Science.gov

Sample records for jam da uhhab

  1. Jamitons: Phantom Traffic Jams

    ERIC Educational Resources Information Center

    Kowszun, Jorj

    2013-01-01

    Traffic on motorways can slow down for no apparent reason. Sudden changes in speed by one or two drivers can create a chain reaction that causes a traffic jam for the vehicles that are following. This kind of phantom traffic jam is called a "jamiton" and the article discusses some of the ways in which traffic engineers produce…

  2. Jamming of Semiflexible Polymers

    NASA Astrophysics Data System (ADS)

    Hoy, Robert S.

    2017-02-01

    We study jamming in model freely rotating polymers as a function of chain length N and bond angle θ0. The volume fraction at jamming ϕJ(θ0) is minimal for rigid-rodlike chains (θ0=0 ), and increases monotonically with increasing θ0≤π /2 . In contrast to flexible polymers, marginally jammed states of freely rotating polymers are highly hypostatic, even when bond and angle constraints are accounted for. Large-aspect-ratio (small θ0) chains behave comparably to stiff fibers: resistance to large-scale bending plays a major role in their jamming phenomenology. Low-aspect-ratio (large θ0) chains behave more like flexible polymers, but still jam at much lower densities due to the presence of frozen-in three-body correlations corresponding to the fixed bond angles. Long-chain systems jam at lower ϕ and are more hypostatic at jamming than short-chain systems. Implications of these findings for polymer solidification are discussed.

  3. JAM-A is present in mammalian spermatozoa where it is essential for normal motility.

    PubMed

    Shao, Minghai; Ghosh, Ananya; Cooke, Vesselina G; Naik, Ulhas P; Martin-DeLeon, Patricia A

    2008-01-01

    Junctional adhesion molecules (JAMs) that are expressed in endothelial and epithelial cells and function in tight junction assembly, also perform important roles in testis where the closely-related JAM-A, JAM-B, and JAM-C are found. Disruption of murine Jam-B and Jam-C has varying effects on sperm development and function; however, deletion of Jam-A has not yet been studied. Here we show for the first time that in addition to expression in the Sertoli-Sertoli tight junctions in the seminiferous tubules, the approximately 32 kDa murine JAM-A is present in elongated spermatids and in the plasma membrane of the head and flagellum of sperm. Deletion of Jam-A, using the gene trap technology, results in flagellar defects at the ultrastructural level. In Jam-A-deficient mice, which have reduced litter size, both progressive and hyperactive motility are significantly affected (P<0.0001) before and, more severely, after capacitation. The findings show that JAM-A is involved in sperm tail formation and is essential for normal motility, which may occur via its signal transduction and protein phosphorylation properties. Detection of JAM-A in human sperm proteins indicates that its role may be conserved in sperm motility and that JAM-A may be a candidate gene for the analysis of idiopathic sperm motility defects resulting in male subfertility in the human population.

  4. Mixed jamming method for SAR

    NASA Astrophysics Data System (ADS)

    Zhao, Hong-feng; Zhang, Peng; Wang, Yong-sheng

    2007-11-01

    The mixed jamming method of synthetic aperture radar is analyzed and discussed. The methods of active noise and deception jamming and the signal model of transmitting is described. The raw echo signal of SAR and the model of jammed echo signal are expatiated, the characteristic of SAR and the evaluating method of jamming effect are established. Finally, the mixed jamming imaging of SAR is simulated.

  5. Fragile granular jamming

    SciTech Connect

    Rivera, Michael K; Ecke, Robert E; Bandi, Mahesh M; Kzakala, Florent

    2009-01-01

    We demonstrate experimentally that the route to a jammed state for a set of bi-dispersed frictional disks, subjected to uni-axial compression from a random initial unjammed state, consists of a consolidation state, a fragile jammed state, and finally a rigid jammed state. In the consolidation regime, the pressure on the sides increases very slowly with the packing fraction {phi} and there are no detectable stress chains. In the fragile jammed state, stress chains are visible, the pressure increases exponentially with {phi}, and the fraction of moving disks drops exponentially. Eventually, a final regime where particle displacements are below our resolution and the pressure varies approximately linearly with {phi} is reached. We argue that this scenario is generic for ather mal frictional compressed particles.

  6. Emergent traffic jams

    SciTech Connect

    Nagel, K.; Paczuski, M. |

    1995-04-01

    We study a single-lane traffic model that is based on human driving behavior. The outflow from a traffic jam self-organizes to a critical state of maximum throughput. Small perturbations of the outflow far downstream create emergent traffic jams with a power law distribution {ital P}({ital t}){similar_to}{ital t}{sup {minus}3/2} of lifetimes {ital t}. On varying the vehicle density in a closed system, this critical state separates lamellar and jammed regimes and exhibits 1/{ital f} noise in the power spectrum. Using random walk arguments, in conjunction with a cascade equation, we develop a phenomenological theory that predicts the critical exponents for this transition and explains the self-organizing behavior. These predictions are consistent with all of our numerical results.

  7. Jammed lattice sphere packings

    NASA Astrophysics Data System (ADS)

    Kallus, Yoav; Marcotte, Étienne; Torquato, Salvatore

    2013-12-01

    We generate and study an ensemble of isostatic jammed hard-sphere lattices. These lattices are obtained by compression of a periodic system with an adaptive unit cell containing a single sphere until the point of mechanical stability. We present detailed numerical data about the densities, pair correlations, force distributions, and structure factors of such lattices. We show that this model retains many of the crucial structural features of the classical hard-sphere model and propose it as a model for the jamming and glass transitions that enables exploration of much higher dimensions than are usually accessible.

  8. Shocks near Jamming

    NASA Astrophysics Data System (ADS)

    Gómez, Leopoldo R.; Turner, Ari M.; van Hecke, Martin; Vitelli, Vincenzo

    2012-02-01

    Nonlinear sound is an extreme phenomenon typically observed in solids after violent explosions. But granular media are different. Right when they jam, these fragile and disordered solids exhibit a vanishing rigidity and sound speed, so that even tiny mechanical perturbations form supersonic shocks. Here, we perform simulations in which two-dimensional jammed granular packings are dynamically compressed and demonstrate that the elementary excitations are strongly nonlinear shocks, rather than ordinary phonons. We capture the full dependence of the shock speed on pressure and impact intensity by a surprisingly simple analytical model.

  9. Jamming in granular materials

    NASA Astrophysics Data System (ADS)

    Behringer, Robert P.

    2015-01-01

    Granular materials are one of a class of materials which undergo a transition from mechanically unstable to mechanically stable states as key system parameters change. Pioneering work by Liu and Nagel and O'Hern et al. focused on models consisting of frictionless grains. In this case, density, commonly expressed in terms of the packing fraction, ϕ, is of particular importance. For instance, O'Hern et al. found that there is a minimum ϕ =ϕJ, such that below this value there are no jammed states, and that above this value, all stress-isotropic states are jammed. Recently, simulations and experiments have explored the case of grains with friction. This case is more subtle, and ϕ does not play such a simple role. Recently, several experiments have shown that there exists a range of relatively low ϕ's such that at the same ϕ it is possible to have jammed, unjammed, and fragile states in the sense of Cates et al. This review discusses some of this recent work, and contrasts the cases of jamming for frictionless and frictional granular systems.

  10. The Classroom Traffic Jam

    ERIC Educational Resources Information Center

    Edwards, Arthur W.

    1977-01-01

    The importance of energy conservation is developed in this simulation. Children draw an automobile and then are asked to drive it through the classroom roadways. When a traffic jam results, students offer ways to eliminate it. The importance of mass transportation and car pools is stressed by the teacher. (MA)

  11. Shearing dynamics and jamming density

    NASA Astrophysics Data System (ADS)

    Olsson, Peter; Vâgberg, Daniel; Teitel, Stephen

    2009-03-01

    We study the effect of a shearing dynamics on the properties of a granular system, by examining how the jamming density depends on the preparation of the starting configurations. Whereas the jamming density at point J was obtained by relaxing random configurations [O'Hern et al, Phys. Rev. E 68, 011306 (2003)], we apply this method to configurations obtained after shearing the system at a certain shear rate. We find that the jamming density increases somewhat and that this effect is more pronounced for configurations produced at smaller shear rates. Different measures of the order of the jammed configurations are also discussed.

  12. Ice Jam Data Collection

    DTIC Science & Technology

    1994-03-01

    Sweden, p. 301- LITERATURE CITED 317. Pomerleau, R.T. (1992a) Field ice measurements Beltaos , S . (1978) Field investigations of river ice for...9, LuleA, Sweden, p. 355-371. Proceedings of the 16th Annual Conference of the Beltaos , S ., R. Gerard, S . Petryk and T.D. Association of State...AD- A280 067 Ice Jam Data Collection Kathleen D. White and Jon E. ZufelT March 1994 DTIC S EECTEa @8199M411 aF FI 1,0 Tis EWE’~t a, pm. DTIC QUALFPy

  13. Nonconvex optimization and jamming

    NASA Astrophysics Data System (ADS)

    Kallus, Yoav

    Recent work on the jamming transition of particles with short-range interactions has drawn connections with models based on minimization problems with linear inequality constraints and a concave objective. These properties reduce the continuous optimization problem to a discrete search among the corners of the feasible polytope. I will discuss results from simulations of models with and without quenched disorder, exhibiting critical power laws, scaling collapse, and protocol dependence. These models are also well-suited for study using tools of algebraic topology, which I will discuss briefly. Supported by an Omidyar Fellowship at the Santa Fe Institute.

  14. Jamming in Microfluidic Channels

    NASA Astrophysics Data System (ADS)

    Ortiz, Carlos; Daniels, Karen; Riehn, Robert

    2009-11-01

    We experimentally investigate the flow of a colloid through a microfluidic device. The glass microfluidic device consists of a wide channel with spatially periodic funnels manufactured with photolithographic methods. The device was etched to a depth of about 1 micron that restricts the solid phase of the colloid, fluorescent polystyrene spheres with sub-micron radii, to quasi-2D motion. The liquid phase of the colloid is an aqueous solution with trace amounts of a non-ionic surfactant and with a pH about 2 units above the pKa of the surface groups on the polystyrene spheres to maintain a stable colloid at concentrations high enough to produce jamming. The flow rate of the colloid is controlled by a computer interfaced syringe pump with two controllable modes of operation: a continuous, steady mode that provides a plug-like velocity profile and a discrete, jerky mode that sends compressional waves of specifiable sizes through the colloid. Using fluorescence microscopy, we observe the interactions between the colloid and the glass funnels and investigate how the interaction depends on the funnel geometry. In particular, we investigate the jamming transition from a liquid-like flowing state to a solid-like stationary state.

  15. The simplest model of jamming

    NASA Astrophysics Data System (ADS)

    Franz, Silvio; Parisi, Giorgio

    2016-04-01

    We study a well known neural network model—the perceptron—as a simple statistical physics model of jamming of hard objects. We exhibit two regimes: (1) a convex optimization regime where jamming is hypostatic and non-critical; (2) a non-convex optimization regime where jamming is isostatic and critical. We characterize the critical jamming phase through exponents describing the distribution laws of forces and gaps. Surprisingly we find that these exponents coincide with the corresponding ones recently computed in high dimensional hard spheres. In addition, modifying the perceptron to a random linear programming problem, we show that isostaticity is not a sufficient condition for singular force and gap distributions. For that, fragmentation of the space of solutions (replica symmetry breaking) appears to be a crucial ingredient. We hypothesize universality for a large class of non-convex constrained satisfaction problems with continuous variables.

  16. A thermodynamic unification of jamming

    NASA Astrophysics Data System (ADS)

    Lu, Kevin; Brodsky, E. E.; Kavehpour, H. P.

    2008-05-01

    Fragile materials ranging from sand to fire retardant to toothpaste are able to exhibit both solid and fluid-like properties across the jamming transition. Unlike ordinary fusion, systems of grains, foams and colloids jam and cease to flow under conditions that still remain unknown. Here, we quantify jamming using a thermodynamic approach by accounting for the structural ageing and the shear-induced compressibility of dry sand. Specifically, the jamming threshold is defined using a non-thermal temperature that measures the `fluffiness' of a granular mixture. The thermodynamic model, cast in terms of pressure, temperature and free volume, also successfully predicts the entropic data of five molecular glasses. Notably, the predicted configurational entropy averts the Kauzmann paradox-an unresolved crisis where the configurational entropy becomes negative-entirely. Without any free parameters, the proposed equation-of-state also governs the mechanism of shear banding and the associated features of shear softening and thickness invariance.

  17. Biophysics: Life in a jam

    NASA Astrophysics Data System (ADS)

    Gokhale, Shreyas; Gore, Jeff

    2016-08-01

    Jammed states in growing yeast populations share intriguing similarities with amorphous solids, despite being generated through self-replication. The impact this behaviour has on cell division highlights one way that physical forces regulate biological function.

  18. Diffusion in jammed particle packs

    NASA Astrophysics Data System (ADS)

    Bolintineanu, Dan S.; Silbert, Leonardo E.; Grest, Gary S.; Lechman, Jeremy B.

    2015-03-01

    Diffusive transport in jammed particle packs is of interest for a number of applications, as well as being a potential indicator of structural properties near the jamming point. To this end, we report stochastic simulations of equilibrium diffusion through monodisperse sphere packs near the jamming point in the limit of a perfectly insulating surrounding medium. The time dependence of various diffusion properties is resolved over several orders of magnitude. Two time regimes of expected Fickian diffusion are observed, separated by an intermediate regime of anomalous diffusion. This intermediate regime grows as the particle volume fraction approaches the critical jamming transition. The diffusion behavior is fully controlled by the extent of the contacts between neighboring particles, which in turn depend on proximity to the jamming point. In particular, the mean first passage time associated with the escape of random walkers between neighboring particles is shown to control both the time to recover Fickian diffusion and the long time diffusivity. Scaling laws are established that relate these quantities to the difference between the actual and critical jamming volume fractions. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's NNSA under Contract DE- AC04-94AL85000.

  19. Traffic jam at adjustable tollgates controlled by line length

    NASA Astrophysics Data System (ADS)

    Nagatani, Takashi

    2016-01-01

    We present the stochastic model for the jam formation at the tollgates of which the number is adjusted by synchronizing with the jam's length. We study the jam formation and its fluctuation in front of the adjustable tollgates on a highway. Controlling the number of tollgates has an important effect on the jam formation. The jams are classified into three kinds: (a) localized jam, (b) synchronized jam, and (c) growing jam. The jamming transitions from the localized jam, through the synchronized jam, to the growing jam occur with increasing inflow probability. At an intermediate inflow, the jam fluctuates largely by synchronizing with the number of tollgates. When the inflow probability is higher than the sum of outflow probabilities at tollgates, the jam continues to grow and diverge with time. The dependence of the fluctuating jam on the inflow probability is clarified.

  20. A thermodynamic equation of jamming

    NASA Astrophysics Data System (ADS)

    Lu, Kevin; Pirouz Kavehpour, H.

    2008-03-01

    Materials ranging from sand to fire-retardant to toothpaste are considered fragile, able to exhibit both solid and fluid-like properties across the jamming transition. Guided by granular flow experiments, our equation of jammed states is path-dependent, definable at different athermal equilibrium states. The non-equilibrium thermodynamics based on a structural temperature incorporate physical ageing to address the non-exponential, non-Arrhenious relaxation of granular flows. In short, jamming is simply viewed as a thermodynamic transition that occurs to preserve a positive configurational entropy above absolute zero. Without any free parameters, the proposed equation-of-state governs the mechanism of shear-banding and the associated features of shear-softening and thickness-invariance.

  1. Rapid jamming avoidance in biosonar.

    PubMed

    Gillam, Erin H; Ulanovsky, Nachum; McCracken, Gary F

    2007-03-07

    The sonar systems of bats and dolphins are in many ways superior to man-made sonar and radar systems, and considerable effort has been devoted to understanding the signal-processing strategies underlying these capabilities. A major feature determining the efficiency of sonar systems is the sensitivity to noise and jamming signals. Previous studies indicated that echolocating bats may adjust their signal structure to avoid jamming ('jamming avoidance response'; JAR). However, these studies relied on behavioural correlations and not controlled experiments. Here, we provide the first experimental evidence for JAR in bats. We presented bats (Tadarida brasiliensis) with 'playback stimuli' consisting of recorded echolocation calls at one of six frequencies. The bats exhibited a JAR by shifting their call frequency away from the presented playback frequency. When the approaching bats were challenged by an abrupt change in the playback stimulus, they responded by shifting their call frequencies upwards, away from the playback. Interestingly, even bats initially calling below the playback's frequency shifted their frequencies upwards, 'jumping' over the playback frequency. These spectral shifts in the bats' calls occurred often within less than 200 ms, in the first echolocation call emitted after the stimulus switch-suggesting that rapid jamming avoidance is important for the bat.

  2. Rapid jamming avoidance in biosonar

    PubMed Central

    Gillam, Erin H; Ulanovsky, Nachum; McCracken, Gary F

    2006-01-01

    The sonar systems of bats and dolphins are in many ways superior to man-made sonar and radar systems, and considerable effort has been devoted to understanding the signal-processing strategies underlying these capabilities. A major feature determining the efficiency of sonar systems is the sensitivity to noise and jamming signals. Previous studies indicated that echolocating bats may adjust their signal structure to avoid jamming (‘jamming avoidance response’; JAR). However, these studies relied on behavioural correlations and not controlled experiments. Here, we provide the first experimental evidence for JAR in bats. We presented bats (Tadarida brasiliensis) with ‘playback stimuli’ consisting of recorded echolocation calls at one of six frequencies. The bats exhibited a JAR by shifting their call frequency away from the presented playback frequency. When the approaching bats were challenged by an abrupt change in the playback stimulus, they responded by shifting their call frequencies upwards, away from the playback. Interestingly, even bats initially calling below the playback's frequency shifted their frequencies upwards, ‘jumping’ over the playback frequency. These spectral shifts in the bats' calls occurred often within less than 200 ms, in the first echolocation call emitted after the stimulus switch—suggesting that rapid jamming avoidance is important for the bat. PMID:17254989

  3. Microscopic features of moving traffic jams

    NASA Astrophysics Data System (ADS)

    Kerner, Boris S.; Klenov, Sergey L.; Hiller, Andreas; Rehborn, Hubert

    2006-04-01

    Empirical and numerical microscopic features of moving traffic jams are presented. Based on a single vehicle data analysis, it is found that within wide moving jams, i.e., between the upstream and downstream jam fronts there is a complex microscopic spatiotemporal structure. This jam structure consists of alternations of regions in which traffic flow is interrupted and flow states of low speeds associated with “moving blanks” within the jam. Moving blanks within a wide moving jam resemble electron holes in the valence band of semiconductors: As the moving blanks that propagate upstream appear due to downstream vehicle motion within the jam, so appearance of electron holes moving with the electric field results from electron motion against the electric field in the valence band of semiconductors. Empirical features of moving blanks are found. Based on microscopic models in the context of the Kerner’s three-phase traffic theory, physical reasons for moving blanks emergence within wide moving jams are disclosed. Microscopic nonlinear effects of moving jam emergence, propagation, and dissolution as well as a diverse variety of hysteresis effects in freeway traffic associated with phase transitions and congested traffic propagation are numerically investigated. Microscopic structure of moving jam fronts is numerically studied and compared with empirical results.

  4. The Chaotic Dynamics of Jamming

    NASA Astrophysics Data System (ADS)

    Egolf, David A.; Banigan, Edward J.; Illich, Matthew K.; Stace-Naughton, Derick J.

    2013-03-01

    Despite the appearance of simplicity, much of the behavior of granular materials remains mysterious. One intriguing puzzle is the dynamical mechanism underlying the ``jamming'' transition, in which disordered grains become rigid at high density. By applying nonlinear dynamical techniques to simulated 2D shear cells, we reveal the mechanisms of jamming and find they conflict with the prevailing picture of growing cooperative regions. Additionally, at the density corresponding to random close packing, we find a dynamical transition from chaotic to non-chaotic states accompanied by diverging dynamical length and time scales. Furthermore, we find that the dominant cooperative dynamical modes are strongly correlated with particle rearrangements and become increasingly unstable before stress jumps, providing a way to predict the times and locations of these earthquake-like stress-release events. This work was supported by the U.S. National Science Foundation (DMR-0094178) and Research Corporation.

  5. Statistical Mechanics of Jammed Matter

    NASA Astrophysics Data System (ADS)

    Behringer, Bob

    2009-03-01

    Jammed systems consist of large numbers of macroscopic particles. As such, they are inherently statistical in nature. However, in general, key assumptions of ordinary statistical mechanics need not apply. For instance, energy does not flow in a meaningful way from a thermal bath to such systems. And energy need not be conserved. However, experiments and simulations have shown that there are well defined distributions for such important properties as forces, contact numbers, etc. And new theoretical constructions have been proposed, starting with Edwards et al. The present symposium highlights recent developments for the statistics of jammed matter. This talk reviews the overall field, and highlights recent work in granular systems[1]. Brian Tighe[2] will describe new results from a force ensemble approach proposed recently by Snoeijer et al. Silke Henkes will describe a different force-based ensemble approach that yields a generalized partition function[3]. Eric Corwin will describe state-of-the-art experiments on dense emulsions[4]. And Matthias Schr"oter will present novel experiments on fluidized suspensions that address the issue of jamming and glassy behavior[5]. So, do we have a complete description of jammed matter? Not yet, but these talks, as well as other exciting developments in the field, show that there has been enormous progress, towards that end. [4pt] [1] T. S. Majmudar et al., Nature 435, 1079 (2005); Phys. Rev. Lett. 98 058001 (2007). [0pt] [2] B. P. Tighe, A. R. T. van Eerd, and T. J. H. Vlugt , Phys. Rev. Lett. 100, 238001 (2008). [0pt] [3] S. Henkes, C. O'Hern and B. Chakrabory, Phys. Rev. Lett. 99, 038002 (2007). [0pt] [4] J. Bruji'c et al., Phys. Rev. Lett. 98, 248001 (2007). [0pt] [5] M. Schr"ooter, D. I. Goldman, and H. L. Swinney, Phys. Rev. E 71, 030301(R) (2005).

  6. Dynamic shear jamming in dense suspensions

    NASA Astrophysics Data System (ADS)

    Peters, Ivo; Majumdar, Sayantan; Jaeger, Heinrich

    Shear a dense suspension of cornstarch and water hard enough, and the system seems to solidify as a result. Indeed, previous studies have shown that a jamming front propagates through these systems until, after interaction with boundaries, a jammed solid spans across the system. Because these fully jammed states are only observed if the deformation is fast enough, a natural question to ask is how this phenomenon is related to the discontinuous shear thickening (DST) behavior of these suspensions. We present a single experimental setup in which we on the one hand can measure the rheological flow curves, but on the other hand also determine if the suspension is in a jammed state. This we do by using a large-gap cylindrical Couette cell, where we control the applied shear stress using a rheometer. Because our setup only applies shear, the jammed states we observe are shear-jammed, and cannot be a result of an overall increase in packing fraction. We probe for jammed states by dropping small steel spheres on the surface of the suspension, and identify elastic responses. Our experiments reveal a clear distinction between the onset of DST and Shear-Jammed states, which have qualitatively different trends with packing fraction close to the isotropic jamming point.

  7. FH/MFSK performance in multitone jamming

    NASA Technical Reports Server (NTRS)

    Levitt, B. K.

    1985-01-01

    The performance of frequency-hopped (FH) M-ary frequency-shift keyed (MFSK) signals in partial-band noise was analyzed in the open literature. The previous research is extended to the usually more effective class of multitone jamming. Some objectives researched are: (1) To categorize several different multitone jamming strategies; (2) To analyze the performance of FH/MSFK signaling, both uncoded with diversity, assuming a noncoherent energy detection metric with linear combining and perfect jamming state side information, in the presence of worst case interference for each of these multitone categories; and (3) To compare the effectiveness of the various multitone jamming techniques, and contrast the results with the partial band noise jamming case.

  8. FH/MFSK performance in multitone jamming

    NASA Technical Reports Server (NTRS)

    Levitt, B. K.

    1985-01-01

    The performance of frequency-hopped (FH) M-ary frequency-shift keyed (MFSK) signals in partial-band noise as analyzed in the open literature. The previous research is extended to the usually more effective class of multitone jamming. Some objectives researched are: (1) To categorize several different multitone jamming strategies; (2) To analyze the performance of FH/MSFK signaling, both uncoded with diversity, assuming a noncoherent energy detection metric with linear combining and perfect jamming state side information, in the presence of worst case interference for each of these multitone categories; and (3) To compare the effectiveness of the various multitone jamming techniques, and contrast the results with the partial band noise jamming case.

  9. Electromagnetic anti-jam telemetry tool

    DOEpatents

    Ganesan, Harini; Mayzenberg, Nataliya

    2008-02-12

    A mud-pulse telemetry tool includes a tool housing, a motor disposed in the tool housing, and a magnetic coupling coupled to the motor and having an inner shaft and an outer shaft. The tool may also include a stator coupled to the tool housing, a restrictor disposed proximate the stator and coupled to the magnetic coupling, so that the restrictor and the stator adapted to generate selected pulses in a drilling fluid when the restrictor is selectively rotated. The tool may also include a first anti-jam magnet coupled to the too housing, and an second anti-jam magnet disposed proximate the first anti-jam magnet and coupled to the inner shaft and/or the outer shaft, wherein at least one of the first anti-jam magnet and the second anti-jam magnet is an electromagnet, and wherein the first anti-jam magnet and the second anti-jam magnet are positioned with adjacent like poles.

  10. Murine junctional adhesion molecules JAM-B and JAM-C mediate endothelial and stellate cell interactions during hepatic fibrosis.

    PubMed

    Hintermann, Edith; Bayer, Monika; Ehser, Janine; Aurrand-Lions, Michel; Pfeilschifter, Josef M; Imhof, Beat A; Christen, Urs

    2016-07-03

    Classical junctional adhesion molecules JAM-A, JAM-B and JAM-C influence vascular permeability, cell polarity as well as leukocyte recruitment and immigration into inflamed tissue. As the vasculature becomes remodelled in chronically injured, fibrotic livers we aimed to determine distribution and role of junctional adhesion molecules during this pathological process. Therefore, livers of naïve or carbon tetrachloride-treated mice were analyzed by immunohistochemistry to localize all 3 classical junctional adhesion molecules. Hepatic stellate cells and endothelial cells were isolated and subjected to immunocytochemistry and flow cytometry to determine localization and functionality of JAM-B and JAM-C. Cells were further used to perform contractility and migration assays and to study endothelial tubulogenesis and pericytic coverage by hepatic stellate cells. We found that in healthy tissue, JAM-A was ubiquitously expressed whereas JAM-B and JAM-C were restricted to the vasculature. During fibrosis, JAM-B and JAM-C levels increased in endothelial cells and JAM-C was de novo generated in myofibroblastic hepatic stellate cells. Soluble JAM-C blocked contractility but increased motility in hepatic stellate cells. Furthermore, soluble JAM-C reduced endothelial tubulogenesis and endothelial cell/stellate cell interaction. Thus, during liver fibrogenesis, JAM-B and JAM-C expression increase on the vascular endothelium. More importantly, JAM-C appears on myofibroblastic hepatic stellate cells linking them as pericytes to JAM-B positive endothelial cells. This JAM-B/JAM-C mediated interaction between endothelial cells and stellate cells stabilizes vessel walls and may control the sinusoidal diameter. Increased hepatic stellate cell contraction mediated by JAM-C/JAM-C interaction may cause intrahepatic vasoconstriction, which is a major complication in liver cirrhosis.

  11. Granular jamming transitions for a robotic mechanism

    NASA Astrophysics Data System (ADS)

    Jiang, Allen; Aste, Tomaso; Dasgupta, Prokar; Althoefer, Kaspar; Nanayakkara, Thrishantha

    2013-06-01

    The jamming transitions for granules growing field of interest in robotics for use in variable stiffness mechanisms. However, the traditional use of air pressure to control the jamming transition requires heavy vacuums, reducing the mobility of the robot. Thus, we propose the use of water as a hydraulic fluid to control the transition between free and clustered granules. This paper presents comparative studies that show that a hydraulic granular jammed finger joint can both achieve the same stiffness level and maintain the same hysteresis level of a pneumatic system, with only a small volume of fluid.

  12. Security against jamming and noise exclusion in imaging

    NASA Astrophysics Data System (ADS)

    Roga, Wojciech; Jeffers, John

    2016-09-01

    We describe a protocol by which an imaging system could be protected against jamming by a malevolent party. Our protocol not only allows recognition of the jamming, but also allows for the recovery of the true image from the jammed one. We apply the method to jamming of quantum ghost imaging, for which the jamming detection probability is increased when the imaging light is entangled. The method can also be used to provide image recovery in general noisy environments.

  13. Study on evaluation of photoelectric jamming effectiveness on ranging lidar

    NASA Astrophysics Data System (ADS)

    Che, Jinxi; Yang, Haiqiang; Gao, Bo

    2015-11-01

    Lidar (Light Detection and Range) is a brand-new field and research hotspot. Ranging lidar is studied in this paper. Specifically, its basic working principle and photoelectric jamming mechanism are introduced. Then, the ranging error jamming success rate rule is developed for laser distance deception jamming. And the effectiveness evaluation of laser blinding jamming is based on the influence level on ranging accuracy and ranging function. The results have some reference value to evaluation of jamming test effectiveness.

  14. Ice Jams the Ob River

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Russia's Ob River flows from south to north, and each summer, it thaws in the same direction. The result is that an ice jam sits downstream from thawed portions of the river, which is laden with heavy runoff from melted snow. On June 29, 2007, the Moderate Resolution Imaging Spectroradiometer (MODIS) flying on NASA's Terra satellite captured this image of the almost completely thawed Ob River. The scene is typical for early summer. South of the ice jam, the Gulf of Ob is swollen with pent-up run-off, and upstream from that, the river is widened as well. Unable to carve through frozen land, the river has little choice but to overflow its banks. For a comparison of early summer and autumn conditions, see Flooding on the Ob River in the Earth Observatory's Natural Hazards section. Besides the annual overflow, this image captures other circumstances of early summer. Sea ice is retreating from the Kara Sea. A lingering line of snow cover snakes its way along the Ob River, to the west. And while the land is lush and green in the south, it appears barren and brown in the north. Near the mouth of the river and the Kara Sea, the land is cold-adapted tundra, with diminutive plants and a short growing season. Just as the ice plugging the river had yet to thaw in the Far North's short summer, the tundra had not yet to greened up either. In this image it still appears lifeless beige. NASA image courtesy Jeff Schmaltz, MODIS Rapid Response Team, Goddard Space Flight Center

  15. Jamming/anti-jamming game with a cognitive jammer in space communication

    NASA Astrophysics Data System (ADS)

    Tian, Xin; Tian, Zhi; Pham, Khanh; Blasch, Erik; Shen, Dan

    2012-06-01

    In this paper a basic cognitive jamming/anti-jamming problem is studied in the context of space communication. The scenario involves a pair of transmitter and receiver, and a cognitive jammer. The cognitive jammer is assumed to have powerful spectrum sensing capability that allows it to detect data transmission from the transmitter to the receiver over the communication channels. Accordingly the jammer uses a "detect and jam" strategy; while the transmitter-receiver side uses the direct frequency hopping spread spectrum approach to mitigate the jamming impact. The basic jamming/anti-jamming problem is formulated as a two-side zero sum game between the jammer and the transmitterreceiver sides. For spectrum sensing, it is assumed that the jammer uses the energy detection in a sliding window fashion, namely, sliding window energy detection. As a conservative strategy of the transmitter-receiver side, Maxmin solutions to the jamming/anti-jamming game are obtained under various conditions. The impacts of factors such as signal propagation delay, channel bandwidth, and jammer/receiver side signal noise ratio on the game results are discussed. The results show the potential threats of cognitive jammers and provide important information for the configuration of jamming resistant space communication networks.

  16. Scaling theory of the jamming transition

    NASA Astrophysics Data System (ADS)

    Liu, Andrea; Goodrich, Carl; Sethna, James; Nagel, Sidney

    The concept of jamming was first introduced at the University of Chicago by Sid Nagel and Tom Witten. By now we know that there is a zero-temperature critical jamming transition that marks the onset of rigidity in packings of soft repulsive spheres. In contrast to the perfect fcc crystal state, which is the maximally stable state for such systems, the jammed state is only marginally stable mechanically, and thus represents an opposite extreme to the perfect crystal. This marginal stability gives rise to power law scalings and diverging length scales at the transition. Here I will discuss recent developments that put the jamming transition in the same place that the Ising transition was when Leo Kadanoff introduced the ideas of coarse-graining and rescaling into critical phenomena. Supported by DOE-DE-FG02-05ER46199.

  17. Nonlinear and nonlocal rheology of jammed matter

    NASA Astrophysics Data System (ADS)

    Tighe, Brian

    Emulsions, foams, and grains all jam into a weakly elastic state when confined by pressure. By now the mechanics of jammed matter is well understood in the case of slow, weak, and homogeneous forcing - but in reality, it is rare for all three of these assumptions to hold. Here we demonstrate the complex rheology that results when jammed materials are forced at finite rate, finite amplitude, and finite wavelength. Using computer simulations, we subject dense soft sphere packings to a host of rheological tests, including stress relaxation, flow start-up, oscillatory shear, and standing wave forcing. These allow us to tease apart the influence of viscous, nonlinear, and nonlocal effects, and also to probe the link between particle dynamics and bulk response. We identify strain, time, and length scales that depend critically on the distance to the jamming transition, and which govern the onset of shear thinning, strain softening, and gradient elasticity.

  18. Large Amplitude Oscillatory Shear near Jamming

    NASA Astrophysics Data System (ADS)

    Tighe, Brian; Dagois-Bohy, Simon; Somfai, Ellak; van Hecke, Martin

    2014-11-01

    Jammed solids such as foams and emulsions can be driven with oscillatory shear at finite strain amplitude and frequency. On a macro scale, this induces nonlinearities such as strain softening and shear thinning. On the micro scale one observes the onset of irreversibility, caging, and long-time diffusion. Using simulations of soft viscous spheres, we systematically vary the distance to the jamming transition. We correlate crossovers in the microscopic and macroscopic response, and construct scaling arguments to explain their relationships.

  19. Jamming cancellation algorithm for wideband imaging radar

    NASA Astrophysics Data System (ADS)

    Zheng, Yibin; Yu, Kai-Bor

    1998-10-01

    We describe a jamming cancellation algorithm for wide-band imaging radar. After reviewing high range resolution imaging principle, several key factors affecting jamming cancellation performances, such as the 'instantaneous narrow-band' assumption, bandwidth, de-chirped interference, are formulated and analyzed. Some numerical simulation results, using a hypothetical phased array radar and synthetic point targets, are presented. The results demonstrated the effectiveness of the proposed algorithm.

  20. Origins of Shear Jamming for Frictional Grains

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Zheng, Hu; Ren, Jie; Dijksman, Joshua; Bares, Jonathan; Behringer, Robert

    2016-11-01

    Granular systems have been shown to be able to behave like solids, under shear, even when their densities are below the critical packing fraction for frictionless isotropic jamming. To understand such a phenomena, called shear jamming, the question we address here is: how does shear bring a system from a unjammed state to a jammed state, where the coordination number, Z, is no less than 3, the isotropic jamming point for frictional grains? Since Z can be used to distinguish jammed states from unjammed ones, it is vital to understand how shear increases Z. We here propose a set of three particles in contact, denoted as a trimer, as the basic unit to characterize the deformation of the system. Trimers, stabilized by inter-grain friction, fail under a certain amount of shear and bend to make extra contacts to regain stability. By defining a projection operator of the opening angle of the trimer to the compression direction in the shear, O, we see a systematically linear decrease of this quantity with respect to shear strain, demonstrating the bending of trimers as expected. In addition, the average change of O from one shear step to the next shows a good collapse when plotted against Z, indicating a universal behavior in the process of shear jamming. We acknowledge support from NSF DMR1206351, NASA NNX15AD38G, the William M. Keck Foundation and a RT-MRSEC Fellowship.

  1. Cultur(ally) Jammed: Culture Jams as a Form of Culturally Responsive Teaching

    ERIC Educational Resources Information Center

    Martinez, Ulyssa

    2012-01-01

    Does the person become the name or does the name become the person? This question was asked by a participant of my culture jam entitled, "What's my name?" In this culture jam, I asked people to discern the name of a person based solely on their appearance and a list of possible names below their picture. This article aims to show how culture jams…

  2. Diffusion in Jammed Particle Packs.

    PubMed

    Bolintineanu, Dan S; Grest, Gary S; Lechman, Jeremy B; Silbert, Leonardo E

    2015-08-21

    Using random walk simulations we explore diffusive transport through monodisperse sphere packings over a range of packing fractions ϕ in the vicinity of the jamming transition at ϕ(c). Various diffusion properties are computed over several orders of magnitude in both time and packing pressure. Two well-separated regimes of normal "Fickian" diffusion, where the mean squared displacement is linear in time, are observed. The first corresponds to diffusion inside individual spheres, while the latter is the long-time bulk diffusion. The intermediate anomalous diffusion regime and the long-time value of the diffusion coefficient are both shown to be controlled by particle contacts, which in turn depend on proximity to ϕ(c). The time required to recover normal diffusion t* scales as (ϕ-ϕ(c))(-0.5) and the long-time diffusivity D(∞)∼(ϕ-ϕ(c))0.5, or D(∞)∼1/t*. It is shown that the distribution of mean first passage times associated with the escape of random walkers between neighboring particles controls both t* and D(∞) in the limit ϕ→ϕ(c).

  3. Sediment Movement Near a Tropical Wood Jam

    NASA Astrophysics Data System (ADS)

    Cadol, D.; Wohl, E.

    2008-12-01

    One mechanism by which wood interacts with sediment transport is the trapping of sediment behind jams. In tropical streams, higher discharge per unit of contributing area and higher microbial diversity relative to temperate zones are likely to cause in-stream wood to be more transient. This may reduce the residence time of jams, also reducing wood-induced sediment storage. To begin to evaluate this possibility, tracer clasts, scour chains, and wood pieces were surveyed four times from June 2007 to June 2008 at a wood jam in a stream in Costa Rica. At the study site the moderate gradient (3.2%) stream drains 1.6 km2 of preserved old-growth tropical wet forest of La Selva Biological Station. The mean grain size of the bed material is 205 mm, ranging from coarse sand to boulders, with discontinuous bedrock outcrops on both banks. Distance traveled by the tracer clasts was positively correlated with both maximum and average daily rainfall during the time between surveys. Between the first two surveys, a new accumulation of wood in the jam blocked the thalweg and redirected the majority of flow around the side of the jam. A 15-cm-thick wedge of sediment was deposited behind the blockage, and gravel bars adjacent to and immediately downstream of the jam were scoured by as much as 30 cm. The majority of the gravel sized tracer clasts placed upstream of the jam were not recovered and were presumably incorporated into the sediment wedge. Tracer clasts placed in the portion of the channel affected by the redirected flow were transported downstream as much as 47 m. Clasts larger than D55 (220 mm) were not transported in the course of the study. The jam and key pieces persisted for the entire study period, and the number of pieces in the jam stayed nearly constant. However, the structure was modified and only 46% of the original pieces were retained for the full year. The clast transport distance was positively correlated with wood turnover rate for the three inter

  4. City traffic jam relief by stochastic resonance

    NASA Astrophysics Data System (ADS)

    Castillo, F.; Toledo, B. A.; Muñoz, V.; Rogan, J.; Zarama, R.; Kiwi, M.; Valdivia, J. A.

    2014-06-01

    We simulate traffic in a city by means of the evolution of a row of interacting cars, using a cellular automaton model, in a sequence of traffic lights synchronized by a "green wave". When our initial condition is a small density jammed state, its evolution shows the expected scaling laws close to the synchronization resonance, with a uniform car density along the street. However, for an initial large density jammed state, we observe density variations along the streets, which results in the breakdown of the scaling laws. This spatial disorder corresponds to a different attractor of the system. As we include velocity perturbations in the dynamics of the cars, all these attractors converge to a statistically equivalent system for all initial jammed densities. However, this emergent state shows a stochastic resonance-like behavior in which the average traffic velocity increases with respect to that of the system without noise, for several initial jammed densities. This result may help in the understanding of dynamics of traffic jams in cities.

  5. Emergent SO(3) Symmetry of the Frictionless Shear Jamming Transition

    NASA Astrophysics Data System (ADS)

    Baity-Jesi, Marco; Goodrich, Carl P.; Liu, Andrea J.; Nagel, Sidney R.; Sethna, James P.

    2017-01-01

    We study the shear jamming of athermal frictionless soft spheres, and find that in the thermodynamic limit, a shear-jammed state exists with different elastic properties from the isotropically-jammed state. For example, shear-jammed states can have a non-zero residual shear stress in the thermodynamic limit that arises from long-range stress-stress correlations. As a result, the ratio of the shear and bulk moduli, which in isotropically-jammed systems vanishes as the jamming transition is approached from above, instead approaches a constant. Despite these striking differences, we argue that in a deeper sense, the shear jamming and isotropic jamming transitions actually have the same symmetry, and that the differences can be fully understood by rotating the six-dimensional basis of the elastic modulus tensor.

  6. Jamming as an enabling technology for soft robotics

    NASA Astrophysics Data System (ADS)

    Steltz, E.; Mozeika, A.; Rembisz, J.; Corson, N.; Jaeger, H. M.

    2010-04-01

    This paper presents a new architecture in soft robotics that utilizes particulate jamming technology. A novel concept of actuation is described that utilizes jamming technology to modulate the direction and magnitude of the work performed by a single central actuator. Jamming "activators" modulate work by jamming and unjamming (solidifying and liquifying) a granular medium coupled to a core actuator. These ideas are demonstrated in the Jamming Skin Enabled Locomotion (JSEL) prototype which can morph its shape and achieve locomotion. Next, a new actuator, denoted a Jamming Modulated Unimorph (JMU), is presented in addition to the JSEL topology. The JMU uses a single linear actuator and a discrete number of jamming cells to turn the 1 degree of freedom (DOF) linear actuator into a multi DOF bending actuator. Full characterization of the JMU actuator is presented, followed by a concluding argument for jamming as an enabling mechanism for soft robots in general, regardless of actuation technology.

  7. Scaling ansatz for the jamming transition

    PubMed Central

    Goodrich, Carl P.; Liu, Andrea J.; Sethna, James P.

    2016-01-01

    We propose a Widom-like scaling ansatz for the critical jamming transition. Our ansatz for the elastic energy shows that the scaling of the energy, compressive strain, shear strain, system size, pressure, shear stress, bulk modulus, and shear modulus are all related to each other via scaling relations, with only three independent scaling exponents. We extract the values of these exponents from already known numerical or theoretical results, and we numerically verify the resulting predictions of the scaling theory for the energy and residual shear stress. We also derive a scaling relation between pressure and residual shear stress that yields insight into why the shear and bulk moduli scale differently. Our theory shows that the jamming transition exhibits an emergent scale invariance, setting the stage for the potential development of a renormalization group theory for jamming. PMID:27512041

  8. Scaling ansatz for the jamming transition.

    PubMed

    Goodrich, Carl P; Liu, Andrea J; Sethna, James P

    2016-08-30

    We propose a Widom-like scaling ansatz for the critical jamming transition. Our ansatz for the elastic energy shows that the scaling of the energy, compressive strain, shear strain, system size, pressure, shear stress, bulk modulus, and shear modulus are all related to each other via scaling relations, with only three independent scaling exponents. We extract the values of these exponents from already known numerical or theoretical results, and we numerically verify the resulting predictions of the scaling theory for the energy and residual shear stress. We also derive a scaling relation between pressure and residual shear stress that yields insight into why the shear and bulk moduli scale differently. Our theory shows that the jamming transition exhibits an emergent scale invariance, setting the stage for the potential development of a renormalization group theory for jamming.

  9. Scaling ansatz for the jamming transition

    NASA Astrophysics Data System (ADS)

    Goodrich, Carl P.; Liu, Andrea J.; Sethna, James P.

    2016-08-01

    We propose a Widom-like scaling ansatz for the critical jamming transition. Our ansatz for the elastic energy shows that the scaling of the energy, compressive strain, shear strain, system size, pressure, shear stress, bulk modulus, and shear modulus are all related to each other via scaling relations, with only three independent scaling exponents. We extract the values of these exponents from already known numerical or theoretical results, and we numerically verify the resulting predictions of the scaling theory for the energy and residual shear stress. We also derive a scaling relation between pressure and residual shear stress that yields insight into why the shear and bulk moduli scale differently. Our theory shows that the jamming transition exhibits an emergent scale invariance, setting the stage for the potential development of a renormalization group theory for jamming.

  10. Aspects of jamming in two-dimensional athermal frictionless systems.

    PubMed

    Reichhardt, C; Reichhardt, C J Olson

    2014-05-07

    In this work we provide an overview of jamming transitions in two dimensional systems focusing on the limit of frictionless particle interactions in the absence of thermal fluctuations. We first discuss jamming in systems with short range repulsive interactions, where the onset of jamming occurs at a critical packing density and where certain quantities show a divergence indicative of critical behavior. We describe how aspects of the dynamics change as the jamming density is approached and how these dynamics can be explored using externally driven probes. Different particle shapes can produce jamming densities much lower than those observed for disk-shaped particles, and we show how jamming exhibits fragility for some shapes while for other shapes this is absent. Next we describe the effects of long range interactions and jamming behavior in systems such as charged colloids, vortices in type-II superconductors, and dislocations. We consider the effect of adding obstacles to frictionless jamming systems and discuss connections between this type of jamming and systems that exhibit depinning transitions. Finally, we discuss open questions such as whether the jamming transition in all these different systems can be described by the same or a small subset of universal behaviors, as well as future directions for studies of jamming transitions in two dimensional systems, such as jamming in self-driven or active matter systems.

  11. Stepped-Pin Clevis Resists Jamming

    NASA Technical Reports Server (NTRS)

    Killgrove, T. O.

    1985-01-01

    Pin modification allows pyrotechnic release devices to operate more smoothly. New clevis pin has stepped diameters to prevent bending as it exits yoke. In contrast, conventional unstepped clevis pin bends and jams as it is withdrawn. Stepped pin design suitable for explosive and possible hammer driven pin sullers.

  12. Random close packing of polydisperse jammed emulsions

    NASA Astrophysics Data System (ADS)

    Brujic, Jasna

    2010-03-01

    Packing problems are everywhere, ranging from oil extraction through porous rocks to grain storage in silos and the compaction of pharmaceutical powders into tablets. At a given density, particulate systems pack into a mechanically stable and amorphous jammed state. Theoretical frameworks have proposed a connection between this jammed state and the glass transition, a thermodynamics of jamming, as well as geometric modeling of random packings. Nevertheless, a simple underlying mechanism for the random assembly of athermal particles, analogous to crystalline ordering, remains unknown. Here we use 3D measurements of polydisperse packings of emulsion droplets to build a simple statistical model in which the complexity of the global packing is distilled into a local stochastic process. From the perspective of a single particle the packing problem is reduced to the random formation of nearest neighbors, followed by a choice of contacts among them. The two key parameters in the model, the available space around a particle and the ratio of contacts to neighbors, are directly obtained from experiments. Remarkably, we demonstrate that this ``granocentric'' view captures the properties of the polydisperse emulsion packing, ranging from the microscopic distributions of nearest neighbors and contacts to local density fluctuations and all the way to the global packing density. Further applications to monodisperse and bidisperse systems quantitatively agree with previously measured trends in global density. This model therefore reveals a general principle of organization for random packing and lays the foundations for a theory of jammed matter.

  13. How do tiger moths jam bat sonar?

    PubMed

    Corcoran, Aaron J; Barber, Jesse R; Hristov, Nickolay I; Conner, William E

    2011-07-15

    The tiger moth Bertholdia trigona is the only animal in nature known to defend itself by jamming the sonar of its predators - bats. In this study we analyzed the three-dimensional flight paths and echolocation behavior of big brown bats (Eptesicus fuscus) attacking B. trigona in a flight room over seven consecutive nights to determine the acoustic mechanism of the sonar-jamming defense. Three mechanisms have been proposed: (1) the phantom echo hypothesis, which states that bats misinterpret moth clicks as echoes; (2) the ranging interference hypothesis, which states that moth clicks degrade the bats' precision in determining target distance; and (3) the masking hypothesis, which states that moth clicks mask the moth echoes entirely, making the moth temporarily invisible. On nights one and two of the experiment, the bats appeared startled by the clicks; however, on nights three through seven, the bats frequently missed their prey by a distance predicted by the ranging interference hypothesis (∼15-20 cm). Three-dimensional simulations show that bats did not avoid phantom targets, and the bats' ability to track clicking prey contradicts the predictions of the masking hypothesis. The moth clicks also forced the bats to reverse their stereotyped pattern of echolocation emissions during attack, even while bats continued pursuit of the moths. This likely further hinders the bats' ability to track prey. These results have implications for the evolution of sonar jamming in tiger moths, and we suggest evolutionary pathways by which sonar jamming may have evolved from other tiger moth defense mechanisms.

  14. Dynamic jamming of iceberg-choked fjords

    NASA Astrophysics Data System (ADS)

    Peters, Ivo R.; Amundson, Jason M.; Cassotto, Ryan; Fahnestock, Mark; Darnell, Kristopher N.; Truffer, Martin; Zhang, Wendy W.

    2015-02-01

    We investigate the dynamics of ice mélange by analyzing rapid motion recorded by a time-lapse camera and terrestrial radar during several calving events that occurred at Jakobshavn Isbræ, Greenland. During calving events (1) the kinetic energy of the ice mélange is 2 orders of magnitude smaller than the total energy released during the events, (2) a jamming front propagates through the ice mélange at a rate that is an order of magnitude faster than the motion of individual icebergs, (3) the ice mélange undergoes initial compaction followed by slow relaxation and extension, and (4) motion of the ice mélange gradually decays before coming to an abrupt halt. These observations indicate that the ice mélange experiences widespread jamming during calving events and is always close to being in a jammed state during periods of terminus quiescence. We therefore suspect that local jamming influences longer timescale ice mélange dynamics and stress transmission.

  15. Dual interaction of JAM-C with JAM-B and alpha(M)beta2 integrin: function in junctional complexes and leukocyte adhesion.

    PubMed

    Lamagna, Chrystelle; Meda, Paolo; Mandicourt, Guillaume; Brown, James; Gilbert, Robert J C; Jones, E Yvonne; Kiefer, Friedemann; Ruga, Pilar; Imhof, Beat A; Aurrand-Lions, Michel

    2005-10-01

    The junctional adhesion molecules (JAMs) have been recently described as interendothelial junctional molecules and as integrin ligands. Here we show that JAM-B and JAM-C undergo heterophilic interaction in cell-cell contacts and that JAM-C is recruited and stabilized in junctional complexes by JAM-B. In addition, soluble JAM-B dissociates soluble JAM-C homodimers to form JAM-B/JAM-C heterodimers. This suggests that the affinity of JAM-C monomers to form dimers is higher for JAM-B than for JAM-C. Using antibodies against JAM-C, the formation of JAM-B/JAM-C heterodimers can be abolished. This liberates JAM-C from its vascular binding partner JAM-B and makes it available on the apical side of vessels for interaction with its leukocyte counter-receptor alpha(M)beta2 integrin. We demonstrate that the modulation of JAM-C localization in junctional complexes is a new regulatory mechanism for alpha(M)beta2-dependent adhesion of leukocytes.

  16. Effects of Nonaffinity on Jammed Materials

    NASA Astrophysics Data System (ADS)

    Vernon, Daniel; Liu, Andrea J.; Lubensky, Tom

    2006-03-01

    If an amorphous solid such as a jammed particle system is subjected to an external stress, the induced displacements of internal particles are necessarily nonaffine. Using numerical minimization procedures, we investigate the response to stress of a disordered packing of purely repulsive spheres. We calculate the correlations of the nonaffine part of the displacements of individual particles just above the jamming threshold (point J). We find that these correlations are consistent with those predicted by a continuum theory and verified numerically in simple model random elastic systems. C.S. O'Hern, L.E. Sibert, A.J. Liu, and S.R. Nagel, Phys. Rev. E 68, 011306 (2003). B. DiDonna and T.C. Lubensky, Phys.Rev. E (to be published).

  17. Viscous rheology of soft particles near jamming

    NASA Astrophysics Data System (ADS)

    Woldhuis, Erik; Tighe, Brian; van Hecke, Martin

    2013-03-01

    We investigate the effect of changing the exact nature of the viscous interaction in simulations of sheared soft, viscous, repulsive disks, which are considered to be a good model for foams and emulsions. We determine the way in which the power-law exponent of the rheological curve, in other words the shear-thinning or shear-thickening part, depends on the microscopic viscous interaction around the jamming density. We attempt to find a model that describes and predicts this dependence.

  18. Jammed-array wideband sawtooth filter.

    PubMed

    Tan, Zhongwei; Wang, Chao; Goda, Keisuke; Malik, Omer; Jalali, Bahram

    2011-11-21

    We present an all-optical passive low-cost spectral filter that exhibits a high-resolution periodic sawtooth spectral pattern without the need for active optoelectronic components. The principle of the filter is the partial masking of a phased array of virtual light sources with multiply jammed diffraction orders. We utilize the filter's periodic linear map between frequency and intensity to demonstrate fast sensitive interrogation of fiber Bragg grating sensor arrays and ultrahigh-frequency electrical sawtooth waveform generation.

  19. Kinetics of Jammed Systems: PNIPA Gel

    SciTech Connect

    K Laszlo; A Fluerasu; A Moussaid; E Geissler

    2011-12-31

    In the out-of-equilibrium state above the volume phase transition temperature, poly(N-isopropyl acrylamide) hydrogels deswell non-diffusively, relaxing instead by a hyperdiffusive mechanism as in jammed systems. X-ray photon correlation spectroscopy is employed to show that the unconventional relaxation properties (linear dependence of the intensity correlation function both on time and on transfer wave vector) are the consequence of uniform deswelling.

  20. FMCW Radar Jamming Techniques and Analysis

    DTIC Science & Technology

    2013-09-01

    discussed. 14. SUBJECT TERMS FMCW Radar , LPI , Jamming, Electronic Warfare 15. NUMBER OF PAGES 103 16. PRICE CODE 17. SECURITY CLASSIFICATION...Among the many variations of LPI radar systems, Frequency-Modulated Continuous Wave ( FMCW ) radar has not only the ability to avoid detection, but... LPI radars and possible electronic protection (EP) mechanisms that may be implemented in the FMCW emitter. The research questions can be summarized

  1. JAM-related proteins in mucosal homeostasis and inflammation.

    PubMed

    Luissint, Anny-Claude; Nusrat, Asma; Parkos, Charles A

    2014-03-01

    Mucosal surfaces are lined by epithelial cells that form a physical barrier protecting the body against external noxious substances and pathogens. At a molecular level, the mucosal barrier is regulated by tight junctions (TJs) that seal the paracellular space between adjacent epithelial cells. Transmembrane proteins within TJs include junctional adhesion molecules (JAMs) that belong to the cortical thymocyte marker for Xenopus family of proteins. JAM family encompasses three classical members (JAM-A, JAM-B, and JAM-C) and related molecules including JAM4, JAM-like protein, Coxsackie and adenovirus receptor (CAR), CAR-like membrane protein and endothelial cell-selective adhesion molecule. JAMs have multiple functions that include regulation of endothelial and epithelial paracellular permeability, leukocyte recruitment during inflammation, angiogenesis, cell migration, and proliferation. In this review, we summarize the current knowledge regarding the roles of the JAM family members in the regulation of mucosal homeostasis and leukocyte trafficking with a particular emphasis on barrier function and its perturbation during pathological inflammation.

  2. Critical slowing down and hyperuniformity on approach to jamming

    NASA Astrophysics Data System (ADS)

    Atkinson, Steven; Zhang, Ge; Hopkins, Adam B.; Torquato, Salvatore

    2016-07-01

    Hyperuniformity characterizes a state of matter that is poised at a critical point at which density or volume-fraction fluctuations are anomalously suppressed at infinite wavelengths. Recently, much attention has been given to the link between strict jamming (mechanical rigidity) and (effective or exact) hyperuniformity in frictionless hard-particle packings. However, in doing so, one must necessarily study very large packings in order to access the long-ranged behavior and to ensure that the packings are truly jammed. We modify the rigorous linear programming method of Donev et al. [J. Comput. Phys. 197, 139 (2004), 10.1016/j.jcp.2003.11.022] in order to test for jamming in putatively collectively and strictly jammed packings of hard disks in two dimensions. We show that this rigorous jamming test is superior to standard ways to ascertain jamming, including the so-called "pressure-leak" test. We find that various standard packing protocols struggle to reliably create packings that are jammed for even modest system sizes of N ≈103 bidisperse disks in two dimensions; importantly, these packings have a high reduced pressure that persists over extended amounts of time, meaning that they appear to be jammed by conventional tests, though rigorous jamming tests reveal that they are not. We present evidence that suggests that deviations from hyperuniformity in putative maximally random jammed (MRJ) packings can in part be explained by a shortcoming of the numerical protocols to generate exactly jammed configurations as a result of a type of "critical slowing down" as the packing's collective rearrangements in configuration space become locally confined by high-dimensional "bottlenecks" from which escape is a rare event. Additionally, various protocols are able to produce packings exhibiting hyperuniformity to different extents, but this is because certain protocols are better able to approach exactly jammed configurations. Nonetheless, while one should not generally

  3. Transition from rolling to jamming in thin granular layers.

    PubMed

    Marone, C; Carpenter, B M; Schiffer, P

    2008-12-12

    We study the granular jamming transition for sheared layers of spherical beads ranging in thickness from 1 to 3 times the grain diameter d. As the layer thickness increases slightly above d, the measured friction jumps discontinuously from 0.02 to >0.1, marking the transition from rolling to jamming. Above a critical layer thickness for jamming, the effective granular pressure displays a power law increase with thickness. For thin layers, friction and P increases as the packing fraction decreases near the jamming transition, in contrast to expectations for bulk granular matter.

  4. Assessing the effects of different pectins addition on color quality and antioxidant properties of blackberry jam

    PubMed Central

    2013-01-01

    Background In the last years pectin and other hydrocolloids were tested for improving the color stability and the retention of bioactive compounds in gelled fruit-based products. In line with these concerns, our study has been directed to quantify the changes in antioxidant status and color indices of blackberry jam obtained with different types of pectin (degree of esterification: DE, degree of amidation: DA) and doses in response to processing and storage for 1, 3 and 6 months at 20°C. Results Blackberry jam was obtained by a traditional procedure used in households or small-scale systems with different commercial pectins (HMP: high-methoxyl pectin, LMP: low-methoxyl pectin and LMAP: low-methoxyl amidated pectin) added to three concentrations (0.3, 0.7 and 1.0%) and investigated in terms of total monomeric anthocyanins (TMA), antioxidant capacity expressed as ferric reducing antioxidant power (FRAP), total phenolics (TP), color density (CD) and percent of polymeric color, PC (%). Thermal processing resulted in significant depreciation of analyzed parameters reported to the corresponding values of fresh fruit as follows: TMA (69-82%), TP (33-55%) and FRAP (18-52%). Biologically active compounds and color were best retained one day post-processing in jams with LMAP followed by samples with LMP and HMP. Storage for 6 months brings along additional dramatic losses reported to the values recorded one day post-processing as follows: TMA (31-56%), TP (29-51%) and FRAP (20-41%). Also, both processing and storage resulted in significant increases in PC (%). The pectin type and dosage are very influential factors for limiting the alterations occurring in response to processing and storage. The best color retention and the highest TMA, TP and FRAP were achieved by LMAP, followed by LMP and HMP. Additionally, a high level of bioactive compounds in jam could be related to a high dose of pectin. LMAP to a level of 1% is the most indicated to provide the highest antioxidant

  5. Molecular crowding creates traffic jams of kinesin motors on microtubules.

    PubMed

    Leduc, Cécile; Padberg-Gehle, Kathrin; Varga, Vladimír; Helbing, Dirk; Diez, Stefan; Howard, Jonathon

    2012-04-17

    Despite the crowdedness of the interior of cells, microtubule-based motor proteins are able to deliver cargoes rapidly and reliably throughout the cytoplasm. We hypothesize that motor proteins may be adapted to operate in crowded environments by having molecular properties that prevent them from forming traffic jams. To test this hypothesis, we reconstituted high-density traffic of purified kinesin-8 motor protein, a highly processive motor with long end-residency time, along microtubules in a total internal-reflection fluorescence microscopy assay. We found that traffic jams, characterized by an abrupt increase in the density of motors with an associated abrupt decrease in motor speed, form even in the absence of other obstructing proteins. To determine the molecular properties that lead to jamming, we altered the concentration of motors, their processivity, and their rate of dissociation from microtubule ends. Traffic jams occurred when the motor density exceeded a critical value (density-induced jams) or when motor dissociation from the microtubule ends was so slow that it resulted in a pileup (bottleneck-induced jams). Through comparison of our experimental results with theoretical models and stochastic simulations, we characterized in detail under which conditions density- and bottleneck-induced traffic jams form or do not form. Our results indicate that transport kinesins, such as kinesin-1, may be evolutionarily adapted to avoid the formation of traffic jams by moving only with moderate processivity and dissociating rapidly from microtubule ends.

  6. Intracellular mediators of JAM-A-dependent epithelial barrier function.

    PubMed

    Monteiro, Ana C; Parkos, Charles A

    2012-06-01

    Junctional adhesion molecule-A (JAM-A) is a critical signaling component of the apical junctional complex, a structure composed of several transmembrane and scaffold molecules that controls the passage of nutrients and solutes across epithelial surfaces. Observations from JAM-A-deficient epithelial cells and JAM-A knockout animals indicate that JAM-A is an important regulator of epithelial paracellular permeability; however, the mechanism(s) linking JAM-A to barrier function are not understood. This review highlights recent findings relevant to JAM-A-mediated regulation of epithelial permeability, focusing on the role of upstream and downstream signaling candidates. We draw on what is known about proteins reported to associate with JAM-A in other pathways and on known modulators of barrier function to propose candidate effectors that may mediate JAM-A regulation of epithelial paracellular permeability. Further investigation of pathways highlighted in this review may provide ideas for novel therapeutics that target debilitating conditions associated with barrier dysfunction, such as inflammatory bowel disease.

  7. Game Jams: Community, Motivations, and Learning among Jammers

    ERIC Educational Resources Information Center

    Preston, Jon A.; Chastine, Jeff; O'Donnell, Casey; Tseng, Tony; MacIntyre, Blair

    2012-01-01

    Game jams are events that allow game designers to develop innovative games in a time-constrained environment, typically within a 48-hour period during a weekend. Jams provide participants an opportunity to improve their skills, collaborate with their peers, and advance research and creativity in the field of game design. Having coordinated…

  8. Molecular crowding creates traffic jams of kinesin motors on microtubules

    PubMed Central

    Leduc, Cécile; Padberg-Gehle, Kathrin; Varga, Vladimír; Helbing, Dirk; Diez, Stefan; Howard, Jonathon

    2012-01-01

    Despite the crowdedness of the interior of cells, microtubule-based motor proteins are able to deliver cargoes rapidly and reliably throughout the cytoplasm. We hypothesize that motor proteins may be adapted to operate in crowded environments by having molecular properties that prevent them from forming traffic jams. To test this hypothesis, we reconstituted high-density traffic of purified kinesin-8 motor protein, a highly processive motor with long end-residency time, along microtubules in a total internal-reflection fluorescence microscopy assay. We found that traffic jams, characterized by an abrupt increase in the density of motors with an associated abrupt decrease in motor speed, form even in the absence of other obstructing proteins. To determine the molecular properties that lead to jamming, we altered the concentration of motors, their processivity, and their rate of dissociation from microtubule ends. Traffic jams occurred when the motor density exceeded a critical value (density-induced jams) or when motor dissociation from the microtubule ends was so slow that it resulted in a pileup (bottleneck-induced jams). Through comparison of our experimental results with theoretical models and stochastic simulations, we characterized in detail under which conditions density- and bottleneck-induced traffic jams form or do not form. Our results indicate that transport kinesins, such as kinesin-1, may be evolutionarily adapted to avoid the formation of traffic jams by moving only with moderate processivity and dissociating rapidly from microtubule ends. PMID:22431622

  9. Intelligent cognitive radio jamming - a game-theoretical approach

    NASA Astrophysics Data System (ADS)

    Dabcevic, Kresimir; Betancourt, Alejandro; Marcenaro, Lucio; Regazzoni, Carlo S.

    2014-12-01

    Cognitive radio (CR) promises to be a solution for the spectrum underutilization problems. However, security issues pertaining to cognitive radio technology are still an understudied topic. One of the prevailing such issues are intelligent radio frequency (RF) jamming attacks, where adversaries are able to exploit on-the-fly reconfigurability potentials and learning mechanisms of cognitive radios in order to devise and deploy advanced jamming tactics. In this paper, we use a game-theoretical approach to analyze jamming/anti-jamming behavior between cognitive radio systems. A non-zero-sum game with incomplete information on an opponent's strategy and payoff is modelled as an extension of Markov decision process (MDP). Learning algorithms based on adaptive payoff play and fictitious play are considered. A combination of frequency hopping and power alteration is deployed as an anti-jamming scheme. A real-life software-defined radio (SDR) platform is used in order to perform measurements useful for quantifying the jamming impacts, as well as to infer relevant hardware-related properties. Results of these measurements are then used as parameters for the modelled jamming/anti-jamming game and are compared to the Nash equilibrium of the game. Simulation results indicate, among other, the benefit provided to the jammer when it is employed with the spectrum sensing algorithm in proactive frequency hopping and power alteration schemes.

  10. Simulation of Electromagnetic-Environment Susceptibility to Jamming Systems

    DTIC Science & Technology

    2015-01-01

    antenna modeled was that of a jammer, the pyramidal horn antenna. Once the radiation patterns were obtained the electromagnetic reciprocity...Simulation of Electromagnetic -Environment Susceptibility to Jamming Systems by Berenice Verdin and Patrick Debroux ARL-TR-7170 January...Range, NM 88002-5513 ARL-TR-7170 January 2015 Simulation of Electromagnetic -Environment Susceptibility to Jamming Systems Berenice Verdin

  11. JAM related proteins in mucosal homeostasis and inflammation

    PubMed Central

    Luissint, Anny-Claude; Nusrat, Asma; Parkos, Charles A.

    2014-01-01

    Mucosal surfaces are lined by epithelial cells that form a physical barrier protecting the body against external noxious substances and pathogens. At a molecular level, the mucosal barrier is regulated by tight junctions (TJs) that seal the paracellular space between adjacent epithelial cells. Transmembrane proteins within TJs include Junctional Adhesion Molecules (JAMs) that belong to the CTX (Cortical Thymocyte marker for Xenopus) family of proteins. JAM family encompasses three classical members (JAM-A, -B and –C) and related molecules including JAM4, JAM-Like protein (JAM-L), Coxsackie and Adenovirus Receptor (CAR), CAR-Like Membrane Protein (CLMP) and Endothelial cell-Selective Adhesion Molecule (ESAM). JAMs have multiple functions that include regulation of endothelial and epithelial paracellular permeability, leukocyte recruitment during inflammation, angiogenesis, cell migration and proliferation. In this review, we summarize the current knowledge regarding the roles of the JAM family members in the regulation of mucosal homeostasis and leukocyte trafficking with a particular emphasis on barrier function and its perturbation during pathological inflammation. PMID:24667924

  12. Pebble Jammed in Rock Abrasion Tool

    NASA Technical Reports Server (NTRS)

    2004-01-01

    After the rock abrasion tool on NASA's Mars Exploration Rover Opportunity stopped working on sol 199 (Aug. 15, 2004), rover operators used the panoramic camera to take this image the next day for help in diagnosing the problem. The tool was closer than the camera could focus on sharply, but the image does show a dark spot just left of center, which engineers have determined is likely to be a pebble jammed between the cutting-blade rotor and the wire-brush rotor. If that diagnosis is confirmed by further analysis, the tool will likely be commanded to turn the rotors in reverse to release the pebble.

  13. Direct observation of dynamic shear jamming in dense suspensions

    NASA Astrophysics Data System (ADS)

    Peters, Ivo R.; Majumdar, Sayantan; Jaeger, Heinrich M.

    2016-04-01

    Liquid-like at rest, dense suspensions of hard particles can undergo striking transformations in behaviour when agitated or sheared. These phenomena include solidification during rapid impact, as well as strong shear thickening characterized by discontinuous, orders-of-magnitude increases in suspension viscosity. Much of this highly non-Newtonian behaviour has recently been interpreted within the framework of a jamming transition. However, although jamming indeed induces solid-like rigidity, even a strongly shear-thickened state still flows and thus cannot be fully jammed. Furthermore, although suspensions are incompressible, the onset of rigidity in the standard jamming scenario requires an increase in particle density. Finally, whereas shear thickening occurs in the steady state, impact-induced solidification is transient. As a result, it has remained unclear how these dense suspension phenomena are related and how they are connected to jamming. Here we resolve this by systematically exploring both the steady-state and transient regimes with the same experimental system. We demonstrate that a fully jammed, solid-like state can be reached without compression and instead purely with shear, as recently proposed for dry granular systems. This state is created by transient shear-jamming fronts, which we track directly. We also show that shear stress, rather than shear rate, is the key control parameter. From these findings we map out a state diagram with particle density and shear stress as variables. We identify discontinuous shear thickening with a marginally jammed regime just below the onset of full, solid-like jamming. This state diagram provides a unifying framework, compatible with prior experimental and simulation results on dense suspensions, that connects steady-state and transient behaviour in terms of a dynamic shear-jamming process.

  14. Function of Jam-B/Jam-C interaction in homing and mobilization of human and mouse hematopoietic stem and progenitor cells.

    PubMed

    Arcangeli, Marie-Laure; Bardin, Florence; Frontera, Vincent; Bidaut, Ghislain; Obrados, Elodie; Adams, Ralf H; Chabannon, Christian; Aurrand-Lions, Michel

    2014-04-01

    The junctional adhesion molecules Jam-b and Jam-c interact together at interendothelial junctions and have been involved in the regulation of immune response, inflammation, and leukocyte migration. More recently, Jam-c has been found to be expressed by hematopoietic stem and progenitor cells (HSPC) in mouse. Conversely, we have reported that Jam-b is present on bone marrow stromal cells and that Jam-b-deficient mice have defects in the regulation of hematopoietic stem cell pool. In this study, we have addressed whether interaction between Jam-b and Jam-c participates to HSPC mobilization or hematopoietic reconstitution after irradiation. We show that a blocking monoclonal antibody directed against Jam-c inhibits hematopoietic reconstitution, progenitor homing to the bone marrow, and induces HSPC mobilization in a Jam-b dependent manner. In the latter setting, antibody treatment over a period of 3 days does not alter hematopoietic differentiation nor induce leukocytosis. Results are translated to human hematopoietic system in which a functional adhesive interaction between JAM-B and JAM-C is found between human HSPC and mesenchymal stem cells. Such an interaction does not occur between HSPC and human endothelial cells or osteoblasts. It is further shown that anti-JAM-C blocking antibody interferes with CD34(+) hematopoietic progenitor homing in mouse bone marrow suggesting that monoclonal antibodies inhibiting JAM-B/JAM-C interaction may represent valuable therapeutic tools to improve stem cell mobilization protocols.

  15. The Jammed Skylab Workshop Solar Array

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The Saturn V vehicle, carrying the unmarned orbital workshop for the Skylab-1 mission, lifted off successfully and all systems performed normally. Sixty-three seconds into the flight, engineers in the operation support and control center saw an unexpected telemetry indication that signalled that damages occurred on one solar array and the micrometeoroid shield during the launch. The micrometeoroid shield, a thin protective cylinder surrounding the workshop protecting it from tiny space particles and the sun's scorching heat, ripped loose from its position around the workshop. This caused the loss of one solar wing and jammed the other. Still unoccupied, the Skylab was stricken with the loss of the heat shield and sunlight beat mercilessly on the lab's sensitive skin. Internal temperatures soared, rendering the station uninhabitable, threatening foods, medicines, films, and experiments. This image, taken during a fly-around inspection by the Skylab-2 crew, shows the station's remaining solar panel jammed against its side. The Marshall Space Flight Center had a major role in developing the procedures to repair the damaged Skylab.

  16. Percolation of disordered jammed sphere packings

    NASA Astrophysics Data System (ADS)

    Ziff, Robert M.; Torquato, Salvatore

    2017-02-01

    We determine the site and bond percolation thresholds for a system of disordered jammed sphere packings in the maximally random jammed state, generated by the Torquato–Jiao algorithm. For the site threshold, which gives the fraction of conducting versus non-conducting spheres necessary for percolation, we find {{p}\\text{c}}=0.3116(3) , consistent with the 1979 value of Powell 0.310(5) and identical within errors to the threshold for the simple-cubic lattice, 0.311 608, which shares the same average coordination number of 6. In terms of the volume fraction ϕ, the threshold corresponds to a critical value {φ\\text{c}}=0.199 . For the bond threshold, which apparently was not measured before, we find {{p}\\text{c}}=0.2424(3) . To find these thresholds, we considered two shape-dependent universal ratios involving the size of the largest cluster, fluctuations in that size, and the second moment of the size distribution; we confirmed the ratios’ universality by also studying the simple-cubic lattice with a similar cubic boundary. The results are applicable to many problems including conductivity in random mixtures, glass formation, and drug loading in pharmaceutical tablets.

  17. Endothelial JAM-A promotes reovirus viremia and bloodstream dissemination.

    PubMed

    Lai, Caroline M; Boehme, Karl W; Pruijssers, Andrea J; Parekh, Vrajesh V; Van Kaer, Luc; Parkos, Charles A; Dermody, Terence S

    2015-02-01

    Viruses that cause systemic disease often spread through the bloodstream to infect target tissues. Although viremia is an important step in the pathogenesis of many viruses, how viremia is established is not well understood. Reovirus has been used to dissect mechanisms of viral pathogenesis and is being evaluated in clinical trials as an oncolytic agent. After peroral entry into mice, reovirus replicates within the gastrointestinal tract and disseminates systemically via hematogenous or neural routes. Junctional adhesion molecule-A (JAM-A) is a tight junction protein that serves as a receptor for reovirus. JAM-A is required for establishment of viremia and viral spread to sites of secondary replication. JAM-A also is expressed on the surface of circulating hematopoietic cells. To determine contributions of endothelial and hematopoietic JAM-A to reovirus dissemination and pathogenesis, we generated strains of mice with altered JAM-A expression in these cell types and assessed bloodstream spread of reovirus strain type 1 Lang (T1L), which disseminates solely by hematogenous routes. We found that endothelial JAM-A but not hematopoietic JAM-A facilitates reovirus T1L bloodstream entry and egress. Understanding how viruses establish viremia may aid in development of inhibitors of this critical step in viral pathogenesis and foster engineering of improved oncolytic viral vectors.

  18. Acceptability of Aloysia citriodora-supplemented peach jams.

    PubMed

    Gámbaro, Adriana; Miraballes, Marcelo; Purtscher, Irene; Deandréis, Inés; Martínez, Mariana

    2015-01-01

    An unsupplemented peach jam and four peach jam samples prepared by supplementing the former with increasing amounts of Aloysia citriodora aqueous extract were subjected to sensory testing. A trained panel of eight assessors initially identified (reaching consensus) the relevant sensory attributes and then rated the jam samples on an individual basis. The jam samples were later evaluated for overall liking and willingness to purchase by a group of 95 interested consumers, who also provided their individual appraisal of the sensory features of the various samples by responding to an open-ended question. Overall, consumers appeared not to accept the sensory modifications introduced in traditional peach jam by the addition of A. citriodora extract, even though they were expressly acquainted with its health benefits. The degree of acceptance of the extract supplement decreased significantly with increasing amounts of extract in the jam. The groups identified to have the least and the greatest tolerance to the sensory modifications introduced in the supplemented jams differed in gender distribution, with male consumers having a greater tolerance than females.

  19. River channel's predisposition to ice jams: a geospatial model

    NASA Astrophysics Data System (ADS)

    De Munck, S.; Gauthier, Y.; Bernier, M.; Légaré, S.

    2012-04-01

    When dynamic breakup occurs on rivers, ice moving downstream may eventually stop at an obstacle when the volume of moving ice exceeds the transport capacity of the river, resulting into an ice jam. The suddenness and unpredictability of these ice jams are a constant danger to local population. Therefore forecasting methods are necessary to provide an early warning to these population. Nonetheless the morphological and hydrological factors controlling where and how the ice will jam are numerous and complex. Existing studies which exist on this topic are highly site specific. Therefore, the goal of this work is to develop a simplified geospatial model that would estimate the predisposition of any river channel to ice jams. The question here is not to predict when the ice will break up but rather to know where the released ice would be susceptible to jam. This paper presents the developments and preliminary results of the proposed approach. The initial step was to document the main factors identified in the literature, as potential cause for an ice jam. First, several main factors identified in the literature as potential cause for an ice jam have been selected: presence of an island, narrowing of the channel, sinuosity, presence of a bridge, confluence of rivers and slope break. The second step was to spatially represent, in 2D, the physical characteristics of the channel and to translate these characteristics into potential ice jamming factors. The Chaudiere River, south of Quebec City (Canada), was chosen as a test site. Tools from the GIS-based FRAZIL system have been used to generate these factors from readily available geospatial data and calcutate an "ice jam predisposition index" over regular-spaced segments along the entire channel. The resulting map was validated upon historical observations and local knowledge, collected in relationship with the Minister of Public Security.

  20. Confined disordered strictly jammed binary sphere packings

    NASA Astrophysics Data System (ADS)

    Chen, D.; Torquato, S.

    2015-12-01

    Disordered jammed packings under confinement have received considerably less attention than their bulk counterparts and yet arise in a variety of practical situations. In this work, we study binary sphere packings that are confined between two parallel hard planes and generalize the Torquato-Jiao (TJ) sequential linear programming algorithm [Phys. Rev. E 82, 061302 (2010), 10.1103/PhysRevE.82.061302] to obtain putative maximally random jammed (MRJ) packings that are exactly isostatic with high fidelity over a large range of plane separation distances H , small to large sphere radius ratio α , and small sphere relative concentration x . We find that packing characteristics can be substantially different from their bulk analogs, which is due to what we term "confinement frustration." Rattlers in confined packings are generally more prevalent than those in their bulk counterparts. We observe that packing fraction, rattler fraction, and degree of disorder of MRJ packings generally increase with H , though exceptions exist. Discontinuities in the packing characteristics as H varies in the vicinity of certain values of H are due to associated discontinuous transitions between different jammed states. When the plane separation distance is on the order of two large-sphere diameters or less, the packings exhibit salient two-dimensional features; when the plane separation distance exceeds about 30 large-sphere diameters, the packings approach three-dimensional bulk packings. As the size contrast increases (as α decreases), the rattler fraction dramatically increases due to what we call "size-disparity" frustration. We find that at intermediate α and when x is about 0.5 (50-50 mixture), the disorder of packings is maximized, as measured by an order metric ψ that is based on the number density fluctuations in the direction perpendicular to the hard walls. We also apply the local volume-fraction variance στ2(R ) to characterize confined packings and find that these

  1. A comparative molecular force spectroscopy study of homophilic JAM-A interactions and JAM-A interactions with reovirus attachment protein sigma1.

    PubMed

    Vedula, Sri Ram Krishna; Lim, Tong Seng; Kirchner, Eva; Guglielmi, Kristen M; Dermody, Terence S; Stehle, Thilo; Hunziker, Walter; Lim, Chwee Teck

    2008-01-01

    JAM-A belongs to a family of immunoglobulin-like proteins called junctional adhesion molecules (JAMs) that localize at epithelial and endothelial intercellular tight junctions. JAM-A is also expressed on dendritic cells, neutrophils, and platelets. Homophilic JAM-A interactions play an important role in regulating paracellular permeability and leukocyte transmigration across epithelial monolayers and endothelial cell junctions, respectively. In addition, JAM-A is a receptor for the reovirus attachment protein, sigma1. In this study, we used single molecular force spectroscopy to compare the kinetics of JAM-A interactions with itself and sigma1. A chimeric murine JAM-A/Fc fusion protein and the purified sigma1 head domain were used to probe murine L929 cells, which express JAM-A and are susceptible to reovirus infection. The bond half-life (t(1/2)) of homophilic JAM-A interactions was found to be shorter (k(off)(o) = 0.688 +/- 0.349 s(-1)) than that of sigma1/JAM-A interactions (k(off)(o) = 0.067 +/- 0.041 s(-1)). These results are in accordance with the physiological functions of JAM-A and sigma1. A short bond lifetime imparts a highly dynamic nature to homophilic JAM-A interactions for regulating tight junction permeability while stable interactions between sigma1 and JAM-A likely anchor the virus to the cell surface and facilitate viral entry.

  2. Jamming and diode effects for vortices in Nanostructured Superconductors

    SciTech Connect

    Reichhardt, Charles; Reichhardt, C J

    2009-01-01

    We examine jamming and ratchet effects for vortex matter in superconductors with asymmetric funnel geometries. We show that the vortex-vortex interactions can induce a clogging or jamming effect where it becomes increasingly difficult for the vortices to move through the system. We also find that commensurability effects can arise when certain vortex configurations form highly symmetrical structures in the funnel plaquettes. Due to the asymmetry, the critical currents are different for driving in different directions, leading to a diode effect. We also discuss other possible geometries that could be used to explore jamming in vortex matter.

  3. Nonlocal Elasticity near Jamming in Frictionless Soft Spheres

    NASA Astrophysics Data System (ADS)

    Baumgarten, Karsten; Vâgberg, Daniel; Tighe, Brian P.

    2017-03-01

    We use simulations of frictionless soft sphere packings to identify novel constitutive relations for linear elasticity near the jamming transition. By forcing packings at varying wavelengths, we directly access their transverse and longitudinal compliances. These are found to be wavelength dependent, in violation of conventional (local) linear elasticity. Crossovers in the compliances select characteristic length scales, which signify the appearance of nonlocal effects. Two of these length scales diverge as the pressure vanishes, indicating that critical effects near jamming control the breakdown of local elasticity. We expect these nonlocal constitutive relations to be applicable to a wide range of weakly jammed solids, including emulsions, foams, and granulates.

  4. Potential global jamming transition in aviation networks

    NASA Astrophysics Data System (ADS)

    Ezaki, Takahiro; Nishinari, Katsuhiro

    2014-08-01

    In this paper, we propose a nonlinear transport model for an aviation network. The takeoff rate from an airport is characterized by the degree of ground congestion. Due to the effect of surface congestion, the performance of an airport deteriorates because of inefficient configurations of waiting aircraft on the ground. Using a simple transport model, we performed simulations on a United States airport network and found a global jamming transition induced by local surface congestion. From a physical perspective, the mechanism of the transition is studied analytically and the resulting aircraft distribution is discussed considering system dynamics. This study shows that the knowledge of the relationship between a takeoff rate and a congestion level on the ground is vital for efficient air traffic operations.

  5. Potential global jamming transition in aviation networks.

    PubMed

    Ezaki, Takahiro; Nishinari, Katsuhiro

    2014-08-01

    In this paper, we propose a nonlinear transport model for an aviation network. The takeoff rate from an airport is characterized by the degree of ground congestion. Due to the effect of surface congestion, the performance of an airport deteriorates because of inefficient configurations of waiting aircraft on the ground. Using a simple transport model, we performed simulations on a United States airport network and found a global jamming transition induced by local surface congestion. From a physical perspective, the mechanism of the transition is studied analytically and the resulting aircraft distribution is discussed considering system dynamics. This study shows that the knowledge of the relationship between a takeoff rate and a congestion level on the ground is vital for efficient air traffic operations.

  6. Mean-field avalanches in jammed spheres

    NASA Astrophysics Data System (ADS)

    Franz, S.; Spigler, S.

    2017-02-01

    Disordered systems are characterized by the existence of many sample-dependent local-energy minima that cause a step-wise response when the system is perturbed. In this article we use an approach based on elementary probabilistic methods to compute the complete probability distribution of the jumps (static avalanches) in the response of mean-field systems described by replica symmetry breaking; we find a precise condition for having a power-law behavior in the distribution of avalanches caused by small perturbations, and we show that our predictions are in remarkable agreement both with previous results and with what is found in simulations of three-dimensional systems of soft spheres, either at jamming or at slightly higher densities.

  7. Traffic jam dynamics in stochastic cellular automata

    SciTech Connect

    Nagel, K. |; Schreckenberg, M.

    1995-09-01

    Simple models for particles hopping on a grid (cellular automata) are used to simulate (single lane) traffic flow. Despite their simplicity, these models are astonishingly realistic in reproducing start-stop-waves and realistic fundamental diagrams. One can use these models to investigate traffic phenomena near maximum flow. A so-called phase transition at average maximum flow is visible in the life-times of jams. The resulting dynamic picture is consistent with recent fluid-dynamical results by Kuehne/Kerner/Konhaeuser, and with Treiterer`s hysteresis description. This places CA models between car-following models and fluid-dynamical models for traffic flow. CA models are tested in projects in Los Alamos (USA) and in NRW (Germany) for large scale microsimulations of network traffic.

  8. Endocytic reawakening of motility in jammed epithelia.

    PubMed

    Malinverno, Chiara; Corallino, Salvatore; Giavazzi, Fabio; Bergert, Martin; Li, Qingsen; Leoni, Marco; Disanza, Andrea; Frittoli, Emanuela; Oldani, Amanda; Martini, Emanuele; Lendenmann, Tobias; Deflorian, Gianluca; Beznoussenko, Galina V; Poulikakos, Dimos; Ong, Kok Haur; Uroz, Marina; Trepat, Xavier; Parazzoli, Dario; Maiuri, Paolo; Yu, Weimiao; Ferrari, Aldo; Cerbino, Roberto; Scita, Giorgio

    2017-01-30

    Dynamics of epithelial monolayers has recently been interpreted in terms of a jamming or rigidity transition. How cells control such phase transitions is, however, unknown. Here we show that RAB5A, a key endocytic protein, is sufficient to induce large-scale, coordinated motility over tens of cells, and ballistic motion in otherwise kinetically arrested monolayers. This is linked to increased traction forces and to the extension of cell protrusions, which align with local velocity. Molecularly, impairing endocytosis, macropinocytosis or increasing fluid efflux abrogates RAB5A-induced collective motility. A simple model based on mechanical junctional tension and an active cell reorientation mechanism for the velocity of self-propelled cells identifies regimes of monolayer dynamics that explain endocytic reawakening of locomotion in terms of a combination of large-scale directed migration and local unjamming. These changes in multicellular dynamics enable collectives to migrate under physical constraints and may be exploited by tumours for interstitial dissemination.

  9. Mean-field avalanches in jammed spheres.

    PubMed

    Franz, S; Spigler, S

    2017-02-01

    Disordered systems are characterized by the existence of many sample-dependent local-energy minima that cause a step-wise response when the system is perturbed. In this article we use an approach based on elementary probabilistic methods to compute the complete probability distribution of the jumps (static avalanches) in the response of mean-field systems described by replica symmetry breaking; we find a precise condition for having a power-law behavior in the distribution of avalanches caused by small perturbations, and we show that our predictions are in remarkable agreement both with previous results and with what is found in simulations of three-dimensional systems of soft spheres, either at jamming or at slightly higher densities.

  10. Shear Yielding and Shear Jamming of Dense Hard Sphere Glasses

    NASA Astrophysics Data System (ADS)

    Urbani, Pierfrancesco; Zamponi, Francesco

    2017-01-01

    We investigate the response of dense hard sphere glasses to a shear strain in a wide range of pressures ranging from the glass transition to the infinite-pressure jamming point. The phase diagram in the density-shear strain plane is calculated analytically using the mean-field infinite-dimensional solution. We find that just above the glass transition, the glass generically yields at a finite shear strain. The yielding transition in the mean-field picture is a spinodal point in presence of disorder. At higher densities, instead, we find that the glass generically jams at a finite shear strain: the jamming transition prevents yielding. The shear yielding and shear jamming lines merge in a critical point, close to which the system yields at extremely large shear stress. Around this point, highly nontrivial yielding dynamics, characterized by system-spanning disordered fractures, is expected.

  11. A macroscopic model of traffic jams in axons.

    PubMed

    Kuznetsov, A V; Avramenko, A A

    2009-04-01

    The purpose of this paper is to develop a minimal macroscopic model capable of explaining the formation of traffic jams in fast axonal transport. The model accounts for the decrease of the number density of positively (and negatively) oriented microtubules near the location of the traffic jam due to formation of microtubule swirls; the model also accounts for the reduction of the effective velocity of organelle transport in the traffic jam region due to organelles falling off microtubule tracks more often in the swirl region. The model is based on molecular-motor-assisted transport equations and the hydrodynamic model of traffic jams in highway traffic. Parametric analyses of the model's predictions for various values of viscosity of the traffic flow, variance of the velocity distribution, diffusivity of microtubule-bound and free organelles, rate constants for binding to and detachment from microtubules, relaxation time, and average motor velocities of the retrograde and anterograde transport, are carried out.

  12. Rheology across the Zero-Temperature Jamming Transition

    NASA Astrophysics Data System (ADS)

    Paredes, José; Michels, Matthias A. J.; Bonn, Daniel

    2013-07-01

    Many soft-matter systems show a transition between fluidlike and mechanically solidlike states when the volume fraction of the material, e.g., particles, drops, or bubbles is increased. Using an emulsion as a model system with a precisely controllable volume fraction, we show that the entire mechanical behavior in the vicinity of the jamming point can be understood if the mechanical transition is assumed to be analogous to a phase transition. We find power-law scalings in the distance to the jamming point, in which the parameters and exponents connect the behavior above and below jamming. We propose a simple two-state model with heterogeneous dynamics to describe the transition between jammed and mobile states. The model reproduces the steady-state and creep rheology and relates the power-law exponents to diverging microscopic time scales.

  13. Scaling of Rheology Near the Colloidal Jamming Transition

    NASA Astrophysics Data System (ADS)

    Zhang, Zexin; Basu, Anindita; Haxton, Thomas; Liu, Andrea; Yodh, Arjun

    2009-03-01

    Recent simulations have proposed that the zero-temperature, zero-shear-stress jamming transition can be understood in the framework of critical phenomena, and thus can be described by various asymptotic scaling laws. We carry out rheology experiments in the vicinity of the jamming transition to study the scaling of flow properties of a bidisperse colloidal soft sphere system. We find, both below and above the jamming transition, a scaling collapse of the rheological data when the shear stress and shear rate are rescaled by proximity to the jamming transition. We extract critical scaling exponents and compared with simulations. C. S. O'Hern et al. Phys. Rev. E 68, 011306 (2003). P. Olsson, S. Teitel, Phys. Rev. Lett., 99, 178001 (2007). T. Hatano, arXiv:0803.2296v4 (2008), arXiv:0804.0477v2 (2008)

  14. Bats jamming bats: food competition through sonar interference.

    PubMed

    Corcoran, Aaron J; Conner, William E

    2014-11-07

    Communication signals are susceptible to interference ("jamming") from conspecifics and other sources. Many active sensing animals, including bats and electric fish, alter the frequency of their emissions to avoid inadvertent jamming from conspecifics. We demonstrated that echolocating bats adaptively jam conspecifics during competitions for food. Three-dimensional flight path reconstructions and audio-video field recordings of foraging bats (Tadarida brasiliensis) revealed extended interactions in which bats emitted sinusoidal frequency-modulated ultrasonic signals that interfered with the echolocation of conspecifics attacking insect prey. Playbacks of the jamming call, but not of control sounds, caused bats to miss insect targets. This study demonstrates intraspecific food competition through active disruption of a competitor's sensing during food acquisition.

  15. Visual traffic jam analysis based on trajectory data.

    PubMed

    Wang, Zuchao; Lu, Min; Yuan, Xiaoru; Zhang, Junping; van de Wetering, Huub

    2013-12-01

    In this work, we present an interactive system for visual analysis of urban traffic congestion based on GPS trajectories. For these trajectories we develop strategies to extract and derive traffic jam information. After cleaning the trajectories, they are matched to a road network. Subsequently, traffic speed on each road segment is computed and traffic jam events are automatically detected. Spatially and temporally related events are concatenated in, so-called, traffic jam propagation graphs. These graphs form a high-level description of a traffic jam and its propagation in time and space. Our system provides multiple views for visually exploring and analyzing the traffic condition of a large city as a whole, on the level of propagation graphs, and on road segment level. Case studies with 24 days of taxi GPS trajectories collected in Beijing demonstrate the effectiveness of our system.

  16. The bursting of housing bubble as jamming phase transition

    NASA Astrophysics Data System (ADS)

    Nishinari, Katsuhiro; Iwamura, Mitsuru; Umeno Saito, Yukiko; Watanabe, Tsutomu

    2010-04-01

    In this paper, we have proposed a bubble burst model by focusing on transaction volume incorporating a traffic model that represents spontaneous traffic jam. We find that the phenomenon of bubble burst shares many similar properties with traffic jam formation on highway by comparing data taken from the U.S. housing market. Our result suggests that transaction volume could be a driving force of bursting phenomenon.

  17. Jamming of Cylindrical Grains in Featureless Vertical Channels

    NASA Astrophysics Data System (ADS)

    Baxter, G. William; Barr, Nicholas; Weible, Seth; Friedl, Nicholas

    2013-03-01

    We study jamming of low aspect-ratio cylindrical Delrin grains falling through a featureless vertical channel. With a grain height less than the grain diameter, these grains resemble aspirin tablets, poker chips, or coins. Unidisperse grains are allowed to fall under the influence of gravity through a uniform channel of square cross-section where the channel width is greater than the grain size and constant along the length of the channel. Channel widths are chosen so that no combination of grain heights and diameters is equal to the channel width. Collections of grains sometimes form jams, stable structures in which the grains are supported by the channel walls and not by grains or walls beneath them. The probability of a jam occurring and the jam's strength are influenced by the grain dimensions and channel width. We will present experimental measurements of the jamming probability and jam strength and discuss the relationship of these results to other experiments and theories. Supported by an Undergraduate Research Grant from Penn State Erie, The Behrend College

  18. Jamming of Monodisperse Cylindrical Grains in Featureless Vertical Channels

    NASA Astrophysics Data System (ADS)

    Friedl, Nicholas; Baxter, G. William

    2014-03-01

    We study jamming of low aspect-ratio cylindrical Delrin grains falling through a featureless vertical channel under the influence of gravity. These grains have an aspect-ratio less than two (H/D < 2) and resemble aspirin tablets, 35mm film canisters, poker chips, or coins. Monodisperse grains are allowed to fall under the influence of gravity through a uniform channel of square cross-section where the channel width is greater than the grain size and constant along the length of the channel. No combination of grain heights and diameters is equal to the channel width. Collections of grains sometimes form jams, stable structures in which the grains are supported by the channel walls and not by grains or walls beneath them. The probability of a jam occurring and the jam's strength are influenced by the grain dimensions and channel width. We will present experimental measurements of the jamming probability and jam strength and discuss the relationship of these results to other experiments and theories. Supported by an Undergraduate Research Grant from Penn State Erie, The Behrend College.

  19. Jam-absorption driving with a car-following model

    NASA Astrophysics Data System (ADS)

    Taniguchi, Yohei; Nishi, Ryosuke; Ezaki, Takahiro; Nishinari, Katsuhiro

    2015-09-01

    Jam-absorption driving (JAD) refers to the action performed by a single car to dynamically change its headway to remove a traffic jam. Because of its irregular motion, a car performing JAD perturbs other cars following it, and these perturbations may grow to become the so-called secondary traffic jams. A basic theory for JAD (Nishi et al. 2013) does not consider accelerations of cars or the stability of traffic flow. In this paper, by introducing car-following behaviors, we implement these elements in JAD. Numerous previous studies on the instability of traffic flow showed that even in a region whose density is below a critical density, perturbation may grow if its initial magnitude is large. According to these previous studies, we expect that the perturbations caused by JAD, if they are sufficiently small, do not grow to become secondary traffic jams. Using a microscopic car-following model, we numerically confirmed that the stability of a flow obeying the model depends on the magnitude of JAD perturbations. On the basis of this knowledge, numerical results indicate that parameter regions exist where JAD allows traffic jams to be removed without causing secondary traffic jams. Moreover, JAD is robust against a parameter of acceleration in the model, as well as the choice of car-following models.

  20. Thermal fluctuations, mechanical response, and hyperuniformity in jammed solids

    NASA Astrophysics Data System (ADS)

    Ikeda, Atsushi; Berthier, Ludovic

    2015-07-01

    Jamming is a geometric phase transition occurring in dense particle systems in the absence of temperature. We use computer simulations to analyze the effect of thermal fluctuations on several signatures of the transition. We show that scaling laws for bulk and shear moduli only become relevant when thermal fluctuations are extremely small, and propose their relative ratio as a quantitative signature of jamming criticality. Despite the nonequilibrium nature of the transition, we find that thermally induced fluctuations and mechanical responses obey equilibrium fluctuation-dissipation relations near jamming, provided the appropriate fluctuating component of the particle displacements is analyzed. This shows that mechanical moduli can be directly measured from particle positions in mechanically unperturbed packings, and suggests that the definition of a "nonequilibrium index" is unnecessary for amorphous materials. We find that fluctuations of particle displacements are spatially correlated, and define a transverse and a longitudinal correlation length scale which both diverge as the jamming transition is approached. We analyze the frozen component of density fluctuations and find that it displays signatures of nearly hyperuniform behavior at large length scales. This demonstrates that hyperuniformity in jammed packings is unrelated to a vanishing compressibility and explains why it appears remarkably robust against temperature and density variations. Differently from jamming criticality, obstacles preventing the observation of hyperuniformity in colloidal systems do not originate from thermal fluctuations.

  1. Evaluation of the nutraceutical, physiochemical and sensory properties of raisin jam.

    PubMed

    Rababah, Taha M; Al-u'datt, Muhammad; Almajwal, Ali; Brewer, Susan; Feng, Hao; Al-Mahasneh, Majdi; Ereifej, Khalil; Yang, Wade

    2012-06-01

    This objective of this study was to evaluate the effect of jam processing of grape and raisin on the nutraceutical, physiochemical, and sensory properties. The results showed that fresh grape had the highest antioxidant activity, and total phenolic and anthocyanin content followed by grape jam, raisin, and raisin jam, respectively. No significant differences existed in soluble solids, pH, or firmness between grape and raisin jams. No significant differences in color parameters, ΔE, and chroma existed between grape and raisin jam. Descriptive sensory results showed minor differences in some sensory attributes between grape and raisin jams. In terms of consumer evaluation (9-point verbal hedonic scale and a 5-point just-about-right scale) the jams made from local raisins were parity with those from grape, despite small differences especially in whole raisin jam. Although raisin and other dried products are not traditionally considered as a raw material for jam processing, they have the same potential as fresh fruits.

  2. LFA-1 binding destabilizes the JAM-A homophilic interaction during leukocyte transmigration.

    PubMed

    Wojcikiewicz, Ewa P; Koenen, Rory R; Fraemohs, Line; Minkiewicz, Julia; Azad, Hashem; Weber, Christian; Moy, Vincent T

    2009-01-01

    Leukocyte transendothelial migration into inflamed areas is regulated by the integrity of endothelial cell junctions and is stabilized by adhesion molecules including junctional adhesion molecule-A (JAM-A). JAM-A has been shown to participate in homophilic interactions with itself and in heterophilic interactions with leukocyte function-associated antigen-1 (LFA-1) via its first and second immunoglobulin domains, respectively. Using competitive binding assays in conjunction with atomic force microscopy adhesion measurements, we provide compelling evidence that the second domain of JAM-A stabilizes the homophilic interaction because its deletion suppresses the dynamic strength of the JAM-A homophilic interaction. Moreover, binding of the LFA-1 inserted domain to the second domain of JAM-A reduces the dynamic strength of the JAM-A homophilic interaction to the level measured with the JAM-A domain 2 deletion mutant. This finding suggests that LFA-1 binding cancels the stabilizing effects of the second immunoglobulin domain of JAM-A. Finally, our atomic force microscopy measurements reveal that the interaction of JAM-A with LFA-1 is stronger than the JAM-A homophilic interaction. Taken together, these results suggest that LFA-1 binding to JAM-A destabilizes the JAM-A homophilic interaction. In turn, the greater strength of the LFA-1/JAM-A complex permits it to support the tension needed to disrupt the JAM-A homophilic interaction, thus allowing transendothelial migration to proceed.

  3. Mechanisms of jamming in the Nagel-Schreckenberg model for traffic flow

    NASA Astrophysics Data System (ADS)

    Bette, Henrik M.; Habel, Lars; Emig, Thorsten; Schreckenberg, Michael

    2017-01-01

    We study the Nagel-Schreckenberg cellular automata model for traffic flow by both simulations and analytical techniques. To better understand the nature of the jamming transition, we analyze the fraction of stopped cars P (v =0 ) as a function of the mean car density. We present a simple argument that yields an estimate for the free density where jamming occurs, and show satisfying agreement with simulation results. We demonstrate that the fraction of jammed cars P (v ∈{0 ,1 }) can be decomposed into the three factors (jamming rate, jam lifetime, and jam size) for which we derive, from random walk arguments, exponents that control their scaling close to the critical density.

  4. Traffic jam driving with NMV avoidance

    NASA Astrophysics Data System (ADS)

    Milanés, Vicente; Alonso, Luciano; Villagrá, Jorge; Godoy, Jorge; de Pedro, Teresa; Oria, Juan P.

    2012-08-01

    In recent years, the development of advanced driver assistance systems (ADAS) - mainly based on lidar and cameras - has considerably improved the safety of driving in urban environments. These systems provide warning signals for the driver in the case that any unexpected traffic circumstance is detected. The next step is to develop systems capable not only of warning the driver but also of taking over control of the car to avoid a potential collision. In the present communication, a system capable of autonomously avoiding collisions in traffic jam situations is presented. First, a perception system was developed for urban situations—in which not only vehicles have to be considered, but also pedestrians and other non-motor-vehicles (NMV). It comprises a differential global positioning system (DGPS) and wireless communication for vehicle detection, and an ultrasound sensor for NMV detection. Then, the vehicle's actuators - brake and throttle pedals - were modified to permit autonomous control. Finally, a fuzzy logic controller was implemented capable of analyzing the information provided by the perception system and of sending control commands to the vehicle's actuators so as to avoid accidents. The feasibility of the integrated system was tested by mounting it in a commercial vehicle, with the results being encouraging.

  5. Countering GPS jamming and EW threat

    NASA Astrophysics Data System (ADS)

    Pereira, Carlos M.; Rastegar, J.; McLain, Clifford E.; Alanson, T.; McMullan, Charles; Nguyen, H.-L.

    2007-09-01

    Efforts at the U.S. Army Research, Development and Engineering Center (ARDEC) at Picatinny, New Jersey are focused on developing methods to counter GPS jamming and electronic warfare (EW) threat by eliminating GPS dependency entirely. In addition, the need for munitions cost reduction requires alternatives to expensive high-grade inertia components. Efforts at ARDEC include investigations of novel methods for onboard measurement of munitions full position and angular orientation independent of GPS signals or high-grade inertia components. Currently, two types of direct angular measurement sensors are being investigated. A first sensor, Radio Frequency Polarized Sensor (RFPS), uses an electromagnetic field as a reference. A second sensor is based on magnetometers, using the Earth magnetic field for orientation measurement. Magnetometers, however, can only provide two independent orientation measurements. The RFPS may also be used to make full object position and angular orientation measurement relative to a reference coordinate system, which may be moving or stationary. The potential applications of novel RFPS sensors is in providing highly effective inexpensive replacement for GPS, which could be used in a "Layered Navigation" scheme employing alternate referencing methods and reduce the current dependency on GPS as a primary reference for guided gun-fired munitions. Other potential applications of RFPSs is in UAVs, UGVs, and robotic platforms.

  6. Study of jamming of the frequency modulation infrared seekers

    NASA Astrophysics Data System (ADS)

    Qian, Fang; Guo, Jin; Shao, Jun-feng; Wang, Ting-feng

    2013-09-01

    The threat of the IR guidance missile is a direct consequence of extensive proliferation of the airborne IR countermeasure. The aim of a countermeasure system is to inject false information into a sensor system to create confusion. Many optical seekers have a single detector that is used to sense the position of its victim in its field of view. A seeker has a spinning reticle in the focal plane of the optical system that collects energy from the thermal scene and focuses it on to the detector. In this paper, the principle of the conical-scan FM reticle is analyzed. Then the effect that different amplitude or frequency modulated mid-infrared laser pulse acts on the reticle system is simulated. When the ratio of jamming energy to target radiation (repression) gradually increases, the azimuth error and the misalignment angle error become larger. The results show that simply increasing the intensity of the jamming light achieves little, but it increases the received signal strength of the FM reticle system ,so that the target will be more easily exposed. A slow variation of amplitude will warp the azimuth information received by the seeker, but the target can't be completely out of the missile tracking. If the repression and the jamming frequency change at the same time, the jamming effects can be more obvious. When the jamming signal's angular frequency is twice as large as the carrier frequency of the reticle system, the seeker will can't receive an accurate signal and the jamming can be achieved. The jamming mechanism of the conical-scan FM IR seeker is described and it is helpful to the airborne IR countermeasure system.

  7. Schwann cell-specific JAM-C-deficient mice reveal novel expression and functions for JAM-C in peripheral nerves.

    PubMed

    Colom, Bartomeu; Poitelon, Yannick; Huang, Wenlong; Woodfin, Abigail; Averill, Sharon; Del Carro, Ubaldo; Zambroni, Desirée; Brain, Susan D; Perretti, Mauro; Ahluwalia, Amrita; Priestley, John V; Chavakis, Triantafyllos; Imhof, Beat A; Feltri, M Laura; Nourshargh, Sussan

    2012-03-01

    Junctional adhesion molecule-C (JAM-C) is an adhesion molecule expressed at junctions between adjacent endothelial and epithelial cells and implicated in multiple inflammatory and vascular responses. In addition, we recently reported on the expression of JAM-C in Schwann cells (SCs) and its importance for the integrity and function of peripheral nerves. To investigate the role of JAM-C in neuronal functions further, mice with a specific deletion of JAM-C in SCs (JAM-C SC KO) were generated. Compared to wild-type (WT) controls, JAM-C SC KO mice showed electrophysiological defects, muscular weakness, and hypersensitivity to mechanical stimuli. In addressing the underlying cause of these defects, nerves from JAM-C SC KO mice were found to have morphological defects in the paranodal region, exhibiting increased nodal length as compared to WTs. The study also reports on previously undetected expressions of JAM-C, namely on perineural cells, and in line with nociception defects of the JAM-C SC KO animals, on finely myelinated sensory nerve fibers. Collectively, the generation and characterization of JAM-C SC KO mice has provided unequivocal evidence for the involvement of SC JAM-C in the fine organization of peripheral nerves and in modulating multiple neuronal responses.

  8. Shear jamming in highly strained granular system without shear banding

    NASA Astrophysics Data System (ADS)

    Zhao, Yiqiu; Barés, Jonathan; Zheng, Hu; Behringer, Robert

    2016-11-01

    Bi et al. have shown that, if sheared, a granular material can jam even if its packing fraction (ϕ) is lower than the critical isotropic jamming point ϕJ. They have introduced a new critical packing fraction value ϕS such that for ϕS< ϕ< ϕJ the system jams if sheared. Nevertheless, the value of ϕS as a function of the shear profile or the strain necessary to observe jamming remain poorly understood because of the experimental complexity to access high strain without shear band. We present a novel 2D periodic shear apparatus made of 21 independent, aligned and mirrored glass rings. Each ring can be moved independently which permits us to impose any desired shear profile. The circular geometry allows access to any strain value. The forces between grains are measured using reflective photoelasticity. By performing different shear profiles for different packing fractions we explored the details of jamming diagram including the location of the yield surface. This work is supported by NSF No.DMR1206351, NASA No.NNX15AD38G and W. M. Keck Foundation.

  9. Jamming and chaotic dynamics in different granular systems

    NASA Astrophysics Data System (ADS)

    Maghsoodi, Homayoon; Luijten, Erik

    Although common in nature and industry, the jamming transition has long eluded a concrete, mechanistic explanation. Recently, Banigan et al. (Nat. Phys. 9, 288-292, 2013) proposed a method for characterizing this transition in a granular system in terms of the system's chaotic properties, as quantified by the largest Lyapunov exponent. They demonstrated that in a two-dimensional shear cell the jamming transition coincides with the bulk density at which the system's largest Lyapunov exponent changes sign, indicating a transition between chaotic and non-chaotic regimes. To examine the applicability of this observation to realistic granular systems, we study a model that includes frictional forces within an expanded phase space. Furthermore, we test the generality of the relation between chaos and jamming by investigating the relationship between jamming and the chaotic properties of several other granular systems, notably sheared systems (Howell, D., Behringer R. P., Veje C., Phys. Rev. Lett. 82, 5241-5244, 1999) and systems with a free boundary. Finally, we quantify correlations between the largest Lyapunov vector and collective rearrangements of the system to demonstrate the predictive capabilities enabled by adopting this perspective of jamming.

  10. Growing Hyperuniformity of Bidisperse Soft Discs on Approach to Jamming

    NASA Astrophysics Data System (ADS)

    Chieco, Anthony; Goodrich, Carl; Liu, Andrea; Durian, Douglas

    We study the development of hyperuniformity in simulated systems of bidisperse soft discs as the packing fraction ϕ is increased from below to above jamming, using the real-space spectrum of hyperuniformity disorder lengths, h (L) . For a set of randomly placed L × L measuring windows, h (L) specifies the distance from the window boundaries over which fluctuations are important; for liquid-like systems, h (L) scales like L; but for strongly hyperuniform systems, h (L) =he is constant. We use two preparation protocols, one rapidly-quenches a system by immediately minimizing particle overlap and the other allows particles to move under low temperature thermal driving. Above jamming, both systems become strongly hyperuniform as signified by h (L) -->Rsmall / 5 at large L. Below jamming, but near the transition, the behavior of h (L) at small L is just like above jamming. But for larger L, h (L) breaks away and grows in a protocol-dependent fashion. In general, thermal systems are more uniform than quenched systems, as signified by smaller hyperuniformity disorder lengths. And the development of hyperuniformity happens simultaneously with the onset of jamming.

  11. The thermodynamics of dense granular flow and jamming

    NASA Astrophysics Data System (ADS)

    Lu, Shih Yu

    The scope of the thesis is to propose, based on experimental evidence and theoretical validation, a quantifiable connection between systems that exhibit the jamming phenomenon. When jammed, some materials that flow are able to resist deformation so that they appear solid-like on the laboratory scale. But unlike ordinary fusion, which has a critically defined criterion in pressure and temperature, jamming occurs under a wide range of conditions. These condition have been rigorously investigated but at the moment, no self-consistent framework can apply to grains, foam and colloids that may have suddenly ceased to flow. To quantify the jamming behavior, a constitutive model of dense granular flows is deduced from shear-flow experiments. The empirical equations are then generalized, via a thermodynamic approach, into an equation-of-state for jamming. Notably, the unifying theory also predicts the experimental data on the behavior of molecular glassy liquids. This analogy paves a crucial road map for a unifying theoretical framework in condensed matter, for example, ranging from sand to fire retardants to toothpaste.

  12. Phase transition in traffic jam experiment on a circuit

    NASA Astrophysics Data System (ADS)

    Tadaki, Shin-ichi; Kikuchi, Macoto; Fukui, Minoru; Nakayama, Akihiro; Nishinari, Katsuhiro; Shibata, Akihiro; Sugiyama, Yuki; Yosida, Taturu; Yukawa, Satoshi

    2013-10-01

    The emergence of a traffic jam is considered to be a dynamical phase transition in a physics point of view; traffic flow becomes unstable and changes phase into a traffic jam when the car density exceeds a critical value. In order to verify this view, we have been performing a series of circuit experiments. In our previous work (2008 New J. Phys. 10 033001), we demonstrated that a traffic jam emerges even in the absence of bottlenecks at a certain high density. In this study, we performed a larger indoor circuit experiment in the Nagoya Dome in which the positions of cars were observed using a high-resolution laser scanner. Over a series of sessions at various values of density, we found that jammed flow occurred at high densities, whereas free flow was conserved at low densities. We also found indications of metastability at an intermediate density. The critical density is estimated by analyzing the fluctuations in speed and the density-flow relation. The value of this critical density is consistent with that observed on real expressways. This experiment provides strong support for physical interpretations of the emergence of traffic jams as a dynamical phase transition.

  13. Putting the brakes on cancer cell migration: JAM-A restrains integrin activation.

    PubMed

    Naik, Ulhas P; Naik, Meghna U

    2008-01-01

    Junctional Adhesion Molecule A (JAM-A) is a member of the Ig superfamily of membrane proteins expressed in platelets, leukocytes, endothelial cells and epithelial cells. We have previously shown that in endothelial cells, JAM-A regulates basic fibroblast growth factor, (FGF-2)-induced angiogenesis via augmenting endothelial cell migration. Recently, we have revealed that in breast cancer cells, downregulation of JAM-A enhances cancer cell migration and invasion. Further, ectopic expression of JAM-A in highly metastatic MDA-MB-231 cells attenuates cell migration, and downregulation of JAM-A in low-metastatic T47D cells enhance migration. Interestingly, JAM-A expression is greatly diminished as breast cancer disease progresses. The molecular mechanism of this function of JAM-A is beyond its well-characterized barrier function at the tight junction. Our results point out that JAM-A differentially regulates migration of endothelial and cancer cells.

  14. Order and Jamming on Curved Surfaces

    NASA Astrophysics Data System (ADS)

    Burke, Christopher J.

    Geometric frustration occurs when a physical system's preferred ordering (e.g. spherical particles packing in a hexagonal lattice) is incompatible with the system's geometry. An example of this occurs in arrested relaxation in Pickering emulsions. Pickering emulsions are emulsions (e.g. mixtures of oil and water) with colloidal particles mixed in. The particles tend to lie at an oil-water interface, and can coat the surface of droplets within the emulsion (e.g. an oil droplet surrounded by water.) If a droplet is deformed from its spherical ground state, more particles adsorb at the surface, and the droplet is allowed to relax, then the particles on the surface can become close packed and prevent further relaxation, arresting the droplet in a non-spherical shape. The resulting structures tend to be relatively well ordered with regions of highly hexagonal packings; however, the curvature of the surface prevents perfect ordering and defects in the packing are required. These defects may influence the stability of these structures, making it important to understand how to predict and control them for applications in the food, cosmetic, oil, and medical industries. In this work, we use simulations to study the ordering and stability of sphere packings on arrested emulsions droplets. We first isolate the role of surface geometry by creating packings on a static ellipsoidal surface. Next we perform simulations which include dynamic effects that are present in the experimental Pickering emulsion system. Packings are created by evolving an ellipsoidal surface towards a spherical shape at fixed volume; the effects of relaxation rate, interparticle attraction, and gravity are determined. Finally, we study jamming on curved surfaces. Packings of hard particles are used to study marginally stable packings and the role curvature plays in constraining them. We also study packings of soft particles, compressed beyond marginal stability, and find that geometric frustration plays

  15. Shape Effects on Jamming of Granular Materials

    NASA Astrophysics Data System (ADS)

    Farhadi, Somayeh

    In this work, we have focused on the jamming properties of systems composed of semi-2D elliptical shaped particles. In order to study these systems, we have performed three types of experiments: Couette shear, biaxial isotropic compression, and biaxial pure shear. In each experimental scheme, we take data for both systems of ellipses an bi-disperse disks, in order to probe the effect of broken spherical symmetry at the particle scale, on the global behavior. We use two synchronized cameras to capture the flow of particles and the local stress at the same time. In Couette experiments, we study the rheological properties, as well as the stress fluctuations for very large strains (up to 20 revolutions of the inner wheel). The system is sheared for densities below the isotropic jamming point (point J). From these studies we learn that over a small range of packing fractions, (0.85 ≤ φ ≤ 0.86), systems of ellipses demonstrate exceptionally slow dynamical evolution when they are sheared. For fixed density, and starting from an essentially unstressed state, the application of shear strain leads to first a growth of average particle displacements in the system through a Reynolds dilatancy effect, and then for very large strains, a steady decrease in particle displacements. In an intermediate range of shear strains, the system exists in effectively meta-stable states for a very long time before relaxing to an unjammed state, in which the flow of particles stops completely, and the stress fluctuations drop to zero. The strain scale for this relaxation depends on the global packing fraction. We characterize this slow dynamics by measuring the evolution of mean velocity, density, and orientational order throughout the experiments. In a similar set of experiments performed on disks, slow relaxation was observed as well. However, the increasing average displacement build-up before relaxation, which was observed in ellipses, did not occur for disks. This suggests that the

  16. From Jammer to Gambler: Modeling and Detection of Jamming Attacks against Time-Critical Traffic

    DTIC Science & Technology

    2011-04-01

    we further design and implement the JADE (Jamming Attack Detection based on Estimation) system to achieve efficient and robust jamming detection for...analytical and experimental results, we further design and implement the JADE (Jamming Attack Detection based on Estimation) system to achieve efficient and...Based on our theoretical and ex- perimental results, we design and implement the JADE system (Jamming Attack Detection based on Estimation) to achieve

  17. Jamming behavior of domains in a spiral antiferromagnetic system.

    PubMed

    Chen, S-W; Guo, H; Seu, K A; Dumesnil, K; Roy, S; Sinha, S K

    2013-05-24

    Using resonant magnetic x-ray photon correlation spectroscopy, we show that the domains of a spiral antiferromagnet enter a jammed state at the onset of long-range order. We find that the slow thermal fluctuations of the domain walls exhibit a compressed exponential relaxation with an exponent of 1.5 found in a wide variety of solidlike jammed systems and can be qualitatively explained in terms of stress release in a stressed network. As the temperature decreases, the energy barrier for fluctuations becomes large enough to arrest further domain wall fluctuations, and the domains freeze into a spatial configuration within 10 K of the Néel temperature. The relaxation times can be fitted with the Vogel-Fulcher law as observed in polymers, glasses, and colloids, thereby indicating that the dynamics of domain walls in an ordered antiferromagnet exhibit some of the universal features associated with jamming behavior.

  18. Dispersion and infrared jamming performance of hollow nanoshell smoke

    NASA Astrophysics Data System (ADS)

    Zhang, T.; Dai, X. D.; Ren, L. N.; Chen, L.; Dai, M. Y.; Liu, X. C.; Jiang, Y.; Chen, C. S.; Liu, H. F.

    2013-09-01

    A new hollow nanoshell semiconductor was applied for generating smoke screen, and the dispersion and infrared jamming performance were researched. Firstly, the mircostructures and dispersion performance of the screen particles were analized by using SEM and cascade impactor; basing on the findings, the jamming performance of the screen to 8-12μm infrared light, 1.06 μm laser and 10.6 μm laser were examined, and the primary affecting factors and relationships got concluded. The results show that the dispersion performance is favorable as the diameters of more than 70% smoke particles are below 6.1μm the smoke screen has better and satisfactory jamming performance to IR and laser as within 10 min, the decay rate maintains above 85% to 8-12μm IR and 90% to 1.06μm laser and10.6μm laser.

  19. JAM-A mediates neutrophil transmigration in a stimulus-specific manner in vivo: evidence for sequential roles for JAM-A and PECAM-1 in neutrophil transmigration.

    PubMed

    Woodfin, Abigail; Reichel, Christoph Andreas; Khandoga, Andrej; Corada, Monica; Voisin, Mathieu-Benoit; Scheiermann, Christoph; Haskard, Dorian O; Dejana, Elisabetta; Krombach, Fritz; Nourshargh, Sussan

    2007-09-15

    Junctional adhesion molecule-A (JAM-A) is a transmembrane protein expressed at tight junctions of endothelial and epithelial cells and on the surface of platelets and leukocytes. The role of JAM-A in leukocyte transmigration in vivo was directly investigated by intravital microscopy using both a JAM-A-neutralizing monoclonal antibody (mAb) (BV-11) and JAM-A-deficient (knockout [KO]) mice. Leukocyte transmigration (but not adhesion) through mouse cremasteric venules as stimulated by interleukin 1beta (IL-1beta) or ischemia/reperfusion (I/R) injury was significantly reduced in wild-type mice treated with BV-11 and in JAM-A KO animals. In contrast, JAM-A blockade/genetic deletion had no effect on responses elicited by leukotriene B(4) (LTB(4)) or platelet-activating factor (PAF). Furthermore, using a leukocyte transfer method and mice deficient in endothelial-cell JAM-A, evidence was obtained for the involvement of endothelial-cell JAM-A in leukocyte transmigration mediated by IL-1beta. Investigation of the functional relationship between JAM-A and PECAM-1 (CD31) determined that dual blockade/deletion of these proteins does not lead to an inhibitory effect greater than that seen with blockade/deletion of either molecule alone. The latter appeared to be due to the fact that JAM-A and PECAM-1 can act sequentially to mediate leukocyte migration through venular walls in vivo.

  20. Anti-JAM-C therapy eliminates tumor engraftment in a xenograft model of mantle cell lymphoma.

    PubMed

    Doñate, Carmen; Vijaya Kumar, Archana; Imhof, Beat A; Matthes, Thomas

    2016-11-01

    Junctional adhesion molecule (JAM)-C is a member of the JAM family, expressed by a variety of different cell types, including human B lymphocytes and some B-cell lymphoma subtypes-in particular, mantle cell lymphoma (MCL). Treatment with anti-JAM-C pAbs reduces homing of human B cells to lymphoid organs in a NOD/SCID mouse model. In the present study, the role of JAM-C in the engraftment of human lymphoma B cells in mice was investigated. Administration of novel anti-JAM-C mAbs reduced tumor growth of JAM-C(+) MCL cells in bone marrow, spleen, liver, and lymph nodes of mice. Treatment with anti-JAM-C antibodies significantly reduced the proliferation of JAM-C-expressing lymphoma B cells. Moreover, the binding of anti-JAM-C antibodies inhibited the phosphorylation of ERK1/2, without affecting other signaling pathways. The results identify for the first time the intracellular MAPK cascade as the JAM-C-driven signaling pathway in JAM-C(+) B cells. Targeting JAM-C could constitute a new therapeutic strategy reducing lymphoma B-cell proliferation and their capacity to reach supportive lymphoid microenvironments.

  1. Jamming of superconducting vortices in a funnel structure

    NASA Astrophysics Data System (ADS)

    Vlasko-Vlasov, V.; Benseman, T.; Welp, U.; Kwok, W. K.

    2013-07-01

    We report direct visual evidence of vortex retardation in a funnel structure patterned into a twin free YBCO crystal using laser lithography and ion milling. Magneto-optical images of flux entry with changing applied magnetic field show delayed flux propagation near the narrow end of the funnel which we interpret as a result of the jamming of vortices in the funnel neck. Furthermore, with AC magnetic fields, we observe the formation of macroturbulent flux domains whose motion is arrested at the constricted end of the funnel due to vortex jamming.

  2. A study of optimal abstract jamming strategies vs. noncoherent MFSK

    NASA Technical Reports Server (NTRS)

    Mceliece, R. J.; Rodemich, E. R.

    1983-01-01

    The present investigation is concerned with the performance of uncoded MFSK modulation in the presence of arbitrary additive jamming, taking into account the objective to devise robust antijamming strategies. An abstract model is considered, giving attention to the signal strength as a nonnegative real number X, the employment of X as a random variable, its distribution function G(x), the transmitter's strategy G, the jamming noise as an M-dimensional random vector Z, and the error probability. A summary of previous work on the considered problem is provided, and the results of the current study are presented.

  3. An EW technology research of jamming IR imaging guided missiles

    NASA Astrophysics Data System (ADS)

    Wu, Xiu-qin; Rong, Hua; Liang, Jing-ping; Chen, Qi; Chen, Min-rong

    2009-07-01

    The IR-Imaging-Guided Weapons have been playing an important role in the modern warfare by means of select attacking the vital parts of targets with the features of highly secret attacking, high precision, and excellent anti-jamming capability ,therefore, they are viewed to be one of the promising precisely guided weapons ,receiving great concern through out the world. This paper discusses the characteristics of IR-Imaging guidance systems at the highlight of making a study of correlated technologies of jamming IR-Imaging-Guided Weapons on the basis of elaborating the operational principles of IR-Imaging-guided Weapons.

  4. Basic helix-loop-helix transcription factors JASMONATE-ASSOCIATED MYC2-LIKE1 (JAM1), JAM2, and JAM3 are negative regulators of jasmonate responses in Arabidopsis.

    PubMed

    Sasaki-Sekimoto, Yuko; Jikumaru, Yusuke; Obayashi, Takeshi; Saito, Hikaru; Masuda, Shinji; Kamiya, Yuji; Ohta, Hiroyuki; Shirasu, Ken

    2013-09-01

    Jasmonates regulate transcriptional reprogramming during growth, development, and defense responses. Jasmonoyl-isoleucine, an amino acid conjugate of jasmonic acid (JA), is perceived by the protein complex composed of the F-box protein CORONATINE INSENSITIVE1 (COI1) and JASMONATE ZIM DOMAIN (JAZ) proteins, leading to the ubiquitin-dependent degradation of JAZ proteins. This activates basic helix-loop-helix-type MYC transcription factors to regulate JA-responsive genes. Here, we show that the expression of genes encoding other basic helix-loop-helix transcription factors, JASMONATE ASSOCIATED MYC2-LIKE1 (JAM1), JAM2, and JAM3, is positively regulated in a COI1- and MYC2-dependent manner in Arabidopsis (Arabidopsis thaliana). However, contrary to myc2, the jam1jam2jam3 triple mutant exhibited shorter roots when treated with methyl jasmonate (MJ), indicating enhanced responsiveness to JA. Our genome-wide expression analyses revealed that key jasmonate metabolic genes as well as a set of genes encoding transcription factors that regulate the JA-responsive metabolic genes are negatively regulated by JAMs after MJ treatment. Consistently, loss of JAM genes resulted in higher accumulation of anthocyanin in MJ-treated plants as well as higher accumulation of JA and 12-hydroxyjasmonic acid in wounded plants. These results show that JAMs negatively regulate the JA responses in a manner that is mostly antagonistic to MYC2.

  5. Basic Helix-Loop-Helix Transcription Factors JASMONATE-ASSOCIATED MYC2-LIKE1 (JAM1), JAM2, and JAM3 Are Negative Regulators of Jasmonate Responses in Arabidopsis1[W][OPEN

    PubMed Central

    Sasaki-Sekimoto, Yuko; Jikumaru, Yusuke; Obayashi, Takeshi; Saito, Hikaru; Masuda, Shinji; Kamiya, Yuji; Ohta, Hiroyuki; Shirasu, Ken

    2013-01-01

    Jasmonates regulate transcriptional reprogramming during growth, development, and defense responses. Jasmonoyl-isoleucine, an amino acid conjugate of jasmonic acid (JA), is perceived by the protein complex composed of the F-box protein CORONATINE INSENSITIVE1 (COI1) and JASMONATE ZIM DOMAIN (JAZ) proteins, leading to the ubiquitin-dependent degradation of JAZ proteins. This activates basic helix-loop-helix-type MYC transcription factors to regulate JA-responsive genes. Here, we show that the expression of genes encoding other basic helix-loop-helix transcription factors, JASMONATE ASSOCIATED MYC2-LIKE1 (JAM1), JAM2, and JAM3, is positively regulated in a COI1- and MYC2-dependent manner in Arabidopsis (Arabidopsis thaliana). However, contrary to myc2, the jam1jam2jam3 triple mutant exhibited shorter roots when treated with methyl jasmonate (MJ), indicating enhanced responsiveness to JA. Our genome-wide expression analyses revealed that key jasmonate metabolic genes as well as a set of genes encoding transcription factors that regulate the JA-responsive metabolic genes are negatively regulated by JAMs after MJ treatment. Consistently, loss of JAM genes resulted in higher accumulation of anthocyanin in MJ-treated plants as well as higher accumulation of JA and 12-hydroxyjasmonic acid in wounded plants. These results show that JAMs negatively regulate the JA responses in a manner that is mostly antagonistic to MYC2. PMID:23852442

  6. Geometric aspects of shear jamming induced by deformation of frictionless sphere packings

    NASA Astrophysics Data System (ADS)

    Vinutha, H. A.; Sastry, Srikanth

    2016-09-01

    It has recently been demonstrated that shear deformation of frictionless sphere packings leads to structures that will undergo jamming in the presence of friction, at densities well below the isotropic jamming point {φj}≈ 0.64 , and at high enough strains. Here, we show that the geometric features induced by strain are robust with respect to finite size effects, and include the feature of hyperuniformity, previously studied in the context of jamming, and more recently in driven systems. We study the approach to jamming as strain is increased, by evolving frictionless sheared configurations through frictional dynamics, and thereby identify a critical, or jamming, strain for each density, for a chosen value of the coefficient of friction. In the presence of friction above a certain strain value the sheared frictionless packings begin to develop finite stresses, which marks the onset of shear jamming. At a higher strain value, the shear stress reaches a saturation value after rising rapidly above the onset of shear jamming, which permits identification of the shear jamming transition. The onset of shear jamming and shear jamming are found to occur when the coordination number Z reaches values of Z  =  3 and Z  =  4 respectively. By considering percolation probabilities for the contact network, clusters of four coordinated and six coordinated spheres, we show that the percolation of four coordinated spheres corresponds to the onset of shear jamming behaviour, whereas the percolation of six coordinated spheres corresponds to shear jamming, for the chosen friction coefficients. At the onset of shear jamming, the force distribution begins to develop a peak at finite value and the force network is anisotropic and heterogeneous. And at the shear jamming transition, the force distribution has a well defined peak close to < f> and the force network is less anisotropic and homogeneous. We briefly discuss mechanical aspects of the jamming behaviour by

  7. JAM-A expression positively correlates with poor prognosis in breast cancer patients.

    PubMed

    McSherry, Elaine A; McGee, Sharon F; Jirstrom, Karin; Doyle, Emma M; Brennan, Donal J; Landberg, Goran; Dervan, Peter A; Hopkins, Ann M; Gallagher, William M

    2009-09-15

    The cell-cell adhesion protein junctional adhesion molecule-A (JAM-A) influences epithelial cell morphology and migration. As migration is required for tumor cell invasion and metastasis, we sought to elucidate the role of JAM-A in invasive breast cancer. A breast cancer tissue microarray was analyzed for JAM-A protein expression, in parallel with analysis of JAM-A gene expression data from a breast cancer clinical dataset. Our data demonstrate a novel association between JAM-A gene and protein upregulation and poor prognosis in breast cancer. To mechanistically dissect this process, we used lentiviral technology to stably knock down JAM-A gene expression by shRNA in MCF7 breast cancer cells, which express high-endogenous levels of JAM-A. We also antagonized JAM-A function in wild-type MCF7 cells using an inhibitory antibody that blocks JAM-A dimerization. Knockdown or functional antagonism of JAM-A decreased breast cancer cell migration in scratch-wound assays. Reductions in beta1-integrin protein levels were observed after JAM-A-knockdown in MCF7 cells, suggesting a mechanism for reduced motility after loss of JAM-A. Consistent with this hypothesis, tissue microarray analysis of beta1-integrin protein expression in invasive breast cancer tissues revealed a trend toward high beta1-integrin protein levels being indicative of poor prognosis. Twenty-two percent of patients were observed to coexpress high levels of JAM-A and beta1-integrin protein, and MDA-MB-231 breast cells stably overexpressing JAM-A showed an increase in beta1-integrin protein expression. Our results are consistent with a previously unreported role for JAM-A overexpression as a possible mechanism contributing to progression in primary breast cancer; and a potential therapeutic target.

  8. Mitigation of Control Channel Jamming under Node Capture Attacks

    DTIC Science & Technology

    2008-01-01

    9] to randomly hop away from jammed channels and re-synchronize on available channels and the use of wormholes [10] to create a channel for reports or...Apr. 2007, pp. 499–508. [10] M. C̆agalj, S. C̆apkun, and J.-P. Hubaux, “ Wormhole -based an- tijamming techniques in sensor networks,” IEEE Transactions

  9. Reliability of a jammed binary transmission over a Nakagami channel

    NASA Astrophysics Data System (ADS)

    Zenon, Syroka

    2014-05-01

    This study presents a mathematic and numerical analysis of the probability of error in a binary transmission over a fading radio channel described by Nakagami-m distribution and its special cases. The transmission is jammed by a signal occupying the entire (or comparable) band before detection.

  10. Physical-scale models of engineered log jams in rivers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stream restoration and river engineering projects are employing engineered log jams increasingly for stabilization and in-stream improvements. To further advance the design of these structures and their morphodynamic effects on corridors, the basis for physical-scale models of rivers with engineere...

  11. Responses of experimental river corridors to engineered log jams

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Physical models of the Big Sioux River, SD, were constructed to assess the impact on flow, drag, and bed erosion and deposition in response to the installation of two different types of engineered log jams (ELJs). A fixed-bed model focused on flow velocity and forces acting on an instrumented ELJ, a...

  12. Jamming transition and inherent structures of hard spheres and disks.

    PubMed

    Ozawa, Misaki; Kuroiwa, Takeshi; Ikeda, Atsushi; Miyazaki, Kunimasa

    2012-11-16

    Recent studies show that volume fractions φ(J) at the jamming transition of frictionless hard spheres and disks are not uniquely determined but exist over a continuous range. Motivated by this observation, we numerically investigate the dependence of φ(J) on the initial configurations of the parent fluid equilibrated at a volume fraction φ(eq), before compressing to generate a jammed packing. We find that φ(J) remains constant when φ(eq) is small but sharply increases as φ(eq) exceeds the dynamic transition point which the mode-coupling theory predicts. We carefully analyze configurational properties of both jammed packings and parent fluids and find that, while all jammed packings remain isostatic, the increase of φ(J) is accompanied with subtle but distinct changes of local orders, a static length scale, and an exponent of the finite-size scaling. These results are consistent with the scenario of the random first-order transition theory of the glass transition.

  13. A theoretical framework for jamming in confluent biological tissues

    NASA Astrophysics Data System (ADS)

    Manning, M. Lisa

    2015-03-01

    For important biological functions such as wound healing, embryonic development, and cancer tumorogenesis, cells must initially rearrange and move over relatively large distances, like a liquid. Subsequently, these same tissues must undergo buckling and support shear stresses, like a solid. Our work suggests that biological tissues can accommodate these disparate requirements because the tissues are close to glass or jamming transition. While recent self propelled particle models generically predict a glass/jamming transition that is driven by packing density φ and happens at some critical φc less than unity, many biological tissues that are confluent with no gaps between cells appear to undergo a jamming transition at a constant density (φ = 1). I will discuss a new theoretical framework for predicting energy barriers and rates of cell migration in 2D tissue monolayers, and show that this model predicts a novel type of rigidity transition, which takes place at constant φ = 1 and depends only on single cell properties such as cell-cell adhesion, cortical tension and cell elasticity. This model additionally predicts that an experimentally observable parameter, the ratio between a cell's perimeter and the square root of its cross-sectional area, attains a specific, critical value at the jamming transition. We show that this prediction is precisely realized in primary epithelial cultures from human patients, with implications for asthma pathology.

  14. JAM-A regulates permeability and inflammation in the intestine in vivo.

    PubMed

    Laukoetter, Mike G; Nava, Porfirio; Lee, Winston Y; Severson, Eric A; Capaldo, Christopher T; Babbin, Brian A; Williams, Ifor R; Koval, Michael; Peatman, Eric; Campbell, Jacquelyn A; Dermody, Terence S; Nusrat, Asma; Parkos, Charles A

    2007-12-24

    Recent evidence has linked intestinal permeability to mucosal inflammation, but molecular studies are lacking. Candidate regulatory molecules localized within the tight junction (TJ) include Junctional Adhesion Molecule (JAM-A), which has been implicated in the regulation of barrier function and leukocyte migration. Thus, we analyzed the intestinal mucosa of JAM-A-deficient (JAM-A(-/-)) mice for evidence of enhanced permeability and inflammation. Colonic mucosa from JAM-A(-/-) mice had normal epithelial architecture but increased polymorphonuclear leukocyte infiltration and large lymphoid aggregates not seen in wild-type controls. Barrier function experiments revealed increased mucosal permeability, as indicated by enhanced dextran flux, and decreased transepithelial electrical resistance in JAM-A(-/-) mice. The in vivo observations were epithelial specific, because monolayers of JAM-A(-/-) epithelial cells also demonstrated increased permeability. Analyses of other TJ components revealed increased expression of claudin-10 and -15 in the colonic mucosa of JAM-A(-/-) mice and in JAM-A small interfering RNA-treated epithelial cells. Given the observed increase in colonic inflammation and permeability, we assessed the susceptibility of JAM-A(-/-) mice to the induction of colitis with dextran sulfate sodium (DSS). Although DSS-treated JAM-A(-/-) animals had increased clinical disease compared with controls, colonic mucosa showed less injury and increased epithelial proliferation. These findings demonstrate a complex role of JAM-A in intestinal homeostasis by regulating epithelial permeability, inflammation, and proliferation.

  15. The spatiotemporal localization of JAM-C following sciatic nerve crush in adult rats.

    PubMed

    Avari, Parizad; Huang, Wenlong; Averill, Sharon; Colom, Bartomeu; Imhof, Beat A; Nourshargh, Sussan; Priestley, John V

    2012-07-01

    JAM-C is a junctional adhesion molecule, enriched at tight junctions on endothelial and epithelial cells, and also localized to Schwann cells at junctions between adjoining myelin end loops. The role of JAM-C following peripheral nerve injury (PNI) is currently unknown. We examined the localization of JAM-C after sciatic nerve crush injury in adult rats. JAM-C immunoreactivity was present in paranodes and incisures in sham surgery control nerve, but distal to the crush injury significantly decreased at three and 14 days. JAM-C was re-expressed at 28 days and, by 56 days, was significantly increased in the distal nerve compared to controls. In a 7-mm length of sciatic nerve sampled distal to the crush site, the densities of JAM-C immunoreactive paranodes increased in the distal direction. Conversely, the densities of JAM-C immunoreactive incisures were highest immediately distal to the crush site and decreased in the more distal direction. Further analysis revealed a strong correlation between JAM-C localization and remyelination. Fifty-six days after crush injury, greater densities of JAM-C paranodes were seen compared to the nodal marker jacalin, suggesting that paranodal JAM-C precedes node formation. Our data are the first to demonstrate a potential role of JAM-C in remyelination after PNI.

  16. Junctional adhesion molecule (JAM)-C deficient C57BL/6 mice develop a severe hydrocephalus.

    PubMed

    Wyss, Lena; Schäfer, Julia; Liebner, Stefan; Mittelbronn, Michel; Deutsch, Urban; Enzmann, Gaby; Adams, Ralf H; Aurrand-Lions, Michel; Plate, Karl H; Imhof, Beat A; Engelhardt, Britta

    2012-01-01

    The junctional adhesion molecule (JAM)-C is a widely expressed adhesion molecule regulating cell adhesion, cell polarity and inflammation. JAM-C expression and function in the central nervous system (CNS) has been poorly characterized to date. Here we show that JAM-C(-/-) mice backcrossed onto the C57BL/6 genetic background developed a severe hydrocephalus. An in depth immunohistochemical study revealed specific immunostaining for JAM-C in vascular endothelial cells in the CNS parenchyma, the meninges and in the choroid plexus of healthy C57BL/6 mice. Additional JAM-C immunostaining was detected on ependymal cells lining the ventricles and on choroid plexus epithelial cells. Despite the presence of hemorrhages in the brains of JAM-C(-/-) mice, our study demonstrates that development of the hydrocephalus was not due to a vascular function of JAM-C as endothelial re-expression of JAM-C failed to rescue the hydrocephalus phenotype of JAM-C(-/-) C57BL/6 mice. Evaluation of cerebrospinal fluid (CSF) circulation within the ventricular system of JAM-C(-/-) mice excluded occlusion of the cerebral aqueduct as the cause of hydrocephalus development but showed the acquisition of a block or reduction of CSF drainage from the lateral to the 3(rd) ventricle in JAM-C(-/-) C57BL/6 mice. Taken together, our study suggests that JAM-C(-/-) C57BL/6 mice model the important role for JAM-C in brain development and CSF homeostasis as recently observed in humans with a loss-of-function mutation in JAM-C.

  17. JAM-C promotes lymphangiogenesis and nodal metastasis in non-small cell lung cancer.

    PubMed

    Hao, SongNan; Yang, YanMei; Liu, Yan; Yang, ShuCai; Wang, Geng; Xiao, JianBing; Liu, HuiDong

    2014-06-01

    This study aims to investigate lymphatic metastasis-related genes in non-small cell lung carcinomas (NSCLC). NSCLC tissue was analyzed for expression of junctional adhesion molecule-C (JAM-C) protein. Our data revealed novel associations between JAM-C overexpression in primary tumors and lymphatic microvessel density (LMVD), lymph node metastasis, and poorer overall survival and recurrence-free survival. We used the highly metastatic human lung adenocarcinoma cell line Anip973 and its parental line AGZY83-a, which has a low metastatic capacity, in vivo and vitro. We found that JAM-C played an important role in different metastasis capacity of lymph node. JAM-C affected tumor growth, LNM, JAM-C, VEGF-C, vasculature, and ERK1/2 phosphorylation (p-ERK1/2). β1 integrin was involved in lymph node metastasis. Moreover, JAM-C knockdown in highly metastatic Anip973 decreased cell migration in scratch-wound assays. The JAM-C knockdown in Anip973 cells and JAM-C cDNA in AGZY83-a cells regulated the vascular endothelial growth factor C (VEGF-C) expression. Immunofluorescence showed that blocked VEGF-C expression in JAM-C shRNA Anip973 cells were restored after JAM-C treatment. JAM-C-induced VEGF-C in JAM-C cDNA AGZY83-a cells was also effectively inhibited by treatment with an antibody specifically against JAM-C. Use of media from Anip973 cells, AGZY83-a, and A549cells lung cancer cells that overexpressed or downregulated JAM-C was demonstrated to affect activity of VEGF-C-induced β1 integrin subunit or ERK activity in human dermal lymphatic endothelial cells (HDLEC) treated with VEGF-C or inhibitory antibody to JAM-C. Overall, these results indicate that JAM-C could mediate metastasis as it contributes to VEGF-C expression in cancer cells. JAM-C affects β1and ERK activation in HDLEC, thus promoting lymphangiogenesis and nodal metastasis. Our findings indicate that JAM-C may be a therapeutic target for preventing and treating lymphatic metastases.

  18. Glycemic index and postprandial blood glucose response to Japanese strawberry jam in normal adults.

    PubMed

    Kurotobi, Tomoka; Fukuhara, Kimiaki; Inage, Hiroko; Kimura, Shuichi

    2010-01-01

    We investigated in 30 healthy adults the glycemic index (GI) of five strawberry jams made from various sugar compositions. The jam containing the highest ratio of glucose showed a high GI, while that containing a high ratio of fructose, a jam made from polydextrose, showed a low GI. There was a high correlation (r=0.969, p=0.006) between the GI and the predicted GI calculated from the sugar composition of the jams. Moreover, the influence on postprandial blood glucose response after an intake of only 20 g of jam and one slice of bread with 20 g jam was measured in 8 healthy adults. The blood glucose level after an intake of 20 g of the high GI jam containing the high glucose ratio was higher than that of other jams at 15 min, but there was no significant difference after 30 min. Regardless of whether the GI was low or high, differences in the jams were not observed in the postprandial blood glucose level or the area under the curve after eating either one slice of bread (60 g) or one slice of bread with less than 20 g of jam.

  19. Deletion of JAM-A causes morphological defects in the corneal epithelium.

    PubMed

    Kang, Liang I; Wang, Yan; Suckow, Arthur T; Czymmek, Kirk J; Cooke, Vesselina G; Naik, Ulhas P; Duncan, Melinda K

    2007-01-01

    Junctional adhesion molecule-A (JAM-A, JAM-1, F11R) is an Ig domain containing transmembrane protein that has been proposed to function in diverse processes including platelet activation and adhesion, leukocyte transmigration, angiogenesis, epithelial cell shape and endothelial cell migration although its function in vivo is less well established. In the mouse eye, JAM-A protein expression is first detected at 12.5 dpc in the blood vessels of the tunica vasculosa, while it is first detected in both the corneal epithelium and lens between 13.5 and 14.5 dpc. In the corneal epithelium, JAM-A levels remain appreciable throughout life, while JAM-A immunostaining becomes stronger in the lens as the animals age. Both the cornea and lens of mice lacking an intact JAM-A gene are transparent until at least a year of age, although the cells of the JAM-A null corneal epithelium are irregularly shaped. In wild-type mice, JAM-A protein is found at the leading edge of repairing corneal epithelial wounds, however, corneal epithelial wound repair was qualitatively normal in JAM-A null animals. In summary, JAM-A is expressed in the corneal epithelium where it appears to regulate cell shape.

  20. A general analysis of anti-jam communication systems

    NASA Technical Reports Server (NTRS)

    Omura, J. K.; Levitt, B. K.

    1981-01-01

    A general error bound is derived for a general anti-jam communication system which will serve as the basis for evaluating the performance of all such complex communication systems. The two most common spread spectrum techniques, coherent DS/BPSK and noncoherent FH/MFSK, are analyzed. Pulse jamming represents the worst type of jammer for DS/BPSK systems, and several receiver structures against such a jammer are examined. It is found that for low values of chip energy-to-noise ratios of O dB or less there is little difference between having or not having jammer state knowledge with a hard decision receiver. Soft decision receivers are shown to be useless against very narrow pulses without jammer state knowledge. Partial band jammers are close to the worst case jammer for FH/MFSK systems. The conclusions found for these systems are similar to those for the DS/BPSK systems.

  1. Dynamic shear jamming in dense granular suspensions under extension

    NASA Astrophysics Data System (ADS)

    Majumdar, Sayantan; Peters, Ivo R.; Han, Endao; Jaeger, Heinrich M.

    2017-01-01

    Unlike dry granular materials, a dense granular suspension like cornstarch in water can strongly resist extensional flows. At low extension rates, such a suspension behaves like a viscous fluid, but rapid extension results in a response where stresses far exceed the predictions of lubrication hydrodynamics and capillarity. To understand this remarkable mechanical response, we experimentally measure the normal force imparted by a large bulk of the suspension on a plate moving vertically upward at a controlled velocity. We observe that, above a velocity threshold, the peak force increases by orders of magnitude. Using fast ultrasound imaging we map out the local velocity profiles inside the suspension, which reveal the formation of a growing jammed region under rapid extension. This region interacts with the rigid boundaries of the container through strong velocity gradients, suggesting a direct connection to the recently proposed shear-jamming mechanism.

  2. Security against jamming in imaging with partially-distinguishable photons

    NASA Astrophysics Data System (ADS)

    Roga, Wojciech; Jeffers, John

    2016-10-01

    We describe a protocol in which we detect intercept-resend jamming of imaging and can reverse its effects. The security is based on control of the polarization states of photons that are sent to interrogate an object and form an image at a camera. The scheme presented here is a particular implementation of a general anti-jamming protocol established by Roga and Jeffers in Ref. 5. It is applied here to imaging by photons with partially distinguishable polarisation states. The protocol in this version is easily applicable as only single photon states are involved, however the efficiency is traded off against the intrusion detectability because of a leak of information to the intruder.

  3. Jamming for nematic deposition in the presence of impurities

    NASA Astrophysics Data System (ADS)

    Vogel, E. E.; Valdes, J. F.; Lebrecht, W.; Ramirez-Pastor, A. J.; Centres, P.

    2017-02-01

    The deposition of one-dimensional objects (such as polymers) on a one-dimensional lattice with the presence of impurities is studied in order to find saturation conditions in what is known as jamming. Over a critical concentration of k -mers (polymers of length k ), no further depositions are possible. Five different nematic (directional) depositions are considered: baseline, irreversible, configurational, loose-packing, and close-packing. Correspondingly, five jamming functions are found, and their dependencies on the length of the lattice, L , the concentration of impurities, p =M /L (where M is the number of one-dimensional impurities), and the length of the k -mer (k ) are established. In parallel, numeric simulations are performed to compare with the theoretical results. The emphasis is on trimers (k =3 ) and p in the range [0.01,0.15], however other related cases are also considered and reported.

  4. Armoring a droplet: Soft jamming of a dense granular interface

    NASA Astrophysics Data System (ADS)

    Lagubeau, Guillaume; Rescaglio, Antonella; Melo, Francisco

    2014-09-01

    Droplets and bubbles protected by armors of particles have found vast applications in encapsulation, stabilization of emulsions and foams, or flotation processes. The liquid phase stores capillary energy, while concurrently the solid contacts of the granular network induce friction and energy dissipation, leading to hybrid interfaces of combined properties. By means of nonintrusive tensiometric methods and structural measurements, we distinguish three surface phases of increasing rigidity during the evaporation of armored droplets. The emergence of surface rigidity is reminiscent of jamming of granular matter, but it occurs differently since it is marked by a step by step hardening under surface compression. These results show that the concept of the effective surface tension remains useful only below the first jamming transition. Beyond this point, the surface stresses become anisotropic.

  5. Dynamically Jammed Fronts under impact in shear thickening suspensions

    NASA Astrophysics Data System (ADS)

    Mukhopdhyay, Shomeek; Allen, Benjamin; Korpas, Lucia; Brown, Eric

    2014-11-01

    Shear thickening fluids such as cornstarch and water show remarkable impact response allowing, for example, a person to run on the surface but sinking at lower velocities. We perform constant velocity impact experiments and imaging in shear thickening fluids at velocities lower than 500 mm/s and suspension heights of a few cm. In this regime where inertial effects are insignificant, we discover the existence of two dynamically jammed fronts which reach the opposite boundary to support large stresses like a solid. These stresses are large enough to support the weight of a running person. We also find a shear thickening transition under impact which is due to collision of the fronts with the boundary. The jammed front show similarities to granular materials like localization of stress. There is a critical velocity required to generate these impact activated fronts.

  6. Armoring a droplet: soft jamming of a dense granular interface.

    PubMed

    Lagubeau, Guillaume; Rescaglio, Antonella; Melo, Francisco

    2014-09-01

    Droplets and bubbles protected by armors of particles have found vast applications in encapsulation, stabilization of emulsions and foams, or flotation processes. The liquid phase stores capillary energy, while concurrently the solid contacts of the granular network induce friction and energy dissipation, leading to hybrid interfaces of combined properties. By means of nonintrusive tensiometric methods and structural measurements, we distinguish three surface phases of increasing rigidity during the evaporation of armored droplets. The emergence of surface rigidity is reminiscent of jamming of granular matter, but it occurs differently since it is marked by a step by step hardening under surface compression. These results show that the concept of the effective surface tension remains useful only below the first jamming transition. Beyond this point, the surface stresses become anisotropic.

  7. SINR estimation for SATCOM in the environment with jamming signals

    NASA Astrophysics Data System (ADS)

    Li, Lun; Wang, Gang; Tian, Xin; Shen, Dan; Pham, Khanh; Blasch, Erik; Chen, Genshe

    2016-05-01

    In this paper we consider a problem of estimating the signal-to-interference-plus-noise ratio (SINR) for satellite transmission system in the presence of jamming signals. Additive white Gaussian noise (AWGN) channels are considered for baseband quadrature phase shift keying (QPSK) data transmission system. Two interference models are proposed with Gaussian or non-Gaussian interference signals in order to investigate the SINR for different satellite transmission jamming scenarios. Both non-data-aided moment-based and data-aided maxi-mum likelihood SINR estimators are derived for the systems. The normalized mean square errors of the SINR estimation algorithms are examined by means of computer simulations. The numerical results show the robust-ness of derived SINR estimators. The development of the SINR estimators are applicable to a large number of applications utilizing satellite communication systems.

  8. Jammed Clusters and Non-locality in Dense Granular Flows

    NASA Astrophysics Data System (ADS)

    Kharel, Prashidha; Rognon, Pierre

    We investigate the micro-mechanisms underpinning dense granular flow behaviour from a series of DEM simulations of pure shear flows of dry grains. We observe the development of transient clusters of jammed particles within the flow. Typical size of such clusters is found to scale with the inertial number with a power law that is similar to the scaling of shear-rate profile relaxation lengths observed previously. Based on the simple argument that transient clusters of size l exist in the dense flow regime, the formulation of steady state condition for non-homogeneous shear flow results in a general non-local relation, which is similar in form to the non-local relation conjectured for soft glassy flows. These findings suggest the formation of jammed clusters to be the key micro-mechanism underpinning non-local behaviour in dense granular flows. Particles and Grains Laboratory, School of Civil Engineering, The University of Sydney, Sydney, NSW 2006, Australia.

  9. On adaptive robustness approach to Anti-Jam signal processing

    NASA Astrophysics Data System (ADS)

    Poberezhskiy, Y. S.; Poberezhskiy, G. Y.

    An effective approach to exploiting statistical differences between desired and jamming signals named adaptive robustness is proposed and analyzed in this paper. It combines conventional Bayesian, adaptive, and robust approaches that are complementary to each other. This combining strengthens the advantages and mitigates the drawbacks of the conventional approaches. Adaptive robustness is equally applicable to both jammers and their victim systems. The capabilities required for realization of adaptive robustness in jammers and victim systems are determined. The employment of a specific nonlinear robust algorithm for anti-jam (AJ) processing is described and analyzed. Its effectiveness in practical situations has been proven analytically and confirmed by simulation. Since adaptive robustness can be used by both sides in electronic warfare, it is more advantageous for the fastest and most intelligent side. Many results obtained and discussed in this paper are also applicable to commercial applications such as communications in unregulated or poorly regulated frequency ranges and systems with cognitive capabilities.

  10. Macroscopic Discontinuous Shear Thickening versus Local Shear Jamming in Cornstarch

    NASA Astrophysics Data System (ADS)

    Fall, A.; Bertrand, F.; Hautemayou, D.; Mezière, C.; Moucheront, P.; Lemaître, A.; Ovarlez, G.

    2015-03-01

    We study the emergence of discontinuous shear thickening (DST) in cornstarch by combining macroscopic rheometry with local magnetic resonance imaging measurements. We bring evidence that macroscopic DST is observed only when the flow separates into a low-density flowing and a high-density jammed region. In the shear-thickened steady state, the local rheology in the flowing region is not DST but, strikingly, is often shear thinning. Our data thus show that the stress jump measured during DST, in cornstarch, does not capture a secondary, high-viscosity branch of the local steady rheology but results from the existence of a shear jamming limit at volume fractions quite significantly below random close packing.

  11. Effects of climate on mid-winter ice jams

    NASA Astrophysics Data System (ADS)

    Beltaos, Spyros

    2002-03-01

    The breakup of ice in Canadian rivers and the ensuing ice jams have a multitude of socio-economic impacts. Equally important, but not as well understood, is the strong relationship between the breakup event and the aquatic ecosystem in terms of both habitat and life cycle. Because breakup processes are highly sensitive to weather conditions, there is concern over the potential effects of changing climatic patterns on the ice-jam regime and thus on the stream ecology and local economy. Though breakup commonly occurs in the spring, it is occasionally triggered by mid-winter thaws, which are typical of the more temperate regions of Canada. Mid-winter jams can be more destructive than spring ones and may also have repercussions on the spring event. Current knowledge suggests that small perturbations in winter temperature can produce major changes in the incidence of breakup and ice jams, by altering snowstorms into rainfall events. This expectation is confirmed by a hydroclimatic analysis of field observations and historical data on the upper reach of the Saint John River, which forms the boundary between New Brunswick, Canada and Maine, USA. A slight warming in the past 80 years has been accompanied by a considerable increase in the occurrence of mild winter days, thus contributing to increasing rainfall amounts. This results in augmented flows during the winter, which are lately becoming capable of effecting breakup of the river-ice cover. Implications for future trends in the ice regime of the Saint John River and of other Canadian rivers are discussed.

  12. Nonlocal rheological properties of granular flows near a jamming limit

    NASA Astrophysics Data System (ADS)

    Aranson, Igor S.; Tsimring, Lev S.; Malloggi, Florent; Clément, Eric

    2008-09-01

    We study the rheology of sheared granular flows close to a jamming transition. We use the approach of partially fluidized theory (PFT) with a full set of equations extending the thin layer approximation derived previously for the description of the granular avalanches phenomenology. This theory provides a picture compatible with a local rheology at large shear rates [G. D. R. Midi, Eur. Phys. J. E 14, 341 (2004)] and it works in the vicinity of the jamming transition, where a description in terms of a simple local rheology comes short. We investigate two situations displaying important deviations from local rheology. The first one is based on a set of numerical simulations of sheared soft two-dimensional circular grains. The next case describes previous experimental results obtained on avalanches of sandy material flowing down an incline. Both cases display, close to jamming, significant deviations from the now standard Pouliquen’s flow rule [O. Pouliquen, Phys. Fluids 11, 542 (1999); 11, 1956 (1999)]. This discrepancy is the hallmark of a strongly nonlocal rheology and in both cases, we relate the empirical results and the outcomes of PFT. The numerical simulations show a characteristic constitutive structure for the fluid part of the stress involving the confining pressure and the material stiffness that appear in the form of an additional dimensionless parameter. This constitutive relation is then used to describe the case of sandy flows. We show a quantitative agreement as far as the effective flow rules are concerned. A fundamental feature is identified in PFT as the existence of a jammed layer developing in the vicinity of the flow arrest that corroborates the experimental findings. Finally, we study the case of solitary erosive granular avalanches and relate the outcome with the PFT analysis.

  13. Analysis of jamming on inverse synthetic aperture radar (ISAR)

    NASA Astrophysics Data System (ADS)

    Han, Zhou-an; Pi, Yi-ming; Yang, Jian-yu

    2005-05-01

    Inverse synthetic aperture radar (ISAR) is a powerful means in target identifying, especially the target in the air, which can image the moving target. There is little study on modeling and resistance technique according to ISAR in China. This paper establishes a model of ISAR system, and then studies on some valid jamming technique. This will provide us the valid technique support on ISAR resistance equipment later.

  14. Navigating the Race to the Top Traffic Jam

    ERIC Educational Resources Information Center

    National Council on Teacher Quality, 2010

    2010-01-01

    Early last week the U.S. Department of Education announced an unexpected 16 finalists for the first round of Race to the Top (RTT) funding--a veritable traffic jam in the Race to the Top. The finalists have requested a total of $6.5 billion in funds, but only $4.3 billion is up for grabs, and that needs to be spread over two rounds of competition.…

  15. Jamming in Mobile Networks: A Game-Theoretic Approach

    DTIC Science & Technology

    2013-03-01

    general treatment of multiplayer differential games was presented by Starr and Ho [16], Leitmann [36], Vaisbord and Zhukovskiy [65], Zhukovskiy and...REPORT Jamming in mobile networks: A game -theoretic approach. 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: In this paper, we address the problem of...model the intrusion as a pursuit-evasion game between a mobile jammer and a team of agents. First, we consider a differential game -theoretic approach

  16. JAM-A regulates epithelial proliferation through Akt/β-catenin signalling.

    PubMed

    Nava, Porfirio; Capaldo, Christopher T; Koch, Stefan; Kolegraff, Keli; Rankin, Carl Robert; Farkas, Attila E; Feasel, Mattie E; Li, Linheng; Addis, Caroline; Parkos, Charles A; Nusrat, Asma

    2011-04-01

    Expression of the tight junction protein junctional adhesion molecule-A (JAM-A) has been linked to proliferation and tumour progression. However, a direct role for JAM-A in regulating proliferative processes has not been shown. By using complementary in vivo and in vitro approaches, we demonstrate that JAM-A restricts intestinal epithelial cell (IEC) proliferation in a dimerization-dependent manner, by inhibiting Akt-dependent β-catenin activation. Furthermore, IECs from transgenic JAM-A(-/-)/β-catenin/T-cell factor reporter mice showed enhanced β-catenin-dependent transcription. Finally, inhibition of Akt reversed colonic crypt hyperproliferation in JAM-A-deficient mice. These data establish a new link between JAM-A and IEC homeostasis.

  17. JAM-B regulates maintenance of hematopoietic stem cells in the bone marrow.

    PubMed

    Arcangeli, Marie-Laure; Frontera, Vincent; Bardin, Florence; Obrados, Elodie; Adams, Susanne; Chabannon, Christian; Schiff, Claudine; Mancini, Stephane J C; Adams, Ralf H; Aurrand-Lions, Michel

    2011-10-27

    In adult mammals, hematopoietic stem cells (HSCs) reside in the bone marrow (BM) and are maintained in a quiescent and undifferentiated state through adhesive interactions with specialized microenvironmental niches. Although junctional adhesion molecule-C (JAM-C) is expressed by HSCs, its function in adult hematopoiesis remains elusive. Here, we show that HSCs adhere to JAM-B expressed by BM stromal cells in a JAM-C dependent manner. The interaction regulates the interplay between HSCs and BM stromal cells as illustrated by the decreased pool of quiescent HSCs observed in jam-b deficient mice. We further show that this is probably because of alterations of BM stromal compartments and changes in SDF-1α BM content in jam-b(-/-) mice, suggesting that JAM-B is an active player in the maintenance of the BM stromal microenvironment.

  18. The Junctional Adhesion Molecule-B regulates JAM-C-dependent melanoma cell metastasis.

    PubMed

    Arcangeli, Marie-Laure; Frontera, Vincent; Bardin, Florence; Thomassin, Jeanne; Chetaille, Bruno; Adams, Susanne; Adams, Ralf H; Aurrand-Lions, Michel

    2012-11-16

    Metastasis is a major clinical issue and results in poor prognosis for most cancers. The Junctional Adhesion Molecule-C (JAM-C) expressed by B16 melanoma and endothelial cells has been involved in metastasis of tumor cells through homophilic JAM-C/JAM-C trans-interactions. Here, we show that JAM-B expressed by endothelial cells contributes to murine B16 melanoma cells metastasis through its interaction with JAM-C on tumor cells. We further show that this adhesion molecular pair mediates melanoma cell adhesion to primary Lung Microvascular Endothelial Cells and that it is functional in vivo as demonstrated by the reduced metastasis of B16 cells in Jam-b deficient mice.

  19. Dysregulation of JAM-A plays an important role in human tumor progression.

    PubMed

    Zhao, Chen; Lu, Funian; Chen, Hongxia; Zhao, Xianda; Sun, Jun; Chen, Honglei

    2014-01-01

    Junctional adhesion molecule A (JAM-A) is a transmembrane protein that belongs to the immunoglobulin (Ig) superfamily. Evidence determines that JAM-A plays a role in numerous cellular processes, including tight junction assembly, leukocyte migration, platelet activation, angiogenesis and virus binding. Recent research suggests that JAM-A is dysregulated in various cancers and is vital for tumor progression. JAM-A is implicated in carcinogenesis via different signal pathways such as TGF-β1 signaling. Furthermore, JAM-A expression in cancers is usually associated with certain outcome of patients and might be a prognostic indicator. In this review, the correlation between JAM-A expression and human cancers will be described.

  20. Mechanisms of jamming in the Nagel-Schreckenberg model for traffic flow.

    PubMed

    Bette, Henrik M; Habel, Lars; Emig, Thorsten; Schreckenberg, Michael

    2017-01-01

    We study the Nagel-Schreckenberg cellular automata model for traffic flow by both simulations and analytical techniques. To better understand the nature of the jamming transition, we analyze the fraction of stopped cars P(v=0) as a function of the mean car density. We present a simple argument that yields an estimate for the free density where jamming occurs, and show satisfying agreement with simulation results. We demonstrate that the fraction of jammed cars P(v∈{0,1}) can be decomposed into the three factors (jamming rate, jam lifetime, and jam size) for which we derive, from random walk arguments, exponents that control their scaling close to the critical density.

  1. Laser-jamming effectiveness analysis of combined-fiber lasers for airborne defense systems.

    PubMed

    Jie, Xu; Shanghong, Zhao; Rui, Hou; Shengbao, Zhan; Lei, Shi; Jili, Wu; Shaoqiang, Fang; Yongjun, Li

    2008-12-20

    The laser-jamming effectiveness of combined fiber lasers for airborne defense systems is analyzed in detail. Our preliminary experimental results are proof of the concept of getting a high-power laser through a beam combination technique. Based on combined fiber lasers, the jamming effectiveness of four-quadrant guidance and imaging guidance systems are evaluated. The simulation results have proved that for a four-quadrant guidance system, the tracking system takes only two seconds to complete tracking, and the new tracking target is the jamming laser; for the imaging guidance system, increasing the power of the jamming laser or the distance between the target and the jamming laser are both efficient ways to achieve a successful laser jamming.

  2. Spin jam induced by quantum fluctuations in a frustrated magnet

    PubMed Central

    Yang, Junjie; Samarakoon, Anjana; Dissanayake, Sachith; Ueda, Hiroaki; Klich, Israel; Iida, Kazuki; Pajerowski, Daniel; Butch, Nicholas P.; Huang, Q.; Copley, John R. D.; Lee, Seung-Hun

    2015-01-01

    Since the discovery of spin glasses in dilute magnetic systems, their study has been largely focused on understanding randomness and defects as the driving mechanism. The same paradigm has also been applied to explain glassy states found in dense frustrated systems. Recently, however, it has been theoretically suggested that different mechanisms, such as quantum fluctuations and topological features, may induce glassy states in defect-free spin systems, far from the conventional dilute limit. Here we report experimental evidence for existence of a glassy state, which we call a spin jam, in the vicinity of the clean limit of a frustrated magnet, which is insensitive to a low concentration of defects. We have studied the effect of impurities on SrCr9pGa12-9pO19 [SCGO(p)], a highly frustrated magnet, in which the magnetic Cr3+ (s = 3/2) ions form a quasi-2D triangular system of bipyramids. Our experimental data show that as the nonmagnetic Ga3+ impurity concentration is changed, there are two distinct phases of glassiness: an exotic glassy state, which we call a spin jam, for the high magnetic concentration region (p>0.8) and a cluster spin glass for lower magnetic concentration (p<0.8). This observation indicates that a spin jam is a unique vantage point from which the class of glassy states of dense frustrated magnets can be understood. PMID:26324917

  3. Quasi-2D dynamic jamming of cornstarch suspensions

    NASA Astrophysics Data System (ADS)

    Peters, Ivo; Jaeger, Heinrich

    2014-03-01

    A dense suspension of cornstarch in water has the extraordinary behavior that, when perturbed lightly, it behaves like a liquid, but, when impacted at high velocities, the material solidifies. Waitukaitis et al. (Nature, 2012) have shown that this behavior is due to a dynamic jamming front that propagates through the system. The details of this jamming front, however, are obscured by the surrounding suspension in a 3-dimensional system. In our current experiment, we prepare a layer (thickness order 1 cm) of the cornstarch suspension, which floats on a dense, low-viscosity liquid. This setup provides a stress-free boundary condition on the bottom and upper surface of the suspension. The floating suspension is bounded at three sides by solid walls, and on one side by a thin rubber sheet. We perturb the system by impacting an object horizontally on one side at a controlled velocity using a linear actuator. Tracer particles sitting on the top surface of the suspension allow us to perform PIV on the perturbed suspension. From the PIV analysis we determine the shape of the jammed region, the growth rate, shear rates, and the expected force response due to the added mass. We compare this to direct force measurements and determine which components make up the total force response.

  4. Synchronized flow and wide moving jams from balanced vehicular traffic.

    PubMed

    Siebel, Florian; Mauser, Wolfram

    2006-06-01

    Recently we proposed an extension to the traffic model of Aw, Rascle, and Greenberg. The extended traffic model can be written as a hyperbolic system of balance laws and numerically reproduces the reverse-lambda shape of the fundamental diagram of traffic flow. In the current work we analyze the steady-state solutions of the model and their stability properties. In addition to the equilibrium flow curve the trivial steady-state solutions form two additional branches in the flow-density diagram. We show that the characteristic structure excludes parts of these branches, resulting in the reverse-lambda shape of the flow-density relation. The upper branch is metastable against the formation of synchronized flow for intermediate densities and unstable for high densities, whereas the lower branch is unstable for intermediate densities and metastable for high densities. Moreover, the model can reproduce the typical speed of the downstream front of wide moving jams. It further reproduces a constant outflow from wide moving jams, which is far below the maximum free flow. Applying the model to simulate traffic flow at a bottleneck we observe a general pattern with wide moving jams traveling through the bottleneck.

  5. Sculpting Pickering Emulsion Droplets by Arrest and Jamming

    NASA Astrophysics Data System (ADS)

    Burke, Christopher; Wei, Zengyi; Caggioni, Marco; Spicer, Patrick; Atherton, Tim

    Pickering emulsion droplets can be arrested into non-spherical shapes--useful for applications such as active delivery--through a general mechanism of deformation followed by absorption of additional colloidal particles onto the interface, relaxation of the droplet caused by surface tension and arrest at some point due to crowding of the particles. We perform simulations of the arrest process to clarify the relative importance of diffusive rearrangement of particles and collective forcing due to surface evolution. Experiment and theory are compared, giving insight into the stability of the resulting capsules and the robustness of the production process for higher-throughput production in, for example, microfluidic systems. We adapt theoretical tools from the jamming literature to better understand the arrested configurations and long timescale evolution of the system: using linear programming and a penalty function approach, we identify unjamming motions in kinetically arrested states. We propose a paradigm of ``metric jamming'' to describe the limiting behavior of this class of system: a structure is metric-jammed if it is stable with respect to collective motion of the particles as well as evolution of the hypersurface on which the packing is embedded. Supported by a Cottrell Award from the Research Corporation for Science Advancement.

  6. Joint tactical anti-jam communications: A systems approach

    NASA Astrophysics Data System (ADS)

    Kavvadias, Vasilios Christos

    1989-09-01

    The conceptual design of a joint tactical anti-jam communication link from a systems point of view is analyzed. The requirements and the specifications for a communication system providing an integrated solution for Navies operating in closed sea areas under intense enemy jamming activity are addressed. The concept of the proposed system is based on spread spectrum technology and on the Joint Tactical Information Distribution System (JTIDS). Spread spectrum technology has been an area of extensive research for many years. Satisfactory practical solutions have been provided through the implementation of several frequency hopping systems that give partial answer to the anti-jam (AJ) problem. JTIDS is the only hybrid spread spectrum system intended to provide a catholic answer. The AJ performance of the proposed system is examined theoretically under realistic scenarios. System feasibility, from the overall cost standpoint, is evaluated using life cycle costing and sensitivity analysis. The trade-off between the procurement of an original system and a JTIDS-based design is also evaluated, based on the possible research costs. It is assumed that acquisition or procurement of such a system is not limited by any technology transfer barriers.

  7. Self-Driven Jamming in Growing Microbial Populations

    PubMed Central

    Delarue, Morgan; Hartung, Jörn; Schreck, Carl; Gniewek, Pawel; Hu, Lucy; Herminghaus, Stephan; Hallatschek, Oskar

    2016-01-01

    In natural settings, microbes tend to grow in dense populations [1–4] where they need to push against their surroundings to accommodate space for new cells. The associated contact forces play a critical role in a variety of population-level processes, including biofilm formation [5–7], the colonization of porous media [8, 9], and the invasion of biological tissues [10–12]. Although mechanical forces have been characterized at the single cell level [13–16], it remains elusive how collective pushing forces result from the combination of single cell forces. Here, we reveal a collective mechanism of confinement, which we call self-driven jamming, that promotes the build-up of large mechanical pressures in microbial populations. Microfluidic experiments on budding yeast populations in space-limited environments show that self-driven jamming arises from the gradual formation and sudden collapse of force chains driven by microbial proliferation, extending the framework of driven granular matter [17–20]. The resulting contact pressures can become large enough to slow down cell growth, to delay the cell cycle in the G1 phase, and to strain or even destroy the microenvironment through crack propagation. Our results suggest that self-driven jamming and build-up of large mechanical pressures is a natural tendency of microbes growing in confined spaces, contributing to microbial pathogenesis and biofouling [21–26]. PMID:27642362

  8. Exact computation of the critical exponents of the jamming transition

    NASA Astrophysics Data System (ADS)

    Zamponi, Francesco

    2015-03-01

    The jamming transition marks the emergence of rigidity in a system of amorphous and athermal grains. It is characterized by a divergent correlation length of the force-force correlation and non-trivial critical exponents that are independent of spatial dimension, suggesting that a mean field theory can correctly predict their values. I will discuss a mean field approach to the problem based on the exact solution of the hard sphere model in infinite dimension. An unexpected analogy with the Sherrington-Kirkpatrick spin glass model emerges in the solution: as in the SK model, the glassy states turn out to be marginally stable, and are described by a Parisi equation. Marginal stability has a deep impact on the critical properties of the jamming transition and allows one to obtain analytic predictions for the critical exponents. The predictions are consistent with a recently developed scaling theory of the jamming transition, and with numerical simulations. Finally, I will briefly discuss some possible extensions of this approach to other open issues in the theory of glasses.

  9. Flow and jamming of granular mixtures through obstacles

    NASA Astrophysics Data System (ADS)

    Chevoir, F.; Gaulard, F.; Roussel, N.

    2007-07-01

    Due to the formation of arches, granular materials may jam when flowing through obstacles, as in the case of hoppers. As a way to quantify this process, we study experimentally the flow of binary granular mixtures through sieves, as a function of two parameters: the proportion of large grains and the ratio of large grains to sieve hole size. We distinguish three regimes: steady flows, jamming, and progressive clogging. In the case of steady flows, we measure the dependencies of the flow rate on the two parameters and observe a generalization of the law known for mono-disperse grains flowing through a single aperture. Moreover we measure how the critical size of the holes leading to jamming depends on the proportion of large grains. In the case of progressive clogging, we measure the slowing down of the flow rate and identify two mechanisms associated to the trapping of the large grains in the holes of the sieves and then to the formation of a filtration cake.

  10. Experimental Study of the 2D Jamming Transition

    NASA Astrophysics Data System (ADS)

    Cheng, Xiang

    2009-03-01

    We can study a jammed system of particles by following a loosely-packed configuration as the individual particles increase their size until all the particles are constrained by their neighbors. Because tapioca pearls swell to over twice their initial diameter when submerged in water, they offer an ideal medium with which to study properties of the jamming transition in the presence of frictional interactions. Using an array of ˜ 10,000 tapioca pearls, we study several static and dynamic signatures of the two-dimensional jamming transition. The amplitude of the first peak of the pair-correlation function changes non-monotonically as the packing fraction of the system increases. This is consistent with recent experiments in a colloidal system of NIPA particles at finite temperatures [1]. This signature is a vestige of the divergence of this peak in the frictionless-sphere limit [2]. A length scale, defined by the spatial velocity correlation function, and the number hexagons in the Voronoi tessellation have pronounced maxima at the transition. [1] Z. Zhang, D. T. N. Chen, A. G. Yodh, K. B. Aptowicz and P. Habdas, Bull. Am. Phys. Soc. Volume 53, Number 2 (2008). [2] C. S. O'Hern, L. E. Silbert, A. J. Liu and S. R. Nagel, Phys. Rev. E 68, 011306 1-19 (2003).

  11. Experimental Characterization of the Jamming Transition in a Granular Material

    NASA Astrophysics Data System (ADS)

    Majmudar, Trushant; Behringer, Robert

    2007-03-01

    We describe experiments to test recent predictions for the jamming transition in disordered solids. Here, our system is a 2D granular material consisting of photoelastic disks. By observing these particles through crossed circular polarizers, it is possible to a) accurately determine particle contacts, b) via an appropriate computational procedure, calculate the vector contact forces between particles, and c) from the contact forces compute the Cauchy stress. Simulations (e.g. by O'Hern et al., Donev et al.) for frictionless particles predict a discontinuous increase in the contact number, Z at the jamming transition, given by a critical packing fraction, φc. Above jamming, Z should then increase as a power law in φ-φc with an exponent of 0.5 to 0.6. The pressure, P is also predicted to grow as a power law. Additionally, Senkes and Chakraborty have predicted the behavior of P and Z using a meanfield entropy-based description. Our experiments support all of these predictions. There is a rapid increase in Z at φc, and power law increase of Z and P above the transition. There is also reasonable agreement between the data and the predictions of Senkens and Chakraborty.

  12. Self-driven jamming in growing microbial populations

    NASA Astrophysics Data System (ADS)

    Delarue, Morgan; Hartung, Jörn; Schreck, Carl; Gniewek, Pawel; Hu, Lucy; Herminghaus, Stephan; Hallatschek, Oskar

    2016-08-01

    In natural settings, microbes tend to grow in dense populations where they need to push against their surroundings to accommodate space for new cells. The associated contact forces play a critical role in a variety of population-level processes, including biofilm formation, the colonization of porous media, and the invasion of biological tissues. Although mechanical forces have been characterized at the single-cell level, it remains elusive how collective pushing forces result from the combination of single-cell forces. Here, we reveal a collective mechanism of confinement, which we call self-driven jamming, that promotes the build-up of large mechanical pressures in microbial populations. Microfluidic experiments on budding yeast populations in space-limited environments show that self-driven jamming arises from the gradual formation and sudden collapse of force chains driven by microbial proliferation, extending the framework of driven granular matter. The resulting contact pressures can become large enough to slow down cell growth, to delay the cell cycle in the G1 phase, and to strain or even destroy the micro-environment through crack propagation. Our results suggest that self-driven jamming and build-up of large mechanical pressures is a natural tendency of microbes growing in confined spaces, contributing to microbial pathogenesis and biofouling.

  13. Dynamic jamming fronts in iceberg-choked fjords

    NASA Astrophysics Data System (ADS)

    Peters, Ivo; Amundson, Jason; Cassotto, Ryan; Fahnestock, Mark; Darnell, Kristopher; Truffer, Martin; Zhang, Wendy

    2015-03-01

    During summertime at the glacier terminus at Jakobshavn Isbræ, Greenland, calving events are followed by rapid motion in the ice mélange in front of the terminus. Understanding the dynamics of ice mélange is important because it acts as a resisting force to calving events. We analyze this motion using time-lapse photography and terrestrial radar images. Large calving events last for approximately 5 minutes, during which ~1014 J of potential energy is released. Motion in the ice mélange quickly spreads out over at least 16 km down the fjord, and relaxes in about 1 hour. The ice mélange can be viewed as a dense granular system, which is packed close to the jamming point. A jammed ice mélange resists expansion of the glacier terminus much more strongly and reduces iceberg calving, which may therefore play a significant role in glacier evolution. In our images, we observe dynamic jamming fronts, which propagate one order of magnitude faster than the instantaneous speed of the calving iceberg. From the ratio between the speed of the front and the calving iceberg we calculate a compaction that agrees with estimated compaction that we observe directly.

  14. Spin jam induced by quantum fluctuations in a frustrated magnet.

    PubMed

    Yang, Junjie; Samarakoon, Anjana; Dissanayake, Sachith; Ueda, Hiroaki; Klich, Israel; Iida, Kazuki; Pajerowski, Daniel; Butch, Nicholas P; Huang, Q; Copley, John R D; Lee, Seung-Hun

    2015-09-15

    Since the discovery of spin glasses in dilute magnetic systems, their study has been largely focused on understanding randomness and defects as the driving mechanism. The same paradigm has also been applied to explain glassy states found in dense frustrated systems. Recently, however, it has been theoretically suggested that different mechanisms, such as quantum fluctuations and topological features, may induce glassy states in defect-free spin systems, far from the conventional dilute limit. Here we report experimental evidence for existence of a glassy state, which we call a spin jam, in the vicinity of the clean limit of a frustrated magnet, which is insensitive to a low concentration of defects. We have studied the effect of impurities on SrCr9pGa12-9pO19 [SCGO(p)], a highly frustrated magnet, in which the magnetic Cr(3+) (s = 3/2) ions form a quasi-2D triangular system of bipyramids. Our experimental data show that as the nonmagnetic Ga(3+) impurity concentration is changed, there are two distinct phases of glassiness: an exotic glassy state, which we call a spin jam, for the high magnetic concentration region (p > 0.8) and a cluster spin glass for lower magnetic concentration (p < 0.8). This observation indicates that a spin jam is a unique vantage point from which the class of glassy states of dense frustrated magnets can be understood.

  15. Jamming of particles in a two-dimensional fluid-driven flow.

    PubMed

    Guariguata, Alfredo; Pascall, Masika A; Gilmer, Matthew W; Sum, Amadeu K; Sloan, E Dendy; Koh, Carolyn A; Wu, David T

    2012-12-01

    The jamming of particles under flow is of critical importance in a broad range of natural and industrial settings, such as the jamming of ice in rivers, or the plugging of suspended solids in pipeline transport. Relatively few studies have been carried out on jamming of suspended particles under flow, in comparison to the many studies on jamming in gravity-driven flows that have revealed various features of the jamming process. Fluid-driven particle flows differ in several aspects from gravity-driven flows, particularly in being compatible with a range of particle concentrations and velocities. Additionally, there are fluid-particle interactions and hydrodynamic effects. To investigate particle jamming in fluid-driven flows, we have performed both experiments and computer simulations on the flow of circular particles floating over water in an open channel with a restriction. We determined the flow-rate boundary for a dilute-to-dense flow transition, similar to that seen in gravity-driven flows. The maximum particle throughput increased for larger restriction sizes consistent with a Beverloo equation form over the entire range of particle mixtures and restriction sizes. The exponent of ~3/2 in the Beverloo equation is consistent with approximately constant acceleration of grains due to fluid drag in the immediate region of the opening. We verified that the jamming probability from the dense flow gave a geometric distribution in the number of particles escaping before a jam. The probability of jamming in both experiments and simulations was found to be dependent on the ratio of channel opening to particle size, but only weakly dependent on the fluid flow velocity. Flow entrance effects were measured and observed to affect the jamming probability, and dependence on particle friction coefficient was determined from simulation. A comprehensive model for the jamming probability integrating these observations from the different flow regimes was shown to be in good

  16. The Effects of Soviet Army Communications Jamming on the AIM Division Signal Battalion.

    DTIC Science & Technology

    1980-06-06

    computer based technical analyses of the effectiveness of the Soviet radioelectronic combat threat on division level communica- tions is presented...A technical analysis of the communications 4 t~-I Jamming 4 jamming threat versus the AIM division signal battalion is discussed to analyze the... technical analysis of Soviet communications jamming capabilities to interfere with and impede the AIM division signal battalion communications systems

  17. A spread spectrum system with frequency hopping and sequentially balanced modulation. II - Operation in jamming and multipath

    NASA Astrophysics Data System (ADS)

    Mathis, R. F.; Pawula, R. F.

    1980-10-01

    The performance of a spread spectrum system which incorporates frequency hopping, sequentially balanced modulation, phase-comparison tone ranging, and pseudoorthogonal block coding of BPSK data with maximum likelihood of soft decision decoding, is evaluated in jamming environments and multipath. The jamming models considered include partial-band noise jamming, comb-type partial-band noise jamming, multitone jamming, and comb-type multitone jamming. Specular multipath with broad-band noise are shown to be the most serious form of interference. Bit-error probability and ranging accuracy curves are presented.

  18. RNA interference mediated JAM-A gene silencing promotes human epidermal stem cell proliferation.

    PubMed

    Zhou, Tong; Wu, Minjuan; Guo, Xiaocan; Liu, Houqi

    2015-04-01

    The objective of the study was to explore the influence of junctional adhesion molecule A (JAM-A) gene decoration on proliferation and differentiation of human epidermal stem cells (hEpSCs). JAM-A gene and JAM-A interference gene lentivirus eukaryotic expression vectors were established. The recombinant lentivirus was introduced into hEpSCs to observe and detect viral transfection by fluorescence microscopy and Western blot, respectively. After confirmation of successful introduction of the target gene, cell growth curves were mapped out by cytometry to detect cell proliferation in different groups. The expression of hEpSCs labeled molecules was detected by immunofluorescence, and cell safety was detected by teratoma test in all groups. (1) Fluorescence microscopy showed that in the JAM-A over-expression (JAM-A(ov) EpSCs) group, the green fluorescence was mainly distributed in the cell membrane; in the JAM-A interference (JAM-A(kd) EpSCs) group and blank vector (GFP EpSCs) group, all cell bodies were luminous. Western blot showed that JAM-A protein was up-regulated in JAM-A(ov) EpSCs and down-regulated in JAM-A(kd) EpSCs. (2) Growth curves showed that hEpSCs entered the quick-growing phase 4 days after inoculation and reached the platform phase at day 7. JAM-A(ov) EpSCs proliferated more slowly than GFP EpSCs, while JAM-A(kd) EpSCs proliferated significantly faster than GFP EpSCs. (3) Immunofluorescence showed that the expression of transient amplification epidermal marker keratin 14, hEpSCs marker keratin I9 and β-integrin was down-regulated in JAM-A(kd) EpSCs group as compared to that in the GFP EpSCs group, and the expression of epidermal terminal differentiation marker K10 was negative in the JAM-A(kd) EpSCs group. There was no significant difference in the expression of specific molecules between JAM-A(ov) EpSCs and hEpSCs. (4) The result of teratoma test was negative in all groups. The proliferative ability of hEpSCs was increased markedly after down

  19. Evaluation of electronic jamming effect based on seeker captive flight test and missile flight simulation

    NASA Astrophysics Data System (ADS)

    Gao, Wei; Tie, Weitao

    2017-01-01

    In order to test and evaluate the jamming effect of electronic warfare weapons on missiles, a method based on seeker captive flight jamming test and missile flight simulation test is put forward, in which real data for the jamming effect of the electronic warfare weapon on seekers is obtained by seeker captive flight jamming test, and immitted into a missile digital simulation system to perform large numbers of missile flight simulation tests under jamming, then one could evaluate the jamming effect of the electronic warfare weapon on missiles according to the simulation test results. The method is demonstrated and validated by test and evaluation of the jamming effect of a smokescreen jamming device on TV guidance missiles. The results show that, the method proposed here not only overcomes the shortcomings of both pure digital simulation test and field test, but also combines their advantages, thus could be taken as an easy, economical and reliable method for testing and evaluating electronic jamming effect on missiles.

  20. Approach jamming effectiveness evaluation for surface-type infrared decoy in network centric warship formation

    NASA Astrophysics Data System (ADS)

    Lv, Mingshan

    2015-10-01

    The passive and photoelectrical jamming to anti-ship missile in the condition of network centric warship formation is an important research issue of fleet EW operation. An approach jamming method of shipborne surface-type infrared decoy countering the infrared image guided anti-ship missile is put forward. By analyzing the countering process the jamming effectiveness evaluation model is constructed. By simulation the method is proved t reasonable and effective. This method breaks through the traditional restrict that the passive and photoelectricity jamming measure can only be used in the end self-defence and provides a new method for network centric worship formation to support each other.

  1. Adaptive changes in echolocation sounds by Pipistrellus abramus in response to artificial jamming sounds.

    PubMed

    Takahashi, Eri; Hyomoto, Kiri; Riquimaroux, Hiroshi; Watanabe, Yoshiaki; Ohta, Tetsuo; Hiryu, Shizuko

    2014-08-15

    The echolocation behavior of Pipistrellus abramus during exposure to artificial jamming sounds during flight was investigated. Echolocation pulses emitted by the bats were recorded using a telemetry microphone mounted on the bats' backs, and their adaptation based on acoustic characteristics of emitted pulses was assessed in terms of jamming-avoidance responses (JARs). In experiment 1, frequency-modulated jamming sounds (3 ms duration) mimicking echolocation pulses of P. abramus were prepared. All bats showed significant increases in the terminal frequency of the frequency-modulated pulse by an average of 2.1-4.5 kHz when the terminal frequency of the jamming sounds was lower than the bats' own pulses. This frequency shift was not observed using jamming frequencies that overlapped with or were higher than the bats' own pulses. These findings suggest that JARs in P. abramus are sensitive to the terminal frequency of jamming pulses and that the bats' response pattern was dependent on the slight difference in stimulus frequency. In experiment 2, when bats were repeatedly exposed to a band-limited noise of 70 ms duration, the bats in flight more frequently emitted pulses during silent periods between jamming sounds, suggesting that the bats could actively change the timing of pulse emissions, even during flight, to avoid temporal overlap with jamming sounds. Our findings demonstrate that bats could adjust their vocalized frequency and emission timing during flight in response to acoustic jamming stimuli.

  2. Self-Organization in 2D Traffic Flow Model with Jam-Avoiding Drive

    NASA Astrophysics Data System (ADS)

    Nagatani, Takashi

    1995-04-01

    A stochastic cellular automaton (CA) model is presented to investigate the traffic jam by self-organization in the two-dimensional (2D) traffic flow. The CA model is the extended version of the 2D asymmetric exclusion model to take into account jam-avoiding drive. Each site contains either a car moving to the up, a car moving to the right, or is empty. A up car can shift right with probability p ja if it is blocked ahead by other cars. It is shown that the three phases (the low-density phase, the intermediate-density phase and the high-density phase) appear in the traffic flow. The intermediate-density phase is characterized by the right moving of up cars. The jamming transition to the high-density jamming phase occurs with higher density of cars than that without jam-avoiding drive. The jamming transition point p 2c increases with the shifting probability p ja. In the deterministic limit of p ja=1, it is found that a new jamming transition occurs from the low-density synchronized-shifting phase to the high-density moving phase with increasing density of cars. In the synchronized-shifting phase, all up cars do not move to the up but shift to the right by synchronizing with the move of right cars. We show that the jam-avoiding drive has an important effect on the dynamical jamming transition.

  3. Simulating synchronized traffic flow and wide moving jam based on the brake light rule

    NASA Astrophysics Data System (ADS)

    Xiang, Zheng-Tao; Li, Yu-Jin; Chen, Yu-Feng; Xiong, Li

    2013-11-01

    A new cellular automaton (CA) model based on brake light rules is proposed, which considers the influence of deterministic deceleration on randomization probability and deceleration extent. To describe the synchronized flow phase of Kerner’s three-phase theory in accordance with empirical data, we have changed some rules of vehicle motion with the aim to improve speed and acceleration vehicle behavior in synchronized flow simulated with earlier cellular automaton models with brake lights. The fundamental diagrams and spatial-temporal diagrams are analyzed, as well as the complexity of the traffic evolution, the emergence process of wide moving jam. Simulation results show that our new model can reproduce the three traffic phases: free flow, synchronized flow and wide moving jam. In addition, our new model can well describe the complexity of traffic evolution: (1) with initial homogeneous distribution and large densities, the traffic will evolve into multiple steady states, in which the numbers of wide moving jams are not invariable. (2) With initial homogeneous distribution and the middle range of density, the wide moving jam will emerge stochastically. (3) With initial mega-jam distribution and the density close to a point with the low value, the initial mega-jam will disappear stochastically. (4) For the cases with multiple wide moving jams, the process is analyzed involving the generation of narrow moving jam due to “pinch effect”, which leads to wide moving jam emergence.

  4. Cloning and preliminary functional studies of the JAM-A gene in grass carp (Ctenopharyngodon idellus).

    PubMed

    Du, Fukuan; Su, Jianguo; Huang, Rong; Liao, Lanjie; Zhu, Zuoyan; Wang, Yaping

    2013-06-01

    Grass carp (Ctenopharyngodon idellus) is a very important aquaculture species in China and other South-East Asian countries; however, disease outbreaks in this species are frequent, resulting in huge economic losses. Grass carp hemorrhage caused by grass carp reovirus (GCRV) is one of the most serious diseases. Junction adhesion molecule A (JAM-A) is the mammalian receptor for reovirus, and has been well studied. However, the JAM-A gene in grass carp has not been studied so far. In this study, we cloned and elucidated the structure of the JAM-A gene in grass carp (GcJAM-A) and then studied its functions during grass carp hemorrhage. GcJAM-A is composed of 10 exons and 9 introns, and its full-length cDNA is 1833 bp long, with an 888 bp open reading frame (ORF) that encodes a 295 amino acid protein. The GcJAM-A protein is predicted to contain a typical transmembrane domain. Maternal expression pattern of GcJAM-A is observed during early embryogenesis, while zygote expression occurs at 8 h after hatching. GcJAM-A is expressed strongly in the gill, liver, intestine and kidney, while it is expressed poorly in the blood, brain, spleen and head kidney. Moreover, lower expression is observed in the gill, liver, intestine, brain, spleen and kidney of 30-month-old individuals, compared with 6-month-old. In a GcJAM-A-knockdown cell line (CIK) infected with GCRV, the expression of genes involved in the interferon and apoptosis pathways was significantly inhibited. These results suggest that GcJAM-A could be a receptor for GCRV. We have therefore managed to characterize the GcJAM-A gene and provide evidence for its role as a receptor for GCRV.

  5. Mars Science Laboratory Rover Integrated Pump Assembly Bellows Jamming Failure

    NASA Technical Reports Server (NTRS)

    Johnson, Michael R.; Johnson, Joel; Birur, Gajanana; Bhandari, Pradeep; Karlmann, Paul

    2012-01-01

    The Mars Science Laboratory rover and spacecraft utilize two mechanically pumped fluid loops for heat transfer to and from the internal electronics assemblies and the Radioisotope Thermo-Electric Generator (RTG). The heat transfer fluid is Freon R-11 (CFC-11) which has a large coefficient of thermal expansion. The Freon within the heat transfer system must have a volume for safe expansion of the fluid as the system temperature rises. The device used for this function is a gas-over-liquid accumulator. The accumulator uses a metal bellows to separate the fluid and gas sections. During expansion and contraction of the fluid in the system, the bellows extends and retracts to provide the needed volume change. During final testing of a spare unit, the bellows would not extend the full distance required to provide the needed expansion volume. Increasing the fluid pressure did not loosen the jammed bellows either. No amount of stroking the bellows back and forth would get it to pass the jamming point. This type of failure, if it occurred during flight, would result in significant overpressure of the heat transfer system leading to a burst failure at some point in the system piping. A loss of the Freon fluid would soon result in a loss of the mission. The determination of the source of the jamming of the bellows was quite elusive, leading to an extensive series of tests and analyses. The testing and analyses did indicate the root cause of the failure, qualitatively. The results did not provide a set of dimensional limits for the existing hardware design that would guarantee proper operation of the accumulator. In the end, a new design was developed that relied on good engineering judgment combined with the test results to select a reliable enough solution that still met other physical constraints of the hardware, the schedule, and the rover system.

  6. Overexpression of JAM-A in non-small cell lung cancer correlates with tumor progression.

    PubMed

    Zhang, Min; Luo, Wenting; Huang, Bo; Liu, Zihui; Sun, Limei; Zhang, Qingfu; Qiu, Xueshan; Xu, Ke; Wang, Enhua

    2013-01-01

    The objective of the current study was to determine the clinical significance of junctional adhesion molecule A (JAM-A) in patients with non-small cell lung cancer (NSCLC) and the biological function of JAM-A in NSCLC cell lines. We showed that JAM-A is predominantly expressed in cell membranes and high expression of JAM-A occurred in 37% of lung tumor specimens compared to corresponding normal tissues. High expression of JAM-A was significantly correlated with TNM stage (P = 0.021), lymph node metastasis (P = 0.007), and decreased overall survival (P = 0.02), In addition, we observed that silencing JAM-A by small interfering RNA inhibited tumor cell proliferation and induced cell cycle arrest at the G1/S boundary. Western blotting analysis revealed that knockdown of JAM-A decreased the protein levels of cyclin D1, CDK4, 6, and P-Rb. Thus, JAM-A plays an important role in NSCLC progression.

  7. JAM-A promotes neutrophil chemotaxis by controlling integrin internalization and recycling.

    PubMed

    Cera, Maria Rosaria; Fabbri, Monica; Molendini, Cinzia; Corada, Monica; Orsenigo, Fabrizio; Rehberg, Markus; Reichel, Christoph A; Krombach, Fritz; Pardi, Ruggero; Dejana, Elisabetta

    2009-01-15

    The membrane-associated adhesion molecule JAM-A is required for neutrophil infiltration in inflammatory or ischemic tissues. JAM-A expressed in both endothelial cells and neutrophils has such a role, but the mechanism of action remains elusive. Here we show that JAM-A has a cell-autonomous role in neutrophil chemotaxis both in vivo and in vitro, which is independent of the interaction of neutrophils with endothelial cells. On activated neutrophils, JAM-A concentrates in a polarized fashion at the leading edge and uropod. Surprisingly, a significant amount of this protein is internalized in intracellular endosomal-like vesicles where it codistributes with integrin beta1. Clustering of beta1 integrin leads to JAM-A co-clustering, whereas clustering of JAM-A does not induce integrin association. Neutrophils derived from JAM-A-null mice are unable to correctly internalize beta1 integrins upon chemotactic stimuli and this causes impaired uropod retraction and cell motility. Consistently, inhibition of integrin internalization upon treatment with BAPTA-AM induces a comparable phenotype. These data indicate that JAM-A is required for the correct internalization and recycling of integrins during cell migration and might explain why, in its absence, the directional migration of neutrophils towards an inflammatory stimulus is markedly impaired.

  8. An International Study on Learning and Process Choices in the Global Game Jam

    ERIC Educational Resources Information Center

    Arya, Ali; Chastine, Jeff; Preston, Jon; Fowler, Allan

    2013-01-01

    This paper reports the results of an online survey done by Global Game Jam (GGJ) participants in January 2012. This is an expansion of an earlier survey of a local game jam event and seeks to validate and extend previous studies. The objectives of this survey were collecting demographic information about the GGJ participants, understanding their…

  9. Jamming effectiveness analysis of IR smoke projectile based on sight optical observation

    NASA Astrophysics Data System (ADS)

    Wang, Longtao; Liu, Zhenxing; Wang, Falong

    2013-09-01

    This text makes use of the similar of the principle between IR imaging guided missile detection system and the general sight optics probe. In this text, the synopsis analysis on the jamming effectiveness of the IR smoke projectile resist the IR imaging guided missile is discussed. This research of the jamming technique to IR imaging guided missile have a very realistic meaning.

  10. On-board recordings reveal no jamming avoidance in wild bats.

    PubMed

    Cvikel, Noam; Levin, Eran; Hurme, Edward; Borissov, Ivailo; Boonman, Arjan; Amichai, Eran; Yovel, Yossi

    2015-01-07

    Animals often deal with situations in which vast sensory input is received simultaneously. They therefore must possess sophisticated mechanisms to select important input and ignore the rest. In bat echolocation, this problem is at its extreme. Echolocating bats emit sound signals and analyse the returning echoes to sense their environment. Bats from the same species use signals with similar frequencies. Nearby bats therefore face the difficulty of distinguishing their own echoes from the signals of other bats, a problem often referred to as jamming. Because bats commonly fly in large groups, jamming might simultaneously occur from numerous directions and at many frequencies. Jamming is a special case of the general phenomenon of sensory segregation. Another well-known example is the human problem of following conversation within a crowd. In both situations, a flood of auditory incoming signals must be parsed into important versus irrelevant information. Here, we present a novel method, fitting wild bats with a miniature microphone, which allows studying jamming from the bat's 'point of view'. Previous studies suggested that bats deal with jamming by shifting their echolocation frequency. On-board recordings suggest otherwise. Bats shifted their frequencies, but they did so because they were responding to the conspecifics as though they were nearby objects rather than avoiding being jammed by them. We show how bats could use alternative measures to deal with jamming instead of shifting their frequency. Despite its intuitive appeal, a spectral jamming avoidance response might not be the prime mechanism to avoid sensory interference from conspecifics.

  11. Jamming probabilities for a vacancy in the dimer model.

    PubMed

    Poghosyan, V S; Priezzhev, V B; Ruelle, P

    2008-04-01

    Following the recent proposal made by [J. Bouttier, Phys. Rev. E 76, 041140 (2007)], we study analytically the mobility properties of a single vacancy in the close-packed dimer model on the square lattice. Using the spanning web representation, we find determinantal expressions for various observable quantities. In the limiting case of large lattices, they can be reduced to the calculation of Toeplitz determinants and minors thereof. The probability for the vacancy to be strictly jammed and other diffusion characteristics are computed exactly.

  12. Synthetic Radar Echoes in the Presence of Jamming

    DTIC Science & Technology

    1945-06-22

    8217-- " . " . .... ; MASSACHUSETTS INSTITUTE OF TECHNOLOGY U ’v 1 w C_ _3_ _ _ _._1 __ ._ c-., - •.€.u--- -. - -~u "" w, .. NAN.G, .. i hisd•En COP Y l "" I lot...ming noise bandwidthe and nodulattor- index ; typical valvu• are, perhaps, 3-6 db0 The experimental work in this report was completed in 1943. A, K...Strength ... ............. .18 D. Effect of Modulation Index ............... ... 19 E. Variation of Jamming Ncise Bandwidth ....... .............. .. 21

  13. Universal Robotic Gripper Based on the Jamming of Granular Material

    DTIC Science & Technology

    2010-11-02

    threshold of jamming (a pile of grains can sustain a finite angle of repose ) even a small applied confining stress Pjam can frustrate the ability of grains...force drops significantly. The degree to which the sphere is enveloped by the gripper is given by the contact angle θ (Fig. 2). Plotting the peak...holding force, Fh, as a function of θ, allows us to identify different grip- ping regimes (Fig. 3 A, B). Below a minimum angle θ ≈ π∕4 the gripping

  14. First JAM results on the determination of polarized parton distributions

    SciTech Connect

    Jimenez-Delgado, Pedro

    2013-04-01

    The Jefferson Lab Angular Momentum (JAM) collaboration is a new initiative aimed to the study of the angular-momentum-dependent structure of the nucleon. First results on the determination of spin-dependent parton distribution functions from world data on polarized deep-inelastic scattering will be presented and compared with previous determinations from other groups. Different aspects of global QCD analysis will be discussed, including effects due to nuclear structure, higher twist, and target-mass corrections, as well as the impact of different data selections.

  15. First JAM results on the determination of polarized parton distributions

    SciTech Connect

    Accardi, Alberto; Jimenez-Delgado, Pedro; Melnitchouk, Wally

    2014-01-01

    The Jefferson Lab Angular Momentum (JAM) Collaboration is a new initiative to study the angular momentum dependent structure of the nucleon. First results on the determination of spin-dependent parton distribution functions at intermediate and large x from world data on polarized deep-inelastic scattering are presented. Different aspects of global QCD analysis are discussed, including the effects of nuclear structure of deuterium and {sup 3}He targets, target mass corrections and higher twist contributions to the g{sub 1} and g{sub 2} structure functions.

  16. Study on electro-optical jamming effect on TV seekers by flight test

    NASA Astrophysics Data System (ADS)

    Gao, Wei; Sun, Yifan; Wei, Yanling

    2014-07-01

    The effect and mechanism of smokescreen and stealth jamming on TV seekers are investigated by seeker captive flight jamming test. Based on a comprehensive analysis of large amounts of test results, we have discovered the laws of smokescreen and stealth jamming effect on the performance of TV seekers, such as tracking status, tracking error, measurement of line-of-sight angle and its angular rate. A rational explanation for the laws has also been presented based on the principle of stabilization of seeker optical axis. The results are not only useful for evaluating smokescreen and stealth jamming effect on TV guidance missiles, but also referential for the study of smokescreen and stealth mechanism and the anti-jamming design of imaging seekers.

  17. Performance of receivers in digital radio applications operating in the presence of noise and jamming

    NASA Astrophysics Data System (ADS)

    Bukofzer, Daniel C.

    The performance of digital communication systems operating in the presence of noise and jamming is analyzed and evaluated. Specifically, by modeling the jamming as additive colored Gaussian noise, and considering transmission via M-ary phase shift keyed (MPSK) modulation as well as Quadrature Amplitude Modulation (QAM), receiver performance is determined in terms of symbol error probability, P(S). The receiver analyzed is optimum for the modulation used when the channel interference consists of additive white Gaussian noise (AWGN) only, and does not process signals utilizing spread spectrum modulation or forward error correction schemes. Furthermore, the derived results for P(S) are used in order to optimize the shape of the colored noise (jamming) spectrum so as to cause maximum receiver degradation, subject to a jamming power constraint. Results on numerical evaluations are presented graphically, thus displaying receiver vulnerability to a specific form of jamming.

  18. Differential mouse-strain specific expression of Junctional Adhesion Molecule (JAM)-B in placental structures.

    PubMed

    Stelzer, Ina Annelies; Mori, Mayumi; DeMayo, Francesco; Lydon, John; Arck, Petra Clara; Solano, Maria Emilia

    2016-03-03

    The junctional adhesion molecule (JAM)-B, a member of the immunoglobulin superfamily, is involved in stabilization of interendothelial cell-cell contacts, formation of vascular tubes, homeostasis of stem cell niches and promotion of leukocyte adhesion and transmigration. In the human placenta, JAM-B protein is abundant and mRNA transcripts are enriched in first-trimester extravillous trophoblast in comparison to the villous trophoblast. We here aimed to elucidate the yet unexplored spatio-temporal expression of JAM-B in the mouse placenta. We investigated and semi-quantified JAM-B protein expression by immunohistochemistry in early post-implantation si tes and in mid- to late gestation placentae of various murine mating combinations. Surprisingly, the endothelium of the placental labyrinth was devoid of JAM-B expression. JAM-B was mainly present in spongiotrophoblast cells of the junctional zone, as well as in the fetal vessels of the chorionic plate, the umbilical cord and in maternal myometrial smooth muscle. We observed a strain-specific placental increase of JAM-B protein expression from mid- to late gestation in Balb/c-mated C57BL/6 females, which was absent in DBA/2J-mated Balb/c females. Due to the essential role of progesterone during gestation, we further assessed a possible modulation of JAM-B in mid-gestational placentae deficient in the progesterone receptor (Pgr(-/-)) and observed an increased expression of JAM-B in Pgr(-/-) placentae, compared to Pgr(+/+) tissue samples. We propose that JAM-B is an as yet underappreciated trophoblast lineage-specific protein, which is modulated via the progesterone receptor and shows unique strain-specific kinetics. Future work is needed to elucidate its possible contribution to placental processes necessary to ensuring its integrity, ultimately facilitating placental development and fetal growth.

  19. Motility-Driven Glass and Jamming Transitions in Biological Tissues

    NASA Astrophysics Data System (ADS)

    Bi, Dapeng; Yang, Xingbo; Marchetti, M. Cristina; Manning, M. Lisa

    2016-04-01

    Cell motion inside dense tissues governs many biological processes, including embryonic development and cancer metastasis, and recent experiments suggest that these tissues exhibit collective glassy behavior. To make quantitative predictions about glass transitions in tissues, we study a self-propelled Voronoi model that simultaneously captures polarized cell motility and multibody cell-cell interactions in a confluent tissue, where there are no gaps between cells. We demonstrate that the model exhibits a jamming transition from a solidlike state to a fluidlike state that is controlled by three parameters: the single-cell motile speed, the persistence time of single-cell tracks, and a target shape index that characterizes the competition between cell-cell adhesion and cortical tension. In contrast to traditional particulate glasses, we are able to identify an experimentally accessible structural order parameter that specifies the entire jamming surface as a function of model parameters. We demonstrate that a continuum soft glassy rheology model precisely captures this transition in the limit of small persistence times and explain how it fails in the limit of large persistence times. These results provide a framework for understanding the collective solid-to-liquid transitions that have been observed in embryonic development and cancer progression, which may be associated with epithelial-to-mesenchymal transition in these tissues.

  20. Jamming transition of angular shaped particles under compression

    NASA Astrophysics Data System (ADS)

    Stevens Bester, Cacey; Zhao, Yiqiu; Xu, Yuanyuan; Cox, Meredith; Behringer, Robert

    2016-11-01

    A fundamental challenge of understanding the global behavior of granular assemblies is to determine the effect of local particle properties, such as particle shape. Here we investigate how particle shape influences the jamming transition of granular packings by comparing the response of systems of angular shaped particles to that of disks under isotropic compression. These experiments are performed using two-dimensional arrangements of photoelastic particles, allowing us to visualize the change in force propagation during the jamming transition. We find qualitative and quantitative differences in the macroscopic responses of the systems with changing particle shape. We compare the packing fraction and the contact number evolution of compression experiments as we vary particle shape. The pair correlation function also shows a different geometric feature with particle shape. Using cyclic compression, we additionally explore the stress relaxation and dynamical heterogeneity of the particles. Duke University Provost's Postdoctoral Program, NASA Grant NNX15AD38G, NSF-DMR1206351, DMS1248071, and the W.M. Keck Foundation.

  1. Jamming transition as probed by quasi-static shear simulations

    NASA Astrophysics Data System (ADS)

    Heussinger, Claus

    2010-03-01

    This contribution deals with flow properties of amorphous colloidal or granular materials close to their jamming threshold. There is by now ample evidence that the (athermal) jamming transition (``point J'') can be thought of as a critical phenomenon with a divergent length-scale. While much effort has been put into characterizing the critical properties of the arrested solid state, only little is known about the actual physical mechanisms that lead to this arrest when coming from the flowing side. We try to fill this gap by studying the particle dynamics in the flowing state. We show how the motion of single particles is connected to the growth of dynamical heterogeneities. Approaching point J from below we find a diverging dynamical susceptibility. The associated particle mobilities show signs of strong spatial correlations, with patterns involving string- and loop-like excitations as well as compact regions of active particles. As a result we can develop an intuitive and appealing picture that describes flow in terms of a ``liquid of temporarily rigid clusters''. This picture of how flow is realized below point J contrasts well with the traditional view of plastic flow in ``soft-glassy'' materials, where flow is described by the failure of localized defects embedded in an elastic solid. We argue that this latter behavior is observed in the yield-stress flow regime above point J.

  2. Universal robotic gripper based on the jamming of granular material

    PubMed Central

    Brown, Eric; Rodenberg, Nicholas; Amend, John; Mozeika, Annan; Steltz, Erik; Zakin, Mitchell R.; Lipson, Hod; Jaeger, Heinrich M.

    2010-01-01

    Gripping and holding of objects are key tasks for robotic manipulators. The development of universal grippers able to pick up unfamiliar objects of widely varying shape and surface properties remains, however, challenging. Most current designs are based on the multifingered hand, but this approach introduces hardware and software complexities. These include large numbers of controllable joints, the need for force sensing if objects are to be handled securely without crushing them, and the computational overhead to decide how much stress each finger should apply and where. Here we demonstrate a completely different approach to a universal gripper. Individual fingers are replaced by a single mass of granular material that, when pressed onto a target object, flows around it and conforms to its shape. Upon application of a vacuum the granular material contracts and hardens quickly to pinch and hold the object without requiring sensory feedback. We find that volume changes of less than 0.5% suffice to grip objects reliably and hold them with forces exceeding many times their weight. We show that the operating principle is the ability of granular materials to transition between an unjammed, deformable state and a jammed state with solid-like rigidity. We delineate three separate mechanisms, friction, suction, and interlocking, that contribute to the gripping force. Using a simple model we relate each of them to the mechanical strength of the jammed state. This advance opens up new possibilities for the design of simple, yet highly adaptive systems that excel at fast gripping of complex objects.

  3. Spatiotemporal chaotic unjamming and jamming in granular avalanches.

    PubMed

    Wang, Ziwei; Zhang, Jie

    2015-01-30

    We have investigated the spatiotemporal chaotic dynamics of unjamming and jamming of particles in a model experiment - a rotating drum partially filled with bidisperse disks to create avalanches. The magnitudes of the first Lyapunov vector δu(t) and velocity v(t) of particles are directly measured for the first time to yield insights into their spatial correlation Cδu,v, which is on statistical average slightly larger near the unjamming than the value near the jamming transition. These results are consistent with the recent work of Banigan et al (Nature Phys. 2013), and it is for the first time to validate their theoretical models in a real scenario. v(t) shows rich dynamics: it grows exponentially for unstable particles and keeps increasing despite stochastic interactions; after the maximum, it decays with large fluctuations. Hence the spatiotemporal chaotic dynamics of avalanche particles are entangled, causing temporal correlations of macroscopic quantities of the system. We propose a simple model for these observations.

  4. Force Distributions in Sheared Granular Materials Near the Jamming Transition

    NASA Astrophysics Data System (ADS)

    Corwin, Eric; Bushmaker, Adam; Jaeger, Heinrich; Nagel, Sidney

    2003-03-01

    It is well known that the pair-distribution function g(r) does not undergo any obvious change at the glass, or jamming, transition. However, elementary models [1] suggest that the distribution of contact forces P(F) between pairs of particles may, in contrast, exhibit a characteristic signature of this transition. P(F) in static granular materials has been studied using experimental, simulational and theoretical techniques. We introduce a new method of measuring the distribution of forces at the boundary of a container, employing a photoelastic polymer sheet capable of measuring normal applied forces that vary rapidly in time. Based on this method we have built an apparatus to examine P(F) in a 3D granular system undergoing parallel-plate rotational shearing. We report on measurements of P(F) near the jamming transition as a function of varying the parameters of shearing rate, packing height, and applied normal force. [1] C. S. O'Hern, S. A. Langer, A. J. Liu, and S. R. Nagel, Phys. Rev. Lett. 86, 111 (2001).

  5. Multifrequency OFDM SAR in Presence of Deception Jamming

    NASA Astrophysics Data System (ADS)

    Schuerger, Jonathan; Garmatyuk, Dmitriy

    2010-12-01

    Orthogonal frequency division multiplexing (OFDM) is considered in this paper from the perspective of usage in imaging radar scenarios with deception jamming. OFDM radar signals are inherently multifrequency waveforms, composed of a number of subbands which are orthogonal to each other. While being employed extensively in communications, OFDM has not found comparatively wide use in radar, and, particularly, in synthetic aperture radar (SAR) applications. In this paper, we aim to show the advantages of OFDM-coded radar signals with random subband composition when used in deception jamming scenarios. Two approaches to create a radar signal by the jammer are considered: instantaneous frequency (IF) estimator and digital-RF-memory- (DRFM-) based reproducer. In both cases, the jammer aims to create a copy of a valid target image via resending the radar signal at prescribed time intervals. Jammer signals are derived and used in SAR simulations with three types of signal models: OFDM, linear frequency modulated (LFM), and frequency-hopped (FH). Presented results include simulated peak side lobe (PSL) and peak cross-correlation values for random OFDM signals, as well as simulated SAR imagery with IF and DRFM jammers'-induced false targets.

  6. Spatiotemporal chaotic unjamming and jamming in granular avalanches

    PubMed Central

    Wang, Ziwei; Zhang, Jie

    2015-01-01

    We have investigated the spatiotemporal chaotic dynamics of unjamming and jamming of particles in a model experiment – a rotating drum partially filled with bidisperse disks to create avalanches. The magnitudes of the first Lyapunov vector δu(t) and velocity v(t) of particles are directly measured for the first time to yield insights into their spatial correlation Cδu,v, which is on statistical average slightly larger near the unjamming than the value near the jamming transition. These results are consistent with the recent work of Banigan et al (Nature Phys. 2013), and it is for the first time to validate their theoretical models in a real scenario. v(t) shows rich dynamics: it grows exponentially for unstable particles and keeps increasing despite stochastic interactions; after the maximum, it decays with large fluctuations. Hence the spatiotemporal chaotic dynamics of avalanche particles are entangled, causing temporal correlations of macroscopic quantities of the system. We propose a simple model for these observations. PMID:25634753

  7. JAM-L-mediated leukocyte adhesion to endothelial cells is regulated in cis by alpha4beta1 integrin activation.

    PubMed

    Luissint, Anny-Claude; Lutz, Pierre G; Calderwood, David A; Couraud, Pierre-Olivier; Bourdoulous, Sandrine

    2008-12-15

    Junctional adhesion molecules (JAMs) are endothelial and epithelial adhesion molecules involved in the recruitment of circulating leukocytes to inflammatory sites. We show here that JAM-L, a protein related to the JAM family, is restricted to leukocytes and promotes their adhesion to endothelial cells. Cis dimerization of JAM-L is required to engage in heterophilic interactions with its cognate counter-receptor CAR (coxsackie and adenovirus receptor). Interestingly, JAM-L expressed on neutrophils binds CAR independently of integrin activation. However, on resting monocytes and T lymphocytes, which express the integrin VLA-4, JAM-L molecules engage in complexes with VLA-4 and mainly accumulate in their monomeric form. Integrin activation is required for the dissociation of JAM-L-VLA-4 complexes and the accumulation of functional JAM-L dimers, which indicates that the leukocyte integrin VLA-4 controls JAM-L function in cis by controlling its dimerization state. This provides a mechanism through which VLA-4 and JAM-L functions are coordinately regulated, allowing JAM-L to strengthen integrin-dependent adhesion of leukocytes to endothelial cells.

  8. Genetic deletion of JAM-C reveals a role in myeloid progenitor generation.

    PubMed

    Praetor, Asja; McBride, Jacqueline M; Chiu, Henry; Rangell, Linda; Cabote, Lorena; Lee, Wyne P; Cupp, James; Danilenko, Dimitry M; Fong, Sherman

    2009-02-26

    Hematopoietic stem cells (HSCs) have the capacity to self-renew and continuously differentiate into all blood cell lineages throughout life. At each branching point during differentiation, interactions with the environment are key in the generation of daughter cells with distinct fates. Here, we examined the role of the cell adhesion molecule JAM-C, a protein known to mediate cellular polarity during spermatogenesis, in hematopoiesis. We show that murine JAM-C is highly expressed on HSCs in the bone marrow (BM). Expression correlates with self-renewal, the highest being on long-term repopulating HSCs, and decreases with differentiation, which is maintained longest among myeloid committed progenitors. Inclusion of JAM-C as a sole marker on lineage-negative BM cells yields HSC enrichments and long-term multilineage reconstitution when transferred to lethally irradiated mice. Analysis of Jam-C-deficient mice showed that two-thirds die within 48 hours after birth. In the surviving animals, loss of Jam-C leads to an increase in myeloid progenitors and granulocytes in the BM. Stem cells and myeloid cells from fetal liver are normal in number and homing to the BM. These results provide evidence that JAM-C defines HSCs in the BM and that JAM-C plays a role in controlling myeloid progenitor generation in the BM.

  9. Jamming effect analysis of infrared reticle seeker for directed infrared countermeasures

    NASA Astrophysics Data System (ADS)

    Bae, Tae-Wuk; Kim, Byoung-Ik; Kim, Young-Choon; Ahn, Sang-Ho

    2012-09-01

    In directed infrared countermeasures (DIRCM), the purpose of jamming toward missiles is making missiles miss the target (aircraft of our forces) in the field of view. Since the DIRCM system directly emits the pulsing flashes of infrared (IR) energy to missiles, it is more effective than present flare method emitting IR source to omni-direction. In this paper, we implemented a reticle seeker simulation tool using MATLAB-SIMULINK, in order to analyze jamming effect of spin-scan and con-scan reticle missile seeker used widely in the world, though it was developed early. Because the jammer signal has influence on the missile guidance system using its variable frequency, it is very important technique among military defense systems protecting our forces from missiles of enemy. Simulation results show that jamming effect is greatly influenced according to frequency, phase and intensity of jammer signal. Especially, jammer frequency has the largest influence on jamming effect. Through our reticle seeker simulation tool, we can confirm that jamming effect toward missiles is significantly increased when jammer frequency is similar to reticle frequency. Finally, we evaluated jamming effect according to jammer frequencies, by using correlation coefficient as an evaluation criterion of jamming performance in two reticle missile seekers.

  10. Ice Jams on the Little Missouri River, North Dakota and North Platte River, Nebraska

    NASA Astrophysics Data System (ADS)

    Pang, B. P.; Brookman, D. A.

    2004-12-01

    During the winter months, rivers in the north central United States have a phenomenon occurring, which is known as "ice jams". The initial melting of the river ice causes broken ice buildup, which acts as a quasi-dam restricting the natural flow. Ice jams severely impact ecosystems and are known to cause extensive damage to the channels, as well as man-made structures. The focus of this paper is on ice jams on the Little Missouri River in North Dakota and the North Platte River in Nebraska. Previous investigations done on the Lower Platte River valley, as well as the Missouri River basin, have shown that the primary cause of ice jams on these rivers is due to the spring thaw. The initial portion of the paper will discuss the pattern of ice jams on these rivers, as well as some mitigation strategies for control of these ice jams. The second section will deal with the modeling of ice jams on these river systems using HEC-RAS. This model will be comprised of both two and three-dimensional aspects of the rivers.

  11. Confocal Microscopy of Jammed Matter: From Elasticity to Granular Thermodynamics

    NASA Astrophysics Data System (ADS)

    Jorjadze, Ivane

    Packings of particles are ubiquitous in nature and are of interest not only to the scientific community but also to the food, pharmaceutical, and oil industries. In this thesis we use confocal microscopy to investigate packing geometry and stress transmission in 3D jammed particulate systems. By introducing weak depletion attraction we probe the accessible phase-space and demonstrate that a microscopic approach to jammed matter gives validity to statistical mechanics framework, which is intriguing because our particles are not thermally activated. We show that the fluctuations of the local packing parameters can be successfully captured by the recently proposed 'granocentric' model, which generates packing statistics according to simple stochastic processes. This model enables us to calculate packing entropy and granular temperature, the so-called 'compactivity', therefore, providing a basis for a statistical mechanics of granular matter. At a jamming transition point at which there are formed just enough number of contacts to guarantee the mechanical stability, theoretical arguments suggest a singularity which gives rise to the surprising scaling behavior of the elastic moduli and the microstructure, as observed in numerical simulations. Since the contact network in 3D is typically hidden from view, experimental test of the scaling law between the coordination number and the applied pressure is lacking in the literature. Our data show corrections to the linear scaling of the pressure with density which takes into account the creation of contacts. Numerical studies of vibrational spectra, in turn, reveal sudden features such as excess of low frequency modes, dependence of mode localization and structure on the pressure. Chapter four describes the first calculation of vibrational density of states from the experimental 3D data and is in qualitative agreement with the analogous computer simulations. We study the configurational role of the pressure and demonstrate

  12. Longitudinal Floating Ice Control Structures: A New Concept for Reducing Ice Jam Flood Levels

    DTIC Science & Technology

    1990-09-01

    friction factor is taken as 1.25 based on data from several ice jams I % . ( Beltaos 1983), and the ice properties g = 1.2 and S , = 0.92 are held...as much as Beltaos , S . (1983) River ice jams: Theory, case 8 studies, and applications. Journal of the Hydraulics sign. Journal of Waterway, Port...DOTIC S NOV 15 1990O. 0’~’FL P Longitudinal Floating Ice Control Structures A New Concept for Reducing Ice Jam Flood Levels 00NDarryl J. Calkins

  13. Product spectrum matrix feature extraction and recognition of radar deception jamming

    NASA Astrophysics Data System (ADS)

    Tian, Xiao; Tang, Bin; Gui, Guan

    2013-12-01

    A deception jamming recognition algorithm is proposed based on product spectrum matrix (SPM). Firstly, the product spectral in the different pulse repetition interval (PRI) is calculated, and the product spectral of frequency-slow time is arranged into a two-dimensional matrix. Secondly, non-negative matrix factorisation (NMF) is used to extract the features, and further the separability of the characteristic parameters is analysed by the F-Ratio. Finally, the best features are selected to recognise the deception jamming. The experimental results show that the average recognition accuracy of the proposed deception jamming algorithm is higher than 90% when SNR is greater than 6dB.

  14. Comment on ``Jamming at zero temperature and zero applied stress: The epitome of disorder''

    NASA Astrophysics Data System (ADS)

    Donev, Aleksandar; Torquato, Salvatore; Stillinger, Frank H.; Connelly, Robert

    2004-10-01

    O’Hern, Silbert, Liu, and Nagel [Phys. Rev. E. 68, 011306 (2003)] claim that a special point J of a “jamming phase diagram” (in density, temperature, stress space) is related to random close packing of hard spheres and that it represents, for their suggested definitions of jammed and random, the recently introduced maximally random jammed state. We point out several difficulties with their definitions and question some of their claims. Furthermore, we discuss the connections between their algorithm and other hard-sphere packing algorithms in the literature.

  15. Topology-selective jamming of fully-connected, code-division random-access networks

    NASA Technical Reports Server (NTRS)

    Polydoros, Andreas; Cheng, Unjeng

    1990-01-01

    The purpose is to introduce certain models of topology selective stochastic jamming and examine its impact on a class of fully-connected, spread-spectrum, slotted ALOHA-type random access networks. The theory covers dedicated as well as half-duplex units. The dominant role of the spatial duty factor is established, and connections with the dual concept of time selective jamming are discussed. The optimal choices of coding rate and link access parameters (from the users' side) and the jamming spatial fraction are numerically established for DS and FH spreading.

  16. Lattice model of reduced jamming by a barrier

    NASA Astrophysics Data System (ADS)

    Cirillo, Emilio N. M.; Krehel, Oleh; Muntean, Adrian; van Santen, Rutger

    2016-10-01

    We study an asymmetric simple exclusion process in a strip in the presence of a solid impenetrable barrier. We focus on the effect of the barrier on the residence time of the particles, namely, the typical time needed by the particles to cross the whole strip. We explore the conditions for reduced jamming when varying the environment (different drifts, reservoir densities, horizontal diffusion walks, etc.). In particular, we discover an interesting nonmonotonic behavior of the residence time as a function of the barrier length. Besides recovering by means of both the lattice dynamics and the mean-field model well-known aspects like the faster-is-slower effect and the intermittence of the flow, we propose also a birth-and-death process and a reduced one-dimensional (1D) model with variable barrier permeability to capture the behavior of the residence time with respect to the parameters.

  17. Aging, memory, and nonhierarchical energy landscape of spin jam.

    PubMed

    Samarakoon, Anjana; Sato, Taku J; Chen, Tianran; Chern, Gai-Wei; Yang, Junjie; Klich, Israel; Sinclair, Ryan; Zhou, Haidong; Lee, Seung-Hun

    2016-10-18

    The notion of complex energy landscape underpins the intriguing dynamical behaviors in many complex systems ranging from polymers, to brain activity, to social networks and glass transitions. The spin glass state found in dilute magnetic alloys has been an exceptionally convenient laboratory frame for studying complex dynamics resulting from a hierarchical energy landscape with rugged funnels. Here, we show, by a bulk susceptibility and Monte Carlo simulation study, that densely populated frustrated magnets in a spin jam state exhibit much weaker memory effects than spin glasses, and the characteristic properties can be reproduced by a nonhierarchical landscape with a wide and nearly flat but rough bottom. Our results illustrate that the memory effects can be used to probe different slow dynamics of glassy materials, hence opening a window to explore their distinct energy landscapes.

  18. Aging, memory, and nonhierarchical energy landscape of spin jam

    PubMed Central

    Samarakoon, Anjana; Sato, Taku J.; Chen, Tianran; Chern, Gai-Wei; Yang, Junjie; Klich, Israel; Sinclair, Ryan; Zhou, Haidong; Lee, Seung-Hun

    2016-01-01

    The notion of complex energy landscape underpins the intriguing dynamical behaviors in many complex systems ranging from polymers, to brain activity, to social networks and glass transitions. The spin glass state found in dilute magnetic alloys has been an exceptionally convenient laboratory frame for studying complex dynamics resulting from a hierarchical energy landscape with rugged funnels. Here, we show, by a bulk susceptibility and Monte Carlo simulation study, that densely populated frustrated magnets in a spin jam state exhibit much weaker memory effects than spin glasses, and the characteristic properties can be reproduced by a nonhierarchical landscape with a wide and nearly flat but rough bottom. Our results illustrate that the memory effects can be used to probe different slow dynamics of glassy materials, hence opening a window to explore their distinct energy landscapes. PMID:27698141

  19. Jamming and gelation of dense beta-casein micelle suspensions.

    PubMed

    Panouillé, Maud; Durand, Dominique; Nicolai, Taco

    2005-01-01

    The rheology of dense suspensions of beta-casein micelles is investigated at pH 6. For a given temperature, the viscosity increases dramatically at a critical concentration (Cc) of about 100 g/L due to jamming of the micelles. For a given concentration close to and above Cc, the viscosity of dense suspensions decreases strongly with increasing temperature because Cc increases. The suspensions show weak shear thickening followed by strong shear thinning. At lower pH, that is, closer to the isoelectric point, spontaneous gelation is observed, which is favored by lowering the temperature and addition of sodium polyphosphate. The gelation process is studied at pH 5.5 by rheology and light scattering.

  20. Aging, memory, and nonhierarchical energy landscape of spin jam

    NASA Astrophysics Data System (ADS)

    Samarakoon, Anjana; Sato, Taku J.; Chen, Tianran; Chern, Gai-Wei; Yang, Junjie; Klich, Israel; Sinclair, Ryan; Zhou, Haidong; Lee, Seung-Hun

    2016-10-01

    The notion of complex energy landscape underpins the intriguing dynamical behaviors in many complex systems ranging from polymers, to brain activity, to social networks and glass transitions. The spin glass state found in dilute magnetic alloys has been an exceptionally convenient laboratory frame for studying complex dynamics resulting from a hierarchical energy landscape with rugged funnels. Here, we show, by a bulk susceptibility and Monte Carlo simulation study, that densely populated frustrated magnets in a spin jam state exhibit much weaker memory effects than spin glasses, and the characteristic properties can be reproduced by a nonhierarchical landscape with a wide and nearly flat but rough bottom. Our results illustrate that the memory effects can be used to probe different slow dynamics of glassy materials, hence opening a window to explore their distinct energy landscapes.

  1. Shear Thickening of Cornstarch Suspensions as a Reentrant Jamming Transition

    NASA Astrophysics Data System (ADS)

    Fall, Abdoulaye; Huang, N.; Bertrand, F.; Ovarlez, G.; Bonn, Daniel

    2008-01-01

    We study the rheology of cornstarch suspensions, a non-Brownian particle system that exhibits shear thickening. From magnetic resonance imaging velocimetry and classical rheology it follows that as a function of the applied stress the suspension is first solid (yield stress), then liquid, and then solid again when it shear thickens. For the onset of thickening we find that the smaller the gap of the shear cell, the lower the shear rate at which thickening occurs. Shear thickening can then be interpreted as the consequence of dilatancy: the system under flow wants to dilate but instead undergoes a jamming transition because it is confined, as confirmed by measurement of the dilation of the suspension as a function of the shear rate.

  2. A dynamic jamming point for shear thickening suspensions

    NASA Astrophysics Data System (ADS)

    Brown, Eric; Jaeger, Heinrich

    2008-11-01

    Densely packed suspensions can shear thicken, in which the viscosity increases with shear rate. We performed rheometry measurements on two model systems: corn starch in water and glass spheres in oils. In both systems we observed shear thickening up to a critical packing fraction φc (=0.55 for spherical grains) above which the flow abruptly transitions to shear thinning. The viscosity and yield stress diverge as power laws at φc. Extrapolating the dynamic ranges of shear rate and stress in the shear thickening regime up to φc suggests a finite change in shear stress with zero change in shear rate. This is a dynamic analog to the jamming point with a yield stress at zero shear rate.

  3. Soliton and kink jams in traffic flow with open boundaries.

    PubMed

    Muramatsu, M; Nagatani, T

    1999-07-01

    Soliton density wave is investigated numerically and analytically in the optimal velocity model (a car-following model) of a one-dimensional traffic flow with open boundaries. Soliton density wave is distinguished from the kink density wave. It is shown that the soliton density wave appears only at the threshold of occurrence of traffic jams. The Korteweg-de Vries (KdV) equation is derived from the optimal velocity model by the use of the nonlinear analysis. It is found that the traffic soliton appears only near the neutral stability line. The soliton solution is analytically obtained from the perturbed KdV equation. It is shown that the soliton solution obtained from the nonlinear analysis is consistent with that of the numerical simulation.

  4. Controlled assembly of jammed colloidal shells on fluid droplets.

    PubMed

    Subramaniam, Anand Bala; Abkarian, Manouk; Stone, Howard A

    2005-07-01

    Assembly of colloidal particles on fluid interfaces is a promising technique for synthesizing two-dimensional microcrystalline materials useful in fields as diverse as biomedicine, materials science, mineral flotation and food processing. Current approaches rely on bulk emulsification methods, require further chemical and thermal treatments, and are restrictive with respect to the materials used. The development of methods that exploit the great potential of interfacial assembly for producing tailored materials have been hampered by the lack of understanding of the assembly process. Here we report a microfluidic method that allows direct visualization and understanding of the dynamics of colloidal crystal growth on curved interfaces. The crystals are periodically ejected to form stable jammed shells, which we refer to as colloidal armour. We propose that the energetic barriers to interfacial crystal growth and organization can be overcome by targeted delivery of colloidal particles through hydrodynamic flows. Our method allows an unprecedented degree of control over armour composition, size and stability.

  5. Record dynamics: Direct experimental evidence from jammed colloids

    NASA Astrophysics Data System (ADS)

    Robe, Dominic M.; Boettcher, Stefan; Sibani, Paolo; Yunker, Peter

    2016-11-01

    In a broad class of complex materials a quench leads to a multi-scaled relaxation process known as aging. To explain its commonality and the astounding insensitivity to most microscopic details, record dynamics (RD) posits that a small set of increasingly rare and irreversible events, so-called quakes, controls the dynamics. While key predictions of RD are known to concur with a number of experimental and simulational results, its basic assumption on the nature of quake statistics has proven extremely difficult to verify experimentally. The careful distinction of rare (“record”) cage-breaking events from in-cage rattle accomplished in previous experiments on jammed colloids, enables us to extract the first direct experimental evidence for the fundamental hypothesis of RD that the rate of quakes decelerates with the inverse of the system age. The resulting description shows the predicted growth of the particle mean square displacement and of a mesoscopic lengthscale with the logarithm of time.

  6. Elastic moduli and vibrational modes in jammed particulate packings

    NASA Astrophysics Data System (ADS)

    Mizuno, Hideyuki; Saitoh, Kuniyasu; Silbert, Leonardo E.

    2016-06-01

    When we elastically impose a homogeneous, affine deformation on amorphous solids, they also undergo an inhomogeneous, nonaffine deformation, which can have a crucial impact on the overall elastic response. To correctly understand the elastic modulus M , it is therefore necessary to take into account not only the affine modulus MA, but also the nonaffine modulus MN that arises from the nonaffine deformation. In the present work, we study the bulk (M =K ) and shear (M =G ) moduli in static jammed particulate packings over a range of packing fractions φ . The affine MA is determined essentially by the static structural arrangement of particles, whereas the nonaffine MN is related to the vibrational eigenmodes. We elucidate the contribution of each vibrational mode to the nonaffine MN through a modal decomposition of the displacement and force fields. In the vicinity of the (un)jamming transition φc, the vibrational density of states g (ω ) shows a plateau in the intermediate-frequency regime above a characteristic frequency ω*. We illustrate that this unusual feature apparent in g (ω ) is reflected in the behavior of MN: As φ →φc , where ω*→0 , those modes for ω <ω* contribute less and less, while contributions from those for ω >ω* approach a constant value which results in MN to approach a critical value MN c, as MN-MN c˜ω* . At φc itself, the bulk modulus attains a finite value Kc=KA c-KN c>0 , such that KN c has a value that remains below KA c. In contrast, for the critical shear modulus Gc, GN c and GA c approach the same value so that the total value becomes exactly zero, Gc=GA c-GN c=0 . We explore what features of the configurational and vibrational properties cause such a distinction between K and G , allowing us to validate analytical expressions for their critical values.

  7. JAM-C maintains VEGR2 expression to promote retinal pigment epithelium cell survival under oxidative stress.

    PubMed

    Jia, Xin; Zhao, Chen; Chen, Qishan; Du, Yuxiang; Huang, Lijuan; Ye, Zhimin; Ren, Xiangrong; Wang, Shasha; Lee, Chunsik; Tang, Zhongshu; Li, Xuri; Ju, Rong

    2017-04-03

    Junctional adhesion molecule-C (JAM-C) has been shown to play critical roles during development and in immune responses. However, its role in adult eyes under oxidative stress remains poorly understood. Here, we report that JAM-C is abundantly expressed in adult mouse retinae and choroids in vivo and in cultured retinal pigment epithelium (RPE) and photoreceptor cells in vitro. Importantly, both JAM-C expression and its membrane localisation are downregulated by H2O2-induced oxidative stress. Under H2O2-induced oxidative stress, JAM-C is critically required for the survival of human RPE cells. Indeed, loss of JAM-C by siRNA knockdown decreased RPE cell survival. Mechanistically, we show that JAM-C is required to maintain VEGFR2 expression in RPE cells, and VEGFR2 plays an important role in keeping the RPE cells viable since overexpression of VEGFR2 partially restored impaired RPE survival caused by JAM-C knockdown and increased RPE survival. We further show that JAM-C regulates VEGFR2 expression and, in turn, modulates p38 phosphorylation. Together, our data demonstrate that JAM-C plays an important role in maintaining VEGR2 expression to promote RPE cell survival under oxidative stress. Given the vital importance of RPE in the eye, approaches that can modulate JAM-C expression may have therapeutic values in treating diseases with impaired RPE survival.

  8. 55. (Credit JAM) New main pumping room c1975, showing water ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    55. (Credit JAM) New main pumping room c1975, showing water pumps of high service engines; 1920 Worthington-Snow in foreground. - McNeil Street Pumping Station, McNeil Street & Cross Bayou, Shreveport, Caddo Parish, LA

  9. The role of JAM-B in cancer and cancer metastasis (Review).

    PubMed

    Zhao, Huishan; Yu, Hefen; Martin, Tracey A; Teng, Xu; Jiang, Wen G

    2016-07-01

    The junctional adhesion molecule B (JAM-B) is a multifunctional transmembrane protein, which belongs to the immunoglobulin superfamily (IgSF). JAM-B is localized to cell-cell contacts and enriched at cell junctions in epithelial and endothelial cells, as well as on the surface of erythrocytes, leukocytes, and platelets. Recent research in this field has shown that JAM-B plays an important role in numerous cellular processes, such as tight junction assembly, spermatogenesis, regulation of paracellular permeability, leukocytic transmigration, angiogenesis, tumor metastasis and cell proliferation. This study provides a new research direction for the diagnosis and treatment of relevant diseases. In this review, we briefly focus on what is currently known about the structure, function, and mechanism of JAM-B, with particular emphasis on cancer.

  10. Use of oil-in-water emulsions to control fungal deterioration of strawberry jams.

    PubMed

    Ribes, Susana; Fuentes, Ana; Talens, Pau; Barat, José M

    2016-11-15

    This work aimed to control the fungal deterioration of strawberry jams. The antifungal activity of the clove, cinnamon leaf, lemon and mandarin essential oils and their effectiveness in oil-in-water emulsions were evaluated. According to the results obtained, only clove and cinnamon leaf oils were selected to prepare emulsions. All the tested emulsions were stable, independently the amount of polymer and essential oil used. Essential oil loss was affected by the amount of polymer employed to prepare the emulsions. The oil-in-water emulsions with 5.0mg/g xanthan gum, and with 0.55mg/g clove or 0.65mg/g cinnamon leaf essential oil, were used for the in vivo tests. The jams prepared with the oil-in-water emulsions showed a lower fungal decay compared with jams without emulsion. The present work demonstrated that emulsions can be employed to prevent strawberry jam mould spoilage.

  11. Search for hyperuniformity in mechanically stable packings of frictionless disks above jamming

    NASA Astrophysics Data System (ADS)

    Wu, Yegang; Olsson, Peter; Teitel, S.

    2015-11-01

    We numerically simulate mechanically stable packings of soft-core, frictionless, bidisperse disks in two dimensions, above the jamming packing fraction ϕJ. For configurations with a fixed isotropic global stress tensor, we investigate the fluctuations of the local packing fraction ϕ (r ) to test whether such configurations display the hyperuniformity that has been claimed to exist exactly at ϕJ. For our configurations, generated by a rapid quench protocol, we find that hyperuniformity persists only out to a finite length scale and that this length scale appears to remain finite as the system stress decreases towards zero, i.e., towards the jamming transition. Our result suggests that the presence of hyperuniformity at jamming may be sensitive to the specific protocol used to construct the jammed configurations.

  12. Dissipation and velocity distribution at the shear-driven jamming transition

    NASA Astrophysics Data System (ADS)

    Olsson, Peter

    2016-04-01

    We investigate energy dissipation and the distribution of particle velocities at the jamming transition for overdamped shear-driven frictionless disks in two dimensions at zero temperature. We find that the dissipation is caused by the fastest particles and that the fraction of particles responsible for the dissipation decreases towards zero as jamming is approached. These particles belong to an algebraic tail of the velocity distribution that approaches ˜v-3 as jamming is approached. We further find that different measures of the velocity diverge differently, which means that concepts such as typical velocity may no longer be used, a finding that should have implications for analytical approaches to shear-driven jamming.

  13. DMP: detouring using multiple paths against jamming attack for ubiquitous networking system.

    PubMed

    Kim, Mihui; Chae, Kijoon

    2010-01-01

    To successfully realize the ubiquitous network environment including home automation or industrial control systems, it is important to be able to resist a jamming attack. This has recently been considered as an extremely threatening attack because it can collapse the entire network, despite the existence of basic security protocols such as encryption and authentication. In this paper, we present a method of jamming attack tolerant routing using multiple paths based on zones. The proposed scheme divides the network into zones, and manages the candidate forward nodes of neighbor zones. After detecting an attack, detour nodes decide zones for rerouting, and detour packets destined for victim nodes through forward nodes in the decided zones. Simulation results show that our scheme increases the PDR (Packet Delivery Ratio) and decreases the delay significantly in comparison with rerouting by a general routing protocol on sensor networks, AODV (Ad hoc On Demand Distance Vector), and a conventional JAM (Jammed Area Mapping) service with one reroute.

  14. Effect of jamming on efficiency of anti-clutter polarimetric filter

    NASA Astrophysics Data System (ADS)

    Michel, G. E.; Durand, J. C.; Carrara, B.

    The degradation caused by two different types of confusion jamming on the efficiency of an anticlutter adaptive polarimetric filter is described. The considered radar receives incident fields in two channels with orthogonal polarizations (1 and 2), and transmitting is carried out with polarization 1. The effect of jamming is evaluated through the degradation factor (the ratio of the residual powers at the output of the filter with and without jamming). The constant polarization jammer (CPJ) located in an antenna sidelobe has the same effect as an equivalent virtual jammer (EVJ) with the same polarization degree, with its power weighted by the antenna gains ratio, and whose polarization is a function of the polarization of the jammed lobe. In the absence of clutter, the fully polarized CPJ is completely rejected. In the presence of clutter, the fully polarized CPJ causes a rejection degradation characterized by the degradation factor, which depends on the angle between the clutter and the EVJ polarizations in the POINCARE ball.

  15. DMP: Detouring Using Multiple Paths against Jamming Attack for Ubiquitous Networking System

    PubMed Central

    Kim, Mihui; Chae, Kijoon

    2010-01-01

    To successfully realize the ubiquitous network environment including home automation or industrial control systems, it is important to be able to resist a jamming attack. This has recently been considered as an extremely threatening attack because it can collapse the entire network, despite the existence of basic security protocols such as encryption and authentication. In this paper, we present a method of jamming attack tolerant routing using multiple paths based on zones. The proposed scheme divides the network into zones, and manages the candidate forward nodes of neighbor zones. After detecting an attack, detour nodes decide zones for rerouting, and detour packets destined for victim nodes through forward nodes in the decided zones. Simulation results show that our scheme increases the PDR (Packet Delivery Ratio) and decreases the delay significantly in comparison with rerouting by a general routing protocol on sensor networks, AODV (Ad hoc On Demand Distance Vector), and a conventional JAM (Jammed Area Mapping) service with one reroute. PMID:22319316

  16. Development of a river ice jam by a combined heat loss and hydraulic model

    NASA Astrophysics Data System (ADS)

    Eliasson, J.; Gröndal, G. O.

    2008-11-01

    The heat loss theory and the hydraulic theory for the analysis of the development of wide channel ice jams are discussed and shown. The heat loss theory has been used in Iceland for a long time, while the hydraulic theory largely follows the classical ice-jam build-up theories used in known CFD models. The results are combined in a new method to calculate the maximum thickness and the extent of an ice jam. The results compare favorably to the HEC-RAS model for the development of a very large ice jam in Thjorsa River in Iceland, and have been found in good agreement with historical data, collected where a hydroelectric dam project, Urridafoss, is being planned in the Thjorsa River.

  17. Development of a river ice jam by a combined heat loss and hydraulic model

    NASA Astrophysics Data System (ADS)

    Eliasson, J.; Orri Gröndal, G.

    2008-04-01

    This paper discusses and shows the heat loss theory and the hydraulic theory for the analysis of the development of wide channel ice jams. The heat loss theory has been used in Iceland for a long time, while the hydraulic theory largely follows the classical ice-jam build-up theories used in known CFD models. The results are combined in a new method to calculate the maximum thickness and the extent of an ice jam. The results compare favorably to the HEC-RAS model for the development of a very large ice jam in Thjorsa River in Iceland. They are also in good agreement with historical data, collected where a hydroelectric dam project, Urridafoss, is being planned in the Thjorsa River.

  18. [Composition and antioxidant capacity of the guava (Psidium guajava L.) fruit, pulp and jam].

    PubMed

    Marquina, V; Araujo, L; Ruíz, J; Rodríguez-Malaver, A; Vit, P

    2008-03-01

    Guava (Psidium guajava L.) is a tropical fruit widely relished in the tropics, consumed fresh and processed. In this work, free acidity, pH, ash, nitrogen and water contents were measured, besides the total polyphenol content and the antioxidant capacity of the peel, the shell and the pulp of the fresh fruit and the processed guava pulp and jam. The highest phenolic content was found in the guava skin la (10.36 g/100 g skin) and the lowest in the jam (1.47 g/ 100 g jam), in dry weight. The antioxidant capacity of the skin was 10 times higher than that of the pulp, and the jam was twice that of the shell.

  19. Anti-Jam GPS Antennas for Wearable Dismounted Soldier Navigation Systems

    DTIC Science & Technology

    2016-06-01

    textile- integrated embodiments and externally mounted/removable embodiments. Early measured results for a variety of textile- integrated carbon ...nanotube thread antennas are presented in order to explore the feasibility of applying bulk carbon nanotube materials to wearable anti-jam GPS antenna...designs. 15. SUBJECT TERMS antenna, wearable, anti-jam, GPS, carbon nanotube, radio frequency 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

  20. Divergent JAM-C Expression Accelerates Monocyte-Derived Cell Exit from Atherosclerotic Plaques.

    PubMed

    Bradfield, Paul F; Menon, Arjun; Miljkovic-Licina, Marijana; Lee, Boris P; Fischer, Nicolas; Fish, Richard J; Kwak, Brenda; Fisher, Edward A; Imhof, Beat A

    2016-01-01

    Atherosclerosis, caused in part by monocytes in plaques, continues to be a disease that afflicts the modern world. Whilst significant steps have been made in treating this chronic inflammatory disease, questions remain on how to prevent monocyte and macrophage accumulation in atherosclerotic plaques. Junctional Adhesion Molecule C (JAM-C) expressed by vascular endothelium directs monocyte transendothelial migration in a unidirectional manner leading to increased inflammation. Here we show that interfering with JAM-C allows reverse-transendothelial migration of monocyte-derived cells, opening the way back out of the inflamed environment. To study the role of JAM-C in plaque regression we used a mouse model of atherosclerosis, and tested the impact of vascular JAM-C expression levels on monocyte reverse transendothelial migration using human cells. Studies in-vitro under inflammatory conditions revealed that overexpression or gene silencing of JAM-C in human endothelium exposed to flow resulted in higher rates of monocyte reverse-transendothelial migration, similar to antibody blockade. We then transplanted atherosclerotic, plaque-containing aortic arches from hyperlipidemic ApoE-/- mice into wild-type normolipidemic recipient mice. JAM-C blockade in the recipients induced greater emigration of monocyte-derived cells and further diminished the size of atherosclerotic plaques. Our findings have shown that JAM-C forms a one-way vascular barrier for leukocyte transendothelial migration only when present at homeostatic copy numbers. We have also shown that blocking JAM-C can reduce the number of atherogenic monocytes/macrophages in plaques by emigration, providing a novel therapeutic strategy for chronic inflammatory pathologies.

  1. Camouflage Traffic: Minimizing Message Delay for Smart Grid Applications Under Jamming

    DTIC Science & Technology

    2015-01-16

    technologies. To facilitate efficient information exchange, wireless networks have been proposed to be widely used in the smart grid. However, the jamming...attack that constantly broadcasts radio interference is a primary security threat to prevent the deployment of wireless networks in the smart grid. Hence...delay, jamming attacks Ç 1 INTRODUCTION SMART grid is an emerging cyber-physical system thatincorporates networked control mechanisms (e.g., advanced

  2. Camouflage Traffic: Minimizing Message Delay for Smart Grid Applications under Jamming

    DTIC Science & Technology

    2014-04-01

    operations. To this end, we can deploy a reactive jamming detector [26] in each IED, TACT is triggered and starts to transmit camouflage traffic only when...as solid-state transformer (SST), wireless networking, and dynamic spectrum access [27] for the smart grid. Green Hub includes two solar -array based...reactive, it keeps broadcasting jamming pulses, each of which is sent on a randomly selected channel. When it is reactive, it uses an energy detector to

  3. On-board recordings reveal no jamming avoidance in wild bats

    PubMed Central

    Cvikel, Noam; Levin, Eran; Hurme, Edward; Borissov, Ivailo; Boonman, Arjan; Amichai, Eran; Yovel, Yossi

    2015-01-01

    Animals often deal with situations in which vast sensory input is received simultaneously. They therefore must possess sophisticated mechanisms to select important input and ignore the rest. In bat echolocation, this problem is at its extreme. Echolocating bats emit sound signals and analyse the returning echoes to sense their environment. Bats from the same species use signals with similar frequencies. Nearby bats therefore face the difficulty of distinguishing their own echoes from the signals of other bats, a problem often referred to as jamming. Because bats commonly fly in large groups, jamming might simultaneously occur from numerous directions and at many frequencies. Jamming is a special case of the general phenomenon of sensory segregation. Another well-known example is the human problem of following conversation within a crowd. In both situations, a flood of auditory incoming signals must be parsed into important versus irrelevant information. Here, we present a novel method, fitting wild bats with a miniature microphone, which allows studying jamming from the bat's ‘point of view’. Previous studies suggested that bats deal with jamming by shifting their echolocation frequency. On-board recordings suggest otherwise. Bats shifted their frequencies, but they did so because they were responding to the conspecifics as though they were nearby objects rather than avoiding being jammed by them. We show how bats could use alternative measures to deal with jamming instead of shifting their frequency. Despite its intuitive appeal, a spectral jamming avoidance response might not be the prime mechanism to avoid sensory interference from conspecifics. PMID:25429017

  4. Divergent JAM-C Expression Accelerates Monocyte-Derived Cell Exit from Atherosclerotic Plaques

    PubMed Central

    Miljkovic-Licina, Marijana; Lee, Boris P.; Fischer, Nicolas; Fish, Richard J.; Kwak, Brenda; Fisher, Edward A.; Imhof, Beat A.

    2016-01-01

    Atherosclerosis, caused in part by monocytes in plaques, continues to be a disease that afflicts the modern world. Whilst significant steps have been made in treating this chronic inflammatory disease, questions remain on how to prevent monocyte and macrophage accumulation in atherosclerotic plaques. Junctional Adhesion Molecule C (JAM-C) expressed by vascular endothelium directs monocyte transendothelial migration in a unidirectional manner leading to increased inflammation. Here we show that interfering with JAM-C allows reverse-transendothelial migration of monocyte-derived cells, opening the way back out of the inflamed environment. To study the role of JAM-C in plaque regression we used a mouse model of atherosclerosis, and tested the impact of vascular JAM-C expression levels on monocyte reverse transendothelial migration using human cells. Studies in-vitro under inflammatory conditions revealed that overexpression or gene silencing of JAM-C in human endothelium exposed to flow resulted in higher rates of monocyte reverse-transendothelial migration, similar to antibody blockade. We then transplanted atherosclerotic, plaque-containing aortic arches from hyperlipidemic ApoE-/- mice into wild-type normolipidemic recipient mice. JAM-C blockade in the recipients induced greater emigration of monocyte-derived cells and further diminished the size of atherosclerotic plaques. Our findings have shown that JAM-C forms a one-way vascular barrier for leukocyte transendothelial migration only when present at homeostatic copy numbers. We have also shown that blocking JAM-C can reduce the number of atherogenic monocytes/macrophages in plaques by emigration, providing a novel therapeutic strategy for chronic inflammatory pathologies. PMID:27442505

  5. Induction of JAM-A during differentiation of human THP-1 dendritic cells.

    PubMed

    Ogasawara, Noriko; Kojima, Takashi; Go, Mitsuru; Fuchimoto, Jun; Kamekura, Ryuta; Koizumi, Jun-ichi; Ohkuni, Tsuyoshi; Masaki, Tomoyuki; Murata, Masaki; Tanaka, Satoshi; Ichimiya, Shingo; Himi, Tetsuo; Sawada, Norimasa

    2009-11-20

    Junctional adhesion molecule (JAM)-A is not only localized at tight junctions of endothelial and epithelial cells but is also expressed on circulating leukocytes and dendritic cells (DCs). In the present study, to investigate the regulation of JAM-A in DCs, mature DCs were differentiated from the human monocytic cell THP-1 by treatment with IL-4, GM-CSF, TNF-alpha, and ionomycin, and some cells were pretreated with the PPAR-gamma agonists. In the THP-1 monocytes, mRNAs of tight junction molecules, occludin, tricellulin, JAM-A, ZO-1, ZO-2 and claudin-4, -7, -8, and -9 were detected by RT-PCR. In mature DCs that had elongated dendrites, mRNA and protein of JAM-A were significantly increased compared to the monocytes. PPAR-gamma agonists prevented the elongation of dentrites but not upregulation of JAM-A in mature DCs. These findings indicated that the induction of JAM-A occurred during differentiation of human THP-1 DCs and was independent of PPAR-gamma and the p38 MAPK pathway.

  6. Cancer-Related Constituents of Strawberry Jam as Compared with Fresh Fruit.

    PubMed

    Flores, Gema; Ruiz Del Castillo, Maria Luisa

    2016-01-14

    The health awareness recently shown by consumers has led to a demand for health beneficial products. In particular, researchers are currently focusing their studies on the search for foods for cancer prevention activity. In the present work, we study comparatively the effect of two different processing methods on the contents of phenolic compounds (i.e., ellagic acid, myricetin, quercetin and kaempferol) with antioxidant and antitumor properties in strawberry jams. In turn, the results obtained were compared with those of unprocessed fruit. Additionally carcinogenic heat-induced compounds formed by the two jam making methods were evaluated. Decreases of total ellagic acid from 138.4 µg/g to 86.5 µg/g were measured in jam as compared with the intact fruit. Even higher losses of up to 90% of total flavonols were found in strawberry after the jam-making process. A comparison between the two processing methods proved shorter heating periods (around 60 min) even at temperatures as high as 100 °C enabled losses of antioxidant phenolics to be minimized. Carcinogenic heat-induced volatile compounds, mainly Maillard reaction products, were formed as a result of thermal treatment during jam processing. However, shorter heating periods also helped reduce the formation of these harmful compounds. These results are deeply discussed. From a practical standpoint, the processing conditions here proposed can be used by industry to obtain strawberry jam with higher content of antioxidant flavonoids and, at the same time, reduced amounts of carcinogenic compounds.

  7. Loss of JAM-C leads to impaired esophageal innervations and megaesophagus in mice.

    PubMed

    Ye, M; Zhang, Q; Xu, X; Zhang, Q; Ge, Y; Geng, P; Yan, J; Luo, L; Sun, Y; Liang, X

    2016-10-01

    Megaesophagus is a disease where peristalsis fails to occur properly and esophagus is enlarged. The etiology and mechanism of megaesophagus are not well understood. In this study, we reported that junctional adhesion molecule C (JAM-C) knockout mice on a C57/B6 background developed progressive megaesophagus from embryonic day (E) 15.5 onward with complete penetrance. JAM-C knockout mice exhibited a significant reduction in the number of nerve fibers/ganglia in the wall of the esophagus. However, histological analysis revealed that the esophageal wall thickness and structure of JAM-C knockout mice at embryonic stages and young adult were comparable to that of control littermates. Thus, megaesophagus observed in JAM-C knockout mice could be attributed, at least in part, to impaired esophageal innervations. Our data suggest JAM-C as a potential candidate gene for human megaesophagus, and JAM-C knockout mice might serve as a model for the study of human megaesophagus.

  8. Cancer-Related Constituents of Strawberry Jam as Compared with Fresh Fruit

    PubMed Central

    Flores, Gema; Ruiz del Castillo, Maria Luisa

    2016-01-01

    The health awareness recently shown by consumers has led to a demand for health beneficial products. In particular, researchers are currently focusing their studies on the search for foods for cancer prevention activity. In the present work, we study comparatively the effect of two different processing methods on the contents of phenolic compounds (i.e., ellagic acid, myricetin, quercetin and kaempferol) with antioxidant and antitumor properties in strawberry jams. In turn, the results obtained were compared with those of unprocessed fruit. Additionally carcinogenic heat-induced compounds formed by the two jam making methods were evaluated. Decreases of total ellagic acid from 138.4 µg/g to 86.5 µg/g were measured in jam as compared with the intact fruit. Even higher losses of up to 90% of total flavonols were found in strawberry after the jam-making process. A comparison between the two processing methods proved shorter heating periods (around 60 min) even at temperatures as high as 100 °C enabled losses of antioxidant phenolics to be minimized. Carcinogenic heat-induced volatile compounds, mainly Maillard reaction products, were formed as a result of thermal treatment during jam processing. However, shorter heating periods also helped reduce the formation of these harmful compounds. These results are deeply discussed. From a practical standpoint, the processing conditions here proposed can be used by industry to obtain strawberry jam with higher content of antioxidant flavonoids and, at the same time, reduced amounts of carcinogenic compounds. PMID:26784230

  9. Deformable Model-Based Methods for Shape Control of a Haptic Jamming Surface.

    PubMed

    Stanley, Andrew A; Okamura, Allison M

    2017-02-01

    Haptic Jamming, the approach of simultaneously controlling mechanical properties and surface deformation of a tactile display via particle jamming and pneumatics, shows promise as a tangible, shape-changing human-computer interface. Previous research introduced device design and described the force-displacement interactions for individual jamming cells. The work in this article analyzes the shape output capabilities of a multi-cell array. A spring-mass deformable body simulation combines models of the three actuation inputs of a Haptic Jamming surface: node pinning, chamber pressurization, and cell jamming. Surface measurements of a 12-cell prototype from a depth camera fit the mass and stiffness parameters to the device during pressurization tests and validate the accuracy of the model for various actuation sequences. The simulator is used to develop an algorithm that generates a sequence of actuation inputs for a Haptic Jamming array of any size in order to match a desired surface output shape. Data extracted from topographical maps and three-dimensional solid object models are used to evaluate the shape-matching algorithm and assess the utility of increasing array size and resolution. Results show that a discrete Laplace operator applied to the input is a suitable predictor of the correlation coefficient between the desired shape and the device output.

  10. A jamming strategy against synthetic aperture radar with varieties of squint angles and wide beams

    NASA Astrophysics Data System (ADS)

    Lin, Xiaohong; Xue, Guoyi; Liu, Peiguo

    2013-10-01

    In order to form a false scene in Synthetic Aperture Radar (SAR) image, deceptive jammer need to get the relevant SAR parameters. In these parameters, squint angle and beamwidth usally change and it will make the pre-generated jamming signal unuseful. For solving this problem, a strategy is proposed to transform the pre-generated jamming signals to counter SAR with arbitrary squint angle and beamwidth in real time. Firstly, the jamming effects under estimation errors of SAR's squint angle and beam-width are analyzed. Using Graphics Processing Units (GPU), a parallel algorithm to generate jamming signals for varying squint angle and azimuth beam-width is proposed. Then, This paper describes a method that can implement the signal transformation between wide-beam condition and narrow-beam condition. Based on the generated signals, the jamming under arbitrary squint angle and beam-width can be realized in real time. The simulation results shows that this strategy is effective to jam SAR with varieties of squint angles and wide-beams.

  11. High throughput flow cytometry screening reveals a novel role for JAM-A as a cancer stem cell maintenance factor

    PubMed Central

    Lathia, Justin D.; Li, Meizhang; Sinyuk, Maksim; Alvarado, Alvaro G.; Flavahan, William A.; Stoltz, Kevin; Rosager, Ann Mari; Hale, James; Hitomi, Masahiro; Gallagher, Joseph; Wu, Qiulian; Martin, Jody; Vidal, Jason G.; Nakano, Ichiro; Dahlrot, Rikke H.; Hansen, Steinbjørn; McLendon, Roger E.; Sloan, Andrew E.; Bao, Shideng; Hjelmeland, Anita B.; Carson, Christian T.; Naik, Ulhas P.; Kristensen, Bjarne; Rich, Jeremy N.

    2014-01-01

    Summary Stem cells reside in niches that regulate the balance between self-renewal and differentiation. The identity of a stem cell is linked with the ability to interact with its niche through adhesion mechanisms. To identify targets that disrupt cancer stem cell (CSC) adhesion, we performed a flow cytometry screen on patient derived glioblastoma (GBM) cells and identified junctional adhesion molecule-A (JAM-A) as a CSC adhesion mechanism essential for self-renewal and tumor growth. JAM-A was dispensable for normal neural stem/progenitor cell (NPC) function and JAM-A expression was reduced in normal brain versus GBM. Targeting JAM-A compromises the self-renewal of CSCs. JAM-A expression negatively correlated to GBM patient prognosis. Our results demonstrate that novel GBM targeting strategies can be identified through screening adhesion receptors and JAM-A represents a novel mechanism for niche driven CSC maintenance. PMID:24373972

  12. Elastic moduli and vibrational modes in jammed particulate packings.

    PubMed

    Mizuno, Hideyuki; Saitoh, Kuniyasu; Silbert, Leonardo E

    2016-06-01

    When we elastically impose a homogeneous, affine deformation on amorphous solids, they also undergo an inhomogeneous, nonaffine deformation, which can have a crucial impact on the overall elastic response. To correctly understand the elastic modulus M, it is therefore necessary to take into account not only the affine modulus M_{A}, but also the nonaffine modulus M_{N} that arises from the nonaffine deformation. In the present work, we study the bulk (M=K) and shear (M=G) moduli in static jammed particulate packings over a range of packing fractions φ. The affine M_{A} is determined essentially by the static structural arrangement of particles, whereas the nonaffine M_{N} is related to the vibrational eigenmodes. We elucidate the contribution of each vibrational mode to the nonaffine M_{N} through a modal decomposition of the displacement and force fields. In the vicinity of the (un)jamming transition φ_{c}, the vibrational density of states g(ω) shows a plateau in the intermediate-frequency regime above a characteristic frequency ω^{*}. We illustrate that this unusual feature apparent in g(ω) is reflected in the behavior of M_{N}: As φ→φ_{c}, where ω^{*}→0, those modes for ω<ω^{*} contribute less and less, while contributions from those for ω>ω^{*} approach a constant value which results in M_{N} to approach a critical value M_{Nc}, as M_{N}-M_{Nc}∼ω^{*}. At φ_{c} itself, the bulk modulus attains a finite value K_{c}=K_{Ac}-K_{Nc}>0, such that K_{Nc} has a value that remains below K_{Ac}. In contrast, for the critical shear modulus G_{c}, G_{Nc} and G_{Ac} approach the same value so that the total value becomes exactly zero, G_{c}=G_{Ac}-G_{Nc}=0. We explore what features of the configurational and vibrational properties cause such a distinction between K and G, allowing us to validate analytical expressions for their critical values.

  13. JAM-A is both essential and inhibitory to development of hepatic polarity in WIF-B cells.

    PubMed

    Braiterman, Lelita T; Heffernan, Sean; Nyasae, Lydia; Johns, David; See, Alfred P; Yutzy, Rebeca; McNickle, Allison; Herman, Mira; Sharma, Arun; Naik, Ulhas P; Hubbard, Ann L

    2008-02-01

    Junctional adhesion molecule (JAM) is involved in tight junction (TJ) formation in epithelial cells. Three JAMs (A, B, and C) are expressed in rat hepatocytes, but only rat JAM-A is present in polarized WIF-B cells, a rat-human hepatic line. We used knockdown (KD) and overexpression in WIF-B cells to determine the role of JAM-A in the development of hepatic polarity. Expression of rat JAM-A short hairpin RNA resulted in approximately 50% KD of JAM-A and substantial loss of hepatic polarity, as measured by the absence of apical cysts formed by adjacent cells and sealed by TJ belts. When inhibitory RNA-resistant human JAM-A (huWT) was expressed in KD cells, hepatic polarity was restored. In contrast, expression of JAM-A that either lacked its PDZ-binding motif (huDeltaC-term) or harbored a point mutation (T273A) did not complement, indicating that multiple sites within JAM-A's cytoplasmic tail are required for the development of hepatic polarity. Overexpression of huWT in normal WIF-B cells unexpectedly blocked WIF-B maturation to the hepatic phenotype, as did expression of three huJAM-A constructs with single point mutations in putative phosphorylation sites. In contrast, huDeltaC-term was without effect, and the T273A mutant only partially blocked maturation. Our results show that JAM-A is essential for the development of polarity in cultured hepatic cells via its possible phosphorylation and recruitment of relevant PDZ proteins and that hepatic polarity is achieved within a narrow range of JAM-A expression levels. Importantly, formation/maintenance of TJs and the apical domain in hepatic cells are linked, unlike simple epithelia.

  14. Differentially coherent detection of QASK for frequency-hopping systems. II - Performance in the presence of jamming

    NASA Technical Reports Server (NTRS)

    Simon, M. K.

    1982-01-01

    The performance of differentially coherent detection of frequency-hopped QASK in the presence of partial-band noise and partial-band multitone jamming is presented. In each case, the worst case jamming strategy is determined which consists of specifying the worst case partial-band fraction and the corresponding maximum average error probability. The results obtained are compared with those of M-ary FH-DPSK operating in the same jamming environment.

  15. Adaptive immune response in JAM-C-deficient mice: normal initiation but reduced IgG memory.

    PubMed

    Zimmerli, Claudia; Lee, Boris P L; Palmer, Gaby; Gabay, Cem; Adams, Ralf; Aurrand-Lions, Michel; Imhof, Beat A

    2009-04-15

    We have recently shown that junctional adhesion molecule (JAM)-C-deficient mice have leukocytic pulmonary infiltrates, disturbed neutrophil homeostasis, and increased postnatal mortality. This phenotype was partially rescued when mice were housed in ventilated isolators, suggesting an inability to cope with opportunistic infections. In the present study, we further examined the adaptive immune responses in JAM-C(-/-) mice. We found that murine conventional dendritic cells express in addition to Mac-1 and CD11c also JAM-B as ligand for JAM-C. By in vitro adhesion assay, we show that murine DCs can interact with recombinant JAM-C via Mac-1. However, this interaction does not seem to be necessary for dendritic cell migration and function in vivo, even though JAM-C is highly expressed by lymphatic sinuses of lymph nodes. Nevertheless, upon immunization and boosting with a protein Ag, JAM-C-deficient mice showed decreased persistence of specific circulating Abs although the initial response was normal. Such a phenotype has also been observed in a model of Ag-induced arthritis, showing that specific IgG2a Ab titers are reduced in the serum of JAM-C(-/-) compared with wild-type mice. Taken together, these data suggest that JAM-C deficiency affects the adaptive humoral immune response against pathogens, in addition to the innate immune system.

  16. Characterizing and distinguishing free and jammed traffic flows from the distribution and correlation of experimental speed data

    NASA Astrophysics Data System (ADS)

    Tadaki, Shin-ichi; Kikuchi, Macoto; Nakayama, Akihiro; Shibata, Akihiro; Sugiyama, Yuki; Yukawa, Satoshi

    2016-08-01

    From a physics point of view, the emergence of a traffic jam is considered to be a dynamical phase transition. To verify this, we performed a series of circuit experiments. In previous work, Tadaki et al (2013 New J. Phys 15 103034), we confirmed the occurrence of this phase transition and estimated the critical density between free and jammed flows by analyzing the fundamental diagram. In this paper, we characterize and distinguish free and jammed flows, beyond the analyses of fundamental diagrams, according to the distribution and correlation of experimental speed data. We find that the speed in free flow does not correlate and its distribution has a narrow single peak at the average. The distribution of speed in jammed flow has two peaks or a single broad peak. The two peaks indicate the car speeds inside and outside of jam clusters. The broad single peak appears as a result of the appearance and disappearance of jam clusters. We also find that the formation of jam clusters induces a long correlation in speed. We can identify the size of jam clusters and the relative distance between coexisting jam clusters from this speed correlation.

  17. Jamming under rapid pulling in dense granular suspensions

    NASA Astrophysics Data System (ADS)

    Majumdar, Sayantan; Peters, Ivo R.; Jaeger, Heinrich

    2015-03-01

    It requires a lot of force to quickly pull out an object immersed in a bath of dense granular suspension like corn starch in water. To understand such striking force response, we experimentally measure the normal force required for pulling out a cylindrical rod vertically from the suspension at a controlled pulling velocity. We observe that for slow pulling velocities the force response is similar to that of highly viscous fluids but above a certain threshold velocity the force show a diverging behavior soon after the initial viscous-like response. The time delay between the initial viscous-like and the diverging force response crucially depends on the proximity of the container walls from the initial contact region of the pulling rod with the suspension. We use in-situ X-ray radiography techniques to map out the local velocity profiles inside the suspension using metallic tracer particles which reveals that the force divergence takes place under pulling when the motion inside the suspension extends up to the container walls. Although the exact mechanism remains to be explained, our experiments suggest that both the magnitude and the delay in force response under pulling are reminiscent of dynamic jamming under impact in dense granular suspensions. S.M. acknowledges support from a Kadanoff-Rice Post Doctoral fellowship from MRSEC, University of Chicago

  18. Traffic jams and shocks of molecular motors inside cellular protrusions.

    PubMed

    Pinkoviezky, I; Gov, N S

    2014-05-01

    Molecular motors are involved in key transport processes inside actin-based cellular protrusions. The motors carry cargo proteins to the protrusion tip which participate in regulating the actin polymerization and play a key role in facilitating the growth and formation of such protrusions. It is observed that the motors accumulate at the tips of cellular protrusions and form aggregates that are found to drift towards the protrusion base at the rate of actin treadmilling. We present a one-dimensional driven lattice model, where motors become inactive after delivering their cargo at the tip, or by loosing their cargo to a cargoless neighbor. The results suggest that the experimental observations may be explained by the formation of traffic jams that form at the tip. The model is solved using a novel application of mean-field and shock analysis. We find a new class of shocks that undergo intermittent collapses. Extensions with attachment and detachment events and relevance to experiments are briefly described.

  19. A Geometric-Structure Theory for Maximally Random Jammed Packings

    PubMed Central

    Tian, Jianxiang; Xu, Yaopengxiao; Jiao, Yang; Torquato, Salvatore

    2015-01-01

    Maximally random jammed (MRJ) particle packings can be viewed as prototypical glasses in that they are maximally disordered while simultaneously being mechanically rigid. The prediction of the MRJ packing density ϕMRJ, among other packing properties of frictionless particles, still poses many theoretical challenges, even for congruent spheres or disks. Using the geometric-structure approach, we derive for the first time a highly accurate formula for MRJ densities for a very wide class of two-dimensional frictionless packings, namely, binary convex superdisks, with shapes that continuously interpolate between circles and squares. By incorporating specific attributes of MRJ states and a novel organizing principle, our formula yields predictions of ϕMRJ that are in excellent agreement with corresponding computer-simulation estimates in almost the entire α-x plane with semi-axis ratio α and small-particle relative number concentration x. Importantly, in the monodisperse circle limit, the predicted ϕMRJ = 0.834 agrees very well with the very recently numerically discovered MRJ density of 0.827, which distinguishes it from high-density “random-close packing” polycrystalline states and hence provides a stringent test on the theory. Similarly, for non-circular monodisperse superdisks, we predict MRJ states with densities that are appreciably smaller than is conventionally thought to be achievable by standard packing protocols. PMID:26568437

  20. Dynamic jamming under impact in shear thickening suspensions

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Shomeek

    2015-03-01

    Shear thickening fluids such as cornstarch and water show remarkable impact response allowing, for example, a person to run on the surface. We perform constant velocity impact experiments and imaging in shear thickening fluids at velocities lower than 500 mm/s and suspension heights of a few cm. In this regime where inertial effects are insignificant, we find that fronts with a dynamically jammed (DJ) region behind it are generated under impact. When this front and the DJ region reaches the opposite boundary it is able to support large stresses like a solid. These stresses are sufficient to support the weight of a running person. In addition we find a shear thickening transition under impact due to collision of the fronts with the boundary. There is a critical velocity required to generate these impact activated fronts. Using the observations on fronts, DJ region and using energy balance arguments we construct a model to explain the phenomena of running on the surface of cornstarch suspensions. The model shows quantitative agreement with our measurements using high-speed video of running on cornstarch and water suspensions. Supported by NSF DMR 1410157.

  1. Self-Driven Jamming of Growing Microbial Populations

    NASA Astrophysics Data System (ADS)

    Schreck, Carl; Delarue, Morgan; Gneiwek, Pawel; Hallatschek, Oskar

    When cells grow in confined spaces, they assemble into dense populations that interact both chemically and physically. Although in recent years scientists have uncovered a previously hidden layer of mechanical regulation in mammalian tissues that impacts gene expression and development, little is known about the consequences of mechanical constraints on single-celled microbes. This is largely due to a lack of appropriate culturing techniques and accurate computational models. Using physically explicit computer models that are developed alongside microfluidic experiments, we address two fundamental questions: (1) what structures self-assemble in confined geometries due to the cell growth and division process? and (2) how do those structures and associated stresses feed back on to cell physiology? We find that microbial growth in confinement can lead to jamming, heterogeneous stress fields, and intermittent flow that in turn result in spatially and temporally heterogeneous physiological responses. With computer simulations, we further explore the differences between this 'active' flow that is driven internally by cell growth and 'inactive' flow, such as shear and hopper flow, that is driven externally.

  2. Method for preventing jamming conditions in a compression device

    DOEpatents

    Williams, Paul M.; Faller, Kenneth M.; Bauer, Edward J.

    2002-06-18

    A compression device for feeding a waste material to a reactor includes a waste material feed assembly having a hopper, a supply tube and a compression tube. Each of the supply and compression tubes includes feed-inlet and feed-outlet ends. A feed-discharge valve assembly is located between the feed-outlet end of the compression tube and the reactor. A feed auger-screw extends axially in the supply tube between the feed-inlet and feed-outlet ends thereof. A compression auger-screw extends axially in the compression tube between the feed-inlet and feed-outlet ends thereof. The compression tube is sloped downwardly towards the reactor to drain fluid from the waste material to the reactor and is oriented at generally right angle to the supply tube such that the feed-outlet end of the supply tube is adjacent to the feed-inlet end of the compression tube. A programmable logic controller is provided for controlling the rotational speed of the feed and compression auger-screws for selectively varying the compression of the waste material and for overcoming jamming conditions within either the supply tube or the compression tube.

  3. Homing of human B cells to lymphoid organs and B-cell lymphoma engraftment are controlled by cell adhesion molecule JAM-C.

    PubMed

    Doñate, Carmen; Ody, Christiane; McKee, Thomas; Ruault-Jungblut, Sylvie; Fischer, Nicolas; Ropraz, Patricia; Imhof, Beat A; Matthes, Thomas

    2013-01-15

    Junctional adhesion molecule C (JAM-C) is expressed by vascular endothelium and human but not mouse B lymphocytes. The level of JAM-C expression defines B-cell differentiation stages and allows the classification of marginal zone-derived (JAM-C-positive) and germinal center-derived (JAM-C-negative) B-cell lymphomas. In the present study, we investigated the role of JAM-C in homing of human B cells, using a xenogeneic nonobese diabetic/severe combined immunodeficient mouse model. Treatment with anti-JAM-C antibodies in short-term experiments reduced migration of normal and malignant JAM-C-expressing B cells to bone marrow, lymph nodes, and spleen. Blocking homing to the spleen is remarkable, as most other antiadhesion antibodies reduce homing of B cells only to bone marrow and lymph nodes. Long-term administration of anti-JAM-C antibodies prevented engraftment of JAM-Cpos lymphoma cells in bone marrow, spleen, and lymph nodes of mice. Plasmon resonance studies identified JAM-B as the major ligand for JAM-C, whereas homotypic JAM-C interactions remained at background levels. Accordingly, anti-JAM-C antibodies blocked adhesion of JAM-C-expressing B cells to their ligand JAM-B, and immunofluorescence analysis showed the expression of JAM-B on murine and human lymphatic endothelial cells. Targeting JAM-C could thus constitute a new therapeutic strategy to prevent lymphoma cells from reaching supportive microenvironments not only in the bone marrow and lymph nodes but also in the spleen.

  4. Junctional adhesion molecule (JAM)-B supports lymphocyte rolling and adhesion through interaction with alpha4beta1 integrin.

    PubMed

    Ludwig, Ralf J; Hardt, Katja; Hatting, Max; Bistrian, Roxana; Diehl, Sandra; Radeke, Heinfried H; Podda, Maurizio; Schön, Michael P; Kaufmann, Roland; Henschler, Reinhard; Pfeilschifter, Josef M; Santoso, Sentot; Boehncke, Wolf-Henning

    2009-10-01

    Junctional adhesion molecule-A (JAM-A), JAM-B and JAM-C have been implicated in leucocyte transmigration. As JAM-B binds to very late activation antigen (VLA)-4, a leucocyte integrin that contributes to rolling and firm adhesion of lymphocytes to endothelial cells through binding to vascular cell adhesion molecule (VCAM)-1, we hypothesized that JAM-B is also involved in leucocyte rolling and firm adhesion. To test this hypothesis, intravital microscopy of murine skin microvasculature was performed. Rolling interactions of murine leucocytes were significantly affected by blockade of JAM-B [which reduced rolling interactions from 9.1 +/- 2.6% to 3.2 +/- 1.2% (mean +/- standard deviation)]. To identify putative ligands, T lymphocytes were perfused over JAM-B-coated slides in a dynamic flow chamber system. JAM-B-dependent rolling and sticking interactions were observed at low shear stress [0.3 dyn/cm(2): 220 +/- 71 (mean +/- standard deviation) versus 165 +/- 88 rolling (P < 0.001; Mann-Whitney rank sum test) and 2.6 +/- 1.3 versus 1.0 +/- 0.7 sticking cells/mm(2)/min (P = 0.026; Mann-Whitney rank sum test) on JAM-B- compared with baseline], but not at higher shear forces (1.0 dyn/cm(2)). As demonstrated by antibody blocking experiments, JAM-B-mediated rolling and sticking of T lymphocytes was dependent on alpha4 and beta1 integrin, but not JAM-C expression. To investigate whether JAM-B-mediated leucocyte-endothelium interactions are involved in a disease-relevant in vivo model, adoptive transfer experiments in 2,4,-dinitrofluorobenzene (DNFB)-induced contact hypersensitivity reactions were performed in mice in the absence or in the presence of a function-blocking JAM-B antibody. In this model, JAM-B blockade during the sensitization phase impaired the generation of the immune response to DNFB, which was assessed as the increase in ear swelling in untreated, DNFB-challenged mice, by close to 40% [P = 0.037; analysis of variance (anova)]. Overall, JAM-B appears to

  5. MicroRNA-495 induces breast cancer cell migration by targeting JAM-A.

    PubMed

    Cao, Minghui; Nie, Weiwei; Li, Jing; Zhang, Yujing; Yan, Xin; Guan, Xiaoxiang; Chen, Xi; Zen, Ke; Zhang, Chen-Yu; Jiang, Xiaohong; Hou, Dongxia

    2014-11-01

    MicroRNAs (miRNAs) are small, non-coding RNAs that function as post-transcriptional regulators of gene expression. The deregulated expression of miRNAs is associated with a variety of diseases, including breast cancer. In the present study, we found that miR-495 was markedly up-regulated in clinical breast cancer samples by quantitative real time-PCR (qRT-PCR). Junctional adhesion molecule A (JAM-A) was predicted to be a potential target of miR-495 by bioinformatics analysis and was subsequently verified by luciferase assay and Western blotting. JAM-A was found to be negatively correlated with the migration of breast cancer cells through loss-of-function and gain-of-function assays, and the inhibition of JAM-A by miR-495 promoted the migration of MCF-7 and MDA-MB-231 cells. Furthermore, overexpression of JAM-A could restore miR-495-induced breast cancer cell migration. Taken together, our findings suggest that miR-495 could facilitate breast cancer progression through the repression of JAM-A, making this miRNA a potential therapeutic target.

  6. JAM-C is an apical surface marker for neural stem cells.

    PubMed

    Stelzer, Sandra; Worlitzer, Maik M A; Bahnassawy, Lamia'a; Hemmer, Kathrin; Rugani, Kirité; Werthschulte, Inga; Schön, Anna-Lena; Brinkmann, Benjamin F; Bunk, Eva C; Palm, Thomas; Ebnet, Klaus; Schwamborn, Jens C

    2012-03-20

    Junctional adhesion molecule-C (JAM-C) is an adhesive cell surface protein expressed in various cell types. JAM-C localizes to the apically localized tight junctions (TJs) between contacting endothelial and epithelial cells, where it contributes to cell-cell adhesions. Just as those epithelial cells, also neural stem cells are highly polarized along their apical-basal axis. The defining feature of all stem cells, including neural stem cells (NSCs) is their ability to self renew. This self-renewal depends on the tight control of symmetric and asymmetric cell divisions. In NSCs, the decision whether a division is symmetric or asymmetric largely depends on the distribution of the apical membrane and cell fate determinants on the basal pole of the cell. In this study we demonstrate that JAM-C is expressed on neural progenitor cells and neural stem cells in the embryonic as well as the adult mouse brain. Furthermore, we demonstrate that in vivo JAM-C shows enrichment at the apical surface and therefore is asymmetrically distributed during cell divisions. These results define JAM-C as a novel surface marker for neural stem cells.

  7. Jamming of a soft granular system of hollow elastic shells in 3D using confocal microscopy

    NASA Astrophysics Data System (ADS)

    Jose, Jissy; van Blaaderen, Alfons; Imhof, Arnout

    2014-03-01

    We introduce a new system for jammed matter research consisting of monodisperse, fluorescent, hollow deformable shells, dispersed in an index matched solvent. The interesting fact about these elastic shells is that they undergo buckling: in each contact one of the shells receives an indentation from its neighbor under compressive stress. This kind of deformation is different from the soft granular systems experimentally studied so far like photo elastic disks, emulsions and foams, where the particles are flattened in the region of contact and conserve their volume. Using confocal microscopy and image analysis routines (ImageJ software) we identified the 3D position of the particles with sub pixel resolution. The force law to find the contact forces between pairs of particle is derived from the theory of elasticity of thin shells, where force is proportional to the square root of indentation depth. The distribution of normalized contact forces showed a similar trend like other jammed systems with a peak around the mean and a tail that decayed faster than exponential away from jamming threshold. Further, we also investigated the structure of the jammed packings and contact number distribution with distance to jamming.

  8. Research on the laser angle deception jamming technology of laser countermeasure

    NASA Astrophysics Data System (ADS)

    Ma, Shi-wei; Chen, Wen-jian; Gao, Wei; Duan, Yuan-yuan

    2015-10-01

    In recent years , laser guided weapons behave very well at destroying the military goals in the local wars, the single-shot probability, effective range and hitting precision getting better. And the semi-active laser guided weapons are the most widely used laser guided weapons. In order to improve the viability and protect important military goals, it's necessary to study the technology to against the semi-active guided weapons. This paper studies the working principle, the advantages and disadvantages of the semi-active guided weapons at first, and analyze the possibility of laser angle deception jamming system working. Then it analyzes the working principle and process of laser angle deception jamming technology. Finally it designs a half-real simulation system of laser angle deception jamming, which consists of semi-active laser guided weapons simulation system and laser angle deception jamming system. The simulation system demonstrates the working process of the laser angle deception jamming system. This paper provides fundamental base for the research on the countermeasure technology of semi-active laser guided weapons.

  9. Protocol Dependence in Jammed Particulate Media: Statistics of the Density Landscape

    NASA Astrophysics Data System (ADS)

    Sampangiraj, Ashwin S.

    2011-03-01

    The density at which hard-sphere fluids jam into amorphous solids depends strongly on the compression protocol. Extremely fast quenching protocols bring each initial point in configuration space to the closest basin-maximum on the density landscape. In contrast, slower quench protocols allow the system to relax and explore configuration space. The protocol-dependence of the density, other structural quantities, and mechanical properties depends strongly on statistical features of the landscape. In this talk, I describe calculations of the the basin volumes associated with jammed hard sphere packings, and the critical quench rate Γ* above which the probabilities for obtaining jammed packings are determined by their basin volumes. Basin volumes are exponentially distributed; thus, for Γ >Γ* , so are jammed packing probabilities. We discuss the implications of this result on the statistical mechanics of jammed systems. This work was done in collaboration with Corey S O'Hern, Jerzy Blawdziewicz, Mark D. Shattuck. S. S. Ashwin and Corey O'Hern are supported by NSF grant no. CBET-0967262.

  10. Ice jam-caused fluvial gullies and scour holes on northern river flood plains

    NASA Astrophysics Data System (ADS)

    Smith, Derald G.; Pearce, Cheryl M.

    2002-01-01

    Two anomalous fluvial landforms, gullies and scour holes, eroded into flood plains bordering meandering and braiding river channels have not been previously reported. We observed these features along the Milk River in southern Alberta, Canada, and northern Montana, USA, which has a history of frequent (50% probability of recurrence) and high-magnitude (12% probability of recurrence greater than bankfull) ice jam floods. Gullies have palmate and narrow linear shapes with open-ends downvalley and measure up to 208 m long×139 m wide×3.5 m deep (below bankfull). Channel ice jams reroute river water across meander lobes and cause headward gully erosion where flow returns to the main channel. Erosion of the most recent gully was observed during the record 1996 ice breakup flood and ice jams. Scour holes (bowl-shaped, closed depressions), eroded by water vortices beneath and between grounded ice jam blocks, measure up to 91 m long×22 m wide×4.5 m deep. Ice jam-caused gullies may be precursors to the formation of U-shaped oxbow lakes and multiple channels, common in many northern rivers.

  11. Jamming dynamics of stretch-induced surfactant release by alveolar type II cells.

    PubMed

    Majumdar, Arnab; Arold, Stephen P; Bartolák-Suki, Erzsébet; Parameswaran, Harikrishnan; Suki, Béla

    2012-03-01

    Secretion of pulmonary surfactant by alveolar epithelial type II cells is vital for the reduction of interfacial surface tension, thus preventing lung collapse. To study secretion dynamics, rat alveolar epithelial type II cells were cultured on elastic membranes and cyclically stretched. The amounts of phosphatidylcholine, the primary lipid component of surfactant, inside and outside the cells, were measured using radiolabeled choline. During and immediately after stretch, cells secreted less surfactant than unstretched cells; however, stretched cells secreted significantly more surfactant than unstretched cells after an extended lag period. We developed a model based on the hypothesis that stretching leads to jamming of surfactant traffic escaping the cell, similar to vehicular traffic jams. In the model, stretch increases surfactant transport from the interior to the exterior of the cell. This transport is mediated by a surface layer with a finite capacity due to the limited number of fusion pores through which secretion occurs. When the amount of surfactant in the surface layer approaches this capacity, interference among lamellar bodies carrying surfactant reduces the rate of secretion, effectively creating a jam. When the stretch stops, the jam takes an extended time to clear, and subsequently the amount of secreted surfactant increases. We solved the model analytically and show that its dynamics are consistent with experimental observations, implying that surfactant secretion is a fundamentally nonlinear process with memory representing collective behavior at the level of single cells. Our results thus highlight the importance of a jamming dynamics in stretch-induced cellular secretory processes.

  12. Characterization of maximally random jammed sphere packings: Voronoi correlation functions.

    PubMed

    Klatt, Michael A; Torquato, Salvatore

    2014-11-01

    We characterize the structure of maximally random jammed (MRJ) sphere packings by computing the Minkowski functionals (volume, surface area, and integrated mean curvature) of their associated Voronoi cells. The probability distribution functions of these functionals of Voronoi cells in MRJ sphere packings are qualitatively similar to those of an equilibrium hard-sphere liquid and partly even to the uncorrelated Poisson point process, implying that such local statistics are relatively structurally insensitive. This is not surprising because the Minkowski functionals of a single Voronoi cell incorporate only local information and are insensitive to global structural information. To improve upon this, we introduce descriptors that incorporate nonlocal information via the correlation functions of the Minkowski functionals of two cells at a given distance as well as certain cell-cell probability density functions. We evaluate these higher-order functions for our MRJ packings as well as equilibrium hard spheres and the Poisson point process. It is shown that these Minkowski correlation and density functions contain visibly more information than the corresponding standard pair-correlation functions. We find strong anticorrelations in the Voronoi volumes for the hyperuniform MRJ packings, consistent with previous findings for other pair correlations [A. Donev et al., Phys. Rev. Lett. 95, 090604 (2005)PRLTAO0031-900710.1103/PhysRevLett.95.090604], indicating that large-scale volume fluctuations are suppressed by accompanying large Voronoi cells with small cells, and vice versa. In contrast to the aforementioned local Voronoi statistics, the correlation functions of the Voronoi cells qualitatively distinguish the structure of MRJ sphere packings (prototypical glasses) from that of not only the Poisson point process but also the correlated equilibrium hard-sphere liquids. Moreover, while we did not find any perfect icosahedra (the locally densest possible structure in which a

  13. A novel junctional adhesion molecule A (CgJAM-A-L) from oyster (Crassostrea gigas) functions as pattern recognition receptor and opsonin.

    PubMed

    Liu, Conghui; Wang, Mengqiang; Jiang, Shuai; Wang, Lingling; Chen, Hao; Liu, Zhaoqun; Qiu, Limei; Song, Linsheng

    2016-02-01

    Junctional adhesion molecule (JAM), a subfamily of immunoglobulin superfamily (IgSF) with a couple of immunoglobulin domains, can act as regulator in homeostasis and inflammation of vertebrates. In the present study, a structural homolog of JAM-A (designated CgJAM-A-L) was screened out from oyster, Crassostrea gigas, through a search of JAM-A D1 domain (N-terminal Ig domain in JAM-A). The cDNA of CgJAM-A-L was of 1188 bp encoding a predicted polypeptide of 395 amino acids. The immunoreactive area of CgJAM-A-L mainly distributed over the plasma membrane of hemocytes. After Vibro splendidus or tumor necrosis factor (CgTNF-1) stimulation, the mRNA transcripts of CgJAM-A-L in hemocytes increased significantly by 4.46-fold and 9.00-fold (p < 0.01) of those in control group, respectively. The recombinant CgJAM-A-L protein (rCgJAM-A-L) could bind multiple PAMPs including lipopolysaccharides (LPS), peptidoglycan (PGN), lipoteichoic acid (LTA), mannose (MAN), β-glucan (GLU) and poly(I:C), and various microorganisms including Micrococcus luteus, Staphylococcus aureus, Escherichia coli, Vibro anguillarum, V. splendidus, Pastoris pastoris and Yarrowia lipolytica. The phagocytic rates of oyster hemocytes towards Gram-negative bacteria V. anguillarum and yeast P. pastoris were significantly enhanced after the incubation of rCgJAM-A-L, and even increased more significantly after the pre-incubation of rCgJAM-A-L with microbes (p < 0.01). The results collectively indicated that CgJAM-A-L functioned as an important pattern recognition receptor (PRR) and opsonin in the immune defense against invading pathogen in oyster. Moreover, as the most primitive specie with homolog of JAMs, the information of CgJAM-A-L in oyster would provide useful clues for the evolutionary study of JAMs and immunoglobulins.

  14. aPKC phosphorylates JAM-A at Ser285 to promote cell contact maturation and tight junction formation.

    PubMed

    Iden, Sandra; Misselwitz, Steve; Peddibhotla, Swetha S D; Tuncay, Hüseyin; Rehder, Daniela; Gerke, Volker; Robenek, Horst; Suzuki, Atsushi; Ebnet, Klaus

    2012-03-05

    The PAR-3-atypical protein kinase C (aPKC)-PAR-6 complex has been implicated in the development of apicobasal polarity and the formation of tight junctions (TJs) in vertebrate epithelial cells. It is recruited by junctional adhesion molecule A (JAM-A) to primordial junctions where aPKC is activated by Rho family small guanosine triphosphatases. In this paper, we show that aPKC can interact directly with JAM-A in a PAR-3-independent manner. Upon recruitment to primordial junctions, aPKC phosphorylates JAM-A at S285 to promote the maturation of immature cell-cell contacts. In fully polarized cells, S285-phosphorylated JAM-A is localized exclusively at the TJs, and S285 phosphorylation of JAM-A is required for the development of a functional epithelial barrier. Protein phosphatase 2A dephosphorylates JAM-A at S285, suggesting that it antagonizes the activity of aPKC. Expression of nonphosphorylatable JAM-A/S285A interferes with single lumen specification during cyst development in three-dimensional culture. Our data suggest that aPKC phosphorylates JAM-A at S285 to regulate cell-cell contact maturation, TJ formation, and single lumen specification.

  15. Direct-sequence spread-spectrum communications in a multiple-tone and repeat-back jamming environment

    NASA Astrophysics Data System (ADS)

    Geraniotis, E. A.

    The performance of coherent reception of direct-sequence spread-spectrum systems which operate in the presence of multiple-tone jamming, repeat-back jamming, and additive white Gaussian noise is investigated. Analytical and numerical results on the evaluation of the average probability of error for the simple correlation receiver are presented.

  16. Combined osmodehydration and high pressure processing on the enzyme stability and antioxidant capacity of a grapefruit jam

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A combined osmodehydration process and high pressure treatment (OD-HHP) was developed for grapefruit jam preservation. The inactivation kinetics of pectinmethylesterase (PME) and peroxidase (POD) in the osmodehydrated (OD) jam treated by combined thermal (45-75°C) and high pressure (550–700 MPa) pro...

  17. The influence of log jam development on channel morphology in an intermediate sized coastal stream, Carnation Creek, B.C.

    NASA Astrophysics Data System (ADS)

    Luzi, D. S.; Sidle, R. C.; Hogan, D. L.

    2006-12-01

    Large wood (LW) is an important functional and structural component of forest stream ecosystems, regulating sediment storage and transport, consequently determining channel morphology, and as an important foundation for aquatic habitat. LW occurs as either individual pieces or in accumulations (log jams). Where individual pieces of LW affect the stream at a small scale, several bankfull widths, jams influence the stream on a much larger scale. The spatial extent of jam related effects on channel morphology vary, dependent upon the life stage of the jam. Temporal changes in jams have received relatively little attention in the literature. The development stage of a jam is associated with upstream channel aggradation and downstream degradation; this process reverses during a jam's deterioration phase. Carnation Creek, an 11 km2 watershed located on the west coast of Vancouver Island, provided a rare opportunity to examine both the spatial and temporal impacts of log jams on channel morphology. An understanding of these relationships will be developed through the analysis of changes in channel variables, such as channel dimensions, pattern, hydraulic characteristics, and morphology. These characteristics will be extracted from annual cross sectional surveys taken during 1971 - 1998.

  18. Stability of micronutrients and phytochemicals of grapefruit jam as affected by the obtention process.

    PubMed

    Igual, M; García-Martínez, E; Camacho, M M; Martínez-Navarrete, N

    2016-04-01

    Fruits are widely revered for their micronutrient properties. They serve as a primary source of vitamins and minerals as well as of natural phytonutrients with antioxidant properties. Jam constitutes an interesting way to preserve fruit. Traditionally, this product is obtained by intense heat treatment that may cause irreversible loss of these bioactive compounds responsible for the health-related properties of fruits. In this work, different grapefruit jams obtained by conventional, osmotic dehydration (OD) without thermal treatment and/or microwave (MW) techniques were compared in terms of their vitamin, organic acid and phytochemical content and their stability through three months of storage. If compared with heating, osmotic treatments lead to a greater loss of organic acids and vitamin C during both processing and storage. MW treatments permit jam to be obtained which has a similar nutritional and functional value than that obtained when using a conventional heating method, but in a much shorter time.

  19. Modeling the capability of penetrating a jammed crowd to eliminate freezing transition

    NASA Astrophysics Data System (ADS)

    Mohammed Mahmod, Shuaib

    2016-05-01

    Frozen state from jammed state is one of the most interesting aspects produced when simulating the multidirectional pedestrian flow of high density crowds. Cases of real life situations for such a phenomenon are not exhaustively treated. Our observations in the Hajj crowd show that freezing transition does not occur very often. On the contrary, penetrating a jammed crowd is a common aspect. We believe the kindness of pedestrians facing others whose walking is blocked is a main factor in eliminating the frozen state as well as in relieving the jammed state. We refine the social force model by incorporating a new social force to enable the simulated pedestrians to mimic the real behavior observed in the Hajj area. Simulations are performed to validate the work qualitatively.

  20. The junctional adhesion molecule JAM-C regulates polarized transendothelial migration of neutrophils in vivo.

    PubMed

    Woodfin, Abigail; Voisin, Mathieu-Benoit; Beyrau, Martina; Colom, Bartomeu; Caille, Dorothée; Diapouli, Frantzeska-Maria; Nash, Gerard B; Chavakis, Triantafyllos; Albelda, Steven M; Rainger, G Ed; Meda, Paolo; Imhof, Beat A; Nourshargh, Sussan

    2011-06-26

    The migration of neutrophils into inflamed tissues is a fundamental component of innate immunity. A decisive step in this process is the polarized migration of blood neutrophils through endothelial cells (ECs) lining the venular lumen (transendothelial migration (TEM)) in a luminal-to-abluminal direction. By real-time confocal imaging, we found that neutrophils had disrupted polarized TEM ('hesitant' and 'reverse') in vivo. We noted these events in inflammation after ischemia-reperfusion injury, characterized by lower expression of junctional adhesion molecule C (JAM-C) at EC junctions, and they were enhanced by blockade or genetic deletion of JAM-C in ECs. Our results identify JAM-C as a key regulator of polarized neutrophil TEM in vivo and suggest that reverse TEM of neutrophils can contribute to the dissemination of systemic inflammation.

  1. A Hybrid Key Predistribution Scheme for Sensor Networks Employing Spatial Retreats to Cope with Jamming Attacks

    NASA Astrophysics Data System (ADS)

    Panyim, Korporn; Krishnamurthy, Prashant

    In order to provide security services in wireless sensor networks, a well-known task is to provide cryptographic keys to sensor nodes prior to deployment. It is difficult to assign secret keys for all pairs of sensor node when the number of nodes is large due to the large numbers of keys required and limited memory resources of sensor nodes. One possible solution is to randomly assign a few keys to sensor nodes and have nodes be able to connect to each other with some probability. This scheme has limitations in terms of the tradeoffs between connectivity and memory requirements. Recently, sensor deployment knowledge has been used to improve the level of connectivity while using lesser amounts of memory space. Jamming attacks are an easy and efficient means for disruption of the connectivity of sensors and thus the operation of a sensor network. One solution for mobile sensor nodes to overcome the impact of jamming is to perform spatial retreat by moving nodes away from jammed regions. However, deployment based key predistribution schemes may cause a large number of nodes to be cryptographically isolated after they move out of the jammed area. Moved nodes may not be able to reconnect to the network because they do not have any shared secret with new neighbors at new locations. In this paper, we propose a hybrid key predistribution scheme that supports spatial retreat strategies to cope with jamming attacks. Our scheme combines the properties of random and deployment knowledge based key predistribution schemes. In the presence of jamming attacks, our scheme provides high key connectivity (similar to deployment knowledge based schemes) while reducing the number of isolated nodes. We evaluate the performance of our scheme through simulations and analysis.

  2. Multi-objective scheduling mode utilization of cascaded reservoir group in upper Yellow River during ice jam flood prevention

    NASA Astrophysics Data System (ADS)

    Gao, Shichun; Dong, Qianjin; Fu, Xiang; Ai, Ze

    2010-05-01

    The cascaded reservoir group in upper Yellow River has the integrated function of ice jam flood prevention and power generation. The main factors which affect the utilization of the ice jam flood prevention volume of Liujiaxia reservoir are analyzed during the period of ice jam flood prevention, based on the input of new power station in upper Yellow River, the method of cascaded compensating scheduling are applied and the relation curve between the ice jam flood prevention volume and the cascaded output power of Liujiaxia reservoir is calculated, and the scheduling multi-objective solution set for the reservoir is obtained. On this basis, the new scheduling mode solving the reservoir integrated scheduling problem in upper Yellow River during the period of ice jam flood prevention is discussed. Comparing with the regular scheduling results, the new scheduling mode based on multi-objective solution set has the outstanding advantage in solving the problem of multi-objective scheduling of cascaded reservoir group.

  3. Percolation and jamming transitions in particulate systems with and without cohesion.

    PubMed

    Kovalcinova, L; Goullet, A; Kondic, L

    2015-09-01

    We consider percolation and jamming transitions for particulate systems exposed to compression. For the systems built of particles interacting by purely repulsive forces in addition to friction and viscous damping, it is found that these transitions are influenced by a number of effects, and in particular by the compression rate. In a quasistatic limit, we find that for the considered type of interaction between the particles, percolation and jamming transitions coincide. For cohesive systems, however, or for any system exposed to even slow dynamics, the differences between the considered transitions are found and quantified.

  4. Jamming efficiency evaluation of the IR smoke screen against high-orbit IR detector

    NASA Astrophysics Data System (ADS)

    Gao, Gui-qing; Li, Yong-xiang

    2011-08-01

    In order to lower the orientating capability of the DSP satellite, at first the paper analyzes early warning missile satellite detective system, introduces the jamming mechanism of infrared smoke screen, and a model of jamming efficiency evaluation of the IR smoke screen against early warning satellite was built from three sides of absorbency of smoke screen to infrared radiation, dispersion ability and infrared radiation from smoke screen self. At last the correlative conclusion was got based on the brief depiction of Early-warning Satellite.

  5. The F11 receptor (F11R/JAM-A) in atherothrombosis: overexpression of F11R in atherosclerotic plaques.

    PubMed

    Babinska, Anna; Azari, Bani M; Salifu, Moro O; Liu, Ruijie; Jiang, Xian-Cheng; Sobocka, Malgorzata B; Boo, Dorothy; Al Khoury, George; Deitch, Jonathan S; Marmur, Jonathan D; Ehrlich, Yigal H; Kornecki, Elizabeth

    2007-02-01

    F11R is the gene name for an adhesion protein, called the F11-receptor, aka JAM-A, which under normal physiological conditions is expressed constitutively on the surface of platelets and localized within tight junctions of endothelial cells (EC). Previous studies of the interactions between human platelets and EC suggested that F11R/JAM-A plays a crucial role in inflammatory thrombosis and atherosclerosis. The study reported here obtained in-vivo confirmation of this conclusion by investigating F11R/JAM-A protein and mRNA in patients with aortic and peripheral vascular disease and in an animal model of atherosclerosis. Molecular and immunofluorescence determinations revealed very high levels of F11R/JAM-A mRNA and F11R/JAM-A protein in atherosclerotic plaques of cardiovascular patients. Similar results were obtained with 12-week-old atherosclerosis-prone apoE-/- mice, an age in which atherosclerotic plaques are well established. Enhanced expression of the F11R/JAM-A message in cultured EC from human aortic and venous vessels was observed following exposure of the cells to cytokines. Determinations of platelet adhesion to cultured EC inflamed by combined cytokine treatment in the presence of F11R/JAM-A - antagonists provided data indicating that de novo expression of F11R/JAM-A on the luminal surface of inflamed EC has an important role in the conversion of EC to a thrombogenic surface. Further studies of these interactions under flow conditions and under in-vivo settings could provide a final proof of a causal role for F11R/JAM-A in the initiation of thrombosis. Based on our in-vitro and in-vivo studies to date, we propose that therapeutic drugs which antagonize the function of F11R/JAM-A should be tested as novel means for the prevention and treatment of atherosclerosis, heart attacks and stroke.

  6. Flow and Geometry Control the Onset of Jamming in Fractures with High Solid-Fraction Fluids

    NASA Astrophysics Data System (ADS)

    Medina, R.; Elkhoury, J. E.; Shannon, L. J.; Detwiler, R. L.; Morris, J.; Prioul, R.; Desroches, J.

    2013-12-01

    Fluids containing a large fraction of suspended solids are common in the subsurface. Examples include fluids used for environmental remediation, hydraulic fracturing fluids and magma. These fluid-solid mixtures behave as non-Newtonian fluids where interactions between fluid, suspended solids, and pore walls can lead to jamming of the suspended solids. Jamming causes the velocity of the solid to decrease locally to zero causing a rapid decrease in permeability as the fluid is forced to flow through the pore space within the immobilized solid. Here we present results from experiments that quantify the flow of non-Newtonian suspensions in an analog parallel-plate fracture (transparent 15cm x 15cm with ~3-mm aperture) and explore the dependence of jamming on flow conditions, fracture geometry, and the action of gravity. We used guar gum mixed with water (0.75%) as the fluid and added 50% by volume of crushed silica (< 300μm). Flow rates ranged from 0.2ml/min to 6.0ml/min, cell orientation varied from horizontal to vertical (bottom to top) flow and a transducer provided continuous measurement of differential pressure across the cell. A strobed LED panel backlit the cell and a high-resolution CCD camera captured frequent (0.2 Hz) images during all experiments. Particle image velocimetry (PIV) yielded measurements of the evolving velocity field during experiments (see Figure). In the vertical orientation during the initial period of high flow rate, outflow decreased rapidly and the differential pressure increased indicating jamming within the cell. Subsequent efforts to flush solids from the cell suggested that jamming occurred at the inlet of the cell. This was likely due to settling of solids within the flow field indicating that the time scale associated with settling was shorter than the time scale of advection through the cell. In the horizontal orientation, localized jamming occurred at the lowest flow rate in a region near the outlet. This suggests that when

  7. A Comparative Study of Acousto-Optic Time-Integrating Correlators for Adaptive Jamming Cancellation

    DTIC Science & Technology

    1997-10-01

    This final report presents a comparative study of the space-integrating and time-integrating configurations of an acousto - optic correlator...systematically evaluate all existing acousto - optic correlator architectures and to determine which would be most suitable for adaptive jamming

  8. Effect of storage time and temperature on the physicochemical and sensory characteristics of commercial apricot jam.

    PubMed

    Touati, Noureddine; Tarazona-Díaz, Martha Patricia; Aguayo, Encarna; Louaileche, Hayette

    2014-02-15

    Storage conditions are important factors for jam quality. The objective of this study was to monitor the physicochemical stability and sensorial profile of apricot jam during storage for 60 days at 5 °C, 25 °C and 37 °C. For that purpose, special attention was paid to total soluble solids (TSS), titratable acidity (TA), colour, free amino acids (FAA), total sugars (TS) and hydroxymethylfurfural (HMF). The decreasing parameter for jam at the end of storage under 5 °C, 25 °C and 37 °C, respectively, were 16.81%, 34.30% and 56.01% for FAA, and 5.52%, 9.02% and 7.46% for TS; likewise, the increasing were 19.81%, 22.94% and 25.07% for TA, 3.15%, 4.08% and 4.47% for TSS, 15.96%, 112.76% and 150% for HMF. Jam stability was better at 5 °C than 25 °C and 37 °C. The interaction time-temperature factor had significant effects on pH, TS, FAA and HMF, unlike TA, TSS and sensorial profile.

  9. Jelly Jam, the People Preserver. Teaching Guide. An Environmental Manual for Teachers and Parents. Revised Edition.

    ERIC Educational Resources Information Center

    Friedman, Judi

    Designed for teachers of students in grades 2 through 4, this teaching guide for a self-teaching, interdisciplinary reading and activity program comprises a complete supplemental reading, science, and social studies approach to the problems of environmental pollution. Jelly Jam, a caring little animal, helps children understand how air, water, and…

  10. Single DNA molecule jamming and history-dependent dynamics during motor-driven viral packaging

    PubMed Central

    Keller, Nicholas; Grimes, Shelley; Jardine, Paul J.; Smith, Douglas E.

    2016-01-01

    In many viruses molecular motors forcibly pack single DNA molecules to near-crystalline density into ~50–100 nm prohead shells1, 2. Unexpectedly, we found that packaging frequently stalls in conditions that induce net attractive DNA-DNA interactions3. Here, we present findings suggesting that this stalling occurs because the DNA undergoes a nonequilibrium jamming transition analogous to that observed in many soft-matter systems, such as colloidal and granular systems4–8. Experiments in which conditions are changed during packaging to switch DNA-DNA interactions between purely repulsive and net attractive reveal strongly history-dependent dynamics. An abrupt deceleration is usually observed before stalling, indicating that a transition in DNA conformation causes an abrupt increase in resistance. Our findings suggest that the concept of jamming can be extended to a single polymer molecule. However, compared with macroscopic samples of colloidal particles5 we find that single DNA molecules jam over a much larger range of densities. We attribute this difference to the nanoscale system size, consistent with theoretical predictions for jamming of attractive athermal particles.9, 10 PMID:27540410

  11. Jelly Jam, the People Preserver. An Environmental Self-Teaching Activity Book.

    ERIC Educational Resources Information Center

    Friedman, Judi

    Designed for students in grades 2 through 4, this self-teaching, interdisciplinary reading and activity program comprises a complete supplemental reading, science, and social studies approach to the problems of environmental pollution. Jelly Jam, a caring little animal, helps children understand how air, water, and land pollution affects their own…

  12. Popular Culture, Cultural Resistance, and Anticonsumption Activism: An Exploration of Culture Jamming as Critical Adult Education

    ERIC Educational Resources Information Center

    Sandlin, Jennifer A.

    2007-01-01

    This chapter examines popular culture as a site of cultural resistance. Specifically, it explores how "culture jamming," a cultural-resistance activity, can be a form of adult education. It examines adult education and learning as it intersects with both consumerism and popular culture. Focus is placed on a growing social movement of individuals…

  13. Attraction-induced jamming in the flow of foam through a channel.

    PubMed

    Menon, Karthik; Govindarajan, Rama; Tewari, Shubha

    2016-10-07

    We study the flow of a pressure-driven foam through a straight channel using numerical simulations, and examine the effects of a tuneable attractive potential between bubbles. We show that the effect of an attractive potential is to introduce a regime of jamming and stick-slip flow in a channel, and report on the behaviour resulting from varying the strength of the attraction. We find that there is a force threshold below which the flow jams, and upon further increasing the driving force, a crossover from intermittent (stick-slip) to smooth flow is observed. This threshold force below which the foam jams increases linearly with the strength of the attractive potential. By examining the spectra of energy fluctuations, we show that stick-slip flow is characterized by low frequency rearrangements and strongly local behaviour, whereas steady flow shows a broad spectrum of energy drop events and collective behaviour. Our work suggests that the stick-slip and the jamming regimes occur due to the increased stabilization of contact networks by the attractive potential - as the strength of attraction is increased, bubbles are increasingly trapped within networks, and there is a decrease in the number of contact changes.

  14. Models in frequency-hopping-based proactive jamming mitigation for space communication networks

    NASA Astrophysics Data System (ADS)

    Shen, Dan; Chen, Genshe; Pham, Khanh; Blasch, Erik; Tian, Zhi

    2012-06-01

    In this paper, we consider a cognitive radio based space communication system in a game-theoretical framework, where players dynamically interact through wireless channels to utilize the wideband spectrum for their objectives. The performance indices include data rate, covertness, jamming, and anti-jamming; each of which relate to an effective signal-nose-ratio (SNR). The game players have different intents and asymmetric and hierarchical information about the frequency spectrum which are modeled as three different types of players: primary users, secondary users, and hostile active jammers. We consider the informational asymmetry in two situations: (1) different information sets for friendly users and jammers and (2) even among the friendly sensors; some sensors may only have partial or little information about others due to jammed observations. Such an asymmetric information pattern naturally partitions the sensors into leaders and followers. In our hierarchical anti-jammer approach, a two level approach includes a pursuit-evasion game and a Stackelberg game. At the higher-level, a non-cooperative pursuit-evasion game is constructed to model the interactions between jammer and primary users in the frequency-location domains. At the lower level, primary and secondary users play a dynamic Stackelberg game in the presence of jammers. Theoretical game solutions are provided to demonstrate the proposed proactive jamming mitigation strategy.

  15. Single DNA molecule jamming and history-dependent dynamics during motor-driven viral packaging.

    PubMed

    Keller, Nicholas; Grimes, Shelley; Jardine, Paul J; Smith, Douglas E

    2016-08-01

    In many viruses molecular motors forcibly pack single DNA molecules to near-crystalline density into ~50-100 nm prohead shells(1, 2). Unexpectedly, we found that packaging frequently stalls in conditions that induce net attractive DNA-DNA interactions(3). Here, we present findings suggesting that this stalling occurs because the DNA undergoes a nonequilibrium jamming transition analogous to that observed in many soft-matter systems, such as colloidal and granular systems(4-8). Experiments in which conditions are changed during packaging to switch DNA-DNA interactions between purely repulsive and net attractive reveal strongly history-dependent dynamics. An abrupt deceleration is usually observed before stalling, indicating that a transition in DNA conformation causes an abrupt increase in resistance. Our findings suggest that the concept of jamming can be extended to a single polymer molecule. However, compared with macroscopic samples of colloidal particles(5) we find that single DNA molecules jam over a much larger range of densities. We attribute this difference to the nanoscale system size, consistent with theoretical predictions for jamming of attractive athermal particles.(9, 10).

  16. Single DNA molecule jamming and history-dependent dynamics during motor-driven viral packaging

    NASA Astrophysics Data System (ADS)

    Keller, Nicholas; Grimes, Shelley; Jardine, Paul J.; Smith, Douglas E.

    2016-08-01

    In many viruses, molecular motors forcibly pack single DNA molecules to near-crystalline density into ~50-100 nm prohead shells. Unexpectedly, we found that packaging frequently stalls in conditions that induce net attractive DNA-DNA interactions. Here, we present findings suggesting that this stalling occurs because the DNA undergoes a nonequilibrium jamming transition analogous to that observed in many soft-matter systems, such as colloidal and granular systems. Experiments in which conditions are changed during packaging to switch DNA-DNA interactions between purely repulsive and net attractive reveal strongly history-dependent dynamics. An abrupt deceleration is usually observed before stalling, indicating that a transition in DNA conformation causes an abrupt increase in resistance. Our findings suggest that the concept of jamming can be extended to a single polymer molecule. However, compared with macroscopic samples of colloidal particles we find that single DNA molecules jam over a much larger range of densities. We attribute this difference to the nanoscale system size, consistent with theoretical predictions for jamming of attractive athermal particles.

  17. Jamming Transition of Point-To Traffic Through Co-Operative Mechanisms

    NASA Astrophysics Data System (ADS)

    Fang, Jun; Qin, Zheng; Chen, Xiqun; Xu, Zhaohui

    2012-11-01

    We study the jamming transition of two-dimensional point-to-point traffic through co-operative mechanisms (DCM) using computer simulation. We propose two decentralized co-operative mechanisms CM which are incorporated into the point-to-point traffic models: stepping aside (CM-SA) and choosing alternative routes (CM-CAR). Incorporating CM-SA is to prevent a type of ping-pong jumps from happening when two objects standing face-to-face want to move in opposite directions. Incorporating CM-CAR is to handle the conflict when more than one object competes for the same point in parallel update. We investigate and compare four models mainly from fundamental diagrams, jam patterns and the distribution of co-operation probability. It is found that although it decreases the average velocity a little, the CM-SA increases the critical density and the average flow. Despite increasing the average velocity, the CM-CAR decreases the average flow by creating substantially vacant areas inside jam clusters. We investigate the jam patterns of four models carefully and explain this result qualitatively. In addition, we discuss the advantage and applicability of decentralized co-operation modeling.

  18. Magic at the Marketplace: Choice Blindness for the Taste of Jam and the Smell of Tea

    ERIC Educational Resources Information Center

    Hall, Lars; Johansson, Petter; Tarning, Betty; Sikstrom, Sverker; Deutgen, Therese

    2010-01-01

    We set up a tasting venue at a local supermarket and invited passerby shoppers to sample two different varieties of jam and tea, and to decide which alternative in each pair they preferred the most. Immediately after the participants had made their choice, we asked them to again sample the chosen alternative, and to verbally explain why they chose…

  19. Complete genome sequence of the xylan-degrading subseafloor bacterium Microcella alkaliphila JAM-AC0309.

    PubMed

    Kurata, Atsushi; Hirose, Yuu; Misawa, Naomi; Wakazuki, Sachiko; Kishimoto, Noriaki; Kobayashi, Tohru

    2016-03-10

    Here we report the complete genome sequence of Microcella alkaliphila JAM-AC0309, which was newly isolated from the deep subseafloor core sediment from offshore of the Shimokita Peninsula of Japan. An array of genes related to utilization of xylan in this bacterium was identified by whole genome analysis.

  20. Flow, turbulence, and drag associated with engineered log jams in a fixed-bed experimental channel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Engineered log jams (ELJs) have become attractive alternatives for river restoration and bank stabilization programs. Yet the effects of ELJs on turbulent flow and the fluid forces acting on the ELJs are not well known, and such information could inform design criteria. In this study, a fixed-bed ph...

  1. Jelly Jam, the People Preserver. An Environmental Self-Teaching Activity Book. Bermuda Edition.

    ERIC Educational Resources Information Center

    Friedman, Judi

    Designed for students in grades 2 through 4, this self-teaching, interdisciplinary reading and activity program approaches the environmental conditions, the state of natural resources, and the problems of pollution in Bermuda. A caring little animal named Jelly Jam is used to help children understand how air, water, and land pollution affect their…

  2. Deceptive jamming for countering UWB-SAR based on Doppler frequency phase template of false target

    NASA Astrophysics Data System (ADS)

    He, Xiaodong; Tang, Bin

    2016-04-01

    A false target deceptive jamming method for countering ultra-wideband synthetic aperture radar (UWB-SAR) is proposed in this paper, which is based on dechirp processing to intercepted UWB-SAR signal and inverse dechirp to jamming signal. The jammer quadrature down-converts and dechirps the intercepted UWB-SAR signal using a linear frequency modulation (LFM) signal oscillator, which could reduce the bandwidth and sample rate of analog-to-digital converter. Then, the jammer utilises the azimuth direction Doppler frequency phase between the false target and the jammer, and backward reflection coefficient template to modulate the phase of the intercepted UWB-SAR signal, and then delayed the modulated phase and also modulated the range direction Doppler frequency phase to the that. Finally, the jammer uses LFM signal oscillator to up-convert the narrowband jamming signal in order to recover the bandwidth of the signal. Parameter errors analysis and simulation results have shown that the detected parameters and motion characteristic errors reduce the resolution and offset the expected position of the false target, but it still could obtain an expected false target image. Theoretical analysis and simulation results indicated that the jamming signal proposed in this paper could produce a false target in the UWB-SAR image, which provide a feasible method for countering UWB-SAR in real time.

  3. Early Detection of Junctional Adhesion Molecule-1 (JAM-1) in the Circulation after Experimental and Clinical Polytrauma.

    PubMed

    Denk, Stephanie; Wiegner, Rebecca; Hönes, Felix M; Messerer, David A C; Radermacher, Peter; Weiss, Manfred; Kalbitz, Miriam; Ehrnthaller, Christian; Braumüller, Sonja; McCook, Oscar; Gebhard, Florian; Weckbach, Sebastian; Huber-Lang, Markus

    2015-01-01

    Severe tissue trauma-induced systemic inflammation is often accompanied by evident or occult blood-organ barrier dysfunctions, frequently leading to multiple organ dysfunction. However, it is unknown whether specific barrier molecules are shed into the circulation early after trauma as potential indicators of an initial barrier dysfunction. The release of the barrier molecule junctional adhesion molecule-1 (JAM-1) was investigated in plasma of C57BL/6 mice 2 h after experimental mono- and polytrauma as well as in polytrauma patients (ISS ≥ 18) during a 10-day period. Correlation analyses were performed to indicate a linkage between JAM-1 plasma concentrations and organ failure. JAM-1 was systemically detected after experimental trauma in mice with blunt chest trauma as a driving force. Accordingly, JAM-1 was reduced in lung tissue after pulmonary contusion and JAM-1 plasma levels significantly correlated with increased protein levels in the bronchoalveolar lavage as a sign for alveolocapillary barrier dysfunction. Furthermore, JAM-1 was markedly released into the plasma of polytrauma patients as early as 4 h after the trauma insult and significantly correlated with severity of disease and organ dysfunction (APACHE II and SOFA score). The data support an early injury- and time-dependent appearance of the barrier molecule JAM-1 in the circulation indicative of a commencing trauma-induced barrier dysfunction.

  4. JAM: A Scalable Bayesian Framework for Joint Analysis of Marginal SNP Effects

    PubMed Central

    Conti, David V.; Richardson, Sylvia

    2016-01-01

    ABSTRACT Recently, large scale genome‐wide association study (GWAS) meta‐analyses have boosted the number of known signals for some traits into the tens and hundreds. Typically, however, variants are only analysed one‐at‐a‐time. This complicates the ability of fine‐mapping to identify a small set of SNPs for further functional follow‐up. We describe a new and scalable algorithm, joint analysis of marginal summary statistics (JAM), for the re‐analysis of published marginal summary stactistics under joint multi‐SNP models. The correlation is accounted for according to estimates from a reference dataset, and models and SNPs that best explain the complete joint pattern of marginal effects are highlighted via an integrated Bayesian penalized regression framework. We provide both enumerated and Reversible Jump MCMC implementations of JAM and present some comparisons of performance. In a series of realistic simulation studies, JAM demonstrated identical performance to various alternatives designed for single region settings. In multi‐region settings, where the only multivariate alternative involves stepwise selection, JAM offered greater power and specificity. We also present an application to real published results from MAGIC (meta‐analysis of glucose and insulin related traits consortium) – a GWAS meta‐analysis of more than 15,000 people. We re‐analysed several genomic regions that produced multiple significant signals with glucose levels 2 hr after oral stimulation. Through joint multivariate modelling, JAM was able to formally rule out many SNPs, and for one gene, ADCY5, suggests that an additional SNP, which transpired to be more biologically plausible, should be followed up with equal priority to the reported index. PMID:27027514

  5. JAM: A Scalable Bayesian Framework for Joint Analysis of Marginal SNP Effects.

    PubMed

    Newcombe, Paul J; Conti, David V; Richardson, Sylvia

    2016-04-01

    Recently, large scale genome-wide association study (GWAS) meta-analyses have boosted the number of known signals for some traits into the tens and hundreds. Typically, however, variants are only analysed one-at-a-time. This complicates the ability of fine-mapping to identify a small set of SNPs for further functional follow-up. We describe a new and scalable algorithm, joint analysis of marginal summary statistics (JAM), for the re-analysis of published marginal summary statistics under joint multi-SNP models. The correlation is accounted for according to estimates from a reference dataset, and models and SNPs that best explain the complete joint pattern of marginal effects are highlighted via an integrated Bayesian penalized regression framework. We provide both enumerated and Reversible Jump MCMC implementations of JAM and present some comparisons of performance. In a series of realistic simulation studies, JAM demonstrated identical performance to various alternatives designed for single region settings. In multi-region settings, where the only multivariate alternative involves stepwise selection, JAM offered greater power and specificity. We also present an application to real published results from MAGIC (meta-analysis of glucose and insulin related traits consortium) - a GWAS meta-analysis of more than 15,000 people. We re-analysed several genomic regions that produced multiple significant signals with glucose levels 2 hr after oral stimulation. Through joint multivariate modelling, JAM was able to formally rule out many SNPs, and for one gene, ADCY5, suggests that an additional SNP, which transpired to be more biologically plausible, should be followed up with equal priority to the reported index.

  6. Maximally random jamming of one-component and binary hard-disk fluids in two dimensions.

    PubMed

    Xu, Xinliang; Rice, Stuart A

    2011-02-01

    We report calculations of the density of maximally random jamming of one-component and binary hard-disk fluids. The theoretical structure used provides a common framework for description of the hard-disk liquid-to-hexatic, the liquid-to-hexagonal crystal, and the liquid to maximally random jammed state transitions. Our analysis is based on locating a particular bifurcation of the solutions of the integral equation for the inhomogeneous single-particle density at the transition between different spatial structures. The bifurcation of solutions we study is initiated from the dense metastable fluid, and we associate it with the limit of stability of the fluid, which we identify with the transition from the metastable fluid to a maximally random jammed state. For the one-component hard-disk fluid the predicted packing fraction at which the metastable fluid to maximally random jammed state transition occurs is 0.84, in excellent agreement with the experimental value 0.84 ± 0.02. The corresponding analysis of the limit of stability of a binary hard-disk fluid with specified disk-diameter ratio and disk composition requires extra approximations in the representations of the direct correlation function, the equation of state, and the number of order parameters accounted for. Keeping only the order parameter identified with the largest peak in the structure factor of the highest-density regular lattice with the same disk- diameter ratio and disk composition as the binary fluid, the predicted density of maximally random jamming is found to be 0.84-0.87, depending on the equation of state used, and very weakly dependent on the ratio of disk diameters and the fluid composition, in agreement with both experimental data and computer simulation data.

  7. Numerical modelling of ice-jam flooding on the Peace-Athabasca delta

    NASA Astrophysics Data System (ADS)

    Beltaos, Spyros

    2003-12-01

    Ice jamming during the spring breakup of the ice cover in the lower reaches of the Peace River has been identified as the main agent of flooding and replenishment of the Peace-Athabasca delta (PAD) ecosystems. The relative rarity of major ice jams in the lower Peace River following construction of the Bennett Dam has resulted in serious habitat degradation and risk to local ecology, and concern has been raised over potential climate change impacts. This issue is under active study that encompasses use of various types of model, field data collection, and analysis of archived records. An important component of the study aims at determination of threshold flows that can result in significant flooding when a jam is in place in the PAD reach of the Peace. This question is investigated by means of RIVJAM, a numerical model that computes the water surface and thickness profiles of a jam in a given river reach. First, the model is calibrated using field data obtained during the 1996 and 1997 ice-jam floods. Calibration coefficients are shown to be the same for both events and consistent with default values determined from previous applications in other rivers. A by-product of the calibration process is the quantification of the flow reversals occurring under high-stage conditions in the three major tributaries of the lower Peace. Next, the model is applied with increasing flow values and the resulting water surface profiles are compared with bank elevations. These comparisons indicate that an incoming flow of at least 4000 m3 s-1 is required to produce significant flooding of the delta. The calibrated model can also be used to examine the efficacy of controlled water releases at the Bennett Dam as a means of enhancing flooding potential. Copyright

  8. Innovative Engagement with NASA Data: Best Practices in Hosting a Space-Themed Game Jam Event

    NASA Astrophysics Data System (ADS)

    Mader, M. M.

    2015-12-01

    Planetary mission milestones provide key opportunities to engage the public in the day to day work and showcase the value, wonder, and innovative technologies of planetary exploration. The Royal Ontario Museum (ROM), Canada, is designing unique experiences that will allow new audiences to relate to planetary mission results, through direct interaction with planetary materials and data. Through co-creation and collaboration, we aim to encourage STEM and STEAM learning through interactive programs that are interest driven by the participants. Based on these principles, the ROM, in collaboration with the University of Toronto, is hosting a Game Jam event (see http://www.rom.on.ca/en/activities-programs/programs/game-jam). A Game Jam invites creative, motivated, and inspired game developers to work in a collaborative environment over the course of 3 days to create games linked to a theme. This year's theme is "Space Rocks". Video games, fuelled by actual mission data, capture public interest in space and science in a unique and powerful way, giving us new insight into the real challenges we have on Earth and in space. The ROM Game Jam will allow 100 game developers to draw inspiration from our collection of over 100,000 rocks, minerals, and gems, including over 500 martian, lunar, and asteroidal meteorites. Participants will learn about the history of these specimens directly from ROM experts. NASA datasets related to our collection will be highlighted and curated for this event. The games produced during the Game Jam will live on and be featured online and at numerous ROM events throughout the year. Our presentation will highlight lessons learned from this experience, best practices, and future plans.

  9. Trans-dimerization of JAM-A regulates Rap2 and is mediated by a domain that is distinct from the cis-dimerization interface.

    PubMed

    Monteiro, Ana C; Luissint, Anny-Claude; Sumagin, Ronen; Lai, Caroline; Vielmuth, Franziska; Wolf, Mattie F; Laur, Oskar; Reiss, Kerstin; Spindler, Volker; Stehle, Thilo; Dermody, Terence S; Nusrat, Asma; Parkos, Charles A

    2014-05-01

    Junctional adhesion molecule-A (JAM-A) is a tight junction-associated signaling protein that regulates epithelial cell proliferation, migration, and barrier function. JAM-A dimerization on a common cell surface (in cis) has been shown to regulate cell migration, and evidence suggests that JAM-A may form homodimers between cells (in trans). Indeed, transfection experiments revealed accumulation of JAM-A at sites between transfected cells, which was lost in cells expressing cis- or predicted trans-dimerization null mutants. Of importance, microspheres coated with JAM-A containing alanine substitutions to residues 43NNP45 (NNP-JAM-A) within the predicted trans-dimerization site did not aggregate. In contrast, beads coated with cis-null JAM-A demonstrated enhanced clustering similar to that observed with wild-type (WT) JAM-A. In addition, atomic force microscopy revealed decreased association forces in NNP-JAM-A compared with WT and cis-null JAM-A. Assessment of effects of JAM-A dimerization on cell signaling revealed that expression of trans- but not cis-null JAM-A mutants decreased Rap2 activity. Furthermore, confluent cells, which enable trans-dimerization, had enhanced Rap2 activity. Taken together, these results suggest that trans-dimerization of JAM-A occurs at a unique site and with different affinity compared with dimerization in cis. Trans-dimerization of JAM-A may thus act as a barrier-inducing molecular switch that is activated when cells become confluent.

  10. The tight junction protein JAM-A functions as coreceptor for rotavirus entry into MA104 cells.

    PubMed

    Torres-Flores, Jesús M; Silva-Ayala, Daniela; Espinoza, Marco A; López, Susana; Arias, Carlos F

    2015-01-15

    Several molecules have been identified as receptors or coreceptors for rotavirus infection, including glycans, integrins, and hsc70. In this work we report that the tight junction proteins JAM-A, occludin, and ZO-1 play an important role during rotavirus entry into MA104 cells. JAM-A was found to function as coreceptor for rotavirus strains RRV, Wa, and UK, but not for rotavirus YM. Reassortant viruses derived from rotaviruses RRV and YM showed that the virus spike protein VP4 determines the use of JAM-A as coreceptor.

  11. Information Warfare-Worthy Jamming Attack Detection Mechanism for Wireless Sensor Networks Using a Fuzzy Inference System

    PubMed Central

    Misra, Sudip; Singh, Ranjit; Rohith Mohan, S. V.

    2010-01-01

    The proposed mechanism for jamming attack detection for wireless sensor networks is novel in three respects: firstly, it upgrades the jammer to include versatile military jammers; secondly, it graduates from the existing node-centric detection system to the network-centric system making it robust and economical at the nodes, and thirdly, it tackles the problem through fuzzy inference system, as the decision regarding intensity of jamming is seldom crisp. The system with its high robustness, ability to grade nodes with jamming indices, and its true-detection rate as high as 99.8%, is worthy of consideration for information warfare defense purposes. PMID:22319307

  12. Static structural signatures of nearly jammed disordered and ordered hard-sphere packings: Direct correlation function

    NASA Astrophysics Data System (ADS)

    Atkinson, Steven; Stillinger, Frank H.; Torquato, Salvatore

    2016-09-01

    The nonequilibrium process by which hard-particle systems may be compressed into disordered, jammed states has received much attention because of its wide utility in describing a broad class of amorphous materials. While dynamical signatures are known to precede jamming, the task of identifying static structural signatures indicating the onset of jamming have proven more elusive. The observation that compressing hard-particle packings towards jamming is accompanied by an anomalous suppression of density fluctuations (termed "hyperuniformity") has paved the way for the analysis of jamming as an "inverted critical point" in which the direct correlation function c (r ) , rather than the total correlation function h (r ) , diverges. We expand on the notion that c (r ) provides both universal and protocol-specific information as packings approach jamming. By considering the degree and position of singularities (discontinuities in the n th derivative) as well as how they are changed by the convolutions found in the Ornstein-Zernike equation, we establish quantitative statements about the structure of c (r ) with regards to singularities it inherits from h (r ) . These relations provide a concrete means of identifying features that must be expressed in c (r ) if one hopes to reproduce various details in the pair correlation function accurately and provide stringent tests on the associated numerics. We also analyze the evolution of systems of three-dimensional monodisperse hard spheres of diameter D as they approach ordered and disordered jammed configurations. For the latter, we use the Lubachevsky-Stillinger (LS) molecular dynamics and Torquato-Jiao (TJ) sequential linear programming algorithms, which both generate disordered packings, but can show perceptible structural differences. We identify a short-ranged scaling c (r )∝-1 /r as r →0 that accompanies the formation of the delta function at c (D ) that indicates the formation of contacts in all cases, and show

  13. Static structural signatures of nearly jammed disordered and ordered hard-sphere packings: Direct correlation function.

    PubMed

    Atkinson, Steven; Stillinger, Frank H; Torquato, Salvatore

    2016-09-01

    The nonequilibrium process by which hard-particle systems may be compressed into disordered, jammed states has received much attention because of its wide utility in describing a broad class of amorphous materials. While dynamical signatures are known to precede jamming, the task of identifying static structural signatures indicating the onset of jamming have proven more elusive. The observation that compressing hard-particle packings towards jamming is accompanied by an anomalous suppression of density fluctuations (termed "hyperuniformity") has paved the way for the analysis of jamming as an "inverted critical point" in which the direct correlation function c(r), rather than the total correlation function h(r), diverges. We expand on the notion that c(r) provides both universal and protocol-specific information as packings approach jamming. By considering the degree and position of singularities (discontinuities in the nth derivative) as well as how they are changed by the convolutions found in the Ornstein-Zernike equation, we establish quantitative statements about the structure of c(r) with regards to singularities it inherits from h(r). These relations provide a concrete means of identifying features that must be expressed in c(r) if one hopes to reproduce various details in the pair correlation function accurately and provide stringent tests on the associated numerics. We also analyze the evolution of systems of three-dimensional monodisperse hard spheres of diameter D as they approach ordered and disordered jammed configurations. For the latter, we use the Lubachevsky-Stillinger (LS) molecular dynamics and Torquato-Jiao (TJ) sequential linear programming algorithms, which both generate disordered packings, but can show perceptible structural differences. We identify a short-ranged scaling c(r)∝-1/r as r→0 that accompanies the formation of the delta function at c(D) that indicates the formation of contacts in all cases, and show that this scaling

  14. Junctional adhesion molecule-A, JAM-A, is a novel cell-surface marker for long-term repopulating hematopoietic stem cells.

    PubMed

    Sugano, Yasuyoshi; Takeuchi, Masaki; Hirata, Ayami; Matsushita, Hirokazu; Kitamura, Toshio; Tanaka, Minoru; Miyajima, Atsushi

    2008-02-01

    Junctional adhesion molecule-A (JAM-A/JAM-1/F11R) is a cell adhesion molecule expressed in epithelial and endothelial cells, and also hematopoietic cells, such as leukocytes, platelets, and erythrocytes. Here, we show that JAM-A is expressed at a high level in the enriched hematopoietic stem cell (HSC) fraction; that is, CD34(+)c-Kit(+) cells in embryonic day 11.5 (E11.5) aorta-gonod-mesonephros (AGM) and E11.5 fetal liver (FL), as well as c-Kit(+)Sca-1(+)Lineage(-) (KSL) cells in E14.5 FL, E18.5FL, and adult bone marrow (BM). Although the percentage of JAM-A(+) cells in those tissues decreases during development, the expression in the HSC fraction is maintained throughout life. Colony-forming assays reveal that multilineage colony-forming activity in JAM-A(+) cells is higher than that in JAM-A(-) cells in the enriched HSC fraction in all of those tissues. Transplantation assays show that long-term reconstituting HSC (LTR-HSC) activity is exclusively in the JAM-A(+) population and is highly enriched in the JAM-A(+) cells sorted directly from whole BM cells by anti-JAM-A antibody alone. Together, these results indicate that JAM-A is expressed on hematopoietic precursors in various hematopoietic tissues and is an excellent marker to isolate LTR-HSCs.

  15. Cutting edge: JAM-C controls homeostatic chemokine secretion in lymph node fibroblastic reticular cells expressing thrombomodulin.

    PubMed

    Frontera, Vincent; Arcangeli, Marie-Laure; Zimmerli, Claudia; Bardin, Florence; Obrados, Elodie; Audebert, Stéphane; Bajenoff, Marc; Borg, Jean-Paul; Aurrand-Lions, Michel

    2011-07-15

    The development and maintenance of secondary lymphoid organs, such as lymph nodes, occur in a highly coordinated manner involving lymphoid chemokine production by stromal cells. Although developmental pathways inducing lymphoid chemokine production during organogenesis are known, signals maintaining cytokine production in adults are still elusive. In this study, we show that thrombomodulin and platelet-derived growth factor receptor α identify a population of fibroblastic reticular cells in which chemokine secretion is controlled by JAM-C. We demonstrate that Jam-C-deficient mice and mice treated with Ab against JAM-C present significant decreases in stromal cell-derived factor 1α (CXCL12), CCL21, and CCL19 intranodal content. This effect is correlated with reduced naive T cell egress from lymph nodes of anti-JAM-C-treated mice.

  16. High-speed ultrasound imaging in dense suspensions reveals impact-activated solidification due to dynamic shear jamming

    NASA Astrophysics Data System (ADS)

    Han, Endao; Peters, Ivo R.; Jaeger, Heinrich M.

    2016-07-01

    A remarkable property of dense suspensions is that they can transform from liquid-like at rest to solid-like under sudden impact. Previous work showed that this impact-induced solidification involves rapidly moving jamming fronts; however, details of this process have remained unresolved. Here we use high-speed ultrasound imaging to probe non-invasively how the interior of a dense suspension responds to impact. Measuring the speed of sound we demonstrate that the solidification proceeds without a detectable increase in packing fraction, and imaging the evolving flow field we find that the shear intensity is maximized right at the jamming front. Taken together, this provides direct experimental evidence for jamming by shear, rather than densification, as driving the transformation to solid-like behaviour. On the basis of these findings we propose a new model to explain the anisotropy in the propagation speed of the fronts and delineate the onset conditions for dynamic shear jamming in suspensions.

  17. Aircraft Loss-of-Control Accident Prevention: Switching Control of the GTM Aircraft with Elevator Jam Failures

    NASA Technical Reports Server (NTRS)

    Chang, Bor-Chin; Kwatny, Harry G.; Belcastro, Christine; Belcastro, Celeste

    2008-01-01

    Switching control, servomechanism, and H2 control theory are used to provide a practical and easy-to-implement solution for the actuator jam problem. A jammed actuator not only causes a reduction of control authority, but also creates a persistent disturbance with uncertain amplitude. The longitudinal dynamics model of the NASA GTM UAV is employed to demonstrate that a single fixed reconfigured controller design based on the proposed approach is capable of accommodating an elevator jam failure with arbitrary jam position as long as the thrust control has enough control authority. This paper is a first step towards solving a more comprehensive in-flight loss-of-control accident prevention problem that involves multiple actuator failures, structure damages, unanticipated faults, and nonlinear upset regime recovery, etc.

  18. Reverse-migrated neutrophils regulated by JAM-C are involved in acute pancreatitis-associated lung injury.

    PubMed

    Wu, Deqing; Zeng, Yue; Fan, Yuting; Wu, Jianghong; Mulatibieke, Tunike; Ni, Jianbo; Yu, Ge; Wan, Rong; Wang, Xingpeng; Hu, Guoyong

    2016-02-04

    Junctional adhesion molecule-C (JAM-C) plays a key role in the promotion of the reverse transendothelial migration (rTEM) of neutrophils, which contributes to the dissemination of systemic inflammation and to secondary organ damage. During acute pancreatitis (AP), systemic inflammatory responses lead to distant organ damage and typically result in acute lung injury (ALI). Here, we investigated the role of rTEM neutrophils in AP-associated ALI and the molecular mechanisms by which JAM-C regulates neutrophil rTEM in this disorder. In this study, rTEM neutrophils were identified in the peripheral blood both in murine model of AP and human patients with AP, which elevated with increased severity of lung injury. Pancreatic JAM-C was downregulated during murine experimental pancreatitis, whose expression levels were inversely correlated with both increased neutrophil rTEM and severity of lung injury. Knockout of JAM-C resulted in more severe lung injury and systemic inflammation. Significantly greater numbers of rTEM neutrophils were present both in the circulation and pulmonary vascular washout in JAM-C knockout mice with AP. This study demonstrates that during AP, neutrophils that are recruited to the pancreas may migrate back into the circulation and then contribute to ALI. JAM-C downregulation may contribute to AP-associated ALI via promoting neutrophil rTEM.

  19. The Med AppJam: a model for an interprofessional student-centered mHealth app competition.

    PubMed

    Youm, Julie; Wiechmann, Warren

    2015-03-01

    The Med AppJam is a 2-week long competition where students from the University of California, Irvine School of Medicine are partnered with students from the University of California, Irvine School of Information and Computer Sciences in interprofessional teams to develop mobile health applications for use by clinicians and patients. The success of the Med AppJam comes from the unique opportunity for students to mutually contribute their content expertise to improve the clinical landscape while expanding their technology literacy and savvy. Since 2012, about 285 computer science students and over 90 medical students have collaborated to design and develop 53 iOS mHealth apps during the event. The Med AppJam model has been replicated in an Autism AppJam, a competition focused on the needs of a specific population, and with high school students in a mini Pre-Med AppJam using a paper prototyping approach. It is proposed that other medical schools consider implementation of a local Med AppJam as a viable model for engaging students in technology for healthcare.

  20. Research into the usage of integrated jamming of IR weakening and smoke-screen resisting the IR imaging guided missiles

    NASA Astrophysics Data System (ADS)

    Wang, Long-tao; Jiang, Ning; Lv, Ming-shan

    2015-10-01

    With the emergence of the anti-ship missle with the capability of infrared imaging guidance, the traditional single jamming measures, because of the jamming mechanism and technical flaws or unsuitable use, greatly reduced the survival probability of the war-ship in the future naval battle. Intergrated jamming of IR weakening + smoke-screen Can not only make jamming to the search and tracking of IR imaging guidance system , but also has feasibility in conjunction, besides , which also make the best jamming effect. The research conclusion has important realistic meaning for raising the antimissile ability of surface ships. With the development of guidance technology, infrared guidance system has expanded by ir point-source homing guidance to infrared imaging guidance, Infrared imaging guidance has made breakthrough progress, Infrared imaging guidance system can use two-dimensional infrared image information of the target, achieve the precise tracking. Which has Higher guidance precision, better concealment, stronger anti-interference ability and could Target the key parts. The traditional single infrared smoke screen jamming or infrared decoy flare interference cannot be imposed effective interference. So, Research how to effectively fight against infrared imaging guided weapons threat measures and means, improving the surface ship antimissile ability is an urgent need to solve.

  1. Reverse-migrated neutrophils regulated by JAM-C are involved in acute pancreatitis-associated lung injury

    PubMed Central

    Wu, Deqing; Zeng, Yue; Fan, Yuting; Wu, Jianghong; Mulatibieke, Tunike; Ni, Jianbo; Yu, Ge; Wan, Rong; Wang, Xingpeng; Hu, Guoyong

    2016-01-01

    Junctional adhesion molecule-C (JAM-C) plays a key role in the promotion of the reverse transendothelial migration (rTEM) of neutrophils, which contributes to the dissemination of systemic inflammation and to secondary organ damage. During acute pancreatitis (AP), systemic inflammatory responses lead to distant organ damage and typically result in acute lung injury (ALI). Here, we investigated the role of rTEM neutrophils in AP-associated ALI and the molecular mechanisms by which JAM-C regulates neutrophil rTEM in this disorder. In this study, rTEM neutrophils were identified in the peripheral blood both in murine model of AP and human patients with AP, which elevated with increased severity of lung injury. Pancreatic JAM-C was downregulated during murine experimental pancreatitis, whose expression levels were inversely correlated with both increased neutrophil rTEM and severity of lung injury. Knockout of JAM-C resulted in more severe lung injury and systemic inflammation. Significantly greater numbers of rTEM neutrophils were present both in the circulation and pulmonary vascular washout in JAM-C knockout mice with AP. This study demonstrates that during AP, neutrophils that are recruited to the pancreas may migrate back into the circulation and then contribute to ALI. JAM-C downregulation may contribute to AP-associated ALI via promoting neutrophil rTEM. PMID:26841848

  2. Hydro-Geomorphologic Effects Of Large Wood Jams On A Third-Order Stream (Tierra Del Fuego, Argentina)

    NASA Astrophysics Data System (ADS)

    Mao, L.; Andreoli, A.; Comiti, F.; Lenzi, M. A.; Iturraspe, R.; Burns, S.; Novillo, M. G.

    2007-05-01

    Dead wood pieces, especially when organized in jams, play an important geomorphic role in streams because of the effects on flow hydraulics, pool formation and sediments storage. The increase of stream morphological diversity and complexity also exerts also an important ecological role. This work reports on geomorphic role of large wood pieces and jams in a third order mountain stream located in the Southern Tierra del Fuego (Argentina), and draining an old-growth nothofagus forested basin not influenced by the beavers damming activity. Even if the in-stream number of wood pieces (length > 1m; diameter > 0.1 m) is comparable to what observed in other climatic areas, the slow growth of the nothofagus forest causes a lower wood abundance in terms of volumetric load. Since the relatively small dimensions of the surveyed large wood pieces, almost the 70% of them demonstrated to have been fluvial transported and the also wood jams reflect the apparent dynamic of wood in the channel. Wood jams exert a significant influence on the channel morphology, representing almost the half of the drop caused by steps and being responsible for the creation of 30% of the pools. The LW-forced pool volume is strongly and positively correlated to the height of the LW jam, and a significant inverse relationship between pool spacing and wood density within is evident if only the LW-forced pools are considered. The geomorphic influence of LW jams is also exerted by a considerable sediment storing capacity.

  3. Two typical structure patterns in jammed monodisperse disk packings at high densities

    NASA Astrophysics Data System (ADS)

    Yuan, Ye; Jin, Weiwei; Liu, Lufeng; Li, Shuixiang

    2016-11-01

    We generate a large number of monodisperse disk packings in two dimensions via geometric-based packing algorithms including the relaxation algorithm and the Torquato-Jiao algorithm. Using the geometric-structure approach, a clear boundary of the geometrical feasible region in the order map is found which quite differs from that of the jammed region. For a certain packing density higher than 0.83, the crystalline degree varies in different packing samples. We find that the local hexatic order may increase in two fairly different ways as the system densifies. Therefore, two typical non-equilibrium jammed patterns, termed polycrystal and distorted crystal, are defined at high packing densities. Furthermore, their responses to isotropic compression are investigated using a compression-relaxation molecular dynamic protocol. The distorted crystal pattern is more stable than the polycrystal one with smaller displacements despite its low occurrence frequency. The results are helpful in understanding the structure and phase transition of disk packings.

  4. Statistics of conserved quantities in mechanically stable packings of frictionless disks above jamming

    NASA Astrophysics Data System (ADS)

    Wu, Yegang; Teitel, S.

    2015-02-01

    We numerically simulate mechanically stable packings of soft-core, frictionless, bidisperse disks in two dimensions, above the jamming packing fraction ϕJ. For configurations with a fixed isotropic global stress tensor, we compute the averages, variances, and correlations of conserved quantities (stress ΓC, force-tile area AC, Voronoi volume VC, number of particles NC, and number of small particles Ns C) on compact subclusters of particles C , as a function of the cluster size and the global system stress. We find several significant differences depending on whether the cluster C is defined by a fixed radius R or a fixed number of particles M . We comment on the implications of our findings for maximum entropy models of jammed packings.

  5. Nonequilibrium fluctuation relation for sheared micellar gel in a jammed state.

    PubMed

    Majumdar, Sayantan; Sood, A K

    2008-08-15

    We show that the shear rate at a fixed shear stress in a micellar gel in a jammed state exhibits large fluctuations, showing positive and negative values, with the mean shear rate being positive. The resulting probability distribution functions of the global power flux to the system vary from Gaussian to non-Gaussian, depending on the driving stress, and in all cases show similar symmetry properties as predicted by the Gallavotti-Cohen steady state fluctuation relation. The fluctuation relation allows us to determine an effective temperature related to the structural constraints of the jammed state. We have measured the stress dependence of the effective temperature. Further, experiments reveal that the effective temperature and the standard deviation of the shear-rate fluctuations increase with the decrease of the system size.

  6. Nonequilibrium Fluctuation Relation for Sheared Micellar Gel in a Jammed State

    NASA Astrophysics Data System (ADS)

    Majumdar, Sayantan; Sood, A. K.

    2008-08-01

    We show that the shear rate at a fixed shear stress in a micellar gel in a jammed state exhibits large fluctuations, showing positive and negative values, with the mean shear rate being positive. The resulting probability distribution functions of the global power flux to the system vary from Gaussian to non-Gaussian, depending on the driving stress, and in all cases show similar symmetry properties as predicted by the Gallavotti-Cohen steady state fluctuation relation. The fluctuation relation allows us to determine an effective temperature related to the structural constraints of the jammed state. We have measured the stress dependence of the effective temperature. Further, experiments reveal that the effective temperature and the standard deviation of the shear-rate fluctuations increase with the decrease of the system size.

  7. Critical Phenomena in Driven Granular Matter: Jamming and Glassy Behavior - Final Report

    SciTech Connect

    Teitel, Stephen

    2013-02-20

    Granular materials, such as powders, seeds, grains, sand, rocks, etc., are ubiquitous both in nature and in industrial processes. At the scale of individual grains, granular systems are particularly simple: particles interact only when they touch. But when viewed in the aggregate, granular systems can display complex behavior. In particular, as the volume packing fraction of the grains increases, the system undergoes a jamming transition from a flowing liquid to a disordered but rigid solid. We study the critical behavior of such systems near the jamming transition using numerical simulations of a simple model of soft-core, bidisperse, frictionless disks in two dimensions. We seek to understand the structural and transport properties of such systems under a variety of physical perturbations such as steady state shear driven flow, and finite thermal fluctuations.

  8. Application of Photothermal Methods for Quantification of Carotenoids in Apricot Jams

    NASA Astrophysics Data System (ADS)

    Dóka, O.; Bicanic, D.; Stéger-Máté, M.; Végvári, Gy.

    2015-09-01

    Carotenes, found in a diversity of fruit-containing foods, are important sources of antioxidants; a good example is apricot jam. In the study described in this paper, both the total carotenoid content ( TCC) as well as the content of \\upbeta -carotene in six different apricot jams were quantified using traditional (UV-VIS) spectrophotometry (SP), high-performance liquid chromatography (HPLC), laser photoacoustic spectroscopy (LPAS), and the optothermal window (OW) method. Unlike SP and HPLC, LPAS and the OW methods require the minimum of sample preparation and only a one time calibration step which enables practically direct quantification of the TCC. Results were verified versus data obtained with SP as the reference technique. It was shown that LPAS and the OW method (at 473 nm) provide satisfactory results with R2=0.9884 and 0.9766 for LPAS and OW, respectively.

  9. Structural Transition in a Fluid of Spheroids: A Low-Density Vestige of Jamming

    NASA Astrophysics Data System (ADS)

    Cohen, A. P.; Dorosz, S.; Schofield, A. B.; Schilling, T.; Sloutskin, E.

    2016-03-01

    A thermodynamically equilibrated fluid of hard spheroids is a simple model of liquid matter. In this model, the coupling between the rotational degrees of freedom of the constituent particles and their translations may be switched off by a continuous deformation of a spheroid of aspect ratio t into a sphere (t =1 ). We demonstrate, by experiments, theory, and computer simulations, that dramatic nonanalytic changes in structure and thermodynamics of the fluids take place, as the coupling between rotations and translations is made to vanish. This nonanalyticity, reminiscent of a second-order liquid-liquid phase transition, is not a trivial consequence of the shape of an individual particle. Rather, free volume considerations relate the observed transition to a similar nonanalyticity at t =1 in structural properties of jammed granular ellipsoids. This observation suggests a deep connection to exist between the physics of jamming and the thermodynamics of simple fluids.

  10. Sub-Poissonian Statistics of Jamming Limits in Ultracold Rydberg Gases

    NASA Astrophysics Data System (ADS)

    Sanders, Jaron; Jonckheere, Matthieu; Kokkelmans, Servaas

    2015-07-01

    Several recent experiments have established by measuring the Mandel Q parameter that the number of Rydberg excitations in ultracold gases exhibits sub-Poissonian statistics. This effect is attributed to the Rydberg blockade that occurs due to the strong interatomic interactions between highly excited atoms. Because of this blockade effect, the system can end up in a state in which all particles are either excited or blocked: a jamming limit. We analyze appropriately constructed random-graph models that capture the blockade effect, and derive formulae for the mean and variance of the number of Rydberg excitations in jamming limits. This yields an explicit relationship between the Mandel Q parameter and the blockade effect, and comparison to measurement data shows strong agreement between theory and experiment.

  11. Improvement of low energy atmospheric neutrino flux calculation using the JAM nuclear interaction model

    SciTech Connect

    Honda, M.; Kajita, T.; Kasahara, K.; Midorikawa, S.

    2011-06-15

    We present the calculation of the atmospheric neutrino fluxes with an interaction model named JAM, which is used in PHITS (Particle and Heavy-Ion Transport code System) [K. Niita et al., Radiation Measurements 41, 1080 (2006).]. The JAM interaction model agrees with the HARP experiment [H. Collaboration, Astropart. Phys. 30, 124 (2008).] a little better than DPMJET-III[S. Roesler, R. Engel, and J. Ranft, arXiv:hep-ph/0012252.]. After some modifications, it reproduces the muon flux below 1 GeV/c at balloon altitudes better than the modified DPMJET-III, which we used for the calculation of atmospheric neutrino flux in previous works [T. Sanuki, M. Honda, T. Kajita, K. Kasahara, and S. Midorikawa, Phys. Rev. D 75, 043005 (2007).][M. Honda, T. Kajita, K. Kasahara, S. Midorikawa, and T. Sanuki, Phys. Rev. D 75, 043006 (2007).]. Some improvements in the calculation of atmospheric neutrino flux are also reported.

  12. Climatic effects on ice-jam flooding of the Peace-Athabasca Delta

    NASA Astrophysics Data System (ADS)

    Beltaos, S.; Prowse, T.; Bonsal, B.; Mackay, R.; Romolo, L.; Pietroniro, A.; Toth, B.

    2006-12-01

    The Peace-Athabasca Delta (PAD) in northern Alberta is one of the world's largest inland freshwater deltas, home to large populations of waterfowl, muskrat, beaver, and free-ranging wood bison. In recent decades, a paucity of ice-jam flooding in the lower Peace River has resulted in prolonged dry periods and considerable reduction in the area covered by lakes and ponds that provide habitat for aquatic life in the PAD region. Building on previous work that has identified the salient hydro-climatic factors, the frequency of ice-jam floods is considered under present (1961-1990) and future (2070-2099) climatic conditions. The latter are determined using temperature and precipitation output from the Canadian Climate Centre's second-generation Global Climate Model (CGCM2) for two different greenhouse-gas/sulphate emission scenarios. The analysis indicates that the ice season is likely to be reduced by 2-4 weeks, while future ice covers would be slightly thinner than they are at present. More importantly, a large part of the Peace River basin is expected to experience frequent and sustained mid-winter thaws, leading to significant melt and depleted snowpacks in the spring. Using an empirical relationship between ice-jam flood occurrence and size of the spring snowpack, a severe reduction in the frequency of ice-jam flooding is predicted under both future-climate scenarios that were considered. In turn, this trend is likely to accelerate the loss of aquatic habitat in the PAD region. Implications for potential mitigation and adaptation strategies are discussed. Copyright

  13. Large wood transport and jam formation in a series of flume experiments

    NASA Astrophysics Data System (ADS)

    Davidson, S. L.; MacKenzie, L. G.; Eaton, B. C.

    2015-12-01

    Large wood has historically been removed from streams, resulting in the depletion of in-stream wood in waterways worldwide. As wood increases morphological and hydraulic complexity, the addition of large wood is commonly employed as a means to rehabilitate in-stream habitat. At present, however, the scientific understanding of wood mobilization and transport is incomplete. This paper presents results from a series of four flume experiments in which wood was added to a reach to investigate the piece and reach characteristics that determine wood stability and transport, as well as the time scale required for newly recruited wood to self-organize into stable jams. Our results show that wood transitions from a randomly distributed newly recruited state to a self-organized, or jam-stabilized state, over the course of a single bankfull flow event. Statistical analyses of piece mobility during this transitional period indicate that piece irregularities, especially rootwads, dictate the stability of individual wood pieces; rootwad presence or absence accounts for up to 80% of the variance explained by linear regression models for transport distance. Furthermore, small pieces containing rootwads are especially stable. Large ramped pieces provide nuclei for the formation of persistent wood jams, and the frequency of these pieces in the reach impacts the travel distance of mobile wood. This research shows that the simulation of realistic wood dynamics is possible using a simplified physical model, and also has management implications, as it suggests that randomly added wood may organize into persistent, stable jams, and characterizes the time scale for this transition.

  14. Non-local rheological properties of granular flows near a jamming limit.

    SciTech Connect

    Aranson, I. S.; Tsimring, L. S.; Malloggi, F.; Clement, E.; Materials Science Division; Univ. of California at San Diego; CNRS-ESPCI Univ.

    2008-01-01

    We study the rheology of sheared granular flows close to a jamming transition. We use the approach of partially fluidized theory (PFT) with a full set of equations extending the thin layer approximation derived previously for the description of the granular avalanches phenomenology. This theory provides a picture compatible with a local rheology at large shear rates [G. D. R. Midi, Eur. Phys. J. E 14, 341 (2004)] and it works in the vicinity of the jamming transition, where a description in terms of a simple local rheology comes short. We investigate two situations displaying important deviations from local rheology. The first one is based on a set of numerical simulations of sheared soft two-dimensional circular grains. The next case describes previous experimental results obtained on avalanches of sandy material flowing down an incline. Both cases display, close to jamming, significant deviations from the now standard Pouliquen's flow rule [O. Pouliquen, Phys. Fluids 11, 542 (1999); 11, 1956 (1999)]. This discrepancy is the hallmark of a strongly nonlocal rheology and in both cases, we relate the empirical results and the outcomes of PFT. The numerical simulations show a characteristic constitutive structure for the fluid part of the stress involving the confining pressure and the material stiffness that appear in the form of an additional dimensionless parameter. This constitutive relation is then used to describe the case of sandy flows. We show a quantitative agreement as far as the effective flow rules are concerned. A fundamental feature is identified in PFT as the existence of a jammed layer developing in the vicinity of the flow arrest that corroborates the experimental findings. Finally, we study the case of solitary erosive granular avalanches and relate the outcome with the PFT analysis.

  15. Design and implementation of a deception jamming system for laser receivers

    NASA Astrophysics Data System (ADS)

    Bahgat, Ahmed S.; El-Sherif, Ashraf F.; El-Sharkawy, Yaser H.

    2016-03-01

    Laser jamming has two forms: passive and active jamming. In this paper we compare between the passive, active and passive-active deception techniques from the functional point of view. Passive jamming techniques are used with highly absorptive or diffusive materials on the body of the equipment. These passive techniques decrease the intensity of the reflected laser pulses and hence decrease SNR. Active jamming techniques are used to deceive and puzzle laser receivers. A high energy pulse with delay time is transmitted with each reflected pulse then the receiver will confuse between the two pulses. Active jammers need higher energy pulses to provide high jammer to signal ratio. In this paper we will compare received pulses using passive technique only, active technique only and passive-active technique. We use Q-switched Nd:YAG Laser source with wavelength of 1064 nm, energy of 80 mJ, pulse width of 200 μs and repetition rate 10-20 Hz. The intensity of the incident laser pulse is reduced by a factor of 80 % using an absorptive material, at the same time an electronic circuit receives the laser pulses and use it to trigger high-power LEDs with the same laser wavelength that make phase shift and signal distortion to the received pulses. The results show that the passive-active technique is the optimum one and solve the two disadvantages of each passive and active technique as individual. It decreases the reflected signal amplitude and hence the jammer to signal ratio can be obtained with lower power sources and increases the complexity for the DSP-based systems.

  16. Interplay between thermal percolation and jamming upon dimer adsorption on binary alloys.

    PubMed

    Loscar, Ernesto S; Borzi, R A; Albano, Ezequiel V

    2006-11-01

    By means of Monte Carlo simulations we study jamming and percolation processes upon the random sequential adsorption of dimers on binary alloys with different degrees of structural order. The substrates are equimolar mixtures that we simulate using an Ising model with conserved order parameter. After an annealing at temperature T we quench the alloys to freeze the state of order of the surface at this temperature. The deposition is then performed neglecting thermal effects like surface desorption or diffusion. In this way, the annealing temperature is a continuous parameter that characterizes the adsorbing surfaces, shaping the deposition process. As the alloys undergo an order-disorder phase transition at the Onsager critical temperature (Tc), the jamming and percolating properties of the set of deposited dimers are subjected to nontrivial changes, which we summarize in a density-temperature phase diagram. We find that for Tjamming prevents the onset of percolating clusters, while percolation is possible for T>T*. Particular attention is focused close to T*, where the interplay between jamming and percolation restricts fluctuations, forcing exponents seemingly different from the standard percolation universality class. By analogy with a thermal transition, we study the onset of percolation using the temperature T as a control parameter. We propose thermal scaling Ansätze to analyze the behavior of the percolation threshold and its thermally induced fluctuations. Also, the fractal dimension of the percolating cluster is determined. Based on these measurements and the excellent data collapse, we conclude that the universality class of standard percolation is preserved for all temperatures.

  17. Molecular jamming--the cystine slipknot mechanical clamp in all-atom simulations.

    PubMed

    Pepłowski, Lukasz; Sikora, Mateusz; Nowak, Wiesław; Cieplak, Marek

    2011-02-28

    A recent survey of 17 134 proteins has identified a new class of proteins which are expected to yield stretching induced force peaks in the range of 1 nN. Such high force peaks should be due to forcing of a slip-loop through a cystine ring, i.e., by generating a cystine slipknot. The survey has been performed in a simple coarse grained model. Here, we perform all-atom steered molecular dynamics simulations on 15 cystine knot proteins and determine their resistance to stretching. In agreement with previous studies within a coarse grained structure based model, the level of resistance is found to be substantially higher than in proteins in which the mechanical clamp operates through shear. The large stretching forces arise through formation of the cystine slipknot mechanical clamp and the resulting steric jamming. We elucidate the workings of such a clamp in an atomic detail. We also study the behavior of five top strength proteins with the shear-based mechanostability in which no jamming is involved. We show that in the atomic model, the jamming state is relieved by moving one amino acid at a time and there is a choice in the selection of the amino acid that advances the first. In contrast, the coarse grained model also allows for a simultaneous passage of two amino acids.

  18. PRL-3 promotes cell adhesion by interacting with JAM2 in colon cancer

    PubMed Central

    Lian, Shenyi; Meng, Lin; Xing, Xiaofang; Yang, Yongyong; Qu, Like; Shou, Chengchao

    2016-01-01

    Phosphatase of regenerating liver-3 (PRL-3), also termed PTP4A3, is a metastasis-related protein tyrosine phosphatase. Its expression levels are significantly correlated with the progression and survival of a wide range of malignant tumors. However, the mechanism by which PRL-3 promotes tumor invasion and metastasis is not clear. In the present study, the functions of PRL-3 were systemically analyzed in the key events of metastasis including, motility and adhesion. A cell wounding assay, cell spread assay and cell-matrix adhesion assay were carried out to analyze the cell movement and cell adhesion ability of colon cancer, immunoprecipitation and immunofluorescence assay was confirmed the interaction of PRL-3 and JAM2. It was demonstrated that PRL-3 promoted the motility of Flp-In-293 and LoVo colon cancer cells and increased the distribution of cell skeleton proteins on the cell protrusions. In addition, stably expressing PRL-3 reduced the spreading speed of colon cancer cells and cell adhesion on uncoated, fibronectin-coated and collagen I-coated plates. Mechanistically, junction adhesion molecular 2 (JAM2) was identified as a novel interacting protein of PRL-3. The findings of the present study revealed the roles of PRL-3 in cancer cell motility and adhesion process, and provided information on the possibility of PRL-3 increase cell-cell adhesion by associating with JAM2. PMID:27588115

  19. Universal features of the jamming phase diagram of wet granular materials.

    PubMed

    Ebrahimnazhad Rahbari, S H; Khadem-Maaref, M; Seyed Yaghoubi, S K A

    2013-10-01

    We investigate the influence of the shape of a particle on the structure of the jamming phase diagram of wet granular materials. We compute the jamming phase diagram of wet dimers (two fused disks) and compare it with that of the wet disks. Amplitude of the external force at solidification, i.e., the jamming force F(s), is computed as a function of the packing fraction ϕ, the capillary bridge energy ɛ, and the aspect ratio of dimers α. Based on data collapse, an equation for amplitude of the external force at solidification F(s)(ϕ,ɛ,α) is derived. F(s) has scaling and logarithmic relations with ϕ and ɛ, respectively, exactly the same type reported for wet disks earlier. Interestingly, F(s) does not depend on the aspect ratio of dimers α. The only difference is that wet dimers are found to be more stiffer than wet disks. However, the similarities of the equations describing F(s)(ϕ,ɛ,α) of wet dimers and disks imply that there exists, yet unknown, universal aspects of mechanical response of wet granular materials to the external forces, independent from the particle shape. In addition, we study local orientation of particles and its statistical properties.

  20. Critical scaling of Bagnold rheology at the jamming transition of frictionless two-dimensional disks

    NASA Astrophysics Data System (ADS)

    Vâgberg, Daniel; Olsson, Peter; Teitel, S.

    2016-05-01

    We carry out constant volume simulations of steady-state shear-driven rheology in a simple model of bidisperse soft-core frictionless disks in two dimensions, using a dissipation law that gives rise to Bagnoldian rheology. We discuss in detail the critical scaling ansatz for the shear-driven jamming transition and carry out a detailed scaling analysis of our resulting data for pressure p and shear stress σ . Our analysis determines the critical exponent β that describes the algebraic divergence of the Bagnold transport coefficients limγ˙→0p /γ˙2,σ /γ˙2˜(ϕJ-ϕ ) -β as the jamming transition ϕJ is approached from below. For the low strain rates considered in this work, we show that it is still necessary to consider the leading correction-to-scaling term in order to achieve a self-consistent analysis of our data, in which the critical parameters become independent of the size of the window of data used in the analysis. We compare our resulting value β ≈5.0 ±0.4 against previous numerical results and competing theoretical models. Our results confirm that the shear-driven jamming transition in Bagnoldian systems is well described by a critical scaling theory and we relate this scaling theory to the phenomenological constituent laws for dilatancy and friction.

  1. PRL-3 promotes cell adhesion by interacting with JAM2 in colon cancer.

    PubMed

    Lian, Shenyi; Meng, Lin; Xing, Xiaofang; Yang, Yongyong; Qu, Like; Shou, Chengchao

    2016-09-01

    Phosphatase of regenerating liver-3 (PRL-3), also termed PTP4A3, is a metastasis-related protein tyrosine phosphatase. Its expression levels are significantly correlated with the progression and survival of a wide range of malignant tumors. However, the mechanism by which PRL-3 promotes tumor invasion and metastasis is not clear. In the present study, the functions of PRL-3 were systemically analyzed in the key events of metastasis including, motility and adhesion. A cell wounding assay, cell spread assay and cell-matrix adhesion assay were carried out to analyze the cell movement and cell adhesion ability of colon cancer, immunoprecipitation and immunofluorescence assay was confirmed the interaction of PRL-3 and JAM2. It was demonstrated that PRL-3 promoted the motility of Flp-In-293 and LoVo colon cancer cells and increased the distribution of cell skeleton proteins on the cell protrusions. In addition, stably expressing PRL-3 reduced the spreading speed of colon cancer cells and cell adhesion on uncoated, fibronectin-coated and collagen I-coated plates. Mechanistically, junction adhesion molecular 2 (JAM2) was identified as a novel interacting protein of PRL-3. The findings of the present study revealed the roles of PRL-3 in cancer cell motility and adhesion process, and provided information on the possibility of PRL-3 increase cell-cell adhesion by associating with JAM2.

  2. Thermophilic aeration of cattle slurry with whey and/or jam wastes.

    PubMed

    Heinonen-Tanski, Helvi; Kiuru, Tapio; Ruuskanen, Juhani; Korhonen, Kari; Koivunen, Jari; Ruokojärvi, Arja

    2005-01-01

    Thermophilic aeration of cattle slurry and food industrial by-products was studied with the aim to improve hygienic qualities of the slurry so that it could be used as a safe fertiliser for berries to be eaten raw. We also wanted to study if the process would be energetically favourable in an arctic climate. Cattle slurry alone or with whey and/or jam waste was treated. The tests were done in a well heat-insulated reactor with a 10 m(3) volume. Temperature increases up to over 70 degrees C could be recorded in 19 days even though some processes were carried out in winter time when the ambient air temperature was less than 0 degrees C. The heat energy formed was higher than the electrical energy needed to carry out the aeration. The hygienic qualities of the aerated product were good with only minor nitrogen losses. The end product could be useful as a fertiliser and soil improving compound to increase the organic matter content of agricultural soil. Cattle slurry alone was well suited as the raw material if attaining a high temperature was the main goal. A part of slurry could be replaced with food-industrial side products. Whey waste suited better for co-composting than jam waste but the mixture of whey, jam waste, and slurry was optimal for composting.

  3. Hydraulic features of Engineered Log Jams (ELJs) and their influence on salmonid behavior

    NASA Astrophysics Data System (ADS)

    Rice, W. D.; Fetter, D.; Somerville, G.; Tullos, D. D.; Palacijo, J.

    2010-12-01

    In an effort to recreate channel complexity and habitat, construction of Engineered Log Jams (ELJs) is increasing, yet questions remain regarding their effectiveness due to lack of observations of hydraulics and fish use around these structures. To address this limitation, we surveyed four different forms of engineered log jams in western Oregon. The structures and near-structure stream environments were surveyed for bathymetry, instrumented with an Acoustic Doppler Stream Profiler (ADCP) to measure velocities, and snorkeled to observe the behavior of salmonids. Further, tensor visualization of stream velocities were constructed to investigate circulation and flow patterns in and around the ELJ structures. We found that more complex structures created a more varied bottom profile, while simpler structures resulted in more simple pools. However, all log jams did increase the diversity of flow patterns, with areas of high and low velocity that appeared to influence fish behavior. Variation in the size of salmonids was related to greater variation in the velocity, and fish behavior (feeding, aggression) was observed to vary within the pools. Our results provide preliminary evidence of the influence of engineered structures on the diversity and versatility of fish habitat.

  4. Existence of isostatic, maximally random jammed monodisperse hard-disk packings.

    PubMed

    Atkinson, Steven; Stillinger, Frank H; Torquato, Salvatore

    2014-12-30

    We generate jammed packings of monodisperse circular hard-disks in two dimensions using the Torquato-Jiao sequential linear programming algorithm. The packings display a wide diversity of packing fractions, average coordination numbers, and order as measured by standard scalar order metrics. This geometric-structure approach enables us to show the existence of relatively large maximally random jammed (MRJ) packings with exactly isostatic jammed backbones and a packing fraction (including rattlers) of [Formula: see text]. By contrast, the concept of random close packing (RCP) that identifies the most probable packings as the most disordered misleadingly identifies highly ordered disk packings as RCP in 2D. Fundamental structural descriptors such as the pair correlation function, structure factor, and Voronoi statistics show a strong contrast between the MRJ state and the typical hyperstatic, polycrystalline packings with [Formula: see text] that are more commonly obtained using standard packing protocols. Establishing that the MRJ state for monodisperse hard disks is isostatic and qualitatively distinct from commonly observed polycrystalline packings contradicts conventional wisdom that such a disordered, isostatic packing does not exist due to a lack of geometrical frustration and sheds light on the nature of disorder. This prompts the question of whether an algorithm may be designed that is strongly biased toward generating the monodisperse disk MRJ state.

  5. Degradation of anthocyanins and anthocyanidins in blueberry jams/stuffed fish.

    PubMed

    Queiroz, Filipa; Oliveira, Carla; Pinho, Olívia; Ferreira, Isabel M P L V O

    2009-11-25

    This study examined the effects of cooking on the degradation of anthocyanins and anthocyanidins of blueberries (Vaccinium corymbosum L.) from cultivar Bluecrop. Fruits were used to prepare jams with different degrees Brix and stuffed fish. A systematic evaluation of the degradation of anthocyanins and anthocyanidins of blueberries was performed; for that purpose an HPLC/DAD method was used to determine anthocyanin profile and anthocyanidin contents in fresh and cooked blueberries and in jams. Ten anthocyanins were separated and monitored in methanolic extracts. Of the six common anthocyanidins, four were identified in the hydrolysates, namely, delphinidin, cyanidin, petunidin and malvidin. Percentage of degradation of anthocyanins and anthocyanidins in jams is highly dependent on degrees Brix: 64-76 degrees Brix led to 20-30% degradation, whereas 80 degrees Brix resulted in degradation between 50 and 60%. Percentage of degradation of anthocyanins in whole blueberries cooked in stuffed fish ranged between 45 and 50%, however, for anthocyanidins, the percentage of degradation was significantly lower, between 12 and 30%, indicating that this cooking procedure can preserve anthocyanidin degradation.

  6. Targeted JAM-C deletion in germ cells by Spo11-controlled Cre recombinase.

    PubMed

    Pellegrini, Manuela; Claps, Giuseppina; Orlova, Valeria V; Barrios, Florencia; Dolci, Susanna; Geremia, Raffaele; Rossi, Pellegrino; Rossi, Gabriele; Arnold, Bernd; Chavakis, Triantafyllos; Feigenbaum, Lionel; Sharan, Shyam K; Nussenzweig, Andre

    2011-01-01

    Meiosis is a crucial process for the production of functional gametes. However, the biological significance of many genes expressed during the meiotic phase remains poorly understood, mainly because of the lethal phenotypes of the knockout mice. Functional analysis of such genes using the conditional knockout approach is hindered by the lack of suitable Cre transgenic lines. We describe here the generation of transgenic mice expressing Cre recombinase under the control of the meiotic Spo11 gene. Using LacZ-R26(loxP) and EYFP-R26(loxP) reporter mice, we show the specific expression and activity of Cre during meiosis in males and females. Spo11(Cre) mice were then crossed with floxed Nbs1 and JAM-C mice to produce conditional knockouts. A strong reduction of Nbs1 and JAM-C protein levels was found in the testis. Although Nbs1-deleted mice developed minor gonadal abnormalities, JAM-C-knockout mice showed a spermiogenetic arrest, as previously described for the null mice. These results provide strong evidence that Spo11(Cre) transgenic mice represent a powerful tool for deleting genes of interest specifically in meiotic and/or in postmeiotic germ cells.

  7. Edwards thermodynamics of the jamming transition for frictionless packings: Ergodicity test and role of angoricity and compactivity

    NASA Astrophysics Data System (ADS)

    Wang, Kun; Song, Chaoming; Wang, Ping; Makse, Hernán A.

    2012-07-01

    This paper illustrates how the tools of equilibrium statistical mechanics can help to describe a far-from-equilibrium problem: the jamming transition in frictionless granular materials. Edwards ideas consist of proposing a statistical ensemble of volume and stress fluctuations through the thermodynamic notion of entropy, compactivity, X, and angoricity, A (two temperature-like variables). We find that Edwards thermodynamics is able to describe the jamming transition (J point) in frictionless packings. Using the ensemble formalism we elucidate the following: (i) We test the combined volume-stress ensemble by comparing the statistical properties of jammed configurations obtained by dynamics with those averaged over the ensemble of minima in the potential energy landscape as a test of ergodicity. Agreement between both methods supports the idea of ergodicity and “thermalization” at a given angoricity and compactivity. (ii) A microcanonical ensemble analysis supports the maximum entropy principle for grains. (iii) The intensive variables A and X describe the approach to jamming through a series of scaling relations as A→0+ and X→0-. Due to the force-strain coupling in the interparticle forces, the jamming transition is probed thermodynamically by a “jamming temperature” TJ composed of contributions from A and X. (iv) The thermodynamic framework reveals the order of the jamming phase transition by showing the absence of critical fluctuations at jamming in static observables like pressure and volume, and we discuss other critical scenarios for the jamming transition. (v) Finally, we elaborate on a comparison with relevant studies by Gao, Blawzdziewicz, and O’Hern [Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.74.061304 74, 061304 (2006)], showing a breakdown of equiprobability of microstates obtained via fast quenches. A network analysis of the energy landscape reveals the origin of the inhomogeneities in the uneven distribution of the areas of the basins

  8. Disordered strictly jammed binary sphere packings attain an anomalously large range of densities

    NASA Astrophysics Data System (ADS)

    Hopkins, Adam B.; Stillinger, Frank H.; Torquato, Salvatore

    2013-08-01

    Previous attempts to simulate disordered binary sphere packings have been limited in producing mechanically stable, isostatic packings across a broad spectrum of packing fractions. Here we report that disordered strictly jammed binary packings (packings that remain mechanically stable under general shear deformations and compressions) can be produced with an anomalously large range of average packing fractions 0.634≤ϕ≤0.829 for small to large sphere radius ratios α restricted to α≥0.100. Surprisingly, this range of average packing fractions is obtained for packings containing a subset of spheres (called the backbone) that are exactly strictly jammed, exactly isostatic, and also generated from random initial conditions. Additionally, the average packing fractions of these packings at certain α and small sphere relative number concentrations x approach those of the corresponding densest known ordered packings. These findings suggest for entropic reasons that these high-density disordered packings should be good glass formers and that they may be easy to prepare experimentally. We also identify an unusual feature of the packing fraction of jammed backbones (packings with rattlers excluded). The backbone packing fraction is about 0.624 over the majority of the α-x plane, even when large numbers of small spheres are present in the backbone. Over the (relatively small) area of the α-x plane where the backbone is not roughly constant, we find that backbone packing fractions range from about 0.606 to 0.829, with the volume of rattler spheres comprising between 1.6% and 26.9% of total sphere volume. To generate isostatic strictly jammed packings, we use an implementation of the Torquato-Jiao sequential linear programming algorithm [Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.82.061302 82, 061302 (2010)], which is an efficient producer of inherent structures (mechanically stable configurations at the local maxima in the density landscape). The identification and

  9. Worst-Case Cooperative Jamming for Secure Communications in CIoT Networks

    PubMed Central

    Li, Zhen; Jing, Tao; Ma, Liran; Huo, Yan; Qian, Jin

    2016-01-01

    The Internet of Things (IoT) is a significant branch of the ongoing advances in the Internet and mobile communications. Yet, the use of a large number of IoT devices can severely worsen the spectrum scarcity problem. The usable spectrum resources are almost entirely occupied, and thus, the increasing demands of radio access from IoT devices cannot be met. To tackle this problem, the Cognitive Internet of Things (CIoT) has been proposed. In a CIoT network, secondary users, i.e., sensors and actuators, can access the licensed spectrum bands provided by licensed primary users (such as cellular telephones). Security is a major concern in CIoT networks. However, the traditional encryption method at upper layers (such as symmetric and asymmetric ciphers) may not be suitable for CIoT networks since these networks are composed of low-profile devices. In this paper, we address the security issues in spectrum-leasing-based CIoT networks using physical layer methods. Considering that the CIoT networks are cooperative in nature, we propose to employ cooperative jamming to achieve secure transmission. In our proposed cooperative jamming scheme, a certain secondary user is employed as the helper to harvest energy transmitted by the source and then uses the harvested energy to generate an artificial noise that jams the eavesdropper without interfering with the legitimate receivers. The goal is to minimize the Signal to Interference plus Noise Ratio (SINR) at the eavesdropper subject to the Quality of Service (QoS) constraints of the primary traffic and the secondary traffic. We formulate the minimization problem into a two-stage robust optimization problem based on the worst-case Channel State Information of the Eavesdropper (ECSI). By using Semi-Definite Programming (SDP), the optimal solutions of the transmit covariance matrices can be obtained. Moreover, in order to build an incentive mechanism for the secondary users, we propose an auction framework based on the cooperative

  10. Worst-Case Cooperative Jamming for Secure Communications in CIoT Networks.

    PubMed

    Li, Zhen; Jing, Tao; Ma, Liran; Huo, Yan; Qian, Jin

    2016-03-07

    The Internet of Things (IoT) is a significant branch of the ongoing advances in the Internet and mobile communications. The use of a large number of IoT devices makes the spectrum scarcity problem even more serious. The usable spectrum resources are almost entirely occupied, and thus, the increasing radio access demands of IoT devices cannot be met. To tackle this problem, the Cognitive Internet of Things (CIoT) has been proposed. In a CIoT network, secondary users, i.e., sensors and actuators, can access the licensed spectrum bands provided by licensed primary users (such as telephones). Security is a major concern in CIoT networks. However, the traditional encryption method at upper layers (such as symmetric cryptography and asymmetric cryptography) may be compromised in CIoT networks, since these types of networks are heterogeneous. In this paper, we address the security issue in spectrum-leasing-based CIoT networks using physical layer methods. Considering that the CIoT networks are cooperative networks, we propose to employ cooperative jamming to achieve secrecy transmission. In the cooperative jamming scheme, a certain secondary user is employed as the helper to harvest energy transmitted by the source and then uses the harvested energy to generate an artificial noise that jams the eavesdropper without interfering with the legitimate receivers. The goal is to minimize the signal to interference plus noise ratio (SINR) at the eavesdropper subject to the quality of service (QoS) constraints of the primary traffic and the secondary traffic. We formulate the considered minimization problem into a two-stage robust optimization problem based on the worst-case Channel State Information of the Eavesdropper. By using semi-definite programming (SDP), the optimal solutions of the transmit covariance matrices can be obtained. Moreover, in order to build an incentive mechanism for the secondary users, we propose an auction framework based on the cooperative jamming scheme

  11. Modeling wood dynamics, jam formation, and sediment storage in a gravel-bed stream

    NASA Astrophysics Data System (ADS)

    Eaton, B. C.; Hassan, M. A.; Davidson, S. L.

    2012-12-01

    In small and intermediate sized streams, the interaction between wood and bed material transport often determines the nature of the physical habitat, which in turn influences the health of the stream's ecosystem. We present a stochastic model that can be used to simulate the effects on physical habitat of forest fires, climate change, and other environmental disturbances that alter wood recruitment. The model predicts large wood (LW) loads in a stream as well as the volume of sediment stored by the wood; while it is parameterized to describe gravel bed streams similar to a well-studied field prototype, Fishtrap Creek, British Columbia, it can be calibrated to other systems as well. In the model, LW pieces are produced and modified over time as a result of random tree-fall, LW breakage, LW movement, and piece interaction to form LW jams. Each LW piece traps a portion of the annual bed material transport entering the reach and releases the stored sediment when the LW piece is entrained and moved. The equations governing sediment storage are based on a set of flume experiments also scaled to the field prototype. The model predicts wood loads ranging from 70 m3/ha to more than 300 m3/ha, with a mean value of 178 m3/ha: both the range and the mean value are consistent with field data from streams with similar riparian forest types and climate. The model also predicts an LW jam spacing that is consistent with field data. Furthermore, our modeling results demonstrate that the high spatial and temporal variability in sediment storage, sediment transport, and channel morphology associated with LW-dominated streams occurs only when LW pieces interact and form jams. Model runs that do not include jam formation are much less variable. These results suggest that river restoration efforts using engineered LW pieces that are fixed in place and not permitted to interact will be less successful at restoring the geomorphic processes responsible for producing diverse, productive

  12. The key role of log jams in the influence of transport and deposition of woody debris in a mountain stream

    NASA Astrophysics Data System (ADS)

    Jochner, Matthias; Turowski, Jens M.; Stoffel, Markus; Badoux, Alexandre

    2014-05-01

    Log jams in mountains streams are preferred storage sites for bedload material and woody debris. The resulting formation of steps and pools within a channel reduces flow velocities and thereby mitigates natural hazards in case of flood events. However, this requires analysing the resilience of log jams during high discharge events which in case of failure can release large amounts of stored material. In this study we investigate log jams in the Erlenbach mountain stream in the Swiss Prealps regarding their storage function of woody debris and residence times of stored logs. Nine log jams were surveyed in detail regarding their position, extent and volume. Artificially introduced wood pieces were tagged with Radio Frequency Identification (RFID) transponders and tracked along a study reach for five months. These tracers confirmed the hypothesis of debris dams being a preferred storage site for dead wood in mountain streams by the calculating tracer data point densities. The average point density for obstruction free channel reaches amounts to 0.13 pieces per m2 while it increases to 0.46 pieces per m2 for channel areas covered by log jams. The size and position of the log jams are mainly determined by bank erosion and hillslope activity as log jams are situated in highly active zones. Large logs of coniferous wood within the jams were dated using tree-ring analysis and their residence times within the channel determined based on the year of tree dieback. The residence times of large logs stored within the jams show a strong connection to the last two exceptional discharge events that occurred at the Erlenbach in 2007 and 2010 (flood events with return times of 50 and 20 years, respectively). The highest number of logs died back in 2007. The year with the second largest number of introduced logs is 2010. The consecutive years after those two high discharge events showed a declining number of trees entering the stream. So both events presumably caused a reactivation

  13. Tension on JAM-A activates RhoA via GEF-H1 and p115 RhoGEF.

    PubMed

    Scott, David W; Tolbert, Caitlin E; Burridge, Keith

    2016-05-01

    Junctional adhesion molecule A (JAM-A) is a broadly expressed adhesion molecule that regulates cell-cell contacts and facilitates leukocyte transendothelial migration. The latter occurs through interactions with the integrin LFA-1. Although we understand much about JAM-A, little is known regarding the protein's role in mechanotransduction or as a modulator of RhoA signaling. We found that tension imposed on JAM-A activates RhoA, which leads to increased cell stiffness. Activation of RhoA in this system depends on PI3K-mediated activation of GEF-H1 and p115 RhoGEF. These two GEFs are further regulated by FAK/ERK and Src family kinases, respectively. Finally, we show that phosphorylation of JAM-A at Ser-284 is required for RhoA activation in response to tension. These data demonstrate a direct role of JAM-A in mechanosignaling and control of RhoA and implicate Src family kinases in the regulation of p115 RhoGEF.

  14. A Real-Time Capable Software-Defined Receiver Using GPU for Adaptive Anti-Jam GPS Sensors

    PubMed Central

    Seo, Jiwon; Chen, Yu-Hsuan; De Lorenzo, David S.; Lo, Sherman; Enge, Per; Akos, Dennis; Lee, Jiyun

    2011-01-01

    Due to their weak received signal power, Global Positioning System (GPS) signals are vulnerable to radio frequency interference. Adaptive beam and null steering of the gain pattern of a GPS antenna array can significantly increase the resistance of GPS sensors to signal interference and jamming. Since adaptive array processing requires intensive computational power, beamsteering GPS receivers were usually implemented using hardware such as field-programmable gate arrays (FPGAs). However, a software implementation using general-purpose processors is much more desirable because of its flexibility and cost effectiveness. This paper presents a GPS software-defined radio (SDR) with adaptive beamsteering capability for anti-jam applications. The GPS SDR design is based on an optimized desktop parallel processing architecture using a quad-core Central Processing Unit (CPU) coupled with a new generation Graphics Processing Unit (GPU) having massively parallel processors. This GPS SDR demonstrates sufficient computational capability to support a four-element antenna array and future GPS L5 signal processing in real time. After providing the details of our design and optimization schemes for future GPU-based GPS SDR developments, the jamming resistance of our GPS SDR under synthetic wideband jamming is presented. Since the GPS SDR uses commercial-off-the-shelf hardware and processors, it can be easily adopted in civil GPS applications requiring anti-jam capabilities. PMID:22164116

  15. Tension on JAM-A activates RhoA via GEF-H1 and p115 RhoGEF

    PubMed Central

    Scott, David W.; Tolbert, Caitlin E.; Burridge, Keith

    2016-01-01

    Junctional adhesion molecule A (JAM-A) is a broadly expressed adhesion molecule that regulates cell–cell contacts and facilitates leukocyte transendothelial migration. The latter occurs through interactions with the integrin LFA-1. Although we understand much about JAM-A, little is known regarding the protein’s role in mechanotransduction or as a modulator of RhoA signaling. We found that tension imposed on JAM-A activates RhoA, which leads to increased cell stiffness. Activation of RhoA in this system depends on PI3K-mediated activation of GEF-H1 and p115 RhoGEF. These two GEFs are further regulated by FAK/ERK and Src family kinases, respectively. Finally, we show that phosphorylation of JAM-A at Ser-284 is required for RhoA activation in response to tension. These data demonstrate a direct role of JAM-A in mechanosignaling and control of RhoA and implicate Src family kinases in the regulation of p115 RhoGEF. PMID:26985018

  16. A real-time capable software-defined receiver using GPU for adaptive anti-jam GPS sensors.

    PubMed

    Seo, Jiwon; Chen, Yu-Hsuan; De Lorenzo, David S; Lo, Sherman; Enge, Per; Akos, Dennis; Lee, Jiyun

    2011-01-01

    Due to their weak received signal power, Global Positioning System (GPS) signals are vulnerable to radio frequency interference. Adaptive beam and null steering of the gain pattern of a GPS antenna array can significantly increase the resistance of GPS sensors to signal interference and jamming. Since adaptive array processing requires intensive computational power, beamsteering GPS receivers were usually implemented using hardware such as field-programmable gate arrays (FPGAs). However, a software implementation using general-purpose processors is much more desirable because of its flexibility and cost effectiveness. This paper presents a GPS software-defined radio (SDR) with adaptive beamsteering capability for anti-jam applications. The GPS SDR design is based on an optimized desktop parallel processing architecture using a quad-core Central Processing Unit (CPU) coupled with a new generation Graphics Processing Unit (GPU) having massively parallel processors. This GPS SDR demonstrates sufficient computational capability to support a four-element antenna array and future GPS L5 signal processing in real time. After providing the details of our design and optimization schemes for future GPU-based GPS SDR developments, the jamming resistance of our GPS SDR under synthetic wideband jamming is presented. Since the GPS SDR uses commercial-off-the-shelf hardware and processors, it can be easily adopted in civil GPS applications requiring anti-jam capabilities.

  17. Programming jammed Codman Hakim programmable valves: study of an explanted valve and successful programming in a patient.

    PubMed

    Wong, Sui-To; Wen, Eleanor; Fong, Dawson

    2013-08-01

    Malfunction of a Codman Hakim programmable valve due to jamming of its programmable component may necessitate shunt revision. The authors report a method for programming jammed Codman Hakim programmable valves by using a Strata II magnet and additional neodymium magnets. The programming method was derived after studying a jammed valve in the laboratory that was explanted from an 10-year-old boy with a history of fourth ventricle ependymoma. Programming the explanted valve with a Codman programmer failed, but rotating a Strata II magnet above the valve resulted in rotation of the spiral cam in the valve. It was found that the Strata II magnet could be used to program the jammed valve by rotating the magnet 90° or multiples of 90° above the valve. The strength of the magnetic field of the Strata II magnet was able to be increased by putting neodymium magnets on it. The programming method was then successfully used in a patient with a jammed Codman Hakim programmable valve. After successful programming using this method, clinical and radiological follow-up of the patient was advised.

  18. Accumulate and Jam: Towards Secure Communication via A Wireless-Powered Full-Duplex Jammer

    NASA Astrophysics Data System (ADS)

    Bi, Ying; Chen, He

    2016-12-01

    This paper develops a new cooperative jamming protocol, termed accumulate-and-jam (AnJ), to improve physical layer security in wireless communications. Specifically, a full-duplex (FD) friendly jammer is deployed to secure the direct communication between source and destination in the presence of a passive eavesdropper. We consider the friendly jammer as an energy-constrained node without embedded power supply but with an energy harvesting unit and rechargeable energy storage; it can thus harvest energy from the radio frequency (RF) signals transmitted by the source, accumulate the energy in its battery, and then use this energy to perform cooperative jamming. In the proposed AnJ protocol, based on the energy status of the jammer and the channel state of source-destination link, the system operates in either dedicated energy harvesting (DEH) or opportunistic energy harvesting (OEH) mode. Thanks to the FD capability, the jammer also harvests energy from the information-bearing signal that it overhears from the source. We study the complex energy accumulation and consumption procedure at the jammer by considering a practical finite-capacity energy storage, of which the long-term stationary distribution is characterized through applying a discrete-state Markov Chain. An alternative energy storage with infinite capacity is also studied to serve as an upper bound. We further derive closed-form expressions for two secrecy metrics, i.e., secrecy outage probability and probability of positive secrecy capacity. In addition, the impact of imperfect channel state information on the performance of our proposed protocol is also investigated. Numerical results validate all theoretical analyses and reveal the merits of the proposed AnJ protocol over its half-duplex counterpart.

  19. [A new method of anti-jamming ability improvement for Michelson Interferometer].

    PubMed

    Li, Yang-Jun; Lian, Su-Jie; Shi, Jia; Guo, Ya-Fei; Wang, Gao

    2014-05-01

    In order to improve anti-jamming capability of Michelson interferometer system, replace the traditional structure of the moving mirror scanning was replaced, an interference system based on electro-optic modulation of crystal refractive index was designed to achieve optical path scanning. The system modulated voltage signal on the variable refractive crystal, to generate cyclical changes, changed the refractive index to control optical path difference in the original optical path system. Using electronic scanning to replace of mechanical scanning, improved the system's noise immunity was improved. In the electro-optic modulation process, computed the maximum optical path difference of the system was computed, and analyzed of the crystal thickness and crystal diffraction efficiency of the modulation process were analyzed. The simulation experiment shows that, with the modulation voltage range increasing, the available range of the optical path is also increased, and the system spectrum resolving power will also increase accordingly. Meanwhile, in the modulation process set the modulation range was set to make the energy of diffraction energy losses less than 10% of the total energy, so as to ensure a better signal to noise ratio. Experimental results show that, as the modulation voltage changes, interference fringes occurred continuously moved. When the voltage is further increased, the nonlinear error appears. After non-linear error correction for the system, spectrum resolution reached to 7. 2 cm-1, slightly lower than the original system. But its anti-jamming capability is greatly enhanced, as in the absence of experimental platform for seismic conditions, conventional interferometer relative error is more than 20%, while the relative error of the system is less than 5%, in line with the design requirements. It was proved that the anti-jamming capability of the system was enhanced greatly, when the static electro-optical modulation was used.

  20. Late Holocene earthquakes on the Toe Jam Hill fault, Seattle fault zone, Bainbridge Island, Washington

    USGS Publications Warehouse

    Nelson, A.R.; Johnson, S.Y.; Kelsey, H.M.; Wells, R.E.; Sherrod, B.L.; Pezzopane, S.K.; Bradley, L.-A.; Koehler, R. D.; Bucknam, R.C.

    2003-01-01

    Five trenches across a Holocene fault scarp yield the first radiocarbon-measured earthquake recurrence intervals for a crustal fault in western Washington. The scarp, the first to be revealed by laser imagery, marks the Toe Jam Hill fault, a north-dipping backthrust to the Seattle fault. Folded and faulted strata, liquefaction features, and forest soil A horizons buried by hanging-wall-collapse colluvium record three, or possibly four, earthquakes between 2500 and 1000 yr ago. The most recent earthquake is probably the 1050-1020 cal. (calibrated) yr B.P. (A.D. 900-930) earthquake that raised marine terraces and triggered a tsunami in Puget Sound. Vertical deformation estimated from stratigraphic and surface offsets at trench sites suggests late Holocene earthquake magnitudes near M7, corresponding to surface ruptures >36 km long. Deformation features recording poorly understood latest Pleistocene earthquakes suggest that they were smaller than late Holocene earthquakes. Postglacial earthquake recurrence intervals based on 97 radiocarbon ages, most on detrital charcoal, range from ???12,000 yr to as little as a century or less; corresponding fault-slip rates are 0.2 mm/yr for the past 16,000 yr and 2 mm/yr for the past 2500 yr. Because the Toe Jam Hill fault is a backthrust to the Seattle fault, it may not have ruptured during every earthquake on the Seattle fault. But the earthquake history of the Toe Jam Hill fault is at least a partial proxy for the history of the rest of the Seattle fault zone.

  1. JAM-A associates with ZO-2, afadin, and PDZ-GEF1 to activate Rap2c and regulate epithelial barrier function.

    PubMed

    Monteiro, Ana C; Sumagin, Ronen; Rankin, Carl R; Leoni, Giovanna; Mina, Michael J; Reiter, Dirk M; Stehle, Thilo; Dermody, Terence S; Schaefer, Stacy A; Hall, Randy A; Nusrat, Asma; Parkos, Charles A

    2013-09-01

    Intestinal barrier function is regulated by epithelial tight junctions (TJs), structures that control paracellular permeability. Junctional adhesion molecule-A (JAM-A) is a TJ-associated protein that regulates barrier; however, mechanisms linking JAM-A to epithelial permeability are poorly understood. Here we report that JAM-A associates directly with ZO-2 and indirectly with afadin, and this complex, along with PDZ-GEF1, activates the small GTPase Rap2c. Supporting a functional link, small interfering RNA-mediated down-regulation of the foregoing regulatory proteins results in enhanced permeability similar to that observed after JAM-A loss. JAM-A-deficient mice and cultured epithelial cells demonstrate enhanced paracellular permeability to large molecules, revealing a potential role of JAM-A in controlling perijunctional actin cytoskeleton in addition to its previously reported role in regulating claudin proteins and small-molecule permeability. Further experiments suggest that JAM-A does not regulate actin turnover but modulates activity of RhoA and phosphorylation of nonmuscle myosin, both implicated in actomyosin contraction. These results suggest that JAM-A regulates epithelial permeability via association with ZO-2, afadin, and PDZ-GEF1 to activate Rap2c and control contraction of the apical cytoskeleton.

  2. Optimum Jamming Effects on Frequency-Hopping M-ary FSK (Frequency-Shift Keying) Systems under Certain ECCM (Electronic Counter-Countermeasures) Receiver Design Strategies.

    DTIC Science & Technology

    1984-10-01

    2 to 4 from attaining a net improvement. We note that for band multitone jamming with n = I the minimum realizable value of y is y = 1/2400 when just...common to all values of M considered. The seventh value is y = 1/M, which is the maximum realizable value for barrage jamming with tone spacing n = M

  3. Influences of organically and conventionally grown strawberry cultivars on anthocyanins content and color in purees and low-sugar jams.

    PubMed

    Bursać Kovačević, Danijela; Putnik, Predrag; Dragović-Uzelac, Verica; Vahčić, Nada; Babojelić, Martina Skendrović; Levaj, Branka

    2015-08-15

    The objective of this study was to detect influences of cultivar, cultivation and processing on anthocyanin content and color in purees and low-sugar jams produced from strawberry cultivars (Elsanta, Maya, Marmolada, Queen Elisa), grown under conventional and organic cultivation. Color was determined by CIELab values while anthocyanins were quantified by HPLC-UV/VIS-PDA. Queen Elisa was the best cultivar for processing as it had highest total anthocyanin content (TAC) that was well preserved in processing. On average, processing purees to jams decreased TAC for 28% where pelargonidin-3-glucoside revealed most noticeable loss (53%) and cyanidin-3-rutinoside was best preserved in processing. Obtained results indicated that measurement of colorimetric parameters are strongly correlated with content of anthocyanins. In other words, loss of anthocyanins during processing was accompanied by noticeable decrease in lightness, red/yellow color and total color change. Results showed that change of color is useful predictor for estimating anthocyanins in strawberry purees and jams.

  4. A novel method of target detection under the electro-optical jamming circumstance

    NASA Astrophysics Data System (ADS)

    Zhu, Liang

    2016-10-01

    In view of the existing increasingly perfect jamming methods, we bring up a novel method of detection based on the aircraft charged characteristics, which uses the electric charges carried by flying target inevitably during its flight. The charges cannot be detected target by the photoelectric method to interference and coverage characteristics. By analyzing the charge characteristic and the relative relationship between detector and the target, we put forward a target detection equation based on this method, validates it with simulation experiment, and obtains the novel method of detection then.

  5. Mechanism of the jamming transition in the two-dimensional traffic networks. II

    NASA Astrophysics Data System (ADS)

    Ishibashi, Yoshihiro; Fukui, Minoru

    2014-01-01

    The jamming transition in a two-dimensional traffic network is investigated based upon the cellular automaton simulations, where the update rule is deterministic, though the initial car configuration is randomly set. The lifetime of the system is defined as the time until when all cars in the system come to a stop, and it will increase with decreasing car density from a higher density side. The critical car density is defined as the car density, at which the corresponding lifetime diverges. The analytical expression for the critical car density is proposed.

  6. Jamming II: Edwards’ statistical mechanics of random packings of hard spheres

    NASA Astrophysics Data System (ADS)

    Wang, Ping; Song, Chaoming; Jin, Yuliang; Makse, Hernán A.

    2011-02-01

    The problem of finding the most efficient way to pack spheres has an illustrious history, dating back to the crystalline arrays conjectured by Kepler and the random geometries explored by Bernal in the 1960s. This problem finds applications spanning from the mathematician’s pencil, the processing of granular materials, the jamming and glass transitions, all the way to fruit packing in every grocery. There are presently numerous experiments showing that the loosest way to pack spheres gives a density of ∼55% (named random loose packing, RLP) while filling all the loose voids results in a maximum density of ∼63%-64% (named random close packing, RCP). While those values seem robustly true, to this date there is no well-accepted physical explanation or theoretical prediction for them. Here we develop a common framework for understanding the random packings of monodisperse hard spheres whose limits can be interpreted as the experimentally observed RLP and RCP. The reason for these limits arises from a statistical picture of jammed states in which the RCP can be interpreted as the ground state of the ensemble of jammed matter with zero compactivity, while the RLP arises in the infinite compactivity limit. We combine an extended statistical mechanics approach ‘a la Edwards’ (where the role traditionally played by the energy and temperature in thermal systems is substituted by the volume and compactivity) with a constraint on mechanical stability imposed by the isostatic condition. We show how such approaches can bring results that can be compared to experiments and allow for an exploitation of the statistical mechanics framework. The key result is the use of a relation between the local Voronoi volumes of the constituent grains (denoted the volume function) and the number of neighbors in contact that permits us to simply combine the two approaches to develop a theory of volume fluctuations in jammed matter. Ultimately, our results lead to a phase diagram that

  7. Direct Determination of the Size of Basins of Attraction of Jammed Solids

    NASA Astrophysics Data System (ADS)

    Xu, Ning; Frenkel, Daan; Liu, Andrea J.

    2011-06-01

    We propose a free-energy-based Monte Carlo method to measure the volume of potential-energy basins in configuration space. Using this approach we can estimate the number of distinct potential-energy minima, even when this number is much too large to be sampled directly. We validate our approach by comparing our results with the direct enumeration of distinct jammed states in small packings of frictionless spheres. We find that the entropy of distinct packings is extensive and that the entropy of distinct hard-sphere packings must have a maximum as a function of packing fraction.

  8. Linear and nonlinear rheology of dense emulsions across the glass and the jamming regimes.

    PubMed

    Scheffold, F; Cardinaux, F; Mason, T G

    2013-12-18

    We discuss the linear and nonlinear rheology of concentrated microscale emulsions, amorphous disordered solids composed of repulsive and deformable soft colloidal spheres. Based on recent results from simulation and theory, we derive quantitative predictions for the dependences of the elastic shear modulus and the yield stress on the droplet volume fraction. The remarkable agreement with experiments we observe supports the scenario that the repulsive glass and the jammed state can be clearly identified in the rheology of soft spheres at finite temperature while crossing continuously from a liquid to a highly compressed yet disordered solid.

  9. Test technology on CCD anti-sunlight jamming based on complex circumstance

    NASA Astrophysics Data System (ADS)

    Shi, Sheng-bing; Chen, Zhen-xing; Han, Fu-li

    2016-09-01

    Visible-light reconnaissance device based on CCD is applied to all kinds of weapons, CCD cannot work because of saturation when it faces intense light. Sun is intense light source in nature and assignably influences CCD performance. In this paper, aim is appraising CCD anti-sunlight ability, object reflection characteristic test system is designed, based on typical background reflection characteristic including grant, sand and so on, complex circumstance is formulated and test project is optimized with orthogonal design method, problem that is without test technology on CCD anti-sunlight jamming is solved.

  10. Ice Engineering. Number 17, August 1997. Ice Jams, Winter 1995-1996

    DTIC Science & Technology

    1997-08-01

    Corporation 1996). Down- stream from the Safe Harbor Dam , the Conowingo Dam was next to be affected by the wave of water, and eventually the community of...jam on the Susquehanna River that broke upstream at Turkey Point on January 20, 1996, sent water and ice toward Safe Harbor Dam , requiring flood gates...at the dam to be opened to deal with an average daily discharge of 826,000 cfs. Damage to the Safe Harbor Dam was approximately $20 million according

  11. Predicting Trigger Level for Ice Jam Flooding of the lower Mohawk River using LiDAR and GIS

    NASA Astrophysics Data System (ADS)

    Foster, J.; Marsellos, A.; Garver, J.

    2011-12-01

    Ice jams are an annual occurrence along the Mohawk River in upstate New York. The jams commonly result in significant flooding especially when the progress of the ice is impeded by obstructions to the channel and flood plain. To minimize flooding hazards it is critical to know the trigger level of flooding so that we can better understand chronic jam points and simulate flooding events as jams occur as the lower Mohawk. A better understanding of jamming and trigger points may facilitate measures to reduce flooding and avoid the costly damage associated with these hazards. To determine the flood trigger level for one segment of the lower Mohawk we used Air-LiDAR elevation data to construct a digital elevation model to simulate a flooding event. The water flood simulation using a LiDAR elevation model allows accurate water level measurements for determining trigger levels of ice dam flooding. The study area comprises three sections of the lower Mohawk River from the (Before location) to the (After location), which are constrained by lock stations centered at the New York State Canal System Lock 9 (E9 Lock) and the B&M Rail Bridge at the Schenectady International (SI) Plant. This area is notorious for ice jams including one that resulted in a major flooding event on January 25th, 2010 which resulted in flood levels at 74.4 m in the upper portion of the second section of the study area (Lock 9) and at 73.4 m in the lower portion (SI plant). Minimum and maximum elevation levels were found to determine the values at which up stream water builds up and when flooding occurs. From these values, we are able to predict the flooding as the ice jam builds up and breaks as it progresses downstream. Similar methodology is applied to find the trigger points for flooding along other sections of the Mohawk River constrained by lock stations, and it may provide critical knowledge as to how to better manage the hazard of flooding due to ice jams.

  12. The performance of M-ary FH-DPSK in the presence of partial-band multitone jamming

    NASA Technical Reports Server (NTRS)

    Simon, M. K.

    1982-01-01

    Using a geometric approach, the performance of M-ary FH-DPSK in the presence of partial-band multitone jamming is evaluated. The optimal jamming strategy is determined as a function of the number of signaling levels M and the ensuing results are used to determine worst case bit error probability performance as a function of this same parameter. It is demonstrated that, for M = 2 to the m power (where m is an integer), the best performance is obtained for M = 4.

  13. Importance of the Two Dissimilatory (Nar) Nitrate Reductases in the Growth and Nitrate Reduction of the Methylotrophic Marine Bacterium Methylophaga nitratireducenticrescens JAM1

    PubMed Central

    Mauffrey, Florian; Martineau, Christine; Villemur, Richard

    2015-01-01

    Methylophaga nitratireducenticrescens JAM1 is the only reported Methylophaga species capable of growing under anaerobic conditions with nitrate as electron acceptor. Its genome encodes a truncated denitrification pathway, which includes two nitrate reductases, Nar1 and Nar2; two nitric oxide reductases, Nor1 and Nor2; and one nitrous oxide reductase, Nos; but no nitrite reductase (NirK or NirS). The transcriptome of strain JAM1 cultivated with nitrate and methanol under anaerobic conditions showed the genes for these enzymes were all expressed. We investigated the importance of Nar1 and Nar2 by knocking out narG1, narG2 or both genes. Measurement of the specific growth rate and the specific nitrate reduction rate of the knockout mutants JAM1ΔnarG1 (Nar1) and JAM1ΔnarG2 (Nar2) clearly demonstrated that both Nar systems contributed to the growth of strain JAM1 under anaerobic conditions, but at different levels. The JAM1ΔnarG1 mutant exhibited an important decrease in the nitrate reduction rate that consequently impaired its growth under anaerobic conditions. In JAM1ΔnarG2, the mutation induced a 20-h lag period before nitrate reduction occurred at specific rate similar to that of strain JAM1. The disruption of narG1 did not affect the expression of narG2. However, the expression of the Nar1 system was highly downregulated in the presence of oxygen with the JAM1ΔnarG2 mutant. These results indicated that Nar1 is the major nitrate reductase in strain JAM1 but Nar2 appears to regulate the expression of Nar1. PMID:26733997

  14. Glassy behavior and jamming of a random walk process for sequentially satisfying a constraint satisfaction formula

    NASA Astrophysics Data System (ADS)

    Zhou, Haijun

    2010-02-01

    Random K-satisfiability (K-SAT) is a model system for studying typical-case complexity of combinatorial optimization. Recent theoretical and simulation work revealed that the solution space of a random K-SAT formula has very rich structures, including the emergence of solution communities within single solution clusters. In this paper we investigate the influence of the solution space landscape to a simple stochastic local search process SEQSAT, which satisfies a K-SAT formula in a sequential manner. Before satisfying each newly added clause, SEQSAT walk randomly by single-spin flips in a solution cluster of the old subformula. This search process is efficient when the constraint density α of the satisfied subformula is less than certain value αcm; however it slows down considerably as α> αcm and finally reaches a jammed state at α≈αj. The glassy dynamical behavior of SEQSAT for α≥αcm probably is due to the entropic trapping of various communities in the solution cluster of the satisfied subformula. For random 3-SAT, the jamming transition point αj is larger than the solution space clustering transition point αd, and its value can be predicted by a long-range frustration mean-field theory. For random K-SAT with K ≥ 4, however, our simulation results indicate that αj = αd. The relevance of this work for understanding the dynamic properties of glassy systems is also discussed.

  15. Trail Blazing or Jam Session? Towards a New Concept of Clinical Decision-making.

    PubMed

    Risør, Torsten

    2016-11-17

    Clinical decision-making (CDM) is key in learning to be a doctor as the defining activity in their clinical work. CDM is often portrayed in the literature as similar to 'trail blazing'; the doctor as the core agent, clearing away obstacles on the path towards diagnosis and treatment. However, in a fieldwork of young doctors in Denmark, it was difficult connect their practice to this image. This paper presents the exploration of this discrepancy in the heart of medical practice and how an alternative image emerged; that of a 'jam session'. The exploration is represented as a case-based hypothesis-testing: first, a theoretically and empirically informed hypothesis (H0) of how doctors perform CDM is developed. In H0, CDM is a stepwise process of reasoning about clinical data, often influenced by outside contextual factors. Then, H0 is tested against a case from ethnographic fieldwork with doctors going through internship. Although the case is chosen for characteristics that make it 'most likely' to verify the hypothesis, verification proves difficult. The case challenges preconceptions in CDM literature about chronology, context, objectivity, cognition, agency, and practice. The young doctor is found not to make decisions, but rather to participate in CDM; an activity akin to the dynamics found in a jam session. Their participation circles in and through four concurrent interrelated constructions that suggest a new conceptualization of CDM; a starting point for a deeper understanding of actual practice in a changing clinical environment.

  16. Tempo and mode of antibat ultrasound production and sonar jamming in the diverse hawkmoth radiation.

    PubMed

    Kawahara, Akito Y; Barber, Jesse R

    2015-05-19

    The bat-moth arms race has existed for over 60 million y, with moths evolving ultrasonically sensitive ears and ultrasound-producing organs to combat bat predation. The evolution of these defenses has never been thoroughly examined because of limitations in simultaneously conducting behavioral and phylogenetic analyses across an entire group. Hawkmoths include >1,500 species worldwide, some of which produce ultrasound using genital stridulatory structures. However, the function and evolution of this behavior remain largely unknown. We built a comprehensive behavioral dataset of hawkmoth hearing and ultrasonic reply to sonar attack using high-throughput field assays. Nearly half of the species tested (57 of 124 species) produced ultrasound to tactile stimulation or playback of bat echolocation attack. To test the function of ultrasound, we pitted big brown bats (Eptesicus fuscus) against hawkmoths over multiple nights and show that hawkmoths jam bat sonar. Ultrasound production was immediately and consistently effective at thwarting attack and bats regularly performed catching behavior without capturing moths. We also constructed a fossil-calibrated, multigene phylogeny to study the evolutionary history and divergence times of these antibat strategies across the entire family. We show that ultrasound production arose in multiple groups, starting in the late Oligocene (∼ 26 Ma) after the emergence of insectivorous bats. Sonar jamming and bat-detecting ears arose twice, independently, in the Miocene (18-14 Ma) either from earless hawkmoths that produced ultrasound in response to physical contact only, or from species that did not respond to touch or bat echolocation attack.

  17. Painlevé's paradox and dynamic jamming in simple models of passive dynamic walking

    NASA Astrophysics Data System (ADS)

    Or, Yizhar

    2014-02-01

    Painlevé's paradox occurs in the rigid-body dynamics of mechanical systems with frictional contacts at configurations where the instantaneous solution is either indeterminate or inconsistent. Dynamic jamming is a scenario where the solution starts with consistent slippage and then converges in finite time to a configuration of inconsistency, while the contact force grows unbounded. The goal of this paper is to demonstrate that these two phenomena are also relevant to the field of robotic walking, and can occur in two classical theoretical models of passive dynamic walking — the rimless wheel and the compass biped. These models typically assume sticking contact and ignore the possibility of foot slippage, an assumption which requires sufficiently large ground friction. Nevertheless, even for large friction, a perturbation that involves foot slippage can be kinematically enforced due to external forces, vibrations, or loose gravel on the surface. In this work, the rimless wheel and compass biped models are revisited, and it is shown that the periodic solutions under sticking contact can suffer from both Painlevé's paradox and dynamic jamming when given a perturbation of foot slippage. Thus, avoidance of these phenomena and analysis of orbital stability with respect to perturbations that include slippage are of crucial importance for robotic legged locomotion.

  18. Jammed elastic shells - a 3D experimental soft frictionless granular system

    NASA Astrophysics Data System (ADS)

    Jose, Jissy; Blab, Gerhard A.; van Blaaderen, Alfons; Imhof, Arnout

    2015-03-01

    We present a new experimental system of monodisperse, soft, frictionless, fluorescent labelled elastic shells for the characterization of structure, universal scaling laws and force networks in 3D jammed matter. The interesting fact about these elastic shells is that they can reversibly deform and therefore serve as sensors of local stress in jammed matter. Similar to other soft particles, like emulsion droplets and bubbles in foam, the shells can be packed to volume fractions close to unity, which allows us to characterize the contact force distribution and universal scaling laws as a function of volume fraction, and to compare them with theoretical predictions and numerical simulations. However, our shells, unlike other soft particles, deform rather differently at large stresses. They deform without conserving their inner volume, by forming dimples at contact regions. At each contact one of the shells buckled with a dimple and the other remained spherical, closely resembling overlapping spheres. We conducted 3D quantitative analysis using confocal microscopy and image analysis routines specially developed for these particles. In addition, we analysed the randomness of the process of dimpling, which was found to be volume fraction dependent.

  19. Statistics and Correlations of Conserved Quantities in Mechanically Stable Packings of Frictionless Disks Above Jamming

    NASA Astrophysics Data System (ADS)

    Teitel, Stephen; Wu, Yegang

    2015-03-01

    We consider mechanically stable packings of soft-core, frictionless, bidisperse disks in two dimensions above the jamming transition. Using an algorithm that generates packings with an isotropic global stress tensor, we compute the distribution of various conserved quantities on compact subclusters of particles, as a function of the total system stress and the cluster size. We consider the stress on the cluster, the Maxwell-Cremona force-tile area, the Voronoi volume, and the numbers of small and big particles in the cluster, and we compute the averages, variances and correlations among these different quantities. We compare two different ensembles of clusters: (i) clusters defined by a fixed radius, and (ii) clusters defined by a fixed number of particles. We find several significant differences between these two ensembles and we comment on the implications of our findings for maximum entropy models of jammed packings. This work was supported by NSF Grant No. DMR-1205800. Computations were carried out at the Center for Integrated Research Computing at the University of Rochester.

  20. Simple effective rule to estimate the jamming packing fraction of polydisperse hard spheres.

    PubMed

    Santos, Andrés; Yuste, Santos B; López de Haro, Mariano; Odriozola, Gerardo; Ogarko, Vitaliy

    2014-04-01

    A recent proposal in which the equation of state of a polydisperse hard-sphere mixture is mapped onto that of the one-component fluid is extrapolated beyond the freezing point to estimate the jamming packing fraction ϕJ of the polydisperse system as a simple function of M1M3/M22, where Mk is the kth moment of the size distribution. An analysis of experimental and simulation data of ϕJ for a large number of different mixtures shows a remarkable general agreement with the theoretical estimate. To give extra support to the procedure, simulation data for seventeen mixtures in the high-density region are used to infer the equation of state of the pure hard-sphere system in the metastable region. An excellent collapse of the inferred curves up to the glass transition and a significant narrowing of the different out-of-equilibrium glass branches all the way to jamming are observed. Thus, the present approach provides an extremely simple criterion to unify in a common framework and to give coherence to data coming from very different polydisperse hard-sphere mixtures.

  1. Impact of jammer side information on the performance of anti-jam systems

    NASA Astrophysics Data System (ADS)

    Lim, Samuel

    1992-03-01

    The Chernoff bound parameter, D, provides a performance measure for all coded communication systems. D can be used to determine upper-bounds on bit error probabilities (BEPs) of Viterbi decoded convolutional codes. The impact on BEP bounds of channel measurements that provide additional side information can also be evaluated with D. This memo documents the results of a Chernoff bound parameter evaluation in optimum partial-band noise jamming (OPBNJ) for both BPSK and DPSK modulation schemes. Hard and soft quantized receivers, with and without jammer side information (JSI), were examined. The results of this analysis indicate that JSI does improve decoding performance. However, a knowledge of jammer presence alone achieves a performance level comparable to soft decision decoding with perfect JSI. Furthermore, performance degradation due to the lack of JSI can be compensated for by increasing the number of levels of quantization. Therefore, an anti-jam system without JSI can be made to perform almost as well as a system with JSI.

  2. Multi-fingered haptic palpation utilizing granular jamming stiffness feedback actuators

    NASA Astrophysics Data System (ADS)

    Li, Min; Ranzani, Tommaso; Sareh, Sina; Seneviratne, Lakmal D.; Dasgupta, Prokar; Wurdemann, Helge A.; Althoefer, Kaspar

    2014-09-01

    This paper describes a multi-fingered haptic palpation method using stiffness feedback actuators for simulating tissue palpation procedures in traditional and in robot-assisted minimally invasive surgery. Soft tissue stiffness is simulated by changing the stiffness property of the actuator during palpation. For the first time, granular jamming and pneumatic air actuation are combined to realize stiffness modulation. The stiffness feedback actuator is validated by stiffness measurements in indentation tests and through stiffness discrimination based on a user study. According to the indentation test results, the introduction of a pneumatic chamber to granular jamming can amplify the stiffness variation range and reduce hysteresis of the actuator. The advantage of multi-fingered palpation using the proposed actuators is proven by the comparison of the results of the stiffness discrimination performance using two-fingered (sensitivity: 82.2%, specificity: 88.9%, positive predicative value: 80.0%, accuracy: 85.4%, time: 4.84 s) and single-fingered (sensitivity: 76.4%, specificity: 85.7%, positive predicative value: 75.3%, accuracy: 81.8%, time: 7.48 s) stiffness feedback.

  3. Jammed granular cones affect frictional resistive forces at the onset of intrusion

    NASA Astrophysics Data System (ADS)

    Aguilar, Jeffrey; Goldman, Daniel

    Characterizing the functional form of granular resistive forces has allowed for analysis of the locomotion of animals and robots on and within dry granular media. Resistive force theory (RFT) has been an effective tool in predicting these forces for various locomotive gaits within the ``frictional fluid'' regime, where intrusions are sufficiently slow such that granular inertial effects are negligible. These forces have been typically described by a linear dependence to submersion depth. However, recent experiments on robotic jumping [Aguilar & Goldman, Nature Physics, 2015] have revealed the importance of considering the nonlinear effects at the onset of intrusion to accurately predict robot kinematics. Particle image velocimetry (PIV) analysis of sidewall grain flow during foot intrusion reveals a jammed granular cone that develops beneath the foot at the onset of intrusion. A geometric model of cone development combined with empirical RFT forces on angled conical surfaces was able to predict the non-linear force trajectory vs. depth for experimental intrusions of various foot sizes, suggesting that intruders experience non-linear frictional forces according to the shape of the granular jamming fronts that form at the onset of movement. This work was supported by NSF Physics of Living Systems, Burroughs Wellcome Fund, and the Army Research Office.

  4. Moving vortex phases, dynamical symmetry breaking, and jamming for vortices in honeycomb pinning arrays

    SciTech Connect

    Reichhardt, Charles; Reichhardt, Cynthia

    2008-01-01

    We show using numerical simulations that vortices in honeycomb pinning arrays can exhibit a remarkable variety of dynamical phases that are distinct from those found for triangular and square pinning arrays. In the honeycomb arrays, it is possible for the interstitial vortices to form dimer or higher n-mer states which have an additional orientational degree of freedom that can lead to the formation of vortex molecular crystals. For filling fractions where dimer states appear, a dynamical symmetry breaking can occur when the dimers flow in one of two possible alignment directions. This leads to transport in the direction transverse to the applied drive. We show that dimerization produces distinct types of moving phases which depend on the direction of the driving force with respect to the pinning lattice symmetry. When the dimers are driven along certain directions, a reorientation of the dimers can produce a jamming phenomenon which results in a strong enhancement in the critical depinning force. The jamming can also cause unusual effects such as an increase in the critical depinning force when the size of the pinning sites is reduced.

  5. Journey of an intruder through the fluidization and jamming transitions of a dense granular media.

    PubMed

    Candelier, Raphaël; Dauchot, Olivier

    2010-01-01

    We study experimentally the motion of an intruder dragged into an amorphous monolayer of horizontally vibrated grains at high packing fractions. This motion exhibits two transitions. The first transition separates a continuous motion regime at comparatively low packing fractions and large dragging force from an intermittent motion one at high packing fraction and low dragging force. Associated to these different motions, we observe a transition from a linear rheology to a stiffer response. We thereby call "fluidization" this first transition. A second transition is observed within the intermittent regime when the intruder's motion is made of intermittent bursts separated by long waiting times. We observe a peak in the relative fluctuations of the intruder's displacements and a critical scaling of the burst amplitudes' distributions. This transition occurs at the jamming point phi(J) defined as the point where the static pressure (i.e., the pressure measured in the absence of vibration) vanishes. Investigating the motion of the surrounding grains, we show that below the fluidization transition, there is a permanent wake of free volume behind the intruder. This transition is marked by the evolution of the reorganization patterns around the intruder, which evolve from compact aggregates in the flowing regime to long-range branched shapes in the intermittent regime, suggesting an increasing role of the stress fluctuations. Remarkably, the distributions of the kinetic energy of these reorganization patterns also exhibit a critical scaling at the jamming transition.

  6. On the Routing Protocol Influence on the Resilience of Wireless Sensor Networks to Jamming Attacks

    PubMed Central

    Del-Valle-Soto, Carolina; Mex-Perera, Carlos; Monroy, Raul; Nolazco-Flores, Juan Arturo

    2015-01-01

    In this work, we compare a recently proposed routing protocol, the multi-parent hierarchical (MPH) protocol, with two well-known protocols, the ad hoc on-demand distance vector (AODV) and dynamic source routing (DSR). For this purpose, we have developed a simulator, which faithfully reifies the workings of a given protocol, considering a fixed, reconfigurable ad hoc network given by the number and location of participants, and general network conditions. We consider a scenario that can be found in a large number of wireless sensor network applications, a single sink node that collects all of the information generated by the sensors. The metrics used to compare the protocols were the number of packet retransmissions, carrier sense multiple access (CSMA) inner loop retries, the number of nodes answering the queries from the coordinator (sink) node and the energy consumption. We tested the network under ordinary (without attacks) conditions (and combinations thereof) and when it is subject to different types of jamming attacks (in particular, random and reactive jamming attacks), considering several positions for the jammer. Our results report that MPH has a greater ability to tolerate such attacks than DSR and AODV, since it minimizes and encapsulates the network segment under attack. The self-configuring capabilities of MPH derived from a combination of a proactive routes update, on a periodic-time basis, and a reactive behavior provide higher resilience while offering a better performance (overhead and energy consumption) than AODV and DSR, as shown in our simulation results. PMID:25825979

  7. Inhomogeneous shear flows in soft jammed materials with tunable attractive forces.

    PubMed

    Chaudhuri, Pinaki; Berthier, Ludovic; Bocquet, Lydéric

    2012-02-01

    We perform molecular dynamics simulations to characterize the occurrence of inhomogeneous shear flows in soft jammed materials. We use rough walls to impose a simple shear flow and study the athermal motion of jammed assemblies of soft particles in two spatial dimensions, both for purely repulsive interactions and in the presence of an additional short-range attraction of varying strength. In steady state, pronounced flow inhomogeneities emerge for all systems when the shear rate becomes small. Deviations from linear flow are stronger in magnitude and become very long lived when the strength of the attraction increases, but differ from permanent shear bands. Flow inhomogeneities occur in a stress window bounded by the dynamic and static yield stress values. Attractive forces enhance the flow heterogeneities because they accelerate stress relaxation, thus effectively moving the system closer to the yield stress regime where inhomogeneities are most pronounced. The present scenario for understanding the effect of particle adhesion on shear localization, which is based on detailed molecular dynamics simulations with realistic particle interactions, differs qualitatively from previous qualitative explanations and ad hoc theoretical modeling.

  8. Inherent Structure Landscape Connection between Liquids, Granular Materials, and the Jamming Phase Diagram

    NASA Astrophysics Data System (ADS)

    Ashwin, S. S.; Zaeifi Yamchi, Mahdi; Bowles, Richard K.

    2013-04-01

    We provide a comprehensive picture of the jamming phase diagram by connecting the athermal, granular ensemble of jammed states and the equilibrium fluid through the inherent structure paradigm for a system of hard disks confined to a narrow channel. The J line is shown to be divided into packings that are either accessible or inaccessible from the equilibrium fluid. The J point itself is found to occur at the transition between these two sets of packings and is located at the maximum of the inherent structure distribution. We also present a general thermodynamic argument that suggests the density of the states at the maximum of the configurational entropy represents a lower bound on the J-point density in hard sphere systems. Finally, we show that the granular system, modeled using the Edwards ensemble, and the fluid sample the same set of thermodynamically accessible states over the full range of thermodynamic state points, but only occupy the same set of inherent structures, under the same thermodynamic conditions, at two points, corresponding to zero and infinite pressures, where they sample the J-point states and the most dense packing, respectively.

  9. JAM-A promotes wound healing by enhancing both homing and secretory activities of mesenchymal stem cells.

    PubMed

    Wu, Minjuan; Ji, Shizhao; Xiao, Shichu; Kong, Zhengdong; Fang, He; Zhang, Yunqing; Ji, Kaihong; Zheng, Yongjun; Liu, Houqi; Xia, Zhaofan

    2015-10-01

    The homing ability and secretory function of mesenchymal stem cells (MSCs) are key factors that influence cell involvement in wound repair. These factors are controlled by multilayer regulatory circuitry, including adhesion molecules, core transcription factors (TFs) and certain other regulators. However, the role of adhesion molecules in this regulatory circuitry and their underlying mechanism remain undefined. In the present paper, we demonstrate that an adhesion molecule, junction adhesion molecule A (JAM-A), may function as a key promoter molecule to regulate skin wound healing by MSCs. In in vivo experiments, we show that JAM-A up-regulation promoted both MSC homing to full-thickness skin wounds and wound healing-related cytokine secretion by MSCs. In vitro experiments also showed that JAM-A promoted MSC proliferation and migration by activating T-cell lymphoma invasion and metastasis 1 (Tiam1). We suggest that JAM-A up-regulation can increase the proliferation, cytokine secretion and wound-homing ability of MSCs, thus accelerating the repair rate of full-thickness skin defects. These results may provide insights into a novel and potentially effective approach to improve the efficacy of MSC treatment.

  10. JAM-A regulates cortical dynein localization through Cdc42 to control planar spindle orientation during mitosis.

    PubMed

    Tuncay, Hüseyin; Brinkmann, Benjamin F; Steinbacher, Tim; Schürmann, Annika; Gerke, Volker; Iden, Sandra; Ebnet, Klaus

    2015-08-26

    Planar spindle orientation in polarized epithelial cells depends on the precise localization of the dynein-dynactin motor protein complex at the lateral cortex. The contribution of cell adhesion molecules to the cortical localization of the dynein-dynactin complex is poorly understood. Here we find that junctional adhesion molecule-A (JAM-A) regulates the planar orientation of the mitotic spindle during epithelial morphogenesis. During mitosis, JAM-A triggers a transient activation of Cdc42 and PI(3)K, generates a gradient of PtdIns(3,4,5)P3 at the cortex and regulates the formation of the cortical actin cytoskeleton. In the absence of functional JAM-A, dynactin localization at the cortex is reduced, the mitotic spindle apparatus is misaligned and epithelial morphogenesis in three-dimensional culture is compromised. Our findings indicate that a PI(3)K- and cortical F-actin-dependent pathway of planar spindle orientation operates in polarized epithelial cells to regulate epithelial morphogenesis, and we identify JAM-A as a junctional regulator of this pathway.

  11. Ice regime of the lower Peace River and ice-jam flooding of the Peace-Athabasca Delta

    NASA Astrophysics Data System (ADS)

    Beltaos, Spyros; Prowse, Terry D.; Carter, Tom

    2006-12-01

    The Peace-Athabasca Delta (PAD) in northern Alberta is one of the world's largest inland freshwater deltas, home to large populations of waterfowl, muskrat, beaver, and free-ranging wood bison. Beginning in the mid-1970s, a paucity of ice-jam flooding in the lower Peace River has resulted in prolonged dry periods and considerable reduction in the area covered by lakes and ponds that provide a habitat for aquatic life in the PAD region. Using archived hydrometric data and in situ observations, the ice regime of the lower Peace is described and quantified, setting the stage for identification of the conditions that lead to ice-jam flooding and replenishment of Delta habitat. The first such condition is the occurrence of a mechanical, as opposed to a thermal, breakup event; second, the river flow should be at least 4000 m3/s; and third, an ice jam should form within the last 50 km of the Peace River. The type of breakup event depends on the freeze-up stage and spring flow. The former has increased as a result of flow regulation, and the latter has decreased owing to changing climatic patterns. Both trends tend to inhibit the occurrence of mechanical breakups and contribute to less frequent ice-jam flooding. Potential mitigation strategies are discussed. Copyright

  12. JAM-A regulates cortical dynein localization through Cdc42 to control planar spindle orientation during mitosis

    PubMed Central

    Tuncay, Hüseyin; Brinkmann, Benjamin F.; Steinbacher, Tim; Schürmann, Annika; Gerke, Volker; Iden, Sandra; Ebnet, Klaus

    2015-01-01

    Planar spindle orientation in polarized epithelial cells depends on the precise localization of the dynein–dynactin motor protein complex at the lateral cortex. The contribution of cell adhesion molecules to the cortical localization of the dynein–dynactin complex is poorly understood. Here we find that junctional adhesion molecule-A (JAM-A) regulates the planar orientation of the mitotic spindle during epithelial morphogenesis. During mitosis, JAM-A triggers a transient activation of Cdc42 and PI(3)K, generates a gradient of PtdIns(3,4,5)P3 at the cortex and regulates the formation of the cortical actin cytoskeleton. In the absence of functional JAM-A, dynactin localization at the cortex is reduced, the mitotic spindle apparatus is misaligned and epithelial morphogenesis in three-dimensional culture is compromised. Our findings indicate that a PI(3)K- and cortical F-actin-dependent pathway of planar spindle orientation operates in polarized epithelial cells to regulate epithelial morphogenesis, and we identify JAM-A as a junctional regulator of this pathway. PMID:26306570

  13. High-speed ultrasound imaging in dense suspensions reveals impact-activated solidification due to dynamic shear jamming

    PubMed Central

    Han, Endao; Peters, Ivo R.; Jaeger, Heinrich M.

    2016-01-01

    A remarkable property of dense suspensions is that they can transform from liquid-like at rest to solid-like under sudden impact. Previous work showed that this impact-induced solidification involves rapidly moving jamming fronts; however, details of this process have remained unresolved. Here we use high-speed ultrasound imaging to probe non-invasively how the interior of a dense suspension responds to impact. Measuring the speed of sound we demonstrate that the solidification proceeds without a detectable increase in packing fraction, and imaging the evolving flow field we find that the shear intensity is maximized right at the jamming front. Taken together, this provides direct experimental evidence for jamming by shear, rather than densification, as driving the transformation to solid-like behaviour. On the basis of these findings we propose a new model to explain the anisotropy in the propagation speed of the fronts and delineate the onset conditions for dynamic shear jamming in suspensions. PMID:27436628

  14. Evaluation of Electronic Counter-Countermeasures Training Using Microcomputer-Based Technology: Phase I. Basic Jamming Recognition.

    ERIC Educational Resources Information Center

    Gardner, Susan G.; Ellis, Burl D.

    Seven microcomputer-based training systems with videotape players/monitors were installed to provide electronic counter-countermeasures (ECCM) simulation training, drill and practice, and performance testing for three courses at a fleet combat training center. Narrated videotape presentations of simulated and live jamming followed by a drill and…

  15. Neighborhood Jams.

    ERIC Educational Resources Information Center

    Zingher, Gary

    1995-01-01

    Examines the role of the neighborhood in books for children and young adults. Discusses community characteristics, historical fiction, "special and scary places," neighborhoods in conflict and harmony, and the neighborhood as a memory base. Presents activities including animated maps, games, murals, small group dramas, and storytelling.…

  16. Up-regulation of JAM-1 in AR42J cells treated with activin A and betacellulin and the diabetic regenerating islets.

    PubMed

    Yoshikumi, Yukako; Ohno, Hideki; Suzuki, Junko; Isshiki, Masashi; Morishita, Yasuyuki; Ohnishi, Hirohide; Yasuda, Hiroshi; Omata, Masao; Fujita, Toshiro; Mashima, Hirosato

    2008-08-01

    Pancreatic AR42J cells demonstrate the pluripotency in precursor cells of the gut endoderm and also provide an excellent model system to study the differentiation of the pancreas. Using the mRNA differential display technique, we identified junctional adhesion molecule-1 (JAM-1), a component of the tight junction, was highly up-regulated during the differentiation of AR42J cells, although junctions were not formed. The expression level of JAM-1 showed an up-regulation in the mRNA level after 3 hours and in the protein level after 24 hours in [activin A + betacellulin]-treated AR42J cells. The expressions of its signaling molecules, PAR-3 and atypical PKC lambda, also increased after the addition of activin A + betacellulin. When JAM-1 was over-expressed in [activin A + betacellulin]-treated AR42J cells, tagged-JAM-1 was observed in cytoplasm as vesicular structures and JAM-1 was colocalized with Rab3B and Rab13, members of the Rab family expressed at tight junctions. In streptozotocin-induced regenerating islets, the expression of JAM-1 was also up-regulated in the mRNA level and the protein level. JAM-1 might therefore play an important role in the differentiation of AR42J cells and the regeneration of pancreatic islets.

  17. JAM-A protects from thrombosis by suppressing integrin αIIbβ3-dependent outside-in signaling in platelets.

    PubMed

    Naik, Meghna U; Stalker, Timothy J; Brass, Lawrence F; Naik, Ulhas P

    2012-04-05

    Mounting evidence suggests that agonist-initiated signaling in platelets is closely regulated to avoid excessive responses to injury. A variety of physiologic agonists induce a cascade of signaling events termed as inside-out signaling that culminate in exposure of high-affinity binding sites on integrin α(IIb)β(3). Once platelet activation has occurred, integrin α(IIb)β(3) stabilizes thrombus formation by providing agonist-independent "outside-in" signals mediated in part by contractile signaling. Junctional adhesion molecule A (JAM-A), a member of the cortical thymocyte marker of the Xenopus (CTX) family, was initially identified as a receptor for a platelet stimulatory mAb. Here we show that JAM-A in resting platelets functions as an endogenous inhibitor of platelet function. Genetic ablation of Jam-A in mice enhances thrombotic function of platelets in vivo. The absence of Jam-A results in increase in platelet aggregation ex vivo. This gain of function is not because of enhanced inside-out signaling because granular secretion, Thromboxane A2 (TxA2) generation, as well as fibrinogen receptor activation, are normal in the absence of Jam-A. Interestingly, integrin outside-in signaling such as platelet spreading and clot retraction is augmented in Jam-A-deficient platelets. We conclude that JAM-A normally limits platelet accumulation by inhibiting integrin outside-in signaling thus preventing premature platelet activation.

  18. Deletion of JAM-C, a candidate gene for heart defects in Jacobsen syndrome, results in a normal cardiac phenotype in mice.

    PubMed

    Ye, Maoqing; Hamzeh, Rabih; Geddis, Amy; Varki, Nissi; Perryman, M Benjamin; Grossfeld, Paul

    2009-07-01

    The 11q terminal deletion disorder (11q-) is a rare chromosomal disorder caused by a deletion in distal 11q. Fifty-six percent of patients have clinically significant congenital heart defects. A cardiac "critical region" has been identified in distal 11q that contains over 40 annotated genes. In this study, we identify the distal breakpoint of a patient with a paracentric inversion in distal 11q who had hypoplastic left heart and congenital thrombocytopenia. The distal breakpoint mapped to JAM-3, a gene previously identified as a candidate gene for causing HLHS in 11q-. To determine the role of JAM-3 in cardiac development, we performed a comprehensive cardiac phenotypic assessment in which the mouse homolog for JAM-3, JAM-C, has been deleted. These mice have normal cardiac structure and function, indicating that haplo-insufficiency of JAM-3 is unlikely to cause the congenital heart defects that occur in 11q- patients. Notably, we identified a previously undescribed phenotype, jitteriness, in most of the sick or dying adult JAM-C knockout mice. These data provide further insights into the identification of the putative disease-causing cardiac gene(s) in distal 11q, as well as the functions of JAM-C in normal organ development.

  19. Effects of ripeness and cultivar on chemical composition of strawberry (Fragaria×ananassa Duch.) fruits and their suitability for jam production as a stable product at different storage temperatures.

    PubMed

    Mazur, Sebastian Piotr; Nes, Arnfinn; Wold, Anne-Berit; Remberg, Siv Fagertun; Martinsen, Berit Karoline; Aaby, Kjersti

    2014-03-01

    Effects of ripeness (nearly ripe, ripe, fully ripe) and cultivar ('Blink', 'Polka' and 'Senga Sengana') on colour and chemical composition of strawberry fruits and their suitability for jam production, evaluated as stability during storage at 4 and 20°C for 3 and 6months, were investigated. Quality traits of fruits and jams were significantly affected by both ripeness stage and cultivar. However, after 6months of storage, particularly at 20°C, the effects of fruit ripeness and cultivar were considerably reduced. During jam storage, anthocyanins, ascorbic acid, chroma and hue were least stable in jams made from the least ripe fruits. Quality traits in jams made from 'Senga Sengana' were best preserved during storage, while quality and chemical composition in jams made from 'Blink' changed the most. In conclusion, fully ripe fruits were best suited for jam processing. Storage at low temperature was preferable and 'Senga Sengana' was the most and 'Blink' the least suitable cultivar for processing.

  20. Traffic Vehicle Counting in Jam Flow Conditions Using Low-Cost and Energy-Efficient Wireless Magnetic Sensors

    PubMed Central

    Bao, Xu; Li, Haijian; Xu, Dongwei; Jia, Limin; Ran, Bin; Rong, Jian

    2016-01-01

    The jam flow condition is one of the main traffic states in traffic flow theory and the most difficult state for sectional traffic information acquisition. Since traffic information acquisition is the basis for the application of an intelligent transportation system, research on traffic vehicle counting methods for the jam flow conditions has been worthwhile. A low-cost and energy-efficient type of multi-function wireless traffic magnetic sensor was designed and developed. Several advantages of the traffic magnetic sensor are that it is suitable for large-scale deployment and time-sustainable detection for traffic information acquisition. Based on the traffic magnetic sensor, a basic vehicle detection algorithm (DWVDA) with less computational complexity was introduced for vehicle counting in low traffic volume conditions. To improve the detection performance in jam flow conditions with a “tailgating effect” between front vehicles and rear vehicles, an improved vehicle detection algorithm (SA-DWVDA) was proposed and applied in field traffic environments. By deploying traffic magnetic sensor nodes in field traffic scenarios, two field experiments were conducted to test and verify the DWVDA and the SA-DWVDA algorithms. The experimental results have shown that both DWVDA and the SA-DWVDA algorithms yield a satisfactory performance in low traffic volume conditions (scenario I) and both of their mean absolute percent errors are less than 1% in this scenario. However, for jam flow conditions with heavy traffic volumes (scenario II), the SA-DWVDA was proven to achieve better results, and the mean absolute percent error of the SA-DWVDA is 2.54% with corresponding results of the DWVDA 7.07%. The results conclude that the proposed SA-DWVDA can implement efficient and accurate vehicle detection in jam flow conditions and can be employed in field traffic environments. PMID:27827974

  1. Traffic Vehicle Counting in Jam Flow Conditions Using Low-Cost and Energy-Efficient Wireless Magnetic Sensors.

    PubMed

    Bao, Xu; Li, Haijian; Xu, Dongwei; Jia, Limin; Ran, Bin; Rong, Jian

    2016-11-06

    The jam flow condition is one of the main traffic states in traffic flow theory and the most difficult state for sectional traffic information acquisition. Since traffic information acquisition is the basis for the application of an intelligent transportation system, research on traffic vehicle counting methods for the jam flow conditions has been worthwhile. A low-cost and energy-efficient type of multi-function wireless traffic magnetic sensor was designed and developed. Several advantages of the traffic magnetic sensor are that it is suitable for large-scale deployment and time-sustainable detection for traffic information acquisition. Based on the traffic magnetic sensor, a basic vehicle detection algorithm (DWVDA) with less computational complexity was introduced for vehicle counting in low traffic volume conditions. To improve the detection performance in jam flow conditions with a "tailgating effect" between front vehicles and rear vehicles, an improved vehicle detection algorithm (SA-DWVDA) was proposed and applied in field traffic environments. By deploying traffic magnetic sensor nodes in field traffic scenarios, two field experiments were conducted to test and verify the DWVDA and the SA-DWVDA algorithms. The experimental results have shown that both DWVDA and the SA-DWVDA algorithms yield a satisfactory performance in low traffic volume conditions (scenario I) and both of their mean absolute percent errors are less than 1% in this scenario. However, for jam flow conditions with heavy traffic volumes (scenario II), the SA-DWVDA was proven to achieve better results, and the mean absolute percent error of the SA-DWVDA is 2.54% with corresponding results of the DWVDA 7.07%. The results conclude that the proposed SA-DWVDA can implement efficient and accurate vehicle detection in jam flow conditions and can be employed in field traffic environments.

  2. Dissipation and Rheology of Sheared Soft-Core Frictionless Disks Below Jamming

    NASA Astrophysics Data System (ADS)

    Vâgberg, Daniel; Olsson, Peter; Teitel, S.

    2014-05-01

    We use numerical simulations to investigate the effect that different models of energy dissipation have on the rheology of soft-core frictionless disks, below jamming in two dimensions. We find that it is not necessarily the mass of the particles that determines whether a system has Bagnoldian or Newtonian rheology, but rather the presence or absence of large connected clusters of particles. We demonstrate the key role that tangential dissipation plays in the formation of such clusters and in several models find a transition from Bagnoldian to Newtonian rheology as the packing fraction ϕ is varied. For each model, we show that appropriately scaled rheology curves approach a well defined limit as the mass of the particles decreases and collisions become strongly inelastic.

  3. Long-range cargo transport on crowded microtubules: The motor jamming mechanism

    NASA Astrophysics Data System (ADS)

    Rossi, Lucas W.; Radtke, Paul K.; Goldman, Carla

    2014-05-01

    The hopping model for cargo transport by molecular motors introduced in Goldman and Sena (2009), Goldman (2010) is extended here in order to incorporate the movement of cargo-motor complexes (C-MC). Hopping processes in this context express the possibility for cargo to be exchanged between neighboring motors at a microtubule where the transport takes place. Jamming of motors is essential for cargos to execute long-range movement in this way. Results from computer simulations accompanied by a mean-field analysis of the extended model confirm our previous analytical results and suggests that an interplay between cargo hopping and the movement of the C-MC’s would control the efficiency of cargo transfer and cargo delivery in these model systems.

  4. Critical Scaling of Bagnold Rheology at the Jamming Transition of Frictionless Disks

    NASA Astrophysics Data System (ADS)

    Teitel, Stephen; Vågberg, Daniel; Olsson, Peter

    We simulate shear-driven, frictionless, bidisperse disks in two dimensions, as a function of applied shear strain rate and packing fraction, for a model with a normal viscous dissipation that results in Bagnoldian rheology for all control parameters. Carrying out a critical scaling analysis of the pressure and shear stress near the jamming transition we find values of the critical exponents that disagree with theoretical predictions of Otsuki and Hayakawa but are closer to more recent theoretical results by DeGiuli et al., as well as earlier simulations by Peyneau and Roux. We find that it is essential to include leading corrections-to-scaling to arrive at self-consistent results. This work has been supported by NSF Grant No. DMR-1205800, Swedish Research Council Grant No. 2010-3725, and the Dutch Organization for Scientific Research (NWO).

  5. Self-Organized Criticality and Scaling in Lifetime of Traffic Jams

    NASA Astrophysics Data System (ADS)

    Nagatani, Takashi

    1995-01-01

    The deterministic cellular automaton 184 (the one-dimensional asymmetric simple-exclusion model with parallel dynamics) is extended to take into account injection or extraction of particles. The model presents the traffic flow on a highway with inflow or outflow of cars.Introducing injection or extraction of particles into the asymmetric simple-exclusion model drives the system asymptotically into a steady state exhibiting a self-organized criticality. The typical lifetime of traffic jams scales as \\cong Lν with ν=0.65±0.04. It is shown that the cumulative distribution Nm (L) of lifetimes satisfies the finite-size scaling form Nm (L) \\cong L-1 f(m/Lν).

  6. Columnar order in jammed LiFePO4 cathodes: ion transport catastrophe and its mitigation.

    PubMed

    Smith, Kyle C; Mukherjee, Partha P; Fisher, Timothy S

    2012-05-21

    The high-rate, high-capacity potential of LiFePO4-based lithium-ion battery cathodes has motivated numerous experimental and theoretical studies aiming to realize such performance through nano-sizing, tailoring of particle shape through synthesis conditions, and doping. Here, a granular mechanics study of microstructures formed by dense jammed packings of experimentally and theoretically inspired LiFePO4 particle shapes is presented. A strong dependence of the resultant packing structures on particle shapes is observed, in which columnar structures aligned with the [010] direction inhibit diffusion along [010] in anisotropic LiFePO4. Transport limitations are induced by [010] columnar order and lead to catastrophic performance degradation in anisotropic LiFePO4 electrodes. Further, judicious mixing of nanoplatelets with additive nanoparticles can frustrate columnar ordering and thereby enhance the rate capability of LiFePO4 electrodes by nearly an order of magnitude.

  7. Trafficlike collective movement of ants on trails: absence of a jammed phase.

    PubMed

    John, Alexander; Schadschneider, Andreas; Chowdhury, Debashish; Nishinari, Katsuhiro

    2009-03-13

    We report experimental results on unidirectional trafficlike collective movement of ants on trails. Our work is primarily motivated by fundamental questions on the collective spatiotemporal organization in systems of interacting motile constituents driven far from equilibrium. Making use of the analogies with vehicular traffic, we analyze our experimental data for the spatiotemporal organization of ants on a trail. From this analysis, we extract the flow-density relation as well as the distributions of velocities of the ants and distance headways. Some of our observations are consistent with our earlier models of ant traffic, which are appropriate extensions of the asymmetric simple exclusion process. In sharp contrast to highway traffic and most other transport processes, the average velocity of the ants is almost independent of their density on the trail. Consequently, no jammed phase is observed.

  8. Topological Jamming of Spontaneously Knotted Polyelectrolyte Chains Driven Through a Nanopore

    NASA Astrophysics Data System (ADS)

    Rosa, A.; Di Ventra, M.; Micheletti, C.

    2012-09-01

    The advent of solid state nanodevices allows for interrogating the physicochemical properties of a polyelectrolyte chain by electrophoretically driving it through a nanopore. Salient dynamical aspects of the translocation process have been recently characterized by theoretical and computational studies of model polymer chains free from self-entanglement. However, sufficiently long equilibrated chains are necessarily knotted. The impact of such topological “defects” on the translocation process is largely unexplored, and is addressed in this Letter. By using Brownian dynamics simulations on a coarse-grained polyelectrolyte model we show that knots, despite being trapped at the pore entrance, do not per se cause the translocation process to jam. Rather, knots introduce an effective friction that increases with the applied force, and practically halts the translocation above a threshold force. The predicted dynamical crossover, which is experimentally verifiable, ought to be relevant in applicative contexts, such as DNA nanopore sequencing.

  9. Brazil nut effect: Influence of friction and jamming on the transition line

    NASA Astrophysics Data System (ADS)

    Cordero, P.; Godoy, S.; Risso, D.; Soto, R.

    2009-01-01

    We report a molecular dynamics study of the behavior of a bidimensional system consisting of a large disk (the intruder) immersed in a bed of many small disks. All collisions are instantaneous and inelastic and all possible parameters of the system are kept fixed except for two dimensionless parameters determining the frequency and amplitude of the vibrating base. A systematic exploration of this parameter space leads to determining a transition line separating a zone in which the Brazil nut effect is observed and one in which it is not. It is observed for the BNE to be present it is necessary that the characteristic velocity of the vibrating base is above a certain threshold. This threshold increases as the characteristic acceleration of the base gets larger. The results strongly suggest that, in the region of the parameter space in which the study is made, there is a minimum amplitude and a maximum frequency for the Brazil nut effect to take place. The shape of the transition line is understood in connection with the friction of the system with the lateral walls and with jamming. Friction with the lateral walls produces a net downward force, eventually leading to a convective current that pushes the intruder up. Although the energy injection rate, that helps the development of the convective current, is proportional mainly to the square of the velocity of the base, it is found that the average frictional force decreases when increasing the base acceleration. Therefore, for large base accelerations, higher values of the base velocity are needed to produce a convective current sufficiently strong. But if the system is not excited enough the friction which would produced convective currents are balanced by the reaction forces that result from jamming.

  10. Geomorphic Effects of Engineered Log Jams in River Restoration, Middle Fork John Day River

    NASA Astrophysics Data System (ADS)

    Duffin, J.; McDowell, P. F.

    2014-12-01

    The Middle Fork of the John Day River (MFJD) Intensively Monitored Watershed in eastern Oregon is a multi-phase restoration implementation and monitoring project. MFJD is a tributary to the Colombia and is part of one of the longest free flowing rivers systems in the continental United States. It is a gravel and cobble bed river with a drainage area of 2,100 km2. The river has endured extensive channel and floodplain degradation from years of channel alteration and straightening due to human influences including dredge mining, ranching, and farming. As part of the river restoration project on the MFJD, engineered log jams have been constructed to address many of the restoration goals including creating scour pools, inhibiting bank erosion, creating and maintaining a sinuous river planform, and increasing complexity of fish habitat. There is a need for more detailed understanding on ELJ channel morphologic effects and how site-specific characteristics and differences in log jam infrastructure interact to create the in-channel features over timescales longer than a few years. This study uses detailed channel bed topographic surveys collected either with a total station or RTK-GPS technology. Geomorphic change detection techniques are utilized to monitor topographic change under and around the 26 log structures in two different river reaches over a six to seven year period The log structures are often associated with deepening of pools as desired, but also some structures show sedimentation under the structure. Differences in the patterns will be assessed based on the design, location, and specific characteristics of the log structures; variables include number and placement of logs, volume of structure, location on meander bend, and sediment sizes.

  11. Flow, turbulence, and drag associated with engineered log jams in a fixed-bed experimental channel

    NASA Astrophysics Data System (ADS)

    Bennett, Sean J.; Ghaneeizad, S. Mohammad; Gallisdorfer, Michael S.; Cai, Donghua; Atkinson, Joseph F.; Simon, Andrew; Langendoen, Eddy J.

    2015-11-01

    Engineered log jams (ELJs) have become attractive alternatives for river restoration and bank stabilization programs. Yet the effects of ELJs on turbulent flow and the fluid forces acting on the ELJs are not well known, and such information could inform design criteria. In this study, a fixed-bed physical model was constructed to assess the introduction of ELJs along the Big Sioux River, SD. Two ELJ types were examined, referred to as ELJ-1 and ELJ-2. Both types were deflector jams, where ELJ-1 was rectangular and ELJ-2 was triangular, and oriented with one side attached to the channel bank. They were deployed either as single structures or in groups of two or three on the same side of the channel and at different separation distances. Results show that (1) time-mean and turbulent velocities and bed shear stresses were measurably altered near the ELJ, but spatially averaged flow just upstream and downstream of the structure was unaffected; (2) streamwise drag forces measured for the ELJs were significantly larger than the transverse forces, and the derived drag coefficients for the single structures were 2.72 ± 0.19 for ELJ-1 and 1.60 ± 0.37 for ELJ-2; and (3) the presence of an upstream structure created a near-bank wake region that extended a distance of more than 30 flow depths downstream, which greatly reduced drag forces and drag coefficients observed for the downstream structure by as much as 80%. These observations are further evidence of the efficacy of ELJs in providing near-structure scour pool development and bank protection downstream, and they can be used to inform and assess the design of ELJs for use in river restoration and bank stabilization projects.

  12. Tempo and mode of antibat ultrasound production and sonar jamming in the diverse hawkmoth radiation

    PubMed Central

    Kawahara, Akito Y.; Barber, Jesse R.

    2015-01-01

    The bat–moth arms race has existed for over 60 million y, with moths evolving ultrasonically sensitive ears and ultrasound-producing organs to combat bat predation. The evolution of these defenses has never been thoroughly examined because of limitations in simultaneously conducting behavioral and phylogenetic analyses across an entire group. Hawkmoths include >1,500 species worldwide, some of which produce ultrasound using genital stridulatory structures. However, the function and evolution of this behavior remain largely unknown. We built a comprehensive behavioral dataset of hawkmoth hearing and ultrasonic reply to sonar attack using high-throughput field assays. Nearly half of the species tested (57 of 124 species) produced ultrasound to tactile stimulation or playback of bat echolocation attack. To test the function of ultrasound, we pitted big brown bats (Eptesicus fuscus) against hawkmoths over multiple nights and show that hawkmoths jam bat sonar. Ultrasound production was immediately and consistently effective at thwarting attack and bats regularly performed catching behavior without capturing moths. We also constructed a fossil-calibrated, multigene phylogeny to study the evolutionary history and divergence times of these antibat strategies across the entire family. We show that ultrasound production arose in multiple groups, starting in the late Oligocene (∼26 Ma) after the emergence of insectivorous bats. Sonar jamming and bat-detecting ears arose twice, independently, in the Miocene (18–14 Ma) either from earless hawkmoths that produced ultrasound in response to physical contact only, or from species that did not respond to touch or bat echolocation attack. PMID:25941377

  13. Interactions among forest age, valley and channel morphology, and log jams regulate animal production in mountain streams

    NASA Astrophysics Data System (ADS)

    Walters, D. M.; Venarsky, M. P.; Hall, R. O., Jr.; Herdrich, A.; Livers, B.; Winkelman, D.; Wohl, E.

    2014-12-01

    Forest age and local valley morphometry strongly influence the form and function of mountain streams in Colorado. Streams in valleys with old growth forest (>350 years) have extensive log jam complexes that create multi-thread channel reaches with extensive pool habitat and large depositional areas. Streams in younger unmanaged forests (e.g., 120 years old) and intensively managed forests have much fewer log jams and lower wood loads. These are single-thread streams dominated by riffles and with little depositional habitat. We hypothesized that log jam streams would retain more organic matter and have higher metabolism, leading to greater production of stream macroinvertebrates and trout. Log jam reaches should also have greater emergence of adult aquatic insects, and consequently have higher densities of riparian spiders taking advantage of these prey. Surficial organic matter was 3-fold higher in old-growth streams, and these streams had much higher ecosystem respiration. Insect production (g m2 y-1) was similar among forest types, but fish density was four times higher in old-growth streams with copious log jams. However, at the valley scale, insect production (g m-1 valley-1) and trout density (number m-1 valley-1) was 2-fold and 10-fold higher, respectively, in old growth streams. This finding is because multi-thread reaches created by log jams have much greater stream area and stream length per meter of valley than single-thread channels. The more limited response of macroinvertebrates may be related to fish predation. Trout in old growth streams had similar growth rates and higher fat content than fish in other streams in spite of occurring at higher densities and higher elevation/colder temperatures. This suggests that the positive fish effect observed in old growth streams is related to greater availability of invertebrate prey, which is consistent with our original hypothesis. Preliminary analyses suggest that spider densities do not respond strongly to

  14. A novel role for junctional adhesion molecule-A in tumor proliferation: modulation by an anti-JAM-A monoclonal antibody.

    PubMed

    Goetsch, Liliane; Haeuw, Jean-François; Beau-Larvor, Charlotte; Gonzalez, Alexandra; Zanna, Laurence; Malissard, Martine; Lepecquet, Anne-Marie; Robert, Alain; Bailly, Christian; Broussas, Matthieu; Corvaia, Nathalie

    2013-03-15

    To identify new potential targets in oncology, functional approaches were developed using tumor cells as immunogens to select monoclonal antibodies targeting membrane receptors involved in cell proliferation. For that purpose cancer cells were injected into mice and resulting hybridomas were screened for their ability to inhibit cell proliferation in vitro. Based on this functional approach coupled to proteomic analysis, a monoclonal antibody specifically recognizing the human junctional adhesion molecule-A (JAM-A) was defined. Interestingly, compared to both normal and tumor tissues, we observed that JAM-A was mainly overexpressed on breast, lung and kidney tumor tissues. In vivo experiments demonstrated that injections of anti-JAM-A antibody resulted in a significant tumor growth inhibition of xenograft human tumors. Treatment with monoclonal antibody induced a decrease of the Ki67 expression and downregulated JAM-A levels. All together, our results show for the first time that JAM-A can interfere with tumor proliferation and suggest that JAM-A is a potential novel target in oncology. The results also demonstrate that a functional approach coupled to a robust proteomic analysis can be successful to identify new antibody target molecules that lead to promising new antibody-based therapies against cancers.

  15. Effect of xantham gum, steviosides, clove, and cinnamon essential oils on the sensory and microbiological quality of a low sugar tomato jam.

    PubMed

    Gliemmo, María F; Montagnani, María A; Schelegueda, Laura I; González, Malena M; Campos, Carmen A

    2016-03-01

    The partial or total decrease of sugar content in the formulation of jams affects their physical, chemical and microbiological stability. In order to minimize these technological problems, we studied the effect of xanthan gum (XG), steviosides, cinnamon (CO), and clove (CLO) essential oils on the sensory and microbiological quality of a low sugar tomato jam. Levels of 0.250 g/100 g steviosides and 0.450 g/100 g XG showed maximum score of overall acceptability of jam. The combination of essential oils produced synergistic and additive effects in vitro on growth of Z. bailii and Z. rouxii, respectively. However, in the jam, CO was more effective and CLO did not modify the CO action. Cell surface was one of the sites of action of CO since a decrease in yeast cell surface hydrophobicity was observed. From the microbiological and sensory points of view, 0.0060 g/100 g CO showed the maximum score of jam overall acceptability and did not cause yeast inactivation but it could be useful as an additional stress factor against yeast post--process contamination. The adequate levels of XG, steviosides, and CO can improve the quality of a low sugar jam formulation.

  16. Persistent Direction-Fixed Nystagmus Following Canalith Repositioning Maneuver for Horizontal Canal BPPV: A Case of Canalith Jam.

    PubMed

    Chang, Young-Soo; Choi, Jeesun; Chung, Won-Ho

    2014-06-01

    The authors report a 64-year-old man who developed persistent direction fixed nystagmus after a canalith repositioning maneuver for horizontal canal benign paroxysmal positional vertigo (HC-BPPV). The patient was initially diagnosed with right HC-BPPV given that the Dix-Hallpike test showed geotropic horizontal nystagmus that was more pronounced on the right side, although the roll test did not show any positional nystagmus. The patient was treated with a canalith repositioning maneuver (Lempert maneuver). The next day, the patient experienced a different character of dizziness, and left-beating spontaneous nystagmus regardless of head position was observed. After a forced prolonged left decubitus and frequent head shaking, his symptoms and nystagmus resolved. This condition, referred to as canalith jam, can be a complication after the repositioning maneuver in patients with BPPV. Atypical positional tests suggest that abnormal canal anatomy could be the underlying cause of canalith jam.

  17. Time-Frequency Filtering and Carrier-Phase Ambiguity Resolution for GPS-Based TSPI Systems in Jamming Environment

    DTIC Science & Technology

    2007-08-15

    class of time-frequency filters based on the combination of the empirical-mode decomposition ( EMD ) method and a general blind-source separation (BSS...developed a class of time-frequency filters based on the combination of the empirical- mode decomposition ( EMD ) method and a general blind-source...design in defense applications is jamming rejection. During the project period, we developed a procedure based on the empirical-mode decomposition ( EMD

  18. An SDR-Based Real-Time Testbed for GNSS Adaptive Array Anti-Jamming Algorithms Accelerated by GPU.

    PubMed

    Xu, Hailong; Cui, Xiaowei; Lu, Mingquan

    2016-03-11

    Nowadays, software-defined radio (SDR) has become a common approach to evaluate new algorithms. However, in the field of Global Navigation Satellite System (GNSS) adaptive array anti-jamming, previous work has been limited due to the high computational power demanded by adaptive algorithms, and often lack flexibility and configurability. In this paper, the design and implementation of an SDR-based real-time testbed for GNSS adaptive array anti-jamming accelerated by a Graphics Processing Unit (GPU) are documented. This testbed highlights itself as a feature-rich and extendible platform with great flexibility and configurability, as well as high computational performance. Both Space-Time Adaptive Processing (STAP) and Space-Frequency Adaptive Processing (SFAP) are implemented with a wide range of parameters. Raw data from as many as eight antenna elements can be processed in real-time in either an adaptive nulling or beamforming mode. To fully take advantage of the parallelism resource provided by the GPU, a batched method in programming is proposed. Tests and experiments are conducted to evaluate both the computational and anti-jamming performance. This platform can be used for research and prototyping, as well as a real product in certain applications.

  19. The jamming transition in high dimension: an analytical study of the TAP equations and the effective thermodynamic potential

    NASA Astrophysics Data System (ADS)

    Altieri, Ada; Franz, Silvio; Parisi, Giorgio

    2016-09-01

    We present a parallel derivation of the Thouless-Anderson-Palmer (TAP) equations and of an effective thermodynamic potential for the negative perceptron and soft sphere models in high dimension. Both models are continuous constrained satisfaction problems with a critical jamming transition characterized by the same exponents. Our analysis reveals that a power expansion of the potential up to the second order constitutes a successful framework to approach the jamming points from the SAT phase (the region of the phase diagram where at least one configuration verifies all the constraints), where the ground-state energy is zero. An interesting outcome is that approaching the jamming line the effective thermodynamic potential has a logarithmic contribution, which turns out to be dominant in a proper scaling regime. Our approach is quite general and can be directly applied to other interesting models. Finally we study the spectrum of small harmonic fluctuations in the SAT phase recovering the typical scaling D(ω )˜ {ω2} below the cutoff frequency but a different behavior characterized by a non-trivial exponent above it.

  20. An SDR-Based Real-Time Testbed for GNSS Adaptive Array Anti-Jamming Algorithms Accelerated by GPU

    PubMed Central

    Xu, Hailong; Cui, Xiaowei; Lu, Mingquan

    2016-01-01

    Nowadays, software-defined radio (SDR) has become a common approach to evaluate new algorithms. However, in the field of Global Navigation Satellite System (GNSS) adaptive array anti-jamming, previous work has been limited due to the high computational power demanded by adaptive algorithms, and often lack flexibility and configurability. In this paper, the design and implementation of an SDR-based real-time testbed for GNSS adaptive array anti-jamming accelerated by a Graphics Processing Unit (GPU) are documented. This testbed highlights itself as a feature-rich and extendible platform with great flexibility and configurability, as well as high computational performance. Both Space-Time Adaptive Processing (STAP) and Space-Frequency Adaptive Processing (SFAP) are implemented with a wide range of parameters. Raw data from as many as eight antenna elements can be processed in real-time in either an adaptive nulling or beamforming mode. To fully take advantage of the parallelism resource provided by the GPU, a batched method in programming is proposed. Tests and experiments are conducted to evaluate both the computational and anti-jamming performance. This platform can be used for research and prototyping, as well as a real product in certain applications. PMID:26978363

  1. Traffic jam functions in a branched pathway from Notch activation to niche cell fate.

    PubMed

    Wingert, Lindsey; DiNardo, Stephen

    2015-07-01

    The niche directs key behaviors of its resident stem cells, and is thus crucial for tissue maintenance, repair and longevity. However, little is known about the genetic pathways that guide niche specification and development. The male germline stem cell niche in Drosophila houses two stem cell populations and is specified within the embryonic gonad, thus making it an excellent model for studying niche development. The hub cells that form the niche are specified early by Notch activation. Over the next few hours, these individual cells then cluster together and take up a defined position before expressing markers of hub cell differentiation. This timing suggests that there are other factors for niche development yet to be defined. Here, we have identified a role for the large Maf transcription factor Traffic jam (Tj) in hub cell specification downstream of Notch. Tj downregulation is the first detectable effect of Notch activation in hub cells. Furthermore, Tj depletion is sufficient to generate ectopic hub cells that can recruit stem cells. Surprisingly, ectopic niche cells in tj mutants remain dispersed in the absence of Notch activation. This led us to uncover a branched pathway downstream of Notch in which Bowl functions to direct hub cell assembly in parallel to Tj downregulation.

  2. Interface-induced anisotropy and the nematic glass/gel state in jammed aqueous Laponite suspensions.

    PubMed

    Shahin, A; Joshi, Yogesh M; Ramakrishna, S Anantha

    2011-12-06

    Aqueous suspensions of Laponite, a system composed of disklike nanoparticles, are found to develop optical birefringence over several days, well after the suspensions solidified because of jamming. The optical anisotropy is particularly enhanced near the air-Laponite suspension interface over length scales of several millimeters, which is beyond 5 orders of magnitude larger than the particle length scale, suggestive of large-scale ordering influenced by the interface. The orientational order increases with time and is always greater for higher concentration of salt, higher concentration of Laponite, and higher temperatures of the suspension. Although weakly birefringent, Laponite suspensions covered by paraffin oil do not show any enhancement in optical anisotropy near the interface compared to that in the bulk. We suggest that the expedited structure formation near the air interface propagating progressively inside the sample is responsible for the observed behavior. We discuss the observed nematic ordering in the context of glass-like and gel-like microstructure associated with aqueous Laponite suspensions.

  3. Motivation and intention to integrate physical activity into daily school life: the JAM World Record event.

    PubMed

    Vazou, Spyridoula; Vlachopoulos, Symeon P

    2014-11-01

    Research on the motivation of stakeholders to integrate physical activity into daily school life is limited. The purpose was to examine the motivation of stakeholders to participate in a world record physical activity event and whether motivation was associated with future intention to use activity breaks during the daily school life and future participation in a similar event. After the 2012 JAM (Just-a-Minute) World Record event, 686 adults (591 women; 76.1% participated for children <10 years) completed measures of motivational regulations and future intention to (a) use the activity breaks and (b) participate in the event. High intrinsic motivation and low extrinsic motivation and amotivation for participation in the next event were reported. Hierarchical regression analysis, controlling for age, gender, and occupation, showed that intrinsic forms of motivation positively predicted, whereas amotivation negatively predicted, future intention to participate in the event and use the activity breaks. Multivariate analyses of variance revealed that school-related participants were more intrinsically motivated and intended to use the activity breaks and repeat the event more than those who were not affiliated with a school. Nonschool participants reported higher extrinsic motivation and amotivation than school-related participants.

  4. No evidence for spectral jamming avoidance in echolocation behavior of foraging pipistrelle bats.

    PubMed

    Götze, Simone; Koblitz, Jens C; Denzinger, Annette; Schnitzler, Hans-Ulrich

    2016-08-09

    Frequency shifts in signals of bats flying near conspecifics have been interpreted as a spectral jamming avoidance response (JAR). However, several prerequisites supporting a JAR hypothesis have not been controlled for in previous studies. We recorded flight and echolocation behavior of foraging Pipistrellus pipistrellus while flying alone and with a conspecific and tested whether frequency changes were due to a spectral JAR with an increased frequency difference, or whether changes could be explained by other reactions. P. pipistrellus reacted to conspecifics with a reduction of sound duration and often also pulse interval, accompanied by an increase in terminal frequency. This reaction is typical of behavioral situations where targets of interest have captured the bat's attention and initiated a more detailed exploration. All observed frequency changes were predicted by the attention reaction alone, and do not support the JAR hypothesis of increased frequency separation. Reaction distances of 1-11 m suggest that the attention response may be elicited either by detection of the conspecific by short range active echolocation or by long range passive acoustic detection of echolocation calls.

  5. Turning intractable counting into sampling: Computing the configurational entropy of three-dimensional jammed packings

    NASA Astrophysics Data System (ADS)

    Martiniani, Stefano; Schrenk, K. Julian; Stevenson, Jacob D.; Wales, David J.; Frenkel, Daan

    2016-01-01

    We present a numerical calculation of the total number of disordered jammed configurations Ω of N repulsive, three-dimensional spheres in a fixed volume V . To make these calculations tractable, we increase the computational efficiency of the approach of Xu et al. [Phys. Rev. Lett. 106, 245502 (2011), 10.1103/PhysRevLett.106.245502] and Asenjo et al. [Phys. Rev. Lett. 112, 098002 (2014), 10.1103/PhysRevLett.112.098002] and we extend the method to allow computation of the configurational entropy as a function of pressure. The approach that we use computes the configurational entropy by sampling the absolute volume of basins of attraction of the stable packings in the potential energy landscape. We find a surprisingly strong correlation between the pressure of a configuration and the volume of its basin of attraction in the potential energy landscape. This relation is well described by a power law. Our methodology to compute the number of minima in the potential energy landscape should be applicable to a wide range of other enumeration problems in statistical physics, string theory, cosmology, and machine learning that aim to find the distribution of the extrema of a scalar cost function that depends on many degrees of freedom.

  6. Shear thickening in concentrated suspensions: phenomenology, mechanisms and relations to jamming

    NASA Astrophysics Data System (ADS)

    Brown, Eric; Jaeger, Heinrich M.

    2014-04-01

    Shear thickening is a type of non-Newtonian behavior in which the stress required to shear a fluid increases faster than linearly with shear rate. Many concentrated suspensions of particles exhibit an especially dramatic version, known as Discontinuous Shear Thickening (DST), in which the stress suddenly jumps with increasing shear rate and produces solid-like behavior. The best known example of such counter-intuitive response to applied stresses occurs in mixtures of cornstarch in water. Over the last several years, this shear-induced solid-like behavior together with a variety of other unusual fluid phenomena has generated considerable interest in the physics of densely packed suspensions. In this review, we discuss the common physical properties of systems exhibiting shear thickening, and different mechanisms and models proposed to describe it. We then suggest how these mechanisms may be related and generalized, and propose a general phase diagram for shear thickening systems. We also discuss how recent work has related the physics of shear thickening to that of granular materials and jammed systems. Since DST is described by models that require only simple generic interactions between particles, we outline the broader context of other concentrated many-particle systems such as foams and emulsions, and explain why DST is restricted to the parameter regime of hard-particle suspensions. Finally, we discuss some of the outstanding problems and emerging opportunities.

  7. Increasing the maximally random jammed density with electric field to reduce the fat level in chocolate

    NASA Astrophysics Data System (ADS)

    Tao, R.; Tang, H.

    Chocolate is one of the most popular food types and flavors in the world. Unfortunately, at present, chocolate products contain too much fat, leading to obesity. For example, a typical molding chocolate has various fat up to 40% in total and chocolate for covering ice cream has fat 50 -60%. Especially, as children are the leading chocolate consumers, reducing the fat level in chocolate products to make them healthier is important and urgent. While this issue was called into attention and elaborated in articles and books decades ago and led to some patent applications, no actual solution was found unfortunately. Why is reducing fat in chocolate so difficult? What is the underlying physical mechanism? We have found that this issue is deeply related to the basic science of soft matters, especially to their viscosity and maximally random jammed (MRJ) density φx. All chocolate productions are handling liquid chocolate, a suspension with cocoa solid particles in melted fat, mainly cocoa butter. The fat level cannot be lower than 1-φxin order to have liquid chocolate to flow. Here we show that that with application of an electric field to liquid chocolate, we can aggregate the suspended particles into prolate spheroids. This microstructure change reduces liquid chocolate's viscosity along the flow direction and increases its MRJ density significantly. Hence the fat level in chocolate can be effectively reduced. We are looking forward to a new class of healthier and tasteful chocolate coming to the market soon. Dept. of Physics, Temple Univ, Philadelphia, PA 19122.

  8. The Maf factor Traffic jam both enables and inhibits collective cell migration in Drosophila oogenesis.

    PubMed

    Gunawan, Felix; Arandjelovic, Mimi; Godt, Dorothea

    2013-07-01

    Border cell cluster (BCC) migration in the Drosophila ovary is an excellent system to study the gene regulatory network that enables collective cell migration. Here, we identify the large Maf transcription factor Traffic jam (Tj) as an important regulator of BCC migration. Tj has a multifaceted impact on the known core cascade that enables BCC motility, consisting of the Jak/Stat signaling pathway, the C/EBP factor Slow border cells (Slbo), and the downstream effector DE-cadherin (DEcad). The initiation of BCC migration coincides with a Slbo-dependent decrease in Tj expression. This reduction of Tj is required for normal BCC motility, as high Tj expression strongly impedes migration. At high concentration, Tj has a tripartite negative effect on the core pathway: a decrease in Slbo, an increase in the Jak/Stat inhibitor Socs36E, and a Slbo-independent reduction of DEcad. However, maintenance of a low expression level of Tj in the BCC during migration is equally important, as loss of tj function also results in a significant delay in migration concomitant with a reduction of Slbo and consequently of DEcad. Taken together, we conclude that the regulatory feedback loop between Tj and Slbo is necessary for achieving the correct activity levels of migration-regulating factors to ensure proper BCC motility.

  9. The Evolution of Force Distributions in Granular Materials Approaching the Jamming Transition

    NASA Astrophysics Data System (ADS)

    Corwin, Eric; Jaeger, Heinrich; Nagel, Sidney

    2004-03-01

    Jammed bead packs are capable of supporting a yield stress. Simulational studies [1,2] disagree about the behavior of the probability distribution of forces P(F) in bead packs near this yield stress. Using a photoelastic force measurement system we have investigated the force distribution in three-dimensional bead packs experiencing a range of shear stresses. We present data describing the evolution of P(F) as the shear stress is cycled from zero to values up to yield and back. We find a monotonic increase in the low force region (below the mean force) of P(F) with increasing shear stress below yield. We present additional data above yield in the flowing state and for packs cycled above yield and back. We discuss the implications of our results in the light of recent theoretical and simulational findings. [1] C.S. O'Hern, S.A. Langer, A.J. Liu, and S.R. Nagel, Phys. Rev. Lett. ,86 , 111 (2001). [2] A. Ferguson, B. Fisher, and B. Chakraborty, arXiv:cond-mat/0301201 (2003).

  10. Vestige of T = 0 jamming transition at finite temperature in 3D

    NASA Astrophysics Data System (ADS)

    Caswell, Thomas; Gardel, Margaret; Nagel, Sidney; Zhang, Zexin; Yodh, Arjun

    2012-02-01

    When a random packing of spheres at T = 0 is compressed to the jamming transition, the system becomes rigid and the first peak of the pair-correlation function, g(r), diverges [1]. We study the manifestation of this signature and the associated particle dynamics when the temperature, T, is no longer negligible. To this end, we employ a three-dimensional packing of monodisperse, micron-size, colloids made from n-isopropyl acrylimide (NIPAM). NIPAM particles change size and hence the packing fraction of the system in response to environmental temperature. Thus by changing sample temperature we can probe all packing fractions of interest using a single sample. These particles are compressible so the system can reach packing fractions and configurations inaccessible to hard colloids. We observe a vestige of the T = 0 divergence as a maximum in the first peak of g(r) versus packing fraction coincident with dynamical arrest of the particles. The general features in 3D are in agreement with a previous study in a two-dimensional bi-disperse NIPAM system [2]. We report the dependence of g(r) and particle motion on packing fraction. [1] C. S. O'Hern, et al., Phys. Rev. E 68, 011306 (2003). [2] Z. Zhang, N. Xu, et al., Nature 459, 230 (2009).

  11. No evidence for spectral jamming avoidance in echolocation behavior of foraging pipistrelle bats

    PubMed Central

    Götze, Simone; Koblitz, Jens C.; Denzinger, Annette; Schnitzler, Hans-Ulrich

    2016-01-01

    Frequency shifts in signals of bats flying near conspecifics have been interpreted as a spectral jamming avoidance response (JAR). However, several prerequisites supporting a JAR hypothesis have not been controlled for in previous studies. We recorded flight and echolocation behavior of foraging Pipistrellus pipistrellus while flying alone and with a conspecific and tested whether frequency changes were due to a spectral JAR with an increased frequency difference, or whether changes could be explained by other reactions. P. pipistrellus reacted to conspecifics with a reduction of sound duration and often also pulse interval, accompanied by an increase in terminal frequency. This reaction is typical of behavioral situations where targets of interest have captured the bat’s attention and initiated a more detailed exploration. All observed frequency changes were predicted by the attention reaction alone, and do not support the JAR hypothesis of increased frequency separation. Reaction distances of 1–11 m suggest that the attention response may be elicited either by detection of the conspecific by short range active echolocation or by long range passive acoustic detection of echolocation calls. PMID:27502900

  12. Effects of JAM-A deficiency or blocking antibodies on neutrophil migration and lung injury in a murine model of ALI.

    PubMed

    Lakshmi, Sowmya P; Reddy, Aravind T; Naik, Meghna U; Naik, Ulhas P; Reddy, Raju C

    2012-11-01

    Transmigration of neutrophils (PMNs) from the vasculature into inflamed tissues, mediated by interactions between PMNs and adhesion molecules on endothelial cells, is an essential aspect of inflammation. The crucial adhesion molecules include junctional adhesion molecule (JAM)-A. Investigation of the role of this molecule in models of inflammatory disease has been limited, however, and results in different disease models have varied. No previous study has addressed JAM-A in lung disease or effects on oxidant stress and proinflammatory cytokines. We use JAM-A knockout mice and blocking antibodies to investigate the role of JAM-A in a murine model of acute lung injury (ALI). With either experimental system, we find that absence of JAM-A activity significantly reduces migration of PMNs into the alveolar space, with a resulting decrease in oxidative stress. However, there is no reduction in whole lung activity of PMN-associated myeloperoxidase, presumably reflecting the histologically observed retention of PMNs in lung tissue. Activity of these retained PMNs may account for our failure to find significant change in markers of lung oxidative stress or cytokine and chemokine levels in plasma, lung, and bronchoalveolar lavage fluid. We likewise see no JAM-A-related changes in markers of capillary permeability or lung injury. A similar lack of congruence between effects on PMN migration and tissue injury has been reported in other disease models and for other adhesion molecules in models of ALI. Our results thus confirm the crucial role of JAM-A in PMN transmigration but demonstrate that transmigration is not essential for other aspects of inflammation or for lung injury in ALI.

  13. JAM-A and aPKC: A close pair during cell-cell contact maturation and tight junction formation in epithelial cells.

    PubMed

    Ebnet, Klaus

    2013-01-01

    Cell-cell adhesion plays a critical role in the formation of barrier-forming epithelia. The molecules which mediate cell-cell adhesion frequently act as signaling molecules by recruiting and/or assembling cytoplasmic protein complexes. Junctional Adhesion Molecule (JAM)-A interacts with the cell polarity protein PAR-3, a member of the PAR-3-aPKC-PAR-6 complex, which regulates the formation of cell-cell contacts and the development of tight junctions (TJs). In our recent study we found that JAM-A is localized at primordial, spot-like cell-cell junctions (pAJs) in a non-phosphorylated form. After the recruitment of the PAR-aPKC complex and its activation at pAJs, aPKC phosphorylates JAM-A at Ser285 to promote the maturation of immature junctions. In polarized epithelial cells, aPKC phosphorylates JAM-A selectively at the TJs to maintain the barrier function of TJs. Thus, through mutual regulation, JAM-A and aPKC form a functional unit that regulates the establishment of barrier-forming junctions in vertebrate epithelial cells.

  14. [Jamming a child's finger: an experimental study to determine elastic resistance and the point of onset of bone/joint deformation].

    PubMed

    Hohendorff, B; Weidermann, C; Pollinger, P; Burkhart, K; Prommersberger, K-J; Müller, L P

    2012-01-01

    Knowledge of the elastic properties of children's fingers is very important to understand the potential hazard for jamming injuries that exists in modern motor vehicles with automatic power-operated windows. This study determined the elastic resistance and the point of onset of bone/joint deformation at each of 5 different jam positions of a child's finger under continuous dorsal-palmar compression. An unembalmed finger that recently had been surgically removed from a polydactylic 8 month-old girl was jammed in a custom hydraulic test apparatus. A subminiature force sensor and an electrometric path sensor measured force and deflection values. To visualise the respective point of onset of bone/joint deformation, jamming of the finger was performed under fluoroscopy. The mean force at the point of onset of bone/joint deformation was 78.4 N. The current statutory limit of 100 N for the maximum closing force of an automatic power-operated motor vehicle window is thus well beyond the point at which finger injuries can occur in children. Assuming finger injuries in children can occur at a jamming force below approximately 80 N, a reduction of the statutory limit to us higher than 50 N is reasonable.

  15. The jammed-to-mobile transition in frozen sand under stress

    NASA Astrophysics Data System (ADS)

    Durham, W. B.; Pathare, A.; Stern, L. A.; Lenferink, H. J.

    2009-12-01

    We conducted laboratory deformation experiments on sand-rich mixtures of sand + ice under sufficient confinement to inhibit macroscopic dilation. Dry sand packs constrained not to dilate when they are under a shearing load reach an immobile or “jammed” state, as load-supporting “force chains” of sand particles form after a small amount of strain and cannot be broken without volume expansion. Our research objective here was to find the minimum volume fraction of ice required to overcome the jammed state. The result surprised us: the required volume fraction is not a fixed number, but depends on the packing characteristics of the sand in question. Experiments were carried out in a triaxial gas deformation rig at confining pressures (60 - 200 MPa) always at least twice the level of differential stresses (11 - 50 MPa) in order to suppress dilatancy. Run temperatures were 223 - 243 K. We used two kinds of quartz sand, one well-sorted, with a maximum dry packing density (MDPD) of about 0.68 sand by volume, and the other a mixture of two sizes, having a higher MDPD of 0.75. Ice volume fraction ranged from well below saturation (where unfilled porosity necessarily remained) to slightly greater than the value of porosity at MDPD. We tested these frozen sands in compression under constant applied differential stress (creep). Strain rates were very low at these conditions, and runs took days or weeks to complete. The amount of strain required to reach the jammed state in ice-undersaturated samples was approximately 0.04, and did not show an obvious dependence on ice content. For both sands, the onset of mobility occurred at approximately 5% above the value of pore volume at MDPD. Furthermore, viscosity of mobile frozen sand near the transition point was extremely sensitive to ice fraction, which implies that at geologic strain rates, far slower than we can reach in the lab, the ice fraction at transition may lie closer to that at MDPD. Cryogenic scanning electron

  16. Optimal Predator Risk Assessment by the Sonar-Jamming Arctiine Moth Bertholdia trigona

    PubMed Central

    Corcoran, Aaron J.; Wagner, Ryan D.; Conner, William E.

    2013-01-01

    Nearly all animals face a tradeoff between seeking food and mates and avoiding predation. Optimal escape theory holds that an animal confronted with a predator should only flee when benefits of flight (increased survival) outweigh the costs (energetic costs, lost foraging time, etc.). We propose a model for prey risk assessment based on the predator's stage of attack. Risk level should increase rapidly from when the predator detects the prey to when it commits to the attack. We tested this hypothesis using a predator – the echolocating bat – whose active biosonar reveals its stage of attack. We used a prey defense – clicking used for sonar jamming by the tiger moth Bertholdia trigona– that can be readily studied in the field and laboratory and is enacted simultaneously with evasive flight. We predicted that prey employ defenses soon after being detected and targeted, and that prey defensive thresholds discriminate between legitimate predatory threats and false threats where a nearby prey is attacked. Laboratory and field experiments using playbacks of ultrasound signals and naturally behaving bats, respectively, confirmed our predictions. Moths clicked soon after bats detected and targeted them. Also, B. trigona clicking thresholds closely matched predicted optimal thresholds for discriminating legitimate and false predator threats for bats using search and approach phase echolocation – the period when bats are searching for and assessing prey. To our knowledge, this is the first quantitative study to correlate the sensory stimuli that trigger defensive behaviors with measurements of signals provided by predators during natural attacks in the field. We propose theoretical models for explaining prey risk assessment depending on the availability of cues that reveal a predator's stage of attack. PMID:23671686

  17. Characterization of maximally random jammed sphere packings. II. Correlation functions and density fluctuations

    NASA Astrophysics Data System (ADS)

    Klatt, Michael A.; Torquato, Salvatore

    2016-08-01

    In the first paper of this series, we introduced Voronoi correlation functions to characterize the structure of maximally random jammed (MRJ) sphere packings across length scales. In the present paper, we determine a variety of different correlation functions that arise in rigorous expressions for the effective physical properties of MRJ sphere packings and compare them to the corresponding statistical descriptors for overlapping spheres and equilibrium hard-sphere systems. Such structural descriptors arise in rigorous bounds and formulas for effective transport properties, diffusion and reactions constants, elastic moduli, and electromagnetic characteristics. First, we calculate the two-point, surface-void, and surface-surface correlation functions, for which we derive explicit analytical formulas for finite hard-sphere packings. We show analytically how the contact Dirac delta function contribution to the pair correlation function g2(r ) for MRJ packings translates into distinct functional behaviors of these two-point correlation functions that do not arise in the other two models examined here. Then we show how the spectral density distinguishes the MRJ packings from the other disordered systems in that the spectral density vanishes in the limit of infinite wavelengths; i.e., these packings are hyperuniform, which means that density fluctuations on large length scales are anomalously suppressed. Moreover, for all model systems, we study and compute exclusion probabilities and pore size distributions, as well as local density fluctuations. We conjecture that for general disordered hard-sphere packings, a central limit theorem holds for the number of points within an spherical observation window. Our analysis links problems of interest in material science, chemistry, physics, and mathematics. In the third paper of this series, we will evaluate bounds and estimates of a host of different physical properties of the MRJ sphere packings that are based on the

  18. Secure Multiuser Communications in Wireless Sensor Networks with TAS and Cooperative Jamming

    PubMed Central

    Yang, Maoqiang; Zhang, Bangning; Huang, Yuzhen; Yang, Nan; Guo, Daoxing; Gao, Bin

    2016-01-01

    In this paper, we investigate the secure transmission in wireless sensor networks (WSNs) consisting of one multiple-antenna base station (BS), multiple single-antenna legitimate users, one single-antenna eavesdropper and one multiple-antenna cooperative jammer. In an effort to reduce the scheduling complexity and extend the battery lifetime of the sensor nodes, the switch-and-stay combining (SSC) scheduling scheme is exploited over the sensor nodes. Meanwhile, transmit antenna selection (TAS) is employed at the BS and cooperative jamming (CJ) is adopted at the jammer node, aiming at achieving a satisfactory secrecy performance. Moreover, depending on whether the jammer node has the global channel state information (CSI) of both the legitimate channel and the eavesdropper’s channel, it explores a zero-forcing beamforming (ZFB) scheme or a null-space artificial noise (NAN) scheme to confound the eavesdropper while avoiding the interference to the legitimate user. Building on this, we propose two novel hybrid secure transmission schemes, termed TAS-SSC-ZFB and TAS-SSC-NAN, for WSNs. We then derive the exact closed-form expressions for the secrecy outage probability and the effective secrecy throughput of both schemes to characterize the secrecy performance. Using these closed-form expressions, we further determine the optimal switching threshold and obtain the optimal power allocation factor between the BS and jammer node for both schemes to minimize the secrecy outage probability, while the optimal secrecy rate is decided to maximize the effective secrecy throughput for both schemes. Numerical results are provided to verify the theoretical analysis and illustrate the impact of key system parameters on the secrecy performance. PMID:27845753

  19. On the appearance of traffic jams in a long chain with a shortcut in the bulk

    NASA Astrophysics Data System (ADS)

    Bunzarova, N. Zh.; Pesheva, N. C.; Brankov, J. G.

    2015-11-01

    The Totally Asymmetric Simple Exclusion Process (TASEP) is studied on open long chains with a shunted section between two simple chain segments in the maximum current phase. The reference case, when the two branches are chosen with equal probability, is considered. The conditions for the occurrence of traffic jams and their properties are investigated both within the effective rates approximation and by extensive Monte Carlo simulations for arbitrary length of the shortcut. Our main results are: (1) For any length of the shortcut and any values of the external rates in the domain of the maximum current phase, there exists a position of the shortcut where the shunted segment is in a phase of coexistence with a completely delocalized domain wall; (2) The main features of the coexistence phase and the density profiles in the whole network are well described by the domain wall theory. Apart from the small inter-chain correlations, they depend only on the current through the shortcut; (3) The model displays unexpected features: (a) the current through the longer shunted segment is larger than the current through the shortcut, and (b) the delocalized domain wall in the coexistence phase of the long shunted segment induces similar behavior even in shortcuts containing a small number of sites; (4) From the viewpoint of vehicular traffic, most comfortable conditions for the drivers are provided when the shortcut is shifted downstream from the position of coexistence, when both the shunted segment and the shortcut exhibit low-density lamellar flow. Most unfavorable is the opposite case of upstream shifted shortcut, when both the shunted segment and the shortcut are in a high-density phase describing congested traffic of slowly moving cars. The above results are relevant also to phenomena like crowding of molecular motors moving along twisted protofilaments.

  20. Beyond the Jamming Avoidance Response: weakly electric fish respond to the envelope of social electrosensory signals.

    PubMed

    Stamper, Sarah A; Madhav, Manu S; Cowan, Noah J; Fortune, Eric S

    2012-12-01

    Recent studies have shown that central nervous system neurons in weakly electric fish respond to artificially constructed electrosensory envelopes, but the behavioral relevance of such stimuli is unclear. Here we investigate the possibility that social context creates envelopes that drive behavior. When Eigenmannia virescens are in groups of three or more, the interactions between their pseudo-sinusoidal electric fields can generate 'social envelopes'. We developed a simple mathematical prediction for how fish might respond to such social envelopes. To test this prediction, we measured the responses of E. virescens to stimuli consisting of two sinusoids, each outside the range of the Jamming Avoidance Response (JAR), that when added to the fish's own electric field produced low-frequency (below 10 Hz) social envelopes. Fish changed their electric organ discharge (EOD) frequency in response to these envelopes, which we have termed the Social Envelope Response (SER). In 99% of trials, the direction of the SER was consistent with the mathematical prediction. The SER was strongest in response to the lowest initial envelope frequency tested (2 Hz) and depended on stimulus amplitude. The SER generally resulted in an increase of the envelope frequency during the course of a trial, suggesting that this behavior may be a mechanism for avoiding low-frequency social envelopes. Importantly, the direction of the SER was not predicted by the superposition of two JAR responses: the SER was insensitive to the amplitude ratio between the sinusoids used to generate the envelope, but was instead predicted by the sign of the difference of difference frequencies.

  1. Secure Multiuser Communications in Wireless Sensor Networks with TAS and Cooperative Jamming.

    PubMed

    Yang, Maoqiang; Zhang, Bangning; Huang, Yuzhen; Yang, Nan; Guo, Daoxing; Gao, Bin

    2016-11-12

    In this paper, we investigate the secure transmission in wireless sensor networks (WSNs) consisting of one multiple-antenna base station (BS), multiple single-antenna legitimate users, one single-antenna eavesdropper and one multiple-antenna cooperative jammer. In an effort to reduce the scheduling complexity and extend the battery lifetime of the sensor nodes, the switch-and-stay combining (SSC) scheduling scheme is exploited over the sensor nodes. Meanwhile, transmit antenna selection (TAS) is employed at the BS and cooperative jamming (CJ) is adopted at the jammer node, aiming at achieving a satisfactory secrecy performance. Moreover, depending on whether the jammer node has the global channel state information (CSI) of both the legitimate channel and the eavesdropper's channel, it explores a zero-forcing beamforming (ZFB) scheme or a null-space artificial noise (NAN) scheme to confound the eavesdropper while avoiding the interference to the legitimate user. Building on this, we propose two novel hybrid secure transmission schemes, termed TAS-SSC-ZFB and TAS-SSC-NAN, for WSNs. We then derive the exact closed-form expressions for the secrecy outage probability and the effective secrecy throughput of both schemes to characterize the secrecy performance. Using these closed-form expressions, we further determine the optimal switching threshold and obtain the optimal power allocation factor between the BS and jammer node for both schemes to minimize the secrecy outage probability, while the optimal secrecy rate is decided to maximize the effective secrecy throughput for both schemes. Numerical results are provided to verify the theoretical analysis and illustrate the impact of key system parameters on the secrecy performance.

  2. Flying in silence: Echolocating bats cease vocalizing to avoid sonar jamming

    PubMed Central

    Chiu, Chen; Xian, Wei; Moss, Cynthia F.

    2008-01-01

    Although it has been recognized that echolocating bats may experience jamming from the signals of conspecifics, research on this problem has focused exclusively on time-frequency adjustments in the emitted signals to minimize interference. Here, we report a surprising new strategy used by bats to avoid interference, namely silence. In a quantitative study of flight and vocal behavior of the big brown bat (Eptesicus fuscus), we discovered that the bat spends considerable time in silence when flying with conspecifics. Silent behavior, defined here as at least one bat in a pair ceasing vocalization for more than 0.2 s (200 ms), occurred as much as 76% of the time (mean of 40% across 7 pairs) when their separation was shorter than 1 m, but only 0.08% when a single bat flew alone. Spatial separation, heading direction, and similarity in call design of paired bats were related to the prevalence of this silent behavior. Our data suggest that the bat uses silence as a strategy to avoid interference from sonar vocalizations of its neighbor, while listening to conspecific-generated acoustic signals to guide orientation. Based on previous neurophysiological studies of the bat's auditory midbrain, we hypothesize that environmental sounds (including vocalizations produced by other bats) and active echolocation evoke neural activity in different populations of neurons. Our findings offer compelling evidence that the echolocating bat switches between active and passive sensing to cope with a complex acoustic environment, and these results hold broad implications for research on navigation and communication throughout the animal kingdom. PMID:18725624

  3. Mapping stiffness perception in the brain with an fMRI-compatible particle-jamming haptic interface.

    PubMed

    Menon, Samir; Stanley, Andrew A; Zhu, Jack; Okamura, Allison M; Khatib, Oussama

    2014-01-01

    We demonstrate reliable neural responses to changes in haptic stiffness perception using a functional magnetic resonance imaging (fMRI) compatible particle-jamming haptic interface. Our haptic interface consists of a silicone tactile surface whose stiffness we can control by modulating air-pressure in a sub-surface pouch of coarsely ground particles. The particles jam together as the pressure decreases, which stiffens the surface. During fMRI acquisition, subjects performed a constant probing task, which involved continuous contact between the index fingertip and the interface and rhythmic increases and decreases in fingertip force (1.6 Hz) to probe stiffness. Without notifying subjects, we randomly switched the interface's stiffness (switch time, 300-500 ms) from soft (200 N/m) to hard (1400 N/m). Our experiment design's constant motor activity and cutaneous tactile sensation helped disassociate neural activation for both from stiffness perception, which helped localized it to a narrow region in somatosensory cortex near the supra-marginal gyrus. Testing different models of neural activation, we found that assuming indepedent stiffness-change responses at both soft-hard and hard-soft transitions provides the best explanation for observed fMRI measurements (three subjects; nine four-minute scan runs each). Furthermore, we found that neural activation related to stiffness-change and absolute stiffness can be localized to adjacent but disparate anatomical locations. We also show that classical finger-tapping experiments activate a swath of cortex and are not suitable for localizing stiffness perception. Our results demonstrate that decorrelating motor and sensory neural activation is essential for characterizing somatosensory cortex, and establish particle-jamming haptics as an attractive low-cost method for fMRI experiments.

  4. The effect of bed sediment variability on the development of boulder jams and their role in stream profile development

    NASA Astrophysics Data System (ADS)

    Prestegaard, K.; McLeaf, A.

    2006-05-01

    Bedrock erosion potential is often assumed to be proportional to local stream power. Bedrock abrasion can only take place if a)the bedrock is exposed to suspended sediments during some portion of flood flows, and b)if the hydraulics of the flow sweeps suspended sediment near the bed. Large bed particles (boulders, cobbles) are effective features at protecting bedrock from abrasion. The purpose of this investigation is to examine the relationship between boulder organization and channel knickpoints, and to determine mechanisms by which boulders can be stripped from the channel bed. The main study site for this investigation is the bedrock and boulder-bedded section of the Northwest Branch of the Anacostia River, extending from a subtle knickpoint at the Piedmont-Coastal plain boundary to a prominent knickpoint 10 km upstream. We sampled particle size distribution and particle size arrangement at alluvial sites along the profile, and conducted detailed surveys of bed surface and flood water-surface profiles near the two major knickpoints. Surveys of flood water-surface profiles at the larger, upstream knickpoint indicated that a bolder jam, three particle diameters high (~2 m) focused erosive, plunging flows onto the bedrock surfce. An adjacent bedrock knickpoint generated skimming flows, with flow separation near the bed, which protected the bedrock from erosion. Thus, boulder particle jams can protect the bed until they are undermined by plunging flows, which they help to create by increasing step height. The downstream "remnant" knickpoint appears to be an undermined particle jam. The deposited boulders are deposited upon and protect the bedrock bed as the knickpoint migrates upstream. Thus, the size and organization of large bed particles in rivers can serve to sequentially both protect and focus erosional energy on the bedrock channel during knickpoint migration.

  5. Junctional adhesion molecule C (JAM-C) distinguishes CD27+ germinal center B lymphocytes from non-germinal center cells and constitutes a new diagnostic tool for B-cell malignancies.

    PubMed

    Ody, C; Jungblut-Ruault, S; Cossali, D; Barnet, M; Aurrand-Lions, M; Imhof, B A; Matthes, T

    2007-06-01

    Differentiation of naïve B cells into plasma cells or memory cells occurs in the germinal centers (GCs) of lymph follicles or alternatively via a GC- and T-cell-independent pathway. It is currently assumed that B-cell lymphomas correlate to normal B-cell differentiation stages, but the precise correlation of several B-cell lymphomas to these two pathways remains controversial. In the present report, we describe the junctional adhesion molecule C (JAM-C), currently identified at the cell-cell border of endothelial cells, as a new B-cell marker with a tightly regulated expression during B-cell differentiation. Expression of JAM-C in tonsils allows distinction between two CD27+ B-cell subpopulations: JAM-C- GC B cells and JAM-C+ non-germinal B cells. The expression of JAM-C in different B-cell lymphomas reveals a disease-specific pattern and allows a clear distinction between JAM-C- lymphoproliferative syndromes (chronic lymphocytic leukemia, mantle cell lymphoma and follicular lymphoma) and JAM-C+ ones (hairy cell leukemia, marginal zone B-cell lymphoma). Therefore, we propose JAM-C as a new identification tool in B-cell lymphoma diagnosis.

  6. Coherent detection of frequency-hopped quadrature modulations in the presence of jamming. I - QPSK and QASK modulations

    NASA Technical Reports Server (NTRS)

    Simon, M. K.; Polydoros, A.

    1981-01-01

    This paper examines the performance of coherent QPSK and QASK systems combined with FH or FH/PN spread spectrum techniques in the presence of partial-band multitone or noise jamming. The worst-case jammer and worst-case performance are determined as functions of the signal-to-background noise ratio (SNR) and signal-to-jammer power ratio (SJR). Asymptotic results for high SNR are shown to have a linear dependence between the jammer's optimal power allocation and the system error probability performance.

  7. CASK interacts with PMCA4b and JAM-A on the mouse sperm flagellum to regulate Ca2+ homeostasis and motility.

    PubMed

    Aravindan, Rolands G; Fomin, Victor P; Naik, Ulhas P; Modelski, Mark J; Naik, Meghna U; Galileo, Deni S; Duncan, Randall L; Martin-Deleon, Patricia A

    2012-08-01

    Deletion of the highly conserved gene for the major Ca(2+) efflux pump, Plasma membrane calcium/calmodulin-dependent ATPase 4b (Pmca4b), in the mouse leads to loss of progressive and hyperactivated sperm motility and infertility. Here we first demonstrate that compared to wild-type (WT), Junctional adhesion molecule-A (Jam-A) null sperm, previously shown to have motility defects and an abnormal mitochondrial phenotype reminiscent of that seen in Pmca4b nulls, exhibit reduced (P < 0.001) ATP levels, significantly (P < 0.001) greater cytosolic Ca(2+) concentration ([Ca(2+) ](c)) and ∼10-fold higher mitochondrial sequestration, indicating Ca(2+) overload. Investigating the mechanism involved, we used co-immunoprecipitation studies to show that CASK (Ca(2+) /calmodulin-dependent serine kinase), identified for the first time on the sperm flagellum where it co-localizes with both PMCA4b and JAM-A on the proximal principal piece, acts as a common interacting partner of both. Importantly, CASK binds alternatively and non-synergistically with each of these molecules via its single PDZ (PDS-95/Dlg/ZO-1) domain to either inhibit or promote efflux. In the absence of CASK-JAM-A interaction in Jam-A null sperm, CASK-PMCA4b interaction is increased, resulting in inhibition of PMCA4b's enzymatic activity, consequent Ca(2+) accumulation, and a ∼6-fold over-expression of constitutively ATP-utilizing CASK, compared to WT. Thus, CASK negatively regulates PMCA4b by directly binding to it and JAM-A positively regulates it indirectly through CASK. The decreased motility is likely due to the collateral net deficit in ATP observed in nulls. Our data indicate that Ca(2+) homeostasis in sperm is maintained by the relative ratios of CASK-PMCA4b and CASK-JAM-A interactions.

  8. Defining and quantifying frustration in the energy landscape: Applications to atomic and molecular clusters, biomolecules, jammed and glassy systems

    NASA Astrophysics Data System (ADS)

    de Souza, V. K.; Stevenson, J. D.; Niblett, S. P.; Farrell, J. D.; Wales, D. J.

    2017-03-01

    The emergence of observable properties from the organisation of the underlying potential energy landscape is analysed, spanning a full range of complexity from self-organising to glassy and jammed systems. The examples include atomic and molecular clusters, a β-barrel protein, the GNNQQNY peptide dimer, and models of condensed matter that exhibit structural glass formation and jamming. We have considered measures based on several different properties, namely, the Shannon entropy, an equilibrium thermodynamic measure that uses a sample of local minima, and indices that require additional information about the connections between local minima in the form of transition states. A frustration index is defined that correlates directly with key properties that distinguish relaxation behaviour within this diverse set. The index uses the ratio of the energy barrier to the energy difference with reference to the global minimum. The contributions for each local minimum are weighted by the equilibrium occupation probabilities. Hence we obtain fundamental insight into the connections and distinctions between systems that cover the continuum from efficient structure-seekers to landscapes that exhibit broken ergodicity and rare event dynamics.

  9. Reconfiguration of a flexible fiber immersed in a 2D dense granular flow close to the jamming transition

    NASA Astrophysics Data System (ADS)

    Kolb, Evelyne; Algarra, Nicolas; Vandembroucq, Damien; Lazarus, Arnaud

    2015-11-01

    We propose a new fluid/structure interaction in the unusual case of a dense granular medium flowing against an elastic fibre acting as a flexible intruder. We experimentally studied the deflection of a mylar flexible beam clamped at one side, the other free side facing a 2D granular flow in a horizontal cell moving at a constant velocity. We investigated the reconfiguration of the fibre as a function of the fibre's rigidity and of the granular packing fraction close but below the jamming in 2D. Imposing the fibre geometry like its length or thickness sets the critical buckling force the fibre is able to resist if it was not supported by lateral grains, while increasing the granular packing fraction might laterally consolidate the fibre and prevent it from buckling. But on the other side, the approach to jamming transition by increasing the granular packing fraction will be characterized by a dramatically increasing size of the cluster of connected grains forming a solid block acting against the fibre, which might promote the fibre's deflection. Thus, we investigated the granular flow fields, the fibre's deflexion as well as the forces experienced by the fibre and compared them with theoretical predictions from elastica for different loadings along the fibre. PMMH, CNRS UMR 7636, UPMC, ESPCI-ParisTech, 10 rue Vauquelin, 75231 Paris Cedex 05, France.

  10. Apparent viscosity and particle pressure of a concentrated suspension of non-Brownian hard spheres near the jamming transition.

    PubMed

    Mills, P; Snabre, P

    2009-11-01

    We consider the steady shear flow of a homogeneous and dense assembly of hard spheres suspended in a Newtonian viscous fluid. In a first part, a mean-field approach based on geometric arguments is used to determine the viscous dissipation in a dense isotropic suspension of smooth hard spheres and the hydrodynamic contribution to the suspension viscosity. In a second part, we consider the coexistence of transient solid clusters coupled to regions with free flowing particles near the jamming transition. The fraction of particles in transient clusters is derived through the Landau-Ginzburg concepts for first-order phase transition with an order parameter corresponding to the proportion of "solid" contacts. A state equation for the fraction of particle-accessible volume is introduced to derive the average normal stresses and a constitutive law that relates the total shear stress to the shear rate. The analytical expression of the average normal stresses well accounts for numerical or experimental evaluation of the particle pressure and non-equilibrium osmotic pressure in a dense sheared suspension. Both the friction level between particles and the suspension dilatancy are shown to determine the singularity of the apparent shear viscosity and the flow stability near the jamming transition. The model further predicts a Newtonian behavior for a concentrated suspension of neutrally buoyant particles and no shear thinning behavior in relation with the shear liquefaction of transient solid clusters.

  11. Geologic map of the Jam Up Cave and Pine Crest quadrangles, Shannon, Texas, and Howell Counties, Missouri

    USGS Publications Warehouse

    Weary, David J.; Orndorff, Randall C.; Repetski, John E.

    2013-01-01

    The Jam Up Cave and Pine Crest 7.5-minute quadrangles are located in south-central Missouri within the Salem Plateau region of the Ozark Plateaus physiographic province. About 2,400 to 3,100 feet (ft) of flat-lying to gently dipping Lower Paleozoic sedimentary rocks, mostly dolomite, chert, sandstone, and orthoquartzite, overlie Mesoproterozoic igneous basement rocks. Unconsolidated residuum, colluvium, terrace deposits, and alluvium overlie the sedimentary rocks. Numerous karst features, such as sinkholes, caves, and springs, have formed in the carbonate rocks. Many streams are spring fed. The topography is a dissected karst plain with elevations ranging from about 690 ft where the Jacks Fork River exits the northeastern corner of the Jam Up Cave quadrangle to about 1,350 ft in upland areas along the north-central edge and southwestern corner of the Pine Crest quadrangle. The most prominent physiographic feature is the valley of the Jacks Fork River. This reach of the upper Jacks Fork, with its clean, swiftly-flowing water confined by low cliffs and bluffs, provides one of the most beautiful canoe float trips in the nation. Most of the land in the quadrangles is privately owned and used primarily for grazing cattle and horses and growing timber. A large minority of the land within the quadrangles is publicly owned by the Ozark National Scenic Riverways of the National Park Service. Geologic mapping for this investigation was conducted in 2005 and 2006.

  12. Equilibrium phase behavior and maximally random jammed state of truncated tetrahedra.

    PubMed

    Chen, Duyu; Jiao, Yang; Torquato, Salvatore

    2014-07-17

    Numerous recent investigations have been devoted to the determination of the equilibrium phase behavior and packing characteristics of hard nonspherical particles, including ellipsoids, superballs, and polyhedra, to name but just a few shapes. Systems of hard nonspherical particles exhibit a variety of stable phases with different degrees of translational and orientational order, including isotropic liquid, solid crystal, rotator and a variety of liquid crystal phases. In this paper, we employ a Monte Carlo implementation of the adaptive-shrinking-cell (ASC) numerical scheme and free-energy calculations to ascertain with high precision the equilibrium phase behavior of systems of congruent Archimedean truncated tetrahedra over the entire range of possible densities up to the maximal nearly space-filling density. In particular, we find that the system undergoes two first-order phase transitions as the density increases: first a liquid-solid transition and then a solid-solid transition. The isotropic liquid phase coexists with the Conway-Torquato (CT) crystal phase at intermediate densities, verifying the result of a previous qualitative study [ J. Chem. Phys. 2011 , 135 , 151101 ]. The freezing- and melting-point packing fractions for this transition are respectively ϕF = 0.496 ± 0.006 and ϕM = 0.591 ± 0.005. At higher densities, we find that the CT phase undergoes another first-order phase transition to one associated with the densest-known crystal, with coexistence densities in the range ϕ ∈ [0.780 ± 0.002, 0.802 ± 0.003]. We find no evidence for stable rotator (or plastic) or nematic phases. We also generate the maximally random jammed (MRJ) packings of truncated tetrahedra, which may be regarded to be the glassy end state of a rapid compression of the liquid. Specifically, we systematically study the structural characteristics of the MRJ packings, including the centroidal pair correlation function, structure factor and orientational pair correlation

  13. High-Performance Anti-Retransmission Deception Jamming Utilizing Range Direction Multiple Input and Multiple Output (MIMO) Synthetic Aperture Radar (SAR)

    PubMed Central

    Wang, Ruijia; Chen, Jie; Wang, Xing; Sun, Bing

    2017-01-01

    Retransmission deception jamming seriously degrades the Synthetic Aperture Radar (SAR) detection efficiency and can mislead SAR image interpretation by forming false targets. In order to suppress retransmission deception jamming, this paper proposes a novel multiple input and multiple output (MIMO) SAR structure range direction MIMO SAR, whose multiple channel antennas are vertical to the azimuth. First, based on the multiple channels of range direction MIMO SAR, the orthogonal frequency division multiplexing (OFDM) linear frequency modulation (LFM) signal was adopted as the transmission signal of each channel, which is defined as a sub-band signal. This sub-band signal corresponds to the transmission channel. Then, all of the sub-band signals are modulated with random initial phases and concurrently transmitted. The signal form is more complex and difficult to intercept. Next, the echoes of the sub-band signal are utilized to synthesize a wide band signal after preprocessing. The proposed method will increase the signal to interference ratio and peak amplitude ratio of the signal to resist retransmission deception jamming. Finally, well-focused SAR imagery is obtained using a conventional imaging method where the retransmission deception jamming strength is degraded and defocused. Simulations demonstrated the effectiveness of the proposed method. PMID:28075367

  14. Teen Bands to Battle on a National Stage: NAMM Expands Its SchoolJam Showcase with a Little Help from MENC

    ERIC Educational Resources Information Center

    Giordano, Geoff

    2009-01-01

    SchoolJam, a popular teen musicians' showcase in Texas that provides recognition for young performers as well as funding for their school music programs, is about to go nationwide. The competition, which NAMM, the International Music Products Association, brought to the United States from Germany in 2007, allows groups of musicians age 13 to 18 to…

  15. High-Performance Anti-Retransmission Deception Jamming Utilizing Range Direction Multiple Input and Multiple Output (MIMO) Synthetic Aperture Radar (SAR).

    PubMed

    Wang, Ruijia; Chen, Jie; Wang, Xing; Sun, Bing

    2017-01-09

    Retransmission deception jamming seriously degrades the Synthetic Aperture Radar (SAR) detection efficiency and can mislead SAR image interpretation by forming false targets. In order to suppress retransmission deception jamming, this paper proposes a novel multiple input and multiple output (MIMO) SAR structure range direction MIMO SAR, whose multiple channel antennas are vertical to the azimuth. First, based on the multiple channels of range direction MIMO SAR, the orthogonal frequency division multiplexing (OFDM) linear frequency modulation (LFM) signal was adopted as the transmission signal of each channel, which is defined as a sub-band signal. This sub-band signal corresponds to the transmission channel. Then, all of the sub-band signals are modulated with random initial phases and concurrently transmitted. The signal form is more complex and difficult to intercept. Next, the echoes of the sub-band signal are utilized to synthesize a wide band signal after preprocessing. The proposed method will increase the signal to interference ratio and peak amplitude ratio of the signal to resist retransmission deception jamming. Finally, well-focused SAR imagery is obtained using a conventional imaging method where the retransmission deception jamming strength is degraded and defocused. Simulations demonstrated the effectiveness of the proposed method.

  16. Submersed macrophyte communities before and after an episodic ice jam in the St. Clair and Detroit rivers

    USGS Publications Warehouse

    Nichols, S. Jerrine; Schloesser, Donald W.; Hudson, Patrick L.

    1989-01-01

    We conducted surveys in 1983 and 1984 of submersed macrophyte communities off six islands in the St. Clair and Detroit rivers using low altitude aerial photography and ground-truth collections. Sample collections in 1984 followed one of the coldest winters on record, during which ice up to 4 m thick developed in areas that were normally ice-free. Growth of many of the 20 taxa collected was delayed in the spring of 1984, as compared with the spring of 1983. By September 1984, however, total abundance of all taxa was equal to or greater than that in 1983. The location, size, and shape of plant beds in September 1984 were similar to those in 1983. We concluded that the unusual ice jam in early spring of 1984 had little, if any, permanent effect on submersed macrophytes in the St. Clair and Detroit rivers.

  17. Jammed Particle Configurations and Dynamics in High-Density Lennard-Jones Binary Mixtures in Two Dimensions

    NASA Astrophysics Data System (ADS)

    Shiba, H.; Onuki, A.

    We examine the changeover in the particle configurations and the dynamics in dense Lennard-Jones binary mixtures composed of small and large particles. By varying the composition at a low temperature, we realize crystal with defects, polycrystal with small grains, and glass with various degrees of disorder. In particular, we show configurations where small crystalline regions composed of the majority species are enclosed by percolated amorphous layers composed of the two species. We visualize the dynamics of configuration changes using the method of bond breakage and following the particle displacements. In quiescent jammed states, the dynamics is severely slowed down and is highly heterogeneous at any compositions. We apply shear flow by relative motions of boundary layers. Then plastic deformations multiply occur in relatively fragile regions, growing into large-scale shear bands where the strain is highly localized. Such bands appear on short time scales and evolve on l ong time scales with finite lifetimes.

  18. Statistical properties of entropy-consuming fluctuations in jammed states of laponite suspensions: Fluctuation relations and generalized Gumbel distribution.

    PubMed

    Majumdar, Sayantan; Sood, A K

    2012-04-01

    We report a universal large deviation behavior of spatially averaged global injected power just before the rejuvenation of the jammed state formed by an aging suspension of laponite clay under an applied stress. The probability distribution function (PDF) of these entropy consuming strongly non-Gaussian fluctuations follow an universal large deviation functional form described by the generalized Gumbel (GG) distribution like many other equilibrium and nonequilibrium systems with high degree of correlations but do not obey the Gallavotti-Cohen steady-state fluctuation relation (SSFR). However, far from the unjamming transition (for smaller applied stresses) SSFR is satisfied for both Gaussian as well as non-Gaussian PDF. The observed slow variation of the mean shear rate with system size supports a recent theoretical prediction for observing GG distribution.

  19. Statistical properties of entropy-consuming fluctuations in jammed states of laponite suspensions: Fluctuation relations and generalized Gumbel distribution

    NASA Astrophysics Data System (ADS)

    Majumdar, Sayantan; Sood, A. K.

    2012-04-01

    We report a universal large deviation behavior of spatially averaged global injected power just before the rejuvenation of the jammed state formed by an aging suspension of laponite clay under an applied stress. The probability distribution function (PDF) of these entropy consuming strongly non-Gaussian fluctuations follow an universal large deviation functional form described by the generalized Gumbel (GG) distribution like many other equilibrium and nonequilibrium systems with high degree of correlations but do not obey the Gallavotti-Cohen steady-state fluctuation relation (SSFR). However, far from the unjamming transition (for smaller applied stresses) SSFR is satisfied for both Gaussian as well as non-Gaussian PDF. The observed slow variation of the mean shear rate with system size supports a recent theoretical prediction for observing GG distribution.

  20. Transforming growth factor-β3 regulates cell junction restructuring via MAPK-mediated mRNA destabilization and Smad-dependent protein degradation of junctional adhesion molecule B (JAM-B).

    PubMed

    Zhang, Xu; Lui, Wing-Yee

    2015-06-01

    Junctional adhesion molecule-B (JAM-B) is found between Sertoli cells at the blood-testis barrier (BTB) as well as between Sertoli and germ cells at the apical ectoplasmic specializations (ES) in the testis. The expression of JAM-B is tightly regulated to modulate the passage of spermatocytes across the BTB as well as the release of mature spermatozoa from the seminiferous epithelium. Transforming growth factor beta (TGF-β) family is implicated in the regulation of testicular cell junction dynamics during spermatogenesis. This study aims to investigate the effects of TGF-β3 on the expression of JAM-B as well as the underlying mechanisms on how TGF-β3 regulates JAM-B expression to facilitate the disassembly of the BTB and apical ES. Our results revealed that TGF-β3 suppresses JAM-B at post-transcriptional and post-translational levels. Inhibitor, siRNA knockdown and co-immunoprecipitation have shown that TGF-β3 induces JAM-B protein degradation via ubiquitin-proteasome pathway. Immunofluorescence staining further confirmed that blockage of ubiquitin-proteasome pathway could abrogate TGF-β3-induced loss of JAM-B at the cell-cell interface. siRNA knockdown and immunofluorescence staining also demonstrated that activation of Smad signaling is required for TGF-β3-induced JAM-B protein degradation. In addition, TGF-β3 reduces JAM-B mRNA levels, at least in part, via post-transcriptional regulation. mRNA stability assay has confirmed that TGF-β3 promotes the degradation of JAM-B transcript and TGF-β3-mediated mRNA destabilization requires the activation of ERK1/2 and p54 JNK signal cascades. Taken together, TGF-β3 significantly downregulates JAM-B expression via post-transcriptional and post-translational modulation and results in the disruption of BTB and apical ES.

  1. Miniaturized Broadband 3-dB / 90 deg and 180 deg Power Splitters for GPS/GNSS Anti-Jam Systems

    DTIC Science & Technology

    2010-02-01

    circularly polarized antennas . Principal results: A miniaturized two-section 180◦ hybrid using microstrip space-f lling curves has been designed and...design- ing antenna feeding circuits for GPS/GNSS anti-jam systems, but it can be used for other wideband applications. A miniaturized two-section...are miniaturization strategies employed to reduce the footprint of the microstrip rat-race hybrid. Using the same principle as of folded lines, an

  2. Coherent detection of frequency-hopped quadrature modulations in the presence of jamming. II - QPR Class I modulation. [Quadrature Partial Response

    NASA Technical Reports Server (NTRS)

    Simon, M. K.

    1981-01-01

    This paper considers the performance of quadrature partial response (QPR) in the presence of jamming. Although a QPR system employs a single sample detector in its receiver, while quadrature amplitude shift keying (or quadrature phase shift keying) requires a matched-filter type of receiver, it is shown that the coherent detection performances of the two in the presence of the intentional jammer have definite similarities.

  3. Lars Onsager Prize: The mean field solution for Hard Sphere Jamming and a new scenario for the low temperature landscape of glasses

    NASA Astrophysics Data System (ADS)

    Parisi, Giorgio

    In a hard spheres systems particles cannot overlap. Increasing the density we reach a point where most of the particles are blocked and the density cannot be increased any more: this is the jamming point. The jamming point separates the phase, where all the constraint can be satisfied, from an unsatifiable phase, where spheres do have to overlap. A scaling theory of the behavior around the jamming critical point has been formulated and a few critical exponents have been introduced. The exponents are apparently super-universal, as far as they do seem to be independent from the space dimensions. The mean field version of the model (i.e. the infinite dimensions limit) has been solved analytically using broken replica symmetry techniques and the computed critical exponents have been found in a remarkable agreement with three-dimensional and two-dimensional numerical results and experiments. The theory predicts in hard spheres (in glasses) a new transition (the Gardener transition) from the replica symmetric phase to the replica broken phase at high density (at low temperature), in agreement with simulations on hard sphere systems. I will briefly discuss the possible consequences of this new picture on the very low temperature behavior of glasses in the quantum regime.

  4. Identification and occurrence of the novel alkaloid pentahydroxypentyl-tetrahydro-beta-carboline-3-carboxylic acid as a tryptophan glycoconjugate in fruit juices and jams.

    PubMed

    Herraiz, Tomas; Galisteo, Juan

    2002-07-31

    The novel carbohydrate-derived beta-carboline, 1-pentahydroxypentyl-1,2,3,4-tetrahydro-beta-carboline-3-carboxylic acid, was identified in fruit- and vegetable-derived products such as juices, jams, and tomato sauces. This compound occurred as two diastereoisomers, a cis isomer (the major compound) and a trans isomer, ranging from undetectable amounts to 6.5 microg/g. Grape, tomato, pineapple, and tropical juices exhibited the highest amount of this alkaloid (up to 3.8 mg/L), whereas apple, banana, and peach juices showed very low or nondetectable levels. This tetrahydro-beta-carboline was also found in jams (up to 0.45 microg/g), and a relative high amount was present in tomato concentrate (6.5 microg/g) and sauce (up to 1.8 microg/g). This beta-carboline occurred in fruit-derived products as a glycoconjugate from a chemical condensation of D-glucose and L-tryptophan that is highly favored at low pH values and high temperature. Production, processing treatments, and storage of fruit juices and jams can then release this beta-carboline. Fruit-derived products and other foods containing this compound might be an exogenous dietary source of this glucose-derived tetrahydro-beta-carboline.

  5. Thermal Error Modeling Method with the Jamming of Temperature-Sensitive Points' Volatility on CNC Machine Tools

    NASA Astrophysics Data System (ADS)

    MIAO, Enming; LIU, Yi; XU, Jianguo; LIU, Hui

    2017-03-01

    Aiming at the deficiency of the robustness of thermal error compensation models of CNC machine tools, the mechanism of improving the models' robustness is studied by regarding the Leaderway-V450 machining center as the object. Through the analysis of actual spindle air cutting experimental data on Leaderway-V450 machine, it is found that the temperature-sensitive points used for modeling is volatility, and this volatility directly leads to large changes on the collinear degree among modeling independent variables. Thus, the forecasting accuracy of multivariate regression model is severely affected, and the forecasting robustness becomes poor too. To overcome this effect, a modeling method of establishing thermal error models by using single temperature variable under the jamming of temperature-sensitive points' volatility is put forward. According to the actual data of thermal error measured in different seasons, it is proved that the single temperature variable model can reduce the loss of forecasting accuracy resulted from the volatility of temperature-sensitive points, especially for the prediction of cross quarter data, the improvement of forecasting accuracy is about 5 μm or more. The purpose that improving the robustness of the thermal error models is realized, which can provide a reference for selecting the modeling independent variable in the application of thermal error compensation of CNC machine tools.

  6. Jamming of fingers: an experimental study to determine force and deflection in participants and human cadaver specimens for development of a new bionic test device for validation of power-operated motor vehicle side door windows.

    PubMed

    Hohendorff, Bernd; Weidermann, Christian; Pollinger, Philipp; Burkhart, Klaus J; Müller, Lars Peter

    2013-02-01

    The deformability of human fingers is central to addressing the real-life hazard of finger jamming between the window and seal entry of a power-operated motor vehicle side door window. The index and little fingers of the left hand of 109 participants and of 20 cadaver specimens were placed in a measurement setup. Participants progressively jammed their fingers at five different dorsal-palmar jam positions up to the maximum tolerable pain threshold, whereas the cadaver specimens were jammed up to the maximum possible deflection. Force-deflection curves were calculated corresponding to increasing deflection of the compressed tissue layers of the fingers. The average maximum force applied by the participants was 42 N to the index finger and 35 N to the little finger. In the cadaver fingers, the average of the maximum force applied was 1886 N for the index finger and 1833 N for the little finger. In 200 jam positions, 25 fractures were observed on radiographs; fractures occurred at an average force of 1485 N. These data assisted the development of a prototype of a bionic test device for more realistic validation of power-operated motor vehicle windows.

  7. Migration study of optical brighteners from polymer packing materials to jam squeeze and fruit drink by spectrofluorimetry and RP-HPLC methods.

    PubMed

    Gandhimathi, M; Murugavel, K; Ravi, T K

    2014-06-01

    Optical brighteners are commonly used to modify the appearance and to improve polymer properties of packaging. They are not chemically bound to polymers and able to migrate from packaging into the foods. These migrants are potentially harmful to human health. In concern with human safety an approach was made to analyze three optical brighteners such as diphenylbutadiene, Uvitex-OB, benzophenone in commercial fruit juice and jam. The migration level of these optical brighteners from low density poly ethylene packaging into fruit juice and jam was studied. Two optimized and validated analytical techniques such as spectrofluorimetry and high performance liquid chromatography with photo diode array detector used for migration study. Both methods have shown high correlation coefficients (>0.999), over a concentration range of 0.1-3.2 μg/mL, 0.1-1 μg/mL, 0.05-3.2 μg/mL for diphenylbutadiene, Uvitex-OB and benzophenone respectively. The preliminary studies confirm that the low density poly ethylene layer taken for study contained of diphenylbutadiene and the other two were absent. The migration level of diphenylbutadiene was studied at room temperature and different elevated temperature from 30 °C to 60 °C for up to 3 weeks. At room temperature no migration of diphenylbutadiene was observed where as at higher temperature migration could be observed. The maximum quantity of diphenylbutadiene migrated was found to be 0.0462 mg/kg from tetrapak, and 0.0382 mg/kg from jam squeeze after 3 weeks treatment at 60 °C. The migration of diphenylbutadiene was found to be less than allowable concentration during the study period.

  8. JAM-A and ALCAM are therapeutic targets to inhibit diapedesis across the BBB of CD14+CD16+ monocytes in HIV-infected individuals.

    PubMed

    Williams, Dionna W; Anastos, Kathryn; Morgello, Susan; Berman, Joan W

    2015-02-01

    Monocyte transmigration across the BBB is a critical step in the development of cognitive deficits termed HAND that affect 40-70% of HIV-infected individuals, even with successful antiretroviral therapy. The monocyte subsets that enter the CNS during HIV infection are not fully characterized. We examined PBMC from HIV-positive individuals from 2 distinct cohorts and enumerated monocyte populations, characterized their transmigration properties across an in vitro human BBB model, and identified surface proteins critical for the entry of these cells into the CNS. We demonstrated that the frequency of peripheral blood CD14(+)CD16(+) and CD14(low)CD16(+) monocytes was increased in HIV-seropositive compared with -seronegative individuals, despite virologic control. We showed that CD14(+)CD16(+) monocytes selectively transmigrated across our BBB model as a result of their increased JAM-A and ALCAM expression. Antibody blocking of these proteins inhibited diapedesis of CD14(+)CD16(+) monocytes but not of T cells from the same HIV-infected people across the BBB. Our data indicate that JAM-A and ALCAM are therapeutic targets to decrease the entry of CD14(+)CD16(+) monocytes into the CNS of HIV-seropositive individuals, contributing to the eradication of neuroinflammation, HAND, and CNS viral reservoirs.

  9. Performance of a normalized energy metric without jammer state information for an FH/MFSK system in worst case partial band jamming

    NASA Technical Reports Server (NTRS)

    Lee, P. J.

    1985-01-01

    For a frequency-hopped noncoherent MFSK communication system without jammer state information (JSI) in a worst case partial band jamming environment, it is well known that the use of a conventional unquantized metric results in very poor performance. In this paper, a 'normalized' unquantized energy metric is suggested for such a system. It is shown that with this metric, one can save 2-3 dB in required signal energy over the system with hard decision metric without JSI for the same desired performance. When this very robust metric is compared to the conventional unquantized energy metric with JSI, the loss in required signal energy is shown to be small. Thus, the use of this normalized metric provides performance comparable to systems for which JSI is known. Cutoff rate and bit error rate with dual-k coding are used for the performance measures.

  10. Mechanisms of HIV entry into the CNS: increased sensitivity of HIV infected CD14+CD16+ monocytes to CCL2 and key roles of CCR2, JAM-A, and ALCAM in diapedesis.

    PubMed

    Williams, Dionna W; Calderon, Tina M; Lopez, Lillie; Carvallo-Torres, Loreto; Gaskill, Peter J; Eugenin, Eliseo A; Morgello, Susan; Berman, Joan W

    2013-01-01

    As HIV infected individuals live longer, the prevalence of HIV associated neurocognitive disorders is increasing, despite successful antiretroviral therapy. CD14(+)CD16(+) monocytes are critical to the neuropathogenesis of HIV as they promote viral seeding of the brain and establish neuroinflammation. The mechanisms by which HIV infected and uninfected monocytes cross the blood brain barrier and enter the central nervous system are not fully understood. We determined that HIV infection of CD14(+)CD16(+) monocytes resulted in their highly increased transmigration across the blood brain barrier in response to CCL2 as compared to uninfected cells, which did not occur in the absence of the chemokine. This exuberant transmigration of HIV infected monocytes was due, at least in part, to increased CCR2 and significantly heightened sensitivity to CCL2. The entry of HIV infected and uninfected CD14(+)CD16(+) monocytes into the brain was facilitated by significantly increased surface JAM-A, ALCAM, CD99, and PECAM-1, as compared to CD14(+) cells that are CD16 negative. Upon HIV infection, there was an additional increase in surface JAM-A and ALCAM on CD14(+)CD16(+) monocytes isolated from some individuals. Antibodies to ALCAM and JAM-A inhibited the transmigration of both HIV infected and uninfected CD14(+)CD16(+) monocytes across the BBB, demonstrating their importance in facilitating monocyte transmigration and entry into the brain parenchyma. Targeting CCR2, JAM-A, and ALCAM present on CD14(+)CD16(+) monocytes that preferentially infiltrate the CNS represents a therapeutic strategy to reduce viral seeding of the brain as well as the ongoing neuroinflammation that occurs during HIV pathogenesis.

  11. Yield stress in metallic glasses: The jamming-unjamming transition studied through Monte Carlo simulations based on the activation-relaxation technique

    SciTech Connect

    Rodney, David; Schuh, Christopher A.

    2009-11-01

    A Monte Carlo approach allowing for stress control is employed to study the yield stress of a two-dimensional metallic glass in the limit of low temperatures and long (infinite) time scales. The elementary thermally activated events are determined using the activation-relaxation technique (ART). By tracking the minimum-energy state of the glass for various applied stresses, we find a well-defined jamming-unjamming transition at a yield stress about 30% lower than the steady-state flow stress obtained in conventional strain-controlled quasistatic simulations. ART is then used to determine the evolution of the distribution of thermally activated events in the glass microstructure both below and above the yield stress. We show that aging below the yield stress increases the stability of the glass, both thermodynamically (the internal potential energy decreases) and dynamically (the aged glass is surrounded by higher-energy barriers than the initial quenched configuration). In contrast, deformation above the yield stress brings the glass into a high internal potential energy state that is only marginally stable, being surrounded by a high density of low-energy barriers. The strong influence of deformation on the glass state is also evidenced by the microstructure polarization, revealed here through an asymmetry of the distribution of thermally activated inelastic strains in glasses after simple shear deformation.

  12. Study on traffic states and jamming transitions for two-lane highway including a bus by using a model with calibrated optimal velocity function

    NASA Astrophysics Data System (ADS)

    Li, Zhipeng; Yi, Yi

    2014-07-01

    In this paper, traffic states and jamming transitions on two-lane highway including a bus are studied by using a car following model with a calibrated optimal velocity function. We derive a new flow-density diagram with four distinctly separated traffic states, which is different from that of the earlier study obtained by applying the OVM with theoretical optimal velocity function. The spatio-temporal diagrams are presented to illustrate phase characteristics of each traffic state. It is found that the phase characteristic features of two of four states are different from any state of the earlier result, and traffic flow of state 2 and state 3 can reproduce some characteristics observed from empirical investigations such as centralized lane-changing, hanging tail of cluster, and synchronized flow. In addition, we have clarified the lane-changing behaviors and their effects on two-lane traffic flow including a bus. It is shown that the velocity oscillations behind the bus can help the lane-changing in state 2 and the behaviors of lane-changing are the important reason of forming of the synchronized flow in state 3. It is also concluded that lane-changing can only improve the current in the region of middle density.

  13. Effect of permafrost thaw on the dynamics of lakes recharged by ice-jam floods: case study in Yukon Flats, Alaska

    USGS Publications Warehouse

    Steve M. Jepsen,; Walvoord, Michelle Ann; Voss, Clifford I.; Rover, Jennifer R.

    2016-01-01

    Large river floods are a key water source for many lakes in fluvial periglacial settings. Where permeable sediments occur, the distribution of permafrost may play an important role in the routing of floodwaters across a floodplain. This relationship is explored for lakes in the discontinuous permafrost of Yukon Flats, interior Alaska, using an analysis that integrates satellite-derived gradients in water surface elevation, knowledge of hydrogeology, and hydrologic modeling. We observed gradients in water surface elevation between neighboring lakes ranging from 0.001 to 0.004. These high gradients, despite a ubiquitous layer of continuous shallow gravel across the flats, are consistent with limited groundwater flow across lake basins resulting from the presence of permafrost. Permafrost impedes the propagation of floodwaters in the shallow subsurface and constrains transmission to “fill-and-spill” over topographic depressions (surface sills), as we observed for the Twelvemile-Buddy Lake pair following a May 2013 ice-jam flood on the Yukon River. Model results indicate that permafrost table deepening of 1–11 m in gravel, depending on watershed geometry and subsurface properties, could shift important routing of floodwater to lakes from overland flow (fill-and-spill) to shallow groundwater flow (“fill-and-seep”). Such a shift is possible in the next several hundred years of ground surface warming, and may bring about more synchronous water level changes between neighboring lakes following large flood events. This relationship offers a potentially useful tool, well-suited to remote sensing, for identifying long-term changes in shallow groundwater flow resulting from thawing of permafrost.

  14. Henrique da Rocha Lima.

    PubMed

    Bernardes Filho, Fred; Avelleira, João Carlos Regazzi

    2015-01-01

    Brazilian physician and researcher Henrique da Rocha Lima was born in 1879 in the city of Rio de Janeiro, where he studied medicine and obtained the degree of M.D. in 1901. He specialized in Clinical Medicine in Germany and was the ambassador in European countries of the scientific medicine that emerged from the Oswaldo Cruz Institute in the early twentieth century. Rocha Lima has discovered the causative agent of typhus and had a major contribution to the studies of yellow fever, Chagas disease, Carrión's disease and histoplasmosis. His genius, his research and his discoveries projected his name, and, with it, the image of Brazil in the international scientific scene.

  15. Berengario da Carpi.

    PubMed

    De Santo, N G; Bisaccia, C; De Santo, L S; De Santo, R M; Di Leo, V A; Papalia, T; Cirillo, M; Touwaide, A

    1999-01-01

    Berengario da Carpi was magister of anatomy and surgery at the University of Bologna from 1502 to 1527. Eustachio and Falloppia defined him as 'the restaurator of anatomy'. He was a great surgeon, anatomist and physician of illustrious patients including Lorenzo II dei Medici, Giovanni dalle Bande Nere, Galeazzo Pallavicini, Cardinal Colonna, and Alessandro Soderini. He had strong links to the intellectuals of his time (Forni, Bonamici, Manuzio, Pomponazzi) as well as with the Medici family. He was respected by the Popes Julius II, Leo X and Clement VII. His main contributions are the Isogogae Breves, De Fractura calvae sive cranei, and the illustrated Commentaria on the Anatomy of Mondino de Liucci, a textbook utilized for more than 200 years, which Berengario aimed to restore to its initial text. The Commentaria constitutes the material for the last part of this paper which concludes with a personal translation of some passages on 'The kidney', where the author gives poignant examples of experimental ingenuity.

  16. Henrique da Rocha Lima*

    PubMed Central

    Bernardes Filho, Fred; Avelleira, João Carlos Regazzi

    2015-01-01

    Brazilian physician and researcher Henrique da Rocha Lima was born in 1879 in the city of Rio de Janeiro, where he studied medicine and obtained the degree of M.D. in 1901. He specialized in Clinical Medicine in Germany and was the ambassador in European countries of the scientific medicine that emerged from the Oswaldo Cruz Institute in the early twentieth century. Rocha Lima has discovered the causative agent of typhus and had a major contribution to the studies of yellow fever, Chagas disease, Carrión’s disease and histoplasmosis. His genius, his research and his discoveries projected his name, and, with it, the image of Brazil in the international scientific scene. PMID:26131867

  17. Phospholipidosis in rats treated with amiodarone: serum biochemistry and whole genome micro-array analysis supporting the lipid traffic jam hypothesis and the subsequent rise of the biomarker BMP.

    PubMed

    Mesens, Natalie; Desmidt, Miek; Verheyen, Geert R; Starckx, Sofie; Damsch, Siegrid; De Vries, Ronald; Verhemeldonck, Marc; Van Gompel, Jacky; Lampo, Ann; Lammens, Lieve

    2012-04-01

    To provide mechanistic insight in the induction of phospholipidosis and the appearance of the proposed biomarker di-docosahexaenoyl (C22:6)-bis(monoacylglycerol) phosphate (BMP), rats were treated with 150 mg/kg amiodarone for 12 consecutive days and analyzed at three different time points (day 4, 9, and 12). Biochemical analysis of the serum revealed a significant increase in cholesterol and phospholipids at the three time points. Bio-analysis on the serum and urine detected a time-dependent increase in BMP, as high as 10-fold compared to vehicle-treated animals on day 12. Paralleling these increases, micro-array analysis on the liver of treated rats identified cholesterol biosynthesis and glycerophospholipid metabolism as highly modulated pathways. This modulation indicates that during phospholipidosis-induction interactions take place between the cationic amphiphilic drug and phospholipids at the level of BMP-rich internal membranes of endosomes, impeding cholesterol sorting and leading to an accumulation of internal membranes, converting into multilamellar bodies. This process shows analogy to Niemann-Pick disease type C (NPC). Whereas the NPC-induced lipid traffic jam is situated at the cholesterol sorting proteins NPC1 and NPC2, the amiodarone-induced traffic jam is thought to be located at the BMP level, demonstrating its role in the mechanism of phospholipidosis-induction and its significance for use as a biomarker.

  18. Fiches pratiques: Nouvelles histoires de modes; Pour se faire une tartine; Le Texte litteraire: "Decouverte" de Guy de Maupassant; Un Regiment dans un nuage (Practical Ideas: New Approaches to Grammatical Mood; How to Make Oneself Bread and Jam; The Literary Text: "Discovered" by Guy de Maupassant; A Regiment in a Cloud).

    ERIC Educational Resources Information Center

    Saraceni, Luisa; And Others

    1993-01-01

    Four activities are offered for French second-language classroom use: an exercise to aid comprehension of indicative and subjunctive mood; a lesson in making bread and jam, designed for young children; a study of narration within a novel, using a Guy de Maupassant story; and an exercise in discourse analysis. (MSE)

  19. Deterministic models for traffic jams

    NASA Astrophysics Data System (ADS)

    Nagel, Kai; Herrmann, Hans J.

    1993-10-01

    We study several deterministic one-dimensional traffic models. For integer positions and velocities we find the typical high and low density phases separated by a simple transition. If positions and velocities are continuous variables the model shows self-organized critically driven by the slowest car.

  20. Jam Resistant Communications Systems Techniques

    DTIC Science & Technology

    1982-12-01

    ina rayo iteeet -- :."-,(constraint elements plus two resolution elements). •j, r,2 -- ’:." ~d c =0 .4 3 ),, dr l :3 .2X , dr 2 4 5 X @d -900 , s :33...E.K. Walton (Section VIII), and Dr. I.J. Gupta (Sections IX and X ). Mr. R.C. Taylor and R.W. Evans made significant contributions to all experimental...IN THE SAME CUT 190 E. CONCLUSIONS 200 F. REFERENCES 00 SECTION X ELEMENT PLACEMENT FOR ADAPTIVE ANTENNA ARRAYS 201 A. INTRODUCTION 201 B. THE ELEMENT

  1. Poly(I:C) reduces expression of JAM-A and induces secretion of IL-8 and TNF-{alpha} via distinct NF-{kappa}B pathways in human nasal epithelial cells

    SciTech Connect

    Ohkuni, Tsuyoshi; Kojima, Takashi; Ogasawara, Noriko; Masaki, Tomoyuki; Fuchimoto, Jun; Kamekura, Ryuta; Koizumi, Jun-ichi; Ichimiya, Shingo; Murata, Masaki; Tanaka, Satoshi; Himi, Tetsuo; Sawada, Norimasa

    2011-01-01

    Human nasal epithelium is an important physical barrier and innate immune defense protecting against inhaled substances and pathogens. Toll-like receptor (TLR) signaling, which plays a key role in the innate immune response, has not been well characterized in human nasal epithelial cells (HNECs), including the epithelial tight junctional barrier. In the present study, mRNAs of TLR1-10 were detected in hTERT-transfected HNECs, which can be used as an indispensable and stable model of normal HNECs, similar to primary cultured HNECs. To investigate the changes of tight junction proteins and the signal transduction pathways via TLRs in HNECs in vitro, hTERT-transfected HNECs were treated with TLR2 ligand P{sub 3}CSK{sub 4}, TLR3 ligand poly(I:C), TLR4 ligand LPS, TLR7/8 ligand CL097, TLR8 ligand ssRNA40/LyoVec, and TLR9 ligand ODN2006. In hTERT-transfected HNECs, treatment with poly(I:C) significantly reduced expression of the tight junction protein JAM-A and induced secretion of proinflammatory cytokines IL-8 and TNF-{alpha}. Both the reduction of JAM-A expression and the induction of secretion of IL-8 and TNF-{alpha} after treatment with poly(I:C) were modulated by distinct signal transduction pathways via EGFR, PI3K, and p38 MAPK and finally regulated by a TLR3-mediated NF-{kappa}B pathway. The control of TLR3-mediated signaling pathways in HNECs may be important not only in infection by viral dsRNA but also in autoimmune diseases caused by endogenous dsRNA released from necrotic cells.

  2. Leonardo da Vinci and the Downburst.

    NASA Astrophysics Data System (ADS)

    Gedzelman, Stanley David

    1990-05-01

    Evidence from the drawings, experiments, and writings of Leonardo da Vinci are presented to demonstrate that da Vinci recognized and, possibly, discovered the downburst and understood its associated airflow. Other early references to vortex flows resembling downbursts are mentioned.

  3. The major histocompatibility complex genes impact pain response in DA and DA.1U rats.

    PubMed

    Guo, Yuan; Yao, Fan-Rong; Cao, Dong-Yuan; Li, Li; Wang, Hui-Sheng; Xie, Wen; Zhao, Yan

    2015-08-01

    Our recent studies have shown that the difference in basal pain sensitivity to mechanical and thermal stimulation between Dark-Agouti (DA) rats and a novel congenic DA.1U rats is major histocompatibility complex (MHC) genes dependent. In the present study, we further used DA and DA.1U rats to investigate the role of MHC genes in formalin-induced pain model by behavioral, electrophysiological and immunohistochemical methods. Behavioral results showed biphasic nociceptive behaviors increased significantly following the intraplantar injection of formalin in the hindpaw of DA and DA.1U rats. The main nociceptive behaviors were lifting and licking, especially in DA rats (P<0.001 and P<0.01). The composite pain scores (CPS) in DA rats were significantly higher than those in DA.1U rats in both phases of the formalin test (P<0.01). Electrophysiological results also showed the biphasic increase in discharge rates of C and Aδ fibers of L5 dorsal root in the two strains, and the net change of the discharge rate of DA rats was significantly higher than that of DA.1U rats (P<0.05). The mechanical thresholds decreased after formalin injection in both strains (P<0.01), and the net change in the mechanical threshold in DA was greater than that in DA.1U rats (P<0.05). The expression of RT1-B, representation of MHC class II molecule, in laminae I-II of L4/5 spinal cord in DA rats was significantly higher than that in DA.1U rats in the respective experimental group (P<0.05). These results suggested that both DA and DA.1U rats exhibited nociceptive responses in formalin-induced pain model and DA rats were more sensitive to noxious chemical stimulus than DA.1U rats, indicating that MHC genes might contribute to the difference in pain sensitivity.

  4. Autocorrelation descriptor improvements for QSAR: 2DA_Sign and 3DA_Sign

    NASA Astrophysics Data System (ADS)

    Sliwoski, Gregory; Mendenhall, Jeffrey; Meiler, Jens

    2016-03-01

    Quantitative structure-activity relationship (QSAR) is a branch of computer aided drug discovery that relates chemical structures to biological activity. Two well established and related QSAR descriptors are two- and three-dimensional autocorrelation (2DA and 3DA). These descriptors encode the relative position of atoms or atom properties by calculating the separation between atom pairs in terms of number of bonds (2DA) or Euclidean distance (3DA). The sums of all values computed for a given small molecule are collected in a histogram. Atom properties can be added with a coefficient that is the product of atom properties for each pair. This procedure can lead to information loss when signed atom properties are considered such as partial charge. For example, the product of two positive charges is indistinguishable from the product of two equivalent negative charges. In this paper, we present variations of 2DA and 3DA called 2DA_Sign and 3DA_Sign that avoid information loss by splitting unique sign pairs into individual histograms. We evaluate these variations with models trained on nine datasets spanning a range of drug target classes. Both 2DA_Sign and 3DA_Sign significantly increase model performance across all datasets when compared with traditional 2DA and 3DA. Lastly, we find that limiting 3DA_Sign to maximum atom pair distances of 6 Å instead of 12 Å further increases model performance, suggesting that conformational flexibility may hinder performance with longer 3DA descriptors. Consistent with this finding, limiting the number of bonds in 2DA_Sign from 11 to 5 fails to improve performance.

  5. The potentially dangerous asteroid 2012 DA14

    NASA Astrophysics Data System (ADS)

    Wlodarczyk, I.

    2012-12-01

    We present computing methods that allow us to study the behaviour of the dynamically interesting potentially dangerous asteroid 2012 DA14. Using the freely available ORBFIT software, we can follow the orbit of the asteroid backward and forward in the future, searching for close approaches to the Earth that might lead to possible impacts. The possible impact orbit for 2026 is computed. We show that it should be possible to recover asteroid 2012 DA14, mainly in 2013 February. It is highly unlikely that asteroid 2012 DA14 will hit any geosynchronous satellites during its close approach on 2013 February 15.

  6. Origin of the DA and non-DA white dwarf stars

    NASA Technical Reports Server (NTRS)

    Shipman, Harry L.

    1989-01-01

    Various proposals for the bifurcation of the white dwarf cooling sequence are reviewed. 'Primordial' theories, in which the basic bifurcation of the white dwarf sequence is rooted in events predating the white dwarf stage of stellar evolution, are discussed, along with the competing 'mixing' theories in which processes occurring during the white dwarf stage are responsible for the existence of DA or non-DA stars. A new proposal is suggested, representing a two-channel scenario. In the DA channel, some process reduces the hydrogen layer mass to the value of less than 10 to the -7th. The non-DA channel is similar to that in the primordial scenario. These considerations suggest that some mechanism operates in both channels to reduce the thickness of the outermost layer of the white dwarf. It is also noted that accretion from the interstellar medium has little to do with whether a particular white dwarf becomes a DA or a non-DA star.

  7. An extension of PPLS-DA for classification and comparison to ordinary PLS-DA.

    PubMed

    Telaar, Anna; Liland, Kristian Hovde; Repsilber, Dirk; Nürnberg, Gerd

    2013-01-01

    Classification studies are widely applied, e.g. in biomedical research to classify objects/patients into predefined groups. The goal is to find a classification function/rule which assigns each object/patient to a unique group with the greatest possible accuracy (classification error). Especially in gene expression experiments often a lot of variables (genes) are measured for only few objects/patients. A suitable approach is the well-known method PLS-DA, which searches for a transformation to a lower dimensional space. Resulting new components are linear combinations of the original variables. An advancement of PLS-DA leads to PPLS-DA, introducing a so called 'power parameter', which is maximized towards the correlation between the components and the group-membership. We introduce an extension of PPLS-DA for optimizing this power parameter towards the final aim, namely towards a minimal classification error. We compare this new extension with the original PPLS-DA and also with the ordinary PLS-DA using simulated and experimental datasets. For the investigated data sets with weak linear dependency between features/variables, no improvement is shown for PPLS-DA and for the extensions compared to PLS-DA. A very weak linear dependency, a low proportion of differentially expressed genes for simulated data, does not lead to an improvement of PPLS-DA over PLS-DA, but our extension shows a lower prediction error. On the contrary, for the data set with strong between-feature collinearity and a low proportion of differentially expressed genes and a large total number of genes, the prediction error of PPLS-DA and the extensions is clearly lower than for PLS-DA. Moreover we compare these prediction results with results of support vector machines with linear kernel and linear discriminant analysis.

  8. CYBERWAR-2012/13: Siegel 2011 Predicted Cyberwar Via ACHILLES-HEEL DIGITS BEQS BEC ZERO-DIGIT BEC of/in ACHILLES-HEEL DIGITS Log-Law Algebraic-Inversion to ONLY BEQS BEC Digit-Physics U Barabasi Network/Graph-Physics BEQS BEC JAMMING Denial-of-Access(DOA) Attacks 2012-Instantiations

    NASA Astrophysics Data System (ADS)

    Huffmann, Master; Siegel, Edward Carl-Ludwig

    2013-03-01

    Newcomb-Benford(NeWBe)-Siegel log-law BEC Digit-Physics Network/Graph-Physics Barabasi et.al. evolving-``complex''-networks/graphs BEC JAMMING DOA attacks: Amazon(weekends: Microsoft I.E.-7/8(vs. Firefox): Memorial-day, Labor-day,...), MANY U.S.-Banks:WF,BoA,UB,UBS,...instantiations AGAIN militate for MANDATORY CONVERSION to PARALLEL ANALOG FAULT-TOLERANT but slow(er) SECURITY-ASSURANCE networks/graphs in parallel with faster ``sexy'' DIGITAL-Networks/graphs:``Cloud'', telecomm: n-G,..., because of common ACHILLES-HEEL VULNERABILITY: DIGITS!!! ``In fast-hare versus slow-tortoise race, Slow-But-Steady ALWAYS WINS!!!'' (Zeno). {Euler [#s(1732)] ∑- ∏()-Riemann[Monats. Akad. Berlin (1859)] ∑- ∏()- Kummer-Bernoulli (#s)}-Newcomb [Am.J.Math.4(1),39 (81) discovery of the QUANTUM!!!]-{Planck (01)]}-{Einstein (05)]-Poincar e [Calcul Probabilités,313(12)]-Weyl[Goett. Nach.(14); Math.Ann.77,313(16)]-(Bose (24)-Einstein(25)]-VS. -Fermi (27)-Dirac(27))-Menger [Dimensiontheorie(29)]-Benford [J.Am. Phil.Soc.78,115(38)]-Kac[Maths Stats.-Reason. (55)]- Raimi [Sci.Am.221,109(69)]-Jech-Hill [Proc.AMS,123,3,887(95)] log-function

  9. Jam-Resistant Cutters For Emergency Separation

    NASA Technical Reports Server (NTRS)

    Ordonez, Arturo C.; Yee, Ronald N.

    1990-01-01

    Pyrotechnic emergency-separation system includes shaped explosive charges that sever pair of hinges. System ensures reliable opening of escape hatch. Two pairs of cutters provided for each hinge so if one pair of cutters fails, other completes job. Pressure of explosions vented to prevent charge holders from fragmenting and forming sharp edges around open hatch. Exit slide deployed without tearing. Before detonation L-shaped retainers bear on hinge. After denonation, retainers fold outward to facilitate egress of severed hinges.

  10. Jamming in complex networks with degree correlation

    NASA Astrophysics Data System (ADS)

    Pastore Y Piontti, Ana; Braunstein, Lidia; Macri, Pablo

    2012-02-01

    We study the effects of the degree-degree correlations on the pressure congestion J for a diffusive transport process on scale free complex networks. Using the gradient network approach we find that the pressure congestion for disassortative (assortative) networks is lower (bigger) than the one for uncorrelated networks which allow us to affirm that disassortative networks enhance transport through them. This result agree with the fact that many real world transportation networks naturally evolve to this kind of correlation. We explain our results showing that for the disassortative case the clusters in the gradient network turn out to be as much elongated as possible, reducing the pressure congestion J and observing the opposite behavior for the assortative case. Finally, we apply our transportation process to real world networks, and the results agree with our findings for model networks.

  11. Jamming in complex networks with degree correlation

    NASA Astrophysics Data System (ADS)

    Pastore y Piontti, Ana L.; Braunstein, Lidia A.; Macri, Pablo A.

    2010-10-01

    We study the effects of the degree-degree correlations on the pressure congestion J when we apply a dynamical process on scale free complex networks using the gradient network approach. We find that the pressure congestion for disassortative (assortative) networks is lower (bigger) than the one for uncorrelated networks which allow us to affirm that disassortative networks enhance transport through them. This result agree with the fact that many real world transportation networks naturally evolve to this kind of correlation. We explain our results showing that for the disassortative case the clusters in the gradient network turn out to be as much elongated as possible, reducing the pressure congestion J and observing the opposite behavior for the assortative case. Finally we apply our model to real world networks, and the results agree with our theoretical model.

  12. Impact of jamming on collective cell migration

    NASA Astrophysics Data System (ADS)

    Nnetu, Kenechukwu David; Knorr, Melanie; Pawlizak, Steve; Fuhs, Thomas; Zink, Mareike; KäS, Josef A.

    2012-02-01

    Multi-cellular migration plays an important role in physiological processes such as embryogenesis, cancer metastasis and tissue repair. During migration, single cells undergo cycles of extension, adhesion and retraction resulting in morphological changes. In a confluent monolayer, there are inter-cellular interactions and crowding, however, the impact of these interactions on the dynamics and elasticity of the monolayer at the multi-cellular and single cell level is not well understood. Here we study the dynamics of a confluent epithelial monolayer by simultaneously measuring cell motion at the multi-cellular and single cell level for various cell densities and tensile elasticity. At the multi-cellular level, the system exhibited spatial kinetic transitions from isotropic to anisotropic migration on long times and the velocity of the monolayer decreased with increasing cell density. Moreover, the dynamics was spatially and temporally heterogeneous. Interestingly, the dynamics was also heterogeneous in wound-healing assays and the correlation length was fitted by compressed exponential. On the single cell scale, we observed transient caging effects with increasing cage rearrangement times as the system age due to an increase in density. Also, the density dependent elastic modulus of the monolayer scaled as a weak power law. Together, these findings suggest that caging effects at the single cell level initiates a slow and heterogeneous dynamics at the multi-cellular level which is similar to the glassy dynamics of deformable colloidal systems.

  13. Energy Is Jamming the Locks to Excellence.

    ERIC Educational Resources Information Center

    Hansen, Shirley J.

    Schools cannot pass on rapidly rising fuel costs by raising fees. While the price and availability of fuel remain out of the school administrator's hands, the administrator can influence the amount of fuel the school consumes. The administrator can manage four heat sources (heating plants, using conventional fuels, lights, people, and sun) and is…

  14. Non-affine elasticity in jammed systems

    NASA Astrophysics Data System (ADS)

    Maloney, Craig

    2006-03-01

    Symmetry dictates that perfect crystals should deform homogeneously, or affinely, under external load, and computing the elastic moduli from the underlying interaction potential is then straightforward. For disordered materials no such simple procedure exists, and recent numerical works have demonstrated that non-affine corrections can dramatically reduce the naive expectation for the shear modulus in a broad class of disordered systems and may control rigidity loss in the zero pressure limit in purely repulsive systems, i.e. the unjamming transition (c.f. [O'Hern et. al. PRE 68, 011306 (2003)]). We present numerical results and an analytical framework for the study of these non-affine corrections to the elastic response of disordered packings.

  15. Command and Control Vulnerabilities to Communications Jamming

    DTIC Science & Technology

    2013-01-01

    nuclear communications survivability and essential, highest-level command and control. The approach was heavily focused on getting Air Force cadets...toward the “ Arma - geddon” context and did not significantly influence tactical requirements. During Operation Desert Storm in 1991, laser-guided bombs...communica- tions below the highest levels of requirements of nuclear command and control is starting to wend its way into the thinking of military

  16. DA white dwarfs in the Kepler field

    NASA Astrophysics Data System (ADS)

    Doyle, T. F.; Howell, S. B.; Petit, V.; Lépine, S.

    2017-01-01

    We present 16 new, and confirm 7 previously identified, DA white dwarfs in the Kepler field through ground-based spectroscopy with the Hale 200″, Kitt Peak 4-m, and Bok 2.3-m telescopes. Using atmospheric models, we determine their effective temperatures and surface gravities to constrain their position with respect to the ZZ Ceti (DA pulsator) instability strip, and look for the presence or absence of pulsation with Kepler's unprecedented photometry. Our results are as follows. (i) From our measurements of temperature and surface gravity, 12 of the 23 DA white dwarfs from this work fall well outside of the instability strip. The Kepler photometry available for 11 of these WDs allows us to confirm that none are pulsating. One of these 11 happens to be a presumed binary, KIC 11604781, with a period of ˜5 d. (ii) The remaining 11 DA white dwarfs are instability strip candidates, potentially falling within the current, empirical instability strip, after accounting for uncertainties. These WDs will help constrain the strip's location further, as eight are near the blue edge and three are near the red edge of the instability strip. Four of these WDs do not have Kepler photometry, so ground-based photometry is needed to determine the pulsation nature of these white dwarfs. The remaining seven have Kepler photometry available, but do not show any periodicity on typical WD pulsation time-scales.

  17. How to Think Like Leonardo da Vinci

    ERIC Educational Resources Information Center

    Caouette, Ralph

    2008-01-01

    To be effective and relevant in twenty-first-century learning, art needs to be more inclusive. In this article, the author discusses how teachers can find a good example in Leonardo da Vinci for building an art program. His art, design, and curiosity are the perfect foundation for any art program, at any level. (Contains 3 resources and 3 online…

  18. Hidden sketches by Leonardo da Vinci revealed

    NASA Astrophysics Data System (ADS)

    Dumé, Belle

    2009-02-01

    Three drawings on the back of Leonardo da Vinci's The Virgin and Child with St Anne (circa 1508) have been discovered by researchers led by Michel Menu from the Centre de Recherche et de Restauration des Musées de France (C2RMF) and the Louvre Museum in Paris.

  19. The local effect of octreotide on mechanical pain sensitivity is more sensitive in DA rats than DA.1U rats.

    PubMed

    Yao, Fan-Rong; Wang, Hui-Sheng; Guo, Yuan; Zhao, Yan

    2016-02-01

    A recent study by the authors indicated that major histocompatibility complex (MHC) genes are associated with the differences in basal pain sensitivity and in formalin model between Dark-Agouti (DA) and novel congenic DA.1U rats, which have the same genetic background as DA rats except for the u alleles of MHC. The objective of the present study is to investigate whether there is a difference in the pristane-induced arthritis (PIA) model and local analgesic effect of octreotide (OCT) between DA and DA.1U rats. The hindpaw mechanical withdrawal threshold (MWT) and heat withdrawal latency (HWL) were observed. The C unit firings of the tibial nerve evoked by non-noxious and noxious toe movements were recorded by electrophysiological methods in normal and PIA models in DA and DA.1U rats before and after local OCT administration. The expression of somatostatin receptor 2A (SSTR2A) was observed by immunohistochemistry. The results demonstrate that DA rats have a higher mechanical sensitivity than DA.1U rats after PIA. Local OCT administration significantly elevated MWT in DA rats under normal and PIA sate, but not in DA.1U rats. The electrophysiological experiments showed OCT significantly attenuated the firings of C units evoked by non-noxious and noxious stimulation in DA rats more than those in DA.1U rats both in normal and PIA states. In addition, the expression of SSTR2A in the dorsal horn of the spinal cord was significantly higher in DA than in DA.1U rats. All of the findings suggest a higher local analgesic effect of OCT in DA rats than DA.1U rats, which might be associated with the MHC genes.

  20. A Day in the Life at DaVita Academy

    ERIC Educational Resources Information Center

    Weinstein, Margery

    2010-01-01

    When a company name means "giving life," the bar for learning and development programs is held high. In this article, the author describes what it takes to graduate from DaVita Academy, the soft skills training program dialysis services company DaVita offers all its employees. DaVita's chief executive officer, Kent Thiry, states that the Academy…