guide the construction of a library of kinase inhibitors. Kinome-wide selectivity profiling of the library resulted in the identification of a series of 4-substituted 1H-pyrrolo[2,3-b]pyridines that exhibited potent inhibitory activity against two mitogen-activated protein kinases (MAPKs), TAK1 (MAP3K7) and MAP4K2, as well as pharmacologically well interrogated kinases such as p38α (MAPK14) and ABL. Further investigation of the structure–activity relationship (SAR) resulted in the identification of potent dual TAK1 and MAP4K2 inhibitors such as 1 (NG25) and 2 as well as MAP4K2 selective inhibitors such as 16more » and 17. Some of these inhibitors possess good pharmacokinetic properties that will enable their use in pharmacological studies in vivo. Lastly, a 2.4 Å cocrystal structure of TAK1 in complex with 1 confirms that the activation loop of TAK1 assumes the DFG-out conformation characteristic of type II inhibitors.« less

  6. Suppression of microRNA-135b-5p protects against myocardial ischemia/reperfusion injury by activating JAK2/STAT3 signaling pathway in mice during sevoflurane anesthesia.

    PubMed

    Xie, Xiao-Juan; Fan, Dong-Mei; Xi, Kai; Chen, Ya-Wei; Qi, Peng-Wei; Li, Qian-Hui; Fang, Liang; Ma, Li-Gang

    2017-06-30

    The study aims to explore the effects of miR-135b-5p on myocardial ischemia/reperfusion (I/R) injuries by regulating Janus protein tyrosine kinase 2 (JAK2)/signal transducer and activator of transcription (STAT) signaling pathway by mediating inhalation anesthesia with sevoflurane. A sum of 120 healthy Wistar male mice was assigned into six groups. Left ventricular ejection fraction (LVEF) and left ventricular shortening fraction (LVSF) were detected. Cardiomyocyte apoptosis was determined by terminal dexynucleotidyl transferase mediated dUTP-biotin nick end labeling (TUNEL) assay. MiR-135b-5p expression, mRNA and protein expression of p-STAT3, p-JAK2, STAT3, JAK2, B-cell lymphoma-2 (Bcl-2) and Bcl-2 associated X protein B (Bax) were detected by quantitative real-time PCR (qRT-PCR) and Western blotting. Target relationship between miR-135b-5p and JAK2 was confirmed by dual-luciferase reporter assay. The other five groups exhibited increased cardiomyocyte necrosis, apoptosis, miR-135b-5p and Bax expression, mRNA expression of JAK2 and STAT3, and protein expression of p-STAT3 and p-JAK2 compared with the sham group, but showed decreased LVEF, LVFS, and Bcl-2 expression. Compared with the model and AG490 + Sevo groups, the Sevo, inhibitor + Sevo and inhibitor + AG490 + Sevo groups displayed reduced cardiomyocyte necrosis, apoptosis, miR-135b-5p and Bax expression, but displayed elevated mRNA expression of JAK2 and STAT3, protein expression of p-STAT3 and p-JAK2, LVEF, LVFS and Bcl-2 expression. Compared with the Sevo and inhibitor + AG490 + Sevo groups, the AG490 + Sevo group showed decreased LVEF, LVFS, Bcl-2 expression, mRNA expressions of JAK2 and STAT3, and protein expressions of p-STAT3 and p-JAK2, but increased cardiomyocyte necrosis, apoptosis, and Bax expressions. MiR-135b-5p negatively targetted JAK2. Inhibition of miR-135b-5p can protect against myocardial I/R injury by activating JAK2/STAT3 signaling pathway through mediation of inhalation anesthesia with

  7. p21-Activated kinase inhibitors: a patent review.

    PubMed

    Crawford, James J; Hoeflich, Klaus P; Rudolph, Joachim

    2012-03-01

    The p21-activated kinase (PAK) family of serine/threonine protein kinases is activated by binding to the small (p21) GTP-binding proteins Cdc42 and Rac. The PAK family plays important roles in cytoskeletal organisation, cellular morphogenesis and survival, and members of this family have been implicated in a wide range of diseases including cancer, infectious diseases, neurological disorders and arthritis. The present review seeks to summarise recent (up to 2011) reports of small-molecule inhibitors of p21-activated kinases. Where patent applications describe activity against a broad range of kinases and no information was provided specifically on PAK inhibition, these are excluded from this review. In patents considered to be relevant, exemplary compounds were selected and highlighted based on their representation of the chemical matter claimed, potencies, structural features and subsequent disclosure of their properties. Selected information from non-patent literature was also included. A considerable amount of research has been devoted over the past 15 years to exploring the role of PAKs in a wide range of diseases, with a focus on oncology. Published PAK inhibitors are still comparatively rare and few exhibit satisfactory kinase selectivity and 'drug-like' properties. A key question is which profile, pan-PAK, group selective or isoform selective, holds the most promise from both therapeutic and safety standpoints. To investigate this question, isoform-selective, as well as kinome-selective, PAK inhibitor tool compounds will be needed. Pfizer was the first company to progress a PAK inhibitor (pan-PAK) to clinical development; it is expected that, despite the difficulties, other PAK inhibitors will soon follow.

  8. Efficacy, Safety, Pharmacokinetics, and Pharmacodynamics of Filgotinib, a Selective JAK-1 Inhibitor, After Short-Term Treatment of Rheumatoid Arthritis: Results of Two Randomized Phase IIa Trials.

    PubMed

    Vanhoutte, Frédéric; Mazur, Minodora; Voloshyn, Oleksandr; Stanislavchuk, Mykola; Van der Aa, Annegret; Namour, Florence; Galien, René; Meuleners, Luc; van 't Klooster, Gerben

    2017-10-01

    JAK inhibitors have shown efficacy in rheumatoid arthritis (RA). We undertook this study to test our hypothesis that selective inhibition of JAK-1 would combine good efficacy with a better safety profile compared with less selective JAK inhibitors. In two 4-week exploratory, double-blind, placebo-controlled phase IIa trials, 127 RA patients with an insufficient response to methotrexate (MTX) received filgotinib (GLPG0634, GS-6034) oral capsules (100 mg twice daily or 30, 75, 150, 200, or 300 mg once daily) or placebo, added onto a stable regimen of MTX, to evaluate safety, efficacy, pharmacokinetics (PK), and pharmacodynamics (PD) of filgotinib. The primary efficacy end point was the number and percentage of patients in each treatment group meeting the American College of Rheumatology 20% improvement criteria (achieving an ACR20 response) at week 4. Treatment with filgotinib at 75-300 mg met the primary end point and showed early onset of efficacy. ACR20 response rates progressively increased to week 4, and the Disease Activity Score in 28 joints using the C-reactive protein (CRP) level decreased. Marked and sustained improvements were observed in serum CRP level and other PD markers. The PK of filgotinib and its major metabolite was dose proportional over the 30-300 mg range. Early side effects seen with other less selective JAK inhibitors were not observed (e.g., there was no worsening of anemia [JAK-2 inhibition related], no effects on liver transaminases, and no increase in low-density lipoprotein or total cholesterol). A limited decrease in neutrophils without neutropenia was consistent with immunomodulatory effects through JAK-1 inhibition. There were no infections. Overall, filgotinib was well tolerated. Events related to study drug were mild or moderate and transient during therapy, and the most common such event was nausea. Selective inhibition of JAK-1 with filgotinib shows initial efficacy in RA with an encouraging safety profile in these exploratory

  9. JAK2 inhibitor TG101348 overcomes erlotinib-resistance in non-small cell lung carcinoma cells with mutated EGF receptor

    PubMed Central

    Duan, Shan-zhou; Xia, Ying-chen; Zhu, Rong-ying; Chen, Yong-bing

    2015-01-01

    Non-small cell lung cancer (NSCLC) patients with epidermal growth factor receptor (EGFR) mutations are responsive to EGFR-tyrosine kinase inhibitor (EGFR-TKI). However, NSCLC patients with secondary somatic EGFR mutations are resistant to EGFR-TKI treatment. In this study, we investigated the effect of TG101348 (a JAK2 inhibitor) on the tumor growth of erlotinib-resistant NSCLC cells. Cell proliferation, apoptosis, gene expression and tumor growth were evaluated by diphenyltetrazolium bromide (MTT) assay, flow cytometry, terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling (TUNEL) staining, Western Blot and a xenograft mouse model, respectively. Results showed that erlotinib had a stronger impact on the induction of apoptosis in erlotinib-sensitive PC-9 cells but had a weaker effect on erlotinib-resistant H1975 and H1650 cells than TG101348. TG101348 significantly enhanced the cytotoxicity of erlotinib to erlotinib-resistant NSCLC cells, stimulated erlotinib-induced apoptosis and downregulated the expressions of EGFR, p-EGFR, p-STAT3, Bcl-xL and survivin in erlotinib-resistant NSCLC cells. Moreover, the combined treatment of TG101348 and erlotinib induced apoptosis, inhibited the activation of p-EGFR and p-STAT3, and inhibited tumor growth of erlotinib-resistant NSCLC cells in vivo. Our results indicate that TG101348 is a potential adjuvant for NSCLC patients during erlotinib treatment. PMID:25869210

  10. Approved and Experimental Small-Molecule Oncology Kinase Inhibitor Drugs: A Mid-2016 Overview.

    PubMed

    Fischer, Peter M

    2017-03-01

    Kinase inhibitor research is a comparatively recent branch of medicinal chemistry and pharmacology and the first small-molecule kinase inhibitor, imatinib, was approved for clinical use only 15 years ago. Since then, 33 more kinase inhibitor drugs have received regulatory approval for the treatment of a variety of cancers and the volume of reports on the discovery and development of kinase inhibitors has increased to an extent where it is now difficult-even for those working in the field-easily to keep an overview of the compounds that are being developed, as currently there are 231 such compounds, targeting 38 different protein and lipid kinases (not counting isoforms), in clinical use or under clinical investigation. The purpose of this review is thus to provide an overview of the biomedical rationales for the kinases being targeted on the one hand, and the design principles, as well as chemical, pharmacological, pharmaceutical, and toxicological kinase inhibitor properties, on the other hand. Two issues that are especially important in kinase inhibitor research, target selectivity and drug resistance, as well as the underlying structural concepts, are discussed in general terms and in the context of relevant kinases and their inhibitors. © 2016 Wiley Periodicals, Inc.

  11. Genetic alterations activating kinase and cytokine receptor signaling in high-risk acute lymphoblastic leukemia

    PubMed Central

    Roberts, Kathryn G.; Morin, Ryan D.; Zhang, Jinghui; Hirst, Martin; Zhao, Yongjun; Su, Xiaoping; Chen, Shann-Ching; Payne-Turner, Debbie; Churchman, Michelle; Harvey, Richard C.; Chen, Xiang; Kasap, Corynn; Yan, Chunhua; Becksfort, Jared; Finney, Richard P.; Teachey, David T.; Maude, Shannon L.; Tse, Kane; Moore, Richard; Jones, Steven; Mungall, Karen; Birol, Inanc; Edmonson, Michael N.; Hu, Ying; Buetow, Kenneth E.; Chen, I-Ming; Carroll, William L.; Wei, Lei; Ma, Jing; Kleppe, Maria; Levine, Ross L.; Garcia-Manero, Guillermo; Larsen, Eric; Shah, Neil P.; Devidas, Meenakshi; Reaman, Gregory; Smith, Malcolm; Paugh, Steven W.; Evans, William E.; Grupp, Stephan A.; Jeha, Sima; Pui, Ching-Hon; Gerhard, Daniela S.; Downing, James R.; Willman, Cheryl L.; Loh, Mignon; Hunger, Stephen P.; Marra, Marco; Mullighan, Charles G.

    2012-01-01

    SUMMARY Genomic profiling has identified a subtype of high-risk B-progenitor acute lymphoblastic leukemia (B-ALL) with alteration of IKZF1, a gene expression profile similar to BCR-ABL1-positive ALL and poor outcome (Ph-like ALL). The genetic alterations that activate kinase signaling in Ph-like ALL are poorly understood. We performed transcriptome and whole genome sequencing on 15 cases of Ph-like ALL, and identified rearrangements involving ABL1, JAK2, PDGFRB, CRLF2 and EPOR, activating mutations of IL7R and FLT3, and deletion of SH2B3, which encodes the JAK2 negative regulator LNK. Importantly, several of these alterations induce transformation that is attenuated with tyrosine kinase inhibitors, suggesting the treatment outcome of these patients may be improved with targeted therapy. PMID:22897847

  12. Computational methods for analysis and inference of kinase/inhibitor relationships

    PubMed Central

    Ferrè, Fabrizio; Palmeri, Antonio; Helmer-Citterich, Manuela

    2014-01-01

    The central role of kinases in virtually all signal transduction networks is the driving motivation for the development of compounds modulating their activity. ATP-mimetic inhibitors are essential tools for elucidating signaling pathways and are emerging as promising therapeutic agents. However, off-target ligand binding and complex and sometimes unexpected kinase/inhibitor relationships can occur for seemingly unrelated kinases, stressing that computational approaches are needed for learning the interaction determinants and for the inference of the effect of small compounds on a given kinase. Recently published high-throughput profiling studies assessed the effects of thousands of small compound inhibitors, covering a substantial portion of the kinome. This wealth of data paved the road for computational resources and methods that can offer a major contribution in understanding the reasons of the inhibition, helping in the rational design of more specific molecules, in the in silico prediction of inhibition for those neglected kinases for which no systematic analysis has been carried yet, in the selection of novel inhibitors with desired selectivity, and offering novel avenues of personalized therapies. PMID:25071826

  13. Type I/II cytokines, JAKs, and new strategies for treating autoimmune diseases

    PubMed Central

    Schwartz, Daniella M.; Bonelli, Michael; Gadina, Massimo; O’Shea, John J.

    2015-01-01

    Cytokines are major drivers of autoimmunity, and biologic agents targeting cytokines have revolutionized the treatment of immune-mediated diseases. Despite the effectiveness of these drugs, they do not induce complete remission in all patients, prompting the development of alternative strategies—including targeting of intracellular signal transduction pathways downstream of cytokines. Many cytokines that bind type I and type II cytokine receptors are critical regulators of immune-mediated diseases and employ the Janus kinase (JAK) and signal transducer and activator of transcription (STAT) pathway to exert their effect. Pharmacological inhibition of JAKs block the actions of type I/II cytokines, and within the past 3 years therapeutic JAK inhibitors, or Jakinibs, have become available to rheumatologists. Jakinibs have proven effective for the treatment of rheumatoid arthritis and other inflammatory diseases. Adverse effects of these agents are largely related to their mode of action and include infections and hyperlipidemia. Jakinibs are currently being investigated for a number of new indications, and second-generation selective Jakinibs are being developed and tested. Targeting STATs could be a future avenue for the treatment of rheumatic diseases, although substantial challenges remain. Nonetheless, the ability to therapeutically target intracellular signalling pathways has already created a new paradigm for the treatment of rheumatologic disease. PMID:26633291

  14. JAK2 Exon 12 Mutations in Polycythemia Vera and Idiopathic Erythrocytosis

    PubMed Central

    Scott, Linda M.; Tong, Wei; Levine, Ross L.; Scott, Mike A.; Beer, Philip A.; Stratton, Michael R.; Futreal, P. Andrew; Erber, Wendy N.; McMullin, Mary Frances; Harrison, Claire N.; Warren, Alan J.; Gilliland, D. Gary; Lodish, Harvey F.; Green, Anthony R.

    2010-01-01

    BACKGROUND The V617F mutation, which causes the substitution of phenylalanine for valine at position 617 of the Janus kinase (JAK) 2 gene (JAK2), is often present in patients with polycythemia vera, essential thrombocythemia, and idiopathic myelofibrosis. However, the molecular basis of these myeloproliferative disorders in patients without the V617F mutation is unclear. METHODS We searched for new mutations in members of the JAK and signal transducer and activator of transcription (STAT) gene families in patients with V617F-negative polycythemia vera or idiopathic erythrocytosis. The mutations were characterized biochemically and in a murine model of bone marrow transplantation. RESULTS We identified four somatic gain-of-function mutations affecting JAK2 exon 12 in 10 V617F-negative patients. Those with a JAK2 exon 12 mutation presented with an isolated erythrocytosis and distinctive bone marrow morphology, and several also had reduced serum erythropoietin levels. Erythroid colonies could be grown from their blood samples in the absence of exogenous erythropoietin. All such erythroid colonies were heterozygous for the mutation, whereas colonies homozygous for the mutation occur in most patients with V617F-positive polycythemia vera. BaF3 cells expressing the murine erythropoietin receptor and also carrying exon 12 mutations could proliferate without added interleukin-3. They also exhibited increased phosphorylation of JAK2 and extracellular regulated kinase 1 and 2, as compared with cells transduced by wild-type JAK2 or V617F JAK2. Three of the exon 12 mutations included a substitution of leucine for lysine at position 539 of JAK2. This mutation resulted in a myeloproliferative phenotype, including erythrocytosis, in a murine model of retroviral bone marrow transplantation. CONCLUSIONS JAK2 exon 12 mutations define a distinctive myeloproliferative syndrome that affects patients who currently receive a diagnosis of polycythemia vera or idiopathic erythrocytosis

  15. The mTOR kinase inhibitor everolimus synergistically enhances the anti-tumor effect of the Bruton's tyrosine kinase (BTK) inhibitor PLS-123 on Mantle cell lymphoma.

    PubMed

    Li, Jiao; Wang, Xiaogan; Xie, Yan; Ying, Zhitao; Liu, Weiping; Ping, Lingyan; Zhang, Chen; Pan, Zhengying; Ding, Ning; Song, Yuqin; Zhu, Jun

    2018-01-01

    Mantle cell lymphoma (MCL) is an aggressive and incurable malignant disease. Despite of general chemotherapy, relapse and mortality are common, highlighting the need for the development of novel targeted drugs or combination of therapeutic regimens. Recently, several drugs that target the B-cell receptor (BCR) signaling pathway, especially the Bruton's tyrosine kinase (BTK) inhibitor ibrutinib, have demonstrated notable therapeutic effects in relapsed/refractory patients, which indicate that pharmacological inhibition of BCR pathway holds promise in MCL treatment. Here, we have developed a novel irreversible BTK inhibitor, PLS-123, that has more potent and selective anti-tumor activity than ibrutinib in vitro and in vivo. Using in vitro screening, we discovered that the combination of PLS-123 and the mammalian target of rapamycin (mTOR) inhibitor everolimus exert synergistic activity in attenuating proliferation and motility of MCL cell lines. Simultaneous inhibition of BTK and mTOR resulted in marked induction of apoptosis and cell cycle arrest in the G1 phase, which were accompanied by upregulation of pro-apoptotic proteins (cleaved Caspase-3, cleaved PARP and Bax), repression of anti-apoptotic proteins (Mcl-1, Bcl-xl and XIAP), and downregulation of regulators of the G1/S phase transition (CDK2, CDK4, CDK6 and Cyclin D1). Gene expression profile analysis revealed simultaneous treatment with these agents led to inhibition of the JAK2/STAT3, AKT/mTOR signaling pathways and SGK1 expression. Finally, the anti-tumor and pro-apoptotic activities of combination strategy have also been demonstrated using xenograft mice models. Taken together, simultaneous suppression of BTK and mTOR may be indicated as a potential therapeutic modality for the treatment of MCL. © 2017 UICC.

  16. Interleukins 2, 4, 7, and 15 stimulate tyrosine phosphorylation of insulin receptor substrates 1 and 2 in T cells. Potential role of JAK kinases.

    PubMed

    Johnston, J A; Wang, L M; Hanson, E P; Sun, X J; White, M F; Oakes, S A; Pierce, J H; O'Shea, J J

    1995-12-01

    The signaling molecules insulin receptor substrate (IRS)-1 and the newly described IRS-2 (4PS) molecule are major insulin and interleukin 4 (IL-4)-dependent phosphoproteins. We report here that IL-2, IL-7, and IL-15, as well as IL-4, rapidly stimulate the tyrosine phosphorylation of IRS-1 and IRS-2 in human peripheral blood T cells, NK cells, and in lymphoid cell lines. In addition, we show that the Janus kinases, JAK1 and JAK3, associate with IRS-1 and IRS-2 in T cells. Coexpression studies demonstrate that these kinases can tyrosine-phosphorylate IRS-2, suggesting a possible mechanism by which cytokine receptors may induce the tyrosine phosphorylation of IRS-1 and IRS-2. We further demonstrate that the p85 subunit of phosphoinositol 3-kinase associates with IRS-1 in response to IL-2 and IL-4 in T cells. Therefore, these data indicate that IRS-1 and IRS-2 may have important roles in T lymphocyte activation not only in response to IL-4, but also in response to IL-2, IL-7, and IL-15.

  17. Fragment-based design of kinase inhibitors: a practical guide.

    PubMed

    Erickson, Jon A

    2015-01-01

    Fragment-based drug design has become an important strategy for drug design and development over the last decade. It has been used with particular success in the development of kinase inhibitors, which are one of the most widely explored classes of drug targets today. The application of fragment-based methods to discovering and optimizing kinase inhibitors can be a complicated and daunting task; however, a general process has emerged that has been highly fruitful. Here a practical outline of the fragment process used in kinase inhibitor design and development is laid out with specific examples. A guide to the overall process from initial discovery through fragment screening, including the difficulties in detection, to the computational methods available for use in optimization of the discovered fragments is reported.

  18. Canine osteosarcoma cells exhibit resistance to aurora kinase inhibitors.

    PubMed

    Cannon, C M; Pozniak, J; Scott, M C; Ito, D; Gorden, B H; Graef, A J; Modiano, J F

    2015-03-01

    We evaluated the effect of Aurora kinase inhibitors AZD1152 and VX680 on canine osteosarcoma cells. Cytotoxicity was seen in all four cell lines; however, half-maximal inhibitory concentrations were significantly higher than in human leukaemia and canine lymphoma cells. AZD1152 reduced Aurora kinase B phosphorylation, indicating resistance was not because of failure of target recognition. Efflux mediated by ABCB1 and ABCG2 transporters is one known mechanism of resistance against these drugs and verapamil enhanced AZD1152-induced apoptosis; however, these transporters were only expressed by a small percentage of cells in each line and the effects of verapamil were modest, suggesting other mechanisms contribute to resistance. Our results indicate that canine osteosarcoma cells are resistant to Aurora kinase inhibitors and suggest that these compounds are unlikely to be useful as single agents for this disease. Further investigation of these resistance mechanisms and the potential utility of Aurora kinase inhibitors in multi-agent protocols is warranted. © 2013 Blackwell Publishing Ltd.

  19. Saccharomyces cerevisiae as a platform for assessing sphingolipid lipid kinase inhibitors

    PubMed Central

    Agah, Sayeh; Mendelson, Anna J.; Eletu, Oluwafunmilayo T.; Barkey-Bircann, Peter; Gesualdi, James

    2018-01-01

    Successful medicinal chemistry campaigns to discover and optimize sphingosine kinase inhibitors require a robust assay for screening chemical libraries and for determining rank order potencies. Existing assays for these enzymes are laborious, expensive and/or low throughput. The toxicity of excessive levels of phosphorylated sphingoid bases for the budding yeast, Saccharomyces cerevisiae, affords an assay wherein inhibitors added to the culture media rescue growth in a dose-dependent fashion. Herein, we describe our adaptation of a simple, inexpensive, and high throughput assay for assessing inhibitors of sphingosine kinase types 1 and 2 as well as ceramide kinase and for testing enzymatic activity of sphingosine kinase type 2 mutants. The assay was validated using recombinant enzymes and generally agrees with the rank order of potencies of existing inhibitors. PMID:29672528

  20. Bisubstrate inhibitors of protein kinases: from principle to practical applications.

    PubMed

    Lavogina, Darja; Enkvist, Erki; Uri, Asko

    2010-01-01

    Bisubstrate inhibitors consist of two conjugated fragments, each targeted to a different binding site of a bisubstrate enzyme. The design of bisubstrate inhibitors presupposes the formation of the ternary complex in the course of the catalyzed reaction. The principle advantage of bisubstrate inhibitors is their ability to generate more interactions with the target enzyme that could result in improved affinity and selectivity of the conjugates, when compared with single-site inhibitors. Among phosphotransferases, the approach was first successfully used for adenylate kinase in 1973. Since then, several types of bisubstrate inhibitors have been developed for protein kinases, including conjugates of peptides with nucleotides, adenosine derivatives and potent ATP-competitive inhibitors. Earlier bisubstrate inhibitors had pharmacokinetic qualities that were unsuitable for cellular experiments and hence were mostly used for in vitro studies. The recently constructed conjugates of adenosine derivatives and D-arginine-rich peptides (ARCs) possess high kinase affinity, high biological and chemical stability and good cell plasma membrane penetrative properties that enable their application in the regulation of cellular protein phosphorylation balances in cell and tissue experiments.

  1. Rapid computational identification of the targets of protein kinase inhibitors.

    PubMed

    Rockey, William M; Elcock, Adrian H

    2005-06-16

    We describe a method for rapidly computing the relative affinities of an inhibitor for all individual members of a family of homologous receptors. The approach, implemented in a new program, SCR, models inhibitor-receptor interactions in full atomic detail with an empirical energy function and includes an explicit account of flexibility in homology-modeled receptors through sampling of libraries of side chain rotamers. SCR's general utility was demonstrated by application to seven different protein kinase inhibitors: for each inhibitor, relative binding affinities with panels of approximately 20 protein kinases were computed and compared with experimental data. For five of the inhibitors (SB203580, purvalanol B, imatinib, H89, and hymenialdisine), SCR provided excellent reproduction of the experimental trends and, importantly, was capable of identifying the targets of inhibitors even when they belonged to different kinase families. The method's performance in a predictive setting was demonstrated by performing separate training and testing applications, and its key assumptions were tested by comparison with a number of alternative approaches employing the ligand-docking program AutoDock (Morris et al. J. Comput. Chem. 1998, 19, 1639-1662). These comparison tests included using AutoDock in nondocking and docking modes and performing energy minimizations of inhibitor-kinase complexes with the molecular mechanics code GROMACS (Berendsen et al. Comput. Phys. Commun. 1995, 91, 43-56). It was found that a surprisingly important aspect of SCR's approach is its assumption that the inhibitor be modeled in the same orientation for each kinase: although this assumption is in some respects unrealistic, calculations that used apparently more realistic approaches produced clearly inferior results. Finally, as a large-scale application of the method, SB203580, purvalanol B, and imatinib were screened against an almost full complement of 493 human protein kinases using SCR in

  2. Screening of Microbial Extracts for Anticancer Compounds Using Streptomyces Kinase Inhibitor Assay.

    PubMed

    Shanbhag, Prashant; Bhave, Sarita; Vartak, Ashwini; Kulkarni-Almeida, Asha; Mahajan, Girish; Villanueva, Ivan; Davies, Julian

    2015-07-01

    Eukaryotic kinases are known to play an important role in signal transduction pathways by phosphorylating their respective substrates. Abnormal phosphorylations by these kinases have resulted in diseases. Hence inhibitors of kinases are of considerable pharmaceutical interest for a wide variety of disease targets, especially cancers. A number of reports have been published which indicate that eukaryotic-like kinases may complement two-component kinase systems in several bacteria. In Streptomyces sp. such kinases have been found to have a role in formation of aerial hyphae, spores, pigmentation & even in antibiotic production in some strains. Eukaryotic kinase inhibitors are seen to inhibit formation of aerial mycelia in Streptomyces without inhibiting vegetative mycelia. This property has been used to design an assay to screen for eukaryotic kinase inhibitors. The assay involves testing of compounds against Streptomyces 85E ATCC 55824 using agar well diffusion method. Inhibitors of kinases give rise to "bald" colonies where aerial mycelia and sporulation inhibition is seen. The assay has been standardized using known eukaryotic protein kinase inhibiting anticancer agents like AG-490, AG-1295, AG-1478, Flavopiridol and Imatinib as positive controls, at a concentration ranging from 10 μg/well to 100 μg/well. Anti-infective compounds which are not reported to inhibit eukaryotic protein kinases were used as negative controls. A number of microbial cultures have been screened for novel eukaryotic protein kinase inhibitors. Further these microbial extracts were tested in various cancer cell lines like Panel, HCT116, Calul, ACHN and H460 at a concentration of 10 μg/mL/ well. The anticancer data was seen correlating well with the Streptomyces kinase assay thus validating the assay.

  3. The antihypertension drug doxazosin suppresses JAK/STATs phosphorylation and enhances the effects of IFN-α/γ-induced apoptosis.

    PubMed

    Park, Mi Sun; Kim, Boh-Ram; Kang, Sokbom; Kim, Dae-Yong; Rho, Seung Bae

    2014-11-01

    Doxazosin, a commonly prescribed treatment for patients with benign prostatic hyperplasia, serves as an α1-blocker of the adrenergic receptors. In this study, we calculated its effect on the ovarian carcinoma cells. Doxazosin induces dose-dependent growth suppression and is additively activated through IFN-α or IFN-γ stimulation. They both enhanced G1 phase arrest, as well as the activity of caspase-3, and the reduction of cyclin D1 and CDK4 protein levels. Doxazosin growth suppression was abolished either by the Janus family of tyrosine kinase (JAK) or the signal transducer and activator of transcription (STAT) inhibitor treatment. The activity of JAK/STAT was dependent on the level of doxazosin, suggesting a requirement of doxazosin for the activation of JAK/STAT. Furthermore, doxazosin plus IFN-α or doxazosin plus IFN-γ additively suppressed the activation of the JAK/STAT signals through phosphorylation of JAK and STAT, thus affecting the activation of subsequent downstream signaling components PI3K, mTOR, 70S6K, and PKCδ. In vivo study demonstrated that doxazosin significantly suppressed tumor growth in an ovarian cancer cell xenograft mouse model, inducing apoptotic cell death by up-regulating the expression of p53, whereas c-Myc expression was markedly reduced. Our data indicate that doxazosin can modulate the apoptotic effects of IFN-α- and IFN-γ through the JAK/STAT signaling pathways. Collectively, we indicate that this action may be a potent chemotherapeutic property against ovarian carcinoma.

  4. JAK1 kinase forms complexes with interleukin-4 receptor and 4PS/insulin receptor substrate-1-like protein and is activated by interleukin-4 and interleukin-9 in T lymphocytes.

    PubMed

    Yin, T; Tsang, M L; Yang, Y C

    1994-10-28

    Interleukin (IL)-4 and IL-9 regulate the proliferation of T lymphocytes through interactions with their receptors. Previous studies have shown that unknown tyrosine kinases are involved in the proliferative signaling triggered by IL-4 and IL-9. Here we show that IL-4 and IL-9 induce overlapping (170, 130, and 125 kilodalton (kDa)) and distinct (45 and 88/90 kDa, respectively) protein tyrosine phosphorylation in T lymphocytes. We further identify the 170-kDa tyrosine-phosphorylated protein as 4PS/insulin receptor substrate-1-like (IRS-1L) protein and 130-kDa protein as JAK1 kinase. Furthermore, we demonstrate for the first time that JAK1 forms complexes with the IL-4 receptor and 4PS/IRS-1L protein following ligand-receptor interaction. In addition, we demonstrate that IL-9, but not IL-4, induced tyrosine phosphorylation of Stat 91 transcriptional factor. The overlapping and distinct protein tyrosine phosphorylation and activation of the same JAK1 kinase in T lymphocytes strongly suggests that IL-4 and IL-9 share the common signal transduction pathways and that the specificity for each cytokine could be achieved through the unique tyrosine-phosphorylated proteins triggered by individual cytokines.

  5. Direct Interaction of Jak1 and v-Abl Is Required for v-Abl-Induced Activation of STATs and Proliferation

    PubMed Central

    Danial, Nika N.; Losman, Julie A.; Lu, Tianhong; Yip, Natalie; Krishnan, Kartik; Krolewski, John; Goff, Stephen P.; Wang, Jean Y. J.; Rothman, Paul B.

    1998-01-01

    In Abelson murine leukemia virus (A-MuLV)-transformed cells, members of the Janus kinase (Jak) family of non-receptor tyrosine kinases and the signal transducers and activators of transcription (STAT) family of signaling proteins are constitutively activated. In these cells, the v-Abl oncoprotein and the Jak proteins physically associate. To define the molecular mechanism of constitutive Jak-STAT signaling in these cells, the functional significance of the v-Abl–Jak association was examined. Mapping the Jak1 interaction domain in v-Abl demonstrates that amino acids 858 to 1080 within the carboxyl-terminal region of v-Abl bind Jak1 through a direct interaction. A mutant of v-Abl lacking this region exhibits a significant defect in Jak1 binding in vivo, fails to activate Jak1 and STAT proteins, and does not support either the proliferation or the survival of BAF/3 cells in the absence of cytokine. Cells expressing this v-Abl mutant show extended latency and decreased frequency in generating tumors in nude mice. In addition, inducible expression of a kinase-inactive mutant of Jak1 protein inhibits the ability of v-Abl to activate STATs and to induce cytokine-independent proliferation, indicating that an active Jak1 is required for these v-Abl-induced signaling pathways in vivo. We propose that Jak1 is a mediator of v-Abl-induced STAT activation and v-Abl induced proliferation in BAF/3 cells, and may be important for efficient transformation of immature B cells by the v-abl oncogene. PMID:9774693

  6. OPB-31121, a novel small molecular inhibitor, disrupts the JAK2/STAT3 pathway and exhibits an antitumor activity in gastric cancer cells.

    PubMed

    Kim, Mi-Jung; Nam, Hyun-Jin; Kim, Hwang-Phill; Han, Sae-Won; Im, Seock-Ah; Kim, Tae-You; Oh, Do-Youn; Bang, Yung-Jue

    2013-07-10

    We investigated the mechanisms of action and antitumor effects of OPB-31121, a novel STAT3 inhibitor, in gastric cancer cells. OPB-31121 downregulated JAK2 and gp130 expression and inhibited JAK2 phosphorylation which leads to inhibition of STAT3 phosphorylation. OPB-31121 inhibited constitutively activated and IL-6-induced JAK/STAT signaling pathway. OPB-31121 decreased cell proliferation in both gastric cancer cells and in a xenograft model, induced the apoptosis of gastric cancer cells, inhibited the expression of antiapoptotic proteins, and showed synergism with 5-fluorouracil and cisplatin. Taken together, our study suggests that STAT3 inhibition with OPB-31121 can be tested in patients with gastric cancer. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  7. Combination Kinase Inhibitor Treatment Suppresses Rift Valley Fever Virus Replication.

    PubMed

    Bell, Todd M; Espina, Virginia; Lundberg, Lindsay; Pinkham, Chelsea; Brahms, Ashwini; Carey, Brian D; Lin, Shih-Chao; Dahal, Bibha; Woodson, Caitlin; de la Fuente, Cynthia; Liotta, Lance A; Bailey, Charles L; Kehn-Hall, Kylene

    2018-04-13

    Viruses must parasitize host cell translational machinery in order to make proteins for viral progeny. In this study, we sought to use this signal transduction conduit against them by inhibiting multiple kinases that influence translation. Previous work indicated that several kinases involved in translation, including p70 S6K, p90RSK, ERK, and p38 MAPK, are phosphorylated following Rift Valley fever virus (RVFV) infection. Furthermore, inhibiting p70 S6K through treatment with the FDA approved drug rapamycin prevents RVFV pathogenesis in a mouse model of infection. We hypothesized that inhibiting either p70 S6K, p90RSK, or p90RSK’s upstream kinases, ERK and p38 MAPK, would decrease translation and subsequent viral replication. Treatment with the p70 S6K inhibitor PF-4708671 resulted in decreased phosphorylation of translational proteins and reduced RVFV titers. In contrast, treatment with the p90RSK inhibitor BI-D1870, p38MAPK inhibitor SB203580, or the ERK inhibitor PD0325901 alone had minimal influence on RVFV titers. The combination of PF-4708671 and BI-D1870 treatment resulted in robust inhibition of RVFV replication. Likewise, a synergistic inhibition of RVFV replication was observed with p38MAPK inhibitor SB203580 or the ERK inhibitor PD0325901 combined with rapamycin treatment. These findings serve as a proof of concept regarding combination kinase inhibitor treatment for RVFV infection.

  8. Combination Kinase Inhibitor Treatment Suppresses Rift Valley Fever Virus Replication

    PubMed Central

    Bell, Todd M.; Espina, Virginia; Lundberg, Lindsay; Pinkham, Chelsea; Brahms, Ashwini; Dahal, Bibha; Woodson, Caitlin; de la Fuente, Cynthia; Liotta, Lance A.; Bailey, Charles L.

    2018-01-01

    Viruses must parasitize host cell translational machinery in order to make proteins for viral progeny. In this study, we sought to use this signal transduction conduit against them by inhibiting multiple kinases that influence translation. Previous work indicated that several kinases involved in translation, including p70 S6K, p90RSK, ERK, and p38 MAPK, are phosphorylated following Rift Valley fever virus (RVFV) infection. Furthermore, inhibiting p70 S6K through treatment with the FDA approved drug rapamycin prevents RVFV pathogenesis in a mouse model of infection. We hypothesized that inhibiting either p70 S6K, p90RSK, or p90RSK’s upstream kinases, ERK and p38 MAPK, would decrease translation and subsequent viral replication. Treatment with the p70 S6K inhibitor PF-4708671 resulted in decreased phosphorylation of translational proteins and reduced RVFV titers. In contrast, treatment with the p90RSK inhibitor BI-D1870, p38MAPK inhibitor SB203580, or the ERK inhibitor PD0325901 alone had minimal influence on RVFV titers. The combination of PF-4708671 and BI-D1870 treatment resulted in robust inhibition of RVFV replication. Likewise, a synergistic inhibition of RVFV replication was observed with p38MAPK inhibitor SB203580 or the ERK inhibitor PD0325901 combined with rapamycin treatment. These findings serve as a proof of concept regarding combination kinase inhibitor treatment for RVFV infection. PMID:29652799

  9. Effect of kinase inhibitors on the therapeutic properties of monoclonal antibodies

    PubMed Central

    Duong, Minh Ngoc; Matera, Eva-Laure; Mathé, Doriane; Evesque, Anne; Valsesia-Wittmann, Sandrine; Clémenceau, Béatrice; Dumontet, Charles

    2015-01-01

    Targeted therapies of malignancies currently consist of therapeutic monoclonal antibodies and small molecule kinase inhibitors. The combination of these novel agents raises the issue of potential antagonisms. We evaluated the potential effect of 4 kinase inhibitors, including the Bruton tyrosine kinase inhibitor ibrutinib, and 3 PI3K inhibitors idelalisib, NVP-BEZ235 and LY294002, on the effects of the 3 monoclonal antibodies, rituximab and obinutuzumab (directed against CD20) and trastuzumab (directed against HER2). We found that ibrutinib potently inhibits antibody-dependent cell-mediated cytotoxicity exerted by all antibodies, with a 50% inhibitory concentration of 0.2 microM for trastuzumab, 0.5 microM for rituximab and 2 microM for obinutuzumab, suggesting a lesser effect in combination with obinutuzumab than with rituximab. The 4 kinase inhibitors were found to inhibit phagocytosis by fresh human neutrophils, as well as antibody-dependent cellular phagocytosis induced by the 3 antibodies. Conversely co-administration of ibrutinib with rituximab, obinutuzumab or trastuzumab did not demonstrate any inhibitory effect of ibrutinib in vivo in murine xenograft models. In conclusion, some kinase inhibitors, in particular, ibrutinib, are likely to exert inhibitory effects on innate immune cells. However, these effects do not compromise the antitumor activity of monoclonal antibodies in vivo in the models that were evaluated. PMID:25523586

  10. Survival response of hippocampal neurons under low oxygen conditions induced by Hippophae rhamnoides is associated with JAK/STAT signaling.

    PubMed

    Manickam, Manimaran; Tulsawani, Rajkumar

    2014-01-01

    Janus activated kinase/signal transducers and activators of transcription (JAK/STATs) pathway are associated with various neuronal functions including cell survival and inflammation. In the present study, it is hypothesized that protective action of aqueous extract of Hippophae rhamnoides in hippocampal neurons against hypoxia is mediated via JAK/STATs. Neuronal cells exposed to hypoxia (0.5% O2) display higher reactive oxygen species with compromised antioxidant status compared to unexposed control cells. Further, these cells had elevated levels of pro-inflammatory cytokines; tumor necrosis factor α and interleukin 6 and nuclear factor κappa B. Moreover, the expression of JAK1 was found to be highly expressed with phosphorylation of STAT3 and STAT5. Cells treated with JAK1, STAT3 and STAT5 specific inhibitors resulted in more cell death compared to hypoxic cells. Treatment of cells with extract prevented oxidative stress and inflammatory response associated with hypoxia. The extract treated cells had more cell survival than hypoxic cells with induction of JAK1 and STAT5b. Cells treated with extract having suppressed JAK1 or STAT3 or STAT5 expression showed reduced cell viability than the cell treated with extract alone. Overall, the findings from these studies indicate that the aqueous extract of Hippophae rhamnoides treatment inhibited hypoxia induced oxidative stress by altering cellular JAK1, STAT3 and STAT5 levels thereby enhancing cellular survival response to hypoxia and provide a basis for possible use of aqueous extract of Hippophae rhamnoides in facilitating tolerance to hypoxia.

  11. Survival Response of Hippocampal Neurons under Low Oxygen Conditions Induced by Hippophae rhamnoides is Associated with JAK/STAT Signaling

    PubMed Central

    Manickam, Manimaran; Tulsawani, Rajkumar

    2014-01-01

    Janus activated kinase/signal transducers and activators of transcription (JAK/STATs) pathway are associated with various neuronal functions including cell survival and inflammation. In the present study, it is hypothesized that protective action of aqueous extract of Hippophae rhamnoides in hippocampal neurons against hypoxia is mediated via JAK/STATs. Neuronal cells exposed to hypoxia (0.5% O2) display higher reactive oxygen species with compromised antioxidant status compared to unexposed control cells. Further, these cells had elevated levels of pro-inflammatory cytokines; tumor necrosis factor α and interleukin 6 and nuclear factor κappa B. Moreover, the expression of JAK1 was found to be highly expressed with phosphorylation of STAT3 and STAT5. Cells treated with JAK1, STAT3 and STAT5 specific inhibitors resulted in more cell death compared to hypoxic cells. Treatment of cells with extract prevented oxidative stress and inflammatory response associated with hypoxia. The extract treated cells had more cell survival than hypoxic cells with induction of JAK1 and STAT5b. Cells treated with extract having suppressed JAK1 or STAT3 or STAT5 expression showed reduced cell viability than the cell treated with extract alone. Overall, the findings from these studies indicate that the aqueous extract of Hippophae rhamnoides treatment inhibited hypoxia induced oxidative stress by altering cellular JAK1, STAT3 and STAT5 levels thereby enhancing cellular survival response to hypoxia and provide a basis for possible use of aqueous extract of Hippophae rhamnoides in facilitating tolerance to hypoxia. PMID:24516559

  12. Unprecedently Large-Scale Kinase Inhibitor Set Enabling the Accurate Prediction of Compound–Kinase Activities: A Way toward Selective Promiscuity by Design?

    PubMed Central

    2016-01-01

    Drug discovery programs frequently target members of the human kinome and try to identify small molecule protein kinase inhibitors, primarily for cancer treatment, additional indications being increasingly investigated. One of the challenges is controlling the inhibitors degree of selectivity, assessed by in vitro profiling against panels of protein kinases. We manually extracted, compiled, and standardized such profiles published in the literature: we collected 356 908 data points corresponding to 482 protein kinases, 2106 inhibitors, and 661 patents. We then analyzed this data set in terms of kinome coverage, results reproducibility, popularity, and degree of selectivity of both kinases and inhibitors. We used the data set to create robust proteochemometric models capable of predicting kinase activity (the ligand–target space was modeled with an externally validated RMSE of 0.41 ± 0.02 log units and R02 0.74 ± 0.03), in order to account for missing or unreliable measurements. The influence on the prediction quality of parameters such as number of measurements, Murcko scaffold frequency or inhibitor type was assessed. Interpretation of the models enabled to highlight inhibitors and kinases properties correlated with higher affinities, and an analysis in the context of kinases crystal structures was performed. Overall, the models quality allows the accurate prediction of kinase-inhibitor activities and their structural interpretation, thus paving the way for the rational design of compounds with a targeted selectivity profile. PMID:27482722

  13. Propofol mediates signal transducer and activator of transcription 3 activation and crosstalk with phosphoinositide 3-kinase/AKT.

    PubMed

    Shravah, Jayant; Wang, Baohua; Pavlovic, Marijana; Kumar, Ujendra; Chen, David Dy; Luo, Honglin; Ansley, David M

    2014-01-01

    We previously demonstrated that propofol, an intravenous anesthetic with anti-oxidative properties, activated the phosphoinositide 3-kinase (PI3K)/AKT pathway to increase the expression of B cell lymphoma (Bcl)-2 and, therefore the anti-apoptotic potential on cardiomyocytes. Here, we wanted to determine if propofol can also activate the Janus kinase (JAK) 2/signal transducer and activator of transcription (STAT) 3 pathway, another branch of cardioprotective signaling. The cellular response of nuclear factor kappa B (NFκB) and STAT3 was also evaluated. Cardiac H9c2 cells were treated by propofol alone or in combination with pretreatment by inhibitors for JAK2/STAT3 or PI3K/AKT pathway. STAT3 and AKT phosphorylation, and STAT3 translocation were measured by western blotting and immunofluorescence staining, respectively. Propofol treatment significantly increased STAT3 phosphorylation at both tyrosine 705 and serine 727 residues. Sustained early phosphorylation of STAT3 was observed with 25~75 μM propofol at 10 and 30 min. Nuclear translocation of STAT3 was seen at 4 h after treatment with 50 μM propofol. In cultured H9c2 cells, we further demonstrated that propofol-induced STAT3 phosphorylation was reduced by pretreatment with PI3K/AKT pathway inhibitors wortmannin or API-2. Conversely, pretreatment with JAK2/STAT3 pathway inhibitor AG490 or stattic inhibited propofol-induced AKT phosphorylation. In addition, propofol induced NFκB p65 subunit perinuclear translocation. Inhibition or knockdown of STAT3 was associated with increased levels of the NFκB p65 subunit. Our results suggest that propofol induces an adaptive response by dual activation and crosstalk of cytoprotective PI3K/AKT and JAK2/STAT3 pathways. Rationale to apply propofol clinically as a preemptive cardioprotectant during cardiac surgery is supported by our findings.

  14. A germline JAK2 SNP is associated with predisposition to the development of JAK2V617F-positive myeloproliferative neoplasms

    PubMed Central

    Kilpivaara, Outi; Mukherjee, Semanti; Schram, Alison M; Wadleigh, Martha; Mullally, Ann; Ebert, Benjamin L; Bass, Adam; Marubayashi, Sachie; Heguy, Adriana; Garcia-Manero, Guillermo; Kantarjian, Hagop; Offit, Kenneth; Stone, Richard M; Gilliland, D Gary; Klein, Robert J; Levine, Ross L

    2013-01-01

    Polycythemia vera, essential thrombocythemia and primary myelofibrosis are myeloproliferative neoplasms (MPN) characterized by multilineage clonal hematopoiesis1–5. Given that the identical somatic activating mutation in the JAK2 tyrosine kinase gene (JAK2V617F) is observed in most individuals with polycythemia vera, essential thrombocythemia and primary myelofibrosis6–10, there likely are additional genetic events that contribute to the pathogenesis of these phenotypically distinct disorders. Moreover, family members of individuals with MPN are at higher risk for the development of MPN, consistent with the existence of MPN predisposition loci11. We hypothesized that germline variation contributes to MPN predisposition and phenotypic pleiotropy. Genome-wide analysis identified an allele in the JAK2 locus (rs10974944) that predisposes to the development of JAK2V617F-positive MPN, as well as three previously unknown MPN modifier loci. We found that JAK2V617F is preferentially acquired in cis with the predisposition allele. These data suggest that germline variation is an important contributor to MPN phenotype and predisposition. PMID:19287384

  15. Glutamine Deprivation Causes Hydrogen Peroxide-induced Interleukin-8 Expression via Jak1/Stat3 Activation in Gastric Epithelial AGS Cells

    PubMed Central

    Lee, Yun Mi; Kim, Mi Jung; Kim, Youngha; Kim, Hyeyoung

    2015-01-01

    Background: The Janus kinase (Jak)/Signal transducers of activated transcription (Stat) pathway is an upstream signaling pathway for NF-κB activation in Helicobacter pylori-induced interleukin (IL)-8 production in gastric epithelial AGS cells. H. pylori activates NADPH oxidase and produces hydrogen peroxide, which activates Jak1/Stat3 in AGS cells. Therefore, hydrogen peroxide may be critical for IL-8 production via Jak/Stat activation in gastric epithelial cells. Glutamine is depleted during severe injury and stress and contributes to the formation of glutathione (GSH), which is involved in conversion of hydrogen peroxide into water as a cofactor for GSH peroxidase. Methods: We investigated whether glutamine deprivation induces hydrogen peroxide-mediated IL-8 production and whether hydrogen peroxide activates Jak1/Stat3 to induce IL-8 in AGS cells. Cells were cultured in the presence or absence of glutamine or hydrogen peroxide, with or without GSH or a the Jak/Stat specific inhibitor AG490. Results: Glutamine deprivation decreased GSH levels, but increased levels of hydrogen peroxide and IL-8, an effect that was inhibited by treatment with GSH. Hydrogen peroxide induced the activation of Jak1/Stat3 time-dependently. AG490 suppressed hydrogen peroxide- induced activation of Jak1/Stat3 and IL-8 expression in AGS cells, but did not affect levels of reactive oxygen species in AGS cells. Conclusions: In gastric epithelial AGS cells, glutamine deprivation increases hydrogen peroxide levels and IL-8 expression, which may be mediated by Jak1/Stat3 activation. Glutamine supplementation may be beneficial for preventing gastric inflammation by suppressing hydrogen peroxide-mediated Jak1/Stat3 activation and therefore, reducing IL-8 production. Scavenging hydrogen peroxide or targeting Jak1/Stat3 may also prevent oxidant-mediated gastric inflammation. PMID:26473156

  16. JAK inhibitor has the amelioration effect in lupus-prone mice: the involvement of IFN signature gene downregulation.

    PubMed

    Ikeda, Keigo; Hayakawa, Kunihiro; Fujishiro, Maki; Kawasaki, Mikiko; Hirai, Takuya; Tsushima, Hiroshi; Miyashita, Tomoko; Suzuki, Satoshi; Morimoto, Shinji; Tamura, Naoto; Takamori, Kenji; Ogawa, Hideoki; Sekigawa, Iwao

    2017-08-22

    We previously reported that JAK-STAT-pathway mediated regulation of IFN-regulatory factor genes could play an important role in SLE pathogenesis. Here, we evaluated the efficacy of the JAK inhibitor tofacitinib (TOFA) for controlling IFN signalling via the JAK-STAT pathway and as a therapeutic for SLE. We treated NZB/NZW F1 mice with TOFA and assessed alterations in their disease, pathological, and immunological conditions. Gene-expression results obtained from CD4 + T cells (SLE mice) and CD3 + T cells (human SLE patients) were measured by DNA microarray and qRT-PCR. TOFA treatment resulted in reduced levels of anti-dsDNA antibodies, decreased proteinuria, and amelioration of nephritis as compared with those observed in control animals. Moreover, we observed the rebalance in the populations of naïve CD4 + T cells and effector/memory cells in TOFA-treated mice; however, treatment with a combination of TOFA and dexamethasone (DEXA) elicited a stronger inhibitory effect toward the effector/memory cells than did TOFA or DEXA monotherapy. We also detected decreased expression of several IFN-signature genes Ifit3 and Isg15 in CD4 + from SLE-prone mice following TOFA and DEXA treatment, and IFIT3 in CD3 + T cells from human patients following immunosuppressant therapy including steroid, respectively. Modulation of type I IFN signalling via JAK-STAT inhibition may exert a beneficial effect in SLE patients, and our results suggest that TOFA could be utilised for the development of new SLE-specific therapeutic strategies.

  17. Jak2 and Ca2+/calmodulin are key intermediates for bradykinin B2 receptor-mediated activation of Na+/H+ exchange in KNRK and CHO cells.

    PubMed

    Lefler, David; Mukhin, Yurii V; Pettus, Tobiah; Leeb-Lundberg, L M Fredrik; Garnovskaya, Maria N; Raymond, John R

    2003-04-01

    Na(+)/H(+) exchangers are ubiquitous in mammalian cells, carrying out key functions, such as cell volume defense, acid-base homeostasis, and regulation of the cytoskeleton. We used two screening technologies (FLIPR and microphysiometry) to characterize the signal transduction pathway used by the bradykinin B(2) receptor to activate Na(+)/H(+) exchange in two cell lines, KNRK and CHO. In both cell types, B(2) receptor activation resulted in rapid increases in the rate of proton extrusion that were sodium-dependent and could be blocked by the Na(+)/H(+) exchange inhibitors EIPA and MIA or by replacing extracellular sodium with TMA. Activation of Na(+)/H(+) exchange by bradykinin was concentration-dependent and could be blocked by the selective B(2) receptor antagonist HOE140, but not by the B(1) receptor antagonist des-Arg10-HOE140. Inhibitors of Jak2 tyrosine kinase (genistein and AG490) and of CAM (W-7 and calmidazolium) attenuated bradykinin-induced activation of Na(+)/H(+) exchange. Bradykinin induced formation of a complex between CAM and Jak2, supporting a regulatory role for Jak2 and CAM in the activation of Na(+)/H(+) exchange in KNRK and CHO cells. We propose that this pathway (B(2) receptor --> Jak2 --> CAM --> Na(+)/H(+) exchanger) is a fundamental regulator of Na(+)/H(+) exchange activity.

  18. Kinase Pathway Dependence in Primary Human Leukemias Determined by Rapid Inhibitor Screening

    PubMed Central

    Tyner, Jeffrey W.; Yang, Wayne F.; Bankhead, Armand; Fan, Guang; Fletcher, Luke B.; Bryant, Jade; Glover, Jason M.; Chang, Bill H.; Spurgeon, Stephen E.; Fleming, William H.; Kovacsovics, Tibor; Gotlib, Jason R.; Oh, Stephen T.; Deininger, Michael W.; Zwaan, C. Michel; Den Boer, Monique L.; van den Heuvel-Eibrink, Marry M.; O’Hare, Thomas; Druker, Brian J.; Loriaux, Marc M.

    2012-01-01

    Kinases are dysregulated in most cancer but the frequency of specific kinase mutations is low, indicating a complex etiology in kinase dysregulation. Here we report a strategy to rapidly identify functionally important kinase targets, irrespective of the etiology of kinase pathway dysregulation, ultimately enabling a correlation of patient genetic profiles to clinically effective kinase inhibitors. Our methodology assessed the sensitivity of primary leukemia patient samples to a panel of 66 small-molecule kinase inhibitors over 3 days. Screening of 151 leukemia patient samples revealed a wide diversity of drug sensitivities, with 70% of the clinical specimens exhibiting hypersensitivity to one or more drugs. From this data set, we developed an algorithm to predict kinase pathway dependence based on analysis of inhibitor sensitivity patterns. Applying this algorithm correctly identified pathway dependence in proof-of-principle specimens with known oncogenes, including a rare FLT3 mutation outside regions covered by standard molecular diagnostic tests. Interrogation of all 151 patient specimens with this algorithm identified a diversity of gene targets and signaling pathways that could aid prioritization of deep sequencing data sets, permitting a cumulative analysis to understand kinase pathway dependence within leukemia subsets. In a proof-of-principle case, we showed that in vitro drug sensitivity could predict both a clinical response and the development of drug resistance. Taken together, our results suggested that drug target scores derived from a comprehensive kinase inhibitor panel could predict pathway dependence in cancer cells while simultaneously identifying potential therapeutic options. PMID:23087056

  19. In vitro evaluation of the Aurora kinase inhibitor VX-680 for Hepatoblastoma.

    PubMed

    Dewerth, Alexander; Wonner, Timo; Lieber, Justus; Ellerkamp, Verena; Warmann, Steven W; Fuchs, Jörg; Armeanu-Ebinger, Sorin

    2012-06-01

    Hepatoblastoma (HB) has a poor prognosis in advanced stages. The aim of this study was to enhance effectiveness of chemotherapy with antineoplastic kinase inhibitors. Viability was monitored in HB cells (HUH6, HepT1) in monolayer and spheroid cultures treated with kinase inhibitors VX-680, Wee1-InhibitorII, and SU11274 alone or in combination with cisplatin (CDDP) using MTT assays. Apoptosis was revealed by Caspase-3 assay. Western blot and immunohistochemical analyses were performed to determine histone H3 phosphorylation. Among the kinase inhibitors strongest anti-proliferative effect on HB cells was documented for VX-680. HUH6 cells responded more sensitively to the Aurora kinase inhibitor as HepT1 cells (IC(50) 8 and 16.6 μM, respectively). While VX-680 and CDDP showed no additive effects, the combination of VX-680 and histone deacetylase inhibitor SAHA had a synergistic effect on the proliferation of HUH6 cells. The inhibition with VX-680 led to reduced histone H3 phosphorylation, to an increase of apoptotic cells, and to morphological changes such as vacuolization and swelling of the cells and nuclei. The data provide evidence that VX-680 might improve treatment results in HB with increased Aurora kinase activity by inhibiting cell proliferation and induction of apoptosis.

  20. Drug sensitivity profiling identifies potential therapies for lymphoproliferative disorders with overactive JAK/STAT3 signaling

    PubMed Central

    Kuusanmäki, Heikki; Dufva, Olli; Parri, Elina; van Adrichem, Arjan J.; Rajala, Hanna; Majumder, Muntasir M.; Yadav, Bhagwan; Parsons, Alun; Chan, Wing C.; Wennerberg, Krister; Mustjoki, Satu; Heckman, Caroline A.

    2017-01-01

    Constitutive JAK/STAT3 signaling contributes to disease progression in many lymphoproliferative disorders. Recent genetic analyses have revealed gain-of-function STAT3 mutations in lymphoid cancers leading to hyperactivation of STAT3, which may represent a potential therapeutic target. Using a functional reporter assay, we screened 306 compounds with selective activity against various target molecules to identify drugs capable of inhibiting the cellular activity of STAT3. Top hits were further validated with additional models including STAT3-mutated natural killer (NK)-cell leukemia/lymphoma cell lines and primary large granular lymphocytic (LGL) leukemia cells to assess their ability to inhibit STAT3 phosphorylation and STAT3 dependent cell viability. We identified JAK, mTOR, Hsp90 and CDK inhibitors as potent inhibitors of both WT and mutant STAT3 activity. The Hsp90 inhibitor luminespib was highly effective at reducing the viability of mutant STAT3 NK cell lines and LGL leukemia patient samples. Luminespib decreased the phosphorylation of mutant STAT3 at Y705, whereas JAK1/JAK2 inhibitor ruxolitinib had reduced efficacy on mutant STAT3 phosphorylation. Additionally, combinations involving Hsp90, JAK and mTOR inhibitors were more effective at reducing cell viability than single agents. Our findings show alternative approaches to inhibit STAT3 activity and suggest Hsp90 as a therapeutic target in lymphoproliferative disorders with constitutively active STAT3. PMID:29228628

  1. Compound Selectivity and Target Residence Time of Kinase Inhibitors Studied with Surface Plasmon Resonance.

    PubMed

    Willemsen-Seegers, Nicole; Uitdehaag, Joost C M; Prinsen, Martine B W; de Vetter, Judith R F; de Man, Jos; Sawa, Masaaki; Kawase, Yusuke; Buijsman, Rogier C; Zaman, Guido J R

    2017-02-17

    Target residence time (τ) has been suggested to be a better predictor of the biological activity of kinase inhibitors than inhibitory potency (IC 50 ) in enzyme assays. Surface plasmon resonance binding assays for 46 human protein and lipid kinases were developed. The association and dissociation constants of 80 kinase inhibitor interactions were determined. τ and equilibrium affinity constants (K D ) were calculated to determine kinetic selectivity. Comparison of τ and K D or IC 50 values revealed a strikingly different view on the selectivity of several kinase inhibitors, including the multi-kinase inhibitor ponatinib, which was tested on 10 different kinases. In addition, known pan-Aurora inhibitors resided much longer on Aurora B than on Aurora A, despite having comparable affinity for Aurora A and B. Furthermore, the γ/δ-selective PI3K inhibitor duvelisib and the δ-selective drug idelalisib had similar 20-fold selectivity for δ- over γ-isoform but duvelisib resided much longer on both targets. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Peficitinib, an Oral Janus Kinase Inhibitor, in Moderate-to-Severe Ulcerative Colitis: Results From a Randomized, Phase 2 Study.

    PubMed

    Sands, Bruce E; Sandborn, William J; Feagan, Brian G; Lichtenstein, Gary R; Zhang, Hongyan; Strauss, Richard; Szapary, Philippe; Johanns, Jewel; Panes, Julian; Vermeire, Severine; O'Brien, Christopher D; Yang, Zijiang; Bertelsen, Kirk; Marano, Colleen

    2018-06-15

    Janus kinase (JAK) inhibitors have shown efficacy in ulcerative colitis (UC). We studied the dose-response, efficacy, and safety of peficitinib, an oral JAK inhibitor, in patients with moderate-to-severe UC. In this Phase 2b, dose-ranging trial, we evaluated peficitinib at 25mg once daily (qd), 75mg qd, 150mg qd, and 75mg twice daily versus placebo for efficacy and safety in 219 patients with moderate-to-severe UC. The primary outcome was peficitinib dose-response at Week 8 with response assessed using Mayo score change from baseline. Secondary endpoints were clinical response, clinical remission, mucosal healing, change from baseline in Inflammatory Bowel Disease Questionnaire (IBDQ), and normalization of inflammatory biomarkers at Week 8; other secondary endpoints were treatment response through Week 16 and through Week 32 for patients in clinical response at Week 8. Safety was assessed through Week 36 or 4 weeks after the last dose. A statistically significant peficitinib dose-response was not demonstrated at Week 8, although a numerically greater proportion of patients receiving peficitinib ≥75mg qd achieved clinical response, remission, and mucosal healing at Week 8, supported by IBDQ improvement and inflammatory biomarker normalization. Treatment-emergent adverse event (TEAE) rates reported through Week 8 and the final safety visit were higher in the combined peficitinib group than placebo; patients receiving doses of ≥75mg qd peficitinib reported TEAEs more frequently. While no dose-response in patients with moderate-to-severe UC was demonstrated with peficitinib, evidence of efficacy was suggested at doses ≥75mg qd. The safety profile of peficitinib was consistent with current information. ClinicalTrials.gov NCT01959282.

  3. Adenosine mimetics as inhibitors of NAD+-dependent histone deacetylases, from kinase to sirtuin inhibition.

    PubMed

    Trapp, Johannes; Jochum, Anne; Meier, Rene; Saunders, Laura; Marshall, Brett; Kunick, Conrad; Verdin, Eric; Goekjian, Peter; Sippl, Wolfgang; Jung, Manfred

    2006-12-14

    NAD+-dependent histone deacetylases, sirtuins, cleave acetyl groups from lysines of histones and other proteins to regulate their activity. Identification of potent selective inhibitors would help to elucidate sirtuin biology and could lead to useful therapeutic agents. NAD+ has an adenosine moiety that is also present in the kinase cofactor ATP. Kinase inhibitors based upon adenosine mimesis may thus also target NAD+-dependent enzymes. We present a systematic approach using adenosine mimics from one cofactor class (kinase inhibitors) as a viable method to generate new lead structures in another cofactor class (sirtuin inhibitors). Our findings have broad implications for medicinal chemistry and specifically for sirtuin inhibitor design. Our results also raise a question as to whether selectivity profiling for kinase inhibitors should be limited to ATP-dependent targets.

  4. Association of a genetic marker at the bovine Janus kinase 2 locus (JAK2/RsaI) with milk production traits of four cattle breeds.

    PubMed

    Szewczuk, Małgorzata

    2015-08-01

    In addition to the main components of the somatotrophic axis (GH/GHR/IGF-I/IGF-IR), great importance in the control of growth and development is also attached to the Janus kinase 2 (JAK2) pathway. Induced by the GH/GHR complex, JAK2 activates signal transducer and activator of transcription 5 (STAT5), and in consequence, may be involved in the regulation of expression of insulin-like growth factor I (IGF-I) in the mammary gland. Silent mutation (rs110298451) has been identified within exon 20 using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). A total of 904 individuals of four dairy or dual-purpose breeds (Polish Holstein-Friesian, Montbeliarde, Simmental and Jersey) were genotyped. A genotypic imbalance in the populations was observed. In the case of dual-purpose breeds (Montbeliarde and Simmental), the frequencies of both alleles were almost equal. In contrary, the JAK2G allele was predominant in the Polish Holstein-Friesian breed while JAK2A allele in Jersey. A pronounced relationship between JAK2/RsaI polymorphism and milk production traits was found where, irrespective of breed and lactation order, the GG genotype was significantly associated with higher milk, protein and fat yields, as compared to the AA genotype. Heterozygous individuals were generally characterised by intermediate values of the analysed milk traits. It can be argued that the JAK2 gene polymorphism is a potential marker for milk production traits. However, due to the fact that rs110298451 SNP does not directly affect amino acid sequence, other association studies involving missense mutation should also be performed.

  5. Template-based de novo design for type II kinase inhibitors and its extented application to acetylcholinesterase inhibitors.

    PubMed

    Su, Bo-Han; Huang, Yi-Syuan; Chang, Chia-Yun; Tu, Yi-Shu; Tseng, Yufeng J

    2013-10-31

    There is a compelling need to discover type II inhibitors targeting the unique DFG-out inactive kinase conformation since they are likely to possess greater potency and selectivity relative to traditional type I inhibitors. Using a known inhibitor, such as a currently available and approved drug or inhibitor, as a template to design new drugs via computational de novo design is helpful when working with known ligand-receptor interactions. This study proposes a new template-based de novo design protocol to discover new inhibitors that preserve and also optimize the binding interactions of the type II kinase template. First, sorafenib (Nexavar) and nilotinib (Tasigna), two type II inhibitors with different ligand-receptor interactions, were selected as the template compounds. The five-step protocol can reassemble each drug from a large fragment library. Our procedure demonstrates that the selected template compounds can be successfully reassembled while the key ligand-receptor interactions are preserved. Furthermore, to demonstrate that the algorithm is able to construct more potent compounds, we considered kinase inhibitors and other protein dataset, acetylcholinesterase (AChE) inhibitors. The de novo optimization was initiated using a template compound possessing a less than optimal activity from a series of aminoisoquinoline and TAK-285 inhibiting type II kinases, and E2020 derivatives inhibiting AChE respectively. Three compounds with greater potency than the template compound were discovered that were also included in the original congeneric series. This template-based lead optimization protocol with the fragment library can help to design compounds with preferred binding interactions of known inhibitors automatically and further optimize the compounds in the binding pockets.

  6. Crystal Structure of the FERM-SH2 Module of Human Jak2.

    PubMed

    McNally, Randall; Toms, Angela V; Eck, Michael J

    2016-01-01

    Jak-family tyrosine kinases mediate signaling from diverse cytokine receptors. Binding of Jaks to their cognate receptors is mediated by their N-terminal region, which contains FERM and SH2 domains. Here we describe the crystal structure of the FERM-SH2 region of Jak2 at 3.0Å resolution. The structure reveals that these domains and their flanking linker segments interact intimately to form an integrated structural module. The Jak2 FERM-SH2 structure closely resembles that recently described for Tyk2, another member of the Jak family. While the overall architecture and interdomain orientations are preserved between Jak2 and Tyk2, we identify residues in the putative receptor-binding groove that differ between the two and may contribute to the specificity of receptor recognition. Analysis of Jak mutations that are reported to disrupt receptor binding reveals that they lie in the hydrophobic core of the FERM domain, and are thus expected to compromise the structural integrity of the FERM-SH2 unit. Similarly, analysis of mutations in Jak3 that are associated with severe combined immunodeficiency suggests that they compromise Jak3 function by destabilizing the FERM-SH2 structure.

  7. Aurora B kinase inhibition in mitosis: strategies for optimising the use of aurora kinase inhibitors such as AT9283.

    PubMed

    Curry, Jayne; Angove, Hayley; Fazal, Lynsey; Lyons, John; Reule, Matthias; Thompson, Neil; Wallis, Nicola

    2009-06-15

    Aurora kinases play a key role in regulating mitotic division and are attractive oncology targets. AT9283, a multi-targeted kinase inhibitor with potent activity against Aurora A and B kinases, inhibited growth and survival of multiple solid tumor cell lines and was efficacious in mouse xenograft models. AT9283-treatment resulted in endoreduplication and ablation of serine-10 histone H3 phosphorylation in both cells and tumor samples, confirming that in these models it acts as an Aurora B kinase inhibitor. In vitro studies demonstrated that exposure to AT9283 for one complete cell cycle committed an entire population of p53 checkpoint-compromised cells (HCT116) to multinucleation and death whereas treatment of p53 checkpoint-competent cells (HMEC, A549) for a similar length of time led to a reversible arrest of cells with 4N DNA. Further studies in synchronized cell populations suggested that exposure to AT9283 during mitosis was critical for optimal cytotoxicity. We therefore investigated ways in which these properties might be exploited to optimize the efficacy and therapeutic index of Aurora kinase inhibitors for p53 checkpoint compromised tumors in vivo. Combining Aurora B kinase inhibition with paclitaxel, which arrests cells in mitosis, in a xenograft model resulted in promising efficacy without additional toxicity. These findings have implications for optimizing the efficacy of Aurora kinase inhibitors in clinical practice.

  8. Chemical Proteomics Reveals Ferrochelatase as a Common Off-target of Kinase Inhibitors.

    PubMed

    Klaeger, Susan; Gohlke, Bjoern; Perrin, Jessica; Gupta, Vipul; Heinzlmeir, Stephanie; Helm, Dominic; Qiao, Huichao; Bergamini, Giovanna; Handa, Hiroshi; Savitski, Mikhail M; Bantscheff, Marcus; Médard, Guillaume; Preissner, Robert; Kuster, Bernhard

    2016-05-20

    Many protein kinases are valid drug targets in oncology because they are key components of signal transduction pathways. The number of clinical kinase inhibitors is on the rise, but these molecules often exhibit polypharmacology, potentially eliciting desired and toxic effects. Therefore, a comprehensive assessment of a compound's target space is desirable for a better understanding of its biological effects. The enzyme ferrochelatase (FECH) catalyzes the conversion of protoporphyrin IX into heme and was recently found to be an off-target of the BRAF inhibitor Vemurafenib, likely explaining the phototoxicity associated with this drug in melanoma patients. This raises the question of whether FECH binding is a more general feature of kinase inhibitors. To address this, we applied a chemical proteomics approach using kinobeads to evaluate 226 clinical kinase inhibitors for their ability to bind FECH. Surprisingly, low or submicromolar FECH binding was detected for 29 of all compounds tested and isothermal dose response measurements confirmed target engagement in cells. We also show that Vemurafenib, Linsitinib, Neratinib, and MK-2461 reduce heme levels in K562 cells, verifying that drug binding leads to a loss of FECH activity. Further biochemical and docking experiments identified the protoporphyrin pocket in FECH as one major drug binding site. Since the genetic loss of FECH activity leads to photosensitivity in humans, our data strongly suggest that FECH inhibition by kinase inhibitors is the molecular mechanism triggering photosensitivity in patients. We therefore suggest that a FECH assay should generally be part of the preclinical molecular toxicology package for the development of kinase inhibitors.

  9. Structural Biology Insight for the Design of Sub-type Selective Aurora Kinase Inhibitors.

    PubMed

    Sarvagalla, Sailu; Coumar, Mohane Selvaraj

    2015-01-01

    Aurora kinase A, B and C, are key regulators of mitosis and are over expressed in many of the human cancers, making them an ideal drug target for cancer chemotherapy. Currently, over a dozen of Aurora kinase inhibitors are in various phases of clinical development. The majority of the inhibitors (VX-680/MK-0457, PHA-739358, CYC116, SNS-314, AMG 900, AT-9283, SCH- 1473759, ABT-348, PF-03814735, R-763/AS-703569, KW-2449 and TAK-901) are pan-selective (isoform non-selective) and few are Aurora A (MLN8054, MLN8237, VX-689/MK5108 and ENMD 2076) and Aurora B (AZD1152 and GSK1070916) sub-type selective. Despite the intensive research efforts in the past decade, no Aurora kinase inhibitor has reached the market. Recent evidence suggests that the sub-type selective Aurora kinase A inhibitor could possess advantages over pan-selective Aurora inhibitors, by avoiding Aurora B mediated neutropenia. However, sub-type selective Aurora kinase A inhibitor design is very challenging due to the similarity in the active site among the isoforms. Structural biology and computational aspects pertaining to the design of Aurora kinase inhibitors were analyzed and found that a possible means to develop sub-type selective inhibitor is by targeting Aurora A specific residues (Leu215, Thr217 and Arg220) or Aurora B specific residues (Arg159, Glu161 and Lys164), near the solvent exposed region of the protein. Particularly, a useful strategy for the design of sub-type selective Aurora A inhibitor could be by targeting Thr217 residue as in the case of MLN8054. Further preclinical and clinical studies with the sub-type selective Aurora inhibitors could help bring them to the market for the treatment of cancer.

  10. Structural and Spectroscopic Analysis of the Kinase Inhibitor Bosutinib and an Isomer of Bosutinib Binding to the Abl Tyrosine Kinase Domain

    PubMed Central

    Levinson, Nicholas M.; Boxer, Steven G.

    2012-01-01

    Chronic myeloid leukemia (CML) is caused by the kinase activity of the BCR-Abl fusion protein. The Abl inhibitors imatinib, nilotinib and dasatinib are currently used to treat CML, but resistance to these inhibitors is a significant clinical problem. The kinase inhibitor bosutinib has shown efficacy in clinical trials for imatinib-resistant CML, but its binding mode is unknown. We present the 2.4 Å structure of bosutinib bound to the kinase domain of Abl, which explains the inhibitor's activity against several imatinib-resistant mutants, and reveals that similar inhibitors that lack a nitrile moiety could be effective against the common T315I mutant. We also report that two distinct chemical compounds are currently being sold under the name “bosutinib”, and report spectroscopic and structural characterizations of both. We show that the fluorescence properties of these compounds allow inhibitor binding to be measured quantitatively, and that the infrared absorption of the nitrile group reveals a different electrostatic environment in the conserved ATP-binding sites of Abl and Src kinases. Exploiting such differences could lead to inhibitors with improved selectivity. PMID:22493660

  11. Endotoxin-activated microglia injure brain derived endothelial cells via NF-κB, JAK-STAT and JNK stress kinase pathways

    PubMed Central

    2011-01-01

    Background We previously showed that microglia damage blood brain barrier (BBB) components following ischemic brain insults, but the underlying mechanism(s) is/are not well known. Recent work has established the contribution of toll-like receptor 4 (TLR4) activation to several brain pathologies including ischemia, neurodegeneration and sepsis. The present study established the requirement of microglia for lipopolysaccharide (LPS) mediated endothelial cell death, and explored pathways involved in this toxicity. LPS is a classic TLR4 agonist, and is used here to model aspects of brain conditions where TLR4 stimulation occurs. Methods/Results In monocultures, LPS induced death in microglia, but not brain derived endothelial cells (EC). However, LPS increased EC death when cocultured with microglia. LPS led to nitric oxide (NO) and inducible NO synthase (iNOS) induction in microglia, but not in EC. Inhibiting microglial activation by blocking iNOS and other generators of NO or blocking reactive oxygen species (ROS) also prevented injury in these cocultures. To assess the signaling pathway(s) involved, inhibitors of several downstream TLR-4 activated pathways were studied. Inhibitors of NF-κB, JAK-STAT and JNK/SAPK decreased microglial activation and prevented cell death, although the effect of blocking JNK/SAPK was rather modest. Inhibitors of PI3K, ERK, and p38 MAPK had no effect. Conclusions We show that LPS-activated microglia promote BBB disruption through injury to endothelial cells, and the specific blockade of JAK-STAT, NF-κB may prove to be especially useful anti-inflammatory strategies to confer cerebrovascular protection. PMID:21385378

  12. IL-6 secreted by cancer-associated fibroblasts promotes epithelial-mesenchymal transition and metastasis of gastric cancer via JAK2/STAT3 signaling pathway

    PubMed Central

    Li, Jie; Yu, Zhenjia; Wang, Xiaofeng; Li, Jiaanfang; Li, Chen; Yan, Min; Zhu, Zhenggang; Liu, Bingya; Su, Liping

    2017-01-01

    Cancer-associated fibroblasts (CAFs), as the activated fibroblasts in tumor stroma, are important modifiers of tumor progression. However, the molecular mechanisms underlying the tumor-promoting properties of CAFs in gastric cancer remain unclear. Here, we show that CAFs isolated from gastric cancer produce significant amounts of interleukin-6 (IL-6). CAFs enhances the migration and EMT of gastric cancer cells through the secretion of IL-6 that activates Janus kinase 2/signal transducers and activators of transcription (JAK2/STAT3) pathway in gastric cancer cells, while deprivation of IL-6 using a neutralizing antibody or inhibition of JAK/STAT3 pathway with specific inhibitor AG490 markedly attenuates these phenotypes in gastric cancer cells induced by CAFs. Moreover, silencing IL-6 expression in CAFs or inhibiting JAK2/STAT3 pathway in gastric cancer cells impairs tumor peritoneal metastasis induced by CAFs in vivo. Taken together, these results suggest that CAFs in the tumor microenvironment promote the progression of gastric cancer through IL-6/JAK2/STAT3 signaling, and IL-6 targeted therapy could be a complementary approach against gastric cancer by exerting their action on stromal fibroblasts. PMID:28186964

  13. Cell type-specific roles of Jak3 in IL-2-induced proliferative signal transduction

    PubMed Central

    Fujii, Hodaka

    2007-01-01

    Binding of IL-2 to its specific receptor induces activation of two members of Jak family protein tyrosine kinases, Jak1 and Jak3. An IL-2R-reconstituted NIH 3T3 fibroblast cell line proliferates in response to IL-2 only when hematopoietic lineage-specific Jak3 is ectopically expressed. However, the mechanism of Jak3-dependent proliferation in the fibroblast cell line is not known. Here, I showed that Jak3 expression is dispensable for IL-2-induced activation of Jak1 and Stat proteins and expression of nuclear proto-oncogenes in the IL-2R-reconstituted fibroblast cell line. However, Jak3 expression markedly enhanced these IL-2-induced signaling events. In contrast, Jak3 expression was essential for induction of cyclin genes involved in the G1-S transition. These data suggest a critical role of Jak3 in IL-2 signaling in the fibroblast cell line and may provide further insight into the cell type-specific mechanism of cytokine signaling. PMID:17266928

  14. A cGMP kinase mutant with increased sensitivity to the protein kinase inhibitor peptide PKI(5-24).

    PubMed

    Ruth, P; Kamm, S; Nau, U; Pfeifer, A; Hofmann, F

    1996-01-01

    Synthetic peptides corresponding to the active domain of the heat-stable inhibitor protein PKI are very potent inhibitors of cAMP-dependent protein kinase, but are extremely weak inhibitors of cGMP-dependent protein kinase. In this study, we tried to confer PKI sensitivity to cGMP kinase by site-directed mutagenesis. The molecular requirements for high affinity inhibition by PKI were deduced from the crystal structure of the cAMP kinase/PKI complex. A prominent site of interaction are residues Tyr235 and Phe239 in the catalytic subunit, which from a sandwich-like structure with Phe10 of the PKI(5-24) peptide. To increase the sensitivity for PKI, the cGMP kinase codons at the corresponding sites, Ser555 and Ser559, were changed to Tyr and Phe. The mutant cGMP kinase was stimulated half maximally by cGMP at 3-fold higher concentrations (240 nM) than the wild type (77 nM). Wild type and mutant cGMP kinase did not differ significantly in their Km and Vmax for three different substrate peptides. The PKI(5-24) peptide inhibited phosphotransferase activity of the mutant cGMP kinase with higher potency than that of wild type, with Ki values of 42 +/- .3 microM and 160 +/- .7 microM, respectively. The increased affinity of the mutant cGMP kinase was specific for the PKI(5-24) peptide. Mutation of the essential Phe10 in the PKI(5-24) sequence to an Ala yielded a peptide that inhibited mutant and wild type cGMP kinase with similar potency, with Ki values of 160 +/- 11 and 169 +/- 27 microM, respectively. These results suggest that the mutations Ser555Tyr and Ser559Phe are required, but not sufficient, for high affinity inhibition of cGMP kinase by PKI.

  15. Structural Basis of Wee Kinases Functionality and Inactivation by Diverse Small Molecule Inhibitors.

    PubMed

    Zhu, Jin-Yi; Cuellar, Rebecca A; Berndt, Norbert; Lee, Hee Eun; Olesen, Sanne H; Martin, Mathew P; Jensen, Jeffrey T; Georg, Gunda I; Schönbrunn, Ernst

    2017-09-28

    Members of the Wee family of kinases negatively regulate the cell cycle via phosphorylation of CDK1 and are considered potential drug targets. Herein, we investigated the structure-function relationship of human Wee1, Wee2, and Myt1 (PKMYT1). Purified recombinant full-length proteins and kinase domain constructs differed substantially in phosphorylation states and catalytic competency, suggesting complex mechanisms of activation. A series of crystal structures reveal unique features that distinguish Wee1 and Wee2 from Myt1 and establish the structural basis of differential inhibition by the widely used Wee1 inhibitor MK-1775. Kinome profiling and cellular studies demonstrate that, in addition to Wee1 and Wee2, MK-1775 is an equally potent inhibitor of the polo-like kinase PLK1. Several previously unrecognized inhibitors of Wee kinases were discovered and characterized. Combined, the data provide a comprehensive view on the catalytic and structural properties of Wee kinases and a framework for the rational design of novel inhibitors thereof.

  16. Leptin promotes human endometriotic cell migration and invasion by up-regulating MMP-2 through the JAK2/STAT3 signaling pathway.

    PubMed

    Ahn, Ji-Hye; Choi, Youn Seok; Choi, Jung-Hye

    2015-10-01

    Despite evidence that leptin may play a role in the pathogenesis of endometriosis, the specific function of leptin in the migration and invasion of endometriotic cells is not well characterized. In this study, we investigated the effect of leptin on the migration, invasion and matrix metalloproteinase (MMP) expression levels of human endometriotic cells. We found that leptin stimulated the migration and invasion of endometriotic cells (11Z, 12Z and 22B) in a dose-dependent manner. Leptin receptor (ObR) siRNA significantly inhibited the migration and invasion induced by leptin in 11Z and 12Z cells. Leptin-induced migration and invasion were significantly attenuated by pretreatment with SB-3CT, a specific gelatinase (MMP-2 and MMP-9) inhibitor. In addition, leptin-induced increases in the mRNA and protein expression and enzyme activity of MMP-2 in 11Z and 12Z cells. Selectively inhibiting MMP-2 using siRNA and an inhibitor (GM6003), impaired the ability of leptin to stimulate the migration and invasion of endometriotic cells, suggesting that MMP-2 plays an essential role in leptin-induced migration and invasion. Janus Kinase 2/Signal Transducer and Activator of Transcription 3 (JAK2/STAT3) inhibitor (AG490) significantly inhibited the migration, invasion and MMP-2 expression induced by leptin in endometriotic cells. Furthermore, the Extracellular signal-Regulated Kinase inhibitor PD98059 neutralized the migration and invasion promoting effects of leptin. Taken together, these results suggest that leptin may contribute to the migration and invasion abilities of endometriotic cells via the up-regulation of MMP-2 through an ObR-dependent JAK2/STAT3 signaling pathway. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Inhibitors of cyclin-dependent kinases as cancer therapeutics.

    PubMed

    Whittaker, Steven R; Mallinger, Aurélie; Workman, Paul; Clarke, Paul A

    2017-05-01

    Over the past two decades there has been a great deal of interest in the development of inhibitors of the cyclin-dependent kinases (CDKs). This attention initially stemmed from observations that different CDK isoforms have key roles in cancer cell proliferation through loss of regulation of the cell cycle, a hallmark feature of cancer. CDKs have now been shown to regulate other processes, particularly various aspects of transcription. The early non-selective CDK inhibitors exhibited considerable toxicity and proved to be insufficiently active in most cancers. The lack of patient selection biomarkers and an absence of understanding of the inhibitory profile required for efficacy hampered the development of these inhibitors. However, the advent of potent isoform-selective inhibitors with accompanying biomarkers has re-ignited interest. Palbociclib, a selective CDK4/6 inhibitor, is now approved for the treatment of ER+/HER2- advanced breast cancer. Current developments in the field include the identification of potent and selective inhibitors of the transcriptional CDKs; these include tool compounds that have allowed exploration of individual CDKs as cancer targets and the determination of their potential therapeutic windows. Biomarkers that allow the selection of patients likely to respond are now being discovered. Drug resistance has emerged as a major hurdle in the clinic for most protein kinase inhibitors and resistance mechanism are beginning to be identified for CDK inhibitors. This suggests that the selective inhibitors may be best used combined with standard of care or other molecularly targeted agents now in development rather than in isolation as monotherapies. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. BIM expression in treatment naïve cancers predicts responsiveness to kinase inhibitors

    PubMed Central

    Faber, Anthony; Corcoran, Ryan B.; Ebi, Hiromichi; Sequist, Lecia V.; Waltman, Belinda A.; Chung, Euiheon; Incio, Joao; Digumarthy, Subba R.; Pollack, Sarah F.; Song, Youngchul; Muzikansky, Alona; Lifshits, Eugene; Roberge, Sylvie; Coffman, Erik J.; Benes, Cyril; Gómez, Henry; Baselga, Jose; Arteaga, Carlos L.; Rivera, Miguel N.; Dias-Santagata, Dora; Jain, Rakesh K.; Engelman, Jeffrey A.

    2011-01-01

    Cancers with specific genetic mutations are susceptible to selective kinase inhibitors. However, there is wide spectrum of benefit among cancers harboring the same sensitizing genetic mutations. Herein, we measured apoptotic rates among cell lines sharing the same driver oncogene following treatment with the corresponding kinase inhibitor. There was a wide range of kinase inhibitor-induced apoptosis despite comparable inhibition of the target and associated downstream signaling pathways. Surprisingly, pre-treatment RNA levels of the BH3-only pro-apoptotic BIM strongly predicted the capacity of EGFR, HER2, and PI3K inhibitors to induce apoptosis in EGFR mutant, HER2 amplified, and PIK3CA mutant cancers, respectively, but BIM levels did not predict responsiveness to standard chemotherapies. Furthermore, BIM RNA levels in EGFR mutant lung cancer specimens predicted response and duration of clinical benefit from EGFR inhibitors. These findings suggest assessment of BIM levels in treatment naïve tumor biopsies may indicate the degree of benefit from single-agent kinase inhibitors in multiple oncogene-addiction paradigms. PMID:22145099

  19. Structure and inhibitor specificity of the PCTAIRE-family kinase CDK16

    PubMed Central

    Dixon-Clarke, Sarah E.; Shehata, Saifeldin N.; Krojer, Tobias; Sharpe, Timothy D.; vonDelft, Frank; Sakamoto, Kei

    2017-01-01

    CDK16 (also known as PCTAIRE1 or PCTK1) is an atypical member of the cyclin-dependent kinase (CDK) family that has emerged as a key regulator of neurite outgrowth, vesicle trafficking and cancer cell proliferation. CDK16 is activated through binding to cyclin Y via a phosphorylation-dependent 14-3-3 interaction and has a unique consensus substrate phosphorylation motif compared with conventional CDKs. To elucidate the structure and inhibitor-binding properties of this atypical CDK, we screened the CDK16 kinase domain against different inhibitor libraries and determined the co-structures of identified hits. We discovered that the ATP-binding pocket of CDK16 can accommodate both type I and type II kinase inhibitors. The most potent CDK16 inhibitors revealed by cell-free and cell-based assays were the multitargeted cancer drugs dabrafenib and rebastinib. An inactive DFG-out binding conformation was confirmed by the first crystal structures of CDK16 in separate complexes with the inhibitors indirubin E804 and rebastinib, respectively. The structures revealed considerable conformational plasticity, suggesting that the isolated CDK16 kinase domain was relatively unstable in the absence of a cyclin partner. The unusual structural features and chemical scaffolds identified here hold promise for the development of more selective CDK16 inhibitors and provide opportunity to better characterise the role of CDK16 and its related CDK family members in various physiological and pathological contexts. PMID:28057719

  20. Structure and inhibitor specificity of the PCTAIRE-family kinase CDK16.

    PubMed

    Dixon-Clarke, Sarah E; Shehata, Saifeldin N; Krojer, Tobias; Sharpe, Timothy D; von Delft, Frank; Sakamoto, Kei; Bullock, Alex N

    2017-02-20

    CDK16 (also known as PCTAIRE1 or PCTK1) is an atypical member of the cyclin-dependent kinase (CDK) family that has emerged as a key regulator of neurite outgrowth, vesicle trafficking and cancer cell proliferation. CDK16 is activated through binding to cyclin Y via a phosphorylation-dependent 14-3-3 interaction and has a unique consensus substrate phosphorylation motif compared with conventional CDKs. To elucidate the structure and inhibitor-binding properties of this atypical CDK, we screened the CDK16 kinase domain against different inhibitor libraries and determined the co-structures of identified hits. We discovered that the ATP-binding pocket of CDK16 can accommodate both type I and type II kinase inhibitors. The most potent CDK16 inhibitors revealed by cell-free and cell-based assays were the multitargeted cancer drugs dabrafenib and rebastinib. An inactive DFG-out binding conformation was confirmed by the first crystal structures of CDK16 in separate complexes with the inhibitors indirubin E804 and rebastinib, respectively. The structures revealed considerable conformational plasticity, suggesting that the isolated CDK16 kinase domain was relatively unstable in the absence of a cyclin partner. The unusual structural features and chemical scaffolds identified here hold promise for the development of more selective CDK16 inhibitors and provide opportunity to better characterise the role of CDK16 and its related CDK family members in various physiological and pathological contexts. © 2017 The Author(s).

  1. Germline and somatic JAK2 mutations and susceptibility to chronic myeloproliferative neoplasms

    PubMed Central

    2009-01-01

    Myeloproliferative neoplasms (MPNs) are a group of closely related stem-cell-derived clonal proliferative diseases. Most cases are sporadic but first-degree relatives of MPN patients have a five- to seven-fold increased risk for developing an MPN. The tumors of most patients carry a mutation in the Janus kinase 2 gene (JAK2V617F). Recently, three groups have described a strong association of JAK2 germline polymorphisms with MPN in patients positive for JAK2V617F. The somatic mutation occurs primarily on one particular germline JAK2 haplotype, which may account for as much as 50% of the risk to first-degree relatives. This finding provides new directions for unraveling the pathogenesis of MPN. PMID:19490586

  2. [Astaxanthin inhibits proliferation and promotes apoptosis of A549 lung cancer cells via blocking JAK1/STAT3 pathway].

    PubMed

    Wu, Chuntao; Zhang, Jinji; Liu, Tienan; Jiao, Guimei; Li, Changzai; Hu, Baoshan

    2016-06-01

    Objective To investigate the anti-tumor effects of astaxanthin on A549 lung cancer cells and the related mechanisms. Methods A549 cells were cultured with various concentrations of astaxanthin (20, 40, 60, 80, 100 μmol/L), and DMSO at the same concentrations served as vehicle controls. The viability of A549 cells was detected by CCK-8 assay; cell cycle and apoptosis were observed by flow cytometry; and the expressions of B-cell lymphoma-2 (Bcl-2), Bcl-2 associated X protein (Bax), signal transducers and activators of transcription 3 (STAT3), and Janus kinase 1 (JAK1) were evaluated by Western blotting. Results CCK-8 assay showed that astaxanthin decreased the proliferation of A549 cells in a dose-dependent manner. Flow cytometry showed that astaxanthin increased the number of cells in the G0/G1 phase and induced apoptosis in A549 cells. Western blotting showed that astaxanthin up-regulated the expression of Bax and down-regulated the expressions of Bcl-2, STAT3 and JAK1. Conclusion Astaxanthin functions as a potent inhibitor of A549 lung cancer cell growth by targeting JAK1/STAT3 signaling pathway.

  3. Selective Mycobacterium tuberculosis Shikimate Kinase Inhibitors as Potential Antibacterials

    PubMed Central

    Gordon, Sara; Simithy, Johayra; Goodwin, Douglas C; Calderón, Angela I

    2015-01-01

    Owing to the persistence of tuberculosis (TB) as well as the emergence of multidrug-resistant and extensively drug-resistant (XDR) forms of the disease, the development of new antitubercular drugs is crucial. Developing inhibitors of shikimate kinase (SK) in the shikimate pathway will provide a selective target for antitubercular agents. Many studies have used in silico technology to identify compounds that are anticipated to interact with and inhibit SK. To a much more limited extent, SK inhibition has been evaluated by in vitro methods with purified enzyme. Currently, there are no data on in vivo activity of Mycobacterium tuberculosis shikimate kinase (MtSK) inhibitors available in the literature. In this review, we present a summary of the progress of SK inhibitor discovery and evaluation with particular attention toward development of new antitubercular agents. PMID:25861218

  4. Expression of JAKs/STATs pathway molecules in rat model of rapid focal segmental glomerulosclerosis.

    PubMed

    Liang, Yaojun; Jin, Yu; Li, Yuning

    2009-09-01

    The objective of this study was to investigate the role of the Janus kinase-signal transducers and activators of transcription (JAKs/STATs) pathway in focal segmental glomerulosclerosis. Sixty specific pathogen-free male Wistar rats were randomly divided into two groups: a model group (MG) and a control group (CG). In the MG group, nephropathy was induced by unilateral nephrectomy and a single tail vein injection of adriamycin (5 mg/kg). Ten rats were sacrificed every 2 weeks in each group. The expressions of smooth muscle alpha actin (alpha-SMA), collagen (COL)-IV, STAT1, and STAT3 were examined using histochemical techniques, and Western blotting was used to examine the protein levels of STAT1, STAT3, phosphorylated (P)-STAT1, P-STAT3, and transforming growth factor beta1 (TGFbeta(1)). The expressions of JAK1, JAK2, STAT1, STAT3, suppressors of cytokine signaling (SOCS)1, SOCS3, protein inhibitors of activated STAT (PIAS)1, and PIAS3 were also measured by real-time quantitative reverse transcriptase-PCR. A steady and significant increase in the expressions of alpha-SMA, COL-IV and TGFbeta(1) were observed in MG rats over the whole experimental course. Increased STAT1 and P-STAT1 levels in MG rats were observed by week 6, whereas increased levels of STAT3 and P-STAT3 were noted by week 2. At the mRNA levels, JAK1, STAT1, and PIAS1 were significantly increased in MG rats in week 2, whereas JAK2 mRNA showed a significant decrease by weeks 2 and 4, followed by an significant increase in week 6. Significantly increased STAT3 levels were noted in week 2, followed by a steady and significant decrease in weeks 4 and 6. Significantly reduced levels of SOCS1, SOCS3, and PIAS3 mRNA were noted at all time points. We conclude that the JAKs/STATs signaling pathway may play an important role in the pathological process of rapid focal segmental glomerulosclerosis in the rat model.

  5. Structural insight into selectivity and resistance profiles of ROS1 tyrosine kinase inhibitors

    PubMed Central

    Davare, Monika A.; Vellore, Nadeem A.; Wagner, Jacob P.; Eide, Christopher A.; Goodman, James R.; Drilon, Alexander; Deininger, Michael W.; O’Hare, Thomas; Druker, Brian J.

    2015-01-01

    Oncogenic ROS1 fusion proteins are molecular drivers in multiple malignancies, including a subset of non-small cell lung cancer (NSCLC). The phylogenetic proximity of the ROS1 and anaplastic lymphoma kinase (ALK) catalytic domains led to the clinical repurposing of the Food and Drug Administration (FDA)-approved ALK inhibitor crizotinib as a ROS1 inhibitor. Despite the antitumor activity of crizotinib observed in both ROS1- and ALK-rearranged NSCLC patients, resistance due to acquisition of ROS1 or ALK kinase domain mutations has been observed clinically, spurring the development of second-generation inhibitors. Here, we profile the sensitivity and selectivity of seven ROS1 and/or ALK inhibitors at various levels of clinical development. In contrast to crizotinib’s dual ROS1/ALK activity, cabozantinib (XL-184) and its structural analog foretinib (XL-880) demonstrate a striking selectivity for ROS1 over ALK. Molecular dynamics simulation studies reveal structural features that distinguish the ROS1 and ALK kinase domains and contribute to differences in binding site and kinase selectivity of the inhibitors tested. Cell-based resistance profiling studies demonstrate that the ROS1-selective inhibitors retain efficacy against the recently reported CD74-ROS1G2032R mutant whereas the dual ROS1/ALK inhibitors are ineffective. Taken together, inhibitor profiling and stringent characterization of the structure–function differences between the ROS1 and ALK kinase domains will facilitate future rational drug design for ROS1- and ALK-driven NSCLC and other malignancies. PMID:26372962

  6. Indolinone based LRRK2 kinase inhibitors with a key hydrogen bond.

    PubMed

    Göring, Stefan; Taymans, Jean-Marc; Baekelandt, Veerle; Schmidt, Boris

    2014-10-01

    The most prevalent leucine-rich repeat kinase 2 (LRRK2) mutation G2019S is associated with Parkinson's disease (PD). It enhances kinase activity and has been identified in both familial and sporadic cases. Kinase activity was reported to be required for LRRK2 mutants to exert their toxic effects. Hence LRRK2 kinase inhibition may be a promising therapeutic target for PD. Here we report on the discovery and characterization of indolinone based LRRK2 inhibitors. Indolinone 15b, the most potent and selective inhibitor of the present series, is characterized by an IC50 of 15nM against wild-type LRRK2 and 10nM against the LRRK2 G2019S mutant, respectively. Compound 15b was further evaluated in a kinase panel including 46 human protein kinases and in a zebrafish embryo phenotype assay, which enabled toxicity determination in whole organisms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. 1,2,6-Thiadiazinones as Novel Narrow Spectrum Calcium/Calmodulin-Dependent Protein Kinase Kinase 2 (CaMKK2) Inhibitors.

    PubMed

    Asquith, Christopher R M; Godoi, Paulo H; Couñago, Rafael M; Laitinen, Tuomo; Scott, John W; Langendorf, Christopher G; Oakhill, Jonathan S; Drewry, David H; Zuercher, William J; Koutentis, Panayiotis A; Willson, Timothy M; Kalogirou, Andreas S

    2018-05-19

    We demonstrate for the first time that 4 H -1,2,6-thiadiazin-4-one (TDZ) can function as a chemotype for the design of ATP-competitive kinase inhibitors. Using insights from a co-crystal structure of a 3,5-bis(arylamino)-4 H -1,2,6-thiadiazin-4-one bound to calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2), several analogues were identified with micromolar activity through targeted displacement of bound water molecules in the active site. Since the TDZ analogues showed reduced promiscuity compared to their 2,4-dianilinopyrimidine counter parts, they represent starting points for development of highly selective kinase inhibitors.

  8. In Silico Identification of a Novel Hinge-Binding Scaffold for Kinase Inhibitor Discovery.

    PubMed

    Wang, Yanli; Sun, Yuze; Cao, Ran; Liu, Dan; Xie, Yuting; Li, Li; Qi, Xiangbing; Huang, Niu

    2017-10-26

    To explore novel kinase hinge-binding scaffolds, we carried out structure-based virtual screening against p38α MAPK as a model system. With the assistance of developed kinase-specific structural filters, we identify a novel lead compound that selectively inhibits a panel of kinases with threonine as the gatekeeper residue, including BTK and LCK. These kinases play important roles in lymphocyte activation, which encouraged us to design novel kinase inhibitors as drug candidates for ameliorating inflammatory diseases and cancers. Therefore, we chemically modified our substituted triazole-class lead compound to improve the binding affinity and selectivity via a "minimal decoration" strategy, which resulted in potent and selective kinase inhibitors against LCK (18 nM) and BTK (8 nM). Subsequent crystallographic experiments validated our design. These rationally designed compounds exhibit potent on-target inhibition against BTK in B cells or LCK in T cells, respectively. Our work demonstrates that structure-based virtual screening can be applied to facilitate the development of novel chemical entities in crowded chemical space in the field of kinase inhibitor discovery.

  9. IGF-1-induced MMP-11 expression promotes the proliferation and invasion of gastric cancer cells through the JAK1/STAT3 signaling pathway.

    PubMed

    Su, Chao; Wang, Wenchang; Wang, Cunchuan

    2018-05-01

    The present study aimed to investigate the association between insulin-like growth factor-1 (IGF-1) and matrix metalloproteinase-11 (MMP-11) expression in gastric cancer (GC) and the underlying mechanisms in SGC-7901 cells. Reverse transcription-quantitative polymerase chain reaction analysis revealed that the expression of IGF-1 and MMP-11 was significantly upregulated in GC tissues compared with normal gastric tissue. Furthermore, IGF-1 significantly and dose-dependently promoted MMP-11. Western blotting revealed that the addition of IGF-1 to SGC-7901 cells led to an evident enhancement in signal transducer and activator of transcription 3 (STAT3), IGF-1R and Janus kinase 1 (JAK1) phosphorylation at 20 and 40 min. A decrease in the extent of the elevated expression of MMP-11 and the enhanced phosphorylation of STAT3, JAK1 and IGF-1 receptor (IGF-1R) induced by IGF-1 in SGC-7901 cells were observed following treatment with NT157 (an IGF-1R inhibitor). Furthermore, piceatannol (a JAK1 inhibitor) or small interfering RNA against STAT3 reduced the extent of the increased expression of MMP-11 induced by IGF-1 in SGC-7901 cells. Piceatannol treatment induced the dose-dependent decline in the enhancement of STAT3 phosphorylation induced by IGF-1, indicating that the JAK1/STAT3 pathway may be implicated in the elevated expression of MMP-11 induced by IGF-1 in SGC-7901 cells. Finally, IGF-1 treatment significantly promoted the proliferation and invasion of SGC-7901 cells, which was inhibited following NT157, piceatannol or si-STAT3 treatment. The present study therefore demonstrated that IGF-1-induced MMP-11 may have facilitated the proliferation and invasion of SGC-7901 cells via the JAK1/STAT3 pathway.

  10. Tyrosine Kinase Inhibitor-Induced Hypertension.

    PubMed

    Agarwal, Megha; Thareja, Nidhi; Benjamin, Melody; Akhondi, Andre; Mitchell, George D

    2018-06-21

    The purpose of this paper is to identify commonly used tyrosine kinase inhibitors (TKIs) that are associated with hypertension, primarily, vascular endothelial growth factor (VEGF) signaling pathway (VSP) inhibitors. We review the incidence, mechanism, and strategies for management of TKI-induced HTN. We hope to provide clinicians with guidance on how to manage similar clinical scenarios. Many of the newer VSP inhibitors are reviewed here, including cediranib, axitinib, pazopanib, and ponatinib. Trials utilizing prophylactic treatment with angiotensin system inhibitors (ASIs) are discussed as well as recent data showing an improvement in overall survival and progression-free survival in patients on ASIs and TKI-induced hypertension. The incidence of TKI-induced HTN among the VEGF inhibitors ranges from 5 to 80% and is dose dependent. Newer generation small-molecule TKIs has a lower incidence. The mechanism of action involves VSP inhibition, leading to decreased nitric oxide and increased endothelin production, which causes vasoconstriction, capillary rarefaction, and hypertension. ASIs and calcium channel blockers are first-line therapy for treatment and are associated with improved overall survival. Nitrates and beta-blockers are associated with in vitro cancer regression; however, there is a paucity of trials regarding their use as an anti-hypertensive agent in the TKI-induced HTN patient population.

  11. Autophagy Facilitates IFN-γ-induced Jak2-STAT1 Activation and Cellular Inflammation*

    PubMed Central

    Chang, Yu-Ping; Tsai, Cheng-Chieh; Huang, Wei-Ching; Wang, Chi-Yun; Chen, Chia-Ling; Lin, Yee-Shin; Kai, Jui-In; Hsieh, Chia-Yuan; Cheng, Yi-Lin; Choi, Pui-Ching; Chen, Shun-Hua; Chang, Shih-Ping; Liu, Hsiao-Sheng; Lin, Chiou-Feng

    2010-01-01

    Autophagy is regulated for IFN-γ-mediated antimicrobial efficacy; however, its molecular effects for IFN-γ signaling are largely unknown. Here, we show that autophagy facilitates IFN-γ-activated Jak2-STAT1. IFN-γ induces autophagy in wild-type but not in autophagy protein 5 (Atg5−/−)-deficient mouse embryonic fibroblasts (MEFs), and, autophagy-dependently, IFN-γ induces IFN regulatory factor 1 and cellular inflammatory responses. Pharmacologically inhibiting autophagy using 3-methyladenine, a known inhibitor of class III phosphatidylinositol 3-kinase, confirms these effects. Either Atg5−/− or Atg7−/− MEFs are, independent of changes in IFN-γ receptor expression, resistant to IFN-γ-activated Jak2-STAT1, which suggests that autophagy is important for IFN-γ signal transduction. Lentivirus-based short hairpin RNA for Atg5 knockdown confirmed the importance of autophagy for IFN-γ-activated STAT1. Without autophagy, reactive oxygen species increase and cause SHP2 (Src homology-2 domain-containing phosphatase 2)-regulated STAT1 inactivation. Inhibiting SHP2 reversed both cellular inflammation and the IFN-γ-induced activation of STAT1 in Atg5−/− MEFs. Our study provides evidence that there is a link between autophagy and both IFN-γ signaling and cellular inflammation and that autophagy, because it inhibits the expression of reactive oxygen species and SHP2, is pivotal for Jak2-STAT1 activation. PMID:20592027

  12. Investigation of JAKs/STAT‐3 in lipopolysaccharide‐induced intestinal epithelial cells

    PubMed Central

    Fu, L.; Wei, L.‐W.; Zhao, M.‐D.; Zhu, J.‐L.; Chen, S.‐Y.; Jia, X.‐B.

    2016-01-01

    Summary Janus‐activated kinase (JAKs)‐signal transducer and activator of transcription 3 (STAT‐3) signalling play critical roles in immunoregulation and immunopathology, which involve inflammatory responses and enteritis. JAK phosphorylates STAT‐3 in response to stimulation by cytokines or growth factors, and then activates or represses the gene expression. STAT‐3 is activated persistently in cancer cells and contributes to the malignant progression of various types of cancer and inflammation. To elucidate the different roles of JAKs in the activation of STAT‐3, the lipopolysaccharide‐induced primary intestinal epithelial cell (IEC) acute inflammatory model was established. Small interference RNAs (siRNAs) were then employed to attenuate the expression levels of JAKs. Real‐time quantitative reverse transcription–polymerase chain reaction (PCR) (qRT–PCR) revealed that JAK mRNA levels were reduced efficiently by JAK‐specific siRNAs. Under the IEC inflammatory model transfected with si‐JAK, which equates to effective silencing, qRT–PCR and Western blot assays, suggested that knockdowns of JAK attenuated the JAK‐induced down‐regulation of STAT‐3 at the mRNA or protein levels. In particular, JAK1 played a key role, which was consistent with the RNA‐Seq results. Subsequently, the expression levels of proinflammatory cytokines interleukin (IL)‐1β and tumour necrosis factor (TNF)‐α were down‐regulated in the IEC inflammatory model transfected with si‐JAK1. JAK1 appears as a direct activator for STAT‐3, whereas treatments targeting JAK1 repressed STAT‐3 sufficiently pathways in the IEC inflammatory model. Therefore, the control of JAK1 using siRNAs has the potential to be an effective strategy against enteritis. PMID:27357529

  13. Indazole-based potent and cell-active Mps1 kinase inhibitors: rational design from pan-kinase inhibitor anthrapyrazolone (SP600125).

    PubMed

    Kusakabe, Ken-ichi; Ide, Nobuyuki; Daigo, Yataro; Tachibana, Yuki; Itoh, Takeshi; Yamamoto, Takahiko; Hashizume, Hiroshi; Hato, Yoshio; Higashino, Kenichi; Okano, Yousuke; Sato, Yuji; Inoue, Makiko; Iguchi, Motofumi; Kanazawa, Takayuki; Ishioka, Yukichi; Dohi, Keiji; Kido, Yasuto; Sakamoto, Shingo; Yasuo, Kazuya; Maeda, Masahiro; Higaki, Masayo; Ueda, Kazuo; Yoshizawa, Hidenori; Baba, Yoshiyasu; Shiota, Takeshi; Murai, Hitoshi; Nakamura, Yusuke

    2013-06-13

    Monopolar spindle 1 (Mps1) is essential for centrosome duplication, the spindle assembly check point, and the maintenance of chromosomal instability. Mps1 is highly expressed in cancer cells, and its expression levels correlate with the histological grades of cancers. Thus, selective Mps1 inhibitors offer an attractive opportunity for the development of novel cancer therapies. To design novel Mps1 inhibitors, we utilized the pan-kinase inhibitor anthrapyrazolone (4, SP600125) and its crystal structure bound to JNK1. Our design efforts led to the identification of indazole-based lead 6 with an Mps1 IC50 value of 498 nM. Optimization of the 3- and 6-positions on the indazole core of 6 resulted in 23c with improved Mps1 activity (IC50 = 3.06 nM). Finally, application of structure-based design using the X-ray structure of 23d bound to Mps1 culminated in the discovery of 32a and 32b with improved potency for cellular Mps1 and A549 lung cancer cells. Moreover, 32a and 32b exhibited reasonable selectivities over 120 and 166 kinases, respectively.

  14. Molecular Mechanism of Selectivity among G Protein-Coupled Receptor Kinase 2 Inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thal, David M.; Yeow, Raymond Y.; Schoenau, Christian

    2012-07-11

    G protein-coupled receptors (GPCRs) are key regulators of cell physiology and control processes ranging from glucose homeostasis to contractility of the heart. A major mechanism for the desensitization of activated GPCRs is their phosphorylation by GPCR kinases (GRKs). Overexpression of GRK2 is strongly linked to heart failure, and GRK2 has long been considered a pharmaceutical target for the treatment of cardiovascular disease. Several lead compounds developed by Takeda Pharmaceuticals show high selectivity for GRK2 and therapeutic potential for the treatment of heart failure. To understand how these drugs achieve their selectivity, we determined crystal structures of the bovine GRK2-G{beta}{gamma} complexmore » in the presence of two of these inhibitors. Comparison with the apoGRK2-G{beta}{gamma} structure demonstrates that the compounds bind in the kinase active site in a manner similar to that of the AGC kinase inhibitor balanol. Both balanol and the Takeda compounds induce a slight closure of the kinase domain, the degree of which correlates with the potencies of the inhibitors. Based on our crystal structures and homology modeling, we identified five amino acids surrounding the inhibitor binding site that we hypothesized could contribute to inhibitor selectivity. However, our results indicate that these residues are not major determinants of selectivity among GRK subfamilies. Rather, selectivity is achieved by the stabilization of a unique inactive conformation of the GRK2 kinase domain.« less

  15. Co-targeting the PI3K/mTOR and JAK2 signalling pathways produces synergistic activity against myeloproliferative neoplasms

    PubMed Central

    Bartalucci, Niccolò; Tozzi, Lorenzo; Bogani, Costanza; Martinelli, Serena; Rotunno, Giada; Villeval, Jean-Luc; Vannucchi, Alessandro M

    2013-01-01

    Aberrant JAK2 signalling plays a central role in myeloproliferative neoplasms (MPN). JAK2 inhibitors have proven to be clinically efficacious, however, they are not mutation-specific and competent enough to suppress neoplastic clonal haematopoiesis. We hypothesized that, by simultaneously targeting multiple activated signalling pathways, MPN could be more effectively treated. To this end we investigated the efficacy of BEZ235, a dual PI3K/mTOR inhibitor, alone and in combination with the JAK1/JAK2 inhibitor ruxolitinib, in different preclinical models of MPN. Single-agent BEZ235 inhibited the proliferation and induced cell cycle arrest and apoptosis of mouse and human JAK2V617F mutated cell lines at concentrations significantly lower than those required to inhibit the wild-type counterpart, and preferentially prevented colony formation from JAK2V617F knock-in mice and patients' progenitor cells compared with normal ones. Co-treatment of BEZ235 and ruxolitinib produced significant synergism in all these in-vitro models. Co-treatment was also more effective than single drugs in reducing the extent of disease and prolonging survival of immunodeficient mice injected with JAK2V617F-mutated Ba/F3-EPOR cells and in reducing spleen size, decreasing reticulocyte count and improving spleen histopathology in conditional JAK2V617F knock-in mice. In conclusion, combined inhibition of PI3K/mTOR and JAK2 signalling may represent a novel therapeutic strategy in MPN. PMID:24237791

  16. Prediction of kinase-inhibitor binding affinity using energetic parameters

    PubMed Central

    Usha, Singaravelu; Selvaraj, Samuel

    2016-01-01

    The combination of physicochemical properties and energetic parameters derived from protein-ligand complexes play a vital role in determining the biological activity of a molecule. In the present work, protein-ligand interaction energy along with logP values was used to predict the experimental log (IC50) values of 25 different kinase-inhibitors using multiple regressions which gave a correlation coefficient of 0.93. The regression equation obtained was tested on 93 kinase-inhibitor complexes and an average deviation of 0.92 from the experimental log IC50 values was shown. The same set of descriptors was used to predict binding affinities for a test set of five individual kinase families, with correlation values > 0.9. We show that the protein-ligand interaction energies and partition coefficient values form the major deterministic factors for binding affinity of the ligand for its receptor. PMID:28149052

  17. Histone H3 phosphorylation in GBM: a new rational to guide the use of kinase inhibitors in anti-GBM therapy.

    PubMed

    Pacaud, Romain; Cheray, Mathilde; Nadaradjane, Arulraj; Vallette, François M; Cartron, Pierre-François

    2015-01-01

    Histones post-translational modifications (PTMs) are crucial components of diverse processes that modulate chromatin. Among the histones PTMs, the histones phosphorylation appears such crucial since it plays a significant role into DNA repair structure, transcription and chromatin compaction during cell division and apoptosis. However, little is known about the prognostic value of the histone phosphorylation in human cancer. This point could be considerate such as an important gap in anti-cancer therapy since the use of adequate kinase inhibitors could remedy to the aberrant histone phosphorylation associated with a poor prognosis factor. To remedy at this situation, we analyzed the phosphorylation level of histone H3 at the residues T3, T6, S10, S28, Y41 and T45 in a collection of 42 glioblastoma multiformes (GBM). Our data indicated that the high level of pH3T6, pH3S10 and pH3Y41 are signatures associated with a poor prognosis of overall survival (OS) of GBM treated with the "temozolomide and irradiation standard" treatment of GBM (named TMZ+Irad treatment). Our data also showed that these signatures are correlated with the high activity of kinases already described as writers of the pH3T6, pH3S10 and pH3Y41 i.e. the PKC, Aurora-B and JAK2, respectively. Finally, our analysis revealed that the use of Enzastaurin, AZD1152, and AZD1480 abrogated the high level of pH3T6, pH3S10 and pH3Y41 while increasing the sensitivity to the "temozolomide and irradiation"-induced cell death. To conclude, it appears that this work provides biomarkers for patient stratification for a therapy including kinase inhibitors.

  18. Meriolins, a new class of cell death inducing kinase inhibitors with enhanced selectivity for cyclin-dependent kinases.

    PubMed

    Bettayeb, Karima; Tirado, Oscar M; Marionneau-Lambot, Séverine; Ferandin, Yoan; Lozach, Olivier; Morris, Jonathan C; Mateo-Lozano, Silvia; Drueckes, Peter; Schächtele, Christoph; Kubbutat, Michael H G; Liger, François; Marquet, Bernard; Joseph, Benoît; Echalier, Aude; Endicott, Jane A; Notario, Vicente; Meijer, Laurent

    2007-09-01

    Protein kinases represent promising anticancer drug targets. We describe here the meriolins, a new family of inhibitors of cyclin-dependent kinases (CDK). Meriolins represent a chemical structural hybrid between meridianins and variolins, two families of kinase inhibitors extracted from various marine invertebrates. Variolin B is currently in preclinical evaluation as an antitumor agent. A selectivity study done on 32 kinases showed that, compared with variolin B, meriolins display enhanced specificity toward CDKs, with marked potency on CDK2 and CDK9. The structures of pCDK2/cyclin A/variolin B and pCDK2/cyclin A/meriolin 3 complexes reveal that the two inhibitors bind within the ATP binding site of the kinase, but in different orientations. Meriolins display better antiproliferative and proapoptotic properties in human tumor cell cultures than their parent molecules, meridianins and variolins. Phosphorylation at CDK1, CDK4, and CDK9 sites on, respectively, protein phosphatase 1alpha, retinoblastoma protein, and RNA polymerase II is inhibited in neuroblastoma SH-SY5Y cells exposed to meriolins. Apoptosis triggered by meriolins is accompanied by rapid Mcl-1 down-regulation, cytochrome c release, and activation of caspases. Meriolin 3 potently inhibits tumor growth in two mouse xenograft cancer models, namely, Ewing's sarcoma and LS174T colorectal carcinoma. Meriolins thus constitute a new CDK inhibitory scaffold, with promising antitumor activity, derived from molecules initially isolated from marine organisms.

  19. Methods Of Using Chemical Libraries To Search For New Kinase Inhibitors

    DOEpatents

    Gray, Nathanael S. , Schultz, Peter , Wodicka, Lisa , Meijer, Laurent , Lockhart, David J.

    2003-06-03

    The generation of selective inhibitors for specific protein kinases would provide new tools for analyzing signal transduction pathways and possibly new therapeutic agents. We have invented an approach to the development of selective protein kinase inhibitors based on the unexpected binding mode of 2,6,9-trisubstituted purines to the ATP binding site of human CDK2. The most potent inhibitor, purvalanol B (IC.sub.50 =6 nM), binds with a 30-fold greater affinity than the known CDK2 inhibitor, flavopiridol. The cellular effects of this class of compounds were examined and compared to those of flavopiridol by monitoring changes in mRNA expression levels for all genes in treated cells of Saccharomyces cerevisiae using high-density oligonucleotide probe arrays.

  20. Fluorescent Inhibitors as Tools To Characterize Enzymes: Case Study of the Lipid Kinase Phosphatidylinositol 4-Kinase IIIβ (PI4KB).

    PubMed

    Humpolickova, Jana; Mejdrová, Ivana; Matousova, Marika; Nencka, Radim; Boura, Evzen

    2017-01-12

    The lipid kinase phosphatidylinositol 4-kinase IIIβ (PI4KB) is an essential host factor for many positive-sense single-stranded RNA (+RNA) viruses including human pathogens hepatitis C virus (HCV), Severe acute respiratory syndrome (SARS), coxsackie viruses, and rhinoviruses. Inhibitors of PI4KB are considered to be potential broad-spectrum virostatics, and it is therefore critical to develop a biochemical understanding of the kinase. Here, we present highly potent and selective fluorescent inhibitors that we show to be useful chemical biology tools especially in determination of dissociation constants. Moreover, we show that the coumarin-labeled inhibitor can be used to image PI4KB in cells using fluorescence-lifetime imaging microscopy (FLIM) microscopy.

  1. Tyrosine Kinase 2-mediated Signal Transduction in T Lymphocytes Is Blocked by Pharmacological Stabilization of Its Pseudokinase Domain*

    PubMed Central

    Tokarski, John S.; Zupa-Fernandez, Adriana; Tredup, Jeffrey A.; Pike, Kristen; Chang, ChiehYing; Xie, Dianlin; Cheng, Lihong; Pedicord, Donna; Muckelbauer, Jodi; Johnson, Stephen R.; Wu, Sophie; Edavettal, Suzanne C.; Hong, Yang; Witmer, Mark R.; Elkin, Lisa L.; Blat, Yuval; Pitts, William J.; Weinstein, David S.; Burke, James R.

    2015-01-01

    Inhibition of signal transduction downstream of the IL-23 receptor represents an intriguing approach to the treatment of autoimmunity. Using a chemogenomics approach marrying kinome-wide inhibitory profiles of a compound library with the cellular activity against an IL-23-stimulated transcriptional response in T lymphocytes, a class of inhibitors was identified that bind to and stabilize the pseudokinase domain of the Janus kinase tyrosine kinase 2 (Tyk2), resulting in blockade of receptor-mediated activation of the adjacent catalytic domain. These Tyk2 pseudokinase domain stabilizers were also shown to inhibit Tyk2-dependent signaling through the Type I interferon receptor but not Tyk2-independent signaling and transcriptional cellular assays, including stimulation through the receptors for IL-2 (JAK1- and JAK3-dependent) and thrombopoietin (JAK2-dependent), demonstrating the high functional selectivity of this approach. A crystal structure of the pseudokinase domain liganded with a representative example showed the compound bound to a site analogous to the ATP-binding site in catalytic kinases with features consistent with high ligand selectivity. The results support a model where the pseudokinase domain regulates activation of the catalytic domain by forming receptor-regulated inhibitory interactions. Tyk2 pseudokinase stabilizers, therefore, represent a novel approach to the design of potent and selective agents for the treatment of autoimmunity. PMID:25762719

  2. Promiscuity and selectivity of small-molecule inhibitors across TAM receptor tyrosine kinases in pediatric leukemia.

    PubMed

    Liu, Mao-Hua; Chen, Shi-Bing; Yu, Juan; Liu, Cheng-Jun; Zhang, Xiao-Jing

    2017-08-01

    The TAM receptor tyrosine kinase family member Mer has been recognized as an attractive therapeutic target for pediatric leukemia. Beside Mer the family contains other two kinases, namely, Tyro3 and Axl, which are highly homologues with Mer and thus most existing small-molecule inhibitors show moderate or high promiscuity across the three kinases. Here, the structural basis and energetic property of selective binding of small-molecule inhibitors to the three kinases were investigated at molecular level. It is found that the selectivity is primarily determined by the size, shape and configuration of kinase's ATP-binding site; the Mer and Axl possess a small, closed active pocket as compared to the bulky, open pocket of Tyro3. The location and conformation of active-site residues of Mer and Axl are highly consistent, suggesting that small-molecule inhibitors generally have a low Mer-over-Axl selectivity and a high Mer-over-Tyro3 selectivity. We demonstrated that the difference in ATP binding potency to the three kinases is also responsible for inhibitor selectivity. We also found that the long-range interactions and allosteric effect arising from rest of the kinase's active site can indirectly influence inhibitor binding and selectivity. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Cyclin-Dependent Kinase Inhibitors as Anticancer Therapeutics

    PubMed Central

    Corsino, Patrick E.; Narayan, Satya

    2015-01-01

    Cyclin-dependent kinases (CDKs) have been considered promising drug targets for a number of years, but most CDK inhibitors have failed rigorous clinical testing. Recent studies demonstrating clear anticancer efficacy and reduced toxicity of CDK4/6 inhibitors such as palbociclib and multi-CDK inhibitors such as dinaciclib have rejuvenated the field. Favorable results with palbociclib and its recent U.S. Food and Drug Administration approval demonstrate that CDK inhibitors with narrow selectivity profiles can have clinical utility for therapy based on individual tumor genetics. A brief overview of results obtained with ATP-competitive inhibitors such as palbociclib and dinaciclib is presented, followed by a compilation of new avenues that have been pursued toward the development of novel, non–ATP-competitive CDK inhibitors. These creative ways to develop CDK inhibitors are presented along with crystal structures of these agents complexed with CDK2 to highlight differences in their binding sites and mechanisms of action. The recent successes of CDK inhibitors in the clinic, combined with the potential for structure-based routes to the development of non–ATP-competitive CDK inhibitors, and evidence that CDK inhibitors may have use in suppressing chromosomal instability and in synthetic lethal drug combinations inspire optimism that CDK inhibitors will become important weapons in the fight against cancer. PMID:26018905

  4. Myeloproliferative neoplasms with concurrent BCR-ABL1 translocation and JAK2 V617F mutation: a multi-institutional study from the bone marrow pathology group.

    PubMed

    Soderquist, Craig R; Ewalt, Mark D; Czuchlewski, David R; Geyer, Julia T; Rogers, Heesun J; Hsi, Eric D; Wang, Sa A; Bueso-Ramos, Carlos E; Orazi, Attilio; Arber, Daniel A; Hexner, Elizabeth O; Babushok, Daria V; Bagg, Adam

    2018-05-01

    Myeloproliferative neoplasms arise from hematopoietic stem cells with somatically altered tyrosine kinase signaling. Classification of myeloproliferative neoplasms is based on hematologic, histopathologic and molecular characteristics including the presence of the BCR-ABL1 and JAK2 V617F. Although thought to be mutually exclusive, a number of cases with co-occurring BCR-ABL1 and JAK2 V617F have been identified. To characterize the clinicopathologic features of myeloproliferative neoplasms with concomitant BCR-ABL1 and JAK2 V617F, and define the frequency of co-occurrence, we conducted a retrospective multi-institutional study. Cases were identified using a search of electronic databases over a decade at six major institutions. Of 1570 patients who were tested for both BCR-ABL1 and JAK2 V617F, six were positive for both. An additional five patients were identified via clinical records providing a total of 11 cases for detailed evaluation. For each case, clinical variables, hematologic and genetic data, and bone marrow histomorphologic features were analyzed. The sequence of identification of the genetic abnormalities varied: five patients were initially diagnosed with a JAK2 V617F+ myeloproliferative neoplasm, one patient initially had BCR-ABL1+ chronic myeloid leukemia, while both alterations were identified simultaneously in five patients. Classification of the BCR-ABL1-negative myeloproliferative neoplasms varied, and in some cases, features only became apparent following tyrosine kinase inhibitor therapy. Seven of the 11 patients showed myelofibrosis, in some cases before identification of the second genetic alteration. Our data, reflecting the largest reported study comprehensively detailing clinicopathologic features and response to therapy, show that the co-occurrence of BCR-ABL1 and JAK2 V617F is rare, with an estimated frequency of 0.4%, and most often reflects two distinct ('composite') myeloproliferative neoplasms. Although uncommon, it is important to be

  5. Contribution of JAK2 mutations to T-cell lymphoblastic lymphoma development.

    PubMed

    Roncero, A M; López-Nieva, P; Cobos-Fernández, M A; Villa-Morales, M; González-Sánchez, L; López-Lorenzo, J L; Llamas, P; Ayuso, C; Rodríguez-Pinilla, S M; Arriba, M C; Piris, M A; Fernández-Navarro, P; Fernández, A F; Fraga, M F; Santos, J; Fernández-Piqueras, J

    2016-01-01

    The JAK-STAT pathway has a substantial role in lymphoid precursor cell proliferation, survival and differentiation. Nonetheless, the contribution of JAK2 to T-cell lymphoblastic lymphoma (T-LBL) development remains poorly understood. We have identified one activating TEL-JAK2 translocation and four missense mutations accumulated in 2 out of 16 T-LBL samples. Two of them are novel JAK2 mutations and the other two are reported for the first time in T-LBL. Notably, R683G and I682T might have arisen owing to RNA editing. Mutated samples showed different mutated transcripts suggesting sub-clonal heterogeneity. Functional approaches revealed that two JAK2 mutations (H574R and R683G) constitutively activate JAK-STAT signaling in γ2A cells and can drive the proliferation of BaF3-EpoR cytokine-dependent cell line. In addition, aberrant hypermethylation of SOCS3 might contribute to enhance the activation of JAK-STAT signaling. Of utmost interest is that primary T-LBL samples harboring JAK2 mutations exhibited increased expression of LMO2, suggesting a mechanistic link between JAK2 mutations and the expression of LMO2, which was confirmed for the four missense mutations in transfected γ2A cells. We therefore propose that active JAK2 contribute to T-LBL development by two different mechanisms, and that the use of pan-JAK inhibitors in combination with epigenetic drugs should be considered in future treatments.

  6. Contribution of JAK2 mutations to T-cell lymphoblastic lymphoma development

    PubMed Central

    Roncero, A M; López-Nieva, P; Cobos-Fernández, M A; Villa-Morales, M; González-Sánchez, L; López-Lorenzo, J L; Llamas, P; Ayuso, C; Rodríguez-Pinilla, S M; Arriba, M C; Piris, M A; Fernández-Navarro, P; Fernández, A F; Fraga, M F; Santos, J; Fernández-Piqueras, J

    2016-01-01

    The JAK-STAT pathway has a substantial role in lymphoid precursor cell proliferation, survival and differentiation. Nonetheless, the contribution of JAK2 to T-cell lymphoblastic lymphoma (T-LBL) development remains poorly understood. We have identified one activating TEL-JAK2 translocation and four missense mutations accumulated in 2 out of 16 T-LBL samples. Two of them are novel JAK2 mutations and the other two are reported for the first time in T-LBL. Notably, R683G and I682T might have arisen owing to RNA editing. Mutated samples showed different mutated transcripts suggesting sub-clonal heterogeneity. Functional approaches revealed that two JAK2 mutations (H574R and R683G) constitutively activate JAK-STAT signaling in γ2A cells and can drive the proliferation of BaF3-EpoR cytokine-dependent cell line. In addition, aberrant hypermethylation of SOCS3 might contribute to enhance the activation of JAK-STAT signaling. Of utmost interest is that primary T-LBL samples harboring JAK2 mutations exhibited increased expression of LMO2, suggesting a mechanistic link between JAK2 mutations and the expression of LMO2, which was confirmed for the four missense mutations in transfected γ2A cells. We therefore propose that active JAK2 contribute to T-LBL development by two different mechanisms, and that the use of pan-JAK inhibitors in combination with epigenetic drugs should be considered in future treatments. PMID:26216197

  7. Bruton's tyrosine kinase (BTK) inhibitors in clinical trials.

    PubMed

    Burger, Jan A

    2014-03-01

    BTK is a cytoplasmic, non-receptor tyrosine kinase that transmits signals from a variety of cell-surface molecules, including the B-cell receptor (BCR) and tissue homing receptors. Genetic BTK deletion causes B-cell immunodeficiency in humans and mice, making this kinase an attractive therapeutic target for B-cell disorders. The BTK inhibitor ibrutinib (PCI-32765, brand name: Imbruvica) demonstrated high clinical activity in B-cell malignancies, especially in patients with chronic lymphocytic leukemia (CLL), mantle cell lymphoma (MCL), and Waldenstrom's macroglobulinemia (WM). Therefore, ibrutinib was granted a 'breakthrough therapy' designation for these indications and was recently approved for the treatment of relapsed MCL by the U.S. Food and Drug Administration. Other BTK inhibitors in earlier clinical development include CC-292 (AVL-292), and ONO-4059. In CLL and MCL, ibrutinib characteristically induces redistribution of malignant B cells from tissue sites into the peripheral blood, along with rapid resolution of enlarged lymph nodes and a surge in lymphocytosis. With continuous ibrutinib therapy, growth- and survival-inhibitory activities of ibrutinib result in the normalization of lymphocyte counts and remissions in a majority of patients. This review discusses the clinical advances with BTK inhibitor therapy, as well as its pathophysiological basis, and outlines perspectives for future use of BTK inhibitors.

  8. The Axl kinase domain in complex with a macrocyclic inhibitor offers first structural insights into an active TAM receptor kinase.

    PubMed

    Gajiwala, Ketan S; Grodsky, Neil; Bolaños, Ben; Feng, Junli; Ferre, RoseAnn; Timofeevski, Sergei; Xu, Meirong; Murray, Brion W; Johnson, Ted W; Stewart, Al

    2017-09-22

    The receptor tyrosine kinase family consisting of Tyro3, Axl, and Mer (TAM) is one of the most recently identified receptor tyrosine kinase families. TAM receptors are up-regulated postnatally and maintained at high levels in adults. They all play an important role in immunity, but Axl has also been implicated in cancer and therefore is a target in the discovery and development of novel therapeutics. However, of the three members of the TAM family, the Axl kinase domain is the only one that has so far eluded structure determination. To this end, using differential scanning fluorimetry and hydrogen-deuterium exchange mass spectrometry, we show here that a lower stability and greater dynamic nature of the Axl kinase domain may account for its poor crystallizability. We present the first structural characterization of the Axl kinase domain in complex with a small-molecule macrocyclic inhibitor. The Axl crystal structure revealed two distinct conformational states of the enzyme, providing a first glimpse of what an active TAM receptor kinase may look like and suggesting a potential role for the juxtamembrane region in enzyme activity. We noted that the ATP/inhibitor-binding sites of the TAM members closely resemble each other, posing a challenge for the design of a selective inhibitor. We propose that the differences in the conformational dynamics among the TAM family members could potentially be exploited to achieve inhibitor selectivity for targeted receptors. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Method for distinguishing normal and transformed cells using G1 kinase inhibitors

    DOEpatents

    Crissman, Harry A.; Gadbois, Donna M.; Tobey, Robert A.; Bradbury, E. Morton

    1993-01-01

    A G.sub.1 phase kinase inhibitor is applied in a low concentration to a population of normal and transformed mammalian cells. The concentration of G.sub.1 phase kinase inhibitor is selected to reversibly arrest normal mammalian cells in the G.sub.1 cell cycle without arresting growth of transformed cells. The transformed cells may then be selectively identified and/or cloned for research or diagnostic purposes. The transformed cells may also be selectively killed by therapeutic agents that do not affect normal cells in the G.sub.1 phase, suggesting that such G.sub.1 phase kinase inhibitors may form an effective adjuvant for use with chemotherapeutic agents in cancer therapy for optimizing the killing dose of chemotherapeutic agents while minimizing undesirable side effects on normal cells.

  10. Method for distinguishing normal and transformed cells using G1 kinase inhibitors

    DOEpatents

    Crissman, H.A.; Gadbois, D.M.; Tobey, R.A.; Bradbury, E.M.

    1993-02-09

    A G[sub 1] phase kinase inhibitor is applied in a low concentration to a population of normal and transformed mammalian cells. The concentration of G[sub 1] phase kinase inhibitor is selected to reversibly arrest normal mammalian cells in the G[sub 1] cell cycle without arresting growth of transformed cells. The transformed cells may then be selectively identified and/or cloned for research or diagnostic purposes. The transformed cells may also be selectively killed by therapeutic agents that do not affect normal cells in the G[sub 1] phase, suggesting that such G[sub 1] phase kinase inhibitors may form an effective adjuvant for use with chemotherapeutic agents in cancer therapy for optimizing the killing dose of chemotherapeutic agents while minimizing undesirable side effects on normal cells.

  11. A novel mutation in the JH4 domain of JAK3 causing severe combined immunodeficiency complicated by vertebral osteomyelitis.

    PubMed

    Qamar, Farah; Junejo, Samina; Qureshi, Sonia; Seleman, Michael; Bainter, Wayne; Massaad, Michel; Chou, Janet; Geha, Raif S

    2017-10-01

    JAK3 is a tyrosine kinase essential for signaling downstream of the common gamma chain subunit shared by multiple cytokine receptors. JAK3 deficiency results in T - B + NK - severe combined immune deficiency (SCID). We report a patient with SCID due to a novel mutation in the JAK3 JH4 domain. The function of the JH4 domain remains unknown. This is the first report of a missense mutation in the JAK3 JH4 domain, thereby demonstrating the importance of the JH4 domain of JAK3 in host immunity. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. A dual-specificity isoform of the protein kinase inhibitor PKI produced by alternate gene splicing.

    PubMed

    Kumar, Priyadarsini; Walsh, Donal A

    2002-03-15

    We have previously shown that the protein kinase inhibitor beta (PKIbeta) form of the cAMP-dependent protein kinase inhibitor exists in multiple isoforms, some of which are specific inhibitors of the cAMP-dependent protein kinase, whereas others also inhibit the cGMP-dependent enzyme [Kumar, Van Patten and Walsh (1997), J. Biol. Chem. 272, 20011-20020]. We have now demonstrated that the switch from a cAMP-dependent protein kinase (PKA)-specific inhibitor to one with dual specificity arises as a consequence of alternate gene splicing. We have confirmed using bacterially produced pure protein that a single inhibitor species has dual specificity for both PKA and cGMP-dependent protein kinase (PKG), inhibiting each with very high and closely similar inhibitory potencies. The gene splicing converted a protein with 70 amino acids into one of 109 amino acids, and did not change the inhibitory potency to PKA, but changed it from a protein that had no detectable PKG inhibitory activity to one that now inhibited PKG in the nanomolar range.

  13. First Approved Kinase Inhibitor for AML.

    PubMed

    Rasko, John E J; Hughes, Timothy P

    2017-11-16

    Activating mutations of FLT3 occur in about 30% of acute myeloid leukemia (AML) cases and are associated with relapse and poor prognosis. Midostaurin is the first drug approved for AML since 2000, and the first multi-kinase inhibitor approved for the FLT3-mutant subtype. To view this Bench to Bedside, open or download the PDF. Copyright © 2017. Published by Elsevier Inc.

  14. Bruton's tyrosine kinase (Btk) inhibitor ibrutinib suppresses stem-like traits in ovarian cancer.

    PubMed

    Zucha, Muhammad Ary; Wu, Alexander T H; Lee, Wei-Hwa; Wang, Liang-Shun; Lin, Wan-Wan; Yuan, Chiou-Chung; Yeh, Chi-Tai

    2015-05-30

    According to a Prognoscan database, upregulation of Bruton's tyrosine kinase (Btk) is associated with low overall survival in ovarian cancer patients. We found that spheroids-forming ovarian cancer cell, which highly expressed cancer stem-like cell (CSC) markers and Btk, were cisplatin resistant. We next treated CSCs and non-CSCs by a combination of ibrutinib and cisplatin. We found that chemoresistance was dependent on Btk and JAK2/STAT3, which maintained CSC by inducing Sox-2 and prosurvival genes. We suggest that addition of ibrutinib to cisplatin may improve treatment outcome in ovarian cancer.

  15. B-Raf kinase inhibitors: hit enrichment through scaffold hopping.

    PubMed

    Gopalsamy, Ariamala; Shi, Mengxiao; Hu, Yongbo; Lee, Frederick; Feldberg, Larry; Frommer, Eileen; Kim, Steven; Collins, Karen; Wojciechowicz, Donald; Mallon, Robert

    2010-04-15

    In continuation of our efforts toward hit identification and optimization for a B-Raf kinase project, we have employed a scaffold hopping strategy. The original HTS hit scaffold pyrazolo[1,5-a]pyrimidine was replaced with different thienopyrimidine and thienopyridine scaffolds to append the optimal pharmacophore moieties in order to generate novel B-raf kinase inhibitors with desirable potency and properties. This strategy led to the identification of additional lead compound 11b which had good enzyme and cell potency, while maintaining selectivity over a number of kinases. Copyright 2010 Elsevier Ltd. All rights reserved.

  16. Discovery of Selective and Noncovalent Diaminopyrimidine-Based Inhibitors of Epidermal Growth Factor Receptor Containing the T790M Resistance Mutation

    PubMed Central

    2015-01-01

    Activating mutations within the epidermal growth factor receptor (EGFR) kinase domain, commonly L858R or deletions within exon 19, increase EGFR-driven cell proliferation and survival and are correlated with impressive responses to the EGFR inhibitors erlotinib and gefitinib in nonsmall cell lung cancer patients. Approximately 60% of acquired resistance to these agents is driven by a single secondary mutation within the EGFR kinase domain, specifically substitution of the gatekeeper residue threonine-790 with methionine (T790M). Due to dose-limiting toxicities associated with inhibition of wild-type EGFR (wtEGFR), we sought inhibitors of T790M-containing EGFR mutants with selectivity over wtEGFR. We describe the evolution of HTS hits derived from Jak2/Tyk2 inhibitors into selective EGFR inhibitors. X-ray crystal structures revealed two distinct binding modes and enabled the design of a selective series of novel diaminopyrimidine-based inhibitors with good potency against T790M-containing mutants of EGFR, high selectivity over wtEGFR, broad kinase selectivity, and desirable physicochemical properties. PMID:25383627

  17. Discovery of Selective and Noncovalent Diaminopyrimidine-Based Inhibitors of Epidermal Growth Factor Receptor Containing the T790M Resistance Mutation

    DOE PAGES

    Hanan, Emily J.; Eigenbrot, Charles; Bryan, Marian C.; ...

    2014-11-10

    Activating mutations within the epidermal growth factor receptor (EGFR) kinase domain, commonly L858R or deletions within exon 19, increase EGFR-driven cell proliferation and survival and are correlated with impressive responses to the EGFR inhibitors erlotinib and gefitinib in nonsmall cell lung cancer patients. Approximately 60% of acquired resistance to these agents is driven by a single secondary mutation within the EGFR kinase domain, specifically substitution of the gatekeeper residue threonine-790 with methionine (T790M). Due to dose-limiting toxicities associated with inhibition of wild-type EGFR (wtEGFR), we sought inhibitors of T790M-containing EGFR mutants with selectivity over wtEGFR. Here in this paper, wemore » describe the evolution of HTS hits derived from Jak2/Tyk2 inhibitors into selective EGFR inhibitors. X-ray crystal structures revealed two distinct binding modes and enabled the design of a selective series of novel diaminopyrimidine-based inhibitors with good potency against T790M-containing mutants of EGFR, high selectivity over wtEGFR, broad kinase selectivity, and desirable physicochemical properties.« less

  18. Key Structures and Interactions for Binding of Mycobacterium tuberculosis Protein Kinase B Inhibitors from Molecular Dynamics Simulation.

    PubMed

    Punkvang, Auradee; Kamsri, Pharit; Saparpakorn, Patchreenart; Hannongbua, Supa; Wolschann, Peter; Irle, Stephan; Pungpo, Pornpan

    2015-07-01

    Substituted aminopyrimidine inhibitors have recently been introduced as antituberculosis agents. These inhibitors show impressive activity against protein kinase B, a Ser/Thr protein kinase that is essential for cell growth of M. tuberculosis. However, up to now, X-ray structures of the protein kinase B enzyme complexes with the substituted aminopyrimidine inhibitors are currently unavailable. Consequently, structural details of their binding modes are questionable, prohibiting the structural-based design of more potent protein kinase B inhibitors in the future. Here, molecular dynamics simulations, in conjunction with molecular mechanics/Poisson-Boltzmann surface area binding free-energy analysis, were employed to gain insight into the complex structures of the protein kinase B inhibitors and their binding energetics. The complex structures obtained by the molecular dynamics simulations show binding free energies in good agreement with experiment. The detailed analysis of molecular dynamics results shows that Glu93, Val95, and Leu17 are key residues responsible to the binding of the protein kinase B inhibitors. The aminopyrazole group and the pyrimidine core are the crucial moieties of substituted aminopyrimidine inhibitors for interaction with the key residues. Our results provide a structural concept that can be used as a guide for the future design of protein kinase B inhibitors with highly increased antagonistic activity. © 2014 John Wiley & Sons A/S.

  19. Inhibition of DNA methyltransferase induces G2 cell cycle arrest and apoptosis in human colorectal cancer cells via inhibition of JAK2/STAT3/STAT5 signalling.

    PubMed

    Xiong, Hua; Chen, Zhao-Fei; Liang, Qin-Chuan; Du, Wan; Chen, Hui-Min; Su, Wen-Yu; Chen, Guo-Qiang; Han, Ze-Guang; Fang, Jing-Yuan

    2009-09-01

    DNA methyltransferase inhibitors (MTIs) have recently emerged as promising chemotherapeutic or preventive agents for cancer, despite their poorly characterized mechanisms of action. The present study shows that DNA methylation is integral to the regulation of SH2-containing protein tyrosine phosphatase 1 (SHP1) expression, but not for regulation of suppressors of cytokine signalling (SOCS)1 or SOCS3 in colorectal cancer (CRC) cells. SHP1 expression correlates with down-regulation of Janus kinase/signal transducers and activators of transcription (JAK2/STAT3/STAT5) signalling, which is mediated in part by tyrosine dephosphorylation events and modulation of the proteasome pathway. Up-regulation of SHP1 expression was achieved using a DNA MTI, 5-aza-2'-deoxycytidine (5-aza-dc), which also generated significant down-regulation of JAK2/STAT3/STAT5 signalling. We demonstrate that 5-aza-dc suppresses growth of CRC cells, and induces G2 cell cycle arrest and apoptosis through regulation of downstream targets of JAK2/STAT3/STAT5 signalling including Bcl-2, p16(ink4a), p21(waf1/cip1) and p27(kip1). Although 5-aza-dc did not significantly inhibit cell invasion, 5-aza-dc did down-regulate expression of focal adhesion kinase and vascular endothelial growth factor in CRC cells. Our results demonstrate that 5-aza-dc can induce SHP1 expression and inhibit JAK2/STAT3/STAT5 signalling. This study represents the first evidence towards establishing a mechanistic link between inhibition of JAK2/STAT3/STAT5 signalling and the anticancer action of 5-aza-dc in CRC cells that may lead to the use of MTIs as a therapeutic intervention for human colorectal cancer.

  20. JAK2, MPL, and CALR mutations in Chinese Han patients with essential thrombocythemia.

    PubMed

    Wang, Jing; Zhang, Biao; Chen, Bing; Zhou, Rong-Fu; Zhang, Qi-Guo; Li, Juan; Yang, Yong-Gong; Zhou, Min; Shao, Xiao-Yan; Xu, Yong; Xu, Xi-Hui; Ouyang, Jian; Xu, Jingyan; Ye, Qing

    2017-04-01

    Mutations in Janus kinase 2 (JAK2), myeloproliferative leukemia (MPL), and CALR are highly relevant to Philadelphia chromosome (Ph)-negative myeloproliferative neoplasms. Assessing the prevalence of molecular mutations in Chinese Han patients with essential thrombocythemia (ET), and correlating their mutational profile with disease characteristics/phenotype. Of the 110 subjects studied, 62 carried the JAK2 V617F mutation, 21 had CALR mutations, one carried an MPL (W515) mutation, and 28 had non-mutated JAK2, CALR, and MPL (so-called triple-negative ET). Mutations in JAK2 exon 12 were not detected in any patient. Two ET patients had both CALR and JAK2 V617F mutations. Comparing the hematological parameters of the patients with JAK2 mutations with those of the patients with CALR mutations showed that the ET patients with CALR mutations were younger (p = 0.045) and had higher platelet counts (p = 0.043). Genotyping for CALR could be a useful diagnostic tool for JAK2/MPL-negative ET, since the data suggest that CALR is much more prevalent than MPL, therefore testing for CALR should be considered in patients who are JAK2 negative as its frequency is almost 20 times that of MPL mutation.

  1. Structural Mechanism of the Pan-BCR-ABL Inhibitor Ponatinib (AP24534): Lessons for Overcoming Kinase Inhibitor Resistance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Tianjun; Commodore, Lois; Huang, Wei-Sheng

    2012-01-20

    The BCR-ABL inhibitor imatinib has revolutionized the treatment of chronic myeloid leukemia. However, drug resistance caused by kinase domain mutations has necessitated the development of new mutation-resistant inhibitors, most recently against the T315I gatekeeper residue mutation. Ponatinib (AP24534) inhibits both native and mutant BCR-ABL, including T315I, acting as a pan-BCR-ABL inhibitor. Here, we undertook a combined crystallographic and structure-activity relationship analysis on ponatinib to understand this unique profile. While the ethynyl linker is a key inhibitor functionality that interacts with the gatekeeper, virtually all other components of ponatinib play an essential role in its T315I inhibitory activity. The extensive networkmore » of optimized molecular contacts found in the DFG-out binding mode leads to high potency and renders binding less susceptible to disruption by single point mutations. The inhibitory mechanism exemplified by ponatinib may have broad relevance to designing inhibitors against other kinases with mutated gatekeeper residues.« less

  2. Biophysical and X-ray crystallographic analysis of Mps1 kinase inhibitor complexes.

    PubMed

    Chu, Matthew L H; Lang, Zhaolei; Chavas, Leonard M G; Neres, João; Fedorova, Olga S; Tabernero, Lydia; Cherry, Mike; Williams, David H; Douglas, Kenneth T; Eyers, Patrick A

    2010-03-02

    The dual-specificity protein kinase monopolar spindle 1 (Mps1) is a central component of the mitotic spindle assembly checkpoint (SAC), a sensing mechanism that prevents anaphase until all chromosomes are bioriented on the metaphase plate. Partial depletion of Mps1 protein levels sensitizes transformed, but not untransformed, human cells to therapeutic doses of the anticancer agent Taxol, making it an attractive novel therapeutic cancer target. We have previously determined the X-ray structure of the catalytic domain of human Mps1 in complex with the anthrapyrazolone kinase inhibitor SP600125. In order to validate distinct inhibitors that target this enzyme and improve our understanding of nucleotide binding site architecture, we now report a biophysical and structural evaluation of the Mps1 catalytic domain in the presence of ATP and the aspecific model kinase inhibitor staurosporine. Collective in silico, enzymatic, and fluorescent screens also identified several new lead quinazoline Mps1 inhibitors, including a low-affinity compound termed Compound 4 (Cpd 4), whose interaction with the Mps1 kinase domain was further characterized by X-ray crystallography. A novel biophysical analysis demonstrated that the intrinsic fluorescence of SP600125 changed markedly upon Mps1 binding, allowing spectrophotometric displacement analysis and determination of dissociation constants for ATP-competitive Mps1 inhibitors. By illuminating the structure of the Mps1 ATP-binding site our results provide novel biophysical insights into Mps1-ligand interactions that will be useful for the development of specific Mps1 inhibitors, including those employing a therapeutically validated quinazoline template.

  3. JAK/Stat signaling regulates heart precursor diversification in Drosophila

    PubMed Central

    Johnson, Aaron N.; Mokalled, Mayssa H.; Haden, Tom N.; Olson, Eric N.

    2011-01-01

    Intercellular signal transduction pathways regulate the NK-2 family of transcription factors in a conserved gene regulatory network that directs cardiogenesis in both flies and mammals. The Drosophila NK-2 protein Tinman (Tin) was recently shown to regulate Stat92E, the Janus kinase (JAK) and Signal transducer and activator of transcription (Stat) pathway effector, in the developing mesoderm. To understand whether the JAK/Stat pathway also regulates cardiogenesis, we performed a systematic characterization of JAK/Stat signaling during mesoderm development. Drosophila embryos with mutations in the JAK/Stat ligand upd or in Stat92E have non-functional hearts with luminal defects and inappropriate cell aggregations. Using strong Stat92E loss-of-function alleles, we show that the JAK/Stat pathway regulates tin expression prior to heart precursor cell diversification. tin expression can be subdivided into four phases and, in Stat92E mutant embryos, the broad phase 2 expression pattern in the dorsal mesoderm does not restrict to the constrained phase 3 pattern. These embryos also have an expanded pericardial cell domain. We show the E(spl)-C gene HLHm5 is expressed in a pattern complementary to tin during phase 3 and that this expression is JAK/Stat dependent. In addition, E(spl)-C mutant embryos phenocopy the cardiac defects of Stat92E embryos. Mechanistically, JAK/Stat signals activate E(spl)-C genes to restrict Tin expression and the subsequent expression of the T-box transcription factor H15 to direct heart precursor diversification. This study is the first to characterize a role for the JAK/Stat pathway during cardiogenesis and identifies an autoregulatory circuit in which tin limits its own expression domain. PMID:21965617

  4. Cyclin-Dependent Kinase Inhibitors as Anticancer Therapeutics.

    PubMed

    Law, Mary E; Corsino, Patrick E; Narayan, Satya; Law, Brian K

    2015-11-01

    Cyclin-dependent kinases (CDKs) have been considered promising drug targets for a number of years, but most CDK inhibitors have failed rigorous clinical testing. Recent studies demonstrating clear anticancer efficacy and reduced toxicity of CDK4/6 inhibitors such as palbociclib and multi-CDK inhibitors such as dinaciclib have rejuvenated the field. Favorable results with palbociclib and its recent U.S. Food and Drug Administration approval demonstrate that CDK inhibitors with narrow selectivity profiles can have clinical utility for therapy based on individual tumor genetics. A brief overview of results obtained with ATP-competitive inhibitors such as palbociclib and dinaciclib is presented, followed by a compilation of new avenues that have been pursued toward the development of novel, non-ATP-competitive CDK inhibitors. These creative ways to develop CDK inhibitors are presented along with crystal structures of these agents complexed with CDK2 to highlight differences in their binding sites and mechanisms of action. The recent successes of CDK inhibitors in the clinic, combined with the potential for structure-based routes to the development of non-ATP-competitive CDK inhibitors, and evidence that CDK inhibitors may have use in suppressing chromosomal instability and in synthetic lethal drug combinations inspire optimism that CDK inhibitors will become important weapons in the fight against cancer. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  5. Activation loop targeting strategy for design of receptor-interacting protein kinase 2 (RIPK2) inhibitors.

    PubMed

    Suebsuwong, Chalada; Pinkas, Daniel M; Ray, Soumya S; Bufton, Joshua C; Dai, Bing; Bullock, Alex N; Degterev, Alexei; Cuny, Gregory D

    2018-02-15

    Development of selective kinase inhibitors remains a challenge due to considerable amino acid sequence similarity among family members particularly in the ATP binding site. Targeting the activation loop might offer improved inhibitor selectivity since this region of kinases is less conserved. However, the strategy presents difficulties due to activation loop flexibility. Herein, we report the design of receptor-interacting protein kinase 2 (RIPK2) inhibitors based on pan-kinase inhibitor regorafenib that aim to engage basic activation loop residues Lys169 or Arg171. We report development of CSR35 that displayed >10-fold selective inhibition of RIPK2 versus VEGFR2, the target of regorafenib. A co-crystal structure of CSR35 with RIPK2 revealed a resolved activation loop with an ionic interaction between the carboxylic acid installed in the inhibitor and the side-chain of Lys169. Our data provides principle feasibility of developing activation loop targeting type II inhibitors as a complementary strategy for achieving improved selectivity. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  6. Presence of calreticulin mutations in JAK2-negative polycythemia vera.

    PubMed

    Broséus, Julien; Park, Ji-Hye; Carillo, Serge; Hermouet, Sylvie; Girodon, François

    2014-12-18

    Calreticulin (CALR) mutations have been reported in Janus kinase 2 (JAK2)- and myeloproliferative leukemia (MPL)-negative essential thrombocythemia and primary myelofibrosis. In contrast, no CALR mutations have ever been reported in the context of polycythemia vera (PV). Here, we describe 2 JAK2(V617F)-JAK2(exon12)-negative PV patients who presented with a CALR mutation in peripheral granulocytes at the time of diagnosis. In both cases, the CALR mutation was a 52-bp deletion. Single burst-forming units-erythroid (BFU-E) from 1 patient were grown in vitro and genotyped: the same CALR del 52-bp mutation was noted in 31 of the 37 colonies examined; 30 of 31 BFU-E were heterozygous for CALR del 52 bp, and 1 of 31 BFU-E was homozygous for CALR del 52 bp. In summary, although unknown mutations leading to PV cannot be ruled out, our results suggest that CALR mutations can be associated with JAK2-negative PV. © 2014 by The American Society of Hematology.

  7. Anti-inflammatory properties of Gö 6850: a selective inhibitor of protein kinase C.

    PubMed

    Jacobson, P B; Kuchera, S L; Metz, A; Schächtele, C; Imre, K; Schrier, D J

    1995-11-01

    Protein kinase C (PKC) regulates a variety of signal transduction events implicated in the pathogenesis of inflammation, including the biosynthesis of inflammatory cytokines and superoxide and the activation of phospholipase A2. Because of the significant role of PKC in these inflammatory processes, we evaluated a specific and potent inhibitor of C kinase for efficacy in several in vitro and in vivo murine models of inflammation. Unlike the relatively nonspecific kinase inhibitor staurosporine, the bisindolylmaleimide 3-[1-[-3-(dimethylaminopropyl]-1H-indol-3-yl]- 4-(1H-indol-3-yl)-1H-pyrrole-2,5-dione monohydrochloride (Gö 6850) demonstrated increased selectivity for C kinase in purified enzyme assays (respective IC50 values (microM) for Gö 6850 and staurosporine: protein kinase C (0.032, 0.009); myosin light-chain kinase (0.6, 0.01); protein kinase G (4.6, 0.018); protein kinase A (33, 0.04); tyrosine kinase1 (94, 0.4); tyrosine kinase2 (> 100, > 1)). Topically applied Gö 6850 inhibited phorbol myristate acetate-induced edema, neutrophil influx and vascular permeability in murine epidermis in a dose- and time-dependent manner at levels comparable to indomethacin. In a murine model of delayed type hypersensitivity, Gö 6850 inhibited dinitrofluorobenzene-induced contact dermatitis with and ID50 value of 150 micrograms/ear. Cellular studies in mouse peritoneal macrophages demonstrated that Gö 6850 was a potent inhibitor of phorbol myristate acetate-induced prostaglandin E2 production. Superoxide production in phorbol myristate acetate-stimulated murine neutrophils was also inhibited by Gö 6850 (IC50 = 88 nM).(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Small molecule inhibitors reveal PTK6 kinase is not an oncogenic driver in breast cancers

    PubMed Central

    Gajiwala, Ketan S.; Cronin, Ciarán N.; Nagata, Asako; Johnson, Eric; Kraus, Michelle; Tatlock, John; Kania, Robert; Foley, Timothy

    2018-01-01

    Protein tyrosine kinase 6 (PTK6, or BRK) is aberrantly expressed in breast cancers, and emerging as an oncogene that promotes tumor cell proliferation, migration and evasion. Both kinase-dependent and -independent functions of PTK6 in driving tumor growth have been described, therefore targeting PTK6 kinase activity by small molecule inhibitors as a therapeutic approach to treat cancers remains to be validated. In this study, we identified novel, potent and selective PTK6 kinase inhibitors as a means to investigate the role of PTK6 kinase activity in breast tumorigenesis. We report here the crystal structures of apo-PTK6 and inhibitor-bound PTK6 complexes, providing the structural basis for small molecule interaction with PTK6. The kinase inhibitors moderately suppress tumor cell growth in 2D and 3D cell cultures. However, the tumor cell growth inhibition shows neither correlation with the PTK6 kinase activity inhibition, nor the total or activated PTK6 protein levels in tumor cells, suggesting that the tumor cell growth is independent of PTK6 kinase activity. Furthermore, in engineered breast tumor cells overexpressing PTK6, the inhibition of PTK6 kinase activity does not parallel the inhibition of tumor cell growth with a >500-fold shift in compound potencies (IC50 values). Overall, these findings suggest that the kinase activity of PTK6 does not play a significant role in tumorigenesis, thus providing important evidence against PTK6 kinase as a potential therapeutic target for breast cancer treatment. PMID:29879184

  9. Controlling nuclear JAKs and STATs for specific gene activation by IFNγ.

    PubMed

    Noon-Song, Ezra N; Ahmed, Chulbul M; Dabelic, Rea; Canton, Johnathan; Johnson, Howard M

    2011-07-08

    We previously showed that gamma interferon (IFNγ) and its receptor subunit, IFNGR1, interacted with the promoter region of IFNγ-activated genes along with transcription factor STAT1α. Recent studies have suggested that activated Janus kinases pJAK2 and pJAK1 also played a role in gene activation by phosphorylation of histone H3 on tyrosine 41. This study addresses the question of the role of activated JAKs in specific gene activation by IFNγ. We carried out chromatin immunoprecipitation (ChIP) followed by PCR in IFNγ treated WISH cells and showed association of pJAK1, pJAK2, IFNGR1, and STAT1 on the same DNA sequence of the IRF-1 gene promoter. The β-actin gene, which is not activated by IFNγ, did not show this association. The movement of activated JAK to the nucleus and the IRF-1 promoter was confirmed by the combination of nuclear fractionation, confocal microscopy and DNA precipitation analysis using the biotinylated GAS promoter. Activated JAKs in the nucleus was associated with phosphorylated tyrosine 41 on histone H3 in the region of the GAS promoter. Unphosphorylated JAK2 was found to be constitutively present in the nucleus and was capable of undergoing activation in IFNγ treated cells, most likely via nuclear IFNGR1. Association of pJAK2 and IFNGR1 with histone H3 in IFNγ treated cells was demonstrated by histone H3 immunoprecipitation. Unphosphorylated STAT1 protein was associated with histone H3 of untreated cells. IFNγ treatment resulted in its disassociation and then re-association as pSTAT1. The results suggest a novel role for activated JAKs in epigenetic events for specific gene activation. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. JAK2 (V617F) mutation is not associated with thrombosis in Behcet syndrome.

    PubMed

    Ar, M Cem; Hatemi, Gülen; Ekizoğlu, Seda; Bilgen, Hülya; Saçli, Sevgi; Buyru, A Nur; Soysal, Teoman; Ülkü, Birsen; Yazici, Hasan

    2012-07-01

    The Janus kinase 2(V617F) (JAK2 (V617F)) mutation is an acquired genetic defect that is considered to enhance thrombosis in Philadelphia chromosome-negative myeloproliferative neoplasms (MPNs). Thrombosis is also a well-defined component of Behcet syndrome (BS). The aim of this study was to determine the frequency of JAK2 ( V617F ) mutation in BS-associated thrombosis. A total of 152 patients with BS (62 with thrombosis and 90 without thrombosis) were enrolled. An additional 186 patients with MPNs and 107 healthy blood donors were included to serve as diseased and healthy controls, respectively. None of the patients with BS and healthy controls carried the JAK2 (V617F) mutation, whereas 67% of patients with MPNs were positive for JAK2 ( V617F ). The frequency of thrombosis in patients with MPNs was not statistically different between carriers and non-carriers of JAK2 ( V617F ) mutation. Our data suggest that JAK2 (V617F) is not directly related to thrombosis in MPNs and in other thrombotic entities, such as BS.

  11. The synthetic α-bromo-2',3,4,4'-tetramethoxychalcone (α-Br-TMC) inhibits the JAK/STAT signaling pathway.

    PubMed

    Pinz, Sophia; Unser, Samy; Brueggemann, Susanne; Besl, Elisabeth; Al-Rifai, Nafisah; Petkes, Hermina; Amslinger, Sabine; Rascle, Anne

    2014-01-01

    Signal transducer and activator of transcription STAT5 and its upstream activating kinase JAK2 are essential mediators of cytokine signaling. Their activity is normally tightly regulated and transient. However, constitutive activation of STAT5 is found in numerous cancers and a driving force for malignant transformation. We describe here the identification of the synthetic chalcone α-Br-2',3,4,4'-tetramethoxychalcone (α-Br-TMC) as a novel JAK/STAT inhibitor. Using the non-transformed IL-3-dependent B cell line Ba/F3 and its oncogenic derivative Ba/F3-1*6 expressing constitutively activated STAT5, we show that α-Br-TMC targets the JAK/STAT pathway at multiple levels, inhibiting both JAK2 and STAT5 phosphorylation. Moreover, α-Br-TMC alters the mobility of STAT5A/B proteins in SDS-PAGE, indicating a change in their post-translational modification state. These alterations correlate with a decreased association of STAT5 and RNA polymerase II with STAT5 target genes in chromatin immunoprecipitation assays. Interestingly, expression of STAT5 target genes such as Cis and c-Myc was differentially regulated by α-Br-TMC in normal and cancer cells. While both genes were inhibited in IL-3-stimulated Ba/F3 cells, expression of the oncogene c-Myc was down-regulated and that of the tumor suppressor gene Cis was up-regulated in transformed Ba/F3-1*6 cells. The synthetic chalcone α-Br-TMC might therefore represent a promising novel anticancer agent for therapeutic intervention in STAT5-associated malignancies.

  12. BCR-ABL1 tyrosine kinase inhibitors for the treatment of chronic myeloid leukemia.

    PubMed

    Cuellar, Sandra; Vozniak, Michael; Rhodes, Jill; Forcello, Nicholas; Olszta, Daniel

    2017-01-01

    The management of chronic myeloid leukemia with BCR-ABL1 tyrosine kinase inhibitors has evolved chronic myeloid leukemia into a chronic, manageable disease. A patient-centered approach is important for the appropriate management of chronic myeloid leukemia and optimization of long-term treatment outcomes. The pharmacist plays a key role in treatment selection, monitoring drug-drug interactions, identification and management of adverse events, and educating patients on adherence. The combination of tyrosine kinase inhibitors with unique safety profiles and individual patients with unique medical histories can make managing treatment difficult. This review will provide up-to-date information regarding tyrosine kinase inhibitor-based treatment of patients with chronic myeloid leukemia. Management strategies for adverse events and considerations for drug-drug interactions will not only vary among patients but also across tyrosine kinase inhibitors. Drug-drug interactions can be mild to severe. In instances where co-administration of concomitant medications cannot be avoided, it is critical to understand how drug levels are impacted and how subsequent dose modifications ensure therapeutic drug levels are maintained. An important component of patient-centered management of chronic myeloid leukemia also includes educating patients on the significance of early and regular monitoring of therapeutic milestones, emphasizing the importance of adhering to treatment in achieving these targets, and appropriately modifying treatment if these clinical goals are not being met. Overall, staying apprised of current research, utilizing the close pharmacist-patient relationship, and having regular interactions with patients, will help achieve successful long-term treatment of chronic myeloid leukemia in the age of BCR-ABL1 tyrosine kinase inhibitors.

  13. Leptin modulates the expression of catabolic genes in rat nucleus pulposus cells through the mitogen-activated protein kinase and Janus kinase 2/signal transducer and activator of transcription 3 pathways.

    PubMed

    Miao, Daoyi; Zhang, Lingzhou

    2015-08-01

    Obesity has been demonstrated to be involved in the progress of intervertebral disc degeneration (IDD). However, the associated mechanisms remain to be elucidated. The purpose the present study was to examine the effect of leptin on the expression of degeneration-associated genes in rat nucleus pulposus (NP) cells, and determine the possible mechanism. Normal NP cells, obtained from Sprague Dawley rats, were identified using immunocytochemistry for the expression of collagen II and CA125, and treated with leptin and/or interleukin (IL)-β. Subsequently, the mRNA expression levels of matrix metalloproteinase (MMP)-1, MMP-3, MMP-9, MMP-13, a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)-4, ADAMTS-5, aggrecan and COL2A1 were detected by reverse transcription-quantitative polymerase chain reaction (RT-q-PCR). Alcian staining and immunocytochemistry were used to examine the expression levels of proteoglycan and collagen II. The pathway activation was investigated using western blotting, and inhibitors of the pathways were used to reveal the effect of these pathways on the NP cells. The results of the RT-qPCR demonstrated that leptin alone upregulated the mRNA expression levels of MMP-1, MMP-13, ADAMTS-4, ADAMTS-5 and COL2A1. Synergy of leptin and IL-β was found in the increased expression levels of MMP-1, MMP-3 and ADAMTS-5. The leptin-treated NP cells exhibited decreased expression of collagen II. The mitrogen-activated protein kinase (MAPK) pathway (c-Jun-N-terminal kinase, phosphorylated extracellular signal-regulated kinase and p38), phosphatidylinositol 3-kinase (PI3K)/Akt pathway and Janus kinase (JAK)2/signal transducer and activator of transcription 3 pathway were all activated by leptin, however, inhibitors of all the pathways, with the exception of the PI3K/Akt pathway, reversed the expression levels of MMP-1 and MMP-13. These results suggested that leptin promoted catabolic metabolism in the rat NP cells via the MAPK and JAK2/STAT3

  14. Leptin modulates the expression of catabolic genes in rat nucleus pulposus cells through the mitogen-activated protein kinase and Janus kinase 2/signal transducer and activator of transcription 3 pathways

    PubMed Central

    MIAO, DAOYI; ZHANG, LINGZHOU

    2015-01-01

    Obesity has been demonstrated to be involved in the progress of intervertebral disc degeneration (IDD). However, the associated mechanisms remain to be elucidated. The purpose the present study was to examine the effect of leptin on the expression of degeneration-associated genes in rat nucleus pulposus (NP) cells, and determine the possible mechanism. Normal NP cells, obtained from Sprague Dawley rats, were identified using immunocytochemistry for the expression of collagen II and CA125, and treated with leptin and/or interleukin (IL)-β. Subsequently, the mRNA expression levels of matrix metalloproteinase (MMP)-1, MMP-3, MMP-9, MMP-13, a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)-4, ADAMTS-5, aggrecan and COL2A1 were detected by reverse transcription-quantitative polymerase chain reaction (RT-q-PCR). Alcian staining and immunocytochemistry were used to examine the expression levels of proteoglycan and collagen II. The pathway activation was investigated using western blotting, and inhibitors of the pathways were used to reveal the effect of these pathways on the NP cells. The results of the RT-qPCR demonstrated that leptin alone upregulated the mRNA expression levels of MMP-1, MMP-13, ADAMTS-4, ADAMTS-5 and COL2A1. Synergy of leptin and IL-β was found in the increased expression levels of MMP-1, MMP-3 and ADAMTS-5. The leptin-treated NP cells exhibited decreased expression of collagen II. The mitrogen-activated protein kinase (MAPK) pathway (c-Jun-N-terminal kinase, phosphorylated extracellular signal-regulated kinase and p38), phosphatidylinositol 3-kinase (PI3K)/Akt pathway and Janus kinase (JAK)2/signal transducer and activator of transcription 3 pathway were all activated by leptin, however, inhibitors of all the pathways, with the exception of the PI3K/Akt pathway, reversed the expression levels of MMP-1 and MMP-13. These results suggested that leptin promoted catabolic metabolism in the rat NP cells via the MAPK and JAK2/STAT3

  15. LIM kinase inhibitors disrupt mitotic microtubule organization and impair tumor cell proliferation

    PubMed Central

    Mardilovich, Katerina; Baugh, Mark; Crighton, Diane; Kowalczyk, Dominika; Gabrielsen, Mads; Munro, June; Croft, Daniel R.; Lourenco, Filipe; James, Daniel; Kalna, Gabriella; McGarry, Lynn; Rath, Oliver; Shanks, Emma; Garnett, Mathew J.; McDermott, Ultan; Brookfield, Joanna; Charles, Mark; Hammonds, Tim; Olson, Michael F.

    2015-01-01

    The actin and microtubule cytoskeletons are critically important for cancer cell proliferation, and drugs that target microtubules are widely-used cancer therapies. However, their utility is compromised by toxicities due to dose and exposure. To overcome these issues, we characterized how inhibition of the actin and microtubule cytoskeleton regulatory LIM kinases could be used in drug combinations to increase efficacy. A previously-described LIMK inhibitor (LIMKi) induced dose-dependent microtubule alterations that resulted in significant mitotic defects, and increased the cytotoxic potency of microtubule polymerization inhibitors. By combining LIMKi with 366 compounds from the GSK Published Kinase Inhibitor Set, effective combinations were identified with kinase inhibitors including EGFR, p38 and Raf. These findings encouraged a drug discovery effort that led to development of CRT0105446 and CRT0105950, which potently block LIMK1 and LIMK2 activity in vitro, and inhibit cofilin phosphorylation and increase αTubulin acetylation in cells. CRT0105446 and CRT0105950 were screened against 656 cancer cell lines, and rhabdomyosarcoma, neuroblastoma and kidney cancer cells were identified as significantly sensitive to both LIMK inhibitors. These large-scale screens have identified effective LIMK inhibitor drug combinations and sensitive cancer types. In addition, the LIMK inhibitory compounds CRT0105446 and CRT0105950 will enable further development of LIMK-targeted cancer therapy. PMID:26540348

  16. Selective elimination of neuroblastoma cells by synergistic effect of Akt kinase inhibitor and tetrathiomolybdate.

    PubMed

    Navrátilová, Jarmila; Karasová, Martina; Kohutková Lánová, Martina; Jiráková, Ludmila; Budková, Zuzana; Pacherník, Jiří; Šmarda, Jan; Beneš, Petr

    2017-09-01

    Neuroblastoma is the most common extracranial solid tumour of infancy. Pathological activation of glucose consumption, glycolysis and glycolysis-activating Akt kinase occur frequently in neuroblastoma cells, and these changes correlate with poor prognosis of patients. Therefore, several inhibitors of glucose utilization and the Akt kinase activity are in preclinical trials as potential anti-cancer drugs. However, metabolic plasticity of cancer cells might undermine efficacy of this approach. In this work, we identified oxidative phosphorylation as compensatory mechanism preserving viability of neuroblastoma cells with inhibited glucose uptake/Akt kinase. It was oxidative phosphorylation that maintained intracellular level of ATP and proliferative capacity of these cells. The oxidative phosphorylation inhibitors (rotenone, tetrathiomolybdate) synergized with inhibitor of the Akt kinase/glucose uptake in down-regulation of both viability of neuroblastoma cells and clonogenic potential of cells forming neuroblastoma spheroids. Interestingly, tetrathiomolybdate acted as highly specific inhibitor of oxygen consumption and activator of lactate production in neuroblastoma cells, but not in normal fibroblasts and neuronal cells. Moreover, the reducing effect of tetrathiomolybdate on cell viability and the level of ATP in the cells with inhibited Akt kinase/glucose uptake was also selective for neuroblastoma cells. Therefore, efficient elimination of neuroblastoma cells requires inhibition of both glucose uptake/Akt kinase and oxidative phosphorylation activities. The use of tetrathiomolybdate as a mitochondrial inhibitor contributes to selectivity of this combined treatment, preferentially targeting neuroblastoma cells. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  17. Rho-associated kinase inhibitors: a novel glaucoma therapy.

    PubMed

    Inoue, Toshihiro; Tanihara, Hidenobu

    2013-11-01

    The rho-associated kinase (ROCK) signaling pathway is activated via secreted bioactive molecules or via integrin activation after extracellular matrix binding. These lead to polymerization of actin stress fibers and formation of focal adhesions. Accumulating evidence suggests that actin cytoskeleton-modulating signals are involved in aqueous outflow regulation. Aqueous humor contains various biologically active factors, some of which are elevated in glaucomatous eyes. These factors affect aqueous outflow, in part, through ROCK signaling modulation. Various drugs acting on the cytoskeleton have also been shown to increase aqueous outflow by acting directly on outflow tissue. In vivo animal studies have shown that the trabecular meshwork (TM) actin cytoskeleton in glaucomatous eyes is more disorganized and more randomly oriented than in non-glaucomatous control eyes. In a previous study, we introduced ROCK inhibitors as a potential glaucoma therapy by showing that a selective ROCK inhibitor significantly lowered rabbit IOP. Rho-associated kinase inhibitors directly affect the TM and Schlemm's canal (SC), differing from the target sight of other glaucoma drugs. The TM is affected earlier and more strongly than ciliary muscle cells by ROCK inhibitors, largely because of pharmacological affinity differences stemming from regulatory mechanisms. Additionally, ROCK inhibitors disrupt tight junctions, result in F-actin depolymerization, and modulate intracellular calcium level, effectively increasing SC-cell monolayer permeability. Perfusion of an enucleated eye with a ROCK inhibitor resulted in wider empty spaces in the juxtacanalicular (JCT) area and more giant vacuoles in the endothelial cells of SC, while the endothelial lining of SC was intact. Interestingly, ROCK inhibitors also increase retinal blood flow by relaxing vascular smooth muscle cells, directly protecting neurons against various stresses, while promoting wound healing. These additional effects may help

  18. Pharmacophore modeling of diverse classes of p38 MAP kinase inhibitors.

    PubMed

    Sarma, Rituparna; Sinha, Sharat; Ravikumar, Muttineni; Kishore Kumar, Madala; Mahmood, S K

    2008-12-01

    Mitogen-activated protein (MAP) p38 kinase is a serine-threonine protein kinase and its inhibitors are useful in the treatment of inflammatory diseases. Pharmacophore models were developed using HypoGen program of Catalyst with diverse classes of p38 MAP kinase inhibitors. The best pharmacophore hypothesis (Hypo1) with hydrogen-bond acceptor (HBA), hydrophobic (HY), hydrogen-bond donor (HBD), and ring aromatic (RA) as features has correlation coefficient of 0.959, root mean square deviation (RMSD) of 1.069 and configuration cost of 14.536. The model was validated using test set containing 119 compounds and had high correlation coefficient of 0.851. The results demonstrate that results obtained in this study can be considered to be useful and reliable tools in identifying structurally diverse compounds with desired biological activity.

  19. Coexistence of JAK2 and CALR mutations and their clinical implications in patients with essential thrombocythemia.

    PubMed

    Kang, Min-Gu; Choi, Hyun-Woo; Lee, Jun Hyung; Choi, Yong Jun; Choi, Hyun-Jung; Shin, Jong-Hee; Suh, Soon-Pal; Szardenings, Michael; Kim, Hye-Ran; Shin, Myung-Geun

    2016-08-30

    Janus kinase 2 (JAK2) and calreticulin (CALR) constitute the two most frequent mutations in essential thrombocythemia (ET), and both are reported to be mutually exclusive. Hence, we examined a cohort of 123 myeloproliferative neoplasm (MPN) patients without BCR-ABL1 rearrangement and additional ET patients (n=96) for coexistence of JAK2 and CALR mutations. The frequency of CALR mutations was 20.3% in 123 MPN patients; 31.1% in ET (n=74), 25% in primary myelofibrosis (n=4) and 2.2% in polycythemia vera (n=45). JAK2 and CALR mutations coexisted in 7 (4.2%) of 167 ET patients. Clinical characteristics, progression-free survival (PFS), and elapsed time to achieve partial remission across 4 groups (JAK2+/CALR+, JAK2+/CALR-, JAK2-/CALR+, JAK2-/CALR-) were reviewed. The JAK2+/CALR- group had higher leukocyte counts and hemoglobin levels and more frequent thrombotic events than JAK2-/CALR- group. JAK2 mutations have a greater effect on the disease phenotype and the clinical features of MPN patients rather than do CALR mutation. JAK2+ groups showed a tendency of poor PFS than JAK2- groups regardless of CALR mutation. CALR+ was a predictor of late response to the treatment. Our study also showed that thrombosis was more frequent in ET patients with type 2 CALR mutations than in those with type 1 CALR mutations.

  20. An interaction map of small-molecule kinase inhibitors with anaplastic lymphoma kinase (ALK) mutants in ALK-positive non-small cell lung cancer.

    PubMed

    Ai, Xinghao; Shen, Shengping; Shen, Lan; Lu, Shun

    2015-05-01

    Human anaplastic lymphoma kinase (ALK) has become a well-established target for the treatment of ALK-positive non-small cell lung cancer (NSCLC). Here, we have profiled seven small-molecule inhibitors, including 2 that are approved drugs, against a panel of clinically relevant mutations in ALK tyrosine kinase (TK) domain, aiming at a comprehensive understanding of molecular mechanism and biological implication underlying inhibitor response to ALK TK mutation. We find that (i) the gatekeeper mutation L1196M causes crizotinib resistance by simultaneously increasing and decreasing the binding affinities of, respectively, ATP and inhibitor to ALK, whereas the secondary mutation C1156Y, which is located far away from the ATP-binding site of ALK TK domain, causes the resistance by inducing marked allosteric effect on the site, (ii) the 2nd and 3rd generation kinase inhibitors exhibit relatively high sensitivity towards ALK mutants as compared to 1st generation inhibitors, (iii) the pan-kinase inhibitor staurosporine is insensitive for most mutations due to its high structural compatibility, and (iv) ATP affinity to ALK is generally reduced upon most clinically relevant mutations. Furthermore, we also identify six novel mutation-inhibitor pairs that are potentially associated with drug resistance. In addition, the G1202R and C1156Y mutations are expected to generally cause resistance for many existing inhibitors, since they can address significant effect on the geometric shape and physicochemical property of ALK active pocket. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  1. Bruton's tyrosine kinase (Btk) inhibitor ibrutinib suppresses stem-like traits in ovarian cancer

    PubMed Central

    Zucha, Muhammad Ary; Wu, Alexander T.H.; Lee, Wei-Hwa; Wang, Liang-Shun; Lin, Wan-Wan; Yuan, Chiou-Chung; Yeh, Chi-Tai

    2015-01-01

    According to a Prognoscan database, upregulation of Bruton's tyrosine kinase (Btk) is associated with low overall survival in ovarian cancer patients. We found that spheroids-forming ovarian cancer cell, which highly expressed cancer stem-like cell (CSC) markers and Btk, were cisplatin resistant. We next treated CSCs and non-CSCs by a combination of ibrutinib and cisplatin. We found that chemoresistance was dependent on Btk and JAK2/STAT3, which maintained CSC by inducing Sox-2 and prosurvival genes. We suggest that addition of ibrutinib to cisplatin may improve treatment outcome in ovarian cancer. PMID:26036311

  2. Classification of small molecule protein kinase inhibitors based upon the structures of their drug-enzyme complexes.

    PubMed

    Roskoski, Robert

    2016-01-01

    Because dysregulation and mutations of protein kinases play causal roles in human disease, this family of enzymes has become one of the most important drug targets over the past two decades. The X-ray crystal structures of 21 of the 27 FDA-approved small molecule inhibitors bound to their target protein kinases are depicted in this paper. The structure of the enzyme-bound antagonist complex is used in the classification of these inhibitors. Type I inhibitors bind to the active protein kinase conformation (DFG-Asp in, αC-helix in). Type I½ inhibitors bind to a DFG-Asp in inactive conformation while Type II inhibitors bind to a DFG-Asp out inactive conformation. Type I, I½, and type II inhibitors occupy part of the adenine binding pocket and form hydrogen bonds with the hinge region connecting the small and large lobes of the enzyme. Type III inhibitors bind next to the ATP-binding pocket and type IV inhibitors do not bind to the ATP or peptide substrate binding sites. Type III and IV inhibitors are allosteric in nature. Type V inhibitors bind to two different regions of the protein kinase domain and are therefore bivalent inhibitors. The type I-V inhibitors are reversible. In contrast, type VI inhibitors bind covalently to their target enzyme. Type I, I½, and II inhibitors are divided into A and B subtypes. The type A inhibitors bind in the front cleft, the back cleft, and near the gatekeeper residue, all of which occur within the region separating the small and large lobes of the protein kinase. The type B inhibitors bind in the front cleft and gate area but do not extend into the back cleft. An analysis of the limited available data indicates that type A inhibitors have a long residence time (minutes to hours) while the type B inhibitors have a short residence time (seconds to minutes). The catalytic spine includes residues from the small and large lobes and interacts with the adenine ring of ATP. Nearly all of the approved protein kinase inhibitors occupy the

  3. Rho kinase inhibitors: a patent review (2012 - 2013).

    PubMed

    Feng, Yangbo; LoGrasso, Philip V

    2014-03-01

    The Rho kinase/ROCK is critical in vital signal transduction pathways central to many essential cellular activities. Since ROCK possess multiple substrates, modulation of ROCK activity is useful for treatment of many diseases. Significant progress has been made in the development of ROCK inhibitors over the past two years (Jan 2012 to Aug 2013). Patent search in this review was based on FPO IP Research and Communities and Espacenet Patent Search. In this review, patent applications will be classified into four groups for discussions. The grouping is mainly based on structures or scaffolds (groups 1 and 2) and biological functions of ROCK inhibitors (groups 3 and 4). These four groups are i) ROCK inhibitors based on classical structural elements for ROCK inhibition; ii) ROCK inhibitors based on new scaffolds; iii) bis-functional ROCK inhibitors; and iv) novel applications of ROCK inhibitors. Although currently only one ROCK inhibitor (fasudil) is used as a drug, more drugs based on ROCK inhibition are expected to be advanced into market in the near future. Several directions should be considered for future development of ROCK inhibitors, such as soft ROCK inhibitors, bis-functional ROCK inhibitors, ROCK2 isoform-selective inhibitors, and ROCK inhibitors as antiproliferation agents.

  4. Effects of protein kinase inhibitors on in vitro protein phosphorylation and cellular differentiation of Streptomyces griseus.

    PubMed

    Hong, S K; Matsumoto, A; Horinouchi, S; Beppu, T

    1993-01-01

    In vitro phosphorylation reactions using extracts of Streptomyces griseus cells and gamma-[32P]ATP revealed the presence of multiple phosphorylated proteins. Most of the phosphorylations were distinctly inhibited by staurosporine and K-252a which are known to be eukaryotic protein kinase inhibitors. The in vitro experiments also showed that phosphorylation was greatly enhanced by manganese and inhibition of phosphorylation by staurosporine and K-252a was partially circumvented by 10 mM manganese. A calcium-activated protein kinase(s) was little affected by these inhibitors. Herbimycin and radicicol, known to be tyrosine kinase inhibitors, completely inhibited the phosphorylation of one protein. Consistent with their in vitro effects the protein kinase inhibitors inhibited aerial mycelium formation and pigment production by S. griseus. All these data suggest that S. griseus possesses several protein kinases of eukaryotic type which are essential for morphogenesis and secondary metabolism. In vitro phosphorylation of some proteins in a staurosporine-producing Streptomyces sp. was also inhibited by staurosporine, K-252a and herbimycin, which suggests the presence of a mechanism for self-protection in this microorganism.

  5. Tyrosine kinase fusion genes in pediatric BCR-ABL1-like acute lymphoblastic leukemia

    PubMed Central

    Boer, Judith M.; Steeghs, Elisabeth M.P.; Marchante, João R.M.; Boeree, Aurélie; Beaudoin, James J.; Berna Beverloo, H.; Kuiper, Roland P.; Escherich, Gabriele; van der Velden, Vincent H.J.; van der Schoot, C. Ellen; de Groot-Kruseman, Hester A.; Pieters, Rob; den Boer, Monique L.

    2017-01-01

    Approximately 15% of pediatric B cell precursor acute lymphoblastic leukemia (BCP-ALL) is characterized by gene expression similar to that of BCR-ABL1-positive disease and unfavorable prognosis. This BCR-ABL1-like subtype shows a high frequency of B-cell development gene aberrations and tyrosine kinase-activating lesions. To evaluate the clinical significance of tyrosine kinase gene fusions in children with BCP-ALL, we studied the frequency of recently identified tyrosine kinase fusions, associated genetic features, and prognosis in a representative Dutch/German cohort. We identified 14 tyrosine kinase fusions among 77 BCR-ABL1-like cases (18%) and none among 76 non-BCR-ABL1-like B-other cases. Novel exon fusions were identified for RCSD1-ABL2 and TERF2-JAK2. JAK2 mutation was mutually exclusive with tyrosine kinase fusions and only occurred in cases with high CRLF2 expression. The non/late response rate and levels of minimal residual disease in the fusion-positive BCR-ABL1-like group were higher than in the non-BCR-ABL1-like B-others (p<0.01), and also higher, albeit not statistically significant, compared with the fusion-negative BCR-ABL1-like group. The 8-year cumulative incidence of relapse in the fusion-positive BCR-ABL1-like group (35%) was comparable with that in the fusion-negative BCR-ABL1-like group (35%), and worse than in the non-BCR-ABL1-like B-other group (17%, p=0.07). IKZF1 deletions, predominantly other than the dominant-negative isoform and full deletion, co-occurred with tyrosine kinase fusions. This study shows that tyrosine kinase fusion-positive cases are a high-risk subtype of BCP-ALL, which warrants further studies with specific kinase inhibitors to improve outcome. PMID:27894077

  6. A class of selective antibacterials derived from a protein kinase inhibitor pharmacophore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, J. Richard; Dunham, Steve; Mochalkin, Igor

    2009-06-25

    As the need for novel antibiotic classes to combat bacterial drug resistance increases, the paucity of leads resulting from target-based antibacterial screening of pharmaceutical compound libraries is of major concern. One explanation for this lack of success is that antibacterial screening efforts have not leveraged the eukaryotic bias resulting from more extensive chemistry efforts targeting eukaryotic gene families such as G protein-coupled receptors and protein kinases. Consistent with a focus on antibacterial target space resembling these eukaryotic targets, we used whole-cell screening to identify a series of antibacterial pyridopyrimidines derived from a protein kinase inhibitor pharmacophore. In bacteria, the pyridopyrimidinesmore » target the ATP-binding site of biotin carboxylase (BC), which catalyzes the first enzymatic step of fatty acid biosynthesis. These inhibitors are effective in vitro and in vivo against fastidious Gram-negative pathogens including Haemophilus influenzae. Although the BC active site has architectural similarity to those of eukaryotic protein kinases, inhibitor binding to the BC ATP-binding site is distinct from the protein kinase-binding mode, such that the inhibitors are selective for bacterial BC. In summary, we have discovered a promising class of potent antibacterials with a previously undescribed mechanism of action. In consideration of the eukaryotic bias of pharmaceutical libraries, our findings also suggest that pursuit of a novel inhibitor leads for antibacterial targets with active-site structural similarity to known human targets will likely be more fruitful than the traditional focus on unique bacterial target space, particularly when structure-based and computational methodologies are applied to ensure bacterial selectivity.« less

  7. Unleashing the power of inhibitors of oncogenic kinases through BH3 mimetics.

    PubMed

    Cragg, Mark S; Harris, Claire; Strasser, Andreas; Scott, Clare L

    2009-05-01

    Therapeutic targeting of tumours on the basis of molecular analysis is a new paradigm for cancer treatment but has yet to fulfil expectations. For many solid tumours, targeted therapeutics, such as inhibitors of oncogenic kinase pathways, elicit predominantly disease-stabilizing, cytostatic responses, rather than tumour regression. Combining oncogenic kinase inhibitors with direct activators of the apoptosis machinery, such as the BH3 mimetic ABT-737, may unlock potent anti-tumour potential to produce durable clinical responses with less collateral damage.

  8. Partial contribution of Rho-kinase inhibition to the bioactivity of Ganoderma lingzhi and its isolated compounds: insights on discovery of natural Rho-kinase inhibitors.

    PubMed

    Amen, Yhiya; Zhu, Qinchang; Tran, Hai-Bang; Afifi, Mohamed S; Halim, Ahmed F; Ashour, Ahmed; Shimizu, Kuniyoshi

    2017-04-01

    Recent studies identified Rho-kinase enzymes (ROCK-I and ROCK-II) as important targets that are involved in a variety of diseases. Synthetic Rho-kinase inhibitors have emerged as potential therapeutic agents to treat disorders such as hypertension, stroke, cancer, diabetes, glaucoma, etc. Our study is the first to screen the total ethanol extract of the medicinal mushroom Ganoderma lingzhi with thirty-five compounds for Rho-kinase inhibitory activity. Moreover, a molecular binding experiment was designed to investigate the binding affinity of the compounds at the active sites of Rho-kinase enzymes. The structure-activity relationship analysis was investigated. Our results suggest that the traditional uses of G. lingzhi might be in part due to the ROCK-I and ROCK-II inhibitory potential of this mushroom. Structure-activity relationship studies revealed some interesting features of the lanostane triterpenes that potentiate their Rho-kinase inhibition. These findings would be helpful for further studies on the design of Rho-kinase inhibitors from natural sources and open the door for contributions from other researchers for optimizing the development of natural Rho-kinase inhibitors.

  9. Discovery of highly potent, selective, covalent inhibitors of JAK3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kempson, James; Ovalle, Damaso; Guo, Junqing

    A useful and novel set of tool molecules have been identified which bind irreversibly to the JAK3 active site cysteine residue. The design was based on crystal structure information and a comparative study of several electrophilic warheads.

  10. The Jak-STAT pathway stimulated by interferon alpha or interferon beta.

    PubMed

    Horvath, Curt M

    2004-11-23

    Type I interferons, such as interferon alpha and interferon beta (IFN-alpha and beta), signal through a Janus kinase (Jak) to signal transduction and activator of transcription (STAT) pathway to stimulate gene expression. In response to ligand binding, the receptors dimerize, Jaks phosphorylate STAT1 and STAT2, which then dimerize and interact with a third transcriptional regulator IFN regulatory factor 9 (IRF9) to stimulate gene expression. IFN-alpha is the main innate antiviral cytokine and is essential for effective immune response to viral infection. The animation shows activation of STAT-responsive gene expression in response to type I IFNs.

  11. JAK2V617F influences epigenomic changes in myeloproliferative neoplasms.

    PubMed

    Chen, Chih-Cheng; Chiu, Chia-Chen; Lee, Kuan-Der; Hsu, Chia-Chen; Chen, Hong-Chi; Huang, Tim H-M; Hsiao, Shu-Huei; Leu, Yu-Wei

    2017-12-16

    Negative valine (V) to phenylalanine (F) switch at the Janus kinase (JAK2) 617 codon (V617F) is the dominant driver mutation in patients with myeloproliferative neoplasms (MPNs). JAK2V617F was proved to be sufficient for cell transformation; however, independent mutations might influence the following epigenomic modifications. To assess the JAK2V617F-induced downstream epigenomic changes without interferences, we profiled the epigenomic changes in ectopically expressed JAK2V617F in Ba/F3 cells. Antibodies against phosphorylated signal transducer and activator of transcription 3 (pSTAT3) and enhancer of zeste homolog 2 (EZH2) were used for chromatin-immunoprecipitation sequencing (ChIP-seq) to detect the downstream epigenomic targets in the JAK2-STAT3 signaling pathway. To confirm the JAK2V617F-induced epigenetic changes in vivo, DNA methylation changes in the target loci in patients with MPNs were detected through methylation-specific polymerase chain reaction and were clustered against the changes within controls. We found that ectopically expressed JAK2V617F in Ba/F3 cells reduced the binding specificity; it was associated with cis-regulatory elements and recognized DNA motifs in both pSTAT3-downstream and EZH2-associated targets. Overlapping target loci between the control and JAK2V617F were <3% and 0.4%, respectively, as identified through pSTAT3 and EZH2 ChIP-seq. Furthermore, the methylation changes in the direct target loci (FOXH1, HOXC9, and SRF) were clustered independently from the control locus (L1TD1) and other mutation genes (HMGA2 and Lin28A) in the analyzed MPN samples. Therefore, JAK2V617F influences target binding in both pSTAT3 and EZH2. Without mutations in epigenetic regulators, JAK2V617F can induce downstream epigenomic modifications. Thus, epigenetic changes in JAK2 downstream targets might be trackable in vivo. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Discovery of aminofurazan-azabenzimidazoles as inhibitors of Rho-kinase with high kinase selectivity and antihypertensive activity.

    PubMed

    Stavenger, Robert A; Cui, Haifeng; Dowdell, Sarah E; Franz, Robert G; Gaitanopoulos, Dimitri E; Goodman, Krista B; Hilfiker, Mark A; Ivy, Robert L; Leber, Jack D; Marino, Joseph P; Oh, Hye-Ja; Viet, Andrew Q; Xu, Weiwei; Ye, Guosen; Zhang, Daohua; Zhao, Yongdong; Jolivette, Larry J; Head, Martha S; Semus, Simon F; Elkins, Patricia A; Kirkpatrick, Robert B; Dul, Edward; Khandekar, Sanjay S; Yi, Tracey; Jung, David K; Wright, Lois L; Smith, Gary K; Behm, David J; Doe, Christopher P; Bentley, Ross; Chen, Zunxuan X; Hu, Erding; Lee, Dennis

    2007-01-11

    The discovery, proposed binding mode, and optimization of a novel class of Rho-kinase inhibitors are presented. Appropriate substitution on the 6-position of the azabenzimidazole core provided subnanomolar enzyme potency in vitro while dramatically improving selectivity over a panel of other kinases. Pharmacokinetic data was obtained for the most potent and selective examples and one (6n) has been shown to lower blood pressure in a rat model of hypertension.

  13. Discovery of novel EGFR tyrosine kinase inhibitors by structure-based virtual screening.

    PubMed

    Li, Siyuan; Sun, Xianqiang; Zhao, Hongli; Tang, Yun; Lan, Minbo

    2012-06-15

    By using of structure-based virtual screening, 13 novel epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors were discovered from 197,116 compounds in the SPECS database here. Among them, 8 compounds significantly inhibited EGFR kinase activity with IC(50) values lower than 10 μM. 3-{[1-(3-Chloro-4-fluorophenyl)-3,5-dioxo-4-pyrazolidinylidene]methyl}phenyl 2-thiophenecarboxylate (13), particularly, was the most potent inhibitor possessing the IC(50) value of 3.5 μM. The docking studies also provide some useful information that the docking models of the 13 compounds are beneficial to find a new path for designing novel EGFR inhibitors. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Prolonged and tunable residence time using reversible covalent kinase inhibitors

    PubMed Central

    Bradshaw, J. Michael; McFarland, Jesse M.; Paavilainen, Ville O.; Bisconte, Angelina; Tam, Danny; Phan, Vernon T.; Romanov, Sergei; Finkle, David; Shu, Jin; Patel, Vaishali; Ton, Tony; Li, Xiaoyan; Loughhead, David G.; Nunn, Philip A.; Karr, Dane E.; Gerritsen, Mary E.; Funk, Jens Oliver; Owens, Timothy D.; Verner, Erik; Brameld, Ken A.; Hill, Ronald J.; Goldstein, David M.; Taunton, Jack

    2015-01-01

    Drugs with prolonged, on-target residence time often show superior efficacy, yet general strategies for optimizing drug-target residence time are lacking. Here, we demonstrate progress toward this elusive goal by targeting a noncatalytic cysteine in Bruton's tyrosine kinase (BTK) with reversible covalent inhibitors. Utilizing an inverted orientation of the cysteine-reactive cyanoacrylamide electrophile, we identified potent and selective BTK inhibitors that demonstrate biochemical residence times spanning from minutes to 7 days. An inverted cyanoacrylamide with prolonged residence time in vivo remained bound to BTK more than 18 hours after clearance from the circulation. The inverted cyanoacrylamide strategy was further utilized to discover fibroblast growth factor receptor (FGFR) kinase inhibitors with residence times of several days, demonstrating generalizability of the approach. Targeting noncatalytic cysteines with inverted cyanoacrylamides may serve as a broadly applicable platform that facilitates “residence time by design”, the ability to modulate and improve the duration of target engagement in vivo. PMID:26006010

  15. Preparation of kinase-biased compounds in the search for lead inhibitors of kinase targets.

    PubMed

    Lai, Justine Y Q; Langston, Steven; Adams, Ruth; Beevers, Rebekah E; Boyce, Richard; Burckhardt, Svenja; Cobb, James; Ferguson, Yvonne; Figueroa, Eva; Grimster, Neil; Henry, Andrew H; Khan, Nawaz; Jenkins, Kerry; Jones, Mark W; Judkins, Robert; Major, Jeremy; Masood, Abid; Nally, James; Payne, Helen; Payne, Lloyd; Raphy, Gilles; Raynham, Tony; Reader, John; Reader, Valérie; Reid, Alison; Ruprah, Parminder; Shaw, Michael; Sore, Hannah; Stirling, Matthew; Talbot, Adam; Taylor, Jess; Thompson, Stephen; Wada, Hiroki; Walker, David

    2005-05-01

    This work describes the preparation of approximately 13,000 compounds for rapid identification of hits in high-throughput screening (HTS). These compounds were designed as potential serine/threonine or tyrosine kinase inhibitors. The library consists of various scaffolds, e.g., purines, oxindoles, and imidazoles, whereby each core scaffold generally includes the hydrogen bond acceptor/donor properties known to be important for kinase binding. Several of these are based upon literature kinase templates, or adaptations of them to provide novelty. The routes to their preparation are outlined. A variety of automation techniques were used to prepare >500 compounds per scaffold. Where applicable, scavenger resins were employed to remove excess reagents and when necessary, preparative high performance liquid chromatography (HPLC) was used for purification. These compounds were screened against an 'in-house' kinase panel. The success rate in HTS was significantly higher than the corporate compound collection. Copyright (c) 2004 Wiley Periodicals, Inc.

  16. Sequential treatment of CD34+ cells from patients with primary myelofibrosis with chromatin-modifying agents eliminate JAK2V617F-positive NOD/SCID marrow repopulating cells

    PubMed Central

    Wang, Xiaoli; Zhang, Wei; Tripodi, Joseph; Lu, Min; Xu, Mingjiang; Najfeld, Vesna; Li, Yan

    2010-01-01

    Because primary myelofibrosis (PMF) originates at the level of the pluripotent hematopoietic stem cell (HSC), we examined the effects of various therapeutic agents on the in vitro and in vivo behavior of PMF CD34+ cells. Treatment of PMF CD34+ cells with chromatin-modifying agents (CMAs) but not hydroxyurea, Janus kinase 2 (JAK2) inhibitors, or low doses of interferon-α led to the generation of greater numbers of CD34+ chemokine (C-X-C motif) receptor (CXCR)4+ cells, which were capable of migrating in response to chemokine (C-X-C motif) ligand (CXCL)12 and resulted in a reduction in the proportion of hematopoietic progenitor cells (HPCs) that were JAK2V617F+. Furthermore, sequential treatment of PMF CD34+ cells but not normal CD34+ cells with decitabine (5-aza-2′-deoxycytidine [5azaD]), followed by suberoylanilide hydroxamic acid (SAHA; 5azaD/SAHA), or trichostatin A (5azaD/TSA) resulted in a higher degree of apoptosis. Two to 6 months after the transplantation of CMAs treated JAK2V617F+ PMF CD34+ cells into nonobese diabetic/severe combined immunodeficient (SCID)/IL-2Rγnull mice, the percentage of JAK2V617F/JAK2total in human CD45+ marrow cells was dramatically reduced. These findings suggest that both PMF HPCs, short-term and long-term SCID repopulating cells (SRCs), are JAK2V617F+ and that JAK2V617F+ HPCs and SRCs can be eliminated by sequential treatment with CMAs. Sequential treatment with CMAs, therefore, represents a possible effective means of treating PMF at the level of the malignant SRC. PMID:20858855

  17. Maintaining glycogen synthase kinase-3 activity is critical for mTOR kinase inhibitors to inhibit cancer cell growth

    PubMed Central

    Koo, Junghui; Yue, Ping; Gal, Anthony A.; Khuri, Fadlo R.; Sun, Shi-Yong

    2014-01-01

    mTOR kinase inhibitors which target both mTORC1 and mTORC2 are being evaluated in cancer clinical trials. Here we report that glycogen synthase kinase-3 (GSK3) is a critical determinant for the therapeutic response to this class of experimental drugs. Pharmacological inhibition of GSK3 antagonized their suppressive effects on the growth of cancer cells similarly to genetic attenuation of GSK3. Conversely, expression of a constitutively activated form of GSK3β sensitized cancer cells to mTOR inhibition. Consistent with these findings, higher basal levels of GSK3 activity in a panel of human lung cancer cell lines correlated with more efficacious responses. Mechanistic investigations showed that mTOR kinase inhibitors reduced cyclin D1 levels in a GSK3β-dependent manner, independent of their effects on suppressing mTORC1 signaling and cap binding. Notably, selective inhibition of mTORC2 triggered proteasome-mediated cyclin D1 degradation, suggesting that mTORC2 blockade is responsible for GSK3-dependent reduction of cyclin D1. Silencing expression of the ubiquitin E3 ligase FBX4 rescued this reduction, implicating FBX4 in mediating this effect of mTOR inhibition. Together, our findings define a novel mechanism by which mTORC2 promotes cell growth, with potential implications for understanding the clinical action of mTOR kinase inhibitors. PMID:24626091

  18. Maintaining glycogen synthase kinase-3 activity is critical for mTOR kinase inhibitors to inhibit cancer cell growth.

    PubMed

    Koo, Junghui; Yue, Ping; Gal, Anthony A; Khuri, Fadlo R; Sun, Shi-Yong

    2014-05-01

    mTOR kinase inhibitors that target both mTORC1 and mTORC2 are being evaluated in cancer clinical trials. Here, we report that glycogen synthase kinase-3 (GSK3) is a critical determinant for the therapeutic response to this class of experimental drugs. Pharmacologic inhibition of GSK3 antagonized their suppressive effects on the growth of cancer cells similarly to genetic attenuation of GSK3. Conversely, expression of a constitutively activated form of GSK3β sensitized cancer cells to mTOR inhibition. Consistent with these findings, higher basal levels of GSK3 activity in a panel of human lung cancer cell lines correlated with more efficacious responses. Mechanistic investigations showed that mTOR kinase inhibitors reduced cyclin D1 levels in a GSK3β-dependent manner, independent of their effects on suppressing mTORC1 signaling and cap binding. Notably, selective inhibition of mTORC2 triggered proteasome-mediated cyclin D1 degradation, suggesting that mTORC2 blockade is responsible for GSK3-dependent reduction of cyclin D1. Silencing expression of the ubiquitin E3 ligase FBX4 rescued this reduction, implicating FBX4 in mediating this effect of mTOR inhibition. Together, our findings define a novel mechanism by which mTORC2 promotes cell growth, with potential implications for understanding the clinical action of mTOR kinase inhibitors. ©2014 AACR.

  19. The identification of new protein kinase inhibitors as targets in modern drug discovery.

    PubMed

    Akritopoulou-Zanze, Irini

    2006-07-01

    In recent years there has been great interest in developing protein kinase inhibitors as therapeutic agents for a variety of diseases. This article provides an overview on the history, development and validity of kinases as drug targets, as well as a description of kinase research, including its limitations, challenges and successes.

  20. Discovery of a series of dihydroquinoxalin-2(1H)-ones as selective BET inhibitors from a dual PLK1-BRD4 inhibitor.

    PubMed

    Hu, Jianping; Wang, Yingqing; Li, Yanlian; Xu, Lin; Cao, Danyan; Song, ShanShan; Damaneh, Mohammadali Soleimani; Wang, Xin; Meng, Tao; Chen, Yue-Lei; Shen, Jingkang; Miao, Zehong; Xiong, Bing

    2017-09-08

    Recent years have seen much effort to discover new chemotypes of BRD4 inhibitors. Interestingly, some kinase inhibitors have been demonstrated to be potent bromodomain inhibitors, especially the PLK1 inhibitor BI-2536 and the JAK2 inhibitor TG101209, which can bind to BRD4 with IC 50 values of 0.025 μM and 0.13 μM, respectively. Although the concept of dual inhibition is intriguing, selective BRD4 inhibitors are preferred as they may diminish off-target effects and provide more flexibility in anticancer drug combination therapy. Inspired by BI-2536, we designed and prepared a series of dihydroquinoxalin-2(1H)-one derivatives as selective bromodomain inhibitors. We found compound 54 had slightly higher activity than (+)-JQ1 in the fluorescence anisotropy assay and potent antiproliferative cellular activity in the MM.1S cell line. We have successfully solved the cocrystal structure of 52 in complex with BRD4-BD1, providing a solid structural basis for the binding mode of compounds of this series. Compound 54 exhibited high selectivity over most non-BET subfamily members and did not show bioactivity towards the PLK1 kinase at 10 or 1 μM. From in vivo studies, compound 54 demonstrated a good PK profile, and the results from in vivo pharmacological studies clearly showed the efficacy of 54 in the mouse MM.1S xenograft model. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. Simultaneous screening for JAK2 and calreticulin gene mutations in myeloproliferative neoplasms with high resolution melting.

    PubMed

    Matsumoto, Nariyoshi; Mori, Sayaka; Hasegawa, Hiroo; Sasaki, Daisuke; Mori, Hayato; Tsuruda, Kazuto; Imanishi, Daisuke; Imaizumi, Yoshitaka; Hata, Tomoko; Kaku, Norihito; Kosai, Kousuke; Uno, Naoki; Miyazaki, Yasushi; Yanagihara, Katsunori

    2016-11-01

    Recently, novel calreticulin (CALR) mutations were discovered in Janus kinase 2 (JAK2) non-mutated myelofibrosis (PMF) and essential thrombocythemia (ET) cases, with a frequency of 60-80%. We examined clinical correlations and CALR mutation frequency in our myeloproliferative neoplasms (MPN) cases, and introduce an effective test method for use in clinical practice. We examined 177 samples previously investigated for the JAK2 mutation for differential diagnosis of MPN. JAK2 and CALR mutations were analyzed using melting curve analysis and microchip electrophoresis, respectively. Next, we constructed a test for simultaneous screening of the JAK2 and CALR mutations utilizing high resolution melting (HRM). Among 99 MPN cases, 60 possessed the JAK2 mutation alone. Of the 39 MPN cases without the JAK2 mutation, 14 were positive for the CALR mutation, all of which were ET. Using our novel screening test for the JAK2 and CALR mutations by HRM, the concordance rate of conventional analysis with HRM was 96% for the JAK2 mutation and 95% for the CALR mutation. Our novel simultaneous screening test for the JAK2 and CALR gene mutations with HRM is useful for diagnosis of MPN. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Tofacitinib Represses the Janus Kinase-Signal Transducer and Activators of Transcription Signalling Pathway in Keratinocytes.

    PubMed

    Srivastava, Ankit; Ståhle, Mona; Pivarcsi, Andor; Sonkoly, Enikö

    2018-05-08

    Tofacitinib is a Janus kinase (JAK) inhibitor, which has shown efficacy in treating psoriasis. The mode of action of tofacitinib is not completely understood but it has been thought to be mediated by the inhibition of CD4+ T-cell activation. Here, we investigated whether the molecular targets of tofacitinib are expressed in keratinocytes, and whether tofacitinib can modulate the activity of the JAK/Signal Transducer and Activators of Transcription (STAT)-pathway in keratinocytes. Transcriptomic profiling of human keratinocytes treated with IL-22 in combination with tofacitinib revealed that tofacitinib could prevent the majority of IL-22-mediated gene expression changes. Pathway analysis of tofacitinib-regulated genes in keratinocytes revealed enrichment of genes involved in the JAK/STAT signalling pathway. Quantitative real-time-PCR confirmed the upregulation of S100A7 and downregulation of EGR1 expression by IL-22, which was prevented by tofacitinib pre-treatment. These results indicate a direct effect of tofacinitib on keratinocytes, which can have relevance for systemic as well as for topical treatment of psoriasis with tofacitinib.

  3. Novel small molecule inhibitors of 3-phosphoinositide-dependent kinase-1.

    PubMed

    Feldman, Richard I; Wu, James M; Polokoff, Mark A; Kochanny, Monica J; Dinter, Harald; Zhu, Daguang; Biroc, Sandra L; Alicke, Bruno; Bryant, Judi; Yuan, Shendong; Buckman, Brad O; Lentz, Dao; Ferrer, Mike; Whitlow, Marc; Adler, Marc; Finster, Silke; Chang, Zheng; Arnaiz, Damian O

    2005-05-20

    The phosphoinositide 3-kinase/3-phosphoinositide-dependent kinase 1 (PDK1)/Akt signaling pathway plays a key role in cancer cell growth, survival, and tumor angiogenesis and represents a promising target for anticancer drugs. Here, we describe three potent PDK1 inhibitors, BX-795, BX-912, and BX-320 (IC(50) = 11-30 nm) and their initial biological characterization. The inhibitors blocked PDK1/Akt signaling in tumor cells and inhibited the anchorage-dependent growth of a variety of tumor cell lines in culture or induced apoptosis. A number of cancer cell lines with elevated Akt activity were >30-fold more sensitive to growth inhibition by PDK1 inhibitors in soft agar than on tissue culture plastic, consistent with the cell survival function of the PDK1/Akt signaling pathway, which is particularly important for unattached cells. BX-320 inhibited the growth of LOX melanoma tumors in the lungs of nude mice after injection of tumor cells into the tail vein. The effect of BX-320 on cancer cell growth in vitro and in vivo indicates that PDK1 inhibitors may have clinical utility as anticancer agents.

  4. Spinal IL-33/ST2 Signaling Contributes to Neuropathic Pain via Neuronal CaMKII-CREB and Astroglial JAK2-STAT3 Cascades in Mice.

    PubMed

    Liu, Shenbin; Mi, Wen-Li; Li, Qian; Zhang, Meng-Ting; Han, Ping; Hu, Shan; Mao-Ying, Qi-Liang; Wang, Yan-Qing

    2015-11-01

    Emerging evidence indicates that nerve damage-initiated neuroinflammation and immune responses, which are evidenced by the up-regulation of proinflammatory cytokines, contribute to the development of neuropathic pain. This study investigated the role of spinal interleukin (IL)-33 and its receptor ST2 in spared nerve injury (SNI)-induced neuropathic pain. The von Frey test and acetone test were performed to evaluate neuropathic pain behaviors (n = 8 to 12), and Western blot (n = 4 to 6), immunohistochemistry, real-time polymerase chain reaction (n = 5), and Bio-Plex (n = 5) assays were performed to understand the molecular mechanisms. Intrathecal administration of ST2-neutralizing antibody or ST2 gene knockout (ST2) significantly attenuated the SNI-induced mechanical and cold allodynia. On the 7th day after SNI, the expression of spinal IL-33 and ST2 was increased by 255.8 ± 27.3% and 266.4 ± 83.5% (mean ± SD), respectively. Mechanistic studies showed that the increased expression of the spinal N-methyl-D-aspartate (NMDA) receptor subunit 1 after SNI was reduced by ST2 antibody administration or ST2. The induction of nociceptive behaviors in naive mice due to recombinant IL-33 was reversed by the noncompetitive NMDA antagonist MK-801. ST2 antibody administration or ST2 markedly inhibited the increased activation of the astroglial janus kinase 2 (JAK2)-signal transducer and activator of transcription 3 (STAT3) cascade and the neuronal calcium-calmodulin-dependent kinase II (CaMKII)-cyclic adenosine monophosphate response element-binding protein (CREB) cascade after SNI. Moreover, intrathecal pretreatment with the CaMKII inhibitor KN-93 or the JAK2-STAT3 cascade inhibitor AG490 attenuated recombinant IL-33-induced nociceptive behaviors and NMDA subunit 1 up-regulation in naive mice. Spinal IL-33/ST2 signaling contributes to neuropathic pain by activating the astroglial JAK2-STAT3 cascade and the neuronal CaMKII-CREB cascade.

  5. Polycythemia Vera: An Appraisal of the Biology and Management 10 Years After the Discovery of JAK2 V617F

    PubMed Central

    Stein, Brady L.; Oh, Stephen T.; Berenzon, Dmitriy; Hobbs, Gabriela S.; Kremyanskaya, Marina; Rampal, Raajit K.; Abboud, Camille N.; Adler, Kenneth; Heaney, Mark L.; Jabbour, Elias J.; Komrokji, Rami S.; Moliterno, Alison R.; Ritchie, Ellen K.; Rice, Lawrence; Mascarenhas, John; Hoffman, Ronald

    2015-01-01

    Polycythemia vera (PV) is a chronic myeloproliferative neoplasm that is associated with a substantial symptom burden, thrombohemorrhagic complications, and impaired survival. A decade after the seminal discovery of an activating mutation in the tyrosine kinase JAK2 in nearly all patients with PV, new treatment options are finally beginning to emerge, necessitating a critical reappraisal of the underlying pathogenesis and therapeutic modalities available for PV. Herein, we comprehensively review clinical aspects of PV including diagnostic considerations, natural history, and risk factors for thrombosis. We summarize recent studies delineating the genetic basis of PV, including their implications for evolution to myelofibrosis and secondary acute myeloid leukemia. We assess the quality of evidence to support the use of currently available therapies, including aspirin, phlebotomy, hydroxyurea, and interferon. We analyze recent studies evaluating the safety and efficacy of JAK inhibitors, such as ruxolitinib, and evaluate their role in the context of other available therapies for PV. This review provides a framework for practicing hematologists and oncologists to make rational treatment decisions for patients with PV. PMID:26324368

  6. Recent advances in the development of p21-activated kinase inhibitors.

    PubMed

    Coleman, Natalia; Kissil, Joseph

    2012-04-01

    The p21-activated kinases (PAKs) are downstream effectors of the small G-proteins of the Rac and cdc42 family and have been implicated as essential for cell proliferation and survival. Recent studies have also demonstrated the promise of PAKs as therapeutic targets in various types of cancers. The PAKs are divided into two major groups (group I and II) based on sequence similarities. Although the different roles the PAK groups might play are not well understood, recent efforts have focused on the identification of kinase inhibitors that can discriminate between the two groups. In this review these efforts and newly identified inhibitors will be described and future directions discussed.

  7. Inhibitors of Leishmania mexicana CRK3 Cyclin-Dependent Kinase: Chemical Library Screen and Antileishmanial Activity

    PubMed Central

    Grant, Karen M.; Dunion, Morag H.; Yardley, Vanessa; Skaltsounis, Alexios-Leandros; Marko, Doris; Eisenbrand, Gerhard; Croft, Simon L.; Meijer, Laurent; Mottram, Jeremy C.

    2004-01-01

    The CRK3 cyclin-dependent kinase of Leishmania has been shown by genetic manipulation of the parasite to be essential for proliferation. We present data which demonstrate that chemical inhibition of CRK3 impairs the parasite's viability within macrophages, thus further validating CRK3 as a potential drug target. A microtiter plate-based histone H1 kinase assay was developed to screen CRK3 against a chemical library enriched for protein kinase inhibitors. Twenty-seven potent CRK3 inhibitors were discovered and screened against Leishmania donovani amastigotes in vitro. Sixteen of the CRK3 inhibitors displayed antileishmanial activity, with a 50% effective dose (ED50) of less than 10 μM. These compounds fell into four chemical classes: the 2,6,9-trisubstituted purines, including the C-2-alkynylated purines; the indirubins; the paullones; and derivatives of the nonspecific kinase inhibitor staurosporine. The paullones and staurosporine derivatives were toxic to macrophages. The 2,6,9-trisubstituted purines inhibited CRK3 in vitro, with 50% inhibitory concentrations ranging from high nanomolar to low micromolar concentrations. The most potent inhibitors of CRK3 (compounds 98/516 and 97/344) belonged to the indirubin class; the 50% inhibitory concentrations for these inhibitors were 16 and 47 nM, respectively, and the ED50s for these inhibitors were 5.8 and 7.6 μM, respectively. In culture, the indirubins caused growth arrest, a change in DNA content, and aberrant cell types, all consistent with the intracellular inhibition of a cyclin-dependent kinase and disruption of cell cycle control. Thus, use of chemical inhibitors supports genetic studies to confirm CRK3 as a validated drug target in Leishmania and provides pharmacophores for further drug development. PMID:15273118

  8. Kinase-activating and kinase-impaired cardio-facio-cutaneous syndrome alleles have activity during zebrafish development and are sensitive to small molecule inhibitors.

    PubMed

    Anastasaki, Corina; Estep, Anne L; Marais, Richard; Rauen, Katherine A; Patton, E Elizabeth

    2009-07-15

    The Ras/MAPK pathway is critical for human development and plays a central role in the formation and progression of most cancers. Children born with germ-line mutations in BRAF, MEK1 or MEK2 develop cardio-facio-cutaneous (CFC) syndrome, an autosomal dominant syndrome characterized by a distinctive facial appearance, heart defects, skin and hair abnormalities and mental retardation. CFC syndrome mutations in BRAF promote both kinase-activating and kinase-impaired variants. CFC syndrome has a progressive phenotype, and the availability of clinically active inhibitors of the MAPK pathway prompts the important question as to whether such inhibitors might be therapeutically effective in the treatment of CFC syndrome. To study the developmental effects of CFC mutant alleles in vivo, we have expressed a panel of 28 BRAF and MEK alleles in zebrafish embryos to assess the function of human disease alleles and available chemical inhibitors of this pathway. We find that both kinase-activating and kinase-impaired CFC mutant alleles promote the equivalent developmental outcome when expressed during early development and that treatment of CFC-zebrafish embryos with inhibitors of the FGF-MAPK pathway can restore normal early development. Importantly, we find a developmental window in which treatment with a MEK inhibitor can restore the normal early development of the embryo, without the additional, unwanted developmental effects of the drug.

  9. Novel Mps1 Kinase Inhibitors with Potent Antitumor Activity.

    PubMed

    Wengner, Antje M; Siemeister, Gerhard; Koppitz, Marcus; Schulze, Volker; Kosemund, Dirk; Klar, Ulrich; Stoeckigt, Detlef; Neuhaus, Roland; Lienau, Philip; Bader, Benjamin; Prechtl, Stefan; Raschke, Marian; Frisk, Anna-Lena; von Ahsen, Oliver; Michels, Martin; Kreft, Bertolt; von Nussbaum, Franz; Brands, Michael; Mumberg, Dominik; Ziegelbauer, Karl

    2016-04-01

    Monopolar spindle 1 (Mps1) has been shown to function as the key kinase that activates the spindle assembly checkpoint (SAC) to secure proper distribution of chromosomes to daughter cells. Here, we report the structure and functional characterization of two novel selective Mps1 inhibitors, BAY 1161909 and BAY 1217389, derived from structurally distinct chemical classes. BAY 1161909 and BAY 1217389 inhibited Mps1 kinase activity with IC50 values below 10 nmol/L while showing an excellent selectivity profile. In cellular mechanistic assays, both Mps1 inhibitors abrogated nocodazole-induced SAC activity and induced premature exit from mitosis ("mitotic breakthrough"), resulting in multinuclearity and tumor cell death. Both compounds efficiently inhibited tumor cell proliferation in vitro (IC50 nmol/L range). In vivo, BAY 1161909 and BAY 1217389 achieved moderate efficacy in monotherapy in tumor xenograft studies. However, in line with its unique mode of action, when combined with paclitaxel, low doses of Mps1 inhibitor reduced paclitaxel-induced mitotic arrest by the weakening of SAC activity. As a result, combination therapy strongly improved efficacy over paclitaxel or Mps1 inhibitor monotreatment at the respective MTDs in a broad range of xenograft models, including those showing acquired or intrinsic paclitaxel resistance. Both Mps1 inhibitors showed good tolerability without adding toxicity to paclitaxel monotherapy. These preclinical findings validate the innovative concept of SAC abrogation for cancer therapy and justify clinical proof-of-concept studies evaluating the Mps1 inhibitors BAY 1161909 and BAY 1217389 in combination with antimitotic cancer drugs to enhance their efficacy and potentially overcome resistance. Mol Cancer Ther; 15(4); 583-92. ©2016 AACR. ©2016 American Association for Cancer Research.

  10. The Synthetic α-Bromo-2′,3,4,4′-Tetramethoxychalcone (α-Br-TMC) Inhibits the JAK/STAT Signaling Pathway

    PubMed Central

    Brueggemann, Susanne; Besl, Elisabeth; Al-Rifai, Nafisah; Petkes, Hermina; Amslinger, Sabine; Rascle, Anne

    2014-01-01

    Signal transducer and activator of transcription STAT5 and its upstream activating kinase JAK2 are essential mediators of cytokine signaling. Their activity is normally tightly regulated and transient. However, constitutive activation of STAT5 is found in numerous cancers and a driving force for malignant transformation. We describe here the identification of the synthetic chalcone α-Br-2′,3,4,4′-tetramethoxychalcone (α-Br-TMC) as a novel JAK/STAT inhibitor. Using the non-transformed IL-3-dependent B cell line Ba/F3 and its oncogenic derivative Ba/F3-1*6 expressing constitutively activated STAT5, we show that α-Br-TMC targets the JAK/STAT pathway at multiple levels, inhibiting both JAK2 and STAT5 phosphorylation. Moreover, α-Br-TMC alters the mobility of STAT5A/B proteins in SDS-PAGE, indicating a change in their post-translational modification state. These alterations correlate with a decreased association of STAT5 and RNA polymerase II with STAT5 target genes in chromatin immunoprecipitation assays. Interestingly, expression of STAT5 target genes such as Cis and c-Myc was differentially regulated by α-Br-TMC in normal and cancer cells. While both genes were inhibited in IL-3-stimulated Ba/F3 cells, expression of the oncogene c-Myc was down-regulated and that of the tumor suppressor gene Cis was up-regulated in transformed Ba/F3-1*6 cells. The synthetic chalcone α-Br-TMC might therefore represent a promising novel anticancer agent for therapeutic intervention in STAT5-associated malignancies. PMID:24595334

  11. Sphingosine kinase inhibitors: a review of patent literature (2006-2015).

    PubMed

    Lynch, Kevin R; Thorpe, S Brandon; Santos, Webster L

    2016-12-01

    Sphingosine kinase (SphK1 & SphK2) is the sole source of the pleiotropic lipid mediator, sphingosine-1-phosphate (S1P). S1P has been implicated in a variety of diseases such as cancer, Alzheimer's disease, sickle cell disease and fibrosis and thus the biosynthetic route to S1P is a logical target for drug discovery. Areas covered: In this review, the authors consider the SphK inhibitor patent literature from 2006-2016 Q1 with the emphasis on composition of matter utility patents. The Espacenet database was queried with the search term 'sphingosine AND kinase' to identify relevant literature. Expert opinion: Early inhibitor discovery focused on SphK1 with a bias towards oncology indications. Structurally, the reported inhibitors occupy the sphingosine 'J-shaped' binding pocket. The lack of cytotoxicity with improved SphK1 inhibitors raises doubt about the enzyme as an oncology target. SphK2 inhibitors are featured in more recent patent applications. Interestingly, both SphK1 and SphK2 inhibition and gene 'knockout' share opposing effects on circulating S1P levels: SphK1 inhibition/gene ablation decreases, while SphK2 inhibition/gene ablation increases, blood S1P. As understanding of S1P's physiological roles increases and more drug-like SphK inhibitors emerge, inhibiting one or both SphK isotypes could provide unique strategies for treating disease.

  12. Computational Analysis of Epidermal Growth Factor Receptor Mutations Predicts Differential Drug Sensitivity Profiles toward Kinase Inhibitors.

    PubMed

    Akula, Sravani; Kamasani, Swapna; Sivan, Sree Kanth; Manga, Vijjulatha; Vudem, Dashavantha Reddy; Kancha, Rama Krishna

    2018-05-01

    A significant proportion of patients with lung cancer carry mutations in the EGFR kinase domain. The presence of a deletion mutation in exon 19 or L858R point mutation in the EGFR kinase domain has been shown to cause enhanced efficacy of inhibitor treatment in patients with NSCLC. Several less frequent (uncommon) mutations in the EGFR kinase domain with potential implications in treatment response have also been reported. The role of a limited number of uncommon mutations in drug sensitivity was experimentally verified. However, a huge number of these mutations remain uncharacterized for inhibitor sensitivity or resistance. A large-scale computational analysis of clinically reported 298 point mutants of EGFR kinase domain has been performed, and drug sensitivity profiles for each mutant toward seven kinase inhibitors has been determined by molecular docking. In addition, the relative inhibitor binding affinity toward each drug as compared with that of adenosine triphosphate was calculated for each mutant. The inhibitor sensitivity profiles predicted in this study for a set of previously characterized mutants correlated well with the published clinical, experimental, and computational data. Both the single and compound mutations displayed differential inhibitor sensitivity toward first- and next-generation kinase inhibitors. The present study provides predicted drug sensitivity profiles for a large panel of uncommon EGFR mutations toward multiple inhibitors, which may help clinicians in deciding mutant-specific treatment strategies. Copyright © 2018 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  13. Optimization of Imidazo[4,5-b]pyridine-Based Kinase Inhibitors: Identification of a Dual FLT3/Aurora Kinase Inhibitor as an Orally Bioavailable Preclinical Development Candidate for the Treatment of Acute Myeloid Leukemia

    PubMed Central

    2012-01-01

    Optimization of the imidazo[4,5-b]pyridine-based series of Aurora kinase inhibitors led to the identification of 6-chloro-7-(4-(4-chlorobenzyl)piperazin-1-yl)-2-(1,3-dimethyl-1H-pyrazol-4-yl)-3H-imidazo[4,5-b]pyridine (27e), a potent inhibitor of Aurora kinases (Aurora-A Kd = 7.5 nM, Aurora-B Kd = 48 nM), FLT3 kinase (Kd = 6.2 nM), and FLT3 mutants including FLT3-ITD (Kd = 38 nM) and FLT3(D835Y) (Kd = 14 nM). FLT3-ITD causes constitutive FLT3 kinase activation and is detected in 20–35% of adults and 15% of children with acute myeloid leukemia (AML), conferring a poor prognosis in both age groups. In an in vivo setting, 27e strongly inhibited the growth of a FLT3-ITD-positive AML human tumor xenograft (MV4–11) following oral administration, with in vivo biomarker modulation and plasma free drug exposures consistent with dual FLT3 and Aurora kinase inhibition. Compound 27e, an orally bioavailable dual FLT3 and Aurora kinase inhibitor, was selected as a preclinical development candidate for the treatment of human malignancies, in particular AML, in adults and children. PMID:23043539

  14. RhoA, Rho kinase, JAK2, and STAT3 may be the intracellular determinants of longevity implicated in the progeric influence of obesity: Insulin, IGF-1, and leptin may all conspire to promote stem cell exhaustion.

    PubMed

    Tapia, Patrick C

    2006-01-01

    The aging process in higher mammals is increasingly being shown to feature a potentially substantial contribution from the longitudinal deterioration of normative stem cell dynamics seen with the passage of time. The precise mechanistic sequence producing this phenomenon is not entirely understood, but recent evidence has strongly implicated intracellular downstream effectors of endocrinologic pathways thought to be engaged by the obese state, specifically the insulin, IGF-1, and leptin signaling pathways. Among the intracellular effectors of these signals, a uniquely potent influence on stem cell dynamics may be attributable to Rho/ROCK, JAK kinase activity and STAT3 activity. In particular, it has already been shown that specific tyrosine kinase activities, such as that seen with Rho kinase, are presently thought to be associated with adverse health outcomes in numerous clinical contexts. Furthermore, the Rho GTPase is thought to be contributing to end-stage renal disease. However, in addition to its contribution to organ system dysfunction, the Rho/ROCK pathway has recently been shown to be activated by insulin and IGF-1, providing a tantalizing connection to nutrition and aging science. The JAK-STAT pathway, in contrast, has long been associated with pro-inflammatory cytokines, but has recently been implicated in leptin signaling as well. Importantly, JAK-STAT signaling has, similarly to Rho/ROCK signaling, been implicated as capable of accelerating stem cell proliferation. The implications of these recent determinations, in light of the recent finding of telomere attrition in humans associated with obesity, are that the intracellular determinants of aging may already be known, and the known common influence of these signaling elements on longitudinal stem cell dynamics is a pronounced induction of proliferation, an elevation that has been linked to the pathologic evolution of longitudinal organ-level dysfunction and the organismal-level physiologic decline

  15. Structure of Human G Protein-Coupled Receptor Kinase 2 in Complex with the Kinase Inhibitor Balanol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tesmer, John J.G.; Tesmer, Valerie M.; Lodowski, David T.

    2010-07-19

    G protein-coupled receptor kinase 2 (GRK2) is a pharmaceutical target for the treatment of cardiovascular diseases such as congestive heart failure, myocardial infarction, and hypertension. To better understand how nanomolar inhibition and selectivity for GRK2 might be achieved, we have determined crystal structures of human GRK2 in complex with G{beta}{gamma} in the presence and absence of the AGC kinase inhibitor balanol. The selectivity of balanol among human GRKs is assessed.

  16. IL-10 Promotes Neurite Outgrowth and Synapse Formation in Cultured Cortical Neurons after the Oxygen-Glucose Deprivation via JAK1/STAT3 Pathway.

    PubMed

    Chen, Hongbin; Lin, Wei; Zhang, Yixian; Lin, Longzai; Chen, Jianhao; Zeng, Yongping; Zheng, Mouwei; Zhuang, Zezhong; Du, Houwei; Chen, Ronghua; Liu, Nan

    2016-07-26

    As a classic immunoregulatory and anti-inflammatory cytokine, interleukin-10 (IL-10) provides neuroprotection in cerebral ischemia in vivo or oxygen-glucose deprivation (OGD)-induced injury in vitro. However, it remains blurred whether IL-10 promotes neurite outgrowth and synapse formation in cultured primary cortical neurons after OGD injury. In order to evaluate its effect on neuronal apoptosis, neurite outgrowth and synapse formation, we administered IL-10 or IL-10 neutralizing antibody (IL-10NA) to cultured rat primary cortical neurons after OGD injury. We found that IL-10 treatment activated the Janus kinase 1 (JAK1)/signal transducers and activators of transcription 3 (STAT3) signaling pathway. Moreover, IL-10 attenuated OGD-induced neuronal apoptosis by down-regulating the Bax expression and up-regulating the Bcl-2 expression, facilitated neurite outgrowth by increasing the expression of Netrin-1, and promoted synapse formation in cultured primary cortical neurons after OGD injury. These effects were partly abolished by JAK1 inhibitor GLPG0634. Contrarily, IL-10NA produced opposite effects on the cultured cortical neurons after OGD injury. Taken together, our findings suggest that IL-10 not only attenuates neuronal apoptosis, but also promotes neurite outgrowth and synapse formation via the JAK1/STAT3 signaling pathway in cultured primary cortical neurons after OGD injury.

  17. A Review: Phytochemicals Targeting JAK/STAT Signaling and IDO Expression in Cancer.

    PubMed

    Arumuggam, Niroshaathevi; Bhowmick, Neil A; Rupasinghe, H P Vasantha

    2015-06-01

    Cancer remains a major health problem worldwide. Among many other factors, two regulatory defects that are present in most cancer cells are constitutive activation of Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathway and the induction of indoleamine 2, 3-dioxygenase (IDO), an enzyme that catalyzes tryptophan degradation, through JAK/STAT signaling. Cytokine signaling activates STAT proteins in regulating cell proliferation, differentiation, and survival through modulation of target genes. Many phytochemicals can inhibit both JAK/STAT signaling and IDO expression in antigen-presenting cells by targeting different pathways. Some of the promising phytochemicals that are discussed in this review include resveratrol, cucurbitacin, curcumin, (-)-epigallocatechin gallate, and others. It is now evident that phytochemicals play key roles in inhibition of tumor proliferation and development and provide novel means for therapeutic targeting of cancer. Copyright © 2015 John Wiley & Sons, Ltd.

  18. Determination of human serum alpha1-acid glycoprotein and albumin binding of various marketed and preclinical kinase inhibitors.

    PubMed

    Zsila, Ferenc; Fitos, Ilona; Bencze, Gyula; Kéri, György; Orfi, László

    2009-01-01

    There are about 380 protein kinase inhibitors in drug development as of today and 15 drugs have been marketed already for the treatment of cancer. This time 139 validated kinase targets are in the focus of drug research of pharmaceutical companies and big efforts are made for the development of new, druglike kinase inhibitors. Plasma protein binding is an important factor of the ADME profiling of a drug compound. Human serum albumin (HSA) and alpha(1)-acid glycoprotein (AAG) are the most relevant drug carriers in blood plasma. Since previous literature data indicated that AAG is the principal plasma binding component of some kinase inhibitors the present work focuses on the comprehensive evaluation of AAG binding of a series of marketed and experimental kinase inhibitors by using circular dichroism (CD) spectroscopy approach. HSA binding was also evaluated by affinity chromatography. Protein binding interactions of twenty-six kinase inhibitors are characterized. The contribution of AAG and HSA binding data to the pharmacokinetic profiles of the investigated therapeutic agents is discussed. Structural, biological and drug binding properties of AAG as well as the applicability of the CD method in studying drug-protein binding interactions are also briefly reviewed.

  19. JAK/STAT3 and Smad3 activities are required for the wound healing properties of Periplaneta americana extracts.

    PubMed

    Song, Qin; Xie, Yuxin; Gou, Qiheng; Guo, Xiaoqiang; Yao, Qian; Gou, Xiaojun

    2017-08-01

    Periplaneta americana extracts (PAEs) play a crucial role in skin wound healing. However, their molecular effects and signaling pathways in regenerating tissues and cells are not clear. In this study, we refined the PAE from Periplaneta americana to investigate the mechanisms underlying skin wound healing. The human keratinocyte line HaCaT was selected and a mouse model of deep second-degree thermal burn was established for in vitro and in vivo studies, respectively. PAE treatment induced the proliferation and migration of HaCaT cells and wound healing in the burn model. Furthermore, the effects of PAE on wound healing were found to depend on the Janus-activated kinase/signal transducer and activator of transcription 3 (JAK/STAT3) pathway and Smad3 activities, according to western blot analysis and immunohistochemical (IHC) assays in vitro and in vivo. Pretreatment with a STAT3 inhibitor blocked the cell proliferation and migration induced by PAE. The results indicate the wound-healing function of PAE via enhanced JAK/STAT3 signaling and Smad3 activities. Our studies provide a theoretical basis underlying the role of PAE in cutaneous wound healing.

  20. Targeting invadopodia-mediated breast cancer metastasis by using ABL kinase inhibitors

    PubMed Central

    Meirson, Tomer; Genna, Alessandro; Lukic, Nikola; Makhnii, Tetiana; Alter, Joel; Sharma, Ved P.; Wang, Yarong; Samson, Abraham O.; Condeelis, John S.; Gil-Henn, Hava

    2018-01-01

    Metastatic dissemination of cancer cells from the primary tumor and their spread to distant sites in the body is the leading cause of mortality in breast cancer patients. While researchers have identified treatments that shrink or slow metastatic tumors, no treatment that permanently eradicates metastasis exists at present. Here, we show that the ABL kinase inhibitors imatinib, nilotinib, and GNF-5 impede invadopodium precursor formation and cortactin-phosphorylation dependent invadopodium maturation, leading to decreased actin polymerization in invadopodia, reduced extracellular matrix degradation, and impaired matrix proteolysis-dependent invasion. Using a mouse xenograft model we demonstrate that, while primary tumor size is not affected by ABL kinase inhibitors, the in vivo matrix metalloproteinase (MMP) activity, tumor cell invasion, and consequent spontaneous metastasis to lungs are significantly impaired in inhibitor-treated mice. Further proteogenomic analysis of breast cancer patient databases revealed co-expression of the Abl-related gene (Arg) and cortactin across all hormone- and human epidermal growth factor receptor 2 (HER2)-receptor status tumors, which correlates synergistically with distant metastasis and poor patient prognosis. Our findings establish a prognostic value for Arg and cortactin as predictors of metastatic dissemination and suggest that therapeutic inhibition of ABL kinases may be used for blocking breast cancer metastasis. PMID:29774130

  1. JAK2V617F mutation is associated with special alleles in essential thrombocythemia.

    PubMed

    Hsiao, Hui-Hua; Liu, Yi-Chang; Tsai, Hui-Jen; Lee, Ching-Ping; Hsu, Jui-Feng; Lin, Sheng-Fung

    2011-03-01

    Janus kinase 2 mutation (JAK2V617F) has been identified in myeloproliferative neoplasms. Furthermore, special single nucleoside polymorphisms (SNPs) have been found to be associated with the JAK2V617F mutation. Therefore, the associations among JAK2V617F and special SNPs and the allelic location between them were investigated in patients with essential thrombocythemia (ET). A total of 61 patients with ET and 106 healthy individuals were enrolled. The PCR-RFLP method was applied to investigate the pattern of three SNPs, rs10974944, rs12343867, and rs12340895. Allele-specific PCR was used to examine the allelic location between rs10974944 and JAK2V617F. Among the patients with ET, 34 (55.7%, 34/61) were JAK2V617F positive (heterozygous) while the other 27 (44.3%, 27/61) were negative, and there were no MPLW515L/K mutations noted. The pattern of special SNPs in JAK2V617F(+) was significantly different from that in normal individuals (p <0.05), while there was no difference between JAK2V617F(-) patients and normal individuals. Allele-specific PCR showed high association of a cis-location between the special G-allele of rs10974944 and JAK2V617F(+). Based on this small numbered study, the results show the association between special SNPs and JAK2V617F mutation and a cis-location between the special G-allelic form of rs10974944 and the JAK2V617F mutation. These data highlight a close relationship between them in patients with ET.

  2. Frequency of JAK2 V617F mutation in patients with Philadelphia positive Chronic Myeloid Leukemia in Pakistan.

    PubMed

    Tabassum, Najia; Saboor, Mohammed; Ghani, Rubina; Moinuddin, Moinuddin

    2014-01-01

    Co-existence of myeloproliferative disorders (MPD) and Janus associated kinase 2 mutation (JAK2 V617F) is a well-established fact. Only few case reports are available showing presence of JAK2 V617F mutation in chronic myeloid leukemia (CML). Purpose of this study was to determine the frequency of JAK2 V617F mutation in Philadelphia Chromosome positive (Ph (+)) CML patients in Pakistan. The study was conducted from August 2009 to July 2010 at Civil Hospital and Baqai Institute of Hematology (BIH) Karachi. Blood samples from 25 patients with CML were collected. Multiplex reverse transcription polymerase chain reaction (RT-PCR) was performed for Breakpoint Cluster Region - Abelson (BCR-ABL) rearrangement. Conventional PCR was performed for JAK2 V617F mutation on BCR-ABL positive samples. All 25 samples showed BCR-ABL rearrangement. Out of these 11 samples (44%) had JAK2 V617F mutation; the remaining 14 (56%) cases showed JAK2 617V wild type. It is concluded that the co-existence of Ph (+)CML and JAK2 V617F mutation is possible.

  3. Fragment-based approaches to the discovery of kinase inhibitors.

    PubMed

    Mortenson, Paul N; Berdini, Valerio; O'Reilly, Marc

    2014-01-01

    Protein kinases are one of the most important families of drug targets, and aberrant kinase activity has been linked to a large number of disease areas. Although eminently targetable using small molecules, kinases present a number of challenges as drug targets, not least obtaining selectivity across such a large and relatively closely related target family. Fragment-based drug discovery involves screening simple, low-molecular weight compounds to generate initial hits against a target. These hits are then optimized to more potent compounds via medicinal chemistry, usually facilitated by structural biology. Here, we will present a number of recent examples of fragment-based approaches to the discovery of kinase inhibitors, detailing the construction of fragment-screening libraries, the identification and validation of fragment hits, and their optimization into potent and selective lead compounds. The advantages of fragment-based methodologies will be discussed, along with some of the challenges associated with using this route. Finally, we will present a number of key lessons derived both from our own experience running fragment screens against kinases and from a large number of published studies.

  4. Identification of anti-proliferative kinase inhibitors as potential therapeutic agents to treat canine osteosarcoma.

    PubMed

    Mauchle, Ulrike; Selvarajah, Gayathri T; Mol, Jan A; Kirpensteijn, Jolle; Verheije, Monique H

    2015-08-01

    Osteosarcoma is the most common primary bone tumour in dogs but various forms of therapy have not significantly improved clinical outcomes. As dysregulation of kinase activity is often present in tumours, kinases represent attractive molecular targets for cancer therapy. The purpose of this study was to identify novel compounds targeting kinases with the potential to induce cell death in a panel of canine osteosarcoma cell lines. The ability of 80 well-characterized kinase inhibitor compounds to inhibit the proliferation of four canine osteosarcoma cell lines was investigated in vitro. For those compounds with activity, the mechanism of action and capability to potentiate the activity of doxorubicin was further evaluated. The screening showed 22 different kinase inhibitors that induced significant anti-proliferative effects across the four canine osteosarcoma cell lines investigated. Four of these compounds (RO 31-8220, 5-iodotubercidin, BAY 11-7082 and an erbstatin analog) showed significant cell growth inhibitory effects across all cell lines in association with variable induction of apoptosis. RO 31-8220 and 5-iodotubercidin showed the highest ability to potentiate the effects of doxorubicin on cell viability. In conclusion, the present study identified several potent kinase inhibitors targeting the PKC, CK1, PKA, ErbB2, mTOR and NF-κB pathways, which may warrant further investigations for the treatment of osteosarcoma in dogs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Molecular dynamics simulations and modelling of the residue interaction networks in the BRAF kinase complexes with small molecule inhibitors: probing the allosteric effects of ligand-induced kinase dimerization and paradoxical activation.

    PubMed

    Verkhivker, G M

    2016-10-20

    Protein kinases are central to proper functioning of cellular networks and are an integral part of many signal transduction pathways. The family of protein kinases represents by far the largest and most important class of therapeutic targets in oncology. Dimerization-induced activation has emerged as a common mechanism of allosteric regulation in BRAF kinases, which play an important role in growth factor signalling and human diseases. Recent studies have revealed that most of the BRAF inhibitors can induce dimerization and paradoxically stimulate enzyme transactivation by conferring an active conformation in the second monomer of the kinase dimer. The emerging connections between inhibitor binding and BRAF kinase domain dimerization have suggested a molecular basis of the activation mechanism in which BRAF inhibitors may allosterically modulate the stability of the dimerization interface and affect the organization of residue interaction networks in BRAF kinase dimers. In this work, we integrated structural bioinformatics analysis, molecular dynamics and binding free energy simulations with the protein structure network analysis of the BRAF crystal structures to determine dynamic signatures of BRAF conformations in complexes with different types of inhibitors and probe the mechanisms of the inhibitor-induced dimerization and paradoxical activation. The results of this study highlight previously unexplored relationships between types of BRAF inhibitors, inhibitor-induced changes in the residue interaction networks and allosteric modulation of the kinase activity. This study suggests a mechanism by which BRAF inhibitors could promote or interfere with the paradoxical activation of BRAF kinases, which may be useful in informing discovery efforts to minimize the unanticipated adverse biological consequences of these therapeutic agents.

  6. [Effect of inhibitors serine/threonine protein kinases and protein phosphatases on mitosis progression of synchronized tobacco by-2 cells].

    PubMed

    Sheremet, Ia A; Emets, A I; Azmi, A; Vissenberg, K; Verbelen, J-P; Blium, Ia B

    2012-01-01

    In order to investigate the role of various serine/ threonine protein kinases and protein phosphatases in the regulation of mitosis progression in plant cells the influence of cyclin-dependent (olomoucine) and Ca2+ -calmodulin-dependent (W7) protein kinases inhibitors, as well as protein kinase C inhibitors (H7 and staurosporine) and protein phosphatases inhibitor (okadaic acid) on mitosis progression in synchronized tobacco BY-2 cells has been studied. It was found that BY-2 culture treatment with inhibitors of cyclin dependent protein kinases and protein kinase C causes prophase delay, reduces the mitotic index and displaces of mitotic peak as compare with control cells. Inhibition of Ca2+ -calmodulin dependent protein kinases enhances the cell entry into prophase and delays their exit from mitosis. Meanwhile inhibition of serine/threonine protein phosphatases insignificantly enhances of synchronized BY-2 cells entering into all phases of mitosis.

  7. Selective targeting of JAK/STAT signaling is potentiated by Bcl-xL blockade in IL-2–dependent adult T-cell leukemia

    PubMed Central

    Zhang, Meili; Mathews Griner, Lesley A.; Ju, Wei; Duveau, Damien Y.; Guha, Rajarshi; Petrus, Michael N.; Wen, Bernard; Maeda, Michiyuki; Shinn, Paul; Ferrer, Marc; Conlon, Kevin D.; Bamford, Richard N.; O’Shea, John J.; Thomas, Craig J.; Waldmann, Thomas A.

    2015-01-01

    Adult T-cell leukemia (ATL) develops in individuals infected with human T-cell lymphotropic virus-1 (HTLV-1). Presently there is no curative therapy for ATL. HTLV-1–encoded protein Tax (transactivator from the X-gene region) up-regulates Bcl-xL (B-cell lymphoma-extra large) expression and activates interleukin-2 (IL-2), IL-9, and IL-15 autocrine/paracrine systems, resulting in amplified JAK/STAT signaling. Inhibition of JAK signaling reduces cytokine-dependent ex vivo proliferation of peripheral blood mononuclear cells (PBMCs) from ATL patients in smoldering/chronic stages. Currently, two JAK inhibitors are approved for human use. In this study, we examined activity of multiple JAK inhibitors in ATL cell lines. The selective JAK inhibitor ruxolitinib was examined in a high-throughput matrix screen combined with >450 potential therapeutic agents, and Bcl-2/Bcl-xL inhibitor navitoclax was identified as a strong candidate for multicomponent therapy. The combination was noted to strongly activate BAX (Bcl-2-associated X protein), effect mitochondrial depolarization, and increase caspase 3/7 activities that lead to cleavage of PARP (poly ADP ribose polymerase) and Mcl-1 (myeloid cell leukemia 1). Ruxolitinib and navitoclax independently demonstrated modest antitumor efficacy, whereas the combination dramatically lowered tumor burden and prolonged survival in an ATL murine model. This combination strongly blocked ex vivo proliferation of five ATL patients’ PBMCs. These studies provide support for a therapeutic trial in patients with smoldering/chronic ATL using a drug combination that inhibits JAK signaling and antiapoptotic protein Bcl-xL. PMID:26396258

  8. Fragment-Based Drug Discovery of Potent Protein Kinase C Iota Inhibitors.

    PubMed

    Kwiatkowski, Jacek; Liu, Boping; Tee, Doris Hui Ying; Chen, Guoying; Ahmad, Nur Huda Binte; Wong, Yun Xuan; Poh, Zhi Ying; Ang, Shi Hua; Tan, Eldwin Sum Wai; Ong, Esther Hq; Nurul Dinie; Poulsen, Anders; Pendharkar, Vishal; Sangthongpitag, Kanda; Lee, May Ann; Sepramaniam, Sugunavathi; Ho, Soo Yei; Cherian, Joseph; Hill, Jeffrey; Keller, Thomas H; Hung, Alvin W

    2018-05-24

    Protein kinase C iota (PKC-ι) is an atypical kinase implicated in the promotion of different cancer types. A biochemical screen of a fragment library has identified several hits from which an azaindole-based scaffold was chosen for optimization. Driven by a structure-activity relationship and supported by molecular modeling, a weakly bound fragment was systematically grown into a potent and selective inhibitor against PKC-ι.

  9. Screening Active Compounds from Garcinia Species Native to China Reveals Novel Compounds Targeting the STAT/JAK Signaling Pathway

    PubMed Central

    Xu, Linfeng; Lao, Yuanzhi; Zhao, Yanhui; Qin, Jian; Fu, Wenwei; Zhang, Yingjia; Xu, Hongxi

    2015-01-01

    Natural compounds from medicinal plants are important resources for drug development. In a panel of human tumor cells, we screened a library of the natural products from Garcinia species which have anticancer potential to identify new potential therapeutic leads and discovered that caged xanthones were highly effective at suppressing multiple cancer cell lines. Their anticancer activities mainly depended on apoptosis pathways. For compounds in sensitive cancer line, their mechanisms of mode of action were evaluated. 33-Hydroxyepigambogic acid and 35-hydroxyepigambogic acid exhibited about 1 μM IC50 values against JAK2/JAK3 kinases and less than 1 μM IC50 values against NCI-H1650 cell which autocrined IL-6. Thus these two compounds provided a new antitumor molecular scaffold. Our report describes 33-hydroxyepigambogic acid and 35-hydroxyepigambogic acid that inhibited NCI-H1650 cell growth by suppressing constitutive STAT3 activation via direct inhibition of JAK kinase activity. PMID:26090459

  10. LIF-activated Jak signaling determines Esrrb expression during late-stage reprogramming

    PubMed Central

    Huang, Delun; Wang, Ling; Duan, Jingyue; Huang, Chang; Tian, Xiuchun (Cindy); Zhang, Ming

    2018-01-01

    ABSTRACT The regulatory process of naïve-state induced pluripotent stem cell (iPSC) generation is not well understood. Leukemia inhibitory factor (LIF)-activated Janus kinase/signal transducer and activator of transcription 3 (Jak/Stat3) is the master regulator for naïve-state pluripotency achievement and maintenance. The estrogen-related receptor beta (Esrrb) serves as a naïve-state marker gene regulating self-renewal of embryonic stem cells (ESCs). However, the interconnection between Esrrb and LIF signaling for pluripotency establishment in reprogramming is unclear. We screened the marker genes critical for complete reprogramming during mouse iPSC generation, and identified genes including Esrrb that are responsive to LIF/Jak pathway signaling. Overexpression of Esrrb resumes the reprogramming halted by inhibition of Jak activity in partially reprogrammed cells (pre-iPSCs), and leads to the generation of pluripotent iPSCs. We further show that neither overexpression of Nanog nor stimulation of Wnt signaling, two upstream regulators of Esrrb in ESCs, stimulates the expression of Esrrb in reprogramming when LIF or Jak activity is blocked. Our study demonstrates that Esrrb is a specific reprogramming factor regulated downstream of the LIF/Jak signaling pathway. These results shed new light on the regulatory role of LIF pathway on complete pluripotency establishment during iPSC generation. PMID:29212799

  11. Efficacy of ponatinib against ABL tyrosine kinase inhibitor-resistant leukemia cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okabe, Seiichi, E-mail: okabe@tokyo-med.ac.jp; Tauchi, Tetsuzo; Tanaka, Yuko

    2013-06-07

    Highlights: •Efficacy of ponatinib against ABL tyrosine kinase inhibitor-resistant leukemia cells okabe et al. •Imatinib or nilotinib resistance was involved Src family kinase. •The BCR-ABL point mutation (E334V) was highly resistant to imatinib or nilotinib. •Ponatinib was a powerful strategy against imatinib or nilotinib resistant Ph-positive cells. -- Abstract: Because a substantial number of patients with chronic myeloid leukemia acquire resistance to ABL tyrosine kinase inhibitors (TKIs), their management remains a challenge. Ponatinib, also known as AP24534, is an oral multi-targeted TKI. Ponatinib is currently being investigated in a pivotal phase 2 clinical trial. In the present study, we analyzedmore » the molecular and functional consequences of ponatinib against imatinib- or nilotinib-resistant (R) K562 and Ba/F3 cells. The proliferation of imatinib- or nilotinib-resistant K562 cells did not decrease after treatment with imatinib or nilotinib. Src family kinase Lyn was activated. Point mutation Ba/F3 cells (E334 V) were also highly resistant to imatinib and nilotinib. Treatment with ponatinib for 72 h inhibited the growth of imatinib- and nilotinib-resistant cells. The phosphorylation of BCR-ABL, Lyn, and Crk-L was reduced. This study demonstrates that ponatinib has an anti-leukemia effect by reducing ABL and Lyn kinase activity and this information may be of therapeutic relevance.« less

  12. Aminopyridine-based c-Jun N-terminal kinase inhibitors with cellular activity and minimal cross-kinase activity.

    PubMed

    Szczepankiewicz, Bruce G; Kosogof, Christi; Nelson, Lissa T J; Liu, Gang; Liu, Bo; Zhao, Hongyu; Serby, Michael D; Xin, Zhili; Liu, Mei; Gum, Rebecca J; Haasch, Deanna L; Wang, Sanyi; Clampit, Jill E; Johnson, Eric F; Lubben, Thomas H; Stashko, Michael A; Olejniczak, Edward T; Sun, Chaohong; Dorwin, Sarah A; Haskins, Kristi; Abad-Zapatero, Cele; Fry, Elizabeth H; Hutchins, Charles W; Sham, Hing L; Rondinone, Cristina M; Trevillyan, James M

    2006-06-15

    The c-Jun N-terminal kinases (JNK-1, -2, and -3) are members of the mitogen activated protein (MAP) kinase family of enzymes. They are activated in response to certain cytokines, as well as by cellular stresses including chemotoxins, peroxides, and irradiation. They have been implicated in the pathology of a variety of different diseases with an inflammatory component including asthma, stroke, Alzheimer's disease, and type 2 diabetes mellitus. In this work, high-throughput screening identified a JNK inhibitor with an excellent kinase selectivity profile. Using X-ray crystallography and biochemical screening to guide our lead optimization, we prepared compounds with inhibitory potencies in the low-double-digit nanomolar range, activity in whole cells, and pharmacokinetics suitable for in vivo use. The new compounds were over 1,000-fold selective for JNK-1 and -2 over other MAP kinases including ERK2, p38alpha, and p38delta and showed little inhibitory activity against a panel of 74 kinases.

  13. The phosphatidylinositol 3-kinase inhibitor, wortmannin, inhibits insulin-induced activation of phosphatidylcholine hydrolysis and associated protein kinase C translocation in rat adipocytes.

    PubMed Central

    Standaert, M L; Avignon, A; Yamada, K; Bandyopadhyay, G; Farese, R V

    1996-01-01

    We questioned whether phosphatidylinositol 3-kinase (PI 3-kinase) and protein kinase C (PKC) function as interrelated signalling mechanisms during insulin action in rat adipocytes. Insulin rapidly activated a phospholipase D that hydrolyses phosphatidylcholine (PC), and this activation was accompanied by increases in diacylglycerol and translocative activation of PKC-alpha and PKC-beta in the plasma membrane. Wortmannin, an apparently specific PI 3-kinase inhibitor, inhibited insulin-stimulated, phospholipase D-dependent PC hydrolysis and subsequent translocation of PKC-alpha and PKC-beta to the plasma membrane. Wortmannin did not inhibit PKC directly in vitro, or the PKC-dependent effects of phorbol esters on glucose transport in intact adipocytes. The PKC inhibitor RO 31-8220 did not inhibit PI 3-kinase directly or its activation in situ by insulin, but inhibited both insulin-stimulated and phorbol ester-stimulated glucose transport. Our findings suggest that insulin acts through PI 3-kinase to activate a PC-specific phospholipase D and causes the translocative activation of PKC-alpha and PKC-beta in plasma membranes of rat adipocytes. PMID:8611143

  14. The phosphatidylinositol 3-kinase inhibitor, wortmannin, inhibits insulin-induced activation of phosphatidylcholine hydrolysis and associated protein kinase C translocation in rat adipocytes.

    PubMed

    Standaert, M L; Avignon, A; Yamada, K; Bandyopadhyay, G; Farese, R V

    1996-02-01

    We questioned whether phosphatidylinositol 3-kinase (PI 3-kinase) and protein kinase C (PKC) function as interrelated signalling mechanisms during insulin action in rat adipocytes. Insulin rapidly activated a phospholipase D that hydrolyses phosphatidylcholine (PC), and this activation was accompanied by increases in diacylglycerol and translocative activation of PKC-alpha and PKC-beta in the plasma membrane. Wortmannin, an apparently specific PI 3-kinase inhibitor, inhibited insulin-stimulated, phospholipase D-dependent PC hydrolysis and subsequent translocation of PKC-alpha and PKC-beta to the plasma membrane. Wortmannin did not inhibit PKC directly in vitro, or the PKC-dependent effects of phorbol esters on glucose transport in intact adipocytes. The PKC inhibitor RO 31-8220 did not inhibit PI 3-kinase directly or its activation in situ by insulin, but inhibited both insulin-stimulated and phorbol ester-stimulated glucose transport. Our findings suggest that insulin acts through PI 3-kinase to activate a PC-specific phospholipase D and causes the translocative activation of PKC-alpha and PKC-beta in plasma membranes of rat adipocytes.

  15. MAP KINASE ERK 1/2 INHIBITORS INDUCE DYSMORPHOLOGY IN MOUSE WHOLE EMBRYO CULTURE

    EPA Science Inventory

    ROSEN, M.B. and E. S. HUNTER. Reproductive Toxicology Division, NHEERL, ORD, U.S. EPA, Research Triangle Park, North Carolina. MAP kinase Erk1/2 inhibitors induce dysmorphology in mouse whole embryo culture.

    MAP Kinase signal transduction is associated with a variety ...

  16. Design, synthesis, and evaluation of 4,6-diaminonicotinamide derivatives as novel and potent immunomodulators targeting JAK3.

    PubMed

    Nakajima, Yutaka; Aoyama, Naohiro; Takahashi, Fumie; Sasaki, Hiroshi; Hatanaka, Keiko; Moritomo, Ayako; Inami, Masamichi; Ito, Misato; Nakamura, Koji; Nakamori, Fumihiro; Inoue, Takayuki; Shirakami, Shohei

    2016-10-01

    In organ transplantation, T cell-mediated immune responses play a key role in the rejection of allografts. Janus kinase 3 (JAK3) is specifically expressed in hematopoietic cells and associated with regulation of T cell development via interleukin-2 signaling pathway. Here, we designed novel 4,6-diaminonicotinamide derivatives as immunomodulators targeting JAK3 for prevention of transplant rejection. Our optimization of C4- and C6-substituents and docking calculations to JAK3 protein confirmed that the 4,6-diaminonicotinamide scaffold resulted in potent inhibition of JAK3. We also investigated avoidance of human ether-a-go-go related gene (hERG) inhibitory activity. Selected compound 28 in combination with tacrolimus prevented allograft rejection in a rat heterotopic cardiac transplantation model. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Identification of glycogen synthase kinase-3 inhibitors with a selective sting for glycogen synthase kinase-3α.

    PubMed

    Lo Monte, Fabio; Kramer, Thomas; Gu, Jiamin; Anumala, Upendra Rao; Marinelli, Luciana; La Pietra, Valeria; Novellino, Ettore; Franco, Bénédicte; Demedts, David; Van Leuven, Fred; Fuertes, Ana; Dominguez, Juan Manuel; Plotkin, Batya; Eldar-Finkelman, Hagit; Schmidt, Boris

    2012-05-10

    The glycogen synthase kinase-3 (GSK-3) has been linked to the pathogenesis of colorectal cancer, diabetes, cardiovascular disease, acute myeloid leukemia (AML), and Alzheimer's disease (AD). The debate on the respective contributions of GSK-3α and GSK-3β to AD pathology and AML is ongoing. Thus, the identification of potent GSK-3α-selective inhibitors, endowed with favorable pharmacokinetic properties, may elucidate the effect of GSK-3α inhibition in AD and AML models. The analysis of all available crystallized GSK-3 structures provided a simplified scheme of the relevant hot spots responsible for ligand binding and potency. This resulted in the identification of novel scorpion shaped GSK-3 inhibitors. It is noteworthy, compounds 14d and 15b showed the highest GSK-3α selectivity reported so far. In addition, compound 14d did not display significant inhibition of 48 out of 50 kinases in the test panel. The GSK-3 inhibitors were further profiled for efficacy and toxicity in the wild-type (wt) zebrafish embryo assay.

  18. New tools for evaluating protein tyrosine sulphation: Tyrosyl Protein Sulphotransferases (TPSTs) are novel targets for RAF protein kinase inhibitors.

    PubMed

    Byrne, Dominic P; Li, Yong; Ngamlert, Pawin; Ramakrishnan, Krithika; Eyers, Claire E; Wells, Carrow; Drewry, David H; Zuercher, William J; Berry, Neil G; Fernig, David G; Eyers, Patrick A

    2018-06-22

    Protein tyrosine sulphation is a post-translational modification best known for regulating extracellular protein-protein interactions. Tyrosine sulphation is catalysed by two Golgi-resident enzymes termed Tyrosyl Protein Sulpho Transferases (TPSTs) 1 and 2, which transfer sulphate from the co-factor PAPS (3'-phosphoadenosine 5'-phosphosulphate) to a context-dependent tyrosine in a protein substrate. A lack of quantitative tyrosine sulphation assays has hampered the development of chemical biology approaches for the identification of small molecule inhibitors of tyrosine sulphation. In this paper, we describe the development of a non-radioactive mobility-based enzymatic assay for TPST1 and TPST2, through which the tyrosine sulphation of synthetic fluorescent peptides can be rapidly quantified. We exploit ligand binding and inhibitor screens to uncover a susceptibility of TPST1 and TPST2 to different classes of small molecules, including the anti-angiogenic compound suramin and the kinase inhibitor rottlerin. By screening the Published Kinase Inhibitor Set (PKIS), we identified oxindole-based inhibitors of the Ser/Thr kinase RAF as low micromolar inhibitors of TPST1 and TPST2.  Interestingly, unrelated RAF inhibitors, exemplified by the dual BRAF/VEGFR2 inhibitor RAF265, were also TPST inhibitors in vitro We propose that target-validated protein kinase inhibitors could be repurposed, or redesigned, as more-specific TPST inhibitors to help evaluate the sulphotyrosyl proteome. Finally, we speculate that mechanistic inhibition of cellular tyrosine sulphation might be relevant to some of the phenotypes observed in cells exposed to anionic TPST ligands and RAF protein kinase inhibitors. ©2018 The Author(s).

  19. The noni anthraquinone damnacanthal is a multi-kinase inhibitor with potent anti-angiogenic effects.

    PubMed

    García-Vilas, Javier A; Pino-Ángeles, Almudena; Martínez-Poveda, Beatriz; Quesada, Ana R; Medina, Miguel Ángel

    2017-01-28

    The natural bioactive compound damnacanthal inhibits several tyrosine kinases. Herein, we show that -in fact- damancanthal is a multi kinase inhibitor. A docking and molecular dynamics simulation approach allows getting further insight on the inhibitory effect of damnacanthal on three different kinases: vascular endothelial growth factor receptor-2, c-Met and focal adhesion kinase. Several of the kinases targeted and inhibited by damnacanthal are involved in angiogenesis. Ex vivo and in vivo experiments clearly demonstrate that, indeed, damnacanthal is a very potent inhibitor of angiogenesis. A number of in vitro assays contribute to determine the specific effects of damnacanthal on each of the steps of the angiogenic process, including inhibition of tubulogenesis, endothelial cell proliferation, survival, migration and production of extracellular matrix remodeling enzyme. Taken altogether, these results suggest that damancanthal could have potential interest for the treatment of cancer and other angiogenesis-dependent diseases. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Combining RNA interference and kinase inhibitors against cell signalling components involved in cancer

    PubMed Central

    O'Grady, Michael; Raha, Debasish; Hanson, Bonnie J; Bunting, Michaeline; Hanson, George T

    2005-01-01

    Background The transcription factor activator protein-1 (AP-1) has been implicated in a large variety of biological processes including oncogenic transformation. The tyrosine kinases of the epidermal growth factor receptor (EGFR) constitute the beginning of one signal transduction cascade leading to AP-1 activation and are known to control cell proliferation and differentiation. Drug discovery efforts targeting this receptor and other pathway components have centred on monoclonal antibodies and small molecule inhibitors. Resistance to such inhibitors has already been observed, guiding the prediction of their use in combination therapies with other targeted agents such as RNA interference (RNAi). This study examines the use of RNAi and kinase inhibitors for qualification of components involved in the EGFR/AP-1 pathway of ME180 cells, and their inhibitory effects when evaluated individually or in tandem against multiple components of this important disease-related pathway. Methods AP-1 activation was assessed using an ME180 cell line stably transfected with a beta-lactamase reporter gene under the control of AP-1 response element following epidermal growth factor (EGF) stimulation. Immunocytochemistry allowed for further quantification of small molecule inhibition on a cellular protein level. RNAi and RT-qPCR experiments were performed to assess the amount of knockdown on an mRNA level, and immunocytochemistry was used to reveal cellular protein levels for the targeted pathway components. Results Increased potency of kinase inhibitors was shown by combining RNAi directed towards EGFR and small molecule inhibitors acting at proximal or distal points in the pathway. After cellular stimulation with EGF and analysis at the level of AP-1 activation using a β-lactamase reporter gene, a 10–12 fold shift or 2.5–3 fold shift toward greater potency in the IC50 was observed for EGFR and MEK-1 inhibitors, respectively, in the presence of RNAi targeting EGFR. Conclusion EGFR

  1. Benzothiophene inhibitors of MK2. Part 2: Improvements in kinase selectivity and cell potency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, David R.; Meyers, Marvin J.; Kurumbail, Ravi G.

    2010-10-01

    Optimization of kinase selectivity for a set of benzothiophene MK2 inhibitors provided analogs with potencies of less than 500 nM in a cell based assay. The selectivity of the inhibitors can be rationalized by examination of X-ray crystal structures of inhibitors bound to MK2.

  2. Crystal Structure of Human AKT1 with an Allosteric Inhibitor Reveals a New Mode of Kinase Inhibition

    PubMed Central

    Wu, Wen-I; Voegtli, Walter C.; Sturgis, Hillary L.; Dizon, Faith P.; Vigers, Guy P. A.; Brandhuber, Barbara J.

    2010-01-01

    AKT1 (NP_005154.2) is a member of the serine/threonine AGC protein kinase family involved in cellular metabolism, growth, proliferation and survival. The three human AKT isozymes are highly homologous multi-domain proteins with both overlapping and distinct cellular functions. Dysregulation of the AKT pathway has been identified in multiple human cancers. Several clinical trials are in progress to test the efficacy of AKT pathway inhibitors in treating cancer. Recently, a series of AKT isozyme-selective allosteric inhibitors have been reported. They require the presence of both the pleckstrin-homology (PH) and kinase domains of AKT, but their binding mode has not yet been elucidated. We present here a 2.7 Å resolution co-crystal structure of human AKT1 containing both the PH and kinase domains with a selective allosteric inhibitor bound in the interface. The structure reveals the interactions between the PH and kinase domains, as well as the critical amino residues that mediate binding of the inhibitor to AKT1. Our work also reveals an intricate balance in the enzymatic regulation of AKT, where the PH domain appears to lock the kinase in an inactive conformation and the kinase domain disrupts the phospholipid binding site of the PH domain. This information advances our knowledge in AKT1 structure and regulation, thereby providing a structural foundation for interpreting the effects of different classes of AKT inhibitors and designing selective ones. PMID:20886116

  3. Single agent BMS-911543 Jak2 inhibitor has distinct inhibitory effects on STAT5 signaling in genetically engineered mice with pancreatic cancer

    PubMed Central

    Mace, Thomas A.; Shakya, Reena; Elnaggar, Omar; Wilson, Kristin; Komar, Hannah M.; Yang, Jennifer; Pitarresi, Jason R.; Young, Gregory S.; Ostrowski, Michael C.; Ludwig, Thomas; Bekaii-Saab, Tanios; Bloomston, Mark; Lesinski, Gregory B.

    2015-01-01

    The Jak/STAT pathway is activated in human pancreatic ductal adenocarcinoma (PDAC) and cooperates with mutant Kras to drive initiation and progression of PDAC in murine models. We hypothesized that the small-molecule Jak2 inhibitor (BMS-911543) would elicit anti-tumor activity against PDAC and decrease immune suppressive features of the disease. We used an aggressive genetically engineered PDAC model with mutant KrasG12D, tp53R270H, and Brca1 alleles (KPC-Brca1 mice). Mice with confirmed tumor burden were treated orally with vehicle or 30 mg/kg BMS-911543 daily for 14 days. Histologic analysis of pancreata from treated mice revealed fewer foci of adenocarcinoma and significantly decreased Ki67+ cells versus controls. In vivo administration of BMS-911543 significantly reduced pSTAT5 and FoxP3 positive cells within the pancreas, but did not alter STAT3 phosphorylation. Continuous dosing of KPC-Brca1 mice with BMS-911543 resulted in a median survival of 108 days, as compared to a median survival of 87 days in vehicle treated animals, a 23% increase (p = 0.055). In vitro experiments demonstrated that PDAC cell lines were poorly sensitive to BMS-911543, requiring high micromolar concentrations to achieve targeted inhibition of Jak/STAT signaling. Similarly, BMS-911543 had little in vitro effect on the viability of both murine and human PDAC-derived stellate cell lines. However, BMS-911543 potently inhibited phosphorylation of pSTAT3 and pSTAT5 at low micromolar doses in human PBMC and reduced in vitro differentiation of Foxp3+ T regulatory cells. These results indicate that single agent Jak2i deserves further study in preclinical models of PDAC and has distinct inhibitory effects on STAT5 mediated signaling. PMID:26575024

  4. Masitinib (AB1010), a Potent and Selective Tyrosine Kinase Inhibitor Targeting KIT

    PubMed Central

    Dubreuil, Patrice; Letard, Sébastien; Ciufolini, Marco; Gros, Laurent; Humbert, Martine; Castéran, Nathalie; Borge, Laurence; Hajem, Bérengère; Lermet, Anne; Sippl, Wolfgang; Voisset, Edwige; Arock, Michel; Auclair, Christian; Leventhal, Phillip S.; Mansfield, Colin D.; Moussy, Alain; Hermine, Olivier

    2009-01-01

    Background The stem cell factor receptor, KIT, is a target for the treatment of cancer, mastocytosis, and inflammatory diseases. Here, we characterise the in vitro and in vivo profiles of masitinib (AB1010), a novel phenylaminothiazole-type tyrosine kinase inhibitor that targets KIT. Methodology/Principal Findings In vitro, masitinib had greater activity and selectivity against KIT than imatinib, inhibiting recombinant human wild-type KIT with an half inhibitory concentration (IC50) of 200±40 nM and blocking stem cell factor-induced proliferation and KIT tyrosine phosphorylation with an IC50 of 150±80 nM in Ba/F3 cells expressing human or mouse wild-type KIT. Masitinib also potently inhibited recombinant PDGFR and the intracellular kinase Lyn, and to a lesser extent, fibroblast growth factor receptor 3. In contrast, masitinib demonstrated weak inhibition of ABL and c-Fms and was inactive against a variety of other tyrosine and serine/threonine kinases. This highly selective nature of masitinib suggests that it will exhibit a better safety profile than other tyrosine kinase inhibitors; indeed, masitinib-induced cardiotoxicity or genotoxicity has not been observed in animal studies. Molecular modelling and kinetic analysis suggest a different mode of binding than imatinib, and masitinib more strongly inhibited degranulation, cytokine production, and bone marrow mast cell migration than imatinib. Furthermore, masitinib potently inhibited human and murine KIT with activating mutations in the juxtamembrane domain. In vivo, masitinib blocked tumour growth in mice with subcutaneous grafts of Ba/F3 cells expressing a juxtamembrane KIT mutant. Conclusions Masitinib is a potent and selective tyrosine kinase inhibitor targeting KIT that is active, orally bioavailable in vivo, and has low toxicity. PMID:19789626

  5. Leucine-rich repeat kinase 2 inhibitors: a review of recent patents (2011 - 2013).

    PubMed

    Kethiri, Raghava R; Bakthavatchalam, Rajagopal

    2014-07-01

    Leucine-rich repeat kinase 2 (LRRK2) is a large (2527 residues) complex multi-domain protein that has GTPase and kinase domains. Autosomal dominant missense mutations in LRRK2 have been found in individuals with Parkinson's disease (PD) and are considered responsible for 1% of all cases of PD. Among the mutations confirmed to contribute to PD pathogenicity, G2019S is the most common cause of PD and it increases the kinase activity of LRRK2 by around threefold. LRRK2 has received considerable attention as a therapeutic target for PD, and LRRK2 inhibitors may help prevent and/or treat the disease. LRRK2 inhibitors are being investigated by various industrial and academic institutions. The present review covers patents literature on small-molecule LRRK2 inhibitors patented between 2011 and 2013. Currently, wild-type and mutant LRRK2 are being examined as therapeutic targets for PD. In testimony to the significance of these novel targets, over 20 patent applications related to LRRK2 have been filed in the last 3 years. Several distinct chemotypes have been reported to be LRRK2 inhibitors with very good potency. These compounds are being used to elucidate the physiological and pathophysiological functions of LRRK2, and some may even emerge as therapeutics for PD.

  6. Identification of a novel functional JAK1 S646P mutation in acute lymphoblastic leukemia

    PubMed Central

    Hu, Liangding; Ning, Hongmei; Jiang, Min; Wang, Danhong; Liu, Tingting; Zhang, Bin; Chen, Hu

    2017-01-01

    The survival rate of childhood acute lymphoblastic leukemia (ALL) is approaching 90%, while the prognosis of adults remains poor due to the limited therapeutic approaches. In order to identify new targets for ALL, we performed whole-exome sequencing on four adults with B-ALL and discovered a somatic JAK1 S646P mutation. Sanger sequencing of JAK1 was conducted on 53 ALL patients, and two cases exhibited A639G and P960S mutations separately. Functional studies demonstrated that only JAK1 S646P mutation could activate multiple signaling pathways, drive cytokine-independent cell growth, and promote proliferation of malignant cells in nude mice. Moreover, a high sensitivity to the JAK1/2 inhibitor ruxolitinib was observed in S646P mutant model. Exploration in a total of 209 ALL cases showed that JAK1 mutations occur at a frequency of 10.5% in T-ALL (2/19) and 1.6% in B-ALL (3/190). Collectively, our results suggested that JAK1 S646P is an activating mutation in vitro and in vivo. JAK-STAT pathway might represent a promising therapeutic target for ALL. PMID:28410228

  7. Identification of a novel functional JAK1 S646P mutation in acute lymphoblastic leukemia.

    PubMed

    Li, Qian; Li, Botao; Hu, Liangding; Ning, Hongmei; Jiang, Min; Wang, Danhong; Liu, Tingting; Zhang, Bin; Chen, Hu

    2017-05-23

    The survival rate of childhood acute lymphoblastic leukemia (ALL) is approaching 90%, while the prognosis of adults remains poor due to the limited therapeutic approaches. In order to identify new targets for ALL, we performed whole-exome sequencing on four adults with B-ALL and discovered a somatic JAK1 S646P mutation. Sanger sequencing of JAK1 was conducted on 53 ALL patients, and two cases exhibited A639G and P960S mutations separately. Functional studies demonstrated that only JAK1 S646P mutation could activate multiple signaling pathways, drive cytokine-independent cell growth, and promote proliferation of malignant cells in nude mice. Moreover, a high sensitivity to the JAK1/2 inhibitor ruxolitinib was observed in S646P mutant model. Exploration in a total of 209 ALL cases showed that JAK1 mutations occur at a frequency of 10.5% in T-ALL (2/19) and 1.6% in B-ALL (3/190). Collectively, our results suggested that JAK1 S646P is an activating mutation in vitro and in vivo. JAK-STAT pathway might represent a promising therapeutic target for ALL.

  8. Epigenetic Mechanisms Regulating Adaptive Responses to Targeted Kinase Inhibitors in Cancer.

    PubMed

    Angus, Steven P; Zawistowski, Jon S; Johnson, Gary L

    2018-01-06

    Although targeted inhibition of oncogenic kinase drivers has achieved remarkable patient responses in many cancers, the development of resistance has remained a significant challenge. Numerous mechanisms have been identified, including the acquisition of gatekeeper mutations, activating pathway mutations, and copy number loss or gain of the driver or alternate nodes. These changes have prompted the development of kinase inhibitors with increased selectivity, use of second-line therapeutics to overcome primary resistance, and combination treatment to forestall resistance. In addition to genomic resistance mechanisms, adaptive transcriptional and signaling responses seen in tumors are gaining appreciation as alterations that lead to a phenotypic state change-often observed as an epithelial-to-mesenchymal shift or reversion to a cancer stem cell-like phenotype underpinned by remodeling of the epigenetic landscape. This epigenomic modulation driving cell state change is multifaceted and includes modulation of repressive and activating histone modifications, DNA methylation, enhancer remodeling, and noncoding RNA species. Consequently, the combination of kinase inhibitors with drugs targeting components of the transcriptional machinery and histone-modifying enzymes has shown promise in preclinical and clinical studies. Here, we review mechanisms of resistance to kinase inhibition in cancer, with special emphasis on the rewired kinome and transcriptional signaling networks and the potential vulnerabilities that may be exploited to overcome these adaptive signaling changes.

  9. Chlorogenic acid induces apoptosis to inhibit inflammatory proliferation of IL-6-induced fibroblast-like synoviocytes through modulating the activation of JAK/STAT and NF-κB signaling pathways

    PubMed Central

    LOU, LIXIA; ZHOU, JINGWEI; LIU, YUJUN; WEI, YI; ZHAO, JIULI; DENG, JIAGANG; DONG, BIN; ZHU, LINGQUN; WU, AIMING; YANG, YINGXI; CHAI, LIMIN

    2016-01-01

    Chlorogenic acid (CGA) is the primary constituent of Caulis Lonicerae, a Chinese herb used for the treatment of rheumatoid arthritis (RA). The present study aimed to investigate whether CGA was able to inhibit the proliferation of the fibroblast-like synoviocyte cell line (RSC-364), stimulated by interleukin (IL)-6, through inducing apoptosis. Following incubation with IL-6 or IL-6 and CGA, the cellular proliferation of RSC-364 cells was detected by MTT assay. The ratio of apoptosed cells were detected by flow cytometry. Western blot analysis was performed to observe protein expression levels of key molecules involved in the Janus-activated kinase/signal transducer and activator of transcription 3 (JAK/STAT) signaling pathway [phosphorylated (p)-STAT3, JAK1 and gp130] and the nuclear factor κB (NF-κB) signaling pathway [phosphorylated (p)-inhibitor of κB kinase subunit α/β and NF-κB p50). It was revealed that CGA was able to inhibit the inflammatory proliferation of RSC-364 cells mediated by IL-6 through inducing apoptosis. CGA was also able to suppress the expression levels of key molecules in the JAK/STAT and NF-κB signaling pathways, and inhibit the activation of these signaling pathways in the inflammatory response through IL-6-mediated signaling, thereby resulting in the inhibition of the inflammatory proliferation of synoviocytes. The present results indicated that CGA may have potential as a novel therapeutic agent for inhibiting inflammatory hyperplasia of the synovium through inducing synoviocyte apoptosis in patients with RA. PMID:27168850

  10. A novel transmembrane Ser/Thr kinase complexes with protein phosphatase-1 and inhibitor-2.

    PubMed

    Wang, Hong; Brautigan, David L

    2002-12-20

    Protein kinases and protein phosphatases exert coordinated control over many essential cellular processes. Here, we describe the cloning and characterization of a novel human transmembrane protein KPI-2 (Kinase/Phosphatase/Inhibitor-2) that was identified by yeast two-hybrid using protein phosphatase inhibitor-2 (Inh2) as bait. KPI-2 mRNA was predominantly expressed in skeletal muscle. KPI-2 is a 1503-residue protein with two predicted transmembrane helices at the N terminus, a kinase domain, followed by a C-terminal domain. The transmembrane helices were sufficient for targeting proteins to the membrane. KPI-2 kinase domain has about 60% identity with its closest relative, a tyrosine kinase. However, it only exhibited serine/threonine kinase activity in autophosphorylation reactions or with added substrates. KPI-2 kinase domain phosphorylated protein phosphatase-1 (PP1C) at Thr(320), which attenuated PP1C activity. KPI-2 C-terminal domain directly associated with PP1C, and this required a VTF motif. Inh2 associated with KPI-2 C-terminal domain with and without PP1C. Thus, KPI-2 is a kinase with sites to associate with PP1C and Inh2 to form a regulatory complex that is localized to membranes.

  11. Conformation-selective inhibitors reveal differences in the activation and phosphate-binding loops of the tyrosine kinases Abl and Src

    PubMed Central

    Hari, Sanjay B.; Perera, B. Gayani K.; Ranjitkar, Pratistha; Seeliger, Markus A.; Maly, Dustin J.

    2013-01-01

    Over the last decade, an increasingly diverse array of potent and selective inhibitors that target the ATP-binding sites of protein kinases have been developed. Many of these inhibitors, like the clinically approved drug imatinib (Gleevec), stabilize a specific catalytically inactive ATP-binding site conformation of their kinases targets. Imatinib is notable in that it is highly selective for its kinase target, Abl, over other closely-related tyrosine kinases, like Src. In addition, imatinib is highly sensitive to the phosphorylation state of Abl's activation loop, which is believed to be a general characteristic of all inhibitors that stabilize a similar inactive ATP-binding site conformation. In this report, we perform a systematic analysis of a diverse series of ATP-competitive inhibitors that stabilize a similar inactive ATP-binding site conformation as imatinib with the tyrosine kinases Src and Abl. In contrast to imatinib, many of these inhibitors have very similar potencies against Src and Abl. Furthermore, only a subset of this class of inhibitors is sensitive to the phosphorylation state of the activation loop of these kinases. In attempting to explain this observation, we have uncovered an unexpected correlation between Abl's activation loop and another flexible active site feature, called the phosphate-binding loop (p-loop). These studies shed light on how imatinib is able to obtain its high target selectivity and reveal how the conformational preference of flexible active site regions can vary between closely related kinases. PMID:24106839

  12. An emerging treatment option for glaucoma: Rho kinase inhibitors

    PubMed Central

    Wang, Sean K; Chang, Robert T

    2014-01-01

    Rho kinase (ROCK) inhibitors are a novel potential class of glaucoma therapeutics with multiple compounds currently in Phase II and III US Food and Drug Administration trials in the United States. These selective agents work by relaxing the trabecular meshwork through inhibition of the actin cytoskeleton contractile tone of smooth muscle. This results in increased aqueous outflow directly through the trabecular meshwork, achieving lower intraocular pressures in a range similar to prostaglandins. There are also animal studies indicating that ROCK inhibitors may improve blood flow to the optic nerve, increase ganglion cell survival, and reduce bleb scarring in glaucoma surgery. Given the multiple beneficial effects for glaucoma patients, ROCK inhibitors are certainly a highly anticipated emerging treatment option for glaucoma. PMID:24872673

  13. Switch control pocket inhibitors of p38-MAP kinase. Durable type II inhibitors that do not require binding into the canonical ATP hinge region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahn, Yu Mi; Clare, Michael; Ensinger, Carol L.

    Switch control pocket inhibitors of p38-alpha kinase are described. Durable type II inhibitors were designed which bind to arginines (Arg67 or Arg70) that function as key residues for mediating phospho-threonine 180 dependant conformational fluxing of p38-alpha from an inactive type II state to an active type I state. Binding to Arg70 in particular led to potent inhibitors, exemplified by DP-802, which also exhibited high kinase selectivity. Binding to Arg70 obviated the requirement for binding into the ATP Hinge region. X-ray crystallography revealed that DP-802 and analogs induce an enhanced type II conformation upon binding to either the unphosphorylated or themore » doubly phosphorylated form of p38-alpha kinase.« less

  14. Investigation of the bindings of a class of inhibitors with GSK3β kinase using thermodynamic integration MD simulation and kinase assay.

    PubMed

    Hsu, Chia-Jen; Hsu, Wen-Chi; Lee, Der-Jay; Liu, An-Lun; Chang, Chia-Ming; Shih, Huei-Jhen; Huang, Wun-Han; Lee-Chen, Guey-Jen; Hsieh-Li, Hsiu Mei; Lee, Guan-Chiun; Sun, Ying-Chieh

    2017-08-01

    GSK3β kinase is a noteworthy target for discovery of the drugs that will be used to treat several diseases. In the effort to identify a new inhibitor lead compound, we utilized thermodynamic integration (TI)-molecular dynamics (MD) simulation and kinase assay to investigate the bindings between GSK3β kinase and five compounds that were analogous to a known inhibitor with an available crystal structure. TI-MD simulations of the first two compounds (analogs 1 and 2) were used for calibration. The computed binding affinities of analogs 1 and 2 agreed well with the experimental results. The rest three compounds (analogs 3-5) were newly obtained from a database search, and their affinity data were newly measured in our labs. TI-MD simulations predicted the binding modes and the computed ΔΔG values have a reasonably good correlation with the experimental affinity data. These newly identified inhibitors appear to be new leads according to our survey of GSK3β inhibitors listed in recent review articles. The predicted binding modes of these compounds should aid in designing new derivatives of these compounds in the future. © 2017 John Wiley & Sons A/S.

  15. Effects of selective inhibitors of Aurora kinases on anaplastic thyroid carcinoma cell lines.

    PubMed

    Baldini, Enke; Tuccilli, Chiara; Prinzi, Natalie; Sorrenti, Salvatore; Antonelli, Alessandro; Gnessi, Lucio; Morrone, Stefania; Moretti, Costanzo; Bononi, Marco; Arlot-Bonnemains, Yannick; D'Armiento, Massimino; Ulisse, Salvatore

    2014-10-01

    Aurora kinases are serine/threonine kinases that play an essential role in cell division. Their aberrant expression and/or function induce severe mitotic abnormalities, resulting in either cell death or aneuploidy. Overexpression of Aurora kinases is often found in several malignancies, among which is anaplastic thyroid carcinoma (ATC). We have previously demonstrated the in vitro efficacy of Aurora kinase inhibitors in restraining cell growth and survival of different ATC cell lines. In this study, we sought to establish which Aurora might represent the preferential drug target for ATC. To this end, the effects of two selective inhibitors of Aurora-A (MLN8237) and Aurora-B (AZD1152) on four human ATC cell lines (CAL-62, BHT-101, 8305C, and 8505C) were analysed. Both inhibitors reduced cell proliferation in a time- and dose-dependent manner, with IC50 ranges of 44.3-134.2 nM for MLN8237 and of 9.2-461.3 nM for AZD1152. Immunofluorescence experiments and time-lapse videomicroscopy yielded evidence that each inhibitor induced distinct mitotic phenotypes, but both of them prevented the completion of cytokinesis. As a result, poliploidy increased in all AZD1152-treated cells, and in two out of four cell lines treated with MLN8237. Apoptosis was induced in all the cells by MLN8237, and in BHT-101, 8305C, and 8505C by AZD1152, while CAL-62 exposed to AZD1152 died through necrosis after multiple rounds of endoreplication. Both inhibitors were capable of blocking anchorage-independent cell growth. In conclusion, we demonstrated that either Aurora-A or Aurora-B might represent therapeutic targets for the ATC treatment, but inhibition of Aurora-A appears more effective for suppressing ATC cell proliferation and for inducing the apoptotic pathway. © 2014 Society for Endocrinology.

  16. Inhibition of inhibitor of kappaB kinases stimulates hepatic stellate cell apoptosis and accelerated recovery from rat liver fibrosis.

    PubMed

    Oakley, Fiona; Meso, Muriel; Iredale, John P; Green, Karen; Marek, Carylyn J; Zhou, Xiaoying; May, Michael J; Millward-Sadler, Harry; Wright, Matthew C; Mann, Derek A

    2005-01-01

    Resolution of liver fibrosis is associated with clearance of hepatic myofibroblasts by apoptosis; development of strategies that promote this process in a selective way is therefore important. The aim of this study was to determine whether the inhibitor of kappaB kinase suppressor sulfasalazine stimulates hepatic myofibroblast apoptosis and recovery from fibrosis. Hepatic myofibroblasts were generated by culture activation of rat and human hepatic stellate cells. Fibrosis was established in rat livers by chronic injury with carbon tetrachloride followed by recovery with or without sulfasalazine (150 mg/kg) treatment. Treatment of hepatic stellate cells with sulfasalazine (0.5-2.0 mmol/L) induced apoptosis of activated rat and human hepatic stellate cells. A single in vivo administration of sulfasalazine promoted accelerated recovery from fibrosis as assessed by improved fibrosis score, selective clearance of smooth muscle alpha-actin-positive myofibroblasts, reduced hepatic procollagen I and tissue inhibitor of metalloproteinase 1 messenger RNA expression, and increased matrix metalloproteinase 2 activity. Mechanistic studies showed that sulfasalazine selectively blocks nuclear factor-kappaB-dependent gene transcription, inhibits hepatic stellate cell expression of Gadd45beta, stimulates phosphorylation of Jun N-terminal kinase 2, and promotes apoptosis by a mechanism that is prevented by the Jun N-terminal kinase inhibitor SP600125. As further evidence for a survival role for the inhibitor of kappaB kinase/nuclear factor-kappaB pathway in activated hepatic stellate cells, a highly selective cell-permeable peptide inhibitor of kappaB kinase activation also stimulated hepatic stellate cell apoptosis via a Jun N-terminal kinase-dependent mechanism. Inhibition of the inhibitor of kappaB kinase/nuclear factor-kappaB pathway is sufficient to increase the rate at which activated hepatic stellate cells undergo apoptosis both in vitro and in vivo, and drugs that

  17. Expression of the JAK/STAT Signaling Pathway in Bullous Pemphigoid and Dermatitis Herpetiformis

    PubMed Central

    Wozniacka, A.; Waszczykowska, E.; Zebrowska, A.

    2017-01-01

    A family of eleven proteins comprises the Janus kinases (JAK) and signal transducers and activators of transcription (STAT) signaling pathway, which enables transduction of signal from cytokine receptor to the nucleus and activation of transcription of target genes. Irregular functioning of the cascade may contribute to pathogenesis of autoimmune diseases; however, there are no reports concerning autoimmune bullous diseases yet to be published. The aim of this study was to evaluate the expression of proteins constituting the JAK/STAT signaling pathway in skin lesions and perilesional area in dermatitis herpetiformis (DH) and bullous pemphigoid (BP), as well as in the control group. Skin biopsies were collected from 21 DH patients, from 20 BP patients, and from 10 healthy volunteers. The localization and expression of selected STAT and JAK proteins were examined by immunohistochemistry and immunoblotting. We found significantly higher expression of JAK/STAT proteins in skin lesions in patients with BP and DH, in comparison to perilesional skin and the control group, which may be related to proinflammatory cytokine network and induction of inflammatory infiltrate in tissues. Our findings suggest that differences in the JAK and STAT expression may be related to distinct cytokines activating them and mediating neutrophilic and/or eosinophilic infiltrate. PMID:29203970

  18. Activity of dual SRC-ABL inhibitors highlights the role of BCR/ABL kinase dynamics in drug resistance

    PubMed Central

    Azam, Mohammad; Nardi, Valentina; Shakespeare, William C.; Metcalf, Chester A.; Bohacek, Regine S.; Wang, Yihan; Sundaramoorthi, Raji; Sliz, Piotr; Veach, Darren R.; Bornmann, William G.; Clarkson, Bayard; Dalgarno, David C.; Sawyer, Tomi K.; Daley, George Q.

    2006-01-01

    Mutation in the ABL kinase domain is the principal mechanism of imatinib resistance in patients with chronic myelogenous leukemia. Many mutations favor active kinase conformations that preclude imatinib binding. Because the active forms of ABL and SRC resemble one another, we tested two dual SRC-ABL kinase inhibitors, AP23464 and PD166326, against 58 imatinib-resistant (IMR) BCR/ABL kinase variants. Both compounds potently inhibit most IMR variants, and in vitro drug selection demonstrates that active (AP23464) and open (PD166326) conformation-specific compounds are less susceptible to resistance than imatinib. Combinations of inhibitors suppressed essentially all resistance mutations, with the notable exception of T315I. Guided by mutagenesis studies and molecular modeling, we designed a series of AP23464 analogues to target T315I. The analogue AP23846 inhibited both native and T315I variants of BCR/ABL with submicromolar potency but showed nonspecific cellular toxicity. Our data illustrate how conformational dynamics of the ABL kinase accounts for the activity of dual SRC-ABL inhibitors against IMR-mutants and provides a rationale for combining conformation specific inhibitors to suppress resistance. PMID:16754879

  19. Frequency of JAK2 V617F mutation in patients with Philadelphia positive Chronic Myeloid Leukemia in Pakistan

    PubMed Central

    Tabassum, Najia; Saboor, Mohammed; Ghani, Rubina; Moinuddin, Moinuddin

    2014-01-01

    Background and Objective: Co-existence of myeloproliferative disorders (MPD) and Janus associated kinase 2 mutation (JAK2 V617F) is a well-established fact. Only few case reports are available showing presence of JAK2 V617F mutation in chronic myeloid leukemia (CML). Purpose of this study was to determine the frequency of JAK2 V617F mutation in Philadelphia Chromosome positive (Ph +) CML patients in Pakistan. Methods: The study was conducted from August 2009 to July 2010 at Civil Hospital and Baqai Institute of Hematology (BIH) Karachi. Blood samples from 25 patients with CML were collected. Multiplex reverse transcription polymerase chain reaction (RT-PCR) was performed for Breakpoint Cluster Region – Abelson (BCR-ABL) rearrangement. Conventional PCR was performed for JAK2 V617F mutation on BCR-ABL positive samples. Results: All 25 samples showed BCR-ABL rearrangement. Out of these 11 samples (44%) had JAK2 V617F mutation; the remaining 14 (56%) cases showed JAK2 617V wild type. Conclusion: It is concluded that the co-existence of Ph +CML and JAK2 V617F mutation is possible. PMID:24639858

  20. Kinase-dead ATM protein is highly oncogenic and can be preferentially targeted by Topo-isomerase I inhibitors.

    PubMed

    Yamamoto, Kenta; Wang, Jiguang; Sprinzen, Lisa; Xu, Jun; Haddock, Christopher J; Li, Chen; Lee, Brian J; Loredan, Denis G; Jiang, Wenxia; Vindigni, Alessandro; Wang, Dong; Rabadan, Raul; Zha, Shan

    2016-06-15

    Missense mutations in ATM kinase, a master regulator of DNA damage responses, are found in many cancers, but their impact on ATM function and implications for cancer therapy are largely unknown. Here we report that 72% of cancer-associated ATM mutations are missense mutations that are enriched around the kinase domain. Expression of kinase-dead ATM (Atm(KD/-)) is more oncogenic than loss of ATM (Atm(-/-)) in mouse models, leading to earlier and more frequent lymphomas with Pten deletions. Kinase-dead ATM protein (Atm-KD), but not loss of ATM (Atm-null), prevents replication-dependent removal of Topo-isomerase I-DNA adducts at the step of strand cleavage, leading to severe genomic instability and hypersensitivity to Topo-isomerase I inhibitors. Correspondingly, Topo-isomerase I inhibitors effectively and preferentially eliminate Atm(KD/-), but not Atm-proficientor Atm(-/-) leukemia in animal models. These findings identify ATM kinase-domain missense mutations as a potent oncogenic event and a biomarker for Topo-isomerase I inhibitor based therapy.

  1. Discovery of potent 1H-imidazo[4,5-b]pyridine-based c-Met kinase inhibitors via mechanism-directed structural optimization.

    PubMed

    An, Xiao-De; Liu, Hongyan; Xu, Zhong-Liang; Jin, Yi; Peng, Xia; Yao, Ying-Ming; Geng, Meiyu; Long, Ya-Qiu

    2015-02-01

    Starting from our previously identified novel c-Met kinase inhibitors bearing 1H-imidazo[4,5-h][1,6]naphthyridin-2(3H)-one scaffold, a global structural exploration was conducted to furnish an optimal binding motif for further development, directed by the enzyme inhibitory mechanism. First round SAR study picked two imidazonaphthyridinone frameworks with 1,8- and 3,5-disubstitution pattern as class I and class II c-Met kinase inhibitors, respectively. Further structural optimization on type II inhibitors by truncation of the imidazonaphthyridinone core and incorporation of an N-phenyl cyclopropane-1,1-dicarboxamide pharmacophore led to the discovery of novel imidazopyridine-based c-Met kinase inhibitors, displaying nanomolar enzyme inhibitory activity and improved Met kinase selectivity. More significantly, the new chemotype c-Met kinase inhibitors effectively inhibited Met phosphorylation and its downstream signaling as well as the proliferation of Met-dependent EBC-1 human lung cancer cells at submicromolar concentrations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Loss of Ezh2 synergizes with JAK2-V617F in initiating myeloproliferative neoplasms and promoting myelofibrosis

    PubMed Central

    Nienhold, Ronny; Zmajkovic, Jakub; Hao-Shen, Hui; Geier, Florian; Dirnhofer, Stephan; Feenstra, Jelena D. Milosevic

    2016-01-01

    Myeloproliferative neoplasm (MPN) patients frequently show co-occurrence of JAK2-V617F and mutations in epigenetic regulator genes, including EZH2. In this study, we show that JAK2-V617F and loss of Ezh2 in hematopoietic cells contribute synergistically to the development of MPN. The MPN phenotype induced by JAK2-V617F was accentuated in JAK2-V617F;Ezh2−/− mice, resulting in very high platelet and neutrophil counts, more advanced myelofibrosis, and reduced survival. These mice also displayed expansion of the stem cell and progenitor cell compartments and a shift of differentiation toward megakaryopoiesis at the expense of erythropoiesis. Single cell limiting dilution transplantation with bone marrow from JAK2-V617F;Ezh2+/− mice showed increased reconstitution and MPN disease initiation potential compared with JAK2-V617F alone. RNA sequencing in Ezh2-deficient hematopoietic stem cells (HSCs) and megakaryocytic erythroid progenitors identified highly up-regulated genes, including Lin28b and Hmga2, and chromatin immunoprecipitation (ChIP)–quantitative PCR (qPCR) analysis of their promoters revealed decreased H3K27me3 deposition. Forced expression of Hmga2 resulted in increased chimerism and platelet counts in recipients of retrovirally transduced HSCs. JAK2-V617F–expressing mice treated with an Ezh2 inhibitor showed higher platelet counts than vehicle controls. Our data support the proposed tumor suppressor function of EZH2 in patients with MPN and call for caution when considering using Ezh2 inhibitors in MPN. PMID:27401344

  3. Computational study of Gleevec and G6G reveals molecular determinants of kinase inhibitor selectivity

    DOE PAGES

    Lin, Yen -Lin; Meng, Yilin; Huang, Lei; ...

    2014-10-22

    Gleevec is a potent inhibitor of Abl tyrosine kinase but not of the highly homologous c-Src kinase. Because the ligand binds to an inactive form of the protein in which an Asp-Phe-Gly structural motif along the activation loop adopts a so-called DFG-out conformation, it was suggested that binding specificity was controlled by a “conformational selection” mechanism. In this context, the binding affinity displayed by the kinase inhibitor G6G poses an intriguing challenge. Although it possesses a chemical core very similar to that of Gleevec, G6G is a potent inhibitor of both Abl and c-Src kinases. Both inhibitors bind to themore » DFG-out conformation of the kinases, which seems to be in contradiction with the conformational selection mechanism. To address this issue and display the hidden thermodynamic contributions affecting the binding selectivity, molecular dynamics free energy simulations with explicit solvent molecules were carried out. Relative to Gleevec, G6G forms highly favorable van der Waals dispersive interactions upon binding to the kinases via its triazine functional group, which is considerably larger than the corresponding pyridine moiety in Gleevec. Upon binding of G6G to c-Src, these interactions offset the unfavorable free energy cost of the DFG-out conformation. When binding to Abl, however, G6G experiences an unfavorable free energy penalty due to steric clashes with the phosphate-binding loop, yielding an overall binding affinity that is similar to that of Gleevec. Such steric clashes are absent when G6G binds to c-Src, due to the extended conformation of the phosphate-binding loop.« less

  4. Effects of inhibitors of vascular endothelial growth factor receptor 2 and downstream pathways of receptor tyrosine kinases involving phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin or mitogen-activated protein kinase in canine hemangiosarcoma cell lines.

    PubMed

    Adachi, Mami; Hoshino, Yuki; Izumi, Yusuke; Sakai, Hiroki; Takagi, Satoshi

    2016-07-01

    Canine hemangiosarcoma (HSA) is a progressive malignant neoplasm with no current effective treatment. Previous studies showed that receptor tyrosine kinases and molecules within their downstream pathways involving phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (m-TOR) or mitogen-activated protein kinase (MAPK) were overexpressed in canine, human, and murine tumors, including HSA. The present study investigated the effects of inhibitors of these pathways in canine splenic and hepatic HSA cell lines using assays of cell viability and apoptosis. Inhibitors of the MAPK pathway did not affect canine HSA cell viability. However, cell viability was significantly reduced by exposure to inhibitors of vascular endothelial growth factor receptor 2 and the PI3K/Akt/m-TOR pathway; these inhibitors also induced apoptosis in these cell lines. These results suggest that these inhibitors reduce the proliferation of canine HSA cells by inducing apoptosis. Further study of these inhibitors, using xenograft mouse models of canine HSA, are warranted to explore their potential for clinical application.

  5. Loss of function JAK1 mutations occur at high frequency in cancers with microsatellite instability and are suggestive of immune evasion.

    PubMed

    Albacker, Lee A; Wu, Jeremy; Smith, Peter; Warmuth, Markus; Stephens, Philip J; Zhu, Ping; Yu, Lihua; Chmielecki, Juliann

    2017-01-01

    Immune evasion is a well-recognized hallmark of cancer and recent studies with immunotherapy agents have suggested that tumors with increased numbers of neoantigens elicit greater immune responses. We hypothesized that the immune system presents a common selective pressure on high mutation burden tumors and therefore immune evasion mutations would be enriched in high mutation burden tumors. The JAK family of kinases is required for the signaling of a host of immune modulators in tumor, stromal, and immune cells. Therefore, we analyzed alterations in this family for the hypothesized signature of an immune evasion mutation. Here, we searched a database of 61,704 unique solid tumors for alterations in the JAK family kinases (JAK1/2/3, TYK2). We used The Cancer Genome Atlas and Cancer Cell Line Encyclopedia data to confirm and extend our findings by analyzing gene expression patterns. Recurrent frameshift mutations in JAK1 were associated with high mutation burden and microsatellite instability. These mutations occurred in multiple tumor types including endometrial, colorectal, stomach, and prostate carcinomas. Analyzing gene expression signatures in endometrial and stomach adenocarcinomas revealed that tumors with a JAK1 frameshift exhibited reduced expression of interferon response signatures and multiple anti-tumor immune signatures. Importantly, endometrial cancer cell lines exhibited similar gene expression changes that were expected to be tumor cell intrinsic (e.g. interferon response) but not those expected to be tumor cell extrinsic (e.g. NK cells). From these data, we derive two primary conclusions: 1) JAK1 frameshifts are loss of function alterations that represent a potential pan-cancer adaptation to immune responses against tumors with microsatellite instability; 2) The mechanism by which JAK1 loss of function contributes to tumor immune evasion is likely associated with loss of the JAK1-mediated interferon response.

  6. Recent development of ATP-competitive small molecule phosphatidylinostitol-3-kinase inhibitors as anticancer agents

    PubMed Central

    Liu, Yu; Wan, Wen-zhu; Li, Yan; Zhou, Guan-lian; Liu, Xin-guang

    2017-01-01

    Phosphatidylinostitol-3-kinase (PI3K) is the potential anticancer target in the PI3K/Akt/ mTOR pathway. Here we reviewed the ATP-competitive small molecule PI3K inhibitors in the past few years, including the pan Class I PI3K inhibitors, the isoform-specific PI3K inhibitors and/or the PI3K/mTOR dual inhibitors. PMID:27769061

  7. Switch control pocket inhibitors of p38-MAP kinase. Durable type II inhibitors that do not require binding into the canonical ATP hinge region.

    PubMed

    Ahn, Yu Mi; Clare, Michael; Ensinger, Carol L; Hood, Molly M; Lord, John W; Lu, Wei-Ping; Miller, David F; Patt, William C; Smith, Bryan D; Vogeti, Lakshminarayana; Kaufman, Michael D; Petillo, Peter A; Wise, Scott C; Abendroth, Jan; Chun, Lawrence; Clark, Robin; Feese, Michael; Kim, Hidong; Stewart, Lance; Flynn, Daniel L

    2010-10-01

    Switch control pocket inhibitors of p38-alpha kinase are described. Durable type II inhibitors were designed which bind to arginines (Arg67 or Arg70) that function as key residues for mediating phospho-threonine 180 dependant conformational fluxing of p38-alpha from an inactive type II state to an active type I state. Binding to Arg70 in particular led to potent inhibitors, exemplified by DP-802, which also exhibited high kinase selectivity. Binding to Arg70 obviated the requirement for binding into the ATP Hinge region. X-ray crystallography revealed that DP-802 and analogs induce an enhanced type II conformation upon binding to either the unphosphorylated or the doubly phosphorylated form of p38-alpha kinase. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. The effect of quercetin nanoparticle on cervical cancer progression by inducing apoptosis, autophagy and anti-proliferation via JAK2 suppression.

    PubMed

    Luo, Cheng-Lin; Liu, Yu-Qiong; Wang, Peng; Song, Chun-Hua; Wang, Kai-Juan; Dai, Li-Ping; Zhang, Jian-Ying; Ye, Hua

    2016-08-01

    Cervical cancer is a cause of cancer death, making it as the one of the most common cause for death among women globally. Though many studies before have explored a lot for cervical cancer prevention and treatment, there are still a lot far from to know based on the molecular mechanisms. Janus kinase 2 (JAK2) has been reported to play an essential role in the progression of apoptosis, autophagy and proliferation for cells. We loaded gold-quercetin into poly (dl-lactide-co-glycolide) nanoparticles to cervical cancer cells due to the propertities of quercetin in ameliorating cellular processes and the easier absorbance of nanoparticles. Here, in our study, quercetin nanoparticles (NQ) were administrated to cells to investigate the underlying mechanism by which the cervical cancer was regulated. First, JAK2-inhibited carvical cancer cell lines were involved for our experiments in vitro and in vivo. Western blotting, quantitative RT-PCR (qRT-PCR), ELISA, Immunohistochemistry, and flow-cytometric analysis were used to determine the key signaling pathway regulated by JAK2 for cervical cancer progression. And the role of quercetin nanoparticles was determined during the process. Data here indicated that JAK2, indeed, expressed highly in cancer cell lines compared to the normal cervical cells. And apoptosis and autophagy were found in JAK2-inhibited cancer cells through activating Caspase-3, and suppressing Cyclin-D1 and mTOR regulated by Signal Transducer and Activator of Transcription (STAT) 3/5 and phosphatidylinositide 3-kinase/protein kinases (PI3K/AKT) signaling pathway. The cervical cancer cells proliferation was inhibited. Further, tumor size and weight were reduced by inhibition of JAK2 in vivo experiments. Notably, administration with quercetin nanoparticles displayed similar role with JAK2 suppression, which could inhibit cervical cancer cells proliferation, invasion and migration. In addition, autophogy and apoptosis were induced, promoting cervical cancer cell

  9. IL-10 Promotes Neurite Outgrowth and Synapse Formation in Cultured Cortical Neurons after the Oxygen-Glucose Deprivation via JAK1/STAT3 Pathway

    PubMed Central

    Chen, Hongbin; Lin, Wei; Zhang, Yixian; Lin, Longzai; Chen, Jianhao; Zeng, Yongping; Zheng, Mouwei; Zhuang, Zezhong; Du, Houwei; Chen, Ronghua; Liu, Nan

    2016-01-01

    As a classic immunoregulatory and anti-inflammatory cytokine, interleukin-10 (IL-10) provides neuroprotection in cerebral ischemia in vivo or oxygen-glucose deprivation (OGD)-induced injury in vitro. However, it remains blurred whether IL-10 promotes neurite outgrowth and synapse formation in cultured primary cortical neurons after OGD injury. In order to evaluate its effect on neuronal apoptosis, neurite outgrowth and synapse formation, we administered IL-10 or IL-10 neutralizing antibody (IL-10NA) to cultured rat primary cortical neurons after OGD injury. We found that IL-10 treatment activated the Janus kinase 1 (JAK1)/signal transducers and activators of transcription 3 (STAT3) signaling pathway. Moreover, IL-10 attenuated OGD-induced neuronal apoptosis by down-regulating the Bax expression and up-regulating the Bcl-2 expression, facilitated neurite outgrowth by increasing the expression of Netrin-1, and promoted synapse formation in cultured primary cortical neurons after OGD injury. These effects were partly abolished by JAK1 inhibitor GLPG0634. Contrarily, IL-10NA produced opposite effects on the cultured cortical neurons after OGD injury. Taken together, our findings suggest that IL-10 not only attenuates neuronal apoptosis, but also promotes neurite outgrowth and synapse formation via the JAK1/STAT3 signaling pathway in cultured primary cortical neurons after OGD injury. PMID:27456198

  10. Development of phosphocellulose paper-based screening of inhibitors of lipid kinases: case study with PI3Kβ.

    PubMed

    Yanamandra, Mahesh; Kole, Labanyamoy; Giri, Archana; Mitra, Sayan

    2014-03-15

    The phosphatidylinositol 3-kinases (PI3Ks) are lipid kinases that regulate the cellular signal transduction pathways involved in cell growth, proliferation, survival, apoptosis, and adhesion. Deregulation of these pathways are common in oncogenesis, and they are known to be altered in other metabolic disorders as well. Despite its huge potential as an attractive target in these diseases, there is an unmet need for the development of a successful inhibitor. Unlike protein kinase inhibitors, screening for lipid kinase inhibitors has been challenging. Here we report, for the first time, the development of a radioactive lipid kinase screening platform using a phosphocellulose plate that involves transfer of radiolabeled [γ-(32)P]ATP to phosphatidylinositol 4,5-phosphate forming phosphatidylinositol 3,4,5-phosphate, captured on the phosphocellulose plate. Enzyme kinetics and inhibitory properties were established in the plate format using standard inhibitors, such as LY294002, TGX-221, and wortmannin, having different potencies toward PI3K isoforms. ATP and lipid apparent Km for both were determined and IC50 values generated that matched the historical data. Here we report the use of a phosphocellulose plate for a lipid kinase assay (PI3Kβ as the target) as an excellent platform for the identification of novel chemical entities in PI3K drug discovery. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Benzoxathiol derivative BOT-4-one suppresses L540 lymphoma cell survival and proliferation via inhibition of JAK3/STAT3 signaling

    PubMed Central

    Kim, Byung Hak; Min, Yun Sook; Choi, Jung Sook; Baeg, Gyeong-Hun; Kim, Youngsoo; Shin, Jong Wook; Kim, Tae-Yoon

    2011-01-01

    Persistently activated JAK/STAT3 signaling pathway plays a pivotal role in various human cancers including major carcinomas and hematologic tumors, and is implicated in cancer cell survival and proliferation. Therefore, inhibition of JAK/STAT3 signaling may be a clinical application in cancer therapy. Here, we report that 2-cyclohexylimino-6-methyl-6,7-dihydro-5H-benzo [1,3]oxathiol-4-one (BOT-4-one), a small molecule inhibitor of JAK/STAT3 signaling, induces apoptosis through inhibition of STAT3 activation. BOT-4-one suppressed cytokine (upd)-induced tyrosine phosphorylation and transcriptional activity of STAT92E, the sole Drosophila STAT homolog. Consequently, BOT-4-one significantly inhibited STAT3 tyrosine phosphorylation and expression of STAT3 downstream target gene SOCS3 in various human cancer cell lines, and its effect was more potent in JAK3-activated Hodgkin's lymphoma cell line than in JAK2-activated breast cancer and prostate cancer cell lines. In addition, BOT-4-one-treated Hodgkin's lymphoma cells showed decreased cell survival and proliferation by inducing apoptosis through down-regulation of STAT3 downstream target anti-apoptotic gene expression. These results suggest that BOT-4-one is a novel small molecule inhibitor of JAK3/STAT3 signaling and may have therapeutic potential in the treatment of human cancers harboring aberrant JAK3/STAT3 signaling, specifically Hodgkin's lymphoma. PMID:21499010

  12. Benzoxathiol derivative BOT-4-one suppresses L540 lymphoma cell survival and proliferation via inhibition of JAK3/STAT3 signaling.

    PubMed

    Kim, Byung Hak; Min, Yun Sook; Choi, Jung Sook; Baeg, Gyeong Hun; Kim, Young Soo; Shin, Jong Wook; Kim, Tae Yoon; Ye, Sang Kyu

    2011-05-31

    Persistently activated JAK/STAT3 signaling pathway plays a pivotal role in various human cancers including major carcinomas and hematologic tumors, and is implicated in cancer cell survival and proliferation. Therefore, inhibition of JAK/STAT3 signaling may be a clinical application in cancer therapy. Here, we report that 2-cyclohexylimino-6-methyl-6,7-dihydro-5H-benzo [1,3]oxathiol-4-one (BOT-4-one), a small molecule inhibitor of JAK/STAT3 signaling, induces apoptosis through inhibition of STAT3 activation. BOT-4-one suppressed cytokine (upd)-induced tyrosine phosphorylation and transcriptional activity of STAT92E, the sole Drosophila STAT homolog. Consequently, BOT-4-one significantly inhibited STAT3 tyrosine phosphorylation and expression of STAT3 downstream target gene SOCS3 in various human cancer cell lines, and its effect was more potent in JAK3-activated Hodgkin's lymphoma cell line than in JAK2-activated breast cancer and prostate cancer cell lines. In addition, BOT-4-one-treated Hodgkin's lymphoma cells showed decreased cell survival and proliferation by inducing apoptosis through down-regulation of STAT3 downstream target anti-apoptotic gene expression. These results suggest that BOT-4-one is a novel small molecule inhibitor of JAK3/STAT3 signaling and may have therapeutic potential in the treatment of human cancers harboring aberrant JAK3/STAT3 signaling, specifically Hodgkin's lymphoma.

  13. Critical role of PI3-kinase/Akt activation in the PARP inhibitor induced heart function recovery during ischemia-reperfusion.

    PubMed

    Kovacs, Krisztina; Toth, Ambrus; Deres, Peter; Kalai, Tamas; Hideg, Kalman; Gallyas, Ferenc; Sumegi, Balazs

    2006-02-14

    Poly(ADP-ribose) polymerase (PARP) inhibitors protect hearts from ischemia-reperfusion (IR)-induced damages by limiting nicotinamide adenine dinucleotide (NAD+) and ATP depletion, and by other, not yet elucidated mechanisms. Our preliminary data suggested that PARP catalyzed ADP-ribosylations may affect signaling pathways in cardiomyocytes. To clarify this possibility, we studied the effect of a well-characterized (4-hydroxyquinazoline) and a novel (carboxaminobenzimidazol-derivative) PARP inhibitor on the activation of phosphatidylinositol-3-kinase (PI3-kinase)/Akt pathway in Langendorff-perfused hearts. PARP inhibitors promoted the restoration of myocardial energy metabolism (assessed by 31P nuclear magnetic resonance spectroscopy) and cardiac function compared to untreated hearts. PARP inhibitors also attenuated the infarct size and reduced the IR-induced lipid peroxidation, protein oxidation and total peroxide concentration. Moreover, PARP inhibitors facilitated Akt phosphorylation and activation, as well as the phosphorylation of its downstream target glycogen synthase kinase-3beta (GSK-3beta) in normoxia and, more robustly, during IR. Blocking PI3-kinase by wortmannin or LY294002 reduced the PARP inhibitor-elicited robust Akt and GSK-3beta phosphorylation upon ischemia-reperfusion, and significantly diminished the recovery of ATP and creatine phosphate showing the importance of Akt activation in the recovery of energy metabolism. In addition, inhibition of PI3-kinase/Akt pathway decreased the protective effect of PARP inhibitors on infarct size and the recovery of heart functions. All these data suggest that contrary to the original view, which considered preservation of NAD+ and consequently ATP pools as the exclusive underlying mechanism for the cytoprotective effect of PARP inhibitors, the activation of PI3-kinase/Akt pathway and related processes are at least equally important in the cardioprotective effects of PARP inhibitors during ischemia-reperfusion.

  14. Erkitinib, a novel EGFR tyrosine kinase inhibitor screened using a ProteoChip system from a phytochemical library

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Eung-Yoon; Choi, Young-Jin; Innopharmascreen, Inc., Asan 336-795

    2009-11-20

    Receptor tyrosine kinases (PTKs) play key roles in the pathogenesis of numerous human diseases, including cancer. Therefore PTK inhibitors are currently under intensive investigation as potential drug candidates. Herein, we report on a ProteoChip-based screening of an epidermal growth factor receptor (EGFR) tyrosine kinase (TK) inhibitor, Erkitinibs, from phytochemical libraries. PLC-{gamma}-1 was used as a substrate immobilized on a ProteoChip and incubated with an EGFR kinase to phosphorylate tyrosine residues of the substrate, followed by a fluorescence detection of the substrate recognized by a phospho-specific monoclonal antibody. Erkitinibs inhibited HeLa cell proliferation in a dose-dependent manner. In conclusion, these datamore » suggest that Erkitinibs can be a specific inhibitor of an EGFR kinase and can be further developed as a potent anti-tumor agent.« less

  15. Epidermal growth factor receptor tyrosine kinase inhibitors: application in non-small cell lung cancer.

    PubMed

    Thomas, Melodie

    2003-12-01

    Despite treatment advances over the past decade, long-term survival for patients with non-small cell lung cancer (NSCLC) remains poor, and treatment options available after second-line therapy are limited. Increased understanding of cancer biology has led to the identification of several potential targets for treatment. The epidermal growth factor receptor (EGFR) belongs to a family of plasma membrane receptor tyrosine kinases that controls many important cellular functions, from growth and proliferation to cell death. This receptor is a particularly promising therapeutic target because it often is overexpressed in patients with NSCLC and has been implicated in the pathogenesis as well as the proliferation, invasion, and metastasis of lung cancer and other malignancies. New agents developed to inhibit EGFR function include small-molecule tyrosine kinase inhibitors, monoclonal antibodies to EGFR, and pan-EGFR inhibitors. Completed and ongoing clinical trials have shown that EGFR inhibitors have remarkable efficacy for patients with relapsed NSCLC. Among these, two phase 2 trials have shown that ZD1839 is effective when used as monotherapy. The response rates are comparable with those for docetaxel given in the second-line setting. Another phase 2 trial has shown that OSI-774 is effective in the same setting. Data from phase 3 trials indicate that adding an EGFR tyrosine kinase inhibitor to chemotherapy does not provide an additional survival benefit, as compared with standard chemotherapy alone for first-line treatment of NSCLC. It appears that EGFR tyrosine kinase inhibitors are safe and well tolerated by patients with cancer. Further studies will elucidate how these new agents can best be used for NSCLC and other tumor types.

  16. The thrombopoietin receptor, MPL, is critical for development of a JAK2V617F-induced myeloproliferative neoplasm

    PubMed Central

    Sangkhae, Veena; Etheridge, S. Leah; Kaushansky, Kenneth

    2014-01-01

    The most frequent contributing factor in Philadelphia chromosome-negative myeloproliferative neoplasms (MPNs) is the acquisition of a V617F mutation in Janus kinase 2 (JAK2) in hematopoietic stem cells (HSCs). Recent evidence has demonstrated that to drive MPN transformation, JAK2V617F needs to directly associate with a functional homodimeric type I cytokine receptor, suggesting that, although acquiring JAK2V617F may promote disease, there are additional cellular components necessary for MPN development. Here we show that loss of the thrombopoietin (TPO) receptor (MPL) significantly ameliorates MPN development in JAK2V617F+ transgenic mice, whereas loss of TPO only mildly affects the disease phenotype. Specifically, compared with JAK2V617F+ mice, JAK2V617F+Mpl−/− mice exhibited reduced thrombocythemia, neutrophilia, splenomegaly, and neoplastic stem cell pool. The importance of MPL is highlighted as JAK2V617FMpl+/− mice displayed a significantly reduced MPN phenotype, indicating that Mpl level may have a substantial effect on MPN development and severity. Splenomegaly and the increased neoplastic stem cell pool were retained in JAK2V617F+Tpo−/− mice, although thrombocytosis was reduced compared with JAK2V617F+ mice. These results demonstrate that Mpl expression, but not Tpo, is fundamental in the development of JAK2V617F+ MPNs, highlighting an entirely novel target for therapeutic intervention. PMID:25339357

  17. The thrombopoietin receptor, MPL, is critical for development of a JAK2V617F-induced myeloproliferative neoplasm.

    PubMed

    Sangkhae, Veena; Etheridge, S Leah; Kaushansky, Kenneth; Hitchcock, Ian S

    2014-12-18

    The most frequent contributing factor in Philadelphia chromosome-negative myeloproliferative neoplasms (MPNs) is the acquisition of a V617F mutation in Janus kinase 2 (JAK2) in hematopoietic stem cells (HSCs). Recent evidence has demonstrated that to drive MPN transformation, JAK2V617F needs to directly associate with a functional homodimeric type I cytokine receptor, suggesting that, although acquiring JAK2V617F may promote disease, there are additional cellular components necessary for MPN development. Here we show that loss of the thrombopoietin (TPO) receptor (MPL) significantly ameliorates MPN development in JAK2V617F(+) transgenic mice, whereas loss of TPO only mildly affects the disease phenotype. Specifically, compared with JAK2V617F(+) mice, JAK2V617F(+)Mpl(-/-) mice exhibited reduced thrombocythemia, neutrophilia, splenomegaly, and neoplastic stem cell pool. The importance of MPL is highlighted as JAK2V617FMpl(+/-) mice displayed a significantly reduced MPN phenotype, indicating that Mpl level may have a substantial effect on MPN development and severity. Splenomegaly and the increased neoplastic stem cell pool were retained in JAK2V617F(+)Tpo(-/-) mice, although thrombocytosis was reduced compared with JAK2V617F(+) mice. These results demonstrate that Mpl expression, but not Tpo, is fundamental in the development of JAK2V617F(+) MPNs, highlighting an entirely novel target for therapeutic intervention. © 2014 by The American Society of Hematology.

  18. Network modeling of kinase inhibitor polypharmacology reveals pathways targeted in chemical screens

    PubMed Central

    Ursu, Oana; Gosline, Sara J. C.; Beeharry, Neil; Fink, Lauren; Bhattacharjee, Vikram; Huang, Shao-shan Carol; Zhou, Yan; Yen, Tim; Fraenkel, Ernest

    2017-01-01

    Small molecule screens are widely used to prioritize pharmaceutical development. However, determining the pathways targeted by these molecules is challenging, since the compounds are often promiscuous. We present a network strategy that takes into account the polypharmacology of small molecules in order to generate hypotheses for their broader mode of action. We report a screen for kinase inhibitors that increase the efficacy of gemcitabine, the first-line chemotherapy for pancreatic cancer. Eight kinase inhibitors emerge that are known to affect 201 kinases, of which only three kinases have been previously identified as modifiers of gemcitabine toxicity. In this work, we use the SAMNet algorithm to identify pathways linking these kinases and genetic modifiers of gemcitabine toxicity with transcriptional and epigenetic changes induced by gemcitabine that we measure using DNaseI-seq and RNA-seq. SAMNet uses a constrained optimization algorithm to connect genes from these complementary datasets through a small set of protein-protein and protein-DNA interactions. The resulting network recapitulates known pathways including DNA repair, cell proliferation and the epithelial-to-mesenchymal transition. We use the network to predict genes with important roles in the gemcitabine response, including six that have already been shown to modify gemcitabine efficacy in pancreatic cancer and ten novel candidates. Our work reveals the important role of polypharmacology in the activity of these chemosensitizing agents. PMID:29023490

  19. Inhibitors of stress-activated protein/mitogen-activated protein kinase pathways.

    PubMed

    Malemud, Charles J

    2007-06-01

    The importance of stress-activated protein/mitogen-activated protein kinase (SAP/MAPK) pathway signalling (involving c-Jun-N-terminal kinase [JNK], extracellular signal-regulated kinase [ERK] and p38 kinase) in normal cellular proliferation, differentiation and programmed cell death has led to significant recent advances in our understanding of the role of SAP/MAPK signaling in inflammatory disorders such as arthritis and cardiovascular disease, cancer, and pulmonary and neurogenerative diseases. The discovery that several natural products such as resveratrol, tangeretin and ligustilide non-specifically inhibit SAP/MAPK signalling in vitro should now be logically extended to studies designed to determine how agents in these natural products regulate SAP/MAPK pathways in animal models of disease. A new generation of small-molecule SAP/MAPK inhibitors that demonstrate increasing specificity for each of the JNK, ERK and p38 kinase isoforms has shown promise in animal studies and could eventually prove effective for treating human diseases. Several of these compounds are already being tested in human subjects to assess their oral bioavailability, pharmacokinetics and toxicity.

  20. Small-molecule kinase inhibitors provide insight into Mps1 cell cycle function.

    PubMed

    Kwiatkowski, Nicholas; Jelluma, Nannette; Filippakopoulos, Panagis; Soundararajan, Meera; Manak, Michael S; Kwon, Mijung; Choi, Hwan Geun; Sim, Taebo; Deveraux, Quinn L; Rottmann, Sabine; Pellman, David; Shah, Jagesh V; Kops, Geert J P L; Knapp, Stefan; Gray, Nathanael S

    2010-05-01

    Mps1, a dual-specificity kinase, is required for the proper functioning of the spindle assembly checkpoint and for the maintenance of chromosomal stability. As Mps1 function has been implicated in numerous phases of the cell cycle, the development of a potent, selective small-molecule inhibitor of Mps1 should facilitate dissection of Mps1-related biology. We describe the cellular effects and Mps1 cocrystal structures of new, selective small-molecule inhibitors of Mps1. Consistent with RNAi studies, chemical inhibition of Mps1 leads to defects in Mad1 and Mad2 establishment at unattached kinetochores, decreased Aurora B kinase activity, premature mitotic exit and gross aneuploidy, without any evidence of centrosome duplication defects. However, in U2OS cells having extra centrosomes (an abnormality found in some cancers), Mps1 inhibition increases the frequency of multipolar mitoses. Lastly, Mps1 inhibitor treatment resulted in a decrease in cancer cell viability.

  1. Hepatocyte growth factor sensitizes brain tumors to c-MET kinase inhibition

    PubMed Central

    Zhang, Ying; Farenholtz, Kaitlyn E.; Yang, Yanzhi; Guessous, Fadila; diPierro, Charles G.; Calvert, Valerie S.; Deng, Jianghong; Schiff, David; Xin, Wenjun; Lee, Jae K.; Purow, Benjamin; Christensen, James; Petricoin, Emanuel; Abounader, Roger

    2013-01-01

    Purpose The receptor tyrosine kinase (RTK) c-MET and its ligand hepatocyte growth factor (HGF) are deregulated and promote malignancy in cancer and brain tumors. Consequently, clinically applicable c-MET inhibitors have been developed. The purpose of this study was to investigate the not well known molecular determinants that predict responsiveness to c-MET inhibitors, and to explore new strategies for improving inhibitor efficacy in brain tumors. Experimental design We investigated the molecular factors and pathway activation signatures that determine sensitivity to c-MET inhibitors in a panel of glioblastoma and medulloblastoma cells, glioblastoma stem cells (GSCs), and established cell line-derived xenografts using functional assays, reverse protein microarrays, and in vivo tumor volume measurements, but validation with animal survival analyses remains to be done. We also explored new approaches for improving the efficacy of the inhibitors in vitro and in vivo. Results We found that HGF co-expression is a key predictor of response to c-MET inhibition among the examined factors, and identified an ERK/JAK/p53 pathway activation signature that differentiates c-MET inhibition in responsive and non-responsive cells. Surprisingly, we also found that short pre-treatment of cells and tumors with exogenous HGF moderately but statistically significantly enhanced the anti-tumor effects of c-MET inhibition. We observed a similar ligand-induced sensitization effect to an EGFR small molecule kinase inhibitor. Conclusions These findings allow the identification of a subset of patients that will be responsive to c-MET inhibition, and propose ligand pre-treatment as a potential new strategy for improving the anti-cancer efficacy of RTK inhibitors. PMID:23386689

  2. Selective Akt Inhibitors Synergize with Tyrosine Kinase Inhibitors and Effectively Override Stroma-Associated Cytoprotection of Mutant FLT3-Positive AML Cells

    PubMed Central

    Zhang, Xin; Nelson, Erik; Sattler, Martin; Liu, Feiyang; Nicolais, Maria; Zhang, Jianming; Mitsiades, Constantine; Smith, Robert W.; Stone, Richard; Galinsky, Ilene; Nonami, Atsushi; Griffin, James D.; Gray, Nathanael

    2013-01-01

    Objectives Tyrosine kinase inhibitor (TKI)-treated acute myeloid leukemia (AML) patients commonly show rapid and significant peripheral blood blast cell reduction, however a marginal decrease in bone marrow blasts. This suggests a protective environment and highlights the demand for a better understanding of stromal:leukemia cell communication. As a strategy to improve clinical efficacy, we searched for novel agents capable of potentiating the stroma-diminished effects of TKI treatment of mutant FLT3-expressing cells. Methods We designed a combinatorial high throughput drug screen using well-characterized kinase inhibitor-focused libraries to identify novel kinase inhibitors capable of overriding stromal-mediated resistance to TKIs, such as PKC412 and AC220. Standard liquid culture proliferation assays, cell cycle and apoptosis analysis, and immunoblotting were carried out with cell lines or primary AML to validate putative candidates from the screen and characterize the mechanism(s) underlying observed synergy. Results and Conclusions Our study led to the observation of synergy between selective Akt inhibitors and FLT3 inhibitors against mutant FLT3-positive AML in either the absence or presence of stroma. Our findings are consistent with evidence that Akt activation is characteristic of mutant FLT3-transformed cells, as well as observed residual Akt activity following FLT3 inhibitor treatment. In conclusion, our study highlights the potential importance of Akt as a signaling factor in leukemia survival, and supports the use of the co-culture chemical screen to identify agents able to potentiate TKI anti-leukemia activity in a cytoprotective microenvironment. PMID:23437141

  3. Structural Bioinformatics-Based Prediction of Exceptional Selectivity of p38 MAP Kinase Inhibitor PH-797804

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xing, Li; Shieh, Huey S.; Selness, Shaun R.

    2009-07-24

    PH-797804 is a diarylpyridinone inhibitor of p38{alpha} mitogen-activated protein (MAP) kinase derived from a racemic mixture as the more potent atropisomer (aS), first proposed by molecular modeling and subsequently confirmed by experiments. On the basis of structural comparison with a different biaryl pyrazole template and supported by dozens of high-resolution crystal structures of p38{alpha} inhibitor complexes, PH-797804 is predicted to possess a high level of specificity across the broad human kinase genome. We used a structural bioinformatics approach to identify two selectivity elements encoded by the TXXXG sequence motif on the p38{alpha} kinase hinge: (i) Thr106 that serves as themore » gatekeeper to the buried hydrophobic pocket occupied by 2,4-difluorophenyl of PH-797804 and (ii) the bidentate hydrogen bonds formed by the pyridinone moiety with the kinase hinge requiring an induced 180{sup o} rotation of the Met109-Gly110 peptide bond. The peptide flip occurs in p38{alpha} kinase due to the critical glycine residue marked by its conformational flexibility. Kinome-wide sequence mining revealed rare presentation of the selectivity motif. Corroboratively, PH-797804 exhibited exceptionally high specificity against MAP kinases and the related kinases. No cross-reactivity was observed in large panels of kinase screens (selectivity ratio of >500-fold). In cellular assays, PH-797804 demonstrated superior potency and selectivity consistent with the biochemical measurements. PH-797804 has met safety criteria in human phase I studies and is under clinical development for several inflammatory conditions. Understanding the rationale for selectivity at the molecular level helps elucidate the biological function and design of specific p38{alpha} kinase inhibitors.« less

  4. The development of Bruton's tyrosine kinase (BTK) inhibitors from 2012 to 2017: A mini-review.

    PubMed

    Liang, Chengyuan; Tian, Danni; Ren, Xiaodong; Ding, Shunjun; Jia, Minyi; Xin, Minhang; Thareja, Suresh

    2018-05-10

    Bruton's tyrosine kinase (BTK) has emerged as a promising drug target for multiple diseases, particularly haematopoietic malignancies and autoimmune diseases related to B lymphocytes. This review focuses on the diverse, small-molecule inhibitors of BTK kinase that have shown good prospects for clinical application. Individual examples of these inhibitors, including both reversible and irreversible inhibitors and a recently developed reversible covalent inhibitor of BTK, are discussed. Considerable progress has been made in the development of irreversible inhibitors, most of which target the SH3 pocket and the cysteine 481 residue of BTK. The present review also surveys the pharmacological advantages and deficiencies of both reversible and irreversible BTK drugs, with a focus on the structure-activity relationship (SARs) and binding modes of representative drugs, which could inspire critical thinking and new ideas for developing potent BTK inhibitors with less unwanted off-target effects. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  5. A Genetic Screen Reveals an Unexpected Role for Yorkie Signaling in JAK/STAT-Dependent Hematopoietic Malignancies in Drosophila melanogaster

    PubMed Central

    Anderson, Abigail M.; Bailetti, Alessandro A.; Rodkin, Elizabeth; De, Atish; Bach, Erika A.

    2017-01-01

    A gain-of-function mutation in the tyrosine kinase JAK2 (JAK2V617F) causes human myeloproliferative neoplasms (MPNs). These patients present with high numbers of myeloid lineage cells and have numerous complications. Since current MPN therapies are not curative, there is a need to find new regulators and targets of Janus kinase/Signal transducer and activator of transcription (JAK/STAT) signaling that may represent additional clinical interventions . Drosophila melanogaster offers a low complexity model to study MPNs as JAK/STAT signaling is simplified with only one JAK [Hopscotch (Hop)] and one STAT (Stat92E). hopTumorous-lethal (Tum-l) is a gain-of-function mutation that causes dramatic expansion of myeloid cells, which then form lethal melanotic tumors. Through an F1 deficiency (Df) screen, we identified 11 suppressors and 35 enhancers of melanotic tumors in hopTum-l animals. Dfs that uncover the Hippo (Hpo) pathway genes expanded (ex) and warts (wts) strongly enhanced the hopTum-l tumor burden, as did mutations in ex, wts, and other Hpo pathway genes. Target genes of the Hpo pathway effector Yorkie (Yki) were significantly upregulated in hopTum-l blood cells, indicating that Yki signaling was increased. Ectopic hematopoietic activation of Yki in otherwise wild-type animals increased hemocyte proliferation but did not induce melanotic tumors. However, hematopoietic depletion of Yki significantly reduced the hopTum-l tumor burden, demonstrating that Yki is required for melanotic tumors in this background. These results support a model in which elevated Yki signaling increases the number of hemocytes, which become melanotic tumors as a result of elevated JAK/STAT signaling. PMID:28620086

  6. Molecular structures of cdc2-like kinases in complex with a new inhibitor chemotype

    PubMed Central

    Helmer, Renate; Loaëc, Nadège; Preu, Lutz; Ott, Ingo; Knapp, Stefan; Meijer, Laurent

    2018-01-01

    Cdc2-like kinases (CLKs) represent a family of serine-threonine kinases involved in the regulation of splicing by phosphorylation of SR-proteins and other splicing factors. Although compounds acting against CLKs have been described, only a few show selectivity against dual-specificity tyrosine phosphorylation regulated-kinases (DYRKs). We here report a novel CLK inhibitor family based on a 6,7-dihydropyrrolo[3,4-g]indol-8(1H)-one core scaffold. Within the series, 3-(3-chlorophenyl)-6,7-dihydropyrrolo[3,4-g]indol-8(1H)-one (KuWal151) was identified as inhibitor of CLK1, CLK2 and CLK4 with a high selectivity margin towards DYRK kinases. The compound displayed a potent antiproliferative activity in an array of cultured cancer cell lines. The X-ray structure analyses of three members of the new compound class co-crystallized with CLK proteins corroborated a molecular binding mode predicted by docking studies. PMID:29723265

  7. G-Protein-Coupled Receptor Kinase 2 (GRK2) Inhibitors: Current Trends and Future Perspectives.

    PubMed

    Guccione, Manuela; Ettari, Roberta; Taliani, Sabrina; Da Settimo, Federico; Zappalà, Maria; Grasso, Silvana

    2016-10-27

    G-protein-coupled receptor kinase 2 (GRK2) is a G-protein-coupled receptor kinase that is ubiquitously expressed in many tissues and regulates various intracellular mechanisms. The up- or down-regulation of GRK2 correlates with several pathological disorders. GRK2 plays an important role in the maintenance of heart structure and function; thus, this kinase is involved in many cardiovascular diseases. GRK2 up-regulation can worsen cardiac ischemia; furthermore, increased kinase levels occur during the early stages of heart failure and in hypertensive subjects. GRK2 up-regulation can lead to changes in the insulin signaling cascade, which can translate to insulin resistance. Increased GRK2 levels also correlate with the degree of cognitive impairment that is typically observed in Alzheimer's disease. This article reviews the most potent and selective GRK2 inhibitors that have been developed. We focus on their mechanism of action, inhibition profile, and structure-activity relationships to provide insight into the further development of GRK2 inhibitors as drug candidates.

  8. Novel mutations in the inhibitory adaptor protein LNK drive JAK-STAT signaling in patients with myeloproliferative neoplasms

    PubMed Central

    Oh, Stephen T.; Simonds, Erin F.; Jones, Carol; Hale, Matthew B.; Goltsev, Yury; Gibbs, Kenneth D.; Merker, Jason D.; Zehnder, James L.; Nolan, Garry P.

    2010-01-01

    Dysregulated Janus kinase–signal transducer and activator of transcription (JAK-STAT) signaling due to activation of tyrosine kinases is a common feature of myeloid malignancies. Here we report the first human disease-related mutations in the adaptor protein LNK, a negative regulator of JAK-STAT signaling, in 2 patients with JAK2 V617F–negative myeloproliferative neoplasms (MPNs). One patient exhibited a 5 base-pair deletion and missense mutation leading to a premature stop codon and loss of the pleckstrin homology (PH) and Src homology 2 (SH2) domains. A second patient had a missense mutation (E208Q) in the PH domain. BaF3-MPL cells transduced with these LNK mutants displayed augmented and sustained thrombopoietin-dependent growth and signaling. Primary samples from MPN patients bearing LNK mutations exhibited aberrant JAK-STAT activation, and cytokine-responsive CD34+ early progenitors were abnormally abundant in both patients. These findings indicate that JAK-STAT activation due to loss of LNK negative feedback regulation is a novel mechanism of MPN pathogenesis. PMID:20404132

  9. QSAR, molecular docking studies of thiophene and imidazopyridine derivatives as polo-like kinase 1 inhibitors

    NASA Astrophysics Data System (ADS)

    Cao, Shandong

    2012-08-01

    The purpose of the present study was to develop in silico models allowing for a reliable prediction of polo-like kinase inhibitors based on a large diverse dataset of 136 compounds. As an effective method, quantitative structure activity relationship (QSAR) was applied using the comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). The proposed QSAR models showed reasonable predictivity of thiophene analogs (Rcv2=0.533, Rpred2=0.845) and included four molecular descriptors, namely IC3, RDF075m, Mor02m and R4e+. The optimal model for imidazopyridine derivatives (Rcv2=0.776, Rpred2=0.876) was shown to perform good in prediction accuracy, using GATS2m and BEHe1 descriptors. Analysis of the contour maps helped to identify structural requirements for the inhibitors and served as a basis for the design of the next generation of the inhibitor analogues. Docking studies were also employed to position the inhibitors into the polo-like kinase active site to determine the most probable binding mode. These studies may help to understand the factors influencing the binding affinity of chemicals and to develop alternative methods for prescreening and designing of polo-like kinase inhibitors.

  10. Conformational Analysis of the DFG-Out Kinase Motif and Biochemical Profiling of Structurally Validated Type II Inhibitors

    PubMed Central

    2015-01-01

    Structural coverage of the human kinome has been steadily increasing over time. The structures provide valuable insights into the molecular basis of kinase function and also provide a foundation for understanding the mechanisms of kinase inhibitors. There are a large number of kinase structures in the PDB for which the Asp and Phe of the DFG motif on the activation loop swap positions, resulting in the formation of a new allosteric pocket. We refer to these structures as “classical DFG-out” conformations in order to distinguish them from conformations that have also been referred to as DFG-out in the literature but that do not have a fully formed allosteric pocket. We have completed a structural analysis of almost 200 small molecule inhibitors bound to classical DFG-out conformations; we find that they are recognized by both type I and type II inhibitors. In contrast, we find that nonclassical DFG-out conformations strongly select against type II inhibitors because these structures have not formed a large enough allosteric pocket to accommodate this type of binding mode. In the course of this study we discovered that the number of structurally validated type II inhibitors that can be found in the PDB and that are also represented in publicly available biochemical profiling studies of kinase inhibitors is very small. We have obtained new profiling results for several additional structurally validated type II inhibitors identified through our conformational analysis. Although the available profiling data for type II inhibitors is still much smaller than for type I inhibitors, a comparison of the two data sets supports the conclusion that type II inhibitors are more selective than type I. We comment on the possible contribution of the DFG-in to DFG-out conformational reorganization to the selectivity. PMID:25478866

  11. Calpain-mediated proteolysis of polycystin-1 C-terminus induces JAK2 and ERK signal alterations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Hyunho; Department of Medicine, University of Maryland, Baltimore, MD; Kang, Ah-Young

    2014-01-01

    Autosomal dominant polycystic kidney disease (ADPKD), a hereditary renal disease caused by mutations in PKD1 (85%) or PKD2 (15%), is characterized by the development of gradually enlarging multiple renal cysts and progressive renal failure. Polycystin-1 (PC1), PKD1 gene product, is an integral membrane glycoprotein which regulates a number of different biological processes including cell proliferation, apoptosis, cell polarity, and tubulogenesis. PC1 is a target of various proteolytic cleavages and proteosomal degradations, but its role in intracellular signaling pathways remains poorly understood. Herein, we demonstrated that PC1 is a novel substrate for μ- and m-calpains, which are calcium-dependent cysteine proteases. Overexpressionmore » of PC1 altered both Janus-activated kinase 2 (JAK2) and extracellular signal-regulated kinase (ERK) signals, which were independently regulated by calpain-mediated PC1 degradation. They suggest that the PC1 function on JAK2 and ERK signaling pathways might be regulated by calpains in response to the changes in intracellular calcium concentration. - Highlights: • Polycystin-1 is a target of ubiquitin-independent degradation by calpains. • The PEST domain is required for calpain-mediated degradation of polycystin-1. • Polycystin-1 may independently regulate JAK2 and ERK signaling pathways.« less

  12. Identification and Structure-Function Analysis of Subfamily Selective G Protein-Coupled Receptor Kinase Inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Homan, Kristoff T.; Larimore, Kelly M.; Elkins, Jonathan M.

    2015-02-13

    Selective inhibitors of individual subfamilies of G protein-coupled receptor kinases (GRKs) would serve as useful chemical probes as well as leads for therapeutic applications ranging from heart failure to Parkinson’s disease. To identify such inhibitors, differential scanning fluorimetry was used to screen a collection of known protein kinase inhibitors that could increase the melting points of the two most ubiquitously expressed GRKs: GRK2 and GRK5. Enzymatic assays on 14 of the most stabilizing hits revealed that three exhibit nanomolar potency of inhibition for individual GRKs, some of which exhibiting orders of magnitude selectivity. Most of the identified compounds can bemore » clustered into two chemical classes: indazole/dihydropyrimidine-containing compounds that are selective for GRK2 and pyrrolopyrimidine-containing compounds that potently inhibit GRK1 and GRK5 but with more modest selectivity. The two most potent inhibitors representing each class, GSK180736A and GSK2163632A, were cocrystallized with GRK2 and GRK1, and their atomic structures were determined to 2.6 and 1.85 Å spacings, respectively. GSK180736A, developed as a Rho-associated, coiled-coil-containing protein kinase inhibitor, binds to GRK2 in a manner analogous to that of paroxetine, whereas GSK2163632A, developed as an insulin-like growth factor 1 receptor inhibitor, occupies a novel region of the GRK active site cleft that could likely be exploited to achieve more selectivity. However, neither compound inhibits GRKs more potently than their initial targets. This data provides the foundation for future efforts to rationally design even more potent and selective GRK inhibitors.« less

  13. Kinase-dead ATM protein is highly oncogenic and can be preferentially targeted by Topo-isomerase I inhibitors

    PubMed Central

    Yamamoto, Kenta; Wang, Jiguang; Sprinzen, Lisa; Xu, Jun; Haddock, Christopher J; Li, Chen; Lee, Brian J; Loredan, Denis G; Jiang, Wenxia; Vindigni, Alessandro; Wang, Dong; Rabadan, Raul; Zha, Shan

    2016-01-01

    Missense mutations in ATM kinase, a master regulator of DNA damage responses, are found in many cancers, but their impact on ATM function and implications for cancer therapy are largely unknown. Here we report that 72% of cancer-associated ATM mutations are missense mutations that are enriched around the kinase domain. Expression of kinase-dead ATM (AtmKD/-) is more oncogenic than loss of ATM (Atm-/-) in mouse models, leading to earlier and more frequent lymphomas with Pten deletions. Kinase-dead ATM protein (Atm-KD), but not loss of ATM (Atm-null), prevents replication-dependent removal of Topo-isomerase I-DNA adducts at the step of strand cleavage, leading to severe genomic instability and hypersensitivity to Topo-isomerase I inhibitors. Correspondingly, Topo-isomerase I inhibitors effectively and preferentially eliminate AtmKD/-, but not Atm-proficientor Atm-/- leukemia in animal models. These findings identify ATM kinase-domain missense mutations as a potent oncogenic event and a biomarker for Topo-isomerase I inhibitor based therapy. DOI: http://dx.doi.org/10.7554/eLife.14709.001 PMID:27304073

  14. Nuclear localization of lymphocyte-specific protein tyrosine kinase (Lck) and its role in regulating LIM domain only 2 (Lmo2) gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venkitachalam, Srividya; Chueh, Fu-Yu; Yu, Chao-Lan, E-mail: chaolan.yu@rosalindfranklin.edu

    2012-01-20

    Highlights: Black-Right-Pointing-Pointer Lmo2 expression is elevated in Lck-transformed cells. Black-Right-Pointing-Pointer Both endogenous and exogenous Lck localize in the nucleus. Black-Right-Pointing-Pointer Nuclear Lck is active in Lck-transformed cells. Black-Right-Pointing-Pointer Lck binds to the promoter region of Lmo2 gene in vivo. Black-Right-Pointing-Pointer In contrast to JAK2, Lck does not increase histone H3 phosphorylation on Tyr 41. -- Abstract: LIM domain only protein 2 (Lmo2) is a transcription factor that plays a critical role in the development of T-acute lymphoblastic leukemia (T-ALL). A previous report established a link between Lmo2 expression and the nuclear presence of oncogenic Janus kinase 2 (JAK2), a non-receptormore » protein tyrosine kinase. The oncogenic JAK2 kinase phosphorylates histone H3 on Tyr 41 that leads to the relief of Lmo2 promoter repression and subsequent gene expression. Similar to JAK2, constitutive activation of lymphocyte-specific protein tyrosine kinase (Lck) has been implicated in lymphoid malignancies. However, it is not known whether oncogenic Lck regulates Lmo2 expression through a similar mechanism. We show here that Lmo2 expression is significantly elevated in T cell leukemia LSTRA overexpressing active Lck kinase and in HEK 293 cells expressing oncogenic Y505FLck kinase. Nuclear localization of active Lck kinase was confirmed in both Lck-transformed cells by subcellular fractionation and immunofluorescence microscopy. More importantly, in contrast to oncogenic JAK2, oncogenic Lck kinase does not result in significant increase in histone H3 phosphorylation on Tyr 41. Instead, chromatin immunoprecipitation experiment shows that oncogenic Y505FLck kinase binds to the Lmo2 promoter in vivo. This result raises the possibility that oncogenic Lck may activate Lmo2 promoter through direct interaction.« less

  15. Structural Characterization of Proline-rich Tyrosine Kinase 2 (PYK2) Reveals a Unique (DFG-out) Conformation and Enables Inhibitor Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Seungil; Mistry, Anil; Chang, Jeanne S.

    Proline-rich tyrosine kinase 2 (PYK2) is a cytoplasmic, non-receptor tyrosine kinase implicated in multiple signaling pathways. It is a negative regulator of osteogenesis and considered a viable drug target for osteoporosis treatment. The high-resolution structures of the human PYK2 kinase domain with different inhibitor complexes establish the conventional bilobal kinase architecture and show the conformational variability of the DFG loop. The basis for the lack of selectivity for the classical kinase inhibitor, PF-431396, within the FAK family is explained by our structural analyses. Importantly, the novel DFG-out conformation with two diarylurea inhibitors (BIRB796, PF-4618433) reveals a distinct subclass of non-receptormore » tyrosine kinases identifiable by the gatekeeper Met-502 and the unique hinge loop conformation of Leu-504. This is the first example of a leucine residue in the hinge loop that blocks the ATP binding site in the DFG-out conformation. Our structural, biophysical, and pharmacological studies suggest that the unique features of the DFG motif, including Leu-504 hinge-loop variability, can be exploited for the development of selective protein kinase inhibitors.« less

  16. Computational insights into the interaction of small molecule inhibitors with HRI kinase domain.

    PubMed

    Palrecha, Sourabh; Lakade, Dushant; Kulkarni, Abhijeet; Pal, Jayanta K; Joshi, Manali

    2018-05-07

    The Heme-Regulated Inhibitor (HRI) kinase regulates globin synthesis in a heme-dependent manner in reticulocytes and erythroid cells in bone marrow. Inhibitors of HRI have been proposed to lead to an increased amount of haemoglobin, benefitting anaemia patients. A series of indeno[1,2-c]pyrazoles were discovered to be the first known in vitro inhibitors of HRI. However, the structural mechanism of inhibition is yet to be understood. The aim of this study was to unravel the binding mechanism of these inhibitors using molecular dynamic simulations and docking. The docking scores were observed to correlate well with experimentally determined pIC 50 values. The inhibitors were observed to bind in the ATP-binding site forming hydrogen bonds with the hinge region and van der Waals interactions with non-polar residues in the binding site. Further, quantitative structure-activity relationship (QSAR) studies were performed to correlate the structural features of the inhibitors with their biological activity. The developed QSAR models were found to be statistically significant in terms of internal and external predictabilities. The presence of chlorine atoms and the hydroxymethyl groups were found to correlate with higher activity. The identified binding modes and the descriptors can support future rational identification of more potent and selective small molecule inhibitors for this kinase which are of therapeutic importance in the context of various human pathological disorders.

  17. Structural effects of clinically observed mutations in JAK2 exons 13-15: comparison with V617F and exon 12 mutations

    PubMed Central

    Lee, Tai-Sung; Ma, Wanlong; Zhang, Xi; Kantarjian, Hagop; Albitar, Maher

    2009-01-01

    Background The functional relevance of many of the recently detected JAK2 mutations, except V617F and exon 12 mutants, in patients with chronic myeloproliferative neoplasia (MPN) has been significantly overlooked. To explore atomic-level explanations of the possible mutational effects from those overlooked mutants, we performed a set of molecular dynamics simulations on clinically observed mutants, including newly discovered mutations (K539L, R564L, L579F, H587N, S591L, H606Q, V617I, V617F, C618R, L624P, whole exon 14-deletion) and control mutants (V617C, V617Y, K603Q/N667K). Results Simulation results are consistent with all currently available clinical/experimental evidence. The simulation-derived putative interface, not possibly obtained from static models, between the kinase (JH1) and pseudokinase (JH2) domains of JAK2 provides a platform able to explain the mutational effect for all mutants, including presumably benign control mutants, at the atomic level. Conclusion The results and analysis provide structural bases for mutational mechanisms of JAK2, may advance the understanding of JAK2 auto-regulation, and have the potential to lead to therapeutic approaches. Together with recent mutation profiling results demonstrating the breadth of clinically observed JAK2 mutations, our findings suggest that molecular testing/diagnostics of JAK2 should extend beyond V617F and exon 12 mutations, and perhaps should encompass most of the pseudo-kinase domain-coding region. PMID:19744331

  18. Identification and preclinical characterization of AZ-23, a novel, selective, and orally bioavailable inhibitor of the Trk kinase pathway.

    PubMed

    Thress, Kenneth; Macintyre, Terry; Wang, Haiyun; Whitston, Dave; Liu, Zhong-Ying; Hoffmann, Ethan; Wang, Tao; Brown, Jeffrey L; Webster, Kevin; Omer, Charles; Zage, Peter E; Zeng, Lizhi; Zweidler-McKay, Patrick A

    2009-07-01

    Tropomyosin-related kinases (TrkA, TrkB, and TrkC) are receptor tyrosine kinases that, along with their ligands, the neurotrophins, are involved in neuronal cell growth, development, and survival. The Trk-neurotrophin pathway may also play a role in tumorigenesis through oncogenic fusions, mutations, and autocrine signaling, prompting the development of novel Trk inhibitors as agents for cancer therapy. This report describes the identification of AZ-23, a novel, potent, and selective Trk kinase inhibitor. In vitro studies with AZ-23 showed improved selectivity over previous compounds and inhibition of Trk kinase activity in cells at low nanomolar concentrations. AZ-23 showed in vivo TrkA kinase inhibition and efficacy in mice following oral administration in a TrkA-driven allograft model and significant tumor growth inhibition in a Trk-expressing xenograft model of neuroblastoma. AZ-23 represents a potent and selective Trk kinase inhibitor from a novel series with the potential for use as a treatment for cancer.

  19. Virtual screening filters for the design of type II p38 MAP kinase inhibitors: a fragment based library generation approach.

    PubMed

    Badrinarayan, Preethi; Sastry, G Narahari

    2012-04-01

    In this work, we introduce the development and application of a three-step scoring and filtering procedure for the design of type II p38 MAP kinase leads using allosteric fragments extracted from virtual screening hits. The design of the virtual screening filters is based on a thorough evaluation of docking methods, DFG-loop conformation, binding interactions and chemotype specificity of the 138 p38 MAP kinase inhibitors from Protein Data Bank bound to DFG-in and DFG-out conformations using Glide, GOLD and CDOCKER. A 40 ns molecular dynamics simulation with the apo, type I with DFG-in and type II with DFG-out forms was carried out to delineate the effects of structural variations on inhibitor binding. The designed docking-score and sub-structure filters were first tested on a dataset of 249 potent p38 MAP kinase inhibitors from seven diverse series and 18,842 kinase inhibitors from PDB, to gauge their capacity to discriminate between kinase and non-kinase inhibitors and likewise to selectively filter-in target-specific inhibitors. The designed filters were then applied in the virtual screening of a database of ten million (10⁷) compounds resulting in the identification of 100 hits. Based on their binding modes, 98 allosteric fragments were extracted from the hits and a fragment library was generated. New type II p38 MAP kinase leads were designed by tailoring the existing type I ATP site binders with allosteric fragments using a common urea linker. Target specific virtual screening filters can thus be easily developed for other kinases based on this strategy to retrieve target selective compounds. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Effects of inhibitors of vascular endothelial growth factor receptor 2 and downstream pathways of receptor tyrosine kinases involving phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin or mitogen-activated protein kinase in canine hemangiosarcoma cell lines

    PubMed Central

    Adachi, Mami; Hoshino, Yuki; Izumi, Yusuke; Sakai, Hiroki; Takagi, Satoshi

    2016-01-01

    Canine hemangiosarcoma (HSA) is a progressive malignant neoplasm with no current effective treatment. Previous studies showed that receptor tyrosine kinases and molecules within their downstream pathways involving phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (m-TOR) or mitogen-activated protein kinase (MAPK) were overexpressed in canine, human, and murine tumors, including HSA. The present study investigated the effects of inhibitors of these pathways in canine splenic and hepatic HSA cell lines using assays of cell viability and apoptosis. Inhibitors of the MAPK pathway did not affect canine HSA cell viability. However, cell viability was significantly reduced by exposure to inhibitors of vascular endothelial growth factor receptor 2 and the PI3K/Akt/m-TOR pathway; these inhibitors also induced apoptosis in these cell lines. These results suggest that these inhibitors reduce the proliferation of canine HSA cells by inducing apoptosis. Further study of these inhibitors, using xenograft mouse models of canine HSA, are warranted to explore their potential for clinical application. PMID:27408334

  1. The role of the JAK2-STAT3 pathway in pro-inflammatory responses of EMF-stimulated N9 microglial cells

    PubMed Central

    2010-01-01

    Background In several neuropathological conditions, microglia can become overactivated and cause neurotoxicity by initiating neuronal damage in response to pro-inflammatory stimuli. Our previous studies have shown that exposure to electromagnetic fields (EMF) activates cultured microglia to produce tumor necrosis factor (TNF)-α and nitric oxide (NO) through signal transduction involving the activator of transcription STAT3. Here, we investigated the role of STAT3 signaling in EMF-induced microglial activation and pro-inflammatory responses in more detail than the previous study. Methods N9 microglial cells were treated with EMF exposure or a sham treatment, with or without pretreatment with an inhibitor (Pyridone 6, P6) of the Janus family of tyrosine kinases (JAK). The activation state of microglia was assessed via immunoreaction using the microglial marker CD11b. Levels of inducible nitric oxide synthase (iNOS), TNF-α and NO were measured using real-time reverse transcription-polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA) and the nitrate reductase method. Activation of JAKs and STAT3 proteins was evaluated by western blotting for specific tyrosine phosphorylation. The ability of STAT3 to bind to DNA was detected with an electrophoresis mobility shift assay (EMSA). Results EMF was found to significantly induce phosphorylation of JAK2 and STAT3, and DNA-binding ability of STAT3 in N9 microglia. In addition, EMF dramatically increased the expression of CD11b, TNF-α and iNOS, and the production of NO. P6 strongly suppressed the phosphorylation of JAK2 and STAT3 and diminished STAT3 activity in EMF-stimulated microglia. Interestingly, expression of CD11b as well as gene expression and production of TNF-α and iNOS were suppressed by P6 at 12 h, but not at 3 h, after EMF exposure. Conclusions EMF exposure directly triggers initial activation of microglia and produces a significant pro-inflammatory response. Our findings confirm that

  2. [Recent Advances and Prospect of Advanced Non-small Cell Lung Cancer Targeted 
Therapy: Focus on Small Molecular Tyrosine Kinase Inhibitors].

    PubMed

    Zhang, Guowei; Wang, Huijuan; Ma, Zhiyong

    2017-04-20

    At present the treatment of advanced non-small cell lung cancer enters a targeted era and develops rapidly. New drugs appear constantly. Small molecular tyrosine kinase inhibitors have occupied the biggest piece of the territory, which commonly have a clear biomarker as predictor, and show remarkable effect in specific molecular classification of patients. The epidermal growth factor tyrosine kinase inhibitors such as gefitinib, erlotinib, icotinib and anaplastic lymphoma kinase tyrosine kinase inhibitors crizotinib have brought a milestone advance. In recent years new generations of tyrosine kinase inhibitors have achieved a great success in patients with acquired resistance to the above two kinds of drugs. At the same time new therapeutic targets are constantly emerging. So in this paper, we reviewed and summarized the important drugs and clinical trails on this topic, and made a prospect of the future development.

  3. Systemic inhibition of Janus kinase induces browning of white adipose tissue and ameliorates obesity-related metabolic disorders.

    PubMed

    Qurania, Kikid Rucira; Ikeda, Koji; Wardhana, Donytra Arby; Barinda, Agian Jeffilano; Nugroho, Dhite Bayu; Kuribayashi, Yuko; Rahardini, Elda Putri; Rinastiti, Pranindya; Ryanto, Gusty Rizky Teguh; Yagi, Keiko; Hirata, Ken-Ichi; Emoto, Noriaki

    2018-07-07

    Browning of white adipose tissue is a promising strategy to tackle obesity. Recently, Janus kinase (JAK) inhibition was shown to induce white-to-brown metabolic conversion of adipocytes in vitro; however effects of JAK inhibition on browning and systemic metabolic health in vivo remain to be elucidated. Here, we report that systemic administration of JAK inhibitor (JAKi) ameliorated obesity-related metabolic disorders. Administration of JAKi in mice fed a high-fat diet increased UCP-1 and PRDM16 expression in white adipose tissue, indicating the browning of white adipocyte. Food intake was increased in JAKi-treated mice, while the body weight and adiposity was similar between the JAKi- and vehicle-treated mice. In consistent with the browning, thermogenic capacity was enhanced in mice treated with JAKi. Chronic inflammation in white adipose tissue was not ameliorated by JAKi-treatment. Nevertheless, insulin sensitivity was well preserved in JAKi-treated mice comparing with that in vehicle-treated mice. Serum levels of triglyceride and free fatty acid were significantly reduced by JAKi-treatment, which is accompanied by ameliorated hepatosteatosis. Our data demonstrate that systemic administration of JAKi has beneficial effects in preserving metabolic health, and thus inhibition of JAK signaling has therapeutic potential for the treatment of obesity and its-related metabolic disorders. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. The IGF-I/JAK2-STAT3/miR-21 signaling pathway may be associated with human renal cell carcinoma cell growth.

    PubMed

    Su, Ying; Zhao, An; Cheng, Guoping; Xu, Jingjing; Ji, Enming; Sun, Wenyong

    2017-07-04

    Renal cell carcinoma (RCC) is the highest mortality rate of the genitourinary cancers, and the treatment options are very limited. Thus, identification of molecular mechanisms underlying RCC tumorigenesis, is critical for identifying biomarkers for RCC diagnosis and prognosis. To validate whether the IGF-I/JAK2-STAT3/miR-21 signaling pathway is associated with human RCC cell growth. qRT-PCR and Western blotting were used to detect the mRNA and protein expression levels, respectively. The MTT assay was performed to determine cell survival rate. The Annexin V-FITC/PI apoptosis detection kit was used to detect cell apoptosis. We employed RCC tissues and cell lines (A498; ACHN; Caki-1; Caki-2 and 786-O) in the study. IGF-I, and its inhibitor (NT-157) were administrated to detect the effects of IGF-I on the expression of miR-21 and p-JAK2. JAK2 inhibitor (AG490), and si-STAT3 were used to detect the effects of JAK2/STAT3 signaling pathway on the expression of miR-21. In our study, we firstly showed that the expression levels of IGF-I and miR-21 were up-regulated in RCC tissues and cell lines. After exogenous IGF-I treatment, the expression levels of miR-21, p-IGF-IR and p-JAK2 were significantly increased, whereas NT-157 treatment showed the reversed results. Further study indicated that JAK2 inhibitor or si-STAT3 significantly reversed the IGF-I-induced miR-21 expression level. Finally, we found that IGF-I treatment significantly prompted human RCC cell survival and inhibited cell apoptosis, and NT-157 treatment showed the reversed results. The IGF-I/JAK2-STAT3/miR-21 signaling pathway may be associated with human RCC cell growth.

  5. JAK/STAT controls organ size and fate specification by regulating morphogen production and signalling

    PubMed Central

    Recasens-Alvarez, Carles; Ferreira, Ana; Milán, Marco

    2017-01-01

    A stable pool of morphogen-producing cells is critical for the development of any organ or tissue. Here we present evidence that JAK/STAT signalling in the Drosophila wing promotes the cycling and survival of Hedgehog-producing cells, thereby allowing the stable localization of the nearby BMP/Dpp-organizing centre in the developing wing appendage. We identify the inhibitor of apoptosis dIAP1 and Cyclin A as two critical genes regulated by JAK/STAT and contributing to the growth of the Hedgehog-expressing cell population. We also unravel an early role of JAK/STAT in guaranteeing Wingless-mediated appendage specification, and a later one in restricting the Dpp-organizing activity to the appendage itself. These results unveil a fundamental role of the conserved JAK/STAT pathway in limb specification and growth by regulating morphogen production and signalling, and a function of pro-survival cues and mitogenic signals in the regulation of the pool of morphogen-producing cells in a developing organ. PMID:28045022

  6. Acute Mitochondrial Inhibition by Mitogen-activated Protein Kinase/Extracellular Signal-regulated Kinase Kinase (MEK) 1/2 Inhibitors Regulates Proliferation*

    PubMed Central

    Ripple, Maureen O.; Kim, Namjoon; Springett, Roger

    2013-01-01

    The Ras-MEK1/2-ERK1/2 kinase signaling pathway regulates proliferation, survival, and differentiation and, because it is often aberrant in tumors, is a popular target for small molecule inhibition. A novel metabolic analysis that measures the real-time oxidation state of NAD(H) and the hemes of the electron transport chain and oxygen consumption within intact, living cells found that structurally distinct MEK1/2 inhibitors had an immediate, dose-dependent effect on mitochondrial metabolism. The inhibitors U0126, MIIC and PD98059 caused NAD(H) reduction, heme oxidation, and decreased oxygen consumption, characteristic of complex I inhibition. PD198306, an orally active MEK1/2 inhibitor, acted as an uncoupler. Each MEK1/2 inhibitor depleted phosphorylated ERK1/2 and inhibited proliferation, but the most robust antiproliferative effects always correlated with the metabolic failure which followed mitochondrial inhibition rather than inhibition of MEK1/2. This warrants rethinking the role of ERK1/2 in proliferation and emphasizes the importance of mitochondrial function in this process. PMID:23235157

  7. Suppressor of Cytokine Signaling 2 Negatively Regulates NK Cell Differentiation by Inhibiting JAK2 Activity

    PubMed Central

    Kim, Won Sam; Kim, Mi Jeong; Kim, Dong Oh; Byun, Jae-Eun; Huy, Hangsak; Song, Hae Young; Park, Young-Jun; Kim, Tae-Don; Yoon, Suk Ran; Choi, Eun-Ji; Jung, Haiyoung; Choi, Inpyo

    2017-01-01

    Suppressor of cytokine signaling (SOCS) proteins are negative regulators of cytokine responses. Although recent reports have shown regulatory roles for SOCS proteins in innate and adaptive immunity, their roles in natural killer (NK) cell development are largely unknown. Here, we show that SOCS2 is involved in NK cell development. SOCS2−/− mice showed a high frequency of NK cells in the bone marrow and spleen. Knockdown of SOCS2 was associated with enhanced differentiation of NK cells in vitro, and the transplantation of hematopoietic stem cells (HSCs) into congenic mice resulted in enhanced differentiation in SOCS2−/− HSCs. We found that SOCS2 could inhibit Janus kinase 2 (JAK2) activity and JAK2-STAT5 signaling pathways via direct interaction with JAK2. Furthermore, SOCS2−/− mice showed a reduction in lung metastases and an increase in survival following melanoma challenge. Overall, our findings suggest that SOCS2 negatively regulates the development of NK cells by inhibiting JAK2 activity via direct interaction. PMID:28383049

  8. Role of the JAKs/STATs pathway in the intracellular calcium changes induced by interleukin-6 in hippocampal neurons.

    PubMed

    Orellana, D I; Quintanilla, R A; Gonzalez-Billault, C; Maccioni, R B

    2005-11-01

    Recent studies show that inflammation has an active role in the onset of neurodegenerative diseases. It is known that in response to extracellular insults microglia and/or astrocytes produce inflammatory agents. These contribute to the neuropathological events in the aging process and neuronal degeneration. Interleukin-6 (IL-6) has been involved in the pathogenesis of neurodegenerative disorders, such as Alzheimer's and Parkinson's diseases. Here, we show that IL-6 treatment of rat hippocampal neurons increases the calcium influx via NMDA-receptor, an effect that is prevented by the specific NMDA receptor antagonist MK-801 (dizocilpine). We also show that this calcium influx is mediated by the JAKs/STATs pathway, since the inhibitor of JAKs/STATs pathway, JAK 3 inhibitor, blocks calcium influx even in the presence of IL-6. This increase in calcium signal was dependent on external sources, since this signal was not observed in the presence of EGTA. Additional studies indicate that the increase in cytosolic calcium induces tau protein hyperphosphorylation, as revealed by using specific antibodies against Alzheimer phosphoepitopes. This anomalous tau hyperphosphorylation was dependent on both the JAKs/STATs pathway and NMDA receptor. These results suggest that IL-6 would induce a cascade of molecular events that produce a calcium influx through NMDA receptors, mediated by the JAKs/STATs pathway, which subsequently modifies the tau hyperphosphorylation patterns.

  9. Discovery and Characterization of Non-ATP Site Inhibitors of the Mitogen Activated Protein (MAP) Kinases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Comess, Kenneth M.; Sun, Chaohong; Abad-Zapatero, Cele

    Inhibition of protein kinases has validated therapeutic utility for cancer, with at least seven kinase inhibitor drugs on the market. Protein kinase inhibition also has significant potential for a variety of other diseases, including diabetes, pain, cognition, and chronic inflammatory and immunologic diseases. However, as the vast majority of current approaches to kinase inhibition target the highly conserved ATP-binding site, the use of kinase inhibitors in treating nononcology diseases may require great selectivity for the target kinase. As protein kinases are signal transducers that are involved in binding to a variety of other proteins, targeting alternative, less conserved sites onmore » the protein may provide an avenue for greater selectivity. Here we report an affinity-based, high-throughput screening technique that allows nonbiased interrogation of small molecule libraries for binding to all exposed sites on a protein surface. This approach was used to screen both the c-Jun N-terminal protein kinase Jnk-1 (involved in insulin signaling) and p38{alpha} (involved in the formation of TNF{alpha} and other cytokines). In addition to canonical ATP-site ligands, compounds were identified that bind to novel allosteric sites. The nature, biological relevance, and mode of binding of these ligands were extensively characterized using two-dimensional {sup 1}H/{sup 13}C NMR spectroscopy, protein X-ray crystallography, surface plasmon resonance, and direct enzymatic activity and activation cascade assays. Jnk-1 and p38{alpha} both belong to the MAP kinase family, and the allosteric ligands for both targets bind similarly on a ledge of the protein surface exposed by the MAP insertion present in the CMGC family of protein kinases and distant from the active site. Medicinal chemistry studies resulted in an improved Jnk-1 ligand able to increase adiponectin secretion in human adipocytes and increase insulin-induced protein kinase PKB phosphorylation in human hepatocytes

  10. The association of JAK2V617F mutation and leukocytosis with thrombotic events in essential thrombocythemia.

    PubMed

    Hsiao, Hui-Hua; Yang, Ming-Yu; Liu, Yi-Chang; Lee, Ching-Ping; Yang, Wen-Chi; Liu, Ta-Chih; Chang, Chao-Sung; Lin, Sheng-Fung

    2007-11-01

    The Janus kinase 2 mutation, JAK2 (V617F), and megakaryocytic mutations, MPL (W515L/K), have been identified and correlated with a subtype of essential thrombocythemia (ET) patients. We investigated the frequency of mutations in ET patients and analyzed the relationship with their clinical features. Fifty-three ET patients were enrolled in the study. The amplification refractory mutation system was applied for the mutation survey of the JAK2V617F, while the polymerase chain reaction with sequencing was used for the mutation survey of MPLW515L/K. Thirty-five (66%) patients harboring the JAK2 (V617F) mutation, including 3 homozygous and 32 heterozygous changes, but no MPLW515L/K mutation, were found. During follow-up, 17 (32.1%) patients suffered from documented thrombotic events, with 15 having JAK2V617F mutations. Statistical analysis showed that patients with the JAK2 mutation had significantly higher leukocytes, hemoglobin level, and thrombotic event (p = 0.043, p = 0.001, and p = 0.029, respectively). Thrombotic events were also significantly correlated with leukocytosis and older age. The JAK2V617F mutation was noted in a certain population of ET patients and correlated with leukocytosis, high hemoglobin level, and thrombosis. Therefore, detection of the JAK2V617F mutation can affect not only the diagnosis, but also the management of ET patients.

  11. Development of the Third Generation EGFR Tyrosine Kinase Inhibitors for Anticancer Therapy.

    PubMed

    Cheng, Weiyan; Zhou, Jianhua; Tian, Xin; Zhang, Xiaojian

    2016-01-01

    Epidermal growth factor receptor (EGFR) is one of the most important targets in anticancer therapy. Till date, a large number of first and second generation EGFR tyrosine kinase inhibitors (TKIs) have been marketed or advanced into clinical studies. However, the occurrence of TKI-resistant mutations has led to the loss of efficacy of these inhibitors. In the purpose of overcoming resistant mutations and reducing side effects, lots of third generation EGFR inhibitors are explored with promising potencies against EGFR mutations while sparing wild-type EGFR. This review outlines the current landscape of the development of third generation EGFR inhibitors, mainly focusing on the biological properties, clinical status and structure-activity relationships.

  12. Adenovirus-mediated tissue factor pathway inhibitor gene transfer induces apoptosis by blocking the phosphorylation of JAK-2/STAT-3 pathway in vascular smooth muscle cells.

    PubMed

    Fu, Yu; Zhao, Yong; Liu, Yue; Zhu, Yejing; Chi, Jinyu; Hu, Jing; Zhang, Xiaohui; Yin, Xinhua

    2012-10-01

    In our previous study, we have demonstrated that tissue factor pathway inhibitor (TFPI) gene could induce vascular smooth muscle cell (VSMC) apoptosis. This study was conducted to investigate whether the overexpression of the TFPI gene can induce VSMC apoptosis by inhibiting JAK-2/STAT-3 pathway phosphorylation and thereby inhibiting the expression of such downstream targets as the apoptotic protein Bcl-2 and cell cycle protein cyclin D1. The effect of TFPI on the expression of survivin, a central molecule in cell survival, was also investigated. Rat VSMCs were infected with recombinant adenovirus containing either the TFPI (Ad-TFPI) or LacZ (Ad-LacZ) gene or DMEM in vitro. TFPI expression was detected by ELISA. TUNEL staining and electron microscope were carried out to determine the apoptosis of VSMCs. The expression levels of JAK-2, p-JAK-2, STAT-3, p-STAT-3, cyclin D1, Bcl-2 and survivin were examined by western blot analysis. TFPI protein was detected in the TFPI group after gene transfer and the peak expression was at the 3rd day. At the 3rd, 5th and 7th days after gene transfer, the apoptotic rates by TUNEL assay in the TFPI group were 10.91 ± 1.66%, 13.46 ± 1.28% and 17.04 ± 1.95%, respectively, whereas those in the LacZ group were 3.28 ± 0.89%, 4.01 ± 0.72% and 4.89 ± 1.17%, respectively. We observed cell contraction, slight mitochondrial swelling, nuclear pyknosis and apoptotic body formation in TFPI-treated VSMCs using electron microscopy. JAK-2, p-JAK-2, STAT-3, p-STAT-3, cyclin D1 and Bcl-2, which are all involved in the JAK-2/STAT-3 pathway, were detected in the VSMCs on the 3rd, 5th and 7th days after gene transfer, which is consistent with previously demonstrated time points when VSMCs apoptosis occurred. The expression levels of p-JAK-2, p-STAT-3, cyclin D1 and Bcl-2 were significantly decreased over time in the TFPI group (each P<0.05) but not in the Ad-LacZ and DMEM groups. However, this attenuation of expression was not observed for JAK-2

  13. STK33 kinase inhibitor BRD-8899 has no effect on KRAS-dependent cancer cell viability.

    PubMed

    Luo, Tuoping; Masson, Kristina; Jaffe, Jacob D; Silkworth, Whitney; Ross, Nathan T; Scherer, Christina A; Scholl, Claudia; Fröhling, Stefan; Carr, Steven A; Stern, Andrew M; Schreiber, Stuart L; Golub, Todd R

    2012-02-21

    Approximately 30% of human cancers harbor oncogenic gain-of-function mutations in KRAS. Despite interest in KRAS as a therapeutic target, direct blockade of KRAS function with small molecules has yet to be demonstrated. Based on experiments that lower mRNA levels of protein kinases, KRAS-dependent cancer cells were proposed to have a unique requirement for the serine/threonine kinase STK33. Thus, it was suggested that small-molecule inhibitors of STK33 might have therapeutic benefit in these cancers. Here, we describe the development of selective, low nanomolar inhibitors of STK33's kinase activity. The most potent and selective of these, BRD8899, failed to kill KRAS-dependent cells. While several explanations for this result exist, our data are most consistent with the view that inhibition of STK33's kinase activity does not represent a promising anti-KRAS therapeutic strategy.

  14. STK33 kinase inhibitor BRD-8899 has no effect on KRAS-dependent cancer cell viability

    PubMed Central

    Luo, Tuoping; Masson, Kristina; Jaffe, Jacob D.; Silkworth, Whitney; Ross, Nathan T.; Scherer, Christina A.; Scholl, Claudia; Fröhling, Stefan; Carr, Steven A.; Stern, Andrew M.; Schreiber, Stuart L.; Golub, Todd R.

    2012-01-01

    Approximately 30% of human cancers harbor oncogenic gain-of-function mutations in KRAS. Despite interest in KRAS as a therapeutic target, direct blockade of KRAS function with small molecules has yet to be demonstrated. Based on experiments that lower mRNA levels of protein kinases, KRAS-dependent cancer cells were proposed to have a unique requirement for the serine/threonine kinase STK33. Thus, it was suggested that small-molecule inhibitors of STK33 might have therapeutic benefit in these cancers. Here, we describe the development of selective, low nanomolar inhibitors of STK33’s kinase activity. The most potent and selective of these, BRD8899, failed to kill KRAS-dependent cells. While several explanations for this result exist, our data are most consistent with the view that inhibition of STK33’s kinase activity does not represent a promising anti-KRAS therapeutic strategy. PMID:22323609

  15. The discovery of potent ribosomal S6 kinase inhibitors by high-throughput screening and structure-guided drug design

    PubMed Central

    Kalusa, Andrew; Cano, Celine; Travers, Jon; Boxall, Kathy; Chow, Chiau Ling; Burns, Sam; Schmitt, Jessica; Pickard, Lisa; Barillari, Caterina; McAndrew, P. Craig; Clarke, Paul A.; Linardopoulos, Spiros; Griffin, Roger J.; Aherne, G. Wynne; Raynaud, Florence I.; Workman, Paul; Jones, Keith; van Montfort, Rob L.M.

    2013-01-01

    The ribosomal P70 S6 kinases play a crucial role in PI3K/mTOR regulated signalling pathways and are therefore potential targets for the treatment of a variety of diseases including diabetes and cancer. In this study we describe the identification of three series of chemically distinct S6K1 inhibitors. In addition, we report a novel PKA-S6K1 chimeric protein with five mutations in or near its ATP-binding site, which was used to determine the binding mode of two of the three inhibitor series, and provided a robust system to aid the optimisation of the oxadiazole-substituted benzimidazole inhibitor series. We show that the resulting oxadiazole-substituted aza-benzimidazole is a potent and ligand efficient S6 kinase inhibitor, which blocks the phosphorylation of RPS6 at Ser235/236 in TSC negative HCV29 human bladder cancer cells by inhibiting S6 kinase activity and thus provides a useful tool compound to investigate the function of S6 kinases. PMID:24072592

  16. Tyrosine kinase inhibitors and mesenchymal stromal cells: effects on self-renewal, commitment and functions

    PubMed Central

    Borriello, Adriana; Caldarelli, Ilaria; Bencivenga, Debora; Stampone, Emanuela; Perrotta, Silverio; Oliva, Adriana; Ragione, Fulvio Della

    2017-01-01

    The hope of selectively targeting cancer cells by therapy and eradicating definitively malignancies is based on the identification of pathways or metabolisms that clearly distinguish “normal” from “transformed” phenotypes. Some tyrosine kinase activities, specifically unregulated and potently activated in malignant cells, might represent important targets of therapy. Consequently, tyrosine kinase inhibitors (TKIs) might be thought as the “vanguard” of molecularly targeted therapy for human neoplasias. Imatinib and the successive generations of inhibitors of Bcr-Abl1 kinase, represent the major successful examples of TKI use in cancer treatment. Other tyrosine kinases have been selected as targets of therapy, but the efficacy of their inhibition, although evident, is less definite. Two major negative effects exist in this therapeutic strategy and are linked to the specificity of the drugs and to the role of the targeted kinase in non-malignant cells. In this review, we will discuss the data available on the TKIs effects on the metabolism and functions of mesenchymal stromal cells (MSCs). MSCs are widely distributed in human tissues and play key physiological roles; nevertheless, they might be responsible for important pathologies. At present, bone marrow (BM) MSCs have been studied in greater detail, for both embryological origins and functions. The available data are evocative of an unexpected degree of complexity and heterogeneity of BM-MSCs. It is conceivable that this grade of intricacy occurs also in MSCs of other organs. Therefore, in perspective, the negative effects of TKIs on MSCs might represent a critical problem in long-term cancer therapies based on such inhibitors. PMID:27750212

  17. Bidirectional signaling between TM4SF5 and IGF1R promotes resistance to EGFR kinase inhibitors.

    PubMed

    Choi, Jungeun; Kang, Minkyung; Nam, Seo Hee; Lee, Gyu-Ho; Kim, Hye-Jin; Ryu, Jihye; Cheong, Jin Gyu; Jung, Jae Woo; Kim, Tai Young; Lee, Ho-Young; Lee, Jung Weon

    2015-10-01

    The membrane glycoprotein TM4SF5 (transmembrane 4 L6 family member 5), which is similar to the tetraspanins, is highly expressed in different cancers and causes epithelial-mesenchymal transition (EMT). TM4SF5 interacts with other membrane proteins during its pro-tumorigenic roles, presumably at tetraspanin-enriched microdomains (TEMs/TERMs). Here, we explored TM4SF5-mediated resistance against the clinically important EGFR kinase inhibitors, with regards to cooperation with other membrane proteins, particularly the insulin-like growth factor 1 receptor (IGF1R). Using cancer cells including NSCLC with TM4SF5 overexpression or IGF1R suppression in either normal 2 dimensional (2D), 3D aqueous spheroids, or 3D collagen I gels systems, the sensitivity to tyrosine kinase inhibitors (TKIs) were evaluated. We found that TM4SF5 and IGF1R transcriptionally modulated one another, with each protein promoting the expressions of the other. Expression of TM4SF5 in gefitinib-sensitive HCC827 cells caused resistance to erlotinib and gefitinib, but not to sorafenib [a platelet derived growth factor receptor (PDGFR) inhibitor]; whereas suppression of IGF1R from gefitinib-resistant NCI-H1299 cells caused enhanced sensitization to the inhibitors. Expression of TM4SF5 and IGF1R in the drug-sensitive cells promoted signaling activities of extracellular signal-regulated kinases (ERKs), protein kinase B (Akt), and S6 kinase (S6K), and resulted in a higher residual EGFR activity, even after EGFR kinase inhibitor treatment. Complex formation between TM4SF5 and IGF1R was observed, and also included EGFR, dependent on TM4SF5 expression. The TM4SF5-mediated drug resistance was further confirmed in an aqueous 3D spheroid system or upon being embedded in 3D extracellular matrix (ECM)-surrounded gel systems. Collectively, these data suggest that anti-TM4SF5 reagents may be combined with the EGFR kinase inhibitors to enhance the efficacy of chemotherapies against NSCLC. Copyright © 2015 Elsevier

  18. Targeting Mitogen-activated Protein Kinase-activated Protein Kinase 2 (MAPKAPK2, MK2): Medicinal Chemistry Efforts to Lead Small Molecule Inhibitors to Clinical Trials

    PubMed Central

    Fiore, Mario; Forli, Stefano; Manetti, Fabrizio

    2015-01-01

    The p38/MAPK-activated kinase 2 (MK2) pathway is involved in a series of pathological conditions (inflammation diseases and metastasis) and in the resistance mechanism to antitumor agents. None of the p38 inhibitors entered advanced clinical trials because of their unwanted systemic side effects. For this reason, MK2 was identified as an alternative target to block the pathway, but avoiding the side effects of p38 inhibition. However, ATP-competitive MK2 inhibitors suffered from low solubility, poor cell permeability, and scarce kinase selectivity. Fortunately, non-ATP-competitive inhibitors of MK2 have been already discovered that allowed circumventing the selectivity issue. These compounds showed the additional advantage to be effective at lower concentrations in comparison to the ATP-competitive inhibitors. Therefore, although the significant difficulties encountered during the development of these inhibitors, MK2 is still considered as an attractive target to treat inflammation and related diseases, to prevent tumor metastasis, and to increase tumor sensitivity to chemotherapeutics. PMID:26502061

  19. Myeloproliferative neoplasms: JAK2 signaling pathway as a central target for therapy.

    PubMed

    Pasquier, Florence; Cabagnols, Xenia; Secardin, Lise; Plo, Isabelle; Vainchenker, William

    2014-09-01

    The discovery of the JAK2V617F mutation followed by the discovery of other genetic abnormalities allowed important progress in the understanding of the pathogenesis and management of myeloproliferative neoplasms (MPN)s. Classical Breakpoint cluster region-Abelson (BCR-ABL)-negative neoplasms include 3 main disorders: essential thrombocythemia (ET), polycythemia vera (PV), and primary myelofibrosis (PMF). Genomic studies have shown that these disorders are more heterogeneous than previously thought with 3 main entities corresponding to different gene mutations: the JAK2 disorder, essentially due to JAK2V617F mutation, which includes nearly all PVs and a majority of ETs and PMFs with a continuum between these diseases and the myeloproliferative leukemia (MPL) and calreticulin (CALR) disorders, which include a fraction of ET and PMF. All of these mutations lead to a JAK2 constitutive activation. Murine models either with JAK2V617F or MPLW515L, but also with JAK2 or MPL germ line mutations found in hereditary thrombocytosis, have demonstrated that they are drivers of myeloproliferation. However, the myeloproliferative driver mutation is still unknown in approximately 15% of ET and PMF, but appears to also target the JAK/Signal Transducer and Activator of Transcription (STAT) pathway. However, other mutations in genes involved in epigenetics or splicing also can be present and can predate or follow mutations in signaling. They are involved either in clonal dominance or in phenotypic changes, more particularly in PMF. They can be associated with leukemic progression and might have an important prognostic value such as additional sex comb-like 1 mutations. Despite this heterogeneity, it is tempting to target JAK2 and its signaling for therapy. However in PMF, Adenosine Tri-Phosphate (ATP)-competitive JAK2 inhibitors have shown their interest, but also their important limitations. Thus, other approaches are required, which are discussed in this review. Copyright © 2014

  20. INTERFERON α ACTIVATES NF-κ B IN JAK1-DEFICIENT CELLS THROUGH A TYK2-DEPENDENT PATHWAY

    PubMed Central

    Yang, Chuan He; Murti, Aruna; Valentine, William J.; Du, Ziyun; Pfeffer, Lawrence M.

    2005-01-01

    In addition to activating members of the STAT transcription factor family, IFN α/β activates the NF-κ B transcription factor. To determine the role of the JAK-STAT pathway in NF-κ B activation by IFN, we examined NF-κ B activation in JAK1-deficient mutant human fibrosarcoma cells. In wild-type fibrosarcoma cells (2fTGH) IFN activates STAT1, STAT2 and STAT3, as well as NF-κB complexes comprised of p50 and p65. In contrast, in JAK1-deficient cells IFN induces NF-κB activation and NF-κB dependent gene transcription, but does not activate these STAT proteins and has no effect on STAT-dependent gene transcription. Expression of a catalytically-inactive TYK2 tyrosine kinase in JAK1-deficient cells, as well as in the highly IFN-sensitive Daudi lymphoblastoid cell line, abrogates NF-κB activation by IFN. Moreover, IFN does not promote NF-κB activation in TYK2-deficient mutant fibrosarcoma cells. Our results demonstrate a dichotomy between the classical JAK-STAT pathway and the NF-κB signaling pathway. In the IFN signaling pathway leading to STAT activation both JAK1 and TYK2 are essential, while NF-κB activation requires only TYK2. PMID:15883164

  1. Bis-Aryl Urea Derivatives as Potent and Selective LIM Kinase (Limk) Inhibitors

    PubMed Central

    Yin, Yan; Zheng, Ke; Eid, Nibal; Howard, Shannon; Jeong, Ji-Hak; Yi, Fei; Guo, Jia; Park, Chul M; Bibian, Mathieu; Wu, Weilin; Hernandez, Pamela; Park, HaJeung; Wu, Yuntao; Luo, Jun-Li; LoGrasso, Philip V.; Feng, Yangbo

    2015-01-01

    The discovery/optimization of bis-aryl ureas as Limk inhibitors to obtain high potency and selectivity, and appropriate pharmacokinetic properties through systematic SAR studies is reported. Docking studies supported the observed SAR. Optimized Limk inhibitors had high biochemical potency (IC50 < 25 nM), excellent selectivity against ROCK and JNK kinases (> 400-fold), potent inhibition of cofilin phosphorylation in A7r5,PC-3, and CEM-SS T cells (IC50 < 1 μM), and good in vitro and in vivo pharmacokinetic properties. In the profiling against a panel of 61 kinases, compound 18b at 1 μM inhibited only Limk1 and STK16 with ≥ 80% inhibition. Compounds 18b and 18f were highly efficient in inhibiting cell-invasion/migration in PC-3 cells. In addition, compound 18w was demonstrated to be effective on reducing intraocular pressure (IOP) on rat eyes. Taken together, these data demonstrated that we had developed a novel class of bis-aryl urea derived potent and selective Limk inhibitors. PMID:25621531

  2. Hit to lead optimization of pyrazolo[1,5-a]pyrimidines as B-Raf kinase inhibitors.

    PubMed

    Gopalsamy, Ariamala; Ciszewski, Greg; Shi, Mengxiao; Berger, Dan; Hu, Yongbo; Lee, Frederick; Feldberg, Larry; Frommer, Eileen; Kim, Steven; Collins, Karen; Wojciechowicz, Donald; Mallon, Robert

    2009-12-15

    Our continued effort towards optimization of the pyrazolo[1,5-a]pyrimidine scaffold as B-Raf kinase inhibitors is described. Structure guided design was utilized to introduce kinase hinge region interacting groups in the 2-position of the scaffold. This strategy led to the identification of lead compound 9 with enhanced enzyme and cellular potency, while maintaining good selectivity over a number of kinases.

  3. Suppressors and activators of JAK-STAT signaling at diagnosis and relapse of acute lymphoblastic leukemia in Down syndrome

    PubMed Central

    Schwartzman, Omer; Savino, Angela Maria; Gombert, Michael; Palmi, Chiara; Cario, Gunnar; Schrappe, Martin; Eckert, Cornelia; von Stackelberg, Arend; Huang, Jin-Yan; Hameiri-Grossman, Michal; Avigad, Smadar; te Kronnie, Geertruy; Geron, Ifat; Birger, Yehudit; Rein, Avigail; Zarfati, Giulia; Fischer, Ute; Mukamel, Zohar; Stanulla, Martin; Biondi, Andrea; Cazzaniga, Giovanni; Vetere, Amedeo; Wagner, Bridget K.; Chen, Zhu; Chen, Sai-Juan; Tanay, Amos; Borkhardt, Arndt; Izraeli, Shai

    2017-01-01

    Children with Down syndrome (DS) are prone to development of high-risk B-cell precursor ALL (DS-ALL), which differs genetically from most sporadic pediatric ALLs. Increased expression of cytokine receptor-like factor 2 (CRLF2), the receptor to thymic stromal lymphopoietin (TSLP), characterizes about half of DS-ALLs and also a subgroup of sporadic “Philadelphia-like” ALLs. To understand the pathogenesis of relapsed DS-ALL, we performed integrative genomic analysis of 25 matched diagnosis-remission and -relapse DS-ALLs. We found that the CRLF2 rearrangements are early events during DS-ALL evolution and generally stable between diagnoses and relapse. Secondary activating signaling events in the JAK-STAT/RAS pathway were ubiquitous but highly redundant between diagnosis and relapse, suggesting that signaling is essential but that no specific mutations are “relapse driving.” We further found that activated JAK2 may be naturally suppressed in 25% of CRLF2pos DS-ALLs by loss-of-function aberrations in USP9X, a deubiquitinase previously shown to stabilize the activated phosphorylated JAK2. Interrogation of large ALL genomic databases extended our findings up to 25% of CRLF2pos, Philadelphia-like ALLs. Pharmacological or genetic inhibition of USP9X, as well as treatment with low-dose ruxolitinib, enhanced the survival of pre-B ALL cells overexpressing mutated JAK2. Thus, somehow counterintuitive, we found that suppression of JAK-STAT “hypersignaling” may be beneficial to leukemic B-cell precursors. This finding and the reduction of JAK mutated clones at relapse suggest that the therapeutic effect of JAK specific inhibitors may be limited. Rather, combined signaling inhibitors or direct targeting of the TSLP receptor may be a useful therapeutic strategy for DS-ALL. PMID:28461505

  4. Suppressors and activators of JAK-STAT signaling at diagnosis and relapse of acute lymphoblastic leukemia in Down syndrome.

    PubMed

    Schwartzman, Omer; Savino, Angela Maria; Gombert, Michael; Palmi, Chiara; Cario, Gunnar; Schrappe, Martin; Eckert, Cornelia; von Stackelberg, Arend; Huang, Jin-Yan; Hameiri-Grossman, Michal; Avigad, Smadar; Te Kronnie, Geertruy; Geron, Ifat; Birger, Yehudit; Rein, Avigail; Zarfati, Giulia; Fischer, Ute; Mukamel, Zohar; Stanulla, Martin; Biondi, Andrea; Cazzaniga, Giovanni; Vetere, Amedeo; Wagner, Bridget K; Chen, Zhu; Chen, Sai-Juan; Tanay, Amos; Borkhardt, Arndt; Izraeli, Shai

    2017-05-16

    Children with Down syndrome (DS) are prone to development of high-risk B-cell precursor ALL (DS-ALL), which differs genetically from most sporadic pediatric ALLs. Increased expression of cytokine receptor-like factor 2 (CRLF2), the receptor to thymic stromal lymphopoietin (TSLP), characterizes about half of DS-ALLs and also a subgroup of sporadic "Philadelphia-like" ALLs. To understand the pathogenesis of relapsed DS-ALL, we performed integrative genomic analysis of 25 matched diagnosis-remission and -relapse DS-ALLs. We found that the CRLF2 rearrangements are early events during DS-ALL evolution and generally stable between diagnoses and relapse. Secondary activating signaling events in the JAK-STAT/RAS pathway were ubiquitous but highly redundant between diagnosis and relapse, suggesting that signaling is essential but that no specific mutations are "relapse driving." We further found that activated JAK2 may be naturally suppressed in 25% of CRLF2 pos DS-ALLs by loss-of-function aberrations in USP9X, a deubiquitinase previously shown to stabilize the activated phosphorylated JAK2. Interrogation of large ALL genomic databases extended our findings up to 25% of CRLF2 pos , Philadelphia-like ALLs. Pharmacological or genetic inhibition of USP9X, as well as treatment with low-dose ruxolitinib, enhanced the survival of pre-B ALL cells overexpressing mutated JAK2. Thus, somehow counterintuitive, we found that suppression of JAK-STAT "hypersignaling" may be beneficial to leukemic B-cell precursors. This finding and the reduction of JAK mutated clones at relapse suggest that the therapeutic effect of JAK specific inhibitors may be limited. Rather, combined signaling inhibitors or direct targeting of the TSLP receptor may be a useful therapeutic strategy for DS-ALL.

  5. Drosophila glypicans Dally and Dally-like are essential regulators for JAK/STAT signaling and Unpaired distribution in eye development

    PubMed Central

    Zhang, Yan; You, Jia; Ren, Wenyan; Lin, Xinhua

    2013-01-01

    The highly conserved janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway is a well-known signaling system that is involved in many biological processes. In Drosophila, this signaling cascade is activated by ligands of the Unpaired (Upd) family. Therefore, the regulation of Upd distribution is one of the key issues in controlling the JAK/STAT signaling activity and function. Heparan sulfate proteoglycans (HSPGs) are macromolecules that regulate the distribution of many ligand proteins including Wingless, Hedgehog and Decapentaplegic (Dpp). Here we show that during Drosophila eye development, HSPGs are also required in normal Upd distribution and JAK/STAT signaling activity. Loss of HSPG biosynthesis enzyme Brother of tout-velu (Botv), Sulfateless (Sfl), or glypicans Division abnormally delayed (Dally) and Dally-like protein (Dlp) led to reduced levels of extracellular Upd and reduction in JAK/STAT signaling activity. Overexpression of dally resulted in the accumulation of Upd and up-regulation of the signaling activity. Luciferase assay also showed that Dally promotes JAK/STAT signaling activity, and is dependent on its heparin sulfate chains. These data suggest that Dally and Dlp are essential for Upd distribution and JAK/STAT signaling activity. PMID:23313126

  6. Pharmacophore modeling and virtual screening to identify potential RET kinase inhibitors.

    PubMed

    Shih, Kuei-Chung; Shiau, Chung-Wai; Chen, Ting-Shou; Ko, Ching-Huai; Lin, Chih-Lung; Lin, Chun-Yuan; Hwang, Chrong-Shiong; Tang, Chuan-Yi; Chen, Wan-Ru; Huang, Jui-Wen

    2011-08-01

    Chemical features based 3D pharmacophore model for REarranged during Transfection (RET) tyrosine kinase were developed by using a training set of 26 structurally diverse known RET inhibitors. The best pharmacophore hypothesis, which identified inhibitors with an associated correlation coefficient of 0.90 between their experimental and estimated anti-RET values, contained one hydrogen-bond acceptor, one hydrogen-bond donor, one hydrophobic, and one ring aromatic features. The model was further validated by a testing set, Fischer's randomization test, and goodness of hit (GH) test. We applied this pharmacophore model to screen NCI database for potential RET inhibitors. The hits were docked to RET with GOLD and CDOCKER after filtering by Lipinski's rules. Ultimately, 24 molecules were selected as potential RET inhibitors for further investigation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Somatic CALR Mutations in Myeloproliferative Neoplasms with Nonmutated JAK2

    PubMed Central

    Baxter, E.J.; Nice, F.L.; Gundem, G.; Wedge, D.C.; Avezov, E.; Li, J.; Kollmann, K.; Kent, D.G.; Aziz, A.; Godfrey, A.L.; Hinton, J.; Martincorena, I.; Van Loo, P.; Jones, A.V.; Guglielmelli, P.; Tarpey, P.; Harding, H.P.; Fitzpatrick, J.D.; Goudie, C.T.; Ortmann, C.A.; Loughran, S.J.; Raine, K.; Jones, D.R.; Butler, A.P.; Teague, J.W.; O’Meara, S.; McLaren, S.; Bianchi, M.; Silber, Y.; Dimitropoulou, D.; Bloxham, D.; Mudie, L.; Maddison, M.; Robinson, B.; Keohane, C.; Maclean, C.; Hill, K.; Orchard, K.; Tauro, S.; Du, M.-Q.; Greaves, M.; Bowen, D.; Huntly, B.J.P.; Harrison, C.N.; Cross, N.C.P.; Ron, D.; Vannucchi, A.M.; Papaemmanuil, E.; Campbell, P.J.; Green, A.R.

    2014-01-01

    BACKGROUND Somatic mutations in the Janus kinase 2 gene (JAK2) occur in many myeloproliferative neoplasms, but the molecular pathogenesis of myeloproliferative neoplasms with nonmutated JAK2 is obscure, and the diagnosis of these neoplasms remains a challenge. METHODS We performed exome sequencing of samples obtained from 151 patients with myeloproliferative neoplasms. The mutation status of the gene encoding calreticulin (CALR) was assessed in an additional 1345 hematologic cancers, 1517 other cancers, and 550 controls. We established phylogenetic trees using hematopoietic colonies. We assessed calreticulin subcellular localization using immunofluorescence and flow cytometry. RESULTS Exome sequencing identified 1498 mutations in 151 patients, with medians of 6.5, 6.5, and 13.0 mutations per patient in samples of polycythemia vera, essential thrombocythemia, and myelofibrosis, respectively. Somatic CALR mutations were found in 70 to 84% of samples of myeloproliferative neoplasms with nonmutated JAK2, in 8% of myelodysplasia samples, in occasional samples of other myeloid cancers, and in none of the other cancers. A total of 148 CALR mutations were identified with 19 distinct variants. Mutations were located in exon 9 and generated a +1 base-pair frameshift, which would result in a mutant protein with a novel C-terminal. Mutant calreticulin was observed in the endoplasmic reticulum without increased cell-surface or Golgi accumulation. Patients with myeloproliferative neoplasms carrying CALR mutations presented with higher platelet counts and lower hemoglobin levels than patients with mutated JAK2. Mutation of CALR was detected in hematopoietic stem and progenitor cells. Clonal analyses showed CALR mutations in the earliest phylogenetic node, a finding consistent with its role as an initiating mutation in some patients. CONCLUSIONS Somatic mutations in the endoplasmic reticulum chaperone CALR were found in a majority of patients with myeloproliferative neoplasms with

  8. Vascular events in Korean patients with myeloproliferative neoplasms and their relationship to JAK2 mutation.

    PubMed

    Bang, Soo-Mee; Lee, Jong-Seok; Ahn, Jeong Yeal; Lee, Jae Hoon; Hyun, Myung Soo; Kim, Bong Seog; Park, Moo Rim; Chi, Hyun-Sook; Kim, Ho Young; Kim, Hyo Jung; Lee, Moon Hee; Kim, Hwak; Won, Jong Ho; Yoon, Hwi Joong; Oh, Do-Yeun; Nam, Eun-Mi; Bae, Sung Hwa; Kim, Byoung-Kook

    2009-03-01

    Evaluation of the Janus kinase 2 (JAK2) V617F mutation has been widely used for the diagnosis of myeloproliferative neoplasms (MPN). However, its prognostic relevance to clinical outcome is not completely understood. We investigated the association of JAK2 V617F with vascular events in Korean patients with myeloproliferative neoplasms (MPN). We studied 283 patients from 15 centers, who were diagnosed with MPN. The JAK2 V617F status was evaluated by allele-specific polymerase chain reaction (PCR) and sequencing. The patients' diagnoses were essential thrombocythemia (ET n = 146), polycythemia vera (PV n = 120), primary myelofibrosis (n = 12), and unclassifiable MPN (MPNu n = 5). JAK2 V617F was detected in 89 (61%) patients with ET, 103 (86%) with PV, four (33%) with myelofibrosis, and four (80%) with MPNu. A higher number of leukocytes, haemoglobin levels and BM cellularity as well as an older age, lower platelet counts, and diagnosis of PV were significantly correlated with JAK2 V617F. Eighty-three and 43 episodes of thrombosis and bleeding occurred in 100 patients each before and after the diagnosis. Vascular events more frequently occurred in 37% of patients with JAK2 V617F than in 29% of those without the mutation (p = 0.045). Among 175 patients whose samples were available for sequencing, 28 patients with homozygous JAK2 V617F had vascular events more frequently (57%) than those who were heterozygotes (39%) or had the wild type (27%) (p = 0.03). The multivariate analysis showed that a JAK2 homozygous mutation, hypercholesterolemia and older age were independent risk factors for a vascular event. The results of this study showed that Korean patients with MPN had a similar JAK2 mutation rate and frequency of vascular events when compared to Western patients. The presence of V617F was significantly related to vascular events. Therefore, initial evaluation for the JAK2 mutation and careful monitoring for vascular events should be performed in MPN patients.

  9. Target Residence Time-Guided Optimization on TTK Kinase Results in Inhibitors with Potent Anti-Proliferative Activity.

    PubMed

    Uitdehaag, Joost C M; de Man, Jos; Willemsen-Seegers, Nicole; Prinsen, Martine B W; Libouban, Marion A A; Sterrenburg, Jan Gerard; de Wit, Joeri J P; de Vetter, Judith R F; de Roos, Jeroen A D M; Buijsman, Rogier C; Zaman, Guido J R

    2017-07-07

    The protein kinase threonine tyrosine kinase (TTK; also known as Mps1) is a critical component of the spindle assembly checkpoint and a promising drug target for the treatment of aggressive cancers, such as triple negative breast cancer. While the first TTK inhibitors have entered clinical trials, little is known about how the inhibition of TTK with small-molecule compounds affects cellular activity. We studied the selective TTK inhibitor NTRC 0066-0, which was developed in our own laboratory, together with 11 TTK inhibitors developed by other companies, including Mps-BAY2b, BAY 1161909, BAY 1217389 (Bayer), TC-Mps1-12 (Shionogi), and MPI-0479605 (Myrexis). Parallel testing shows that the cellular activity of these TTK inhibitors correlates with their binding affinity to TTK and, more strongly, with target residence time. TTK inhibitors are therefore an example where target residence time determines activity in in vitro cellular assays. X-ray structures and thermal stability experiments reveal that the most potent compounds induce a shift of the glycine-rich loop as a result of binding to the catalytic lysine at position 553. This "lysine trap" disrupts the catalytic machinery. Based on these insights, we developed TTK inhibitors, based on a (5,6-dihydro)pyrimido[4,5-e]indolizine scaffold, with longer target residence times, which further exploit an allosteric pocket surrounding Lys553. Their binding mode is new for kinase inhibitors and can be classified as hybrid Type I/Type III. These inhibitors have very potent anti-proliferative activity that rivals classic cytotoxic therapy. Our findings will open up new avenues for more applications for TTK inhibitors in cancer treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Combined effects of EGFR tyrosine kinase inhibitors and vATPase inhibitors in NSCLC cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Hyeon-Ok; Hong, Sung-Eun; Kim, Chang Soon

    2015-08-15

    Despite excellent initial clinical responses of non-small cell lung cancer (NSCLC) patients to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs), many patients eventually develop resistance. According to a recent report, vacuolar H + ATPase (vATPase) is overexpressed and is associated with chemotherapy drug resistance in NSCLC. We investigated the combined effects of EGFR TKIs and vATPase inhibitors and their underlying mechanisms in the regulation of NSCLC cell death. We found that combined treatment with EGFR TKIs (erlotinib, gefitinib, or lapatinib) and vATPase inhibitors (bafilomycin A1 or concanamycin A) enhanced synergistic cell death compared to treatments with each drugmore » alone. Treatment with bafilomycin A1 or concanamycin A led to the induction of Bnip3 expression in an Hif-1α dependent manner. Knock-down of Hif-1α or Bnip3 by siRNA further enhanced cell death induced by bafilomycin A1, suggesting that Hif-1α/Bnip3 induction promoted resistance to cell death induced by the vATPase inhibitors. EGFR TKIs suppressed Hif-1α and Bnip3 expression induced by the vATPase inhibitors, suggesting that they enhanced the sensitivity of the cells to these inhibitors by decreasing Hif-1α/Bnip3 expression. Taken together, we conclude that EGFR TKIs enhance the sensitivity of NSCLC cells to vATPase inhibitors by decreasing Hif-1α/Bnip3 expression. We suggest that combined treatment with EGFR TKIs and vATPase inhibitors is potentially effective for the treatment of NSCLC. - Highlights: • Co-treatment with EGFR TKIs and vATPase inhibitors induces synergistic cell death • EGFR TKIs enhance cell sensitivity to vATPase inhibitors via Hif-1α downregulation • Co-treatment of these inhibitors is potentially effective for the treatment of NSCLC.« less

  11. Development of Certain Protein Kinase Inhibitors with the Components from Traditional Chinese Medicine

    PubMed Central

    Liu, Minghua; Zhao, Ge; Cao, Shousong; Zhang, Yangyang; Li, Xiaofang; Lin, Xiukun

    2017-01-01

    Traditional Chinese medicines (TCMs) have been used in China for more than two thousand years, and some of them have been confirmed to be effective in cancer treatment. Protein kinases play critical roles in control of cell growth, proliferation, migration, survival, and angiogenesis and mediate their biological effects through their catalytic activity. In recent years, numerous protein kinase inhibitors have been developed and are being used clinically. Anticancer TCMs represent a large class of bioactive substances, and some of them display anticancer activity via inhibiting protein kinases to affect the phosphoinositide 3-kinase, serine/threonine-specific protein kinases, pechanistic target of rapamycin (PI3K/AKT/mTOR), P38, mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinases (ERK) pathways. In the present article, we comprehensively reviewed several components isolated from anticancer TCMs that exhibited significantly inhibitory activity toward a range of protein kinases. These components, which belong to diverse structural classes, are reviewed herein, based upon the kinases that they inhibit. The prospects and problems in development of the anticancer TCMs are also discussed. PMID:28119606

  12. IRS2 silencing increases apoptosis and potentiates the effects of ruxolitinib in JAK2V617F-positive myeloproliferative neoplasms

    PubMed Central

    de Melo Campos, Paula; Machado-Neto, João A.; Eide, Christopher A.; Savage, Samantha L.; Scopim-Ribeiro, Renata; da Silva Souza Duarte, Adriana; Favaro, Patricia; Lorand-Metze, Irene; Costa, Fernando F.; Tognon, Cristina E.; Druker, Brian J.; Saad, Sara T. Olalla; Traina, Fabiola

    2016-01-01

    The recurrent V617F mutation in JAK2 (JAK2V617F) has emerged as the primary contributor to the pathogenesis of myeloproliferative neoplasms (MPN). However, the lack of complete response in most patients treated with the JAK1/2 inhibitor, ruxolitinib, indicates the need for identifying pathways that cooperate with JAK2. Activated JAK2 was found to be associated with the insulin receptor substrate 2 (IRS2) in non-hematological cells. We identified JAK2/IRS2 binding in JAK2V617F HEL cells, but not in the JAK2WT U937 cell line. In HEL cells, IRS2 silencing decreased STAT5 phosphorylation, reduced cell viability and increased apoptosis; these effects were enhanced when IRS2 silencing was combined with ruxolitinib. In U937 cells, IRS2 silencing neither reduced cell viability nor induced apoptosis. IRS1/2 pharmacological inhibition in primary MPN samples reduced cell viability in JAK2V617F-positive but not JAK2WT specimens; combination with ruxolitinib had additive effects. IRS2 expression was significantly higher in CD34+ cells from essential thrombocythemia patients compared to healthy donors, and in JAK2V617F MPN patients when compared to JAK2WT. Our data indicate that IRS2 is a binding partner of JAK2V617F in MPN. IRS2 contributes to increased cell viability and reduced apoptosis in JAK2-mutated cells. Combined pharmacological inhibition of IRS2 and JAK2 may have a potential clinical application in MPN. PMID:26755644

  13. Kinome-wide selectivity profiling of ATP-competitive mammalian target of rapamycin (mTOR) inhibitors and characterization of their binding kinetics.

    PubMed

    Liu, Qingsong; Kirubakaran, Sivapriya; Hur, Wooyoung; Niepel, Mario; Westover, Kenneth; Thoreen, Carson C; Wang, Jinhua; Ni, Jing; Patricelli, Matthew P; Vogel, Kurt; Riddle, Steve; Waller, David L; Traynor, Ryan; Sanda, Takaomi; Zhao, Zheng; Kang, Seong A; Zhao, Jean; Look, A Thomas; Sorger, Peter K; Sabatini, David M; Gray, Nathanael S

    2012-03-23

    An intensive recent effort to develop ATP-competitive mTOR inhibitors has resulted in several potent and selective molecules such as Torin1, PP242, KU63794, and WYE354. These inhibitors are being widely used as pharmacological probes of mTOR-dependent biology. To determine the potency and specificity of these agents, we have undertaken a systematic kinome-wide effort to profile their selectivity and potency using chemical proteomics and assays for enzymatic activity, protein binding, and disruption of cellular signaling. Enzymatic and cellular assays revealed that all four compounds are potent inhibitors of mTORC1 and mTORC2, with Torin1 exhibiting ∼20-fold greater potency for inhibition of Thr-389 phosphorylation on S6 kinases (EC(50) = 2 nM) relative to other inhibitors. In vitro biochemical profiling at 10 μM revealed binding of PP242 to numerous kinases, although WYE354 and KU63794 bound only to p38 kinases and PI3K isoforms and Torin1 to ataxia telangiectasia mutated, ATM and Rad3-related protein, and DNA-PK. Analysis of these protein targets in cellular assays did not reveal any off-target activities for Torin1, WYE354, and KU63794 at concentrations below 1 μM but did show that PP242 efficiently inhibited the RET receptor (EC(50), 42 nM) and JAK1/2/3 kinases (EC(50), 780 nM). In addition, Torin1 displayed unusually slow kinetics for inhibition of the mTORC1/2 complex, a property likely to contribute to the pharmacology of this inhibitor. Our results demonstrated that, with the exception of PP242, available ATP-competitive compounds are highly selective mTOR inhibitors when applied to cells at concentrations below 1 μM and that the compounds may represent a starting point for medicinal chemistry efforts aimed at developing inhibitors of other PI3K kinase-related kinases.

  14. Genetic and Pharmacological Inhibition of PDK1 in Cancer Cells: Characterization of a Selective Allosteric Kinase Inhibitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagashima, Kumiko; Shumway, Stuart D.; Sathyanarayanan, Sriram

    2013-11-20

    Phosphoinositide-dependent kinase 1 (PDK1) is a critical activator of multiple prosurvival and oncogenic protein kinases and has garnered considerable interest as an oncology drug target. Despite progress characterizing PDK1 as a therapeutic target, pharmacological support is lacking due to the prevalence of nonspecific inhibitors. Here, we benchmark literature and newly developed inhibitors and conduct parallel genetic and pharmacological queries into PDK1 function in cancer cells. Through kinase selectivity profiling and x-ray crystallographic studies, we identify an exquisitely selective PDK1 inhibitor (compound 7) that uniquely binds to the inactive kinase conformation (DFG-out). In contrast to compounds 1-5, which are classical ATP-competitivemore » kinase inhibitors (DFG-in), compound 7 specifically inhibits cellular PDK1 T-loop phosphorylation (Ser-241), supporting its unique binding mode. Interfering with PDK1 activity has minimal antiproliferative effect on cells growing as plastic-attached monolayer cultures (i.e. standard tissue culture conditions) despite reduced phosphorylation of AKT, RSK, and S6RP. However, selective PDK1 inhibition impairs anchorage-independent growth, invasion, and cancer cell migration. Compound 7 inhibits colony formation in a subset of cancer cell lines (four of 10) and primary xenograft tumor lines (nine of 57). RNAi-mediated knockdown corroborates the PDK1 dependence in cell lines and identifies candidate biomarkers of drug response. In summary, our profiling studies define a uniquely selective and cell-potent PDK1 inhibitor, and the convergence of genetic and pharmacological phenotypes supports a role of PDK1 in tumorigenesis in the context of three-dimensional in vitro culture systems.« less

  15. LOSS OF JAK2 REGULATION VIA VHL-SOCS1 E3 UBIQUITIN HETEROCOMPLEX UNDERLIES CHUVASH POLYCYTHEMIA

    PubMed Central

    Russell, Ryan C.; Sufan, Roxana I.; Zhou, Bing; Heir, Pardeep; Bunda, Severa; Sybingco, Stephanie S.; Greer, Samantha N.; Roche, Olga; Heathcote, Samuel A.; Chow, Vinca W.K.; Boba, Lukasz M.; Richmond, Terri D.; Hickey, Michele M.; Barber, Dwayne L.; Cheresh, David A.; Simon, M. Celeste; Irwin, Meredith S.; Kim, William Y.; Ohh, Michael

    2011-01-01

    SUMMARY Chuvash polycythemia (CP) is a rare congenital form of polycythemia caused by homozygous R200W and H191D mutations in the von Hippel-Lindau (VHL) gene whose gene product is the principal negative regulator of hypoxia-inducible factor. However, the molecular mechanisms underlying some of the hallmark features of CP such as hypersensitivity to erythropoietin are unclear. Here, we show that VHL directly binds suppressor of cytokine signalling 1 (SOCS1) to form a heterodimeric E3 ligase that targets phosphorylated (p)JAK2 for ubiquitin-mediated destruction. In contrast, CP-associated VHL mutants have altered affinity for SOCS1 and fail to engage and degrade pJAK2. Systemic administration of a highly selective JAK2 inhibitor, TG101209, reverses the disease phenotype in vhlR200W/R200W knock-in mice, a model that faithfully recapitulates human CP. These results reveal VHL as a SOCS1-cooperative negative regulator of JAK2 and provide compelling biochemical and preclinical evidence for JAK2- targeted therapy in CP patients. PMID:21685897

  16. Momelotinib inhibits ACVR1/ALK2, decreases hepcidin production, and ameliorates anemia of chronic disease in rodents

    PubMed Central

    Asshoff, Malte; Petzer, Verena; Warr, Matthew R.; Haschka, David; Tymoszuk, Piotr; Demetz, Egon; Seifert, Markus; Posch, Wilfried; Nairz, Manfred; Maciejewski, Pat; Fowles, Peter; Burns, Christopher J.; Smith, Gregg; Wagner, Kay-Uwe; Weiss, Guenter; Whitney, J. Andrew

    2017-01-01

    Patients with myelofibrosis (MF) often develop anemia and frequently become dependent on red blood cell transfusions. Results from a phase 2 study for the treatment of MF with the Janus kinase 1/2 (JAK1/2) inhibitor momelotinib (MMB) demonstrated that MMB treatment ameliorated anemia, which was unexpected for a JAK1/2 inhibitor, because erythropoietin-mediated JAK2 signaling is essential for erythropoiesis. Using a rat model of anemia of chronic disease, we demonstrated that MMB treatment can normalize hemoglobin and red blood cell numbers. We found that this positive effect is driven by direct inhibition of the bone morphogenic protein receptor kinase activin A receptor, type I (ACVR1), and the subsequent reduction of hepatocyte hepcidin production. Of note, ruxolitinib, a JAK1/2 inhibitor approved for the treatment of MF, had no inhibitory activity on this pathway. Further, we demonstrated the effect of MMB is not mediated by direct inhibition of JAK2-mediated ferroportin (FPN1) degradation, because neither MMB treatment nor myeloid-specific deletion of JAK2 affected FPN1 expression. Our data support the hypothesis that the improvement of inflammatory anemia by MMB results from inhibition of ACVR1-mediated hepcidin expression in the liver, which leads to increased mobilization of sequestered iron from cellular stores and subsequent stimulation of erythropoiesis. PMID:28188131

  17. AMP-activated protein kinase is involved in neural stem cell growth suppression and cell cycle arrest by 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside and glucose deprivation by down-regulating phospho-retinoblastoma protein and cyclin D.

    PubMed

    Zang, Yi; Yu, Li-Fang; Nan, Fa-Jun; Feng, Lin-Yin; Li, Jia

    2009-03-06

    The fate of neural stem cells (NSCs), including their proliferation, differentiation, survival, and death, is regulated by multiple intrinsic signals and the extrinsic environment. We had previously reported that 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR) directly induces astroglial differentiation of NSCs by activation of the Janus kinase (JAK)/Signal transducer and activator of transcription 3 (STAT3) pathway independently of AMP-activated protein kinase (AMPK). Here, we reported the observation that AICAR inhibited NSC proliferation and its underlying mechanism. Analysis of caspase activity and cell cycle showed that AICAR induced G1/G0 cell cycle arrest in NSCs, associated with decreased levels of poly(ADP-ribose) polymerase, phospho-retinoblastoma protein (Rb), and cyclin D but did not cause apoptosis. Iodotubericidin and Compound C, inhibitors of adenosine kinase and AMPK, respectively, or overexpression of a dominant-negative mutant of AMPK, but not JAK inhibitor, were able to reverse the anti-proliferative effect of AICAR. Glucose deprivation also activated the AMPK pathway, induced G0/G1 arrest, and suppressed the proliferation of NSCs, an effect associated with decreased levels of phospho-Rb and cyclin D protein. Furthermore, Compound C and overexpression of dominant-negative AMPK in C17.2 NSCs could block the glucose deprivation-mediated down-regulation of cyclin D and partially reverse the suppression of proliferation. These results suggest that AICAR and glucose deprivation might induce G1/G0 cell cycle arrest and suppress proliferation of NSCs via phospho-Rb and cyclin D down-regulation. AMPK, but not JAK/STAT3, activation is key for this inhibitory effect and may play an important role in the responses of NSCs to metabolic stresses such as glucose deprivation.

  18. Therapeutic Efficacy of Suppressing the JAK/STAT Pathway in Multiple Models of EAE1

    PubMed Central

    Liu, Yudong; Holdbrooks, Andrew T.; De Sarno, Patrizia; Rowse, Amber L.; Yanagisawa, Lora L.; McFarland, Braden C.; Harrington, Laurie E.; Raman, Chander; Sabbaj, Steffanie; Benveniste, Etty N.; Qin, Hongwei

    2014-01-01

    Pathogenic T helper cells and myeloid cells are involved in the pathogenesis of Multiple Sclerosis (MS) and Experimental Autoimmune Encephalomyelitis (EAE), an animal model of MS. The JAK/STAT pathway is utilized by numerous cytokines for signaling, and is critical for development, regulation and termination of immune responses. Dysregulation of the JAK/STAT pathway has pathological implications in autoimmune and neuroinflammatory diseases. Many of the cytokines involved in MS/EAE, including IL-6, IL-12, IL-23, IFN-γ and GM-CSF, use the JAK/STAT pathway to induce biological responses. Thus, targeting JAKs has implications for treating autoimmune inflammation of the brain. We have utilized AZD1480, a JAK1/2 inhibitor, to investigate the therapeutic potential of inhibiting the JAK/STAT pathway in models of EAE. AZD1480 treatment inhibits disease severity in MOG-induced classical and atypical EAE models by preventing entry of immune cells into the brain, suppressing differentiation of Th1 and Th17 cells, deactivating myeloid cells, inhibiting STAT activation in the brain, and reducing expression of pro-inflammatory cytokines and chemokines. Treatment of SJL/J mice with AZD1480 delays disease onset of PLP-induced relapsing-remitting disease, reduces relapses and diminishes clinical severity. AZD1480 treatment was also effective in reducing ongoing paralysis induced by adoptive transfer of either pathogenic Th1 or Th17 cells. In vivo AZD1480 treatment impairs both the priming and expansion of T-cells, and attenuates antigen-presentation functions of myeloid cells. Inhibition of the JAK/STAT pathway has clinical efficacy in multiple pre-clinical models of MS, suggesting the feasibility of the JAK/STAT pathway as a target for neuroinflammatory diseases. PMID:24323580

  19. Monocarbonyl curcumin analogues: heterocyclic pleiotropic kinase inhibitors that mediate anticancer properties.

    PubMed

    Brown, Andrew; Shi, Qi; Moore, Terry W; Yoon, Younghyoun; Prussia, Andrew; Maddox, Clinton; Liotta, Dennis C; Shim, Hyunsuk; Snyder, James P

    2013-05-09

    Curcumin is a biologically active component of curry powder. A structurally related class of mimetics possesses similar anti-inflammatory and anticancer properties. Mechanism has been examined by exploring kinase inhibition trends. In a screen of 50 kinases relevant to many forms of cancer, one member of the series (4, EF31) showed ≥85% inhibition for 10 of the enzymes at 5 μM, while 22 of the proteins were blocked at ≥40%. IC50 values for an expanded set of curcumin analogues established a rank order of potencies, and analyses of IKKβ and AKT2 enzyme kinetics for 4 revealed a mixed inhibition model, ATP competition dominating. Our curcumin mimetics are generally selective for Ser/Thr kinases. Both selectivity and potency trends are compatible with protein sequence comparisons, while modeled kinase binding site geometries deliver a reasonable correlation with mixed inhibition. Overall, these analogues are shown to be pleiotropic inhibitors that operate at multiple points along cell signaling pathways.

  20. Novel Bruton’s tyrosine kinase inhibitors currently in development

    PubMed Central

    D’Cruz, Osmond J; Uckun, Fatih M

    2013-01-01

    Bruton’s tyrosine kinase (Btk) is intimately involved in multiple signal-transduction pathways regulating survival, activation, proliferation, and differentiation of B-lineage lymphoid cells. Btk is overexpressed and constitutively active in several B-lineage lymphoid malignancies. Btk has emerged as a new antiapoptotic molecular target for treatment of B-lineage leukemias and lymphomas. Preclinical and early clinical results indicate that Btk inhibitors may be useful in the treatment of leukemias and lymphomas. PMID:23493945

  1. Inflammatory Signaling by NOD-RIPK2 Is Inhibited by Clinically Relevant Type II Kinase Inhibitors

    PubMed Central

    Canning, Peter; Ruan, Qui; Schwerd, Tobias; Hrdinka, Matous; Maki, Jenny L.; Saleh, Danish; Suebsuwong, Chalada; Ray, Soumya; Brennan, Paul E.; Cuny, Gregory D.; Uhlig, Holm H.; Gyrd-Hansen, Mads; Degterev, Alexei; Bullock, Alex N.

    2015-01-01

    Summary RIPK2 mediates pro-inflammatory signaling from the bacterial sensors NOD1 and NOD2, and is an emerging therapeutic target in autoimmune and inflammatory diseases. We observed that cellular RIPK2 can be potently inhibited by type II inhibitors that displace the kinase activation segment, whereas ATP-competitive type I inhibition was only poorly effective. The most potent RIPK2 inhibitors were the US Food and Drug Administration-approved drugs ponatinib and regorafenib. Their mechanism of action was independent of NOD2 interaction and involved loss of downstream kinase activation as evidenced by lack of RIPK2 autophosphorylation. Notably, these molecules also blocked RIPK2 ubiquitination and, consequently, inflammatory nuclear factor κB signaling. In monocytes, the inhibitors selectively blocked NOD-dependent tumor necrosis factor production without affecting lipopolysaccharide-dependent pathways. We also determined the first crystal structure of RIPK2 bound to ponatinib, and identified an allosteric site for inhibitor development. These results highlight the potential for type II inhibitors to treat indications of RIPK2 activation as well as inflammation-associated cancers. PMID:26320862

  2. Small molecule kinase inhibitor LRRK2-IN-1 demonstrates potent activity against colorectal and pancreatic cancer through inhibition of doublecortin-like kinase 1

    PubMed Central

    2014-01-01

    Background Doublecortin-like kinase 1 (DCLK1) is emerging as a tumor specific stem cell marker in colorectal and pancreatic cancer. Previous in vitro and in vivo studies have demonstrated the therapeutic effects of inhibiting DCLK1 with small interfering RNA (siRNA) as well as genetically targeting the DCLK1+ cell for deletion. However, the effects of inhibiting DCLK1 kinase activity have not been studied directly. Therefore, we assessed the effects of inhibiting DCLK1 kinase activity using the novel small molecule kinase inhibitor, LRRK2-IN-1, which demonstrates significant affinity for DCLK1. Results Here we report that LRRK2-IN-1 demonstrates potent anti-cancer activity including inhibition of cancer cell proliferation, migration, and invasion as well as induction of apoptosis and cell cycle arrest. Additionally we found that it regulates stemness, epithelial-mesenchymal transition, and oncogenic targets on the molecular level. Moreover, we show that LRRK2-IN-1 suppresses DCLK1 kinase activity and downstream DCLK1 effector c-MYC, and demonstrate that DCLK1 kinase activity is a significant factor in resistance to LRRK2-IN-1. Conclusions Given DCLK1’s tumor stem cell marker status, a strong understanding of its biological role and interactions in gastrointestinal tumors may lead to discoveries that improve patient outcomes. The results of this study suggest that small molecule inhibitors of DCLK1 kinase should be further investigated as they may hold promise as anti-tumor stem cell drugs. PMID:24885928

  3. GRAMD1B regulates cell migration in breast cancer cells through JAK/STAT and Akt signaling.

    PubMed

    Khanna, Puja; Lee, Joan Shuying; Sereemaspun, Amornpun; Lee, Haeryun; Baeg, Gyeong Hun

    2018-06-22

    Dysregulated JAK/STAT signaling has been implicated in breast cancer metastasis, which is associated with high relapse risks. However, mechanisms underlying JAK/STAT signaling-mediated breast tumorigenesis are poorly understood. Here, we showed that GRAMD1B expression is upregulated on IL-6 but downregulated upon treatment with the JAK2 inhibitor AG490 in the breast cancer MDA-MB-231 cells. Notably, Gramd1b knockdown caused morphological changes of the cells, characterized by the formation of membrane ruffling and protrusions, implicating its role in cell migration. Consistently, GRAMD1B inhibition significantly enhanced cell migration, with an increase in the levels of the Rho family of GTPases. We also found that Gramd1b knockdown-mediated pro-migratory phenotype is associated with JAK2/STAT3 and Akt activation, and that JAK2 or Akt inhibition efficiently suppresses the phenotype. Interestingly, AG490 dose-dependently increased p-Akt levels, and our epistasis analysis suggested that the effect of JAK/STAT inhibition on p-Akt is via the regulation of GRAMD1B expression. Taken together, our results suggest that GRAMD1B is a key signaling molecule that functions to inhibit cell migration in breast cancer by negating both JAK/STAT and Akt signaling, providing the foundation for its development as a novel biomarker in breast cancer.

  4. Safety, tolerability, efficacy and pharmacodynamics of the selective JAK1 inhibitor GSK2586184 in patients with systemic lupus erythematosus.

    PubMed

    Kahl, L; Patel, J; Layton, M; Binks, M; Hicks, K; Leon, G; Hachulla, E; Machado, D; Staumont-Sallé, D; Dickson, M; Condreay, L; Schifano, L; Zamuner, S; van Vollenhoven, R F

    2016-11-01

    We aimed to evaluate the pharmacodynamics, efficacy, safety and tolerability of the JAK1 inhibitor GSK2586184 in adults with systemic lupus erythematosus (SLE). In this adaptive, randomized, double-blind, placebo-controlled study, patients received oral GSK2586184 50-400 mg, or placebo twice daily for 12 weeks. Primary endpoints included interferon-mediated messenger RNA transcription over time, changes in Safety of Estrogen in Lupus National Assessment-SLE Disease Activity Index score, and number/severity of adverse events. A pre-specified interim analysis was performed when ≥ 5 patients per group completed 2 weeks of treatment. In total, 84-92% of patients were high baseline expressors of the interferon transcriptional biomarkers evaluated. At interim analysis, GSK2586184 showed no significant effect on mean interferon transcriptional biomarker expression (all panels). The study was declared futile and recruitment was halted at 50 patients. Shortly thereafter, significant safety data were identified, including elevated liver enzymes in six patients (one confirmed and one suspected case of Drug Reaction with Eosinophilia and Systemic Symptoms), leading to immediate dosing cessation. Safety of Estrogen in Lupus National Assessment-SLE Disease Activity Index scores were not analysed due to the small number of patients completing the study. The study futility and safety data described for GSK2586184 do not support further evaluation in patients with SLE. Study identifiers: GSK Study JAK115919; ClinicalTrials.gov identifier: NCT01777256.

  5. EXEL-8232, a small-molecule JAK2 inhibitor, effectively treats thrombocytosis and extramedullary hematopoiesis in a murine model of myeloproliferative neoplasm induced by MPLW515L.

    PubMed

    Wernig, G; Kharas, M G; Mullally, A; Leeman, D S; Okabe, R; George, T; Clary, D O; Gilliland, D G

    2012-04-01

    About 10% of patients with essential thrombocythemia (ET) or myelofibrosis (MF) that lack mutations in JAK2 harbor an activating mutation in the thrombopoietin receptor, MPLW515L. Distinct from the JAK2V617F retroviral transplant model, the MPLW515L model recapitulates many features of ET and MF, including severe fibrosis and thrombocytosis. We have tested EXEL-8232, an experimental potent JAK2 inhibitor, for efficacy in suppression of thrombocytosis in vivo and for its ability to attenuate MPLW515L myeloproliferative disease. EXEL-8232 was administered for 28 days q12 h by oral gavage at doses of 30 or 100 mg/kg, prospectively. Animals treated with EXEL-8232 at 100 mg/kg had normalized high platelet counts, eliminated extramedullary hematopoiesis in the spleen and eliminated bone marrow fibrosis, whereas the wild-type controls did not develop thrombocytopenia. Consistent with a clinical response in this model, we validated surrogate end points for response to treatment, including a reduction of endogenous colony growth and signaling inhibition in immature erythroid and myeloid primary cells both in vitro and upon treatment in vivo. We conclude that EXEL-8232 has efficacy in treatment of thrombocytosis in vivo in a murine model of ET and MF, and may be of therapeutic benefit for patients with MPL-mutant MPN.

  6. Detection of JAK2 V617F mutation increases the diagnosis of myeloproliferative neoplasms

    PubMed Central

    ZHANG, SHU-PENG; LI, HUI; LAI, REN-SHENG

    2015-01-01

    The Janus kinase (JAK)2 gene, which is located on chromosome 9p24, is involved in the signaling transduction pathways of the hematopoietic and immune system. Mutations in the JAK2 gene have served as disease markers for myeloproliferative neoplasms (MPNs). The aim of the present study was to investigate the occurrence of the JAK2 gene mutation in 140 clinical samples, and to evaluate its clinical significance in MPNs and other hematological diseases. Genomic DNA was extracted from the peripheral blood leukocytes or bone marrow karyocytes of 140 clinical samples, which included 130 patients with various types of hematological disease and 10 control patients. In addition, exons 12 and 14 of the JAK2 gene were analyzed by direct sequencing and the mutation rates of various MPN subtypes were evaluated. Of the 140 samples, exons 12 and 14 were tested in 74 samples, however, exon 14 only was tested in 66 samples. No mutations were identified in exon 12. The V617F mutation rate in polycythemia vera was 82.1% (23/28), and the mutation rates in essential thrombocythemia histiocytosis, primary myelofibrosis and other MPNs were 53.1% (17/32), 40.0% (4/10) and 60.0% (6/10), respectively. Therefore, the total mutation rate of the JAK2 gene in MPN was 62.5% (50/80). For non-MPN hematological diseases, four V617F mutations were detected in samples of leukocytosis of unknown origin (4/12), however, no JAK2 V617F mutations were identified in the 10 controls. Therefore, JAK2 V617F mutations may present a novel marker for diagnosis of MPNs. Furthermore, the direct sequencing method appeared to be satisfactory for the clinical gene testing of hematological samples. PMID:25624900

  7. Structure-Based Design of Potent and Selective 3-Phosphoinositide-Dependent Kinase-1 (PDK1) Inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medina, Jesus R.; Becker, Christopher J.; Blackledge, Charles W.

    2014-10-02

    Phosphoinositide-dependent protein kinase-1(PDK1) is a master regulator of the AGC family of kinases and an integral component of the PI3K/AKT/mTOR pathway. As this pathway is among the most commonly deregulated across all cancers, a selective inhibitor of PDK1 might have utility as an anticancer agent. Herein we describe our lead optimization of compound 1 toward highly potent and selective PDK1 inhibitors via a structure-based design strategy. The most potent and selective inhibitors demonstrated submicromolar activity as measured by inhibition of phosphorylation of PDK1 substrates as well as antiproliferative activity against a subset of AML cell lines. In addition, reduction ofmore » phosphorylation of PDK1 substrates was demonstrated in vivo in mice bearing OCl-AML2 xenografts. These observations demonstrate the utility of these molecules as tools to further delineate the biology of PDK1 and the potential pharmacological uses of a PDK1 inhibitor.« less

  8. F-12509A, a new sphingosine kinase inhibitor, produced by a discomycete.

    PubMed

    Kono, K; Tanaka, M; Ogita, T; Hosoya, T; Kohama, T

    2000-05-01

    In the course of our screening for inhibitors of sphingosine kinase, we found an active compound from a culture broth of a discomycete, Trichopezizella barbata SANK 25395. The structure of the compound, named F-12509A, was elucidated by a combination of spectroscopic analyses, to be a new sesquiterpene quinone consisting of a drimane moiety and a dihydroxybenzoquinone. Enzyme kinetic analyses showed that F-12509A inhibits sphingosine kinase activity in a competitive manner with respect to sphingosine, with a Ki value of 18 microM.

  9. Cartilage preservation by inhibition of Janus kinase 3 in two rodent models of rheumatoid arthritis

    PubMed Central

    Milici, Anthony J; Kudlacz, Elizabeth M; Audoly, Laurent; Zwillich, Samuel; Changelian, Paul

    2008-01-01

    Introduction CP-690550 is a small molecule inhibitor of Janus kinase 3 (JAK3), a critical enzyme in the signaling pathway of multiple cytokines (interleukin (IL)-2, -7, -15 and -21) that are important in various T cell functions including development, activation and homeostasis. The purpose of this study was to evaluate CP-690550 in murine collagen-induced (CIA) and rat adjuvant-induced (AA) models of rheumatoid arthritis (RA). Methods CIA and AA were induced using standard protocols and animals received the JAK3 inhibitor via osmotic mini-pump infusion at doses ranging from 1.5–15 mg/kg/day following disease induction. Arthritis was assessed by clinical scores in the CIA models and paw swelling monitored using a plethysmometer in the AA model until study conclusion, at which time animals were killed and evaluated histologically. Results CP-690550 dose-dependently decreased endpoints of disease in both RA models with greater than 90% reduction observed at the highest administered dose. An approximate ED50 of approximately 1.5 mg/kg/day was determined for the compound based upon disease endpoints in both RA models examined and corresponds to CP-690550 serum levels of 5.8 ng/ml in mice (day 28) and 24 ng/ml in rats (day 24). The compound also reduced inflammatory cell influx and joint damage as measured histologically. Animals receiving a CP-690550 dose of 15 mg/k/d showed no histological evidence of disease. Conclusion The efficacy observed with CP-690550 in CIA and AA suggests JAK3 inhibition may represent a novel therapeutic target for the treatment of RA. PMID:18234077

  10. The Aurora kinase inhibitor CCT137690 downregulates MYCN and sensitizes MYCN-amplified neuroblastoma in vivo

    PubMed Central

    Faisal, Amir; Vaughan, Lynsey; Bavetsias, Vassilios; Sun, Chongbo; Atrash, Butrus; Avery, Sian; Jamin, Yann; Robinson, Simon P.; Workman, Paul; Blagg, Julian; Raynaud, Florence I.; Eccles, Suzanne A.; Chesler, Louis; Linardopoulos, Spiros

    2015-01-01

    The Aurora kinases regulate key stages of mitosis including centrosome maturation, spindle assembly, chromosome segregation and cytokinesis. Aurora A and B overexpression has also been associated with various human cancers and as such, they have been extensively studied as novel anti-mitotic drug targets. Here we characterise the Aurora kinase inhibitor CCT137690, a highly selective, orally bioavailable imidazo[4,5-b]pyridine derivative that inhibits Aurora A and B kinases with low nanomolar IC50 values in both biochemical and cellular assays and exhibits anti-proliferative activity against a wide range of human solid tumour cell lines. CCT137690 efficiently inhibits histone H3 and TACC3 phosphorylation (Aurora B and Aurora A substrates, respectively) in HCT116 and HeLa cells. Continuous exposure of tumour cells to the inhibitor causes multipolar spindle formation, chromosome misalignment, polyploidy and apoptosis. This is accompanied by p53/p21/BAX induction, thymidine kinase 1 (TK1) downregulation and PARP cleavage. Furthermore, CCT137690 treatment of MYCN-amplified neuroblastoma cell lines inhibits cell proliferation and decreases MYCN protein expression. Importantly, in a transgenic mouse model of neuroblastoma (TH-MYCN) that overexpresses MYCN protein and is predisposed to spontaneous neuroblastoma formation, this compound significantly inhibits tumour growth. The potent preclinical activity of CCT137690 suggests that this inhibitor may benefit patients with MYCN amplified neuroblastoma. PMID:21885865

  11. miR-122-SOCS1-JAK2 axis regulates allergic inflammation and allergic inflammation-promoted cellular interactions

    PubMed Central

    Kim, Hanearl; Kim, Hyuna; Byun, Jaehwan; Park, Yeongseo; Lee, Hansoo; Lee, Yun Sil; Choe, Jongseon; Kim, Young Myeong; Jeoung, Dooil

    2017-01-01

    The regulatory role of suppressor of cytokine signaling 1 (SOCS1) in inflammation has been reported. However, its role in allergic inflammation has not been previously reported. SOCS1 mediated in vitro and in vivo allergic inflammation. Histone deacetylase-3 (HDAC3), a mediator of allergic inflammation, interacted with SOCS1, and miR-384 inhibitor, a positive regulator of HDAC3, induced features of allergic inflammation in an SOCS1-dependent manner. miRNA array analysis showed that the expression of miR-122 was decreased by antigen-stimulation. TargetScan analysis predicted the binding of miR-122 to the 3′-UTR of SOCS1. miR-122 inhibitor induced in vitro and in vivo allergic features in SOCS1-dependent manner. SOCS1 was necessary for allergic inflammation-promoted enhanced tumorigenic and metastatic potential of cancer cells. SOCS1 and miR-122 regulated cellular interactions involving cancer cells, mast cells and macrophages during allergic inflammation. SOCS1 mimetic peptide, D-T-H-F-R-T-F-R-S-H-S-D-Y-R-R-I, inhibited in vitro and in vivo allergic inflammation, allergic inflammation-promoted enhanced tumorigenic and metastatic potential of cancer cells, and cellular interactions during allergic inflammation. Janus kinase 2 (JAK2) exhibited binding to SOCS1 mimetic peptide and mediated allergic inflammation. Transforming growth factor- Δ1 (TGF-Δ1) was decreased during allergic inflammation and showed an anti-allergic effect. SOCS1 and JAK2 regulated the production of anti-allergic TGF-Δ1. Taken together, our results show that miR-122-SOCS1 feedback loop can be employed as a target for the development of anti-allergic and anti-cancer drugs. PMID:28968979

  12. Structure-based design, synthesis, and biological evaluation of imidazo[1,2-b]pyridazine-based p38 MAP kinase inhibitors.

    PubMed

    Kaieda, Akira; Takahashi, Masashi; Takai, Takafumi; Goto, Masayuki; Miyazaki, Takahiro; Hori, Yuri; Unno, Satoko; Kawamoto, Tomohiro; Tanaka, Toshimasa; Itono, Sachiko; Takagi, Terufumi; Hamada, Teruki; Shirasaki, Mikio; Okada, Kengo; Snell, Gyorgy; Bragstad, Ken; Sang, Bi-Ching; Uchikawa, Osamu; Miwatashi, Seiji

    2018-02-01

    We identified novel potent inhibitors of p38 MAP kinase using structure-based design strategy. X-ray crystallography showed that when p38 MAP kinase is complexed with TAK-715 (1) in a co-crystal structure, Phe169 adopts two conformations, where one interacts with 1 and the other shows no interaction with 1. Our structure-based design strategy shows that these two conformations converge into one via enhanced protein-ligand hydrophobic interactions. According to the strategy, we focused on scaffold transformation to identify imidazo[1,2-b]pyridazine derivatives as potent inhibitors of p38 MAP kinase. Among the herein described and evaluated compounds, N-oxide 16 exhibited potent inhibition of p38 MAP kinase and LPS-induced TNF-α production in human monocytic THP-1 cells, and significant in vivo efficacy in rat collagen-induced arthritis models. In this article, we report the discovery of potent, selective and orally bioavailable imidazo[1,2-b]pyridazine-based p38 MAP kinase inhibitors with pyridine N-oxide group. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. The JAK2V617 mutation induces constitutive activation and agonist hypersensitivity in basophils from patients with polycythemia vera

    PubMed Central

    Pieri, Lisa; Bogani, Costanza; Guglielmelli, Paola; Zingariello, Maria; Rana, Rosa Alba; Bartalucci, Niccolò; Bosi, Alberto; Vannucchi, Alessandro M.

    2009-01-01

    Background The JAK2V617F mutation has been associated with constitutive and enhanced activation of neutrophils, while no information is available concerning other leukocyte subtypes. Design and Methods We evaluated correlations between JAK2V617F mutation and the count of circulating basophils, the number of activated CD63+ basophils, their response in vitro to agonists as well as the effects of a JAK2 inhibitor. Results We found that basophil count was increased in patients with JAK2V617F -positive myeloproliferative neoplasms, particularly in those with polycythemia vera, and was correlated with the V617F burden. The burden of V617F allele was similar in neutrophils and basophils from patients with polycythemia vera, while total JAK2 mRNA content was remarkably greater in the basophils; however, the content of JAK2 protein in basophils was not increased. The number of CD63+ basophils was higher in patients with polycythemia vera than in healthy subjects or patients with essential thrombocythemia or primary myelofibrosis and was correlated with the V617F burden. Ultrastructurally, basophils from patients with polycythemia vera contained an increased number of granules, most of which were empty suggesting cell degranulation in vivo. Ex vivo experiments revealed that basophils from patients with polycythemia vera were hypersensitive to the priming effect of interleukin-3 and to f-MLP-induced activation; pre-treatment with a JAK2 inhibitor reduced polycythemia vera basophil activation. Finally, we found that the number of circulating CD63+ basophils was significantly greater in patients suffering from aquagenic pruritus, who also showed a higher V617F allele burden. Conclusions These data indicate that the number of constitutively activated and hypersensitive circulating basophils is increased in polycythemia vera, underscoring a role of JAK2V617F in these cells’ abnormal function and, putatively, in the pathogenesis of pruritus. PMID:19608683

  14. How to Achieve Better Results Using Pass-Based Virtual Screening: Case Study for Kinase Inhibitors

    NASA Astrophysics Data System (ADS)

    Pogodin, Pavel V.; Lagunin, Alexey A.; Rudik, Anastasia V.; Filimonov, Dmitry A.; Druzhilovskiy, Dmitry S.; Nicklaus, Mark C.; Poroikov, Vladimir V.

    2018-04-01

    Discovery of new pharmaceutical substances is currently boosted by the possibility of utilization of the Synthetically Accessible Virtual Inventory (SAVI) library, which includes about 283 million molecules, each annotated with a proposed synthetic one-step route from commercially available starting materials. The SAVI database is well-suited for ligand-based methods of virtual screening to select molecules for experimental testing. In this study, we compare the performance of three approaches for the analysis of structure-activity relationships that differ in their criteria for selecting of “active” and “inactive” compounds included in the training sets. PASS (Prediction of Activity Spectra for Substances), which is based on a modified Naïve Bayes algorithm, was applied since it had been shown to be robust and to provide good predictions of many biological activities based on just the structural formula of a compound even if the information in the training set is incomplete. We used different subsets of kinase inhibitors for this case study because many data are currently available on this important class of drug-like molecules. Based on the subsets of kinase inhibitors extracted from the ChEMBL 20 database we performed the PASS training, and then applied the model to ChEMBL 23 compounds not yet present in ChEMBL 20 to identify novel kinase inhibitors. As one may expect, the best prediction accuracy was obtained if only the experimentally confirmed active and inactive compounds for distinct kinases in the training procedure were used. However, for some kinases, reasonable results were obtained even if we used merged training sets, in which we designated as inactives the compounds not tested against the particular kinase. Thus, depending on the availability of data for a particular biological activity, one may choose the first or the second approach for creating ligand-based computational tools to achieve the best possible results in virtual screening.

  15. The effect of MRN complex and ATM kinase inhibitors on Zebrafish embryonic development

    NASA Astrophysics Data System (ADS)

    Kumaran, Malina; Fazry, Shazrul

    2018-04-01

    Zebrafish is an ideal animal model to study developmental biology due to its transparent embryos and rapid development stages of embryogenesis. Here we investigate the role of DNA damage proteins, specifically Mre11/Rad50/NBN (MRN) complex and ataxia-telangiectasia mutated (ATM) kinase during embryogenesis by inhibiting its function using specific MRN complex (Mirin) and ATM Kinase inhibitors (Ku60019 and Ku55933). Zebrafish embryos at midblastula transition (MBT) stage are treated with Mirin, Ku60019 and Ku55933. The embryonic development of the embryos was monitored at 24 hours-post fertilisation (hpf), 48 hpf and 72 hpf. We observed that at the lowest concentrations (3 µM of Mirin, 1.5 nM of Ku60019 and 3 nM of Ku55933), the inhibitors treated embryos have 100% survivability. However, with increasing inhibitor concentration, the survivability drops. Control or mock treatment of all embryos shows 100 % survivability rate. This study suggests that DNA damage repair proteins may be crucial for normal zebrafish embryo development and survival.

  16. Identification of novel inhibitors for Pim-1 kinase using pharmacophore modeling based on a novel method for selecting pharmacophore generation subsets

    NASA Astrophysics Data System (ADS)

    Shahin, Rand; Swellmeen, Lubna; Shaheen, Omar; Aboalhaija, Nour; Habash, Maha

    2016-01-01

    Targeting Proviral integration-site of murine Moloney leukemia virus 1 kinase, hereafter called Pim-1 kinase, is a promising strategy for treating different kinds of human cancer. Headed for this a total list of 328 formerly reported Pim-1 kinase inhibitors has been explored and divided based on the pharmacophoric features of the most active molecules into 10 subsets projected to represent potential active binding manners accessible to ligands within the binding pocket of Pim-1 kinase. Discovery Studio 4.1 (DS 4.1) was employed to detect potential pharmacophoric active binding manners anticipated by Pim-1 Kinase inhibitors. The pharmacophoric models were then allowed to compete within Quantitative Structure Activity Relationship (QSAR) framework with other 2D descriptors. Accordingly Genetic algorithm and multiple linear regression investigation were engaged to find the finest QSAR equation that has the best predictive power r 262 2 = 0.70, F = 119.14, r LOO 2 = 0.693, r PRESS 2 against 66 external test inhibitors = 0.71 q2 = 0.55. Three different pharmacophores appeared in the successful QSAR equation this represents three different binding modes for inhibitors within the Pim-1 kinase binding pocket. Pharmacophoric models were later used to screen compounds within the National Cancer Institute database. Several low micromolar Pim-1 Kinase inhibitors were captured. The most potent hits show IC50 values of 0.77 and 1.03 µM. Also, upon analyzing the successful QSAR Equation we found that some polycyclic aromatic electron-rich structures namely 6-Chloro-2-methoxy-acridine can be considered as putative hits for Pim-1 kinase inhibition.

  17. Targeting Human Central Nervous System Protein Kinases: An Isoform Selective p38αMAPK Inhibitor That Attenuates Disease Progression in Alzheimer’s Disease Mouse Models

    PubMed Central

    2015-01-01

    The first kinase inhibitor drug approval in 2001 initiated a remarkable decade of tyrosine kinase inhibitor drugs for oncology indications, but a void exists for serine/threonine protein kinase inhibitor drugs and central nervous system indications. Stress kinases are of special interest in neurological and neuropsychiatric disorders due to their involvement in synaptic dysfunction and complex disease susceptibility. Clinical and preclinical evidence implicates the stress related kinase p38αMAPK as a potential neurotherapeutic target, but isoform selective p38αMAPK inhibitor candidates are lacking and the mixed kinase inhibitor drugs that are promising in peripheral tissue disease indications have limitations for neurologic indications. Therefore, pursuit of the neurotherapeutic hypothesis requires kinase isoform selective inhibitors with appropriate neuropharmacology features. Synaptic dysfunction disorders offer a potential for enhanced pharmacological efficacy due to stress-induced activation of p38αMAPK in both neurons and glia, the interacting cellular components of the synaptic pathophysiological axis, to be modulated. We report a novel isoform selective p38αMAPK inhibitor, MW01-18-150SRM (=MW150), that is efficacious in suppression of hippocampal-dependent associative and spatial memory deficits in two distinct synaptic dysfunction mouse models. A synthetic scheme for biocompatible product and positive outcomes from pharmacological screens are presented. The high-resolution crystallographic structure of the p38αMAPK/MW150 complex documents active site binding, reveals a potential low energy conformation of the bound inhibitor, and suggests a structural explanation for MW150’s exquisite target selectivity. As far as we are aware, MW150 is without precedent as an isoform selective p38MAPK inhibitor or as a kinase inhibitor capable of modulating in vivo stress related behavior. PMID:25676389

  18. Systematically Studying Kinase Inhibitor Induced Signaling Network Signatures by Integrating Both Therapeutic and Side Effects

    PubMed Central

    Shao, Hongwei; Peng, Tao; Ji, Zhiwei; Su, Jing; Zhou, Xiaobo

    2013-01-01

    Substantial effort in recent years has been devoted to analyzing data based large-scale biological networks, which provide valuable insight into the topologies of complex biological networks but are rarely context specific and cannot be used to predict the responses of cell signaling proteins to specific ligands or compounds. In this work, we proposed a novel strategy to investigate kinase inhibitor induced pathway signatures by integrating multiplex data in Library of Integrated Network-based Cellular Signatures (LINCS), e.g. KINOMEscan data and cell proliferation/mitosis imaging data. Using this strategy, we first established a PC9 cell line specific pathway model to investigate the pathway signatures in PC9 cell line when perturbed by a small molecule kinase inhibitor GW843682. This specific pathway revealed the role of PI3K/AKT in modulating the cell proliferation process and the absence of two anti-proliferation links, which indicated a potential mechanism of abnormal expansion in PC9 cell number. Incorporating the pathway model for side effects on primary human hepatocytes, it was used to screen 27 kinase inhibitors in LINCS database and PF02341066, known as Crizotinib, was finally suggested with an optimal concentration 4.6 uM to suppress PC9 cancer cell expansion while avoiding severe damage to primary human hepatocytes. Drug combination analysis revealed that the synergistic effect region can be predicted straightforwardly based on a threshold which is an inherent property of each kinase inhibitor. Furthermore, this integration strategy can be easily extended to other specific cell lines to be a powerful tool for drug screen before clinical trials. PMID:24339888

  19. Hyperactivated mTOR and JAK2/STAT3 Pathways: Molecular Drivers and Potential Therapeutic Targets of Inflammatory and Invasive Ductal Breast Cancers After Neoadjuvant Chemotherapy.

    PubMed

    Jhaveri, Komal; Teplinsky, Eleonora; Silvera, Deborah; Valeta-Magara, Amanda; Arju, Rezina; Giashuddin, Shah; Sarfraz, Yasmeen; Alexander, Melissa; Darvishian, Farbod; Levine, Paul H; Hashmi, Salman; Zolfaghari, Ladan; Hoffman, Heather J; Singh, Baljit; Goldberg, Judith D; Hochman, Tsivia; Formenti, Silvia; Esteva, Francisco J; Moran, Meena S; Schneider, Robert J

    2016-04-01

    Inflammatory breast cancer (IBC) is an aggressive and rare cancer with a poor prognosis and a need for novel targeted therapeutic strategies. Preclinical IBC data showed strong activation of the phosphatidylinositide-3-kinase/mammalian target of rapamycin (mTOR) and Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathways, and expression of inflammatory cytokines and tumor-associated macrophages (TAMs). Archival tumor tissue from 3 disease types (IBC treated with neoadjuvant chemotherapy [NAC], n = 45; invasive ductal carcinoma [IDC] treated with NAC [n = 24; 'treated IDC'; and untreated IDC [n = 27; 'untreated IDC']) was analyzed for the expression of biomarkers phospho-S6 (pS6) (mTOR), phospho-JAK2 (pJAK2), pSTAT3, interleukin (IL)-6, CD68 (monocytes, macrophages), and CD163 (TAMs). Surrounding nontumor tissue was also analyzed. Biomarker levels and surrogate activity according to site-specific phosphorylation were shown in the tumor tissue of all 3 disease types but were greatest in IBC and treated IDC and least in untreated IDC for pS6, pJAK2, pSTAT3, and IL-6. Of 37 IBC patients with complete biomarker data available, 100% were pS6-positive and 95% were pJAK2-positive. In nontumor tissue, biomarker levels were observed in all groups but were generally greatest in untreated IDC and least in IBC, except for JAK2. IBC and treated IDC display similar levels of mTOR and JAK2 biomarker activation, which suggests a potential mechanism of resistance after NAC. Biomarker levels in surrounding nontumor tissue suggested that the stroma might be activated by chemotherapy and resembles the oncogenic tumor-promoting environment. Activation of pS6 and pJAK2 in IBC might support dual targeting of the mTOR and JAK/STAT pathways, and the need for prospective studies to investigate combined targeted therapies in IBC. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. JAK and STAT members of yellow catfish Pelteobagrus fulvidraco and their roles in leptin affecting lipid metabolism.

    PubMed

    Wu, Kun; Tan, Xiao-Ying; Xu, Yi-Huan; Chen, Qi-Liang; Pan, Ya-Xiong

    2016-01-15

    The present study clones and characterizes the full-length cDNA sequences of members in JAK-STAT pathway, explores their mRNA tissue expression and the biological role in leptin influencing lipid metabolism in yellow catfish Pelteobagrus fulvidraco. Full-length cDNA sequences of five JAKs and seven STAT members, including some splicing variants, were obtained from yellow catfish. Compared to mammals, more members of the JAKs and STATs family were found in yellow catfish, which provided evidence that the JAK and STAT family members had arisen by the whole genome duplications during vertebrate evolution. All of these members were widely expressed across the eleven tissues (liver, white muscle, spleen, brain, gill, mesenteric fat, anterior intestine, heart, mid-kidney, testis and ovary) but at the variable levels. Intraperitoneal injection in vivo and incubation in vitro of recombinant human leptin changed triglyceride content and mRNA expression of several JAKs and STATs members, and genes involved in lipid metabolism. AG490, a specific inhibitor of JAK2-STAT pathway, partially reversed leptin-induced effects, indicating that the JAK2a/b-STAT3 pathway exerts main regulating actions of leptin on lipid metabolism at transcriptional level. Meanwhile, the different splicing variants were differentially regulated by leptin incubation. Thus, our data suggest that leptin activated the JAK/STAT pathway and increases the expression of target genes, which partially accounts for the leptin-induced changes in lipid metabolism in yellow catfish. Copyright © 2015 Elsevier Inc. All rights reserved.