Sample records for jak protein tyrosine

  1. Autophosphorylation of JAK2 on tyrosines 221 and 570 regulates its activity.

    PubMed

    Argetsinger, Lawrence S; Kouadio, Jean-Louis K; Steen, Hanno; Stensballe, Allan; Jensen, Ole N; Carter-Su, Christin

    2004-06-01

    The tyrosine kinase JAK2 is a key signaling protein for at least 20 receptors in the cytokine/hematopoietin receptor superfamily and is a component of signaling by insulin receptor and several G-protein-coupled receptors. However, there is only limited knowledge of the physical structure of JAK2 or which of the 49 tyrosines in JAK2 are autophosphorylated. In this study, mass spectrometry and two-dimensional peptide mapping were used to determine that tyrosines 221, 570, and 1007 in JAK2 are autophosphorylated. Phosphorylation of tyrosine 570 is particularly robust. In response to growth hormone, JAK2 was rapidly and transiently phosphorylated at tyrosines 221 and 570, returning to basal levels by 60 min. Analysis of the sequences surrounding tyrosines 221 and 570 in JAK2 and tyrosines in other proteins that are phosphorylated in response to ligands that activate JAK2 suggests that the YXX[L/I/V] motif is one of the motifs recognized by JAK2. Experiments using JAK2 with tyrosines 221 and 570 mutated to phenylalanine suggest that tyrosines 221 and 570 in JAK2 may serve as regulatory sites in JAK2, with phosphorylation of tyrosine 221 increasing kinase activity and phosphorylation of tyrosine 570 decreasing kinase activity and thereby contributing to rapid termination of ligand activation of JAK2.

  2. Autophosphorylation of JAK2 on Tyrosines 221 and 570 Regulates Its Activity

    PubMed Central

    Argetsinger, Lawrence S.; Kouadio, Jean-Louis K.; Steen, Hanno; Stensballe, Allan; Jensen, Ole N.; Carter-Su, Christin

    2004-01-01

    The tyrosine kinase JAK2 is a key signaling protein for at least 20 receptors in the cytokine/hematopoietin receptor superfamily and is a component of signaling by insulin receptor and several G-protein-coupled receptors. However, there is only limited knowledge of the physical structure of JAK2 or which of the 49 tyrosines in JAK2 are autophosphorylated. In this study, mass spectrometry and two-dimensional peptide mapping were used to determine that tyrosines 221, 570, and 1007 in JAK2 are autophosphorylated. Phosphorylation of tyrosine 570 is particularly robust. In response to growth hormone, JAK2 was rapidly and transiently phosphorylated at tyrosines 221 and 570, returning to basal levels by 60 min. Analysis of the sequences surrounding tyrosines 221 and 570 in JAK2 and tyrosines in other proteins that are phosphorylated in response to ligands that activate JAK2 suggests that the YXX[L/I/V] motif is one of the motifs recognized by JAK2. Experiments using JAK2 with tyrosines 221 and 570 mutated to phenylalanine suggest that tyrosines 221 and 570 in JAK2 may serve as regulatory sites in JAK2, with phosphorylation of tyrosine 221 increasing kinase activity and phosphorylation of tyrosine 570 decreasing kinase activity and thereby contributing to rapid termination of ligand activation of JAK2. PMID:15143187

  3. Identification of Tyrosine 972 as a Novel Site of Jak2 Tyrosine Kinase Phosphorylation and its Role in Jak2 Activation

    PubMed Central

    McDoom, Issam; Ma, Xianyue; Kirabo, Annet; Lee, Kuang-Yung; Ostrov, David A.; Sayeski, Peter P.

    2013-01-01

    Jak2 is a 130 kDa tyrosine kinase that is important in a number of cellular signaling pathways. Its function is intrinsically regulated by the phosphorylation of a handful of its 49 tyrosines. Here, we report that tyrosine 972 (Y972) is a novel site of Jak2 phosphorylation, and hence auto-regulation. Specifically, we found that Y972 is phosphorylated and confirmed that this residue resides on the surface of the protein. Using expression plasmids that expressed either wild type Jak2 or a full length Jak2 cDNA containing a single Y972F substitution mutation, we investigated the consequences of losing Y972 phosphorylation on Jak2 function. We determined that the loss of Y972 phosphorylation significantly reduced both Jak2 total tyrosine phosphorylation and phosphorylation of Y1007/Y1008. Additionally, Y972 phosphorylation was shown to be important for maximal kinase function. Interestingly, in response to classical cytokine activation, the Jak2-Y972F mutant exhibited a moderately impaired level of activation when compared to wild type protein. However, when Jak2 was activated via a GPCR ligand, the ability of the Y972F mutant to activate was completely lost, therefore suggesting a differential role of Y972 in Jak2 activation. Finally, we found that phosphorylation of Y972 enhances Jak2 kinase function via a mechanism that appears to stabilize the active conformation of the protein. Collectively, our results suggest that Y972 is a novel site of Jak2 phosphorylation and plays an important differential role in ligand-dependent Jak2 activation via a mechanism that involves stabilization of the Jak2 active conformation. PMID:18636744

  4. Activation of the protein tyrosine phosphatase SHP2 via the interleukin-6 signal transducing receptor protein gp130 requires tyrosine kinase Jak1 and limits acute-phase protein expression.

    PubMed

    Schaper, F; Gendo, C; Eck, M; Schmitz, J; Grimm, C; Anhuf, D; Kerr, I M; Heinrich, P C

    1998-11-01

    Stimulation of the interleukin-6 (IL-6) signalling pathway occurs via the IL-6 receptor-glycoprotein 130 (IL-6R-gp130) receptor complex and results in the regulation of acute-phase protein genes in liver cells. Ligand binding to the receptor complex leads to tyrosine phosphorylation and activation of Janus kinases (Jak), phosphorylation of the signal transducing subunit gp130, followed by recruitment and phosphorylation of the signal transducer and activator of transcription factors STAT3 and STAT1 and the src homology domain (SH2)-containing protein tyrosine phosphatase (SHP2). The tyrosine phosphorylated STAT factors dissociate from the receptor, dimerize and translocate to the nucleus where they bind to enhancer sequences of IL-6 target genes. Phosphorylated SHP2 is able to bind growth factor receptor bound protein (grb2) and thus might link the Jak/STAT pathway to the ras/raf/mitogen-activated protein kinase pathway. Here we present data on the dose-dependence, kinetics and kinase requirements for SHP2 phosphorylation after the activation of the signal transducer, gp130, of the IL-6-type family receptor complex. When human fibrosarcoma cell lines deficient in Jak1, Jak2 or tyrosine kinase 2 (Tyk2) were stimulated with IL-6-soluble IL-6R complexes it was found that only in Jak1-, but not in Jak 2- or Tyk2-deficient cells, SHP2 activation was greatly impaired. It is concluded that Jak1 is required for the tyrosine phosphorylation of SHP2. This phosphorylation depends on Tyr-759 in the cytoplasmatic domain of gp130, since a Tyr-759-->Phe exchange abrogates SHP2 activation and in turn leads to elevated and prolonged STAT3 and STAT1 activation as well as enhanced acute-phase protein gene induction. Therefore, SHP2 plays an important role in acute-phase gene regulation.

  5. Tyrosine phosphorylation of Jak2 in the JH2 domain inhibits cytokine signaling.

    PubMed

    Feener, Edward P; Rosario, Felicia; Dunn, Sarah L; Stancheva, Zlatina; Myers, Martin G

    2004-06-01

    Jak family tyrosine kinases mediate signaling by cytokine receptors to regulate diverse biological processes. Although Jak2 and other Jak kinase family members are phosphorylated on numerous sites during cytokine signaling, the identity and function of most of these sites remains unknown. Using tandem mass spectroscopic analysis of activated Jak2 protein from intact cells, we identified Tyr(221) and Tyr(570) as novel sites of Jak2 phosphorylation. Phosphorylation of both sites was stimulated by cytokine treatment of cultured cells, and this stimulation required Jak2 kinase activity. While we observed no gross alteration of signaling upon mutation of Tyr(221), Tyr(570) lies within the inhibitory JH2 domain of Jak2, and mutation of this site (Jak2(Y570F)) results in constitutive Jak2-dependent signaling in the absence of cytokine stimulation and enhances and prolongs Jak2 activation during cytokine stimulation. Mutation of Tyr(570) does not alter the ability of SOCS3 to bind or inhibit Jak2, however. Thus, the phosphorylation of Tyr(570) in vivo inhibits Jak2-dependent signaling independently of SOCS3-mediated inhibition. This Tyr(570)-dependent mechanism of Jak2 inhibition likely represents an important mechanism by which cytokine function is regulated.

  6. SOCS3 tyrosine phosphorylation as a potential bio-marker for myeloproliferative neoplasms associated with mutant JAK2 kinases

    PubMed Central

    Elliott, Joanne; Suessmuth, Yvonne; Scott, Linda M.; Nahlik, Krystyna; McMullin, Mary Frances; Constantinescu, Stefan N.; Green, Anthony R.; Johnston, James A.

    2009-01-01

    JAK2 V617F, identified in the majority of patients with myeloproliferative neoplasms, tyrosine phosphorylates SOCS3 and escapes its inhibition. Here, we demonstrate that the JAK2 exon 12 mutants described in a subset of V617F-negative MPN cases, also stabilize tyrosine phosphorylated SOCS3. SOCS3 tyrosine phosphorylation was also observed in peripheral blood mononuclear cells and granulocytes isolated from patients with JAK2 H538QK539L or JAK2 F537-K539delinsL mutations. JAK kinase inhibitors, which effectively inhibited the proliferation of cells expressing V617F or K539L, also caused a dose-dependent reduction in both mutant JAK2 and SOCS3 tyrosine phosphorylation. We propose, therefore, that SOCS3 tyrosine phosphorylation may be a novel bio-marker of myeloproliferative neoplasms resulting from a JAK2 mutation and a potential reporter of effective JAK2 inhibitor therapy currently in clinical development. PMID:19229050

  7. JAK kinases are required for the bacterial RNA and poly I:C induced tyrosine phosphorylation of PKR

    PubMed Central

    Bleiblo, Farag; Michael, Paul; Brabant, Danielle; Ramana, Chilakamarti V; Tai, TC; Saleh, Mazen; Parrillo, Joseph E; Kumar, Anand; Kumar, Aseem

    2013-01-01

    Discriminating the molecular patterns associated with RNA is central to innate immunity. The protein kinase PKR is a cytosolic sensor involved in the recognition of viral dsRNA and triggering interferon-induced signaling. Here, we identified bacterial RNA as a novel distinct pattern recognized by PKR. We show that the tyrosine phosphorylation of PKR induced by either bacterial RNA or poly I:C is impaired in mutant cells lacking TYK2, JAK1, or JAK2 kinases. PKR was found to be a direct substrate for the activated JAKs. Our results indicated that the double-stranded structures of bacterial RNA are required to fully activate PKR. These results suggest that bacterial RNA signaling is analogous in some respects to that of viral RNA and interferons and may have implications in bacterial immunity. PMID:23236554

  8. JAK2 inhibition sensitizes resistant EGFR-mutant lung adenocarcinoma to tyrosine kinase inhibitors

    PubMed Central

    Gao, Sizhi P.; Chang, Qing; Mao, Ninghui; Daly, Laura A.; Vogel, Robert; Chan, Tyler; Liu, Shu Hui; Bournazou, Eirini; Schori, Erez; Zhang, Haiying; Brewer, Monica Red; Pao, William; Morris, Luc; Ladanyi, Marc; Arcila, Maria; Manova-Todorova, Katia; de Stanchina, Elisa; Norton, Larry; Levine, Ross L.; Altan-Bonnet, Gregoire; Solit, David; Zinda, Michael; Huszar, Dennis; Lyden, David; Bromberg, Jacqueline F.

    2016-01-01

    Lung adenocarcinomas with mutant epidermal growth factor receptor (EGFR) respond to EGFR-targeted tyrosine kinase inhibitors (TKIs), but resistance invariably occurs. We found that the Janus kinase (JAK)/signal transduction and activator of transcription 3 (STAT3) signaling pathway was aberrantly increased in TKI-resistant EGFR-mutant non–small cell lung cancer (NSCLC) cells. JAK2 inhibition restored sensitivity to the EGFR inhibitor erlotinib in TKI-resistant cell lines and xenograft models of EGFR-mutant TKI-resistant lung cancer. JAK2 inhibition uncoupled EGFR from its negative regulator, suppressor of cytokine signaling 5 (SOCS5), consequently increasing EGFR abundance and restoring the tumor cells’ dependence on EGFR signaling. Furthermore, JAK2 inhibition led to heterodimerization of mutant and wild-type EGFR subunits, the activity of which was then blocked by TKIs. Our results reveal a mechanism whereby JAK2 inhibition overcomes acquired resistance to EGFR inhibitors and support the use of combination therapy with JAK and EGFR inhibitors for the treatment of EGFR-dependent NSCLC. PMID:27025877

  9. JAK2 and MPL protein levels determine TPO-induced megakaryocyte proliferation vs differentiation

    PubMed Central

    Besancenot, Rodolphe; Roos-Weil, Damien; Tonetti, Carole; Abdelouahab, Hadjer; Lacout, Catherine; Pasquier, Florence; Willekens, Christophe; Rameau, Philippe; Lecluse, Yann; Micol, Jean-Baptiste; Constantinescu, Stefan N.; Vainchenker, William; Solary, Eric

    2014-01-01

    Megakaryopoiesis is a 2-step differentiation process, regulated by thrombopoietin (TPO), on binding to its cognate receptor myeloproliferative leukemia (MPL). This receptor associates with intracytoplasmic tyrosine kinases, essentially janus kinase 2 (JAK2), which regulates MPL stability and cell-surface expression, and mediates TPO-induced signal transduction. We demonstrate that JAK2 and MPL mediate TPO-induced proliferation arrest and megakaryocytic differentiation of the human megakaryoblastic leukemia cell line UT7-MPL. A decrease in JAK2 or MPL protein expression, and JAK2 chemical inhibition, suppress this antiproliferative action of TPO. The expression of JAK2 and MPL, which progressively increases along normal human megakaryopoiesis, is decreased in platelets of patients diagnosed with JAK2- or MPL-mutated essential thrombocytemia and primary myelofibrosis, 2 myeloproliferative neoplasms in which megakaryocytes (MKs) proliferate excessively. Finally, low doses of JAK2 chemical inhibitors are shown to induce a paradoxical increase in MK production, both in vitro and in vivo. We propose that JAK2 and MPL expression levels regulate megakaryocytic proliferation vs differentiation in both normal and pathological conditions, and that JAK2 chemical inhibitors could promote a paradoxical thrombocytosis when used at suboptimal doses. PMID:25143485

  10. JAK1 kinase forms complexes with interleukin-4 receptor and 4PS/insulin receptor substrate-1-like protein and is activated by interleukin-4 and interleukin-9 in T lymphocytes.

    PubMed

    Yin, T; Tsang, M L; Yang, Y C

    1994-10-28

    Interleukin (IL)-4 and IL-9 regulate the proliferation of T lymphocytes through interactions with their receptors. Previous studies have shown that unknown tyrosine kinases are involved in the proliferative signaling triggered by IL-4 and IL-9. Here we show that IL-4 and IL-9 induce overlapping (170, 130, and 125 kilodalton (kDa)) and distinct (45 and 88/90 kDa, respectively) protein tyrosine phosphorylation in T lymphocytes. We further identify the 170-kDa tyrosine-phosphorylated protein as 4PS/insulin receptor substrate-1-like (IRS-1L) protein and 130-kDa protein as JAK1 kinase. Furthermore, we demonstrate for the first time that JAK1 forms complexes with the IL-4 receptor and 4PS/IRS-1L protein following ligand-receptor interaction. In addition, we demonstrate that IL-9, but not IL-4, induced tyrosine phosphorylation of Stat 91 transcriptional factor. The overlapping and distinct protein tyrosine phosphorylation and activation of the same JAK1 kinase in T lymphocytes strongly suggests that IL-4 and IL-9 share the common signal transduction pathways and that the specificity for each cytokine could be achieved through the unique tyrosine-phosphorylated proteins triggered by individual cytokines.

  11. JAK2 and MPL protein levels determine TPO-induced megakaryocyte proliferation vs differentiation.

    PubMed

    Besancenot, Rodolphe; Roos-Weil, Damien; Tonetti, Carole; Abdelouahab, Hadjer; Lacout, Catherine; Pasquier, Florence; Willekens, Christophe; Rameau, Philippe; Lecluse, Yann; Micol, Jean-Baptiste; Constantinescu, Stefan N; Vainchenker, William; Solary, Eric; Giraudier, Stéphane

    2014-09-25

    Megakaryopoiesis is a 2-step differentiation process, regulated by thrombopoietin (TPO), on binding to its cognate receptor myeloproliferative leukemia (MPL). This receptor associates with intracytoplasmic tyrosine kinases, essentially janus kinase 2 (JAK2), which regulates MPL stability and cell-surface expression, and mediates TPO-induced signal transduction. We demonstrate that JAK2 and MPL mediate TPO-induced proliferation arrest and megakaryocytic differentiation of the human megakaryoblastic leukemia cell line UT7-MPL. A decrease in JAK2 or MPL protein expression, and JAK2 chemical inhibition, suppress this antiproliferative action of TPO. The expression of JAK2 and MPL, which progressively increases along normal human megakaryopoiesis, is decreased in platelets of patients diagnosed with JAK2- or MPL-mutated essential thrombocytemia and primary myelofibrosis, 2 myeloproliferative neoplasms in which megakaryocytes (MKs) proliferate excessively. Finally, low doses of JAK2 chemical inhibitors are shown to induce a paradoxical increase in MK production, both in vitro and in vivo. We propose that JAK2 and MPL expression levels regulate megakaryocytic proliferation vs differentiation in both normal and pathological conditions, and that JAK2 chemical inhibitors could promote a paradoxical thrombocytosis when used at suboptimal doses. © 2014 by The American Society of Hematology.

  12. Activation of JAK3, but not JAK1, is critical to interleukin-4 (IL4) stimulated proliferation and requires a membrane-proximal region of IL4 receptor alpha.

    PubMed

    Malabarba, M G; Kirken, R A; Rui, H; Koettnitz, K; Kawamura, M; O'Shea, J J; Kalthoff, F S; Farrar, W L

    1995-04-21

    The tyrosine kinases JAK1 and JAK3 have been shown to undergo tyrosine phosphorylation in response to interleukin-2 (IL), IL4, IL7, and IL9, cytokines which share the common IL2 receptor gamma-chain (IL2R gamma), and evidence has been found for a preferential coupling of JAK3 to IL2R gamma and JAK1 to IL2R beta. Here we show, using human premyeloid TF-1 cells, that IL4 stimulates JAK3 to a larger extent than JAK1, based upon three different evaluation criteria. These include a more vigorous tyrosine phosphorylation of JAK3 as measured by anti-phosphotyrosine immunoblotting, a more marked activation of JAK3 as determined by in vitro tyrosine kinase assays and a more manifest presence of JAK3 in activated IL4-receptor complexes. These observations suggest that IL4 receptor signal transduction does not depend on equimolar heterodimerization of JAK1 and JAK3 following IL4-induced heterodimerization of IL4R alpha and IL2R gamma. Indeed, when human IL4R alpha was stably expressed in mouse BA/F3 cells, robust IL4-induced proliferation and JAK3 activation occurred without detectable involvement of JAK1, JAK2, or TYK2. The present study suggests that JAK1 plays a subordinate role in IL4 receptor signaling, and that in certain cells exclusive JAK3 activation may mediate IL4-induced cell growth. Moreover, mutational analysis of human IL4R alpha showed that a membrane-proximal cytoplasmic region was critical for JAK3 activation, while the I4R motif was not, which is compatible with a role of JAK3 upstream of the recruitment of the insulin receptor substrate-1/4PS signaling proteins by IL4 receptors.

  13. Hyperactivation of JAK1 tyrosine kinase induces stepwise, progressive pruritic dermatitis

    PubMed Central

    Yasuda, Takuwa; Fukada, Toshiyuki; Nishida, Keigo; Nakayama, Manabu; Matsuda, Masashi; Miura, Ikuo; Fukuda, Shinji; Kabashima, Kenji; Nakaoka, Shinji; Bin, Bum-Ho; Kubo, Masato; Hasegawa, Takanori; Ohara, Osamu; Koseki, Haruhiko; Wakana, Shigeharu

    2016-01-01

    Skin homeostasis is maintained by the continuous proliferation and differentiation of epidermal cells. The skin forms a strong but flexible barrier against microorganisms as well as physical and chemical insults; however, the physiological mechanisms that maintain this barrier are not fully understood. Here, we have described a mutant mouse that spontaneously develops pruritic dermatitis as the result of an initial defect in skin homeostasis that is followed by induction of a Th2-biased immune response. These mice harbor a mutation that results in a single aa substitution in the JAK1 tyrosine kinase that results in hyperactivation, thereby leading to skin serine protease overexpression and disruption of skin barrier function. Accordingly, treatment with an ointment to maintain normal skin barrier function protected mutant mice from dermatitis onset. Pharmacological inhibition of JAK1 also delayed disease onset. Together, these findings indicate that JAK1-mediated signaling cascades in skin regulate the expression of proteases associated with the maintenance of skin barrier function and demonstrate that perturbation of these pathways can lead to the development of spontaneous pruritic dermatitis. PMID:27111231

  14. Hyperactivation of JAK1 tyrosine kinase induces stepwise, progressive pruritic dermatitis.

    PubMed

    Yasuda, Takuwa; Fukada, Toshiyuki; Nishida, Keigo; Nakayama, Manabu; Matsuda, Masashi; Miura, Ikuo; Dainichi, Teruki; Fukuda, Shinji; Kabashima, Kenji; Nakaoka, Shinji; Bin, Bum-Ho; Kubo, Masato; Ohno, Hiroshi; Hasegawa, Takanori; Ohara, Osamu; Koseki, Haruhiko; Wakana, Shigeharu; Yoshida, Hisahiro

    2016-06-01

    Skin homeostasis is maintained by the continuous proliferation and differentiation of epidermal cells. The skin forms a strong but flexible barrier against microorganisms as well as physical and chemical insults; however, the physiological mechanisms that maintain this barrier are not fully understood. Here, we have described a mutant mouse that spontaneously develops pruritic dermatitis as the result of an initial defect in skin homeostasis that is followed by induction of a Th2-biased immune response. These mice harbor a mutation that results in a single aa substitution in the JAK1 tyrosine kinase that results in hyperactivation, thereby leading to skin serine protease overexpression and disruption of skin barrier function. Accordingly, treatment with an ointment to maintain normal skin barrier function protected mutant mice from dermatitis onset. Pharmacological inhibition of JAK1 also delayed disease onset. Together, these findings indicate that JAK1-mediated signaling cascades in skin regulate the expression of proteases associated with the maintenance of skin barrier function and demonstrate that perturbation of these pathways can lead to the development of spontaneous pruritic dermatitis.

  15. Janus kinase (JAK) inhibitors in the treatment of inflammatory and neoplastic diseases.

    PubMed

    Roskoski, Robert

    2016-09-01

    The Janus kinase (JAK) family of non-receptor protein-tyrosine kinases consists of JAK1, JAK2, JAK3, and TYK2 (tyrosine kinase-2). Each of these proteins contains a JAK homology pseudokinase (JH2) domain that regulates the adjacent protein kinase domain (JH1). JAK1/2 and TYK2 are ubiquitously expressed whereas JAK3 is found predominantly in hematopoietic cells. The Janus kinase family is regulated by numerous cytokines including interleukins, interferons, and hormones such as erythropoietin, thrombopoietin, and growth hormone. Ligand binding to cytokine and hormone receptors leads to the activation of associated Janus kinases, which then mediate the phosphorylation of the receptors. The SH2 domain of STATs (signal transducers and activators of transcription) binds to the receptor phosphotyrosines thereby promoting STAT phosphorylation by the Janus kinases and consequent activation. STAT dimers are translocated to the nucleus where they participate in the regulation of the expression of thousands of proteins. JAK-STAT dysregulation results in autoimmune disorders such as rheumatoid arthritis, ulcerative colitis, and Crohn disease. JAK-STAT dysregulation also plays a role in the pathogenesis of myelofibrosis, polycythemia vera, and other myeloproliferative illnesses. An activating JAK2 V617F mutation occurs in 95% of people with polycythemia vera and in a lower percentage of people with other neoplasms. JAK1/3 signaling participates in the pathogenesis of inflammatory afflictions while JAK1/2 signaling participates in the development of several malignancies including leukemias and lymphomas as well as myeloproliferative neoplasms. Tofacitinib is a pan-JAK inhibitor that is approved by the FDA for the treatment of rheumatoid arthritis and ruxolitinib is a JAK1/2 inhibitor that is approved for the treatment of polycythemia vera and myelofibrosis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. JAK and MPL mutations in myeloid malignancies.

    PubMed

    Tefferi, Ayalew

    2008-03-01

    The Janus family of non-receptor tyrosine kinases (JAK1, JAK2, JAK3 and tyrosine kinase 2) transduces signals downstream of type I and II cytokine receptors via signal transducers and activators of transcription (STATs). JAK3 is important in lymphoid and JAK2 in myeloid cell proliferation and differentiation. The thrombopoietin receptor MPL is one of several JAK2 cognate receptors and is essential for myelopoiesis in general and megakaryopoiesis in particular. Germline loss-of-function (LOF) JAK3 and MPL mutations cause severe combined immunodeficiency and congenital amegakaryocytic thrombocytopenia, respectively. Germline gain-of-function (GOF) MPL mutation (MPLS505N) causes familial thrombocytosis. Somatic JAK3 (e.g. JAK3A572V, JAK3V722I, JAK3P132T) and fusion JAK2 (e.g. ETV6-JAK2, PCM1-JAK2, BCR-JAK2) mutations have respectively been described in acute megakaryocytic leukemia and acute leukemia/chronic myeloid malignancies. However, current attention is focused on JAK2 (e.g. JAK2V617F, JAK2 exon 12 mutations) and MPL (e.g. MPLW515L/K/S, MPLS505N) mutations associated with myeloproliferative neoplasms (MPNs). A JAK2 mutation, primarily JAK2V617F, is invariably associated with polycythemia vera (PV). The latter mutation also occurs in the majority of patients with essential thrombocythemia (ET) or primary myelofibrosis (PMF). MPL mutational frequency in MPNs is substantially less (<10%). In general, despite a certain degree of genotype - phenotype correlations, the prognostic relevance of harbouring one of these mutations, or their allele burden when present, remains dubious. Regardless, based on the logical assumption that amplified JAK-STAT signalling is central to the pathogenesis of PV, ET and PMF, several anti-JAK2 tyrosine kinase inhibitors have been developed and are currently being tested in humans with these disorders.

  17. Novel mutations in the inhibitory adaptor protein LNK drive JAK-STAT signaling in patients with myeloproliferative neoplasms

    PubMed Central

    Oh, Stephen T.; Simonds, Erin F.; Jones, Carol; Hale, Matthew B.; Goltsev, Yury; Gibbs, Kenneth D.; Merker, Jason D.; Zehnder, James L.; Nolan, Garry P.

    2010-01-01

    Dysregulated Janus kinase–signal transducer and activator of transcription (JAK-STAT) signaling due to activation of tyrosine kinases is a common feature of myeloid malignancies. Here we report the first human disease-related mutations in the adaptor protein LNK, a negative regulator of JAK-STAT signaling, in 2 patients with JAK2 V617F–negative myeloproliferative neoplasms (MPNs). One patient exhibited a 5 base-pair deletion and missense mutation leading to a premature stop codon and loss of the pleckstrin homology (PH) and Src homology 2 (SH2) domains. A second patient had a missense mutation (E208Q) in the PH domain. BaF3-MPL cells transduced with these LNK mutants displayed augmented and sustained thrombopoietin-dependent growth and signaling. Primary samples from MPN patients bearing LNK mutations exhibited aberrant JAK-STAT activation, and cytokine-responsive CD34+ early progenitors were abnormally abundant in both patients. These findings indicate that JAK-STAT activation due to loss of LNK negative feedback regulation is a novel mechanism of MPN pathogenesis. PMID:20404132

  18. Production and crystallization of recombinant JAK proteins.

    PubMed

    Lucet, Isabelle S; Bamert, Rebecca

    2013-01-01

    JAK kinases are critical mediators in development, differentiation, and homeostasis and accordingly, have become well-validated targets for drug discovery efforts. In recent years, the integration of X-ray crystallography in kinase-focused drug discovery programs has provided a powerful rationale for chemical modification by allowing a unique glimpse of a bound inhibitor to its target. Such structural information has not only led to an improved understanding of the key drivers of potency and specificity of several JAK-specific compounds but has greatly facilitated and accelerated the design of compounds with improved pharmacokinetic properties.JAK kinases are traditionally difficult candidates to express in significant quantities, generally requiring eukaryotic expression systems, protein engineering, mutations to yield soluble, homogeneous samples suitable for crystallization studies. Here we review the key methods utilized to express, purify, and crystallize the JAK kinases and provide a detail description of the methods that we have developed to express, purify, and crystallize recombinant JAK1 and JAK2 proteins in the presence of small molecule inhibitors.

  19. Desensitization of the growth hormone-induced Janus kinase 2 (Jak 2)/signal transducer and activator of transcription 5 (Stat5)-signaling pathway requires protein synthesis and phospholipase C.

    PubMed

    Fernández, L; Flores-Morales, A; Lahuna, O; Sliva, D; Norstedt, G; Haldosén, L A; Mode, A; Gustafsson, J A

    1998-04-01

    Signal transducers and activators of transcription (Stat) proteins are latent cytoplasmic transcription factors that are tyrosine phosphorylated by Janus kinases (Jak) in response to GH and other cytokines. GH activates Stat5 by a mechanism that involves tyrosine phosphorylation and nuclear translocation. However, the mechanisms that turn off the GH-activated Jak2/Stat5 pathway are unknown. Continuous exposure to GH of BRL-4 cells, a rat hepatoma cell line stably transfected with rat GH receptor, induces a rapid but transient activation of Jak2 and Stat5. GH-induced Stat5 DNA-binding activity was detected after 2 min and reached a maximum at 10 min. Continued exposure to GH resulted in a desensitization characterized by 1) a rapid decrease in Stat5 DNA-binding activity. The rate of decrease of activity was rapid up to 1 h of GH treatment, and the remaining activity declined slowly thereafter. The activity of Stat5 present after 5 h is still higher than the control levels and almost 10-20% with respect to maximal activity at 10 min; and 2) the inability of further GH treatment to reinduce activation of Stat5. In contrast, with transient exposures of BRL-4 cells to GH, Stat5 DNA-binding activity could repeatedly be induced. GH-induced Jak2 and Stat5 activities were independent of ongoing protein synthesis. However, Jak2 tyrosine phosphorylation and Stat5 DNA-binding activity were prolonged for at least 4 h in the presence of cycloheximide, which suggests that the maintenance of desensitization requires ongoing protein synthesis. Furthermore, inhibition of protein synthesis potentiated GH-induced transcriptional activity in BRL-4 cells transiently transfected with SPIGLE1CAT, a reporter plasmid activated by Stat5. GH-induced Jak2 and Stat5 activation were not affected by D609 or mepacrine, both inhibitors of phospholipase C. However, in the presence of D609 and mepacrine, GH maintained prolonged Jak2 and Stat5 activation. Transactivation of SPIGLE1 by GH was

  20. Hierarchy of protein tyrosine kinases in interleukin-2 (IL-2) signaling: activation of syk depends on Jak3; however, neither Syk nor Lck is required for IL-2-mediated STAT activation.

    PubMed

    Zhou, Y J; Magnuson, K S; Cheng, T P; Gadina, M; Frucht, D M; Galon, J; Candotti, F; Geahlen, R L; Changelian, P S; O'Shea, J J

    2000-06-01

    Interleukin-2 (IL-2) activates several different families of tyrosine kinases, but precisely how these kinases interact is not completely understood. We therefore investigated the functional relationships among Jak3, Lck, and Syk in IL-2 signaling. We first observed that in the absence of Jak3, both Lck and Syk had the capacity to phosphorylate Stat3 and Stat5a. However, neither supported IL-2-induced STAT activation, nor did dominant negative alleles of these kinases inhibit. Moreover, pharmacological abrogation of Lck activity did not inhibit IL-2-mediated phosphorylation of Jak3 and Stat5a. Importantly, ligand-dependent Syk activation was dependent on the presence of catalytically active Jak3, whereas Lck activation was not. Interestingly, Syk functioned as a direct substrate of Jak1 but not Jak3. Additionally, Jak3 phosphorylated Jak1, whereas the reverse was not the case. Taken together, our data support a model in which Lck functions in parallel with Jak3, while Syk functions as a downstream element of Jaks in IL-2 signaling. Jak3 may regulate Syk catalytic activity indirectly via Jak1. However, IL-2-mediated Jak3/Stat activation is not dependent on Lck or Syk. While the essential roles of Jak1 and Jak3 in signaling by gammac-utilizing cytokines are clear, it will be important to dissect the exact contributions of Lck and Syk in mediating the effects of IL-2 and related cytokines.

  1. Cell type-specific roles of Jak3 in IL-2-induced proliferative signal transduction

    PubMed Central

    Fujii, Hodaka

    2007-01-01

    Binding of IL-2 to its specific receptor induces activation of two members of Jak family protein tyrosine kinases, Jak1 and Jak3. An IL-2R-reconstituted NIH 3T3 fibroblast cell line proliferates in response to IL-2 only when hematopoietic lineage-specific Jak3 is ectopically expressed. However, the mechanism of Jak3-dependent proliferation in the fibroblast cell line is not known. Here, I showed that Jak3 expression is dispensable for IL-2-induced activation of Jak1 and Stat proteins and expression of nuclear proto-oncogenes in the IL-2R-reconstituted fibroblast cell line. However, Jak3 expression markedly enhanced these IL-2-induced signaling events. In contrast, Jak3 expression was essential for induction of cyclin genes involved in the G1-S transition. These data suggest a critical role of Jak3 in IL-2 signaling in the fibroblast cell line and may provide further insight into the cell type-specific mechanism of cytokine signaling. PMID:17266928

  2. Selective JAK inhibitors in development for rheumatoid arthritis.

    PubMed

    Norman, Peter

    2014-08-01

    The JAK kinases are a family of four tyrosine receptor kinases that play a pivotal role in cytokine receptor signalling pathways via their interaction with signal transducers and activators of transcription proteins. Selective inhibitors of JAK kinases are viewed as of considerable potential as disease-modifying anti-inflammatory drugs for the treatment of rheumatoid arthritis. This article provides a review of the clinical development and available clinical results for those JAK inhibitors currently under investigation. Phase II data for four JAK inhibitors (baricitinib, decernotinib, filgotinib and INCB-039110) are contrasted with that reported for the recently approved JAK inhibitor tofacitinib. The preclinical data on these, in addition to peficitinib, ABT-494, INCB-047986 and AC-410 are also discussed, as are some of the inhibitors in preclinical development. JAK inhibitors are effective in the treatment of rheumatoid arthritis as evidenced by several inhibitors enabling the majority of treated patients to achieve ACR20 responses, with baricitinib and INCB-039110 both effective when administered once daily. JAK inhibitors differ in isoform specificity profiles, with good efficacy achievable by selective inhibition of either JAK1 (filgotinib or INCB-039110) or JAK3 (decernotinib). It remains to be seen what selectivity provides the optimal side-effect profile and to what extent inhibition of JAK2 should be avoided.

  3. Controlling nuclear JAKs and STATs for specific gene activation by IFN{gamma}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noon-Song, Ezra N.; Ahmed, Chulbul M.; Dabelic, Rea

    2011-07-08

    Highlights: {yields} Gamma interferon (IFN{gamma}) and its receptor subunit, IFNGR1, interact with the promoter region of IFN{gamma}-associated genes along with transcription factor STAT1{alpha}. {yields} We show that activated Janus kinases pJAK2 and pJAK1 also associate with IFNGR1 in the nucleus. {yields} The activated Janus kinases are responsible for phosphorylation of tyrosine 41 on histone H3, an important epigenetic event for specific gene activation. -- Abstract: We previously showed that gamma interferon (IFN{gamma}) and its receptor subunit, IFNGR1, interacted with the promoter region of IFN{gamma}-activated genes along with transcription factor STAT1{alpha}. Recent studies have suggested that activated Janus kinases pJAK2 andmore » pJAK1 also played a role in gene activation by phosphorylation of histone H3 on tyrosine 41. This study addresses the question of the role of activated JAKs in specific gene activation by IFN{gamma}. We carried out chromatin immunoprecipitation (ChIP) followed by PCR in IFN{gamma} treated WISH cells and showed association of pJAK1, pJAK2, IFNGR1, and STAT1 on the same DNA sequence of the IRF-1 gene promoter. The {beta}-actin gene, which is not activated by IFN{gamma}, did not show this association. The movement of activated JAK to the nucleus and the IRF-1 promoter was confirmed by the combination of nuclear fractionation, confocal microscopy and DNA precipitation analysis using the biotinylated GAS promoter. Activated JAKs in the nucleus was associated with phosphorylated tyrosine 41 on histone H3 in the region of the GAS promoter. Unphosphorylated JAK2 was found to be constitutively present in the nucleus and was capable of undergoing activation in IFN{gamma} treated cells, most likely via nuclear IFNGR1. Association of pJAK2 and IFNGR1 with histone H3 in IFN{gamma} treated cells was demonstrated by histone H3 immunoprecipitation. Unphosphorylated STAT1 protein was associated with histone H3 of untreated cells. IFN

  4. Nuclear localization of lymphocyte-specific protein tyrosine kinase (Lck) and its role in regulating LIM domain only 2 (Lmo2) gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venkitachalam, Srividya; Chueh, Fu-Yu; Yu, Chao-Lan, E-mail: chaolan.yu@rosalindfranklin.edu

    2012-01-20

    Highlights: Black-Right-Pointing-Pointer Lmo2 expression is elevated in Lck-transformed cells. Black-Right-Pointing-Pointer Both endogenous and exogenous Lck localize in the nucleus. Black-Right-Pointing-Pointer Nuclear Lck is active in Lck-transformed cells. Black-Right-Pointing-Pointer Lck binds to the promoter region of Lmo2 gene in vivo. Black-Right-Pointing-Pointer In contrast to JAK2, Lck does not increase histone H3 phosphorylation on Tyr 41. -- Abstract: LIM domain only protein 2 (Lmo2) is a transcription factor that plays a critical role in the development of T-acute lymphoblastic leukemia (T-ALL). A previous report established a link between Lmo2 expression and the nuclear presence of oncogenic Janus kinase 2 (JAK2), a non-receptormore » protein tyrosine kinase. The oncogenic JAK2 kinase phosphorylates histone H3 on Tyr 41 that leads to the relief of Lmo2 promoter repression and subsequent gene expression. Similar to JAK2, constitutive activation of lymphocyte-specific protein tyrosine kinase (Lck) has been implicated in lymphoid malignancies. However, it is not known whether oncogenic Lck regulates Lmo2 expression through a similar mechanism. We show here that Lmo2 expression is significantly elevated in T cell leukemia LSTRA overexpressing active Lck kinase and in HEK 293 cells expressing oncogenic Y505FLck kinase. Nuclear localization of active Lck kinase was confirmed in both Lck-transformed cells by subcellular fractionation and immunofluorescence microscopy. More importantly, in contrast to oncogenic JAK2, oncogenic Lck kinase does not result in significant increase in histone H3 phosphorylation on Tyr 41. Instead, chromatin immunoprecipitation experiment shows that oncogenic Y505FLck kinase binds to the Lmo2 promoter in vivo. This result raises the possibility that oncogenic Lck may activate Lmo2 promoter through direct interaction.« less

  5. The Janus Kinase (JAK) FERM and SH2 Domains: Bringing Specificity to JAK-Receptor Interactions.

    PubMed

    Ferrao, Ryan; Lupardus, Patrick J

    2017-01-01

    The Janus kinases (JAKs) are non-receptor tyrosine kinases essential for signaling in response to cytokines and interferons and thereby control many essential functions in growth, development, and immune regulation. JAKs are unique among tyrosine kinases for their constitutive yet non-covalent association with class I and II cytokine receptors, which upon cytokine binding bring together two JAKs to create an active signaling complex. JAK association with cytokine receptors is facilitated by N-terminal FERM and SH2 domains, both of which are classical mediators of peptide interactions. Together, the JAK FERM and SH2 domains mediate a bipartite interaction with two distinct receptor peptide motifs, the proline-rich "Box1" and hydrophobic "Box2," which are present in the intracellular domain of cytokine receptors. While the general sidechain chemistry of Box1 and Box2 peptides is conserved between receptors, they share very weak primary sequence homology, making it impossible to posit why certain JAKs preferentially interact with and signal through specific subsets of cytokine receptors. Here, we review the structure and function of the JAK FERM and SH2 domains in light of several recent studies that reveal their atomic structure and elucidate interaction mechanisms with both the Box1 and Box2 receptor motifs. These crystal structures demonstrate how evolution has repurposed the JAK FERM and SH2 domains into a receptor-binding module that facilitates interactions with multiple receptors possessing diverse primary sequences.

  6. Controlling nuclear JAKs and STATs for specific gene activation by IFNγ.

    PubMed

    Noon-Song, Ezra N; Ahmed, Chulbul M; Dabelic, Rea; Canton, Johnathan; Johnson, Howard M

    2011-07-08

    We previously showed that gamma interferon (IFNγ) and its receptor subunit, IFNGR1, interacted with the promoter region of IFNγ-activated genes along with transcription factor STAT1α. Recent studies have suggested that activated Janus kinases pJAK2 and pJAK1 also played a role in gene activation by phosphorylation of histone H3 on tyrosine 41. This study addresses the question of the role of activated JAKs in specific gene activation by IFNγ. We carried out chromatin immunoprecipitation (ChIP) followed by PCR in IFNγ treated WISH cells and showed association of pJAK1, pJAK2, IFNGR1, and STAT1 on the same DNA sequence of the IRF-1 gene promoter. The β-actin gene, which is not activated by IFNγ, did not show this association. The movement of activated JAK to the nucleus and the IRF-1 promoter was confirmed by the combination of nuclear fractionation, confocal microscopy and DNA precipitation analysis using the biotinylated GAS promoter. Activated JAKs in the nucleus was associated with phosphorylated tyrosine 41 on histone H3 in the region of the GAS promoter. Unphosphorylated JAK2 was found to be constitutively present in the nucleus and was capable of undergoing activation in IFNγ treated cells, most likely via nuclear IFNGR1. Association of pJAK2 and IFNGR1 with histone H3 in IFNγ treated cells was demonstrated by histone H3 immunoprecipitation. Unphosphorylated STAT1 protein was associated with histone H3 of untreated cells. IFNγ treatment resulted in its disassociation and then re-association as pSTAT1. The results suggest a novel role for activated JAKs in epigenetic events for specific gene activation. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Contribution of Protein Tyrosine Phosphateses to the Ontogeny and Progression of Chronic Myeloid Leukemia

    DTIC Science & Technology

    2006-04-01

    activates STATs. The protein tyrosine phosphatases TC-PTP and PTP1B are negative regulators of JAK/STAT signaling molecules and it is possible that...these two PTPs could impede the ability of CML cells to survive and proliferate in response to p210 BCR-Abl. We examined the role of TC-PTP and PTP1b in...contributing to the CML phenotype and found that in some CML cell lines the levels of TC-PTP and PTP1b is increased suggesting that they may be

  8. JAK2-V617F-induced MAPK activity is regulated by PI3K and acts synergistically with PI3K on the proliferation of JAK2-V617F-positive cells

    PubMed Central

    Wolf, Alexandra; Eulenfeld, René; Gäbler, Karoline; Rolvering, Catherine; Haan, Serge; Behrmann, Iris; Denecke, Bernd; Haan, Claude; Schaper, Fred

    2013-01-01

    The identification of a constitutively active JAK2 mutant, namely JAK2-V617F, was a milestone in the understanding of Philadelphia chromosome-negative myeloproliferative neoplasms. The JAK2-V617F mutation confers cytokine hypersensitivity, constitutive activation of the JAK-STAT pathway, and cytokine-independent growth. In this study we investigated the mechanism of JAK2-V617F-dependent signaling with a special focus on the activation of the MAPK pathway. We observed JAK2-V617F-dependent deregulated activation of the multi-site docking protein Gab1 as indicated by constitutive, PI3K-dependent membrane localization and tyrosine phosphorylation of Gab1. Furthermore, we demonstrate that PI3K signaling regulates MAPK activation in JAK2-V617F-positve cells. This cross-regulation of the MAPK pathway by PI3K affects JAK2-V617F-specific target gene induction, erythroid colony formation, and regulates proliferation of JAK2-V617F-positive patient cells in a synergistically manner. PMID:24069558

  9. The Stilbenoid Tyrosine Kinase Inhibitor, G6, Suppresses Jak2-V617F-mediated Human Pathological Cell Growth in Vitro and in Vivo*

    PubMed Central

    Kirabo, Annet; Embury, Jennifer; Kiss, Róbert; Polgár, Tímea; Gali, Meghanath; Majumder, Anurima; Bisht, Kirpal S.; Cogle, Christopher R.; Keserű, György M.; Sayeski, Peter P.

    2011-01-01

    Using structure-based virtual screening, we previously identified a novel stilbenoid inhibitor of Jak2 tyrosine kinase named G6. Here, we hypothesized that G6 suppresses Jak2-V617F-mediated human pathological cell growth in vitro and in vivo. We found that G6 inhibited proliferation of the Jak2-V617F expressing human erythroleukemia (HEL) cell line by promoting marked cell cycle arrest and inducing apoptosis. The G6-dependent increase in apoptosis levels was concomitant with increased caspase 3/7 activity and cleavage of PARP. G6 also selectively inhibited phosphorylation of STAT5, a downstream signaling target of Jak2. Using a mouse model of Jak2-V617F-mediated hyperplasia, we found that G6 significantly decreased the percentage of blast cells in the peripheral blood, reduced splenomegaly, and corrected a pathologically low myeloid to erythroid ratio in the bone marrow by eliminating HEL cell engraftment in this tissue. In addition, drug efficacy correlated with the presence of G6 in the plasma, marrow, and spleen. Collectively, these data demonstrate that the stilbenoid compound, G6, suppresses Jak2-V617F-mediated aberrant cell growth. As such, G6 may be a potential therapeutic lead candidate against Jak2-mediated, human disease. PMID:21127060

  10. Design and synthesis of carbazole carboxamides as promising inhibitors of Bruton’s tyrosine kinase (BTK) and Janus kinase 2 (JAK2)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Qingjie; Batt, Douglas G.; Lippy, Jonathan S.

    Four series of disubstituted carbazole-1-carboxamides were designed and synthesised as inhibitors of Bruton’s tyrosine kinase (BTK). 4,7- and 4,6-disubstituted carbazole-1-carboxamides were potent and selective inhibitors of BTK, while 3,7- and 3,6-disubstituted carbazole-1-carboxamides were potent and selective inhibitors of Janus kinase 2 (JAK2).

  11. Interleukins 2, 4, 7, and 15 stimulate tyrosine phosphorylation of insulin receptor substrates 1 and 2 in T cells. Potential role of JAK kinases.

    PubMed

    Johnston, J A; Wang, L M; Hanson, E P; Sun, X J; White, M F; Oakes, S A; Pierce, J H; O'Shea, J J

    1995-12-01

    The signaling molecules insulin receptor substrate (IRS)-1 and the newly described IRS-2 (4PS) molecule are major insulin and interleukin 4 (IL-4)-dependent phosphoproteins. We report here that IL-2, IL-7, and IL-15, as well as IL-4, rapidly stimulate the tyrosine phosphorylation of IRS-1 and IRS-2 in human peripheral blood T cells, NK cells, and in lymphoid cell lines. In addition, we show that the Janus kinases, JAK1 and JAK3, associate with IRS-1 and IRS-2 in T cells. Coexpression studies demonstrate that these kinases can tyrosine-phosphorylate IRS-2, suggesting a possible mechanism by which cytokine receptors may induce the tyrosine phosphorylation of IRS-1 and IRS-2. We further demonstrate that the p85 subunit of phosphoinositol 3-kinase associates with IRS-1 in response to IL-2 and IL-4 in T cells. Therefore, these data indicate that IRS-1 and IRS-2 may have important roles in T lymphocyte activation not only in response to IL-4, but also in response to IL-2, IL-7, and IL-15.

  12. Regulation of T cell homeostasis by JAKs and STATs.

    PubMed

    Ross, Jeremy A; Nagy, Zsuzsanna S; Cheng, Hanyin; Stepkowski, Stanislaw M; Kirken, Robert A

    2007-01-01

    Regulation of T cell homeostasis is critical for maintaining normal immune function. An imbalance in T cell proliferation can result in disorders ranging from cancer and autoimmunity to immunodeficiencies. Full activation of T cells requires three sequential signals, where signal 3, which is delivered by multiple cytokines, regulates proliferation, differentiation, and survival/death. Signaling from cytokines through their receptors is primarily delivered by two molecular families, namely Janus tyrosine kinases (JAKs) and signal transducers and activators of transcription (STATs). Invaluable knowledge about JAKs and STATs has arisen from studies of mice made genetically deficient in these molecules, analyses of tumor models, and studies of expression patterns by proteomics/genomics, which all have begun to define the role of JAKs and STATs in survival versus apoptosis. These findings also have suggested ways in which JAKs and STATs may be manipulated for therapeutic intervention in lymphoid-derived diseases. This review seeks to focus on the role of JAK tyrosine kinases and STAT transcription factors in mediating the lymphocyte life cycle and how they might be manipulated for therapeutic applications.

  13. Targeting Janus tyrosine kinase 3 (JAK3) with an inhibitor induces secretion of TGF-β by CD4+ T cells

    PubMed Central

    Cetkovic-Cvrlje, Marina; Olson, Marin; Ghate, Ketaki

    2012-01-01

    Regulatory T cells (Tregs) are critical for the peripheral maintenance of the autoreactive T cells in autoimmune disorders such as type 1 diabetes (T1D). Pharmacological inhibition of Janus tyrosine kinase 3 (JAK3) has been proposed as a basis for new treatment modalities against autoimmunity and allogeneic responses. Targeting JAK3 with an inhibitor has previously been shown to exhibit protective action against the development of T1D in non-obese diabetic (NOD) mice. As the mechanism of such preventative action has been unknown, we hypothesized that JAK3 inhibition induces generation of Tregs. Here, we show that the JAK3 inhibitor 4-(4′-hydroxyphenyl)-amino-6,7-dimethoxyquinazoline (WHI-P131) suppresses proliferation of short-term cultured NOD CD4+ T cells through induction of apoptosis, while promoting survival of a particular population of long-term cultured cells. It was found that the surviving cells were not of the CD4+CD25+FoxP3+ phenotype. They secreted decreased amounts of IL-10, IL-4 and interferon (IFN)-γ compared to the cells not exposed to the optimal concentrations of JAK3 inhibitor. However, an elevated transforming growth factor (TGF)-β secretion was detected in their supernatants. In vivo treatment of prediabetic NOD mice with WHI-P131 did not affect the frequency and number of splenic and pancreatic lymph node CD4+FoxP3+ Tregs, while generating an elevated numbers of CD4+FoxP3− TGF-β-secreting T cells. In conclusion, our data suggest an induction of TGF-β-secreting CD4+ T cells as the underlying mechanism for antidiabetogenic effects obtained by the treatment with a JAK3 inhibitor. To our knowledge, this is the first report of the JAK3 inhibitor activity in the context of the murine Tregs. PMID:22728763

  14. Direct Interaction of Jak1 and v-Abl Is Required for v-Abl-Induced Activation of STATs and Proliferation

    PubMed Central

    Danial, Nika N.; Losman, Julie A.; Lu, Tianhong; Yip, Natalie; Krishnan, Kartik; Krolewski, John; Goff, Stephen P.; Wang, Jean Y. J.; Rothman, Paul B.

    1998-01-01

    In Abelson murine leukemia virus (A-MuLV)-transformed cells, members of the Janus kinase (Jak) family of non-receptor tyrosine kinases and the signal transducers and activators of transcription (STAT) family of signaling proteins are constitutively activated. In these cells, the v-Abl oncoprotein and the Jak proteins physically associate. To define the molecular mechanism of constitutive Jak-STAT signaling in these cells, the functional significance of the v-Abl–Jak association was examined. Mapping the Jak1 interaction domain in v-Abl demonstrates that amino acids 858 to 1080 within the carboxyl-terminal region of v-Abl bind Jak1 through a direct interaction. A mutant of v-Abl lacking this region exhibits a significant defect in Jak1 binding in vivo, fails to activate Jak1 and STAT proteins, and does not support either the proliferation or the survival of BAF/3 cells in the absence of cytokine. Cells expressing this v-Abl mutant show extended latency and decreased frequency in generating tumors in nude mice. In addition, inducible expression of a kinase-inactive mutant of Jak1 protein inhibits the ability of v-Abl to activate STATs and to induce cytokine-independent proliferation, indicating that an active Jak1 is required for these v-Abl-induced signaling pathways in vivo. We propose that Jak1 is a mediator of v-Abl-induced STAT activation and v-Abl induced proliferation in BAF/3 cells, and may be important for efficient transformation of immature B cells by the v-abl oncogene. PMID:9774693

  15. Alternative ways of modulating JAK-STAT pathway

    PubMed Central

    2012-01-01

    Most attempts to develop inhibitors of STAT transcription factors target either activating phosphorylation of tyrosine residue or SH2 domains. However, all six domains of STATs are highly conserved between the species and play important roles in the function of this family of transcription factors. STATs are involved in numerous protein-protein interactions that are likely to regulate and fine tune transcriptional activity. Targeting these interactions can provide plentiful opportunities for the discovery of novel drug candidates and powerful chemical biology tools. Using N-terminal domains as an example we describe alternative rational approaches to the development of modulators of JAK-STAT signaling. PMID:24058784

  16. Nonreceptor Protein-Tyrosine Kinases in Neutrophil Activation

    PubMed

    Welch; Mauran; Maridonneau-Parini

    1996-06-01

    Nonreceptor protein-tyrosine kinases are involved in the regulation of almost all neutrophil responses such as adhesion, chemotaxis, priming, oxidative burst, and degranulation. Here, we show that phagocytosis is also regulated by protein-tyrosine kinase activity. Using various protein-tyrosine kinase inhibitors, we further demonstrate that opsonized zymosan-induced degranulation of specific and azurophil granules is regulated by protein-tyrosine kinase activity, whereas phorbol ester-induced degranulation is not. Several of the nonreceptor protein-tyrosine kinases involving in neutrophil signal transduction are known, including Fgr, Hck, Lyn, Yes, and Syk. Among these, Hck and Fgr are localized on the azurophil and specific granules, suggesting the involvement of these two protein-tyrosine kinases in the regulation of degranulation. In this report, we characterize some of the molecular properties of Hck and Fgr. We discuss the methods generally used for the measurement of protein-tyrosine kinase activities in neutrophils highlighting precautions against proteolysis. In addition, we show that in subcellular fractions of retinoic acid-differentiated neutrophil-like NB4 cells, the 59- and 61-kDa forms of Hck are attached to the membranes of their respective compartments by different mechanisms. Finally, we discuss the functional roles of protein-tyrosine kinases in the regulation of neutrophil activation and speculate on the importance of their subcellular localization.

  17. JAK inhibitors suppress t(8;21) fusion protein-induced leukemia

    PubMed Central

    Lo, Miao-Chia; Peterson, Luke F.; Yan, Ming; Cong, Xiuli; Hickman, Justin H.; DeKelver, Russel C.; Niewerth, Denise; Zhang, Dong-Er

    2014-01-01

    Oncogenic mutations in components of the JAK/STAT pathway, including those in cytokine receptors and JAKs, lead to increased activity of downstream signaling and are frequently found in leukemia and other hematological disorders. Thus, small-molecule inhibitors of this pathway have been the focus of targeted therapy in these hematological diseases. We previously showed that t(8;21) fusion protein AML1-ETO and its alternatively spliced variant AML1-ETO9a (AE9a) enhance the JAK/STAT pathway via down-regulation of CD45, a negative regulator of this pathway. To investigate the therapeutic potential of targeting JAK/STAT in t(8;21) leukemia, we examined the effects of a JAK2-selective inhibitor TG101209 and a JAK1/2-selective inhibitor INCB18424 on t(8;21) leukemia cells. TG101209 and INCB18424 inhibited proliferation and promoted apoptosis of these cells. Furthermore, TG101209 treatment in AE9a leukemia mice reduced tumor burden and significantly prolonged survival. TG101209 also significantly impaired the leukemia-initiating potential of AE9a leukemia cells in secondary recipient mice. These results demonstrate the potential therapeutic efficacy of JAK inhibitors in treating t(8;21) AML. PMID:23812420

  18. Caveolin-1-deficient mice show accelerated mammary gland development during pregnancy, premature lactation, and hyperactivation of the Jak-2/STAT5a signaling cascade.

    PubMed

    Park, David S; Lee, Hyangkyu; Frank, Philippe G; Razani, Babak; Nguyen, Andrew V; Parlow, Albert F; Russell, Robert G; Hulit, James; Pestell, Richard G; Lisanti, Michael P

    2002-10-01

    It is well established that mammary gland development and lactation are tightly controlled by prolactin signaling. Binding of prolactin to its cognate receptor (Prl-R) leads to activation of the Jak-2 tyrosine kinase and the recruitment/tyrosine phosphorylation of STAT5a. However, the mechanisms for attenuating the Prl-R/Jak-2/STAT5a signaling cascade are just now being elucidated. Here, we present evidence that caveolin-1 functions as a novel suppressor of cytokine signaling in the mammary gland, akin to the SOCS family of proteins. Specifically, we show that caveolin-1 expression blocks prolactin-induced activation of a STAT5a-responsive luciferase reporter in mammary epithelial cells. Furthermore, caveolin-1 expression inhibited prolactin-induced STAT5a tyrosine phosphorylation and DNA binding activity, suggesting that caveolin-1 may negatively regulate the Jak-2 tyrosine kinase. Because the caveolin-scaffolding domain bears a striking resemblance to the SOCS pseudosubstrate domain, we examined whether Jak-2 associates with caveolin-1. In accordance with this homology, we demonstrate that Jak-2 cofractionates and coimmunoprecipitates with caveolin-1. We next tested the in vivo relevance of these findings using female Cav-1 (-/-) null mice. If caveolin-1 normally functions as a suppressor of cytokine signaling in the mammary gland, then Cav-1 null mice should show premature development of the lobuloalveolar compartment because of hyperactivation of the prolactin signaling cascade via disinhibition of Jak-2. In accordance with this prediction, Cav-1 null mice show accelerated development of the lobuloalveolar compartment, premature milk production, and hyperphosphorylation of STAT5a (pY694) at its Jak-2 phosphorylation site. In addition, the Ras-p42/44 MAPK cascade is hyper-activated. Because a similar premature lactation phenotype is observed in SOCS1 (-/-) null mice, we conclude that caveolin-1 is a novel suppressor of cytokine signaling.

  19. Roles of germline JAK2 activation mutation JAK2 V625F in the pathology of myeloproliferative neoplasms.

    PubMed

    Wu, Qing-Yun; Ma, Meng-Meng; Fu, Lin; Zhu, Yuan-Yuan; Liu, Yang; Cao, Jiang; Zhou, Ping; Li, Zhen-Yu; Zeng, Ling-Yu; Li, Feng; Wang, Xiao-Yun; Xu, Kai-Lin

    2018-05-18

    Janus tyrosine kinase 2 (JAK2) mediates downstream signaling of cytokine receptors in all hematological lineages, constitutively active somatic JAK2 mutations play key roles in the pathology of myeloproliferative neoplasms (MPNs). Recently, germline JAK2 mutations are also associated with triple-negative MPNs. A novel germline mutation JAK2 V625F is reported to be involved in a subset of MPNs patients. However, the pathogenesis of this mutation caused MPN is still unclear. In this study, the homology models of JAK2 V625F showed that the newly formed interaction between F625 and Y613 disrupted the JAK2 JH1-JH2 domain interactions was responsible for its activation, when F625 and Y613 interaction was disrupted, its activity significantly decreased. While, when this interaction was repaired whether by forming hydrogen bond or salt bond, it would cause JAK2 activation. Biochemical studies also demonstrated that JAK2 V625F mutation led to JAK2-STAT5 pathway activation and promoted the proliferation of BaF3 cells. Thus, our results herein provide clues to understand the mechanism JAK2 V625F mutation caused MPNs and give information for the development of JAK2 mutation specific inhibitors. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Recent Progress in JAK Inhibitors for the Treatment of Rheumatoid Arthritis.

    PubMed

    Nakayamada, Shingo; Kubo, Satoshi; Iwata, Shigeru; Tanaka, Yoshiya

    2016-10-01

    Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by synovial inflammation and joint destruction. Considerable advance in the treatment of RA has been made following the advent of biological disease-modifying anti-rheumatic drugs (DMARDs). However, these biologics require intravenous or subcutaneous injection and some patients fail to respond to biological DMARDs or lose their primary response. Various cytokines and cell surface molecules bind to receptors on the cell surface, resulting in the activation of various cell signaling pathways, including phosphorylation of kinase proteins. Among these kinases, the non-receptor tyrosine kinase family Janus kinase (JAK) plays a pivotal role in the pathological processes of RA. Several JAK inhibitors have been developed as new therapies for patients with RA. These are oral synthetic DMARDs that inhibit JAK1, 2, and 3. One JAK inhibitor, tofacitinib, has already been approved in many countries. Results of phase III clinical trials using a JAK1/2 inhibitor, baricitinib, have shown feasible efficacy and tolerable safety. Both drugs are effective in patients who showed inadequate response to biological DMARDs as well as synthetic DMARDs. In addition, clinical phase III trials using filgotinib and ABT-494, specific JAK1 inhibitors, are currently underway. JAK inhibitors are novel therapies for RA, but further studies are needed to determine their risk-benefit ratio and selection of the most appropriate patients for such therapy.

  1. Tyrosine phosphorylation of WW proteins

    PubMed Central

    Reuven, Nina; Shanzer, Matan

    2015-01-01

    A number of key regulatory proteins contain one or two copies of the WW domain known to mediate protein–protein interaction via proline-rich motifs, such as PPxY. The Hippo pathway components take advantage of this module to transduce tumor suppressor signaling. It is becoming evident that tyrosine phosphorylation is a critical regulator of the WW proteins. Here, we review the current knowledge on the involved tyrosine kinases and their roles in regulating the WW proteins. PMID:25627656

  2. Evolution of JAK-STAT Pathway Components: Mechanisms and Role in Immune System Development

    PubMed Central

    Liongue, Clifford; O'Sullivan, Lynda A.; Trengove, Monique C.; Ward, Alister C.

    2012-01-01

    Background Lying downstream of a myriad of cytokine receptors, the Janus kinase (JAK) – Signal transducer and activator of transcription (STAT) pathway is pivotal for the development and function of the immune system, with additional important roles in other biological systems. To gain further insight into immune system evolution, we have performed a comprehensive bioinformatic analysis of the JAK-STAT pathway components, including the key negative regulators of this pathway, the SH2-domain containing tyrosine phosphatase (SHP), Protein inhibitors against Stats (PIAS), and Suppressor of cytokine signaling (SOCS) proteins across a diverse range of organisms. Results Our analysis has demonstrated significant expansion of JAK-STAT pathway components co-incident with the emergence of adaptive immunity, with whole genome duplication being the principal mechanism for generating this additional diversity. In contrast, expansion of upstream cytokine receptors appears to be a pivotal driver for the differential diversification of specific pathway components. Conclusion Diversification of JAK-STAT pathway components during early vertebrate development occurred concurrently with a major expansion of upstream cytokine receptors and two rounds of whole genome duplications. This produced an intricate cell-cell communication system that has made a significant contribution to the evolution of the immune system, particularly the emergence of adaptive immunity. PMID:22412924

  3. A protein-tyrosine phosphatase with sequence similarity to the SH2 domain of the protein-tyrosine kinases.

    PubMed

    Shen, S H; Bastien, L; Posner, B I; Chrétien, P

    1991-08-22

    The phosphorylation of proteins at tyrosine residues is critical in cellular signal transduction, neoplastic transformation and control of the mitotic cycle. These mechanisms are regulated by the activities of both protein-tyrosine kinases (PTKs) and protein-tyrosine phosphatases (PTPases). As in the PTKs, there are two classes of PTPases: membrane associated, receptor-like enzymes and soluble proteins. Here we report the isolation of a complementary DNA clone encoding a new form of soluble PTPase, PTP1C. The enzyme possesses a large noncatalytic region at the N terminus which unexpectedly contains two adjacent copies of the Src homology region 2 (the SH2 domain) found in various nonreceptor PTKs and other cytoplasmic signalling proteins. As with other SH2 sequences, the SH2 domains of PTP1C formed high-affinity complexes with the activated epidermal growth factor receptor and other phosphotyrosine-containing proteins. These results suggest that the SH2 regions in PTP1C may interact with other cellular components to modulate its own phosphatase activity against interacting substrates. PTPase activity may thus directly link growth factor receptors and other signalling proteins through protein-tyrosine phosphorylation.

  4. Tyrosine-Nitrated Proteins: Proteomic and Bioanalytical Aspects.

    PubMed

    Batthyány, Carlos; Bartesaghi, Silvina; Mastrogiovanni, Mauricio; Lima, Analía; Demicheli, Verónica; Radi, Rafael

    2017-03-01

    "Nitroproteomic" is under active development, as 3-nitrotyrosine in proteins constitutes a footprint left by the reactions of nitric oxide-derived oxidants that are usually associated to oxidative stress conditions. Moreover, protein tyrosine nitration can cause structural and functional changes, which may be of pathophysiological relevance for human disease conditions. Biological protein tyrosine nitration is a free radical process involving the intermediacy of tyrosyl radicals; in spite of being a nonenzymatic process, nitration is selectively directed toward a limited subset of tyrosine residues. Precise identification and quantitation of 3-nitrotyrosine in proteins has represented a "tour de force" for researchers. Recent Advances: A small number of proteins are preferential targets of nitration (usually less than 100 proteins per proteome), contrasting with the large number of proteins modified by other post-translational modifications such as phosphorylation, acetylation, and, notably, S-nitrosation. Proteomic approaches have revealed key features of tyrosine nitration both in vivo and in vitro, including selectivity, site specificity, and effects in protein structure and function. Identification of 3-nitrotyrosine-containing proteins and mapping nitrated residues is challenging, due to low abundance of this oxidative modification in biological samples and its unfriendly behavior in mass spectrometry (MS)-based technologies, that is, MALDI, electrospray ionization, and collision-induced dissociation. The use of (i) classical two-dimensional electrophoresis with immunochemical detection of nitrated proteins followed by protein ID by regular MS/MS in combination with (ii) immuno-enrichment of tyrosine-nitrated peptides and (iii) identification of nitrated peptides by a MIDAS™ experiment is arising as a potent methodology to unambiguously map and quantitate tyrosine-nitrated proteins in vivo. Antioxid. Redox Signal. 26, 313-328.

  5. Protein Tyrosine Nitration: Role in Aging.

    PubMed

    Chakravarti, Bulbul; Chakravarti, Deb N

    2017-01-01

    Aging is the inevitable fate of all living organisms, but the molecular basis of physiological aging is poorly understood. Oxidative stress is believed to play a key role in the aging process. In addition to Reactive Oxygen Species (ROS), Reactive Nitrogen Species (RNS) are generated during aerobic metabolism in living organisms. Although protein damage and functional modification by ROS have been demonstrated in details, fewer studies have been reported on protein damage by RNS and its implication in the aging process. Proteins undergoing tyrosine nitration are associated with pathophysiology of several diseases, as well as physiological aging. The purpose of the current review article is to provide a brief summary of the biochemical mechanisms of tyrosine nitration, methodologies used for the detection of these modified proteins, effect of RNS induced post translational modification on biological functions and the putative role of tyrosine nitrated proteins in the aging process. Published studies on the role of RNS in age related functional alteration of various organs/ tissues were critically reviewed and evaluated. Covalent modification of various proteins by tyrosine nitration is associated with modification of biological functions of various organs/tissues such as skeletal muscle, heart, brain and liver due to aging. This information will be helpful to further investigate the interplay of different biochemical pathways and networks involved in the tyrosine nitration of various proteins due to aging with the ultimate goal to prevent the detrimental effects of RNS on the functional activities of these proteins. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Phosphorylation of tyrosine 285 of PAK1 facilitates βPIX/GIT1 binding and adhesion turnover

    PubMed Central

    Hammer, Alan; Oladimeji, Peter; De Las Casas, Luis E.; Diakonova, Maria

    2015-01-01

    The p21-activated serine-threonine kinase (PAK1) regulates cell motility and adhesion. We have previously shown that the prolactin (PRL)-activated tyrosine kinase JAK2 phosphorylates PAK1 in vivo and in vitro and identified tyrosines 153, 201, and 285 in PAK1 as sites of JAK2 tyrosyl phosphorylation. Here, we further investigate the role of the tyrosyl phosphorylated PAK1 (pTyr-PAK1) in regulation of cell adhesion. We use human breast cancer T47D cell lines that stably overexpress PAK1 wild type or PAK1 Y3F mutant in which these 3 JAK2 phosphorylation sites were mutated to phenylalanine. We demonstrate that PRL/JAK2-dependent phosphorylation of these tyrosines promotes a motile phenotype in the cells upon adhesion, participates in regulation of cell adhesion on collagen IV, and is required for maximal PAK1 kinase activity. Down-regulation of PAK1 abolishes the effect of PAK1 on cell adhesion. We show that the tyrosyl phosphorylation of PAK1 promotes PAK1 binding to β-PAK1-interacting guanine-nucleotide exchange factor (βPIX) and G protein-coupled receptor kinase-interacting target 1 (GIT1), phosphorylation of paxillin on Ser273, and formation and distribution of adhesion complexes. Using phosphospecific antibodies (Abs) directed to single phosphorylated tyrosines on PAK1, we identified Tyr285 as a site of PRL-dependent phosphorylation of PAK1 by JAK2. Furthermore, using PAK1 Y285F mutant, we provide evidence for a role of pTyr285 in cell adhesion, enhanced βPIX/GIT1 binding, and adhesion turnover. Our immunohistochemistry analysis demonstrates that pTyr285- PAK1 may modulate PAK1 signaling during tumor progression.—Hammer, A., Oladimeji, P., De La Casas, L. E., Diakonova, M. Phosphorylation of tyrosine 285 of PAK1 facilitates bPIX/GIT1 binding and adhesion turnover. PMID:25466889

  7. TC-PTP and PTP1B: Regulating JAK-STAT signaling, controlling lymphoid malignancies.

    PubMed

    Pike, Kelly A; Tremblay, Michel L

    2016-06-01

    Lymphoid malignancies are characterized by an accumulation of genetic lesions that act co-operatively to perturb signaling pathways and alter gene expression programs. The Janus kinases (JAK)-signal transducers and activators of transcription (STATs) pathway is one such pathway that is frequently mutated in leukemia and lymphoma. In response to cytokines and growth factors, a cascade of reversible tyrosine phosphorylation events propagates the JAK-STAT pathway from the cell surface to the nucleus. Activated STAT family members then play a fundamental role in establishing the transcriptional landscape of the cell. In leukemia and lymphoma, somatic mutations have been identified in JAK and STAT family members, as well as, negative regulators of the pathway. Most recently, inactivating mutations in the protein tyrosine phosphatase (PTP) genes PTPN1 (PTP1B) and PTPN2 (TC-PTP) were sequenced in B cell lymphoma and T cell acute lymphoblastic leukemia (T-ALL) respectively. The loss of PTP1B and TC-PTP phosphatase activity is associated with an increase in cytokine sensitivity, elevated JAK-STAT signaling, and changes in gene expression. As inactivation mutations in PTPN1 and PTPN2 are restricted to distinct subsets of leukemia and lymphoma, a future challenge will be to identify in which cellular contexts do they contributing to the initiation or maintenance of leukemogenesis or lymphomagenesis. As well, the molecular mechanisms by which PTP1B and TC-PTP loss co-operates with other genetic aberrations will need to be elucidated to design more effective therapeutic strategies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Specific Jak3 Downregulation in Lymphocytes Impairs γc Cytokine Signal Transduction and Alleviates Antigen-driven Inflammation In Vivo

    PubMed Central

    Gómez-Valadés, Alicia G; Llamas, María; Blanch, Sílvia; Perales, José C; Román, Juan; Gómez-Casajús, Lluís; Mascaró, Cristina

    2012-01-01

    Jak3, one of the four members comprising the Jak family of cytosolic tyrosine kinases, has emerged as a promising target for nontoxic immunotherapies. Although a number of Jak inhibitors has already demonstrated efficacy, they suffer from secondary effects apparently associated to their pan-Jak activity. However, whether selective Jak3 inhibition would afford therapeutic efficacy remains unclear. To address this question we have investigated the immunosuppressive potential of selective Jak3 intervention in lymphocytes using RNA interference (RNAi) technology in vitro and in vivo. Using synthetic small interference RNA (siRNA) sequences we achieved successful transfections into human and mouse primary T lymphocytes. We found that Jak3 knockdown was sufficient to impair not only interleukin-2 (IL-2) and T cell receptor (TCR)-mediated cell activation in vitro, but also antigen-triggereds welling, inflammatory cell infiltration, and proinflammatory cytokine raise in vivo. Furthermore, Jak1 (which mediates γc cytokine signaling in conjunction with Jak3) cosilencing did not provide higher potency to the aforementioned immunosuppressant effects. Our data provides direct evidences indicating that Jak3 protein plays an important role in γc cytokine and antigen-mediated T cell activation and modulates Th1-mediated inflammatory disorders, all in all highlighting its potential as a target in immunosuppressive therapies. PMID:23344234

  9. Tyrosine-Nitrated Proteins: Proteomic and Bioanalytical Aspects

    PubMed Central

    Batthyány, Carlos; Bartesaghi, Silvina; Mastrogiovanni, Mauricio; Lima, Analía; Demicheli, Verónica

    2017-01-01

    Abstract Significance: “Nitroproteomic” is under active development, as 3-nitrotyrosine in proteins constitutes a footprint left by the reactions of nitric oxide-derived oxidants that are usually associated to oxidative stress conditions. Moreover, protein tyrosine nitration can cause structural and functional changes, which may be of pathophysiological relevance for human disease conditions. Biological protein tyrosine nitration is a free radical process involving the intermediacy of tyrosyl radicals; in spite of being a nonenzymatic process, nitration is selectively directed toward a limited subset of tyrosine residues. Precise identification and quantitation of 3-nitrotyrosine in proteins has represented a “tour de force” for researchers. Recent Advances: A small number of proteins are preferential targets of nitration (usually less than 100 proteins per proteome), contrasting with the large number of proteins modified by other post-translational modifications such as phosphorylation, acetylation, and, notably, S-nitrosation. Proteomic approaches have revealed key features of tyrosine nitration both in vivo and in vitro, including selectivity, site specificity, and effects in protein structure and function. Critical Issues: Identification of 3-nitrotyrosine-containing proteins and mapping nitrated residues is challenging, due to low abundance of this oxidative modification in biological samples and its unfriendly behavior in mass spectrometry (MS)-based technologies, that is, MALDI, electrospray ionization, and collision-induced dissociation. Future Directions: The use of (i) classical two-dimensional electrophoresis with immunochemical detection of nitrated proteins followed by protein ID by regular MS/MS in combination with (ii) immuno-enrichment of tyrosine-nitrated peptides and (iii) identification of nitrated peptides by a MIDAS™ experiment is arising as a potent methodology to unambiguously map and quantitate tyrosine-nitrated proteins in vivo

  10. Prospect of JAK2 inhibitor therapy in myeloproliferative neoplasms

    PubMed Central

    Atallah, Ehab; Verstovsek, Srdan

    2016-01-01

    The discovery of the Janus kinase (JAK)2 V617F mutation in patients with myeloproliferative neoplasms was a major milestone in understanding the biology of those disorders. Several groups simultaneously reported on the high incidence of this mutation in patients with myeloproliferative neoplasms: almost all patients with polycythemia vera harbor the mutation and about 50% of patients with essential thrombocythemia and primary myelofibrosis have the mutation, making the development of JAK2 tyrosine kinase inhibitors an attractive therapeutic goal. In addition, inhibition of JAK2 kinase may have a therapeutic role in other hematologic malignancies, such as chronic myeloid leukemia or lymphoma. A number of molecules that inhibit JAK2 kinase have been described in the literature, and several are being evaluated in a clinical setting. Here, we summarize current clinical experience with JAK2 inhibitors. PMID:19445582

  11. Protein tyrosine phosphatases as potential therapeutic targets

    PubMed Central

    He, Rong-jun; Yu, Zhi-hong; Zhang, Ruo-yu; Zhang, Zhong-yin

    2014-01-01

    Protein tyrosine phosphorylation is a key regulatory process in virtually all aspects of cellular functions. Dysregulation of protein tyrosine phosphorylation is a major cause of human diseases, such as cancers, diabetes, autoimmune disorders, and neurological diseases. Indeed, protein tyrosine phosphorylation-mediated signaling events offer ample therapeutic targets, and drug discovery efforts to date have brought over two dozen kinase inhibitors to the clinic. Accordingly, protein tyrosine phosphatases (PTPs) are considered next-generation drug targets. For instance, PTP1B is a well-known targets of type 2 diabetes and obesity, and recent studies indicate that it is also a promising target for breast cancer. SHP2 is a bona-fide oncoprotein, mutations of which cause juvenile myelomonocytic leukemia, acute myeloid leukemia, and solid tumors. In addition, LYP is strongly associated with type 1 diabetes and many other autoimmune diseases. This review summarizes recent findings on several highly recognized PTP family drug targets, including PTP1B, Src homology phosphotyrosyl phosphatase 2(SHP2), lymphoid-specific tyrosine phosphatase (LYP), CD45, Fas associated phosphatase-1 (FAP-1), striatal enriched tyrosine phosphatases (STEP), mitogen-activated protein kinase/dual-specificity phosphatase 1 (MKP-1), phosphatases of regenerating liver-1 (PRL), low molecular weight PTPs (LMWPTP), and CDC25. Given that there are over 100 family members, we hope this review will serve as a road map for innovative drug discovery targeting PTPs. PMID:25220640

  12. Heterodimeric JAK-STAT Activation as a Mechanism of Persistence to JAK2 Inhibitor Therapy

    PubMed Central

    Koppikar, Priya; Bhagwat, Neha; Kilpivaara, Outi; Manshouri, Taghi; Adli, Mazhar; Hricik, Todd; Liu, Fan; Saunders, Lindsay M.; Mullally, Ann; Abdel-Wahab, Omar; Leung, Laura; Weinstein, Abby; Marubayashi, Sachie; Goel, Aviva; Gönen, Mithat; Estrov, Zeev; Ebert, Benjamin L.; Chiosis, Gabriela; Nimer, Stephen D.; Bernstein, Bradley E.; Verstovsek, Srdan; Levine, Ross L.

    2012-01-01

    The identification of somatic activating mutations in JAK21–4 and in the thrombopoietin receptor (MPL)5 in the majority of myeloproliferative neoplasm (MPN) patients led to the clinical development of JAK2 kinase inhibitors6,7. JAK2 inhibitor therapy improves MPN-associated splenomegaly and systemic symptoms, but does not significantly reduce or eliminate the MPN clone in most MPN patients. We therefore sought to characterize mechanisms by which MPN cells persist despite chronic JAK2 inhibition. Here we show that JAK2 inhibitor persistence is associated with reactivation of JAK-STAT signaling and with heterodimerization between activated JAK2 and JAK1/TYK2, consistent with activation of JAK2 in trans by other JAK kinases. Further, this phenomenon is reversible, such that JAK2 inhibitor withdrawal is associated with resensitization to JAK2 kinase inhibitors and with reversible changes in JAK2 expression. We saw increased JAK2 heterodimerization and sustained JAK2 activation in cell lines, murine models, and patients treated with JAK2 inhibitors. RNA interference and pharmacologic studies demonstrate that JAK2 inhibitor persistent cells remain dependent on JAK2 protein expression. Consequently, therapies that result in JAK2 degradation retain efficacy in persistent cells and may provide additional benefit to patients with JAK2-dependent malignancies treated with JAK2 inhibitors. PMID:22820254

  13. TG101209, a small molecule JAK2-selective kinase inhibitor potently inhibits myeloproliferative disorder-associated JAK2V617F and MPLW515L/K mutations.

    PubMed

    Pardanani, A; Hood, J; Lasho, T; Levine, R L; Martin, M B; Noronha, G; Finke, C; Mak, C C; Mesa, R; Zhu, H; Soll, R; Gilliland, D G; Tefferi, A

    2007-08-01

    JAK2V617F and MPLW515L/K represent recently identified mutations in myeloproliferative disorders (MPD) that cause dysregulated JAK-STAT signaling, which is implicated in MPD pathogenesis. We developed TG101209, an orally bioavailable small molecule that potently inhibits JAK2 (IC(50)=6 nM), FLT3 (IC(50)=25 nM) and RET (IC(50)=17 nM) kinases, with significantly less activity against other tyrosine kinases including JAK3 (IC(50)=169 nM). TG101209 inhibited growth of Ba/F3 cells expressing JAK2V617F or MPLW515L mutations with an IC(50) of approximately 200 nM. In a human JAK2V617F-expressing acute myeloid leukemia cell line, TG101209-induced cell cycle arrest and apoptosis, and inhibited phosphorylation of JAK2V617F, STAT5 and STAT3. Therapeutic efficacy of TG101209 was demonstrated in a nude mouse model. Furthermore, TG101209 suppressed growth of hematopoietic colonies from primary progenitor cells harboring JAK2V617F or MPL515 mutations.

  14. JAK family members: Molecular cloning, expression profiles and their roles in leptin influencing lipid metabolism in Synechogobius hasta.

    PubMed

    Wu, Kun; Tan, Xiao-Ying; Xu, Yi-Huan; Shi, Xi; Fan, Yao-Fang; Li, Dan-Dan; Liu, Xu

    2017-01-01

    Janus kinase (JAK) is a family of non-receptor tyrosine kinases that participate in transducing cytokine signals from the external environment to the nucleus in various biological processes. Currently, information about their genes structure and evolutionary history has been extensively studied in mammals as well as in several fish species. By contrast, limited reports have addressed potential role of diverse JAK in signaling responses to leptin in fish. In this study, we identified and characterized five JAK members of Synechogobius hasta. Compared to mammals, more members of the JAK family were found in S. hasta, which provided evidence that the JAK family members had arisen by the whole genome duplications during vertebrate evolution. For protein structure, all of these members possessed similar domains compared with those of mammals. Their mRNAs were expressed in a wide range of tissues, but at the different levels. Incubation in vitro of freshly isolated hepatocytes of S. hasta with different concentrations of recombinant human leptin decreased the intracellular triglyceride content and lipogenic genes expression, and increased mRNA expression of several JAK and lipolytic genes. AG490, a specific inhibitor of JAK, reversed leptin-induced effects on TG content and JAK2a, JAK2b, hormone-sensitive lipase (HSL2) and acetyl-CoA carboxylase (ACCa), indicating that the JAK2a/b may have mediated the actions of leptin on lipid metabolism at transcriptional level. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. INTERFERON α ACTIVATES NF-κ B IN JAK1-DEFICIENT CELLS THROUGH A TYK2-DEPENDENT PATHWAY

    PubMed Central

    Yang, Chuan He; Murti, Aruna; Valentine, William J.; Du, Ziyun; Pfeffer, Lawrence M.

    2005-01-01

    In addition to activating members of the STAT transcription factor family, IFN α/β activates the NF-κ B transcription factor. To determine the role of the JAK-STAT pathway in NF-κ B activation by IFN, we examined NF-κ B activation in JAK1-deficient mutant human fibrosarcoma cells. In wild-type fibrosarcoma cells (2fTGH) IFN activates STAT1, STAT2 and STAT3, as well as NF-κB complexes comprised of p50 and p65. In contrast, in JAK1-deficient cells IFN induces NF-κB activation and NF-κB dependent gene transcription, but does not activate these STAT proteins and has no effect on STAT-dependent gene transcription. Expression of a catalytically-inactive TYK2 tyrosine kinase in JAK1-deficient cells, as well as in the highly IFN-sensitive Daudi lymphoblastoid cell line, abrogates NF-κB activation by IFN. Moreover, IFN does not promote NF-κB activation in TYK2-deficient mutant fibrosarcoma cells. Our results demonstrate a dichotomy between the classical JAK-STAT pathway and the NF-κB signaling pathway. In the IFN signaling pathway leading to STAT activation both JAK1 and TYK2 are essential, while NF-κB activation requires only TYK2. PMID:15883164

  16. A germline JAK2 SNP is associated with predisposition to the development of JAK2V617F-positive myeloproliferative neoplasms

    PubMed Central

    Kilpivaara, Outi; Mukherjee, Semanti; Schram, Alison M; Wadleigh, Martha; Mullally, Ann; Ebert, Benjamin L; Bass, Adam; Marubayashi, Sachie; Heguy, Adriana; Garcia-Manero, Guillermo; Kantarjian, Hagop; Offit, Kenneth; Stone, Richard M; Gilliland, D Gary; Klein, Robert J; Levine, Ross L

    2013-01-01

    Polycythemia vera, essential thrombocythemia and primary myelofibrosis are myeloproliferative neoplasms (MPN) characterized by multilineage clonal hematopoiesis1–5. Given that the identical somatic activating mutation in the JAK2 tyrosine kinase gene (JAK2V617F) is observed in most individuals with polycythemia vera, essential thrombocythemia and primary myelofibrosis6–10, there likely are additional genetic events that contribute to the pathogenesis of these phenotypically distinct disorders. Moreover, family members of individuals with MPN are at higher risk for the development of MPN, consistent with the existence of MPN predisposition loci11. We hypothesized that germline variation contributes to MPN predisposition and phenotypic pleiotropy. Genome-wide analysis identified an allele in the JAK2 locus (rs10974944) that predisposes to the development of JAK2V617F-positive MPN, as well as three previously unknown MPN modifier loci. We found that JAK2V617F is preferentially acquired in cis with the predisposition allele. These data suggest that germline variation is an important contributor to MPN phenotype and predisposition. PMID:19287384

  17. Comprehensive review of JAK inhibitors in myeloproliferative neoplasms

    PubMed Central

    Sonbol, Mohamad Bassam; Firwana, Belal; Zarzour, Ahmad; Morad, Mohammad; Rana, Vishal

    2013-01-01

    Myeloproliferative neoplasms (MPNs) are clonal hematopoietic stem-cell disorders, characterized phenotypically by the abnormal accumulation of mature-appearing myeloid cells. Polycythemia vera, essential thrombocythemia, primary myelofibrosis (also known as ‘BCR-ABL1-negative’ MPNs), and chronic myeloid leukemia (CML) are the primary types of MPNs. After the discovery of the BCR-ABL1 fusion protein in CML, several oncogenic tyrosine kinases have been identified in ‘BCR-ABL1-negative’ MPNs, most importantly, JAK2V617F mutation. The similarity in the clinical characteristics of the BCR-ABL1-negative MPN patients along with the prevalence of the Janus kinase mutation in this patient population provided a strong rationale for the development of a new class of pharmacologic inhibitors that target this pathway. The first of its class, ruxolitinib, has now been approved by the food and drug administration (FDA) for the management of patients with intermediate- to high-risk myelofibrosis. Ruxolitinib provides significant and sustained improvements in spleen related and constitutional symptoms secondary to the disease. Although noncurative, ruxolitinib represents a milestone in the treatment of myelofibrosis patients. Other types of JAK2 inhibitors are being tested in various clinical trials at this point and may provide better efficacy data and safety profile than its predecessor. In this article, we comprehensively reviewed and summarized the available preclinical and clinical trials pertaining to JAK inhibitors. PMID:23610611

  18. The tight junction protein ZO-2 and Janus kinase 1 mediate intercellular communications in vascular smooth muscle cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tkachuk, Natalia; Tkachuk, Sergey; Patecki, Margret

    2011-07-08

    Highlights: {yields} The tight junction protein ZO-2 associates with Jak1 in vascular smooth muscle cells via ZO-2 N-terminal fragment. {yields} Jak1 mediates ZO-2 tyrosine phosphorylation and ZO-2 localization to the sites of homotypic intercellular contacts. {yields} The urokinase receptor uPAR regulates ZO-2/Jak1 functional association. {yields} The ZO-2/Jak1/uPAR signaling complex is required for vascular smooth muscle cells functional network formation. -- Abstract: Recent evidence points to a multifunctional role of ZO-2, the tight junction protein of the MAGUK (membrane-associated guanylate kinase-like) family. Though ZO-2 has been found in cell types lacking tight junction structures, such as vascular smooth muscle cells (VSMC),more » little is known about ZO-2 function in these cells. We provide evidence that ZO-2 mediates specific homotypic cell-to-cell contacts between VSMC. Using mass spectrometry we found that ZO-2 is associated with the non-receptor tyrosine kinase Jak1. By generating specific ZO-2 constructs we further found that the N-terminal fragment of ZO-2 molecule is responsible for this interaction. Adenovirus-based expression of Jak1 inactive mutant demonstrated that Jak1 mediates ZO-2 tyrosine phosphorylation. By means of RNA silencing, expression of Jak1 mutant form and fluorescently labeled ZO-2 fusion protein we further specified that active Jak1, but not Jak1 inactive mutant, mediates ZO-2 localization to the sites of intercellular contacts. We identified the urokinase receptor uPAR as a pre-requisite for these cellular events. Functional requirement of the revealed signaling complex for VSMC network formation was confirmed in experiments using Matrigel and in contraction assay. Our findings imply involvement of the ZO-2 tight junction independent signaling complex containing Jak1 and uPAR in VSMC intercellular communications. This mechanism may contribute to vascular remodeling in occlusive cardiovascular diseases and in

  19. Protein tyrosine adduct in humans self-poisoned by chlorpyrifos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Bin, E-mail: binli@unmc.edu; Eyer, Peter, E-mail: peter.eyer@lrz.uni-muenchen.de; Eddleston, Michael, E-mail: M.Eddleston@ed.ac.uk

    2013-06-15

    Studies of human cases of self-inflicted poisoning suggest that chlorpyrifos oxon reacts not only with acetylcholinesterase and butyrylcholinesterase but also with other blood proteins. A favored candidate is albumin because in vitro and animal studies have identified tyrosine 411 of albumin as a site covalently modified by organophosphorus poisons. Our goal was to test this proposal in humans by determining whether plasma from humans poisoned by chlorpyrifos has adducts on tyrosine. Plasma samples from 5 self-poisoned humans were drawn at various time intervals after ingestion of chlorpyrifos for a total of 34 samples. All 34 samples were analyzed for plasmamore » levels of chlorpyrifos and chlorpyrifos oxon (CPO) as a function of time post-ingestion. Eleven samples were analyzed for the presence of diethoxyphosphorylated tyrosine by mass spectrometry. Six samples yielded diethoxyphosphorylated tyrosine in pronase digests. Blood collected as late as 5 days after chlorpyrifos ingestion was positive for CPO-tyrosine, consistent with the 20-day half-life of albumin. High plasma CPO levels did not predict detectable levels of CPO-tyrosine. CPO-tyrosine was identified in pralidoxime treated patients as well as in patients not treated with pralidoxime, indicating that pralidoxime does not reverse CPO binding to tyrosine in humans. Plasma butyrylcholinesterase was a more sensitive biomarker of exposure than adducts on tyrosine. In conclusion, chlorpyrifos oxon makes a stable covalent adduct on the tyrosine residue of blood proteins in humans who ingested chlorpyrifos. - Highlights: • Chlorpyrifos-poisoned patients have adducts on protein tyrosine. • Diethoxyphosphate-tyrosine does not lose an alkyl group. • Proteins in addition to AChE and BChE are modified by organophosphates.« less

  20. Metal-catalyzed protein tyrosine nitration in biological systems.

    PubMed

    Campolo, Nicolás; Bartesaghi, Silvina; Radi, Rafael

    2014-11-01

    Protein tyrosine nitration is an oxidative postranslational modification that can affect protein structure and function. It is mediated in vivo by the production of nitric oxide-derived reactive nitrogen species (RNS), including peroxynitrite (ONOO(-)) and nitrogen dioxide ((•)NO₂). Redox-active transition metals such as iron (Fe), copper (Cu), and manganese (Mn) can actively participate in the processes of tyrosine nitration in biological systems, as they catalyze the production of both reactive oxygen species and RNS, enhance nitration yields and provide site-specificity to this process. Early after the discovery that protein tyrosine nitration can occur under biologically relevant conditions, it was shown that some low molecular weight transition-metal centers and metalloproteins could promote peroxynitrite-dependent nitration. Later studies showed that nitration could be achieved by peroxynitrite-independent routes as well, depending on the transition metal-catalyzed oxidation of nitrite (NO₂(-)) to (•)NO₂ in the presence of hydrogen peroxide. Processes like these can be achieved either by hemeperoxidase-dependent reactions or by ferrous and cuprous ions through Fenton-type chemistry. Besides the in vitro evidence, there are now several in vivo studies that support the close relationship between transition metal levels and protein tyrosine nitration. So, the contribution of transition metals to the levels of tyrosine nitrated proteins observed under basal conditions and, specially, in disease states related with high levels of these metal ions, seems to be quite clear. Altogether, current evidence unambiguously supports a central role of transition metals in determining the extent and selectivity of protein tyrosine nitration mediated both by peroxynitrite-dependent and independent mechanisms.

  1. Inhibition of TYK2 and JAK1 Ameliorates Imiquimod-Induced Psoriasis-like Dermatitis by Inhibiting IL-22 and the IL-23/IL-17 axis

    PubMed Central

    Works, Melissa G.; Yin, Fangfang; Yin, Catherine C.; Yiu, Ying; Shew, Kenneth; Tran, Thanh-Thuy; Dunlap, Nahoko; Lam, Jennifer; Mitchell, Tim; Reader, John; Stein, Paul L.; D’Andrea, Annalisa

    2014-01-01

    Psoriasis is a chronic autoimmune disease affecting the skin and characterized by aberrant keratinocyte proliferation and function. Immune cells infiltrate the skin and release proinflammatory cytokines that play important roles in psoriasis. The Th17 network, including IL-23 and IL-22, has recently emerged as a critical component in the pathogenesis of psoriasis. IL-22 and IL-23 signaling is dependent on the JAK family of protein tyrosine kinases, making Janus kinase (JAK) inhibition an appealing strategy for the treatment of psoriasis. Here we report the activity of SAR-20347, a small molecule inhibitor with specificity for JAK1 and Tyrosine Kinase 2 (TYK2) over other JAK family members. In cellular assays, SAR-20347 dose-dependently (1 nM-10 μM) inhibited JAK1 and/or TYK2 dependent signaling from the IL-12/IL-23, IL-22, and IFN-α receptors. In vivo, TYK2 mutant mice or treatment of wild type mice with SAR-20347 significantly reduced IL-12 induced IFN-γ production and IL-22-dependent Serum Amyloid A (SAA) to similar extents, indicating that in these models, SAR-20347 is probably acting through inhibition of TYK2. In an imiquimod-induced psoriasis model, the administration of SAR-20347 led to a striking decrease in disease pathology, including reduced activation of keratinocytes, and proinflammatory cytokine levels compared to both TYK2 mutant mice and wild type controls. Taken together, these data indicate that targeting both JAK1 and TYK2-mediated cytokine signaling is more effective than TYK2 inhibition alone in reducing psoriasis pathogenesis. PMID:25156366

  2. ROLE OF TYROSINE-SULFATED PROTEINS IN RETINAL STRUCTURE AND FUNCTION

    PubMed Central

    Kanan, Y.; Al-Ubaidi, M.R.

    2014-01-01

    The extracellular matrix (ECM) plays a significant role in cellular and retinal health. The study of retinal tyrosine-sulfated proteins is an important first step toward understanding the role of ECM in retinal health and diseases. These secreted proteins are members of the retinal ECM. Tyrosine sulfation was shown to be necessary for the development of proper retinal structure and function. The importance of tyrosine sulfation is further demonstrated by the evolutionary presence of tyrosylprotein sulfotransferases, enzymes that catalyze proteins’ tyrosine sulfation, and the compensatory abilities of these enzymes. Research has identified four tyrosine-sulfated retinal proteins: fibulin 2, vitronectin, complement factor H (CFH), and opticin. Vitronectin and CFH regulate the activation of the complement system and are involved in the etiology of some cases of age-related macular degeneration. Analysis of the role of tyrosine sulfation in fibulin function showed that sulfation influences the protein's ability to regulate growth and migration. Although opticin was recently shown to exhibit anti-angiogenic properties, it is not yet determined what role sulfation plays in that function. Future studies focusing on identifying all of the tyrosine-sulfated retinal proteins would be instrumental in determining the impact of sulfation on retinal protein function in retinal homeostasis and diseases. PMID:25819460

  3. Crystal Structure of the FERM-SH2 Module of Human Jak2.

    PubMed

    McNally, Randall; Toms, Angela V; Eck, Michael J

    2016-01-01

    Jak-family tyrosine kinases mediate signaling from diverse cytokine receptors. Binding of Jaks to their cognate receptors is mediated by their N-terminal region, which contains FERM and SH2 domains. Here we describe the crystal structure of the FERM-SH2 region of Jak2 at 3.0Å resolution. The structure reveals that these domains and their flanking linker segments interact intimately to form an integrated structural module. The Jak2 FERM-SH2 structure closely resembles that recently described for Tyk2, another member of the Jak family. While the overall architecture and interdomain orientations are preserved between Jak2 and Tyk2, we identify residues in the putative receptor-binding groove that differ between the two and may contribute to the specificity of receptor recognition. Analysis of Jak mutations that are reported to disrupt receptor binding reveals that they lie in the hydrophobic core of the FERM domain, and are thus expected to compromise the structural integrity of the FERM-SH2 unit. Similarly, analysis of mutations in Jak3 that are associated with severe combined immunodeficiency suggests that they compromise Jak3 function by destabilizing the FERM-SH2 structure.

  4. T-Cell Protein Tyrosine Phosphatase Attenuates STAT3 and Insulin Signaling in the Liver to Regulate Gluconeogenesis

    PubMed Central

    Fukushima, Atsushi; Loh, Kim; Galic, Sandra; Fam, Barbara; Shields, Ben; Wiede, Florian; Tremblay, Michel L.; Watt, Matthew J.; Andrikopoulos, Sofianos; Tiganis, Tony

    2010-01-01

    OBJECTIVE Insulin-induced phosphatidylinositol 3-kinase (PI3K)/Akt signaling and interleukin-6 (IL-6)-instigated JAK/STAT3-signaling pathways in the liver inhibit the expression of gluconeogenic genes to decrease hepatic glucose output. The insulin receptor (IR) and JAK1 tyrosine kinases and STAT3 can serve as direct substrates for the T-cell protein tyrosine phosphatase (TCPTP). Homozygous TCPTP-deficiency results in perinatal lethality prohibiting any informative assessment of TCPTP's role in glucose homeostasis. Here we have used Ptpn2+/− mice to investigate TCPTP's function in glucose homeostasis. RESEARCH DESIGN AND METHODS We analyzed insulin sensitivity and gluconeogenesis in chow versus high-fat–fed (HFF) Ptpn2+/− and Ptpn2+/+ mice and insulin and IL-6 signaling and gluconeogenic gene expression in Ptpn2+/− and Ptpn2+/+ hepatocytes. RESULTS HFF Ptpn2+/− mice exhibited lower fasted blood glucose and decreased hepatic glucose output as determined in hyperinsulinemic euglycemic clamps and by the decreased blood glucose levels in pyruvate tolerance tests. The reduced hepatic glucose output coincided with decreased expression of the gluconeogenic genes G6pc and Pck1 and enhanced hepatic STAT3 phosphorylation and PI3K/Akt signaling in the fasted state. Insulin-induced IR-β–subunit Y1162/Y1163 phosphorylation and PI3K/Akt signaling and IL-6–induced STAT3 phosphorylation were also enhanced in isolated Ptpn2+/− hepatocytes. The increased insulin and IL-6 signaling resulted in enhanced suppression of G6pc and Pck1 mRNA. CONCLUSIONS Liver TCPTP antagonises both insulin and STAT3 signaling pathways to regulate gluconeogenic gene expression and hepatic glucose output. PMID:20484139

  5. Suppression of microRNA-135b-5p protects against myocardial ischemia/reperfusion injury by activating JAK2/STAT3 signaling pathway in mice during sevoflurane anesthesia.

    PubMed

    Xie, Xiao-Juan; Fan, Dong-Mei; Xi, Kai; Chen, Ya-Wei; Qi, Peng-Wei; Li, Qian-Hui; Fang, Liang; Ma, Li-Gang

    2017-06-30

    The study aims to explore the effects of miR-135b-5p on myocardial ischemia/reperfusion (I/R) injuries by regulating Janus protein tyrosine kinase 2 (JAK2)/signal transducer and activator of transcription (STAT) signaling pathway by mediating inhalation anesthesia with sevoflurane. A sum of 120 healthy Wistar male mice was assigned into six groups. Left ventricular ejection fraction (LVEF) and left ventricular shortening fraction (LVSF) were detected. Cardiomyocyte apoptosis was determined by terminal dexynucleotidyl transferase mediated dUTP-biotin nick end labeling (TUNEL) assay. MiR-135b-5p expression, mRNA and protein expression of p-STAT3, p-JAK2, STAT3, JAK2, B-cell lymphoma-2 (Bcl-2) and Bcl-2 associated X protein B (Bax) were detected by quantitative real-time PCR (qRT-PCR) and Western blotting. Target relationship between miR-135b-5p and JAK2 was confirmed by dual-luciferase reporter assay. The other five groups exhibited increased cardiomyocyte necrosis, apoptosis, miR-135b-5p and Bax expression, mRNA expression of JAK2 and STAT3, and protein expression of p-STAT3 and p-JAK2 compared with the sham group, but showed decreased LVEF, LVFS, and Bcl-2 expression. Compared with the model and AG490 + Sevo groups, the Sevo, inhibitor + Sevo and inhibitor + AG490 + Sevo groups displayed reduced cardiomyocyte necrosis, apoptosis, miR-135b-5p and Bax expression, but displayed elevated mRNA expression of JAK2 and STAT3, protein expression of p-STAT3 and p-JAK2, LVEF, LVFS and Bcl-2 expression. Compared with the Sevo and inhibitor + AG490 + Sevo groups, the AG490 + Sevo group showed decreased LVEF, LVFS, Bcl-2 expression, mRNA expressions of JAK2 and STAT3, and protein expressions of p-STAT3 and p-JAK2, but increased cardiomyocyte necrosis, apoptosis, and Bax expressions. MiR-135b-5p negatively targetted JAK2. Inhibition of miR-135b-5p can protect against myocardial I/R injury by activating JAK2/STAT3 signaling pathway through mediation of inhalation anesthesia with

  6. Preclinical evaluation of local JAK1 and JAK2 inhibition in cutaneous inflammation.

    PubMed

    Fridman, Jordan S; Scherle, Peggy A; Collins, Robert; Burn, Timothy; Neilan, Claire L; Hertel, Denise; Contel, Nancy; Haley, Patrick; Thomas, Beth; Shi, Jack; Collier, Paul; Rodgers, James D; Shepard, Stacey; Metcalf, Brian; Hollis, Gregory; Newton, Robert C; Yeleswaram, Swamy; Friedman, Steven M; Vaddi, Kris

    2011-09-01

    JAKs are required for signaling initiated by several cytokines (e.g., IL-4, IL-12, IL-23, thymic stromal lymphopoietin (TSLP), and IFNγ) implicated in the pathogenesis of inflammatory skin diseases such as psoriasis and atopic dermatitis (AD). Direct antagonism of cytokines, such as IL-12 and IL-23 using ustekinumab, has proven effective in randomized studies in psoriasis patients. We hypothesized that local inhibition of cytokine signaling using topical administration of INCB018424, a small molecule inhibitor of JAK1 and JAK2, would provide benefit similar to systemic cytokine neutralization. In cellular assays, INCB018424 inhibits cytokine-induced JAK/signal transducers and activators of transcription (STAT) signaling and the resultant production of inflammatory proteins (e.g., IL-17, monocyte chemotactic protein-1, and IL-22) in lymphocytes and monocytes, with half-maximal inhibitory concentration values <100  nM. In vivo, topical application of INCB018424 resulted in suppression of STAT3 phosphorylation, edema, lymphocyte infiltration, and keratinocyte proliferation in a murine contact hypersensitivity model and inhibited tissue inflammation induced by either intradermal IL-23 or TSLP. Topical INCB018424 was also well tolerated in a 28-day safety study in Gottingen minipigs. These results suggest that localized JAK1/JAK2 inhibition may be therapeutic in a range of inflammatory skin disorders such as psoriasis and AD. Clinical evaluation of topical INCB018424 is ongoing.

  7. Unprecedented Abundance of Protein Tyrosine Phosphorylation Modulates Shigella flexneri Virulence.

    PubMed

    Standish, Alistair James; Teh, Min Yan; Tran, Elizabeth Ngoc Hoa; Doyle, Matthew Thomas; Baker, Paul J; Morona, Renato

    2016-10-09

    Evidence is accumulating that protein tyrosine phosphorylation plays a crucial role in the ability of important human bacterial pathogens to cause disease. While most works have concentrated on its role in the regulation of a major bacterial virulence factor, the polysaccharide capsule, recent studies have suggested a much broader role for this post-translational modification. This prompted us to investigate protein tyrosine phosphorylation in the human pathogen Shigella flexneri. We first completed a tyrosine phosphoproteome, identifying 905 unique tyrosine phosphorylation sites on at least 573 proteins (approximately 15% of all proteins). This is the most tyrosine-phosphorylated sites and proteins in a single bacterium identified to date, substantially more than the level seen in eukaryotic cells. Most had not previously been identified and included proteins encoded by the virulence plasmid, which is essential for S. flexneri to invade cells and cause disease. In order to investigate the function of these phosphorylation sites in important virulence factors, phosphomimetic and ablative mutations were constructed in the type 3 secretion system ATPase Spa47 and the master virulence regulator VirB. This revealed that tyrosine residues phosphorylated in our study are critical for Spa47 and VirB activity, and tyrosine phosphorylation likely regulates their functional activity and subsequently the virulence of this major human pathogen. This study suggests that tyrosine phosphorylation plays a critical role in regulating a wide variety of virulence factors in the human pathogen S. flexneri and serves as a base for future studies defining its complete role. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Interaction between Sam68 and Src family tyrosine kinases, Fyn and Lck, in T cell receptor signaling.

    PubMed

    Fusaki, N; Iwamatsu, A; Iwashima, M; Fujisawa, J i

    1997-03-07

    The Src family protein-tyrosine kinase, Fyn, is associated with the T cell receptor (TCR) and plays an important role in TCR-mediated signaling. We found that a human T cell leukemia virus type 1-infected T cell line, Hayai, overexpressed Fyn. To identify the molecules downstream of Fyn, we analyzed the tyrosine phosphorylation of cellular proteins in the cells. In Hayai, a 68-kDa protein was constitutively tyrosine-phosphorylated. The 68-kDa protein was coimmunoprecipitated with various signaling proteins such as phospholipase C gamma1, the phosphatidylinositol 3-kinase p85 subunit, Grb2, SHP-1, Cbl, and Jak3, implying that the protein might function as an adapter. Purification and microsequencing of this protein revealed that it was the RNA-binding protein, Sam68 (Src associated in mitosis, 68 kDa). Sam68 was associated with the Src homology 2 and 3 domains of Fyn and also those of another Src family kinase, Lck. CD3 cross-linking induced tyrosine phosphorylation of Sam68 in uninfected T cells. These data suggest that Sam68 participates in the signal transduction pathway downstream of TCR-coupled Src family kinases Fyn and Lck in lymphocytes, that is not only in the mitotic pathway downstream of c-Src in fibroblasts.

  9. 5-hydroxy-2-methyl-1,4-naphthoquinone, a vitamin K3 analogue, suppresses STAT3 activation pathway through induction of protein tyrosine phosphatase, SHP-1: potential role in chemosensitization.

    PubMed

    Sandur, Santosh K; Pandey, Manoj K; Sung, Bokyung; Aggarwal, Bharat B

    2010-01-01

    The activation of signal transducers and activators of transcription 3 (STAT3) has been linked with carcinogenesis through survival, proliferation, and angiogenesis of tumor cells. Agents that can suppress STAT3 activation have potential not only for prevention but also for treatment of cancer. In the present report, we investigated whether 5-hydroxy-2-methyl-1,4-naphthoquinone (plumbagin), an analogue of vitamin K, and isolated from chitrak (Plumbago zeylanica), an Ayurvedic medicinal plant, can modulate the STAT3 pathway. We found that plumbagin inhibited both constitutive and interleukin 6-inducible STAT3 phosphorylation in multiple myeloma (MM) cells and this correlated with the inhibition of c-Src, Janus-activated kinase (JAK)1, and JAK2 activation. Vanadate, however, reversed the plumbagin-induced downregulation of STAT3 activation, suggesting the involvement of a protein tyrosine phosphatase. Indeed, we found that plumbagin induced the expression of the protein tyrosine phosphatase, SHP-1, and silencing of the SHP-1 abolished the effect of plumbagin. This agent also downregulated the expression of STAT3-regulated cyclin D1, Bcl-xL, and vascular endothelial growth factor; activated caspase-3; induced poly (ADP ribose) polymerase cleavage; and increased the sub-G(1) population of MM cells. Consistent with these results, overexpression of constitutive active STAT3 significantly reduced the plumbagin-induced apoptosis. When compared with AG490, a rationally designed STAT3/JAK2 inhibitor, plumbagin was found more potent in suppressing the proliferation of cells. Plumbagin also significantly potentiated the apoptotic effects of thalidomide and bortezomib in MM cells. Overall, these results suggest that the plumbagin inhibits STAT3 activation pathway through the induction of SHP-1 and this may mediate the sensitization of STAT3 overexpressing cancers to chemotherapeutic agents.

  10. A novel mutation in the JH4 domain of JAK3 causing severe combined immunodeficiency complicated by vertebral osteomyelitis.

    PubMed

    Qamar, Farah; Junejo, Samina; Qureshi, Sonia; Seleman, Michael; Bainter, Wayne; Massaad, Michel; Chou, Janet; Geha, Raif S

    2017-10-01

    JAK3 is a tyrosine kinase essential for signaling downstream of the common gamma chain subunit shared by multiple cytokine receptors. JAK3 deficiency results in T - B + NK - severe combined immune deficiency (SCID). We report a patient with SCID due to a novel mutation in the JAK3 JH4 domain. The function of the JH4 domain remains unknown. This is the first report of a missense mutation in the JAK3 JH4 domain, thereby demonstrating the importance of the JH4 domain of JAK3 in host immunity. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Role of JAK-STAT signaling in the pathogenesis of myeloproliferative disorders.

    PubMed

    Levine, Ross L; Wernig, Gerlinde

    2006-01-01

    The identification of JAK2V617F mutations in polycythemia vera (PV), essential thrombocytosis (ET), and myelofibrosis (MF) represents an important advance in our understanding of these myeloproliferative disorders (MPD). Most, if not all, patients with PV and a significant number of patients with ET and MF are JAK2V617F positive, and the mutation likely arises in the hematopoietic stem cell compartment. JAK2V617F is a constitutively active tyrosine kinase that is able to activate JAK-STAT signaling most efficiently when co-expressed with the erythropoietin receptor (EPOR), the thrombopoietin receptor (MPL), or the granulocyte colony-stimulating factor receptor (GCSFR). Data from murine models supports the central role of JAK2V617F in the pathogenesis of MPD, as expression of JAK2V617F in a bone marrow transplantation assay results in polycythemia and myelofibrosis in recipient mice. Activation of JAK-STAT signaling by JAK2V617F in some, but not all MPD patients with ET and MF led to the identification of the constitutively active MPLW515L allele in ET and MF. Small molecule inhibitors of JAK-STAT signaling are currently being developed, which offer potential for molecularly targeted therapy for patients with PV, ET, and MF. Despite these advances, many questions remain regarding the role of a single disease allele in three phenotypically distinct MPD, the potential clinical efficacy of JAK2 inhibitors, and the identity of oncogenic alleles in JAK2V617F/MPLW515-negative MPD.

  12. JAK2/STAT5 inhibition by nilotinib with ruxolitinib contributes to the elimination of CML CD34+ cells in vitro and in vivo

    PubMed Central

    Gallipoli, Paolo; Cook, Amy; Rhodes, Susan; Hopcroft, Lisa; Wheadon, Helen; Whetton, Anthony D.; Jørgensen, Heather G.; Bhatia, Ravi

    2014-01-01

    Chronic myeloid leukemia (CML) stem cell survival is not dependent on BCR-ABL protein kinase and treatment with ABL tyrosine kinase inhibitors cures only a minority of CML patients, thus highlighting the need for novel therapeutic targets. The Janus kinase (JAK)2/signal transducer and activator of transcription (STAT)5 pathway has recently been explored for providing putative survival signals to CML stem/progenitor cells (SPCs) with contradictory results. We investigated the role of this pathway using the JAK2 inhibitor, ruxolitinib (RUX). We demonstrated that the combination of RUX, at clinically achievable concentrations, with the specific and potent tyrosine kinase inhibitor nilotinib, reduced the activity of the JAK2/STAT5 pathway in vitro relative to either single agent alone. These effects correlated with increased apoptosis of CML SPCs in vitro and a reduction in primitive quiescent CML stem cells, including NOD.Cg-Prkdcscid IL2rgtm1Wjl /SzJ mice repopulating cells, induced by combination treatment. A degree of toxicity toward normal SPCs was observed with the combination treatment, although this related to mature B-cell engraftment in NOD.Cg-Prkdcscid IL2rgtm1Wjl /SzJ mice with minimal effects on primitive CD34+ cells. These results support the JAK2/STAT5 pathway as a relevant therapeutic target in CML SPCs and endorse the current use of nilotinib in combination with RUX in clinical trials to eradicate persistent disease in CML patients. PMID:24957147

  13. Sprouty proteins are in vivo targets of Corkscrew/SHP-2 tyrosine phosphatases.

    PubMed

    Jarvis, Lesley A; Toering, Stephanie J; Simon, Michael A; Krasnow, Mark A; Smith-Bolton, Rachel K

    2006-03-01

    Drosophila Corkscrew protein and its vertebrate ortholog SHP-2 (now known as Ptpn11) positively modulate receptor tyrosine kinase (RTK) signaling during development, but how these tyrosine phosphatases promote tyrosine kinase signaling is not well understood. Sprouty proteins are tyrosine-phosphorylated RTK feedback inhibitors, but their regulation and mechanism of action are also poorly understood. Here, we show that Corkscrew/SHP-2 proteins control Sprouty phosphorylation and function. Genetic experiments demonstrate that Corkscrew/SHP-2 and Sprouty proteins have opposite effects on RTK-mediated developmental events in Drosophila and an RTK signaling process in cultured mammalian cells, and the genes display dose-sensitive genetic interactions. In cultured cells, inactivation of SHP-2 increases phosphorylation on the critical tyrosine of Sprouty 1. SHP-2 associates in a complex with Sprouty 1 in cultured cells and in vitro, and a purified SHP-2 protein dephosphorylates the critical tyrosine of Sprouty 1. Substrate-trapping forms of Corkscrew bind Sprouty in cultured Drosophila cells and the developing eye. These results identify Sprouty proteins as in vivo targets of Corkscrew/SHP-2 tyrosine phosphatases and show how Corkscrew/SHP-2 proteins can promote RTK signaling by inactivating a feedback inhibitor. We propose that this double-negative feedback circuit shapes the output profile of RTK signaling events.

  14. Suppression of adhesion-induced protein tyrosine phosphorylation decreases invasive and metastatic potentials of B16-BL6 melanoma cells by protein tyrosine kinase inhibitor genistein.

    PubMed

    Yan, C; Han, R

    1997-01-01

    Protein tyrosine kinase (PTK) appears to be involved in the activation of signaling during cell attachment to and spreading on extracellular matrix (ECM) in the metastatic cascade. To verify the assumption that PTK inhibitors might impair ECM signaling and prevent cancer metastasis, the highly metastatic B16-BL6 mouse melanoma cells were exposed to the PTK inhibitor genistein for 3 days. The ability of the cells to invade through reconstituted basement membrane (Matrigel) and to establish experimental pulmonary metastatic foci in C57BL/6 mice decreased after genistein exposure. The genistein-treated cells were also prevented from attaching to Matrigel and spread extremely poorly on the ECM substratum. Immunoblot analysis showed that tyrosine phosphorylation of a 125-kD protein in response to cell spreading on Matrigel was suppressed in the genistein-treated cells. Adhesion-induced protein tyrosine phosphorylation represents the earlier and specific event in the activation of ECM signaling, so this result implied ECM signaling was impaired in the treated cells. With immunofluorescence microscopy, the adhesion-induced tyrosine phosphorylated proteins were located at the pericytoplasms of well-spread cells, but not at the periphery of poorly spread genistein-treated cells. Therefore, this paper suggests that genistein might impair ECM signaling and subsequently prevent cancer cells from spreading well and invading or establishing metastasis through the suppression of adhesion-induced protein tyrosine phosphorylation. PTKs and adhesion-induced protein tyrosine phosphorylation might play a role in the control of invasion and metastasis.

  15. Protein Tyrosine Nitration: Biochemical Mechanisms and Structural Basis of its Functional Effects

    PubMed Central

    Radi, Rafael

    2012-01-01

    CONSPECTUS The nitration of protein tyrosine residues to 3-nitrotyrosine represents an oxidative postranslational modification that unveils the disruption of nitric oxide (•NO) signaling and metabolism towards pro-oxidant processes. Indeed, excess levels of reactive oxygen species in the presence of •NO or •NO-derived metabolites lead to the formation of nitrating species such as peroxynitrite. Thus, protein 3-nitrotyrosine has been established as a biomarker of cell, tissue and systemic “nitroxidative stress”. Moreover, tyrosine nitration modifies key properties of the amino acid (i.e. phenol group pKa, redox potential, hydrophobicity and volume). Thus, the incorporation of a nitro group (−NO2) to protein tyrosines can lead to profound structural and functional changes, some of which contribute to altered cell and tissue homeostasis. In this Account, I describe our current efforts to define 1) biologically-relevant mechanisms of protein tyrosine nitration and 2) how this modification can cause changes in protein structure and function at the molecular level. First, the relevance of protein tyrosine nitration via free radical-mediated reactions (in both peroxynitrite-dependent or independent pathways) involving the intermediacy of tyrosyl radical (Tyr•) will be underscored. This feature of the nitration process becomes critical as Tyr• can take variable fates, including the formation of 3-nitrotyrosine. Fast kinetic techniques, electron paramagnetic resonance (EPR) studies, bioanalytical methods and kinetic simulations have altogether assisted to characterize and fingerprint the reactions of tyrosine with peroxynitrite and one-electron oxidants and its further evolution to 3-nitrotyrosine. Recent findings show that nitration of tyrosines in proteins associated to biomembranes is linked to the lipid peroxidation process via a connecting reaction that involves the one-electron oxidation of tyrosine by lipid peroxyl radicals (LOO•). Second

  16. The antihypertension drug doxazosin suppresses JAK/STATs phosphorylation and enhances the effects of IFN-α/γ-induced apoptosis.

    PubMed

    Park, Mi Sun; Kim, Boh-Ram; Kang, Sokbom; Kim, Dae-Yong; Rho, Seung Bae

    2014-11-01

    Doxazosin, a commonly prescribed treatment for patients with benign prostatic hyperplasia, serves as an α1-blocker of the adrenergic receptors. In this study, we calculated its effect on the ovarian carcinoma cells. Doxazosin induces dose-dependent growth suppression and is additively activated through IFN-α or IFN-γ stimulation. They both enhanced G1 phase arrest, as well as the activity of caspase-3, and the reduction of cyclin D1 and CDK4 protein levels. Doxazosin growth suppression was abolished either by the Janus family of tyrosine kinase (JAK) or the signal transducer and activator of transcription (STAT) inhibitor treatment. The activity of JAK/STAT was dependent on the level of doxazosin, suggesting a requirement of doxazosin for the activation of JAK/STAT. Furthermore, doxazosin plus IFN-α or doxazosin plus IFN-γ additively suppressed the activation of the JAK/STAT signals through phosphorylation of JAK and STAT, thus affecting the activation of subsequent downstream signaling components PI3K, mTOR, 70S6K, and PKCδ. In vivo study demonstrated that doxazosin significantly suppressed tumor growth in an ovarian cancer cell xenograft mouse model, inducing apoptotic cell death by up-regulating the expression of p53, whereas c-Myc expression was markedly reduced. Our data indicate that doxazosin can modulate the apoptotic effects of IFN-α- and IFN-γ through the JAK/STAT signaling pathways. Collectively, we indicate that this action may be a potent chemotherapeutic property against ovarian carcinoma.

  17. Factors influencing protein tyrosine nitration--structure-based predictive models.

    PubMed

    Bayden, Alexander S; Yakovlev, Vasily A; Graves, Paul R; Mikkelsen, Ross B; Kellogg, Glen E

    2011-03-15

    Models for exploring tyrosine nitration in proteins have been created based on 3D structural features of 20 proteins for which high-resolution X-ray crystallographic or NMR data are available and for which nitration of 35 total tyrosines has been experimentally proven under oxidative stress. Factors suggested in previous work to enhance nitration were examined with quantitative structural descriptors. The role of neighboring acidic and basic residues is complex: for the majority of tyrosines that are nitrated the distance to the heteroatom of the closest charged side chain corresponds to the distance needed for suspected nitrating species to form hydrogen bond bridges between the tyrosine and that charged amino acid. This suggests that such bridges play a very important role in tyrosine nitration. Nitration is generally hindered for tyrosines that are buried and for those tyrosines for which there is insufficient space for the nitro group. For in vitro nitration, closed environments with nearby heteroatoms or unsaturated centers that can stabilize radicals are somewhat favored. Four quantitative structure-based models, depending on the conditions of nitration, have been developed for predicting site-specific tyrosine nitration. The best model, relevant for both in vitro and in vivo cases, predicts 30 of 35 tyrosine nitrations (positive predictive value) and has a sensitivity of 60/71 (11 false positives). Copyright © 2010 Elsevier Inc. All rights reserved.

  18. Deficiency in Protein Tyrosine Phosphatase PTP1B Shortens Lifespan and Leads to Development of Acute Leukemia.

    PubMed

    Le Sommer, Samantha; Morrice, Nicola; Pesaresi, Martina; Thompson, Dawn; Vickers, Mark A; Murray, Graeme I; Mody, Nimesh; Neel, Benjamin G; Bence, Kendra K; Wilson, Heather M; Delibegović, Mirela

    2018-01-01

    Protein tyrosine phosphatase PTP1B is a critical regulator of signaling pathways controlling metabolic homeostasis, cell proliferation, and immunity. In this study, we report that global or myeloid-specific deficiency of PTP1B in mice decreases lifespan. We demonstrate that myeloid-specific deficiency of PTP1B is sufficient to promote the development of acute myeloid leukemia. LysM-PTP1B -/- mice lacking PTP1B in the innate myeloid cell lineage displayed a dysregulation of bone marrow cells with a rapid decline in population at midlife and a concomitant increase in peripheral blood blast cells. This phenotype manifested further with extramedullary tumors, hepatic macrophage infiltration, and metabolic reprogramming, suggesting increased hepatic lipid metabolism prior to overt tumor development. Mechanistic investigations revealed an increase in anti-inflammatory M2 macrophage responses in liver and spleen, as associated with increased expression of arginase I and the cytokines IL10 and IL4. We also documented STAT3 hypersphosphorylation and signaling along with JAK-dependent upregulation of antiapoptotic proteins Bcl2 and BclXL. Our results establish a tumor suppressor role for PTP1B in the myeloid lineage cells, with evidence that its genetic inactivation in mice is sufficient to drive acute myeloid leukemia. Significance: This study defines a tumor suppressor function for the protein tyrosine phosphatase PTP1B in myeloid lineage cells, with evidence that its genetic inactivation in mice is sufficient to drive acute myeloid leukemia. Cancer Res; 78(1); 75-87. ©2017 AACR . ©2017 American Association for Cancer Research.

  19. Protein tyrosine adduct in humans self-poisoned by chlorpyrifos

    PubMed Central

    Li, Bin; Eyer, Peter; Eddleston, Michael; Jiang, Wei; Schopfer, Lawrence M.; Lockridge, Oksana

    2013-01-01

    Studies of human cases of self-inflicted poisoning suggest that chlorpyrifos oxon reacts not only with acetylcholinesterase and butyrylcholinesterase but also with other blood proteins. A favored candidate is albumin because in vitro and animal studies have identified tyrosine 411 of albumin as a site covalently modified by organophosphorus poisons. Our goal was to test this proposal in humans by determining whether plasma from humans poisoned by chlorpyrifos has adducts on tyrosine. Plasma samples from 5 self-poisoned humans were drawn at various time intervals after ingestion of chlorpyrifos for a total of 34 samples. All 34 samples were analyzed for plasma levels of chlorpyrifos and chlorpyrifos oxon (CPO) as a function of time post-ingestion. Eleven samples were analyzed for the presence of diethoxyphosphorylated tyrosine by mass spectrometry. Six samples yielded diethoxyphosphorylated tyrosine in pronase digests. Blood collected as late as 5 days after chlorpyrifos ingestion was positive for CPO-tyrosine, consistent with the 20-day half-life of albumin. High plasma CPO levels did not predict detectable levels of CPO-tyrosine. CPO-tyrosine was identified in pralidoxime treated patients as well as in patients not treated with pralidoxime, indicating that pralidoxime does not reverse CPO binding to tyrosine in humans. Plasma butyrylcholinesterase was a more sensitive biomarker of exposure than adducts on tyrosine. In conclusion, chlorpyrifos oxon makes a stable covalent adduct on the tyrosine residue of blood proteins in humans who ingested chlorpyrifos. PMID:23566956

  20. New tools for evaluating protein tyrosine sulphation: Tyrosyl Protein Sulphotransferases (TPSTs) are novel targets for RAF protein kinase inhibitors.

    PubMed

    Byrne, Dominic P; Li, Yong; Ngamlert, Pawin; Ramakrishnan, Krithika; Eyers, Claire E; Wells, Carrow; Drewry, David H; Zuercher, William J; Berry, Neil G; Fernig, David G; Eyers, Patrick A

    2018-06-22

    Protein tyrosine sulphation is a post-translational modification best known for regulating extracellular protein-protein interactions. Tyrosine sulphation is catalysed by two Golgi-resident enzymes termed Tyrosyl Protein Sulpho Transferases (TPSTs) 1 and 2, which transfer sulphate from the co-factor PAPS (3'-phosphoadenosine 5'-phosphosulphate) to a context-dependent tyrosine in a protein substrate. A lack of quantitative tyrosine sulphation assays has hampered the development of chemical biology approaches for the identification of small molecule inhibitors of tyrosine sulphation. In this paper, we describe the development of a non-radioactive mobility-based enzymatic assay for TPST1 and TPST2, through which the tyrosine sulphation of synthetic fluorescent peptides can be rapidly quantified. We exploit ligand binding and inhibitor screens to uncover a susceptibility of TPST1 and TPST2 to different classes of small molecules, including the anti-angiogenic compound suramin and the kinase inhibitor rottlerin. By screening the Published Kinase Inhibitor Set (PKIS), we identified oxindole-based inhibitors of the Ser/Thr kinase RAF as low micromolar inhibitors of TPST1 and TPST2.  Interestingly, unrelated RAF inhibitors, exemplified by the dual BRAF/VEGFR2 inhibitor RAF265, were also TPST inhibitors in vitro We propose that target-validated protein kinase inhibitors could be repurposed, or redesigned, as more-specific TPST inhibitors to help evaluate the sulphotyrosyl proteome. Finally, we speculate that mechanistic inhibition of cellular tyrosine sulphation might be relevant to some of the phenotypes observed in cells exposed to anionic TPST ligands and RAF protein kinase inhibitors. ©2018 The Author(s).

  1. DETECTION AND PURIFICATION OF TYROSINE-SULFATED PROTEINS USING A NOVEL ANTI-SULFOTYROSINE MONOCLONAL ANTIBODY*

    PubMed Central

    Hoffhines, Adam J.; Damoc, Eugen; Bridges, Kristie G.; Leary, Julie A.; Moore, Kevin L.

    2006-01-01

    Protein-tyrosine O-sulfation is a post-translational modification mediated by one of two Golgi tyrosylprotein sulfotransferases (TPST-1 & TPST-2) that catalyze the transfer of sulfate to tyrosine residues in secreted and transmembrane proteins. Tyrosine sulfation plays a role in protein-protein interactions in several well-defined systems. Although dozens of tyrosine-sulfated proteins are known, many more are likely to exist and await description. Advancing our understanding of the importance of tyrosine sulfation in biological systems requires the development of new tools for the detection and study of tyrosine-sulfated proteins. We have developed a novel anti-sulfotyrosine monoclonal antibody, called PSG2, that binds with high affinity and exquisite specificity to sulfotyrosine residues in peptides and proteins independent of sequence context. We show that it can detect tyrosinesulfated proteins in complex biological samples and can be used as a probe to assess the role of tyrosine sulfation in protein function. We also demonstrate the utility of PSG2 in the purification of tyrosine-sulfated proteins from crude tissue samples. Finally, Western blot analysis using PSG2 indicates that certain sperm/epididymal proteins are undersulfated in Tpst2−/− mice. This indicates that TPST-1 and TPST-2 have distinct macromolecular substrate specificities and provides clues as to the molecular mechanism of the infertility of Tpst2−/− males. PSG2 should be widely applicable for identification of tyrosine-sulfated proteins in other systems and organisms. PMID:17046811

  2. Benzoxathiol derivative BOT-4-one suppresses L540 lymphoma cell survival and proliferation via inhibition of JAK3/STAT3 signaling

    PubMed Central

    Kim, Byung Hak; Min, Yun Sook; Choi, Jung Sook; Baeg, Gyeong-Hun; Kim, Youngsoo; Shin, Jong Wook; Kim, Tae-Yoon

    2011-01-01

    Persistently activated JAK/STAT3 signaling pathway plays a pivotal role in various human cancers including major carcinomas and hematologic tumors, and is implicated in cancer cell survival and proliferation. Therefore, inhibition of JAK/STAT3 signaling may be a clinical application in cancer therapy. Here, we report that 2-cyclohexylimino-6-methyl-6,7-dihydro-5H-benzo [1,3]oxathiol-4-one (BOT-4-one), a small molecule inhibitor of JAK/STAT3 signaling, induces apoptosis through inhibition of STAT3 activation. BOT-4-one suppressed cytokine (upd)-induced tyrosine phosphorylation and transcriptional activity of STAT92E, the sole Drosophila STAT homolog. Consequently, BOT-4-one significantly inhibited STAT3 tyrosine phosphorylation and expression of STAT3 downstream target gene SOCS3 in various human cancer cell lines, and its effect was more potent in JAK3-activated Hodgkin's lymphoma cell line than in JAK2-activated breast cancer and prostate cancer cell lines. In addition, BOT-4-one-treated Hodgkin's lymphoma cells showed decreased cell survival and proliferation by inducing apoptosis through down-regulation of STAT3 downstream target anti-apoptotic gene expression. These results suggest that BOT-4-one is a novel small molecule inhibitor of JAK3/STAT3 signaling and may have therapeutic potential in the treatment of human cancers harboring aberrant JAK3/STAT3 signaling, specifically Hodgkin's lymphoma. PMID:21499010

  3. Benzoxathiol derivative BOT-4-one suppresses L540 lymphoma cell survival and proliferation via inhibition of JAK3/STAT3 signaling.

    PubMed

    Kim, Byung Hak; Min, Yun Sook; Choi, Jung Sook; Baeg, Gyeong Hun; Kim, Young Soo; Shin, Jong Wook; Kim, Tae Yoon; Ye, Sang Kyu

    2011-05-31

    Persistently activated JAK/STAT3 signaling pathway plays a pivotal role in various human cancers including major carcinomas and hematologic tumors, and is implicated in cancer cell survival and proliferation. Therefore, inhibition of JAK/STAT3 signaling may be a clinical application in cancer therapy. Here, we report that 2-cyclohexylimino-6-methyl-6,7-dihydro-5H-benzo [1,3]oxathiol-4-one (BOT-4-one), a small molecule inhibitor of JAK/STAT3 signaling, induces apoptosis through inhibition of STAT3 activation. BOT-4-one suppressed cytokine (upd)-induced tyrosine phosphorylation and transcriptional activity of STAT92E, the sole Drosophila STAT homolog. Consequently, BOT-4-one significantly inhibited STAT3 tyrosine phosphorylation and expression of STAT3 downstream target gene SOCS3 in various human cancer cell lines, and its effect was more potent in JAK3-activated Hodgkin's lymphoma cell line than in JAK2-activated breast cancer and prostate cancer cell lines. In addition, BOT-4-one-treated Hodgkin's lymphoma cells showed decreased cell survival and proliferation by inducing apoptosis through down-regulation of STAT3 downstream target anti-apoptotic gene expression. These results suggest that BOT-4-one is a novel small molecule inhibitor of JAK3/STAT3 signaling and may have therapeutic potential in the treatment of human cancers harboring aberrant JAK3/STAT3 signaling, specifically Hodgkin's lymphoma.

  4. JAK signaling globally counteracts heterochromatic gene silencing.

    PubMed

    Shi, Song; Calhoun, Healani C; Xia, Fan; Li, Jinghong; Le, Long; Li, Willis X

    2006-09-01

    The JAK/STAT pathway has pleiotropic roles in animal development, and its aberrant activation is implicated in multiple human cancers. JAK/STAT signaling effects have been attributed largely to direct transcriptional regulation by STAT of specific target genes that promote tumor cell proliferation or survival. We show here in a Drosophila melanogaster hematopoietic tumor model, however, that JAK overactivation globally disrupts heterochromatic gene silencing, an epigenetic tumor suppressive mechanism. This disruption allows derepression of genes that are not direct targets of STAT, as evidenced by suppression of heterochromatin-mediated position effect variegation. Moreover, mutations in the genes encoding heterochromatin components heterochromatin protein 1 (HP1) and Su(var)3-9 enhance tumorigenesis induced by an oncogenic JAK kinase without affecting JAK/STAT signaling. Consistently, JAK loss of function enhances heterochromatic gene silencing, whereas overexpressing HP1 suppresses oncogenic JAK-induced tumors. These results demonstrate that the JAK/STAT pathway regulates cellular epigenetic status and that globally disrupting heterochromatin-mediated tumor suppression is essential for tumorigenesis induced by JAK overactivation.

  5. JAK signaling globally counteracts heterochromatic gene silencing

    PubMed Central

    Shi, Song; Calhoun, Healani C; Xia, Fan; Li, Jinghong; Le, Long; Li, Willis X

    2011-01-01

    The JAK/STAT pathway has pleiotropic roles in animal development, and its aberrant activation is implicated in multiple human cancers1–3. JAK/STAT signaling effects have been attributed largely to direct transcriptional regulation by STAT of specific target genes that promote tumor cell proliferation or survival. We show here in a Drosophila melanogaster hematopoietic tumor model, however, that JAK overactivation globally disrupts heterochromatic gene silencing, an epigenetic tumor suppressive mechanism4. This disruption allows derepression of genes that are not direct targets of STAT, as evidenced by suppression of heterochromatin-mediated position effect variegation. Moreover, mutations in the genes encoding heterochromatin components heterochromatin protein 1 (HP1) and Su(var)3-9 enhance tumorigenesis induced by an oncogenic JAK kinase without affecting JAK/STAT signaling. Consistently, JAK loss of function enhances heterochromatic gene silencing, whereas overexpressing HP1 suppresses oncogenic JAK-induced tumors. These results demonstrate that the JAK/STAT pathway regulates cellular epigenetic status and that globally disrupting heterochromatin-mediated tumor suppression is essential for tumorigenesis induced by JAK overactivation. PMID:16892059

  6. Hemin-Graphene Derivatives with Increased Peroxidase Activities Restrain Protein Tyrosine Nitration.

    PubMed

    Xu, Huan; Yang, Zhen; Li, Hailing; Gao, Zhonghong

    2017-12-14

    Protein tyrosine nitration is implicated in the occurrence and progression of pathological conditions involving free radical reactions. It is well recognized that hemin can catalyze protein tyrosine nitration in the presence of nitrite and hydrogen peroxide. Generally, the catalytic efficiency is positively correlated to its peroxidase activity. In this study, however, it is found that the efficiency of hemin in catalyzing protein tyrosine nitration is largely suppressed after functionalization with graphene derivatives, even though its peroxidase-like activity is more than quadrupled. Further studies show that the oxidation of tyrosine is still observed for these composites; dityrosine formation, however, is greatly inhibited. Furthermore, these composites also exhibit strong effects on the oxidation of nitrite into nitrate. Therefore, we propose a mechanism in which hemin-graphene derivatives facilitate the oxidation of tyrosine and nitrite to produce tyrosyl radicals and nitrogen dioxide radicals in the presence of hydrogen peroxide, but graphene interlayers serve as barriers that hinder radical-radical coupling reactions; consequently, protein tyrosine nitration is restrained. This property of hemin-graphene derivatives, by which they catalyze substrate oxidation but suppress radical-radical coupling reactions, shows their great potential in selective oxidation procedures for byproduct removal. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Factors influencing protein tyrosine nitration – structure-based predictive models

    PubMed Central

    Bayden, Alexander S.; Yakovlev, Vasily A.; Graves, Paul R.; Mikkelsen, Ross B.; Kellogg, Glen E.

    2010-01-01

    Models for exploring tyrosine nitration in proteins have been created based on 3D structural features of 20 proteins for which high resolution X-ray crystallographic or NMR data are available and for which nitration of 35 total tyrosines has been experimentally proven under oxidative stress. Factors suggested in previous work to enhance nitration were examined with quantitative structural descriptors. The role of neighboring acidic and basic residues is complex: for the majority of tyrosines that are nitrated the distance to the heteroatom of the closest charged sidechain corresponds to the distance needed for suspected nitrating species to form hydrogen bond bridges between the tyrosine and that charged amino acid. This suggests that such bridges play a very important role in tyrosine nitration. Nitration is generally hindered for tyrosines that are buried and for those tyrosines where there is insufficient space for the nitro group. For in vitro nitration, closed environments with nearby heteroatoms or unsaturated centers that can stabilize radicals are somewhat favored. Four quantitative structure-based models, depending on the conditions of nitration, have been developed for predicting site-specific tyrosine nitration. The best model, relevant for both in vitro and in vivo cases predicts 30 of 35 tyrosine nitrations (positive predictive value) and has a sensitivity of 60/71 (11 false positives). PMID:21172423

  8. Huntingtin-Interacting Protein 1 Phosphorylation by Receptor Tyrosine Kinases

    PubMed Central

    Ames, Heather M.; Wang, Anmin A.; Coughran, Alanna; Evaul, Kristen; Huang, Sha; Graves, Chiron W.; Soyombo, Abigail A.

    2013-01-01

    Huntingtin-interacting protein 1 (HIP1) binds inositol lipids, clathrin, actin, and receptor tyrosine kinases (RTKs). HIP1 is elevated in many tumors, and its expression is prognostic in prostate cancer. HIP1 overexpression increases levels of the RTK epidermal growth factor receptor (EGFR) and transforms fibroblasts. Here we report that HIP1 is tyrosine phosphorylated in the presence of EGFR and platelet-derived growth factor β receptor (PDGFβR) as well as the oncogenic derivatives EGFRvIII, HIP1/PDGFβR (H/P), and TEL/PDGFβR (T/P). We identified a four-tyrosine “HIP1 phosphorylation motif” (HPM) in the N-terminal region of HIP1 that is required for phosphorylation mediated by both EGFR and PDGFβR but not by the oncoproteins H/P and T/P. We also identified a tyrosine residue (Y152) within the HPM motif of HIP1 that inhibits HIP1 tyrosine phosphorylation. The HPM tyrosines are conserved in HIP1's only known mammalian relative, HIP1-related protein (HIP1r), and are also required for HIP1r phosphorylation. Tyrosine-to-phenylalanine point mutations in the HPM of HIP1 result in proapoptotic activity, indicating that an intact HPM may be necessary for HIP1's role in cellular survival. These data suggest that phosphorylation of HIP1 by RTKs in an N-terminal region contributes to the promotion of cellular survival. PMID:23836884

  9. Huntingtin-interacting protein 1 phosphorylation by receptor tyrosine kinases.

    PubMed

    Ames, Heather M; Wang, Anmin A; Coughran, Alanna; Evaul, Kristen; Huang, Sha; Graves, Chiron W; Soyombo, Abigail A; Ross, Theodora S

    2013-09-01

    Huntingtin-interacting protein 1 (HIP1) binds inositol lipids, clathrin, actin, and receptor tyrosine kinases (RTKs). HIP1 is elevated in many tumors, and its expression is prognostic in prostate cancer. HIP1 overexpression increases levels of the RTK epidermal growth factor receptor (EGFR) and transforms fibroblasts. Here we report that HIP1 is tyrosine phosphorylated in the presence of EGFR and platelet-derived growth factor β receptor (PDGFβR) as well as the oncogenic derivatives EGFRvIII, HIP1/PDGFβR (H/P), and TEL/PDGFβR (T/P). We identified a four-tyrosine "HIP1 phosphorylation motif" (HPM) in the N-terminal region of HIP1 that is required for phosphorylation mediated by both EGFR and PDGFβR but not by the oncoproteins H/P and T/P. We also identified a tyrosine residue (Y152) within the HPM motif of HIP1 that inhibits HIP1 tyrosine phosphorylation. The HPM tyrosines are conserved in HIP1's only known mammalian relative, HIP1-related protein (HIP1r), and are also required for HIP1r phosphorylation. Tyrosine-to-phenylalanine point mutations in the HPM of HIP1 result in proapoptotic activity, indicating that an intact HPM may be necessary for HIP1's role in cellular survival. These data suggest that phosphorylation of HIP1 by RTKs in an N-terminal region contributes to the promotion of cellular survival.

  10. The role of the JAK2-STAT3 pathway in pro-inflammatory responses of EMF-stimulated N9 microglial cells

    PubMed Central

    2010-01-01

    Background In several neuropathological conditions, microglia can become overactivated and cause neurotoxicity by initiating neuronal damage in response to pro-inflammatory stimuli. Our previous studies have shown that exposure to electromagnetic fields (EMF) activates cultured microglia to produce tumor necrosis factor (TNF)-α and nitric oxide (NO) through signal transduction involving the activator of transcription STAT3. Here, we investigated the role of STAT3 signaling in EMF-induced microglial activation and pro-inflammatory responses in more detail than the previous study. Methods N9 microglial cells were treated with EMF exposure or a sham treatment, with or without pretreatment with an inhibitor (Pyridone 6, P6) of the Janus family of tyrosine kinases (JAK). The activation state of microglia was assessed via immunoreaction using the microglial marker CD11b. Levels of inducible nitric oxide synthase (iNOS), TNF-α and NO were measured using real-time reverse transcription-polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA) and the nitrate reductase method. Activation of JAKs and STAT3 proteins was evaluated by western blotting for specific tyrosine phosphorylation. The ability of STAT3 to bind to DNA was detected with an electrophoresis mobility shift assay (EMSA). Results EMF was found to significantly induce phosphorylation of JAK2 and STAT3, and DNA-binding ability of STAT3 in N9 microglia. In addition, EMF dramatically increased the expression of CD11b, TNF-α and iNOS, and the production of NO. P6 strongly suppressed the phosphorylation of JAK2 and STAT3 and diminished STAT3 activity in EMF-stimulated microglia. Interestingly, expression of CD11b as well as gene expression and production of TNF-α and iNOS were suppressed by P6 at 12 h, but not at 3 h, after EMF exposure. Conclusions EMF exposure directly triggers initial activation of microglia and produces a significant pro-inflammatory response. Our findings confirm that

  11. Measurement of protein synthesis: in vitro comparison of (68)Ga-DOTA-puromycin, [ (3)H]tyrosine, and 2-fluoro-[ (3)H]tyrosine.

    PubMed

    Eigner, Sebastian; Beckford Vera, Denis R; Fellner, Marco; Loktionova, Natalia S; Piel, Markus; Melichar, Frantisek; Rösch, Frank; Roß, Tobias L; Lebeda, Ondrej; Henke, Katerina Eigner

    2013-01-01

    Puromycin has played an important role in our understanding of the eukaryotic ribosome and protein synthesis. It has been known for more than 40 years that this antibiotic is a universal protein synthesis inhibitor that acts as a structural analog of an aminoacyl-transfer RNA (aa-tRNA) in eukaryotic ribosomes. Due to the role of enzymes and their synthesis in situations of need (DNA damage, e.g., after chemo- or radiation therapy), determination of protein synthesis is important for control of antitumor therapy, to enhance long-term survival of tumor patients, and to minimize side-effects of therapy. Multiple attempts to reach this goal have been made through the last decades, mostly using radiolabeled amino acids, with limited or unsatisfactory success. The aim of this study is to estimate the possibility of determining protein synthesis ratios by using (68)Ga-DOTA-puromycin ((68)Ga-DOTA-Pur), [(3)H]tyrosine, and 2-fluoro-[(3)H]tyrosine and to estimate the possibility of different pathways due to the fluorination of tyrosine. DOTA-puromycin was synthesized using a puromycin-tethered controlled-pore glass (CPG) support by the usual protocol for automated DNA and RNA synthesis following our design. (68)Ga was obtained from a (68)Ge/(68)Ga generator as described previously by Zhernosekov et al. (J Nucl Med 48:1741-1748, 2007). The purified eluate was used for labeling of DOTA-puromycin at 95°C for 20 min. [(3)H]Tyrosine and 2-fluoro-[(3)H]tyrosine of the highest purity available were purchased from Moravek (Bera, USA) or Amersham Biosciences (Hammersmith, UK). In vitro uptake and protein incorporation as well as in vitro inhibition experiments using cycloheximide to inhibit protein synthesis were carried out for all three substances in DU145 prostate carcinoma cells (ATCC, USA). (68)Ga-DOTA-Pur was additionally used for μPET imaging of Walker carcinomas and AT1 tumors in rats. Dynamic scans were performed for 45 min after IV application (tail vein) of 20-25 MBq (68

  12. Trichostatin A, a histone deacetylase inhibitor, suppresses JAK2/STAT3 signaling via inducing the promoter-associated histone acetylation of SOCS1 and SOCS3 in human colorectal cancer cells.

    PubMed

    Xiong, Hua; Du, Wan; Zhang, Yan-Jie; Hong, Jie; Su, Wen-Yu; Tang, Jie-Ting; Wang, Ying-Chao; Lu, Rong; Fang, Jing-Yuan

    2012-02-01

    Aberrant janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling is involved in the oncogenesis of several cancers. Suppressors of cytokine signaling (SOCS) genes and SH2-containing protein tyrosine phosphatase 1 (SHP1) proteins, which are negative regulators of JAK/STAT signaling, have been reported to have tumor suppressor functions. However, in colorectal cancer (CRC) cells, the mechanisms that regulate SOCS and SHP1 genes, and the cause of abnormalities in the JAK/STAT signaling pathway, remain largely unknown. The present study shows that trichostatin A (TSA), a histone deacetylase (HDAC) inhibitor, leads to the hyperacetylation of histones associated with the SOCS1 and SOCS3 promoters, but not the SHP1 promoter in CRC cells. This indicates that histone modifications are involved in the regulation of SOCS1 and SOCS3. Moreover, upregulation of SOCS1 and SOCS3 expression was achieved using TSA, which also significantly downregulated JAK2/STAT3 signaling in CRC cells. We also demonstrate that TSA suppresses the growth of CRC cells, and induces G1 cell cycle arrest and apoptosis through the regulation of downstream targets of JAK2/STAT3 signaling, including Bcl-2, survivin and p16(ink4a) . Therefore, our data demonstrate that TSA may induce SOCS1 and SOCS3 expression by inducing histone modifications and consequently inhibits JAK2/STAT3 signaling in CRC cells. These results also establish a mechanistic link between the inhibition of JAK2/STAT3 signaling and the anticancer action of TSA in CRC cells. Copyright © 2011 Wiley Periodicals, Inc.

  13. Identification of an additional member of the protein-tyrosine-phosphatase family: evidence for alternative splicing in the tyrosine phosphatase domain.

    PubMed Central

    Matthews, R J; Cahir, E D; Thomas, M L

    1990-01-01

    Protein-tyrosine-phosphatases (protein-tyrosine-phosphate phosphohydrolase, EC 3.13.48) have been implicated in the regulation of cell growth; however, to date few tyrosine phosphatases have been characterized. To identify additional family members, the cDNA for the human tyrosine phosphatase leukocyte common antigen (LCA; CD45) was used to screen, under low stringency, a mouse pre-B-cell cDNA library. Two cDNA clones were isolated and sequence analysis predicts a protein sequence of 793 amino acids. We have named the molecule LRP (LCA-related phosphatase). RNA transfer analysis indicates that the cDNAs were derived from a 3.2-kilobase mRNA. The LRP mRNA is transcribed in a wide variety of tissues. The predicted protein structure can be divided into the following structural features: a short 19-amino acid leader sequence, an exterior domain of 123 amino acids that is predicted to be highly glycosylated, a 24-amino acid membrane-spanning region, and a 627-amino acid cytoplasmic region. The cytoplasmic region contains two approximately 260-amino acid domains, each with homology to the tyrosine phosphatase family. One of the cDNA clones differed in that it had a 108-base-pair insertion that, while preserving the reading frame, would disrupt the first protein-tyrosine-phosphatase domain. Analysis of genomic DNA indicates that the insertion is due to an alternatively spliced exon. LRP appears to be evolutionarily conserved as a putative homologue has been identified in the invertebrate Styela plicata. Images PMID:2162042

  14. Mutant JAK3 phosphoproteomic profiling predicts synergism between JAK3 inhibitors and MEK/BCL2 inhibitors for the treatment of T-cell acute lymphoblastic leukemia

    PubMed Central

    Degryse, S; de Bock, C E; Demeyer, S; Govaerts, I; Bornschein, S; Verbeke, D; Jacobs, K; Binos, S; Skerrett-Byrne, D A; Murray, H C; Verrills, N M; Van Vlierberghe, P; Cools, J; Dun, M D

    2018-01-01

    Mutations in the interleukin-7 receptor (IL7R) or the Janus kinase 3 (JAK3) kinase occur frequently in T-cell acute lymphoblastic leukemia (T-ALL) and both are able to drive cellular transformation and the development of T-ALL in mouse models. However, the signal transduction pathways downstream of JAK3 mutations remain poorly characterized. Here we describe the phosphoproteome downstream of the JAK3(L857Q)/(M511I) activating mutations in transformed Ba/F3 lymphocyte cells. Signaling pathways regulated by JAK3 mutants were assessed following acute inhibition of JAK1/JAK3 using the JAK kinase inhibitors ruxolitinib or tofacitinib. Comprehensive network interrogation using the phosphoproteomic signatures identified significant changes in pathways regulating cell cycle, translation initiation, mitogen-activated protein kinase and phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/AKT signaling, RNA metabolism, as well as epigenetic and apoptotic processes. Key regulatory proteins within pathways that showed altered phosphorylation following JAK inhibition were targeted using selumetinib and trametinib (MEK), buparlisib (PI3K) and ABT-199 (BCL2), and found to be synergistic in combination with JAK kinase inhibitors in primary T-ALL samples harboring JAK3 mutations. These data provide the first detailed molecular characterization of the downstream signaling pathways regulated by JAK3 mutations and provide further understanding into the oncogenic processes regulated by constitutive kinase activation aiding in the development of improved combinatorial treatment regimens. PMID:28852199

  15. Surfactant protein C dampens inflammation by decreasing JAK/STAT activation during lung repair.

    PubMed

    Jin, Huiyan; Ciechanowicz, Andrzej K; Kaplan, Alanna R; Wang, Lin; Zhang, Ping-Xia; Lu, Yi-Chien; Tobin, Rachel E; Tobin, Brooke A; Cohn, Lauren; Zeiss, Caroline J; Lee, Patty J; Bruscia, Emanuela M; Krause, Diane S

    2018-05-01

    Surfactant protein C (SPC), a key component of pulmonary surfactant, also plays a role in regulating inflammation. SPC deficiency in patients and mouse models is associated with increased inflammation and delayed repair, but the key drivers of SPC-regulated inflammation in response to injury are largely unknown. This study focuses on a new mechanism of SPC as an anti-inflammatory molecule using SPC-TK/SPC-KO (surfactant protein C-thymidine kinase/surfactant protein C knockout) mice, which represent a novel sterile injury model that mimics clinical acute respiratory distress syndrome (ARDS). SPC-TK mice express the inducible suicide gene thymidine kinase from by the SPC promoter, which targets alveolar type 2 (AT2) cells for depletion in response to ganciclovir (GCV). We compared GCV-induced injury and repair in SPC-TK mice that have normal endogenous SPC expression with SPC-TK/SPC-KO mice lacking SPC expression. In contrast to SPC-TK mice, SPC-TK/SPC-KO mice treated with GCV exhibited more severe inflammation, resulting in over 90% mortality; there was only 8% mortality of SPC-TK animals. SPC-TK/SPC-KO mice had highly elevated inflammatory cytokines and granulocyte infiltration in the bronchoalveolar lavage (BAL) fluid. Consistent with a proinflammatory phenotype, immunofluorescence revealed increased phosphorylated signal transduction and activation of transcription 3 (pSTAT3), suggesting enhanced Janus kinase (JAK)/STAT activation in inflammatory and AT2 cells of SPC-TK/SPC-KO mice. The level of suppressor of cytokine signaling 3, an anti-inflammatory mediator that decreases pSTAT3 signaling, was significantly decreased in the BAL fluid of SPC-TK/SPC-KO mice. Hyperactivation of pSTAT3 and inflammation were rescued by AZD1480, a JAK1/2 inhibitor. Our findings showing a novel role for SPC in regulating inflammation via JAK/STAT may have clinical applications.

  16. Protein tyrosine phosphatase 1B inhibitory activity of lavandulyl flavonoids from roots of Sophora flavescens.

    PubMed

    Sasaki, Tatsunori; Li, Wei; Higai, Koji; Quang, Tran Hong; Kim, Young Ho; Koike, Kazuo

    2014-05-01

    Protein tyrosine phosphatase 1B is a non-transmembrane protein tyrosine phosphatase and major negative regulator in insulin signaling cascades, and much attention has been paid to protein tyrosine phosphatase 1B inhibitors as potential therapies for diabetes. The screening of a natural compound library led to the discovery of five lavandulyl flavonoids, which were isolated from the roots of Sophora flavescens, as novel PTP1B inhibitors: kuraridin (1), norkurarinone (2), kurarinone (3), 2'-methoxykurarinone (4), and kushenol T (5). The three most potent compounds, 1, 2, and 4 (IC50 < 30 µM), were demonstrated to be noncompetitive inhibitors of protein tyrosine phosphatase 1B based on a kinetic analysis, and they exhibited different inhibitory selectivities against four homologous protein tyrosine phosphatases (T cell protein tyrosine phosphatase, vaccinia H1-related phosphatase, and Src homology domain 2-containing protein tyrosine phosphatases 1 and 2). Compounds 1, 2, and 4 also exhibited cellular activity in the insulin signaling pathway by increasing the insulin-stimulated Akt phosphorylation level in human hepatocellular liver carcinoma HepG2 cells, suggesting their potential for new anti-insulin-resistant drug developments. Georg Thieme Verlag KG Stuttgart · New York.

  17. Protein tyrosine nitration in pea roots during development and senescence

    PubMed Central

    Corpas, Francisco J.

    2013-01-01

    Protein tyrosine nitration is a post-translational modification mediated by reactive nitrogen species (RNS) that is associated with nitro-oxidative damage. No information about this process is available in relation to higher plants during development and senescence. Using pea plants at different developmental stages (ranging from 8 to 71 days), tyrosine nitration in the main organs (roots, stems, leaves, flowers, and fruits) was analysed using immunological and proteomic approaches. In the roots of 71-day-old senescent plants, nitroproteome analysis enabled the identification a total of 16 nitrotyrosine-immunopositive proteins. Among the proteins identified, NADP-isocitrate dehydrogenase (ICDH), an enzyme involved in the carbon and nitrogen metabolism, redox regulation, and responses to oxidative stress, was selected to evaluate the effect of nitration. NADP-ICDH activity fell by 75% during senescence. Analysis showed that peroxynitrite inhibits recombinant cytosolic NADP-ICDH activity through a process of nitration. Of the 12 tyrosines present in this enzyme, mass spectrometric analysis of nitrated recombinant cytosolic NADP-ICDH enabled this study to identify the Tyr392 as exclusively nitrated by peroxynitrite. The data as a whole reveal that protein tyrosine nitration is a nitric oxide-derived PTM prevalent throughout root development and intensifies during senescence. PMID:23362300

  18. A single tyrosine of the interleukin-9 (IL-9) receptor is required for STAT activation, antiapoptotic activity, and growth regulation by IL-9.

    PubMed

    Demoulin, J B; Uyttenhove, C; Van Roost, E; DeLestré, B; Donckers, D; Van Snick, J; Renauld, J C

    1996-09-01

    Interleukin-9 (IL-9), a T-cell-derived cytokine, interacts with a specific receptor associated with the IL-2 receptor gamma chain. In this report, we analyze the functional domains of the human IL-9 receptor transfected into mouse lymphoid cell lines. Three different functions were examined: growth stimulation in factor-dependent pro-B Ba/F3 cells, protection against dexamethasone-induced apoptosis, and Ly-6A2 induction in BW5147 lymphoma cells. The results indicated that a single tyrosine, at position 116 in the cytoplasmic domain, was required for all three activities. In addition, we observed that human IL-9 reduced the proliferation rate of transfected BW5147 cells, an effect also dependent on the same tyrosine. This amino acid was necessary for IL-9-mediated tyrosine phosphorylation of the receptor and for STAT activation but not for IRS-2/4PS activation or for JAK1 phosphorylation, which depended on a domain closer to the plasma membrane. We also showed that JAK1 was constitutively associated with the IL-9 receptor. Activated STAT complexes induced by IL-9 were found to contain STAT1, STAT3, and STAT5 transcription factors. Moreover, sequence homologies between human IL-9 receptor tyrosine 116 and tyrosines (of other receptors activating STAT3 and STAT5 were observed. Taken together, these data indicate that a single tyrosine of the IL-9 receptor, required for activation of three different STAT proteins, is necessary for distinct activities of this cytokine, including proliferative responses.

  19. CYT387, a novel JAK2 inhibitor, induces hematologic responses and normalizes inflammatory cytokines in murine myeloproliferative neoplasms

    PubMed Central

    Tyner, Jeffrey W.; Bumm, Thomas G.; Deininger, Jutta; Wood, Lisa; Aichberger, Karl J.; Loriaux, Marc M.; Druker, Brian J.; Burns, Christopher J.; Fantino, Emmanuelle

    2010-01-01

    Activating alleles of Janus kinase 2 (JAK2) such as JAK2V617F are central to the pathogenesis of myeloproliferative neoplasms (MPN), suggesting that small molecule inhibitors targeting JAK2 may be therapeutically useful. We have identified an aminopyrimidine derivative (CYT387), which inhibits JAK1, JAK2, and tyrosine kinase 2 (TYK2) at low nanomolar concentrations, with few additional targets. Between 0.5 and 1.5μM CYT387 caused growth suppression and apoptosis in JAK2-dependent hematopoietic cell lines, while nonhematopoietic cell lines were unaffected. In a murine MPN model, CYT387 normalized white cell counts, hematocrit, spleen size, and restored physiologic levels of inflammatory cytokines. Despite the hematologic responses and reduction of the JAK2V617F allele burden, JAK2V617F cells persisted and MPN recurred upon cessation of treatment, suggesting that JAK2 inhibitors may be unable to eliminate JAK2V617F cells, consistent with preliminary results from clinical trials of JAK2 inhibitors in myelofibrosis. While the clinical benefit of JAK2 inhibitors may be substantial, not the least due to reduction of inflammatory cytokines and symptomatic improvement, our data add to increasing evidence that kinase inhibitor monotherapy of malignant disease is not curative, suggesting a need for drug combinations to optimally target the malignant cells. PMID:20385788

  20. The JAK-STAT signaling pathway: input and output integration.

    PubMed

    Murray, Peter J

    2007-03-01

    Universal and essential to cytokine receptor signaling, the JAK-STAT pathway is one of the best understood signal transduction cascades. Almost 40 cytokine receptors signal through combinations of four JAK and seven STAT family members, suggesting commonality across the JAK-STAT signaling system. Despite intense study, there remain substantial gaps in understanding how the cascades are activated and regulated. Using the examples of the IL-6 and IL-10 receptors, I will discuss how diverse outcomes in gene expression result from regulatory events that effect the JAK1-STAT3 pathway, common to both receptors. I also consider receptor preferences by different STATs and interpretive problems in the use of STAT-deficient cells and mice. Finally, I consider how the suppressor of cytokine signaling (SOCS) proteins regulate the quality and quantity of STAT signals from cytokine receptors. New data suggests that SOCS proteins introduce additional diversity into the JAK-STAT pathway by adjusting the output of activated STATs that alters downstream gene activation.

  1. Inhibitors of JAK-family kinases: an update on the patent literature 2013-2015, part 2.

    PubMed

    Kettle, Jason G; Åstrand, Annika; Catley, Matthew; Grimster, Neil P; Nilsson, Magnus; Su, Qibin; Woessner, Richard

    2017-02-01

    Janus kinases (JAKs) are a family of four enzymes; JAK1, JAK2, JAK3 and tyrosine kinase 2 (TYK2) that are critical in cytokine signalling and are strongly linked to both cancer and inflammatory diseases. There are currently two launched JAK inhibitors for the treatment of human conditions: tofacitinib for Rheumatoid arthritis (RA) and ruxolitinib for myeloproliferative neoplasms including intermediate or high risk myelofibrosis and polycythemia vera. Areas covered: This review covers patents claiming activity against one or more JAK family members in the period 2013-2015 inclusive, and covers 95 patents from 42 applicants, split over two parts. The authors have ordered recent patents according to the primary applicant's name, with part 2 covering J through Z. Expert opinion: Inhibition of JAK-family kinases is an area of growing interest, catalysed by the maturity of data on marketed inhibitors ruxolitinib and tofacitinib in late stage clinical trials. Many applicants are pursuing traditional fast-follower strategies around these inhibitors, with a range of chemical strategies adopted. The challenge will be to show sufficient differentiation to the originator compounds, since dose limiting toxicities with such agents appear to be on target and mechanism-related and also considering that such agents may be available as generic compounds by the time follower agents reach market.

  2. Inhibitors of JAK-family kinases: an update on the patent literature 2013-2015, part 1.

    PubMed

    Kettle, Jason G; Åstrand, Annika; Catley, Matthew; Grimster, Neil P; Nilsson, Magnus; Su, Qibin; Woessner, Richard

    2017-02-01

    Janus kinases (JAKs) are a family of four enzymes; JAK1, JAK2, JAK3 and tyrosine kinase 2 (TYK2) that are critical in cytokine signalling and are strongly linked to both cancer and inflammatory diseases. There are currently two launched JAK inhibitors for the treatment of human conditions: tofacitinib for Rheumatoid arthritis (RA) and ruxolitinib for myeloproliferative neoplasms including intermediate or high risk myelofibrosis and polycythemia vera. Areas covered: This review covers patents claiming activity against one or more JAK family members in the period 2013-2015 inclusive, and covers 95 patents from 42 applicants, split over two parts. The authors have ordered recent patents according to the primary applicant's name, with part 1 covering A through to I. Expert opinion: Inhibition of JAK-family kinases is an area of growing interest, catalysed by the maturity of data on marketed inhibitors ruxolitinib and tofacitinib in late stage clinical trials. Many applicants are pursuing traditional fast-follower strategies around these inhibitors, with a range of chemical strategies adopted. The challenge will be to show sufficient differentiation to the originator compounds, since dose limiting toxicities with such agents appear to be on target and mechanism-related and also considering that such agents may be available as generic compounds by the time follower agents reach market.

  3. Electrophoretic Detection and Confocal Microscopic Imaging of Tyrosine Nitrated Proteins in Plant Tissue.

    PubMed

    Arora, Dhara; Singh, Neha; Bhatla, Satish C

    2018-01-01

    Tyrosine nitrated proteins can be detected in plant cells electrophoretically and their distribution can be monitored by confocal laser scanning microscopy (CLSM) imaging. One-dimensional polyacrylamide gel electrophoresis (1D PAGE) followed by Western blotting using polyclonal antibody against 3-nitrotyrosine residues enables detection of tyrosine nitrated proteins in plant cells. Here we describe detection of tyrosine nitrated proteins in the homogenates derived from sunflower (Helianthus annuus L.) seedling cotyledons. Total soluble proteins obtained from tissue homogenates are resolved using vertical gel electrophoresis followed by their electrophoretic transfer on to a microporous membrane support for immunodetection. Spatial distribution of tyrosine nitrated proteins can be visualized using an antibody against 3-nitrotyrosine residues. Immunofluorescent localization is performed by cutting 7 μm thick wax sections of tissue followed by incubation in primary anti-nitrotyrosine antibody (dilution 1:200) and secondary Cy-3 labeled anti-rabbit IgG antibody (dilution 1:1500). Confocal laser scanning microscopy analysis is undertaken using argon lasers (ex: 530-550 nm and em: 570 nm) at pinhole 1. Modulation in the abundance and spatial localization of tyrosine nitrated proteins in plant tissues can be monitored using these techniques.

  4. Inhibition of DNA methyltransferase induces G2 cell cycle arrest and apoptosis in human colorectal cancer cells via inhibition of JAK2/STAT3/STAT5 signalling.

    PubMed

    Xiong, Hua; Chen, Zhao-Fei; Liang, Qin-Chuan; Du, Wan; Chen, Hui-Min; Su, Wen-Yu; Chen, Guo-Qiang; Han, Ze-Guang; Fang, Jing-Yuan

    2009-09-01

    DNA methyltransferase inhibitors (MTIs) have recently emerged as promising chemotherapeutic or preventive agents for cancer, despite their poorly characterized mechanisms of action. The present study shows that DNA methylation is integral to the regulation of SH2-containing protein tyrosine phosphatase 1 (SHP1) expression, but not for regulation of suppressors of cytokine signalling (SOCS)1 or SOCS3 in colorectal cancer (CRC) cells. SHP1 expression correlates with down-regulation of Janus kinase/signal transducers and activators of transcription (JAK2/STAT3/STAT5) signalling, which is mediated in part by tyrosine dephosphorylation events and modulation of the proteasome pathway. Up-regulation of SHP1 expression was achieved using a DNA MTI, 5-aza-2'-deoxycytidine (5-aza-dc), which also generated significant down-regulation of JAK2/STAT3/STAT5 signalling. We demonstrate that 5-aza-dc suppresses growth of CRC cells, and induces G2 cell cycle arrest and apoptosis through regulation of downstream targets of JAK2/STAT3/STAT5 signalling including Bcl-2, p16(ink4a), p21(waf1/cip1) and p27(kip1). Although 5-aza-dc did not significantly inhibit cell invasion, 5-aza-dc did down-regulate expression of focal adhesion kinase and vascular endothelial growth factor in CRC cells. Our results demonstrate that 5-aza-dc can induce SHP1 expression and inhibit JAK2/STAT3/STAT5 signalling. This study represents the first evidence towards establishing a mechanistic link between inhibition of JAK2/STAT3/STAT5 signalling and the anticancer action of 5-aza-dc in CRC cells that may lead to the use of MTIs as a therapeutic intervention for human colorectal cancer.

  5. Muscarinic agonists and phorbol esters increase tyrosine phosphorylation of a 40-kilodalton protein in hippocampal slices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stratton, K.R.; Worley, P.F.; Huganir, R.L.

    The authors have used the hippocampal slice preparation to investigate the regulation of protein tyrosine phosphorylation in brain. After pharmacological treatment of intact slices, proteins were separated by electrophoresis, and levels of protein tyrosine phosphorylation were assessed by immunoblotting with specific anti-phosphotyrosine antibodies. Phorbol esters, activators of the serine- and threonine-phosphorylating enzyme protein kinase C, selectively increase tyrosine phosphorylation of a soluble protein with an apparent molecular mass of approximately 40 kilodaltons. Muscarinic agonists such as carbachol and oxotremorine M that strongly activate the inositol phospholipid system also increase tyrosine phosphorylation of this protein. Neurotransmitter activation of the inositol phospholipidmore » system and protein kinase C appears to trigger a cascade leading to increased tyrosine phosphorylation.« less

  6. Protein tyrosine nitration in plants: Present knowledge, computational prediction and future perspectives.

    PubMed

    Kolbert, Zsuzsanna; Feigl, Gábor; Bordé, Ádám; Molnár, Árpád; Erdei, László

    2017-04-01

    Nitric oxide (NO) and related molecules (reactive nitrogen species) regulate diverse physiological processes mainly through posttranslational modifications such as protein tyrosine nitration (PTN). PTN is a covalent and specific modification of tyrosine (Tyr) residues resulting in altered protein structure and function. In the last decade, great efforts have been made to reveal candidate proteins, target Tyr residues and functional consequences of nitration in plants. This review intends to evaluate the accumulated knowledge about the biochemical mechanism, the structural and functional consequences and the selectivity of plants' protein nitration and also about the decomposition or conversion of nitrated proteins. At the same time, this review emphasizes yet unanswered or uncertain questions such as the reversibility/irreversibility of tyrosine nitration, the involvement of proteasomes in the removal of nitrated proteins or the effect of nitration on Tyr phosphorylation. The different NO producing systems of algae and higher plants raise the possibility of diversely regulated protein nitration. Therefore studying PTN from an evolutionary point of view would enrich our present understanding with novel aspects. Plant proteomic research can be promoted by the application of computational prediction tools such as GPS-YNO 2 and iNitro-Tyr software. Using the reference Arabidopsis proteome, Authors performed in silico analysis of tyrosine nitration in order to characterize plant tyrosine nitroproteome. Nevertheless, based on the common results of the present prediction and previous experiments the most likely nitrated proteins were selected thus recommending candidates for detailed future research. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  7. Rhizobiales-like Phosphatase 2 from Arabidopsis thaliana Is a Novel Phospho-tyrosine-specific Phospho-protein Phosphatase (PPP) Family Protein Phosphatase.

    PubMed

    Uhrig, R Glen; Labandera, Anne-Marie; Muhammad, Jamshed; Samuel, Marcus; Moorhead, Greg B

    2016-03-11

    Cellular signaling through protein tyrosine phosphorylation is well established in mammalian cells. Although lacking the classic tyrosine kinases present in humans, plants have a tyrosine phospho-proteome that rivals human cells. Here we report a novel plant tyrosine phosphatase from Arabidopsis thaliana (AtRLPH2) that, surprisingly, has the sequence hallmarks of a phospho-serine/threonine phosphatase belonging to the PPP family. Rhizobiales/Rhodobacterales/Rhodospirillaceae-like phosphatases (RLPHs) are conserved in plants and several other eukaryotes, but not in animals. We demonstrate that AtRLPH2 is localized to the plant cell cytosol, is resistant to the classic serine/threonine phosphatase inhibitors okadaic acid and microcystin, but is inhibited by the tyrosine phosphatase inhibitor orthovanadate and is particularly sensitive to inhibition by the adenylates, ATP and ADP. AtRLPH2 displays remarkable selectivity toward tyrosine-phosphorylated peptides versus serine/threonine phospho-peptides and readily dephosphorylates a classic tyrosine phosphatase protein substrate, suggesting that in vivo it is a tyrosine phosphatase. To date, only one other tyrosine phosphatase is known in plants; thus AtRLPH2 represents one of the missing pieces in the plant tyrosine phosphatase repertoire and supports the concept of protein tyrosine phosphorylation as a key regulatory event in plants. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. UV-Vis spectroscopy of tyrosine side-groups in studies of protein structure. Part 1: basic principles and properties of tyrosine chromophore.

    PubMed

    Antosiewicz, Jan M; Shugar, David

    Spectroscopic properties of tyrosine residues may be employed in structural studies of proteins. Here we discuss several different types of UV-Vis spectroscopy, like normal, difference and second-derivative UV absorption spectroscopy, fluorescence spectroscopy, linear and circular dichroism spectroscopy, and Raman spectroscopy, and corresponding optical properties of the tyrosine chromophore, phenol, which are used to study protein structure.

  9. UV-Vis spectroscopy of tyrosine side-groups in studies of protein structure. Part 1: basic principles and properties of tyrosine chromophore.

    PubMed

    Antosiewicz, Jan M; Shugar, David

    2016-06-01

    Spectroscopic properties of tyrosine residues may be employed in structural studies of proteins. Here we discuss several different types of UV-Vis spectroscopy, like normal, difference and second-derivative UV absorption spectroscopy, fluorescence spectroscopy, linear and circular dichroism spectroscopy, and Raman spectroscopy, and corresponding optical properties of the tyrosine chromophore, phenol, which are used to study protein structure.

  10. The JH2 domain and SH2-JH2 linker regulate JAK2 activity: A detailed kinetic analysis of wild type and V617F mutant kinase domains.

    PubMed

    Sanz Sanz, Arturo; Niranjan, Yashavanthi; Hammarén, Henrik; Ungureanu, Daniela; Ruijtenbeek, Rob; Touw, Ivo P; Silvennoinen, Olli; Hilhorst, Riet

    2014-10-01

    JAK2 tyrosine kinase regulates many cellular functions. Its activity is controlled by the pseudokinase (JH2) domain by still poorly understood mechanisms. The V617F mutation in the pseudokinase domain activates JAK2 and causes myeloproliferative neoplasms. We conducted a detailed kinetic analysis of recombinant JAK2 tyrosine kinase domain (JH1) and wild-type and V617F tandem kinase (JH1JH2) domains using peptide microarrays to define the functions of the kinase domains. The results show that i) JAK2 follows a random Bi-Bi reaction mechanism ii) JH2 domain restrains the activity of the JH1 domain by reducing the affinity for ATP and ATP competitive inhibitors iii) V617F decreases affinity for ATP but increases catalytic activity compared to wild-type and iv) the SH2-JH2 linker region participates in controlling activity by reducing the affinity for ATP. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Efficacy of NS-018, a potent and selective JAK2/Src inhibitor, in primary cells and mouse models of myeloproliferative neoplasms.

    PubMed

    Nakaya, Y; Shide, K; Niwa, T; Homan, J; Sugahara, S; Horio, T; Kuramoto, K; Kotera, T; Shibayama, H; Hori, K; Naito, H; Shimoda, K

    2011-07-01

    Aberrant activation of Janus kinase 2 (JAK2) caused by somatic mutation of JAK2 (JAK2V617F) or the thrombopoietin receptor (MPLW515L) plays an essential role in the pathogenesis of myeloproliferative neoplasms (MPNs), suggesting that inhibition of aberrant JAK2 activation would have a therapeutic benefit. Our novel JAK2 inhibitor, NS-018, was highly active against JAK2 with a 50% inhibition (IC(50)) of <1 n, and had 30-50-fold greater selectivity for JAK2 over other JAK-family kinases, such as JAK1, JAK3 and tyrosine kinase 2. In addition to JAK2, NS-018 inhibited Src-family kinases. NS-018 showed potent antiproliferative activity against cell lines expressing a constitutively activated JAK2 (the JAK2V617F or MPLW515L mutations or the TEL-JAK2 fusion gene; IC(50)=11-120 n), but showed only minimal cytotoxicity against most other hematopoietic cell lines without a constitutively activated JAK2. Furthermore, NS-018 preferentially suppressed in vitro erythropoietin-independent endogenous colony formation from polycythemia vera patients. NS-018 also markedly reduced splenomegaly and prolonged the survival of mice inoculated with Ba/F3 cells harboring JAK2V617F. In addition, NS-018 significantly reduced leukocytosis, hepatosplenomegaly and extramedullary hematopoiesis, improved nutritional status, and prolonged survival in JAK2V617F transgenic mice. These results suggest that NS-018 will be a promising candidate for the treatment of MPNs.

  12. The leukocyte common antigen (CD45): a putative receptor-linked protein tyrosine phosphatase.

    PubMed Central

    Charbonneau, H; Tonks, N K; Walsh, K A; Fischer, E H

    1988-01-01

    A major protein tyrosine phosphatase (PTPase 1B) has been isolated in essentially homogeneous form from the soluble and particulate fractions of human placenta. Unexpectedly, partial amino acid sequences displayed no homology with the primary structures of the protein Ser/Thr phosphatases deduced from cDNA clones. However, the sequence is strikingly similar to the tandem C-terminal homologous domains of the leukocyte common antigen (CD45). A 157-residue segment of PTPase 1B displayed 40% and 33% sequence identity with corresponding regions from cytoplasmic domains I and II of human CD45. Similar degrees of identity have been observed among the catalytic domains of families of regulatory proteins such as protein kinases and cyclic nucleotide phosphodiesterases. On this basis, it is proposed that the CD45 family has protein tyrosine phosphatase activity and may represent a set of cell-surface receptors involved in signal transduction. This suggests that the repertoire of signal transduction mechanisms may include the direct control of an intracellular protein tyrosine phosphatase, offering the possibility of a regulatory balance with those protein tyrosine kinases that act at the internal surface of the membrane. Images PMID:2845400

  13. A Drosophila protein-tyrosine phosphatase associates with an adapter protein required for axonal guidance.

    PubMed

    Clemens, J C; Ursuliak, Z; Clemens, K K; Price, J V; Dixon, J E

    1996-07-19

    We have used the yeast two-hybrid system to isolate a novel Drosophila adapter protein, which interacts with the Drosophila protein-tyrosine phosphatase (PTP) dPTP61F. Absence of this protein in Drosophila causes the mutant photoreceptor axon phenotype dreadlocks (dock) (Garrity, P. A., Rao, Y., Salecker, I., and Zipursky, S. L.(1996) Cell 85, 639-650). Dock is similar to the mammalian oncoprotein Nck and contains three Src homology 3 (SH3) domains and one Src homology 2 (SH2) domain. The interaction of dPTP61F with Dock was confirmed in vivo by immune precipitation experiments. A sequence containing five PXXP motifs from the non-catalytic domain of the PTP is sufficient for interaction with Dock. This suggests that binding to the PTP is mediated by one or more of the SH3 domains of Dock. Immune precipitations of Dock also co-precipitate two tyrosine-phosphorylated proteins having molecular masses of 190 and 145 kDa. Interactions between Dock and these tyrosine-phosphorylated proteins are likely mediated by the Dock SH2 domain. These findings identify potential signal-transducing partners of Dock and propose a role for dPTP61F and the unidentified phosphoproteins in axonal guidance.

  14. Insulin stimulates the tyrosine phosphorylation of a 61-kilodalton protein in rat adipocytes.

    PubMed

    Mooney, R A; Bordwell, K L

    1992-03-01

    Insulin stimulated the tyrosine phosphorylation of a 61-kilodalton (kDa) protein in rat adipocytes prelabeled for 2 h with [32P]orthophosphate. Tyrosine phosphorylation of this 61-kDa protein displayed very similar insulin concentration dependency to receptor autophosphorylation and tyrosine phosphorylation of a high molecular mass receptor substrate of 160 kDa. Phosphorylation of the 61-kDa protein was very rapid with maximum labeling attained at 30 sec, paralleling that of the other two proteins. Phosphoamino acid analysis revealed that each of the insulin-responsive phosphoproteins contained phosphoserine as well as phosphotyrosine, though the ratio of two phosphoamino acids recovered from each protein differed. The 61-kDa protein yielded relatively equal proportions of phosphoserine and phosphotyrosine. In contrast, the insulin receptor yielded relatively more label on phosphotyrosine than phosphoserine, whereas label incorporated into the 160-kDa protein was recovered primarily on phosphoserine. Cleveland peptide maps using either Staphylococcus aureus V8 proteinase or chymotrypsin revealed no similarities between the 61-kDa protein and the other tyrosine phosphorylated proteins. With subcellular fractionation, the 160-kDa protein was found in equal proportions in the high speed pellet (100,000 g) and supernatant. The 61-kDa protein had a similar distribution to that of the 160-kDa protein but was also detected in the low speed pellet (10,000 g). The insulin receptor was localized to the low speed pellet. In summary, rat adipocytes contain an insulin-dependent phosphotyrosyl protein of 61 kDa which is distinct from the more prominent high molecular mass receptor substrate. This 61-kDa protein has characteristics consistent with it being a substrate for the insulin receptor tyrosine kinase.

  15. Synergistic effect of pacritinib with erlotinib on JAK2-mediated resistance in epidermal gowth factor receptor mutation-positive non-small cell lung Cancer.

    PubMed

    Ochi, Nobuaki; Isozaki, Hideko; Takeyama, Masami; Singer, Jack W; Yamane, Hiromichi; Honda, Yoshihiro; Kiura, Katsuyuki; Takigawa, Nagio

    2016-06-10

    The combination effect of pacritinib, a novel JAK2/FLT3 inhibitor, with erlotinib, the epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI), on non-small cell lung cancer cells with EGFR activating mutations was investigated. The combination showed synergistic effects on JAK2-mediated EGFR TKI-resistant PC-9/ER3 cells in some cases. The combination markedly suppressed pAKT and pERK although pSTAT3 expression was similar regardless of treatment with the pacritinib, pacritinib + erlotinib, or control in PC-9/ER3 cells. Receptor tyrosine kinase array profiling demonstrated that pacritinib suppressed MET in the PC-9/ER3 cells. The combined treatment of pacritinib and erlotinib in PC-9/ER3 xenografts showed more tumor shrinkage compared with each drug as monotherapy. Western blotting revealed that pMET in tumor samples was inhibited. These results suggest MET suppression by pacritinib may play a role in overcoming the EGFR-TKI resistance mediated by JAK2 in the PC-9/ER3 cells. In conclusion, pacritinib combined with EGFR-TKI might be a potent strategy against JAK2-mediated EGFR-TKI resistance. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. A Multifeatures Fusion and Discrete Firefly Optimization Method for Prediction of Protein Tyrosine Sulfation Residues.

    PubMed

    Guo, Song; Liu, Chunhua; Zhou, Peng; Li, Yanling

    2016-01-01

    Tyrosine sulfation is one of the ubiquitous protein posttranslational modifications, where some sulfate groups are added to the tyrosine residues. It plays significant roles in various physiological processes in eukaryotic cells. To explore the molecular mechanism of tyrosine sulfation, one of the prerequisites is to correctly identify possible protein tyrosine sulfation residues. In this paper, a novel method was presented to predict protein tyrosine sulfation residues from primary sequences. By means of informative feature construction and elaborate feature selection and parameter optimization scheme, the proposed predictor achieved promising results and outperformed many other state-of-the-art predictors. Using the optimal features subset, the proposed method achieved mean MCC of 94.41% on the benchmark dataset, and a MCC of 90.09% on the independent dataset. The experimental performance indicated that our new proposed method could be effective in identifying the important protein posttranslational modifications and the feature selection scheme would be powerful in protein functional residues prediction research fields.

  17. A Multifeatures Fusion and Discrete Firefly Optimization Method for Prediction of Protein Tyrosine Sulfation Residues

    PubMed Central

    Liu, Chunhua; Zhou, Peng; Li, Yanling

    2016-01-01

    Tyrosine sulfation is one of the ubiquitous protein posttranslational modifications, where some sulfate groups are added to the tyrosine residues. It plays significant roles in various physiological processes in eukaryotic cells. To explore the molecular mechanism of tyrosine sulfation, one of the prerequisites is to correctly identify possible protein tyrosine sulfation residues. In this paper, a novel method was presented to predict protein tyrosine sulfation residues from primary sequences. By means of informative feature construction and elaborate feature selection and parameter optimization scheme, the proposed predictor achieved promising results and outperformed many other state-of-the-art predictors. Using the optimal features subset, the proposed method achieved mean MCC of 94.41% on the benchmark dataset, and a MCC of 90.09% on the independent dataset. The experimental performance indicated that our new proposed method could be effective in identifying the important protein posttranslational modifications and the feature selection scheme would be powerful in protein functional residues prediction research fields. PMID:27034949

  18. Mutational analysis of the SRC homology 2 domain protein-tyrosine phosphatase Corkscrew.

    PubMed

    Allard, J D; Herbst, R; Carroll, P M; Simon, M A

    1998-05-22

    The SRC homology 2 (SH2) domain protein-tyrosine phosphatase, Corkscrew (CSW) is required for signaling by receptor tyrosine kinases, including the Sevenless receptor tyrosine kinase (SEV), which directs Drosophila R7 photoreceptor cell development. To investigate the role of the different domains of CSW, we constructed domain-specific csw mutations and assayed their effects on CSW function. Our results indicate that CSW SH2 domain function is essential, but either CSW SH2 domain can fulfill this requirement. We also found that CSW and activated SEV are associated in vivo in a manner that does not require either CSW SH2 domain function or tyrosine phosphorylation of SEV. In contrast, the interaction between CSW and Daughter of Sevenless, a CSW substrate, is dependent on SH2 domain function. These results suggest that the role of the CSW SH2 domains during SEV signaling is to bind Daughter of Sevenless rather than activated SEV. We also found that although CSW protein-tyrosine phosphatase activity is required for full CSW function, a catalytically inactive CSW is capable of providing partial function. In addition, we found that deletion of either the CSW protein- tyrosine phosphatase insert or the entire CSW carboxyl terminus, which includes a conserved DRK/GRB2 SH2 domain binding sequence, does not abolish CSW function.

  19. Identification of JAK2 as a Mediator of FIP1L1-PDGFRA-Induced Eosinophil Growth and Function in CEL

    PubMed Central

    Li, Bin; Zhang, Guangsen; Li, Cui; He, Dan; Li, Xinying; Zhang, Chunfang; Tang, Faqing; Deng, Xiyun; Lu, Jingchen; Tang, Youhong; Li, Ruijuan; Chen, Zhuchu; Duan, Chaojun

    2012-01-01

    The Fip1-like1 (FIP1L1)-platelet-derived growth factor receptor alpha fusion gene (F/P) arising in the pluripotent hematopoietic stem cell (HSC),causes 14% to 60% of patients with hypereosinophilia syndrome (HES). These patients, classified as having F/P (+) chronic eosinophilic leukemia (CEL), present with clonal eosinophilia and display a more aggressive disease phenotype than patients with F/P (–) HES patients. The mechanisms underlying predominant eosinophil lineage targeting and the cytotoxicity of eosinophils in this leukemia remain unclear. Given that the Janus tyrosine kinase (JAK)/signal transducers and activators of transcription (Stat) signaling pathway is key to cytokine receptor-mediated eosinophil development and activated Stat3 and Stat5 regulate the expression of genes involved in F/P malignant transformation, we investigated whether and how JAK proteins were involved in the pathogenesis of F/P-induced CEL. F/P activation of JAK2, Stat3 and Stat5, were confirmed in all the 11 F/P (+) CEL patients examined. In vitro inhibition of JAK2 in EOL-1, primary F/P(+) CEL cells (PC) and T674I F/P Imatinib resistant cells(IR) by either JAK2-specific short interfering RNA (siRNA) or the tryphostin derivative AG490(AG490), significantly reduced cellular proliferation and induced cellular apoptosis. The F/P can enhance the IL-5-induced JAK2 activation, and further results indicated that JAK2 inhibition blocked IL-5-induced cellular migration and activation of the EOL-1 and PC cells in vitro. F/P-stimulation of the JAK2 suppressed cells led to a significantly reduction in Stat3 activation, but relatively normal induction of Stat5 activation. Interestingly, JAK2 inhibition also reduced PI3K, Akt and NF-κB activity in a dose-dependent manner, and suppressed expression levels of c-Myc and Survivin. These results strongly suggest that JAK2 is activated by F/P and is required for F/P stimulation of cellular proliferation and infiltration, possibly through induction

  20. Requirement for tyrosine phosphatase during serotonergic neuromodulation by protein kinase C.

    PubMed

    Catarsi, S; Drapeau, P

    1997-08-01

    Tyrosine kinases and phosphatases are abundant in the nervous system, where they signal cellular differentiation, mediate the responses to growth factors, and direct neurite outgrowth during development. Tyrosine phosphorylation can also alter ion channel activity, but its physiological significance remains unclear. In an identified leech mechanosensory neuron, the ubiquitous neuromodulator serotonin increases the activity of a cation channel by activating protein kinase C (PKC), resulting in membrane depolarization and modulation of the receptive field properties. We observed that the effects on isolated neurons and channels were blocked by inhibiting tyrosine phosphatases. Serotonergic stimulation of PKC thus activates a tyrosine phosphatase activity associated with the channels, which reverses their constitutive inhibition by tyrosine phosphorylation, representing a novel form of neuromodulation.

  1. Conformational changes induced in the protein tyrosine kinase p72syk by tyrosine phosphorylation or by binding of phosphorylated immunoreceptor tyrosine-based activation motif peptides.

    PubMed Central

    Kimura, T; Sakamoto, H; Appella, E; Siraganian, R P

    1996-01-01

    A critical event in signaling in immune cells is the interaction of Syk or ZAP-70 protein tyrosine kinases with multisubunit receptors that contain an approximately 18-amino-acid domain called the immunoreceptor tyrosine-based activation motif (ITAM). Tyrosine-phosphorylated Syk from activated cells was in a conformation different from that in nonstimulated cells as demonstrated by changes in immunoreactivity. The addition of tyrosine-diphosphorylated ITAM peptides resulted in a similar conformational change in Syk from nonactivated cells. The peptides based on FcepsilonRIgamma were more active than those based on Fcepsilon RIbeta. In vitro autophosphorylation of Syk was dramatically enhanced by the addition of the diphosphorylated ITAM peptides. The conformational change and the enhanced autophosphorylation required the presence of both phosphorylated tyrosines on the same molecule. These conformational changes in Syk by tyrosine phosphorylation or binding to diphosphorylated ITAM could be critical for Syk activation and downstream propagation of intracellular signals. PMID:8657120

  2. Complement Factor H, Vitronectin, and Opticin Are Tyrosine-Sulfated Proteins of the Retinal Pigment Epithelium

    PubMed Central

    Kanan, Yogita; Siefert, Joseph C.; Kinter, Michael; Al-Ubaidi, Muayyad R.

    2014-01-01

    Lack of tyrosine sulfation of ocular proteins results in disorganized photoreceptor structure and drastically reduced visual function, demonstrating the importance of this post-translational modification to vision. To understand the role that tyrosine sulfation plays in the function of ocular proteins, we identified some tyrosine-sulfated proteins in the retinal pigment epithelium using two independent methods, immuno-affinity column purification with an anti-sulfotyrosine specific antibody and computer-based sequence analysis of retinal pigment epithelium secretome by means of the prediction program Sulfinator. Radioactive labeling followed by thin layer electrophoresis revealed that three proteins, vitronectin, opticin, and complement factor H (CFH), were post-translationally modified by tyrosine sulfation. The identification of vitronectin and CFH as tyrosine-sulfated proteins is significant, since both are deposited in drusen in the eyes of patients with age-related macular degeneration (AMD). Furthermore, mutations in CFH have been determined to be a major risk factor in the development of AMD. Future studies that seek to understand the role of CFH in the development of AMD should take into account the role that tyrosine sulfation plays in the interaction of this protein with its partners, and examine whether modulating sulfation provides a potential therapeutic target. PMID:25136834

  3. The JAK2 pathway is activated in idiopathic pulmonary fibrosis.

    PubMed

    Milara, Javier; Hernandez, Gracia; Ballester, Beatriz; Morell, Anselm; Roger, Inés; Montero, P; Escrivá, Juan; Lloris, José M; Molina-Molina, Maria; Morcillo, Esteban; Cortijo, Julio

    2018-02-06

    Idiopathic pulmonary fibrosis (IPF) is the most rapidly progressive and fatal fibrotic disorder, with no curative therapies. The signal transducer and activator of transcription 3 (STAT3) protein is activated in lung fibroblasts and alveolar type II cells (ATII), thereby contributing to lung fibrosis in IPF. Although activation of Janus kinase 2 (JAK2) has been implicated in proliferative disorders, its role in IPF is unknown. The aim of this study was to analyze JAK2 activation in IPF, and to determine whether JAK2/STAT3 inhibition is a potential therapeutic strategy for this disease. JAK2/p-JAK2 and STAT3/pSTAT3 expression was evaluated using quantitative real time-PCR, western blotting, and immunohistochemistry. Compared to human healthy lung tissue (n = 10) both proteins were upregulated in the lung tissue of IPF patients (n = 12). Stimulating primary ATII and lung fibroblasts with transforming growth factor beta 1 or interleukin (IL)-6/IL-13 activated JAK2 and STAT3, inducing epithelial to mesenchymal and fibroblast to myofibroblast transitions. Dual p-JAK2/p-STAT3 inhibition with JSI-124 or silencing of JAK2 and STAT3 genes suppressed ATII and the fibroblast to myofibroblast transition, with greater effects than the sum of those obtained using JAK2 or STAT3 inhibitors individually. Dual rather than single inhibition was also more effective for inhibiting fibroblast migration, preventing increases in fibroblast senescence and Bcl-2 expression, and ameliorating impaired autophagy. In rats administered JSI-124, a dual inhibitor of p-JAK2/p-STAT3, at a dose of 1 mg/kg/day, bleomycin-induced lung fibrosis was reduced and collagen deposition in the lung was inhibited, as were JAK2 and STAT3 activation and several markers of fibrosis, autophagy, senescence, and anti-apoptosis. JAK2 and STAT3 are activated in IPF, and their dual inhibition may be an attractive strategy for treating this disease.

  4. Efficacy of NS-018, a potent and selective JAK2/Src inhibitor, in primary cells and mouse models of myeloproliferative neoplasms

    PubMed Central

    Nakaya, Y; Shide, K; Niwa, T; Homan, J; Sugahara, S; Horio, T; Kuramoto, K; Kotera, T; Shibayama, H; Hori, K; Naito, H; Shimoda, K

    2011-01-01

    Aberrant activation of Janus kinase 2 (JAK2) caused by somatic mutation of JAK2 (JAK2V617F) or the thrombopoietin receptor (MPLW515L) plays an essential role in the pathogenesis of myeloproliferative neoplasms (MPNs), suggesting that inhibition of aberrant JAK2 activation would have a therapeutic benefit. Our novel JAK2 inhibitor, NS-018, was highly active against JAK2 with a 50% inhibition (IC50) of <1 n, and had 30–50-fold greater selectivity for JAK2 over other JAK-family kinases, such as JAK1, JAK3 and tyrosine kinase 2. In addition to JAK2, NS-018 inhibited Src-family kinases. NS-018 showed potent antiproliferative activity against cell lines expressing a constitutively activated JAK2 (the JAK2V617F or MPLW515L mutations or the TEL–JAK2 fusion gene; IC50=11–120 n), but showed only minimal cytotoxicity against most other hematopoietic cell lines without a constitutively activated JAK2. Furthermore, NS-018 preferentially suppressed in vitro erythropoietin-independent endogenous colony formation from polycythemia vera patients. NS-018 also markedly reduced splenomegaly and prolonged the survival of mice inoculated with Ba/F3 cells harboring JAK2V617F. In addition, NS-018 significantly reduced leukocytosis, hepatosplenomegaly and extramedullary hematopoiesis, improved nutritional status, and prolonged survival in JAK2V617F transgenic mice. These results suggest that NS-018 will be a promising candidate for the treatment of MPNs. PMID:22829185

  5. Genistein suppresses adhesion-induced protein tyrosine phosphorylation and invasion of B16-BL6 melanoma cells.

    PubMed

    Yan, C; Han, R

    1998-07-03

    Protein tyrosine phosphorylation occurs as one of the earlier events in cancer cell-extracellular matrix (ECM) interaction. With immunoblot analysis and immunofluorescence microscopy, genistein was found to suppress the tyrosine phosphorylation of proteins located at the cell periphery, including a 125 kDa protein, when B16-BL6 melanoma cells attached to and interacted with ECM. When accompanied by the suppression of adhesion-induced protein tyrosine phosphorylation, the invasive potential of B16-BL6 cells through reconstituted basement membrane was decreased significantly. However, neither adhesive capability nor cell growth was significantly affected by genistein. Therefore, the interruption of cancer cell-ECM interaction by suppression of protein tyrosine phosphorylation may contribute to invasion prevention of genistein.

  6. Protein Tyrosine Nitration during Development and Abiotic Stress Response in Plants

    PubMed Central

    Mata-Pérez, Capilla; Begara-Morales, Juan C.; Chaki, Mounira; Sánchez-Calvo, Beatriz; Valderrama, Raquel; Padilla, María N.; Corpas, Francisco J.; Barroso, Juan B.

    2016-01-01

    In recent years, the study of nitric oxide (NO) in plant systems has attracted the attention of many researchers. A growing number of investigations have shown the significance of NO as a signal molecule or as a molecule involved in the response against (a)biotic processes. NO can be responsible of the post-translational modifications (NO-PTM) of target proteins by mechanisms such as the nitration of tyrosine residues. The study of protein tyrosine nitration during development and under biotic and adverse environmental conditions has increased in the last decade; nevertheless, there is also an endogenous nitration which seems to have regulatory functions. Moreover, the advance in proteome techniques has enabled the identification of new nitrated proteins, showing the high variability among plant organs, development stage and species. Finally, it may be important to discern between a widespread protein nitration because of greater RNS content, and the specific nitration of key targets which could affect cell-signaling processes. In view of the above point, we present a mini-review that offers an update about the endogenous protein tyrosine nitration, during plant development and under several abiotic stress conditions. PMID:27895655

  7. 15-deoxy-Delta12,14-prostaglandin J2 inhibits INF-gamma-induced JAK/STAT1 signalling pathway activation and IP-10/CXCL10 expression in mesangial cells.

    PubMed

    Panzer, Ulf; Zahner, Gunther; Wienberg, Ulrike; Steinmetz, Oliver M; Peters, Anett; Turner, Jan-Eric; Paust, Hans-Joachim; Wolf, Gunter; Stahl, Rolf A K; Schneider, André

    2008-12-01

    Activators of the peroxisome proliferator-activated receptor gamma (PPARgamma), originally found to be implicated in lipid metabolism and glucose homeostasis, have been shown to modulate inflammatory responses through interference with cytokine and chemokine production. Given the central role of mesangial cell-derived chemokines in glomerular leukocyte recruitment in human and experimental glomerulonephritis, we studied the influence of natural and synthetic PPARgamma activators on INF-gamma-induced expression of the T cell-attracting chemokines IP-10/CXCL10, Mig/CXCL9 and I-TAC/CXCL11 in mouse mesangial cells. INF-gamma-treated mesangial cells were cultured in the presence or absence of either the naturally occurring PPARgamma ligand 15-deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)) or synthetic PPARgamma activators of the glitazone group. Chemokine mRNA and protein expression and activation of the JAK/STAT signalling pathway were analysed. The 15d-PGJ(2), but not synthetic PPARgamma ligands, dose-dependently inhibited INF-gamma-induced chemokine gene (mRNA and protein) expression. Combined results from EMSA and western blot analysis revealed the inhibitory ability of 15d-PGJ(2), but not of synthetic PPARgamma ligands, on IFN-gamma-induced tyrosine phosphorylation of JAK1, JAK2, STAT1 and nuclear STAT1 translocation and DNA binding. Our results demonstrate that 15d-PGJ(2) inhibits INF-gamma-induced chemokine expression in mesangial cells by targeting the JAK/STAT signalling pathway. This effect is independent of an interference with PPARgamma.

  8. The role of the JAK/STAT signal pathway in rheumatoid arthritis

    PubMed Central

    Malemud, Charles J.

    2018-01-01

    Proinflammatory cytokine activation of the Janus kinase/signal transducers and activators of transcription (JAK/STAT) signal transduction pathway is a critical event in the pathogenesis and progression of rheumatoid arthritis. Under normal conditions, JAK/STAT signaling reflects the influence of negative regulators of JAK/STAT, exemplified by the suppressor of cytokine signaling and protein inhibitor of activated STAT. However, in rheumatoid arthritis (RA) both of these regulators are dysfunctional. Thus, continuous activation of JAK/STAT signaling in RA synovial joints results in the elevated level of matrix metalloproteinase gene expression, increased frequency of apoptotic chondrocytes and most prominently ‘apoptosis resistance’ in the inflamed synovial tissue. Tofacitinib, a JAK small molecule inhibitor, with selectivity for JAK2/JAK3 was approved by the United States Food and Drug Administration (US FDA) for the therapy of RA. Importantly, tofacitinib has demonstrated significant clinical efficacy for RA in the post-US FDA-approval surveillance period. Of note, the success of tofacitinib has spurred the development of JAK1, JAK2 and other JAK3-selective small molecule inhibitors, some of which have also entered the clinical setting, whereas other JAK inhibitors are currently being evaluated in RA clinical trials. PMID:29942363

  9. Expression of receptor protein tyrosine kinase tif is regulated during leukemia cell differentiation.

    PubMed

    Dai, W; Pan, H Q; Ouyang, B; Greenberg, J M; Means, R T; Li, B; Cardie, J

    1996-06-01

    tif is a recently cloned and characterized cDNA predicting a transmembrane protein with a putative tyrosine kinase structure in its cytoplasmic domain. By analysis of the purified tif cytoplasmic domain expressed in Escherichia coli, we have demonstrated that tif is an active protein tyrosine kinase capable of autophosphorylation on tyrosine residues and this phosphorylation is inhibited by a tyrosine-specific inhibitor genistein. Northern blot analyses of various leukemia cell lines have revealed that tif mRNA expression is primarily confined to those bearing erythroid and megakaryocytic phenotypes. Megakaryocytic differentiation of K562 and HEL cells induced by phorbol 12-myristate 13-acetate is accompanied by down-regulation of tif mRNA expression. In addition, treatment of K562 and HEL with hexamethylene bis-acetamide, but not with hemin, decreases the steady-state level of tif mRNA. These combined results suggest that the receptor tyrosine kinase tif is involved in hematopoietic development.

  10. Calcium-calmodulin and pH regulate protein tyrosine phosphorylation in stallion sperm.

    PubMed

    González-Fernández, L; Macías-García, B; Velez, I C; Varner, D D; Hinrichs, K

    2012-10-01

    The mechanisms leading to capacitation in stallion sperm are poorly understood. The objective of our study was to define factors associated with regulation of protein tyrosine phosphorylation in stallion sperm. Stallion sperm were incubated for 4 h in modified Whitten's media with or without bicarbonate, calcium, or BSA. When sperm were incubated in air at 30×10⁶/ml at initial pH 7.25, protein tyrosine phosphorylation was detected only in medium containing 25 mM bicarbonate alone; calcium and BSA inhibited phosphorylation. Surprisingly, this inhibition did not occur when sperm were incubated at 10×10⁶/ml. The final pH values after incubation at 30×10⁶ and 10×10⁶ sperm/ml were 7.43 ± 0.04 and 7.83 ± 0.07 (mean ± s.e.m.) respectively. Sperm were then incubated at initial pH values of 7.25, 7.90, or 8.50 in either air or 5% CO₂. Protein tyrosine phosphorylation increased with increasing final medium pH, regardless of the addition of bicarbonate or BSA. An increase in environmental pH was observed when raw semen was instilled into the uteri of estrous mares and retrieved after 30 min (from 7.47 ± 0.10 to 7.85 ± 0.08), demonstrating a potential physiological role for pH regulation of capacitation. Sperm incubated in the presence of the calmodulin (CaM) inhibitor W-7 exhibited a dose-dependent increase in protein tyrosine phosphorylation, suggesting that the inhibitory effect of calcium was CaM mediated. These results show for the first time a major regulatory role of external pH, calcium, and CaM in stallion sperm protein tyrosine phosphorylation.

  11. Exploring the mechanistic insights of Cas scaffolding protein family member 4 with protein tyrosine kinase 2 in Alzheimer's disease by evaluating protein interactions through molecular docking and dynamic simulations.

    PubMed

    Hassan, Mubashir; Shahzadi, Saba; Alashwal, Hany; Zaki, Nazar; Seo, Sung-Yum; Moustafa, Ahmed A

    2018-05-22

    Cas scaffolding protein family member 4 and protein tyrosine kinase 2 are signaling proteins, which are involved in neuritic plaques burden, neurofibrillary tangles, and disruption of synaptic connections in Alzheimer's disease. In the current study, a computational approach was employed to explore the active binding sites of Cas scaffolding protein family member 4 and protein tyrosine kinase 2 proteins and their significant role in the activation of downstream signaling pathways. Sequential and structural analyses were performed on Cas scaffolding protein family member 4 and protein tyrosine kinase 2 to identify their core active binding sites. Molecular docking servers were used to predict the common interacting residues in both Cas scaffolding protein family member 4 and protein tyrosine kinase 2 and their involvement in Alzheimer's disease-mediated pathways. Furthermore, the results from molecular dynamic simulation experiment show the stability of targeted proteins. In addition, the generated root mean square deviations and fluctuations, solvent-accessible surface area, and gyration graphs also depict their backbone stability and compactness, respectively. A better understanding of CAS and their interconnected protein signaling cascade may help provide a treatment for Alzheimer's disease. Further, Cas scaffolding protein family member 4 could be used as a novel target for the treatment of Alzheimer's disease by inhibiting the protein tyrosine kinase 2 pathway.

  12. Tyrosine kinase fusion genes in pediatric BCR-ABL1-like acute lymphoblastic leukemia

    PubMed Central

    Boer, Judith M.; Steeghs, Elisabeth M.P.; Marchante, João R.M.; Boeree, Aurélie; Beaudoin, James J.; Berna Beverloo, H.; Kuiper, Roland P.; Escherich, Gabriele; van der Velden, Vincent H.J.; van der Schoot, C. Ellen; de Groot-Kruseman, Hester A.; Pieters, Rob; den Boer, Monique L.

    2017-01-01

    Approximately 15% of pediatric B cell precursor acute lymphoblastic leukemia (BCP-ALL) is characterized by gene expression similar to that of BCR-ABL1-positive disease and unfavorable prognosis. This BCR-ABL1-like subtype shows a high frequency of B-cell development gene aberrations and tyrosine kinase-activating lesions. To evaluate the clinical significance of tyrosine kinase gene fusions in children with BCP-ALL, we studied the frequency of recently identified tyrosine kinase fusions, associated genetic features, and prognosis in a representative Dutch/German cohort. We identified 14 tyrosine kinase fusions among 77 BCR-ABL1-like cases (18%) and none among 76 non-BCR-ABL1-like B-other cases. Novel exon fusions were identified for RCSD1-ABL2 and TERF2-JAK2. JAK2 mutation was mutually exclusive with tyrosine kinase fusions and only occurred in cases with high CRLF2 expression. The non/late response rate and levels of minimal residual disease in the fusion-positive BCR-ABL1-like group were higher than in the non-BCR-ABL1-like B-others (p<0.01), and also higher, albeit not statistically significant, compared with the fusion-negative BCR-ABL1-like group. The 8-year cumulative incidence of relapse in the fusion-positive BCR-ABL1-like group (35%) was comparable with that in the fusion-negative BCR-ABL1-like group (35%), and worse than in the non-BCR-ABL1-like B-other group (17%, p=0.07). IKZF1 deletions, predominantly other than the dominant-negative isoform and full deletion, co-occurred with tyrosine kinase fusions. This study shows that tyrosine kinase fusion-positive cases are a high-risk subtype of BCP-ALL, which warrants further studies with specific kinase inhibitors to improve outcome. PMID:27894077

  13. Receptor Type Protein Tyrosine Phosphatase ζ-Pleiotrophin Signaling Controls Endocytic Trafficking of DNER That Regulates Neuritogenesis▿ †

    PubMed Central

    Fukazawa, Nobuna; Yokoyama, Seisuke; Eiraku, Mototsugu; Kengaku, Mineko; Maeda, Nobuaki

    2008-01-01

    Protein tyrosine phosphatase ζ (PTPζ) is a receptor type protein tyrosine phosphatase that uses pleiotrophin as a ligand. Pleiotrophin inactivates the phosphatase activity of PTPζ, resulting in the increase of tyrosine phosphorylation levels of its substrates. We studied the functional interaction between PTPζ and DNER, a Notch-related transmembrane protein highly expressed in cerebellar Purkinje cells. PTPζ and DNER displayed patchy colocalization in the dendrites of Purkinje cells, and immunoprecipitation experiments indicated that these proteins formed complexes. Several tyrosine residues in and adjacent to the tyrosine-based and the second C-terminal sorting motifs of DNER were phosphorylated and were dephosphorylated by PTPζ, and phosphorylation of these tyrosine residues resulted in the accumulation of DNER on the plasma membrane. DNER mutants lacking sorting motifs accumulated on the plasma membrane of Purkinje cells and Neuro-2A cells and induced their process extension. While normal DNER was actively endocytosed and inhibited the retinoic-acid-induced neurite outgrowth of Neuro-2A cells, pleiotrophin stimulation increased the tyrosine phosphorylation level of DNER and suppressed the endocytosis of this protein, which led to the reversal of this inhibition, thus allowing neurite extension. These observations suggest that pleiotrophin-PTPζ signaling controls subcellular localization of DNER and thereby regulates neuritogenesis. PMID:18474614

  14. Structure-Function Correlation of G6, a Novel Small Molecule Inhibitor of Jak2

    PubMed Central

    Majumder, Anurima; Govindasamy, Lakshmanan; Magis, Andrew; Kiss, Róbert; Polgár, Tímea; Baskin, Rebekah; Allan, Robert W.; Agbandje-McKenna, Mavis; Reuther, Gary W.; Keserű, György M.; Bisht, Kirpal S.; Sayeski, Peter P.

    2010-01-01

    Somatic mutations in the Jak2 protein, such as V617F, cause aberrant Jak/STAT signaling and can lead to the development of myeloproliferative neoplasms. This discovery has led to the search for small molecule inhibitors that target Jak2. Using structure-based virtual screening, our group recently identified a novel small molecule inhibitor of Jak2 named G6. Here, we identified a structure-function correlation of this compound. Specifically, five derivative compounds of G6 having structural similarity to the original lead compound were obtained and analyzed for their ability to (i) inhibit Jak2-V617F-mediated cell growth, (ii) inhibit the levels of phospho-Jak2, phospho-STAT3, and phospho-STAT5; (iii) induce apoptosis in human erythroleukemia cells; and (iv) suppress pathologic cell growth of Jak2-V617F-expressing human bone marrow cells ex vivo. Additionally, we computationally examined the interactions of these compounds with the ATP-binding pocket of the Jak2 kinase domain. We found that the stilbenoid core-containing derivatives of G6 significantly inhibited Jak2-V617F-mediated cell proliferation in a time- and dose-dependent manner. They also inhibited phosphorylation of Jak2, STAT3, and STAT5 proteins within cells, resulting in higher levels of apoptosis via the intrinsic apoptotic pathway. Finally, the stilbenoid derivatives inhibited the pathologic growth of Jak2-V617F-expressing human bone marrow cells ex vivo. Collectively, our data demonstrate that G6 has a stilbenoid core that is indispensable for maintaining its Jak2 inhibitory potential. PMID:20667821

  15. Expression of the JAK/STAT Signaling Pathway in Bullous Pemphigoid and Dermatitis Herpetiformis

    PubMed Central

    Wozniacka, A.; Waszczykowska, E.; Zebrowska, A.

    2017-01-01

    A family of eleven proteins comprises the Janus kinases (JAK) and signal transducers and activators of transcription (STAT) signaling pathway, which enables transduction of signal from cytokine receptor to the nucleus and activation of transcription of target genes. Irregular functioning of the cascade may contribute to pathogenesis of autoimmune diseases; however, there are no reports concerning autoimmune bullous diseases yet to be published. The aim of this study was to evaluate the expression of proteins constituting the JAK/STAT signaling pathway in skin lesions and perilesional area in dermatitis herpetiformis (DH) and bullous pemphigoid (BP), as well as in the control group. Skin biopsies were collected from 21 DH patients, from 20 BP patients, and from 10 healthy volunteers. The localization and expression of selected STAT and JAK proteins were examined by immunohistochemistry and immunoblotting. We found significantly higher expression of JAK/STAT proteins in skin lesions in patients with BP and DH, in comparison to perilesional skin and the control group, which may be related to proinflammatory cytokine network and induction of inflammatory infiltrate in tissues. Our findings suggest that differences in the JAK and STAT expression may be related to distinct cytokines activating them and mediating neutrophilic and/or eosinophilic infiltrate. PMID:29203970

  16. Stimulation of the amino acid transporter SLC6A19 by JAK2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhavsar, Shefalee K.; Hosseinzadeh, Zohreh; Merches, Katja

    Highlights: Black-Right-Pointing-Pointer The amino acid transporter SLC6A19 is upregulated by Janus kinase-2 JAK2. Black-Right-Pointing-Pointer The {sup V617F}JAK2 mutant, causing myeloproliferative disease, is more effective. Black-Right-Pointing-Pointer JAK2 inhibitor AG490 reverses stimulation of SLC6A19 by {sup V617F}JAK2. Black-Right-Pointing-Pointer JAK2 enhances SLC6A19 protein insertion into the cell membrane. Black-Right-Pointing-Pointer SLC6A19 may contribute to amino acid uptake into {sup V617F}JAK2 expressing tumor cells. -- Abstract: JAK2 (Janus kinase-2) is expressed in a wide variety of cells including tumor cells and contributes to the proliferation and survival of those cells. The gain of function mutation {sup V617F}JAK2 mutant is found in the majority of myeloproliferativemore » diseases. Cell proliferation depends on the availability of amino acids. Concentrative cellular amino acid uptake is in part accomplished by Na{sup +} coupled amino acid transport through SLC6A19 (B(0)AT). The present study thus explored whether JAK2 activates SLC6A19. To this end, SLC6A19 was expressed in Xenopus oocytes with or without wild type JAK2, {sup V617F}JAK2 or inactive {sup K882E}JAK2 and electrogenic amino acid transport determined by dual electrode voltage clamp. In SLC6A19-expressing oocytes but not in oocytes injected with water or JAK2 alone, the addition of leucine (2 mM) to the bath generated a current (I{sub le}), which was significantly increased following coexpression of JAK2 or {sup V617F}JAK2, but not by coexpression of {sup K882E}JAK2. Coexpression of JAK2 enhanced the maximal transport rate without significantly modifying the affinity of the carrier. Exposure of the oocytes to the JAK2 inhibitor AG490 (40 {mu}M) resulted in a gradual decline of I{sub le}. According to chemiluminescence JAK2 enhanced the carrier protein abundance in the cell membrane. The decline of I{sub le} following inhibition of carrier insertion by brefeldin A (5 {mu}M) was

  17. Cadmium inhibits mouse sperm motility through inducing tyrosine phosphorylation in a specific subset of proteins.

    PubMed

    Wang, Lirui; Li, Yuhua; Fu, Jieli; Zhen, Linqing; Zhao, Na; Yang, Qiangzhen; Li, Sisi; Li, Xinhong

    2016-08-01

    Cadmium (Cd) has been reported to impair male fertility, primarily by disrupting sperm motility, but the underlying molecular mechanism remains unclear. Here we investigated the effects of Cd on sperm motility, tyrosine phosphorylation, AMP-activated protein kinase (AMPK) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) activity, and ATP levels in vitro. Our results demonstrated that Cd inhibited sperm motility, GAPDH activity, AMPK activity and ATP production, and induced tyrosine phosphorylation of 55-57KDa proteins. Importantly, all the parameters affected by Cd were restored to normal levels when incubated with 10μM Cd in the presence of 30μM ethylene diamine tetraacetic acid (EDTA). Interestingly, changes of tyrosine phosphorylation levels of 55-57KDa proteins are completely contrary to that of other parameters. These results suggest that Cd-induced tyrosine phosphorylation of 55-57KDa proteins might act as an engine to block intracellular energy metabolism and thus decrease sperm motility. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. A tyrosine-phosphorylated 55-kilodalton motility-associated bovine sperm protein is regulated by cyclic adenosine 3',5'-monophosphates and calcium.

    PubMed

    Vijayaraghavan, S; Trautman, K D; Goueli, S A; Carr, D W

    1997-06-01

    Sperm motility is regulated by protein phosphorylation. We have recently shown that a serine/threonine phosphatase system is involved in motility regulation. Two of the components of the phosphatase system, GSK-3 and PP1gamma2, are regulated by tyrosine phosphorylation. During our investigation of sperm tyrosine-phosphorylated proteins we discovered a 55-kDa protein whose tyrosine phosphorylation correlates closely to the motility state of sperm. This protein is tyrosine phosphorylated to a much higher degree in motile caudal than in immotile caput epididymal sperm. Motility inhibition of caudal epididymal sperm by protein kinase A (PKA) anchoring inhibition or by ionomycin-induced calcium overload led to the virtual disappearance of tyrosine phosphorylation of the 55-kDa protein. Conversely, treatment of sperm with motility activators, isobutylmethylxanthine or 8-bromo-cAMP, resulted in increased tyrosine phosphorylation of the protein. The protein was present in the soluble 100 000 x g supernatants of sperm extracts and was heat labile. Chromatography through diethylaminoethyl-cellulose and Western blot analysis showed that this 55-kDa protein is not a regulatory subunit of PKA or alpha-tubulin. Our results represent the identification of a soluble protein whose tyrosine phosphorylation varies directly with motility and suggest that motility regulation may involve cross talk between PKA, calcium, and tyrosine kinase pathways.

  19. Self-Renewal of Single Mouse Hematopoietic Stem Cells Is Reduced by JAK2V617F Without Compromising Progenitor Cell Expansion

    PubMed Central

    Kent, David G.; Li, Juan; Tanna, Hinal; Fink, Juergen; Kirschner, Kristina; Pask, Dean C.; Silber, Yvonne; Hamilton, Tina L.; Sneade, Rachel; Simons, Benjamin D.; Green, Anthony R.

    2013-01-01

    Recent descriptions of significant heterogeneity in normal stem cells and cancers have altered our understanding of tumorigenesis, emphasizing the need to understand how single stem cells are subverted to cause tumors. Human myeloproliferative neoplasms (MPNs) are thought to reflect transformation of a hematopoietic stem cell (HSC) and the majority harbor an acquired V617F mutation in the JAK2 tyrosine kinase, making them a paradigm for studying the early stages of tumor establishment and progression. The consequences of activating tyrosine kinase mutations for stem and progenitor cell behavior are unclear. In this article, we identify a distinct cellular mechanism operative in stem cells. By using conditional knock-in mice, we show that the HSC defect resulting from expression of heterozygous human JAK2V617F is both quantitative (reduced HSC numbers) and qualitative (lineage biases and reduced self-renewal per HSC). The defect is intrinsic to individual HSCs and their progeny are skewed toward proliferation and differentiation as evidenced by single cell and transplantation assays. Aged JAK2V617F show a more pronounced defect as assessed by transplantation, but mice that transform reacquire competitive self-renewal ability. Quantitative analysis of HSC-derived clones was used to model the fate choices of normal and JAK2-mutant HSCs and indicates that JAK2V617F reduces self-renewal of individual HSCs but leaves progenitor expansion intact. This conclusion is supported by paired daughter cell analyses, which indicate that JAK2-mutant HSCs more often give rise to two differentiated daughter cells. Together these data suggest that acquisition of JAK2V617F alone is insufficient for clonal expansion and disease progression and causes eventual HSC exhaustion. Moreover, our results show that clonal expansion of progenitor cells provides a window in which collaborating mutations can accumulate to drive disease progression. Characterizing the mechanism(s) of JAK2V617F

  20. Protein tyrosine kinase and mitogen-activated protein kinase signalling pathways contribute to differences in heterophil-mediated innate immune responsiveness between two lines of broilers

    USDA-ARS?s Scientific Manuscript database

    Protein tyrosine phosphorylation mediates signal transduction of cellular processes, with protein tyrosine kinases (PTKs) regulating virtually all signaling events. The mitogen-activated protein kinase (MAPK) super-family consists of three conserved pathways that convert receptor activation into ce...

  1. Zap70 functions to maintain stemness of mouse embryonic stem cells by negatively regulating Jak1/Stat3/c-Myc signaling

    PubMed Central

    Cha, Young; Moon, Bo-Hyun; Lee, Mi-Ok; Ahn, Hee-Jin; Lee, Hye-Jin; Lee, Kyung-Ah; Fornace, Albert J.; Kim, Kwang-Soo; Cha, Hyuk-Jin; Park, Kyung-Soon

    2011-01-01

    Zeta-chain associated protein kinase-70 (Zap70), a Syk family tyrosine kinase, has been reported to be present exclusively in normal T cells, Natural Killer (NK) cells, and B cells, serving as a pivotal regulator of antigen-mediated receptor signaling and development. In this study, we report that Zap70 is expressed in undifferentiated mouse embryonic stem cells (mESCs) and may critically regulate self-renewal and pluripotency in mESCs. We found that Zap70 knocked-down mESCs (Zap70KD) show sustained self-renewal and defective differentiation. In addition, we present evidence that the sustained self-renewal in Zap70KD is associated with enhanced Jak/Stat3 signaling and c-Myc induction. These altered signaling appears to result from up-regulated LIFR and down-regulated SHP-1 phosphatase activity. Based on these results, we propose that, in undifferentiated mESCs, Zap70 plays important roles in modulating the balance between self-renewal capacity and pluripotent differentiation ability as a key regulator of the Jak/Stat3/c-Myc signaling pathway. PMID:20641039

  2. Concomitant presence of JAK2V617F mutation and BCR‑ABL translocation in two patients: A new entity or a variant of myeloproliferative neoplasms (Case report).

    PubMed

    Mousinho, Filipa; Azevedo, Ana P; Mendes, Tatiana; Santos, Paula Sousa E; Cerqueira, Rita; Matos, Sónia; Santos, Sónia; Ramos, Sância; Viana, João Faro; Lima, Fernando

    2018-05-17

    Myeloproliferative neoplasms (MPNs) are classically divided into BCR RhoGEF and GTPase activating protein (BCR)-ABL proto‑oncogene 1 non‑receptor tyrosine kinase (ABL) positive chronic myeloid leukemia (CML) and BCR‑ABL negative MPNs, including essential thrombocythemia (ET). One of the major diagnostic criteria for ET is the absence of the philadelphia chromosome, thus when present it is almost indicative of CML. ET and CML are considered to be mutually exclusive; however, there are rare situations in which patients with ET present positive BCR‑ABL without the features of CML. Although from the literature review, the frequency of JAK2V617F mutation and BCR‑ABL translocation coexistence in MPNs is low, it may be higher than expected. The current study reported cases of two patients with an initial diagnosis of ET in the presence of JAK2V617F mutation and BCR‑ABL translocation by fluorescent in situ hybridization. Both patients presented with a heterozygous BCR‑ABL translocation, and absence of p190 and p210 transcripts, seemingly a der(9) in the background of an ET JAK2V617F mutation.

  3. Regulation of apoptosis of interleukin 2-dependent mouse T-cell line by protein tyrosine phosphorylation and polyamines.

    PubMed

    Min, A; Hasuma, T; Yano, Y; Matsui-Yuasa, I; Otani, S

    1995-12-01

    We examined the effect of inhibitors of tyrosine kinase and tyrosine phosphatase on DNA fragmentation, protein tyrosine phosphorylation, and polyamine metabolism in the murine T-cell line CTLL-2. When cells were exposed to herbimycin A, a specific inhibitor of tyrosine kinase (Uehara et al., 1989, Biochem. Biophys. Res. Commun., 163:803-809), in the presence of interleukin 2 (IL-2), DNA was degraded into oligonucleosomal fragments in a dose-dependent fashion. Genistein, another inhibitor of tyrosine kinase (Akiyama et al., 1987, J. Biol. Chem., 262:5592-5596), had similar effects. Exposure of CTLL-2 cells to vanadate, a tyrosine phosphatase inhibitor, blocked with the DNA fragmentation induced by herbimycin A. Tyrosine phosphorylation of 55 Kd protein was inhibited by herbimycin A, and the inhibition was reduced by vanadate. Ornithine decarboxylase (ODC) activity decreased rapidly after herbimycin A was added to CTLL-2 cell cultures, while vanadate increased ODC activity. The exogenous addition of putrescine or spermine, but not that of spermidine, attenuated herbimycin A-induced DNA fragmentation. These findings suggest that phosphorylation of tyrosine residues of 55 Kd protein prevents DNA fragmentation and that polyamines are involved in regulation of apoptosis.

  4. The Importance of Being Tyrosine: Lessons in Molecular Recognition from Minimalist Synthetic Binding Proteins

    PubMed Central

    Koide, Shohei; Sidhu, Sachdev S.

    2010-01-01

    Summary Combinatorial libraries built with severely restricted chemical diversity have yielded highly functional synthetic binding proteins. Structural analyses of these minimalist binding sites have revealed the dominant role of large tyrosine residues for mediating molecular contacts and of small serine/glycine residues for providing space and flexibility. The concept of using limited residue types to construct optimized binding proteins mirrors findings in the field of small molecule drug development, where it has been proposed that most drugs are built from a limited set of side chains presented by diverse frameworks. The physicochemical properties of tyrosine make it the amino acid that is most effective for mediating molecular recognition, and protein engineers have taken advantage of these characteristics to build tyrosine-rich protein binding sites that outperform natural proteins in terms of affinity and specificity. Knowledge from preceding studies can be used to improve current designs, and thus, synthetic protein libraries will continue to evolve and improve. In the near future, it seems likely that synthetic binding proteins will supersede natural antibodies for most purposes, and moreover, synthetic proteins will enable many new applications beyond the scope of natural proteins. PMID:19298050

  5. Inactivation of JAK2/STAT3 Signaling Axis and Downregulation of M1 mAChR Cause Cognitive Impairment in klotho Mutant Mice, a Genetic Model of Aging

    PubMed Central

    Park, Seok-Joo; Shin, Eun-Joo; Min, Sun Seek; An, Jihua; Li, Zhengyi; Hee Chung, Yoon; Hoon Jeong, Ji; Bach, Jae-Hyung; Nah, Seung-Yeol; Kim, Won-Ki; Jang, Choon-Gon; Kim, Yong-Sun; Nabeshima, Yo-ichi; Nabeshima, Toshitaka; Kim, Hyoung-Chun

    2013-01-01

    We previously reported cognitive dysfunction in klotho mutant mice. In the present study, we further examined novel mechanisms involved in cognitive impairment in these mice. Significantly decreased janus kinase 2 (JAK2) and signal transducer and activator of transcription3 (STAT3) phosphorylation were observed in the hippocampus of klotho mutant mice. A selective decrease in protein expression and binding density of the M1 muscarinic cholinergic receptor (M1 mAChR) was observed in these mice. Cholinergic parameters (ie, acetylcholine (ACh), choline acetyltransferase (ChAT), and acetylcholinesterase (AChE)) and NMDAR-dependent long-term potentiation (LTP) were significantly impaired in klotho mutant mice. McN-A-343 (McN), an M1 mAChR agonist, significantly attenuated these impairments. AG490 (AG), a JAK2 inhibitor, counteracted the attenuating effects of McN, although AG did not significantly alter the McN-induced effect on AChE. Furthermore, AG significantly inhibited the attenuating effects of McN on decreased NMDAR-dependent LTP, protein kinase C βII, p-ERK, p-CREB, BDNF, and p-JAK2/p-STAT3-expression in klotho mutant mice. In addition, k252a, a BDNF receptor tyrosine kinase B (TrkB) inhibitor, significantly counteracted McN effects on decreased ChAT, ACh, and M1 mAChR and p-JAK2/p-STAT3 expression. McN-induced effects on cognitive impairment in klotho mutant mice were consistently counteracted by either AG or k252a. Our results suggest that inactivation of the JAK2/STAT3 signaling axis and M1 mAChR downregulation play a critical role in cognitive impairment observed in klotho mutant mice. PMID:23389690

  6. Multifaceted Intervention by the Hsp90 Inhibitor Ganetespib (STA-9090) in Cancer Cells with Activated JAK/STAT Signaling

    PubMed Central

    Proia, David A.; Foley, Kevin P.; Korbut, Tim; Sang, Jim; Smith, Don; Bates, Richard C.; Liu, Yuan; Rosenberg, Alex F.; Zhou, Dan; Koya, Keizo; Barsoum, James; Blackman, Ronald K.

    2011-01-01

    There is accumulating evidence that dysregulated JAK signaling occurs in a wide variety of cancer types. In particular, mutations in JAK2 can result in the constitutive activation of STAT transcription factors and lead to oncogenic growth. JAK kinases are established Hsp90 client proteins and here we show that the novel small molecule Hsp90 inhibitor ganetespib (formerly STA-9090) exhibits potent in vitro and in vivo activity in a range of solid and hematological tumor cells that are dependent on JAK2 activity for growth and survival. Of note, ganetespib treatment results in sustained depletion of JAK2, including the constitutively active JAK2V617F mutant, with subsequent loss of STAT activity and reduced STAT-target gene expression. In contrast, treatment with the pan-JAK inhibitor P6 results in only transient effects on these processes. Further differentiating these modes of intervention, RNA and protein expression studies show that ganetespib additionally modulates cell cycle regulatory proteins, while P6 does not. The concomitant impact of ganetespib on both cell growth and cell division signaling translates to potent antitumor efficacy in mouse models of xenografts and disseminated JAK/STAT-driven leukemia. Overall, our findings support Hsp90 inhibition as a novel therapeutic approach for combating diseases dependent on JAK/STAT signaling, with the multimodal action of ganetespib demonstrating advantages over JAK-specific inhibitors. PMID:21533169

  7. Characterization of B61, the ligand for the Eck receptor protein-tyrosine kinase.

    PubMed

    Shao, H; Pandey, A; O'Shea, K S; Seldin, M; Dixit, V M

    1995-03-10

    B61 was originally described as a novel secreted tumor necrosis factor-alpha-inducible gene product in endothelial cells (Holzman, L. B., Marks, R. M., and Dixit, V. M. (1990) Mol. Cell. Biol. 10, 5830-5838). It was recently discovered that soluble recombinant B61 could serve as a ligand for the Eck receptor protein-tyrosine kinase, a member of the Eph/Eck subfamily of receptor protein-tyrosine kinases (Bartley, T.D., Hunt, R. W., Welcher, A. A., Boyle, W. J., Parker, V. P., Lindberg, R. A., Lu, H. S., Colombero, A. M., Elliott, R. L., Guthrie, R. A., Holst, P. L., Skrine, J. D., Toso, R. J., Zhang, M., Fernandez, E., Trail, G., Yarnum, B., Yarden, Y., Hunter, T., and Fox, G. M. (1994) Nature 368, 558-560). We now show that B61 can also exist as a cell surface glycosylphosphatidyl-inositol-linked protein that is capable of activating the Eck receptor protein-tyrosine kinase, the first such report of a receptor protein-tyrosine kinase ligand that is glycosylphosphatidylinositol-linked. In addition, the expression patterns of B61 and Eck during mouse ontogeny were determined by in situ hybridization. Both were found to be highly expressed in the developing lung and gut, while Eck was preferentially expressed in the thymus. Finally, the gene for B61 was localized to a specific position on mouse chromosome 3 by interspecific back-cross analysis.

  8. SH2/SH3 adaptor proteins can link tyrosine kinases to a Ste20-related protein kinase, HPK1.

    PubMed

    Anafi, M; Kiefer, F; Gish, G D; Mbamalu, G; Iscove, N N; Pawson, T

    1997-10-31

    Ste20-related protein kinases have been implicated as regulating a range of cellular responses, including stress-activated protein kinase pathways and the control of cytoskeletal architecture. An important issue involves the identities of the upstream signals and regulators that might control the biological functions of mammalian Ste20-related protein kinases. HPK1 is a protein-serine/threonine kinase that possesses a Ste20-like kinase domain, and in transfected cells activates a protein kinase pathway leading to the stress-activated protein kinase SAPK/JNK. Here we have investigated candidate upstream regulators that might interact with HPK1. HPK1 possesses an N-terminal catalytic domain and an extended C-terminal tail with four proline-rich motifs. The SH3 domains of Grb2 bound in vitro to specific proline-rich motifs in the HPK1 tail and functioned synergistically to direct the stable binding of Grb2 to HPK1 in transfected Cos1 cells. Epidermal growth factor (EGF) stimulation did not affect the binding of Grb2 to HPK1 but induced recruitment of the Grb2.HPK1 complex to the autophosphorylated EGF receptor and to the Shc docking protein. Several activated receptor and cytoplasmic tyrosine kinases, including the EGF receptor, stimulated the tyrosine phosphorylation of the HPK1 serine/threonine kinase. These results suggest that HPK1, a mammalian Ste20-related protein-serine/threonine kinase, can potentially associate with protein-tyrosine kinases through interactions mediated by SH2/SH3 adaptors such as Grb2. Such interaction may provide a possible mechanism for cross-talk between distinct biochemical pathways following the activation of tyrosine kinases.

  9. Repurposed JAK1/JAK2 Inhibitor Reverses Established Autoimmune Insulitis in NOD Mice.

    PubMed

    Trivedi, Prerak M; Graham, Kate L; Scott, Nicholas A; Jenkins, Misty R; Majaw, Suktilang; Sutherland, Robyn M; Fynch, Stacey; Lew, Andrew M; Burns, Christopher J; Krishnamurthy, Balasubramanian; Brodnicki, Thomas C; Mannering, Stuart I; Kay, Thomas W; Thomas, Helen E

    2017-06-01

    Recent advances in immunotherapeutics have not yet changed the routine management of autoimmune type 1 diabetes. There is an opportunity to repurpose therapeutics used to treat other diseases to treat type 1 diabetes, especially when there is evidence for overlapping mechanisms. Janus kinase (JAK) 1/JAK2 inhibitors are in development or clinical use for indications including rheumatoid arthritis. There is good evidence for activation of the JAK1/JAK2 and signal transducer and activator of transcription (STAT) 1 pathway in human type 1 diabetes and in mouse models, especially in β-cells. We tested the hypothesis that using these drugs to block the JAK-STAT pathway would prevent autoimmune diabetes. The JAK1/JAK2 inhibitor AZD1480 blocked the effect of cytokines on mouse and human β-cells by inhibiting MHC class I upregulation. This prevented the direct interaction between CD8 + T cells and β-cells, and reduced immune cell infiltration into islets. NOD mice treated with AZD1480 were protected from autoimmune diabetes, and diabetes was reversed in newly diagnosed NOD mice. This provides mechanistic groundwork for repurposing clinically approved JAK1/JAK2 inhibitors for type 1 diabetes. © 2017 by the American Diabetes Association.

  10. Improved targeting of JAK2 leads to increased therapeutic efficacy in myeloproliferative neoplasms

    PubMed Central

    Bhagwat, Neha; Koppikar, Priya; Keller, Matthew; Marubayashi, Sachie; Shank, Kaitlyn; Rampal, Raajit; Qi, Jun; Kleppe, Maria; Patel, Hardik J.; Shah, Smit K.; Taldone, Tony; Bradner, James E.; Chiosis, Gabriela

    2014-01-01

    The discovery of JAK2/MPL mutations in patients with myeloproliferative neoplasms (MPN) led to clinical development of Janus kinase (JAK) inhibitors for treatment of MPN. These inhibitors improve constitutional symptoms and splenomegaly but do not significantly reduce mutant allele burden in patients. We recently showed that chronic exposure to JAK inhibitors results in inhibitor persistence via JAK2 transactivation and persistent JAK–signal transducer and activator of transcription signaling. We performed genetic and pharmacologic studies to determine whether improved JAK2 inhibition would show increased efficacy in MPN models and primary samples. Jak2 deletion in vivo led to profound reduction in disease burden not seen with JAK inhibitors, and deletion of Jak2 following chronic ruxolitinib therapy markedly reduced mutant allele burden. This demonstrates that JAK2 remains an essential target in MPN cells that survive in the setting of chronic JAK inhibition. Combination therapy with the heat shock protein 90 (HSP90) inhibitor PU-H71 and ruxolitinib reduced total and phospho-JAK2 and achieved more potent inhibition of downstream signaling than ruxolitinib monotherapy. Combination treatment improved blood counts, spleen weights, and reduced bone marrow fibrosis compared with ruxolitinib alone. These data suggest alternate approaches that increase JAK2 targeting, including combination JAK/HSP90 inhibitor therapy, are warranted in the clinical setting. PMID:24470592

  11. Tyrosine kinome sequencing of pediatric acute lymphoblastic leukemia: a report from the Children's Oncology Group TARGET Project | Office of Cancer Genomics

    Cancer.gov

    TARGET researchers sequenced the tyrosine kinome and downstream signaling genes in 45 high-risk pediatric ALL cases with activated kinase signaling, including Ph-like ALL, to establish the incidence of tyrosine kinase mutations in this cohort. The study confirmed previously identified somatic mutations in JAK and FLT3, but did not find novel alterations in any additional tyrosine kinases or downstream genes. The mechanism of kinase signaling activation in this high-risk subgroup of pediatric ALL remains largely unknown.

  12. Mass Spectral Detection of Diethoxyphospho-Tyrosine Adducts on Proteins from HEK293 Cells Using Monoclonal Antibody depY for Enrichment

    PubMed Central

    2018-01-01

    Chronic illness from exposure to organophosphorus toxicants is hypothesized to involve modification of unknown proteins. Tyrosine in proteins that have no active site serine readily reacts with organophosphorus toxicants. We developed a monoclonal antibody, depY, that specifically recognizes diethoxyphospho-tyrosine in proteins and peptides, independent of the surrounding amino acid sequence. Our goal in the current study was to identify diethoxyphosphorylated proteins in human HEK293 cell lysate treated with chlorpyrifos oxon. Cell lysates treated with chlorpyrifos oxon were recognized by depY antibody in ELISA and capillary electrophoresis based Western blot. Tryptic peptides were analyzed by liquid chromatography tandem mass spectrometry. Liquid chromatography tandem mass spectrometry identified 116 diethoxyphospho-tyrosine peptides from 73 proteins in immunopurified samples, but found only 15 diethoxyphospho-tyrosine peptides from 12 proteins when the same sample was not immunopurified on depY. The most abundant proteins in the cell lysate, histone H4, heat shock 70 kDa protein 1A/1B, heat shock protein HSP 90 β, and α-enolase, were represented by several diethoxyphospho-tyrosine peptides. It was concluded that use of immobilized depY improved the number of diethoxyphospho-tyrosine peptides identified in a complex mixture. The mass spectrometry results confirmed the specificity of depY for diethoxyphospho-tyrosine peptides independent of the context of the modified tyrosine, which means depY could be used to analyze modified proteins in any species. Use of the depY antibody could lead to an understanding of chronic illness from organophosphorus pesticide exposure. PMID:29775289

  13. Deficiency of PTP1B Attenuates Hypothalamic Inflammation via Activation of the JAK2-STAT3 Pathway in Microglia.

    PubMed

    Tsunekawa, Taku; Banno, Ryoichi; Mizoguchi, Akira; Sugiyama, Mariko; Tominaga, Takashi; Onoue, Takeshi; Hagiwara, Daisuke; Ito, Yoshihiro; Iwama, Shintaro; Goto, Motomitsu; Suga, Hidetaka; Sugimura, Yoshihisa; Arima, Hiroshi

    2017-02-01

    Protein tyrosine phosphatase 1B (PTP1B) regulates leptin signaling in hypothalamic neurons via the JAK2-STAT3 pathway. PTP1B has also been implicated in the regulation of inflammation in the periphery. However, the role of PTP1B in hypothalamic inflammation, which is induced by a high-fat diet (HFD), remains to be elucidated. Here, we showed that STAT3 phosphorylation (p-STAT3) was increased in microglia in the hypothalamic arcuate nucleus of PTP1B knock-out mice (KO) on a HFD, accompanied by decreased Tnf and increased Il10 mRNA expression in the hypothalamus compared to wild-type mice (WT). In hypothalamic organotypic cultures, incubation with TNFα led to increased p-STAT3, accompanied by decreased Tnf and increased Il10 mRNA expression, in KO compared to WT. Incubation with p-STAT3 inhibitors or microglial depletion eliminated the differences in inflammation between genotypes. These data indicate an important role of JAK2-STAT3 signaling negatively regulated by PTP1B in microglia, which attenuates hypothalamic inflammation under HFD conditions. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  14. JAK-STAT signalling and the atrial fibrillation promoting fibrotic substrate

    PubMed Central

    Chen, Yu; Surinkaew, Sirirat; Naud, Patrice; Qi, Xiao-Yan; Gillis, Marc-Antoine; Shi, Yan-Fen; Tardif, Jean-Claude; Dobrev, Dobromir; Nattel, Stanley

    2017-01-01

    Aims Left-atrial (LA) fibrosis is an important feature of many atrial fibrillation (AF) substrates. The JAK-STAT system contributes to cardiac remodelling, but its role in AF is unknown. Here we investigated JAK-STAT changes in an AF-model and their potential contributions to LA-fibrosis. Methods and results LA-remodelling was studied in dogs with heart failure (HF) induced by ventricular tachypacing (VTP, 240 bpm), and in mice with left-ventricular (LV) dysfunction due to myocardial infarction (MI). The selective STAT-3 inhibitor S3I-201 was administered to fibroblasts in vitro or mice in vivo (10 mg/kg/d, osmotic mini-pump). HF-dogs developed LA-selective fibrosis and AF-susceptibility at 1-week VTP. The mRNA-expression of platelet-derived growth factor (PDGF, a JAK-STAT activator) isoforms A, C and D, as well as JAK2, increased in LA fibroblasts from 1-week VTP. HF upregulated protein-expression of PDGF-receptor-β and phosphorylated (activated) signal transducer and activator of transcription 3 (STAT3) in LA. PDGF-AB stimulation of LA fibroblasts increased PDGFR-α, STAT3 and phosphorylated-STAT3 expression, as well as collagen-1 and fibronectin-1 protein secretion (by 1.6- to 20-fold), with smaller changes in LV fibroblasts. Phosphorylated-STAT3 and collagen upregulation were suppressed by the JAK2 inhibitor AG-490, PDGF receptor inhibitor AG1296 and STAT3-inhibitor SI3-201. In vivo S3I-201 treatment of MI-mice attenuated LA-fibrosis, LA-dilation and P-wave duration changes versus vehicle-control. Conclusions HF activates the LA JAK-STAT system and enhances PDGF-signalling. JAK-STAT inhibition reduces the profibrotic effects of PDGF stimulation on canine fibroblasts in vitro while attenuating in vivo LA-fibrosis and remodelling in post-MI mice, suggesting that the JAK/STAT pathway contributes to LA-fibrogenesis and might be a potential target for LA-fibrosis prevention. PMID:28158495

  15. Protein tyrosine phosphatase receptor R and Z1 expression as independent prognostic indicators in oral squamous cell carcinoma.

    PubMed

    Duś-Szachniewicz, Kamila; Woźniak, Marta; Nelke, Kamil; Gamian, Elżbieta; Gerber, Hanna; Ziółkowski, Piotr

    2015-12-01

    The actions of tyrosine phosphorylation and dephosphorylation are controlled by tyrosine kinases and phosphatases. Although substantial previous data have revealed the role of several protein tyrosine phosphatases (PTPs) in various cancers, the function of protein tyrosine phosphatase receptor R (PTPRR) and protein tyrosine phosphatase, receptor-type, Z polypeptide 1 (PTPRZ1) proteins in oral cavity squamous cell carcinoma (SCC) has not been studied to date. The PTPRR and PTPRZ1 immunoreactivity in 67 formalin-fixed and paraffin-embedded oral cancer tissues at different stages were analyzed with the technique of immunohistochemistry (IHC). The presence of PTPRR in cancerous tissue was confirmed by Western blotting. The occurrence of PTPRR and PTPRZ1 proteins in the cancer specimens was more frequent in lower grade tumors. In addition, the association between the immunoreactivity of both examined proteins and improved patients survival was detected. Moreover, the PTPRR expression was found to be related to the absence of synchronous lymph node involvement. The above results indicate that the PTPRR and PTPRZ1 protein expression should be monitored in oral cancer for patients' prognostic stratification. © 2015 Wiley Periodicals, Inc.

  16. Investigation of JAKs/STAT‐3 in lipopolysaccharide‐induced intestinal epithelial cells

    PubMed Central

    Fu, L.; Wei, L.‐W.; Zhao, M.‐D.; Zhu, J.‐L.; Chen, S.‐Y.; Jia, X.‐B.

    2016-01-01

    Summary Janus‐activated kinase (JAKs)‐signal transducer and activator of transcription 3 (STAT‐3) signalling play critical roles in immunoregulation and immunopathology, which involve inflammatory responses and enteritis. JAK phosphorylates STAT‐3 in response to stimulation by cytokines or growth factors, and then activates or represses the gene expression. STAT‐3 is activated persistently in cancer cells and contributes to the malignant progression of various types of cancer and inflammation. To elucidate the different roles of JAKs in the activation of STAT‐3, the lipopolysaccharide‐induced primary intestinal epithelial cell (IEC) acute inflammatory model was established. Small interference RNAs (siRNAs) were then employed to attenuate the expression levels of JAKs. Real‐time quantitative reverse transcription–polymerase chain reaction (PCR) (qRT–PCR) revealed that JAK mRNA levels were reduced efficiently by JAK‐specific siRNAs. Under the IEC inflammatory model transfected with si‐JAK, which equates to effective silencing, qRT–PCR and Western blot assays, suggested that knockdowns of JAK attenuated the JAK‐induced down‐regulation of STAT‐3 at the mRNA or protein levels. In particular, JAK1 played a key role, which was consistent with the RNA‐Seq results. Subsequently, the expression levels of proinflammatory cytokines interleukin (IL)‐1β and tumour necrosis factor (TNF)‐α were down‐regulated in the IEC inflammatory model transfected with si‐JAK1. JAK1 appears as a direct activator for STAT‐3, whereas treatments targeting JAK1 repressed STAT‐3 sufficiently pathways in the IEC inflammatory model. Therefore, the control of JAK1 using siRNAs has the potential to be an effective strategy against enteritis. PMID:27357529

  17. Protein tyrosine phosphatase SAP-1 protects against colitis through regulation of CEACAM20 in the intestinal epithelium.

    PubMed

    Murata, Yoji; Kotani, Takenori; Supriatna, Yana; Kitamura, Yasuaki; Imada, Shinya; Kawahara, Kohichi; Nishio, Miki; Daniwijaya, Edwin Widyanto; Sadakata, Hisanobu; Kusakari, Shinya; Mori, Munemasa; Kanazawa, Yoshitake; Saito, Yasuyuki; Okawa, Katsuya; Takeda-Morishita, Mariko; Okazawa, Hideki; Ohnishi, Hiroshi; Azuma, Takeshi; Suzuki, Akira; Matozaki, Takashi

    2015-08-04

    Intestinal epithelial cells contribute to regulation of intestinal immunity in mammals, but the detailed molecular mechanisms of such regulation have remained largely unknown. Stomach-cancer-associated protein tyrosine phosphatase 1 (SAP-1, also known as PTPRH) is a receptor-type protein tyrosine phosphatase that is localized specifically at microvilli of the brush border in gastrointestinal epithelial cells. Here we show that SAP-1 ablation in interleukin (IL)-10-deficient mice, a model of inflammatory bowel disease, resulted in a marked increase in the severity of colitis in association with up-regulation of mRNAs for various cytokines and chemokines in the colon. Tyrosine phosphorylation of carcinoembryonic antigen-related cell adhesion molecule (CEACAM) 20, an intestinal microvillus-specific transmembrane protein of the Ig superfamily, was greatly increased in the intestinal epithelium of the SAP-1-deficient animals, suggesting that this protein is a substrate for SAP-1. Tyrosine phosphorylation of CEACAM20 by the protein tyrosine kinase c-Src and the consequent association of CEACAM20 with spleen tyrosine kinase (Syk) promoted the production of IL-8 in cultured cells through the activation of nuclear factor-κB (NF-κB). In addition, SAP-1 and CEACAM20 were found to form a complex through interaction of their ectodomains. SAP-1 and CEACAM20 thus constitute a regulatory system through which the intestinal epithelium contributes to intestinal immunity.

  18. p130Cas-associated Protein (p140Cap) as a New Tyrosine-phosphorylated Protein Involved in Cell Spreading

    PubMed Central

    Di Stefano, Paola; Cabodi, Sara; Erba, Elisabetta Boeri; Margaria, Valentina; Bergatto, Elena; Giuffrida, Maria Gabriella; Silengo, Lorenzo; Tarone, Guido; Turco, Emilia; Defilippi, Paola

    2004-01-01

    Integrin-mediated cell adhesion stimulates a cascade of signaling pathways that control cell proliferation, migration, and survival, mostly through tyrosine phosphorylation of signaling molecules. p130Cas, originally identified as a major substrate of v-Src, is a scaffold molecule that interacts with several proteins and mediates multiple cellular events after cell adhesion and mitogen treatment. Here, we describe a novel p130Cas-associated protein named p140Cap (Cas-associated protein) as a new tyrosine phosphorylated molecule involved in integrin- and epidermal growth factor (EGF)-dependent signaling. By affinity chromatography of human ECV304 cell extracts on a MBP-p130Cas column followed by mass spectrometry matrix-assisted laser desorption ionization/time of flight analysis, we identified p140Cap as a protein migrating at 140 kDa. We detected its expression in human, mouse, and rat cells and in different mouse tissues. Endogenous and transfected p140Cap proteins coimmunoprecipitate with p130Cas in ECV304 and in human embryonic kidney 293 cells and associate with p130Cas through their carboxy-terminal region. By immunofluorescence analysis, we demonstrated that in ECV304 cells plated on fibronectin, the endogenous p140Cap colocalizes with p130Cas in the perinuclear region as well as in lamellipodia. In addition p140Cap codistributes with cortical actin and actin stress fibers but not with focal adhesions. We also show that p140Cap is tyrosine phosphorylated within 15 min of cell adhesion to integrin ligands. p140Cap tyrosine phosphorylation is also induced in response to EGF through an EGF receptor dependent-mechanism. Interestingly expression of p140Cap in NIH3T3 and in ECV304 cells delays the onset of cell spreading in the early phases of cell adhesion to fibronectin. Therefore, p140Cap is a novel protein associated with p130Cas and actin cytoskeletal structures. Its tyrosine phosphorylation by integrin-mediated adhesion and EGF stimulation and its

  19. Results of a phase 2 study of pacritinib (SB1518), a JAK2/JAK2(V617F) inhibitor, in patients with myelofibrosis

    PubMed Central

    Seymour, John F.; Roberts, Andrew W.; Wadleigh, Martha; To, L. Bik; Scherber, Robyn; Turba, Elyce; Dorr, Andrew; Zhu, Joy; Wang, Lixia; Granston, Tanya; Campbell, Mary S.; Mesa, Ruben A.

    2015-01-01

    Pacritinib (SB1518) is a Janus kinase 2 (JAK2), JAK2(V617F), and Fms-like tyrosine kinase 3 inhibitor that does not inhibit JAK1. It demonstrated a favorable safety profile with promising efficacy in phase 1 studies in patients with primary and secondary myelofibrosis (MF). This multicenter phase 2 study further characterized the safety and efficacy of pacritinib in the treatment of patients with MF. Eligible patients had clinical splenomegaly poorly controlled with standard therapies or were newly diagnosed with intermediate- or high-risk Lille score. Patients with any degree of cytopenia were eligible. Thirty-five patients were enrolled. At entry, 40% had hemoglobin <10 g/dL and 43% had platelets <100 000× 109/L. Up to week 24, 8 of 26 evaluable patients (31%) achieved a ≥35% decrease in spleen volume determined by magnetic resonance imaging and 14 of 33 (42%) attained a ≥50% reduction in spleen size by physical examination. Median MF symptom improvement was ≥50% for all symptoms except fatigue. Grade 1 or 2 diarrhea (69%) and nausea (49%) were the most common treatment-emergent adverse events. The study drug was discontinued in 9 patients (26%) due to adverse events (4 severe). Pacritinib is an active agent in patients with MF, offering a potential treatment option for patients with preexisting anemia and thrombocytopenia. This trial was registered at www.clinicaltrials.gov as #NCT00745550. PMID:25762180

  20. Immune function of a Rab-related protein by modulating the JAK-STAT signaling pathway in the silkworm, Bombyx mori.

    PubMed

    Chen, Chen; Eldein, Salah; Zhou, Xiaosan; Sun, Yu; Gao, Jin; Sun, Yuxuan; Liu, Chaoliang; Wang, Lei

    2018-01-01

    The Rab-family GTPases mainly regulate intracellular vesicle transport, and play important roles in the innate immune response in invertebrates. However, the function and signal transduction of Rab proteins in immune reactions remain unclear in silkworms. In this study, we analyzed a Rab-related protein of silkworm Bombyx mori (BmRABRP) by raising antibodies against its bacterially expressed recombinant form. Tissue distribution analysis showed that BmRABRP mRNA and protein were high expressed in the Malpighian tubule and fat body, respectively. However, among the different stages, only the fourth instar larvae and pupae showed significant BmRABRP levels. After challenge with four pathogenic microorganisms (Escherichia coli, BmNPV, Beauveria bassiana, Micrococcus luteus), the expression of BmRABRP mRNA in the fat body was significantly upregulated. In contrast, the BmRABRP protein was significantly upregulated after infection with BmNPV, while it was downregulated by E. coli, B. bassiana, and M. luteus. A specific dsRNA was used to explore the immune function and relationship between BmRABRP and the JAK-STAT signaling pathway. After BmRABRP gene interference, significant reduction in the number of nodules and increased mortality suggested that BmRABRP plays an important role in silkworm's response to bacterial challenge. In addition, four key genes (BmHOP, BmSTAT, BmSOCS2, and BmSOCS6) of the JAK-STAT signaling pathway showed significantly altered expressions after BmRABRP silencing. BmHOP and BmSOCS6 expressions were significantly decreased, while BmSTAT and BmSOCS2 were significantly upregulated. Our results suggested that BmRABRP is involved in the innate immune response against pathogenic microorganisms through the JAK-STAT signaling pathway in silkworm. © 2017 Wiley Periodicals, Inc.

  1. SH2 domain-containing protein tyrosine phosphatase 2 and focal adhesion kinase protein interactions regulate pulmonary endothelium barrier function.

    PubMed

    Chichger, Havovi; Braza, Julie; Duong, Huetran; Harrington, Elizabeth O

    2015-06-01

    Enhanced protein tyrosine phosphorylation is associated with changes in vascular permeability through formation and dissolution of adherens junctions and regulation of stress fiber formation. Inhibition of the protein tyrosine phosphorylase SH2 domain-containing protein tyrosine phosphatase 2 (SHP2) increases tyrosine phosphorylation of vascular endothelial cadherin and β-catenin, resulting in disruption of the endothelial monolayer and edema formation in the pulmonary endothelium. Vascular permeability is a hallmark of acute lung injury (ALI); thus, enhanced SHP2 activity offers potential therapeutic value for the pulmonary vasculature in diseases such as ALI, but this has not been characterized. To assess whether SHP2 activity mediates protection against edema in the endothelium, we assessed the effect of molecular activation of SHP2 on lung endothelial barrier function in response to the edemagenic agents LPS and thrombin. Both LPS and thrombin reduced SHP2 activity, correlated with decreased focal adhesion kinase (FAK) phosphorylation (Y(397) and Y(925)) and diminished SHP2 protein-protein associations with FAK. Overexpression of constitutively active SHP2 (SHP2(D61A)) enhanced baseline endothelial monolayer resistance and completely blocked LPS- and thrombin-induced permeability in vitro and significantly blunted pulmonary edema formation induced by either endotoxin (LPS) or Pseudomonas aeruginosa exposure in vivo. Chemical inhibition of FAK decreased SHP2 protein-protein interactions with FAK concomitant with increased permeability; however, overexpression of SHP2(D61A) rescued the endothelium and maintained FAK activity and FAK-SHP2 protein interactions. Our data suggest that SHP2 activation offers the pulmonary endothelium protection against barrier permeability mediators downstream of the FAK signaling pathway. We postulate that further studies into the promotion of SHP2 activation in the pulmonary endothelium may offer a therapeutic approach for patients

  2. JAK-STAT and G-protein-coupled receptor signaling pathways are frequently altered in epitheliotropic intestinal T-cell lymphoma

    PubMed Central

    Nairismägi, M-L; Tan, J; Lim, J Q; Nagarajan, S; Ng, C C Y; Rajasegaran, V; Huang, D; Lim, W K; Laurensia, Y; Wijaya, G C; Li, Z M; Cutcutache, I; Pang, W L; Thangaraju, S; Ha, J; Khoo, L P; Chin, S T; Dey, S; Poore, G; Tan, L H C; Koh, H K M; Sabai, K; Rao, H-L; Chuah, K L; Ho, Y-H; Ng, S-B; Chuang, S-S; Zhang, F; Liu, Y-H; Pongpruttipan, T; Ko, Y H; Cheah, P-L; Karim, N; Chng, W-J; Tang, T; Tao, M; Tay, K; Farid, M; Quek, R; Rozen, S G; Tan, P; Teh, B T; Lim, S T; Tan, S-Y; Ong, C K

    2016-01-01

    Epitheliotropic intestinal T-cell lymphoma (EITL, also known as type II enteropathy-associated T-cell lymphoma) is an aggressive intestinal disease with poor prognosis and its molecular alterations have not been comprehensively characterized. We aimed to identify actionable easy-to-screen alterations that would allow better diagnostics and/or treatment of this deadly disease. By performing whole-exome sequencing of four EITL tumor-normal pairs, followed by amplicon deep sequencing of 42 tumor samples, frequent alterations of the JAK-STAT and G-protein-coupled receptor (GPCR) signaling pathways were discovered in a large portion of samples. Specifically, STAT5B was mutated in a remarkable 63% of cases, JAK3 in 35% and GNAI2 in 24%, with the majority occurring at known activating hotspots in key functional domains. Moreover, STAT5B locus carried copy-neutral loss of heterozygosity resulting in the duplication of the mutant copy, suggesting the importance of mutant STAT5B dosage for the development of EITL. Dysregulation of the JAK-STAT and GPCR pathways was also supported by gene expression profiling and further verified in patient tumor samples. In vitro overexpression of GNAI2 mutants led to the upregulation of pERK1/2, a member of MEK-ERK pathway. Notably, inhibitors of both JAK-STAT and MEK-ERK pathways effectively reduced viability of patient-derived primary EITL cells, indicating potential therapeutic strategies for this neoplasm with no effective treatment currently available. PMID:26854024

  3. JAK-STAT and G-protein-coupled receptor signaling pathways are frequently altered in epitheliotropic intestinal T-cell lymphoma.

    PubMed

    Nairismägi, M-L; Tan, J; Lim, J Q; Nagarajan, S; Ng, C C Y; Rajasegaran, V; Huang, D; Lim, W K; Laurensia, Y; Wijaya, G C; Li, Z M; Cutcutache, I; Pang, W L; Thangaraju, S; Ha, J; Khoo, L P; Chin, S T; Dey, S; Poore, G; Tan, L H C; Koh, H K M; Sabai, K; Rao, H-L; Chuah, K L; Ho, Y-H; Ng, S-B; Chuang, S-S; Zhang, F; Liu, Y-H; Pongpruttipan, T; Ko, Y H; Cheah, P-L; Karim, N; Chng, W-J; Tang, T; Tao, M; Tay, K; Farid, M; Quek, R; Rozen, S G; Tan, P; Teh, B T; Lim, S T; Tan, S-Y; Ong, C K

    2016-06-01

    Epitheliotropic intestinal T-cell lymphoma (EITL, also known as type II enteropathy-associated T-cell lymphoma) is an aggressive intestinal disease with poor prognosis and its molecular alterations have not been comprehensively characterized. We aimed to identify actionable easy-to-screen alterations that would allow better diagnostics and/or treatment of this deadly disease. By performing whole-exome sequencing of four EITL tumor-normal pairs, followed by amplicon deep sequencing of 42 tumor samples, frequent alterations of the JAK-STAT and G-protein-coupled receptor (GPCR) signaling pathways were discovered in a large portion of samples. Specifically, STAT5B was mutated in a remarkable 63% of cases, JAK3 in 35% and GNAI2 in 24%, with the majority occurring at known activating hotspots in key functional domains. Moreover, STAT5B locus carried copy-neutral loss of heterozygosity resulting in the duplication of the mutant copy, suggesting the importance of mutant STAT5B dosage for the development of EITL. Dysregulation of the JAK-STAT and GPCR pathways was also supported by gene expression profiling and further verified in patient tumor samples. In vitro overexpression of GNAI2 mutants led to the upregulation of pERK1/2, a member of MEK-ERK pathway. Notably, inhibitors of both JAK-STAT and MEK-ERK pathways effectively reduced viability of patient-derived primary EITL cells, indicating potential therapeutic strategies for this neoplasm with no effective treatment currently available.

  4. Similarities and differences in signal transduction by interleukin 4 and interleukin 13: analysis of Janus kinase activation.

    PubMed

    Keegan, A D; Johnston, J A; Tortolani, P J; McReynolds, L J; Kinzer, C; O'Shea, J J; Paul, W E

    1995-08-15

    The cytokines interleukin (IL) 4 and IL-13 induce many of the same biological responses, including class switching to IgE and induction of major histocompatibility complex class II antigens and CD23 on human B cells. It has recently been shown that IL-4 induces the tyrosine phosphorylation of a 170-kDa protein, a substrate called 4PS, and of the Janus kinase (JAK) family members JAK1 and JAK3. Because IL-13 has many functional effects similar to those of IL-4, we compared the ability of IL-4 and IL-13 to activate these signaling molecules in the human multifactor-dependent cell line TF-1. In this report we demonstrate that both IL-4 and IL-13 induced the tyrosine phosphorylation of 4PS and JAK1. Interestingly, although IL-4 induced the tyrosine phosphorylation of JAK3, we did not detect JAK3 phosphorylation in response to IL-13. These data suggest that IL-4 and IL-13 signal in similar ways via the activation of JAK1 and 4PS. However, our data further indicate that there are significant differences because IL-13 does not activate JAK3.

  5. Disruption of striatal-enriched protein tyrosine phosphatase (STEP) function in neuropsychiatric disorders

    PubMed Central

    Karasawa, Takatoshi; Lombroso, Paul J.

    2014-01-01

    Striatal-enriched protein tyrosine phosphatase (STEP) is a brain-specific tyrosine phosphatase that plays a major role in the development of synaptic plasticity. Recent findings have implicated STEP in several psychiatric and neurological disorders, including Alzheimer’s disease, schizophrenia, fragile X syndrome, Huntington’s disease, stroke/ischemia, and stress-related psychiatric disorders. In these disorders, STEP protein expression levels and activity are dysregulated, contributing to the cognitive deficits that are present. In this review, we focus on the most recent findings on STEP, discuss how STEP expression and activity are maintained during normal cognitive function, and how disruptions in STEP activity contribute to a number of illnesses. PMID:25218562

  6. Suppressor of cytokine signaling 1 interacts with oncogenic lymphocyte-specific protein tyrosine kinase

    PubMed Central

    VENKITACHALAM, SRIVIDYA; CHUEH, FU-YU; LEONG, KING-FU; PABICH, SAMANTHA; YU, CHAO-LAN

    2011-01-01

    Lymphocyte-specific protein tyrosine kinase (Lck) plays a key role in T cell signal transduction and is tightly regulated by phosphorylation and dephosphorylation. Lck can function as an oncoprotein when overexpressed or constantly activated by mutations. Our previous studies showed that Lck-induced cellular transformation could be suppressed by enforced expression of suppressor of cytokine signaling 1 (SOCS1), a SOCS family member involved in the negative feedback control of cytokine signaling. We observed attenuated Lck kinase activity in SOCS1-expressing cells, suggesting an important role of SOCS in regulating Lck functions. It remains largely unknown whether and how SOCS proteins interact with the oncogenic Lck kinase. Here we report that, among four SOCS family proteins, SOCS1, SOCS2, SOCS3 and CIS (cytokine–inducible SH2 domain containing protein), SOCS1 has the highest affinity in binding to the oncogenic Lck kinase. We identify the positive regulatory phospho-tyrosine 394 residue in the kinase domain as the key interacting determinant in Lck. Additionally, the Lck kinase domain alone is sufficient to bind SOCS1. While the SH2 domain in SOCS1 is important in its association with the oncogenic Lck kinase, other functional domains may also contribute to overall binding affinity. These findings provide important mechanistic insights into the role of SOCS proteins as tumor suppressors in cells transformed by oncogenic protein tyrosine kinases. PMID:21234523

  7. Formylbenzene diazonium hexafluorophosphate reagent for tyrosine-selective modification of proteins and the introduction of a bioorthogonal aldehyde.

    PubMed

    Gavrilyuk, Julia; Ban, Hitoshi; Nagano, Masanobu; Hakamata, Wataru; Barbas, Carlos F

    2012-12-19

    4-Formylbenzene diazonium hexafluorophosphate (FBDP) is a novel bench-stable crystalline diazonium salt that reacts selectively with tyrosine to install a bioorthogonal aldehyde functionality. Model studies with N-acyl-tyrosine methylamide allowed us to identify conditions optimal for tyrosine ligation reactions with small peptides and proteins. FBDP-based conjugation was used for the facile introduction of small molecule tags, poly(ethylene glycol) chains (PEGylation), and functional small molecules onto model proteins and to label the surface of living cells.

  8. PTPRT regulates the interaction of Syntaxin-binding protein 1 with Syntaxin 1 through dephosphorylation of specific tyrosine residue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, So-Hee; Moon, Jeonghee; Lee, Myungkyu

    2013-09-13

    Highlights: •PTPRT is a brain-specific, expressed, protein tyrosine phosphatase. •PTPRT regulated the interaction of Syntaxin-binding protein 1 with Syntaxin 1. •PTPRT dephosphorylated the specific tyrosine residue of Syntaxin-binding protein 1. •Dephosphorylation of Syntaxin-binding protein 1 enhanced the interaction with Syntaxin 1. •PTPRT appears to regulate the fusion of synaptic vesicle through dephosphorylation. -- Abstract: PTPRT (protein tyrosine phosphatase receptor T), a brain-specific tyrosine phosphatase, has been found to regulate synaptic formation and development of hippocampal neurons, but its regulation mechanism is not yet fully understood. Here, Syntaxin-binding protein 1, a key component of synaptic vesicle fusion machinery, was identified asmore » a possible interaction partner and an endogenous substrate of PTPRT. PTPRT interacted with Syntaxin-binding protein 1 in rat synaptosome, and co-localized with Syntaxin-binding protein 1 in cultured hippocampal neurons. PTPRT dephosphorylated tyrosine 145 located around the linker between domain 1 and 2 of Syntaxin-binding protein 1. Syntaxin-binding protein 1 directly binds to Syntaxin 1, a t-SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) protein, and plays a role as catalysts of SNARE complex formation. Syntaxin-binding protein 1 mutant mimicking non-phosphorylation (Y145F) enhanced the interaction with Syntaxin 1 compared to wild type, and therefore, dephosphorylation of Syntaxin-binding protein 1 appeared to be important for SNARE-complex formation. In conclusion, PTPRT could regulate the interaction of Syntaxin-binding protein 1 with Syntaxin 1, and as a result, the synaptic vesicle fusion appeared to be controlled through dephosphorylation of Syntaxin-binding protein 1.« less

  9. Molecular characterization of a tyrosine-specific protein phosphatase encoded by a stress-responsive gene in Arabidopsis.

    PubMed Central

    Xu, Q; Fu, H H; Gupta, R; Luan, S

    1998-01-01

    Protein tyrosine kinases and phosphatases play a vital role in the regulation of cell growth and differentiation in animal systems. However, none of these enzymes has been characterized from higher plants. In this study, we isolated a cDNA encoding a putative protein tyrosine phosphatase (PTPase) from Arabidopsis (referred to as AtPTP1). The expression level of AtPTP1 is highly sensitive to environmental stresses. High-salt conditions increased AtPTP1 mRNA levels, whereas cold treatment rapidly eliminated the AtPTP1 transcript. The recombinant AtPTP1 protein specifically hydrolyzed phosphotyrosine, but not phosphoserine/threonine, in protein substrates. Site-directed mutagenesis defined two highly conserved amino acids, cysteine-265 and aspartate-234, as being essential for the phosphatase activity of the AtPTP1 protein, suggesting a common catalytic mechanism for PTPases from all eukaryotic systems. In summary, we have identified AtPTP1 as a tyrosine-specific protein phosphatase that may function in stress responses of higher plants. PMID:9596642

  10. Aggressive natural killer-cell leukemia mutational landscape and drug profiling highlight JAK-STAT signaling as therapeutic target.

    PubMed

    Dufva, Olli; Kankainen, Matti; Kelkka, Tiina; Sekiguchi, Nodoka; Awad, Shady Adnan; Eldfors, Samuli; Yadav, Bhagwan; Kuusanmäki, Heikki; Malani, Disha; Andersson, Emma I; Pietarinen, Paavo; Saikko, Leena; Kovanen, Panu E; Ojala, Teija; Lee, Dean A; Loughran, Thomas P; Nakazawa, Hideyuki; Suzumiya, Junji; Suzuki, Ritsuro; Ko, Young Hyeh; Kim, Won Seog; Chuang, Shih-Sung; Aittokallio, Tero; Chan, Wing C; Ohshima, Koichi; Ishida, Fumihiro; Mustjoki, Satu

    2018-04-19

    Aggressive natural killer-cell (NK-cell) leukemia (ANKL) is an extremely aggressive malignancy with dismal prognosis and lack of targeted therapies. Here, we elucidate the molecular pathogenesis of ANKL using a combination of genomic and drug sensitivity profiling. We study 14 ANKL patients using whole-exome sequencing (WES) and identify mutations in STAT3 (21%) and RAS-MAPK pathway genes (21%) as well as in DDX3X (29%) and epigenetic modifiers (50%). Additional alterations include JAK-STAT copy gains and tyrosine phosphatase mutations, which we show recurrent also in extranodal NK/T-cell lymphoma, nasal type (NKTCL) through integration of public genomic data. Drug sensitivity profiling further demonstrates the role of the JAK-STAT pathway in the pathogenesis of NK-cell malignancies, identifying NK cells to be highly sensitive to JAK and BCL2 inhibition compared to other hematopoietic cell lineages. Our results provide insight into ANKL genetics and a framework for application of targeted therapies in NK-cell malignancies.

  11. Protein Tyrosine Phosphatase 1B Regulates Pyruvate Kinase M2 Tyrosine Phosphorylation*

    PubMed Central

    Bettaieb, Ahmed; Bakke, Jesse; Nagata, Naoto; Matsuo, Kosuke; Xi, Yannan; Liu, Siming; AbouBechara, Daniel; Melhem, Ramzi; Stanhope, Kimber; Cummings, Bethany; Graham, James; Bremer, Andrew; Zhang, Sheng; Lyssiotis, Costas A.; Zhang, Zhong-Yin; Cantley, Lewis C.; Havel, Peter J.; Haj, Fawaz G.

    2013-01-01

    Protein-tyrosine phosphatase 1B (PTP1B) is a physiological regulator of glucose homeostasis and adiposity and is a drug target for the treatment of obesity and diabetes. Here we identify pyruvate kinase M2 (PKM2) as a novel PTP1B substrate in adipocytes. PTP1B deficiency leads to increased PKM2 total tyrosine and Tyr105 phosphorylation in cultured adipocytes and in vivo. Substrate trapping and mutagenesis studies identify PKM2 Tyr-105 and Tyr-148 as key sites that mediate PTP1B-PKM2 interaction. In addition, in vitro analyses illustrate a direct effect of Tyr-105 phosphorylation on PKM2 activity in adipocytes. Importantly, PTP1B pharmacological inhibition increased PKM2 Tyr-105 phosphorylation and decreased PKM2 activity. Moreover, PKM2 Tyr-105 phosphorylation is regulated nutritionally, decreasing in adipose tissue depots after high-fat feeding. Further, decreased PKM2 Tyr-105 phosphorylation correlates with the development of glucose intolerance and insulin resistance in rodents, non-human primates, and humans. Together, these findings identify PKM2 as a novel substrate of PTP1B and provide new insights into the regulation of adipose PKM2 activity. PMID:23640882

  12. Rapid auxin-induced nitric oxide accumulation and subsequent tyrosine nitration of proteins during adventitious root formation in sunflower hypocotyls

    PubMed Central

    Yadav, Sunita; David, Anisha; Baluška, František; Bhatla, Satish C.

    2013-01-01

    Using NO specific probe (MNIP-Cu), rapid nitric oxide (NO) accumulation as a response to auxin (IAA) treatment has been observed in the protoplasts from the hypocotyls of sunflower seedlings (Helianthus annuus L.). Incubation of protoplasts in presence of NPA (auxin efflux blocker) and PTIO (NO scavenger) leads to significant reduction in NO accumulation, indicating that NO signals represent an early signaling event during auxin-induced response. A surge in NO production has also been demonstrated in whole hypocotyl explants showing adventitious root (AR) development. Evidence of tyrosine nitration of cytosolic proteins as a consequence of NO accumulation has been provided by western blot analysis and immunolocalization in the sections of AR producing hypocotyl segments. Most abundant anti-nitrotyrosine labeling is evident in proteins ranging from 25–80 kDa. Tyrosine nitration of a particular protein (25 kDa) is completely absent in presence of NPA (which suppresses AR formation). Similar lack of tyrosine nitration of this protein is also evident in other conditions which do not allow AR differentiation. Immunofluorescent localization experiments have revealed that non-inductive treatments (such as PTIO) for AR develpoment from hypocotyl segments coincide with symplastic and apoplastic localization of tyrosine nitrated proteins in the xylem elements, in contrast with negligible (and mainly apoplastic) nitration of proteins in the interfascicular cells and phloem elements. Application of NPA does not affect tyrosine nitration of proteins even in the presence of an external source of NO (SNP). Tyrosine nitrated proteins are abundant around the nuclei in the actively dividing cells of the root primordium. Thus, NO-modulated rapid response to IAA treatment through differential distribution of tyrosine nitrated proteins is evident as an inherent aspect of the AR development. PMID:23299324

  13. Formylbenzene diazonium hexafluorophosphate reagent for tyrosine-selective modification of proteins and the introduction of a bioorthogonal aldehyde

    PubMed Central

    Gavrilyuk, Julia; Ban, Hitoshi; Nagano, Masanobu; Hakamata, Wataru; Barbas, Carlos F.

    2012-01-01

    4-Formylbenzene diazonium hexafluorophosphate (FBDP) is a novel bench-stable crystalline diazonium salt that reacts selectively with tyrosine to install a bioorthogonal aldehyde functionality. Model studies with N-acyl-tyrosine methylamide allowed us to identify conditions optimal for tyrosine ligation reactions with small peptides and proteins. FBDP-based conjugation was used for the facile introduction of small molecule tags, poly(ethylene) glycol chains (PEGylation), and functional small molecules onto model proteins and to label the surface of living cells. PMID:23181702

  14. mom identifies a receptor for the Drosophila JAK/STAT signal transduction pathway and encodes a protein distantly related to the mammalian cytokine receptor family

    PubMed Central

    Chen, Hua-Wei; Chen, Xiu; Oh, Su-Wan; Marinissen, Maria J.; Gutkind, J. Silvio; Hou, Steven X.

    2002-01-01

    The JAK/STAT signal transduction pathway controls numerous events in Drosophila melanogaster development. Receptors for the pathway have yet to be identified. Here we have identified a Drosophila gene that shows embryonic mutant phenotypes identical to those in the hopscotch (hop)/JAK kinase and marelle (mrl)/Stat92e mutations. We named this gene master of marelle (mom). Genetic analyses place mom's function between upd (the ligand) and hop. We further show that cultured cells transfected with the mom gene bind UPD and activate the HOP/STAT92E signal transduction pathway. mom encodes a protein distantly related to the mammalian cytokine receptor family. These data show that mom functions as a receptor of the Drosophila JAK/STAT signal transduction pathway. PMID:11825879

  15. JAK2 Exon 14 Deletion in Patients with Chronic Myeloproliferative Neoplasms

    PubMed Central

    Ma, Wanlong; Kantarjian, Hagop; Zhang, Xi; Wang, Xiuqiang; Zhang, Zhong; Yeh, Chen-Hsiung; O'Brien, Susan; Giles, Francis; Bruey, Jean Marie; Albitar, Maher

    2010-01-01

    Background The JAK2 V617F mutation in exon 14 is the most common mutation in chronic myeloproliferative neoplasms (MPNs); deletion of the entire exon 14 is rarely detected. In our previous study of >10,000 samples from patients with suspected MPNs tested for JAK2 mutations by reverse transcription-PCR (RT-PCR) with direct sequencing, complete deletion of exon 14 (Δexon14) constituted <1% of JAK2 mutations. This appears to be an alternative splicing mutation, not detectable with DNA-based testing. Methodology/Principal Findings We investigated the possibility that MPN patients may express the JAK2 Δexon14 at low levels (<15% of total transcript) not routinely detectable by RT-PCR with direct sequencing. Using a sensitive RT-PCR–based fluorescent fragment analysis method to quantify JAK2 Δexon14 mRNA expression relative to wild-type, we tested 61 patients with confirmed MPNs, 183 with suspected MPNs (93 V617F-positive, 90 V617F-negative), and 46 healthy control subjects. The Δexon14 variant was detected in 9 of the 61 (15%) confirmed MPN patients, accounting for 3.96% to 33.85% (mean  = 12.04%) of total JAK2 transcript. This variant was also detected in 51 of the 183 patients with suspected MPNs (27%), including 20 of the 93 (22%) with V617F (mean [range] expression  = 5.41% [2.13%–26.22%]) and 31 of the 90 (34%) without V617F (mean [range] expression  = 3.88% [2.08%–12.22%]). Immunoprecipitation studies demonstrated that patients expressing Δexon14 mRNA expressed a corresponding truncated JAK2 protein. The Δexon14 variant was not detected in the 46 control subjects. Conclusions/Significance These data suggest that expression of the JAK2 Δexon14 splice variant, leading to a truncated JAK2 protein, is common in patients with MPNs. This alternatively spliced transcript appears to be more frequent in MPN patients without V617F mutation, in whom it might contribute to leukemogenesis. This mutation is missed if DNA rather than RNA is used for

  16. JAK2 mediates lung fibrosis, pulmonary vascular remodelling and hypertension in idiopathic pulmonary fibrosis: an experimental study.

    PubMed

    Milara, Javier; Ballester, Beatriz; Morell, Anselm; Ortiz, José L; Escrivá, Juan; Fernández, Estrella; Perez-Vizcaino, Francisco; Cogolludo, Angel; Pastor, Enrique; Artigues, Enrique; Morcillo, Esteban; Cortijo, Julio

    2018-06-01

    Pulmonary hypertension (PH) is a common disorder in patients with idiopathic pulmonary fibrosis (IPF) and portends a poor prognosis. Recent studies using vasodilators approved for PH have failed in improving IPF mainly due to ventilation ( V )/perfusion ( Q ) mismatching and oxygen desaturation. Janus kinase type 2 (JAK2) is a non-receptor tyrosine kinase activated by a broad spectrum of profibrotic and vasoactive mediators, but its role in PH associated to PH is unknown. The study of JAK2 as potential target to treat PH in IPF. JAK2 expression was increased in pulmonary arteries (PAs) from IPF (n=10; 1.93-fold; P=0.0011) and IPF+PH (n=9; 2.65-fold; P<0.0001) compared with PA from control subjects (n=10). PA remodelling was evaluated in human pulmonary artery endothelial cells (HPAECs) and human pulmonary artery smooth muscle cells (HPASMCs) from patients with IPF in vitro treated with the JAK2 inhibitor JSI-124 or siRNA-JAK2 and stimulated with transforming growth factor beta. Both JSI-124 and siRNA-JAK2 inhibited the HPAEC to mesenchymal transition and the HPASMCs to myofibroblast transition and proliferation. JAK2 inhibition induced small PA relaxation in precision-cut lung slice experiments. PA relaxation was dependent of the large conductance calcium-activated potassium channel (BK Ca ). JAK2 inhibition activated BK Ca channels and reduced intracellular Ca 2+ . JSI-124 1 mg/kg/day, reduced bleomycin-induced lung fibrosis, PA remodelling, right ventricular hypertrophy, PA hypertension and V / Q mismatching in rats. The animal studies followed the ARRIVE guidelines. JAK2 participates in PA remodelling and tension and may be an attractive target to treat IPF associated to PH. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  17. JAK/Stat signaling regulates heart precursor diversification in Drosophila

    PubMed Central

    Johnson, Aaron N.; Mokalled, Mayssa H.; Haden, Tom N.; Olson, Eric N.

    2011-01-01

    Intercellular signal transduction pathways regulate the NK-2 family of transcription factors in a conserved gene regulatory network that directs cardiogenesis in both flies and mammals. The Drosophila NK-2 protein Tinman (Tin) was recently shown to regulate Stat92E, the Janus kinase (JAK) and Signal transducer and activator of transcription (Stat) pathway effector, in the developing mesoderm. To understand whether the JAK/Stat pathway also regulates cardiogenesis, we performed a systematic characterization of JAK/Stat signaling during mesoderm development. Drosophila embryos with mutations in the JAK/Stat ligand upd or in Stat92E have non-functional hearts with luminal defects and inappropriate cell aggregations. Using strong Stat92E loss-of-function alleles, we show that the JAK/Stat pathway regulates tin expression prior to heart precursor cell diversification. tin expression can be subdivided into four phases and, in Stat92E mutant embryos, the broad phase 2 expression pattern in the dorsal mesoderm does not restrict to the constrained phase 3 pattern. These embryos also have an expanded pericardial cell domain. We show the E(spl)-C gene HLHm5 is expressed in a pattern complementary to tin during phase 3 and that this expression is JAK/Stat dependent. In addition, E(spl)-C mutant embryos phenocopy the cardiac defects of Stat92E embryos. Mechanistically, JAK/Stat signals activate E(spl)-C genes to restrict Tin expression and the subsequent expression of the T-box transcription factor H15 to direct heart precursor diversification. This study is the first to characterize a role for the JAK/Stat pathway during cardiogenesis and identifies an autoregulatory circuit in which tin limits its own expression domain. PMID:21965617

  18. B61 is a ligand for the ECK receptor protein-tyrosine kinase.

    PubMed

    Bartley, T D; Hunt, R W; Welcher, A A; Boyle, W J; Parker, V P; Lindberg, R A; Lu, H S; Colombero, A M; Elliott, R L; Guthrie, B A

    1994-04-07

    A protein ligand for the ECK receptor protein-tyrosine kinase has been isolated by using the extracellular domain (ECK-X) of the receptor as an affinity reagent. Initially, concentrated cell culture supernatants were screened for receptor binding activity using immobilized ECK-X in a surface plasmon resonance detection system. Subsequently, supernatants from selected cell lines were fractionated directly by receptor affinity chromatography, resulting in the single-step purification of B61, a protein previously identified as the product of an early response gene induced by tumour necrosis factor-alpha. We report here that recombinant B61 induces autophosphorylation of ECK in intact cells, consistent with B61 being an authentic ligand for ECK. ECK is a member of a large orphan receptor protein-tyrosine kinase family headed by EPH, and we suggest that ligands for other members of this family will be related to B61, and can be isolated in the same way.

  19. STriatal-Enriched protein tyrosine Phosphatase (STEP) Regulates the PTPα/Fyn Signaling Pathway

    PubMed Central

    Xu, Jian; Kurup, Pradeep; Foscue, Ethan; Lombroso, Paul J.

    2015-01-01

    The tyrosine kinase Fyn has two regulatory tyrosine residues that when phosphorylated either activate (Tyr420) or inhibit (Tyr531) Fyn activity. Within the central nervous system, two protein tyrosine phosphatases (PTPs) target these regulatory tyrosines in Fyn. PTPα dephosphorylates Tyr531 and activates Fyn, while STEP (STriatal-Enriched protein tyrosine Phosphatase) dephosphorylates Tyr420 and inactivates Fyn. Thus, PTPα and STEP have opposing functions in the regulation of Fyn; however, whether there is cross talk between these two PTPs remains unclear. Here, we used molecular techniques in primary neuronal cultures and in vivo to demonstrate that STEP negatively regulates PTPα by directly dephosphorylating PTPα at its regulatory Tyr789. Dephosphorylation of Tyr789 prevents the translocation of PTPα to synaptic membranes, blocking its ability to interact with and activate Fyn. Genetic or pharmacologic reduction of STEP61 activity increased the phosphorylation of PTPα at Tyr789, as well as increased translocation of PTPα to synaptic membranes. Activation of PTPα and Fyn and trafficking of GluN2B to synaptic membranes are necessary for ethanol intake behaviors in rodents. We tested the functional significance of STEP61 in this signaling pathway by ethanol administration to primary cultures as well as in vivo, and demonstrated that the inactivation of STEP61 by ethanol leads to the activation of PTPα, its translocation to synaptic membranes, and the activation of Fyn. These findings indicate a novel mechanism by which STEP61 regulates PTPα and suggest that STEP and PTPα coordinate the regulation of Fyn. PMID:25951993

  20. Nano titanium dioxide photocatalytic protein tyrosine nitration: A potential hazard of TiO{sub 2} on skin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Naihao; Zhu Zhening; Zhao Xuqi

    Protein tyrosine nitration is a prevalent post-translational modification which occurs as a result of oxidative and nitrative stress, it may be directly involved in the onset and/or progression of diseases. Considering the existence of nano titanium dioxide (TiO{sub 2}) in environment and sunscreen products along with the high content of nitrite in sweat, the UV-exposed skin may be a significant target for the photosensitized damage. In this paper, tyrosine nitration of bovine serum albumin (BSA) was initiated in the UV-irradiated reaction mixture containing 0.2-3.0 mg/ml of three commercially nano TiO{sub 2} products and 0.25-1.0 mM NO{sub 2}{sup -}. It wasmore » found that anatase TiO{sub 2} and Degussa P25 TiO{sub 2} showed prominent photocatalytic activity on promoting the formation of protein tyrosine nitration, and the optimum condition for the reaction was around physiological pH. Meanwhile, the photocatalytic effect of rutile on protein tyrosine nitration was subtle. The potential physiological significance of nano TiO{sub 2}-photocatalytic protein nitration was also demonstrated in mouse skin homogenate. Although the relationship between photocatalytic protein tyrosine nitration and chronic cutaneous diseases needs further study, the toxicity of nano TiO{sub 2} to the skin disease should be paid more attention in the production and utilization process.« less

  1. Effect of cooling (4°C) and cryopreservation on cytoskeleton actin and protein tyrosine phosphorylation in buffalo spermatozoa.

    PubMed

    Naresh, Sai

    2016-02-01

    Semen cryopreservation is broadly utilized as a part of the bovine reproducing industry, a large portion of the spermatozoa does not survive and the majority of those that do survive experience various molecular and physiological changes that influence their fertilizing capacity. The main aim of this study is to determine the effect of cooling (4 °C) and cryopreservation on cytoskeleton actin, tyrosine phosphorylation and quality of buffalo spermatozoa, and to determine the similarity between in vitro capacitation and cryopreservation induced capacitation like changes. To achieve this, Western blot was used to examine the changes in actin expression and protein tyrosine phosphorylation, whereas changes in actin polymerization, localization of actin and protein tyrosine phosphorylation during capacitation and cryopreservation were evaluated by indirect immunofluorescence technique. Localization studies revealed that the actin localized to flagella and acrosome membrane regions and following, capacitation it migrated towards the acrosome region of sperm. Time dependent increase in actin polymerization and protein tyrosine phosphorylation was observed during in vitro capacitation. The cooling phase (4 °C) and cryopreservation processes resulted in the loss/damage of cytoskeleton actin. In addition, we performed the actin polymerization and protein tyrosine phosphorylation in cooled and cryopreserved buffalo spermatozoa. Interestingly, cooling and cryopreservation induces actin polymerization and protein tyrosine phosphorylation, which were similar to in vitro capacitation (cryo-capacitation). These changes showed 1.3 folds reduction in the sperm quality parameters which includes motility, viability and plasma membrane integrity. Furthermore, our findings indicate that cooling and cryopreservation damages the cytoskeleton actin and also induces capacitation like changes such as protein tyrosine phosphorylation and actin polymerization. This could be one of the

  2. CDPKs are dual-specificity protein kinases and tyrosine autophosphorylation attenuates kinase activity

    USDA-ARS?s Scientific Manuscript database

    Calcium-dependent protein kinases (CDPKs or CPKs) are classified as serine/threonine protein kinases but we made the surprising observation that soybean CDPK' and several Arabidopsis isoforms (AtCPK4 and AtCPK34) could also autophosphorylate on tyrosine residues. In studies with His6-GmCDPK', we ide...

  3. The nonreceptor protein tyrosine phosphatase corkscrew functions in multiple receptor tyrosine kinase pathways in Drosophila.

    PubMed

    Perkins, L A; Johnson, M R; Melnick, M B; Perrimon, N

    1996-11-25

    Corkscrew (csw) encodes a nonreceptor protein tyrosine phosphatase (PTPase) that has been implicated in signaling from the Torso receptor tyrosine kinase (RTK). csw mutations, unlike tor mutations, are associated with zygotic lethality, indicating that Csw plays additional roles during development. We have conducted a detailed phenotypic analysis of csw mutations to identify these additional functions of Csw. Our results indicate that Csw operates positively downstream of other Drosophila RTKs such as the Drosophila epidermal growth factor receptor (DER), the fibroblast growth factor receptor (Breathless), and likely other RTKs. This model is substantiated by specific dosage interactions between csw and DER. It is proposed that Csw is part of the evolutionarily conserved "signaling cassette" that operates downstream of all RTKs. In support of this hypothesis, we demonstrate that SHP-2, a vertebrate PTPase similar to Csw and previously implicated in RTK signaling, encodes the functional vertebrate homologue of Csw.

  4. Site-Selective Regulation of Platelet-Derived Growth Factor β Receptor Tyrosine Phosphorylation by T-Cell Protein Tyrosine Phosphatase

    PubMed Central

    Persson, Camilla; Sävenhed, Catrine; Bourdeau, Annie; Tremblay, Michel L.; Markova, Boyka; Böhmer, Frank D.; Haj, Fawaz G.; Neel, Benjamin G.; Elson, Ari; Heldin, Carl-Henrik; Rönnstrand, Lars; Östman, Arne; Hellberg, Carina

    2004-01-01

    The platelet-derived growth factor (PDGF) β receptor mediates mitogenic and chemotactic signals. Like other tyrosine kinase receptors, the PDGF β receptor is negatively regulated by protein tyrosine phosphatases (PTPs). To explore whether T-cell PTP (TC-PTP) negatively regulates the PDGF β receptor, we compared PDGF β receptor tyrosine phosphorylation in wild-type and TC-PTP knockout (ko) mouse embryos. PDGF β receptors were hyperphosphorylated in TC-PTP ko embryos. Fivefold-higher ligand-induced receptor phosphorylation was observed in TC-PTP ko mouse embryo fibroblasts (MEFs) as well. Reexpression of TC-PTP partly abolished this difference. As determined with site-specific phosphotyrosine antibodies, the extent of hyperphosphorylation varied among different autophosphorylation sites. The phospholipase Cγ1 binding site Y1021, previously implicated in chemotaxis, displayed the largest increase in phosphorylation. The increase in Y1021 phosphorylation was accompanied by increased phospholipase Cγ1 activity and migratory hyperresponsiveness to PDGF. PDGF β receptor tyrosine phosphorylation in PTP-1B ko MEFs but not in PTPɛ ko MEFs was also higher than that in control cells. This increase occurred with a site distribution different from that seen after TC-PTP depletion. PDGF-induced migration was not increased in PTP-1B ko cells. In summary, our findings identify TC-PTP as a previously unrecognized negative regulator of PDGF β receptor signaling and support the general notion that PTPs display site selectivity in their action on tyrosine kinase receptors. PMID:14966296

  5. Crystal structures of spleen tyrosine kinase in complex with novel inhibitors: structural insights for design of anticancer drugs.

    PubMed

    Lee, Sang Jae; Choi, Jang-Sik; Han, Byeong-Gu; Kim, Hyoun Sook; Song, Ho-Juhn; Lee, Jaekyoo; Nam, Seungyoon; Goh, Sung-Ho; Kim, Jung-Ho; Koh, Jong Sung; Lee, Byung Il

    2016-10-01

    Spleen tyrosine kinase (SYK) is a cytosolic nonreceptor protein tyrosine kinase that mediates key signal transduction pathways following the activation of immune cell receptors. SYK regulates cellular events induced by the B-cell receptor and Fc receptors with high intrinsic activity. Furthermore, SYK has been regarded as an attractive target for the treatment of autoimmune diseases and cancers. Here, we report the crystal structures of SYK in complex with seven newly developed inhibitors (G206, G207, O178, O194, O259, O272, and O282) to provide structural insights into which substituents of the inhibitors and binding regions of SYK are essential for lead compound optimization. Our kinase inhibitors exhibited high inhibitory activities against SYK, with half-maximal inhibitory concentrations (IC 50 ) of approximately 0.7-33 nm, but they showed dissimilar inhibitory activities against KDR, RET, JAK2, JAK3, and FLT3. Among the seven SYK inhibitors, O272 and O282 exhibited highly specific inhibitions against SYK, whereas O194 exhibited strong inhibition of both SYK and FLT3. Three inhibitors (G206, G207, and O178) more efficiently inhibited FLT3 while still substantially inhibiting SYK activity. The binding mode analysis suggested that a highly selective SYK inhibitor can be developed by optimizing the functional groups that facilitate direct interactions with Asn499. The atomic coordinates and structure factors for human SYK are in the Protein Data Bank under accession codes 4XG2 (inhibitor-free form), 4XG3 (G206), 4XG4 (G207), 5GHV (O178), 4XG6 (O194), 4XG7 (O259), 4XG8 (O272), and 4XG9 (O282). © 2016 Federation of European Biochemical Societies.

  6. Crystal structure of SP-PTP, a low molecular weight protein tyrosine phosphatase from Streptococcus pyogenes.

    PubMed

    Ku, Bonsu; Keum, Chae Won; Lee, Hye Seon; Yun, Hye-Yeoung; Shin, Ho-Chul; Kim, Bo Yeon; Kim, Seung Jun

    2016-09-23

    Streptococcus pyogenes, or Group A Streptococcus (GAS), is a pathogenic bacterium that causes a variety of infectious diseases. The GAS genome encodes one protein tyrosine phosphatase, SP-PTP, which plays an essential role in the replication and virulence maintenance of GAS. Herein, we present the crystal structure of SP-PTP at 1.9 Å resolution. Although SP-PTP has been reported to have dual phosphatase specificity for both phosphorylated tyrosine and serine/threonine, three-dimensional structural analysis showed that SP-PTP shares high similarity with typical low molecular weight protein tyrosine phosphatases (LMWPTPs), which are specific for phosphotyrosine, but not with dual-specificity phosphatases, in overall folding and active site composition. In the dephosphorylation activity test, SP-PTP consistently acted on phosphotyrosine substrates, but not or only minimally on phosphoserine/phosphothreonine substrates. Collectively, our structural and biochemical analyses verified SP-PTP as a canonical tyrosine-specific LMWPTP. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. The oral HDAC inhibitor pracinostat (SB939) is efficacious and synergistic with the JAK2 inhibitor pacritinib (SB1518) in preclinical models of AML

    PubMed Central

    Novotny-Diermayr, V; Hart, S; Goh, K C; Cheong, A; Ong, L-C; Hentze, H; Pasha, M K; Jayaraman, R; Ethirajulu, K; Wood, J M

    2012-01-01

    Acute myeloid leukemia (AML) is currently treated with aggressive chemotherapy that is not well tolerated in many elderly patients, hence the unmet medical need for effective therapies with less toxicity and better tolerability. Inhibitors of FMS-like tyrosine kinase 3 (FLT3), JAK2 and histone deacetylase inhibitors (HDACi) have been tested in clinical studies, but showed only moderate single-agent activity. High efficacy of the HDACi pracinostat treating AML and synergy with the JAK2/FLT3 inhibitor pacritinib is demonstrated. Both compounds inhibit JAK-signal transducer and activator of transcription (STAT) signaling in AML cells with JAK2V617F mutations, but also diminish FLT3 signaling, particularly in FLT3-ITD (internal tandem duplication) cell lines. In vitro, this combination led to decreased cell proliferation and increased apoptosis. The synergy translated in vivo in two different AML models, the SET-2 megakaryoblastic AML mouse model carrying a JAK2V617F mutation, and the MOLM-13 model of FLT3-ITD-driven AML. Pracinostat and pacritinib in combination showed synergy on tumor growth, reduction of metastases and synergistically decreased JAK2 or FLT signaling, depending on the cellular context. In addition, several plasma cytokines/growth factors/chemokines triggered by the tumor growth were normalized, providing a rationale for combination therapy with an HDACi and a JAK2/FLT3 inhibitor for the treatment of AML patients, particularly those with FLT3 or JAK2 mutations. PMID:22829971

  8. Role for Tyrosine Phosphorylation of A-kinase Anchoring Protein 8 (AKAP8) in Its Dissociation from Chromatin and the Nuclear Matrix.

    PubMed

    Kubota, Sho; Morii, Mariko; Yuki, Ryuzaburo; Yamaguchi, Noritaka; Yamaguchi, Hiromi; Aoyama, Kazumasa; Kuga, Takahisa; Tomonaga, Takeshi; Yamaguchi, Naoto

    2015-04-24

    Protein-tyrosine phosphorylation regulates a wide variety of cellular processes at the plasma membrane. Recently, we showed that nuclear tyrosine kinases induce global nuclear structure changes, which we called chromatin structural changes. However, the mechanisms are not fully understood. In this study we identify protein kinase A anchoring protein 8 (AKAP8/AKAP95), which associates with chromatin and the nuclear matrix, as a nuclear tyrosine-phosphorylated protein. Tyrosine phosphorylation of AKAP8 is induced by several tyrosine kinases, such as Src, Fyn, and c-Abl but not Syk. Nucleus-targeted Lyn and c-Src strongly dissociate AKAP8 from chromatin and the nuclear matrix in a kinase activity-dependent manner. The levels of tyrosine phosphorylation of AKAP8 are decreased by substitution of multiple tyrosine residues on AKAP8 into phenylalanine. Importantly, the phenylalanine mutations of AKAP8 inhibit its dissociation from nuclear structures, suggesting that the association/dissociation of AKAP8 with/from nuclear structures is regulated by its tyrosine phosphorylation. Furthermore, the phenylalanine mutations of AKAP8 suppress the levels of nuclear tyrosine kinase-induced chromatin structural changes. In contrast, AKAP8 knockdown increases the levels of chromatin structural changes. Intriguingly, stimulation with hydrogen peroxide induces chromatin structural changes accompanied by the dissociation of AKAP8 from nuclear structures. These results suggest that AKAP8 is involved in the regulation of chromatin structural changes through nuclear tyrosine phosphorylation. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Recent patents in the discovery of small molecule inhibitors of JAK3.

    PubMed

    Wilson, Lawrence J

    2010-05-01

    Protein kinase enzymes have become increasingly important as the target of many disease modification drug discovery programs. Disruption of JAK3 function results in quantitative and qualitative deficiencies in both B- and T-cell compartments of the immune system of JAK3 deficient mice and development of severe combined immunodeficiency in humans with the JAK3 genetic aberration. JAK3 plays a specific role in immune function and lymphoid development and it only resides in the hematopoietic system, thus the rationale for selective targeting. Inhibitors of JAK3 have shown utility in many different autoimmune disorders, including allograft rejection during transplantation, acute lymphoblastic leukemia, Type 1 diabetes, rheumatoid arthritis and allergic and asthmatic diseases. These inhibitors are making their way into clinical trials with profound effects, thus, validating the target and strategy. A review that covers around 90 patents and patent applications made in the last 10 years in the area involving JAK3 inhibitors is provided. Specifically, what this content will provide is the genus, highlighted compounds of particular interest, filing organization and some biological measure of these compounds as inhibitors of this protein kinase or none if it is not provided. Some information from original research articles appearing in peer reviewed literature is provided, but this article is not a review of the literature. Furthermore, an overview of the current clinical status and future outcomes of this field is provided as summary. A strong understanding for the current state of the art in patents dealing with inhibitors of JAK3 including genus and species designations, potential commercial interest of this target in the pharmaceutical community, depth of coverage by numbers of examples and selected proof of action against the target. Also, a brief understanding of the biology and pharmacology involved in the processes involving the research, discovery, characterization

  10. Synaptopodin Is a Coincidence Detector of Tyrosine versus Serine/Threonine Phosphorylation for the Modulation of Rho Protein Crosstalk in Podocytes

    PubMed Central

    Buvall, Lisa; Wallentin, Hanna; Sieber, Jonas; Andreeva, Svetlana; Choi, Hoon Young; Mundel, Peter

    2017-01-01

    Tyrosine and serine/threonine signal-transduction pathways influence many aspects of cell behavior, including the spatial and temporal regulation of the actin cytoskeleton. However, little is known about how input from diverse tyrosine and serine/threonine kinases is integrated to control Rho protein crosstalk and actin remodeling, which are critically important in podocyte health and disease. Here we unveil the proteolytically-regulated, actin organizing protein synaptopodin as a coincidence detector of tyrosine versus serine/threonine phosphorylation. We show that serine/threonine and tyrosine kinases duel for synaptopodin stability versus degradation. EGFR/Src-mediated tyrosine phosphorylation of synaptopodin in podocytes promotes binding to the serine/threonine phosphatase calcineurin. This leads to the loss of 14–3-3 binding, resulting in synaptopodin degradation, Vav2 activation, enhanced Rac1 signaling, and ultimate loss of stress fibers. Our studies reveal how synaptopodin, a single proteolytically-controlled protein, integrates antagonistic tyrosine versus serine/threonine phosphorylation events for the dynamic control of the actin cytoskeleton in podocytes. PMID:27628902

  11. Myeloproliferative neoplasms with concurrent BCR-ABL1 translocation and JAK2 V617F mutation: a multi-institutional study from the bone marrow pathology group.

    PubMed

    Soderquist, Craig R; Ewalt, Mark D; Czuchlewski, David R; Geyer, Julia T; Rogers, Heesun J; Hsi, Eric D; Wang, Sa A; Bueso-Ramos, Carlos E; Orazi, Attilio; Arber, Daniel A; Hexner, Elizabeth O; Babushok, Daria V; Bagg, Adam

    2018-05-01

    Myeloproliferative neoplasms arise from hematopoietic stem cells with somatically altered tyrosine kinase signaling. Classification of myeloproliferative neoplasms is based on hematologic, histopathologic and molecular characteristics including the presence of the BCR-ABL1 and JAK2 V617F. Although thought to be mutually exclusive, a number of cases with co-occurring BCR-ABL1 and JAK2 V617F have been identified. To characterize the clinicopathologic features of myeloproliferative neoplasms with concomitant BCR-ABL1 and JAK2 V617F, and define the frequency of co-occurrence, we conducted a retrospective multi-institutional study. Cases were identified using a search of electronic databases over a decade at six major institutions. Of 1570 patients who were tested for both BCR-ABL1 and JAK2 V617F, six were positive for both. An additional five patients were identified via clinical records providing a total of 11 cases for detailed evaluation. For each case, clinical variables, hematologic and genetic data, and bone marrow histomorphologic features were analyzed. The sequence of identification of the genetic abnormalities varied: five patients were initially diagnosed with a JAK2 V617F+ myeloproliferative neoplasm, one patient initially had BCR-ABL1+ chronic myeloid leukemia, while both alterations were identified simultaneously in five patients. Classification of the BCR-ABL1-negative myeloproliferative neoplasms varied, and in some cases, features only became apparent following tyrosine kinase inhibitor therapy. Seven of the 11 patients showed myelofibrosis, in some cases before identification of the second genetic alteration. Our data, reflecting the largest reported study comprehensively detailing clinicopathologic features and response to therapy, show that the co-occurrence of BCR-ABL1 and JAK2 V617F is rare, with an estimated frequency of 0.4%, and most often reflects two distinct ('composite') myeloproliferative neoplasms. Although uncommon, it is important to be

  12. Genistein inhibits voltage-gated sodium currents in SCG neurons through protein tyrosine kinase-dependent and kinase-independent mechanisms.

    PubMed

    Jia, Zhanfeng; Jia, Yueqin; Liu, Boyi; Zhao, Zhiying; Jia, Qingzhong; Liang, Huiling; Zhang, Hailin

    2008-08-01

    Voltage-gated sodium channels play a crucial role in the initiation and propagation of neuronal action potentials. Genistein, an isoflavone phytoestrogen, has long been used as a broad-spectrum inhibitor of protein tyrosine kinases (PTK). In addition, genistein-induced modulation of ion channels has been described previously in the literature. In this study, we investigated the effect of genistein on voltage-gated sodium channels in rat superior cervical ganglia (SCG) neurons. The results show that genistein inhibits Na(+) currents in a concentration-dependent manner, with a concentration of half-maximal effect (IC(50)) at 9.1 +/- 0.9 microM. Genistein positively shifted the voltage dependence of activation but did not affect inactivation of the Na(+) current. The inactive genistein analog daidzein also inhibited Na(+) currents, but was less effective than genistein. The IC(50) for daidzein-induced inhibition was 20.7 +/- 0.1 microM. Vanadate, an inhibitor of protein tyrosine phosphatases, partially but significantly reversed genistein-induced inhibition of Na(+) currents. Other protein tyrosine kinase antagonists such as tyrphostin 23, an erbstatin analog, and PP2 all had small but significant inhibitory effects on Na(+) currents. Among all active and inactive tyrosine kinase inhibitors tested, genistein was the most potent inhibitor of Na(+) currents. These results suggest that genistein inhibits Na(+) currents in rat SCG neurons through two distinct mechanisms: protein tyrosine kinase-independent, and protein tyrosine kinase-dependent mechanisms. Furthermore, the Src kinase family may be involved in the basal phosphorylation of the Na(+) channel.

  13. Jak2 FERM Domain Interaction with the Erythropoietin Receptor Regulates Jak2 Kinase Activity▿

    PubMed Central

    Funakoshi-Tago, Megumi; Pelletier, Stéphane; Moritake, Hiroshi; Parganas, Evan; Ihle, James N.

    2008-01-01

    Janus kinases are essential for signal transduction by a variety of cytokine receptors and when inappropriately activated can cause hematopoietic disorders and oncogenesis. Consequently, it can be predicted that the interaction of the kinases with receptors and the events required for activation are highly controlled. In a screen to identify phosphorylation events regulating Jak2 activity in EpoR signaling, we identified a mutant (Jak2-Y613E) which has the property of being constitutively activated, as well as an inactivating mutation (Y766E). Although no evidence was obtained to indicate that either site is phosphorylated in signaling, the consequences of the Y613E mutation are similar to those observed with recently described activating mutations in Jak2 (Jak2-V617F and Jak2-L611S). However, unlike the V617F or L611S mutant, the Y613E mutant requires the presence of the receptor but not Epo stimulation for activation and downstream signaling. The properties of the Jak2-Y613E mutant suggest that under normal conditions, Jak2 that is not associated with a receptor is locked into an inactive state and receptor binding through the FERM domain relieves steric constraints, allowing the potential to be activated with receptor engagement. PMID:18160720

  14. Reduced expression of CD45 Protein-Tyrosine Phosphatase Pr

    DTIC Science & Technology

    2009-05-08

    H S /D T R A on A ugust 19, 2009 w w w .jbc.org D ow nloaded from PTP1B , CD45, TCPTP, LMPTP-A, LMPTP-B, MEG1, MEG2, HePTP, PTP), three belong to...the dual specificity phosphatase VHR or the protein-tyrosine phosphatase PTP1B . Given these FIGURE 5. Mice expressing intermediate CD45 levels survive

  15. Recombinant human brain natriuretic peptide ameliorates trauma-induced acute lung injury via inhibiting JAK/STAT signaling pathway in rats.

    PubMed

    Song, Zhi; Zhao, Xiu; Gao, Yan; Liu, Martin; Hou, Mingxiao; Jin, Hongxu; Cui, Yan

    2015-05-01

    JAK/STAT signal pathway plays an important role in the inflammation process of acute lung injury (ALI). This study aimed to investigate the correlation between recombinant human brain natriuretic peptide (rhBNP) and the JAK/STAT signaling pathway and to explore the protective mechanism of rhBNP against trauma-induced ALI. The arterial partial pressure in oxygen, lung wet-dry weight ratios, protein content in bronchoalveolar lavage fluid, the histopathologic of the lung, as well as the protein expressions of STAT1, JAK2, and STAT3 were detected. Sprague-Dawley rats were randomly divided into five groups: a control group, a sham-operated group, an ALI group, an ALI + rhBNP group, and an ALI + AG490 group. At 4 hours, 12 hours, 1 day, 3 days, and 7 days after injury, injured lung specimens were harvested. rhBNP pretreatment significantly ameliorated hypoxemia and histopathologic changes and alleviated pulmonary edema in trauma-induced ALI rats. rhBNP pretreatment reduced the phosphorylated protein and total protein level of STAT1. Similarly to JAK-specific inhibitor AG490, rhBNP was shown to significantly inhibit the phosphorylation of JAK2 and STAT3 in rats with trauma-induced ALI. Our experimental findings indicated that rhBNP can protect rats against trauma-induced ALI and that its underlying mechanism may be related to the inhibition of JAK/STAT signaling pathway activation.

  16. Use of double-stranded RNA-mediated interference to determine the substrates of protein tyrosine kinases and phosphatases.

    PubMed

    Muda, Marco; Worby, Carolyn A; Simonson-Leff, Nancy; Clemens, James C; Dixon, Jack E

    2002-08-15

    Despite the wealth of information generated by genome-sequencing projects, the identification of in vivo substrates of specific protein kinases and phosphatases is hampered by the large number of candidate enzymes, overlapping enzyme specificity and sequence similarity. In the present study, we demonstrate the power of RNA interference (RNAi) to dissect signal transduction cascades involving specific kinases and phosphatases. RNAi is used to identify the cellular tyrosine kinases upstream of the phosphorylation of Down-Syndrome cell-adhesion molecule (Dscam), a novel cell-surface molecule of the immunoglobulin-fibronectin super family, which has been shown to be important for axonal path-finding in Drosophila. Tyrosine phosphorylation of Dscam recruits the Src homology 2 domain of the adaptor protein Dock to the receptor. Dock, the ortho- logue of mammalian Nck, is also essential for correct axonal path-finding in Drosophila. We further determined that Dock is tyrosine-phosphorylated in vivo and identified DPTP61F as the protein tyrosine phosphatase responsible for maintaining Dock in its non-phosphorylated state. The present study illustrates the versatility of RNAi in the identification of the physiological substrates for protein kinases and phosphatases.

  17. Conformationally Induced Off-On Cell Membrane Chemosensor Targeting Receptor Protein-Tyrosine Kinases for in Vivo and in Vitro Fluorescence Imaging of Cancers.

    PubMed

    Jiao, Yang; Yin, Jiqiu; He, Haiyang; Peng, Xiaojun; Gao, Qianmiao; Duan, Chunying

    2018-05-09

    Molecules capable of monitoring receptor protein-tyrosine kinase expression could potentially serve as useful tools for cancer diagnosis due to the overexpression of tyrosine kinases during tumor growth and metastasis. In this work, a conformationally induced "off-on" tyrosine kinase cell membrane fluorescent sensor (SP1) was designed and evaluated for the detection and imaging of receptor protein-tyrosine kinases in vivo and in vitro. SP1 consists of sunitinib and pyrene linked via hexamethylenediamine and displays quenched fluorescence as a dimer. The fluorescence of SP1 is restored in the presence of receptor protein-tyrosine kinases upon strong interaction with SP1 at the target terminal. The unique signal response mechanism enables SP1 use for fluorescence microscopy imaging of receptor protein-tyrosine kinases in the cell membranes of living cells, allowing for the rapid differentiation of cancer cells from normal cells. SP1 can be used to visualize the chick embryo chorioallantoic membrane and mouse model tumors, suggesting its possible application for early cancer diagnosis.

  18. When is Mass Spectrometry Combined with Affinity Approaches Essential? A Case Study of Tyrosine Nitration in Proteins

    NASA Astrophysics Data System (ADS)

    Petre, Brînduşa-Alina; Ulrich, Martina; Stumbaum, Mihaela; Bernevic, Bogdan; Moise, Adrian; Döring, Gerd; Przybylski, Michael

    2012-11-01

    Tyrosine nitration in proteins occurs under physiologic conditions and is increased at disease conditions associated with oxidative stress, such as inflammation and Alzheimer's disease. Identification and quantification of tyrosine-nitrations are crucial for understanding nitration mechanism(s) and their functional consequences. Mass spectrometry (MS) is best suited to identify nitration sites, but is hampered by low stabilities and modification levels and possible structural changes induced by nitration. In this insight, we discuss methods for identifying and quantifying nitration sites by proteolytic affinity extraction using nitrotyrosine (NT)-specific antibodies, in combination with electrospray-MS. The efficiency of this approach is illustrated by identification of specific nitration sites in two proteins in eosinophil granules from several biological samples, eosinophil-cationic protein (ECP) and eosinophil-derived neurotoxin (EDN). Affinity extraction combined with Edman sequencing enabled the quantification of nitration levels, which were found to be 8 % and 15 % for ECP and EDN, respectively. Structure modeling utilizing available crystal structures and affinity studies using synthetic NT-peptides suggest a tyrosine nitration sequence motif comprising positively charged residues in the vicinity of the NT- residue, located at specific surface- accessible sites of the protein structure. Affinities of Tyr-nitrated peptides from ECP and EDN to NT-antibodies, determined by online bioaffinity- MS, provided nanomolar KD values. In contrast, false-positive identifications of nitrations were obtained in proteins from cystic fibrosis patients upon using NT-specific antibodies, and were shown to be hydroxy-tyrosine modifications. These results demonstrate affinity- mass spectrometry approaches to be essential for unequivocal identification of biological tyrosine nitrations.

  19. Conformational motions regulate phosphoryl transfer in related protein tyrosine phosphatases

    PubMed Central

    Whittier, Sean K.; Hengge, Alvan C.; Loria, J. Patrick

    2014-01-01

    Many studies have implicated a role for conformational motions during the catalytic cycle, acting to optimize the binding pocket or facilitate product release, but a more intimate role in the chemical reaction has not been described. We address this by monitoring active-site loop motion in two protein tyrosine phosphatases (PTPs) using NMR spectroscopy. The PTPs, YopH and PTP1B, have very different catalytic rates, however we find in both that the active-site loop closes to its catalytically competent position at rates that mirror the phosphotyrosine cleavage kinetics. This loop contains the catalytic acid, suggesting that loop closure occurs concomitantly with the protonation of the leaving group tyrosine and explains the different kinetics of two otherwise chemically and mechanistically indistinguishable enzymes. PMID:23970698

  20. The Tyrosine Aminomutase TAM1 Is Required for β-Tyrosine Biosynthesis in Rice

    PubMed Central

    Yan, Jian; Aboshi, Takako; Teraishi, Masayoshi; Strickler, Susan R.; Spindel, Jennifer E.; Tung, Chih-Wei; Takata, Ryo; Matsumoto, Fuka; Maesaka, Yoshihiro; McCouch, Susan R.; Okumoto, Yutaka; Mori, Naoki; Jander, Georg

    2015-01-01

    Non-protein amino acids, often isomers of the standard 20 protein amino acids, have defense-related functions in many plant species. A targeted search for jasmonate-induced metabolites in cultivated rice (Oryza sativa) identified (R)-β-tyrosine, an isomer of the common amino acid (S)-α-tyrosine in the seeds, leaves, roots, and root exudates of the Nipponbare cultivar. Assays with 119 diverse cultivars showed a distinct presence/absence polymorphism, with β-tyrosine being most prevalent in temperate japonica cultivars. Genetic mapping identified a candidate gene on chromosome 12, which was confirmed to encode a tyrosine aminomutase (TAM1) by transient expression in Nicotiana benthamiana and in vitro enzyme assays. A point mutation in TAM1 eliminated β-tyrosine production in Nipponbare. Rice cultivars that do not produce β-tyrosine have a chromosome 12 deletion that encompasses TAM1. Although β-tyrosine accumulation was induced by the plant defense signaling molecule jasmonic acid, bioassays with hemipteran and lepidopteran herbivores showed no negative effects at physiologically relevant β-tyrosine concentrations. In contrast, root growth of Arabidopsis thaliana and other tested dicot plants was inhibited by concentrations as low as 1 μM. As β-tyrosine is exuded into hydroponic medium at higher concentrations, it may contribute to the allelopathic potential of rice. PMID:25901084

  1. CBL family E3 ubiquitin ligases control JAK2 ubiquitination and stability in hematopoietic stem cells and myeloid malignancies

    PubMed Central

    Lv, Kaosheng; Jiang, Jing; Donaghy, Ryan; Riling, Christopher R.; Cheng, Ying; Chandra, Vemika; Rozenova, Krasimira; An, Wei; Mohapatra, Bhopal C.; Goetz, Benjamin T.; Pillai, Vinodh; Han, Xu; Todd, Emily A.; Jeschke, Grace R.; Langdon, Wallace Y.; Kumar, Suresh; Hexner, Elizabeth O.

    2017-01-01

    Janus kinase 2 (JAK2) is a central kinase in hematopoietic stem/progenitor cells (HSPCs), and its uncontrolled activation is a prominent oncogenic driver of hematopoietic neoplasms. However, molecular mechanisms underlying the regulation of JAK2 have remained elusive. Here we report that the Casitas B-cell lymphoma (CBL) family E3 ubiquitin ligases down-regulate JAK2 stability and signaling via the adaptor protein LNK/SH2B3. We demonstrated that depletion of CBL/CBL-B or LNK abrogated JAK2 ubiquitination, extended JAK2 half-life, and enhanced JAK2 signaling and cell growth in human cell lines as well as primary murine HSPCs. Built on these findings, we showed that JAK inhibitor (JAKi) significantly reduced aberrant HSPCs and mitigated leukemia development in a mouse model of aggressive myeloid leukemia driven by loss of Cbl and Cbl-b. Importantly, primary human CBL mutated (CBLmut) leukemias exhibited increased JAK2 protein levels and signaling and were hypersensitive to JAKi. Loss-of-function mutations in CBL E3 ubiquitin ligases are found in a wide range of myeloid malignancies, which are diseases without effective treatment options. Hence, our studies reveal a novel signaling axis that regulates JAK2 in normal and malignant HSPCs and suggest new therapeutic strategies for treating CBLmut myeloid malignancies. PMID:28611190

  2. Responses to Cytokines and Interferons that Depend upon JAKs and STATs.

    PubMed

    Stark, George R; Cheon, HyeonJoo; Wang, Yuxin

    2018-01-02

    Many cytokines and all interferons activate members of a small family of kinases (the Janus kinases [JAKs]) and a slightly larger family of transcription factors (the signal transducers and activators of transcription [STATs]), which are essential components of pathways that induce the expression of specific sets of genes in susceptible cells. JAK-STAT pathways are required for many innate and acquired immune responses, and the activities of these pathways must be finely regulated to avoid major immune dysfunctions. Regulation is achieved through mechanisms that include the activation or induction of potent negative regulatory proteins, posttranslational modification of the STATs, and other modulatory effects that are cell-type specific. Mutations of JAKs and STATs can result in gains or losses of function and can predispose affected individuals to autoimmune disease, susceptibility to a variety of infections, or cancer. Here we review recent developments in the biochemistry, genetics, and biology of JAKs and STATs. Copyright © 2018 Cold Spring Harbor Laboratory Press; all rights reserved.

  3. Synaptopodin Is a Coincidence Detector of Tyrosine versus Serine/Threonine Phosphorylation for the Modulation of Rho Protein Crosstalk in Podocytes.

    PubMed

    Buvall, Lisa; Wallentin, Hanna; Sieber, Jonas; Andreeva, Svetlana; Choi, Hoon Young; Mundel, Peter; Greka, Anna

    2017-03-01

    Tyrosine and serine/threonine signal-transduction pathways influence many aspects of cell behavior, including the spatial and temporal regulation of the actin cytoskeleton. However, little is known about how input from diverse tyrosine and serine/threonine kinases is integrated to control Rho protein crosstalk and actin remodeling, which are critically important in podocyte health and disease. Here we unveil the proteolytically-regulated, actin organizing protein synaptopodin as a coincidence detector of tyrosine versus serine/threonine phosphorylation. We show that serine/threonine and tyrosine kinases duel for synaptopodin stability versus degradation. EGFR/Src-mediated tyrosine phosphorylation of synaptopodin in podocytes promotes binding to the serine/threonine phosphatase calcineurin. This leads to the loss of 14-3-3 binding, resulting in synaptopodin degradation, Vav2 activation, enhanced Rac1 signaling, and ultimate loss of stress fibers. Our studies reveal how synaptopodin, a single proteolytically-controlled protein, integrates antagonistic tyrosine versus serine/threonine phosphorylation events for the dynamic control of the actin cytoskeleton in podocytes. Copyright © 2017 by the American Society of Nephrology.

  4. CHZ868, a Type II JAK2 Inhibitor, Reverses Type I JAK Inhibitor Persistence and Demonstrates Efficacy in Myeloproliferative Neoplasms

    PubMed Central

    Meyer, Sara C.; Keller, Matthew D.; Chiu, Sophia; Koppikar, Priya; Guryanova, Olga A.; Rapaport, Franck; Xu, Ke; Manova, Katia; Pankov, Dmitry; O’Reilly, Richard J.; Kleppe, Maria; McKenney, Anna Sophia; Shih, Alan H.; Shank, Kaitlyn; Ahn, Jihae; Papalexi, Eftymia; Spitzer, Barbara; Socci, Nick; Viale, Agnes; Mandon, Emeline; Ebel, Nicolas; Andraos, Rita; Rubert, Joëlle; Dammassa, Ernesta; Romanet, Vincent; Dölemeyer, Arno; Zender, Michael; Heinlein, Melanie; Rampal, Rajit; Weinberg, Rona Singer; Hoffman, Ron; Sellers, William R.; Hofmann, Francesco; Murakami, Masato; Baffert, Fabienne; Gaul, Christoph; Radimerski, Thomas; Levine, Ross L.

    2015-01-01

    Summary Although clinically tested JAK inhibitors reduce splenomegaly and systemic symptoms, molecular responses are not observed in most myeloproliferative neoplasms (MPN) patients. We previously demonstrated that MPN cells become persistent to type I JAK inhibitors that bind the active conformation of JAK2. We investigated if CHZ868, a type II JAK inhibitor, would demonstrate activity in JAK inhibitor persistent cells, murine MPN models, and MPN patient samples. JAK2- and MPL-mutant cell lines were sensitive to CHZ868, including type I JAK inhibitor persistent cells. CHZ868 showed significant activity in murine MPN models and induced reductions in mutant allele burden not observed with type I JAK inhibitors. These data demonstrate that type II JAK inhibition is a viable therapeutic approach for MPN patients. PMID:26175413

  5. Regulation of Src homology 2-containing tyrosine phosphatase 1 during activation of human neutrophils. Role of protein kinase C.

    PubMed

    Brumell, J H; Chan, C K; Butler, J; Borregaard, N; Siminovitch, K A; Grinstein, S; Downey, G P

    1997-01-10

    The tyrosine phosphorylation of several proteins induced in neutrophils by soluble and particulate stimuli is thought to be crucial for initiating antimicrobial responses. Although activation of tyrosine kinases is thought to mediate this event, the role of tyrosine phosphatases in the initiation and modulation of neutrophil responses remains largely undefined. We investigated the role of Src homology 2-containing tyrosine phosphatase 1 (SHP-1; also known as protein tyrosine phosphatase 1C (PTP1C), hematopoetic cell phosphatase, PTP-N6, and SHPTP-1), a phosphatase expressed primarily in hemopoietic cells, in the activation of human neutrophils. SHP-1 mRNA and protein were detected in these cells, and the enzyme was found to be predominantly localized to the cytosol in unstimulated cells. Following stimulation with neutrophil agonists such as phorbol ester, chemotactic peptide, or opsonized zymosan, a fraction of the phosphatase redistributed to the cytoskeleton. Agonist treatment also induced significant decreases (30-60%) in SHP-1 activity, which correlated temporally with increases in the cellular phosphotyrosine content. Phosphorylation of SHP-1 on serine residues was associated with the inhibition of its enzymatic activity, suggesting a causal relationship. Accordingly, both the agonist-evoked phosphorylation of SHP-1 and the inhibition of its catalytic activity were blocked by treatment with bisindolylmaleimide I, a potent and specific inhibitor of protein kinase C (PKC) activity. Immunoprecipitated SHP-1 was found to be phosphorylated efficiently by purified PKC in vitro. Such phosphorylation also caused a decrease in the phosphatase activity of SHP-1. Together, these data suggest that inhibition of SHP-1 by PKC-mediated serine phosphorylation plays a role in facilitating the accumulation of tyrosine-phosphorylated proteins following neutrophil stimulation. These findings provide a new link between the PKC and tyrosine phosphorylation branches of the

  6. HSP90 is a therapeutic target in JAK2-dependent myeloproliferative neoplasms in mice and humans

    PubMed Central

    Marubayashi, Sachie; Koppikar, Priya; Taldone, Tony; Abdel-Wahab, Omar; West, Nathan; Bhagwat, Neha; Caldas-Lopes, Eloisi; Ross, Kenneth N.; Gönen, Mithat; Gozman, Alex; Ahn, James H.; Rodina, Anna; Ouerfelli, Ouathek; Yang, Guangbin; Hedvat, Cyrus; Bradner, James E.; Chiosis, Gabriela; Levine, Ross L.

    2010-01-01

    JAK2 kinase inhibitors were developed for the treatment of myeloproliferative neoplasms (MPNs), following the discovery of activating JAK2 mutations in the majority of patients with MPN. However, to date JAK2 inhibitor treatment has shown limited efficacy and apparent toxicities in clinical trials. We report here that an HSP90 inhibitor, PU-H71, demonstrated efficacy in cell line and mouse models of the MPN polycythemia vera (PV) and essential thrombocytosis (ET) by disrupting JAK2 protein stability. JAK2 physically associated with both HSP90 and PU-H71 and was degraded by PU-H71 treatment in vitro and in vivo, demonstrating that JAK2 is an HSP90 chaperone client. PU-H71 treatment caused potent, dose-dependent inhibition of cell growth and signaling in JAK2 mutant cell lines and in primary MPN patient samples. PU-H71 treatment of mice resulted in JAK2 degradation, inhibition of JAK-STAT signaling, normalization of peripheral blood counts, and improved survival in MPN models at doses that did not degrade JAK2 in normal tissues or cause substantial toxicity. Importantly, PU-H71 treatment also reduced the mutant allele burden in mice. These data establish what we believe to be a novel therapeutic rationale for HSP90 inhibition in the treatment of JAK2-dependent MPN. PMID:20852385

  7. Phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) and Janus kinase/signal transducer and activator of transcription (JAK/STAT) follicular signalling is conserved in the mare ovary.

    PubMed

    Hall, Sally E; Upton, Rose M O; McLaughlin, Eileen A; Sutherland, Jessie M

    2017-09-26

    The mare ovary is unique in its anatomical structure; however, the signalling pathways responsible for physiological processes, such as follicular activation, remain uncharacterised. This provided us with the impetus to explore whether signalling molecules from important folliculogenesis pathways, phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) and Janus kinase/signal transducer and activator of transcription (JAK/STAT), are conserved in the mare ovary. Messenger RNA expression of six genes important in follicle development was measured using quantitative polymerase chain reaction and protein localisation of key pathway members (PI3K, AKT1, phosphatase and tensin homologue (PTEN), JAK1, STAT3 and suppressor of cytokine signalling 4 (SOCS4)) was compared in tissue from fetal and adult mare ovaries. Tissue from adult ovaries exhibited significantly increased levels of mRNA expression of PI3K, AKT1, PTEN, JAK1, STAT3 and SOCS4 compared with tissue from fetal ovaries. PI3K, AKT1, JAK1 and STAT3 demonstrated redistributed localisation, from pregranulosa cells in fetal development, to both the oocyte and granulosa cells of follicles in the adult ovary, whilst negative feedback molecules PTEN and SOCS4 were only localised to the granulosa cells in the adult ovary. These findings suggest that the PI3K/AKT and JAK/STAT signalling pathways are utilised during folliculogenesis in the mare, similarly to previously studied mammalian species, and may serve as useful biomarkers for assessment of ovary development in the horse.

  8. Identification of tyrosine phosphorylation sites in human Gab-1 protein by EGF receptor kinase in vitro.

    PubMed

    Lehr, S; Kotzka, J; Herkner, A; Klein, E; Siethoff, C; Knebel, B; Noelle, V; Brüning, J C; Klein, H W; Meyer, H E; Krone, W; Müller-Wieland, D

    1999-01-05

    Grb2-associated binder-1 (Gab-1) has been identified recently in a cDNA library of glioblastoma tumors and appears to play a central role in cellular growth response, transformation, and apoptosis. Structural and functional features indicate that Gab-1 is a multisubstrate docking protein downstream in the signaling pathways of different receptor tyrosine kinases, including the epidermal growth factor receptor (EGFR). Therefore, the aim of the study was to characterize the phosphorylation of recombinant human Gab-1 (hGab-1) protein by EGFR in vitro. Using the pGEX system to express the entire protein and different domains of hGab-1 as glutathione S-transferase proteins, kinetic data for phosphorylation of these proteins by wheat germ agglutinine-purified EGFR and the recombinant EGFR (rEGFR) receptor kinase domain were determined. Our data revealed similar affinities of hGab-1-C for both receptor preparations (KM = 2.7 microM for rEGFR vs 3.2 microM for WGA EGFR) as well as for the different recombinant hGab-1 domains. To identify the specific EGFR phosphorylation sites, hGab-1-C was sequenced by Edman degradation and mass spectrometry. The entire protein was phosphorylated by rEGFR at eight tyrosine residues (Y285, Y373, Y406, Y447, Y472, Y619, Y657, and Y689). Fifty percent of the identified radioactivity was incorporated in tyrosine Y657 as the predominant peak in HPLC analysis, a site exhibiting features of a potential Syp (PTP1D) binding site. Accordingly, GST-pull down assays with A431 and HepG2 cell lysates showed that phosphorylated intact hGab-1 was able to bind Syp. This binding appears to be specific, because it was abolished by changing the Y657 of hGab-1 to F657. These results demonstrate that hGab-1 is a high-affinity substrate for the EGFR and the major tyrosine phosphorylation site Y657 in the C terminus is a specific binding site for the tyrosine phosphatase Syp.

  9. Protein modification in the post-mating spermatophore of the signal crayfish Pacifastacus leniusculus: insight into the tyrosine phosphorylation in a non-motile spermatozoon.

    PubMed

    Niksirat, Hamid; Vancová, Marie; Andersson, Liselotte; James, Peter; Kouba, Antonín; Kozák, Pavel

    2016-09-01

    After mating, spermatophores of signal crayfish are stored on the body of the female for a period before fertilization. This study compared the post-mating protein profile and pattern of protein tyrosine phosphorylation of the signal crayfish spermatophore to that of the freshly ejaculated spermatophore and found substantial differences. Two major bands of tyrosine-phosphorylated proteins of molecular weights 10 and 50kDa were observed in the freshly ejaculated spermatophore of the signal crayfish. While the tyrosine-phosphorylated protein band with molecular weight 10kDa was formed by protein(s) of similar pH, the band with molecular weight of 50kDa consisted of proteins of varying pH. In the post-mating spermatophore, the band with molecular weight of 50kDa was not detected, and an increase in the level of protein tyrosine phosphorylation was observed in the 10kDa band. The microtubular radial arms of the spermatozoon showed a positive reaction to an anti-tyrosine antibody conjugated with gold particles in both the freshly ejaculated and post-mating spermatophores. In conclusion, the male gamete of the signal crayfish undergoes molecular modification during post-mating storage on the body of the female including changes in the level of protein expression and protein tyrosine phosphorylation. Structural similarity of the radial arms in the crayfish immotile spermatozoon with flagellum, which is the main site of protein tyrosine phosphorylation in the mammalian motile spermatozoa, raises questions regarding evolution and function of such organelles across the animal kingdom that must be addressed in the future studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Are tyrosine residues involved in the photoconversion of the water-soluble chlorophyll-binding protein of Chenopodium album?

    PubMed

    Takahashi, S; Seki, Y; Uchida, A; Nakayama, K; Satoh, H

    2015-05-01

    Non-photosynthetic and hydrophilic chlorophyll (Chl) proteins, called water-soluble Chl-binding proteins (WSCPs), are distributed in various species of Chenopodiaceae, Amaranthaceae, Polygonaceae and Brassicaceae. Based on their photoconvertibility, WSCPs are categorised into two classes: Class I (photoconvertible) and Class II (non-photoconvertible). Chenopodium album WSCP (CaWSCP; Class I) is able to convert the chlorin skeleton of Chl a into a bacteriochlorin-like skeleton under light in the presence of molecular oxygen. Potassium iodide (KI) is a strong inhibitor of the photoconversion. Because KI attacks tyrosine residues in proteins, tyrosine residues in CaWSCP are considered to be important amino acid residues for the photoconversion. Recently, we identified the gene encoding CaWSCP and found that the mature region of CaWSCP contained four tyrosine residues: Tyr13, Tyr14, Tyr87 and Tyr134. To gain insight into the effect of the tyrosine residues on the photoconversion, we constructed 15 mutant proteins (Y13A, Y14A, Y87A, Y134A, Y13-14A, Y13-87A, Y13-134A, Y14-87A, Y14-134A, Y87-134A, Y13-14-87A, Y13-14-134A, Y13-87-134A, Y14-87-134A and Y13-14-87-134A) using site-directed mutagenesis. Amazingly, all the mutant proteins retained not only chlorophyll-binding activity, but also photoconvertibility. Furthermore, we found that KI strongly inhibited the photoconversion of Y13-14-87-134A. These findings indicated that the four tyrosine residues are not essential for the photoconversion. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  11. C-terminal tyrosine residues modulate the fusion activity of the Hendra virus fusion protein

    PubMed Central

    Popa, Andreea; Pager, Cara Teresia; Dutch, Rebecca Ellis

    2011-01-01

    The paramyxovirus family includes important human pathogens such as measles, mumps, respiratory syncytial virus and the recently emerged, highly pathogenic Hendra and Nipah viruses. The viral fusion (F) protein plays critical roles in infection, promoting both the viral-cell membrane fusion events needed for viral entry as well as cell-cell fusion events leading to syncytia formation. We describe the surprising finding that addition of the short epitope HA tag to the cytoplasmic tail (CT) of the Hendra virus F protein leads to a significant increase in cell-cell membrane fusion. This increase was not due to alterations in surface expression, cleavage state, or association with lipid microdomains. Addition of a Myc tag of similar length did not alter Hendra F fusion activity, indicating that the observed stimulation was not solely a result of lengthening the CT. Three tyrosine residues within the HA tag were critical for the increase in fusion, suggesting C-terminal tyrosines may modulate Hendra fusion activity. The effects of HA tag addition varied with other fusion proteins, as parainfluenza virus 5 F-HA showed decreased surface expression and no stimulation in fusion. These results indicate that additions to the C-terminal end of the F protein CT can modulate protein function in a sequence specific manner, reinforcing the need for careful analysis of epitope tagged glycoproteins. In addition, our results implicate C-terminal tyrosine residues in modulation of the membrane fusion reaction promoted by these viral glycoproteins. PMID:21175223

  12. A Genetic Screen Reveals an Unexpected Role for Yorkie Signaling in JAK/STAT-Dependent Hematopoietic Malignancies in Drosophila melanogaster

    PubMed Central

    Anderson, Abigail M.; Bailetti, Alessandro A.; Rodkin, Elizabeth; De, Atish; Bach, Erika A.

    2017-01-01

    A gain-of-function mutation in the tyrosine kinase JAK2 (JAK2V617F) causes human myeloproliferative neoplasms (MPNs). These patients present with high numbers of myeloid lineage cells and have numerous complications. Since current MPN therapies are not curative, there is a need to find new regulators and targets of Janus kinase/Signal transducer and activator of transcription (JAK/STAT) signaling that may represent additional clinical interventions . Drosophila melanogaster offers a low complexity model to study MPNs as JAK/STAT signaling is simplified with only one JAK [Hopscotch (Hop)] and one STAT (Stat92E). hopTumorous-lethal (Tum-l) is a gain-of-function mutation that causes dramatic expansion of myeloid cells, which then form lethal melanotic tumors. Through an F1 deficiency (Df) screen, we identified 11 suppressors and 35 enhancers of melanotic tumors in hopTum-l animals. Dfs that uncover the Hippo (Hpo) pathway genes expanded (ex) and warts (wts) strongly enhanced the hopTum-l tumor burden, as did mutations in ex, wts, and other Hpo pathway genes. Target genes of the Hpo pathway effector Yorkie (Yki) were significantly upregulated in hopTum-l blood cells, indicating that Yki signaling was increased. Ectopic hematopoietic activation of Yki in otherwise wild-type animals increased hemocyte proliferation but did not induce melanotic tumors. However, hematopoietic depletion of Yki significantly reduced the hopTum-l tumor burden, demonstrating that Yki is required for melanotic tumors in this background. These results support a model in which elevated Yki signaling increases the number of hemocytes, which become melanotic tumors as a result of elevated JAK/STAT signaling. PMID:28620086

  13. Structure of the WipA protein reveals a novel tyrosine protein phosphatase effector from Legionella pneumophila.

    PubMed

    Pinotsis, Nikos; Waksman, Gabriel

    2017-06-02

    Legionnaires' disease is a severe form of pneumonia caused by the bacterium Legionella pneumophila. L. pneumophila pathogenicity relies on secretion of more than 300 effector proteins by a type IVb secretion system. Among these Legionella effectors, WipA has been primarily studied because of its dependence on a chaperone complex, IcmSW, for translocation through the secretion system, but its role in pathogenicity has remained unknown. In this study, we present the crystal structure of a large fragment of WipA, WipA435. Surprisingly, this structure revealed a serine/threonine phosphatase fold that unexpectedly targets tyrosine-phosphorylated peptides. The structure also revealed a sequence insertion that folds into an α-helical hairpin, the tip of which adopts a canonical coiled-coil structure. The purified protein was a dimer whose dimer interface involves interactions between the coiled coil of one WipA molecule and the phosphatase domain of another. Given the ubiquity of protein-protein interaction mediated by interactions between coiled-coils, we hypothesize that WipA can thereby transition from a homodimeric state to a heterodimeric state in which the coiled-coil region of WipA is engaged in a protein-protein interaction with a tyrosine-phosphorylated host target. In conclusion, these findings help advance our understanding of the molecular mechanisms of an effector involved in Legionella virulence and may inform approaches to elucidate the function of other effectors. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Protein tyrosine phosphatase-1B regulates the tyrosine phosphorylation of the adapter Grb2-associated binder 1 (Gab1) in the retina

    PubMed Central

    2013-01-01

    Background Gab1 (Grb2-associated binder 1) is a key coordinator that belongs to the insulin receptor substrate-1 like family of adaptor molecules and is tyrosine phosphorylated in response to various growth factors, cytokines, and numerous other molecules. Tyrosine phosphorylated Gab1 is able to recruit a number of signaling effectors including PI3K, SHP2 and PLC-γ. In this study, we characterized the localization and regulation of tyrosine phosphorylation of Gab1 in the retina. Results Our immuno localization studies suggest that Gab1 is expressed in rod photoreceptor inner segments. We found that hydrogen peroxide activates the tyrosine phosphorylation of Gab1 ex vivo and hydrogen peroxide has been shown to inhibit the protein tyrosine phosphatase PTP1B activity. We found a stable association between the D181A substrate trap mutant of PTP1B and Gab1. Our studies suggest that PTP1B interacts with Gab1 through Tyrosine 83 and this residue may be the major PTP1B target residue on Gab1. We also found that Gab1 undergoes a light-dependent tyrosine phosphorylation and PTP1B regulates the phosphorylation state of Gab1. Consistent with these observations, we found an enhanced Gab1 tyrosine phosphorylation in PTP1B deficient mice and also in retinas treated ex vivo with a PTP1B specific allosteric inhibitor. Conclusions Our laboratory has previously reported that retinas deficient of PTP1B are resistant to light damage compared to wild type mice. Since Gab1 is negatively regulated by PTP1B, a part of the retinal neuroprotective effect we have observed previously in PTP1B deficient mice could be contributed by Gab1 as well. In summary, our data suggest that PTP1B regulates the phosphorylation state of retinal Gab1 in vivo. PMID:23521888

  15. QSAR Study of p56lck Protein Tyrosine Kinase Inhibitory Activity of Flavonoid Derivatives Using MLR and GA-PLS

    PubMed Central

    Fassihi, Afshin; Sabet, Razieh

    2008-01-01

    Quantitative relationships between molecular structure and p56lck protein tyrosine kinase inhibitory activity of 50 flavonoid derivatives are discovered by MLR and GA-PLS methods. Different QSAR models revealed that substituent electronic descriptors (SED) parameters have significant impact on protein tyrosine kinase inhibitory activity of the compounds. Between the two statistical methods employed, GA-PLS gave superior results. The resultant GA-PLS model had a high statistical quality (R2 = 0.74 and Q2 = 0.61) for predicting the activity of the inhibitors. The models proposed in the present work are more useful in describing QSAR of flavonoid derivatives as p56lck protein tyrosine kinase inhibitors than those provided previously. PMID:19325836

  16. Photo-oxidation of tyrosine in a bio-engineered bacterioferritin 'reaction centre'-a protein model for artificial photosynthesis.

    PubMed

    Hingorani, Kastoori; Pace, Ron; Whitney, Spencer; Murray, James W; Smith, Paul; Cheah, Mun Hon; Wydrzynski, Tom; Hillier, Warwick

    2014-10-01

    The photosynthetic reaction centre (RC) is central to the conversion of solar energy into chemical energy and is a model for bio-mimetic engineering approaches to this end. We describe bio-engineering of a Photosystem II (PSII) RC inspired peptide model, building on our earlier studies. A non-photosynthetic haem containing bacterioferritin (BFR) from Escherichia coli that expresses as a homodimer was used as a protein scaffold, incorporating redox-active cofactors mimicking those of PSII. Desirable properties include: a di-nuclear metal binding site which provides ligands for bivalent metals, a hydrophobic pocket at the dimer interface which can bind a photosensitive porphyrin and presence of tyrosine residues proximal to the bound cofactors, which can be utilised as efficient electron-tunnelling intermediates. Light-induced electron transfer from proximal tyrosine residues to the photo-oxidised ZnCe6(•+), in the modified BFR reconstituted with both ZnCe6 and Mn(II), is presented. Three site-specific tyrosine variants (Y25F, Y58F and Y45F) were made to localise the redox-active tyrosine in the engineered system. The results indicate that: presence of bound Mn(II) is necessary to observe tyrosine oxidation in all BFR variants; Y45 the most important tyrosine as an immediate electron donor to the oxidised ZnCe6(•+) and that Y25 and Y58 are both redox-active in this system, but appear to function interchangebaly. High-resolution (2.1Å) crystal structures of the tyrosine variants show that there are no mutation-induced effects on the overall 3-D structure of the protein. Small effects are observed in the Y45F variant. Here, the BFR-RC represents a protein model for artificial photosynthesis. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  17. Protein tyrosine phosphatase σ targets apical junction complex proteins in the intestine and regulates epithelial permeability

    PubMed Central

    Murchie, Ryan; Guo, Cong-Hui; Persaud, Avinash; Muise, Aleixo; Rotin, Daniela

    2014-01-01

    Protein tyrosine phosphatase (PTP)σ (PTPRS) was shown previously to be associated with susceptibility to inflammatory bowel disease (IBD). PTPσ−/− mice exhibit an IBD-like phenotype in the intestine and show increased susceptibility to acute models of murine colitis. However, the function of PTPσ in the intestine is uncharacterized. Here, we show an intestinal epithelial barrier defect in the PTPσ−/− mouse, demonstrated by a decrease in transepithelial resistance and a leaky intestinal epithelium that was determined by in vivo tracer analysis. Increased tyrosine phosphorylation was observed at the plasma membrane of epithelial cells lining the crypts of the small bowel and colon of the PTPσ−/− mouse, suggesting the presence of PTPσ substrates in these regions. Using mass spectrometry, we identified several putative PTPσ intestinal substrates that were hyper–tyrosine-phosphorylated in the PTPσ−/− mice relative to wild type. Among these were proteins that form or regulate the apical junction complex, including ezrin. We show that ezrin binds to and is dephosphorylated by PTPσ in vitro, suggesting it is a direct PTPσ substrate, and identified ezrin-Y353/Y145 as important sites targeted by PTPσ. Moreover, subcellular localization of the ezrin phosphomimetic Y353E or Y145 mutants were disrupted in colonic Caco-2 cells, similar to ezrin mislocalization in the colon of PTPσ−/− mice following induction of colitis. Our results suggest that PTPσ is a positive regulator of intestinal epithelial barrier, which mediates its effects by modulating epithelial cell adhesion through targeting of apical junction complex-associated proteins (including ezrin), a process impaired in IBD. PMID:24385580

  18. Identification of a human src homology 2-containing protein-tyrosine-phosphatase: a putative homolog of Drosophila corkscrew.

    PubMed Central

    Freeman, R M; Plutzky, J; Neel, B G

    1992-01-01

    src homology 2 (SH2) domains direct binding to specific phosphotyrosyl proteins. Recently, SH2-containing protein-tyrosine-phosphatases (PTPs) were identified. Using degenerate oligonucleotides and the PCR, we have cloned a cDNA for an additional PTP, SH-PTP2, which contains two SH2 domains and is expressed ubiquitously. When expressed in Escherichia coli, SH-PTP2 displays tyrosine-specific phosphatase activity. Strong sequence similarity between SH-PTP2 and the Drosophila gene corkscrew (csw) and their similar patterns of expression suggest that SH-PTP2 is the human corkscrew homolog. Sequence comparisons between SH-PTP2, SH-PTP1, corkscrew, and other SH2-containing proteins suggest the existence of a subfamily of SH2 domains found specifically in PTPs, whereas comparison of the PTP domains of the SH2-containing PTPs with other tyrosine phosphatases suggests the existence of a subfamily of PTPs containing SH2 domains. Since corkscrew, a member of the terminal class signal transduction pathway, acts in concert with D-raf to positively transduce the signal generated by the receptor tyrosine kinase torso, these findings suggest several mechanisms by which SH-PTP2 may participate in mammalian signal transduction. Images PMID:1280823

  19. [Changes of protein tyrosine phosphorylation in erythrocyte band 3 glucose-6-phosphate dehydrogenase deficiency].

    PubMed

    Yu, Guoyu; Li, Jialin; Tian, Xingya; Lin, Hong; Wang, Xiaoying

    2002-11-01

    To explore the hemolytic mechanism of glucose-6-phosphate dehydrogenase (G6PD) deficient erythrocytes in the view of phosphorylation of membrane protein. The alternation of membrane protein phosphorylation and the effect of dithiothreitol (DTT) on protein phosphorylation were analysed by Western blot technique. The activity of phosphotyrosine phosphatase (PTPs) was determined by using p-nitrophenyl phosphate as substrate. Tyrosine phosphorylation of band 3 protein was obviously enhanced in G6PD-deficient erythrocytes. The activity of PTPs was low compared to the normal erythrocytes. The level of phosphotyrosine in G6PD-deficient erythrocytes incubated with DTT was almost the same as in those without DTT. The results were consistent with the activity of PTPs. PTPs activity reduction and tyrosine phosphorylation enhancement induced by oxidation in G6PD deficiency play an important role in erythrocytes hemolysis. However, the alternation of thiol group is not the only factor affecting the activity of PTPs in G6PD-deficient erythrocytes.

  20. The Role of Bacterial Protein Tyrosine Phosphatases in the Regulation of the Biosynthesis of Secreted Polysaccharides

    PubMed Central

    Morona, Renato

    2014-01-01

    Abstract Significance: Tyrosine phosphorylation and associated protein tyrosine phosphatases are gaining prominence as critical mechanisms in the regulation of fundamental processes in a wide variety of bacteria. In particular, these phosphatases have been associated with the control of the biosynthesis of capsular polysaccharides and extracellular polysaccharides, critically important virulence factors for bacteria. Recent Advances: Deletion and overexpression of the phosphatases result in altered polysaccharide biosynthesis in a range of bacteria. The recent structures of associated auto-phosphorylating tyrosine kinases have suggested that the phosphatases may be critical for the cycling of the kinases between monomers and higher order oligomers. Critical Issues: Additional substrates of the phosphatases apart from cognate kinases are currently being identified. These are likely to be critical to our understanding of the mechanism by which polysaccharide biosynthesis is regulated. Future Directions: Ultimately, these protein tyrosine phosphatases are an attractive target for the development of novel antimicrobials. This is particularly the case for the polymerase and histidinol phosphatase family, which is predominantly found in bacteria. Furthermore, the determination of bacterial tyrosine phosphoproteomes will likely help to uncover the fundamental roles, mechanism, and critical importance of these phosphatases in a wide range of bacteria. Antioxid. Redox Signal. 20, 2274–2289. PMID:24295407

  1. Suppressor of Cytokine Signaling 2 Negatively Regulates NK Cell Differentiation by Inhibiting JAK2 Activity

    PubMed Central

    Kim, Won Sam; Kim, Mi Jeong; Kim, Dong Oh; Byun, Jae-Eun; Huy, Hangsak; Song, Hae Young; Park, Young-Jun; Kim, Tae-Don; Yoon, Suk Ran; Choi, Eun-Ji; Jung, Haiyoung; Choi, Inpyo

    2017-01-01

    Suppressor of cytokine signaling (SOCS) proteins are negative regulators of cytokine responses. Although recent reports have shown regulatory roles for SOCS proteins in innate and adaptive immunity, their roles in natural killer (NK) cell development are largely unknown. Here, we show that SOCS2 is involved in NK cell development. SOCS2−/− mice showed a high frequency of NK cells in the bone marrow and spleen. Knockdown of SOCS2 was associated with enhanced differentiation of NK cells in vitro, and the transplantation of hematopoietic stem cells (HSCs) into congenic mice resulted in enhanced differentiation in SOCS2−/− HSCs. We found that SOCS2 could inhibit Janus kinase 2 (JAK2) activity and JAK2-STAT5 signaling pathways via direct interaction with JAK2. Furthermore, SOCS2−/− mice showed a reduction in lung metastases and an increase in survival following melanoma challenge. Overall, our findings suggest that SOCS2 negatively regulates the development of NK cells by inhibiting JAK2 activity via direct interaction. PMID:28383049

  2. Signaling by Kit protein-tyrosine kinase--the stem cell factor receptor.

    PubMed

    Roskoski, Robert

    2005-11-11

    Signaling by stem cell factor and Kit, its receptor, plays important roles in gametogenesis, hematopoiesis, mast cell development and function, and melanogenesis. Moreover, human and mouse embryonic stem cells express Kit transcripts. Stem cell factor exists as both a soluble and a membrane-bound glycoprotein while Kit is a receptor protein-tyrosine kinase. The complete absence of stem cell factor or Kit is lethal. Deficiencies of either produce defects in red and white blood cell production, hypopigmentation, and sterility. Gain-of-function mutations of Kit are associated with several human neoplasms including acute myelogenous leukemia, gastrointestinal stromal tumors, and mastocytomas. Kit consists of an extracellular domain, a transmembrane segment, a juxtamembrane segment, and a protein kinase domain that contains an insert of about 80 amino acid residues. Binding of stem cell factor to Kit results in receptor dimerization and activation of protein kinase activity. The activated receptor becomes autophosphorylated at tyrosine residues that serve as docking sites for signal transduction molecules containing SH2 domains. The adaptor protein APS, Src family kinases, and Shp2 tyrosyl phosphatase bind to phosphotyrosine 568. Shp1 tyrosyl phosphatase and the adaptor protein Shc bind to phosphotyrosine 570. C-terminal Src kinase homologous kinase and the adaptor Shc bind to both phosphotyrosines 568 and 570. These residues occur in the juxtamembrane segment of Kit. Three residues in the kinase insert domain are phosphorylated and attract the adaptor protein Grb2 (Tyr703), phosphatidylinositol 3-kinase (Tyr721), and phospholipase Cgamma (Tyr730). Phosphotyrosine 900 in the distal kinase domain binds phosphatidylinositol 3-kinase which in turn binds the adaptor protein Crk. Phosphotyrosine 936, also in the distal kinase domain, binds the adaptor proteins APS, Grb2, and Grb7. Kit has the potential to participate in multiple signal transduction pathways as a result of

  3. Sorbitol Can Fuel Mouse Sperm Motility and Protein Tyrosine Phosphorylation via Sorbitol Dehydrogenase1

    PubMed Central

    Cao, Wenlei; Aghajanian, Haig K.; Haig-Ladewig, Lisa A.; Gerton, George L.

    2008-01-01

    Energy sources that can be metabolized to yield ATP are essential for normal sperm functions such as motility. Two major monosaccharides, sorbitol and fructose, are present in semen. Furthermore, sorbitol dehydrogenase (SORD) can convert sorbitol to fructose, which can then be metabolized via the glycolytic pathway in sperm to make ATP. Here we characterize Sord mRNA and SORD expression during mouse spermatogenesis and examine the ability of sorbitol to support epididymal sperm motility and tyrosine phosphorylation. Sord mRNA levels increased during the course of spermatogenic differentiation. SORD protein, however, was first detected at the condensing spermatid stage. By indirect immunofluorescence, SORD was present along the length of the flagella of caudal epididymal sperm. Furthermore, immunoelectron microscopy showed that SORD was associated with mitochondria and the plasma membranes of sperm. Sperm incubated with sorbitol maintained motility, indicating that sorbitol was utilized as an energy source. Sorbitol, as well as glucose and fructose, were not essential to induce hyperactive motility. Protein tyrosine phosphorylation increased in a similar manner when sorbitol was substituted for glucose in the incubation medium used for sperm capacitation. These results indicate that sorbitol can serve as an alternative energy source for sperm motility and protein tyrosine phosphorylation. PMID:18799757

  4. Protein-bound tyrosine oxidation, nitration and chlorination by-products assessed by ultraperformance liquid chromatography coupled to tandem mass spectrometry.

    PubMed

    Torres-Cuevas, Isabel; Kuligowski, Julia; Cárcel, María; Cháfer-Pericás, Consuelo; Asensi, Miguel; Solberg, Rønnaug; Cubells, Elena; Nuñez, Antonio; Saugstad, Ola Didrik; Vento, Máximo; Escobar, Javier

    2016-03-24

    Free radicals cause alterations in cellular protein structure and function. Oxidized, nitrated, and chlorinated modifications of aromatic amino acids including phenylalanine and tyrosine are reliable biomarkers of oxidative stress and inflammation in clinical conditions. To develop, validate and apply a rapid method for the quantification of known hallmarks of tyrosine oxidation, nitration and chlorination in plasma and tissue proteins providing a snapshot of the oxidative stress and inflammatory status of the organism and of target organs respectively. The extraction and clean up procedure entailed protein precipitation, followed by protein re-suspension and enzymatic digestion with pronase. An Ultra Performance Liquid Chromatography-tandem Mass Spectrometry (UPLC-MS/MS) method was developed to quantify protein released ortho-tyrosine (o-Tyr), meta-tyrosine (m-Tyr), 3-nitrotyrosine (3NO2-Tyr) and 3-chlorotyrosine (3Cl-Tyr) as well as native phenylalanine (Phe) and tyrosine (p-Tyr) in plasma and tissue from a validated hypoxic newborn piglet experimental model. In plasma there was a significant increase in the 3NO2-Tyr/p-Tyr ratio. On the other hand m-Tyr/Phe and 3Cl-Tyr/p-Tyr ratios were significantly increased in liver of hypoxic compared with normoxic animals. Although no significant differences were found in brain tissue, a clear tendency to increased ratios was observed under hypoxic conditions. UPLC-MS/MS has proven suitable for the analysis of plasma and tissue samples from newborn piglets. The analysis of biomarkers of protein oxidation, nitration and chlorination will be applied in future studies aiming to provide a deeper insight into the mechanisms of oxidation-derived protein modification caused during neonatal asphyxia and resuscitation. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. JAK2 V617F, MPL W515L and JAK2 Exon 12 Mutations in Chinese Patients with Primary Myelofibrosis.

    PubMed

    Xia, Jun; Lu, Mi-Ze; Jiang, Yuan-Qiang; Yang, Guo-Hua; Zhuang, Yun; Sun, Hong-Li; Shen, Yun-Feng

    2012-03-01

    JAK2 V617F, MPL W515L and JAK2 exon 12 mutations are novel acquired mutations that induce constitutive cytokine-independent activation of the JAK-STAT pathway in myeloproliferative disorders (MPD). The discovery of these mutations provides novel mechanism for activation of signal transduction in hematopoietic malignancies. This research was to investigate their prevalence in Chinese patients with primary myelofibrosis (PMF). We introduced allele-specific PCR (AS-PCR) combined with sequence analysis to simultaneously screen JAK2 V617F, MPL W515L and JAK2 exon 12 mutations in 30 patients with PMF. Fifteen PMF patients (50.0%) carried JAK2 V617F mutation, and only two JAK2 V617F-negative patients (6.7%) harbored MPL W515L mutation. None had JAK2 exon 12 mutations. Furthermore, these three mutations were not detected in 50 healthy controls. MPL W515L and JAK2 V617F mutations existed in PMF patients but JAK2 exon 12 mutations not. JAK2 V617F and MPL W515L and mutations might contribute to the primary molecular pathogenesis in patients with PMF.

  6. Striatal-enriched Protein-tyrosine Phosphatase (STEP) Regulates Pyk2 Kinase Activity*

    PubMed Central

    Xu, Jian; Kurup, Pradeep; Bartos, Jason A.; Patriarchi, Tommaso; Hell, Johannes W.; Lombroso, Paul J.

    2012-01-01

    Proline-rich tyrosine kinase 2 (Pyk2) is a member of the focal adhesion kinase family and is highly expressed in brain and hematopoietic cells. Pyk2 plays diverse functions in cells, including the regulation of cell adhesion, migration, and cytoskeletal reorganization. In the brain, it is involved in the induction of long term potentiation through regulation of N-methyl-d-aspartate receptor trafficking. This occurs through the phosphorylation and activation of Src family tyrosine kinase members, such as Fyn, that phosphorylate GluN2B at Tyr1472. Phosphorylation at this site leads to exocytosis of GluN1-GluN2B receptors to synaptic membranes. Pyk2 activity is modulated by phosphorylation at several critical tyrosine sites, including Tyr402. In this study, we report that Pyk2 is a substrate of striatal-enriched protein-tyrosine phosphatase (STEP). STEP binds to and dephosphorylates Pyk2 at Tyr402. STEP KO mice showed enhanced phosphorylation of Pyk2 at Tyr402 and of the Pyk2 substrates paxillin and ASAP1. Functional studies indicated that STEP opposes Pyk2 activation after KCl depolarization of cortical slices and blocks Pyk2 translocation to postsynaptic densities, a key step required for Pyk2 activation and function. This is the first study to identify Pyk2 as a substrate for STEP. PMID:22544749

  7. Novel compounds TAD-1822-7-F2 and F5 inhibited HeLa cells growth through the JAK/Stat signaling pathway.

    PubMed

    Yang, Tianfeng; Shi, Xianpeng; Kang, Yuan; Zhu, Man; Fan, Mengying; Zhang, Dongdong; Zhang, Yanmin

    2018-07-01

    Cervical carcinoma remains the second most common malignancy with a high mortality rate among women worldwide. TAD-1822-7-F2 (F2) and TAD-1822-7-F5 (F5) are novel compounds synthesized on the chemical structure of taspine derivatives, and show an effective suppression for HeLa cells. Our study aims to confirm the potential targets of F2 and F5, and investigate the underlying mechanism of the inhibitory effect on HeLa cells. In this study, Real Time Cell Analysis and crystal violet staining assay were conducted to investigate the effect of F2 and F5 on HeLa cells proliferation. And the analytical methods of surface plasmon resonance and quartz crystal microbalance were established and employed to study the interaction between F2 and F5 and potential target protein JAK2, suggesting that both compounds have strong interaction with the JAK2 protein. Western blot analysis, immunofluorescence staining study and PCR was conducted to investigate the molecules of JAK/Stat signaling pathway. Interestingly, F2 and F5 showed diverse regulation for signaling molecules because of their different chemical structure. F2 increased the expression of JAK2 and downregulated the level of P-JAK1 and P-JAK2, and decreased P-Stat3 (Ser727). While F5 could increase the expression of JAK2 and naturally decrease the phosphorylation of JAK1 and Tyk2, and decreased the expression of P-Stat6. Moreover, F2 and F5 showed the same downregulation on the P-Stat3 (Tyr705). Therefore, F2 and F5 could target the JAK2 protein and prevent the phosphorylation of JAKs to suppress the phosphorylation of the downstream effector Stats, which suggested that F2 and F5 have great potential to be the inhibitors of the JAK/Stat signaling pathway. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  8. Drosophila glypicans Dally and Dally-like are essential regulators for JAK/STAT signaling and Unpaired distribution in eye development

    PubMed Central

    Zhang, Yan; You, Jia; Ren, Wenyan; Lin, Xinhua

    2013-01-01

    The highly conserved janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway is a well-known signaling system that is involved in many biological processes. In Drosophila, this signaling cascade is activated by ligands of the Unpaired (Upd) family. Therefore, the regulation of Upd distribution is one of the key issues in controlling the JAK/STAT signaling activity and function. Heparan sulfate proteoglycans (HSPGs) are macromolecules that regulate the distribution of many ligand proteins including Wingless, Hedgehog and Decapentaplegic (Dpp). Here we show that during Drosophila eye development, HSPGs are also required in normal Upd distribution and JAK/STAT signaling activity. Loss of HSPG biosynthesis enzyme Brother of tout-velu (Botv), Sulfateless (Sfl), or glypicans Division abnormally delayed (Dally) and Dally-like protein (Dlp) led to reduced levels of extracellular Upd and reduction in JAK/STAT signaling activity. Overexpression of dally resulted in the accumulation of Upd and up-regulation of the signaling activity. Luciferase assay also showed that Dally promotes JAK/STAT signaling activity, and is dependent on its heparin sulfate chains. These data suggest that Dally and Dlp are essential for Upd distribution and JAK/STAT signaling activity. PMID:23313126

  9. Identification of azabenzimidazoles as potent JAK1 selective inhibitors.

    PubMed

    Vasbinder, Melissa M; Alimzhanov, Marat; Augustin, Martin; Bebernitz, Geraldine; Bell, Kirsten; Chuaqui, Claudio; Deegan, Tracy; Ferguson, Andrew D; Goodwin, Kelly; Huszar, Dennis; Kawatkar, Aarti; Kawatkar, Sameer; Read, Jon; Shi, Jie; Steinbacher, Stefan; Steuber, Holger; Su, Qibin; Toader, Dorin; Wang, Haixia; Woessner, Richard; Wu, Allan; Ye, Minwei; Zinda, Michael

    2016-01-01

    We have identified a class of azabenzimidazoles as potent and selective JAK1 inhibitors. Investigations into the SAR are presented along with the structural features required to achieve selectivity for JAK1 versus other JAK family members. An example from the series demonstrated highly selective inhibition of JAK1 versus JAK2 and JAK3, along with inhibition of pSTAT3 in vivo, enabling it to serve as a JAK1 selective tool compound to further probe the biology of JAK1 selective inhibitors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Tyrosine phosphorylation switching of a G protein.

    PubMed

    Li, Bo; Tunc-Ozdemir, Meral; Urano, Daisuke; Jia, Haiyan; Werth, Emily G; Mowrey, David D; Hicks, Leslie M; Dokholyan, Nikolay V; Torres, Matthew P; Jones, Alan M

    2018-03-30

    Heterotrimeric G protein complexes are molecular switches relaying extracellular signals sensed by G protein-coupled receptors (GPCRs) to downstream targets in the cytoplasm, which effect cellular responses. In the plant heterotrimeric GTPase cycle, GTP hydrolysis, rather than nucleotide exchange, is the rate-limiting reaction and is accelerated by a receptor-like regulator of G signaling (RGS) protein. We hypothesized that posttranslational modification of the Gα subunit in the G protein complex regulates the RGS-dependent GTPase cycle. Our structural analyses identified an invariant phosphorylated tyrosine residue (Tyr 166 in the Arabidopsis Gα subunit AtGPA1) located in the intramolecular domain interface where nucleotide binding and hydrolysis occur. We also identified a receptor-like kinase that phosphorylates AtGPA1 in a Tyr 166 -dependent manner. Discrete molecular dynamics simulations predicted that phosphorylated Tyr 166 forms a salt bridge in this interface and potentially affects the RGS protein-accelerated GTPase cycle. Using a Tyr 166 phosphomimetic substitution, we found that the cognate RGS protein binds more tightly to the GDP-bound Gα substrate, consequently reducing its ability to accelerate GTPase activity. In conclusion, we propose that phosphorylation of Tyr 166 in AtGPA1 changes the binding pattern with AtRGS1 and thereby attenuates the steady-state rate of the GTPase cycle. We coin this newly identified mechanism "substrate phosphoswitching." © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Striatal-enriched Tyrosine Protein Phosphatase (STEP) in the Mechanisms of Depressive Disorders.

    PubMed

    Kulikova, Elizabeth; Kulikov, Alexander

    2017-08-30

    Striatal-enriched tyrosine protein phosphatase (STEP) is expressed mainly in the brain. Its dysregulation is associated with Alzheimer's and Huntington's diseases, schizophrenia, fragile X syndrome, drug abuse and stroke/ischemia. However, an association between STEP and depressive disorders is still obscure. The review discusses the theoretical foundations and experimental facts concerning possible relationship between STEP dysregulation and depression risk. STEP dephosphorylates and inactivates several key neuronal signaling proteins such as extracellular signal-regulating kinase 1 and 2 (ERK1/2), stress activated protein kinases p38, the Src family tyrosine kinases Fyn, Pyk2, NMDA and AMPA glutamate receptors. The inactivation of these proteins decreases the expression of brain derived neurotrophic factor (BDNF) necessary for neurogenesis and neuronal survival. The deficit of BDNF results in progressive degeneration of neurons in the hippocampus and cortex and increases depression risk. At the same time, a STEP inhibitor, 8-(trifluoromethyl)-1,2,3,4,5-benzopentathiepin-6-amine hydrochloride (TC-2153), increases BDNF expression in the hippocampus and attenuated the depressivelike behavior in mice. Thus, STEP is involved in the mechanism of depressive disorders and it is a promising molecular target for atypical antidepressant drugs of new generation. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. JAK inhibitors in autoinflammation.

    PubMed

    Hoffman, Hal M; Broderick, Lori

    2018-06-11

    Interferonopathies are a subset of autoinflammatory disorders with a prominent type I IFN gene signature. Treatment of these patients has been challenging, given the lack of response to common autoinflammatory therapeutics including IL-1 and TNF blockade. JAK inhibitors (Jakinibs) are a family of small-molecule inhibitors that target the JAK/STAT signaling pathway and have shown clinical efficacy, with FDA and European Medicines Agency (EMA) approval for arthritic and myeloproliferative syndromes. Sanchez and colleagues repurposed baricitinib to establish a significant role for JAK inhibition as a novel therapy for patients with interferonopathies, demonstrating the power of translational rare disease research with lifesaving effects.

  13. Structure-based design of oxygen-linked macrocyclic kinase inhibitors: discovery of SB1518 and SB1578, potent inhibitors of Janus kinase 2 (JAK2) and Fms-like tyrosine kinase-3 (FLT3)

    NASA Astrophysics Data System (ADS)

    Poulsen, Anders; William, Anthony; Blanchard, Stéphanie; Lee, Angeline; Nagaraj, Harish; Wang, Haishan; Teo, Eeling; Tan, Evelyn; Goh, Kee Chuan; Dymock, Brian

    2012-04-01

    Macrocycles from our Aurora project were screened in a kinase panel and were found to be active on other kinase targets, mainly JAKs, FLT3 and CDKs. Subsequently these compounds became leads in our JAK2 project. Macrocycles with a basic nitrogen in the linker form a salt bridge with Asp86 in CDK2 and Asp698 in FLT3. This residue is conserved in most CDKs resulting in potent pan CDK inhibition. One of the main project objectives was to achieve JAK2 potency with 100-fold selectivity against CDKs. Macrocycles with an ether linker have potent JAK2 activity with the ether oxygen forming a hydrogen bond to Ser936. A hydrogen bond to the equivalent residues of JAK3 and most CDKs cannot be formed resulting in good selectivity for JAK2 over JAK3 and CDKs. Further optimization of the macrocyclic linker and side chain increased JAK2 and FLT3 activity as well as improving DMPK properties. The selective JAK2/FLT3 inhibitor 11 (Pacritinib, SB1518) has successfully finished phase 2 clinical trials for myelofibrosis and lymphoma. Another selective JAK2/FLT3 inhibitor, 33 (SB1578), has entered phase 1 clinical development for the non-oncology indication rheumatoid arthritis.

  14. Inborn Errors of Human JAKs and STATs

    PubMed Central

    Casanova, Jean-Laurent; Holland, Steven M.; Notarangelo, Luigi D.

    2012-01-01

    Inborn errors of the genes encoding two of the four human JAKs (JAK3 and TYK2) and three of the six human STATs (STAT1, STAT3, and STAT5B) have been described. We review the disorders arising from mutations in these five genes, highlighting the way in which the molecular and cellular pathogenesis of these conditions has been clarified by the discovery of inborn errors of cytokines, hormones, and their receptors, including those interacting with JAKs and STATs. The phenotypic similarities between mice and humans lacking individual JAK-STAT components suggest that the functions of JAKs and STATs are largely conserved in mammals. However, a wide array of phenotypic differences has emerged between mice and humans carrying bi-allelic null alleles of JAK3, TYK2, STAT1, or STAT5B. Moreover, the high level of allelic heterogeneity at the human JAK3, STAT1, and STAT3 loci has revealed highly diverse immunological and clinical phenotypes, which had not been anticipated. PMID:22520845

  15. Inborn errors of human JAKs and STATs.

    PubMed

    Casanova, Jean-Laurent; Holland, Steven M; Notarangelo, Luigi D

    2012-04-20

    Inborn errors of the genes encoding two of the four human JAKs (JAK3 and TYK2) and three of the six human STATs (STAT1, STAT3, and STAT5B) have been described. We review the disorders arising from mutations in these five genes, highlighting the way in which the molecular and cellular pathogenesis of these conditions has been clarified by the discovery of inborn errors of cytokines, hormones, and their receptors, including those interacting with JAKs and STATs. The phenotypic similarities between mice and humans lacking individual JAK-STAT components suggest that the functions of JAKs and STATs are largely conserved in mammals. However, a wide array of phenotypic differences has emerged between mice and humans carrying biallelic null alleles of JAK3, TYK2, STAT1, or STAT5B. Moreover, the high degree of allelic heterogeneity at the human JAK3, TYK2, STAT1, and STAT3 loci has revealed highly diverse immunological and clinical phenotypes, which had not been anticipated. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Suppressor of cytokine signaling 1 interacts with oncogenic lymphocyte-specific protein tyrosine kinase.

    PubMed

    Venkitachalam, Srividya; Chueh, Fu-Yu; Leong, King-Fu; Pabich, Samantha; Yu, Chao-Lan

    2011-03-01

    Lymphocyte-specific protein tyrosine kinase (Lck) plays a key role in T cell signal transduction and is tightly regulated by phosphorylation and dephosphorylation. Lck can function as an oncoprotein when overexpressed or constantly activated by mutations. Our previous studies showed that Lck-induced cellular transformation could be suppressed by enforced expression of suppressor of cytokine signaling 1 (SOCS1), a SOCS family member involved in the negative feedback control of cytokine signaling. We observed attenuated Lck kinase activity in SOCS1-expressing cells, suggesting an important role of SOCS in regulating Lck functions. It remains largely unknown whether and how SOCS proteins interact with the oncogenic Lck kinase. Here, we report that among four SOCS family proteins, SOCS1, SOCS2, SOCS3 and CIS (cytokine-inducible SH2 domain containing protein), SOCS1 has the highest affinity in binding to the oncogenic Lck kinase. We identified the positive regulatory phosphotyrosine 394 residue in the kinase domain as the key interacting determinant in Lck. Additionally, the Lck kinase domain alone is sufficient to bind SOCS1. While the SH2 domain in SOCS1 is important in its association with the oncogenic Lck kinase, other functional domains may also contribute to overall binding affinity. These findings provide important mechanistic insights into the role of SOCS proteins as tumor suppressors in cells transformed by oncogenic protein tyrosine kinases.

  17. Lincomycin Biosynthesis Involves a Tyrosine Hydroxylating Heme Protein of an Unusual Enzyme Family

    PubMed Central

    Novotna, Jitka; Olsovska, Jana; Novak, Petr; Mojzes, Peter; Chaloupkova, Radka; Kamenik, Zdenek; Spizek, Jaroslav; Kutejova, Eva; Mareckova, Marketa; Tichy, Pavel; Damborsky, Jiri; Janata, Jiri

    2013-01-01

    The gene lmbB2 of the lincomycin biosynthetic gene cluster of Streptomyces lincolnensis ATCC 25466 was shown to code for an unusual tyrosine hydroxylating enzyme involved in the biosynthetic pathway of this clinically important antibiotic. LmbB2 was expressed in Escherichia coli, purified near to homogeneity and shown to convert tyrosine to 3,4-dihydroxyphenylalanine (DOPA). In contrast to the well-known tyrosine hydroxylases (EC 1.14.16.2) and tyrosinases (EC 1.14.18.1), LmbB2 was identified as a heme protein. Mass spectrometry and Soret band-excited Raman spectroscopy of LmbB2 showed that LmbB2 contains heme b as prosthetic group. The CO-reduced differential absorption spectra of LmbB2 showed that the coordination of Fe was different from that of cytochrome P450 enzymes. LmbB2 exhibits sequence similarity to Orf13 of the anthramycin biosynthetic gene cluster, which has recently been classified as a heme peroxidase. Tyrosine hydroxylating activity of LmbB2 yielding DOPA in the presence of (6R)-5,6,7,8-tetrahydro-L-biopterin (BH4) was also observed. Reaction mechanism of this unique heme peroxidases family is discussed. Also, tyrosine hydroxylation was confirmed as the first step of the amino acid branch of the lincomycin biosynthesis. PMID:24324587

  18. Hepatic expression of the GH/JAK/STAT/IGF pathway, acute-phase response signalling and complement system are affected in mouse offspring by prenatal and early postnatal exposure to maternal high-protein diet.

    PubMed

    Vanselow, Jens; Kucia, Marzena; Langhammer, Martina; Koczan, Dirk; Rehfeldt, Charlotte; Metges, Cornelia C

    2011-12-01

    Effects of pre- and early postnatal exposure to maternal high-protein diets are not well understood. Transcription profiling was performed in male mouse offspring exposed to maternal high-protein diet during pregnancy and/or lactation to identify affected hepatic molecular pathways. Dams were fed isoenergetic diets with control (20% w/w) or high protein levels (40%). The hepatic expression profiles were evaluated by differential microarray analysis 3 days (d3) and 3 weeks (d21) after birth. Offspring from three different high-protein dietary groups, HP (d3, high-protein diet during pregnancy), HPHP (d21, high-protein diet during pregnancy and lactation) and CHP (d21, control diet during pregnancy and high-protein diet during lactation), were compared with age-matched offspring from dams fed control diet. Offspring body and liver mass of all high-protein groups were decreased. Prenatal high-protein diet affected hepatic expression of genes mapping to the acute response/complement system and the GH/JAK/STAT/IGF signalling pathways. Maternal exposure to high-protein diet during lactation affected hepatic gene expression of the same pathways but additionally affected genes mapping to protein, fatty acid, hexose and pyruvate metabolism. (1) Genes of the acute response/complement system and GH/JAK/STAT/IGF pathways were down-regulated in offspring of dams exposed to high-protein diets during pregnancy and/or lactation. (2) Genes related to nutrient and energy metabolism, however, were only affected when high-protein diet was administered during lactation. (3) Modulation of the GH/JAK/STAT/IGF pathway might be responsible for reduced body and liver masses by maternal high-protein diet.

  19. Mechanisms underlying the inhibitory effects of arsenic compounds on protein tyrosine phosphatase (PTP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rehman, Kanwal; Chen, Zhe; Wang, Wen Wen

    2012-09-15

    Arsenic binding to biomolecules is considered one of the major toxic mechanisms, which may also be related to the carcinogenic risks of arsenic in humans. At the same time, arsenic is also known to activate the phosphorylation-dependent signaling pathways including the epidermal growth factor receptor, the mitogen-activated protein kinase and insulin/insulin-like growth factor-1 pathways. These signaling pathways originate at the level of receptor tyrosine kinases whose phosphorylation status is regulated by opposing protein tyrosine phosphatase (PTP) activity. Reversible tyrosine phosphorylation, which is governed by the balanced action of protein tyrosine kinases and phosphatases, regulates important signaling pathways that are involvedmore » in the control of cell proliferation, adhesion and migration. In the present study, we have focused on the interaction of cellular PTPs with toxic trivalent arsenite (iAs{sup III}) and its intermediate metabolites such as monomethylarsonous acid (MMA{sup III}) and dimethylarsinous acid (DMA{sup III}) in vitro, and then determined the arsenic binding site in PTP by the use of recombinant PTPs (e.g., PTP1B and CD45). Interestingly, the activities of PTP1B (cytoplasm-form) or CD45 (receptor-linked form) were observed to be strongly inhibited by both methylated metabolites (i.e., MMA{sup III} and DMA{sup III}) but not by iAs{sup III}. Matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) has clearly confirmed that the organic intermediate, DMA{sup III} directly bound to the active site cysteine residue of PTP1B (e.g., Cys215), resulting in inhibition of enzyme activity. These results suggest that arsenic exposure may disturb the cellular signaling pathways through PTP inactivation. Highlights: ► This study focused on the interaction of PTPs with trivalent arsenicals in vitro. ► We for the first time confirmed that DMA{sup III} strongly inhibited activity of PTP1B. ► DMA{sup III

  20. Disabled is a putative adaptor protein that functions during signaling by the sevenless receptor tyrosine kinase.

    PubMed

    Le, N; Simon, M A

    1998-08-01

    DRK, the Drosophila homolog of the SH2-SH3 domain adaptor protein Grb2, is required during signaling by the sevenless receptor tyrosine kinase (SEV). One role of DRK is to provide a link between activated SEV and the Ras1 activator SOS. We have investigated the possibility that DRK performs other functions by identifying additional DRK-binding proteins. We show that the phosphotyrosine-binding (PTB) domain-containing protein Disabled (DAB) binds to the DRK SH3 domains. DAB is expressed in the ommatidial clusters, and loss of DAB function disrupts ommatidial development. Moreover, reduction of DAB function attenuates signaling by a constitutively activated SEV. Our biochemical analysis suggests that DAB binds SEV directly via its PTB domain, becomes tyrosine phosphorylated upon SEV activation, and then serves as an adaptor protein for SH2 domain-containing proteins. Taken together, these results indicate that DAB is a novel component of the SEV signaling pathway.

  1. Electrode Potentials of l-Tryptophan, l-Tyrosine, 3-Nitro-l-tyrosine, 2,3-Difluoro-l-tyrosine, and 2,3,5-Trifluoro-l-tyrosine.

    PubMed

    Mahmoudi, Leila; Kissner, Reinhard; Nauser, Thomas; Koppenol, Willem H

    2016-05-24

    Electrode potentials for aromatic amino acid radical/amino acid couples were deduced from cyclic voltammograms and pulse radiolysis experiments. The amino acids investigated were l-tryptophan, l-tyrosine, N-acetyl-l-tyrosine methyl ester, N-acetyl-3-nitro-l-tyrosine ethyl ester, N-acetyl-2,3-difluoro-l-tyrosine methyl ester, and N-acetyl-2,3,5-trifluoro-l-tyrosine methyl ester. Conditional potentials were determined at pH 7.4 for all compounds listed; furthermore, Pourbaix diagrams for l-tryptophan, l-tyrosine, and N-acetyl-3-nitro-l-tyrosine ethyl ester were obtained. Electron transfer accompanied by proton transfer is reversible, as confirmed by detailed analysis of the current waves, and because the slopes of the Pourbaix diagrams obey Nernst's law. E°'(Trp(•),H(+)/TrpH) and E°'(TyrO(•),H(+)/TyrOH) at pH 7 are 0.99 ± 0.01 and 0.97 ± 0.01 V, respectively. Pulse radiolysis studies of two dipeptides that contain both amino acids indicate a difference in E°' of approximately 0.06 V. Thus, in small peptides, we recommend values of 1.00 and 0.96 V for E°'(Trp(•),H(+)/TrpH) and E°'(TyrO(•),H(+)/TyrOH), respectively. The electrode potential of N-acetyl-3-nitro-l-tyrosine ethyl ester is higher, while because of mesomeric stabilization of the radical, those of N-acetyl-2,3-difluoro-l-tyrosine methyl ester and N-acetyl-2,3,5-trifluoro-l-tyrosine methyl ester are lower than that of tyrosine. Given that the electrode potentials at pH 7 of E°'(Trp(•),H(+)/TrpH) and E°'(TyrO(•),H(+)/TyrOH) are nearly equal, they would be, in principle, interchangeable. Proton-coupled electron transfer pathways in proteins that use TrpH and TyrOH are thus nearly thermoneutral.

  2. Regulation of embryonic neurotransmitter and tyrosine hydroxylase protein levels by ascorbic acid

    PubMed Central

    Meredith, M. Elizabeth; May, James M.

    2013-01-01

    Scope: Ascorbic acid (ascorbate) is required to recycle tetrahydrobiopterin, which is necessary for neurotransmitter synthesis by the rate-limiting enzymes tyrosine and tryptophan hydroxylases. We sought to determine whether ascorbate might regulate embryonic brain cortex monoamine synthesis utilizing transgenic mouse models with varying intracellular ascorbate levels. Methods and Results: In embryos lacking the sodium-dependent vitamin C transporter 2 (SVCT2), very low levels of brain ascorbate decreased cortex levels of norepinephrine and dopamine by approximately 33%, but had no effect on cortex serotonin or its metabolite, 5-hydroxyindole acetic acid. This decrease in ascorbate also led to a decrease in protein levels of tyrosine hydroxylase, but not of tryptophan hydroxylase. Increased cortex ascorbate in embryos carrying extra copies of the SVCT2 resulted in increased levels of dopamine and its metabolite, 3,4-dihydroxyphenylacetic acid (DOPAC), as well as serotonin and 5-hydroxyindole acetic acid. Conclusion: The dependence of embryonic brain cortex neurotransmitter synthesis and tyrosine hydroxylase expression on intracellular ascorbate emphasizes the importance of receiving adequate ascorbate during development. PMID:24095796

  3. JAK2 46/1 haplotype is associated with JAK2 V617F--positive myeloproliferative neoplasms in Brazilian patients.

    PubMed

    Macedo, L C; Santos, B C; Pagliarini-e-Silva, S; Pagnano, K B B; Rodrigues, C; Quintero, F C; Ferreira, M E; Baraldi, E C; Ambrosio-Albuquerque, E P; Sell, A M; Visentainer, J E L

    2015-10-01

    This study aimed to verify the association between the JAK2 46/1 haplotype (V617F positive) and some hematological parameters in BCR-ABL-negative chronic myeloproliferative neoplasms (cMPNs) in our population. The blood samples obtained from the patients with cMPN were genotyped for the JAK2 V617F mutation and JAK2 rs10974944 SNP screening using a PCR-RFLP assay. The JAK2 V617F mutation was detected in 80.15% of patients. The G variant of rs10974944 was more frequent in all MPNs, especially those that were JAK2 V617F positive, than in the control population. We also compared the 46/1 haplotype status in each MPN disease entity, polycythemia vera (PV), essential thrombocythemia (ET), primary myelofibrosis (PMF), and MPNu with controls. The G allele frequency relative to controls was significantly enriched in patients with PV and ET, but not in those with PMF and MPNu. PV and ET patients especially, all of whom had the JAK2 V617F mutation, showed significant excess of the G allele. The frequency of JAK2 V617F mutation was associated with elevated hematological parameters, but when we analyze the occurrence of the mutation and the presence of the G allele, just the high hemoglobin was significantly. In agreement with previous reports, JAK2 46/1 haplotype for JAK2 V617F was associated with cMPN positive in Brazilian patients. © 2015 John Wiley & Sons Ltd.

  4. A Review: Phytochemicals Targeting JAK/STAT Signaling and IDO Expression in Cancer.

    PubMed

    Arumuggam, Niroshaathevi; Bhowmick, Neil A; Rupasinghe, H P Vasantha

    2015-06-01

    Cancer remains a major health problem worldwide. Among many other factors, two regulatory defects that are present in most cancer cells are constitutive activation of Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathway and the induction of indoleamine 2, 3-dioxygenase (IDO), an enzyme that catalyzes tryptophan degradation, through JAK/STAT signaling. Cytokine signaling activates STAT proteins in regulating cell proliferation, differentiation, and survival through modulation of target genes. Many phytochemicals can inhibit both JAK/STAT signaling and IDO expression in antigen-presenting cells by targeting different pathways. Some of the promising phytochemicals that are discussed in this review include resveratrol, cucurbitacin, curcumin, (-)-epigallocatechin gallate, and others. It is now evident that phytochemicals play key roles in inhibition of tumor proliferation and development and provide novel means for therapeutic targeting of cancer. Copyright © 2015 John Wiley & Sons, Ltd.

  5. A protein tyrosine phosphatase-like protein from baculovirus has RNA 5′-triphosphatase and diphosphatase activities

    PubMed Central

    Takagi, Toshimitsu; Taylor, Gregory S.; Kusakabe, Takahiro; Charbonneau, Harry; Buratowski, Stephen

    1998-01-01

    The superfamily of protein tyrosine phosphatases (PTPs) includes at least one enzyme with an RNA substrate. We recently showed that the RNA triphosphatase domain of the Caenorhabditis elegans mRNA capping enzyme is related to the PTP enzyme family by sequence similarity and mechanism. The PTP most similar in sequence to the capping enzyme triphosphatase is BVP, a dual-specificity PTP encoded by the Autographa californica nuclear polyhedrosis virus. Although BVP previously has been shown to have modest tyrosine and serine/threonine phosphatase activity, we find that it is much more potent as an RNA 5′-phosphatase. BVP sequentially removes γ and β phosphates from the 5′ end of triphosphate-terminated RNA, leaving a 5′-monophosphate end. The activity was specific for polynucleotides; nucleotide triphosphates were not hydrolyzed. A mutant protein in which the active site cysteine was replaced with serine was inactive. Three other dual-specificity PTPs (VH1, VHR, and Cdc14) did not exhibit detectable RNA phosphatase activity. Therefore, capping enzyme and BVP are members of a distinct PTP-like subfamily that can remove phosphates from RNA. PMID:9707557

  6. Resolution of bone marrow fibrosis in a patient receiving JAK1/JAK2 inhibitor treatment with ruxolitinib.

    PubMed

    Wilkins, Bridget S; Radia, Deepti; Woodley, Claire; Farhi, Sarah El; Keohane, Clodagh; Harrison, Claire N

    2013-12-01

    Ruxolitinib, a JAK1/JAK2 inhibitor, is currently the only pharmacological agent approved for the treatment of myelofibrosis. Approval was based on findings from two phase 3 trials comparing ruxolitinib with placebo (COMFORT-I) and with best available therapy (COMFORT-II) for the treatment of primary or secondary myelofibrosis. In those pivotal trials, ruxolitinib rapidly improved splenomegaly, disease-related symptoms, and quality of life and prolonged survival compared with both placebo and conventional treatments. However, for reasons that are currently unclear, there were only modest histomorphological changes in the bone marrow, and only a subset of patients had significant reductions in JAK2 V617F clonal burden. Here we describe a patient with post-polycythemia vera myelofibrosis who received ruxolitinib at our institution (Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom) as part of the COMFORT-II study. While on treatment, the patient had dramatic improvements in splenomegaly and symptoms shortly after starting ruxolitinib. With longer treatment, the patient had marked reductions in JAK2 V617F allele burden, and fibrosis of the bone marrow resolved after approximately 3 years of ruxolitinib treatment. To our knowledge, this is the first detailed case report of resolution of fibrosis with a JAK1/JAK2 inhibitor. ClinicalTrials.gov Identifier: NCT00934544.

  7. Increased frequency of co-existing JAK2 exon-12 or MPL exon-10 mutations in patients with low JAK2(V617F) allelic burden.

    PubMed

    Nussenzveig, Roberto H; Pham, Ha T; Perkins, Sherrie L; Prchal, Josef T; Agarwal, Archana M; Salama, Mohamed E

    2016-01-01

    The frequency of co-existing JAK2(V617F)/MPL and JAK2(V617F)/JAK2 exon-12 mutations has not been previously investigated in MPNs. Poor survival was reported in primary myelofibrosis with low JAK2(V617F) allelic burden. However, mutational status of JAK2 exon-12 or MPL were not reported in these patients. This study developed a cost-effective multiplex high resolution melt assay that screens for mutations in JAK2 gene exons-12 and -14 ((V617F)) and MPL gene exon-10. Co-existing mutations with JAK2(V617F) were detected in 2.9% (6/208; two JAK2 exon-12 and four MPL exon-10) patient specimens with known JAK2(V617F) (allelic-burden range: 0.1-96.8%). Co-existing mutations were detected in specimens with < 12% JAK2(V617F) allelic burden. Current WHO guidelines do not recommend further testing once JAK2(V617F) mutation is detected in MPNs. The findings, however, indicate that quantification of JAK2(V617F) allele burden may be clinically relevant in MPNs and in those with low allelic burden additional testing for JAK2 exon-12 and MPL exon-10 mutation should be pursued.

  8. Driver mutations (JAK2V617F, MPLW515L/K or CALR), pentraxin-3 and C-reactive protein in essential thrombocythemia and polycythemia vera.

    PubMed

    Lussana, Federico; Carobbio, Alessandra; Salmoiraghi, Silvia; Guglielmelli, Paola; Vannucchi, Alessandro Maria; Bottazzi, Barbara; Leone, Roberto; Mantovani, Alberto; Barbui, Tiziano; Rambaldi, Alessandro

    2017-02-22

    The driver mutations JAK2V617F, MPLW515L/K and CALR influence disease phenotype of myeloproliferative neoplasms (MPNs) and might sustain a condition of chronic inflammation. Pentraxin 3 (PTX3) and high-sensitivity C-reactive protein (hs-CRP) are inflammatory biomarkers potentially useful for refining prognostic classification of MPNs. We evaluated 305 with essential thrombocythemia (ET) and 172 polycythemia vera (PV) patients diagnosed according to the 2016 WHO criteria and with full molecular characterization for driver mutations. PTX3 levels were significantly increased in carriers of homozygous JAK2V617F mutation compared to all the other genotypes and triple negative ET patients, while hs-CRP levels were independent of the mutational profile. The risk of haematological evolution and death from any cause was about 2- and 1.5-fold increased in individuals with high PTX-3 levels, while the thrombosis rate tended to be lower. High hs-CRP levels were associated with risk of haematological evolution, death and also major thrombosis. After sequential adjustment for potential confounders (age, gender, diagnosis and treatments) and the presence of JAK2V617F homozygous status, high hs-CRP levels remained significant for all outcomes, while JAK2V617F homozygous status as well as treatments were the factors independently accounting for adverse outcomes among patients with high PTX3 levels. These results provide evidence that JAK2V617F mutation influences MPN-associated inflammation with a strong correlation between allele burden and PTX3 levels. Plasma levels of hs-CRP and PTX3 might be of prognostic value for patients with ET and PV, but their validation in future prospective studies is needed.

  9. The KIM-family protein-tyrosine phosphatases use distinct reversible oxidation intermediates: Intramolecular or intermolecular disulfide bond formation.

    PubMed

    Machado, Luciana E S F; Shen, Tun-Li; Page, Rebecca; Peti, Wolfgang

    2017-05-26

    The kinase interaction motif (KIM) family of protein-tyrosine phosphatases (PTPs) includes hematopoietic protein-tyrosine phosphatase (HePTP), striatal-enriched protein-tyrosine phosphatase (STEP), and protein-tyrosine phosphatase receptor type R (PTPRR). KIM-PTPs bind and dephosphorylate mitogen-activated protein kinases (MAPKs) and thereby critically modulate cell proliferation and differentiation. PTP activity can readily be diminished by reactive oxygen species (ROS), e.g. H 2 O 2 , which oxidize the catalytically indispensable active-site cysteine. This initial oxidation generates an unstable sulfenic acid intermediate that is quickly converted into either a sulfinic/sulfonic acid (catalytically dead and irreversible inactivation) or a stable sulfenamide or disulfide bond intermediate (reversible inactivation). Critically, our understanding of ROS-mediated PTP oxidation is not yet sufficient to predict the molecular responses of PTPs to oxidative stress. However, identifying distinct responses will enable novel routes for PTP-selective drug design, important for managing diseases such as cancer and Alzheimer's disease. Therefore, we performed a detailed biochemical and molecular study of all KIM-PTP family members to determine their H 2 O 2 oxidation profiles and identify their reversible inactivation mechanism(s). We show that despite having nearly identical 3D structures and sequences, each KIM-PTP family member has a unique oxidation profile. Furthermore, we also show that whereas STEP and PTPRR stabilize their reversibly oxidized state by forming an intramolecular disulfide bond, HePTP uses an unexpected mechanism, namely, formation of a reversible intermolecular disulfide bond. In summary, despite being closely related, KIM-PTPs significantly differ in oxidation profiles. These findings highlight that oxidation protection is critical when analyzing PTPs, for example, in drug screening. © 2017 by The American Society for Biochemistry and Molecular Biology

  10. Differential regulation of protein tyrosine kinase signalling by Dock and the PTP61F variants.

    PubMed

    Willoughby, Lee F; Manent, Jan; Allan, Kirsten; Lee, Han; Portela, Marta; Wiede, Florian; Warr, Coral; Meng, Tzu-Ching; Tiganis, Tony; Richardson, Helena E

    2017-07-01

    Tyrosine phosphorylation-dependent signalling is coordinated by the opposing actions of protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs). There is a growing list of adaptor proteins that interact with PTPs and facilitate the dephosphorylation of substrates. The extent to which any given adaptor confers selectivity for any given substrate in vivo remains unclear. Here we have taken advantage of Drosophila melanogaster as a model organism to explore the influence of the SH3/SH2 adaptor protein Dock on the abilities of the membrane (PTP61Fm)- and nuclear (PTP61Fn)-targeted variants of PTP61F (the Drosophila othologue of the mammalian enzymes PTP1B and TCPTP respectively) to repress PTK signalling pathways in vivo. PTP61Fn effectively repressed the eye overgrowth associated with activation of the epidermal growth factor receptor (EGFR), PTK, or the expression of the platelet-derived growth factor/vascular endothelial growth factor receptor (PVR) or insulin receptor (InR) PTKs. PTP61Fn repressed EGFR and PVR-induced mitogen-activated protein kinase signalling and attenuated PVR-induced STAT92E signalling. By contrast, PTP61Fm effectively repressed EGFR- and PVR-, but not InR-induced tissue overgrowth. Importantly, coexpression of Dock with PTP61F allowed for the efficient repression of the InR-induced eye overgrowth, but did not enhance the PTP61Fm-mediated inhibition of EGFR and PVR-induced signalling. Instead, Dock expression increased, and PTP61Fm coexpression further exacerbated the PVR-induced eye overgrowth. These results demonstrate that Dock selectively enhances the PTP61Fm-mediated attenuation of InR signalling and underscores the specificity of PTPs and the importance of adaptor proteins in regulating PTP function in vivo. © 2017 Federation of European Biochemical Societies.

  11. The Cytoplasmic Adaptor Protein Dok7 Activates the Receptor Tyrosine Kinase MuSK via Dimerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bergamin, E.; Hallock, P; Burden, S

    Formation of the vertebrate neuromuscular junction requires, among others proteins, Agrin, a neuronally derived ligand, and the following muscle proteins: LRP4, the receptor for Agrin; MuSK, a receptor tyrosine kinase (RTK); and Dok7 (or Dok-7), a cytoplasmic adaptor protein. Dok7 comprises a pleckstrin-homology (PH) domain, a phosphotyrosine-binding (PTB) domain, and C-terminal sites of tyrosine phosphorylation. Unique among adaptor proteins recruited to RTKs, Dok7 is not only a substrate of MuSK, but also an activator of MuSK's kinase activity. Here, we present the crystal structure of the Dok7 PH-PTB domains in complex with a phosphopeptide representing the Dok7-binding site on MuSK.more » The structure and biochemical data reveal a dimeric arrangement of Dok7 PH-PTB that facilitates trans-autophosphorylation of the kinase activation loop. The structure provides the molecular basis for MuSK activation by Dok7 and for rationalizing several Dok7 loss-of-function mutations found in patients with congenital myasthenic syndromes.« less

  12. Leukocyte common antigen-related phosphatase (LRP) gene structure: Conservation of the genomic organization of transmembrane protein tyrosine phosphatases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, E.C.C.; Mullersman, J.E.; Thomas, M.L.

    1993-07-01

    The leukocyte common antigen-related protein tyrosine phosphatase (LRP) is a widely expressed transmembrane glycoprotein thought to be involved in cell growth and differentiation. Similar to most other transmembrane protein tyrosine phosphatases, LRP contains two tandem cytoplasmic phosphatase domains. To understand further the regulation and evolution of LRP, the authors have isolated and characterized mouse [lambda] genomic clones. Thirteen genomic clones could be divided into two non-overlapping clusters. The first cluster contained the transcription initiation site and the exon encoding most of the 5[prime] untranslated region. The second cluster contained the remaining exons encoding the protein and the 3[prime] untranslated region.more » The gene consists of 22 exons spanning over 75 kb. The distance between exon 1 and exon 2 is at least 25 kb. Characterization of the 5[prime] ends of LRP mRNA by S1 nuclease protection identifies putative initiation start sites within a G/C-rich region. The upstream region does not contain a TATA box. Comparison of the LRP gene structure to the mammalian protein tyrosine phosphatase gene, CD45, shows striking similarities in size and genomic organization. 29 refs., 5 figs., 1 tab.« less

  13. STRIATAL-ENRICHED PROTEIN TYROSINE PHOSPHATASE (STEP) KNOCKOUT MICE HAVE ENHANCED HIPPOCAMPAL MEMORY

    PubMed Central

    Venkitaramani, Deepa V.; Moura, Paula J.; Picciotto, Marina R.; Lombroso, Paul J.

    2011-01-01

    STEP is a brain-specific phosphatase that opposes synaptic strengthening by the regulation of key synaptic signaling proteins. Previous studies suggest a possible role for STriatal-Enriched protein tyrosine Phosphatase (STEP) in learning and memory. To demonstrate the functional importance of STEP in learning and memory, we generated STEP knockout (KO) mice and examined the effect of deletion of STEP on behavioral performance, as well as the phosphorylation and expression of its substrates. Here we report that loss of STEP leads to significantly enhanced performance in hippocampal-dependent learning and memory tasks. In addition, STEP KO mice displayed greater dominance behavior, although they were normal in their motivation, motor coordination, visual acuity and social interactions. STEP KO mice displayed enhanced tyrosine phosphorylation of extracellular-signal regulated kinase 1/2 (ERK1/2), the NR2B subunit of the N-methyl-D-aspartate receptor (NMDAR), Proline-rich tyrosine kinase (Pyk2), as well as an increased phosphorylation of ERK1/2 substrates. Concomitant to the increased phosphorylation of NR2B, synaptosomal expression of NR1/NR2B NMDARs was increased in STEP KO mice, as was the GluR1/GluR2 containing α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptors (AMPAR), providing a potential molecular mechanism for the improved cognitive performance. The data support a role for STEP in the regulation of synaptic strengthening. The absence of STEP improves cognitive performance, and may do so by the regulation of downstream effectors necessary for synaptic transmission. PMID:21501258

  14. Sophoraflavanone G induces apoptosis of human cancer cells by targeting upstream signals of STATs.

    PubMed

    Kim, Byung-Hak; Won, Cheolhee; Lee, Yun-Han; Choi, Jung Sook; Noh, Kum Hee; Han, Songhee; Lee, Haeri; Lee, Chang Seok; Lee, Dong-Sup; Ye, Sang-Kyu; Kim, Myoung-Hwan

    2013-10-01

    Aberrantly activated signal transducer and activator of transcription (STAT) proteins are implicated with human cancers and represent essential roles for cancer cell survival and proliferation. Therefore, the development of small-molecule inhibitors of STAT signaling bearing pharmacological activity has therapeutic potential for the treatment of human cancers. In this study, we identified sophoraflavanone G as a novel small-molecule inhibitor of STAT signaling in human cancer cells. Sophoraflavanone G inhibited tyrosine phosphorylation of STAT proteins in Hodgkin's lymphoma and tyrosine phosphorylation of STAT3 in solid cancer cells by inhibiting phosphorylation of the Janus kinase (JAK) proteins, Src family tyrosine kinases, such as Lyn and Src, Akt, and ERK1/2. In addition, sophoraflavanone G inhibited STAT5 phosphorylation in murine-bone-marrow-derived pro-B cells transfected with translocated Ets Leukemia (TEL)-JAKs and cytokine-induced rat pre-T lymphoma cells, as well as STAT5b reporter activity in TEL-JAKs and STAT5b reporter systems. Sophoraflavanone G also inhibited nuclear factor-κB (NF-κB) signaling in multiple myeloma cells. Furthermore, sophoraflavanone G inhibited cancer cell proliferation and induced apoptosis by regulating the expression of apoptotic and anti-apoptotic proteins. Our data suggest that sophoraflavanone G is a novel small-molecule inhibitor of STAT signaling by targeting upstream signals of STATs that may have therapeutic potential for cancers caused by persistently activated STAT proteins. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Protein tyrosine phosphatases as wardens of STAT signaling

    PubMed Central

    Böhmer, Frank-D; Friedrich, Karlheinz

    2014-01-01

    Signaling by signal transducers and activators of transcription (STATs) is controlled at many levels of the signaling cascade. Protein tyrosine phosphatases (PTPs) regulate STAT activation at several layers, including direct pSTAT dephosphorylation in both cytoplasm and nucleus. Despite the importance of this regulation mode, many aspects are still incompletely understood, e.g., the identity of PTPs acting on certain members of the STAT family. After a brief introduction into the STAT and PTP families, we discuss here the current knowledge on PTP mediated regulation of STAT activity, focusing on the interaction of individual STATs with specific PTPs. Finally, we highlight open questions and propose important tasks of future research. PMID:24778927

  16. JAK inhibitors for the treatment of myeloproliferative neoplasms and other disorders

    PubMed Central

    Vainchenker, William; Leroy, Emilie; Gilles, Laure; Marty, Caroline; Plo, Isabelle; Constantinescu, Stefan N.

    2018-01-01

    JAK inhibitors have been developed following the discovery of the JAK2V617F in 2005 as the driver mutation of the majority of non- BCR-ABL1 myeloproliferative neoplasms (MPNs). Subsequently, the search for JAK2 inhibitors continued with the discovery that the other driver mutations ( CALR and MPL) also exhibited persistent JAK2 activation. Several type I ATP-competitive JAK inhibitors with different specificities were assessed in clinical trials and exhibited minimal hematologic toxicity. Interestingly, these JAK inhibitors display potent anti-inflammatory activity. Thus, JAK inhibitors targeting preferentially JAK1 and JAK3 have been developed to treat inflammation, autoimmune diseases, and graft-versus-host disease. Ten years after the beginning of clinical trials, only two drugs have been approved by the US Food and Drug Administration: one JAK2/JAK1 inhibitor (ruxolitinib) in intermediate-2 and high-risk myelofibrosis and hydroxyurea-resistant or -intolerant polycythemia vera and one JAK1/JAK3 inhibitor (tofacitinib) in methotrexate-resistant rheumatoid arthritis. The non-approved compounds exhibited many off-target effects leading to neurological and gastrointestinal toxicities, as seen in clinical trials for MPNs. Ruxolitinib is a well-tolerated drug with mostly anti-inflammatory properties. Despite a weak effect on the cause of the disease itself in MPNs, it improves the clinical state of patients and increases survival in myelofibrosis. This limited effect is related to the fact that ruxolitinib, like the other type I JAK2 inhibitors, inhibits equally mutated and wild-type JAK2 (JAK2WT) and also the JAK2 oncogenic activation. Thus, other approaches need to be developed and could be based on either (1) the development of new inhibitors specifically targeting JAK2V617F or (2) the combination of the actual JAK2 inhibitors with other therapies, in particular with molecules targeting pathways downstream of JAK2 activation or the stability of JAK2 molecule. In

  17. Association of protein tyrosine phosphatase, non-receptor type 22 +1858C→T polymorphism and susceptibility to vitiligo: Systematic review and meta-analysis.

    PubMed

    Agarwal, Silky; Changotra, Harish

    2017-01-01

    Protein tyrosine phosphatase, non-receptor type 22 gene, which translates to lymphoid tyrosine phosphatase, is considered to be a susceptibility gene marker associated with several autoimmune diseases. Several studies have demonstrated the association of protein tyrosine phosphatase, non-receptor type 22 +1858C→T polymorphism with vitiligo. However, these studies showed conflicting results. Meta-analysis of the same was conducted earlier that included fewer number of publications in their study. We performed a meta-analysis of a total of seven studies consisting of 2094 cases and 3613 controls to evaluate the possible association of protein tyrosine phosphatase, non-receptor type 22 +1858C>T polymorphism with vitiligo susceptibility. We conducted a literature search in PubMed, Google Scholar and Dogpile for all published paper on protein tyrosine phosphatase, non-receptor type 22 +1858C→T polymorphism and vitiligo risk till June 2016. Data analysis was performed by RevMan 5.3 and comprehensive meta-analysis v3.0 software. Meta-analysis showed an overall significant association of protein tyrosine phosphatase, non- receptor type 22 +1858C→T polymorphism with vitiligo in all models (allelic model [T vs. C]: odds ratio = 1.50, 95% confidence interval [1.32-1.71], P< 0.001; dominant model [TT + CT vs. CC]: odds ratio = 1.61, 95% confidence interval [1.16-2.24], P = 0.004; recessive model [TT vs. CT + CC]: odds ratio = 4.82, 95% confidence interval [1.11-20.92], P = 0.04; homozygous model [TT vs. CC]: odds ratio = 5.34, 95% confidence interval [1.23-23.24], P = 0.03; co-dominant model [CT vs. CC]: odds ratio = 1.52, 95% confidence interval [1.09-2.13], P = 0.01). No publication bias was detected in the funnel plot study. Limited ethnic-based studies, unable to satisfy data by gender or vitiligo-type are some limitations of the present meta-analysis. Stratifying data by ethnicity showed an association of protein tyrosine phosphatase, non-receptor type 22 +1858C

  18. Developmental expression and function analysis of protein tyrosine phosphatase receptor type D in oligodendrocyte myelination

    PubMed Central

    Zhu, Qiang; Tan, Zhou; Zhao, Shufang; Huang, Hao; Zhao, Xiaofeng; Hu, Xuemei; Zhang, Yiping; Shields, Christopher B; Uetani, Noriko; Qiu, Mengsheng

    2015-01-01

    Receptor protein tyrosine phosphatases (RPTPs) are extensively expressed in the central nervous system (CNS), and have distinct spatial and temporal patterns in different cell types during development. Previous studies have demonstrated possible roles for RPTPs in axon outgrowth, guidance, and synaptogenesis. In the present study, our results revealed that protein tyrosine phosphatase, receptor type D (PTPRD) was initially expressed in mature neurons in embryonic CNS, and later in oligodendroglial cells at postnatal stages when oligodendrocyte undergo active axonal myelination process. In PTPRD mutants, oligodendrocyte differentiation was normal and a transient myelination delay occurred at early postnatal stages, indicating the contribution of PTPRD to the initiation of axonal myelination. Our results also showed that the remyelination process was not affected in the absence of PTPRD function after a cuprizone-induced demyelination in adult animals. PMID:26341907

  19. Design, synthesis, and evaluation of 4,6-diaminonicotinamide derivatives as novel and potent immunomodulators targeting JAK3.

    PubMed

    Nakajima, Yutaka; Aoyama, Naohiro; Takahashi, Fumie; Sasaki, Hiroshi; Hatanaka, Keiko; Moritomo, Ayako; Inami, Masamichi; Ito, Misato; Nakamura, Koji; Nakamori, Fumihiro; Inoue, Takayuki; Shirakami, Shohei

    2016-10-01

    In organ transplantation, T cell-mediated immune responses play a key role in the rejection of allografts. Janus kinase 3 (JAK3) is specifically expressed in hematopoietic cells and associated with regulation of T cell development via interleukin-2 signaling pathway. Here, we designed novel 4,6-diaminonicotinamide derivatives as immunomodulators targeting JAK3 for prevention of transplant rejection. Our optimization of C4- and C6-substituents and docking calculations to JAK3 protein confirmed that the 4,6-diaminonicotinamide scaffold resulted in potent inhibition of JAK3. We also investigated avoidance of human ether-a-go-go related gene (hERG) inhibitory activity. Selected compound 28 in combination with tacrolimus prevented allograft rejection in a rat heterotopic cardiac transplantation model. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Sevoflurane postconditioning protects the myocardium against ischemia/reperfusion injury via activation of the JAK2–STAT3 pathway

    PubMed Central

    Wu, Jianjiang; Yu, Jin; Xie, Peng; Maimaitili, Yiliyaer; Wang, Jiang; Yang, Long; Ma, Haiping; Zhang, Xing; Yang, Yining

    2017-01-01

    Background Sevoflurane postconditioning (S-post) has similar cardioprotective effects as ischemic preconditioning. However, the underlying mechanism of S-post has not been fully elucidated. Janus kinase signaling transduction/transcription activator (JAK2–STAT3) plays an important role in cardioprotection. The purpose of this study was to determine whether the cardioprotective effects of S-post are associated with activation of the JAK2–STAT3 signal pathway. Methods An adult male Sprague–Dawley (SD) rat model of myocardial ischemia/reperfusion (I/R) injury was established using the Langendorff isolated heart perfusion apparatus. At the beginning of reperfusion, 2.4% sevoflurane alone or in combination with AG490 (a JAK2 selective inhibitor) was used as a postconditioning treatment. The cardiac function indicators, myocardial infarct size, lactic dehydrogenase (LDH) release, mitochondrial ultrastructure, mitochondrial reactive oxygen species (ROS) generation rates, ATP content, protein expression of p-JAK, p-STAT3, Bcl-2 and Bax were measured. Results Compared with the I/R group, S-post significantly increased the expression of p-JAK, p-STAT3 and Bcl-2 and reduced the protein expression of Bax, which markedly decreased the myocardial infarction areas, improved the cardiac function indicators and the mitochondrial ultrastructure, decreased the mitochondrial ROS and increased the ATP content. However, the cardioprotective effects of S-post were abolished by treatment with a JAK2 selective inhibitor (p < 0.05). Conclusion This study demonstrates that the cardioprotective effects of S-post are associated with the activation of JAK2–STAT3. The mechanism may be related to an increased expression of p-JAK2 and p-STAT3 after S-post, which reduced mitochondrial ROS generation and increased mitochondrial ATP content, thereby reducing apoptosis and myocardial infarct size. PMID:28392989

  1. Oncogenic activation of JAK3-STAT signaling confers clinical sensitivity to PRN371, a novel selective and potent JAK3 inhibitor, in natural killer/T-cell lymphoma.

    PubMed

    Nairismägi, M -L; Gerritsen, M E; Li, Z M; Wijaya, G C; Chia, B K H; Laurensia, Y; Lim, J Q; Yeoh, K W; Yao, X S; Pang, W L; Bisconte, A; Hill, R J; Bradshaw, J M; Huang, D; Song, T L L; Ng, C C Y; Rajasegaran, V; Tang, T; Tang, Q Q; Xia, X J; Kang, T B; Teh, B T; Lim, S T; Ong, C K; Tan, J

    2018-05-01

    Aberrant activation of the JAK3-STAT signaling pathway is a characteristic feature of many hematological malignancies. In particular, hyperactivity of this cascade has been observed in natural killer/T-cell lymphoma (NKTL) cases. Although the first-in-class JAK3 inhibitor tofacitinib blocks JAK3 activity in NKTL both in vitro and in vivo, its clinical utilization in cancer therapy has been limited by the pan-JAK inhibition activity. To improve the therapeutic efficacy of JAK3 inhibition in NKTL, we have developed a highly selective and durable JAK3 inhibitor PRN371 that potently inhibits JAK3 activity over the other JAK family members JAK1, JAK2, and TYK2. PRN371 effectively suppresses NKTL cell proliferation and induces apoptosis through abrogation of the JAK3-STAT signaling. Moreover, the activity of PRN371 has a more durable inhibition on JAK3 compared to tofacitinib in vitro, leading to significant tumor growth inhibition in a NKTL xenograft model harboring JAK3 activating mutation. These findings provide a novel therapeutic approach for the treatment of NKTL.

  2. Association of common variants in JAK2 gene with reduced risk of metabolic syndrome and related disorders

    PubMed Central

    2011-01-01

    Background Disturbances in leptin and insulin signaling pathways are related to obesity and metabolic syndrome (MS) with increased risk of diabetes and cardiovascular disease. Janus kinase 2 (JAK2) is a tyrosine kinase involved in the activation of mechanisms that mediate leptin and insulin actions. We conducted a population cross-sectional study to explore the association between two common variants in JAK2 gene and MS related traits in 724 Argentinean healthy male subjects. Methods A total of 724 unrelated men aged 37.11 ± 10.91 yr were included in a cross-sectional study. Physical examination, anthropometric measurements and biochemical analysis were determined by a standardized protocol. rs7849191 and rs3780378 were genotyped. Analyses were done separately for each SNP and followed up by haplotype analysis. Results rs7849191 and rs3780378 were both associated with reduced risk of MS [p = 0.005; OR (95%CI) = 0.52 (0.33-0.80) and p = 0.006; OR (95% CI) = 0.59 (0.40-0.86) respectively, assuming a dominant model]. rs3780378 T allele was associated with triglyceridemia values under 150 mg/dl [p = 0.007; OR (95%CI) = 0.610 (0.429-0.868)] and TT carriers showed lower triglycerides (p = 0.017), triglycerides/HDL-C ratio (p = 0.022) and lipid accumulation product (p = 0.007) compared to allele C carriers. The two-SNPs-haplotype analysis was consistent with single locus analysis. Conclusions It was found for the first time, significant associations of JAK2 common variants and related haplotypes with reduced risk of MS. These findings could be explained by the role of JAK2 in insulin and/or leptin signaling. PMID:22185674

  3. Tyrosines of Human and Mouse Transferrin Covalently Labeled by Organophosphorus Agents: A New Motif for Binding to Proteins that Have No Active Site Serine

    PubMed Central

    Li, Bin; Schopfer, Lawrence M.; Grigoryan, Hasmik; Thompson, Charles M.; Hinrichs, Steven H.; Masson, Patrick; Lockridge, Oksana

    2009-01-01

    The expectation from the literature is that organophosphorus (OP) agents bind to proteins that have an active site serine. However, transferrin, a protein with no active site serine, was covalently modified in vitro by 0.5mM 10-fluoroethoxyphosphinyl-N-biotinamido pentyldecanamide, chlorpyrifos oxon, diisopropylfluorophosphate, dichlorvos, sarin, and soman. The site of covalent attachment was identified by analyzing tryptic peptides in the mass spectrometer. Tyr 238 and Tyr 574 in human transferrin and Tyr 238, Tyr 319, Tyr 429, Tyr 491, and Tyr 518 in mouse transferrin were labeled by OP. Tyrosine in the small synthetic peptide ArgTyrThrArg made a covalent bond with diisopropylfluorophosphate, chlorpyrifos oxon, and dichlorvos at pH 8.3. These results, together with our previous demonstration that albumin and tubulin bind OP on tyrosine, lead to the conclusion that OP bind covalently to tyrosine, and that OP binding to tyrosine is a new OP-binding residue. The OP-reactive tyrosines are activated by interaction with Arg or Lys. It is suggested that many proteins in addition to those already identified may be modified by OP on tyrosine. The extent to which tyrosine modification by OP can occur in vivo and the toxicological implications of such modifications require further investigation. PMID:18930948

  4. JAK2 mutations and clinical practice in myeloproliferative neoplasms.

    PubMed

    Tefferi, Ayalew

    2007-01-01

    With the discovery in the last 3 years of novel Janus kinase 2 (JAK2) and thrombopoietin receptor (MPL) mutations, the pathogenetic understanding of and clinical practice for myeloproliferative neoplasms (MPNs) have entered a new era. Each one of these newly discovered mutations, including JAK2V617F, MPLW515L, and a JAK2 exon 12 mutation, has been shown to result in constitutive activation of JAK-STAT signaling and also induce a MPN phenotype in mice. Thus, JAK2 is now considered to be a legitimate target for drug development in MPNs, and small molecule JAK2 inhibitors have already gone through successful preclinical testing, and early-phase human trials in primary myelofibrosis have already begun. Furthermore, JAK2 mutation screening has now become a front-line diagnostic test in the evaluation of both "erythrocytosis" and thrombocytosis and the 2001 World Health Organization diagnostic criteria for polycythemia vera, essential thrombocythemia, and primary myelofibrosis have now been revised to incorporate JAK2V617F mutation screening.

  5. Combination of PIM and JAK2 inhibitors synergistically suppresses cell proliferation and overcomes drug resistance of myeloproliferative neoplasms

    PubMed Central

    Greco, Rita; Li, Zhifang; Sun, Fangxian; Barberis, Claude; Tabart, Michel; Patel, Vinod; Schio, Laurent; Hurley, Raelene; Chen, Bo; Cheng, Hong; Lengauer, Christoph; Pollard, Jack; Watters, James; Garcia-Echeverria, Carlos; Wiederschain, Dmitri; Adrian, Francisco; Zhang, JingXin

    2014-01-01

    Inhibitors of JAK2 kinase are emerging as an important treatment modality for myeloproliferative neoplasms (MPN). However, similar to other kinase inhibitors, resistance to JAK2 inhibitors may eventually emerge through a variety of mechanisms. Effective drug combination is one way to enhance therapeutic efficacy and combat resistance against JAK2 inhibitors. To identify potential combination partners for JAK2 compounds in MPN cell lines, we performed pooled shRNA screen targeting 5,000 genes in the presence or absence of JAK2 blockade. One of the top hits identified was MYC, an oncogenic transcription factor that is difficult to inhibit directly, but could be targeted by modulation of upstream regulatory elements such as kinases. We demonstrate herein that PIM kinase inhibitors efficiently suppress MYC protein levels in MPN cell lines. Overexpression of MYC restores the viability of PIM inhibitor-treated cells, revealing causal relationship between MYC down-regulation and cell growth inhibition by PIM compounds. Combination of various PIM inhibitors with a JAK2 inhibitor results in significant synergistic growth inhibition of multiple MPN cancer cell lines and induction of apoptosis. Mechanistic studies revealed strong downregulation of phosphorylated forms of S6 and 4EBP1 by JAK2/PIM inhibitor combination treatment. Finally, such combination was effective in eradicating in vitro JAK2 inhibitor-resistant MPN clones, where MYC is consistently up-regulated. These findings demonstrate that simultaneous suppression of JAK2 and PIM kinase activity by small molecule inhibitors is more effective than either agent alone in suppressing MPN cell growth. Our data suggest that JAK2 and PIM combination might warrant further investigation for the treatment of JAK2-driven hematologic malignancies. PMID:24830942

  6. Tyrosine Residues Regulate Multiple Nuclear Functions of P54nrb.

    PubMed

    Lee, Ahn R; Hung, Wayne; Xie, Ning; Liu, Liangliang; He, Leye; Dong, Xuesen

    2017-04-01

    The non-POU-domain-containing octamer binding protein (NONO; also known as p54nrb) has various nuclear functions ranging from transcription, RNA splicing, DNA synthesis and repair. Although tyrosine phosphorylation has been proposed to account for the multi-functional properties of p54nrb, direct evidence on p54nrb as a phosphotyrosine protein remains unclear. To investigate the tyrosine phosphorylation status of p54nrb, we performed site-directed mutagenesis on the five tyrosine residues of p54nrb, replacing the tyrosine residues with phenylalanine or alanine, and immunoblotted for tyrosine phosphorylation. We then preceded with luciferase reporter assays, RNA splicing minigene assays, co-immunoprecipitation, and confocal microscopy to study the function of p54nrb tyrosine residues on transcription, RNA splicing, protein-protein interaction, and cellular localization. We found that p54nrb was not phosphorylated at tyrosine residues. Rather, it has non-specific binding affinity to anti-phosphotyrosine antibodies. However, replacement of tyrosine with phenylalanine altered p54nrb activities in transcription co-repression and RNA splicing in gene context-dependent fashions by means of differential regulation of p54nrb protein association with its interacting partners and co-regulators of transcription and splicing. These results demonstrate that tyrosine residues, regardless of phosphorylation status, are important for p54nrb function. J. Cell. Physiol. 232: 852-861, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Expression of JAKs/STATs pathway molecules in rat model of rapid focal segmental glomerulosclerosis.

    PubMed

    Liang, Yaojun; Jin, Yu; Li, Yuning

    2009-09-01

    The objective of this study was to investigate the role of the Janus kinase-signal transducers and activators of transcription (JAKs/STATs) pathway in focal segmental glomerulosclerosis. Sixty specific pathogen-free male Wistar rats were randomly divided into two groups: a model group (MG) and a control group (CG). In the MG group, nephropathy was induced by unilateral nephrectomy and a single tail vein injection of adriamycin (5 mg/kg). Ten rats were sacrificed every 2 weeks in each group. The expressions of smooth muscle alpha actin (alpha-SMA), collagen (COL)-IV, STAT1, and STAT3 were examined using histochemical techniques, and Western blotting was used to examine the protein levels of STAT1, STAT3, phosphorylated (P)-STAT1, P-STAT3, and transforming growth factor beta1 (TGFbeta(1)). The expressions of JAK1, JAK2, STAT1, STAT3, suppressors of cytokine signaling (SOCS)1, SOCS3, protein inhibitors of activated STAT (PIAS)1, and PIAS3 were also measured by real-time quantitative reverse transcriptase-PCR. A steady and significant increase in the expressions of alpha-SMA, COL-IV and TGFbeta(1) were observed in MG rats over the whole experimental course. Increased STAT1 and P-STAT1 levels in MG rats were observed by week 6, whereas increased levels of STAT3 and P-STAT3 were noted by week 2. At the mRNA levels, JAK1, STAT1, and PIAS1 were significantly increased in MG rats in week 2, whereas JAK2 mRNA showed a significant decrease by weeks 2 and 4, followed by an significant increase in week 6. Significantly increased STAT3 levels were noted in week 2, followed by a steady and significant decrease in weeks 4 and 6. Significantly reduced levels of SOCS1, SOCS3, and PIAS3 mRNA were noted at all time points. We conclude that the JAKs/STATs signaling pathway may play an important role in the pathological process of rapid focal segmental glomerulosclerosis in the rat model.

  8. Therapeutic Implications for Striatal-Enriched Protein Tyrosine Phosphatase (STEP) in Neuropsychiatric Disorders

    PubMed Central

    Goebel-Goody, Susan M.; Baum, Matthew; Paspalas, Constantinos D.; Fernandez, Stephanie M.; Carty, Niki C.; Kurup, Pradeep

    2012-01-01

    Striatal-enriched protein tyrosine phosphatase (STEP) is a brain-specific phosphatase that modulates key signaling molecules involved in synaptic plasticity and neuronal function. Targets include extracellular-regulated kinase 1 and 2 (ERK1/2), stress-activated protein kinase p38 (p38), the Src family tyrosine kinase Fyn, N-methyl-d-aspartate receptors (NMDARs), and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs). STEP-mediated dephosphorylation of ERK1/2, p38, and Fyn leads to inactivation of these enzymes, whereas STEP-mediated dephosphorylation of surface NMDARs and AMPARs promotes their endocytosis. Accordingly, the current model of STEP function posits that it opposes long-term potentiation and promotes long-term depression. Phosphorylation, cleavage, dimerization, ubiquitination, and local translation all converge to maintain an appropriate balance of STEP in the central nervous system. Accumulating evidence over the past decade indicates that STEP dysregulation contributes to the pathophysiology of several neuropsychiatric disorders, including Alzheimer's disease, schizophrenia, fragile X syndrome, epileptogenesis, alcohol-induced memory loss, Huntington's disease, drug abuse, stroke/ischemia, and inflammatory pain. This comprehensive review discusses STEP expression and regulation and highlights how disrupted STEP function contributes to the pathophysiology of diverse neuropsychiatric disorders. PMID:22090472

  9. A second-generation expression system for tyrosine-sulfated proteins and its application in crop protection.

    PubMed

    Schwessinger, Benjamin; Li, Xiang; Ellinghaus, Thomas L; Chan, Leanne Jade G; Wei, Tong; Joe, Anna; Thomas, Nicholas; Pruitt, Rory; Adams, Paul D; Chern, Maw Sheng; Petzold, Christopher J; Liu, Chang C; Ronald, Pamela C

    2016-04-18

    Posttranslational modification (PTM) of proteins and peptides is important for diverse biological processes in plants and animals. The paucity of heterologous expression systems for PTMs and the technical challenges associated with chemical synthesis of these modified proteins has limited detailed molecular characterization and therapeutic applications. Here we describe an optimized system for expression of tyrosine-sulfated proteins in Escherichia coli and its application in a bio-based crop protection strategy in rice.

  10. A second-generation expression system for tyrosine-sulfated proteins and its application in crop protection

    DOE PAGES

    Schwessinger, Benjamin; Li, Xiang; Ellinghaus, Thomas L.; ...

    2015-11-27

    Posttranslational modification (PTM) of proteins and peptides is important for diverse biological processes in plants and animals. The paucity of heterologous expression systems for PTMs and the technical challenges associated with chemical synthesis of these modified proteins has limited detailed molecular characterization and therapeutic applications. Here we describe an optimized system for expression of tyrosine-sulfated proteins in Escherichia coli and its application in a bio-based crop protection strategy in rice.

  11. Activated STAT5 proteins induce activation of the PI 3-kinase/Akt and Ras/MAPK pathways via the Gab2 scaffolding adapter.

    PubMed

    Nyga, Rémy; Pecquet, Christian; Harir, Noria; Gu, Haihua; Dhennin-Duthille, Isabelle; Régnier, Aline; Gouilleux-Gruart, Valérie; Lassoued, Kaïss; Gouilleux, Fabrice

    2005-08-15

    The active forms of STAT5A (signal transducer and activator of transcription 5A) and STAT5B are able to relieve the cytokine dependence of haematopoietic cells and to induce leukaemia in mice. We have demonstrated previously that activation of the PI3K (phosphoinositide 3-kinase) signalling cascade plays a major role in cell growth and survival induced by these proteins. Interaction between STAT5 and p85, the regulatory subunit of the PI3K, has been suggested to be required for this activation. We show in the present study that the scaffolding protein Gab2 [Grb2 (growth-factor-receptor-bound protein 2)-associated binder-2] is an essential component of this interaction. Gab2 is persistently tyrosine-phosphorylated in Ba/F3 cells expressing caSTAT5 (constitutively activated STAT5), independent of JAK2 (Janus kinase 2) activation where it interacts with STAT5, p85 and Grb2, but not with Shp2 [SH2 (Src homology 2)-domain-containing tyrosine phosphatase] proteins. Interaction of STAT5 with Gab2 was also observed in Ba/F3 cells stimulated with interleukin-3 or expressing the oncogenic fusion protein Tel-JAK2. The MAPKs (mitogen-activated protein kinases) ERK1 (extracellular-signal-regulated kinase 1) and ERK2 were constitutively activated in the caSTAT5-expressing cells and were found to be required for caSTAT5-induced cell proliferation. Overexpression of Gab2-3YF, a mutant of Gab2 incapable of binding PI3K, inhibited the proliferation and survival of caSTAT5-expressing cells as well as ERK1/2 and Akt/protein kinase B phosphorylation. Taken together, our results indicate that Gab2 is required for caSTAT5-induced cell proliferation by regulating both the PI3K/Akt and the Ras/MAPK pathways.

  12. Activated STAT5 proteins induce activation of the PI 3-kinase/Akt and Ras/MAPK pathways via the Gab2 scaffolding adapter

    PubMed Central

    2005-01-01

    The active forms of STAT5A (signal transducer and activator of transcription 5A) and STAT5B are able to relieve the cytokine dependence of haematopoietic cells and to induce leukaemia in mice. We have demonstrated previously that activation of the PI3K (phosphoinositide 3-kinase) signalling cascade plays a major role in cell growth and survival induced by these proteins. Interaction between STAT5 and p85, the regulatory subunit of the PI3K, has been suggested to be required for this activation. We show in the present study that the scaffolding protein Gab2 [Grb2 (growth-factor-receptor-bound protein 2)-associated binder-2] is an essential component of this interaction. Gab2 is persistently tyrosine-phosphorylated in Ba/F3 cells expressing caSTAT5 (constitutively activated STAT5), independent of JAK2 (Janus kinase 2) activation where it interacts with STAT5, p85 and Grb2, but not with Shp2 [SH2 (Src homology 2)-domain-containing tyrosine phosphatase] proteins. Interaction of STAT5 with Gab2 was also observed in Ba/F3 cells stimulated with interleukin-3 or expressing the oncogenic fusion protein Tel–JAK2. The MAPKs (mitogen-activated protein kinases) ERK1 (extracellular-signal-regulated kinase 1) and ERK2 were constitutively activated in the caSTAT5-expressing cells and were found to be required for caSTAT5-induced cell proliferation. Overexpression of Gab2-3YF, a mutant of Gab2 incapable of binding PI3K, inhibited the proliferation and survival of caSTAT5-expressing cells as well as ERK1/2 and Akt/protein kinase B phosphorylation. Taken together, our results indicate that Gab2 is required for caSTAT5-induced cell proliferation by regulating both the PI3K/Akt and the Ras/MAPK pathways. PMID:15833084

  13. Methotrexate Is a JAK/STAT Pathway Inhibitor

    PubMed Central

    Thomas, Sally; Fisher, Katherine H.; Snowden, John A.; Danson, Sarah J.; Brown, Stephen; Zeidler, Martin P.

    2015-01-01

    Background The JAK/STAT pathway transduces signals from multiple cytokines and controls haematopoiesis, immunity and inflammation. In addition, pathological activation is seen in multiple malignancies including the myeloproliferative neoplasms (MPNs). Given this, drug development efforts have targeted the pathway with JAK inhibitors such as ruxolitinib. Although effective, high costs and side effects have limited its adoption. Thus, a need for effective low cost treatments remains. Methods & Findings We used the low-complexity Drosophila melanogaster pathway to screen for small molecules that modulate JAK/STAT signalling. This screen identified methotrexate and the closely related aminopterin as potent suppressors of STAT activation. We show that methotrexate suppresses human JAK/STAT signalling without affecting other phosphorylation-dependent pathways. Furthermore, methotrexate significantly reduces STAT5 phosphorylation in cells expressing JAK2 V617F, a mutation associated with most human MPNs. Methotrexate acts independently of dihydrofolate reductase (DHFR) and is comparable to the JAK1/2 inhibitor ruxolitinib. However, cells treated with methotrexate still retain their ability to respond to physiological levels of the ligand erythropoietin. Conclusions Aminopterin and methotrexate represent the first chemotherapy agents developed and act as competitive inhibitors of DHFR. Methotrexate is also widely used at low doses to treat inflammatory and immune-mediated conditions including rheumatoid arthritis. In this low-dose regime, folate supplements are given to mitigate side effects by bypassing the biochemical requirement for DHFR. Although independent of DHFR, the mechanism-of-action underlying the low-dose effects of methotrexate is unknown. Given that multiple pro-inflammatory cytokines signal through the pathway, we suggest that suppression of the JAK/STAT pathway is likely to be the principal anti-inflammatory and immunosuppressive mechanism-of-action of low

  14. Response of the JAK-STAT signaling pathway to oxygen deprivation in the red eared slider turtle, Trachemys scripta elegans.

    PubMed

    Bansal, Saumya; Biggar, Kyle K; Krivoruchko, Anastasia; Storey, Kenneth B

    2016-11-15

    The red-eared slider turtle, Trachemys scripta elegans, is a model organism commonly used to study the environmental stress of anoxia. It exhibits multiple biochemical adaptations to ensure its survival during the winter months where quantities of oxygen are largely depleted. We proposed that JAK-STAT signaling would display stress responsive regulation to mediate the survival of the red-eared slider turtle, Trachemys scripta elegans, during anoxic stress. Importantly, the JAK-STAT signaling pathway is involved in transmitting extracellular signals to the nucleus resulting in the expression of select genes that aid cell survival and growth. Immunoblotting was used to compare the relative phosphorylation levels of JAK proteins, STAT proteins, and two of its inhibitors, SOCS and PIAS, in response to anoxia. A clear activation of the JAK-STAT pathway was observed in the liver tissue while no significant changes were found in the skeletal muscle. To further support our findings we also found an increase in mRNA transcripts of downstream targets of STATs, namely bcl-xL and bcl-2, using PCR analysis in the liver tissues. These findings suggest an important role for the JAK-STAT pathway in exhibiting natural anoxia tolerance by the red-eared slider turtle. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Bruton's tyrosine kinase (Btk) inhibitor ibrutinib suppresses stem-like traits in ovarian cancer.

    PubMed

    Zucha, Muhammad Ary; Wu, Alexander T H; Lee, Wei-Hwa; Wang, Liang-Shun; Lin, Wan-Wan; Yuan, Chiou-Chung; Yeh, Chi-Tai

    2015-05-30

    According to a Prognoscan database, upregulation of Bruton's tyrosine kinase (Btk) is associated with low overall survival in ovarian cancer patients. We found that spheroids-forming ovarian cancer cell, which highly expressed cancer stem-like cell (CSC) markers and Btk, were cisplatin resistant. We next treated CSCs and non-CSCs by a combination of ibrutinib and cisplatin. We found that chemoresistance was dependent on Btk and JAK2/STAT3, which maintained CSC by inducing Sox-2 and prosurvival genes. We suggest that addition of ibrutinib to cisplatin may improve treatment outcome in ovarian cancer.

  16. Oviduct binding and elevated environmental ph induce protein tyrosine phosphorylation in stallion spermatozoa.

    PubMed

    Leemans, Bart; Gadella, Bart M; Sostaric, Edita; Nelis, Hilde; Stout, Tom A E; Hoogewijs, Maarten; Van Soom, Ann

    2014-07-01

    Sperm-oviduct binding is an essential step in the capacitation process preparing the sperm for fertilization in several mammalian species. In many species, capacitation can be induced in vitro by exposing spermatozoa to bicarbonate, Ca(2+), and albumin; however, these conditions are insufficient in the horse. We hypothesized that binding to the oviduct epithelium is an essential requirement for the induction of capacitation in stallion spermatozoa. Sperm-oviduct binding was established by coincubating equine oviduct explants for 2 h with stallion spermatozoa (2 × 10(6) spermatozoa/ml), during which it transpired that the highest density (per mm(2)) of oviduct-bound spermatozoa was achieved under noncapacitating conditions. In subsequent experiments, sperm-oviduct incubations were performed for 6 h under noncapacitating versus capacitating conditions. The oviduct-bound spermatozoa showed a time-dependent protein tyrosine phosphorylation response, which was not observed in unbound spermatozoa or spermatozoa incubated in oviduct explant conditioned medium. Both oviduct-bound and unbound sperm remained motile with intact plasma membrane and acrosome. Since protein tyrosine phosphorylation can be induced in equine spermatozoa by media with high pH, the intracellular pH (pHi) of oviduct explant cells and bound spermatozoa was monitored fluorometrically after staining with BCECF-AM dye. The epithelial secretory cells contained large, alkaline vesicles. Moreover, oviduct-bound spermatozoa showed a gradual increase in pHi, presumably due to an alkaline local microenvironment created by the secretory epithelial cells, given that unbound spermatozoa did not show pHi changes. Thus, sperm-oviduct interaction appears to facilitate equine sperm capacitation by creating an alkaline local environment that triggers intracellular protein tyrosine phosphorylation in bound sperm. © 2014 by the Society for the Study of Reproduction, Inc.

  17. Spatiotemporal regulation of cell fusion by JNK and JAK/STAT signaling during Drosophila wound healing.

    PubMed

    Lee, Ji-Hyun; Lee, Chan-Wool; Park, Si-Hyoung; Choe, Kwang-Min

    2017-06-01

    Cell-cell fusion is widely observed during development and disease, and imposes a dramatic change on participating cells. Cell fusion should be tightly controlled, but the underlying mechanism is poorly understood. Here, we found that the JAK/STAT pathway suppressed cell fusion during wound healing in the Drosophila larval epidermis, restricting cell fusion to the vicinity of the wound. In the absence of JAK/STAT signaling, a large syncytium containing a 3-fold higher number of nuclei than observed in wild-type tissue formed in wounded epidermis. The JAK/STAT ligand-encoding genes upd2 and upd3 were transcriptionally induced by wounding, and were required for suppressing excess cell fusion. JNK (also known as Basket in flies) was activated in the wound vicinity and activity peaked at ∼8 h after injury, whereas JAK/STAT signaling was activated in an adjoining concentric ring and activity peaked at a later stage. Cell fusion occurred primarily in the wound vicinity, where JAK/STAT activation was suppressed by fusion-inducing JNK signaling. JAK/STAT signaling was both necessary and sufficient for the induction of βPS integrin (also known as Myospheroid) expression, suggesting that the suppression of cell fusion was mediated at least in part by integrin protein. © 2017. Published by The Company of Biologists Ltd.

  18. Molecular insights into regulation of JAK2 in myeloproliferative neoplasms

    PubMed Central

    Hubbard, Stevan R.

    2015-01-01

    The critical role of Janus kinase-2 (JAK2) in regulation of myelopoiesis was established 2 decades ago, but identification of mutations in the pseudokinase domain of JAK2 in myeloproliferative neoplasms (MPNs) and in other hematologic malignancies highlighted the role of JAK2 in human disease. These findings have revolutionized the diagnostics of MPNs and led to development of novel JAK2 therapeutics. However, the molecular mechanisms by which mutations in the pseudokinase domain lead to hyperactivation of JAK2 and clinical disease have been unclear. Here, we describe recent advances in the molecular characterization of the JAK2 pseudokinase domain and how pathogenic mutations lead to constitutive activation of JAK2. PMID:25824690

  19. A soluble receptor for advanced glycation end-products inhibits myocardial apoptosis induced by ischemia/reperfusion via the JAK2/STAT3 pathway.

    PubMed

    Jiang, Xue; Guo, Cai-xia; Zeng, Xiang-jun; Li, Hui-hua; Chen, Bu-xing; Du, Feng-he

    2015-08-01

    sRAGE can protect cardiomyocytes from apoptosis induced by ischemia/reperfusion (I/R). However, the signaling mechanisms in cardioprotection by sRAGE are currently unknown. We investigated the cardioprotective effect and potential molecular mechanisms of sRAGE inhibition on apoptosis in the mouse myocardial I/R as an in vivo model and neonatal rat cardiomyocyte subjected to ischemic buffer as an in vitro model. Cardiac function and myocardial infarct size following by I/R were evaluated with echocardiography and Evans blue/2,3,5-triphenyltetrazolium chloride. Apoptosis was detected by TUNEL staining and caspase-3 activity. Expression of the apoptosis-related proteins p53, Bax, Bcl-2, JAK2/p-JAK2, STAT3/p-STAT3, AKT/p-AKT, ERK/p-ERK, STAT5A/p-STAT5A and STAT6/p-STAT6 were detected by western blot analysis in the presence and absence of the JAK2 inhibitor AG 490. sRAGE (100 µg/day) improved the heart function in mice with I/R: the left ventricular ejection fraction and fractional shortening were increased by 42 and 57%, respectively; the infarct size was decreased by 52%, the TUNEL-positive myocytes by 66%, and activity of caspase-3 by 24%, the protein expression of p53 and ratio of Bax to Bcl-2 by 29 and 88%, respectively; protein expression of the p-JAK2, p-STAT3 and p-AKT were increased by 92, 280 and 31%, respectively. sRAGE have no effect on protein expression of p-ERK1/2, p-STAT5A and p-STAT6 following by I/R. sRAGE (900 nmol/L) exhibited anti-apoptotic effects in cardiomyocytes by decreasing TUNEL-positive myocytes by 67% and caspase-3 activity by 20%, p53 protein level and the Bax/Bcl-2 ratio by 58 and 86%, respectively; increasing protein expression of the p-JAK2 and p-STAT3 by 26 and 156%, respectively, p-AKT protein level by 33%. The anti-apoptotic effects of sRAGE following I/R were blocked by JAK2 inhibitor AG 490. The effect of sRAGE reduction on TUNEL-positive myocytes and caspase-3 activity were abolished by PI3K inhibitor LY294002, but not ERK 1

  20. Epigallocatechin-3-gallate Ameliorates Seawater Aspiration-Induced Acute Lung Injury via Regulating Inflammatory Cytokines and Inhibiting JAK/STAT1 Pathway in Rats

    PubMed Central

    Liu, Wei; Dong, Mingqing; Bo, Liyan; Li, Congcong; Liu, Qingqing; Li, Yanyan; Ma, Lijie; Xie, Yonghong; Fu, Enqing; Mu, Deguang; Pan, Lei; Jin, Faguang; Li, Zhichao

    2014-01-01

    Signal transducers and activators of transcriptions 1 (STAT1) play an important role in the inflammation process of acute lung injury (ALI). Epigallocatechin-3-gallate (EGCG) exhibits a specific and strong anti-STAT1 activity. Therefore, our study is to explore whether EGCG pretreatment can ameliorate seawater aspiration-induced ALI and its possible mechanisms. We detected the arterial partial pressure of oxygen, lung wet/dry weight ratios, protein content in bronchoalveolar lavage fluid, and the histopathologic and ultrastructure staining of the lung. The levels of IL-1, TNF-α, and IL-10 and the total and the phosphorylated protein level of STAT1, JAK1, and JAK2 were assessed in vitro and in vivo. The results showed that EGCG pretreatment significantly improved hypoxemia and histopathologic changes, alleviated pulmonary edema and lung vascular leak, reduced the production of TNF-α and IL-1, and increased the production of IL-10 in seawater aspiration-induced ALI rats. EGCG also prevented the seawater aspiration-induced increase of TNF-α and IL-1 and decrease of IL-10 in NR8383 cell line. Moreover, EGCG pretreatment reduced the total and the phosphorylated protein level of STAT1 in vivo and in vitro and reduced the phosphorylated protein level of JAK1 and JAK2. The present study demonstrates that EGCG ameliorates seawater aspiration-induced ALI via regulating inflammatory cytokines and inhibiting JAK/STAT1 pathway in rats. PMID:24692852

  1. JAK2 aberrations in childhood B-cell precursor acute lymphoblastic leukemia

    PubMed Central

    de Goffau-Nobel, Willemieke; Hoogkamer, Alex Q.; Boer, Judith M.; Boeree, Aurélie; van de Ven, Cesca; Koudijs, Marco J.; Besselink, Nicolle J.M.; de Groot-Kruseman, Hester A.; Zwaan, Christian Michel; Horstmann, Martin A.; Pieters, Rob; den Boer, Monique L.

    2017-01-01

    JAK2 abnormalities may serve as target for precision medicines in pediatric B-cell precursor acute lymphoblastic leukemia (BCP-ALL). In the current study we performed a screening for JAK2 mutations and translocations, analyzed the clinical outcome and studied the efficacy of two JAK inhibitors in primary BCP-ALL cells. Importantly, we identify a number of limitations of JAK inhibitor therapy. JAK2 mutations mainly occurred in the poor prognostic subtypes BCR-ABL1-like and non- BCR-ABL1-like B-other (negative for sentinel cytogenetic lesions). JAK2 translocations were restricted to BCR-ABL1-like cases. Momelotinib and ruxolitinib were cytotoxic in both JAK2 translocated and JAK2 mutated cells, although efficacy in JAK2 mutated cells highly depended on cytokine receptor activation by TSLP. However, our data also suggest that the effect of JAK inhibition may be compromised by mutations in alternative survival pathways and microenvironment-induced resistance. Furthermore, inhibitors induced accumulation of phosphorylated JAK2Y1007, which resulted in a profound re-activation of JAK2 signaling upon release of the inhibitors. This preclinical evidence implies that further optimization and evaluation of JAK inhibitor treatment is necessary prior to its clinical integration in pediatric BCP-ALL. PMID:29163799

  2. Molecular mechanism of ERK dephosphorylation by striatal-enriched protein tyrosine phosphatase (STEP)

    PubMed Central

    Li, Hui; Li, Kang-shuai; Su, Jing; Chen, Lai-Zhong; Xu, Yun-Fei; Wang, Hong-Mei; Gong, Zheng; Cui, Guo-Ying; Yu, Xiao; Wang, Kai; Yao, Wei; Xin, Tao; Li, Min-Yong; Xiao, Kun-Hong; An, Xiao-fei; Huo, Yuqing; Xu, Zhi-gang; Sun, Jin-Peng; Pang, Qi

    2013-01-01

    Striatal-enriched tyrosine phosphatase (STEP) is an important regulator of neuronal synaptic plasticity, and its abnormal level or activity contributes to cognitive disorders. One crucial downstream effector and direct substrate of STEP is extracellular signal-regulated protein kinase (ERK), which has important functions in spine stabilisation and action potential transmission. The inhibition of STEP activity toward phospho-ERK has the potential to treat neuronal diseases, but the detailed mechanism underlying the dephosphorylation of phospho-ERK by STEP is not known. Therefore, we examined STEP activity toward pNPP, phospho-tyrosine-containing peptides, and the full-length phospho-ERK protein using STEP mutants with different structural features. STEP was found to be a highly efficient ERK tyrosine phosphatase that required both its N-terminal regulatory region and key residues in its active site. Specifically, both KIM and KIS of STEP were required for ERK interaction. In addition to the N-terminal KIS region, S245, hydrophobic residues L249/L251, and basic residues R242/R243 located in the KIM region were important in controlling STEP activity toward phospho-ERK. Further kinetic experiments revealed subtle structural differences between STEP and HePTP that affected the interactions of their KIMs with ERK. Moreover, STEP recognised specific positions of a phospho-ERK peptide sequence through its active site, and the contact of STEP F311 with phospho-ERK V205 and T207 were crucial interactions. Taken together, our results not only provide the information for interactions between ERK and STEP, but will also help in the development of specific strategies to target STEP-ERK recognition, which could serve as a potential therapy for neurological disorders. PMID:24117863

  3. Identification of highly potent BTK and JAK3 dual inhibitors with improved activity for the treatment of B-cell lymphoma.

    PubMed

    Ge, Yang; Wang, Changyuan; Song, Shijie; Huang, Jiaxin; Liu, Zhihao; Li, Yongming; Meng, Qiang; Zhang, Jianbin; Yao, Jihong; Liu, Kexin; Ma, Xiaodong; Sun, Xiuli

    2018-01-01

    The BTK and JAK3 receptor tyrosine kinases are two validated and therapeutically amenable targets in the treatment of B-cell lymphomas. Here we report the identification of several classes of pyrimidine derivatives as potent BTK and JAK3 dual inhibitors. Among these molecules, approximately two thirds displayed strong inhibitory capacity at less than 10 nM concentration, and four compounds (7e, 7g, 7m and 7n) could significantly inhibit the phosphorylation of BTK and JAK3 enzymes at concentrations lower than 1 nM. Additionally, these pyrimidine derivatives also exhibited enhanced activity to block the proliferation of B-cell lymphoma cells compared with the representative BTK inhibitor ibrutinib. In particular, two structure-specific compounds 7b and 7e displayed stronger activity than reference agents in cell-based evaluation, with IC 50 values lower than 10 μM. Further biological studies, including flow cytometric analysis, and a xenograft model for in vivo evaluation, also indicated their efficacy and low toxicity in the treatment of B-cell lymphoma. These findings provide a new insight for the development of novel anti-B-cell lymphoma drugs with multi-target actions. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  4. The role of JAK2 abnormalities in hematologic neoplasms

    PubMed Central

    Alabdulaali, Mohammed K.

    2009-01-01

    In 2005, an activating mutation in the Janus kinase 2 (JAK2) was identified in a significant proportion of patients with myeloproliferative neoplasms, mainly polycythemia vera, essential thrombocythemia and primary myelofibrosis. Many types of mutations in the JAK-STAT pathway have been identified, the majority are related to JAK2. Currently JAK2 mutations are important in the area of diagnosis of myeloid neoplasms, but its role beyond the confirmation of clonality is growing and widening our knowledge about these disorders. In addition to that, clinical trials to target JAK2-STAT pathway will widen our knowledge and hopefully will offer more therapeutic options. In this review, we will discuss the role of JAK2 abnormalities in the pathogenesis, diagnosis, classification, severity and management of hematologic neoplasms.

  5. Somatic CALR Mutations in Myeloproliferative Neoplasms with Nonmutated JAK2

    PubMed Central

    Baxter, E.J.; Nice, F.L.; Gundem, G.; Wedge, D.C.; Avezov, E.; Li, J.; Kollmann, K.; Kent, D.G.; Aziz, A.; Godfrey, A.L.; Hinton, J.; Martincorena, I.; Van Loo, P.; Jones, A.V.; Guglielmelli, P.; Tarpey, P.; Harding, H.P.; Fitzpatrick, J.D.; Goudie, C.T.; Ortmann, C.A.; Loughran, S.J.; Raine, K.; Jones, D.R.; Butler, A.P.; Teague, J.W.; O’Meara, S.; McLaren, S.; Bianchi, M.; Silber, Y.; Dimitropoulou, D.; Bloxham, D.; Mudie, L.; Maddison, M.; Robinson, B.; Keohane, C.; Maclean, C.; Hill, K.; Orchard, K.; Tauro, S.; Du, M.-Q.; Greaves, M.; Bowen, D.; Huntly, B.J.P.; Harrison, C.N.; Cross, N.C.P.; Ron, D.; Vannucchi, A.M.; Papaemmanuil, E.; Campbell, P.J.; Green, A.R.

    2014-01-01

    BACKGROUND Somatic mutations in the Janus kinase 2 gene (JAK2) occur in many myeloproliferative neoplasms, but the molecular pathogenesis of myeloproliferative neoplasms with nonmutated JAK2 is obscure, and the diagnosis of these neoplasms remains a challenge. METHODS We performed exome sequencing of samples obtained from 151 patients with myeloproliferative neoplasms. The mutation status of the gene encoding calreticulin (CALR) was assessed in an additional 1345 hematologic cancers, 1517 other cancers, and 550 controls. We established phylogenetic trees using hematopoietic colonies. We assessed calreticulin subcellular localization using immunofluorescence and flow cytometry. RESULTS Exome sequencing identified 1498 mutations in 151 patients, with medians of 6.5, 6.5, and 13.0 mutations per patient in samples of polycythemia vera, essential thrombocythemia, and myelofibrosis, respectively. Somatic CALR mutations were found in 70 to 84% of samples of myeloproliferative neoplasms with nonmutated JAK2, in 8% of myelodysplasia samples, in occasional samples of other myeloid cancers, and in none of the other cancers. A total of 148 CALR mutations were identified with 19 distinct variants. Mutations were located in exon 9 and generated a +1 base-pair frameshift, which would result in a mutant protein with a novel C-terminal. Mutant calreticulin was observed in the endoplasmic reticulum without increased cell-surface or Golgi accumulation. Patients with myeloproliferative neoplasms carrying CALR mutations presented with higher platelet counts and lower hemoglobin levels than patients with mutated JAK2. Mutation of CALR was detected in hematopoietic stem and progenitor cells. Clonal analyses showed CALR mutations in the earliest phylogenetic node, a finding consistent with its role as an initiating mutation in some patients. CONCLUSIONS Somatic mutations in the endoplasmic reticulum chaperone CALR were found in a majority of patients with myeloproliferative neoplasms with

  6. Tyrosine Kinase Signaling in Clear Cell and Papillary Renal Cell Carcinoma Revealed by Mass Spectrometry-Based Phosphotyrosine Proteomics

    PubMed Central

    Haake, Scott M.; Li, Jiannong; Bai, Yun; Kinose, Fumi; Fang, Bin; Welsh, Eric; Zent, Roy; Dhillon, Jasreman; Pow-Sang, Julio; Chen, Yian Ann; Koomen, John; Rathmell, W. Kimryn; Fishman, Mayer; Haura, Eric B.

    2016-01-01

    Purpose Targeted therapies in renal cell carcinoma (RCC) are limited by acquired resistance. Novel therapeutic targets are needed to combat resistance and, ideally, target the unique biology of RCC subtypes. Experimental Design Tyrosine kinases provide critical oncogenic signaling and their inhibition has significantly impacted cancer care. In order to describe a landscape of tyrosine kinase activity in RCC that could inform novel therapeutic strategies, we performed a mass spectrometry-based system-wide survey of tyrosine phosphorylation in 10 RCC cell lines as well as 15 clear cell and 15 papillary RCC human tumors. To prioritize identified tyrosine kinases for further analysis, a 63 tyrosine kinase inhibitor (TKI) drug screen was performed. Results Among the cell lines, 28 unique tyrosine phosphosites were identified across 19 kinases and phosphatases including EGFR, MET, JAK2, and FAK in nearly all samples. Multiple FAK TKIs decreased cell viability by at least 50% and inhibited RCC cell line adhesion, invasion, and proliferation. Among the tumors, 49 unique tyrosine phosphosites were identified across 44 kinases and phosphatases. FAK pY576/7 was found in all tumors and many cell lines, while DDR1 pY792/6 was preferentially enriched in the papillary RCC tumors. Both tyrosine kinases are capable of transmitting signals from the extracellular matrix and emerged as novel RCC therapeutic targets. Conclusions Tyrosine kinase profiling informs novel therapeutic strategies in RCC and highlights the unique biology amongst kidney cancer subtypes. PMID:27220961

  7. A new monoclonal antibody detects downregulation of protein tyrosine phosphatase receptor type γ in chronic myeloid leukemia patients.

    PubMed

    Vezzalini, Marzia; Mafficini, Andrea; Tomasello, Luisa; Lorenzetto, Erika; Moratti, Elisabetta; Fiorini, Zeno; Holyoake, Tessa L; Pellicano, Francesca; Krampera, Mauro; Tecchio, Cristina; Yassin, Mohamed; Al-Dewik, Nader; Ismail, Mohamed A; Al Sayab, Ali; Monne, Maria; Sorio, Claudio

    2017-06-21

    Protein tyrosine phosphatase receptor gamma (PTPRG) is a ubiquitously expressed member of the protein tyrosine phosphatase family known to act as a tumor suppressor gene in many different neoplasms with mechanisms of inactivation including mutations and methylation of CpG islands in the promoter region. Although a critical role in human hematopoiesis and an oncosuppressor role in chronic myeloid leukemia (CML) have been reported, only one polyclonal antibody (named chPTPRG) has been described as capable of recognizing the native antigen of this phosphatase by flow cytometry. Protein biomarkers of CML have not yet found applications in the clinic, and in this study, we have analyzed a group of newly diagnosed CML patients before and after treatment. The aim of this work was to characterize and exploit a newly developed murine monoclonal antibody specific for the PTPRG extracellular domain (named TPγ B9-2) to better define PTPRG protein downregulation in CML patients. TPγ B9-2 specifically recognizes PTPRG (both human and murine) by flow cytometry, western blotting, immunoprecipitation, and immunohistochemistry. Co-localization experiments performed with both anti-PTPRG antibodies identified the presence of isoforms and confirmed protein downregulation at diagnosis in the Philadelphia-positive myeloid lineage (including CD34 + /CD38 bright/dim cells). After effective tyrosine kinase inhibitor (TKI) treatment, its expression recovered in tandem with the return of Philadelphia-negative hematopoiesis. Of note, PTPRG mRNA levels remain unchanged in tyrosine kinase inhibitors (TKI) non-responder patients, confirming that downregulation selectively occurs in primary CML cells. The availability of this unique antibody permits its evaluation for clinical application including the support for diagnosis and follow-up of these disorders. Evaluation of PTPRG as a potential therapeutic target is also facilitated by the availability of a specific reagent capable to specifically

  8. Possible involvement of the JAK/STAT signaling pathway in N-acetylcysteine-mediated antidepressant-like effects.

    PubMed

    Al-Samhari, Marwa M; Al-Rasheed, Nouf M; Al-Rejaie, Salim; Al-Rasheed, Nawal M; Hasan, Iman H; Mahmoud, Ayman M; Dzimiri, Nduna

    2016-03-01

    Advances in depression research have targeted inflammation and oxidative stress to develop novel types of treatment. The JAK/STAT signaling pathway plays pivotal roles in immune and inflammatory responses. The present study was designed to investigate the effects of N-acetylcysteine, a putative precursor of the antioxidant glutathione, in an animal model of depression, with an emphasis on the JAK/STAT signaling pathway. Fluoxetine, a classical antidepressant drug was also under investigation. Male Wistar rats were subjected to forced swimming test and given N-acetylcysteine and fluoxetine immediately after the pre-test session, 5 h later and 1 h before the test session of the forced swimming test. N-acetylcysteine decreased immobility time (P < 0.05), serum corticosterone (P < 0.001), and hydrogen peroxide (P < 0.001), while restored glutathione concentration. Treatment of the rats with N-acetylcysteine produced significant (P < 0.001) down-regulation of STAT3 mRNA expression and protein phosphorylation. On the other hand, N-acetylcysteine significantly (P < 0.001) increased SOCS3 gene expression; however, SOCS3 protein was not changed. In conclusion, our study suggests that modulation of the JAK/STAT pathway might mediate the antidepressant-like effects of N-acetylcysteine. Therefore, depression research may target the JAK/STAT signaling pathway to provide a novel effective therapy. © 2015 by the Society for Experimental Biology and Medicine.

  9. Possible involvement of the JAK/STAT signaling pathway in N-acetylcysteine-mediated antidepressant-like effects

    PubMed Central

    Al-Samhari, Marwa M; Al-Rasheed, Nouf M; Al-Rejaie, Salim; Al-Rasheed, Nawal M; Hasan, Iman H; Dzimiri, Nduna

    2015-01-01

    Advances in depression research have targeted inflammation and oxidative stress to develop novel types of treatment. The JAK/STAT signaling pathway plays pivotal roles in immune and inflammatory responses. The present study was designed to investigate the effects of N-acetylcysteine, a putative precursor of the antioxidant glutathione, in an animal model of depression, with an emphasis on the JAK/STAT signaling pathway. Fluoxetine, a classical antidepressant drug was also under investigation. Male Wistar rats were subjected to forced swimming test and given N-acetylcysteine and fluoxetine immediately after the pre-test session, 5 h later and 1 h before the test session of the forced swimming test. N-acetylcysteine decreased immobility time (P < 0.05), serum corticosterone (P < 0.001), and hydrogen peroxide (P < 0.001), while restored glutathione concentration. Treatment of the rats with N-acetylcysteine produced significant (P < 0.001) down-regulation of STAT3 mRNA expression and protein phosphorylation. On the other hand, N-acetylcysteine significantly (P < 0.001) increased SOCS3 gene expression; however, SOCS3 protein was not changed. In conclusion, our study suggests that modulation of the JAK/STAT pathway might mediate the antidepressant-like effects of N-acetylcysteine. Therefore, depression research may target the JAK/STAT signaling pathway to provide a novel effective therapy. PMID:26643864

  10. Horseradish-Peroxidase-Catalyzed Tyrosine Click Reaction.

    PubMed

    Sato, Shinichi; Nakamura, Kosuke; Nakamura, Hiroyuki

    2017-03-02

    The efficiency of protein chemical modification on tyrosine residues with N-methylluminol derivatives was drastically improved by using horseradish peroxidase (HRP). In the previous method, based on the use of hemin and H 2 O 2 , oxidative side reactions such as cysteine oxidation were problematic for functionalization of proteins selectively on tyrosine residues. Oxidative activation of N-methylluminol derivatives with a minimum amount of H 2 O 2 prevented the occurrence of oxidative side reactions under HRP-catalyzed conditions. As probes for HRP-catalyzed protein modification, N-methylluminol derivatives showed much higher efficiency than tyramide without inducing oligomerization of probe molecules. Tyrosine modification also proceeded in the presence of β-nicotinamide adenine dinucleotide (NADH, H 2 O 2 -free conditions). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Ripening of pepper (Capsicum annuum) fruit is characterized by an enhancement of protein tyrosine nitration

    PubMed Central

    Chaki, Mounira; Álvarez de Morales, Paz; Ruiz, Carmelo; Begara-Morales, Juan C.; Barroso, Juan B.; Corpas, Francisco J.; Palma, José M.

    2015-01-01

    Background and Aims Pepper (Capsicum annuum, Solanaceae) fruits are consumed worldwide and are of great economic importance. In most species ripening is characterized by important visual and metabolic changes, the latter including emission of volatile organic compounds associated with respiration, destruction of chlorophylls, synthesis of new pigments (red/yellow carotenoids plus xanthophylls and anthocyanins), formation of pectins and protein synthesis. The involvement of nitric oxide (NO) in fruit ripening has been established, but more work is needed to detail the metabolic networks involving NO and other reactive nitrogen species (RNS) in the process. It has been reported that RNS can mediate post-translational modifications of proteins, which can modulate physiological processes through mechanisms of cellular signalling. This study therefore examined the potential role of NO in nitration of tyrosine during the ripening of California sweet pepper. Methods The NO content of green and red pepper fruit was determined spectrofluorometrically. Fruits at the breaking point between green and red coloration were incubated in the presence of NO for 1 h and then left to ripen for 3 d. Profiles of nitrated proteins were determined using an antibody against nitro-tyrosine (NO2-Tyr), and profiles of nitrosothiols were determined by confocal laser scanning microscopy. Nitrated proteins were identified by 2-D electrophoresis and MALDI-TOF/TOF analysis. Key Results Treatment with NO delayed the ripening of fruit. An enhancement of nitrosothiols and nitroproteins was observed in fruit during ripening, and this was reversed by the addition of exogenous NO gas. Six nitrated proteins were identified and were characterized as being involved in redox, protein, carbohydrate and oxidative metabolism, and in glutamate biosynthesis. Catalase was the most abundant nitrated protein found in both green and red fruit. Conclusions The RNS profile reported here indicates that ripening of

  12. Facile and Stabile Linkages through Tyrosine: Bioconjugation Strategies with the Tyrosine-Click Reaction

    PubMed Central

    Ban, Hitoshi; Nagano, Masanobu; Gavrilyuk, Julia; Hakamata, Wataru; Inokuma, Tsubasa; Barbas, Carlos F.

    2013-01-01

    The scope, chemoselectivity, and utility of the click-like tyrosine labeling reaction with 4-phenyl-3H-1,2,4-triazoline-3,5(4H)-diones (PTADs) is reported. To study the utility and chemoselectivity of PTAD derivatives in peptide and protein chemistry, we synthesized PTAD derivatives possessing azide, alkyne, and ketone groups and studied their reactions with amino acid derivatives and peptides of increasing complexity. With proteins we studied the compatibility of the tyrosine click reaction with cysteine and lysine-targeted labeling approaches and demonstrate that chemoselective tri-functionalization of proteins is readily achieved. In particular cases, we noted PTAD decomposition resulted in formation of a putative isocyanate by-product that was promiscuous in labeling. This side reaction product, however, was readily scavenged by the addition of a small amount of 2-amino-2-hydroxymethyl-propane-1,3-diol (Tris) to the reaction medium. To study the potential of the tyrosine click reaction to introduce poly(ethylene) glycol chains onto proteins (PEGylation), we demonstrate that this novel reagent provides for the selective PEGylation of chymotrypsinogen whereas traditional succinimide-based PEGylation targeting lysine residues provided a more diverse range of PEGylated products. Finally, we applied the tyrosine click reaction to create a novel antibody drug conjugate. For this purpose, we synthesized a PTAD derivative linked to the HIV entry inhibitor aplaviroc. Labeling of the antibody trastuzumab with this reagent provided a labeled antibody conjugate that demonstrated potent HIV-1 neutralization activity demonstrating the potential of this reaction in creating protein conjugates with small molecules. The tyrosine click linkage demonstrated stability to extremes of pH, temperature and exposure to human blood plasma indicating that this linkage is significantly more robust than maleimide-type linkages that are commonly employed in bioconjugations. These studies

  13. Thrombin-mediated proteoglycan synthesis utilizes both protein-tyrosine kinase and serine/threonine kinase receptor transactivation in vascular smooth muscle cells.

    PubMed

    Burch, Micah L; Getachew, Robel; Osman, Narin; Febbraio, Mark A; Little, Peter J

    2013-03-08

    G protein-coupled receptor signaling is mediated by three main mechanisms of action; these are the classical pathway, β-arrestin scaffold signaling, and the transactivation of protein-tyrosine kinase receptors such as those for EGF and PDGF. Recently, it has been demonstrated that G protein-coupled receptors can also mediate signals via transactivation of serine/threonine kinase receptors, most notably the transforming growth factor-β receptor family. Atherosclerosis is characterized by the development of lipid-laden plaques in blood vessel walls. Initiation of plaque development occurs via low density lipoprotein retention in the neointima of vessels due to binding with modified proteoglycans secreted by vascular smooth muscle cells. Here we show that transactivation of protein-tyrosine kinase receptors is mediated by matrix metalloproteinase triple membrane bypass signaling. In contrast, serine/threonine kinase receptor transactivation is mediated by a cytoskeletal rearrangement-Rho kinase-integrin system, and both protein-tyrosine kinase and serine/threonine kinase receptor transactivation concomitantly account for the total proteoglycan synthesis stimulated by thrombin in vascular smooth muscle. This work provides evidence of thrombin-mediated proteoglycan synthesis and paves the way for a potential therapeutic target for plaque development and atherosclerosis.

  14. Robust co-regulation of tyrosine phosphorylation sites on proteins reveals novel protein interactions†

    PubMed Central

    Naegle, Kristen M.; White, Forest M.; Lauffenburger, Douglas A.; Yaffe, Michael B.

    2012-01-01

    Cell signaling networks propagate information from extracellular cues via dynamic modulation of protein–protein interactions in a context-dependent manner. Networks based on receptor tyrosine kinases (RTKs), for example, phosphorylate intracellular proteins in response to extracellular ligands, resulting in dynamic protein–protein interactions that drive phenotypic changes. Most commonly used methods for discovering these protein–protein interactions, however, are optimized for detecting stable, longer-lived complexes, rather than the type of transient interactions that are essential components of dynamic signaling networks such as those mediated by RTKs. Substrate phosphorylation downstream of RTK activation modifies substrate activity and induces phospho-specific binding interactions, resulting in the formation of large transient macromolecular signaling complexes. Since protein complex formation should follow the trajectory of events that drive it, we reasoned that mining phosphoproteomic datasets for highly similar dynamic behavior of measured phosphorylation sites on different proteins could be used to predict novel, transient protein–protein interactions that had not been previously identified. We applied this method to explore signaling events downstream of EGFR stimulation. Our computational analysis of robustly co-regulated phosphorylation sites, based on multiple clustering analysis of quantitative time-resolved mass-spectrometry phosphoproteomic data, not only identified known sitewise-specific recruitment of proteins to EGFR, but also predicted novel, a priori interactions. A particularly intriguing prediction of EGFR interaction with the cytoskeleton-associated protein PDLIM1 was verified within cells using co-immunoprecipitation and in situ proximity ligation assays. Our approach thus offers a new way to discover protein–protein interactions in a dynamic context- and phosphorylation site-specific manner. PMID:22851037

  15. Overexpression of B7-H3 augments anti-apoptosis of colorectal cancer cells by Jak2-STAT3.

    PubMed

    Zhang, Ting; Jiang, Bo; Zou, Shi-Tao; Liu, Fen; Hua, Dong

    2015-02-14

    To investigate the role of the overexpression of B7-H3 in apoptosis in colorectal cancer cell lines and the underlying molecular mechanisms. SW620 cells that highly overexpressed B7-H3 (SW620-B7-H3-EGFP) and HCT8 cells stably transfected with B7-H3 shRNA (HCT8-shB7-H3) were previously constructed in our laboratory. Cells transfected with pIRES2-EGFP were used as negative controls (SW620-NC and HCT8-NC). Real-time PCR and western blotting analysis were used to detect the mRNA and protein expressions of the apoptosis regulator proteins Bcl-2, Bcl-xl and Bax. A cell proliferation assay was used to evaluate the survival rate and drug sensitivity of the cells. The effect of drug resistance was detected by a cell cycle assay. Active caspase-3 western blotting was used to reflect the anti-apoptotic ability of cells. Western blotting was also performed to determine the expression of proteins associated with the Jak2-STAT3 signaling pathway and the apoptosis regulator proteins after the treatment with AG490, a Jak2 specific inhibitor, in B7-H3 overexpressing cells. The data were analyzed by GraphPad Prism 6 using a non-paired t-test. Whether by overexpression in SW620 cells or downregulation in HCT8, B7-H3 significantly affected the expression of anti- and pro-apoptotic proteins, at both the transcriptional and translational levels, compared with the negative control (P < 0.05). A cell proliferation assay revealed that B7-H3 overexpression increased the drug resistance of cells and resulted in a higher survival rate (P < 0.05). In addition, the results of cell cycle and active caspase-3 western blotting proved that B7-H3 overexpression inhibited apoptosis in colorectal cancer cell lines (P < 0.05). B7-H3 overexpression improved Jak2 and STAT3 phosphorylation and, in turn, increased the expression of the downstream anti-apoptotic proteins B-cell CLL/lymphoma 2 (Bcl-2) and Bcl-xl, based on western blotting (P < 0.05). After treating B7-H3 overexpressing cells with the Jak2

  16. Ketamine Corrects Stress-Induced Cognitive Dysfunction through JAK2/STAT3 Signaling in the Orbitofrontal Cortex

    PubMed Central

    Patton, Michael S; Lodge, Daniel J; Morilak, David A; Girotti, Milena

    2017-01-01

    Deficits in cognitive flexibility are prominent in stress-related psychiatric disorders, including depression. Ketamine has rapid antidepressant efficacy, but it is unknown if ketamine improves cognitive symptoms. In rats, 2 weeks chronic intermittent cold (CIC) stress impairs reversal learning, a form of cognitive flexibility mediated by the orbitofrontal cortex (OFC) that we have used previously to model cognitive dysfunction in depression. We have shown that activating JAK2/STAT3 signaling in the OFC rescued the CIC stress-induced reversal learning deficit. Thus, in the present study we determined whether ketamine also corrects the stress-induced reversal learning deficit, and if JAK2/STAT3 signaling is involved in this effect. A single injection of ketamine (10 mg/kg, i.p.) 24 h prior to testing rescued the CIC stress-induced reversal learning deficit. CIC stress decreased JAK2 phosphorylation in the OFC, and ketamine restored pJAK2 levels within 2 h post injection. The JAK2 inhibitor AG490 given systemically or into the OFC at the time of ketamine injection prevented its beneficial effect on reversal learning. We then tested the role of JAK2/STAT3 in ketamine-induced plasticity in the OFC. Ketamine depressed local field potentials evoked in the OFC by excitatory thalamic afferent stimulation, and this was prevented by JAK2 inhibition in the OFC. Further, in both the OFC and primary cortical neurons in culture, ketamine increased expression of the neural plasticity-related protein Arc, and this was prevented by JAK2 inhibition. These results suggest that the JAK2/STAT3 signaling pathway is a novel mechanism by which ketamine exerts its therapeutic effects on stress-induced cognitive dysfunction in the OFC. PMID:27748739

  17. Sch proteins are localized on endoplasmic reticulum membranes and are redistributed after tyrosine kinase receptor activation.

    PubMed Central

    Lotti, L V; Lanfrancone, L; Migliaccio, E; Zompetta, C; Pelicci, G; Salcini, A E; Falini, B; Pelicci, P G; Torrisi, M R

    1996-01-01

    The intracellular localization of Shc proteins was analyzed by immunofluorescence and immunoelectron microscopy in normal cells and cells expressing the epidermal growth factor receptor or the EGFR/erbB2 chimera. In unstimulated cells, the immunolabeling was localized in the central perinuclear area of the cell and mostly associated with the cytosolic side of rough endoplasmic reticulum membranes. Upon epidermal growth factor treatment and receptor tyrosine kinase activation, the immunolabeling became peripheral and was found to be associated with the cytosolic surface of the plasma membrane and endocytic structures, such as coated pits and endosomes, and with the peripheral cytosol. Receptor activation in cells expressing phosphorylation-defective mutants of Shc and erbB-2 kinase showed that receptor autophosphorylation, but not Shc phosphorylation, is required for redistribution of Shc proteins. The rough endoplasmic reticulum localization of Shc proteins in unstimulated cells and their massive recruitment to the plasma membrane, endocytic structures, and peripheral cytosol following receptor tyrosine kinase activation could account for multiple putative functions of the adaptor protein. PMID:8628261

  18. The Amelioration of Myelofibrosis with Thrombocytopenia by a JAK1/2 Inhibitor, Ruxolitinib, in a Post-polycythemia Vera Myelofibrosis Patient with a JAK2 Exon 12 Mutation.

    PubMed

    Ikeda, Kazuhiko; Ueda, Koki; Sano, Takahiro; Ogawa, Kazuei; Ikezoe, Takayuki; Hashimoto, Yuko; Morishita, Soji; Komatsu, Norio; Ohto, Hitoshi; Takeishi, Yasuchika

    2017-01-01

    Less than 5% of patients with polycythemia vera (PV) show JAK2 exon 12 mutations. Although PV patients with JAK2 exon 12 mutations are known to develop post-PV myelofibrosis (MF) as well as PV with JAK2V617F, the role of JAK inhibitors in post-PV MF patients with JAK2 exon 12 mutations remains unknown. We describe how treatment with a JAK1/2 inhibitor, ruxolitinib, led to the rapid amelioration of marrow fibrosis, erythrocytosis and thrombocytopenia in a 77-year-old man with post-PV MF who carried a JAK2 exon 12 mutation (JAK2H538QK539L). This case suggests that ruxolitinib is a treatment option for post-PV MF in patients with thrombocytopenia or JAK2 exon 12 mutations.

  19. Activation of the protein-tyrosine kinase associated with the bombesin receptor complex in small cell lung carcinomas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaudino, G.; Cirillo, D.; Naldini, L.

    1988-04-01

    It has been hypothesized that bombesin-like peptides produced by small cell lung carcinomas may sustain deregulated proliferation through an autocrine mechanism. The authors have shown that the neuropeptide bombesin leads to the activation of a protein-tyrosine kinase that phosphorylates a 115-kDa protein (p115) associated with the bombesin receptor complex in mouse Swiss 3T3 fibroblasts. They now report that phosphotyrosine antibodies recognize a 115-kDa protein, phosphorylated on tyrosine, in four human small cell lung carcinoma cell lines producing bombesin but not in a nonproducer variant line. p115 from detergent-treated small cell lung carcinoma cells binds to bombesin-Sepharose and can be phosphorylatedmore » on tyrosine in the presence of radiolabeled ATP and Mn{sup 2+}. As for the p115 immunoprecipitated from mouse fibroblast, the small cell lung carcinoma p115 can be phosphorylated in an immunocomplex kinase assay. However, the latter does not require the presence of exogenous bombesin for activity. Binding data, obtained by using radiolabeled ligand, suggest receptor occupancy in the cell lines producing bombesin. These observations are consistent with the hypothesis that proliferation in some human small cell lung carcinoma lines is under autocrine control, regulated through activation of bombesin receptors.« less

  20. Intersecting Roles of Protein Tyrosine Kinase and Calcium Signaling During Fertilization

    PubMed Central

    Kinsey, William H.

    2012-01-01

    The oocyte is a highly specialized cell that must respond to fertilization with a preprogrammed series of signal transduction events that establish a block to polyspermy, trigger resumption of the cell cycle and execution of a developmental program. The fertilization-induced calcium transient is a key signal that initiates the process of oocyte activation and studies over the last several years have examined the signaling pathways that act upstream and downstream of this calcium transient. Protein tyrosine kinase signaling was found to be an important component of the upstream pathways that stimulated calcium release at fertilization in oocytes from animals that fertilize externally, but a similar pathway has not been found in mammals which fertilize internally. The following review will examine the diversity of signaling in oocytes from marine invertebrates, amphibians, fish and mammals in an attempt to understand the basis for the observed differences. In addition to the pathways upstream of the fertilization-induced calcium transient, recent studies are beginning to unravel the role of protein tyrosine kinase signaling downstream of the calcium transient. The PYK2 kinase was found to respond to fertilization in the zebrafish system and seems to represent a novel component of the response of the oocyte to fertilization. The potential impact of impaired PTK signaling in oocyte quality will also be discussed. PMID:23201334

  1. Selective targeting of JAK/STAT signaling is potentiated by Bcl-xL blockade in IL-2–dependent adult T-cell leukemia

    PubMed Central

    Zhang, Meili; Mathews Griner, Lesley A.; Ju, Wei; Duveau, Damien Y.; Guha, Rajarshi; Petrus, Michael N.; Wen, Bernard; Maeda, Michiyuki; Shinn, Paul; Ferrer, Marc; Conlon, Kevin D.; Bamford, Richard N.; O’Shea, John J.; Thomas, Craig J.; Waldmann, Thomas A.

    2015-01-01

    Adult T-cell leukemia (ATL) develops in individuals infected with human T-cell lymphotropic virus-1 (HTLV-1). Presently there is no curative therapy for ATL. HTLV-1–encoded protein Tax (transactivator from the X-gene region) up-regulates Bcl-xL (B-cell lymphoma-extra large) expression and activates interleukin-2 (IL-2), IL-9, and IL-15 autocrine/paracrine systems, resulting in amplified JAK/STAT signaling. Inhibition of JAK signaling reduces cytokine-dependent ex vivo proliferation of peripheral blood mononuclear cells (PBMCs) from ATL patients in smoldering/chronic stages. Currently, two JAK inhibitors are approved for human use. In this study, we examined activity of multiple JAK inhibitors in ATL cell lines. The selective JAK inhibitor ruxolitinib was examined in a high-throughput matrix screen combined with >450 potential therapeutic agents, and Bcl-2/Bcl-xL inhibitor navitoclax was identified as a strong candidate for multicomponent therapy. The combination was noted to strongly activate BAX (Bcl-2-associated X protein), effect mitochondrial depolarization, and increase caspase 3/7 activities that lead to cleavage of PARP (poly ADP ribose polymerase) and Mcl-1 (myeloid cell leukemia 1). Ruxolitinib and navitoclax independently demonstrated modest antitumor efficacy, whereas the combination dramatically lowered tumor burden and prolonged survival in an ATL murine model. This combination strongly blocked ex vivo proliferation of five ATL patients’ PBMCs. These studies provide support for a therapeutic trial in patients with smoldering/chronic ATL using a drug combination that inhibits JAK signaling and antiapoptotic protein Bcl-xL. PMID:26396258

  2. [Development and Application of Catalytic Tyrosine Modification].

    PubMed

    Sato, Shinichi; Tsushima, Michihiko; Nakamura, Kosuke; Nakamura, Hiroyuki

    2018-01-01

     The chemical labeling of proteins with synthetic probes is a key technique used in chemical biology, protein-based therapy, and material science. Much of the chemical labeling of native proteins, however, depends on the labeling of lysine and cysteine residues. While those methods have significantly contributed to native protein labeling, alternative methods that can modify different amino acid residues are still required. Herein we report the development of a novel methodology of tyrosine labeling, inspired by the luminol chemiluminescence reaction. Tyrosine residues are often exposed on a protein's surface and are thus expected to be good targets for protein functionalization. In our studies so far, we have found that 1) hemin oxidatively activates luminol derivatives as a catalyst, 2) N-methyl luminol derivative specifically forms a covalent bond with a tyrosine residue among the 20 kinds of natural amino acid residues, and 3) the efficiency of tyrosine labeling with N-methyl luminol derivative is markedly improved by using horseradish peroxidase (HRP) as a catalyst. We were able to use molecular oxygen as an oxidant under HRP/NADH conditions. By using these methods, the functionalization of purified proteins was carried out. Because N-methyl luminol derivative is an excellent protein labeling reagent that responds to the activation of peroxidase, this new method is expected to open doors to such biological applications as the signal amplification of HRP-conjugated antibodies and the detection of protein association in combination with peroxidase-tag technology.

  3. Tyrosine kinases in inflammatory dermatologic disease

    PubMed Central

    Paniagua, Ricardo T.; Fiorentino, David; Chung, Lorinda; Robinson, William H.

    2010-01-01

    Tyrosine kinases are enzymes that catalyze the phosphorylation of tyrosine residues on protein substrates. They are key components of signaling pathways that drive an array of cellular responses including proliferation, differentiation, migration, and survival. Specific tyrosine kinases have recently been identified as critical to the pathogenesis of several autoimmune and inflammatory diseases. Small-molecule inhibitors of tyrosine kinases are emerging as a novel class of therapy that may provide benefit in certain patient subsets. In this review, we highlight tyrosine kinase signaling implicated in inflammatory dermatologic diseases, evaluate strategies aimed at inhibiting these aberrant signaling pathways, and discuss prospects for future drug development. PMID:20584561

  4. JAK3 as an Emerging Target for Topical Treatment of Inflammatory Skin Diseases.

    PubMed

    Alves de Medeiros, Ana Karina; Speeckaert, Reinhart; Desmet, Eline; Van Gele, Mireille; De Schepper, Sofie; Lambert, Jo

    2016-01-01

    The recent interest and elucidation of the JAK/STAT signaling pathway created new targets for the treatment of inflammatory skin diseases (ISDs). JAK inhibitors in oral and topical formulations have shown beneficial results in psoriasis and alopecia areata. Patients suffering from other ISDs might also benefit from JAK inhibition. Given the development of specific JAK inhibitors, the expression patterns of JAKs in different ISDs needs to be clarified. We aimed to analyze the expression of JAK/STAT family members in a set of prevalent ISDs: psoriasis, lichen planus (LP), cutaneous lupus erythematosus (CLE), atopic dermatitis (AD), pyoderma gangrenosum (PG) and alopecia areata (AA) versus healthy controls for (p)JAK1, (p)JAK2, (p)JAK3, (p)TYK2, pSTAT1, pSTAT2 and pSTAT3. The epidermis carried in all ISDs, except for CLE, a strong JAK3 signature. The dermal infiltrate showed a more diverse expression pattern. JAK1, JAK2 and JAK3 were significantly overexpressed in PG and AD suggesting the need for pan-JAK inhibitors. In contrast, psoriasis and LP showed only JAK1 and JAK3 upregulation, while AA and CLE were characterized by a single dermal JAK signal (pJAK3 and pJAK1, respectively). This indicates that the latter diseases may benefit from more targeted JAK inhibitors. Our in vitro keratinocyte psoriasis model displayed reversal of the psoriatic JAK profile following tofacitinib treatment. This direct interaction with keratinocytes may decrease the need for deep skin penetration of topical JAK inhibitors in order to exert its effects on dermal immune cells. In conclusion, these results point to the important contribution of the JAK/STAT pathway in several ISDs. Considering the epidermal JAK3 expression levels, great interest should go to the investigation of topical JAK3 inhibitors as therapeutic option of ISDs.

  5. Tyrosine Binding Protein Sites Regulate the Intracellular Trafficking and Processing of Amyloid Precursor Protein through a Novel Lysosome-Directed Pathway.

    PubMed

    Tam, Joshua H K; Cobb, M Rebecca; Seah, Claudia; Pasternak, Stephen H

    2016-01-01

    The amyloid hypothesis posits that the production of β-amyloid (Aβ) aggregates leads to neurodegeneration and cognitive decline associated with AD. Aβ is produced by sequential cleavage of the amyloid precursor protein (APP) by β- and γ-secretase. While nascent APP is well known to transit to the endosomal/ lysosomal system via the cell surface, we have recently shown that APP can also traffic to lysosomes intracellularly via its interaction with AP-3. Because AP-3 interacts with cargo protein via interaction with tyrosine motifs, we mutated the three tyrosines motif in the cytoplasmic tail of APP. Here, we show that the YTSI motif interacts with AP-3, and phosphorylation of the serine in this motif disrupts the interaction and decreases APP trafficking to lysosomes. Furthermore, we show that phosphorylation at this motif can decrease the production of neurotoxic Aβ 42. This demonstrates that reducing APP trafficking to lysosomes may be a strategy to reduce Aβ 42 in Alzheimer's disease.

  6. Tyrosine Binding Protein Sites Regulate the Intracellular Trafficking and Processing of Amyloid Precursor Protein through a Novel Lysosome-Directed Pathway

    PubMed Central

    Tam, Joshua H. K.; Cobb, M. Rebecca; Seah, Claudia; Pasternak, Stephen H.

    2016-01-01

    The amyloid hypothesis posits that the production of β-amyloid (Aβ) aggregates leads to neurodegeneration and cognitive decline associated with AD. Aβ is produced by sequential cleavage of the amyloid precursor protein (APP) by β- and γ-secretase. While nascent APP is well known to transit to the endosomal/ lysosomal system via the cell surface, we have recently shown that APP can also traffic to lysosomes intracellularly via its interaction with AP-3. Because AP-3 interacts with cargo protein via interaction with tyrosine motifs, we mutated the three tyrosines motif in the cytoplasmic tail of APP. Here, we show that the YTSI motif interacts with AP-3, and phosphorylation of the serine in this motif disrupts the interaction and decreases APP trafficking to lysosomes. Furthermore, we show that phosphorylation at this motif can decrease the production of neurotoxic Aβ 42. This demonstrates that reducing APP trafficking to lysosomes may be a strategy to reduce Aβ 42 in Alzheimer’s disease. PMID:27776132

  7. CYT387, a selective JAK1/JAK2 inhibitor: in vitro assessment of kinase selectivity and preclinical studies using cell lines and primary cells from polycythemia vera patients.

    PubMed

    Pardanani, A; Lasho, T; Smith, G; Burns, C J; Fantino, E; Tefferi, A

    2009-08-01

    Somatic mutations in Janus kinase 2 (JAK2), including JAK2V617F, result in dysregulated JAK-signal transducer and activator transcription (STAT) signaling, which is implicated in myeloproliferative neoplasm (MPN) pathogenesis. CYT387 is an ATP-competitive small molecule that potently inhibits JAK1/JAK2 kinases (IC(50)=11 and 18 nM, respectively), with significantly less activity against other kinases, including JAK3 (IC(50)=155 nM). CYT387 inhibits growth of Ba/F3-JAK2V617F and human erythroleukemia (HEL) cells (IC(50) approximately 1500 nM) or Ba/F3-MPLW515L cells (IC(50)=200 nM), but has considerably less activity against BCR-ABL harboring K562 cells (IC=58 000 nM). Cell lines harboring mutated JAK2 alleles (CHRF-288-11 or Ba/F3-TEL-JAK2) were inhibited more potently than the corresponding pair harboring mutated JAK3 alleles (CMK or Ba/F3-TEL-JAK3), and STAT-5 phosphorylation was inhibited in HEL cells with an IC(50)=400 nM. Furthermore, CYT387 selectively suppressed the in vitro growth of erythroid colonies harboring JAK2V617F from polycythemia vera (PV) patients, an effect that was attenuated by exogenous erythropoietin. Overall, our data indicate that the JAK1/JAK2 selective inhibitor CYT387 has potential for efficacious treatment of MPN harboring mutated JAK2 and MPL alleles.

  8. The interaction of protein-tyrosine phosphatase α (PTPα) and RACK1 protein enables insulin-like growth factor 1 (IGF-1)-stimulated Abl-dependent and -independent tyrosine phosphorylation of PTPα.

    PubMed

    Khanna, Ranvikram S; Le, Hoa T; Wang, Jing; Fung, Thomas C H; Pallen, Catherine J

    2015-04-10

    Protein tyrosine phosphatase α (PTPα) promotes integrin-stimulated cell migration in part through the role of Src-phosphorylated PTPα-Tyr(P)-789 in recruiting and localizing p130Cas to focal adhesions. The growth factor IGF-1 also stimulates PTPα-Tyr-789 phosphorylation to positively regulate cell movement. This is in contrast to integrin-induced PTPα phosphorylation, that induced by IGF-1 can occur in cells lacking Src family kinases (SFKs), indicating that an unknown kinase distinct from SFKs can target PTPα. We show that this IGF-1-stimulated tyrosine kinase is Abl. We found that PTPα binds to the scaffold protein RACK1 and that RACK1 coordinates the IGF-1 receptor, PTPα, and Abl in a complex to enable IGF-1-stimulated and Abl-dependent PTPα-Tyr-789 phosphorylation. In cells expressing SFKs, IGF-1-stimulated phosphorylation of PTPα is mediated by RACK1 but is Abl-independent. Furthermore, expressing the SFKs Src and Fyn in SFK-deficient cells switches IGF-1-induced PTPα phosphorylation to occur in an Abl-independent manner, suggesting that SFK activity dominantly regulates IGF-1/IGF-1 receptor signaling to PTPα. RACK1 is a molecular scaffold that integrates growth factor and integrin signaling, and our identification of PTPα as a RACK1 binding protein suggests that RACK1 may coordinate PTPα-Tyr-789 phosphorylation in these signaling networks to promote cell migration. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Jak2 and Ca2+/calmodulin are key intermediates for bradykinin B2 receptor-mediated activation of Na+/H+ exchange in KNRK and CHO cells.

    PubMed

    Lefler, David; Mukhin, Yurii V; Pettus, Tobiah; Leeb-Lundberg, L M Fredrik; Garnovskaya, Maria N; Raymond, John R

    2003-04-01

    Na(+)/H(+) exchangers are ubiquitous in mammalian cells, carrying out key functions, such as cell volume defense, acid-base homeostasis, and regulation of the cytoskeleton. We used two screening technologies (FLIPR and microphysiometry) to characterize the signal transduction pathway used by the bradykinin B(2) receptor to activate Na(+)/H(+) exchange in two cell lines, KNRK and CHO. In both cell types, B(2) receptor activation resulted in rapid increases in the rate of proton extrusion that were sodium-dependent and could be blocked by the Na(+)/H(+) exchange inhibitors EIPA and MIA or by replacing extracellular sodium with TMA. Activation of Na(+)/H(+) exchange by bradykinin was concentration-dependent and could be blocked by the selective B(2) receptor antagonist HOE140, but not by the B(1) receptor antagonist des-Arg10-HOE140. Inhibitors of Jak2 tyrosine kinase (genistein and AG490) and of CAM (W-7 and calmidazolium) attenuated bradykinin-induced activation of Na(+)/H(+) exchange. Bradykinin induced formation of a complex between CAM and Jak2, supporting a regulatory role for Jak2 and CAM in the activation of Na(+)/H(+) exchange in KNRK and CHO cells. We propose that this pathway (B(2) receptor --> Jak2 --> CAM --> Na(+)/H(+) exchanger) is a fundamental regulator of Na(+)/H(+) exchange activity.

  10. IL-4 function can be transferred to the IL-2 receptor by tyrosine containing sequences found in the IL-4 receptor alpha chain.

    PubMed

    Wang, H Y; Paul, W E; Keegan, A D

    1996-02-01

    IL-4 binds to a cell surface receptor complex that consists of the IL-4 binding protein (IL-4R alpha) and the gamma chain of the IL-2 receptor complex (gamma c). The receptors for IL-4 and IL-2 have several features in common; both use the gamma c as a receptor component, and both activate the Janus kinases JAK-1 and JAK-3. In spite of these similarities, IL-4 evokes specific responses, including the tyrosine phosphorylation of 4PS/IRS-2 and the induction of CD23. To determine whether sequences within the cytoplasmic domain of the IL-4R alpha specify these IL-4-specific responses, we transplanted the insulin IL-4 receptor motif (I4R motif) of the huIL-4R alpha to the cytoplasmic domain of a truncated IL-2R beta. In addition, we transplanted a region that contains peptide sequences shown to block Stat6 binding to DNA. We analyzed the ability of cells expressing these IL-2R-IL-4R chimeric constructs to respond to IL-2. We found that IL-4 function could be transplanted to the IL-2 receptor by these regions and that proliferative and differentiative functions can be induced by different receptor sequences.

  11. Inhibition of the signalling kinase JAK3 alleviates inflammation in monoarthritic rats

    PubMed Central

    Kim, Byung-Hak; Kim, Myunghwan; Yin, Chang-Hong; Jee, Jun-Goo; Sandoval, Claudio; Lee, Hyejung; Bach, Erika A; Hahm, Dae-Hyun; Baeg, Gyeong-Hun

    2011-01-01

    BACKGROUND AND PURPOSE Many cytokines associated with autoimmune disorders and inflammation have been shown to activate the signalling kinase JAK3, implying that JAK3 plays key roles in the pathogenesis of these diseases. Therefore, investigating the alterations of JAK3 activity and the efficacy of selective JAK3 antagonists in animal models of such disorders is essential to a better understanding of the biology of JAK3 and to assess the potential clinical benefits of JAK3 inhibitors. EXPERIMENTAL APPROACH Through high-throughput cell-based screening using the NCI compound library, we identified NSC163088 (berberine chloride) as a novel inhibitor of JAK3. Specificity and efficacy of this compound were investigated in both cellular and animal models. KEY RESULTS We show that berberine chloride has selectivity for JAK3 over other JAK kinase members, as well as over other oncogenic kinases such as Src, in various cellular assays. Biochemical and modelling studies strongly suggested that berberine chloride bound directly to the kinase domain of JAK3. Also phospho-JAK3 levels were significantly increased in the synovial tissues of rat joints with acute inflammation, and the treatment of these rats with berberine chloride decreased JAK3 phosphorylation and suppressed the inflammatory responses. CONCLUSIONS AND IMPLICATIONS The up-regulation of JAK3/STATs was closely correlated with acute arthritic inflammation and that inhibition of JAK3 activity by JAK3 antagonists, such as berberine chloride, alleviated the inflammation in vivo. PMID:21434883

  12. DIRECT MODULATION OF THE PROTEIN KINASE A CATALYTIC SUBUNIT α BY GROWTH FACTOR RECEPTOR TYROSINE KINASES

    PubMed Central

    Caldwell, George B.; Howe, Alan K.; Nickl, Christian K.; Dostmann, Wolfgang R.; Ballif, Bryan A.; Deming, Paula B.

    2011-01-01

    The cyclic-AMP-dependent protein kinase A (PKA) regulates processes such as cell proliferation and migration following activation of growth factor receptor tyrosine kinases (RTKs), yet the signaling mechanisms that link PKA with growth factor receptors remain largely undefined. Here we report that RTKs can directly modulate the function of the catalytic subunit of PKA (PKA-C) through post-translational modification. In vitro kinase assays revealed that both the epidermal growth factor and platelet derived growth factor receptors (EGFR and PDGFR, respectively) tyrosine phosphorylate PKA-C. Mass spectrometry identified tyrosine 330 (Y330) as a receptor-mediated phosphorylation site and mutation of Y330 to phenylalanine (Y330F) all but abolished the RTK-mediated phosphorylation of PKA-C in vitro. Y330 resides within a conserved region at the C-terminal tail of PKA-C that allosterically regulates enzymatic activity. Therefore, the effect of phosphorylation at Y330 on the activity of PKA-C was investigated. The Km for a peptide substrate was markedly decreased when PKA-C subunits were tyrosine phosphorylated by the receptors as compared to un-phosphorylated controls. Importantly, tyrosine-phosphorylated PKA-C subunits were detected in cells stimulated with EGF, PDGF and FGF2 and in fibroblasts undergoing PDGF-mediated chemotaxis. These results demonstrate a direct, functional interaction between RTKs and PKA-C and identify tyrosine phosphorylation as a novel mechansim for regulating PKA activity. PMID:21866565

  13. Phosphorylation of KRAB-associated Protein 1 (KAP1) at Tyr-449, Tyr-458, and Tyr-517 by Nuclear Tyrosine Kinases Inhibits the Association of KAP1 and Heterochromatin Protein 1α (HP1α) with Heterochromatin*

    PubMed Central

    Kubota, Sho; Fukumoto, Yasunori; Aoyama, Kazumasa; Ishibashi, Kenichi; Yuki, Ryuzaburo; Morinaga, Takao; Honda, Takuya; Yamaguchi, Noritaka; Kuga, Takahisa; Tomonaga, Takeshi; Yamaguchi, Naoto

    2013-01-01

    Protein tyrosine phosphorylation regulates a wide range of cellular processes at the plasma membrane. Recently, we showed that nuclear tyrosine phosphorylation by Src family kinases (SFKs) induces chromatin structural changes. In this study, we identify KRAB-associated protein 1 (KAP1/TIF1β/TRIM28), a component of heterochromatin, as a nuclear tyrosine-phosphorylated protein. Tyrosine phosphorylation of KAP1 is induced by several tyrosine kinases, such as Src, Lyn, Abl, and Brk. Among SFKs, Src strongly induces tyrosine phosphorylation of KAP1. Nucleus-targeted Lyn potentiates tyrosine phosphorylation of KAP1 compared with intact Lyn, but neither intact Fyn nor nucleus-targeted Fyn phosphorylates KAP1. Substitution of the three tyrosine residues Tyr-449/Tyr-458/Tyr-517, located close to the HP1 binding-motif, into phenylalanine ablates tyrosine phosphorylation of KAP1. Immunostaining and chromatin fractionation show that Src and Lyn decrease the association of KAP1 with heterochromatin in a kinase activity-dependent manner. KAP1 knockdown impairs the association of HP1α with heterochromatin, because HP1α associates with KAP1 in heterochromatin. Intriguingly, tyrosine phosphorylation of KAP1 decreases the association of HP1α with heterochromatin, which is inhibited by replacement of endogenous KAP1 with its phenylalanine mutant (KAP1-Y449F/Y458F/Y517F, KAP1–3YF). In DNA damage, KAP1–3YF repressed transcription of p21. These results suggest that nucleus-localized tyrosine kinases, including SFKs, phosphorylate KAP1 at Tyr-449/Tyr-458/Tyr-517 and inhibit the association of KAP1 and HP1α with heterochromatin. PMID:23645696

  14. [Design of new anti-tumor agents interrupting deregulated signaling pathways induced by tyrosine kinase proteins. Inhibition of protein-protein interaction involving Grb2].

    PubMed

    Vidal, Michel; Liu, Wang Qing; Gril, Brunile; Assayag, Franck; Poupon, Marie-France; Garbay, Christiane

    2004-01-01

    Cellular signaling pathways induced by growth-factor receptors are frequently deregulated in cancer. Anti-tumor agents that inhibit their enzymatic tyrosine kinase activity have been designed and are now used in human chemotherapy. We propose here an alternative way to interrupt over-expressed signaling by inhibiting protein-protein interactions that involve either the over-expressed proteins or proteins located downstream. The adaptor protein Grb2 over-expressed in connection with HER2/ErbB2/neu in Ras signaling pathway was chosen as a target. Peptides with very high affinity for Grb2 were rationally designed from structural data. Their capacity to interrupt the signaling pathway, their anti-proliferative activity as well as their potential anti-tumor properties are described.

  15. Tyrosine Kinase Signaling in Clear Cell and Papillary Renal Cell Carcinoma Revealed by Mass Spectrometry-Based Phosphotyrosine Proteomics.

    PubMed

    Haake, Scott M; Li, Jiannong; Bai, Yun; Kinose, Fumi; Fang, Bin; Welsh, Eric A; Zent, Roy; Dhillon, Jasreman; Pow-Sang, Julio M; Chen, Y Ann; Koomen, John M; Rathmell, W Kimryn; Fishman, Mayer; Haura, Eric B

    2016-11-15

    Targeted therapies in renal cell carcinoma (RCC) are limited by acquired resistance. Novel therapeutic targets are needed to combat resistance and, ideally, target the unique biology of RCC subtypes. Tyrosine kinases provide critical oncogenic signaling and their inhibition has significantly impacted cancer care. To describe a landscape of tyrosine kinase activity in RCC that could inform novel therapeutic strategies, we performed a mass spectrometry-based system-wide survey of tyrosine phosphorylation in 10 RCC cell lines as well as 15 clear cell and 15 papillary RCC human tumors. To prioritize identified tyrosine kinases for further analysis, a 63 tyrosine kinase inhibitor (TKI) drug screen was performed. Among the cell lines, 28 unique tyrosine phosphosites were identified across 19 kinases and phosphatases including EGFR, MET, JAK2, and FAK in nearly all samples. Multiple FAK TKIs decreased cell viability by at least 50% and inhibited RCC cell line adhesion, invasion, and proliferation. Among the tumors, 49 unique tyrosine phosphosites were identified across 44 kinases and phosphatases. FAK pY576/7 was found in all tumors and many cell lines, whereas DDR1 pY792/6 was preferentially enriched in the papillary RCC tumors. Both tyrosine kinases are capable of transmitting signals from the extracellular matrix and emerged as novel RCC therapeutic targets. Tyrosine kinase profiling informs novel therapeutic strategies in RCC and highlights the unique biology among kidney cancer subtypes. Clin Cancer Res; 22(22); 5605-16. ©2016 AACR. ©2016 American Association for Cancer Research.

  16. Protein tyrosine kinase regulation by ubiquitination: Critical roles of Cbl-family ubiquitin ligases

    PubMed Central

    Mohapatra, Bhopal; Ahmad, Gulzar; Nadeau, Scott; Zutshi, Neha; An, Wei; Scheffe, Sarah; Dong, Lin; Feng, Dan; Goetz, Benjamin; Arya, Priyanka; Bailey, Tameka A.; Palermo, Nicholas; Borgstahl, Gloria E.O.; Natarajan, Amarnath; Raja, Srikumar M.; Naramura, Mayumi; Band, Vimla; Band, Hamid

    2012-01-01

    Protein tyrosine kinases (PTKs) coordinate a broad spectrum of cellular responses to extracellular stimuli and cell–cell interactions during development, tissue homeostasis, and responses to environmental challenges. Thus, an understanding of the regulatory mechanisms that ensure physiological PTK function and potential aberrations of these regulatory processes during diseases such as cancer are of broad interest in biology and medicine. Aside from the expected role of phospho-tyrosine phosphatases, recent studies have revealed a critical role of covalent modification of activated PTKs with ubiquitin as a critical mechanism of their negative regulation. Members of the Cbl protein family (Cbl, Cbl-b and Cbl-c in mammals) have emerged as dominant “activated PTK-selective” ubiquitin ligases. Structural, biochemical and cell biological studies have established that Cbl protein-dependent ubiquitination targets activated PTKs for degradation either by facilitating their endocytic sorting into lysosomes or by promoting their proteasomal degradation. This mechanism also targets PTK signaling intermediates that become associated with Cbl proteins in a PTK activation-dependent manner. Cellular and animal studies have established that the relatively broadly expressed mammalian Cbl family members Cbl and Cbl-b play key physiological roles, including their critical functions to prevent the transition of normal immune responses into autoimmune disease and as tumor suppressors; the latter function has received validation from human studies linking mutations in Cbl to human leukemia. These newer insights together with embryonic lethality seen in mice with a combined deletion of Cbl and Cbl-b genes suggest an unappreciated role of the Cbl family proteins, and by implication the ubiquitin-dependent control of activated PTKs, in stem/progenitor cell maintenance. Future studies of existing and emerging animal models and their various cell lineages should help test the broader

  17. Indispensable roles of mammalian Cbl family proteins as negative regulators of protein tyrosine kinase signaling

    PubMed Central

    Band, Vimla

    2011-01-01

    All higher eukaryotes utilize protein tyrosine kinases (PTKs) as molecular switches to control a variety of cellular signals. Notably, many PTKs have been identified as proto-oncogenes whose aberrant expression, mutations or co-option by pathogens can lead to human malignancies. Thus, it is obvious that PTK functions must be precisely regulated in order to maintain homeostasis of an organism. Investigations over the past fifteen years have revealed that members of the Cbl family proteins can serve as negative regulators of PTK signaling, and biochemical and cell biological studies have unraveled the mechanistic basis of this regulation. Yet, it is only recently that the field has begun to appreciate the real significance of this novel regulatory apparatus in shaping PTK-mediated signaling in organismic contexts and in human diseases. Here, we discuss recent progress in murine models that are beginning to provide insights into the critical roles of Cbl proteins in physiological pathways, with important implications in understanding how aberrations of Cbl proteins contribute to oncogenesis. PMID:21655429

  18. Protein Tyrosine Phosphatase PRL2 Mediates Notch and Kit Signals in Early T Cell Progenitors.

    PubMed

    Kobayashi, Michihiro; Nabinger, Sarah C; Bai, Yunpeng; Yoshimoto, Momoko; Gao, Rui; Chen, Sisi; Yao, Chonghua; Dong, Yuanshu; Zhang, Lujuan; Rodriguez, Sonia; Yashiro-Ohtani, Yumi; Pear, Warren S; Carlesso, Nadia; Yoder, Mervin C; Kapur, Reuben; Kaplan, Mark H; Daniel Lacorazza, Hugo; Zhang, Zhong-Yin; Liu, Yan

    2017-04-01

    The molecular pathways regulating lymphoid priming, fate, and development of multipotent bone marrow hematopoietic stem and progenitor cells (HSPCs) that continuously feed thymic progenitors remain largely unknown. While Notch signal is indispensable for T cell specification and differentiation, the downstream effectors are not well understood. PRL2, a protein tyrosine phosphatase that regulates hematopoietic stem cell proliferation and self-renewal, is highly expressed in murine thymocyte progenitors. Here we demonstrate that protein tyrosine phosphatase PRL2 and receptor tyrosine kinase c-Kit are critical downstream targets and effectors of the canonical Notch/RBPJ pathway in early T cell progenitors. While PRL2 deficiency resulted in moderate defects of thymopoiesis in the steady state, de novo generation of T cells from Prl2 null hematopoietic stem cells was significantly reduced following transplantation. Prl2 null HSPCs also showed impaired T cell differentiation in vitro. We found that Notch/RBPJ signaling upregulated PRL2 as well as c-Kit expression in T cell progenitors. Further, PRL2 sustains Notch-mediated c-Kit expression and enhances stem cell factor/c-Kit signaling in T cell progenitors, promoting effective DN1-DN2 transition. Thus, we have identified a critical role for PRL2 phosphatase in mediating Notch and c-Kit signals in early T cell progenitors. Stem Cells 2017;35:1053-1064. © 2016 AlphaMed Press.

  19. Ripening of pepper (Capsicum annuum) fruit is characterized by an enhancement of protein tyrosine nitration.

    PubMed

    Chaki, Mounira; Álvarez de Morales, Paz; Ruiz, Carmelo; Begara-Morales, Juan C; Barroso, Juan B; Corpas, Francisco J; Palma, José M

    2015-09-01

    Pepper (Capsicum annuum, Solanaceae) fruits are consumed worldwide and are of great economic importance. In most species ripening is characterized by important visual and metabolic changes, the latter including emission of volatile organic compounds associated with respiration, destruction of chlorophylls, synthesis of new pigments (red/yellow carotenoids plus xanthophylls and anthocyanins), formation of pectins and protein synthesis. The involvement of nitric oxide (NO) in fruit ripening has been established, but more work is needed to detail the metabolic networks involving NO and other reactive nitrogen species (RNS) in the process. It has been reported that RNS can mediate post-translational modifications of proteins, which can modulate physiological processes through mechanisms of cellular signalling. This study therefore examined the potential role of NO in nitration of tyrosine during the ripening of California sweet pepper. The NO content of green and red pepper fruit was determined spectrofluorometrically. Fruits at the breaking point between green and red coloration were incubated in the presence of NO for 1 h and then left to ripen for 3 d. Profiles of nitrated proteins were determined using an antibody against nitro-tyrosine (NO2-Tyr), and profiles of nitrosothiols were determined by confocal laser scanning microscopy. Nitrated proteins were identified by 2-D electrophoresis and MALDI-TOF/TOF analysis. Treatment with NO delayed the ripening of fruit. An enhancement of nitrosothiols and nitroproteins was observed in fruit during ripening, and this was reversed by the addition of exogenous NO gas. Six nitrated proteins were identified and were characterized as being involved in redox, protein, carbohydrate and oxidative metabolism, and in glutamate biosynthesis. Catalase was the most abundant nitrated protein found in both green and red fruit. The RNS profile reported here indicates that ripening of pepper fruit is characterized by an enhancement of S

  20. Finding the smoking gun: protein tyrosine phosphatases as tools and targets of unicellular microorganisms and viruses.

    PubMed

    Heneberg, P

    2012-01-01

    Protein tyrosine phosphatases (PTPs) are increasingly recognized as important effectors of host-pathogen interactions. Since Guan and Dixon reported in 1990 that phosphatase YopH serves as an essential virulence determinant of Yersinia, the field shifted significantly forward, and dozens of PTPs were identified in various microorganisms and even in viruses. The discovery of extensive tyrosine signaling networks in non-metazoan organisms refuted the moth-eaten paradigm claiming that these organisms rely exclusively on phosphoserine/phosphothreonine signaling. Similarly to humans, phosphotyrosine signaling is thought to comprise a small fraction of total protein phosphorylation, but plays a disproportionately important role in cell-cycle control, differentiation, and invasiveness. Here we summarize the state-of-art knowledge on PTPs of important non-metazoan pathogens (Listeria monocytogenes, Staphylococcus aureus, Porphyromonas gingivalis, Caulobacter crescentus, Yersinia, Synechocystis, Leishmania, Plasmodium falciparum, Entamoeba histolytica, etc.), and focus also at the microbial proteins affecting directly or indirectly the PTPs of the host (Mycobacterium tuberculosis MTSA-10, Bacillus anthracis anthrax toxin, streptococcal β protein, Helicobacter pylori CagA and VacA, Leishmania GP63 and EF-1α, Plasmodium hemozoin, etc.). This is the first review summarizing the knowledge on biological activity and pharmacological inhibition of non-metazoan PTPs, with the emphasis of those important in host-pathogen interactions. Targeting of numerous non-metazoan PTPs is simplified by the fact that they act either as ectophosphatases or are secreted outside of the pathogen. Interfering with tyrosine phosphorylation represents a powerful pharmacologic approach, and even though the PTP inhibitors are difficult to develop, lifting the fog of phosphatase inhibition is of the great market potential and further clinical impact.

  1. Bruton's tyrosine kinase (Btk) inhibitor ibrutinib suppresses stem-like traits in ovarian cancer

    PubMed Central

    Zucha, Muhammad Ary; Wu, Alexander T.H.; Lee, Wei-Hwa; Wang, Liang-Shun; Lin, Wan-Wan; Yuan, Chiou-Chung; Yeh, Chi-Tai

    2015-01-01

    According to a Prognoscan database, upregulation of Bruton's tyrosine kinase (Btk) is associated with low overall survival in ovarian cancer patients. We found that spheroids-forming ovarian cancer cell, which highly expressed cancer stem-like cell (CSC) markers and Btk, were cisplatin resistant. We next treated CSCs and non-CSCs by a combination of ibrutinib and cisplatin. We found that chemoresistance was dependent on Btk and JAK2/STAT3, which maintained CSC by inducing Sox-2 and prosurvival genes. We suggest that addition of ibrutinib to cisplatin may improve treatment outcome in ovarian cancer. PMID:26036311

  2. Secoisolariciresinol diglucoside prevents the oxidative stress-induced apoptosis of myocardial cells through activation of the JAK2/STAT3 signaling pathway.

    PubMed

    Huang, Guiqiong; Huang, Xiaofang; Liu, Min; Hua, Yue; Deng, Bo; Jin, Wen; Yan, Wen; Tan, Zhangbin; Wu, Yifen; Liu, Bin; Zhou, Yingchun

    2018-06-01

    Myocardial cell apoptosis mediated by oxidative stress has previously been identified as a key process in ischemic heart disease. Secoisolariciresinol diglucoside (SDG), a polyphenolic plant lignan primarily found in flaxseed, has been demonstrated to effectively protect myocardial cells from apoptosis. In the present study, the role of the Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) was investigated in mediating the protective effect of SDG. Findings of the present study revealed that treatment with H2O2 reduced cell viability and induced apoptosis in H9C2 rat cardiomyocytes. However, SDG was able to reduce the effect of H2O2 in a dose‑dependent manner. H2O2 reduced the expression level of phosphorylated STAT3 and inhibited the levels of B‑cell lymphoma‑extra‑large and induced myeloid leukemia cell differentiation protein, which are the STAT3 target genes. Conversely, SDG rescued phosphorylation of STAT3 and increased the levels of STAT3 target genes. Treatment with SDG alone led to a dose‑dependent increased phosphorylation of JAK2 and STAT3, without activating Src. Furthermore, the anti‑apoptotic effects of SDG were partially abolished by a JAK2/STAT3 inhibitor. In addition, molecular docking revealed that SDG may bind to the protein kinase domain of JAK2, at a binding energy of ‑8.258 kcal/mol. Molecular dynamics simulations revealed that JAK2‑SDG binding was stable. In conclusion, activation of the JAK2/STAT3 signaling pathway contributed to the anti‑apoptotic activity of SDG, which may be a potential JAK2 activator.

  3. Conformational Clusters of Phosphorylated Tyrosine.

    PubMed

    Abdelrasoul, Maha; Ponniah, Komala; Mao, Alice; Warden, Meghan S; Elhefnawy, Wessam; Li, Yaohang; Pascal, Steven M

    2017-12-06

    Tyrosine phosphorylation plays an important role in many cellular and intercellular processes including signal transduction, subcellular localization, and regulation of enzymatic activity. In 1999, Blom et al., using the limited number of protein data bank (PDB) structures available at that time, reported that the side chain structures of phosphorylated tyrosine (pY) are partitioned into two conserved conformational clusters ( Blom, N.; Gammeltoft, S.; Brunak, S. J. Mol. Biol. 1999 , 294 , 1351 - 1362 ). We have used the spectral clustering algorithm to cluster the increasingly growing number of protein structures with pY sites, and have found that the pY residues cluster into three distinct side chain conformations. Two of these pY conformational clusters associate strongly with a narrow range of tyrosine backbone conformation. The novel cluster also highly correlates with the identity of the n + 1 residue, and is strongly associated with a sequential pYpY conformation which places two adjacent pY side chains in a specific relative orientation. Further analysis shows that the three pY clusters are associated with distinct distributions of cognate protein kinases.

  4. Protein-tyrosine-phosphatase-mediated epidermal growth factor (EGF) receptor transinactivation and EGF receptor-independent stimulation of mitogen-activated protein kinase by bradykinin in A431 cells.

    PubMed Central

    Graness, A; Hanke, S; Boehmer, F D; Presek, P; Liebmann, C

    2000-01-01

    Transactivation of the epidermal growth factor (EGF) receptor (EGFR) has been proposed to represent an essential link between G-protein-coupled receptors and the mitogen-activated protein kinase (MAPK) pathway in various cell types. In the present work we report, in contrast, that in A431 cells bradykinin transinactivates the EGFR and stimulates MAPK activity independently of EGFR tyrosine phosphorylation. Both effects of bradykinin are mediated by a pertussis-toxin-insensitive G-protein. Three lines of evidence suggest the activation of a protein tyrosine phosphatase (PTP) by bradykinin: (i) treatment of A431 cells with bradykinin decreases both basal and EGF-induced EGFR tyrosine phosphorylation, (ii) this effect of bradykinin can be blocked by two different PTP inhibitors, and (iii) bradykinin significantly increased the PTP activity in total A431 cell lysates when measured in vitro. The transmembrane receptor PTP sigma was identified as a putative mediator of bradykinin-induced downregulation of EGFR autophosphorylation. Activation of MAPK in response to bradykinin was insensitive towards AG 1478, a specific inhibitor of EGFR tyrosine kinase, but was blocked by wortmannin or bisindolylmaleimide, inhibitors of phosphatidylinositol 3-kinase (PI3-K) and protein kinase C (PKC) respectively. These results also suggest that the bradykinin-induced activation of MAPK is independent of EGFR and indicate a pathway involving PI3-K and PKC. In addition, bradykinin evokes a rapid and transient increase in Src kinase activity. Although Src does not participate in bradykinin-induced stimulation of PTP activity, inhibition of Src by 4-amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo(3,4-d)pyrimidine leads to an increase in MAPK activation by bradykinin. Our results suggest that in A431 cells the G(q/11)-protein-coupled bradykinin B(2) receptor may stimulate PTP activity and thereby transinactivate the EGFR, and may simultaneously activate MAPK by an alternative signalling pathway

  5. Inhibition of capacitation-associated tyrosine phosphorylation signaling in rat sperm by epididymal protein Crisp-1.

    PubMed

    Roberts, Kenneth P; Wamstad, Joseph A; Ensrud, Kathy M; Hamilton, David W

    2003-08-01

    Ejaculated sperm are unable to fertilize an egg until they undergo capacitation. Capacitation results in the acquisition of hyperactivated motility, changes in the properties of the plasma membrane, including changes in proteins and glycoproteins, and acquisition of the ability to undergo the acrosome reaction. In all mammalian species examined, capacitation requires removal of cholesterol from the plasma membrane and the presence of extracellular Ca2+ and HCO3-. We designed experiments to elucidate the conditions required for in vitro capacitation of rat spermatozoa and the effects of Crisp-1, an epididymal secretory protein, on capacitation. Protein tyrosine phosphorylation, a hallmark of capacitation in sperm of other species, occurs during 5 h of in vitro incubation, and this phosphorylation is dependent upon HCO3-, Ca2+, and the removal of cholesterol from the membrane. Crisp-1, which is added to the sperm surface in the epididymis in vivo, is lost during capacitation, and addition of exogenous Crisp-1 to the incubation medium inhibits tyrosine phosphorylation in a dose-dependent manner, thus inhibiting capacitation and ultimately the acrosome reaction. Inhibition of capacitation by Crisp-1 occurs upstream of the production of cAMP by the sperm.

  6. cDNA isolated from a human T-cell library encodes a member of the protein-tyrosine-phosphatase family

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cool, D.E.; Tonks, N.K.; Charbonneau, H.

    1989-07-01

    A human peripheral T-cell cDNA library was screened with two labeled synthetic oligonucleotides encoding regions of a human placenta protein-tyrosine-phosphatase. One positive clone was isolated and the nucleotide sequence was determined. It contained 1,305 base pairs of open reading frame followed by a TAA stop codon and 978 base pairs of 3{prime} untranslated end, although a poly(A){sup +} tail was not found. An initiator methionine residue was predicted at position 61, which would result in a protein of 415 amino acid residues. This was supported by the synthesis of a M{sub r} 48,000 protein in an in vitro reticulocyte lysatemore » translation system using RNA transcribed from the cloned cDNA and T7 RNA polymerase. The deduced amino acid sequence was compared to other known proteins revealing 65% identity to the low M{sub r} PTPase 1B isolated from placenta. In view of the high degree of similarity, the T-cell cDNA likely encodes a newly discovered protein-tyrosine-phosphatase, thus expanding this family of genes.« less

  7. Testing whether Metazoan Tyrosine Loss Was Driven by Selection against Promiscuous Phosphorylation

    PubMed Central

    Pandya, Siddharth; Struck, Travis J.; Mannakee, Brian K.; Paniscus, Mary; Gutenkunst, Ryan N.

    2015-01-01

    Protein tyrosine phosphorylation is a key regulatory modification in metazoans, and the corresponding kinase enzymes have diversified dramatically. This diversification is correlated with a genome-wide reduction in protein tyrosine content, and it was recently suggested that this reduction was driven by selection to avoid promiscuous phosphorylation that might be deleterious. We tested three predictions of this intriguing hypothesis. 1) Selection should be stronger on residues that are more likely to be phosphorylated due to local solvent accessibility or structural disorder. 2) Selection should be stronger on proteins that are more likely to be promiscuously phosphorylated because they are abundant. We tested these predictions by comparing distributions of tyrosine within and among human and yeast orthologous proteins. 3) Selection should be stronger against mutations that create tyrosine versus remove tyrosine. We tested this prediction using human population genomic variation data. We found that all three predicted effects are modest for tyrosine when compared with the other amino acids, suggesting that selection against deleterious phosphorylation was not dominant in driving metazoan tyrosine loss. PMID:25312910

  8. The Role of Striatal-Enriched Protein Tyrosine Phosphatase (STEP) in Cognition

    PubMed Central

    Fitzpatrick, Christopher James; Lombroso, Paul J.

    2011-01-01

    Striatal-enriched protein tyrosine phosphatase (STEP) has recently been implicated in several neuropsychiatric disorders with significant cognitive impairments, including Alzheimer’s disease, schizophrenia, and fragile X syndrome. A model has emerged by which STEP normally opposes the development of synaptic strengthening and that disruption in STEP activity leads to aberrant synaptic function. We review the mechanisms by which STEP contributes to the etiology of these and other neuropsychiatric disorders. These findings suggest that disruptions in STEP activity may be a common mechanism for cognitive impairments in diverse illnesses. PMID:21863137

  9. A low molecular weight protein tyrosine phosphatase from Synechocystis sp. strain PCC 6803: enzymatic characterization and identification of its potential substrates

    PubMed Central

    Mukhopadhyay, Archana; Kennelly, Peter J.

    2011-01-01

    The predicted protein product of open reading frame slr0328 from Synechocystis sp. PCC 6803, SynPTP, possesses significant amino acid sequence similarity with known low molecular weight protein tyrosine phosphatases (PTPs). To determine the functional properties of this hypothetical protein, open reading frame slr0328 was expressed in Escherichia coli. The purified recombinant protein, SynPTP, displayed its catalytic phosphatase activity towards several tyrosine, but not serine, phosphorylated exogenous protein substrates. The protein phosphatase activity of SynPTP was inhibited by sodium orthovanadate, a known inhibitor of tyrosine phosphatases, but not by okadaic acid, an inhibitor for many serine/threonine phosphatases. Kinetic analysis indicated that the Km and Vmax values for SynPTP towards p-nitrophenyl phosphate are similar to those of other known bacterial low molecular weight PTPs. Mutagenic alteration of the predicted catalytic cysteine of PTP, Cys7, to serine abolished enzyme activity. Using a combination of immunodetection, mass spectrometric analysis and mutagenically altered Cys7SerAsp125Ala-SynPTP, we identified PsaD (photosystem I subunit II), CpcD (phycocyanin rod linker protein) and phycocyanin-α and -β subunits as possible endogenous substrates of SynPTP in this cyanobacterium. These results indicate that SynPTP might be involved in the regulation of photosynthesis in Synechocystis sp. PCC 6803. PMID:21288886

  10. Contribution of JAK2 mutations to T-cell lymphoblastic lymphoma development.

    PubMed

    Roncero, A M; López-Nieva, P; Cobos-Fernández, M A; Villa-Morales, M; González-Sánchez, L; López-Lorenzo, J L; Llamas, P; Ayuso, C; Rodríguez-Pinilla, S M; Arriba, M C; Piris, M A; Fernández-Navarro, P; Fernández, A F; Fraga, M F; Santos, J; Fernández-Piqueras, J

    2016-01-01

    The JAK-STAT pathway has a substantial role in lymphoid precursor cell proliferation, survival and differentiation. Nonetheless, the contribution of JAK2 to T-cell lymphoblastic lymphoma (T-LBL) development remains poorly understood. We have identified one activating TEL-JAK2 translocation and four missense mutations accumulated in 2 out of 16 T-LBL samples. Two of them are novel JAK2 mutations and the other two are reported for the first time in T-LBL. Notably, R683G and I682T might have arisen owing to RNA editing. Mutated samples showed different mutated transcripts suggesting sub-clonal heterogeneity. Functional approaches revealed that two JAK2 mutations (H574R and R683G) constitutively activate JAK-STAT signaling in γ2A cells and can drive the proliferation of BaF3-EpoR cytokine-dependent cell line. In addition, aberrant hypermethylation of SOCS3 might contribute to enhance the activation of JAK-STAT signaling. Of utmost interest is that primary T-LBL samples harboring JAK2 mutations exhibited increased expression of LMO2, suggesting a mechanistic link between JAK2 mutations and the expression of LMO2, which was confirmed for the four missense mutations in transfected γ2A cells. We therefore propose that active JAK2 contribute to T-LBL development by two different mechanisms, and that the use of pan-JAK inhibitors in combination with epigenetic drugs should be considered in future treatments.

  11. Contribution of JAK2 mutations to T-cell lymphoblastic lymphoma development

    PubMed Central

    Roncero, A M; López-Nieva, P; Cobos-Fernández, M A; Villa-Morales, M; González-Sánchez, L; López-Lorenzo, J L; Llamas, P; Ayuso, C; Rodríguez-Pinilla, S M; Arriba, M C; Piris, M A; Fernández-Navarro, P; Fernández, A F; Fraga, M F; Santos, J; Fernández-Piqueras, J

    2016-01-01

    The JAK-STAT pathway has a substantial role in lymphoid precursor cell proliferation, survival and differentiation. Nonetheless, the contribution of JAK2 to T-cell lymphoblastic lymphoma (T-LBL) development remains poorly understood. We have identified one activating TEL-JAK2 translocation and four missense mutations accumulated in 2 out of 16 T-LBL samples. Two of them are novel JAK2 mutations and the other two are reported for the first time in T-LBL. Notably, R683G and I682T might have arisen owing to RNA editing. Mutated samples showed different mutated transcripts suggesting sub-clonal heterogeneity. Functional approaches revealed that two JAK2 mutations (H574R and R683G) constitutively activate JAK-STAT signaling in γ2A cells and can drive the proliferation of BaF3-EpoR cytokine-dependent cell line. In addition, aberrant hypermethylation of SOCS3 might contribute to enhance the activation of JAK-STAT signaling. Of utmost interest is that primary T-LBL samples harboring JAK2 mutations exhibited increased expression of LMO2, suggesting a mechanistic link between JAK2 mutations and the expression of LMO2, which was confirmed for the four missense mutations in transfected γ2A cells. We therefore propose that active JAK2 contribute to T-LBL development by two different mechanisms, and that the use of pan-JAK inhibitors in combination with epigenetic drugs should be considered in future treatments. PMID:26216197

  12. Thiol oxidation and di-tyrosine formation in human plasma proteins induced by inflammatory concentrations of hypochlorous acid.

    PubMed

    Colombo, Graziano; Clerici, Marco; Altomare, Alessandra; Rusconi, Francesco; Giustarini, Daniela; Portinaro, Nicola; Garavaglia, Maria Lisa; Rossi, Ranieri; Dalle-Donne, Isabella; Milzani, Aldo

    2017-01-30

    In this study, we assessed the oxidative damage occurring in plasma proteins when human blood was exposed to inflammatory concentrations of hypochlorous acid (HOCl). We used specific thiol labelling and Western blot analyses to determine protein thiol oxidation, as well as analytical gel filtration HPLC coupled to fluorescence detection to explore formation of high molecular weight (HMW) protein aggregates. Thiol-containing proteins oxidized by HOCl were identified by redox proteomics. Mass spectrometry (MS) analysis was performed to elucidate the protein composition of HMW aggregates. α1-antitrypsin, transthyretin, and haptoglobin showed thiol oxidation at HOCl concentrations higher than those causing complete oxidation of albumin. At the highest HOCl concentrations, formation of carbonylated and di-tyrosine cross-linked HMW protein aggregates also occurred. MS analysis identified fibrinogen, complement C3 and apolipoprotein A-I as components of HMW protein aggregates. These results could be relevant for human diseases characterized by inflammatory conditions in which myeloperoxidase and HOCl are involved. In this study we evaluated the oxidative damage occurring on plasma proteins when reconstituted human blood was exposed to inflammatory concentrations of hypochlorous acid (HOCl). Pathophysiological concentrations of HOCl are able to induce different modifications on plasma proteins such as carbonylation, sulfhydryl oxidation and formation of high molecular weight (HMW) protein aggregates characterized by di-tyrosine fluorescence. There are two relevant aspects emerging from this paper. The first one consists on identifying low abundant proteins undergoing sulfhydryl oxidation by biotin-maleimide derivatization followed by MALDI-TOF mass spectrometry. This approach suggests three low-abundant proteins undergoing HOCl-induced oxidation: transthyretin, α1-antitrypsin, and haptoglobin. In addition, we analysed HMW protein aggregates forming after HOCl exposure

  13. Src homology domain 2-containing protein-tyrosine phosphatase-1 (SHP-1) binds and dephosphorylates G(alpha)-interacting, vesicle-associated protein (GIV)/Girdin and attenuates the GIV-phosphatidylinositol 3-kinase (PI3K)-Akt signaling pathway.

    PubMed

    Mittal, Yash; Pavlova, Yelena; Garcia-Marcos, Mikel; Ghosh, Pradipta

    2011-09-16

    GIV (Gα-interacting vesicle-associated protein, also known as Girdin) is a bona fide enhancer of PI3K-Akt signals during a diverse set of biological processes, e.g. wound healing, macrophage chemotaxis, tumor angiogenesis, and cancer invasion/metastasis. We recently demonstrated that tyrosine phosphorylation of GIV by receptor and non-receptor-tyrosine kinases is a key step that is required for GIV to directly bind and enhance PI3K activity. Here we report the discovery that Src homology 2-containing phosphatase-1 (SHP-1) is the major protein-tyrosine phosphatase that targets two critical phosphotyrosines within GIV and antagonizes phospho-GIV-dependent PI3K enhancement in mammalian cells. Using phosphorylation-dephosphorylation assays, we demonstrate that SHP-1 is the major and specific protein-tyrosine phosphatase that catalyzes the dephosphorylation of tyrosine-phosphorylated GIV in vitro and inhibits ligand-dependent tyrosine phosphorylation of GIV downstream of both growth factor receptors and GPCRs in cells. In vitro binding and co-immunoprecipitation assays demonstrate that SHP-1 and GIV interact directly and constitutively and that this interaction occurs between the SH2 domain of SHP-1 and the C terminus of GIV. Overexpression of SHP-1 inhibits tyrosine phosphorylation of GIV and formation of phospho-GIV-PI3K complexes, and specifically suppresses GIV-dependent activation of Akt. Consistently, depletion of SHP-1 enhances peak tyrosine phosphorylation of GIV, which coincides with an increase in peak Akt activity. We conclude that SHP-1 antagonizes the action of receptor and non-receptor-tyrosine kinases on GIV and down-regulates the phospho-GIV-PI3K-Akt axis of signaling.

  14. MECHANISM OF PROTEIN TYROSINE PHOSPHATASE INHIBITION IN HUMAN AIRWAY EPITHELIAL CELLS (HAEC) EXPOSED TO ZN2+

    EPA Science Inventory

    A number of studies have implicated zinc in the toxicity of ambient particulate matter (PM) inhalation. We previously showed that exposure to Zn2+ inhibits protein tyrosine phosphatase (PTP) activity and leads to activation of epidermal growth factor receptor (EGFR) signaling in ...

  15. Tyrosine sulfation in N-terminal domain of human C5a receptor is necessary for binding of chemotaxis inhibitory protein of Staphylococcus aureus

    PubMed Central

    Liu, Zhen-jia; Yang, Yan-juan; Jiang, Lei; Xu, Ying-chun; Wang, Ai-xia; Du, Guan-hua; Gao, Jin-ming

    2011-01-01

    Aim: Staphylococcus aureus evades host defense through releasing several virulence proteins, such as chemotaxis inhibitory protein of staphylococcus aureus (CHIPS). It has been shown that extracellular N terminus of C5a receptor (C5aR) forms the binding domain for CHIPS, and tyrosine sulfation is emerging as a key factor in determining protein-protein interaction. The aim of this study was to evaluate the role of tyrosine sulfation of N-terminal of C5aR in its binding with CHIPS. Methods: Expression plasmids encoding C5aR and its mutants were prepared using PCR and site-directed mutagenesis and were used to transfect HEK 293T cells using calcium phosphate. Recombinant CHIPS protein was purified. Western blotting was used to examine the binding efficiency of CHIPS to C5aR or its mutants. Results: CHIPS exclusively binds to C5aR, but not to C5L2 or C3aR. A nonspecific sulfation inhibitor, sodium chlorate (50 nmol/L), diminishes the binding ability of C5aR with CHIPS. Blocking sulfation by mutation of tyrosine to phenylalanine at positions 11 and 14 of C5aR N terminus, which blocked sulfation, completely abrogates CHIPS binding. When tyrosine 14 alone was mutated to phenylalanine, the binding efficiency of recombinant CHIPS was substantially decreased. Conclusion: The results demonstrate a structural basis of C5aR-CHIPS association, in which tyrosine sulfation of N-terminal C5aR plays an important role. Our data may have potential significance in development of novel drugs for therapeutic intervention. PMID:21706042

  16. Tricyclic Covalent Inhibitors Selectively Target Jak3 through an Active Site Thiol*

    PubMed Central

    Goedken, Eric R.; Argiriadi, Maria A.; Banach, David L.; Fiamengo, Bryan A.; Foley, Sage E.; Frank, Kristine E.; George, Jonathan S.; Harris, Christopher M.; Hobson, Adrian D.; Ihle, David C.; Marcotte, Douglas; Merta, Philip J.; Michalak, Mark E.; Murdock, Sara E.; Tomlinson, Medha J.; Voss, Jeffrey W.

    2015-01-01

    The action of Janus kinases (JAKs) is required for multiple cytokine signaling pathways, and as such, JAK inhibitors hold promise for treatment of autoimmune disorders, including rheumatoid arthritis, inflammatory bowel disease, and psoriasis. However, due to high similarity in the active sites of the four members (Jak1, Jak2, Jak3, and Tyk2), developing selective inhibitors within this family is challenging. We have designed and characterized substituted, tricyclic Jak3 inhibitors that selectively avoid inhibition of the other JAKs. This is accomplished through a covalent interaction between an inhibitor containing a terminal electrophile and an active site cysteine (Cys-909). We found that these ATP competitive compounds are irreversible inhibitors of Jak3 enzyme activity in vitro. They possess high selectivity against other kinases and can potently (IC50 < 100 nm) inhibit Jak3 activity in cell-based assays. These results suggest irreversible inhibitors of this class may be useful selective agents, both as tools to probe Jak3 biology and potentially as therapies for autoimmune diseases. PMID:25552479

  17. Tricyclic Covalent Inhibitors Selectively Target Jak3 through an Active Site Thiol

    DOE PAGES

    Goedken, Eric R.; Argiriadi, Maria A.; Banach, David L.; ...

    2014-12-31

    The action of Janus kinases (JAKs) is required for multiple cytokine signaling pathways, and as such, JAK inhibitors hold promise for treatment of autoimmune disorders, including rheumatoid arthritis, inflammatory bowel disease, and psoriasis. However, due to high similarity in the active sites of the four members (Jak1, Jak2, Jak3, and Tyk2), developing selective inhibitors within this family is challenging. In this paper, we have designed and characterized substituted, tricyclic Jak3 inhibitors that selectively avoid inhibition of the other JAKs. This is accomplished through a covalent interaction between an inhibitor containing a terminal electrophile and an active site cysteine (Cys-909). Wemore » found that these ATP competitive compounds are irreversible inhibitors of Jak3 enzyme activity in vitro. They possess high selectivity against other kinases and can potently (IC 50 < 100 nM) inhibit Jak3 activity in cell-based assays. Finally, these results suggest irreversible inhibitors of this class may be useful selective agents, both as tools to probe Jak3 biology and potentially as therapies for autoimmune diseases.« less

  18. Tricyclic Covalent Inhibitors Selectively Target Jak3 through an Active Site Thiol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goedken, Eric R.; Argiriadi, Maria A.; Banach, David L.

    The action of Janus kinases (JAKs) is required for multiple cytokine signaling pathways, and as such, JAK inhibitors hold promise for treatment of autoimmune disorders, including rheumatoid arthritis, inflammatory bowel disease, and psoriasis. However, due to high similarity in the active sites of the four members (Jak1, Jak2, Jak3, and Tyk2), developing selective inhibitors within this family is challenging. In this paper, we have designed and characterized substituted, tricyclic Jak3 inhibitors that selectively avoid inhibition of the other JAKs. This is accomplished through a covalent interaction between an inhibitor containing a terminal electrophile and an active site cysteine (Cys-909). Wemore » found that these ATP competitive compounds are irreversible inhibitors of Jak3 enzyme activity in vitro. They possess high selectivity against other kinases and can potently (IC 50 < 100 nM) inhibit Jak3 activity in cell-based assays. Finally, these results suggest irreversible inhibitors of this class may be useful selective agents, both as tools to probe Jak3 biology and potentially as therapies for autoimmune diseases.« less

  19. Novel Tyrosine Phosphorylation Sites in Rat Skeletal Muscle Revealed by Phosphopeptide Enrichment and HPLC-ESI-MS/MS

    PubMed Central

    Zhang, Xiangmin; Højlund, Kurt; Luo, Moulun; Meyer, Christian; Thangiah, Geetha; Yi, Zhengping

    2012-01-01

    Tyrosine phosphorylation plays a fundamental role in many cellular processes including differentiation, growth and insulin signaling. In insulin resistant muscle, aberrant tyrosine phosphorylation of several proteins has been detected. However, due to the low abundance of tyrosine phosphorylation (<1% of total protein phosphorylation), only a few tyrosine phosphorylation sites have been identified in mammalian skeletal muscle to date. Here, we used immunoprecipitation of phosphotyrosine peptides prior to HPLC-ESI-MS/MS analysis to improve the discovery of tyrosine phosphorylation in relatively small skeletal muscle biopsies from rats. This resulted in the identification of 87 distinctly localized tyrosine phosphorylation sites in 46 muscle proteins. Among them, 31 appear to be novel. The tyrosine phosphorylated proteins included major enzymes in the glycolytic pathway and glycogen metabolism, sarcomeric proteins, and proteins involved in Ca2+ homeostasis and phosphocreatine resynthesis. Among proteins regulated by insulin, we found tyrosine phosphorylation sites in glycogen synthase, and two of its inhibitors, GSK-3α and DYRK1A. Moreover, tyrosine phosphorylation sites were identified in several MAP kinases and a protein tyrosine phosphatase, SHPTP2. These results provide the largest catalogue of mammalian skeletal muscle tyrosine phosphorylation sites to date and provide novel targets for the investigation of human skeletal muscle phosphoproteins in various disease states. PMID:22609512

  20. The Roles of Protein Tyrosine Phosphatases in Hepatocellular Carcinoma

    PubMed Central

    Huang, Yide; Zhang, Yafei; Ge, Lilin

    2018-01-01

    The protein tyrosine phosphatase (PTP) family is involved in multiple cellular functions and plays an important role in various pathological and physiological processes. In many chronic diseases, for example cancer, PTP is a potential therapeutic target for cancer treatment. In the last two decades, dozens of PTP inhibitors which specifically target individual PTP molecules were developed as therapeutic agents. Hepatocellular carcinoma (HCC) is one of the most common malignant tumors and is the second most lethal cancer worldwide due to a lack of effective therapies. Recent studies have unveiled both oncogenic and tumor suppressive functions of PTP in HCC. Here, we review the current knowledge on the involvement of PTP in HCC and further discuss the possibility of targeting PTP in HCC. PMID:29558404

  1. The dipeptide Pro-Asp promotes IGF-1 secretion and expression in hepatocytes by enhancing JAK2/STAT5 signaling pathway.

    PubMed

    Wang, Songbo; Wang, Guoqing; Zhang, Mengyuan; Zhuang, Lu; Wan, Xiaojuan; Xu, Jingren; Wang, Lina; Zhu, Xiaotong; Gao, Ping; Xi, Qianyun; Zhang, Yongliang; Shu, Gang; Jiang, Qingyan

    2016-11-15

    It has been implicated that IGF-1 secretion can be regulated by dietary protein. However, whether the dipeptides, one of digested products of dietary protein, have influence on IGF-1 secretion remain largely unknown. Our study aimed to investigate the effects of the dipeptide Pro-Asp on IGF-1 secretion and expression in hepatocytes and to explore the possible underlying mechanisms. Our findings demonstrated that Pro-Asp promoted the secretion and gene expression of IGF-1 in HepG2 cells and primary porcine hepatocytes. Meanwhile, Pro-Asp activated the ERK and Akt signaling pathways, downstream of IGF-1. In addition, Pro-Asp enhanced GH-mediated JAK2/STAT5 signaling pathway, while inhibition of JAK2/STAT5 blocked the promotive effect of Pro-Asp on IGF-1 secretion and expression. Moreover, acute injection of Pro-Asp stimulated IGF-1 expression and activated JAK2/STAT5 signaling pathway in mice liver. Together, these results suggested that the dipeptide Pro-Asp promoted IGF-1 secretion and expression in hepatocytes by enhancing GH-mediated JAK2/STAT5 signaling pathway. Copyright © 2016. Published by Elsevier Ireland Ltd.

  2. Genetic studies reveal an unexpected negative regulatory role for Jak2 in thrombopoiesis

    PubMed Central

    Meyer, Sara C.; Keller, Matthew D.; Woods, Brittany A.; LaFave, Lindsay M.; Bastian, Lennart; Kleppe, Maria; Bhagwat, Neha; Marubayashi, Sachie

    2014-01-01

    JAK inhibitor treatment is limited by the variable development of anemia and thrombocytopenia thought to be due to on-target JAK2 inhibition. We evaluated the impact of Jak2 deletion in platelets (PLTs) and megakaryocytes (MKs) on blood counts, stem/progenitor cells, and Jak-Stat signaling. Pf4-Cre–mediated Jak2 deletion in PLTs and MKs did not compromise PLT formation but caused thrombocytosis, and resulted in expansion of MK progenitors and Lin−Sca1+Kit+ cells. Serum thrombopoietin (TPO) was maintained at normal levels in Pf4-Cre–positive Jak2f/f mice, consistent with reduced internalization/turnover by Jak2-deficient PLTs. These data demonstrate that Jak2 in terminal megakaryopoiesis is not required for PLT production, and that Jak2 loss in PLTs and MKs results in non-autonomous expansion of stem/progenitors and of MKs and PLTs via dysregulated TPO turnover. This suggests that the thrombocytopenia frequently seen with JAK inhibitor treatment is not due to JAK2 inhibition in PLTs and MKs, but rather due to JAK2 inhibition in stem/progenitor cells. PMID:25115888

  3. Triazolopyridines as selective JAK1 inhibitors: from hit identification to GLPG0634.

    PubMed

    Menet, Christel J; Fletcher, Stephen R; Van Lommen, Guy; Geney, Raphael; Blanc, Javier; Smits, Koen; Jouannigot, Nolwenn; Deprez, Pierre; van der Aar, Ellen M; Clement-Lacroix, Philippe; Lepescheux, Liên; Galien, René; Vayssiere, Béatrice; Nelles, Luc; Christophe, Thierry; Brys, Reginald; Uhring, Muriel; Ciesielski, Fabrice; Van Rompaey, Luc

    2014-11-26

    Janus kinases (JAK1, JAK2, JAK3, and TYK2) are involved in the signaling of multiple cytokines important in cellular function. Blockade of the JAK-STAT pathway with a small molecule has been shown to provide therapeutic immunomodulation. Having identified JAK1 as a possible new target for arthritis at Galapagos, the compound library was screened against JAK1, resulting in the identification of a triazolopyridine-based series of inhibitors represented by 3. Optimization within this chemical series led to identification of GLPG0634 (65, filgotinib), a selective JAK1 inhibitor currently in phase 2B development for RA and phase 2A development for Crohn's disease (CD).

  4. Inhibition of biofilm formation by D-tyrosine: Effect of bacterial type and D-tyrosine concentration.

    PubMed

    Yu, Cong; Li, Xuening; Zhang, Nan; Wen, Donghui; Liu, Charles; Li, Qilin

    2016-04-01

    D-Tyrosine inhibits formation and triggers disassembly of bacterial biofilm and has been proposed for biofouling control applications. This study probes the impact of D-tyrosine in different biofilm formation stages in both G+ and G- bacteria, and reveals a non-monotonic correlation between D-tyrosine concentration and biofilm inhibition effect. In the attachment stage, cell adhesion was studied in a flow chamber, where D-tyrosine caused significant reduction in cell attachment. Biofilms formed by Pseudomonas aeruginosa and Bacillus subtilis were characterized by confocal laser scanning microscopy as well as quantitative analysis of cellular biomass and extracellular polymeric substances. D-Tyrosine exhibited strong inhibitive effects on both biofilms with an effective concentration as low as 5 nM; the biofilms responded to D-tyrosine concentration change in a non-monotonic, bi-modal pattern. In addition, D-tyrosine showed notable and different impact on EPS production by G+ and G- bacteria. Extracellular protein was decreased in P. aeruginosa biofilms, but increased in those of B. subtilis. Exopolysaccharides production by P. aeruginosa was increased at low concentrations and reduced at high concentrations while no impact was found in B. subtilis. These results suggest that distinct mechanisms are at play at different D-tyrosine concentrations and they may be species specific. Dosage of D-tyrosine must be carefully controlled for biofouling control applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Protein tyrosine phosphatase PTP1 negatively regulates Dictyostelium STATa and is required for proper cell-type proportioning.

    PubMed

    Early, A; Gamper, M; Moniakis, J; Kim, E; Hunter, T; Williams, J G; Firtel, R A

    2001-04-01

    The protein tyrosine phosphatase PTP1, which mediates reversible phosphorylation on tyrosine, has been shown to play an important regulatory role during Dictyostelium development. Mutants lacking PTP1 develop more rapidly than normal, while strains that overexpress PTP1 display aberrant morphology. However, the signalling pathways involved have not been characterised. In reexamining these strains, we have found that there is an inverse correlation between levels of PTP1 activity, the extent of tyrosine phosphorylation on Dictyostelium STATa after treatment with cAMP, and the proportion of the slug population exhibiting STATa nuclear enrichment in vivo. This suggests that PTP1 acts to attenuate the tyrosine phosphorylation of STATa and downstream STATa-mediated pathways. Consistent with this, we show that when PTP1 is overexpressed, there is increased expression of a prestalk cell marker at the slug posterior, a phenocopy of STATa null slugs. In ptp1 null strains, STATa tyrosine phosphorylation and nuclear enrichment in the slug anterior is increased. There is also a change in the prestalk to prespore cell ratio. Synergy experiments suggest that this is due to a cell-autonomous defect in forming the subset of prespore cells that are located in the anterior prespore region. Copyright 2001 Academic Press.

  6. JAK-STAT signaling in cardiomyogenesis of cardiac stem cells

    PubMed Central

    Mohri, Tomomi; Iwakura, Tomohiko; Nakayama, Hiroyuki; Fujio, Yasushi

    2012-01-01

    Recently various kinds of cardiac stem/progenitor cells have been identified and suggested to be involved in cardiac repair and regeneration in injured myocardium. In this review, we focus on the roles of JAK-STAT signaling in cardiac stem/progenitor cells in cardiomyogenesis. JAK-STAT signaling plays important roles in the differentiation of stem cells into cardiac lineage cells. The activation of JAK-STAT signal elicits the mobilization of mesenchymal stem cells as well, contributing to the maintenance of cardiac function. Thus we propose that JAK-STAT could be a target signaling pathway in cardiac regenerative therapy. PMID:24058761

  7. Inhibition of cerebral ischemia/reperfusion injury-induced apoptosis: nicotiflorin and JAK2/STAT3 pathway.

    PubMed

    Hu, Guang-Qiang; Du, Xi; Li, Yong-Jie; Gao, Xiao-Qing; Chen, Bi-Qiong; Yu, Lu

    2017-01-01

    Nicotiflorin is a flavonoid extracted from Carthamus tinctorius. Previous studies have shown its cerebral protective effect, but the mechanism is undefined. In this study, we aimed to determine whether nicotiflorin protects against cerebral ischemia/reperfusion injury-induced apoptosis through the JAK2/STAT3 pathway. The cerebral ischemia/reperfusion injury model was established by middle cerebral artery occlusion/reperfusion. Nicotiflorin (10 mg/kg) was administered by tail vein injection. Cell apoptosis in the ischemic cerebral cortex was examined by hematoxylin-eosin staining and terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Bcl-2 and Bax expression levels in ischemic cerebral cortex were examined by immunohistochemial staining. Additionally, p-JAK2, p-STAT3, Bcl-2, Bax, and caspase-3 levels in ischemic cerebral cortex were examined by western blot assay. Nicotiflorin altered the shape and structure of injured neurons, decreased the number of apoptotic cells, down-regulates expression of p-JAK2, p-STAT3, caspase-3, and Bax, decreased Bax immunoredactivity, and increased Bcl-2 protein expression and immunoreactivity. These results suggest that nicotiflorin protects against cerebral ischemia/reperfusion injury-induced apoptosis via the JAK2/STAT3 pathway.

  8. Tyrosine sulfation modulates activity of tick-derived thrombin inhibitors

    NASA Astrophysics Data System (ADS)

    Thompson, Robert E.; Liu, Xuyu; Ripoll-Rozada, Jorge; Alonso-García, Noelia; Parker, Benjamin L.; Pereira, Pedro José Barbosa; Payne, Richard J.

    2017-09-01

    Madanin-1 and chimadanin are two small cysteine-free thrombin inhibitors that facilitate blood feeding in the tick Haemaphysalis longicornis. Here, we report a post-translational modification—tyrosine sulfation—of these two proteins that is critical for potent anti-thrombotic and anticoagulant activity. Inhibitors produced in baculovirus-infected insect cells displayed heterogeneous sulfation of two tyrosine residues within each of the proteins. One-pot ligation-desulfurization chemistry enabled access to homogeneous samples of all possible sulfated variants of the proteins. Tyrosine sulfation of madanin-1 and chimadanin proved crucial for thrombin inhibitory activity, with the doubly sulfated variants three orders of magnitude more potent than the unmodified inhibitors. The three-dimensional structure of madanin-1 in complex with thrombin revealed a unique mode of inhibition, with the sulfated tyrosine residues binding to the basic exosite II of the protease. The importance of tyrosine sulfation within this family of thrombin inhibitors, together with their unique binding mode, paves the way for the development of anti-thrombotic drug leads based on these privileged scaffolds.

  9. Prostaglandin F(2alpha) stimulates tyrosine phosphorylation of phospholipase C-gamma1.

    PubMed

    Husain, Shahid; Jafri, Farahdiba

    2002-10-11

    In this study, we investigated the ability of prostaglandin F(2alpha) (PGF(2alpha)) to induce tyrosine phosphorylation of phospholipase C-gamma1 (PLC-gamma1) in cat iris sphincter smooth muscle (CISM) cells. PGF(2alpha)(1 microM) stimulated PLC-gamma1 tyrosine phosphorylation in a time- and dose-dependent manner with a maximum increase of 3-fold at 0.5min. The protein tyrosine kinase inhibitors, genistein, and tyrphostin A-25, blocked the stimulatory effects of PGF(2alpha), suggesting involvement of protein tyrosine kinase activity in the physiological actions of the PGF(2alpha). Furthermore, PGF(2alpha)-induced p42/p44 MAP kinase activation was also completely blocked by protein tyrosine kinase inhibitors. In summary, these findings show that PGF(2alpha) stimulates tyrosine phosphorylation of PLC-gamma1 in CISM cells and indicate that PGF(2alpha)-stimulated tyrosine phosphorylation is responsible for an early signal transduction event.

  10. Ethanol and Other Short-Chain Alcohols Inhibit NLRP3 Inflammasome Activation through Protein Tyrosine Phosphatase Stimulation

    PubMed Central

    Hoyt, Laura R.; Ather, Jennifer L.; Randall, Matthew J.; DePuccio, Daniel P.; Landry, Christopher C.; Wewers, Mark D.; Gavrilin, Mikhail A.; Poynter, Matthew E.

    2016-01-01

    Immunosuppression is a major complication of alcoholism that contributes to increased rates of opportunistic infections and sepsis in alcoholics. The NLRP3 inflammasome, a multi-protein intracellular pattern recognition receptor complex that facilitates the cleavage and secretion of the pro-inflammatory cytokines IL-1β and IL-18, can be inhibited by ethanol and we sought to better understand the mechanism through which this occurs and whether chemically similar molecules exert comparable effects. We show that ethanol can specifically inhibit activation of the NLRP3 inflammasome, resulting in attenuated IL-1β and caspase-1 cleavage and secretion, as well as diminished ASC speck formation, without affecting potassium efflux, in a mouse macrophage cell line (J774), mouse bone marrow derived dendritic cells, mouse neutrophils, and human PBMCs. The inhibitory effects on the Nlrp3 inflammasome were independent of GABAA receptor activation or NMDA receptor inhibition, but was associated with decreased oxidant production. Ethanol treatment markedly decreased cellular tyrosine phosphorylation, while administration of the tyrosine phosphatase inhibitor sodium orthovanadate prior to ethanol restored tyrosine phosphorylation and IL-1β secretion subsequent to ATP stimulation. Furthermore, sodium orthovanadate-induced phosphorylation of ASC Y144, necessary and sufficient for Nlrp3 inflammasome activation, and secretion of phosphorylated ASC, were inhibited by ethanol. Finally, multiple alcohol-containing organic compounds exerted inhibitory effects on the Nlrp3 inflammasome, whereas 2-methylbutane (isopentane), the analogous alkane of the potent inhibitor isoamyl alcohol (isopentanol), did not. Our results demonstrate that ethanol antagonizes the NLRP3 inflammasome at an apical event in its activation through the stimulation of protein tyrosine phosphatases, an effect shared by other short-chain alcohols. PMID:27421477

  11. Regional differences in endothelial cell cytoskeleton, junctional proteins and phosphorylated tyrosine labeling in the porcine vortex vein system.

    PubMed

    Tan, Priscilla Ern Zhi; Yu, Paula K; Yang, Hongfang; Cringle, Stephen J; Yu, Dao-Yi

    2018-07-01

    We previously demonstrated endothelial phenotype heterogeneity in the vortex vein system. This study is to further determine whether regional differences are present in the cytoskeleton, junctional proteins and phosphorylated tyrosine labeling within the system. The vortex vein system of twenty porcine eyes was perfused with labels for f-actin, claudin-5, VE-Cadherin, phosphorylated tyrosine and nucleic acid. The endothelial cells of eight different regions (choroidal veins, pre-ampulla, anterior ampulla, mid-ampulla, posterior ampulla, post-ampulla, intra-scleral canal and the extra-ocular vortex vein) were studied using confocal microscopy. There were regional differences in the endothelial cell structures. Cytoskeleton labeling was relatively even in intensity throughout Regions 1 to 6. Overall VE-Cadherin had a non-uniform distribution and thicker width endothelial cell border staining than claudin-5. Progressing downstream there was an increased variation in thickness of VE-cadherin labeling. There was an overlap in phosphorylated tyrosine and VE-Cadherin labeling in the post-ampulla, intra-scleral canal and extra-ocular vortex vein. Intramural cells were observed that were immune-positive for VE-Cadherin and phosphorylated tyrosine. There were significant differences in the number of intramural cells in different regions. Significant regional differences with endothelial cell labeling of cytoskeleton, junction proteins, and phosphorylated tyrosine were found within the vortex vein system. These findings support existing data on endothelial cell phenotype heterogeneity, and may aid in the knowledge of venous pathologies by understanding regions of vulnerability to endothelial damage within the vortex vein system. It could be valuable to further investigate and characterize the VE-cadherin and phosphotyrosine immune-positive intramural cells. Copyright © 2018. Published by Elsevier Ltd.

  12. The role of JAK/STAT3 signaling pathway on apoptosis of lung adenocarcinoma cell line PC-9 induced by icotinib.

    PubMed

    Zhang, Yuping; Meng, Xia; Shi, Hongyang; Li, Wei; Ming, Zongjuan; Zhong, Yujie; Deng, Wenjing; Zhang, Qiuhong; Fan, Na; Niu, Zequn; Chen, Guo'an; Yang, Shuanying

    2016-01-01

    The aim of this study is to estimate the role of JAK/STAT3 signaling pathway on apoptosis of lung adenocarcinoma induced by icotinib. EGFR mutation was detected in lung adenocarcinoma cell line PC-9 by ARMS assay; The inhibitory rates of cell proliferation of PC-9 cells which were exposed to different concentrations of icotinib (0~100 μMol/L) for different time (24~72 h) respectively were evaluated by MTT assay; Apoptosis of PC-9 cells exposed to different concentrations of icotinib (0, 0.1, 1 and 10 μMol/L) for 48 h were evaluated by TUNEL assay; JAK2, STAT3, Bcl-2, Bax mRNA expressions were evaluated by Real-time PCR assay; The protein levels of P-STAT3 and IL-6 were evaluated by Western-blot assay. Human lung adenocarcinoma cell line PC-9 had an exon 19 deletion mutation in EGFR gene; Followed by treatment of icotinib, the proliferation of PC-9 cells were all inhibited significantly, especially in 48 and 72 h (P<0.01) in all concentrations; The inhibitory rates of cell proliferation in different treating time had statistical significance (P<0.01); Cell apoptosis in different concentrations were increased significantly (P<0.05); Along with the increasing concentrations, gene expression levels of JAK2, STAT3 and Bcl-2 decreased significantly (P<0.05), Bax increased significantly (P<0.05), JAK2/STAT3 ratios increased significantly (P<0.01), and Bcl-2/bax ratios decreased significantly (P<0.01); P-STAT3 and IL-6 protein levels were inhibited significantly in higher concentration. JAK/STAT3 signaling pathway participates in apoptosis of PC-9 cells induced by icotinib. The most likely mechanism is icotinib inhibited the gene expression levels of JAK2, STAT3 and Bcl-2, so with the P-STAT3 and IL-6 protein levels, and mediated gene Bax overexpression.

  13. The role of JAK/STAT3 signaling pathway on apoptosis of lung adenocarcinoma cell line PC-9 induced by icotinib

    PubMed Central

    Zhang, Yuping; Meng, Xia; Shi, Hongyang; Li, Wei; Ming, Zongjuan; Zhong, Yujie; Deng, Wenjing; Zhang, Qiuhong; Fan, Na; Niu, Zequn; Chen, Guo’an; Yang, Shuanying

    2016-01-01

    Objective: The aim of this study is to estimate the role of JAK/STAT3 signaling pathway on apoptosis of lung adenocarcinoma induced by icotinib. Methods: EGFR mutation was detected in lung adenocarcinoma cell line PC-9 by ARMS assay; The inhibitory rates of cell proliferation of PC-9 cells which were exposed to different concentrations of icotinib (0~100 μMol/L) for different time (24~72 h) respectively were evaluated by MTT assay; Apoptosis of PC-9 cells exposed to different concentrations of icotinib (0, 0.1, 1 and 10 μMol/L) for 48 h were evaluated by TUNEL assay; JAK2, STAT3, Bcl-2, Bax mRNA expressions were evaluated by Real-time PCR assay; The protein levels of P-STAT3 and IL-6 were evaluated by Western-blot assay. Results: Human lung adenocarcinoma cell line PC-9 had an exon 19 deletion mutation in EGFR gene; Followed by treatment of icotinib, the proliferation of PC-9 cells were all inhibited significantly, especially in 48 and 72 h (P<0.01) in all concentrations; The inhibitory rates of cell proliferation in different treating time had statistical significance (P<0.01); Cell apoptosis in different concentrations were increased significantly (P<0.05); Along with the increasing concentrations, gene expression levels of JAK2, STAT3 and Bcl-2 decreased significantly (P<0.05), Bax increased significantly (P<0.05), JAK2/STAT3 ratios increased significantly (P<0.01), and Bcl-2/bax ratios decreased significantly (P<0.01); P-STAT3 and IL-6 protein levels were inhibited significantly in higher concentration. Conclusions: JAK/STAT3 signaling pathway participates in apoptosis of PC-9 cells induced by icotinib. The most likely mechanism is icotinib inhibited the gene expression levels of JAK2, STAT3 and Bcl-2, so with the P-STAT3 and IL-6 protein levels, and mediated gene Bax overexpression. PMID:27186296

  14. Polycythemia Vera: An Appraisal of the Biology and Management 10 Years After the Discovery of JAK2 V617F

    PubMed Central

    Stein, Brady L.; Oh, Stephen T.; Berenzon, Dmitriy; Hobbs, Gabriela S.; Kremyanskaya, Marina; Rampal, Raajit K.; Abboud, Camille N.; Adler, Kenneth; Heaney, Mark L.; Jabbour, Elias J.; Komrokji, Rami S.; Moliterno, Alison R.; Ritchie, Ellen K.; Rice, Lawrence; Mascarenhas, John; Hoffman, Ronald

    2015-01-01

    Polycythemia vera (PV) is a chronic myeloproliferative neoplasm that is associated with a substantial symptom burden, thrombohemorrhagic complications, and impaired survival. A decade after the seminal discovery of an activating mutation in the tyrosine kinase JAK2 in nearly all patients with PV, new treatment options are finally beginning to emerge, necessitating a critical reappraisal of the underlying pathogenesis and therapeutic modalities available for PV. Herein, we comprehensively review clinical aspects of PV including diagnostic considerations, natural history, and risk factors for thrombosis. We summarize recent studies delineating the genetic basis of PV, including their implications for evolution to myelofibrosis and secondary acute myeloid leukemia. We assess the quality of evidence to support the use of currently available therapies, including aspirin, phlebotomy, hydroxyurea, and interferon. We analyze recent studies evaluating the safety and efficacy of JAK inhibitors, such as ruxolitinib, and evaluate their role in the context of other available therapies for PV. This review provides a framework for practicing hematologists and oncologists to make rational treatment decisions for patients with PV. PMID:26324368

  15. Ror receptor tyrosine kinases: orphans no more.

    PubMed

    Green, Jennifer L; Kuntz, Steven G; Sternberg, Paul W

    2008-11-01

    Receptor tyrosine kinase-like orphan receptor (Ror) proteins are a conserved family of tyrosine kinase receptors that function in developmental processes including skeletal and neuronal development, cell movement and cell polarity. Although Ror proteins were originally named because the associated ligand and signaling pathway were unknown, recent studies in multiple species have now established that Ror proteins are Wnt receptors. Depending on the cellular context, Ror proteins can either activate or repress transcription of Wnt target genes and can modulate Wnt signaling by sequestering Wnt ligands. New evidence implicates Ror proteins in planar cell polarity, an alternative Wnt pathway. Here, we review the progress made in understanding these mysterious proteins and, in particular, we focus on their function as Wnt receptors.

  16. The immunoglobulin-like domains 1 and 2 of the protein tyrosine phosphatase LAR adopt an unusual horseshoe-like conformation

    PubMed Central

    Biersmith, Bridget H.; Hammel, Michal; Geisbrecht, Erika R.; Bouyain, Samuel

    2011-01-01

    Neurogenesis depends on exquisitely regulated interactions between macromolecules on the cell surface and in the extracellular matrix. In particular, interactions between proteoglycans and members of the type IIa subgroup of receptor protein tyrosine phosphatases underlie critical developmental processes such as the formation of synapses at the neuromuscular junction and the migration of axons to their appropriate targets. We report here the crystal structures of the first and second immunoglobulin-like domains of the Drosophila type IIa receptor Dlar and its mouse homologue LAR. These two domains adopt an unusual antiparallel arrangement that has not been previously observed in tandem repeats of immunoglobulin-like domains and that is presumably conserved in all type IIa receptor protein tyrosine phosphatases. PMID:21402080

  17. INHIBITION OF PROTEIN TYROSINE PHOSPHATASE ACTIVITY MEDIATES EPIDERMAL GROWTH FACTOR RECEPTOR SIGNALING IN HUMAN AIRWAY EPITHELIAL CELLS

    EPA Science Inventory

    Epidemiological studies have implicated zinc in the toxicity of ambient particulate matter (PM) inhalation. We previously showed that exposure to metal-laden PM inhibits protein tyrosine phosphatase (PTP) activity in human primary bronchial epithelial cells (HAEC) and leads t...

  18. Experimental and Theoretical Study of the Movement of the Wpd Flexible Loop of Human Protein Tyrosine Phosphatase PTP1B in Complex with Halide Ions

    NASA Astrophysics Data System (ADS)

    Katz, Aline; Saenz-Méndez, Patricia; Cousido-Siah, Alexandra; Podjarny, Alberto D.; Ventura, Oscar N.

    2012-11-01

    Protein tyrosine phosphorylation is a post-translational modification mechanism, crucial for the regulation of nearly all aspects of cell life. This dynamic, reversible process is regulated by the balanced opposing activity of protein tyrosine kinases and protein tyrosine phosphatases. In particular, the protein tyrosine phosphatase 1B (PTP1B) is implicated in the regulation of the insulin-receptor activity, leptin-stimulated signal transduction pathways and other clinically relevant metabolic routes, and it has been found overexpressed or overregulated in human breasts, colon and ovary cancers. The WPD loop of the enzyme presents an inherent flexibility, and it plays a fundamental role in the enzymatic catalysis, turning it into a potential target in the design of new efficient PTP1B inhibitors. In order to determine the interactions that control the spatial conformation adopted by the WPD loop, complexes between the enzyme and halide ions (Br- and I- in particular) were crystallized and their crystallographic structure determined, and the collective movements of the aforementioned complexes were studied through Molecular Dynamics (MD) simulations. Both studies yielded concordant results, indicating the existence of a relationship between the identity of the ion present in the complex and the strength of the interactions it establishes with the surrounding protein residues.

  19. Receptor Protein Tyrosine Phosphatase-Receptor Tyrosine Kinase Substrate Screen Identifies EphA2 as a Target for LAR in Cell Migration

    PubMed Central

    Lee, Hojin

    2013-01-01

    Receptor tyrosine kinases (RTKs) exist in equilibrium between tyrosyl-phosphorylated and dephosphorylated states. Despite a detailed understanding of how RTKs become tyrosyl phosphorylated, much less is known about RTK tyrosyl dephosphorylation. Receptor protein tyrosine phosphatases (RPTPs) can play essential roles in the dephosphorylation of RTKs. However, a complete understanding of the involvement of the RPTP subfamily in RTK tyrosyl dephosphorylation has not been established. In this study, we have employed a small interfering RNA (siRNA) screen to identify RPTPs in the human genome that serve as RTK phosphatases. We observed that each RPTP induced a unique fingerprint of tyrosyl phosphorylation among 42 RTKs. We identified EphA2 as a novel LAR substrate. LAR dephosphorylated EphA2 at phosphotyrosyl 930, uncoupling Nck1 from EphA2 and thereby attenuating EphA2-mediated cell migration. These results demonstrate that each RPTP exerts a unique regulatory fingerprint of RTK tyrosyl dephosphorylation and suggest a complex signaling interplay between RTKs and RPTPs. Furthermore, we observed that LAR modulates cell migration through EphA2 site-specific dephosphorylation. PMID:23358419

  20. Role of lymphocyte-specific protein tyrosine kinase (LCK) in the expansion of glioma-initiating cells by fractionated radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Rae-Kwon; Yoon, Chang-Hwan; Hyun, Kyung-Hwan

    2010-11-26

    Research highlights: {yields} Activation of Lymphocyte-specific protein tyrosine kinase (LCK) is involved in the fractionated radiation-induced expansion of glioma stem-like cells. {yields} Inhibition of LCK prevents acquisition of fractionated radiation-induced resistance to chemotherapeutic treatment. {yields} LCK activity is critical for the maintenance of self-renewal in glioma stem-like cells. -- Abstract: Brain cancers frequently recur or progress as focal masses after treatment with ionizing radiation. Radiation used to target gliomas may expand the cancer stem cell population and enhance the aggressiveness of tumors; however, the mechanisms underlying the expansion of cancer stem cell population after radiation have remained unclear. In thismore » study, we show that LCK (lymphocyte-specific protein tyrosine kinase) is involved in the fractionated radiation-induced expansion of the glioma-initiating cell population and acquisition of resistance to anticancer treatments. Fractionated radiation caused a selective increase in the activity of LCK, a Src family non-receptor tyrosine kinase. The activities of other Src family kinases Src, Fyn, and Lyn were not significantly increased. Moreover, knockdown of LCK expression with a specific small interfering RNA (siRNA) effectively blocked fractionated radiation-induced expansion of the CD133{sup +} cell population. siRNA targeting of LCK also suppressed fractionated radiation-induced expression of the glioma stem cell marker proteins CD133, Nestin, and Musashi. Expression of the known self-renewal-related proteins Notch2 and Sox2 in glioma cells treated with fractionated radiation was also downregulated by LCK inhibition. Moreover, siRNA-mediated knockdown of LCK effectively restored the sensitivity of glioma cells to cisplatin and etoposide. These results indicate that the non-receptor tyrosine kinase LCK is critically involved in fractionated radiation-induced expansion of the glioma-initiating cell population

  1. Tumor-induced thymic atrophy: alteration in interferons and Jak/Stats signaling pathways.

    PubMed

    Carrio, Roberto; Torroella-Kouri, Marta; Iragavarapu-Charyulu, Vijaya; Lopez, Diana M

    2011-02-01

    The thymus is the major site of T cell differentiation and a key organ of the immune system. Thym atrophy has been observed in several model systems including aging, and tumor development. Previous results from our laboratory have reported that the thymic atrophy seen in mammary tumor bearers is associated with a severe depletion of CD4+CD8+ double positive immature cells and changes in the levels of cytokines expressed in the thymus microenvironment. Cytokines regulate numerous aspects of hematopoiesis via activation of the Jak/Stat pathways. In the present study we have used our mammary tumor model to investigate whether changes in the levels of cytokines in the thymus could affect the normal expression of the aforementioned pathways. RNA and protein analysis revealed an overexpression of the different members of interferons, a downregulation of most of the Jak/Stat pathways, and an increased expression of several suppressors of cytokine signaling (SOSC) in the thymuses of tumor bearers. Together, our data suggest that the impaired Jak/Stat signaling pathways observed in the whole thymus of tumor-bearing mice could be contributing to the abnormal T cell development and apoptosis observed during the tumor-induced thymic atrophy.

  2. Growth Factor Receptor–Bound Protein 2 Contributes to (Hem)Immunoreceptor Tyrosine-Based Activation Motif–Mediated Signaling in Platelets

    PubMed Central

    Morowski, Martina; Schiessl, Sarah; Schäfer, Carmen M.; Watson, Stephanie K.; Hughes, Craig E.; Ackermann, Jochen A.; Radtke, Daniel; Hermanns, Heike M.; Watson, Steve P.; Nitschke, Lars; Nieswandt, Bernhard

    2015-01-01

    Rationale Platelets are anuclear cell fragments derived from bone marrow megakaryocytes (MKs) that safeguard vascular integrity but may also cause pathological vessel occlusion. One major pathway of platelet activation is triggered by 2 receptors that signal through an (hem)immunoreceptor tyrosine-based activation motif (ITAM), the activating collagen receptor glycoprotein (GP) VI and the C-type lectin-like receptor 2 (CLEC-2). Growth factor receptor–bound protein 2 (Grb2) is a ubiquitously expressed adapter molecule involved in signaling processes of numerous receptors in different cell types, but its function in platelets and MKs is unknown. Objective We tested the hypothesis that Grb2 is a crucial adapter protein in (hem)immunoreceptor tyrosine-based activation motif signaling in platelets. Methods and Results Here, we show that genetic ablation of Grb2 in MKs and platelets did not interfere with MK differentiation or platelet production. However, Grb2-deficiency severely impaired glycoprotein VI–mediated platelet activation because of defective stabilization of the linker of activated T-cell (LAT) signalosome and activation of downstream signaling proteins that resulted in reduced adhesion, aggregation, and coagulant activity on collagen in vitro. Similarly, CLEC-2–mediated signaling was impaired in Grb2-deficient platelets, whereas the cells responded normally to stimulation of G protein–coupled receptors. In vivo, this selective (hem) immunoreceptor tyrosine-based activation motif signaling defect resulted in prolonged bleeding times but affected arterial thrombus formation only after concomitant treatment with acetylsalicylic acid, indicating that defective glycoprotein VI signaling in the absence of Grb2 can be compensated through thromboxane A2–induced G protein–coupled receptor signaling pathways. Conclusions These results reveal an important contribution of Grb2 in (hem)immunoreceptor tyrosine-based activation motif signaling in platelets in

  3. Evidence for tyrosine-linked glycosaminoglycan in a bacterial surface protein.

    PubMed

    Peters, J; Rudolf, S; Oschkinat, H; Mengele, R; Sumper, M; Kellermann, J; Lottspeich, F; Baumeister, W

    1992-04-01

    The S-layer protein of Acetogenium kivui was subjected to proteolysis with different proteases and several high molecular mass glycosaminoglycan peptides containing glucose, galactosamine and an unidentified sugar-related component were separated by molecular sieve chromatography and reversed-phase HPLC and subjected to N-terminal sequence analysis. By methylation analysis glucose was found to be uniformly 1,6-linked, whereas galactosamine was exclusively 1,4-linked. Hydrazinolysis and subsequent amino-acid analysis as well as two-dimensional NMR spectroscopy were used to demonstrate that in these peptides carbohydrate was covalently linked to tyrosine. As all of the four Tyr-glycosylation sites were found to be preceded by valine, a new recognition sequence for glycosylation is suggested.

  4. Impact of JAK2V617F Mutation Burden on Disease Phenotype in Chinese Patients with JAK2V617F-positive Polycythemia Vera (PV) and Essential thrombocythemia (ET).

    PubMed

    Zhao, Shixiang; Zhang, Xiang; Xu, Yang; Feng, Yufeng; Sheng, Wenhong; Cen, Jiannong; Wu, Depei; Han, Yue

    2016-01-01

    Most patients with polycythemia vera (PV) and half of essential thrombocythemia (ET) possess an activating JAK2V617F mutation. The objective of this study was to better define the effect of JAK2V617F mutant allele burden on clinical phenotypes in Chinese patients, especially thrombosis. By real-time polymerase chain reaction (RT-PCR), the JAK2V617F mutation burden was detected in 170 JAK2V617F-positive patients, including 54 PV and 116 ET. The results showed that JAK2V617F allele burden was higher in PV than in ET (P< 0.001). Higher percentage of patients had JAK2V617F allele burden over 20% in PV than in ET (68.5% VS 26.7%) (P< 0.001). In PV patients, higher JAK2V617F allele burden was observed in female (P< 0.05) and leukocytosis patients (WBC above 10 × 10(9)/L) (P< 0.001). Meanwhile, ET patients showed increased JAK2V617F allele burden in the group with higher hemoglobin (HGB above 150 g/L) (P< 0.05), leukocytosis (WBC above 10 × 10(9)/L) (P< 0.001), splenomegaly (P< 0.05) and thrombosis (P< 0.05). In conclusion, the JAK2V617F mutation allele burden is higher in Chinese patients with PV than ET. In PV patients, JAK2V617F mutation burden had influence on WBC counts. And the clinical characteristics of ET patients, such as WBC counts, hemoglobin level, splenomegaly and thrombosis, were influenced by JAK2V617F mutation burden. Male, high hemoglobin (HGB above 150 g/L), and increased JAK2V617F mutation burden (JAK2V617F allele burden ≥ 16.5%) were risks of thrombosis (P< 0.05) for ET patients by Logistic Regression.

  5. Structural Basis for Selective Inhibition of Mycobacterium tuberculosis Protein Tyrosine Phosphatase PtpB

    PubMed Central

    Grundner, Christoph; Perrin, Dominique; van Huijsduijnen, Rob Hooft; Swinnen, Dominique; Gonzalez, Jérome; Gee, Christine L.; Wells, Timothy N.; Alber, Tom

    2007-01-01

    Tyrosine kinases and phosphatases establish the crucial balance of tyrosine phosphorylation in cellular signaling, but creating specific inhibitors of protein Tyr phosphatases (PTPs) remains a challenge. Here we report the development of a potent, selective inhibitor of Mycobacterium tuberculosis PtpB, a bacterial PTP that is secreted into host cells where it disrupts unidentified signaling pathways. The inhibitor, (oxalylamino-methylene)-thiophene sulfonamide (OMTS), showed an IC50 of 440 +/− 50 nM and >60-fold specificity for PtpB over six human PTPs. The 2-Å resolution crystal structure of PtpB in complex with OMTS revealed a large rearrangement of the enzyme, with some residues shifting >27 Å relative to the PtpB:PO4 complex. Extensive contacts with the catalytic loop provide a potential basis for inhibitor selectivity. Two OMTS molecules bound adjacent to each other, raising the possibility of a second substrate phosphotyrosine binding site in PtpB. The PtpB:OMTS structure provides an unanticipated framework to guide inhibitor improvement. PMID:17437721

  6. The JAK/STAT pathway in obesity and diabetes.

    PubMed

    Gurzov, Esteban N; Stanley, William J; Pappas, Evan G; Thomas, Helen E; Gough, Daniel J

    2016-08-01

    Diabetes mellitus are complex, multi-organ metabolic pathologies characterized by hyperglycemia. Emerging evidence shows that the highly conserved and potent JAK/STAT signaling pathway is required for normal homeostasis, and, when dysregulated, contributes to the development of obesity and diabetes. In this review, we analyze the role of JAK/STAT activation in the brain, liver, muscle, fat and pancreas, and how this affects the course of the disease. We also consider the therapeutic implications of targeting the JAK/STAT pathway in treatment of obesity and diabetes. © 2016 Federation of European Biochemical Societies.

  7. Ethanol and Other Short-Chain Alcohols Inhibit NLRP3 Inflammasome Activation through Protein Tyrosine Phosphatase Stimulation.

    PubMed

    Hoyt, Laura R; Ather, Jennifer L; Randall, Matthew J; DePuccio, Daniel P; Landry, Christopher C; Wewers, Mark D; Gavrilin, Mikhail A; Poynter, Matthew E

    2016-08-15

    Immunosuppression is a major complication of alcoholism that contributes to increased rates of opportunistic infections and sepsis in alcoholics. The NLRP3 inflammasome, a multiprotein intracellular pattern recognition receptor complex that facilitates the cleavage and secretion of the proinflammatory cytokines IL-1β and IL-18, can be inhibited by ethanol, and we sought to better understand the mechanism through which this occurs and whether chemically similar molecules exert comparable effects. We show that ethanol can specifically inhibit activation of the NLRP3 inflammasome, resulting in attenuated IL-1β and caspase-1 cleavage and secretion, as well as diminished apoptosis-associated speck-like protein containing a CARD (ASC) speck formation, without affecting potassium efflux, in a mouse macrophage cell line (J774), mouse bone marrow-derived dendritic cells, mouse neutrophils, and human PBMCs. The inhibitory effects on the Nlrp3 inflammasome were independent of γ-aminobutyric acid A receptor activation or N-methyl-d-asparate receptor inhibition but were associated with decreased oxidant production. Ethanol treatment markedly decreased cellular tyrosine phosphorylation, whereas administration of the tyrosine phosphatase inhibitor sodium orthovanadate prior to ethanol restored tyrosine phosphorylation and IL-1β secretion subsequent to ATP stimulation. Furthermore, sodium orthovanadate-induced phosphorylation of ASC Y144, necessary and sufficient for Nlrp3 inflammasome activation, and secretion of phosphorylated ASC were inhibited by ethanol. Finally, multiple alcohol-containing organic compounds exerted inhibitory effects on the Nlrp3 inflammasome, whereas 2-methylbutane (isopentane), the analogous alkane of the potent inhibitor isoamyl alcohol (isopentanol), did not. Our results demonstrate that ethanol antagonizes the NLRP3 inflammasome at an apical event in its activation through the stimulation of protein tyrosine phosphatases, an effect shared by other

  8. Membrane skeletal proteins and their integral membrane protein anchors are targets for tyrosine and threonine kinases in Euglena.

    PubMed

    Fazio, M J; Da Silva, A C; Rosiere, T K; Bouck, G B

    1995-01-01

    Proteins of the membrane skeleton of Euglena gracilis were extensively phosphorylated in vivo and in vitro after incubation with [32P]-orthophosphate or gamma-[32P] ATP. Endogenous protein threonine/serine activity phosphorylated the major membrane skeletal proteins (articulins) and the putative integral membrane protein (IP39) anchor for articulins. The latter was also the major target for endogenous protein tyrosine kinase activity. A cytoplasmic domain of IP39 was specifically phosphorylated, and removal of this domain with papain eliminated the radiolabeled phosphoamino acids and eliminated or radically shifted the PI of the multiple isoforms of IP39. In gel kinase assays IP39 autophosphorylated and a 25 kDa protein which does not autophosphorylate was identified as a threonine/serine (casein) kinase. Plasma membranes from the membrane skeletal protein complex contained threonine/serine (casein) kinase activity, and cross-linking experiments suggested that IP39 was the likely source for this membrane activity. pH optima, cation requirements and heparin sensitivity of the detergent solubilized membrane activity were determined. Together these results suggest that protein kinases may be important modulators of protein assembly and function of the membrane skeleton of these protistan cells.

  9. Endothelial nitric-oxide synthase (eNOS) is activated through G-protein-coupled receptor kinase-interacting protein 1 (GIT1) tyrosine phosphorylation and Src protein.

    PubMed

    Liu, Songling; Premont, Richard T; Rockey, Don C

    2014-06-27

    Nitric oxide (NO) is a critical regulator of vascular tone and plays an especially prominent role in liver by controlling portal blood flow and pressure within liver sinusoids. Synthesis of NO in sinusoidal endothelial cells by endothelial nitric-oxide synthase (eNOS) is regulated in response to activation of endothelial cells by vasoactive signals such as endothelins. The endothelin B (ETB) receptor is a G-protein-coupled receptor, but the mechanisms by which it regulates eNOS activity in sinusoidal endothelial cells are not well understood. In this study, we built on two previous strands of work, the first showing that G-protein βγ subunits mediated activation of phosphatidylinositol 3-kinase and Akt to regulate eNOS and the second showing that eNOS directly bound to the G-protein-coupled receptor kinase-interacting protein 1 (GIT1) scaffold protein, and this association stimulated NO production. Here we investigated the mechanisms by which the GIT1-eNOS complex is formed and regulated. GIT1 was phosphorylated on tyrosine by Src, and Y293F and Y554F mutations reduced GIT1 phosphorylation as well as the ability of GIT1 to bind to and activate eNOS. Akt phosphorylation activated eNOS (at Ser(1177)), and Akt also regulated the ability of Src to phosphorylate GIT1 as well as GIT1-eNOS association. These pathways were activated by endothelin-1 through the ETB receptor; inhibiting receptor-activated G-protein βγ subunits blocked activation of Akt, GIT1 tyrosine phosphorylation, and ET-1-stimulated GIT1-eNOS association but did not affect Src activation. These data suggest a model in which Src and Akt cooperate to regulate association of eNOS with the GIT1 scaffold to facilitate NO production. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Caffeic Acid Inhibits Chronic UVB-Induced Cellular Proliferation Through JAK-STAT3 Signaling in Mouse Skin.

    PubMed

    Agilan, Balupillai; Rajendra Prasad, N; Kanimozhi, Govindasamy; Karthikeyan, Ramasamy; Ganesan, Muthusamy; Mohana, Shanmugam; Velmurugan, Devadasan; Ananthakrishnan, Dhanapalan

    2016-05-01

    Signal transducers and activators of transcription 3 (STAT3) play a critical role in inflammation, proliferation and carcinogenesis. Inhibition of JAK-STAT3 signaling is proved to be a novel target for prevention of UVB-induced skin carcinogenesis. In this study, chronic UVB irradiation (180 mJ cm(-2) ; weekly thrice for 30 weeks) induces the expression of IL-10 and JAK1 that eventually activates the STAT3 which leads to the transcription of proliferative and antiapoptotic markers such as PCNA, Cyclin-D1, Bcl2 and Bcl-xl, respectively. Caffeic acid (CA) inhibits JAK-STAT3 signaling, thereby induces apoptotic cell death by upregulating Bax, Cytochrome-C, Caspase-9 and Caspase-3 expression in mouse skin. Furthermore, TSP-1 is an antiangiogeneic protein, which is involved in the inhibition of angiogenesis and proliferation. Chronic UVB exposure decreased the expression of TSP-1 and pretreatment with CA prevented the UVB-induced loss of TSP-1 in UVB-irradiated mouse skin. Thus, CA offers protection against UVB-induced photocarcinogenesis probably through modulating the JAK-STAT3 in the mouse skin. © 2016 The American Society of Photobiology.

  11. Acute Myeloid Leukemia with MYC Rearrangement and JAK2 V617F Mutation

    PubMed Central

    Ohanian, Maro; Bueso-Ramos, Carlos; Ok, Chi Young; Lin, Pei; Patel, Keyur; Alattar, Mona Lisa; Khoury, Joseph D.; Rozovski, Uri; Estrov, Zeev; Huh, Yang O.; Cortes, Jorge; Abruzzo, Lynne V.

    2016-01-01

    Little is known about MYC dysregulation in myeloid malignancies, and we can find no published studies that have evaluated MYC protein expression in primary cases of myelodysplastic syndromes (MDS) or acute myeloid leukemias (AML). We describe the clinical, morphologic, immunophenotypic, cytogenetic, and molecular genetic findings in two MDS/AML cases that contained both MYC rearrangement and JAK2-V617F mutation. We demonstrate MYC protein expression by immunohistochemistry in both patients. PMID:26382622

  12. JAK2 inhibitor therapy in myeloproliferative disorders: rationale, preclinical studies and ongoing clinical trials.

    PubMed

    Pardanani, A

    2008-01-01

    The recent identification of somatic mutations such as JAK2V617F that deregulate Janus kinase (JAK)-signal transducer and activator of transcription signaling has spurred development of orally bioavailable small-molecule inhibitors that selectively target JAK2 kinase as an approach to pathogenesis-directed therapy of myeloproliferative disorders (MPD). In pre-clinical studies, these compounds inhibit JAK2V617F-mediated cell growth at nanomolar concentrations, and in vivo therapeutic efficacy has been demonstrated in mouse models of JAK2V617F-induced disease. In addition, ex vivo growth of progenitor cells from MPD patients harboring JAK2V617F or MPLW515L/K mutations is also potently inhibited. JAK2 inhibitors currently in clinical trials can be grouped into those designed to primarily target JAK2 kinase (JAK2-selective) and those originally developed for non-MPD indications, but that nevertheless have significant JAK2-inhibitory activity (non-JAK2 selective). This article discusses the rationale for using JAK2 inhibitors for the treatment of MPD, as well as relevant aspects of clinical trial development for these patients. For instance, which group of MPD patients is appropriate for initial Phase I studies? Should JAK2V617F-negative MPD patients be included in the initial studies? What are the likely consequences of 'off-target' JAK3 and wild-type JAK2 inhibition? How should treatment responses be monitored?

  13. SH2-B promotes insulin receptor substrate 1 (IRS1)- and IRS2-mediated activation of the phosphatidylinositol 3-kinase pathway in response to leptin.

    PubMed

    Duan, Chaojun; Li, Minghua; Rui, Liangyou

    2004-10-15

    Leptin regulates energy homeostasis primarily by binding and activating its long form receptor (LRb). Deficiency of either leptin or LRb causes morbid obesity. Leptin stimulates LRb-associated JAK2, thus initiating multiple pathways including the Stat3 and phosphatidylinositol (PI) 3-kinase pathways that mediate leptin biological actions. Here we report that SH2-B, a JAK2-interacting protein, promotes activation of the PI 3-kinase pathway by recruiting insulin receptor substrate 1 (IRS1) and IRS2 in response to leptin. SH2-B directly bound, via its PH and SH2 domain, to both IRS1 and IRS2 both in vitro and in intact cells and mediated formation of a JAK2/SH2-B/IRS1 or IRS2 tertiary complex. Consequently, SH2-B dramatically enhanced leptin-stimulated tyrosine phosphorylation of IRS1 and IRS2 in HEK293 cells stably expressing LRb, thus promoting association of IRS1 and IRS2 with the p85 regulatory subunit of PI 3-kinase and phosphorylation and activation of Akt. SH2-B mutants with lower affinity for IRS1 and IRS2 exhibited reduced ability to promote association of JAK2 with IRS1, tyrosine phosphorylation of IRS1, and association of IRS1 with p85 in response to leptin. Moreover, deletion of the SH2-B gene impaired leptin-stimulated tyrosine phosphorylation of endogenous IRS1 in mouse embryonic fibroblasts (MEF), which was reversed by reintroduction of SH2-B. Similarly, SH2-B promoted growth hormone-stimulated tyrosine phosphorylation of IRS1 in both HEK293 and MEF cells. Our data suggest that SH2-B is a novel mediator of the PI 3-kinase pathway in response to leptin or other hormones and cytokines that activate JAK2.

  14. Reduction of protein tyrosine phosphatase 1B increases insulin-dependent signaling in ob/ob mice.

    PubMed

    Gum, Rebecca J; Gaede, Lori L; Koterski, Sandra L; Heindel, Matthew; Clampit, Jill E; Zinker, Bradley A; Trevillyan, James M; Ulrich, Roger G; Jirousek, Michael R; Rondinone, Cristina M

    2003-01-01

    Protein tyrosine phosphatase 1B (PTP1B) is a negative regulator of insulin receptor (IR) signal transduction and a drug target for treatment of type 2 diabetes. Using PTP1B antisense oligonucleotides (ASOs), effects of decreased PTP1B levels on insulin signaling in diabetic ob/ob mice were examined. Insulin stimulation, prior to sacrifice, resulted in no significant activation of insulin signaling pathways in livers from ob/ob mice. However, in PTP1B ASO-treated mice, in which PTP1B protein was decreased by 60% in liver, similar stimulation with insulin resulted in increased tyrosine phosphorylation of the IR and IR substrate (IRS)-1 and -2 by threefold, fourfold, and threefold, respectively. IRS-2-associated phosphatidylinositol 3-kinase activity was also increased threefold. Protein kinase B (PKB) serine phosphorylation was increased sevenfold in liver of PTP1B ASO-treated mice upon insulin stimulation, while phosphorylation of PKB substrates, glycogen synthase kinase (GSK)-3alpha and -3beta, was increased more than twofold. Peripheral insulin signaling was increased by PTP1B ASO, as evidenced by increased phosphorylation of PKB in muscle of insulin-stimulated PTP1B ASO-treated animals despite the lack of measurable effects on muscle PTP1B protein. These results indicate that reduction of PTP1B is sufficient to increase insulin-dependent metabolic signaling and improve insulin sensitivity in a diabetic animal model.

  15. Hepatic JAK2 protects against atherosclerosis through circulating IGF-1

    PubMed Central

    Sivasubramaniyam, Tharini; Schroer, Stephanie A.; Li, Angela; Luk, Cynthia T.; Shi, Sally Yu; Besla, Rickvinder; Metherel, Adam H.; Kitson, Alex P.; Brunt, Jara J.; Lopes, Joshua; Wagner, Kay-Uwe; Bazinet, Richard P.; Bendeck, Michelle P.; Robbins, Clinton S.

    2017-01-01

    Atherosclerosis is considered both a metabolic and inflammatory disease; however, the specific tissue and signaling molecules that instigate and propagate this disease remain unclear. The liver is a central site of inflammation and lipid metabolism that is critical for atherosclerosis, and JAK2 is a key mediator of inflammation and, more recently, of hepatic lipid metabolism. However, precise effects of hepatic Jak2 on atherosclerosis remain unknown. We show here that hepatic Jak2 deficiency in atherosclerosis-prone mouse models exhibited accelerated atherosclerosis with increased plaque macrophages and decreased plaque smooth muscle cell content. JAK2’s essential role in growth hormone signalling in liver that resulted in reduced IGF-1 with hepatic Jak2 deficiency played a causal role in exacerbating atherosclerosis. As such, restoring IGF-1 either pharmacologically or genetically attenuated atherosclerotic burden. Together, our data show hepatic Jak2 to play a protective role in atherogenesis through actions mediated by circulating IGF-1 and, to our knowledge, provide a novel liver-centric mechanism in atheroprotection. PMID:28724798

  16. The Jak2 Inhibitor, G6, Alleviates Jak2-V617F-Mediated Myeloproliferative Neoplasia by Providing Significant Therapeutic Efficacy to the Bone Marrow1

    PubMed Central

    Kirabo, Annet; Park, Sung O; Majumder, Anurima; Gali, Meghanath; Reinhard, Mary K; Wamsley, Heather L; Zhao, Zhizhuang Joe; Cogle, Christopher R; Bisht, Kirpal S; Keserü, György M; Sayeski, Peter P

    2011-01-01

    We recently developed a Janus kinase 2 (Jak2) small-molecule inhibitor called G6 and found that it inhibits Jak2-V617F-mediated pathologic cell growth in vitro, ex vivo, and in vivo. However, its ability to inhibit Jak2-V617F-mediated myeloproliferative neoplasia, with particular emphasis in the bone marrow, has not previously been examined. Here, we investigated the efficacy of G6 in a transgenic mouse model of Jak2-V617F-mediated myeloproliferative neoplasia. We found that G6 provided therapeutic benefit to the peripheral blood as determined by elimination of leukocytosis, thrombocytosis, and erythrocytosis. G6 normalized the pathologically high plasma concentrations of interleukin 6 (IL-6). In the liver, G6 eliminated Jak2-V617F-driven extramedullary hematopoiesis. With respect to the spleen, G6 significantly reduced both the splenomegaly and megakaryocytic hyperplasia. In the critically important bone marrow, G6 normalized the pathologically high levels of phospho-Jak2 and phospho-signal transducer and activator of transcription 5 (STAT5). It significantly reduced the megakaryocytic hyperplasia in the marrow and completely normalized the M/E ratio. Most importantly, G6 selectively reduced the mutant Jak2 burden by 67%on average, with virtual elimination of mutant Jak2 cells in one third of all treated mice. Lastly, clonogenic assays using marrow stem cells from the myeloproliferative neoplasm mice revealed a time-dependent elimination of the clonogenic growth potential of these cells by G6. Collectively, these data indicate that G6 exhibits exceptional efficacy in the peripheral blood, liver, spleen, and, most importantly, in the bone marrow, thereby raising the possibility that this compound may alter the natural history of Jak2-V617F-mediated myeloproliferative neoplasia. PMID:22131881

  17. Unbiased identification of substrates of protein tyrosine phosphatase ptp-3 in C. elegans.

    PubMed

    Mitchell, Christopher J; Kim, Min-Sik; Zhong, Jun; Nirujogi, Raja Sekhar; Bose, Anjun K; Pandey, Akhilesh

    2016-06-01

    The leukocyte antigen related (LAR) family of receptor-like protein tyrosine phosphatases has three members in humans - PTPRF, PTPRD and PTPRS - that have been implicated in diverse processes including embryonic development, inhibition of cell growth and axonal guidance. Mutations in the LAR family are associated with developmental defects such as cleft palate as well as various cancers including breast, neck, lung, colon and brain. Although this family of tyrosine phosphatases is important for many developmental processes, little is known of their substrates. This is partially due to functional redundancy within the LAR family, as deletion of a single gene in the LAR family does not have an appreciable phenotype, but a dual knockout is embryonically lethal in mouse models. To circumvent the inability to knockout multiple members of the LAR family in mouse models, we used a knockout of ptp-3, which is the only known ortholog of the LAR family in Caenorhabditis elegans and allows for the study of the LAR family at the organismal level. Using SILAC-based quantitative phosphoproteomics, we identified 255 putative substrates of ptp-3, which included four of the nine known annotated substrates of the LAR family. A motif analysis of the identified phosphopeptides allowed for the determination of sequences that appear to be preferentially dephosphorylated. Finally, we discovered that kinases were overrepresented in the list of identified putative substrates and tyrosine residues whose phosphorylation is known to increase kinase activity were dephosphorylated by ptp-3. These data are suggestive of ptp-3 as a potential negative regulator of several kinase families, such as the mitogen activated kinases (MAPKs), and multiple tyrosine kinases including FER, MET, and NTRK2. Copyright © 2016 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  18. Deficient tyrosine phosphorylation of c-Cbl and associated proteins in phorbol ester-resistant EL4 mouse thymoma cells.

    PubMed

    Luo, X; Sando, J J

    1997-05-02

    Two tyrosine phosphoproteins in phorbol ester-sensitive EL4 (S-EL4) mouse thymoma cells have been identified as the p120 c-Cbl protooncogene product and the p85 subunit of phosphatidylinositol 3-kinase. Tyrosine phosphorylation of p120 and p85 increased rapidly after phorbol ester stimulation. Phorbol ester-resistant EL4 (R-EL4) cells expressed comparable amounts of c-Cbl and phosphatidylinositol 3-kinase protein but greatly diminished tyrosine phosphorylation. Co-immunoprecipitation experiments revealed complexes of c-Cbl with p85, and of p85 with the tyrosine kinase Lck in phorbol ester-stimulated S-EL4 but not in unstimulated S-EL4 or in R-EL4 cells. In vitro binding of c-Cbl with Lck SH2 or SH3 domains was detected in both S-EL4 and R-EL4 cells, suggesting that c-Cbl, p85, and Lck may form a ternary complex. In vitro kinase assays revealed phosphorylation of p85 by Lck only in phorbol ester-stimulated S-EL4 cells. Collectively, these results suggest that Cbl-p85 and Lck-p85 complexes may form in unstimulated S-EL4 and R-EL4 cells but were not detected due to absence of tyrosine phosphorylation of p85. Greatly decreased tyrosine phosphorylation of c-Cbl and p85 in the complexes may contribute to the failure of R-EL4 cells to respond to phorbol ester.

  19. Antagonistic activities of the immunomodulator and PP2A-activating drug FTY720 (Fingolimod, Gilenya) in Jak2-driven hematologic malignancies

    PubMed Central

    Oaks, Joshua J.; Santhanam, Ramasamy; Walker, Christopher J.; Roof, Steve; Harb, Jason G.; Ferenchak, Greg; Eisfeld, Ann-Kathrin; Van Brocklyn, James R.; Briesewitz, Roger; Saddoughi, Sahar A.; Nagata, Kyosuke; Bittman, Robert; Caligiuri, Michael A.; Abdel-Wahab, Omar; Levine, Ross; Arlinghaus, Ralph B.; Quintas-Cardama, Alfonso; Goldman, John M.; Apperley, Jane; Reid, Alistair; Milojkovic, Dragana; Ziolo, Mark T.; Marcucci, Guido; Ogretmen, Besim; Neviani, Paolo

    2013-01-01

    FTY720 (Fingolimod, Gilenya) is a sphingosine analog used as an immunosuppressant in multiple sclerosis patients. FTY720 is also a potent protein phosphatase 2A (PP2A)–activating drug (PAD). PP2A is a tumor suppressor found inactivated in different types of cancer. We show here that PP2A is inactive in polycythemia vera (PV) and other myeloproliferative neoplasms characterized by the expression of the transforming Jak2V617F oncogene. PP2A inactivation occurs in a Jak2V617F dose/kinase-dependent manner through the PI-3Kγ-PKC–induced phosphorylation of the PP2A inhibitor SET. Genetic or PAD-mediated PP2A reactivation induces Jak2V617F inactivation/downregulation and impairs clonogenic potential of Jak2V617F cell lines and PV but not normal CD34+ progenitors. Likewise, FTY720 decreases leukemic allelic burden, reduces splenomegaly, and significantly increases survival of Jak2V617F leukemic mice without adverse effects. Mechanistically, we show that in Jak2V617F cells, FTY720 antileukemic activity requires neither FTY720 phosphorylation (FTY720-P) nor SET dimerization or ceramide induction but depends on interaction with SET K209. Moreover, we show that Jak2V617F also utilizes an alternative sphingosine kinase-1–mediated pathway to inhibit PP2A and that FTY720-P, acting as a sphingosine-1-phosphate-receptor-1 agonist, elicits signals leading to the Jak2-PI-3Kγ-PKC-SET–mediated PP2A inhibition. Thus, PADs (eg, FTY720) represent suitable therapeutic alternatives for Jak2V617F MPNs. PMID:23926298

  20. Roles of cell-cell adhesion-dependent tyrosine phosphorylation of Gab-1.

    PubMed

    Shinohara, M; Kodama, A; Matozaki, T; Fukuhara, A; Tachibana, K; Nakanishi, H; Takai, Y

    2001-06-01

    Gab-1 is a multiple docking protein that is tyrosine phosphorylated by receptor tyrosine kinases such as c-Met, hepatocyte growth factor/scatter factor receptor, and epidermal growth factor receptor. We have now demonstrated that cell-cell adhesion also induces marked tyrosine phosphorylation of Gab-1 and that disruption of cell-cell adhesion results in its dephosphorylation. An anti-E-cadherin antibody decreased cell-cell adhesion-dependent tyrosine phosphorylation of Gab-1, whereas the expression of E-cadherin specifically induced tyrosine phosphorylation of Gab-1. A relatively selective inhibitor of Src family kinases reduced cell-cell adhesion-dependent tyrosine phosphorylation of Gab-1, whereas expression of a dominant-negative mutant of Csk increased it. Disruption of cell-cell adhesion, which reduced tyrosine phosphorylation of Gab-1, also reduced the activation of mitogen-activated protein kinase and Akt in response to cell-cell adhesion. These results indicate that E-cadherin-mediated cell-cell adhesion induces tyrosine phosphorylation by a Src family kinase of Gab-1, thereby regulating the activation of Ras/MAP kinase and phosphatidylinositol 3-kinase/Akt cascades.

  1. JAK2V617F influences epigenomic changes in myeloproliferative neoplasms.

    PubMed

    Chen, Chih-Cheng; Chiu, Chia-Chen; Lee, Kuan-Der; Hsu, Chia-Chen; Chen, Hong-Chi; Huang, Tim H-M; Hsiao, Shu-Huei; Leu, Yu-Wei

    2017-12-16

    Negative valine (V) to phenylalanine (F) switch at the Janus kinase (JAK2) 617 codon (V617F) is the dominant driver mutation in patients with myeloproliferative neoplasms (MPNs). JAK2V617F was proved to be sufficient for cell transformation; however, independent mutations might influence the following epigenomic modifications. To assess the JAK2V617F-induced downstream epigenomic changes without interferences, we profiled the epigenomic changes in ectopically expressed JAK2V617F in Ba/F3 cells. Antibodies against phosphorylated signal transducer and activator of transcription 3 (pSTAT3) and enhancer of zeste homolog 2 (EZH2) were used for chromatin-immunoprecipitation sequencing (ChIP-seq) to detect the downstream epigenomic targets in the JAK2-STAT3 signaling pathway. To confirm the JAK2V617F-induced epigenetic changes in vivo, DNA methylation changes in the target loci in patients with MPNs were detected through methylation-specific polymerase chain reaction and were clustered against the changes within controls. We found that ectopically expressed JAK2V617F in Ba/F3 cells reduced the binding specificity; it was associated with cis-regulatory elements and recognized DNA motifs in both pSTAT3-downstream and EZH2-associated targets. Overlapping target loci between the control and JAK2V617F were <3% and 0.4%, respectively, as identified through pSTAT3 and EZH2 ChIP-seq. Furthermore, the methylation changes in the direct target loci (FOXH1, HOXC9, and SRF) were clustered independently from the control locus (L1TD1) and other mutation genes (HMGA2 and Lin28A) in the analyzed MPN samples. Therefore, JAK2V617F influences target binding in both pSTAT3 and EZH2. Without mutations in epigenetic regulators, JAK2V617F can induce downstream epigenomic modifications. Thus, epigenetic changes in JAK2 downstream targets might be trackable in vivo. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Expression of the growth factor pleiotrophin and its receptor protein tyrosine phosphatase beta/zeta in the serum, cartilage and subchondral bone of patients with osteoarthritis.

    PubMed

    Kaspiris, Angelos; Mikelis, Constantinos; Heroult, Melanie; Khaldi, Lubna; Grivas, Theodoros B; Kouvaras, Ioannis; Dangas, Spyridon; Vasiliadis, Elias; Lioté, Frédéric; Courty, José; Papadimitriou, Evangelia

    2013-07-01

    Pleiotrophin is a heparin-binding growth factor expressed in embryonic but not mature cartilage, suggesting a role in cartilage development. Elucidation of the molecular changes observed during the remodelling process in osteoarthritis is of paramount importance. This study aimed to investigate serum pleiotrophin levels and expression of pleiotrophin and its receptor protein tyrosine phosphatase beta/zeta in the cartilage and subchondral bone of osteoarthritis patients. Serum samples derived from 16 osteoarthritis patients and 18 healthy donors. Pleiotrophin and receptor protein tyrosine phosphatase beta/zeta in the cartilage and subchondral bone were studied in 29 patients who had undergone total knee or hip replacement for primary osteoarthritis and in 10 control patients without macroscopic osteoarthritis changes. Serum pleiotrophin levels and expression of pleiotrophin in chondrocytes and subchondral bone osteocytes significantly increased in osteoarthritis patients graded Ahlback II to III. Receptor protein tyrosine phosphatase beta/zeta was mainly detected in the subchondral bone osteocytes of patients with moderate osteoarthritis and as disease severity increased, in the osteocytes and bone lining cells of the distant trabeculae. These data render pleiotrophin and receptor protein tyrosine phosphatase beta/zeta promising candidates for further studies towards developing targeted therapeutic schemes for osteoarthritis. Copyright © 2012 Société française de rhumatologie. Published by Elsevier SAS. All rights reserved.

  3. JAK2 Exon 12 Mutations in Polycythemia Vera and Idiopathic Erythrocytosis

    PubMed Central

    Scott, Linda M.; Tong, Wei; Levine, Ross L.; Scott, Mike A.; Beer, Philip A.; Stratton, Michael R.; Futreal, P. Andrew; Erber, Wendy N.; McMullin, Mary Frances; Harrison, Claire N.; Warren, Alan J.; Gilliland, D. Gary; Lodish, Harvey F.; Green, Anthony R.

    2010-01-01

    BACKGROUND The V617F mutation, which causes the substitution of phenylalanine for valine at position 617 of the Janus kinase (JAK) 2 gene (JAK2), is often present in patients with polycythemia vera, essential thrombocythemia, and idiopathic myelofibrosis. However, the molecular basis of these myeloproliferative disorders in patients without the V617F mutation is unclear. METHODS We searched for new mutations in members of the JAK and signal transducer and activator of transcription (STAT) gene families in patients with V617F-negative polycythemia vera or idiopathic erythrocytosis. The mutations were characterized biochemically and in a murine model of bone marrow transplantation. RESULTS We identified four somatic gain-of-function mutations affecting JAK2 exon 12 in 10 V617F-negative patients. Those with a JAK2 exon 12 mutation presented with an isolated erythrocytosis and distinctive bone marrow morphology, and several also had reduced serum erythropoietin levels. Erythroid colonies could be grown from their blood samples in the absence of exogenous erythropoietin. All such erythroid colonies were heterozygous for the mutation, whereas colonies homozygous for the mutation occur in most patients with V617F-positive polycythemia vera. BaF3 cells expressing the murine erythropoietin receptor and also carrying exon 12 mutations could proliferate without added interleukin-3. They also exhibited increased phosphorylation of JAK2 and extracellular regulated kinase 1 and 2, as compared with cells transduced by wild-type JAK2 or V617F JAK2. Three of the exon 12 mutations included a substitution of leucine for lysine at position 539 of JAK2. This mutation resulted in a myeloproliferative phenotype, including erythrocytosis, in a murine model of retroviral bone marrow transplantation. CONCLUSIONS JAK2 exon 12 mutations define a distinctive myeloproliferative syndrome that affects patients who currently receive a diagnosis of polycythemia vera or idiopathic erythrocytosis

  4. Protein Tyrosine Phosphatases: From Housekeeping Enzymes to Master-Regulators of Signal Transduction

    PubMed Central

    Tonks, Nicholas K.

    2013-01-01

    There are many misconceptions surrounding the roles of protein phosphatases in the regulation of signal transduction, perhaps the most damaging of which is the erroneous view that these enzymes exert their effects merely as constitutively active housekeeping enzymes. On the contrary, the phosphatases are critical, specific regulators of signaling in their own right and serve an essential function, in a coordinated manner with the kinases, to determine the response to a physiological stimulus. This review is a personal perspective on the development of our understanding of the protein tyrosine phosphatase (PTP) family of enzymes. I have discussed various aspects of the structure, regulation and function of the PTP family, which I hope will illustrate the fundamental importance of these enzymes to the control of signal transduction. PMID:23176256

  5. MPL mutation profile in JAK2 mutation-negative patients with myeloproliferative disorders.

    PubMed

    Ma, Wanlong; Zhang, Xi; Wang, Xiuqiang; Zhang, Zhong; Yeh, Chen-Hsiung; Uyeji, Jennifer; Albitar, Maher

    2011-03-01

    Mutations in the thrombopoietin receptor gene (myeloproliferative leukemia, MPL) have been reported in patients with JAK2 V617F-negative chronic myeloproliferative disorders (MPDs). We evaluated the prevalence of MPL mutations relative to JAK2 mutations in patients with suspected MPDs. A total of 2790 patient samples submitted for JAK2 mutation analysis were tested using real-time polymerase chain reaction and bidirectional sequencing of plasma RNA. JAK2 V617F-negative samples were tested for JAK2 exons 12 to 14 mutations, and those with negative results were then tested for mutations in MPL exons 10 and 11. Of the 2790 patients, 529 (18.96%) had V617F, 12 (0.43%) had small insertions or deletions in exon 12, and 7 (0.25%) had other JAK2 mutations in exons 12 to 14. Of the 2242 JAK2 mutation-negative patients, 68 (3.03%) had MPL mutations. W515L was the predominant MPL mutation (n=46; 68%), and 10 (15%) patients had other W515 variants. The remaining MPL mutations (n=12, 17%) were detected at other locations in exons 10 and 11 and included 3 insertion/deletion mutations. The S505N mutation, associated with familial MPD, was detected in 3 patients. Overall, for every 100 V617F mutations in patients with suspected MPDs, there were 12.9 MPL mutations, 2.3 JAK2 exon 12 mutations, and 1.3 JAK2 exons 13 to 14 mutations. These findings suggest that MPL mutation screening should be performed before JAK2 exons 12 to 14 testing in JAK2 V617F-negative patients with suspected MPDs.

  6. A critical tyrosine residue determines the uncoupling protein-like activity of the yeast mitochondrial oxaloacetate carrier.

    PubMed

    Luévano-Martínez, Luis A; Barba-Ostria, Carlos; Araiza-Olivera, Daniela; Chiquete-Félix, Natalia; Guerrero-Castillo, Sergio; Rial, Eduardo; Georgellis, Dimitris; Uribe-Carvajal, Salvador

    2012-04-01

    The mitochondrial Oac (oxaloacetate carrier) found in some fungi and plants catalyses the uptake of oxaloacetate, malonate and sulfate. Despite their sequence similarity, transport specificity varies considerably between Oacs. Indeed, whereas ScOac (Saccharomyces cerevisiae Oac) is a specific anion-proton symporter, the YlOac (Yarrowia lipolytica Oac) has the added ability to transport protons, behaving as a UCP (uncoupling protein). Significantly, we identified two amino acid changes at the matrix gate of YlOac and ScOac, tyrosine to phenylalanine and methionine to leucine. We studied the role of these amino acids by expressing both wild-type and specifically mutated Oacs in an Oac-null S. cerevisiae strain. No phenotype could be associated with the methionine to leucine substitution, whereas UCP-like activity was dependent on the presence of the tyrosine residue normally expressed in the YlOac, i.e. Tyr-ScOac mediated proton transport, whereas Phe-YlOac lost its protonophoric activity. These findings indicate that the UCP-like activity of YlOac is determined by the tyrosine residue at position 146.

  7. Essential oil of Artemisia argyi suppresses inflammatory responses by inhibiting JAK/STATs activation.

    PubMed

    Chen, Lin-Lin; Zhang, Hao-Jun; Chao, Jung; Liu, Jun-Feng

    2017-05-23

    Artemisia argyi is a herbal medicine traditionally used in Asia for the treatment of bronchitis, dermatitis and arthritis. Recent studies revealed the anti-inflammatory effect of essential oil in this plant. However, the mechanisms underlying the therapeutic potential have not been well elucidated. The present study is aimed to verify its anti-inflammatory effect and investigate the probable mechanisms. The essential oil from Artemisia argyi (AAEO) was initially tested against LPS-induced production of inflammatory mediators and cytokines in RAW264.7 macrophages. Protein and mRNA expressions of iNOS and COX-2 were determined by Western blotting and RT-PCR analysis, respectively. The effects on the activation of MAPK/NF-κB/AP-1 and JAK/STATs pathway were also investigated by western blot. Meanwhile, in vivo anti-inflammatory effect was examined by histologic and immunohistochemical analysis in TPA-induced mouse ear edema model. The results of in vitro experiments showed that AAEO dose-dependently suppressed the release of pro-inflammatory mediators (NO, PGE 2 and ROS) and cytokines (TNF-α, IL-6, IFN-β and MCP-1) in LPS-induced RAW264.7 macrophages. It down-regulated iNOS and COX-2 protein and mRNA expression but did not affect the activity of these two enzymes. AAEO significantly inhibited the phosphorylation of JAK2 and STAT1/3, but not the activation of MAPK and NF-κB cascades. In animal model, oral administration of AAEO significantly attenuated TPA-induced mouse ear edema and decreased the protein level of COX-2. AAEO suppresses inflammatory responses via down-regulation of the JAK/STATs signaling and ROS scavenging, which could contribute, at least in part, to the anti-inflammatory effect of AAEO. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  8. Isothiazolidinone (IZD) as a phosphoryl mimetic in inhibitors of the Yersinia pestis protein tyrosine phosphatase YopH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Sung-Eun; Bahta, Medhanit; Lountos, George T.

    2011-07-01

    The first X-ray crystal structure of the Y. pestis protein tyrosine phosphatase YopH in complex with an isothiazolidinone-based lead-fragment compound is reported. Isothiazolidinone (IZD) heterocycles can act as effective components of protein tyrosine phosphatase (PTP) inhibitors by simultaneously replicating the binding interactions of both a phosphoryl group and a highly conserved water molecule, as exemplified by the structures of several PTP1B–inhibitor complexes. In the first unambiguous demonstration of IZD interactions with a PTP other than PTP1B, it is shown by X-ray crystallography that the IZD motif binds within the catalytic site of the Yersinia pestis PTP YopH by similarly displacingmore » a highly conserved water molecule. It is also shown that IZD-based bidentate ligands can inhibit YopH in a nonpromiscuous fashion at low micromolar concentrations. Hence, the IZD moiety may represent a useful starting point for the development of YopH inhibitors.« less

  9. Roles of STATs signaling in cardiovascular diseases.

    PubMed

    Kishore, Raj; Verma, Suresh K

    2012-04-01

    In cardiac and many other systems, chronic stress activates avfamily of structurally and functionally conserved receptors and their downstream signaling molecules that entail tyrosine, serine or threonine phosphorylation to transfer the messages to the genetic machinery. However, the activation of the Janus kinases (JAKs) and their downstream signal transducer and activator of transcription (STATs) proteins is both characteristic of and unique to cytokine and growth factor signaling which plays a central role in heart physiology. Dysregulation of JAK-STAT signaling is associated with various cardiovascular diseases. The molecular signaling and specificity of the JAK-STAT pathway are modulated at many levels by distinct regulatory proteins. Here, we review recent studies on the regulation of the STAT signaling pathway that will enhance our ability to design rational therapeutic strategies for stress-induced heart failure.

  10. Curcumin induces growth-arrest and apoptosis in association with the inhibition of constitutively active JAK-STAT pathway in T cell leukemia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajasingh, Johnson; Raikwar, Himanshu P.; Muthian, Gladson

    2006-02-10

    Adult T cell leukemia is an aggressive and frequently fatal malignancy that expressess constitutively activated growth-signaling pathways in association with deregulated growth and resistance to apoptosis. Curcumin (diferuloylmethane) is a naturally occurring yellow pigment, isolated from the rhizomes of the plant Curcuma longa that has traditionally been used in the treatment of injury and inflammation. But the effect and mechanism of action of curcumin on T cell leukemia is not known. To investigate the antitumor activity of curcumin in T cell leukemia, we examined its effect on constitutive phosphorylation of JAK and STAT proteins, proliferation, and apoptosis in HTLV-I-transformed Tmore » cell lines. HTLV-I-transformed T cell leukemia lines, MT-2, HuT-102, and SLB-1, express constitutively phosphorylated JAK3, TYK2, STAT3, and STAT5 signaling proteins. In vitro treatment with curcumin induced a dose-dependent decrease in JAK and STAT phosphorylation resulting in the induction of growth-arrest and apoptosis in T cell leukemia. The induction of growth-arrest and apoptosis in association with the blockade of constitutively active JAK-STAT pathway suggests this be a mechanism by which curcumin induces antitumor activity in T cell leukemia.« less

  11. The activity and stability of the intrinsically disordered Cip/Kip protein family are regulated by non-receptor tyrosine kinases

    PubMed Central

    Otieno, Steve; Lelli, Moreno; Kriwacki, Richard W.

    2014-01-01

    The Cip/Kip family of cyclin-dependent kinase (Cdk) inhibitors includes p21Cip1, p27Kip1 and p57Kip2. Their kinase inhibitory activities are mediated by a homologous N-terminal kinase-inhibitory domain (KID). The Cdk inhibitory activity and stability of p27 have been shown to be regulated by a two-step phosphorylation mechanism involving a tyrosine residue within the KID and a threonine residue within the flexible C-terminus. We show that these residues are conserved in p21 and p57, suggesting that a similar phosphorylation cascade regulates these Cdk inhibitors. However, the presence of a cyclin binding motif within its C-terminus alters the regulatory interplay between p21 and Cdk2/cyclin A, and its responses to tyrosine phosphorylation and altered p21:Cdk2/cyclin A stoichiometry. We also show that the Cip/Kip proteins can be phosphorylated in vitro by representatives of many non-receptor tyrosine kinase (NRTK) sub-families, suggesting that NRTKs may generally regulate the activity and stability of these Cdk inhibitors. Our results further suggest that the Cip/Kip proteins integrate signals from various NRTK pathways and cell cycle regulation. PMID:25463440

  12. Jak2 is Necessary for Neuroendocrine Control of Female Reproduction

    PubMed Central

    Wu, Sheng; Divall, Sara; Hoffman, Gloria E.; Le, Wei Wei; Wagner, Kay-Uwe; Wolfe, Andrew

    2011-01-01

    GnRH neurons represent the final common output of signals from the brain that regulates reproductive function. A wide range of environmental factors impact GnRH neuron activity including disease, stress, nutrition, and seasonal cues, as well as gonadal steroid hormones. The CNS response is thought to be mediated, at least in part, through intermediate signaling molecules that affect GnRH neuronal activity. In vitro, GnRH neuronal cell lines respond to a variety of ligands which activate the Jak/STAT intracellular signaling pathway. In order to determine its biological function in reproduction, we used Cre/LoxP technology to generate GnRH neuron specific Jak2 conditional knockout (Jak2 G−/−) mice. GnRH mRNA levels were reduced in Jak2 G−/− mice when compared to controls, while the number of GnRH neurons was equivalent, indicating a reduction in GnRH gene expression. Secretion of GnRH is also reduced as basal serum LH levels were significantly lower in female Jak2 G−/− mice while the pituitary responded normally to exogenous GnRH. Preovulatory LH surge levels were blunted in Jak2 G−/− mice, which was correlated with reduced GnRH neuronal activation as assessed by c-Fos. However the activation of GnRH neurons following release from estrogen negative feedback is retained. Female Jak2 G−/− mice exhibited significantly delayed puberty and first estrus, abnormal estrous cyclicity and impaired fertility. These results demonstrate an essential role for Jak2 signaling in GnRH neurons for normal reproductive development and fertility in female mice. PMID:21209203

  13. Pseudomonas aeruginosa invasion and cytotoxicity are independent events, both of which involve protein tyrosine kinase activity.

    PubMed

    Evans, D J; Frank, D W; Finck-Barbançon, V; Wu, C; Fleiszig, S M

    1998-04-01

    Pseudomonas aeruginosa clinical isolates exhibit invasive or cytotoxic phenotypes. Cytotoxic strains acquire some of the characteristics of invasive strains when a regulatory gene, exsA, that controls the expression of several extracellular proteins, is inactivated. exsA mutants are not cytotoxic and can be detected within epithelial cells by gentamicin survival assays. The purpose of this study was to determine whether epithelial cell invasion precedes and/or is essential for cytotoxicity. This was tested by measuring invasion (gentamicin survival) and cytotoxicity (trypan blue staining) of PA103 mutants deficient in specific exsA-regulated proteins and by testing the effect of drugs that inhibit invasion for their effect on cytotoxicity. A transposon mutant in the exsA-regulated extracellular factor exoU was neither cytotoxic nor invasive. Furthermore, several of the drugs that inhibited invasion did not prevent cytotoxicity. These results show that invasion and cytotoxicity are mutually exclusive events, inversely regulated by an exsA-encoded invasion inhibitor(s). Both involve host cell protein tyrosine kinase (PTK) activity, but they differ in that invasion requires Src family tyrosine kinases and calcium-calmodulin activity. PTK inhibitor drugs such as genistein may have therapeutic potential through their ability to block both invasive and cytotoxicity pathways via an action on the host cell.

  14. Tyrosine Phosphorylation Regulates Maturation of Receptor Tyrosine Kinases

    PubMed Central

    Schmidt-Arras, Dirk-E.; Böhmer, Annette; Markova, Boyka; Choudhary, Chunaram; Serve, Hubert; Böhmer, Frank-D.

    2005-01-01

    Constitutive activation of receptor tyrosine kinases (RTKs) is a frequent event in human cancer cells. Activating mutations in Fms-like tyrosine kinase 3 (FLT-3), notably, internal tandem duplications in the juxtamembrane domain (FLT-3 ITD), have been causally linked to acute myeloid leukemia. As we describe here, FLT-3 ITD exists predominantly in an immature, underglycosylated 130-kDa form, whereas wild-type FLT-3 is expressed predominantly as a mature, complex glycosylated 150-kDa molecule. Endogenous FLT-3 ITD, but little wild-type FLT-3, is detectable in the endoplasmic reticulum (ER) compartment. Conversely, cell surface expression of FLT-3 ITD is less efficient than that of wild-type FLT-3. Inhibition of FLT-3 ITD kinase by small molecules, inactivating point mutations, or coexpression with the protein-tyrosine phosphatases (PTPs) SHP-1, PTP1B, and PTP-PEST but not RPTPα promotes complex glycosylation and surface localization. However, PTP coexpression has no effect on the maturation of a surface glycoprotein of vesicular stomatitis virus. The maturation of wild-type FLT-3 is impaired by general PTP inhibition or by suppression of endogenous PTP1B. Enhanced complex formation of FLT-3 ITD with the ER-resident chaperone calnexin indicates that its retention in the ER is related to inefficient folding. The regulation of RTK maturation by tyrosine phosphorylation was observed with other RTKs as well, defines a possible role for ER-resident PTPs, and may be related to the altered signaling quality of constitutively active, transforming RTK mutants. PMID:15831474

  15. Enhancement of ICAM-1 via the JAK2/STAT3 signaling pathway in a rat model of severe acute pancreatitis-associated lung injury

    PubMed Central

    HAN, XIAO; WANG, YUXI; CHEN, HAILONG; ZHANG, JINGWEN; XU, CAIMING; LI, JIAN; LI, MINGYUE

    2016-01-01

    Acute lung injury (ALI), which is associated with severe acute pancreatitis (SAP), results from damage to the pulmonary microvascular endothelial cells (PMVECs), which in turn leads to high levels of inflammatory cytokines that destroy PMVECs. However, the molecular mechanisms underlying SAP-associated ALI (SAP-ALI) are currently not well understood. Intercellular adhesion molecule-1 (ICAM-1) has been implicated in the persistent migration and accumulation of neutrophils and macrophages, which in turn has been associated with the increased permeability of microvascular endothelial cells. Signal transduction via the Janus kinase-2 (JAK2)/signal transducer and activator of transcription-3 (STAT3) transcription factors has been shown to be involved in inflammation. The present study aimed to investigate the expression levels of ICAM-1 and JAK2/STAT3 signaling components in a rat model of SAP-ALI. SAP was induced in the rat model, and dexamethasone (DEX) was administered to the treatment group. Subsequently, ICAM-1, interleukin (IL)-6, IL-8, tumor necrosis factor (TNF)-α, JAK2, STAT3 and nuclear factor (NF)-κB mRNA expression levels were determined using reverse transcription-polymerase chain reaction; ICAM-1 protein expression levels were determined using western blotting; and IL-6, IL-8 and TNF-α levels were measured via an enzyme-linked immunosorbent assay. In addition, an immunohistochemical analysis of ICAM-1, NF-κB, JAK2 and STAT3 was conducted, and the protein expression and cell morphology of the lungs in all rats was analyzed. ICAM-1 mRNA and protein expression levels were significantly increased following induction of SAP, and were significantly decreased in the DEX-treated group. Furthermore, treatment with DEX significantly reduced serum expression levels of IL-6, IL-8 and TNF-α and decreased expression levels of NF-κB, JAK2 and STAT3 in the lung tissue, as compared with the untreated SAP group. The present study demonstrated that DEX treatment was

  16. UV-Vis spectroscopy of tyrosine side-groups in studies of protein structure. Part 2: selected applications.

    PubMed

    Antosiewicz, Jan M; Shugar, David

    In Part 2 we discuss application of several different types of UV-Vis spectroscopy, such as normal, difference, and second-derivative UV absorption spectroscopy, fluorescence spectroscopy, linear and circular dichroism spectroscopy, and Raman spectroscopy, of the side-chain of tyrosine residues in different molecular environments. We review the ways these spectroscopies can be used to probe complex protein structures.

  17. UV-Vis spectroscopy of tyrosine side-groups in studies of protein structure. Part 2: selected applications.

    PubMed

    Antosiewicz, Jan M; Shugar, David

    2016-06-01

    In Part 2 we discuss application of several different types of UV-Vis spectroscopy, such as normal, difference, and second-derivative UV absorption spectroscopy, fluorescence spectroscopy, linear and circular dichroism spectroscopy, and Raman spectroscopy, of the side-chain of tyrosine residues in different molecular environments. We review the ways these spectroscopies can be used to probe complex protein structures.

  18. Toxicological disruption of signaling homeostasis: Tyrosine phosphatses as targets

    EPA Science Inventory

    The protein tyrosine phosphatases (PTP) comprised a diverse group of enzymes whose activity opposes that of the tyrosine kinases. As such, the PTP have critical roles in maintaining signaling quiescence in resting cells and in restoring homeostasis by effecting signal termination...

  19. Cortactin Tyrosine Phosphorylation Promotes Its Deacetylation and Inhibits Cell Spreading

    PubMed Central

    Meiler, Eugenia; Nieto-Pelegrín, Elvira; Martinez-Quiles, Narcisa

    2012-01-01

    Background Cortactin is a classical Src kinase substrate that participates in actin cytoskeletal dynamics by activating the Arp2/3 complex and interacting with other regulatory proteins, including FAK. Cortactin has various domains that may contribute to the assembly of different protein platforms to achieve process specificity. Though the protein is known to be regulated by post-translational modifications such as phosphorylation and acetylation, how tyrosine phosphorylation regulates cortactin activity is poorly understood. Since the basal level of tyrosine phosphorylation is low, this question must be studied using stimulated cell cultures, which are physiologically relevant but unreliable and difficult to work with. In fact, their unreliability may be the cause of some contradictory findings about the dynamics of tyrosine phosphorylation of cortactin in different processes. Methodology/Principal Findings In the present study, we try to overcome these problems by using a Functional Interaction Trap (FIT) system, which involves cotransfecting cells with a kinase (Src) and a target protein (cortactin), both of which are fused to complementary leucine-zipper domains. The FIT system allowed us to control precisely the tyrosine phosphorylation of cortactin and explore its relationship with cortactin acetylation. Conclusions/Significance Using this system, we provide definitive evidence that a competition exists between acetylation and tyrosine phosphorylation of cortactin and that phosphorylation inhibits cell spreading. We confirmed the results from the FIT system by examining endogenous cortactin in different cell types. Furthermore, we demonstrate that cell spreading promotes the association of cortactin and FAK and that tyrosine phosphorylation of cortactin disrupts this interaction, which may explain how it inhibits cell spreading. PMID:22479425

  20. Protein-tyrosine phosphatase Shp2 positively regulates macrophage oxidative burst.

    PubMed

    Li, Xing Jun; Goodwin, Charles B; Nabinger, Sarah C; Richine, Briana M; Yang, Zhenyun; Hanenberg, Helmut; Ohnishi, Hiroshi; Matozaki, Takashi; Feng, Gen-Sheng; Chan, Rebecca J

    2015-02-13

    Macrophages are vital to innate immunity and express pattern recognition receptors and integrins for the rapid detection of invading pathogens. Stimulation of Dectin-1 and complement receptor 3 (CR3) activates Erk- and Akt-dependent production of reactive oxygen species (ROS). Shp2, a protein-tyrosine phosphatase encoded by Ptpn11, promotes activation of Ras-Erk and PI3K-Akt and is crucial for hematopoietic cell function; however, no studies have examined Shp2 function in particulate-stimulated ROS production. Maximal Dectin-1-stimulated ROS production corresponded kinetically to maximal Shp2 and Erk phosphorylation. Bone marrow-derived macrophages (BMMs) from mice with a conditionally deleted allele of Ptpn11 (Shp2(flox/flox);Mx1Cre+) produced significantly lower ROS levels compared with control BMMs. Although YFP-tagged phosphatase dead Shp2-C463A was strongly recruited to the early phagosome, its expression inhibited Dectin-1- and CR3-stimulated phospho-Erk and ROS levels, placing Shp2 phosphatase function and Erk activation upstream of ROS production. Further, BMMs expressing gain of function Shp2-D61Y or Shp2-E76K and peritoneal exudate macrophages from Shp2D61Y/+;Mx1Cre+ mice produced significantly elevated levels of Dectin-1- and CR3-stimulated ROS, which was reduced by pharmacologic inhibition of Erk. SIRPα (signal regulatory protein α) is a myeloid inhibitory immunoreceptor that requires tyrosine phosphorylation to exert its inhibitory effect. YFP-Shp2C463A-expressing cells have elevated phospho-SIRPα levels and an increased Shp2-SIRPα interaction compared with YFP-WT Shp2-expressing cells. Collectively, these findings indicate that Shp2 phosphatase function positively regulates Dectin-1- and CR3-stimulated ROS production in macrophages by dephosphorylating and thus mitigating the inhibitory function of SIRPα and by promoting Erk activation. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Role of the JAKs/STATs pathway in the intracellular calcium changes induced by interleukin-6 in hippocampal neurons.

    PubMed

    Orellana, D I; Quintanilla, R A; Gonzalez-Billault, C; Maccioni, R B

    2005-11-01

    Recent studies show that inflammation has an active role in the onset of neurodegenerative diseases. It is known that in response to extracellular insults microglia and/or astrocytes produce inflammatory agents. These contribute to the neuropathological events in the aging process and neuronal degeneration. Interleukin-6 (IL-6) has been involved in the pathogenesis of neurodegenerative disorders, such as Alzheimer's and Parkinson's diseases. Here, we show that IL-6 treatment of rat hippocampal neurons increases the calcium influx via NMDA-receptor, an effect that is prevented by the specific NMDA receptor antagonist MK-801 (dizocilpine). We also show that this calcium influx is mediated by the JAKs/STATs pathway, since the inhibitor of JAKs/STATs pathway, JAK 3 inhibitor, blocks calcium influx even in the presence of IL-6. This increase in calcium signal was dependent on external sources, since this signal was not observed in the presence of EGTA. Additional studies indicate that the increase in cytosolic calcium induces tau protein hyperphosphorylation, as revealed by using specific antibodies against Alzheimer phosphoepitopes. This anomalous tau hyperphosphorylation was dependent on both the JAKs/STATs pathway and NMDA receptor. These results suggest that IL-6 would induce a cascade of molecular events that produce a calcium influx through NMDA receptors, mediated by the JAKs/STATs pathway, which subsequently modifies the tau hyperphosphorylation patterns.

  2. Natural products possessing protein tyrosine phosphatase 1B (PTP1B) inhibitory activity found in the last decades

    PubMed Central

    Jiang, Cheng-shi; Liang, Lin-fu; Guo, Yue-wei

    2012-01-01

    This article provides an overview of approximately 300 secondary metabolites with inhibitory activity against protein tyrosine phosphatase 1B (PTP1B), which were isolated from various natural sources or derived from synthetic process in the last decades. The structure-activity relationship and the selectivity of some compounds against other protein phosphatases were also discussed. Potential pharmaceutical applications of several PTP1B inhibitors were presented. PMID:22941286

  3. Tyrosine Kinase 2-mediated Signal Transduction in T Lymphocytes Is Blocked by Pharmacological Stabilization of Its Pseudokinase Domain*

    PubMed Central

    Tokarski, John S.; Zupa-Fernandez, Adriana; Tredup, Jeffrey A.; Pike, Kristen; Chang, ChiehYing; Xie, Dianlin; Cheng, Lihong; Pedicord, Donna; Muckelbauer, Jodi; Johnson, Stephen R.; Wu, Sophie; Edavettal, Suzanne C.; Hong, Yang; Witmer, Mark R.; Elkin, Lisa L.; Blat, Yuval; Pitts, William J.; Weinstein, David S.; Burke, James R.

    2015-01-01

    Inhibition of signal transduction downstream of the IL-23 receptor represents an intriguing approach to the treatment of autoimmunity. Using a chemogenomics approach marrying kinome-wide inhibitory profiles of a compound library with the cellular activity against an IL-23-stimulated transcriptional response in T lymphocytes, a class of inhibitors was identified that bind to and stabilize the pseudokinase domain of the Janus kinase tyrosine kinase 2 (Tyk2), resulting in blockade of receptor-mediated activation of the adjacent catalytic domain. These Tyk2 pseudokinase domain stabilizers were also shown to inhibit Tyk2-dependent signaling through the Type I interferon receptor but not Tyk2-independent signaling and transcriptional cellular assays, including stimulation through the receptors for IL-2 (JAK1- and JAK3-dependent) and thrombopoietin (JAK2-dependent), demonstrating the high functional selectivity of this approach. A crystal structure of the pseudokinase domain liganded with a representative example showed the compound bound to a site analogous to the ATP-binding site in catalytic kinases with features consistent with high ligand selectivity. The results support a model where the pseudokinase domain regulates activation of the catalytic domain by forming receptor-regulated inhibitory interactions. Tyk2 pseudokinase stabilizers, therefore, represent a novel approach to the design of potent and selective agents for the treatment of autoimmunity. PMID:25762719

  4. Striatal-enriched protein tyrosine phosphatase modulates nociception: evidence from genetic deletion and pharmacological inhibition

    PubMed Central

    Azkona, Garikoitz; Saavedra, Ana; Aira, Zigor; Aluja, David; Xifró, Xavier; Baguley, Tyler; Alberch, Jordi; Ellman, Jonathan A.; Lombroso, Paul J.; Azkue, Jon J.; Pérez-Navarro, Esther

    2016-01-01

    The information from nociceptors is processed in the dorsal horn of the spinal cord by complex circuits involving excitatory and inhibitory interneurons. It is well documented that GluN2B and ERK1/2 phosphorylation contributes to central sensitization. Striatal-enriched protein tyrosine phosphatase (STEP) dephosphorylates GluN2B and ERK1/2, promoting internalization of GluN2B and inactivation of ERK1/2. The activity of STEP was modulated by genetic (STEP knockout mice) and pharmacological (recently synthesized STEP inhibitor, TC-2153) approaches. STEP61 protein levels in the lumbar spinal cord were determined in male and female mice of different ages. Inflammatory pain was induced by complete Freund’s adjuvant injection. Behavioral tests, immunoblotting, and electrophysiology were used to analyze the effect of STEP on nociception. Our results show that both genetic deletion and pharmacological inhibition of STEP induced thermal hyperalgesia and mechanical allodynia, which were accompanied by increased pGluN2BTyr1472 and pERK1/2Thr202/Tyr204 levels in the lumbar spinal cord. Striatal-enriched protein tyrosine phosphatase heterozygous and knockout mice presented a similar phenotype. Furthermore, electrophysiological experiments showed that TC-2153 increased C fiber-evoked spinal field potentials. Interestingly, we found that STEP61 protein levels in the lumbar spinal cord inversely correlated with thermal hyperalgesia associated with age and female gender in mice. Consistently, STEP knockout mice failed to show age-related thermal hyperalgesia, although gender-related differences were preserved. Moreover, in a model of inflammatory pain, hyperalgesia was associated with increased phosphorylation-mediated STEP61 inactivation and increased pGluN2BTyr1472 and pERK1/2Thr202/Tyr204 levels in the lumbar spinal cord. Collectively, the present results underscore an important role of spinal STEP activity in the modulation of nociception. PMID:26270590

  5. HDAC8 overexpression in mesenchymal stromal cells from JAK2+ myeloproliferative neoplasms: a new therapeutic target?

    PubMed Central

    Ramos, Teresa L.; Sánchez-Abarca, Luis Ignacio; Redondo, Alba; Hernández-Hernández, Ángel; Almeida, Antonio M.; Puig, Noemí; Rodríguez, Concepción; Ortega, Rebeca; Preciado, Silvia; Rico, Ana; Muntión, Sandra; González Porras, José Ramón; Cañizo, Consuelo Del; Sánchez-Guijo, Fermín

    2017-01-01

    Histone deacetylases (HDACs) are involved in epigenetic modulation and their aberrant expression has been demonstrated in myeloproliferative neoplasms (MPN). HDAC8 inhibition has been shown to inhibit JAK2/STAT5 signaling in hematopoietic cells from MPN. Nevertheless, the role of HDAC8 expression in bone marrow-mesenchymal stromal cells (BM-MSC) has not been assessed. In the current work we describe that HDAC8 is significantly over-expressed in MSC from in JAK-2 positive MPN compared to those from healthy-donors (HD-MSC). Using a selective HDAC8 inhibitor (PCI34051), we verified that the subsequent decrease in the protein and mRNA expression of HDAC8 is linked with an increased apoptosis of malignant MSC whereas it has no effects on normal MSC. In addition, HDAC8 inhibition in MPN-MSC also decreased their capacity to maintain neoplastic hematopoiesis, by increasing the apoptosis, cell-cycle arrest and colony formation of JAK2+-hematopoietic cells. Mechanistic studies using different MPN cell lines revealed that PCI34051 induced their apoptosis, which is enhanced when were co-cultured with JAK2V617F-MSC, decreased their colony formation and the phosphorylation of STAT3 and STAT5. In summary, we show for the first time that the inhibition of HDAC8 in MSC from JAK2+ MPN patients selectively decreases their hematopoietic-supporting ability, suggesting that HDAC8 may be a potential therapeutic target in this setting by acting not only on hematopoietic cells but also on the malignant microenvironment. PMID:28390197

  6. Protein tyrosine phosphatase 1B inhibitory activity of alkaloids from Rhizoma Coptidis and their molecular docking studies.

    PubMed

    Choi, Jae Sue; Ali, Md Yousof; Jung, Hyun Ah; Oh, Sang Ho; Choi, Ran Joo; Kim, Eon Ji

    2015-08-02

    Rhizoma Coptidis (the rhizome of Coptis chinensis Franch) has commonly been used for treatment of diabetes mellitus in traditional Chinese medicine due to its blood sugar-lowering properties and therapeutic benefits which highly related to the alkaloids therein. However, a limited number of studies focused on the Coptis alkaloids other than berberine. In the present study, we investigated the anti-diabetic potential of Coptis alkaloids, including berberine (1), epiberberine (2), magnoflorine (3), and coptisine (4), by evaluating the ability of these compounds to inhibit protein tyrosine phosphatase 1B (PTP1B), and ONOO(-)-mediated protein tyrosine nitration. We scrutinized the potentials of Coptis alkaloids as PTP1B inhibitors via enzyme kinetics and molecular docking simulation. The Coptis alkaloids 1-4 exhibited remarkable inhibitory activities against PTP1B with the IC50 values of 16.43, 24.19, 28.14, and 51.04 μM, respectively, when compared to the positive control ursolic acid. These alkaloids also suppressed ONOO(-)-mediated tyrosine nitration effectively in a dose dependent manner. In addition, our kinetic study using the Lineweaver-Burk and Dixon plots revealed that 1 and 2 showed a mixed-type inhibition against PTP1B, while 3 and 4 noncompetitively inhibited PTP1B. Moreover, molecular docking simulation of these compounds demonstrated negative binding energies (Autodock 4.0=-6.7 to -7.8 kcal/mol; Fred 2.0=-59.4 to -68.2 kcal/mol) and a high proximity to PTP1B residues, including Phe182 and Asp181 in the WPD loop, Cys215 in the active sites and Tyr46, Arg47, Asp48, Val49, Ser216, Ala217, Gly218, Ile219, Gly220, Arg221 and Gln262 in the pocket site, indicating a higher affinity and tighter binding capacity of these alkaloids for the active site of the enzyme. Our results clearly indicate the promising anti-diabetic potential of Coptis alkaloids as inhibitors on PTP1B as well as suppressors of ONOO(-)-mediated protein tyrosine nitration, and thus hold

  7. Modulation of activation-loop phosphorylation by JAK inhibitors is binding mode dependent

    PubMed Central

    Bonenfant, Débora; Rubert, Joëlle; Vangrevelinghe, Eric; Scheufler, Clemens; Marque, Fanny; Régnier, Catherine H.; De Pover, Alain; Ryckelynck, Hugues; Bhagwat, Neha; Koppikar, Priya; Goel, Aviva; Wyder, Lorenza; Tavares, Gisele; Baffert, Fabienne; Pissot-Soldermann, Carole; Manley, Paul W.; Gaul, Christoph; Voshol, Hans; Levine, Ross L.; Sellers, William R.; Hofmann, Francesco; Radimerski, Thomas

    2016-01-01

    JAK inhibitors are being developed for the treatment of rheumatoid arthritis, psoriasis, myeloproliferative neoplasms and leukemias. Most of these drugs target the ATP-binding pocket and stabilize the active conformation of the JAK kinases. This type-I binding mode leads to an increase in JAK activation-loop phosphorylation, despite blockade of kinase function. Here we report that stabilizing the inactive state via type-II inhibition acts in the opposite manner, leading to a loss of activation-loop phosphorylation. We used X-ray crystallography to corroborate the binding mode and report for the first time the crystal structure of the JAK2 kinase domain in an inactive conformation. Importantly, JAK inhibitor-induced activation-loop phosphorylation requires receptor interaction, as well as intact kinase and pseudokinase domains. Hence, depending on the respective conformation stabilized by a JAK inhibitor, hyperphosphorylation of the activation-loop may or may not be elicited. PMID:22684457

  8. Microvillus-Specific Protein Tyrosine Phosphatase SAP-1 Plays a Role in Regulating the Intestinal Paracellular Transport of Macromolecules.

    PubMed

    Mori, Shingo; Kamei, Noriyasu; Murata, Yoji; Takayama, Kozo; Matozaki, Takashi; Takeda-Morishita, Mariko

    2017-09-01

    The stomach cancer-associated protein tyrosine phosphatase 1 (SAP-1) is a receptor-type protein tyrosine phosphatase that is specifically expressed on the apical membrane of the intestinal epithelium. SAP-1 is known to maintain the balance of phosphorylation of proteins together with protein kinases; however, its biological function and impact on pharmacokinetics in the intestine remain unclear. The present study, therefore, aimed at clarifying the relationship between SAP-1 and the intestinal absorption behaviors of typical transporter substrates and macromolecules. The endogenous levels of glucose and total cholesterol in the blood were similar between wild-type and SAP-1-deficient mice (Sap1 -/- ), suggesting no contribution of SAP-1 to biogenic influx. Moreover, in vitro transport study with everted ileal sacs demonstrated that there was no difference in the absorption of breast cancer resistance protein, P-glycoprotein, and peptide transporter substrates between both mice. However, absorptive clearance of macromolecular model dextrans (FD-4 and FD-10) in Sap1 -/- mice was significantly higher than that in wild-type mice, and this was confirmed by the trend of increased FD-4 absorption from colonic loops of Sap1 -/- mice. Therefore, the results of this study suggest the partial contribution of SAP-1 to the regulated transport of hydrophilic macromolecules through paracellular tight junctions. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  9. Molecular drug targets in myeloproliferative neoplasms: mutant ABL1, JAK2, MPL, KIT, PDGFRA, PDGFRB and FGFR1

    PubMed Central

    Tefferi, Ayalew

    2009-01-01

    Abstract Therapeutically validated oncoproteins in myeloproliferative neoplasms (MPN) include BCR-ABL1 and rearranged PDGFR proteins. The latter are products of intra- (e.g. FIP1L1-PDGFRA) or inter-chromosomal (e.g.ETV6-PDGFRB) gene fusions. BCR-ABL1 is associated with chronic myelogenous leukaemia (CML) and mutant PDGFR with an MPN phenotype characterized by eosinophilia and in addition, in case of FIP1L1-PDGFRA, bone marrow mastocytosis. These genotype-phenotype associations have been effectively exploited in the development of highly accurate diagnostic assays and molecular targeted therapy. It is hoped that the same will happen in other MPN with specific genetic alterations: polycythemia vera (JAK2V617F and other JAK2 mutations), essential thrombocythemia (JAK2V617F and MPL515 mutations), primary myelofibrosis (JAK2V617F and MPL515 mutations), systemic mastocytosis (KITD816V and other KIT mutations) and stem cell leukaemia/lymphoma (ZNF198-FGFR1 and other FGFR1 fusion genes). The current review discusses the above-listed mutant molecules in the context of their value as drug targets. PMID:19175693

  10. Identification of Putative Cytoskeletal Protein Homologues in the Protozoan Host Hartmannella vermiformis as Substrates for Induced Tyrosine Phosphatase Activity upon Attachment to the Legionnaires' Disease Bacterium, Legionella pneumophila

    PubMed Central

    Venkataraman, Chandrasekar; Gao, Lian-Yong; Bondada, Subbarao; Kwaik, Yousef Abu

    1998-01-01

    The Legionnaires' disease bacterium, Legionella pneumophila, is a facultative intracellular pathogen that invades and replicates within two evolutionarily distant hosts, free living protozoa and mammalian cells. Invasion and intracellular replication within protozoa are thought to be major factors in the transmission of Legionnaires' disease. We have recently reported the identification of a galactose/N-acetyl-d-galactosamine (Gal/GalNAc) lectin in the protozoan host Hartmannella vermiformis as a receptor for attachment and invasion by L. pneumophila (Venkataraman, C., B.J. Haack, S. Bondada, and Y.A. Kwaik. 1997. J. Exp. Med. 186:537–547). In this report, we extended our studies to the effects of bacterial attachment and invasion on the cytoskeletal proteins of H. vermiformis. We first identified the presence of many protozoan cytoskeletal proteins that were putative homologues to their mammalian counterparts, including actin, pp125FAK, paxillin, and vinculin, all of which were basally tyrosine phosphorylated in resting H. vermiformis. In addition to L. pneumophila–induced tyrosine dephosphorylation of the lectin, bacterial attachment and invasion was associated with tyrosine dephosphorylation of paxillin, pp125FAK, and vinculin, whereas actin was minimally affected. Inhibition of bacterial attachment to H. vermiformis by Gal or GalNAc monomers blocked bacteria-induced tyrosine dephosphorylation of detergent-insoluble proteins. In contrast, inhibition of bacterial invasion but not attachment failed to block bacteria-induced tyrosine dephosphorylation of H. vermiformis proteins. This was further supported by the observation that 10 mutants of L. pneumophila that were defective in invasion of H. vermiformis were capable of inducing tyrosine dephosphorylation of H. vermiformis proteins. Entry of L. pneumophila into H. vermiformis was predominantly mediated by noncoated receptor-mediated endocytosis (93%) but coiling phagocytosis was infrequently observed (7%). We

  11. Roles of the tyrosine isomers meta-tyrosine and ortho-tyrosine in oxidative stress.

    PubMed

    Ipson, Brett R; Fisher, Alfred L

    2016-05-01

    The damage to cellular components by reactive oxygen species, termed oxidative stress, both increases with age and likely contributes to age-related diseases including Alzheimer's disease, atherosclerosis, diabetes, and cataract formation. In the setting of oxidative stress, hydroxyl radicals can oxidize the benzyl ring of the amino acid phenylalanine, which then produces the abnormal tyrosine isomers meta-tyrosine or ortho-tyrosine. While elevations in m-tyrosine and o-tyrosine concentrations have been used as a biological marker of oxidative stress, there is emerging evidence from bacterial, plant, and mammalian studies demonstrating that these isomers, particularly m-tyrosine, directly produce adverse effects to cells and tissues. These new findings suggest that the abnormal tyrosine isomers could in fact represent mediators of the effects of oxidative stress. Consequently the accumulation of m- and o-tyrosine may disrupt cellular homeostasis and contribute to disease pathogenesis, and as result, effective defenses against oxidative stress can encompass not only the elimination of reactive oxygen species but also the metabolism and ultimately the removal of the abnormal tyrosine isomers from the cellular amino acid pool. Future research in this area is needed to clarify the biologic mechanisms by which the tyrosine isomers damage cells and disrupt the function of tissues and organs and to identify the metabolic pathways involved in removing the accumulated isomers after exposure to oxidative stress. Published by Elsevier B.V.

  12. Roles of the tyrosine isomers meta-tyrosine and ortho-tyrosine in oxidative stress

    PubMed Central

    Ipson, Brett R.; Fisher, Alfred L.

    2016-01-01

    The damage to cellular components by reactive oxygen species, termed oxidative stress, both increases with age and likely contributes to age-related diseases including Alzheimer’s disease, atherosclerosis, diabetes, and cataract formation. In the setting of oxidative stress, hydroxyl radicals can oxidize the benzyl ring of the amino acid phenylalanine, which then produces the abnormal tyrosine isomers meta-tyrosine or ortho-tyrosine. While elevations in m-tyrosine and o-tyrosine concentrations have been used as a biological marker of oxidative stress, there is emerging evidence from bacterial, plant, and mammalian studies demonstrating that these isomers, particularly m-tyrosine, directly produce adverse effects to cells and tissues. These new findings suggest that the abnormal tyrosine isomers could in fact represent mediators of the effects of oxidative stress. Consequently the accumulation of m- and o-tyrosine may disrupt cellular homeostasis and contribute to disease pathogenesis, and as result, effective defenses against oxidative stress can encompass not only the elimination of reactive oxygen species but also the metabolism and ultimately the removal of the abnormal tyrosine isomers from the cellular amino acid pool. Future research in this area is needed to clarify the biologic mechanisms by which the tyrosine isomers damage cells and disrupt the function of tissues and organs, and to identify the metabolic pathways involved in removing the accumulated isomers after exposure to oxidative stress. PMID:27039887

  13. The activity and stability of the intrinsically disordered Cip/Kip protein family are regulated by non-receptor tyrosine kinases.

    PubMed

    Huang, Yongqi; Yoon, Mi-Kyung; Otieno, Steve; Lelli, Moreno; Kriwacki, Richard W

    2015-01-30

    The Cip/Kip family of cyclin-dependent kinase (Cdk) inhibitors includes p21(Cip1), p27(Kip1) and p57(Kip2). Their kinase inhibitory activities are mediated by a homologous N-terminal kinase inhibitory domain. The Cdk inhibitory activity and stability of p27 have been shown to be regulated by a two-step phosphorylation mechanism involving a tyrosine residue within the kinase inhibitory domain and a threonine residue within the flexible C-terminus. We show that these residues are conserved in p21 and p57, suggesting that a similar phosphorylation cascade regulates these Cdk inhibitors. However, the presence of a cyclin binding motif within its C-terminus alters the regulatory interplay between p21 and Cdk2/cyclin A, as well as its responses to tyrosine phosphorylation and altered p21:Cdk2/cyclin A stoichiometry. We also show that the Cip/Kip proteins can be phosphorylated in vitro by representatives of many non-receptor tyrosine kinase (NRTK) sub-families, suggesting that NRTKs may generally regulate the activity and stability of these Cdk inhibitors. Our results further suggest that the Cip/Kip proteins integrate signals from various NRTK pathways and cell cycle regulation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Tyrosine sulfation in a Gram-negative bacterium

    PubMed Central

    Han, Sang-Wook; Lee, Sang-Won; Bahar, Ofir; Schwessinger, Benjamin; Robinson, Michelle R.; Shaw, Jared B.; Madsen, James A.; Brodbelt, Jennifer S.; Ronald, Pamela C.

    2015-01-01

    Tyrosine sulfation, a well-characterized post-translation modification in eukaryotes, has not previously been reported in prokaryotes. Here we demonstrate that the RaxST protein from the Gram-negative bacterium, Xanthomonas oryzae pv. oryzae, is a tyrosine sulfotransferase. We used a newly developed sulfotransferase assay and ultraviolet photodissociation mass spectrometry (UVPD) to demonstrate that RaxST catalyzes sulfation of tyrosine 22 of the Xoo Ax21 (activator of XA21-mediated immunity). These results demonstrate a previously undescribed post-translational modification in a prokaryotic species with implications extending to host immune response and bacterial cell-cell communication system. PMID:23093190

  15. Inactivation of Protein Tyrosine Phosphatase Receptor Type Z by Pleiotrophin Promotes Remyelination through Activation of Differentiation of Oligodendrocyte Precursor Cells.

    PubMed

    Kuboyama, Kazuya; Fujikawa, Akihiro; Suzuki, Ryoko; Noda, Masaharu

    2015-09-02

    Multiple sclerosis (MS) is a progressive neurological disorder associated with myelin destruction and neurodegeneration. Oligodendrocyte precursor cells (OPCs) present in demyelinated lesions gradually fail to differentiate properly, so remyelination becomes incomplete. Protein tyrosine phosphatase receptor type Z (PTPRZ), one of the most abundant protein tyrosine phosphatases expressed in OPCs, is known to suppress oligodendrocyte differentiation and maintain their precursor cell stage. In the present study, we examined the in vivo mechanisms for remyelination using a cuprizone-induced demyelination model. Ptprz-deficient and wild-type mice both exhibited severe demyelination and axonal damage in the corpus callosum after cuprizone feeding. The similar accumulation of OPCs was observed in the lesioned area in both mice; however, remyelination was significantly accelerated in Ptprz-deficient mice after the removal of cuprizone. After demyelination, the expression of pleiotrophin (PTN), an inhibitory ligand for PTPRZ, was transiently increased in mouse brains, particularly in the neurons involved, suggesting its role in promoting remyelination by inactivating PTPRZ activity. In support of this view, oligodendrocyte differentiation was augmented in a primary culture of oligodendrocyte-lineage cells from wild-type mice in response to PTN. In contrast, these cells from Ptprz-deficient mice showed higher oligodendrocyte differentiation without PTN and differentiation was not enhanced by its addition. We further demonstrated that PTN treatment increased the tyrosine phosphorylation of p190 RhoGAP, a PTPRZ substrate, using an established line of OPCs. Therefore, PTPRZ inactivation in OPCs by PTN, which is secreted from demyelinated axons, may be the mechanism responsible for oligodendrocyte differentiation during reparative remyelination in the CNS. Multiple sclerosis (MS) is an inflammatory disease of the CNS that destroys myelin, the insulation that surrounds axons

  16. Sequential Proton Loss Electron Transfer in Deactivation of Iron(IV) Binding Protein by Tyrosine Based Food Components.

    PubMed

    Tang, Ning; Skibsted, Leif H

    2017-08-02

    The iron(IV) binding protein ferrylmyoglobin, MbFe(IV)═O, was found to be reduced by tyrosine based food components in aqueous solution through a sequential proton loss electron transfer reaction mechanism without binding to the protein as confirmed by isothermal titration calorimetry. Dopamine and epinephrine are the most efficient food components reducing ferrylmyoglobin to oxymyoglobin, MbFe(II)O 2 , and metmyoglobin, MbFe(III), as revealed by multivariate curve resolution alternating least-squares with second order rate constants of 33.6 ± 2.3 L/mol/s (ΔH ⧧ of 19 ± 5 kJ/mol, ΔS ⧧ of -136 ± 18 J/mol K) and 228.9 ± 13.3 L/mol/s (ΔH ⧧ of 110 ± 7 kJ/mol, ΔS ⧧ of 131 ± 25 J/mol K), respectively, at pH 7.4 and 25 °C. The other tyrosine based food components were found to reduce ferrylmyoglobin to metmyoglobin with similar reduction rates at pH 7.4 and 25 °C. These reduction reactions were enhanced by protonation of ferrylmyoglobin and facilitated proton transfer at acidic conditions. Enthalpy-entropy compensation effects were observed for the activation parameters (ΔH ⧧ and ΔS ⧧ ), indicating the common reaction mechanism. Moreover, principal component analysis combined with heat map were performed to understand the relationship between density functional theory calculated molecular descriptors and kinetic data, which was further modeled by partial least squares for quantitative structure-activity relationship analysis. In addition, a three tyrosine residue containing protein, lysozyme, was also found to be able to reduce ferrylmyoglobin with a second order rate constant of 66 ± 28 L/mol/s as determined by a competitive kinetic method.

  17. How we treat myelofibrosis after failure of JAK inhibitors.

    PubMed

    Pardanani, Animesh; Tefferi, Ayalew

    2018-06-04

    The introduction of JAK inhibitors, leading to regulatory approval of ruxolitinib, represents a major therapeutic advance in myelofibrosis. Most patients experience reduction in splenomegaly and improved quality of life from symptom improvement. It is a paradox however that, despite inhibition of signaling downstream of disease-related driver mutations, JAK inhibitor treatment is not associated with consistent molecular or pathologic responses in myelofibrosis. Furthermore, there are important limitations to JAK inhibitor therapy including development of dose-limiting cytopenias and/or non-hematological toxicities such as neuropathy or opportunistic infections. Over half the patients discontinue treatment within three years of starting treatment. While data are sparse, clinical outcome after JAK inhibitor 'failure' is likely poor; consequently, it is important to understand patterns of failure to select appropriate salvage treatment(s). An algorithmic approach, particularly one that incorporates cytogenetics/molecular data, is most helpful in selecting stem cell transplant candidates. Treatment of transplant-ineligible patients relies on a problem-based approach that includes use of investigational drugs, or consideration of splenectomy or radiotherapy. Data from early-phase ruxolitinib combination studies, despite promising pre-clinical data, has not shown clear benefit over monotherapy thus far. Development of effective treatment strategies for myelofibrosis patients failing JAK inhibitors remains a major unmet need. Copyright © 2018 American Society of Hematology.

  18. Functional hierarchy of the N-terminal tyrosines of SLP-76.

    PubMed

    Jordan, Martha S; Sadler, Jeffrey; Austin, Jessica E; Finkelstein, Lisa D; Singer, Andrew L; Schwartzberg, Pamela L; Koretzky, Gary A

    2006-02-15

    The adaptor protein Src homology 2 domain-containing leukocyte phosphoprotein of 76 kDa (SLP-76) plays a central role in T cell activation and T cell development. SLP-76 has three functional modules: an acidic domain with three key tyrosines, a central proline-rich domain, and a C-terminal Src homology 2 domain. Of these, mutation of the three N-terminal tyrosines (Y112, Y128, and Y145) results in the most profound effects on T cell development and function. Y112 and Y128 associate with Vav and Nck, two proteins shown to be important for TCR-induced phosphorylation of proximal signaling substrates, Ca(2+) flux, and actin reorganization. Y145 has been shown to be important for optimal association of SLP-76 with inducible tyrosine kinase, a key regulator of T cell function. To investigate further the role of the phosphorylatable tyrosines of SLP-76 in TCR signaling, cell lines and primary T cells expressing SLP-76 with mutations in individual or paired tyrosine residues were analyzed. These studies show that Tyr(145) of SLP-76 is the most critical tyrosine for both T cell function in vitro and T cell development in vivo.

  19. JAK2 mutation in a patient with CLL with coexistent myeloproliferative neoplasm (MPN).

    PubMed

    Kodali, Srinivas; Chen, Chi; Rathnasabapathy, Chenthilmurugan; Wang, Jen Chin

    2009-12-01

    JAK2 mutation has not been described in patients with chronic lymphocytic leukemia (CLL). We found JAK2 mutation in a patient with CLL and coexisting myeloproliferative neoplasm (MPN). In this patient, we demonstrated the presence of the JAK2 mutation in CD34(+) progenitor cells, myeloid lineage cells, megakaryocytes, B lymphocytes but not in T lymphocytes. This case represents the first case report of JAK2 mutation in CLL and may also suggest that, JAK2 mutation most likely represents a secondary event from primary gene mutations involving the primitive stem cells which give rise to MPN and CLL. Furthermore, in this case, we believe that we are the first to demonstrate that JAK2 mutation in myeloid and B lymphoid cells but not T lymphocytes in a case of coexisting CLL and MPN.

  20. The JAK2V617 mutation induces constitutive activation and agonist hypersensitivity in basophils from patients with polycythemia vera

    PubMed Central

    Pieri, Lisa; Bogani, Costanza; Guglielmelli, Paola; Zingariello, Maria; Rana, Rosa Alba; Bartalucci, Niccolò; Bosi, Alberto; Vannucchi, Alessandro M.

    2009-01-01

    Background The JAK2V617F mutation has been associated with constitutive and enhanced activation of neutrophils, while no information is available concerning other leukocyte subtypes. Design and Methods We evaluated correlations between JAK2V617F mutation and the count of circulating basophils, the number of activated CD63+ basophils, their response in vitro to agonists as well as the effects of a JAK2 inhibitor. Results We found that basophil count was increased in patients with JAK2V617F -positive myeloproliferative neoplasms, particularly in those with polycythemia vera, and was correlated with the V617F burden. The burden of V617F allele was similar in neutrophils and basophils from patients with polycythemia vera, while total JAK2 mRNA content was remarkably greater in the basophils; however, the content of JAK2 protein in basophils was not increased. The number of CD63+ basophils was higher in patients with polycythemia vera than in healthy subjects or patients with essential thrombocythemia or primary myelofibrosis and was correlated with the V617F burden. Ultrastructurally, basophils from patients with polycythemia vera contained an increased number of granules, most of which were empty suggesting cell degranulation in vivo. Ex vivo experiments revealed that basophils from patients with polycythemia vera were hypersensitive to the priming effect of interleukin-3 and to f-MLP-induced activation; pre-treatment with a JAK2 inhibitor reduced polycythemia vera basophil activation. Finally, we found that the number of circulating CD63+ basophils was significantly greater in patients suffering from aquagenic pruritus, who also showed a higher V617F allele burden. Conclusions These data indicate that the number of constitutively activated and hypersensitive circulating basophils is increased in polycythemia vera, underscoring a role of JAK2V617F in these cells’ abnormal function and, putatively, in the pathogenesis of pruritus. PMID:19608683

  1. Anti-Group B Streptococcus Glycan-Conjugate Vaccines Using Pilus Protein GBS80 As Carrier and Antigen: Comparing Lysine and Tyrosine-directed Conjugation.

    PubMed

    Nilo, Alberto; Morelli, Laura; Passalacqua, Irene; Brogioni, Barbara; Allan, Martin; Carboni, Filippo; Pezzicoli, Alfredo; Zerbini, Francesca; Maione, Domenico; Fabbrini, Monica; Romano, Maria Rosaria; Hu, Qi-Ying; Margarit, Immaculada; Berti, Francesco; Adamo, Roberto

    2015-07-17

    Gram-positive Streptococcus agalactiae or group B Streptococcus (GBS) is a leading cause of invasive infections in pregnant women, newborns, and elderly people. Vaccination of pregnant women represents the best strategy for prevention of neonatal disease, and GBS polysaccharide-based conjugate vaccines are currently under clinical testing. The potential of GBS pilus proteins selected by genome-based reverse vaccinology as protective antigens for anti-streptococcal vaccines has also been demonstrated. Dressing pilus proteins with surface glycan antigens could be an attractive approach to extend vaccine coverage. We have recently developed an efficient method for tyrosine-directed ligation of large glycans to proteins via copper-free azide-alkyne [3 + 2] cycloaddition. This method enables targeting of predetermined sites of the protein, ensuring that protein epitopes are preserved prior to glycan coupling and a higher consistency in glycoconjugate batches. Herein, we compared conjugates of the GBS type II polysaccharide (PSII) and the GBS80 pilus protein obtained by classic lysine random conjugation and by the recently developed tyrosine-directed ligation. PSII conjugated to CRM197, a carrier protein used for vaccines in the market, was used as a control. We found that the constructs made from PSII and GBS80 were able to elicit murine antibodies recognizing individually the glycan and protein epitopes on the bacterial surface. The generated antibodies were efficacious in mediating opsonophagocytic killing of strains expressing exclusively PSII or GBS80 proteins. The two glycoconjugates were also effective in protecting newborn mice against GBS infection following vaccination of the dams. Altogether, these results demonstrated that polysaccharide-conjugated GBS80 pilus protein functions as a carrier comparably to CRM197, while maintaining its properties of protective protein antigen. Glycoconjugation and reverse vaccinology can, therefore, be combined to design

  2. Coordinate Regulation of Stem Cell Competition by Slit-Robo and JAK-STAT Signaling in the Drosophila Testis

    PubMed Central

    Stine, Rachel R.; Greenspan, Leah J.; Ramachandran, Kapil V.; Matunis, Erika L.

    2014-01-01

    Stem cells in tissues reside in and receive signals from local microenvironments called niches. Understanding how multiple signals within niches integrate to control stem cell function is challenging. The Drosophila testis stem cell niche consists of somatic hub cells that maintain both germline stem cells and somatic cyst stem cells (CySCs). Here, we show a role for the axon guidance pathway Slit-Roundabout (Robo) in the testis niche. The ligand Slit is expressed specifically in hub cells while its receptor, Roundabout 2 (Robo2), is required in CySCs in order for them to compete for occupancy in the niche. CySCs also require the Slit-Robo effector Abelson tyrosine kinase (Abl) to prevent over-adhesion of CySCs to the niche, and CySCs mutant for Abl outcompete wild type CySCs for niche occupancy. Both Robo2 and Abl phenotypes can be rescued through modulation of adherens junction components, suggesting that the two work together to balance CySC adhesion levels. Interestingly, expression of Robo2 requires JAK-STAT signaling, an important maintenance pathway for both germline and cyst stem cells in the testis. Our work indicates that Slit-Robo signaling affects stem cell function downstream of the JAK-STAT pathway by controlling the ability of stem cells to compete for occupancy in their niche. PMID:25375180

  3. Multisite tyrosine phosphorylation of the N-terminus of Mint1/X11α by Src kinase regulates the trafficking of amyloid precursor protein.

    PubMed

    Dunning, Christopher J R; Black, Hannah L; Andrews, Katie L; Davenport, Elizabeth C; Conboy, Michael; Chawla, Sangeeta; Dowle, Adam A; Ashford, David; Thomas, Jerry R; Evans, Gareth J O

    2016-05-01

    Mint/X11 is one of the four neuronal trafficking adaptors that interact with amyloid precursor protein (APP) and are linked with its cleavage to generate β-amyloid peptide, a key player in the pathology of Alzheimer's disease. How APP switches between adaptors at different stages of the secretory pathway is poorly understood. Here, we show that tyrosine phosphorylation of Mint1 regulates the destination of APP. A canonical SH2-binding motif ((202) YEEI) was identified in the N-terminus of Mint1 that is phosphorylated on tyrosine by C-Src and recruits the active kinase for sequential phosphorylation of further tyrosines (Y191 and Y187). A single Y202F mutation in the Mint1 N-terminus inhibits C-Src binding and tyrosine phosphorylation. Previous studies observed that co-expression of wild-type Mint1 and APP causes accumulation of APP in the trans-Golgi. Unphosphorylatable Mint1 (Y202F) or pharmacological inhibition of Src reduced the accumulation of APP in the trans-Golgi of heterologous cells. A similar result was observed in cultured rat hippocampal neurons where Mint1(Y202F) permitted the trafficking of APP to more distal neurites than the wild-type protein. These data underline the importance of the tyrosine phosphorylation of Mint1 as a critical switch for determining the destination of APP. The regulation of amyloid precursor protein (APP) trafficking is poorly understood. We have discovered that the APP adapter, Mint1, is phosphorylated by C-Src kinase. Mint1 causes APP accumulation in the trans-Golgi network, whereas inhibition of Src or mutation of Mint1-Y202 permits APP recycling. The phosphorylation status of Mint1 could impact on the pathological trafficking of APP in Alzheimer's disease. © 2016 The Authors. Journal of Neurochemistry published by John Wiley & Sons Ltd on behalf of International Society for Neurochemistry.

  4. Protein kinase inhibitors in the treatment of inflammatory and autoimmune diseases

    PubMed Central

    Patterson, H; Nibbs, R; McInnes, I; Siebert, S

    2014-01-01

    Protein kinases mediate protein phosphorylation, which is a fundamental component of cell signalling, with crucial roles in most signal transduction cascades: from controlling cell growth and proliferation to the initiation and regulation of immunological responses. Aberrant kinase activity is implicated in an increasing number of diseases, with more than 400 human diseases now linked either directly or indirectly to protein kinases. Protein kinases are therefore regarded as highly important drug targets, and are the subject of intensive research activity. The success of small molecule kinase inhibitors in the treatment of cancer, coupled with a greater understanding of inflammatory signalling cascades, has led to kinase inhibitors taking centre stage in the pursuit for new anti-inflammatory agents for the treatment of immune-mediated diseases. Herein we discuss the main classes of kinase inhibitors; namely Janus kinase (JAK), mitogen-activated protein kinase (MAPK) and spleen tyrosine kinase (Syk) inhibitors. We provide a mechanistic insight into how these inhibitors interfere with kinase signalling pathways and discuss the clinical successes and failures in the implementation of kinase-directed therapeutics in the context of inflammatory and autoimmune disorders. PMID:24313320

  5. SHP-2 inhibits tyrosine phosphorylation of Cas-L and regulates cell migration.

    PubMed

    Yo, Koji; Iwata, Satoshi; Hashizume, Yutaka; Kondo, Shunsuke; Nomura, Sayaka; Hosono, Osamu; Kawasaki, Hiroshi; Tanaka, Hirotoshi; Dang, Nam H; Morimoto, Chikao

    2009-04-24

    The Src homology 2 (SH2) domain-containing protein tyrosine phosphatase, SHP-2, plays an important role in cell migration by interacting with various proteins. In this report, we demonstrated that SHP-2 inhibits tyrosine phosphorylation of Crk-associated substrate lymphocyte type (Cas-L), a docking protein which mediates cell migration, and found that SHP-2 negatively regulates migration of A549 lung adenocarcinoma cells induced by fibronectin (FN). We showed that overexpressed SHP-2 co-localizes with Cas-L at focal adhesions and that exogenous expression of SHP-2 abrogates cell migration mediated by Cas-L. SHP-2 inhibits tyrosine phosphorylation of Cas-L, and associates with Cas-L to form a complex in a tyrosine phosphorylation-dependent manner. Finally, immunoprecipitation experiments with deletion mutants revealed that both SH2 domains of SHP-2 are necessary for this association. These results suggest that SHP-2 regulates tyrosine phosphorylation of Cas-L, hence opposing the effect of kinases, and SHP-2 is a negative regulator of cell migration mediated by Cas-L.

  6. Paralog-Specific Patterns of Structural Disorder and Phosphorylation in the Vertebrate SH3-SH2-Tyrosine Kinase Protein Family.

    PubMed

    Dos Santos, Helena G; Siltberg-Liberles, Jessica

    2016-09-19

    One of the largest multigene families in Metazoa are the tyrosine kinases (TKs). These are important multifunctional proteins that have evolved as dynamic switches that perform tyrosine phosphorylation and other noncatalytic activities regulated by various allosteric mechanisms. TKs interact with each other and with other molecules, ultimately activating and inhibiting different signaling pathways. TKs are implicated in cancer and almost 30 FDA-approved TK inhibitors are available. However, specific binding is a challenge when targeting an active site that has been conserved in multiple protein paralogs for millions of years. A cassette domain (CD) containing SH3-SH2-Tyrosine Kinase domains reoccurs in vertebrate nonreceptor TKs. Although part of the CD function is shared between TKs, it also presents TK specific features. Here, the evolutionary dynamics of sequence, structure, and phosphorylation across the CD in 17 TK paralogs have been investigated in a large-scale study. We establish that TKs often have ortholog-specific structural disorder and phosphorylation patterns, while secondary structure elements, as expected, are highly conserved. Further, domain-specific differences are at play. Notably, we found the catalytic domain to fluctuate more in certain secondary structure elements than the regulatory domains. By elucidating how different properties evolve after gene duplications and which properties are specifically conserved within orthologs, the mechanistic understanding of protein evolution is enriched and regions supposedly critical for functional divergence across paralogs are highlighted. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  7. JAK2, MPL, and CALR mutations in Chinese Han patients with essential thrombocythemia.

    PubMed

    Wang, Jing; Zhang, Biao; Chen, Bing; Zhou, Rong-Fu; Zhang, Qi-Guo; Li, Juan; Yang, Yong-Gong; Zhou, Min; Shao, Xiao-Yan; Xu, Yong; Xu, Xi-Hui; Ouyang, Jian; Xu, Jingyan; Ye, Qing

    2017-04-01

    Mutations in Janus kinase 2 (JAK2), myeloproliferative leukemia (MPL), and CALR are highly relevant to Philadelphia chromosome (Ph)-negative myeloproliferative neoplasms. Assessing the prevalence of molecular mutations in Chinese Han patients with essential thrombocythemia (ET), and correlating their mutational profile with disease characteristics/phenotype. Of the 110 subjects studied, 62 carried the JAK2 V617F mutation, 21 had CALR mutations, one carried an MPL (W515) mutation, and 28 had non-mutated JAK2, CALR, and MPL (so-called triple-negative ET). Mutations in JAK2 exon 12 were not detected in any patient. Two ET patients had both CALR and JAK2 V617F mutations. Comparing the hematological parameters of the patients with JAK2 mutations with those of the patients with CALR mutations showed that the ET patients with CALR mutations were younger (p = 0.045) and had higher platelet counts (p = 0.043). Genotyping for CALR could be a useful diagnostic tool for JAK2/MPL-negative ET, since the data suggest that CALR is much more prevalent than MPL, therefore testing for CALR should be considered in patients who are JAK2 negative as its frequency is almost 20 times that of MPL mutation.

  8. The JAK2 GGCC (46/1) Haplotype in Myeloproliferative Neoplasms: Causal or Random?

    PubMed Central

    Anelli, Luisa; Zagaria, Antonella; Specchia, Giorgina

    2018-01-01

    The germline JAK2 haplotype known as “GGCC or 46/1 haplotype” (haplotypeGGCC_46/1) consists of a combination of single nucleotide polymorphisms (SNPs) mapping in a region of about 250 kb, extending from the JAK2 intron 10 to the Insulin-like 4 (INLS4) gene. Four main SNPs (rs3780367, rs10974944, rs12343867, and rs1159782) generating a “GGCC” combination are more frequently indicated to represent the JAK2 haplotype. These SNPs are inherited together and are frequently associated with the onset of myeloproliferative neoplasms (MPN) positive for both JAK2 V617 and exon 12 mutations. The association between the JAK2 haplotypeGGCC_46/1 and mutations in other genes, such as thrombopoietin receptor (MPL) and calreticulin (CALR), or the association with triple negative MPN, is still controversial. This review provides an overview of the frequency and the role of the JAK2 haplotypeGGCC_46/1 in the pathogenesis of different myeloid neoplasms and describes the hypothetical mechanisms at the basis of the association with JAK2 gene mutations. Moreover, possible clinical implications are discussed, as different papers reported contrasting data about the correlation between the JAK2 haplotypeGGCC_46/1 and blood cell count, survival, or disease progression. PMID:29641446

  9. The JAK2 GGCC (46/1) Haplotype in Myeloproliferative Neoplasms: Causal or Random?

    PubMed

    Anelli, Luisa; Zagaria, Antonella; Specchia, Giorgina; Albano, Francesco

    2018-04-11

    The germline JAK2 haplotype known as "GGCC or 46/1 haplotype" (haplotype GGCC_46/1 ) consists of a combination of single nucleotide polymorphisms (SNPs) mapping in a region of about 250 kb, extending from the JAK2 intron 10 to the Insulin-like 4 ( INLS4 ) gene. Four main SNPs (rs3780367, rs10974944, rs12343867, and rs1159782) generating a "GGCC" combination are more frequently indicated to represent the JAK2 haplotype. These SNPs are inherited together and are frequently associated with the onset of myeloproliferative neoplasms (MPN) positive for both JAK2 V617 and exon 12 mutations. The association between the JAK2 haplotype GGCC_46/1 and mutations in other genes, such as thrombopoietin receptor ( MPL ) and calreticulin ( CALR ), or the association with triple negative MPN, is still controversial. This review provides an overview of the frequency and the role of the JAK2 haplotype GGCC_46/1 in the pathogenesis of different myeloid neoplasms and describes the hypothetical mechanisms at the basis of the association with JAK2 gene mutations. Moreover, possible clinical implications are discussed, as different papers reported contrasting data about the correlation between the JAK2 haplotype GGCC_46/1 and blood cell count, survival, or disease progression.

  10. High mobility group box 1 induces the activation of the Janus kinase 2 and signal transducer and activator of transcription 3 (JAK2/STAT3) signaling pathway in pancreatic acinar cells in rats, while AG490 and rapamycin inhibit their activation.

    PubMed

    Wang, Guoliang; Zhang, Jingchao; Dui, Danhua; Ren, Haoyuan; Liu, Jin

    2016-11-10

    The pathogenesis of severe acute pancreatitis (SAP) remains unclear. The Janus kinase and signal transducer and activator of transcription (JAK/STAT) pathway is important for various cytokines and growth factors. This study investigated the effect of the late inflammatory factor high mobility group box 1 (HMGB1) on the activation of JAK2/STAT3 in pancreatic acinar cells and the inhibitory effects of AG490 (a JAK2 inhibitor) and rapamycin (a STAT3 inhibitor) on this pathway. Rat pancreatic acinar cells were randomly divided into the control, HMGB1, AG490, and rapamycin groups. The mRNA levels of JAK2 and STAT3 at 10, 30, 60, and 120 minutes were detected using reverse transcription polymerase chain reaction (RT-PCR). The protein levels of JAK2 and STAT3 at 60 and 120 minutes were observed using Western blotting. Compared with the control group, the HMGB1 group exhibited significantly increased levels of JAK2 mRNA at each time point; STAT3 mRNA at 30, 60, and 120 minutes; and JAK2 and STAT3 proteins at 60 and 120 minutes (p < 0.01). Compared with the HMGB1 group, the AG490 and rapamycin groups both exhibited significantly decreased levels of JAK2 mRNA at each time point (p < 0.05); STAT3 mRNA at 30, 60, and 120 minutes (p < 0.01); and JAK2 and STAT3 proteins at 60 and 120 minutes (p < 0.01). HMGB1 induces the activation of the JAK2/STAT3 signaling pathway in rat pancreatic acinar cells, and this activation can be inhibited by AG490 and rapamycin. The results of this study may provide new insights for the treatment of SAP.

  11. Loss of mutL homolog-1 (MLH1) expression promotes acquisition of oncogenic and inhibitor-resistant point mutations in tyrosine kinases.

    PubMed

    Springuel, Lorraine; Losdyck, Elisabeth; Saussoy, Pascale; Turcq, Béatrice; Mahon, François-Xavier; Knoops, Laurent; Renauld, Jean-Christophe

    2016-12-01

    Genomic instability drives cancer progression by promoting genetic abnormalities that allow for the multi-step clonal selection of cells with growth advantages. We previously reported that the IL-9-dependent TS1 cell line sequentially acquired activating substitutions in JAK1 and JAK3 upon successive selections for growth factor independent and JAK inhibitor-resistant cells, suggestive of a defect in mutation avoidance mechanisms. In the first part of this paper, we discovered that the gene encoding mutL homolog-1 (MLH1), a key component of the DNA mismatch repair system, is silenced by promoter methylation in TS1 cells. By means of stable ectopic expression and RNA interference methods, we showed that the high frequencies of growth factor-independent and inhibitor-resistant cells with activating JAK mutations can be attributed to the absence of MLH1 expression. In the second part of this paper, we confirm the clinical relevance of our findings by showing that chronic myeloid leukemia relapses upon ABL-targeted therapy correlated with a lower expression of MLH1 messenger RNA. Interestingly, the mutational profile observed in our TS1 model, characterized by a strong predominance of T:A>C:G transitions, was identical to the one described in the literature for primitive cells derived from chronic myeloid leukemia patients. Taken together, our observations demonstrate for the first time a causal relationship between MLH1-deficiency and incidence of oncogenic point mutations in tyrosine kinases driving cell transformation and acquired resistance to kinase-targeted cancer therapies.

  12. Identification of Tyrosine Phosphorylated Proteins by SH2 Domain Affinity Purification and Mass Spectrometry.

    PubMed

    Buhs, Sophia; Gerull, Helwe; Nollau, Peter

    2017-01-01

    Phosphotyrosine signaling plays a major role in the control of many important biological functions such as cell proliferation and apoptosis. Deciphering of phosphotyrosine-dependent signaling is therefore of great interest paving the way for the understanding of physiological and pathological processes of signal transduction. On the basis of the specific binding of SH2 domains to phosphotyrosine residues, we here present an experimental workflow for affinity purification and subsequent identification of tyrosine phosphorylated proteins by mass spectrometry. In combination with SH2 profiling, a broadly applicable platform for the characterization of phosphotyrosine profiles in cell extracts, our pull down strategy enables researchers by now to identify proteins in signaling cascades which are differentially phosphorylated and selectively recognized by distinct SH2 domains.

  13. Astaxanthin Inhibits JAK/STAT-3 Signaling to Abrogate Cell Proliferation, Invasion and Angiogenesis in a Hamster Model of Oral Cancer

    PubMed Central

    Kowshik, J.; Baba, Abdul Basit; Giri, Hemant; Deepak Reddy, G.; Dixit, Madhulika; Nagini, Siddavaram

    2014-01-01

    Identifying agents that inhibit STAT-3, a cytosolic transcription factor involved in the activation of various genes implicated in tumour progression is a promising strategy for cancer chemoprevention. In the present study, we investigated the effect of dietary astaxanthin on JAK-2/STAT-3 signaling in the 7,12-dimethylbenz[a]anthracene (DMBA)-induced hamster buccal pouch (HBP) carcinogenesis model by examining the mRNA and protein expression of JAK/STAT-3 and its target genes. Quantitative RT-PCR, immunoblotting and immunohistochemical analyses revealed that astaxanthin supplementation inhibits key events in JAK/STAT signaling especially STAT-3 phosphorylation and subsequent nuclear translocation of STAT-3. Furthermore, astaxanthin downregulated the expression of STAT-3 target genes involved in cell proliferation, invasion and angiogenesis, and reduced microvascular density, thereby preventing tumour progression. Molecular docking analysis confirmed inhibitory effects of astaxanthin on STAT signaling and angiogenesis. Cell culture experiments with the endothelial cell line ECV304 substantiated the role of astaxanthin in suppressing angiogenesis. Taken together, our data provide substantial evidence that dietary astaxanthin prevents the development and progression of HBP carcinomas through the inhibition of JAK-2/STAT-3 signaling and its downstream events. Thus, astaxanthin that functions as a potent inhibitor of tumour development and progression by targeting JAK/STAT signaling may be an ideal candidate for cancer chemoprevention. PMID:25296162

  14. Coexistence of JAK2 and CALR mutations and their clinical implications in patients with essential thrombocythemia.

    PubMed

    Kang, Min-Gu; Choi, Hyun-Woo; Lee, Jun Hyung; Choi, Yong Jun; Choi, Hyun-Jung; Shin, Jong-Hee; Suh, Soon-Pal; Szardenings, Michael; Kim, Hye-Ran; Shin, Myung-Geun

    2016-08-30

    Janus kinase 2 (JAK2) and calreticulin (CALR) constitute the two most frequent mutations in essential thrombocythemia (ET), and both are reported to be mutually exclusive. Hence, we examined a cohort of 123 myeloproliferative neoplasm (MPN) patients without BCR-ABL1 rearrangement and additional ET patients (n=96) for coexistence of JAK2 and CALR mutations. The frequency of CALR mutations was 20.3% in 123 MPN patients; 31.1% in ET (n=74), 25% in primary myelofibrosis (n=4) and 2.2% in polycythemia vera (n=45). JAK2 and CALR mutations coexisted in 7 (4.2%) of 167 ET patients. Clinical characteristics, progression-free survival (PFS), and elapsed time to achieve partial remission across 4 groups (JAK2+/CALR+, JAK2+/CALR-, JAK2-/CALR+, JAK2-/CALR-) were reviewed. The JAK2+/CALR- group had higher leukocyte counts and hemoglobin levels and more frequent thrombotic events than JAK2-/CALR- group. JAK2 mutations have a greater effect on the disease phenotype and the clinical features of MPN patients rather than do CALR mutation. JAK2+ groups showed a tendency of poor PFS than JAK2- groups regardless of CALR mutation. CALR+ was a predictor of late response to the treatment. Our study also showed that thrombosis was more frequent in ET patients with type 2 CALR mutations than in those with type 1 CALR mutations.

  15. Regulation of tumor cell migration by protein tyrosine phosphatase (PTP)-proline-, glutamate-, serine-, and threonine-rich sequence (PEST)

    PubMed Central

    Zheng, Yanhua; Lu, Zhimin

    2013-01-01

    Protein tyrosine phosphatase (PTP)–proline-, glutamate-, serine-, and threonine-rich sequence (PEST) is ubiquitously expressed and is a critical regulator of cell adhesion and migration. PTP-PEST activity can be regulated transcriptionally via gene deletion or mutation in several types of human cancers or via post-translational modifications, including phosphorylation, oxidation, and caspase-dependent cleavage. PTP-PEST interacts with and dephosphorylates cytoskeletal and focal adhesion-associated proteins. Dephosphorylation of PTP-PEST substrates regulates their enzymatic activities and/or their interaction with other proteins and plays an essential role in the tumor cell migration process. PMID:23237212

  16. The role of JAK-3 in regulating TLR-mediated inflammatory cytokine production in innate immune cells.

    PubMed

    Wang, Huizhi; Brown, Jonathan; Gao, Shegan; Liang, Shuang; Jotwani, Ravi; Zhou, Huaxin; Suttles, Jill; Scott, David A; Lamont, Richard J

    2013-08-01

    The role of JAK-3 in TLR-mediated innate immune responses is poorly understood, although the suppressive function of JAK3 inhibition in adaptive immune response has been well studied. In this study, we found that JAK3 inhibition enhanced TLR-mediated immune responses by differentially regulating pro- and anti- inflammatory cytokine production in innate immune cells. Specifically, JAK3 inhibition by pharmacological inhibitors or specific small interfering RNA or JAK3 gene knockout resulted in an increase in TLR-mediated production of proinflammatory cytokines while concurrently decreasing the production of IL-10. Inhibition of JAK3 suppressed phosphorylation of PI3K downstream effectors including Akt, mammalian target of rapamycin complex 1, glycogen synthase kinase 3β (GSK3β), and CREB. Constitutive activation of Akt or inhibition of GSK3β abrogated the capability of JAK3 inhibition to enhance proinflammatory cytokines and suppress IL-10 production. In contrast, inhibition of PI3K enhanced this regulatory ability of JAK3 in LPS-stimulated monocytes. At the transcriptional level, JAK3 knockout lead to the increased phosphorylation of STATs that could be attenuated by neutralization of de novo inflammatory cytokines. JAK3 inhibition exhibited a GSK3 activity-dependent ability to enhance phosphorylation levels and DNA binding of NF-κB p65. Moreover, JAK3 inhibition correlated with an increased CD4(+) T cell response. Additionally, higher neutrophil infiltration, IL-17 expression, and intestinal epithelium erosion were observed in JAK3 knockout mice. These findings demonstrate the negative regulatory function of JAK3 and elucidate the signaling pathway by which JAK3 differentially regulates TLR-mediated inflammatory cytokine production in innate immune cells.

  17. Giant hub Src and Syk tyrosine kinase thermodynamic profiles recapitulate evolution

    NASA Astrophysics Data System (ADS)

    Phillips, J. C.

    2017-10-01

    Thermodynamic scaling theory, previously applied mainly to small proteins, here analyzes quantitative evolution of the titled functional network giant hub enzymes. The broad domain structure identified homologically is confirmed hydropathically using amino acid sequences only. The most surprising results concern the evolution of the tyrosine kinase globular surface roughness from avians to mammals, which is first order, compared to the evolution within mammals from rodents to humans, which is second order. The mystery of the unique amide terminal region of proto oncogene tyrosine protein kinase is resolved by the discovery there of a rare hydroneutral septad targeting cluster, which is paralleled by an equally rare octad catalytic cluster in tyrosine kinase in humans and a few other species (cat and dog). These results, which go far towards explaining why these proteins are among the largest giant hubs in protein interaction networks, use no adjustable parameters.

  18. Integrating non-coding RNAs in JAK-STAT regulatory networks

    PubMed Central

    Witte, Steven; Muljo, Stefan A

    2014-01-01

    Being a well-characterized pathway, JAK-STAT signaling serves as a valuable paradigm for studying the architecture of gene regulatory networks. The discovery of untranslated or non-coding RNAs, namely microRNAs and long non-coding RNAs, provides an opportunity to elucidate their roles in such networks. In principle, these regulatory RNAs can act as downstream effectors of the JAK-STAT pathway and/or affect signaling by regulating the expression of JAK-STAT components. Examples of interactions between signaling pathways and non-coding RNAs have already emerged in basic cell biology and human diseases such as cancer, and can potentially guide the identification of novel biomarkers or drug targets for medicine. PMID:24778925

  19. Actin Polymerization: An Event Regulated by Tyrosine Phosphorylation During Buffalo Sperm Capacitation.

    PubMed

    Naresh, S; Atreja, S K

    2015-12-01

    In the female reproductive tract, the spermatozoa undergo a series of physiological and biochemical changes, prior to gaining the ability to fertilize, that result to capacitation. However, the actin polymerization and protein tyrosine phosphorylation are the two necessary steps for capacitation. In this study, we have demonstrated the actin polymerization and established the correlation between protein tyrosine phosphorylation and actin reorganization during in vitro capacitation in buffalo (Bubalus bubalis) spermatozoa. Indirect immunofluorescence and Western blot techniques were used to detect actin polymerization and tyrosine phosphorylation. The time-dependent fluorimetric studies revealed that the actin polymerization starts from the tail region and progressed towards the head region of spermatozoa during capacitation. The lysophosphatidyl choline (LPC)-induced acrosome reaction (AR) stimulated quick actin depolymerization. The inhibitor cytochalasin D (CD) blocked the in vitro capacitation by inhibiting the actin polymerization. In addition, we also performed different inhibitor (Genistein, H-89, PD9809 and GF-109) and enhancer (dbcAMP, H(2)O(2) and vanadate) studies on actin tyrosine phosphorylation and actin polymerization. The inhibitors of tyrosine phosphorylation inhibit actin tyrosine phosphorylation and polymerization, whereas enhancers of tyrosine phosphorylation stimulate F-actin formation and tyrosine phosphorylation. These observations suggest that the tyrosine phosphorylation regulates the actin polymerization, and both are coupled processes during capacitation of buffalo spermatozoa. © 2015 Blackwell Verlag GmbH.

  20. The PLA2R1-JAK2 pathway upregulates ERRα and its mitochondrial program to exert tumor-suppressive action.

    PubMed

    Griveau, A; Devailly, G; Eberst, L; Navaratnam, N; Le Calvé, B; Ferrand, M; Faull, P; Augert, A; Dante, R; Vanacker, J M; Vindrieux, D; Bernard, D

    2016-09-22

    Little is known about the biological role of the phospholipase A2 receptor (PLA2R1) transmembrane protein. In recent years, PLA2R1 has been shown to have an important role in regulating tumor-suppressive responses via JAK2 activation, but the underlying mechanisms are largely undeciphered. In this study, we observed that PLA2R1 increases the mitochondrial content, judged by increased levels of numerous mitochondrial proteins, of the mitochondrial structural component cardiolipin, of the mitochondrial DNA content, and of the mitochondrial DNA replication and transcription factor TFAM. This effect of PLA2R1 relies on a transcriptional program controlled by the estrogen-related receptor alpha1 (ERRα) mitochondrial master regulator. Expression of ERRα and of its nucleus-encoded mitochondrial targets is upregulated upon PLA2R1 ectopic expression, and this effect is mediated by JAK2. Conversely, downregulation of PLA2R1 decreases the level of ERRα and of its nucleus-encoded mitochondrial targets. Finally, blocking the ERRα-controlled mitochondrial program largely inhibits the PLA2R1-induced tumor-suppressive response. Together, our data document ERRα and its mitochondrial program as downstream effectors of the PLA2R1-JAK2 pathway leading to oncosuppression.

  1. Clinical features of Japanese polycythemia vera and essential thrombocythemia patients harboring CALR, JAK2V617F, JAK2Ex12del, and MPLW515L/K mutations.

    PubMed

    Okabe, Masahiro; Yamaguchi, Hiroki; Usuki, Kensuke; Kobayashi, Yutaka; Kawata, Eri; Kuroda, Junya; Kimura, Shinya; Tajika, Kenji; Gomi, Seiji; Arima, Nobuyoshi; Mori, Sinichiro; Ito, Shigeki; Koizumi, Masayuki; Ito, Yoshikazu; Wakita, Satoshi; Arai, Kunihito; Kitano, Tomoaki; Kosaka, Fumiko; Dan, Kazuo; Inokuchi, Koiti

    2016-01-01

    The risk of complication of polycythemia vera (PV) and essential thrombocythemia (ET) by thrombosis in Japanese patients is clearly lower than in western populations, suggesting that genetic background such as race may influence the clinical features. This study aimed to clarify the relationship between genetic mutations and haplotypes and clinical features in Japanese patients with PV and ET. Clinical features were assessed prospectively among 74 PV and 303 ET patients. There were no clinical differences, including JAK2V617F allele burden, between PV patients harboring the various genetic mutations. However, CALR mutation-positive ET patients had a significantly lower WBC count, Hb value, Ht value, and neutrophil alkaline phosphatase score (NAP), and significantly more platelets, relative to JAK2V617F-positive ET patients and ET patients with no mutations. Compared to normal controls, the frequency of the JAK246/1 haplotype was significantly higher among patients with JAK2V617F, JAK2Ex12del, or MPL mutations, whereas no significant difference was found among CALR mutation-positive patients. CALR mutation-positive patients had a lower incidence of thrombosis relative to JAK2V617F-positive patients. Our findings suggest that JAK2V617F-positive ET patients and CALR mutation-positive patients have different mechanisms of occurrence and clinical features of ET, suggesting the potential need for therapy stratification in the future. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. The Nonreceptor Protein Tyrosine Phosphatase PTP1B Binds to the Cytoplasmic Domain of N-Cadherin and Regulates the Cadherin–Actin Linkage

    PubMed Central

    Balsamo, Janne; Arregui, Carlos; Leung, TinChung; Lilien, Jack

    1998-01-01

    Cadherin-mediated adhesion depends on the association of its cytoplasmic domain with the actin-containing cytoskeleton. This interaction is mediated by a group of cytoplasmic proteins: α-and β- or γ- catenin. Phosphorylation of β-catenin on tyrosine residues plays a role in controlling this association and, therefore, cadherin function. Previous work from our laboratory suggested that a nonreceptor protein tyrosine phosphatase, bound to the cytoplasmic domain of N-cadherin, is responsible for removing tyrosine-bound phosphate residues from β-catenin, thus maintaining the cadherin–actin connection (Balsamo et al., 1996). Here we report the molecular cloning of the cadherin-associated tyrosine phosphatase and identify it as PTP1B. To definitively establish a causal relationship between the function of cadherin-bound PTP1B and cadherin-mediated adhesion, we tested the effect of expressing a catalytically inactive form of PTP1B in L cells constitutively expressing N-cadherin. We find that expression of the catalytically inactive PTP1B results in reduced cadherin-mediated adhesion. Furthermore, cadherin is uncoupled from its association with actin, and β-catenin shows increased phosphorylation on tyrosine residues when compared with parental cells or cells transfected with the wild-type PTP1B. Both the transfected wild-type and the mutant PTP1B are found associated with N-cadherin, and recombinant mutant PTP1B binds to N-cadherin in vitro, indicating that the catalytically inactive form acts as a dominant negative, displacing endogenous PTP1B, and rendering cadherin nonfunctional. Our results demonstrate a role for PTP1B in regulating cadherin-mediated cell adhesion. PMID:9786960

  3. OPB-31121, a novel small molecular inhibitor, disrupts the JAK2/STAT3 pathway and exhibits an antitumor activity in gastric cancer cells.

    PubMed

    Kim, Mi-Jung; Nam, Hyun-Jin; Kim, Hwang-Phill; Han, Sae-Won; Im, Seock-Ah; Kim, Tae-You; Oh, Do-Youn; Bang, Yung-Jue

    2013-07-10

    We investigated the mechanisms of action and antitumor effects of OPB-31121, a novel STAT3 inhibitor, in gastric cancer cells. OPB-31121 downregulated JAK2 and gp130 expression and inhibited JAK2 phosphorylation which leads to inhibition of STAT3 phosphorylation. OPB-31121 inhibited constitutively activated and IL-6-induced JAK/STAT signaling pathway. OPB-31121 decreased cell proliferation in both gastric cancer cells and in a xenograft model, induced the apoptosis of gastric cancer cells, inhibited the expression of antiapoptotic proteins, and showed synergism with 5-fluorouracil and cisplatin. Taken together, our study suggests that STAT3 inhibition with OPB-31121 can be tested in patients with gastric cancer. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  4. A multi-level model accounting for the effects of JAK2-STAT5 signal modulation in erythropoiesis.

    PubMed

    Lai, Xin; Nikolov, Svetoslav; Wolkenhauer, Olaf; Vera, Julio

    2009-08-01

    We develop a multi-level model, using ordinary differential equations, based on quantitative experimental data, accounting for murine erythropoiesis. At the sub-cellular level, the model includes a description of the regulation of red blood cell differentiation through Epo-stimulated JAK2-STAT5 signalling activation, while at the cell population level the model describes the dynamics of (STAT5-mediated) red blood cell differentiation from their progenitors. Furthermore, the model includes equations depicting the hypoxia-mediated regulation of hormone erythropoietin blood levels. Take all together, the model constitutes a multi-level, feedback loop-regulated biological system, involving processes in different organs and at different organisational levels. We use our model to investigate the effect of deregulation in the proteins involved in the JAK2-STAT5 signalling pathway in red blood cells. Our analysis results suggest that down-regulation in any of the three signalling system components affects the hematocrit level in an individual considerably. In addition, our analysis predicts that exogenous Epo injection (an already existing treatment for several blood diseases) may compensate the effects of single down-regulation of Epo hormone level, STAT5 or EpoR/JAK2 expression level, and that it may be insufficient to counterpart a combined down-regulation of all the elements in the JAK2-STAT5 signalling cascade.

  5. Pervanadate induces Mammalian Ste20 Kinase 3 (MST3) tyrosine phosphorylation but not activation.

    PubMed

    Kan, Wei-Chih; Lu, Te-Ling; Ling, Pin; Lee, Te-Hsiu; Cho, Chien-Yu; Huang, Chi-Ying F; Jeng, Wen-Yih; Weng, Yui-Ping; Chiang, Chun-Yen; Wu, Jin Bin; Lu, Te-Jung

    2016-07-01

    The yeast Ste20 (sterile) protein kinase, which is a serine/threonine kinase, responds to the stimulation of the G proteincoupled receptor (GPCR) pheromone receptor. Ste20 protein kinase serves as the critical component that links signaling from the GPCR/G proteins to the mitogen-activated protein kinase (MAPK) cascade in yeast. The yeast Ste20p functions as a MAP kinase kinase kinase kinase (MAP4K) in the pheromone response. Ste20-like kinases are structurally conserved from yeast to mammals. The mechanism by which MAP4K links GPCR to the MAPK pathway is less clearly defined in vertebrates. In addition to MAP4K, the tyrosine kinase cascade bridges G proteins and the MAPK pathway in vertebrate cells. Mammalian Ste20 Kinase 3 (MST3) has been categorized into the Ste20 family and has been reported to function in the regulation of cell polarity and migration. However, whether MST3 tyrosine phosphorylation regulates diverse signaling pathways is unknown. In this study, the tyrosine phosphatase inhibitor pervanadate was found to induce MST3 tyrosine phosphorylation in intact cells, and the activity of tyrosine-phosphorylated MST3 was measured. This tyrosine-directed phosphorylation was independent of MST3 activity. Parameters including protein conformation, Triton concentration and ionic concentration influenced the sensitivity of MST3 activity. Taken together, our data suggests that the serine/threonine kinase MST3 undergoes tyrosinedirected phosphorylation. The tyrosine-phosphorylated MST3 may create a docking site for the structurally conserved SH2/SH3 (Src Homology 2 and 3) domains within the Src oncoprotein. The unusual tyrosinephosphorylated MST3 may recruit MST3 to various signaling components. Copyright © 2016. Published by Elsevier Inc.

  6. Protein tyrosine phosphatase 1B is a mediator of cyclic ADP ribose-induced Ca2+ signaling in ventricular myocytes.

    PubMed

    Park, Seon-Ah; Hong, Bing-Zhe; Ha, Ki-Chan; Kim, Uh-Hyun; Han, Myung-Kwan; Kwak, Yong-Geun

    2017-06-02

    Cyclic ADP-ribose (cADPR) releases Ca 2+ from ryanodine receptor (RyR)-sensitive calcium pools in various cell types. In cardiac myocytes, the physiological levels of cADPR transiently increase the amplitude and frequency of Ca 2+ (that is, a rapid increase and decrease of calcium within one second) during the cardiac action potential. In this study, we demonstrated that cADPR levels higher than physiological levels induce a slow and gradual increase in the resting intracellular Ca 2+ ([Ca 2+ ] i ) level over 10 min by inhibiting the sarcoendoplasmic reticulum Ca 2+ ATPase (SERCA). Higher cADPR levels mediate the tyrosine-dephosphorylation of α-actin by protein tyrosine phosphatase 1B (PTP1B) present in the endoplasmic reticulum. The tyrosine dephosphorylation of α-actin dissociates phospholamban, the key regulator of SERCA, from α-actin and results in SERCA inhibition. The disruption of the integrity of α-actin by cytochalasin B and the inhibition of α-actin tyrosine dephosphorylation by a PTP1B inhibitor block cADPR-mediated Ca 2+ increase. Our results suggest that levels of cADPR that are relatively higher than normal physiological levels modify calcium homeostasis through the dephosphorylation of α-actin by PTB1B and the subsequent inhibition of SERCA in cardiac myocytes.

  7. Myeloproliferative neoplasms: JAK2 signaling pathway as a central target for therapy.

    PubMed

    Pasquier, Florence; Cabagnols, Xenia; Secardin, Lise; Plo, Isabelle; Vainchenker, William

    2014-09-01

    The discovery of the JAK2V617F mutation followed by the discovery of other genetic abnormalities allowed important progress in the understanding of the pathogenesis and management of myeloproliferative neoplasms (MPN)s. Classical Breakpoint cluster region-Abelson (BCR-ABL)-negative neoplasms include 3 main disorders: essential thrombocythemia (ET), polycythemia vera (PV), and primary myelofibrosis (PMF). Genomic studies have shown that these disorders are more heterogeneous than previously thought with 3 main entities corresponding to different gene mutations: the JAK2 disorder, essentially due to JAK2V617F mutation, which includes nearly all PVs and a majority of ETs and PMFs with a continuum between these diseases and the myeloproliferative leukemia (MPL) and calreticulin (CALR) disorders, which include a fraction of ET and PMF. All of these mutations lead to a JAK2 constitutive activation. Murine models either with JAK2V617F or MPLW515L, but also with JAK2 or MPL germ line mutations found in hereditary thrombocytosis, have demonstrated that they are drivers of myeloproliferation. However, the myeloproliferative driver mutation is still unknown in approximately 15% of ET and PMF, but appears to also target the JAK/Signal Transducer and Activator of Transcription (STAT) pathway. However, other mutations in genes involved in epigenetics or splicing also can be present and can predate or follow mutations in signaling. They are involved either in clonal dominance or in phenotypic changes, more particularly in PMF. They can be associated with leukemic progression and might have an important prognostic value such as additional sex comb-like 1 mutations. Despite this heterogeneity, it is tempting to target JAK2 and its signaling for therapy. However in PMF, Adenosine Tri-Phosphate (ATP)-competitive JAK2 inhibitors have shown their interest, but also their important limitations. Thus, other approaches are required, which are discussed in this review. Copyright © 2014

  8. JAK2V617F mutation is associated with special alleles in essential thrombocythemia.

    PubMed

    Hsiao, Hui-Hua; Liu, Yi-Chang; Tsai, Hui-Jen; Lee, Ching-Ping; Hsu, Jui-Feng; Lin, Sheng-Fung

    2011-03-01

    Janus kinase 2 mutation (JAK2V617F) has been identified in myeloproliferative neoplasms. Furthermore, special single nucleoside polymorphisms (SNPs) have been found to be associated with the JAK2V617F mutation. Therefore, the associations among JAK2V617F and special SNPs and the allelic location between them were investigated in patients with essential thrombocythemia (ET). A total of 61 patients with ET and 106 healthy individuals were enrolled. The PCR-RFLP method was applied to investigate the pattern of three SNPs, rs10974944, rs12343867, and rs12340895. Allele-specific PCR was used to examine the allelic location between rs10974944 and JAK2V617F. Among the patients with ET, 34 (55.7%, 34/61) were JAK2V617F positive (heterozygous) while the other 27 (44.3%, 27/61) were negative, and there were no MPLW515L/K mutations noted. The pattern of special SNPs in JAK2V617F(+) was significantly different from that in normal individuals (p <0.05), while there was no difference between JAK2V617F(-) patients and normal individuals. Allele-specific PCR showed high association of a cis-location between the special G-allele of rs10974944 and JAK2V617F(+). Based on this small numbered study, the results show the association between special SNPs and JAK2V617F mutation and a cis-location between the special G-allelic form of rs10974944 and the JAK2V617F mutation. These data highlight a close relationship between them in patients with ET.

  9. JAK/STAT signaling pathway-mediated immune response in silkworm (Bombyx mori) challenged by Beauveria bassiana.

    PubMed

    Geng, Tao; Lv, Ding-Ding; Huang, Yu-Xia; Hou, Cheng-Xiang; Qin, Guang-Xing; Guo, Xi-Jie

    2016-12-20

    Innate immunity was critical in insects defensive system and able to be induced by Janus kinase/signal transducer and activator of transcription cascade transduction (JAK/STAT) signaling pathway. Currently, it had been identified many JAK/STAT signaling pathway-related genes in silkworm, but little function was known on insect innate immunity. To explore the roles of JAK/STAT pathway in antifungal immune response in silkworm (Bombyx mori) against Beauveria bassiana infection, the expression patterns of B. mori C-type lectin 5 (BmCTL5) and genes encoding 6 components of JAK/STAT signaling pathway in silkworm challenged by B. bassiana were analyzed using quantitative real time PCR. Meanwhile the activation of JAK/STAT signaling pathway by various pathogenic micro-organisms and the affect of JAK/STAT signaling pathway inhibitors on antifungal activity in silkworm hemolymph was also detected. Moreover, RNAi assay of BmCTL5 and the affect on expression levels of signaling factors were also analyzed. We found that JAK/STAT pathway could be obviously activated in silkworm challenged with B. bassiana and had no response to bacteria and B. mori cytoplasmic polyhedrosis virus (BmCPV). However, the temporal expression patterns of JAK/STAT signaling pathway related genes were significantly different. B. mori downstream receptor kinase (BmDRK) might be a positive regulator of JAK/STAT signaling pathway in silkworm against B. bassiana infection. Moreover, antifungal activity assay showed that the suppression of JAK/STAT signaling pathway by inhibitors could significantly inhibit the antifungal activity in hemolymph and resulted in increased sensitivity of silkworm to B. bassiana infection, indicating that JAK/STAT signaling pathway might be involved in the synthesis and secretion of antifungal substances. The results of RNAi assays suggested that BmCTL5 might be one pattern recognition receptors for JAK/STAT signaling pathway in silkworm. These findings yield insights for better

  10. Cytokine-mediated inflammation, tumorigenesis, and disease-associated JAK/STAT/SOCS signaling circuits in the CNS.

    PubMed

    Campbell, Iain L

    2005-04-01

    Cytokines are plurifunctional mediators of cellular communication. The CNS biology of this family of molecules has been explored by transgenic approaches that targeted the expression of individual cytokine genes to specific cells in the CNS of mice. Such transgenic animals exhibit wide-ranging structural and functional alterations that are linked to the development of distinct neuroinflammatory responses and gene expression profiles specific for each cytokine. The unique actions of individual cytokines result from the activation of specific receptor-coupled cellular signal transduction pathways such as the JAK/STAT tyrosine kinase signaling cascade. The cerebral expression of various STATs, their activation, as well as that of the major physiological inhibitors of this pathway, SOCS1 and SOCS3, is highly regulated in a stimulus- and cell-specific fashion. The role of the key IFN signaling molecules STAT1 or STAT2 was studied in transgenic mice (termed GIFN) with astrocyte-production of IFN-alpha that were null or haploinsufficient for these STAT genes. Surprisingly, these animals developed either more severe and accelerated neurodegeneration with calcification and inflammation (GIFN/STAT1 deficient) or severe immunoinflammation and medulloblastoma (GIFN/STAT2 deficient). STAT dysregulation may result in a signal switch phenomenon in which one cytokine acquires the apparent function of an entirely different cytokine. Therefore, for cytokines such as the IFNs, the receptor-coupled signaling process is complex, involving the coexistence of multiple JAK/STAT as well as alternative pathways. The cellular compartmentalization and balance in the activity of these pathways ultimately determines the repertoire and nature of CNS cytokine actions.

  11. Ibrutinib inhibition of Bruton protein-tyrosine kinase (BTK) in the treatment of B cell neoplasms.

    PubMed

    Roskoski, Robert

    2016-11-01

    The Bruton non-receptor protein-tyrosine kinase (BTK), a deficiency of which leads to X-linked agammaglobulinemia, plays a central role in B cell antigen receptor signaling. Owing to the exclusivity of this enzyme in B cells, the acronym could represent B cell tyrosine kinase. BTK is activated by the Lyn and SYK protein kinases following activation of the B cell receptor. BTK in turn catalyzes the phosphorylation and activation of phospholipase Cγ2 leading to the downstream activation of the Ras/RAF/MEK/ERK pathway and the NF-κB pathways. Both pathways participate in the maturation of antibody-producing B cells. The BTK domains include a PH (pleckstrin homology) domain that interacts with membrane-associated phosphatidyl inositol trisphosphate, a TH (TEC homology) domain, which is followed by an SH3, SH2, and finally a protein kinase domain. Dysregulation of B cell receptor signaling occurs in several B cell neoplasms including mantle cell lymphoma, chronic lymphocytic leukemia, and Waldenström macroglobulinemia. Ibrutinib is FDA-approved as first-line or second line treatment for these diseases. The drug binds tightly in the ATP-binding pocket of BTK making salt bridges with residues within the hinge that connects the two lobes of the enzyme; then its unsaturated acrylamide group forms a covalent bond with BTK cysteine 481 to form an inactive adduct. In addition to the treatment of various B cell lymphomas, ibrutinib is under clinical trials for the treatment of numerous solid tumors owing to the role of tumor-promoting inflammation in the pathogenesis of neoplastic diseases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Coordinated Regulation of Insulin Signaling by the Protein Tyrosine Phosphatases PTP1B and TCPTP

    PubMed Central

    Galic, Sandra; Hauser, Christine; Kahn, Barbara B.; Haj, Fawaz G.; Neel, Benjamin G.; Tonks, Nicholas K.; Tiganis, Tony

    2005-01-01

    The protein tyrosine phosphatase PTP1B is a negative regulator of insulin signaling and a therapeutic target for type 2 diabetes. Our previous studies have shown that the closely related tyrosine phosphatase TCPTP might also contribute to the regulation of insulin receptor (IR) signaling in vivo (S. Galic, M. Klingler-Hoffmann, M. T. Fodero-Tavoletti, M. A. Puryer, T. C. Meng, N. K. Tonks, and T. Tiganis, Mol. Cell. Biol. 23:2096-2108, 2003). Here we show that PTP1B and TCPTP function in a coordinated and temporally distinct manner to achieve an overall regulation of IR phosphorylation and signaling. Whereas insulin-induced phosphatidylinositol 3-kinase/Akt signaling was prolonged in both TCPTP−/− and PTP1B−/− immortalized mouse embryo fibroblasts (MEFs), mitogen-activated protein kinase ERK1/2 signaling was elevated only in PTP1B-null MEFs. By using phosphorylation-specific antibodies, we demonstrate that both IR β-subunit Y1162/Y1163 and Y972 phosphorylation are elevated in PTP1B−/− MEFs, whereas Y972 phosphorylation was elevated and Y1162/Y1163 phosphorylation was sustained in TCPTP−/− MEFs, indicating that PTP1B and TCPTP differentially contribute to the regulation of IR phosphorylation and signaling. Consistent with this, suppression of TCPTP protein levels by RNA interference in PTP1B−/− MEFs resulted in no change in ERK1/2 signaling but caused prolonged Akt activation and Y1162/Y1163 phosphorylation. These results demonstrate that PTP1B and TCPTP are not redundant in insulin signaling and that they act to control both common as well as distinct insulin signaling pathways in the same cell. PMID:15632081

  13. The two faces of Janus kinases and their respective STATs in mammary gland development and cancer.

    PubMed

    Wagner, Kay-Uwe; Schmidt, Jeffrey W

    2011-01-01

    Since its discovery as "just another kinase" more than twenty years ago, the family of JAK tyrosine kinases and their respective Signal Transducers and Activators of Transcription (STATs) has been a center of attention in the areas of signal transduction, development, and cancer. The subsequent designation of JAKs as Janus kinases after the mythical two-faced Roman God of the doorways accurately portrays the analogous and sometimes contrasting molecular and biological characteristics of these tyrosine kinases. The two "faces" of JAKs are their structurally similar kinase and pseudo-kinase domains. As essential parts of various transmembrane receptor complexes, these tyrosine kinases function at cellular gateways and relay signals from growth factors to their respective intracellular targets. The multifaceted nature of JAKs becomes evident from their ability to activate specific STATs during distinct phases of normal mammary gland development. Studies in breast cancer cells and genetically engineered mouse models also show that JAK/STAT signaling possesses a "two-faced" role during breast cancer initiation and progression. This review will highlight recent findings about important biological functions of JAKs and STATs during normal mammogenesis, with particular emphasis on the Jak2/Stat5 pathway as well as Jak1/2/Stat3 signaling complexes. In addition, we will discuss how the importance of these signaling networks changes during carcinogenesis. With JAK inhibitors currently under development to treat myeloproliferative disorders, determining the essential functions of JAKs at particular stages of disease initiation and progression is of critical importance to predict the efficacy of these agents for targeted therapies against breast cancer.

  14. The two faces of Janus kinases and their respective STATs in mammary gland development and cancer

    PubMed Central

    Wagner, Kay-Uwe; Schmidt, Jeffrey W.

    2011-01-01

    Since its discovery as “just another kinase” more than twenty years ago, the family of JAK tyrosine kinases and their respective Signal Transducers and Activators of Transcription (STATs) has been a center of attention in the areas of signal transduction, development, and cancer. The subsequent designation of JAKs as Janus kinases after the mythical two-faced Roman God of the doorways accurately portrays the analogous and sometimes contrasting molecular and biological characteristics of these tyrosine kinases. The two “faces” of JAKs are their structurally similar kinase and pseudo-kinase domains. As essential parts of various transmembrane receptor complexes, these tyrosine kinases function at cellular gateways and relay signals from growth factors to their respective intracellular targets. The multifaceted nature of JAKs becomes evident from their ability to activate specific STATs during distinct phases of normal mammary gland development. Studies in breast cancer cells and genetically engineered mouse models also show that JAK/STAT signaling possesses a "two-faced" role during breast cancer initiation and progression. This review will highlight recent findings about important biological functions of JAKs and STATs during normal mammogenesis, with particular emphasis on the Jak2/Stat5 pathway as well as Jak1/2/Stat3 signaling complexes. In addition, we will discuss how the importance of these signaling networks changes during carcinogenesis. With JAK inhibitors currently under development to treat myeloproliferative disorders, determining the essential functions of JAKs at particular stages of disease initiation and progression is of critical importance to predict the efficacy of these agents for targeted therapies against breast cancer. PMID:22279417

  15. Propofol enhances the cisplatin-induced apoptosis on cervical cancer cells via EGFR/JAK2/STAT3 pathway.

    PubMed

    Li, Haoran; Lu, Yan; Pang, Yangyang; Li, Mengjiao; Cheng, Xi; Chen, Jiawei

    2017-02-01

    The main purpose of this study was to evaluate propofol and its combined effect with cisplatin on apoptosis of cervical cancer cells and molecular mechanisms of this phenomenon. The effects of propofol and cisplatin on cell viability and apoptosis were detected by cell counting kit-8 (CCK-8) assay, colony formation assay and flow cytometry assay. Besides, protein expression of EGFR/JAK2/STAT3 pathway was determined by western blot. STAT3 was over-expressed in cervical cancer cells by STAT3 cDNA. Expression of EGFR and STAT3 protein of human tissues was evaluated by immunohistochemistry (IHC) assay. In this study, we found that not only propofol alone could inhibit cervical cancer cells viability but also could increase the inhibitory effect of cisplatin on cervical cancer cells growth. Meanwhile, propofol sensitized cervical cancer cells to cisplatin-induced apoptosis but not affected normal cervical cells. In genetic level, propofol could enhance the anti-tumor effect of cisplatin through EGFR/JAK2/STAT3 pathway. Further studies indicated that overexpression of EGFR and STAT3 is related to poor prognoses in cervical cancer patients, which contributed to confirm the clinical role of combined application of propofol and cisplatin. Propofol enhances the cisplatin-induced cell apoptosis cervical cancer cells via EGFR/JAK2/STAT3 pathway and may be developed as a potential therapeutic agent to treat cervical cancer. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  16. JAK/STAT1 signaling promotes HMGB1 hyperacetylation and nuclear translocation

    PubMed Central

    Lu, Ben; Antoine, Daniel J.; Kwan, Kevin; Lundbäck, Peter; Wähämaa, Heidi; Schierbeck, Hanna; Robinson, Melissa; Van Zoelen, Marieke A. D.; Yang, Huan; Li, Jianhua; Erlandsson-Harris, Helena; Chavan, Sangeeta S.; Wang, Haichao; Andersson, Ulf; Tracey, Kevin J.

    2014-01-01

    Extracellular high-mobility group box (HMGB)1 mediates inflammation during sterile and infectious injury and contributes importantly to disease pathogenesis. The first critical step in the release of HMGB1 from activated immune cells is mobilization from the nucleus to the cytoplasm, a process dependent upon hyperacetylation within two HMGB1 nuclear localization sequence (NLS) sites. The inflammasomes mediate the release of cytoplasmic HMGB1 in activated immune cells, but the mechanism of HMGB1 translocation from nucleus to cytoplasm was previously unknown. Here, we show that pharmacological inhibition of JAK/STAT1 inhibits LPS-induced HMGB1 nuclear translocation. Conversely, activation of JAK/STAT1 by type 1 interferon (IFN) stimulation induces HMGB1 translocation from nucleus to cytoplasm. Mass spectrometric analysis unequivocally revealed that pharmacological inhibition of the JAK/STAT1 pathway or genetic deletion of STAT1 abrogated LPS- or type 1 IFN-induced HMGB1 acetylation within the NLS sites. Together, these results identify a critical role of the JAK/STAT1 pathway in mediating HMGB1 cytoplasmic accumulation for subsequent release, suggesting that the JAK/STAT1 pathway is a potential drug target for inhibiting HMGB1 release. PMID:24469805

  17. Presence of ecto-protein tyrosine phosphatase activity is vital for survival of Setaria cervi, a bovine filarial parasite.

    PubMed

    Singh, Neetu; Heneberg, Petr; Rathaur, Sushma

    2014-10-01

    The ecto protein tyrosine phosphatases (PTP) are known to play a crucial role in the pathogenesis and survival of the intracellular parasites. However, their presence and role in filarial parasites is still unknown. We found a significant amount of tyrosine phosphatase activity in the surface antigen fraction extracted from Setaria cervi (S. cervi), a bovine filarial parasite. An antibody designed against the conserved catalytic core of human protein tyrosine phosphatases, PTP1B cross reacted with a 63 kDa band in the surface antigen. We detected a significant amount of PTP activity in the intact S. cervi adult parasites as well as microfilariae in this study for the first time. This PTP may be localized on the surface of the parasite with an exposed active site available for the external substrates. The PTP activity was also inhibited by sodium orthovanadate and phenyl arsine oxide, specific inhibitors of PTP in both the life stages. The Km and Vmax for PTP in the adult parasites and microfilariae were determined to be 2.574 ± 0.14 mM; 206.3 ± 2.75 μM Pi/h/two parasites and 5.510 ± 0.59 mM; 62.27 ± 2.27 μM Pi/h/10(6) parasites respectively using O-P-L-Tyrosine as substrate. Interestingly, a positive correlation was observed between the inhibition in PTP activity and reduction in the motility/ viability of the parasites when they were subjected to the specific PTP inhibitors (Orthovanadate and Phenyl arsine oxide) for 4 h in the KRB maintenance medium. The activity was also significantly inhibited in the parasites exposed to antifilarial drug/compounds for e.g. Diethylcarbamazine, Acetylsalicylic Acid and SK7, a methyl chalcone. Therefore suggesting a possible role played by PTP in the survival of the parasite, its interaction with the host as well as in the screening of newly synthesized antifilarials/drugs.

  18. Hole hopping through tyrosine/tryptophan chains protects proteins from oxidative damage

    PubMed Central

    Gray, Harry B.; Winkler, Jay R.

    2015-01-01

    Living organisms have adapted to atmospheric dioxygen by exploiting its oxidizing power while protecting themselves against toxic side effects. Reactive oxygen and nitrogen species formed during oxidative stress, as well as high-potential reactive intermediates formed during enzymatic catalysis, could rapidly and irreversibly damage polypeptides were protective mechanisms not available. Chains of redox-active tyrosine and tryptophan residues can transport potentially damaging oxidizing equivalents (holes) away from fragile active sites and toward protein surfaces where they can be scavenged by cellular reductants. Precise positioning of these chains is required to provide effective protection without inhibiting normal function. A search of the structural database reveals that about one third of all proteins contain Tyr/Trp chains composed of three or more residues. Although these chains are distributed among all enzyme classes, they appear with greatest frequency in the oxidoreductases and hydrolases. Consistent with a redox-protective role, approximately half of the dioxygen-using oxidoreductases have Tyr/Trp chain lengths ≥3 residues. Among the hydrolases, long Tyr/Trp chains appear almost exclusively in the glycoside hydrolases. These chains likely are important for substrate binding and positioning, but a secondary redox role also is a possibility. PMID:26195784

  19. Macrophage fusion is controlled by the cytoplasmic protein tyrosine phosphatase PTP-PEST/PTPN12.

    PubMed

    Rhee, Inmoo; Davidson, Dominique; Souza, Cleiton Martins; Vacher, Jean; Veillette, André

    2013-06-01

    Macrophages can undergo cell-cell fusion, leading to the formation of multinucleated giant cells and osteoclasts. This process is believed to promote the proteolytic activity of macrophages toward pathogens, foreign bodies, and extracellular matrices. Here, we examined the role of PTP-PEST (PTPN12), a cytoplasmic protein tyrosine phosphatase, in macrophage fusion. Using a macrophage-targeted PTP-PEST-deficient mouse, we determined that PTP-PEST was not needed for macrophage differentiation or cytokine production. However, it was necessary for interleukin-4-induced macrophage fusion into multinucleated giant cells in vitro. It was also needed for macrophage fusion following implantation of a foreign body in vivo. Moreover, in the RAW264.7 macrophage cell line, PTP-PEST was required for receptor activator of nuclear factor kappa-B ligand (RANKL)-triggered macrophage fusion into osteoclasts. PTP-PEST had no impact on expression of fusion mediators such as β-integrins, E-cadherin, and CD47, which enable macrophages to become fusion competent. However, it was needed for polarization of macrophages, migration induced by the chemokine CC chemokine ligand 2 (CCL2), and integrin-induced spreading, three key events in the fusion process. PTP-PEST deficiency resulted in specific hyperphosphorylation of the protein tyrosine kinase Pyk2 and the adaptor paxillin. Moreover, a fusion defect was induced upon treatment of normal macrophages with a Pyk2 inhibitor. Together, these data argue that macrophage fusion is critically dependent on PTP-PEST. This function is seemingly due to the ability of PTP-PEST to control phosphorylation of Pyk2 and paxillin, thereby regulating cell polarization, migration, and spreading.

  20. Adenovirus-mediated tissue factor pathway inhibitor gene transfer induces apoptosis by blocking the phosphorylation of JAK-2/STAT-3 pathway in vascular smooth muscle cells.

    PubMed

    Fu, Yu; Zhao, Yong; Liu, Yue; Zhu, Yejing; Chi, Jinyu; Hu, Jing; Zhang, Xiaohui; Yin, Xinhua

    2012-10-01

    In our previous study, we have demonstrated that tissue factor pathway inhibitor (TFPI) gene could induce vascular smooth muscle cell (VSMC) apoptosis. This study was conducted to investigate whether the overexpression of the TFPI gene can induce VSMC apoptosis by inhibiting JAK-2/STAT-3 pathway phosphorylation and thereby inhibiting the expression of such downstream targets as the apoptotic protein Bcl-2 and cell cycle protein cyclin D1. The effect of TFPI on the expression of survivin, a central molecule in cell survival, was also investigated. Rat VSMCs were infected with recombinant adenovirus containing either the TFPI (Ad-TFPI) or LacZ (Ad-LacZ) gene or DMEM in vitro. TFPI expression was detected by ELISA. TUNEL staining and electron microscope were carried out to determine the apoptosis of VSMCs. The expression levels of JAK-2, p-JAK-2, STAT-3, p-STAT-3, cyclin D1, Bcl-2 and survivin were examined by western blot analysis. TFPI protein was detected in the TFPI group after gene transfer and the peak expression was at the 3rd day. At the 3rd, 5th and 7th days after gene transfer, the apoptotic rates by TUNEL assay in the TFPI group were 10.91 ± 1.66%, 13.46 ± 1.28% and 17.04 ± 1.95%, respectively, whereas those in the LacZ group were 3.28 ± 0.89%, 4.01 ± 0.72% and 4.89 ± 1.17%, respectively. We observed cell contraction, slight mitochondrial swelling, nuclear pyknosis and apoptotic body formation in TFPI-treated VSMCs using electron microscopy. JAK-2, p-JAK-2, STAT-3, p-STAT-3, cyclin D1 and Bcl-2, which are all involved in the JAK-2/STAT-3 pathway, were detected in the VSMCs on the 3rd, 5th and 7th days after gene transfer, which is consistent with previously demonstrated time points when VSMCs apoptosis occurred. The expression levels of p-JAK-2, p-STAT-3, cyclin D1 and Bcl-2 were significantly decreased over time in the TFPI group (each P<0.05) but not in the Ad-LacZ and DMEM groups. However, this attenuation of expression was not observed for JAK-2

  1. Resveratrol induces cell cycle arrest and apoptosis in malignant NK cells via JAK2/STAT3 pathway inhibition.

    PubMed

    Quoc Trung, Ly; Espinoza, J Luis; Takami, Akiyoshi; Nakao, Shinji

    2013-01-01

    Natural killer (NK) cell malignancies, particularly aggressive NK cell leukaemias and lymphomas, have poor prognoses. Although recent regimens with L-asparaginase substantially improved outcomes, novel therapeutic approaches are still needed to enhance clinical response. Resveratrol, a naturally occurring polyphenol, has been extensively studied for its anti-inflammatory, cardioprotective and anti-cancer activities. In this study, we investigated the potential anti-tumour activities of resveratrol against the NK cell lines KHYG-1, NKL, NK-92 and NK-YS. Resveratrol induced robust G0/G1 cell cycle arrest, significantly suppressed cell proliferation and induced apoptosis in a dose- and time-dependent manner for all four cell lines. In addition, resveratrol suppressed constitutively active STAT3 in all the cell lines and inhibited JAK2 phosphorylation but had no effect on other upstream mediators of STAT3 activation, such as PTEN, TYK2, and JAK1. Resveratrol also induced downregulation of the anti-apoptotic proteins MCL1 and survivin, two downstream effectors of the STAT3 pathway. Finally, resveratrol induced synergistic effect on the apoptotic and antiproliferative activities of L-asparaginase against KHYG-1, NKL and NK-92 cells. These results suggest that resveratrol may have therapeutic potential against NK cell malignancies. Furthermore, our finding that resveratrol is a bonafide JAK2 inhibitor extends its potential benefits to other diseases with dysregulated JAK2 signaling.

  2. Resveratrol Induces Cell Cycle Arrest and Apoptosis in Malignant NK Cells via JAK2/STAT3 Pathway Inhibition

    PubMed Central

    Quoc Trung, Ly; Espinoza, J. Luis; Takami, Akiyoshi; Nakao, Shinji

    2013-01-01

    Natural killer (NK) cell malignancies, particularly aggressive NK cell leukaemias and lymphomas, have poor prognoses. Although recent regimens with L-asparaginase substantially improved outcomes, novel therapeutic approaches are still needed to enhance clinical response. Resveratrol, a naturally occurring polyphenol, has been extensively studied for its anti-inflammatory, cardioprotective and anti-cancer activities. In this study, we investigated the potential anti-tumour activities of resveratrol against the NK cell lines KHYG-1, NKL, NK-92 and NK-YS. Resveratrol induced robust G0/G1 cell cycle arrest, significantly suppressed cell proliferation and induced apoptosis in a dose- and time-dependent manner for all four cell lines. In addition, resveratrol suppressed constitutively active STAT3 in all the cell lines and inhibited JAK2 phosphorylation but had no effect on other upstream mediators of STAT3 activation, such as PTEN, TYK2, and JAK1. Resveratrol also induced downregulation of the anti-apoptotic proteins MCL1 and survivin, two downstream effectors of the STAT3 pathway. Finally, resveratrol induced synergistic effect on the apoptotic and antiproliferative activities of L-asparaginase against KHYG-1, NKL and NK-92 cells. These results suggest that resveratrol may have therapeutic potential against NK cell malignancies. Furthermore, our finding that resveratrol is a bonafide JAK2 inhibitor extends its potential benefits to other diseases with dysregulated JAK2 signaling. PMID:23372833

  3. Insulin receptor substrate proteins create a link between the tyrosine phosphorylation cascade and the Ca2+-ATPases in muscle and heart.

    PubMed

    Algenstaedt, P; Antonetti, D A; Yaffe, M B; Kahn, C R

    1997-09-19

    Following phosphorylation by the insulin receptor kinase, the insulin receptor substrates (IRS)-1 and IRS-2 bind to and activate several Src homology 2 (SH2) domain proteins. To identify novel proteins that interact with IRS proteins in muscle, a human skeletal muscle cDNA expression library was created in the lambdaEXlox system and probed with baculovirus-produced and tyrosine-phosphorylated human IRS-1. One clone of the 10 clones which was positive through three rounds of screening represented the C terminus of the human homologue of the adult fast twitch skeletal muscle Ca2+-ATPase (SERCA1) including the cytoplasmic tail and part of transmembrane region 10. Western blot analysis of extracts of rat muscle demonstrated co-immunoprecipitation of both IRS-1 and IRS-2 with the skeletal muscle Ca2+-ATPase (SERCA1) and the cardiac muscle isoform (SERCA2). In both cases, injection of insulin stimulated a 2- to 6-fold increase in association of which was maximal within 5 min. In primary cultures of aortic smooth muscle cells and C2C12 cells, the insulin-stimulated interaction between IRS proteins and SERCA1 and -2 was dose-dependent with a maximum induction at 100 nM insulin. This interaction was confirmed in a "pull down" experiment using a glutathione S-transferase fusion protein containing the C terminus of the human SERCA isoform and phosphorylated IRS-1 in vitro and could be blocked by a FLVRES-like domain peptide present in the human SERCA sequence. Affinity chromatography of phosphopeptide libraries using the glutathione S-transferase fusion protein of the C terminus of SERCA1 indicated a consensus sequence for binding of XpYGSS; this is identical to potential tyrosine phosphorylation sites at position 431 of human IRS-1 and at position 500 of human IRS-2. In streptozotocin diabetic rats the interaction between IRS proteins and SERCA1 in skeletal muscle and SERCA2 in cardiac muscle was significantly reduced. Taken together, these results indicate that the IRS

  4. Specificity in substrate binding by protein folding catalysts: tyrosine and tryptophan residues are the recognition motifs for the binding of peptides to the pancreas-specific protein disulfide isomerase PDIp.

    PubMed Central

    Ruddock, L. W.; Freedman, R. B.; Klappa, P.

    2000-01-01

    Using a cross-linking approach, we recently demonstrated that radiolabeled peptides or misfolded proteins specifically interact in vitro with two luminal proteins in crude extracts from pancreas microsomes. The proteins were the folding catalysts protein disulfide isomerase (PDI) and PDIp, a glycosylated, PDI-related protein, expressed exclusively in the pancreas. In this study, we explore the specificity of these proteins in binding peptides and related ligands and show that tyrosine and tryptophan residues in peptides are the recognition motifs for their binding by PDIp. This peptide-binding specificity may reflect the selectivity of PDIp in binding regions of unfolded polypeptide during catalysis of protein folding. PMID:10794419

  5. Protein tyrosine phosphatase 1B (PTP1B) is dispensable for IgE-mediated cutaneous reaction in vivo.

    PubMed

    Yang, Ting; Xie, Zhongping; Li, Hua; Yue, Lei; Pang, Zheng; MacNeil, Adam J; Tremblay, Michel L; Tang, Jin-Tian; Lin, Tong-Jun

    2016-01-01

    Mast cells play a critical role in allergic reactions. The cross-linking of FcεRI-bound IgE with multivalent antigen initiates a cascade of signaling events leading to mast cell activation. It has been well-recognized that cross linking of FcεRI mediates tyrosine phosphorylation. However, the mechanism involved in tyrosine dephosphorylation in mast cells is less clear. Here we demonstrated that protein tyrosine phosphatase 1B (PTP1B)-deficient mast cells showed increased IgE-mediated phosphorylation of the signal transducer and activator of transcription 5 (STAT5) and enhanced production of CCL9 (MIP-1γ) and IL-6 in IgE-mediated mast cells activation in vitro. However, IgE-mediated calcium mobilization, β-hexaosaminidase release (degranulation), and phosphorylation of IκB and MAP kinases were not affected by PTP1B deficiency. Furthermore, PTP1B deficient mice showed normal IgE-dependent passive cutaneous anaphylaxis and late phase cutaneous reactions in vivo. Thus, PTP1B specifically regulates IgE-mediated STAT5 pathway, but is redundant in influencing mast cell function in vivo. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Interplay between Janus Kinase/Signal Transducer and Activator of Transcription Signaling Activated by Type I Interferons and Viral Antagonism

    PubMed Central

    Nan, Yuchen; Wu, Chunyan; Zhang, Yan-Jin

    2017-01-01

    Interferons (IFNs), which were discovered a half century ago, are a group of secreted proteins that play key roles in innate immunity against viral infection. The major signaling pathway activated by IFNs is the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway, which leads to the expression of IFN-stimulated genes (ISGs), including many antiviral effectors. Viruses have evolved various strategies with which to antagonize the JAK/STAT pathway to influence viral virulence and pathogenesis. In recent years, notable progress has been made to better understand the JAK/STAT pathway activated by IFNs and antagonized by viruses. In this review, recent progress in research of the JAK/STAT pathway activated by type I IFNs, non-canonical STAT activation, viral antagonism of the JAK/STAT pathway, removing of the JAK/STAT antagonist from viral genome for attenuation, and the potential pathogenesis roles of tyrosine phosphorylation-independent non-canonical STATs activation during virus infection are discussed in detail. We expect that this review will provide new insight into the understanding the complexity of the interplay between JAK/STAT signaling and viral antagonism. PMID:29312301

  7. T cell protein tyrosine phosphatase (TCPTP) deficiency in muscle does not alter insulin signalling and glucose homeostasis in mice.

    PubMed

    Loh, K; Merry, T L; Galic, S; Wu, B J; Watt, M J; Zhang, S; Zhang, Z-Y; Neel, B G; Tiganis, T

    2012-02-01

    Insulin activates insulin receptor protein tyrosine kinase and downstream phosphatidylinositol-3-kinase (PI3K)/Akt signalling in muscle to promote glucose uptake. The insulin receptor can serve as a substrate for the protein tyrosine phosphatase (PTP) 1B and T cell protein tyrosine phosphatase (TCPTP), which share a striking 74% sequence identity in their catalytic domains. PTP1B is a validated therapeutic target for the alleviation of insulin resistance in type 2 diabetes. PTP1B dephosphorylates the insulin receptor in liver and muscle to regulate glucose homeostasis, whereas TCPTP regulates insulin receptor signalling and gluconeogenesis in the liver. In this study we assessed for the first time the role of TCPTP in the regulation of insulin receptor signalling in muscle. We generated muscle-specific TCPTP-deficient (Mck-Cre;Ptpn2(lox/lox)) mice (Mck, also known as Ckm) and assessed the impact on glucose homeostasis and muscle insulin receptor signalling in chow-fed versus high-fat-fed mice. Blood glucose and insulin levels, insulin and glucose tolerance, and insulin-induced muscle insulin receptor activation and downstream PI3K/Akt signalling remained unaltered in chow-fed Mck-Cre;Ptpn2(lox/lox) versus Ptpn2(lox/lox) mice. In addition, body weight, adiposity, energy expenditure, insulin sensitivity and glucose homeostasis were not altered in high-fat-fed Mck-Cre;Ptpn2(lox/lox) versus Ptpn2(lox/lox) mice. These results indicate that TCPTP deficiency in muscle has no effect on insulin signalling and glucose homeostasis, and does not prevent high-fat diet-induced insulin resistance. Thus, despite their high degree of sequence identity, PTP1B and TCPTP contribute differentially to insulin receptor regulation in muscle. Our results are consistent with the notion that these two highly related PTPs make distinct contributions to insulin receptor regulation in different tissues.

  8. Characterization of a yeast sporulation-specific P450 family protein, Dit2, using an in vitro assay to crosslink formyl tyrosine.

    PubMed

    Bemena, Leo D; Mukama, Omar; Wang, Ning; Gao, Xiao-Dong; Nakanishi, Hideki

    2018-02-01

    The outermost layer of the yeast Saccharomyces cerevisiae spore, termed the dityrosine layer, is primarily composed of bisformyl dityrosine. Bisformyl dityrosine is produced in the spore cytosol by crosslinking of two formyl tyrosine molecules, after which it is transported to the nascent spore wall and assembled into the dityrosine layer by an unknown mechanism. A P450 family protein, Dit2, is believed to mediate the crosslinking of bisformyl dityrosine molecules. To characterize Dit2 and gain insight into the biological process of dityrosine layer formation, we performed an in vitro assay to crosslink formyl tyrosine with using permeabilized cells. For an unknown reason, the production of bisformyl dityrosine could not be confirmed under our experimental conditions, but dityrosine was detected in acid hydrolysates of the reaction mixtures in a Dit2 dependent manner. Thus, Dit2 mediated the crosslinking of formyl tyrosine in vitro. Dityrosine was detected when formyl tyrosine, but not tyrosine, was used as a substrate and the reaction required NADPH as a cofactor. Intriguingly, apart from Dit2, we found that the spore wall, but not the vegetative cell wall, contains bisformyl dityrosine crosslinking activity. This activity may be involved in the assembly of the dityrosine layer. © The Authors 2017. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  9. Germline and somatic JAK2 mutations and susceptibility to chronic myeloproliferative neoplasms

    PubMed Central

    2009-01-01

    Myeloproliferative neoplasms (MPNs) are a group of closely related stem-cell-derived clonal proliferative diseases. Most cases are sporadic but first-degree relatives of MPN patients have a five- to seven-fold increased risk for developing an MPN. The tumors of most patients carry a mutation in the Janus kinase 2 gene (JAK2V617F). Recently, three groups have described a strong association of JAK2 germline polymorphisms with MPN in patients positive for JAK2V617F. The somatic mutation occurs primarily on one particular germline JAK2 haplotype, which may account for as much as 50% of the risk to first-degree relatives. This finding provides new directions for unraveling the pathogenesis of MPN. PMID:19490586

  10. Phosphorylation of actin-binding protein (ABP-280; filamin) by tyrosine kinase p56lck modulates actin filament cross-linking.

    PubMed

    Pal Sharma, C; Goldmann, Wolfgang H

    2004-01-01

    Actin-binding protein (ABP-280; filamin) is a phosphoprotein present in the periphery of the cytoplasm where it can cross-link actin filaments, associate with lipid membranes, and bind to membrane surface receptors. Given its function and localization in the cell, we decided to investigate the possibility of whether it serves as substrate for p56lck, a lymphocyte-specific member of the src family of protein tyrosine kinases associated with cell surface glycoproteins. The interaction of p56lck with membrane glycoproteins is important for cell development and functional activation. Here, we show that purified p56lck interacts and catalyzes in vitro kinase reactions. Tyrosine phosphorylation by p56lck is restricted to a single peptide of labeled ABP-280 shown by protease digest. The addition of phorbol ester to cells results in the inhibition of phosphorylation of ABP-280 by p56lck. These results show a decrease in phosphorylation suggesting conformationally induced regulation. Dynamic light scattering confirmed increased actin filament cross-linking due to phosphorylation of ABP-280 by p56lck.

  11. The IGF-I/JAK2-STAT3/miR-21 signaling pathway may be associated with human renal cell carcinoma cell growth.

    PubMed

    Su, Ying; Zhao, An; Cheng, Guoping; Xu, Jingjing; Ji, Enming; Sun, Wenyong

    2017-07-04

    Renal cell carcinoma (RCC) is the highest mortality rate of the genitourinary cancers, and the treatment options are very limited. Thus, identification of molecular mechanisms underlying RCC tumorigenesis, is critical for identifying biomarkers for RCC diagnosis and prognosis. To validate whether the IGF-I/JAK2-STAT3/miR-21 signaling pathway is associated with human RCC cell growth. qRT-PCR and Western blotting were used to detect the mRNA and protein expression levels, respectively. The MTT assay was performed to determine cell survival rate. The Annexin V-FITC/PI apoptosis detection kit was used to detect cell apoptosis. We employed RCC tissues and cell lines (A498; ACHN; Caki-1; Caki-2 and 786-O) in the study. IGF-I, and its inhibitor (NT-157) were administrated to detect the effects of IGF-I on the expression of miR-21 and p-JAK2. JAK2 inhibitor (AG490), and si-STAT3 were used to detect the effects of JAK2/STAT3 signaling pathway on the expression of miR-21. In our study, we firstly showed that the expression levels of IGF-I and miR-21 were up-regulated in RCC tissues and cell lines. After exogenous IGF-I treatment, the expression levels of miR-21, p-IGF-IR and p-JAK2 were significantly increased, whereas NT-157 treatment showed the reversed results. Further study indicated that JAK2 inhibitor or si-STAT3 significantly reversed the IGF-I-induced miR-21 expression level. Finally, we found that IGF-I treatment significantly prompted human RCC cell survival and inhibited cell apoptosis, and NT-157 treatment showed the reversed results. The IGF-I/JAK2-STAT3/miR-21 signaling pathway may be associated with human RCC cell growth.

  12. The JAK2 Inhibitor, AZD1480, Potently Blocks Stat3 Signaling and Oncogenesis in Solid Tumors

    PubMed Central

    Hedvat, Michael; Huszar, Dennis; Herrmann, Andreas; Gozgit, Joseph M.; Schroeder, Anne; Sheehy, Adam; Buettner, Ralf; Proia, David; Kowolik, Claudia M.; Xin, Hong; Armstrong, Brian; Bebernitz, Geraldine; Weng, Shaobu; Wang, Lin; Ye, Minwei; McEachern, Kristen; Chen, Huawei; Morosini, Deborah; Bell, Kirsten; Alimzhanov, Marat; Ioannidis, Stephanos; McCoon, Patricia; Cao, Zhu A.; Yu, Hua; Jove, Richard; Zinda, Michael

    2009-01-01

    Summary Persistent activation of Stat3 is oncogenic and is prevalent in a wide variety of human cancers. Chronic cytokine stimulation is associated with Stat3 activation in some tumors, implicating cytokine receptor-associated Jak family kinases. Using Jak2 inhibitors, we demonstrate a central role of Jaks in modulating basal and cytokine-induced Stat3 activation in human solid tumor cell lines. Inhibition of Jak2 activity is associated with abrogation of Stat3 nuclear translocation and tumorigenesis. The Jak2 inhibitor, AZD1480, suppresses the growth of human solid tumor xenografts harboring persistent Stat3 activity. We demonstrate the essential role of Stat3 downstream of Jaks by inhibition of tumor growth using shRNA targeting Stat3. Our data support a key role of Jak kinase activity in Stat3-dependent tumorigenesis. PMID:19962667

  13. Sequential activation of JAKs, STATs and xanthine dehydrogenase/oxidase by hypoxia in lung microvascular endothelial cells.

    PubMed

    Wang, Guansong; Qian, Pin; Jackson, Fannie R; Qian, Guisheng; Wu, Guangyu

    2008-01-01

    Xanthine dehydrogenase/oxidase (XDH/XO) is associated with various pathological conditions related to the endothelial injury. However, the molecular mechanism underlying the activation of XDH/XO by hypoxia remains largely unknown. In this report, we determined whether the Janus kinases (JAKs) and signal transducers and activators of transcription (STATs) signaling pathway is involved in hypoxia-induced activation of XDH/XO in primary cultures of lung microvascular endothelial cells (LMVEC). We found that hypoxia significantly increased interleukin 6 (IL6) production in a time-dependent manner in LMVEC. Hypoxia also markedly augmented phosphorylation/activation of JAKs (JAK1, JAK2 and JAK3) and the JAK downstream effectors STATs (STAT3 and STAT5). Hypoxia-induced activation of STAT3 was blocked by IL6 antibodies, the JAK inhibitor AG490 and the suppressor of cytokine signaling 3 (SOCS3), implying that hypoxia-promoted IL6 secretion activates the JAK/STAT pathway in LMVEC. Phosphorylation and DNA-binding activity of STAT3 were also inhibited by the p38 MAPK inhibitor SB203580 and the phosphatidylinositol 3-kinase inhibitor LY294002, suggesting that multiple signaling pathways involved in STAT activation by hypoxia. Importantly, hypoxia promoted XDH/XO activation in LMVEC, which was markedly reversed by inhibiting the JAK-STAT pathway using IL6 antibodies, AG490 and SOCS3. These data demonstrated that JAKs, STATs and XDH/XO were sequentially activated by hypoxia. These data provide the first evidence indicating that the JAK-STAT pathway is involved in hypoxia-mediated XDH/XO activation in LMVEC.

  14. Presence of calreticulin mutations in JAK2-negative polycythemia vera.

    PubMed

    Broséus, Julien; Park, Ji-Hye; Carillo, Serge; Hermouet, Sylvie; Girodon, François

    2014-12-18

    Calreticulin (CALR) mutations have been reported in Janus kinase 2 (JAK2)- and myeloproliferative leukemia (MPL)-negative essential thrombocythemia and primary myelofibrosis. In contrast, no CALR mutations have ever been reported in the context of polycythemia vera (PV). Here, we describe 2 JAK2(V617F)-JAK2(exon12)-negative PV patients who presented with a CALR mutation in peripheral granulocytes at the time of diagnosis. In both cases, the CALR mutation was a 52-bp deletion. Single burst-forming units-erythroid (BFU-E) from 1 patient were grown in vitro and genotyped: the same CALR del 52-bp mutation was noted in 31 of the 37 colonies examined; 30 of 31 BFU-E were heterozygous for CALR del 52 bp, and 1 of 31 BFU-E was homozygous for CALR del 52 bp. In summary, although unknown mutations leading to PV cannot be ruled out, our results suggest that CALR mutations can be associated with JAK2-negative PV. © 2014 by The American Society of Hematology.

  15. Identification of potential inhibitors based on compound proposal contest: Tyrosine-protein kinase Yes as a target.

    PubMed

    Chiba, Shuntaro; Ikeda, Kazuyoshi; Ishida, Takashi; Gromiha, M Michael; Taguchi, Y-H; Iwadate, Mitsuo; Umeyama, Hideaki; Hsin, Kun-Yi; Kitano, Hiroaki; Yamamoto, Kazuki; Sugaya, Nobuyoshi; Kato, Koya; Okuno, Tatsuya; Chikenji, George; Mochizuki, Masahiro; Yasuo, Nobuaki; Yoshino, Ryunosuke; Yanagisawa, Keisuke; Ban, Tomohiro; Teramoto, Reiji; Ramakrishnan, Chandrasekaran; Thangakani, A Mary; Velmurugan, D; Prathipati, Philip; Ito, Junichi; Tsuchiya, Yuko; Mizuguchi, Kenji; Honma, Teruki; Hirokawa, Takatsugu; Akiyama, Yutaka; Sekijima, Masakazu

    2015-11-26

    A search of broader range of chemical space is important for drug discovery. Different methods of computer-aided drug discovery (CADD) are known to propose compounds in different chemical spaces as hit molecules for the same target protein. This study aimed at using multiple CADD methods through open innovation to achieve a level of hit molecule diversity that is not achievable with any particular single method. We held a compound proposal contest, in which multiple research groups participated and predicted inhibitors of tyrosine-protein kinase Yes. This showed whether collective knowledge based on individual approaches helped to obtain hit compounds from a broad range of chemical space and whether the contest-based approach was effective.

  16. Identification of potential inhibitors based on compound proposal contest: Tyrosine-protein kinase Yes as a target

    PubMed Central

    Chiba, Shuntaro; Ikeda, Kazuyoshi; Ishida, Takashi; Gromiha, M. Michael; Taguchi, Y-h.; Iwadate, Mitsuo; Umeyama, Hideaki; Hsin, Kun-Yi; Kitano, Hiroaki; Yamamoto, Kazuki; Sugaya, Nobuyoshi; Kato, Koya; Okuno, Tatsuya; Chikenji, George; Mochizuki, Masahiro; Yasuo, Nobuaki; Yoshino, Ryunosuke; Yanagisawa, Keisuke; Ban, Tomohiro; Teramoto, Reiji; Ramakrishnan, Chandrasekaran; Thangakani, A. Mary; Velmurugan, D.; Prathipati, Philip; Ito, Junichi; Tsuchiya, Yuko; Mizuguchi, Kenji; Honma, Teruki; Hirokawa, Takatsugu; Akiyama, Yutaka; Sekijima, Masakazu

    2015-01-01

    A search of broader range of chemical space is important for drug discovery. Different methods of computer-aided drug discovery (CADD) are known to propose compounds in different chemical spaces as hit molecules for the same target protein. This study aimed at using multiple CADD methods through open innovation to achieve a level of hit molecule diversity that is not achievable with any particular single method. We held a compound proposal contest, in which multiple research groups participated and predicted inhibitors of tyrosine-protein kinase Yes. This showed whether collective knowledge based on individual approaches helped to obtain hit compounds from a broad range of chemical space and whether the contest-based approach was effective. PMID:26607293

  17. Intermediate activity of midge antifreeze protein is due to a tyrosine-rich ice-binding site and atypical ice plane affinity.

    PubMed

    Basu, Koli; Wasserman, Samantha S; Jeronimo, Paul S; Graham, Laurie A; Davies, Peter L

    2016-04-01

    An antifreeze protein (AFP) from a midge (Chironomidae) was recently discovered and modelled as a tightly wound disulfide-braced solenoid with a surface-exposed rank of stacked tyrosines. New isoforms of the midge AFP have been identified from RT-PCR and are fully consistent with the model. Although they differ in the number of 10-residue coils, the row of tyrosines that form the putative ice-binding site is conserved. Recombinant midge AFP has been produced, and the properly folded form purified by ice affinity. This monomeric AFP has a distinct circular dichroism spectrum, a melting temperature between 35 and 50 °C and is fully renaturable on cooling. Mutagenesis of the middle tyrosine in the rank of seven eliminates antifreeze activity, whereas mutation of a tyrosine off this predicted ice-binding face had no such effect. This AFP has unusual properties compared to other known AFPs. First, its freezing-point depression activity is intermediate between that of the hyperactive and moderately active AFPs. As with hyperactive AFPs, when midge AFP-bound ice crystals exceed their freezing-point depression, ice grows explosively perpendicular to the c-axis. However, midge AFP does not bind to the basal plane of ice as do hyperactive AFPs, but rather to a pyramidal plane that is at a shallower angle relative to the basal plane than binding planes of moderate AFPs. These properties distinguish midge AFP from all other ice-binding proteins and the intermediate activity level fits well to the modest challenge of protecting newly emerged adult insects from late spring frosts. Nucleotide sequences of new midge AFP isoforms are available in the GenBank database under accession numbers KU094814-8. Sequences will be released after publication. © 2016 Federation of European Biochemical Societies.

  18. Autophagy Facilitates IFN-γ-induced Jak2-STAT1 Activation and Cellular Inflammation*

    PubMed Central

    Chang, Yu-Ping; Tsai, Cheng-Chieh; Huang, Wei-Ching; Wang, Chi-Yun; Chen, Chia-Ling; Lin, Yee-Shin; Kai, Jui-In; Hsieh, Chia-Yuan; Cheng, Yi-Lin; Choi, Pui-Ching; Chen, Shun-Hua; Chang, Shih-Ping; Liu, Hsiao-Sheng; Lin, Chiou-Feng

    2010-01-01

    Autophagy is regulated for IFN-γ-mediated antimicrobial efficacy; however, its molecular effects for IFN-γ signaling are largely unknown. Here, we show that autophagy facilitates IFN-γ-activated Jak2-STAT1. IFN-γ induces autophagy in wild-type but not in autophagy protein 5 (Atg5−/−)-deficient mouse embryonic fibroblasts (MEFs), and, autophagy-dependently, IFN-γ induces IFN regulatory factor 1 and cellular inflammatory responses. Pharmacologically inhibiting autophagy using 3-methyladenine, a known inhibitor of class III phosphatidylinositol 3-kinase, confirms these effects. Either Atg5−/− or Atg7−/− MEFs are, independent of changes in IFN-γ receptor expression, resistant to IFN-γ-activated Jak2-STAT1, which suggests that autophagy is important for IFN-γ signal transduction. Lentivirus-based short hairpin RNA for Atg5 knockdown confirmed the importance of autophagy for IFN-γ-activated STAT1. Without autophagy, reactive oxygen species increase and cause SHP2 (Src homology-2 domain-containing phosphatase 2)-regulated STAT1 inactivation. Inhibiting SHP2 reversed both cellular inflammation and the IFN-γ-induced activation of STAT1 in Atg5−/− MEFs. Our study provides evidence that there is a link between autophagy and both IFN-γ signaling and cellular inflammation and that autophagy, because it inhibits the expression of reactive oxygen species and SHP2, is pivotal for Jak2-STAT1 activation. PMID:20592027

  19. The Tyrosine Sulfate Domain of Fibromodulin Binds Collagen and Enhances Fibril Formation.

    PubMed

    Tillgren, Viveka; Mörgelin, Matthias; Önnerfjord, Patrik; Kalamajski, Sebastian; Aspberg, Anders

    2016-11-04

    Small leucine-rich proteoglycans interact with other extracellular matrix proteins and are important regulators of matrix assembly. Fibromodulin has a key role in connective tissues, binding collagen through two identified binding sites in its leucine-rich repeat domain and regulating collagen fibril formation in vitro and in vivo Some nine tyrosine residues in the fibromodulin N-terminal domain are O-sulfated, a posttranslational modification often involved in protein interactions. The N-terminal domain mimics heparin, binding proteins with clustered basic amino acid residues. Because heparin affects collagen fibril formation, we investigated whether tyrosine sulfate is involved in fibromodulin interactions with collagen. Using full-length fibromodulin and its N-terminal tyrosine-sulfated domain purified from tissue, as well as recombinant fibromodulin fragments, we found that the N-terminal domain binds collagen. The tyrosine-sulfated domain and the leucine-rich repeat domain both bound to three specific sites along the collagen type I molecule, at the N terminus and at 100 and 220 nm from the N terminus. The N-terminal domain shortened the collagen fibril formation lag phase and tyrosine sulfation was required for this effect. The isolated leucine-rich repeat domain inhibited the fibril formation rate, and full-length fibromodulin showed a combination of these effects. The fibrils formed in the presence of fibromodulin or its fragments showed more organized structure. Fibromodulin and its tyrosine sulfate domain remained bound on the formed fiber. Taken together, this suggests a novel, regulatory function for tyrosine sulfation in collagen interaction and control of fibril formation. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Simultaneous screening for JAK2 and calreticulin gene mutations in myeloproliferative neoplasms with high resolution melting.

    PubMed

    Matsumoto, Nariyoshi; Mori, Sayaka; Hasegawa, Hiroo; Sasaki, Daisuke; Mori, Hayato; Tsuruda, Kazuto; Imanishi, Daisuke; Imaizumi, Yoshitaka; Hata, Tomoko; Kaku, Norihito; Kosai, Kousuke; Uno, Naoki; Miyazaki, Yasushi; Yanagihara, Katsunori

    2016-11-01

    Recently, novel calreticulin (CALR) mutations were discovered in Janus kinase 2 (JAK2) non-mutated myelofibrosis (PMF) and essential thrombocythemia (ET) cases, with a frequency of 60-80%. We examined clinical correlations and CALR mutation frequency in our myeloproliferative neoplasms (MPN) cases, and introduce an effective test method for use in clinical practice. We examined 177 samples previously investigated for the JAK2 mutation for differential diagnosis of MPN. JAK2 and CALR mutations were analyzed using melting curve analysis and microchip electrophoresis, respectively. Next, we constructed a test for simultaneous screening of the JAK2 and CALR mutations utilizing high resolution melting (HRM). Among 99 MPN cases, 60 possessed the JAK2 mutation alone. Of the 39 MPN cases without the JAK2 mutation, 14 were positive for the CALR mutation, all of which were ET. Using our novel screening test for the JAK2 and CALR mutations by HRM, the concordance rate of conventional analysis with HRM was 96% for the JAK2 mutation and 95% for the CALR mutation. Our novel simultaneous screening test for the JAK2 and CALR gene mutations with HRM is useful for diagnosis of MPN. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Discovery and Optimization of a Novel Series of Highly Selective JAK1 Kinase Inhibitors.

    PubMed

    Grimster, Neil P; Anderson, Erica; Alimzhanov, Marat; Bebernitz, Geraldine; Bell, Kirsten; Chuaqui, Claudio; Deegan, Tracy; Ferguson, Andrew D; Gero, Thomas; Harsch, Andreas; Huszar, Dennis; Kawatkar, Aarti; Kettle, Jason Grant; Lyne, Paul D; Read, Jon A; Rivard Costa, Caroline; Ruston, Linette; Schroeder, Patricia; Shi, Jie; Su, Qibin; Throner, Scott; Toader, Dorin; Vasbinder, Melissa Marie; Woessner, Richard; Wang, Haixia; Wu, Allan; Ye, Minwei; Zheng, Weijia; Zinda, Michael

    2018-06-01

    Herein, we report the discovery and characterization of a novel series of pyrimidine based JAK1 inhibitors. Optimization of these ATP competitive compounds was guided by X-ray crystallography and a structure-based drug design approach, focusing on selectivity, potency, and pharmaceutical properties. The best compound, 24, displayed remarkable JAK1 selectivity (~1000-fold vs JAK2,3 and TYK2), as well as a good kinase selectivity profile. Moreover, a dose-dependent reduction in pSTAT3, a downstream marker of JAK1 inhibition, was observed when 24 was examined in vivo.

  2. Cilostazol protects mice against myocardium ischemic/reperfusion injury by activating a PPARγ/JAK2/STAT3 pathway.

    PubMed

    Li, Jiangjin; Xiang, Xiaoli; Gong, Xiaoxuan; Shi, Yafei; Yang, Jing; Xu, Zuo

    2017-10-01

    Myocardial ischemia/reperfusion (MIR) injury causes severe arrhythmias and a high lethality. The present study is designed to investigate the effect of cilostazol on MIR injury and the underlying mechaism. We measured the effects of cilostazol on heart function parameters in a mouse model of MIR. Proinflammatory cytokines and apoptosis proteins in the myocardium were examined to investigate the anti-inflammatory and anti-apoptosis ability of cilostazol. The participation of PPARγ/JAK2/STAT3 pathway was investigated. Results showed that the impairment of hemodynamic parameters caused by MIR was attenuated by cilostazol. The IL-6, IL-1β and TNF-a levels were all decreased by cilostazol. Cilostazol also significantly inhibited Bax and cleaved caspase-3 levels and restored the Bcl-2 levels. PPARγ, JAK2 and STAT3 were all activated by cilostazol. Treatment of inhibitors of them abolished the protective effects of cilostazol on cardiac function, myocardial inflammation and apoptosis. In summary, cilostazol alleviated the cardiac function impairment, myocardial inflammation and apoptosis induced by MIR. The results present a novel signaling mechanism that cilostazol protects MIR injury by activating a PPARγ/JAK2/STAT3 pathway. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  3. High Resolution Melting Analysis for JAK2 Exon 14 and Exon 12 Mutations

    PubMed Central

    Rapado, Inmaculada; Grande, Silvia; Albizua, Enriqueta; Ayala, Rosa; Hernández, José-Angel; Gallardo, Miguel; Gilsanz, Florinda; Martinez-Lopez, Joaquin

    2009-01-01

    JAK2 mutations are important criteria for the diagnosis of Philadelphia chromosome-negative myeloproliferative neoplasms. We aimed to assess JAK2 exon 14 and exon 12 mutations by high-resolution melting (HRM) analysis, which allows variation screening. The exon 14 analysis included 163 patients with polycythemia vera, secondary erythrocytoses, essential thrombocythemia, or secondary thrombocytoses, and 126 healthy subjects. The study of exon 12 included 40 JAK2 V617F-negative patients (nine of which had polycythemia vera, and 31 with splanchnic vein thrombosis) and 30 healthy subjects. HRM analyses of JAK2 exons 14 and 12 gave analytical sensitivities near 1% and both intra- and interday coefficients of variation of less than 1%. For HRM analysis of JAK2 exon 14 in polycythemia vera and essential thrombocythemia, clinical sensitivities were 93.5% and 67.9%, clinical specificities were 98.8% and 97.0%, positive predictive values were 93.5% and 79.2%, and negative predictive values were 98.8% and 94.6, respectively. Correlations were observed between the results from HRM and three commonly used analytical methods. The JAK2 exon 12 HRM results agreed completely with those from sequencing analysis, and the three mutations in exon 12 were detected by both methods. Hence, HRM analysis of exons 14 and 12 in JAK2 shows better diagnostic values than three other routinely used methods against which it was compared. In addition, HRM analysis has the advantage of detecting unknown mutations. PMID:19225136

  4. AML1 is overexpressed in patients with myeloproliferative neoplasms and mediates JAK2V617F-independent overexpression of NF-E2

    PubMed Central

    Wang, Wei; Schwemmers, Sven; Hexner, Elizabeth O.

    2010-01-01

    The transcription factor NF-E2 is overexpressed in the majority of patients with polycythemia vera (PV). Concomitantly, 95% of these patients carry the JAK2V617F mutation. Although NF-E2 levels correlate with JAK2V671F allele burden in some PV cohorts, the molecular mechanism causing aberrant NF-E2 expression has not been described. Here we show that NF-E2 expression is also increased in patients with essential thrombocythemia and primary myelofibrosis independent of the presence of the JAK2V617F mutation. Characterization of the NF-E2 promoter revealed multiple functional binding sites for AML1/RUNX-1. Chromatin immunoprecipitation demonstrated AML1 binding to the NF-E2 promoter in vivo. Moreover, AML1 binding to the NF-E2 promoter was significantly increased in granulocytes from PV patients compared with healthy controls. AML1 mRNA expression was elevated in patients with PV, essential thrombocythemia, and primary myelofibrosis both in the presence and absence of JAK2V617F. In addition, AML1 and NF-E2 expression were highly correlated. RNAi-mediated suppression of either AML1 or of its binding partner CBF-β significantly decreased NF-E2 expression. Moreover, expression of the leukemic fusion protein AML/ETO drastically decreased NF-E2 protein levels. Our data identify NF-E2 as a novel AML1 target gene and delineate a role for aberrant AML1 expression in mediating elevated NF-E2 expression in MPN patients. PMID:20339092

  5. Vanillic acid derivatives from the green algae Cladophora socialis as potent protein tyrosine phosphatase 1B inhibitors.

    PubMed

    Feng, Yunjiang; Carroll, Anthony R; Addepalli, Rama; Fechner, Gregory A; Avery, Vicky M; Quinn, Ronald J

    2007-11-01

    A novel vanillic acid derivative (1) and its sulfate adduct (2) were isolated from a green algae, Cladophora socialis. The structures of 1 and 2 were elucidated from NMR and HRESIMS experiments. Both compounds showed potent inhibitory activity against protein tyrosine phosphatase 1B (PTP1B), an enzyme involved in the regulation of insulin cell signaling. Compounds 1 and 2 had IC50 values of 3.7 and 1.7 microM, respectively.

  6. Herpes Simplex Virus 1 UL37 Protein Tyrosine Residues Conserved among All Alphaherpesviruses Are Required for Interactions with Glycoprotein K, Cytoplasmic Virion Envelopment, and Infectious Virus Production

    PubMed Central

    Chouljenko, Dmitry V.; Jambunathan, Nithya; Chouljenko, Vladimir N.; Naderi, Misagh; Brylinski, Michal; Caskey, John R.

    2016-01-01

    ABSTRACT The herpes simplex virus 1 (HSV-1) UL37 protein functions in virion envelopment at trans-Golgi membranes, as well as in retrograde and anterograde transport of virion capsids. Recently, we reported that UL37 interacts with glycoprotein K (gK) and its interacting partner protein UL20 (N. Jambunathan, D. Chouljenko, P. Desai, A. S. Charles, R. Subramanian, V. N. Chouljenko, and K. G. Kousoulas, J Virol 88:5927–5935, 2014, http://dx.doi.org/10.1128/JVI.00278-14), facilitating cytoplasmic virion envelopment. Alignment of UL37 homologs encoded by alphaherpesviruses revealed the presence of highly conserved residues in the central portion of the UL37 protein. A cadre of nine UL37 site-specific mutations were produced and tested for their ability to inhibit virion envelopment and infectious virus production. Complementation analysis revealed that replacement of tyrosines 474 and 480 with alanine failed to complement the UL37-null virus, while all other mutated UL37 genes complemented the virus efficiently. The recombinant virus DC474-480 constructed with tyrosines 474, 476, 477, and 480 mutated to alanine residues produced a gK-null-like phenotype characterized by the production of very small plaques and accumulation of capsids in the cytoplasm of infected cells. Recombinant viruses having either tyrosine 476 or 477 replaced with alanine produced a wild-type phenotype. Immunoprecipitation assays revealed that replacement of all four tyrosines with alanines substantially reduced the ability of gK to interact with UL37. Alignment of HSV UL37 with the human cytomegalovirus and Epstein-Barr virus UL37 homologs revealed that Y480 was conserved only for alphaherpesviruses. Collectively, these results suggest that the UL37 conserved tyrosine 480 residue plays a crucial role in interactions with gK to facilitate cytoplasmic virion envelopment and infectious virus production. IMPORTANCE The HSV-1 UL37 protein is conserved among all herpesviruses, functions in both

  7. Analysis of in vitro interactions of protein tyrosine phosphatase 1B with insulin receptors.

    PubMed

    Wang, X Y; Bergdahl, K; Heijbel, A; Liljebris, C; Bleasdale, J E

    2001-02-28

    One strategy to treat the insulin resistance that is central to type II diabetes mellitus may be to maintain insulin receptors (IR) in the active (tyrosine phosphorylated) form. Because protein tyrosine phosphatase 1B (PTP1B) binds and subsequently dephosphorylates IR, inhibitors of PTP1B-IR binding are potential insulin 'sensitizers.' A Scintillation Proximity Assay (SPA) was developed to characterize and quantitate PTP1B-IR binding. Human IR were solubilized and captured on wheat germ agglutinin (WGA)-coated SPA beads. Subsequent binding of human, catalytically inactive [35S] PTP1B Cys(215)/Ser (PTP1B(C215S)) to the lectin-anchored IR results in scintillation from the SPA beads that can be quantitated. Binding of PTP1B to IR was pH- and divalent cation-sensitive. Ca(2+) and Mn(2+), but not Mg(2+), dramatically attenuated the loss of PTP1B-IR binding observed when pH was raised from 6.2 to 7.8. PTP1B binding to IR from insulin-stimulated cells was much greater than to IR from unstimulated cells and was inhibited by either an antiphosphotyrosine antibody or treatment of IR with alkaline phosphatase, suggesting that tyrosine phosphorylation of IR is required for PTP1B binding. Phosphopeptides modeled after various IR phosphotyrosine domains each only partially inhibited PTP1B-IR binding, indicating that multiple domains of IR are likely involved in binding PTP1B. However, competitive displacement of [35S]PTP1B(C215S) by PTP1B(C215S) fitted best to a single binding site with a K(d) in the range 100-1000 nM, depending upon pH and divalent cations. PNU-200898, a potent and selective inhibitor of PTP1B whose orientation in the active site of PTP1B has been solved, competitively inhibited catalysis and PTP1B-IR binding with equal potency. The results of this novel assay for PTP1B-IR binding suggest that PTP1B binds preferentially to tyrosine phosphorylated IR through its active site and that binding may be susceptible to therapeutic disruption by small molecules.

  8. [Study on JAKs-STATs signal transduction in neonatal rats with PVL].

    PubMed

    Wang, Xi-ge; Xiong, Ying; Guo, Wen-jin; Mu, De-zhi

    2008-09-01

    To examine the changes of JAKs-STATs pathway in the subventricular zone and choroid plexus of neonatal rats with PVL. A PVL model was established by right common carotid artery ligation followed by 4 h 6% oxygen exposure in 2-day-rat, the neonatal rats performed a sham operation, without hypoxia-ischemia were used as the control grobp. The rats were sacrificed at 0 h, 3 h, 6 h, 12 h, 1 d, 3 d. 7 d of HI, and the brain tissues were collected, immunohistochemistry was applied to detect the expression of P-JAK2 and P-STAT3. The expression levels of P-JAK2 and P-STAT3 increased significantly after HI, peaked at 1 d, and remained at a higher level than control until 7 days of HI, the difference was significant (P < 0.01). HI resulted in the activation of JAKs-STATs pathway in the subventricular zone and choroid plexus, and this pathway might participated in the pathophysiological process of PVL.

  9. Treatment and management of myelofibrosis in the era of JAK inhibitors

    PubMed Central

    Keohane, Clodagh; Radia, Deepti H; Harrison, Claire N

    2013-01-01

    Myelofibrosis (MF) can present as a primary disorder or evolve from polycythemia vera (PV) or essential thrombocythemia (ET) to post-PV MF or post-ET MF, respectively. MF is characterized by bone marrow fibrosis, splenomegaly, leukoerythroblastosis, extramedullary hematopoiesis, and a collection of debilitating symptoms. Until recently, the therapeutic options for patients with MF consisted of allogeneic hematopoietic stem cell transplant (alloHSCT), the use of cytoreductive agents (ie, hydroxyurea), splenectomy and splenic irradiation for treatment of splenomegaly, and management of anemia with transfusions, erythropoiesis-stimulating agents (ESAs), androgens, and immunomodulatory agents. However, with increased understanding of the pathogenesis of MF resulting from dysregulated Janus kinase (JAK) signaling, new targeted JAK inhibitor therapies, such as ruxolitinib, are now available. The purpose of this article is to review the clinical features of MF, discuss the use and future of JAK inhibitors, reassess when and how to use conventional MF treatments in the context of JAK inhibitors, and provide a perspective on the future of MF treatment. PMID:23990704

  10. Treatment and management of myelofibrosis in the era of JAK inhibitors.

    PubMed

    Keohane, Clodagh; Radia, Deepti H; Harrison, Claire N

    2013-01-01

    Myelofibrosis (MF) can present as a primary disorder or evolve from polycythemia vera (PV) or essential thrombocythemia (ET) to post-PV MF or post-ET MF, respectively. MF is characterized by bone marrow fibrosis, splenomegaly, leukoerythroblastosis, extramedullary hematopoiesis, and a collection of debilitating symptoms. Until recently, the therapeutic options for patients with MF consisted of allogeneic hematopoietic stem cell transplant (alloHSCT), the use of cytoreductive agents (ie, hydroxyurea), splenectomy and splenic irradiation for treatment of splenomegaly, and management of anemia with transfusions, erythropoiesis-stimulating agents (ESAs), androgens, and immunomodulatory agents. However, with increased understanding of the pathogenesis of MF resulting from dysregulated Janus kinase (JAK) signaling, new targeted JAK inhibitor therapies, such as ruxolitinib, are now available. The purpose of this article is to review the clinical features of MF, discuss the use and future of JAK inhibitors, reassess when and how to use conventional MF treatments in the context of JAK inhibitors, and provide a perspective on the future of MF treatment.

  11. JAK2 (V617F) mutation is not associated with thrombosis in Behcet syndrome.

    PubMed

    Ar, M Cem; Hatemi, Gülen; Ekizoğlu, Seda; Bilgen, Hülya; Saçli, Sevgi; Buyru, A Nur; Soysal, Teoman; Ülkü, Birsen; Yazici, Hasan

    2012-07-01

    The Janus kinase 2(V617F) (JAK2 (V617F)) mutation is an acquired genetic defect that is considered to enhance thrombosis in Philadelphia chromosome-negative myeloproliferative neoplasms (MPNs). Thrombosis is also a well-defined component of Behcet syndrome (BS). The aim of this study was to determine the frequency of JAK2 ( V617F ) mutation in BS-associated thrombosis. A total of 152 patients with BS (62 with thrombosis and 90 without thrombosis) were enrolled. An additional 186 patients with MPNs and 107 healthy blood donors were included to serve as diseased and healthy controls, respectively. None of the patients with BS and healthy controls carried the JAK2 (V617F) mutation, whereas 67% of patients with MPNs were positive for JAK2 ( V617F ). The frequency of thrombosis in patients with MPNs was not statistically different between carriers and non-carriers of JAK2 ( V617F ) mutation. Our data suggest that JAK2 (V617F) is not directly related to thrombosis in MPNs and in other thrombotic entities, such as BS.

  12. Macrophage Fusion Is Controlled by the Cytoplasmic Protein Tyrosine Phosphatase PTP-PEST/PTPN12

    PubMed Central

    Rhee, Inmoo; Davidson, Dominique; Souza, Cleiton Martins; Vacher, Jean

    2013-01-01

    Macrophages can undergo cell-cell fusion, leading to the formation of multinucleated giant cells and osteoclasts. This process is believed to promote the proteolytic activity of macrophages toward pathogens, foreign bodies, and extracellular matrices. Here, we examined the role of PTP-PEST (PTPN12), a cytoplasmic protein tyrosine phosphatase, in macrophage fusion. Using a macrophage-targeted PTP-PEST-deficient mouse, we determined that PTP-PEST was not needed for macrophage differentiation or cytokine production. However, it was necessary for interleukin-4-induced macrophage fusion into multinucleated giant cells in vitro. It was also needed for macrophage fusion following implantation of a foreign body in vivo. Moreover, in the RAW264.7 macrophage cell line, PTP-PEST was required for receptor activator of nuclear factor kappa-B ligand (RANKL)-triggered macrophage fusion into osteoclasts. PTP-PEST had no impact on expression of fusion mediators such as β-integrins, E-cadherin, and CD47, which enable macrophages to become fusion competent. However, it was needed for polarization of macrophages, migration induced by the chemokine CC chemokine ligand 2 (CCL2), and integrin-induced spreading, three key events in the fusion process. PTP-PEST deficiency resulted in specific hyperphosphorylation of the protein tyrosine kinase Pyk2 and the adaptor paxillin. Moreover, a fusion defect was induced upon treatment of normal macrophages with a Pyk2 inhibitor. Together, these data argue that macrophage fusion is critically dependent on PTP-PEST. This function is seemingly due to the ability of PTP-PEST to control phosphorylation of Pyk2 and paxillin, thereby regulating cell polarization, migration, and spreading. PMID:23589331

  13. The insulin-like effect of vanadate on lipolysis in rat adipocytes is not accompanied by an insulin-like effect on tyrosine phosphorylation.

    PubMed

    Mooney, R A; Bordwell, K L; Luhowskyj, S; Casnellie, J E

    1989-01-01

    Tyrosine phosphorylation of the insulin receptor and other intracellular proteins in rat adipocytes was examined using an immunoblot technique with antiphosphotyrosine antibody. Insulin at 10(-7) M increased the tyrosine phosphorylation of the 95K subunit of the insulin receptor (15-fold) and proteins of 180K (7-fold) and 60K (23-fold). Increases in insulin-dependent phosphorylation of the three proteins were detectable at 10(-10) M insulin and attained steady state within 30 sec of insulin (10(-7) M) addition. Small effects of insulin (less than 30% increases) were observed on proteins of 120K and 53K. In contrast to insulin, the effects of vanadate on tyrosine phosphorylation were small and nonspecific. Vanadate increased tyrosine phosphorylation of the 95K insulin receptor beta-subunit and the 120K and 60K proteins similarly, with increases of 1.5- to 3-fold at 1 mM and 2-fold or less at 200 and 50 microM. Vanadate-dependent tyrosine phosphorylation of the 180K protein increased to a maximum of only 30% at 200 microM. Tyrosine phosphorylation of the 53K protein was somewhat larger, approaching 4-fold at 1 mM vanadate. The concentration of insulin and vanadate that inhibited isoproterenol-dependent lipolysis were not comparable to those that increased tyrosine phosphorylation. Vanadate at 1 mM was more potent as an antilipolytic agent than 10(-9) M insulin (93% vs. 81%), yet increased tyrosine phosphorylation of the 95K insulin receptor beta-subunit only as effectively as 10(-10) M insulin (which inhibited lipolysis only 42%). The dissimilar responses were even more pronounced when antilipolysis was compared to tyrosine phosphorylation of the 180K and 60K proteins. For example, insulin at 10(-9) M increased tyrosine phosphorylation of the 180K protein 2.9-fold, while 1 mM vanadate had a negligible effect (10% increase). Thus, vanadate exerts an insulin-like effect on lipolysis, yet its effects on tyrosine phosphorylation differ from those of insulin.

  14. Structure-activity studies of peptidomimetics based on kinase-inhibitory region of suppressors of cytokine signaling 1.

    PubMed

    La Manna, Sara; Lopez-Sanz, Laura; Leone, Marilisa; Brandi, Paola; Scognamiglio, Pasqualina Liana; Morelli, Giancarlo; Novellino, Ettore; Gomez-Guerrero, Carmen; Marasco, Daniela

    2017-11-20

    Suppressors of Cytokine Signaling (SOCS) proteins are negative regulators of JAK proteins that are receptor-associated tyrosine kinases, which play key roles in the phosphorylation and subsequent activation of several transcription factors named STATs. Unlike the other SOCS proteins, SOCS1 and 3 show, in the N-terminal portion, a small kinase inhibitory region (KIR) involved in the inhibition of JAK kinases. Drug discovery processes of compounds based on KIR sequence demonstrated promising in functional in vitro and in inflammatory animal models and we recently developed a peptidomimetic called PS5, as lead compound. Here, we investigated the cellular ability of PS5 to mimic SOCS1 biological functions in vascular smooth muscle cells and simultaneously we set up a new binding assay for the screening and identification of JAK2 binders based on a SPR experiment that revealed more robust with respect to previous ELISAs. On this basis, we designed several peptidomimetics bearing new structural constraints that were analyzed in both affinities toward JAK2 and conformational features through Circular Dichroism and NMR spectroscopies. Introduced chemical modifications provided an enhancement of serum stabilities of new sequences that could aid the design of future mimetic molecules of SOCS1 as novel anti-inflammatory compounds. © 2017 Wiley Periodicals, Inc.

  15. An Extensive Survey of Tyrosine Phosphorylation Revealing New Sites in Human Mammary Epithelial Cells

    PubMed Central

    Heibeck, Tyler H.; Ding, Shi-Jian; Opresko, Lee K.; Zhao, Rui; Schepmoes, Athena A.; Yang, Feng; Tolmachev, Aleksey V.; Monroe, Matthew E.; Camp, David G.; Smith, Richard D.; Wiley, H. Steven; Qian, Wei-Jun

    2010-01-01

    Protein tyrosine phosphorylation represents a central regulatory mechanism in cell signaling. Here we present an extensive survey of tyrosine phosphorylation sites in a normal-derived human mammary epithelial cell line by applying anti-phosphotyrosine peptide immunoaffinity purification coupled with high sensitivity capillary liquid chromatography tandem mass spectrometry. A total of 481 tyrosine phosphorylation sites (covered by 716 unique peptides) from 285 proteins were confidently identified in HMEC following the analysis of both the basal condition and acute stimulation with epidermal growth factor (EGF). The estimated false discovery rate was 1.0% as determined by searching against a scrambled database. Comparison of these data with existing literature showed significant agreement for previously reported sites. However, we observed 281 sites that were not previously reported for HMEC cultures and 29 of which have not been reported for any human cell or tissue system. The analysis showed that the majority of highly phosphorylated proteins were relatively low-abundance. Large differences in phosphorylation stoichiometry for sites within the same protein were also observed, raising the possibility of more important functional roles for such highly phosphorylated pTyr sites. By mapping to major signaling networks, such as the EGF receptor and insulin growth factor-1 receptor signaling pathways, many known proteins involved in these pathways were revealed to be tyrosine phosphorylated, which provides interesting targets for future hypothesis-driven and targeted quantitative studies involving tyrosine phosphorylation in HMEC or other human systems. PMID:19534553

  16. Identification of a novel functional JAK1 S646P mutation in acute lymphoblastic leukemia

    PubMed Central

    Hu, Liangding; Ning, Hongmei; Jiang, Min; Wang, Danhong; Liu, Tingting; Zhang, Bin; Chen, Hu

    2017-01-01

    The survival rate of childhood acute lymphoblastic leukemia (ALL) is approaching 90%, while the prognosis of adults remains poor due to the limited therapeutic approaches. In order to identify new targets for ALL, we performed whole-exome sequencing on four adults with B-ALL and discovered a somatic JAK1 S646P mutation. Sanger sequencing of JAK1 was conducted on 53 ALL patients, and two cases exhibited A639G and P960S mutations separately. Functional studies demonstrated that only JAK1 S646P mutation could activate multiple signaling pathways, drive cytokine-independent cell growth, and promote proliferation of malignant cells in nude mice. Moreover, a high sensitivity to the JAK1/2 inhibitor ruxolitinib was observed in S646P mutant model. Exploration in a total of 209 ALL cases showed that JAK1 mutations occur at a frequency of 10.5% in T-ALL (2/19) and 1.6% in B-ALL (3/190). Collectively, our results suggested that JAK1 S646P is an activating mutation in vitro and in vivo. JAK-STAT pathway might represent a promising therapeutic target for ALL. PMID:28410228

  17. Identification of a novel functional JAK1 S646P mutation in acute lymphoblastic leukemia.

    PubMed

    Li, Qian; Li, Botao; Hu, Liangding; Ning, Hongmei; Jiang, Min; Wang, Danhong; Liu, Tingting; Zhang, Bin; Chen, Hu

    2017-05-23

    The survival rate of childhood acute lymphoblastic leukemia (ALL) is approaching 90%, while the prognosis of adults remains poor due to the limited therapeutic approaches. In order to identify new targets for ALL, we performed whole-exome sequencing on four adults with B-ALL and discovered a somatic JAK1 S646P mutation. Sanger sequencing of JAK1 was conducted on 53 ALL patients, and two cases exhibited A639G and P960S mutations separately. Functional studies demonstrated that only JAK1 S646P mutation could activate multiple signaling pathways, drive cytokine-independent cell growth, and promote proliferation of malignant cells in nude mice. Moreover, a high sensitivity to the JAK1/2 inhibitor ruxolitinib was observed in S646P mutant model. Exploration in a total of 209 ALL cases showed that JAK1 mutations occur at a frequency of 10.5% in T-ALL (2/19) and 1.6% in B-ALL (3/190). Collectively, our results suggested that JAK1 S646P is an activating mutation in vitro and in vivo. JAK-STAT pathway might represent a promising therapeutic target for ALL.

  18. TEC protein tyrosine kinase is involved in the Erk signaling pathway induced by HGF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Feifei; Jiang, Yinan; Zheng, Qiping

    Research highlights: {yields} TEC is rapidly tyrosine-phosphorylated and activated by HGF-stimulation in vivo or after partial hepatectomy in mice. {yields} TEC enhances the activity of Elk and serum response element (SRE) in HGF signaling pathway in hepatocyte. {yields} TEC promotes hepatocyte proliferation through the Erk-MAPK pathway. -- Abstract: Background/aims: TEC, a member of the TEC family of non-receptor type protein tyrosine kinases, has recently been suggested to play a role in hepatocyte proliferation and liver regeneration. This study aims to investigate the putative mechanisms of TEC kinase regulation of hepatocyte differentiation, i.e. to explore which signaling pathway TEC is involvedmore » in, and how TEC is activated in hepatocyte after hepatectomy and hepatocyte growth factor (HGF) stimulation. Methods: We performed immunoprecipitation (IP) and immunoblotting (IB) to examine TEC tyrosine phosphorylation after partial hepatectomy in mice and HGF stimulation in WB F-344 hepatic cells. The TEC kinase activity was determined by in vitro kinase assay. Reporter gene assay, antisense oligonucleotide and TEC dominant negative mutant (TEC{sup KM}) were used to examine the possible signaling pathways in which TEC is involved. The cell proliferation rate was evaluated by {sup 3}H-TdR incorporation. Results: TEC phosphorylation and kinase activity were increased in 1 h after hepatectomy or HGF treatment. TEC enhanced the activity of Elk and serum response element (SRE). Inhibition of MEK1 suppressed TEC phosphorylation. Blocking TEC activity dramatically decreased the activation of Erk. Reduced TEC kinase activity also suppressed the proliferation of WB F-344 cells. These results suggest TEC is involved in the Ras-MAPK pathway and acts between MEK1 and Erk. Conclusions: TEC promotes hepatocyte proliferation and regeneration and is involved in HGF-induced Erk signaling pathway.« less

  19. Postconditioning inhibits myocardial apoptosis during prolonged reperfusion via a JAK2-STAT3-Bcl-2 pathway

    PubMed Central

    2011-01-01

    Background Postconditioning (PostC) inhibits myocardial apoptosis after ischemia-reperfusion (I/R) injury. The JAK2-STAT3 pathway has anti-apoptotic effects and plays an essential role in the late protection of preconditioning. Our aim was to investigate the anti-apoptotic effect of PostC after prolonged reperfusion and the role of the JAK2-STAT3 pathway in the anti-apoptotic effect of PostC. Methods Wistar rats were subjected to 30 minutes ischemia and 2 or 24 hours (h) reperfusion, with or without PostC (three cycles of 10 seconds reperfusion and 10 seconds reocclusion at the onset of reperfusion). Separate groups of rats were treated with a JAK2 inhibitor (AG490) or a PI3K inhibitor (wortmannin) 5 minutes before PostC. Immunohistochemistry was used to analyze Bcl-2 protein levels after reperfusion. mRNA levels of Bcl-2 were detected by qRT-PCR. TTC staining was used to detect myocardial infarction size. Myocardial apoptosis was evaluated by TUNEL staining. Western-blot was used to detect p-STAT3 and p-Akt levels after reperfusion. Results There was more myocardial apoptosis at 24 h vs 2 h after reperfusion in all groups. PostC significantly reduced myocardial apoptosis and elevated Bcl-2 levels at both 2 and 24 hours after reperfusion. PostC increased p-STAT3 and p-Akt levels after reperfusion. Administration of AG490 reduced p-STAT3 and p-Akt levels and attenuated the anti-apoptotic effect of PostC. Wortmannin also reduced p-Akt levels and attenuated the anti-apoptotic effect of PostC but had no effect on p-STAT3 levels. AG490 abrogated the up-regulation of Bcl-2 by PostC. Conclusion PostC may reduce myocardial apoptosis during prolonged reperfusion via a JAK2-STAT3-Bcl-2 pathway. As a downstream target of JAK2 signaling, activation of PI3K/Akt pathway may be necessary in the protection of PostC. PMID:21810244

  20. Epigallocatechin-3-gallate (EGCG) Suppresses the Trafficking of Lymphocytes to Epidermal Melanocytes via Inhibition of JAK2: Its Implication for Vitiligo Treatment.

    PubMed

    Ning, Weixuan; Wang, Suiquan; Dong, Xiaowu; Liu, Dongyin; Fu, Lifang; Jin, Rong; Xu, Aie

    2015-01-01

    Vitiligo is an inflammatory skin disorder in which activated T cells play an important role in its onset and progression. Epigallocatechin-3-gallate (EGCG), the major chemical constituent of green tea, exhibits remarkable anti-oxidative and anti-inflammatory properties. EGCG administration has been confirmed to decrease the risk of vitiligo; however, the underlying mechanism is undetermined. In this study, we proved that EGCG directly inhibited the kinase activity of Janus kinase 2 (JAK2). In primary cultured human melanocytes, EGCG pre-treatment attenuated interferon (IFN)-γ-induced phosphorylation of JAK2 and its downstream signal transducer and activator of transcription (STAT)1 and STAT3 in a dose-dependent manner. We further examined the chemoattractant expression in melanocytes and demonstrated that EGCG significantly inhibited IFN-γ-induced expression of intracellular adhesion molecule (ICAM)-1, CXCL10, and monocyte chemotactic protein (MCP)-1 in human melanocytes. In addition, EGCG reduced the protein levels of the corresponding receptors including CD11a, CXCR3, and CCR2 in human T lymphocytes. As a consequence, adhesion of human T cells to melanocytes induced by IFN-γ was effectively suppressed by EGCG. Taken together, our results provided new evidence for the effectiveness of EGCG in vitiligo treatment and supported JAK2 as a molecular target for vitiligo medicine development.