Sample records for jam pattern formation

  1. Physics and (patho)physiology in confined flows: from colloidal patterns to cytoplasmic rheology and sickle cell anemia

    NASA Astrophysics Data System (ADS)

    Mahadevan, L.

    2015-03-01

    I will discuss a few problems that involve the interaction of fluids and solids in confined spaces. (i) Jamming in pressure-driven suspension flows that show a transition from Stokes flows to Darcy flows as the solids start to lock, as in evaporative patterning in colloids (e.g. coffee stain formation) .(ii) Jamming and clogging of red blood cells, as in sickle-cell pathophysiology, with implications for other diseases that involve jamming. (iii) The mechanical response of crowded networks of filaments bathed in a fluid, as in the cytoskeleton, that can be described by poroelasticity theory. In each case, I will show how simple theories of multiphase flow and deformation can be used to explain a range of experimental observations, while failing to account for others, along with some thoughts on how to improve them.

  2. Approach jamming effectiveness evaluation for surface-type infrared decoy in network centric warship formation

    NASA Astrophysics Data System (ADS)

    Lv, Mingshan

    2015-10-01

    The passive and photoelectrical jamming to anti-ship missile in the condition of network centric warship formation is an important research issue of fleet EW operation. An approach jamming method of shipborne surface-type infrared decoy countering the infrared image guided anti-ship missile is put forward. By analyzing the countering process the jamming effectiveness evaluation model is constructed. By simulation the method is proved t reasonable and effective. This method breaks through the traditional restrict that the passive and photoelectricity jamming measure can only be used in the end self-defence and provides a new method for network centric worship formation to support each other.

  3. The Physics of Traffic

    NASA Astrophysics Data System (ADS)

    Davis, L. Craig

    2006-03-01

    Congestion in freeway traffic is an example of self-organization in the language of complexity theory. Nonequilibrium, first-order phase transitions from free flow cause complex spatiotemporal patterns. Two distinct phases of congestion are observed in empirical traffic data--wide moving jams and synchronous flow. Wide moving jams are characterized by stopped or slowly moving vehicles within the jammed region, which widens and moves upstream at 15-20 km/h. Above a critical density of vehicles, a sudden decrease in the velocity of a lead vehicle can initiate a transition from metastable states to this phase. Human behaviors, especially delayed reactions, are implicated in the formation of jams. The synchronous flow phase results from a bottleneck such as an on-ramp. Thus, in contrast to a jam, the downstream front is pinned at a fixed location. The name of the phase comes from the equilibration (or synchronization) of speed and flow rate across all lanes caused by frequent vehicle lane changes. Synchronous flow occurs when the mainline flow and the rate of merging from an on-ramp are sufficiently large. Large-scale simulations using car-following models reproduce the physical phenomena occurring in traffic and suggest methods to improve flow and mediate congestion.

  4. Genetic, structural, and chemical insights into the dual function of GRASP55 in germ cell Golgi remodeling and JAM-C polarized localization during spermatogenesis.

    PubMed

    Cartier-Michaud, Amandine; Bailly, Anne-Laure; Betzi, Stéphane; Shi, Xiaoli; Lissitzky, Jean-Claude; Zarubica, Ana; Sergé, Arnauld; Roche, Philippe; Lugari, Adrien; Hamon, Véronique; Bardin, Florence; Derviaux, Carine; Lembo, Frédérique; Audebert, Stéphane; Marchetto, Sylvie; Durand, Bénédicte; Borg, Jean-Paul; Shi, Ning; Morelli, Xavier; Aurrand-Lions, Michel

    2017-06-01

    Spermatogenesis is a dynamic process that is regulated by adhesive interactions between germ and Sertoli cells. Germ cells express the Junctional Adhesion Molecule-C (JAM-C, encoded by Jam3), which localizes to germ/Sertoli cell contacts. JAM-C is involved in germ cell polarity and acrosome formation. Using a proteomic approach, we demonstrated that JAM-C interacted with the Golgi reassembly stacking protein of 55 kDa (GRASP55, encoded by Gorasp2) in developing germ cells. Generation and study of Gorasp2-/- mice revealed that knock-out mice suffered from spermatogenesis defects. Acrosome formation and polarized localization of JAM-C in spermatids were altered in Gorasp2-/- mice. In addition, Golgi morphology of spermatocytes was disturbed in Gorasp2-/- mice. Crystal structures of GRASP55 in complex with JAM-C or JAM-B revealed that GRASP55 interacted via PDZ-mediated interactions with JAMs and induced a conformational change in GRASP55 with respect of its free conformation. An in silico pharmacophore approach identified a chemical compound called Graspin that inhibited PDZ-mediated interactions of GRASP55 with JAMs. Treatment of mice with Graspin hampered the polarized localization of JAM-C in spermatids, induced the premature release of spermatids and affected the Golgi morphology of meiotic spermatocytes.

  5. Dynamic phases, pinning, and pattern formation for driven dislocation assemblies

    DOE PAGES

    Zhou, Caizhi; Reichhardt, Charles; Olson Reichhardt, Cynthia J.; ...

    2015-01-23

    We examine driven dislocation assemblies and show that they can exhibit a set of dynamical phases remarkably similar to those of driven systems with quenched disorder such as vortices in superconductors, magnetic domain walls, and charge density wave materials. These phases include pinned-jammed, fluctuating, and dynamically ordered states, and each produces distinct dislocation patterns as well as specific features in the noise fluctuations and transport properties. Lastly, our work suggests that many of the results established for systems with quenched disorder undergoing plastic depinning transitions can be applied to dislocation systems, providing a new approach for understanding pattern formation andmore » dynamics in these systems.« less

  6. A novel junctional adhesion molecule A (CgJAM-A-L) from oyster (Crassostrea gigas) functions as pattern recognition receptor and opsonin.

    PubMed

    Liu, Conghui; Wang, Mengqiang; Jiang, Shuai; Wang, Lingling; Chen, Hao; Liu, Zhaoqun; Qiu, Limei; Song, Linsheng

    2016-02-01

    Junctional adhesion molecule (JAM), a subfamily of immunoglobulin superfamily (IgSF) with a couple of immunoglobulin domains, can act as regulator in homeostasis and inflammation of vertebrates. In the present study, a structural homolog of JAM-A (designated CgJAM-A-L) was screened out from oyster, Crassostrea gigas, through a search of JAM-A D1 domain (N-terminal Ig domain in JAM-A). The cDNA of CgJAM-A-L was of 1188 bp encoding a predicted polypeptide of 395 amino acids. The immunoreactive area of CgJAM-A-L mainly distributed over the plasma membrane of hemocytes. After Vibro splendidus or tumor necrosis factor (CgTNF-1) stimulation, the mRNA transcripts of CgJAM-A-L in hemocytes increased significantly by 4.46-fold and 9.00-fold (p < 0.01) of those in control group, respectively. The recombinant CgJAM-A-L protein (rCgJAM-A-L) could bind multiple PAMPs including lipopolysaccharides (LPS), peptidoglycan (PGN), lipoteichoic acid (LTA), mannose (MAN), β-glucan (GLU) and poly(I:C), and various microorganisms including Micrococcus luteus, Staphylococcus aureus, Escherichia coli, Vibro anguillarum, V. splendidus, Pastoris pastoris and Yarrowia lipolytica. The phagocytic rates of oyster hemocytes towards Gram-negative bacteria V. anguillarum and yeast P. pastoris were significantly enhanced after the incubation of rCgJAM-A-L, and even increased more significantly after the pre-incubation of rCgJAM-A-L with microbes (p < 0.01). The results collectively indicated that CgJAM-A-L functioned as an important pattern recognition receptor (PRR) and opsonin in the immune defense against invading pathogen in oyster. Moreover, as the most primitive specie with homolog of JAMs, the information of CgJAM-A-L in oyster would provide useful clues for the evolutionary study of JAMs and immunoglobulins. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. JAM-A as a prognostic factor and new therapeutic target in multiple myeloma.

    PubMed

    Solimando, A G; Brandl, A; Mattenheimer, K; Graf, C; Ritz, M; Ruckdeschel, A; Stühmer, T; Mokhtari, Z; Rudelius, M; Dotterweich, J; Bittrich, M; Desantis, V; Ebert, R; Trerotoli, P; Frassanito, M A; Rosenwald, A; Vacca, A; Einsele, H; Jakob, F; Beilhack, A

    2018-03-01

    Cell adhesion in the multiple myeloma (MM) microenvironment has been recognized as a major mechanism of MM cell survival and the development of drug resistance. Here we addressed the hypothesis that the protein junctional adhesion molecule-A (JAM-A) may represent a novel target and a clinical biomarker in MM. We evaluated JAM-A expression in MM cell lines and in 147 MM patient bone marrow aspirates and biopsies at different disease stages. Elevated JAM-A levels in patient-derived plasma cells were correlated with poor prognosis. Moreover, circulating soluble JAM-A (sJAM-A) levels were significantly increased in MM patients as compared with controls. Notably, in vitro JAM-A inhibition impaired MM migration, colony formation, chemotaxis, proliferation and viability. In vivo treatment with an anti-JAM-A monoclonal antibody (αJAM-A moAb) impaired tumor progression in a murine xenograft MM model. These results demonstrate that therapeutic targeting of JAM-A has the potential to prevent MM progression, and lead us to propose JAM-A as a biomarker in MM, and sJAM-A as a serum-based marker for clinical stratification.

  8. Traffic flow behavior at a single-lane urban roundabout

    NASA Astrophysics Data System (ADS)

    Lakouari, N.; Oubram, O.; Ez-Zahraouy, H.; Cisneros-Villalobos, L.; Velásquez-Aguilar, J. G.

    In this paper, we propose a stochastic cellular automata model to study the traffic behavior at a single-lane roundabout. Vehicles can enter the interior lane or exit from it via N intersecting lane, the boundary conditions are stochastic. The traffic is controlled by a self-organized scheme. It has turned out that depending on the rules of insertion to the roundabout, five distinct traffic phases can appear, namely, free flow, congestion, maximum current, jammed and gridlock. The transition between the free flow and the gridlock is forbidden. The density profiles are used to study the traffic pattern at the interior lane of the roundabout. In order to quantify the interactions between vehicles in the interior lane of the roundabout, the velocity correlation coefficient (VCC) is also studied. Besides, the spatiotemporal diagrams corresponding to the entry/exit lanes are derived numerically. Furthermore, we have investigated the effect of displaying signal (PIn), as the PIn decreases, the maximum current increases at the expense of the free flow and the jamming phase. Finally, we have investigated the effect of the braking probability P on the interior lane of the roundabout. We have found that the increase of P raises the spontaneous jam formation on the ring. Thus, enlarges the maximum current and the jamming phase while the free flow phase decreases.

  9. JAM-A as a prognostic factor and new therapeutic target in multiple myeloma

    PubMed Central

    Solimando, A G; Brandl, A; Mattenheimer, K; Graf, C; Ritz, M; Ruckdeschel, A; Stühmer, T; Mokhtari, Z; Rudelius, M; Dotterweich, J; Bittrich, M; Desantis, V; Ebert, R; Trerotoli, P; Frassanito, M A; Rosenwald, A; Vacca, A; Einsele, H; Jakob, F; Beilhack, A

    2018-01-01

    Cell adhesion in the multiple myeloma (MM) microenvironment has been recognized as a major mechanism of MM cell survival and the development of drug resistance. Here we addressed the hypothesis that the protein junctional adhesion molecule-A (JAM-A) may represent a novel target and a clinical biomarker in MM. We evaluated JAM-A expression in MM cell lines and in 147 MM patient bone marrow aspirates and biopsies at different disease stages. Elevated JAM-A levels in patient-derived plasma cells were correlated with poor prognosis. Moreover, circulating soluble JAM-A (sJAM-A) levels were significantly increased in MM patients as compared with controls. Notably, in vitro JAM-A inhibition impaired MM migration, colony formation, chemotaxis, proliferation and viability. In vivo treatment with an anti-JAM-A monoclonal antibody (αJAM-A moAb) impaired tumor progression in a murine xenograft MM model. These results demonstrate that therapeutic targeting of JAM-A has the potential to prevent MM progression, and lead us to propose JAM-A as a biomarker in MM, and sJAM-A as a serum-based marker for clinical stratification. PMID:29064484

  10. Hyperreactivity of junctional adhesion molecule A-deficient platelets accelerates atherosclerosis in hyperlipidemic mice.

    PubMed

    Karshovska, Ela; Zhao, Zhen; Blanchet, Xavier; Schmitt, Martin M N; Bidzhekov, Kiril; Soehnlein, Oliver; von Hundelshausen, Philipp; Mattheij, Nadine J; Cosemans, Judith M E M; Megens, Remco T A; Koeppel, Thomas A; Schober, Andreas; Hackeng, Tilman M; Weber, Christian; Koenen, Rory R

    2015-02-13

    Besides their essential role in hemostasis, platelets also have functions in inflammation. In platelets, junctional adhesion molecule (JAM)-A was previously identified as an inhibitor of integrin αIIbβ3-mediated outside-in signaling and its genetic knockdown resulted in hyperreactivity. This gain-of-function was specifically exploited to investigate the role of platelet hyperreactivity in plaque development. JAM-A-deficient platelets showed increased aggregation and cellular and sarcoma tyrosine-protein kinase activation. On αIIbβ3 ligation, JAM-A was shown to be dephosphorylated, which could be prevented by protein tyrosine phosphatase nonreceptor type 1 inhibition. Mice with or without platelet-specific (tr)JAM-A-deficiency in an apolipoprotein e (apoe(-/-)) background were fed a high-fat diet. After ≤12 weeks of diet, trJAM-A(-/-)apoe-/- mice showed increased aortic plaque formation when compared with trJAM-A(+/+) apoe(-/-) controls, and these differences were most evident at early time points. At 2 weeks, the plaques of the trJAM-A(-/-) apoe(-/-) animals revealed increased macrophage, T cell, and smooth muscle cell content. Interestingly, plasma levels of chemokines CC chemokine ligand 5 and CXC-chemokine ligand 4 were increased in the trJAM-A(-/-) apoe(-/-)mice, and JAM-A-deficient platelets showed increased binding to monocytes and neutrophils. Whole-blood perfusion experiments and intravital microscopy revealed increased recruitment of platelets and monocytes to the inflamed endothelium in blood of trJAM-A(-/-) apoe(-/-)mice. Notably, these proinflammatory effects of JAM-A-deficient platelets could be abolished by the inhibition of αIIbβ3 signaling in vitro. Deletion of JAM-A causes a gain-of-function in platelets, with lower activation thresholds and increased inflammatory activities. This leads to an increase of plaque formation, particularly in early stages of the disease. © 2014 American Heart Association, Inc.

  11. Involvement of the interaction of afadin with ZO-1 in the formation of tight junctions in Madin-Darby canine kidney cells.

    PubMed

    Ooshio, Takako; Kobayashi, Reiko; Ikeda, Wataru; Miyata, Muneaki; Fukumoto, Yuri; Matsuzawa, Naomi; Ogita, Hisakazu; Takai, Yoshimi

    2010-02-12

    Tight junctions (TJs) and adherens junctions (AJs) are major junctional apparatuses in epithelial cells. Claudins and junctional adhesion molecules (JAMs) are major cell adhesion molecules (CAMs) at TJs, whereas cadherins and nectins are major CAMs at AJs. Claudins and JAMs are associated with ZO proteins, whereas cadherins are associated with beta- and alpha-catenins, and nectins are associated with afadin. We previously showed that nectins first form cell-cell adhesions where the cadherin-catenin complex is recruited to form AJs, followed by the recruitment of the JAM-ZO and claudin-ZO complexes to the apical side of AJs to form TJs. It is not fully understood how TJ components are recruited to the apical side of AJs. We studied the roles of afadin and ZO-1 in the formation of TJs in Madin-Darby canine kidney (MDCK) cells. Before the formation of TJs, ZO-1 interacted with afadin through the two proline-rich regions of afadin and the SH3 domain of ZO-1. During and after the formation of TJs, ZO-1 dissociated from afadin and associated with JAM-A. Knockdown of afadin impaired the formation of both AJs and TJs in MDCK cells, whereas knockdown of ZO-1 impaired the formation of TJs, but not AJs. Re-expression of full-length afadin restored the formation of both AJs and TJs in afadin-knockdown MDCK cells, whereas re-expression of afadin-DeltaPR1-2, which is incapable of binding to ZO-1, restored the formation of AJs, but not TJs. These results indicate that the transient interaction of afadin with ZO-1 is necessary for the formation of TJs in MDCK cells.

  12. Involvement of the Interaction of Afadin with ZO-1 in the Formation of Tight Junctions in Madin-Darby Canine Kidney Cells*

    PubMed Central

    Ooshio, Takako; Kobayashi, Reiko; Ikeda, Wataru; Miyata, Muneaki; Fukumoto, Yuri; Matsuzawa, Naomi; Ogita, Hisakazu; Takai, Yoshimi

    2010-01-01

    Tight junctions (TJs) and adherens junctions (AJs) are major junctional apparatuses in epithelial cells. Claudins and junctional adhesion molecules (JAMs) are major cell adhesion molecules (CAMs) at TJs, whereas cadherins and nectins are major CAMs at AJs. Claudins and JAMs are associated with ZO proteins, whereas cadherins are associated with β- and α-catenins, and nectins are associated with afadin. We previously showed that nectins first form cell-cell adhesions where the cadherin-catenin complex is recruited to form AJs, followed by the recruitment of the JAM-ZO and claudin-ZO complexes to the apical side of AJs to form TJs. It is not fully understood how TJ components are recruited to the apical side of AJs. We studied the roles of afadin and ZO-1 in the formation of TJs in Madin-Darby canine kidney (MDCK) cells. Before the formation of TJs, ZO-1 interacted with afadin through the two proline-rich regions of afadin and the SH3 domain of ZO-1. During and after the formation of TJs, ZO-1 dissociated from afadin and associated with JAM-A. Knockdown of afadin impaired the formation of both AJs and TJs in MDCK cells, whereas knockdown of ZO-1 impaired the formation of TJs, but not AJs. Re-expression of full-length afadin restored the formation of both AJs and TJs in afadin-knockdown MDCK cells, whereas re-expression of afadin-ΔPR1–2, which is incapable of binding to ZO-1, restored the formation of AJs, but not TJs. These results indicate that the transient interaction of afadin with ZO-1 is necessary for the formation of TJs in MDCK cells. PMID:20008323

  13. Discrete element modeling of free-standing wire-reinforced jammed granular columns

    NASA Astrophysics Data System (ADS)

    Iliev, Pavel S.; Wittel, Falk K.; Herrmann, Hans J.

    2018-02-01

    The use of fiber reinforcement in granular media is known to increase the cohesion and therefore the strength of the material. However, a new approach, based on layer-wise deployment of predetermined patterns of the fiber reinforcement has led self-confining and free-standing jammed structures to become viable. We have developed a novel model to simulate fiber-reinforced granular materials, which takes into account irregular particles and wire elasticity and apply it to study the stability of unconfined jammed granular columns.

  14. Jam1a-Jam2a interactions regulate haematopoietic stem cell fate through Notch signalling.

    PubMed

    Kobayashi, Isao; Kobayashi-Sun, Jingjing; Kim, Albert D; Pouget, Claire; Fujita, Naonobu; Suda, Toshio; Traver, David

    2014-08-21

    Notch signalling plays a key role in the generation of haematopoietic stem cells (HSCs) during vertebrate development and requires intimate contact between signal-emitting and signal-receiving cells, although little is known regarding when, where and how these intercellular events occur. We previously reported that the somitic Notch ligands, Dlc and Dld, are essential for HSC specification. It has remained unclear, however, how these somitic requirements are connected to the later emergence of HSCs from the dorsal aorta. Here we show in zebrafish that Notch signalling establishes HSC fate as their shared vascular precursors migrate across the ventral face of the somite and that junctional adhesion molecules (JAMs) mediate this required Notch signal transduction. HSC precursors express jam1a (also known as f11r) and migrate axially across the ventral somite, where Jam2a and the Notch ligands Dlc and Dld are expressed. Despite no alteration in the expression of Notch ligand or receptor genes, loss of function of jam1a led to loss of Notch signalling and loss of HSCs. Enforced activation of Notch in shared vascular precursors rescued HSCs in jam1a or jam2a deficient embryos. Together, these results indicate that Jam1a-Jam2a interactions facilitate the transduction of requisite Notch signals from the somite to the precursors of HSCs, and that these events occur well before formation of the dorsal aorta.

  15. Phase transitions in traffic flow on multilane roads.

    PubMed

    Kerner, Boris S; Klenov, Sergey L

    2009-11-01

    Based on empirical and numerical analyses of vehicular traffic, the physics of spatiotemporal phase transitions in traffic flow on multilane roads is revealed. The complex dynamics of moving jams observed in single vehicle data measured by video cameras on American highways is explained by the nucleation-interruption effect in synchronized flow, i.e., the spontaneous nucleation of a narrow moving jam with the subsequent jam dissolution. We find that (i) lane changing, vehicle merging from on-ramps, and vehicle leaving to off-ramps result in different traffic phases-free flow, synchronized flow, and wide moving jams-occurring and coexisting in different road lanes as well as in diverse phase transitions between the traffic phases; (ii) in synchronized flow, the phase transitions are responsible for a non-regular moving jam dynamics that explains measured single vehicle data: moving jams emerge and dissolve randomly at various road locations in different lanes; (iii) the phase transitions result also in diverse expanded general congested patterns occurring at closely located bottlenecks.

  16. Adaptive changes in echolocation sounds by Pipistrellus abramus in response to artificial jamming sounds.

    PubMed

    Takahashi, Eri; Hyomoto, Kiri; Riquimaroux, Hiroshi; Watanabe, Yoshiaki; Ohta, Tetsuo; Hiryu, Shizuko

    2014-08-15

    The echolocation behavior of Pipistrellus abramus during exposure to artificial jamming sounds during flight was investigated. Echolocation pulses emitted by the bats were recorded using a telemetry microphone mounted on the bats' backs, and their adaptation based on acoustic characteristics of emitted pulses was assessed in terms of jamming-avoidance responses (JARs). In experiment 1, frequency-modulated jamming sounds (3 ms duration) mimicking echolocation pulses of P. abramus were prepared. All bats showed significant increases in the terminal frequency of the frequency-modulated pulse by an average of 2.1-4.5 kHz when the terminal frequency of the jamming sounds was lower than the bats' own pulses. This frequency shift was not observed using jamming frequencies that overlapped with or were higher than the bats' own pulses. These findings suggest that JARs in P. abramus are sensitive to the terminal frequency of jamming pulses and that the bats' response pattern was dependent on the slight difference in stimulus frequency. In experiment 2, when bats were repeatedly exposed to a band-limited noise of 70 ms duration, the bats in flight more frequently emitted pulses during silent periods between jamming sounds, suggesting that the bats could actively change the timing of pulse emissions, even during flight, to avoid temporal overlap with jamming sounds. Our findings demonstrate that bats could adjust their vocalized frequency and emission timing during flight in response to acoustic jamming stimuli. © 2014. Published by The Company of Biologists Ltd.

  17. Hindered settling and the formation of layered intrusions

    NASA Astrophysics Data System (ADS)

    Bons, Paul D.; Baur, Albrecht; Elburg, Marlina A.; Lindhuber, Matthias J.; Marks, Michael A. W.; Soesoo, Alvar; van Milligen, Boudewijn P.; Walte, Nicolas P.

    2015-04-01

    Layered intrusions are characterized by (often repetitive) layering on a range of scales. Many explanations for the formation of such layering have been proposed over the past decades. We investigated the formation of "mats" by hindered crystal settling, a model that was first suggested by Lauder (1964). The interaction of sinking and rising crystals leads to the amplification of perturbations in crystal density within a magma chamber, a process similar to the formation of traffic jams in dense traffic (Bons et al., 2015). Once these "crystal traffic jams" form they constitute a barrier for further settling of crystals. Between these barriers, the magma evolves in a semi-closed system in which stratification may develop by gravitational sorting. Barriers, and therefore layers, form sequentially during inward cooling of the magma chamber. Barring later equilibration, mineralogical and geochemical trends within the layers are repetitive, but with variations due to the random process of initial perturbation formation. Layers can form in the transition between two end-member regimes: (1) in a fast cooling and/or viscous magma crystals cannot sink or float a significant distance and minerals are distributed homogeneously throughout the chamber; (2) in a slow cooling and/or low-viscosity magma crystals can quickly settle at the top and bottom of the chamber and crystals concentrations are never high enough to form "traffic jams". As a result, heavy and light minerals get fully separated in the chamber. Between these two end members, crystals can sink and float a significant distance, but not the whole height of the magma chamber before entrapment in "traffic jams". We illustrate the development of layers with numerical models and compare the results with the layered nepheline syenites (kakortokites) of the Ilímaussaq intrusion in SW Greenland. References: Bons, P.D., Baur, A., Elburg, M.A., Lindhuber, M.J., Marks, M.A.W., Soesoo, A., van Milligen, B.P., Walte, N.P. 2015. Layered intrusions and traffic jams. Geology 43, 71-74 Lauder, W. 1964. Mat formation and crystal settling in magma. Nature 202, 1100-1101.

  18. Apparatus and method for controlling the rotary airlocks in a coal processing system by reversing the motor current rotating the air lock

    DOEpatents

    Groombridge, Clifton E.

    1996-01-01

    An improvement to a coal processing system where hard materials found in the coal may cause jamming of either inflow or outflow rotary airlocks, each driven by a reversible motor. The instantaneous current used by the motor is continually monitored and compared to a predetermined value. If an overcurrent condition occurs, indicating a jamming of the airlock, a controller means starts a "soft" reverse rotation of the motor thereby clearing the jamming. Three patterns of the motor reversal are provided.

  19. A model of jam formation in congested traffic

    NASA Astrophysics Data System (ADS)

    Bunzarova, N. Zh; Pesheva, N. C.; Priezzhev, V. B.; Brankov, J. G.

    2017-12-01

    We study a model of irreversible jam formation in congested vehicular traffic on an open segment of a single-lane road. The vehicles obey a stochastic discrete-time dynamics which is a limiting case of the generalized Totally Asymmetric Simple Exclusion Process. Its characteristic features are: (a) the existing clusters of jammed cars cannot break into parts; (b) when the leading vehicle of a cluster hops to the right, the whole cluster follows it deterministically, and (c) any two clusters of vehicles, occupying consecutive positions on the chain, may become nearest-neighbors and merge irreversibly into a single cluster. The above dynamics was used in a one-dimensional model of irreversible aggregation by Bunzarova and Pesheva [Phys. Rev. E 95, 052105 (2017)]. The model has three stationary non-equilibrium phases, depending on the probabilities of injection (α), ejection (β), and hopping (p) of particles: a many-particle one, MP, a completely jammed phase CF, and a mixed MP+CF phase. An exact expression for the stationary probability P(1) of a completely jammed configuration in the mixed MP+CF phase is obtained. The gap distribution between neighboring clusters of jammed cars at large lengths L of the road is studied. Three regimes of evolution of the width of a single gap are found: (i) growing gaps with length of the order O(L) when β > p; (ii) shrinking gaps with length of the order O(1) when β < p; and (iii) critical gaps at β = p, of the order O(L 1/2). These results are supported by extensive Monte Carlo calculations.

  20. JAM-A protects from thrombosis by suppressing integrin αIIbβ3-dependent outside-in signaling in platelets

    PubMed Central

    Naik, Meghna U.; Stalker, Timothy J.; Brass, Lawrence F.

    2012-01-01

    Mounting evidence suggests that agonist-initiated signaling in platelets is closely regulated to avoid excessive responses to injury. A variety of physiologic agonists induce a cascade of signaling events termed as inside-out signaling that culminate in exposure of high-affinity binding sites on integrin αIIbβ3. Once platelet activation has occurred, integrin αIIbβ3 stabilizes thrombus formation by providing agonist-independent “outside-in” signals mediated in part by contractile signaling. Junctional adhesion molecule A (JAM-A), a member of the cortical thymocyte marker of the Xenopus (CTX) family, was initially identified as a receptor for a platelet stimulatory mAb. Here we show that JAM-A in resting platelets functions as an endogenous inhibitor of platelet function. Genetic ablation of Jam-A in mice enhances thrombotic function of platelets in vivo. The absence of Jam-A results in increase in platelet aggregation ex vivo. This gain of function is not because of enhanced inside-out signaling because granular secretion, Thromboxane A2 (TxA2) generation, as well as fibrinogen receptor activation, are normal in the absence of Jam-A. Interestingly, integrin outside-in signaling such as platelet spreading and clot retraction is augmented in Jam-A–deficient platelets. We conclude that JAM-A normally limits platelet accumulation by inhibiting integrin outside-in signaling thus preventing premature platelet activation. PMID:22271446

  1. Elastogranular Mechanics: Buckling, Jamming, and Structure Formation.

    PubMed

    Schunter, David J; Brandenbourger, Martin; Perriseau, Sophia; Holmes, Douglas P

    2018-02-16

    Confinement of a slender body into a granular array induces stress localization in the geometrically nonlinear structure, and jamming, reordering, and vertical dislodging of the surrounding granular medium. By varying the initial packing density of grains and the length of a confined elastica, we identify the critical length necessary to induce jamming, and demonstrate how folds couple with the granular medium to localize along grain boundaries. Above the jamming threshold, the characteristic length of elastica deformation is shown to diverge in a manner that is coupled with the motion and rearrangement of the grains, suggesting the ordering of the granular array governs the deformation of the slender structure. However, overconfinement of the elastica will vertically dislodge grains, a form of stress relaxation in the granular medium that illustrates the intricate coupling in elastogranular interactions.

  2. Elastogranular Mechanics: Buckling, Jamming, and Structure Formation

    NASA Astrophysics Data System (ADS)

    Schunter, David J.; Brandenbourger, Martin; Perriseau, Sophia; Holmes, Douglas P.

    2018-02-01

    Confinement of a slender body into a granular array induces stress localization in the geometrically nonlinear structure, and jamming, reordering, and vertical dislodging of the surrounding granular medium. By varying the initial packing density of grains and the length of a confined elastica, we identify the critical length necessary to induce jamming, and demonstrate how folds couple with the granular medium to localize along grain boundaries. Above the jamming threshold, the characteristic length of elastica deformation is shown to diverge in a manner that is coupled with the motion and rearrangement of the grains, suggesting the ordering of the granular array governs the deformation of the slender structure. However, overconfinement of the elastica will vertically dislodge grains, a form of stress relaxation in the granular medium that illustrates the intricate coupling in elastogranular interactions.

  3. Flow-sediment-large woody debris interplay: Introducing an appropriately scaled laboratory experiment

    NASA Astrophysics Data System (ADS)

    Friedrich, H.; Spreitzer, G.; Tunnicliffe, J. F.

    2017-12-01

    The morphology of steep (>0.01 m/m) forested streams is governed not only by water-sediment interplay, but also by accumulations of coarse and fine organic debris. In this project we look at the jamming dynamics (formation, persistence and hydraulic feedbacks) of large woody debris with the help of scaled laboratory experiments. In New Zealand, the recruitment of wood from both natural tree-fall and forest harvesting has led to obstruction of culverts, bridges and other river constrictions. Understanding the dynamics of jam formation and persistence is important for harvest practice guidelines, management of sediment accumulation, as well as establishing impacts to habitat and infrastructure. In this study, we provide the context of our work, present our experimental setup for studying the complex flow-sediment-wood interactions and present some initial results. In our experimental setup, we varied feed rates of sediment and organic fine material in order to establish concentration thresholds for jam formation, and development of sediment retention capacity upstream of the jam. Large woody debris accumulation is studied for different blocking scenarios, and the effect on sediment transport is measured. Sediment quantities and changes in channel bed morphology upstream of the critical cross section are evaluated, together with resulting backwater effects, and associated energy losses. In the long term, our results will inform our understanding of the processes that take place from the mobilization of woody debris to accumulation.

  4. Cloning and preliminary functional studies of the JAM-A gene in grass carp (Ctenopharyngodon idellus).

    PubMed

    Du, Fukuan; Su, Jianguo; Huang, Rong; Liao, Lanjie; Zhu, Zuoyan; Wang, Yaping

    2013-06-01

    Grass carp (Ctenopharyngodon idellus) is a very important aquaculture species in China and other South-East Asian countries; however, disease outbreaks in this species are frequent, resulting in huge economic losses. Grass carp hemorrhage caused by grass carp reovirus (GCRV) is one of the most serious diseases. Junction adhesion molecule A (JAM-A) is the mammalian receptor for reovirus, and has been well studied. However, the JAM-A gene in grass carp has not been studied so far. In this study, we cloned and elucidated the structure of the JAM-A gene in grass carp (GcJAM-A) and then studied its functions during grass carp hemorrhage. GcJAM-A is composed of 10 exons and 9 introns, and its full-length cDNA is 1833 bp long, with an 888 bp open reading frame (ORF) that encodes a 295 amino acid protein. The GcJAM-A protein is predicted to contain a typical transmembrane domain. Maternal expression pattern of GcJAM-A is observed during early embryogenesis, while zygote expression occurs at 8 h after hatching. GcJAM-A is expressed strongly in the gill, liver, intestine and kidney, while it is expressed poorly in the blood, brain, spleen and head kidney. Moreover, lower expression is observed in the gill, liver, intestine, brain, spleen and kidney of 30-month-old individuals, compared with 6-month-old. In a GcJAM-A-knockdown cell line (CIK) infected with GCRV, the expression of genes involved in the interferon and apoptosis pathways was significantly inhibited. These results suggest that GcJAM-A could be a receptor for GCRV. We have therefore managed to characterize the GcJAM-A gene and provide evidence for its role as a receptor for GCRV. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  5. Jamming transitions induced by an attraction in pedestrian flow.

    PubMed

    Kwak, Jaeyoung; Jo, Hang-Hyun; Luttinen, Tapio; Kosonen, Iisakki

    2017-08-01

    We numerically study jamming transitions in pedestrian flow interacting with an attraction, mostly based on the social force model for pedestrians who can join the attraction. We formulate the joining probability as a function of social influence from others, reflecting that individual choice behavior is likely influenced by others. By controlling pedestrian influx and the social influence parameter, we identify various pedestrian flow patterns. For the bidirectional flow scenario, we observe a transition from the free flow phase to the freezing phase, in which oppositely walking pedestrians reach a complete stop and block each other. On the other hand, a different transition behavior appears in the unidirectional flow scenario, i.e., from the free flow phase to the localized jam phase and then to the extended jam phase. It is also observed that the extended jam phase can end up in freezing phenomena with a certain probability when pedestrian flux is high with strong social influence. This study highlights that attractive interactions between pedestrians and an attraction can trigger jamming transitions by increasing the number of conflicts among pedestrians near the attraction. In order to avoid excessive pedestrian jams, we suggest suppressing the number of conflicts under a certain level by moderating pedestrian influx especially when the social influence is strong.

  6. Jamming transitions induced by an attraction in pedestrian flow

    NASA Astrophysics Data System (ADS)

    Kwak, Jaeyoung; Jo, Hang-Hyun; Luttinen, Tapio; Kosonen, Iisakki

    2017-08-01

    We numerically study jamming transitions in pedestrian flow interacting with an attraction, mostly based on the social force model for pedestrians who can join the attraction. We formulate the joining probability as a function of social influence from others, reflecting that individual choice behavior is likely influenced by others. By controlling pedestrian influx and the social influence parameter, we identify various pedestrian flow patterns. For the bidirectional flow scenario, we observe a transition from the free flow phase to the freezing phase, in which oppositely walking pedestrians reach a complete stop and block each other. On the other hand, a different transition behavior appears in the unidirectional flow scenario, i.e., from the free flow phase to the localized jam phase and then to the extended jam phase. It is also observed that the extended jam phase can end up in freezing phenomena with a certain probability when pedestrian flux is high with strong social influence. This study highlights that attractive interactions between pedestrians and an attraction can trigger jamming transitions by increasing the number of conflicts among pedestrians near the attraction. In order to avoid excessive pedestrian jams, we suggest suppressing the number of conflicts under a certain level by moderating pedestrian influx especially when the social influence is strong.

  7. Tabletop Traffic Jams: Modeling Traffic Jams using Self Propelled Particles

    NASA Astrophysics Data System (ADS)

    Yadav, Vikrant; Kudrolli, Arshad

    2015-03-01

    We model behavior of traffic using Self Propelled Particles (SPPs). Granular rods with asymmetric mass distribution confined to move in a circular channel on a vibrated substrate and interact with each other through inelastic collision serve as our model vehicle. Motion of a single vehicle is observed to be composed of 2 parts, a linear velocity in the direction of lighter end of particle and a non-Gaussian random velocity. We find that the collective mean speed of the SPPs is constant over a wide range of line densities before decreasing rapidly as the maximum packing is approached indicating the spontaneous formation of Phantom jams. This decrease in speed is observed to be far greater than any small differences in the mean drift speed of individual SPPs , and occurs as the collision frequency between SPPs increase exponentially with line density. However the random velocity component of SPPs remain super-diffusive over entire range of line densities. While the collective motion at low densities is characterized by caravan following behind the slowest particle leading to clustering, at higher densities we see formation of jamming waves travelling in direction opposite to that of motion of particles.

  8. How the propagation of heat-flux modulations triggers E × B flow pattern formation.

    PubMed

    Kosuga, Y; Diamond, P H; Gürcan, O D

    2013-03-08

    We propose a novel mechanism to describe E×B flow pattern formation based upon the dynamics of propagation of heat-flux modulations. The E × B flows of interest are staircases, which are quasiregular patterns of strong, localized shear layers and profile corrugations interspersed between regions of avalanching. An analogy of staircase formation to jam formation in traffic flow is used to develop an extended model of heat avalanche dynamics. The extension includes a flux response time, during which the instantaneous heat flux relaxes to the mean heat flux, determined by symmetry constraints. The response time introduced here is the counterpart of the drivers' response time in traffic, during which drivers adjust their speed to match the background traffic flow. The finite response time causes the growth of mesoscale temperature perturbations, which evolve to form profile corrugations. The length scale associated with the maximum growth rate scales as Δ(2) ~ (v(thi)/λT(i))ρ(i)sqrt[χ(neo)τ], where λT(i) is a typical heat pulse speed, χ(neo) is the neoclassical thermal diffusivity, and τ is the response time of the heat flux. The connection between the scale length Δ(2) and the staircase interstep scale is discussed.

  9. PathJam: a new service for integrating biological pathway information.

    PubMed

    Glez-Peña, Daniel; Reboiro-Jato, Miguel; Domínguez, Rubén; Gómez-López, Gonzalo; Pisano, David G; Fdez-Riverola, Florentino

    2010-10-28

    Biological pathways are crucial to much of the scientific research today including the study of specific biological processes related with human diseases. PathJam is a new comprehensive and freely accessible web-server application integrating scattered human pathway annotation from several public sources. The tool has been designed for both (i) being intuitive for wet-lab users providing statistical enrichment analysis of pathway annotations and (ii) giving support to the development of new integrative pathway applications. PathJam’s unique features and advantages include interactive graphs linking pathways and genes of interest, downloadable results in fully compatible formats, GSEA compatible output files and a standardized RESTful API.

  10. The role of particle jamming on the formation and stability of step-pool morphology: insight from a reduced-complexity model

    NASA Astrophysics Data System (ADS)

    Saletti, M.; Molnar, P.; Hassan, M. A.

    2017-12-01

    Granular processes have been recognized as key drivers in earth surface dynamics, especially in steep landscapes because of the large size of sediment found in channels. In this work we focus on step-pool morphologies, studying the effect of particle jamming on step formation. Starting from the jammed-state hypothesis, we assume that grains generate steps because of particle jamming and those steps are inherently more stable because of additional force chains in the transversal direction. We test this hypothesis with a particle-based reduced-complexity model, CAST2, where sediment is organized in patches and entrainment, transport and deposition of grains depend on flow stage and local topography through simplified phenomenological rules. The model operates with 2 grain sizes: fine grains, that can be mobilized both my large and moderate flows, and coarse grains, mobile only during large floods. First, we identify the minimum set of processes necessary to generate and maintain steps in a numerical channel: (a) occurrence of floods, (b) particle jamming, (c) low sediment supply, and (d) presence of sediment with different entrainment probabilities. Numerical results are compared with field observations collected in different step-pool channels in terms of step density, a variable that captures the proportion of the channel occupied by steps. Not only the longitudinal profiles of numerical channels display step sequences similar to those observed in real step-pool streams, but also the values of step density are very similar when all the processes mentioned before are considered. Moreover, with CAST2 it is possible to run long simulations with repeated flood events, to test the effect of flood frequency on step formation. Numerical results indicate that larger step densities belong to system more frequently perturbed by floods, compared to system having a lower flood frequency. Our results highlight the important interactions between external hydrological forcing and internal geomorphic adjustment (e.g. jamming) on the response of step-pool streams, showing the potential of reduced-complexity models in fluvial geomorphology.

  11. Long-lived force patterns and deformation waves at repulsive epithelial boundaries

    NASA Astrophysics Data System (ADS)

    Rodríguez-Franco, Pilar; Brugués, Agustí; Marín-Llauradó, Ariadna; Conte, Vito; Solanas, Guiomar; Batlle, Eduard; Fredberg, Jeffrey J.; Roca-Cusachs, Pere; Sunyer, Raimon; Trepat, Xavier

    2017-10-01

    For an organism to develop and maintain homeostasis, cell types with distinct functions must often be separated by physical boundaries. The formation and maintenance of such boundaries are commonly attributed to mechanisms restricted to the cells lining the boundary. Here we show that, besides these local subcellular mechanisms, the formation and maintenance of tissue boundaries involves long-lived, long-ranged mechanical events. Following contact between two epithelial monolayers expressing, respectively, EphB2 and its ligand ephrinB1, both monolayers exhibit oscillatory patterns of traction forces and intercellular stresses that tend to pull cell-matrix adhesions away from the boundary. With time, monolayers jam, accompanied by the emergence of deformation waves that propagate away from the boundary. This phenomenon is not specific to EphB2/ephrinB1 repulsion but is also present during the formation of boundaries with an inert interface and during fusion of homotypic epithelial layers. Our findings thus unveil a global physical mechanism that sustains tissue separation independently of the biochemical and mechanical features of the local tissue boundary.

  12. Mobility of large woody debris (LWD) jams in a low gradient channel

    NASA Astrophysics Data System (ADS)

    Curran, Joanna C.

    2010-04-01

    Mobility of large woody debris (LWD) in low gradient channels is an important but often overlooked transport process. The majority of studies on LWD have focused on its role in geomorphic and ecologic river processes. When jams extend across the width of the channel, they have the potential to retain sediment and alter the channel profile. When jams obstruct only a portion of the channel, they can re-direct flow, altering patterns of scour and deposition. The boundary complexity created by LWD has a recognized role in riverine ecosystems which has led to programs of replacing LWD in-channel corridors where it was previously removed. Although LWD jams are common in rivers around the world, they have been studied most intensely in steep, forested channel reaches where they are often found to be stable channel features. It is not fully known how much of the information on LWD from steep forested channels will transfer to other channel types. Whereas it may be reasonable to assume that the ecological benefits of LWD are similar in low gradient channels, research has shown that a much higher rate of LWD transport occurs in low gradient channels, with jams mobilized on timescales of 10 0-10 2 years. This study evaluates the distribution and mobility of LWD over 72 km of the San Antonio River, a low gradient channel in southeast Texas. LWD jam locations were identified for 2003 and 2007 using a combination of aerial photography and field mapping. Each jam was cataloged according to its location in the channel cross-section and the amount of channel area blocked. During the four-year period, all the LWD jams were mobilized, including those jams extending across the channel width. Although easily mobilized, 34 jams re-form in the same locations, creating 34 channel locations with persistent LWD jams. Data from the San Antonio River are applied to two models developed to predict LWD mobility and transport distances to assess the applicability of each model to a low gradient channel. The locations of stable (or recurring) LWD jams were matched to model results where predicted LWD transport distances were equal to measured LWD jam spacing. Model results showed good agreement with the mean and median spacing of LWD jams when given input parameters specific to the channel and wood species. The ability to predict where LWD jams will persist over time in a low gradient channel has application in watershed management. Persistent LWD jams can exert a greater influence on channel morphology and may require active management.

  13. Diffusion-driven self-assembly of rodlike particles: Monte Carlo simulation on a square lattice

    NASA Astrophysics Data System (ADS)

    Lebovka, Nikolai I.; Tarasevich, Yuri Yu.; Gigiberiya, Volodymyr A.; Vygornitskii, Nikolai V.

    2017-05-01

    The diffusion-driven self-assembly of rodlike particles was studied by means of Monte Carlo simulation. The rods were represented as linear k -mers (i.e., particles occupying k adjacent sites). In the initial state, they were deposited onto a two-dimensional square lattice of size L ×L up to the jamming concentration using a random sequential adsorption algorithm. The size of the lattice, L , was varied from 128 to 2048, and periodic boundary conditions were applied along both x and y axes, while the length of the k -mers (determining the aspect ratio) was varied from 2 to 12. The k -mers oriented along the x and y directions (kx-mers and ky-mers, respectively) were deposited equiprobably. In the course of the simulation, the numbers of intraspecific and interspecific contacts between the same sort and between different sorts of k -mers, respectively, were calculated. Both the shift ratio of the actual number of shifts along the longitudinal or transverse axes of the k -mers and the electrical conductivity of the system were also examined. For the initial random configuration, quite different self-organization behavior was observed for short and long k -mers. For long k -mers (k ≥6 ), three main stages of diffusion-driven spatial segregation (self-assembly) were identified: the initial stage, reflecting destruction of the jamming state; the intermediate stage, reflecting continuous cluster coarsening and labyrinth pattern formation; and the final stage, reflecting the formation of diagonal stripe domains. Additional examination of two artificially constructed initial configurations showed that this pattern of diagonal stripe domains is an attractor, i.e., any spatial distribution of k -mers tends to transform into diagonal stripes. Nevertheless, the time for relaxation to the steady state essentially increases as the lattice size growth.

  14. Large wood transport and jam formation in a series of flume experiments

    NASA Astrophysics Data System (ADS)

    Davidson, S. L.; MacKenzie, L. G.; Eaton, B. C.

    2015-12-01

    Large wood has historically been removed from streams, resulting in the depletion of in-stream wood in waterways worldwide. As wood increases morphological and hydraulic complexity, the addition of large wood is commonly employed as a means to rehabilitate in-stream habitat. At present, however, the scientific understanding of wood mobilization and transport is incomplete. This paper presents results from a series of four flume experiments in which wood was added to a reach to investigate the piece and reach characteristics that determine wood stability and transport, as well as the time scale required for newly recruited wood to self-organize into stable jams. Our results show that wood transitions from a randomly distributed newly recruited state to a self-organized, or jam-stabilized state, over the course of a single bankfull flow event. Statistical analyses of piece mobility during this transitional period indicate that piece irregularities, especially rootwads, dictate the stability of individual wood pieces; rootwad presence or absence accounts for up to 80% of the variance explained by linear regression models for transport distance. Furthermore, small pieces containing rootwads are especially stable. Large ramped pieces provide nuclei for the formation of persistent wood jams, and the frequency of these pieces in the reach impacts the travel distance of mobile wood. This research shows that the simulation of realistic wood dynamics is possible using a simplified physical model, and also has management implications, as it suggests that randomly added wood may organize into persistent, stable jams, and characterizes the time scale for this transition.

  15. The jamming avoidance response in the weakly electric fish Eigenmannia

    NASA Astrophysics Data System (ADS)

    Heiligenberg, Walter

    1980-10-01

    This study analyzes the algorithm by which the animal's nervous system evaluates spatially distributed temporal patterns of electroreceptive information. The outcome of this evaluation controls the jamming avoidance response, which is a shift in the animal's electric organ discharge frequency away from similar foreign frequencies. The encoding of “behaviorally relevant” stimulus variables by electroreceptors and the central computation of their messages are investigated by combined behavioral and neurophysiological strategies.

  16. A Real-Time Capable Software-Defined Receiver Using GPU for Adaptive Anti-Jam GPS Sensors

    PubMed Central

    Seo, Jiwon; Chen, Yu-Hsuan; De Lorenzo, David S.; Lo, Sherman; Enge, Per; Akos, Dennis; Lee, Jiyun

    2011-01-01

    Due to their weak received signal power, Global Positioning System (GPS) signals are vulnerable to radio frequency interference. Adaptive beam and null steering of the gain pattern of a GPS antenna array can significantly increase the resistance of GPS sensors to signal interference and jamming. Since adaptive array processing requires intensive computational power, beamsteering GPS receivers were usually implemented using hardware such as field-programmable gate arrays (FPGAs). However, a software implementation using general-purpose processors is much more desirable because of its flexibility and cost effectiveness. This paper presents a GPS software-defined radio (SDR) with adaptive beamsteering capability for anti-jam applications. The GPS SDR design is based on an optimized desktop parallel processing architecture using a quad-core Central Processing Unit (CPU) coupled with a new generation Graphics Processing Unit (GPU) having massively parallel processors. This GPS SDR demonstrates sufficient computational capability to support a four-element antenna array and future GPS L5 signal processing in real time. After providing the details of our design and optimization schemes for future GPU-based GPS SDR developments, the jamming resistance of our GPS SDR under synthetic wideband jamming is presented. Since the GPS SDR uses commercial-off-the-shelf hardware and processors, it can be easily adopted in civil GPS applications requiring anti-jam capabilities. PMID:22164116

  17. A real-time capable software-defined receiver using GPU for adaptive anti-jam GPS sensors.

    PubMed

    Seo, Jiwon; Chen, Yu-Hsuan; De Lorenzo, David S; Lo, Sherman; Enge, Per; Akos, Dennis; Lee, Jiyun

    2011-01-01

    Due to their weak received signal power, Global Positioning System (GPS) signals are vulnerable to radio frequency interference. Adaptive beam and null steering of the gain pattern of a GPS antenna array can significantly increase the resistance of GPS sensors to signal interference and jamming. Since adaptive array processing requires intensive computational power, beamsteering GPS receivers were usually implemented using hardware such as field-programmable gate arrays (FPGAs). However, a software implementation using general-purpose processors is much more desirable because of its flexibility and cost effectiveness. This paper presents a GPS software-defined radio (SDR) with adaptive beamsteering capability for anti-jam applications. The GPS SDR design is based on an optimized desktop parallel processing architecture using a quad-core Central Processing Unit (CPU) coupled with a new generation Graphics Processing Unit (GPU) having massively parallel processors. This GPS SDR demonstrates sufficient computational capability to support a four-element antenna array and future GPS L5 signal processing in real time. After providing the details of our design and optimization schemes for future GPU-based GPS SDR developments, the jamming resistance of our GPS SDR under synthetic wideband jamming is presented. Since the GPS SDR uses commercial-off-the-shelf hardware and processors, it can be easily adopted in civil GPS applications requiring anti-jam capabilities.

  18. The importance of antipersistence for traffic jams

    NASA Astrophysics Data System (ADS)

    Krause, Sebastian M.; Habel, Lars; Guhr, Thomas; Schreckenberg, Michael

    2017-05-01

    Universal characteristics of road networks and traffic patterns can help to forecast and control traffic congestion. The antipersistence of traffic flow time series has been found for many data sets, but its relevance for congestion has been overseen. Based on empirical data from motorways in Germany, we study how antipersistence of traffic flow time-series impacts the duration of traffic congestion on a wide range of time scales. We find a large number of short-lasting traffic jams, which implies a large risk for rear-end collisions.

  19. Jammed-array wideband sawtooth filter.

    PubMed

    Tan, Zhongwei; Wang, Chao; Goda, Keisuke; Malik, Omer; Jalali, Bahram

    2011-11-21

    We present an all-optical passive low-cost spectral filter that exhibits a high-resolution periodic sawtooth spectral pattern without the need for active optoelectronic components. The principle of the filter is the partial masking of a phased array of virtual light sources with multiply jammed diffraction orders. We utilize the filter's periodic linear map between frequency and intensity to demonstrate fast sensitive interrogation of fiber Bragg grating sensor arrays and ultrahigh-frequency electrical sawtooth waveform generation. © 2011 Optical Society of America

  20. Jammed Limit of Bijel Structure Formation

    DOE PAGES

    Welch, P. M.; Lee, M. N.; Parra-Vasquez, A. N. G.; ...

    2017-11-02

    Over the past decade, methods to control microstructure in heterogeneous mixtures by arresting spinodal decomposition via the addition of colloidal particles have led to an entirely new class of bicontinuous materials known as bijels. We present a new model for the development of these materials that yields to both numerical and analytical evaluation. This model reveals that a single dimensionless parameter that captures both chemical and environmental variables dictates the dynamics and ultimate structure formed in bijels. We also demonstrate that this parameter must fall within a fixed range in order for jamming to occur during spinodal decomposition, as wellmore » as show that known experimental trends for the characteristic domain sizes and time scales for formation are recovered by this model.« less

  1. Geometric constraints during epithelial jamming

    NASA Astrophysics Data System (ADS)

    Atia, Lior; Bi, Dapeng; Sharma, Yasha; Mitchel, Jennifer A.; Gweon, Bomi; Koehler, Stephan A.; DeCamp, Stephen J.; Lan, Bo; Kim, Jae Hun; Hirsch, Rebecca; Pegoraro, Adrian F.; Lee, Kyu Ha; Starr, Jacqueline R.; Weitz, David A.; Martin, Adam C.; Park, Jin-Ah; Butler, James P.; Fredberg, Jeffrey J.

    2018-06-01

    As an injury heals, an embryo develops or a carcinoma spreads, epithelial cells systematically change their shape. In each of these processes cell shape is studied extensively whereas variability of shape from cell to cell is regarded most often as biological noise. But where do cell shape and its variability come from? Here we report that cell shape and shape variability are mutually constrained through a relationship that is purely geometrical. That relationship is shown to govern processes as diverse as maturation of the pseudostratified bronchial epithelial layer cultured from non-asthmatic or asthmatic donors, and formation of the ventral furrow in the Drosophila embryo. Across these and other epithelial systems, shape variability collapses to a family of distributions that is common to all. That distribution, in turn, is accounted for by a mechanistic theory of cell-cell interaction, showing that cell shape becomes progressively less elongated and less variable as the layer becomes progressively more jammed. These findings suggest a connection between jamming and geometry that spans living organisms and inert jammed systems, and thus transcends system details. Although molecular events are needed for any complete theory of cell shape and cell packing, observations point to the hypothesis that jamming behaviour at larger scales of organization sets overriding geometric constraints.

  2. Modeling wood dynamics, jam formation, and sediment storage in a gravel-bed stream

    NASA Astrophysics Data System (ADS)

    Eaton, B. C.; Hassan, M. A.; Davidson, S. L.

    2012-12-01

    In small and intermediate sized streams, the interaction between wood and bed material transport often determines the nature of the physical habitat, which in turn influences the health of the stream's ecosystem. We present a stochastic model that can be used to simulate the effects on physical habitat of forest fires, climate change, and other environmental disturbances that alter wood recruitment. The model predicts large wood (LW) loads in a stream as well as the volume of sediment stored by the wood; while it is parameterized to describe gravel bed streams similar to a well-studied field prototype, Fishtrap Creek, British Columbia, it can be calibrated to other systems as well. In the model, LW pieces are produced and modified over time as a result of random tree-fall, LW breakage, LW movement, and piece interaction to form LW jams. Each LW piece traps a portion of the annual bed material transport entering the reach and releases the stored sediment when the LW piece is entrained and moved. The equations governing sediment storage are based on a set of flume experiments also scaled to the field prototype. The model predicts wood loads ranging from 70 m3/ha to more than 300 m3/ha, with a mean value of 178 m3/ha: both the range and the mean value are consistent with field data from streams with similar riparian forest types and climate. The model also predicts an LW jam spacing that is consistent with field data. Furthermore, our modeling results demonstrate that the high spatial and temporal variability in sediment storage, sediment transport, and channel morphology associated with LW-dominated streams occurs only when LW pieces interact and form jams. Model runs that do not include jam formation are much less variable. These results suggest that river restoration efforts using engineered LW pieces that are fixed in place and not permitted to interact will be less successful at restoring the geomorphic processes responsible for producing diverse, productive physical habitats than efforts using LW pieces that are free to move, interact, and form LW jams.

  3. Forecast Tools for Alaska River Ice Breakup Timing and Severity

    NASA Astrophysics Data System (ADS)

    Moran, E. H.; Lindsey, S.; van Breukelen, C. M.; Thoman, R.

    2016-12-01

    Spring Breakup on the large interior rivers in Alaska means a time of nervous anticipation for many of the residents in the villages alongside those rivers. On the Yukon and Kuskokwim Rivers the record flood for most villages occurred as a result of ice jams that backed up water and dump truck sized ice floes into the village. Those floods can occur suddenly and can literally wipe out a village. The challenge is that with a limited observation network (3 automated USGS gages along the 1200 miles of the Yukon River flowing through Alaska) and the inherently transient nature of ice jam formation, prediction of the timing and severity of these events has been a tremendous challenge. Staff at the Alaska Pacific River Forecast Center as well as the Alaska Region Climate Program Manager have been developing more quantitative tools to attempt to provide a longer lead time for villages to prepare for potentially devastating flooding. In the past, a very qualitative assessment of the primary drivers of Spring Breakup (snow pack, river ice thickness and forecast spring weather) have led to the successful identification of years when flood severity was likely to be elevated or significantly decreased. These qualitative assessments have also allowed the forecasting of the probability of either a thermal or a dynamic breakup. But there has continued to be a need for an objective tool that can handle weather patterns that border on the tails of the climatic distributions as well as the timing and flood potential from weather patterns that are closer to the median of the distribution. Over the past 8 years there have been a significant number of years with anomalous spring weather patterns including cold springs followed by rapid warmups leading to record flooding from ice jams during spring breakup (2009, 2013), record late breakup (2013), record early breakup (2016), record high snowfall (2012), record snowmelt and aufeis flooding (2015) and record low snowfall (2015). The need for improved tools that can handle these events over the full breadth of the distribution has never been greater. This talk will describe efforts to incorporate climate signals into the spring breakup outlook and show results of some temperature based indices as an indicator of breakup timing.

  4. Large woody debris and land management in California's hardwood-dominated watersheds.

    PubMed

    Opperman, Jeff J

    2005-03-01

    Although large woody debris (LWD) has been studied extensively in conifer-dominated watersheds, relatively little is known about LWD in hardwood-dominated watersheds. Field surveys of 32 hardwood-dominated stream reaches in northern coastal California revealed that levels of LWD varied with land ownership and that living trees strongly influenced debris jam formation. Almost half of the channel-spanning debris jams, which stored the most wood and were most likely to form a pool, were formed behind a key piece that was still living. These living key pieces might provide greater longevity and stability than would otherwise be expected from hardwood LWD. Compared to streams on private land, streams on public land had significantly greater LWD loading and debris-jam frequency. Land management practices that remove wood from streams might be contributing to the degradation of salmonid habitat in California's hardwood-dominated watersheds.

  5. Jammed Clusters and Non-locality in Dense Granular Flows

    NASA Astrophysics Data System (ADS)

    Kharel, Prashidha; Rognon, Pierre

    We investigate the micro-mechanisms underpinning dense granular flow behaviour from a series of DEM simulations of pure shear flows of dry grains. We observe the development of transient clusters of jammed particles within the flow. Typical size of such clusters is found to scale with the inertial number with a power law that is similar to the scaling of shear-rate profile relaxation lengths observed previously. Based on the simple argument that transient clusters of size l exist in the dense flow regime, the formulation of steady state condition for non-homogeneous shear flow results in a general non-local relation, which is similar in form to the non-local relation conjectured for soft glassy flows. These findings suggest the formation of jammed clusters to be the key micro-mechanism underpinning non-local behaviour in dense granular flows. Particles and Grains Laboratory, School of Civil Engineering, The University of Sydney, Sydney, NSW 2006, Australia.

  6. Structure of jammed configurations and their relation to unjamming times

    NASA Astrophysics Data System (ADS)

    Birwa, Sumit Kumar; Merrigan, Carl; Chakraborty, Bulbul; Tewari, Shubha

    The distribution of the times for the cessation of flow of grains falling under gravity in a vertical hopper is known to be exponential. Recent experiments have shown, however, that the time lapse between avalanches follows a power-law distribution when the hopper is unjammed using periodic vertical vibrations. The reasons for this distribution of the unjamming times, which indicates the time needed for an applied continuous perturbation to induce another avalanche, are not well understood. We report on a numerical simulation of granular hopper flow using LAMMPS in which we seek to understand the origin and scope of this behavior. We find that cessation of flow is related to the formation of a stable arch that spans the system. However, the actual structure of the jammed configuration varies and is closely related to the unjamming time. We find that the symmetry of the arches is an important parameter in determining the strength of the jammed configurations. Using different force thresholds, we have characterized the contact networks around the arches which provides stability to the packed structure and analyzed the strength of various jammed configurations. Supported by NSF Grant DMR1409093 and DGE1068620.

  7. Distribution and characterization of in-channel large wood in relation to geomorphic patterns on a low-gradient river

    USGS Publications Warehouse

    Moulin, Bertrand; Schenk, Edward R.; Hupp, Cliff R.

    2011-01-01

    A 177 river km georeferenced aerial survey of in-channel large wood (LW) on the lower Roanoke River, NC was conducted to determine LW dynamics and distributions on an eastern USA low-gradient large river. Results indicate a system with approximately 75% of the LW available for transport either as detached individual LW or as LW in log jams. There were approximately 55 individual LW per river km and another 59 pieces in log jams per river km. Individual LW is a product of bank erosion (73% is produced through erosion) and is isolated on the mid and upper banks at low flow. This LW does not appear to be important for either aquatic habitat or as a human risk. Log jams rest near or at water level making them a factor in bank complexity in an otherwise homogenous fine-grained channel. A segmentation test was performed using LW frequency by river km to detect breaks in longitudinal distribution and to define homogeneous reaches of LWfrequency. Homogeneous reaches were then analyzed to determine their relationship to bank height, channel width/depth, sinuosity, and gradient. Results show that log jams are a product of LW transport and occur more frequently in areas with high snag concentrations, low to intermediate bank heights, high sinuosity, high local LW recruitment rates, and narrow channel widths. The largest concentration of log jams (21.5 log jams/km) occurs in an actively eroding reach. Log jam concentrations downstream of this reach are lower due to a loss of river competency as the channel reaches sea level and the concurrent development of unvegetated mudflats separating the active channel from the floodplain forest. Substantial LW transport occurs on this low-gradient, dam-regulated large river; this study, paired with future research on transport mechanisms should provide resource managers and policymakers with options to better manage aquatic habitat while mitigating possible negative impacts to human interests.

  8. Replication-guided nucleosome packing and nucleosome breathing expedite the formation of dense arrays

    PubMed Central

    Osberg, Brendan; Nuebler, Johannes; Korber, Philipp; Gerland, Ulrich

    2014-01-01

    The first level of genome packaging in eukaryotic cells involves the formation of dense nucleosome arrays, with DNA coverage near 90% in yeasts. How cells achieve such high coverage within a short time, e.g. after DNA replication, remains poorly understood. It is known that random sequential adsorption of impenetrable particles on a line reaches high density extremely slowly, due to a jamming phenomenon. The nucleosome-shifting action of remodeling enzymes has been proposed as a mechanism to resolve such jams. Here, we suggest two biophysical mechanisms which assist rapid filling of DNA with nucleosomes, and we quantitatively characterize these mechanisms within mathematical models. First, we show that the ‘softness’ of nucleosomes, due to nucleosome breathing and stepwise nucleosome assembly, significantly alters the filling behavior, speeding up the process relative to ‘hard’ particles with fixed, mutually exclusive DNA footprints. Second, we explore model scenarios in which the progression of the replication fork could eliminate nucleosome jamming, either by rapid filling in its wake or via memory of the parental nucleosome positions. Taken together, our results suggest that biophysical effects promote rapid nucleosome filling, making the reassembly of densely packed nucleosomes after DNA replication a simpler task for cells than was previously thought. PMID:25428353

  9. Effect of psychological tension on pedestrian counter flow via an extended cost potential field cellular automaton model

    NASA Astrophysics Data System (ADS)

    Li, Xingli; Guo, Fang; Kuang, Hua; Zhou, Huaguo

    2017-12-01

    Psychology tells us that the different level of tension may lead to different behavior variation for individuals. In this paper, an extended cost potential field cellular automaton is proposed to simulate pedestrian counter flow under an emergency by considering behavior variation of pedestrian induced by psychological tension. A quantitative formula is introduced to describe behavioral changes caused by psychological tension, which also leads to the increasing cost of discomfort. The numerical simulations are performed under the periodic boundary condition and show that the presented model can capture some essential features of pedestrian counter flow, such as lane formation and segregation phenomenon for normal condition. Furthermore, an interesting feature is found that when pedestrians are in an extremely nervous state, a stable lane formation will be broken by a disordered mixture flow. The psychological nervousness under an emergency is not always negative to moving efficiency and a moderate level of tension will delay the occurrence of jamming phase. In addition, a larger asymmetrical ratio of left walkers to right walkers will improve the critical density related to the jamming phase and retard the occurrence of completely jammed phase. These findings will be helpful in pedestrian control and management under an emergency.

  10. Random close packing of polydisperse jammed emulsions

    NASA Astrophysics Data System (ADS)

    Brujic, Jasna

    2010-03-01

    Packing problems are everywhere, ranging from oil extraction through porous rocks to grain storage in silos and the compaction of pharmaceutical powders into tablets. At a given density, particulate systems pack into a mechanically stable and amorphous jammed state. Theoretical frameworks have proposed a connection between this jammed state and the glass transition, a thermodynamics of jamming, as well as geometric modeling of random packings. Nevertheless, a simple underlying mechanism for the random assembly of athermal particles, analogous to crystalline ordering, remains unknown. Here we use 3D measurements of polydisperse packings of emulsion droplets to build a simple statistical model in which the complexity of the global packing is distilled into a local stochastic process. From the perspective of a single particle the packing problem is reduced to the random formation of nearest neighbors, followed by a choice of contacts among them. The two key parameters in the model, the available space around a particle and the ratio of contacts to neighbors, are directly obtained from experiments. Remarkably, we demonstrate that this ``granocentric'' view captures the properties of the polydisperse emulsion packing, ranging from the microscopic distributions of nearest neighbors and contacts to local density fluctuations and all the way to the global packing density. Further applications to monodisperse and bidisperse systems quantitatively agree with previously measured trends in global density. This model therefore reveals a general principle of organization for random packing and lays the foundations for a theory of jammed matter.

  11. Coarse analysis of collective behaviors: Bifurcation analysis of the optimal velocity model for traffic jam formation

    NASA Astrophysics Data System (ADS)

    Miura, Yasunari; Sugiyama, Yuki

    2017-12-01

    We present a general method for analyzing macroscopic collective phenomena observed in many-body systems. For this purpose, we employ diffusion maps, which are one of the dimensionality-reduction techniques, and systematically define a few relevant coarse-grained variables for describing macroscopic phenomena. The time evolution of macroscopic behavior is described as a trajectory in the low-dimensional space constructed by these coarse variables. We apply this method to the analysis of the traffic model, called the optimal velocity model, and reveal a bifurcation structure, which features a transition to the emergence of a moving cluster as a traffic jam.

  12. Homing of human B cells to lymphoid organs and B-cell lymphoma engraftment are controlled by cell adhesion molecule JAM-C.

    PubMed

    Doñate, Carmen; Ody, Christiane; McKee, Thomas; Ruault-Jungblut, Sylvie; Fischer, Nicolas; Ropraz, Patricia; Imhof, Beat A; Matthes, Thomas

    2013-01-15

    Junctional adhesion molecule C (JAM-C) is expressed by vascular endothelium and human but not mouse B lymphocytes. The level of JAM-C expression defines B-cell differentiation stages and allows the classification of marginal zone-derived (JAM-C-positive) and germinal center-derived (JAM-C-negative) B-cell lymphomas. In the present study, we investigated the role of JAM-C in homing of human B cells, using a xenogeneic nonobese diabetic/severe combined immunodeficient mouse model. Treatment with anti-JAM-C antibodies in short-term experiments reduced migration of normal and malignant JAM-C-expressing B cells to bone marrow, lymph nodes, and spleen. Blocking homing to the spleen is remarkable, as most other antiadhesion antibodies reduce homing of B cells only to bone marrow and lymph nodes. Long-term administration of anti-JAM-C antibodies prevented engraftment of JAM-Cpos lymphoma cells in bone marrow, spleen, and lymph nodes of mice. Plasmon resonance studies identified JAM-B as the major ligand for JAM-C, whereas homotypic JAM-C interactions remained at background levels. Accordingly, anti-JAM-C antibodies blocked adhesion of JAM-C-expressing B cells to their ligand JAM-B, and immunofluorescence analysis showed the expression of JAM-B on murine and human lymphatic endothelial cells. Targeting JAM-C could thus constitute a new therapeutic strategy to prevent lymphoma cells from reaching supportive microenvironments not only in the bone marrow and lymph nodes but also in the spleen.

  13. How do generalized jamming transitions affect collective migration in confluent tissues?

    NASA Astrophysics Data System (ADS)

    Manning, M. Lisa

    Recent experiments have demonstrated that tissues involved in embryonic development, lung function, wound healing, and cancer progression are close to fluid-to-solid, or ``jamming'' transitions. Theoretical models for confluent 2D tissues have also been shown to exhibit continuous rigidity transitions. However, in vivobiological systems can differ in significant ways from the simple 2D models. For example, many tissues are three-dimensional, mechanically heterogeneous, and/or composed of mechanosensitive cells interspersed with extracellular matrix. We have extended existing models for confluent tissues to capture these features, and we find interesting predictions for collective cell motion that are ultimately related to an underlying generalized jamming transition. For example, in 2D, we find that heterogeneous mixtures of cells spontaneously self-organize into rigid regions of stiffer cells interspersed with string-like groups of soft cells, reminiscent of cellular streaming seen in cancer. We also find that alignment interactions (of the sort often explored in self-propelled particle models) alter the transition and generate interesting flocked liquid and flocked solid collective migration patterns. Our model predicts that 3D tissues also exhibit a jamming transition governed by cell shape, as well as history-dependent aging, and we are currently exploring whether ECM-like interactions in 3D models might help explain compressional stiffening seen in experiments on human tissue.

  14. Order and disorder in traffic and self-driven many-particle systems

    NASA Astrophysics Data System (ADS)

    Helbing, Dirk

    2002-07-01

    During the last decade, physicists have identified various spatio-temporal patterns of motion in vehicle and pedestrian traffic. Moreover, by applying and extending methods from statistical physics and non-linear dynamics, these have been successfully explained by means of self-driven many-particle models. Some of the questions now understood are the following: Why are vehicles sometimes stopped by so-called "phantom traffic jams," although they all like to drive fast? What are the mechanisms behind stop-and-go traffic? Why are there several different kinds of congestion, and how are they related? Why do most traffic jams occur considerably before the road capacity is reached? Can a temporary reduction of the traffic volume cause a lasting traffic jam? What is the origin of fluctuations in traffic systems and which consequences do they have? Why do pedestrians moving in opposite directions normally organize in lanes, while nervous crowds are "freezing by heating?" Why do panicking pedestrians produce dangerous deadlocks?

  15. Two bHLH-type transcription factors, JA-ASSOCIATED MYC2-LIKE2 and JAM3, are transcriptional repressors and affect male fertility

    PubMed Central

    Nakata, Masaru; Ohme-Takagi, Masaru

    2013-01-01

    The jasmonate (JA) plant hormones regulate responses to biotic and abiotic stress and aspects of plant development, including male fertility in Arabidopsis thaliana. The bHLH-type transcription factor JA-ASSOCIATED MYC2-LIKE1 (JAM1) negatively regulates JA signaling and gain-of-function JAM1 transgenic plants have impaired JA-mediated male fertility. Here we report that JAM2 and JAM3, 2 bHLHs closely related to JAM1, also act as transcriptional repressors. Moreover, overexpression of JAM2 and JAM3 also results in reduced male fertility. These results suggest that JAM1, JAM2, and JAM3 act redundantly as negative regulators of JA-mediated male fertility. PMID:24056034

  16. Influence of Images on the Evaluation of Jams Using Conjoint Analysis Combined with Check-All-That-Apply (CATA) Questions.

    PubMed

    Miraballes, Marcelo; Gámbaro, Adriana

    2018-01-01

    A study of the influence of the use of images in a conjoint analysis combined with check-all-that apply (CATA) questions on jams was carried out. The relative importance of flavor and the information presented in the label in the willingness to purchase and the perception of how healthy the product is has been evaluated. Sixty consumers evaluated the stimuli presented only in text format (session 1), and another group of 60 consumers did so by receiving the stimuli in text format along with an image of the product (session 2). In addition, for each stimulus, consumers answered a CATA question consisting of 20 terms related to their involvement with the product. The perception of healthy increased when the texts were accompanied with images and also increased when the text included information. Willingness to purchase was only influenced by the flavor of the jams. The presence of images did not influence the CATA question's choice of terms, which were influenced by the information presented in the text. The use of a check-all-that-apply question in concepts provided an interesting possibility when they were combined with the results from the conjoint analysis, improving the comprehension of consumers' perception. Using CATA questions as an alternative way of evaluating consumer involvement seems to be beneficial and should be evaluated much further. © 2017 Institute of Food Technologists®.

  17. Nonstandard convergence to jamming in random sequential adsorption: The case of patterned one-dimensional substrates

    NASA Astrophysics Data System (ADS)

    Verma, Arjun; Privman, Vladimir

    2018-02-01

    We study approach to the large-time jammed state of the deposited particles in the model of random sequential adsorption. The convergence laws are usually derived from the argument of Pomeau which includes the assumption of the dominance, at large enough times, of small landing regions into each of which only a single particle can be deposited without overlapping earlier deposited particles and which, after a certain time are no longer created by depositions in larger gaps. The second assumption has been that the size distribution of gaps open for particle-center landing in this large-time small-gaps regime is finite in the limit of zero gap size. We report numerical Monte Carlo studies of a recently introduced model of random sequential adsorption on patterned one-dimensional substrates that suggest that the second assumption must be generalized. We argue that a region exists in the parameter space of the studied model in which the gap-size distribution in the Pomeau large-time regime actually linearly vanishes at zero gap sizes. In another region, the distribution develops a threshold property, i.e., there are no small gaps below a certain gap size. We discuss the implications of these findings for new asymptotic power-law and exponential-modified-by-a-power-law convergences to jamming in irreversible one-dimensional deposition.

  18. LETTER TO THE EDITOR: Backbones of traffic jams

    NASA Astrophysics Data System (ADS)

    Shikhar Gupta, Himadri; Ramaswamy, Ramakrishna

    1996-11-01

    We study the jam phase of the deterministic traffic model in two dimensions. Within the jam phase, there is a phase transition, from a self-organized jam (formed by initial synchronization followed by jamming), to a random-jam structure. The backbone of the jam is defined and used to analyse self-organization in the jam. The fractal dimension and interparticle correlations on the backbone indicate a continous phase transition at density 0305-4470/29/21/003/img1 with critical exponent 0305-4470/29/21/003/img2, which are characterized through simulations.

  19. Anatomy of a Jam

    NASA Astrophysics Data System (ADS)

    Tang, Junyao; Sagdighpour, Sepehr; Behringer, Robert

    2008-11-01

    Flow in a hopper is both a fertile testing ground for understanding models for granular flow and industrially highly relevant. However, the formation of arches in the hopper opening, which halts the hopper flow unpredictably, is still poorly understood. In this work, we conduct a two-dimension hopper experiments, using photoelastic particles, and characterize these experiments in terms of a statistical model that considers the probability of jamming. The distribution of the hopper flow times exhibits an exponential decay, which shows the existence of a characteristic ``mean flow time.'' We then conduct further experiments to examine the connection between the mean flow time, the hopper geometry, the local density, and geometric structures and forces at the particle scale.

  20. Schwann cell-specific JAM-C-deficient mice reveal novel expression and functions for JAM-C in peripheral nerves.

    PubMed

    Colom, Bartomeu; Poitelon, Yannick; Huang, Wenlong; Woodfin, Abigail; Averill, Sharon; Del Carro, Ubaldo; Zambroni, Desirée; Brain, Susan D; Perretti, Mauro; Ahluwalia, Amrita; Priestley, John V; Chavakis, Triantafyllos; Imhof, Beat A; Feltri, M Laura; Nourshargh, Sussan

    2012-03-01

    Junctional adhesion molecule-C (JAM-C) is an adhesion molecule expressed at junctions between adjacent endothelial and epithelial cells and implicated in multiple inflammatory and vascular responses. In addition, we recently reported on the expression of JAM-C in Schwann cells (SCs) and its importance for the integrity and function of peripheral nerves. To investigate the role of JAM-C in neuronal functions further, mice with a specific deletion of JAM-C in SCs (JAM-C SC KO) were generated. Compared to wild-type (WT) controls, JAM-C SC KO mice showed electrophysiological defects, muscular weakness, and hypersensitivity to mechanical stimuli. In addressing the underlying cause of these defects, nerves from JAM-C SC KO mice were found to have morphological defects in the paranodal region, exhibiting increased nodal length as compared to WTs. The study also reports on previously undetected expressions of JAM-C, namely on perineural cells, and in line with nociception defects of the JAM-C SC KO animals, on finely myelinated sensory nerve fibers. Collectively, the generation and characterization of JAM-C SC KO mice has provided unequivocal evidence for the involvement of SC JAM-C in the fine organization of peripheral nerves and in modulating multiple neuronal responses.

  1. Aspects of jamming in two-dimensional athermal frictionless systems.

    PubMed

    Reichhardt, C; Reichhardt, C J Olson

    2014-05-07

    In this work we provide an overview of jamming transitions in two dimensional systems focusing on the limit of frictionless particle interactions in the absence of thermal fluctuations. We first discuss jamming in systems with short range repulsive interactions, where the onset of jamming occurs at a critical packing density and where certain quantities show a divergence indicative of critical behavior. We describe how aspects of the dynamics change as the jamming density is approached and how these dynamics can be explored using externally driven probes. Different particle shapes can produce jamming densities much lower than those observed for disk-shaped particles, and we show how jamming exhibits fragility for some shapes while for other shapes this is absent. Next we describe the effects of long range interactions and jamming behavior in systems such as charged colloids, vortices in type-II superconductors, and dislocations. We consider the effect of adding obstacles to frictionless jamming systems and discuss connections between this type of jamming and systems that exhibit depinning transitions. Finally, we discuss open questions such as whether the jamming transition in all these different systems can be described by the same or a small subset of universal behaviors, as well as future directions for studies of jamming transitions in two dimensional systems, such as jamming in self-driven or active matter systems.

  2. Jamming in Disordered and Ordered States: From RLP to FCC

    NASA Astrophysics Data System (ADS)

    Silbert, Leonardo

    2011-03-01

    The concept of jamming was originally introduced in the context of zero-temperature, frictionless sphere packings through which the jamming transition was identified with the more familiar idea of random close packing. More recently, the jamming behaviour for particles with friction has led to a practical definition of the less well-defined random loose packed limit. However, there are a number of subtleties associated with jamming that extend these concepts further. Here we implement a range of protocols to generate jammed packings both with and without friction, and find that the jamming transition actually consists of a finite region in packing fraction depending on the protocol used to create the jammed state. Furthermore, we examine how it is possible to tune the structural properties of jammed packings from the disordered regime through to the ordered face centred cubic lattice, and the subsequent changes in the jamming properties as the structure is manipulated. Supported by NSF CBET-0828359.

  3. Analytical studies on the instabilities of heterogeneous intelligent traffic flow

    NASA Astrophysics Data System (ADS)

    Ngoduy, D.

    2013-10-01

    It has been widely reported in literature that a small perturbation in traffic flow such as a sudden deceleration of a vehicle could lead to the formation of traffic jams without a clear bottleneck. These traffic jams are usually related to instabilities in traffic flow. The applications of intelligent traffic systems are a potential solution to reduce the amplitude or to eliminate the formation of such traffic instabilities. A lot of research has been conducted to theoretically study the effect of intelligent vehicles, for example adaptive cruise control vehicles, using either computer simulation or analytical method. However, most current analytical research has only applied to single class traffic flow. To this end, the main topic of this paper is to perform a linear stability analysis to find the stability threshold of heterogeneous traffic flow using microscopic models, particularly the effect of intelligent vehicles on heterogeneous (or multi-class) traffic flow instabilities. The analytical results will show how intelligent vehicle percentages affect the stability of multi-class traffic flow.

  4. Schwann cell-specific JAM-C-deficient mice reveal novel expression and functions for JAM-C in peripheral nerves

    PubMed Central

    Colom, Bartomeu; Poitelon, Yannick; Huang, Wenlong; Woodfin, Abigail; Averill, Sharon; Del Carro, Ubaldo; Zambroni, Desirée; Brain, Susan D.; Perretti, Mauro; Ahluwalia, Amrita; Priestley, John V.; Chavakis, Triantafyllos; Imhof, Beat A.; Feltri, M. Laura; Nourshargh, Sussan

    2012-01-01

    Junctional adhesion molecule-C (JAM-C) is an adhesion molecule expressed at junctions between adjacent endothelial and epithelial cells and implicated in multiple inflammatory and vascular responses. In addition, we recently reported on the expression of JAM-C in Schwann cells (SCs) and its importance for the integrity and function of peripheral nerves. To investigate the role of JAM-C in neuronal functions further, mice with a specific deletion of JAM-C in SCs (JAM-C SC KO) were generated. Compared to wild-type (WT) controls, JAM-C SC KO mice showed electrophysiological defects, muscular weakness, and hypersensitivity to mechanical stimuli. In addressing the underlying cause of these defects, nerves from JAM-C SC KO mice were found to have morphological defects in the paranodal region, exhibiting increased nodal length as compared to WTs. The study also reports on previously undetected expressions of JAM-C, namely on perineural cells, and in line with nociception defects of the JAM-C SC KO animals, on finely myelinated sensory nerve fibers. Collectively, the generation and characterization of JAM-C SC KO mice has provided unequivocal evidence for the involvement of SC JAM-C in the fine organization of peripheral nerves and in modulating multiple neuronal responses.—Colom, B., Poitelon, Y., Huang, W., Woodfin, A., Averill, S., Del Carro, U., Zambroni, D., Brain, S. D., Perretti, M., Ahluwalia, A., Priestley, J. V., Chavakis, T., Imhof, B. A., Feltri, M. L., Nourshargh, S. Schwann cell-specific JAM-C-deficient mice reveal novel expression and functions for JAM-C in peripheral nerves. PMID:22090315

  5. Junctional Adhesion Molecule (JAM)-C Deficient C57BL/6 Mice Develop a Severe Hydrocephalus

    PubMed Central

    Liebner, Stefan; Mittelbronn, Michel; Deutsch, Urban; Enzmann, Gaby; Adams, Ralf H.; Aurrand-Lions, Michel; Plate, Karl H.; Imhof, Beat A.; Engelhardt, Britta

    2012-01-01

    The junctional adhesion molecule (JAM)-C is a widely expressed adhesion molecule regulating cell adhesion, cell polarity and inflammation. JAM-C expression and function in the central nervous system (CNS) has been poorly characterized to date. Here we show that JAM-C−/− mice backcrossed onto the C57BL/6 genetic background developed a severe hydrocephalus. An in depth immunohistochemical study revealed specific immunostaining for JAM-C in vascular endothelial cells in the CNS parenchyma, the meninges and in the choroid plexus of healthy C57BL/6 mice. Additional JAM-C immunostaining was detected on ependymal cells lining the ventricles and on choroid plexus epithelial cells. Despite the presence of hemorrhages in the brains of JAM-C−/− mice, our study demonstrates that development of the hydrocephalus was not due to a vascular function of JAM-C as endothelial re-expression of JAM-C failed to rescue the hydrocephalus phenotype of JAM-C−/− C57BL/6 mice. Evaluation of cerebrospinal fluid (CSF) circulation within the ventricular system of JAM-C−/− mice excluded occlusion of the cerebral aqueduct as the cause of hydrocephalus development but showed the acquisition of a block or reduction of CSF drainage from the lateral to the 3rd ventricle in JAM-C−/− C57BL/6 mice. Taken together, our study suggests that JAM-C−/− C57BL/6 mice model the important role for JAM-C in brain development and CSF homeostasis as recently observed in humans with a loss-of-function mutation in JAM-C. PMID:23029139

  6. Optimisation of microwave-assisted processing in production of pineapple jam

    NASA Astrophysics Data System (ADS)

    Ismail, Nur Aisyah Mohd; Abdullah, Norazlin; Muhammad, Norhayati

    2017-10-01

    Pineapples are available all year round since they are unseasonal fruits. Due to the continuous harvesting of the fruit, the retailers and farmers had to find a solution such as the processing of pineapple into jam, to treat the unsuccessfully sold pineapples. The direct heating of pineapple puree during the production of pineapple jam can cause over degradation of quality of the fresh pineapple. Thus, this study aims to optimise the microwave-assisted processing conditions for producing pineapple jam which could reduce water activity and meets minimum requirement for pH and total soluble solids contents of fruit jam. The power and time of the microwave processing were chosen as the factors, while the water activity, pH and total soluble solids (TSS) content of the pineapple jam were determined as responses to be optimised. The microwave treatment on the pineapple jam was able to give significant effect on the water activity and TSS content of the pineapple jam. The optimum power and time for the microwave processing of pineapple jam is 800 Watt and 8 minutes, respectively. The use of domestic microwave oven for the pineapple jam production results in acceptable pineapple jam same as conventional fruit jam sold in the marketplace.

  7. Percolation of disordered jammed sphere packings

    NASA Astrophysics Data System (ADS)

    Ziff, Robert M.; Torquato, Salvatore

    2017-02-01

    We determine the site and bond percolation thresholds for a system of disordered jammed sphere packings in the maximally random jammed state, generated by the Torquato-Jiao algorithm. For the site threshold, which gives the fraction of conducting versus non-conducting spheres necessary for percolation, we find {{p}\\text{c}}=0.3116(3) , consistent with the 1979 value of Powell 0.310(5) and identical within errors to the threshold for the simple-cubic lattice, 0.311 608, which shares the same average coordination number of 6. In terms of the volume fraction ϕ, the threshold corresponds to a critical value {φ\\text{c}}=0.199 . For the bond threshold, which apparently was not measured before, we find {{p}\\text{c}}=0.2424(3) . To find these thresholds, we considered two shape-dependent universal ratios involving the size of the largest cluster, fluctuations in that size, and the second moment of the size distribution; we confirmed the ratios’ universality by also studying the simple-cubic lattice with a similar cubic boundary. The results are applicable to many problems including conductivity in random mixtures, glass formation, and drug loading in pharmaceutical tablets.

  8. Emergent SO(3) Symmetry of the Frictionless Shear Jamming Transition

    NASA Astrophysics Data System (ADS)

    Baity-Jesi, Marco; Goodrich, Carl P.; Liu, Andrea J.; Nagel, Sidney R.; Sethna, James P.

    2017-05-01

    We study the shear jamming of athermal frictionless soft spheres, and find that in the thermodynamic limit, a shear-jammed state exists with different elastic properties from the isotropically-jammed state. For example, shear-jammed states can have a non-zero residual shear stress in the thermodynamic limit that arises from long-range stress-stress correlations. As a result, the ratio of the shear and bulk moduli, which in isotropically-jammed systems vanishes as the jamming transition is approached from above, instead approaches a constant. Despite these striking differences, we argue that in a deeper sense, the shear jamming and isotropic jamming transitions actually have the same symmetry, and that the differences can be fully understood by rotating the six-dimensional basis of the elastic modulus tensor.

  9. Low junctional adhesion molecule A expression correlates with poor prognosis in gastric cancer.

    PubMed

    Huang, Jin-Yu; Xu, Ying-Ying; Sun, Zhe; Wang, Zhen-Ning; Zhu, Zhi; Song, Yong-Xi; Luo, Yang; Zhang, Xue; Xu, Hui-Mian

    2014-12-01

    The aberrant expression of junctional adhesion molecule A (JAM-A), which has a close correlation with the development, progression, metastasis, and prognosis of cancer, has been frequently reported. However, neither JAM-A expression nor its correlation with clinicopathologic variables and patient survival has been defined in gastric cancers. Moreover, little is known about the role of JAM-A in gastric cancer progression. We carried out the present study to investigate the prognostic value of JAM-A expression in gastric cancer patients. Furthermore, the biological roles of JAM-A in gastric cancer progression were also investigated. We determined JAM-A expression in 167 primary gastric cancer tissues and 94 matched adjacent non-tumor tissues by immunohistochemistry. Transwell migration assays and matrigel invasion assays were used to explore the role of JAM-A in gastric cancer cells migration and invasion. CCK-8 assays were used to examine the effect of JAM-A on the proliferation of gastric cancer cells. JAM-A was downregulated in gastric cancer tissues. Low JAM-A expression was significantly associated with tumor size, lymphatic vessel invasion, lymph node metastasis, and TNM stage. Low JAM-A expression was also significantly associated with poor disease-specific survival in gastric cancer patients. Multivariate analysis demonstrated low JAM-A expression as an independent factor predicting poor survival. In addition, JAM-A had the effect on inhibition of gastric cancer cells migration and invasion. However, JAM-A had no significant effects on proliferation of gastric cancer cells. Low JAM-A expression correlates with poor clinical outcome and promotes cell migration and invasion in gastric cancer. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. An intelligent anti-jamming network system of data link

    NASA Astrophysics Data System (ADS)

    Fan, Xiangrui; Lin, Jingyong; Liu, Jiarun; Zhou, Chunmei

    2017-10-01

    Data link is the key information system for the cooperation of weapons, single physical layer anti-jamming technology has been unable to meet its requirements. High dynamic precision-guided weapon nodes like missiles, anti-jamming design of data link system need to have stronger pertinence and effectiveness: the best anti-jamming communication mode can be selected intelligently in combat environment, in real time, guarantee the continuity of communication. We discuss an anti-jamming intelligent networking technology of data link based on interference awareness, put forward a model of intelligent anti-jamming system, and introduces the cognitive node protocol stack model and intelligent anti-jamming method, in order to improve the data chain of intelligent anti-jamming ability.

  11. Junctional adhesion molecule-C promotes metastatic potential of HT1080 human fibrosarcoma.

    PubMed

    Fuse, Chiaki; Ishida, Yuuki; Hikita, Tomoya; Asai, Tomohiro; Oku, Naoto

    2007-03-16

    The junctional adhesion molecule (JAM) family is a key molecule in a process called transendothelial migration or diapedesis. Here, we report implications of JAM-C in cancer metastasis. We first determined the mRNA expression of JAMs in 19 kinds of cancer cell lines. JAM-C was expressed in most of tumors having potent metastatic properties. Especially in murine K-1735 melanoma cell lines, the highly metastatic sublines (M2 and X21) strongly expressed JAM-C when compared with the poorly metastatic ones (C-10 and C23). Next, we investigated the role of JAM-C in cancer metastasis by using human JAM-C (hJAM-C) gene-transfected HT1080 fibrosarcoma cells. In comparison with mock-transfected HT1080 cells, these cells showed a significant increase in the adhesion to various extracellular substrates and the invasion across a Matrigel-coated membrane. The knockdown of hJAM-C using small interfering RNA resulted in the suppression of both the adhesion and the invasion of HT1080 cells, suggesting that endogenous hJAM-C might be involved in tumor metastasis. Finally, we studied the role of hJAM-C in an in vivo experimental metastatic model. The results showed that the overexpression of hJAM-C in HT1080 cells significantly decreased the life spans of the tumorbearing mice. In contrast, the knockdown of hJAM-C in HT1080 cells suppressed the weight gain of the lungs with metastatic colonies. We conclude that the expression of JAM-C promotes metastasis by enhancing both the adhesion of cancer cells to extracellular matrices and the subsequent invasion.

  12. Dissipation and Rheology of Sheared Soft-Core Frictionless Disks Below Jamming

    NASA Astrophysics Data System (ADS)

    Vâgberg, Daniel; Olsson, Peter; Teitel, S.

    2014-05-01

    We use numerical simulations to investigate the effect that different models of energy dissipation have on the rheology of soft-core frictionless disks, below jamming in two dimensions. We find that it is not necessarily the mass of the particles that determines whether a system has Bagnoldian or Newtonian rheology, but rather the presence or absence of large connected clusters of particles. We demonstrate the key role that tangential dissipation plays in the formation of such clusters and in several models find a transition from Bagnoldian to Newtonian rheology as the packing fraction ϕ is varied. For each model, we show that appropriately scaled rheology curves approach a well defined limit as the mass of the particles decreases and collisions become strongly inelastic.

  13. Glycemic index and postprandial blood glucose response to Japanese strawberry jam in normal adults.

    PubMed

    Kurotobi, Tomoka; Fukuhara, Kimiaki; Inage, Hiroko; Kimura, Shuichi

    2010-01-01

    We investigated in 30 healthy adults the glycemic index (GI) of five strawberry jams made from various sugar compositions. The jam containing the highest ratio of glucose showed a high GI, while that containing a high ratio of fructose, a jam made from polydextrose, showed a low GI. There was a high correlation (r=0.969, p=0.006) between the GI and the predicted GI calculated from the sugar composition of the jams. Moreover, the influence on postprandial blood glucose response after an intake of only 20 g of jam and one slice of bread with 20 g jam was measured in 8 healthy adults. The blood glucose level after an intake of 20 g of the high GI jam containing the high glucose ratio was higher than that of other jams at 15 min, but there was no significant difference after 30 min. Regardless of whether the GI was low or high, differences in the jams were not observed in the postprandial blood glucose level or the area under the curve after eating either one slice of bread (60 g) or one slice of bread with less than 20 g of jam.

  14. JAM related proteins in mucosal homeostasis and inflammation

    PubMed Central

    Luissint, Anny-Claude; Nusrat, Asma; Parkos, Charles A.

    2014-01-01

    Mucosal surfaces are lined by epithelial cells that form a physical barrier protecting the body against external noxious substances and pathogens. At a molecular level, the mucosal barrier is regulated by tight junctions (TJs) that seal the paracellular space between adjacent epithelial cells. Transmembrane proteins within TJs include Junctional Adhesion Molecules (JAMs) that belong to the CTX (Cortical Thymocyte marker for Xenopus) family of proteins. JAM family encompasses three classical members (JAM-A, -B and –C) and related molecules including JAM4, JAM-Like protein (JAM-L), Coxsackie and Adenovirus Receptor (CAR), CAR-Like Membrane Protein (CLMP) and Endothelial cell-Selective Adhesion Molecule (ESAM). JAMs have multiple functions that include regulation of endothelial and epithelial paracellular permeability, leukocyte recruitment during inflammation, angiogenesis, cell migration and proliferation. In this review, we summarize the current knowledge regarding the roles of the JAM family members in the regulation of mucosal homeostasis and leukocyte trafficking with a particular emphasis on barrier function and its perturbation during pathological inflammation. PMID:24667924

  15. Dynamic shear jamming in granular suspensions

    NASA Astrophysics Data System (ADS)

    Peters, Ivo; Majumdar, Sayantan; Jaeger, Heinrich

    2014-11-01

    Jamming by shear allows a frictional granular packing to transition from an unjammed state into a jammed state while keeping the system volume and average packing fraction constant. Shear jamming of dry granular media can occur quasi-statically, but boundaries are crucial to confine the material. We perform experiments in aqueous starch suspension where we apply shear using a rheometer with a large volume (400 ml) cylindrical Couette cell. In our suspensions the packing fraction is sufficiently low that quasi-static deformation does not induce a shear jammed state. Applying a shock-like deformation however, will turn the suspension into a jammed solid. A fully jammed state is reached within tens of microseconds, and can be sustained for at least several seconds. High speed imaging of the initial process reveals a jamming front propagating radially outward through the suspension, while the suspension near the outer boundary remains quiescent. This indicates that granular suspensions can be shear jammed without the need of confining solid boundaries. Instead, confinement is most likely provided by the dynamics in the front region.

  16. Basic helix-loop-helix transcription factors JASMONATE-ASSOCIATED MYC2-LIKE1 (JAM1), JAM2, and JAM3 are negative regulators of jasmonate responses in Arabidopsis.

    PubMed

    Sasaki-Sekimoto, Yuko; Jikumaru, Yusuke; Obayashi, Takeshi; Saito, Hikaru; Masuda, Shinji; Kamiya, Yuji; Ohta, Hiroyuki; Shirasu, Ken

    2013-09-01

    Jasmonates regulate transcriptional reprogramming during growth, development, and defense responses. Jasmonoyl-isoleucine, an amino acid conjugate of jasmonic acid (JA), is perceived by the protein complex composed of the F-box protein CORONATINE INSENSITIVE1 (COI1) and JASMONATE ZIM DOMAIN (JAZ) proteins, leading to the ubiquitin-dependent degradation of JAZ proteins. This activates basic helix-loop-helix-type MYC transcription factors to regulate JA-responsive genes. Here, we show that the expression of genes encoding other basic helix-loop-helix transcription factors, JASMONATE ASSOCIATED MYC2-LIKE1 (JAM1), JAM2, and JAM3, is positively regulated in a COI1- and MYC2-dependent manner in Arabidopsis (Arabidopsis thaliana). However, contrary to myc2, the jam1jam2jam3 triple mutant exhibited shorter roots when treated with methyl jasmonate (MJ), indicating enhanced responsiveness to JA. Our genome-wide expression analyses revealed that key jasmonate metabolic genes as well as a set of genes encoding transcription factors that regulate the JA-responsive metabolic genes are negatively regulated by JAMs after MJ treatment. Consistently, loss of JAM genes resulted in higher accumulation of anthocyanin in MJ-treated plants as well as higher accumulation of JA and 12-hydroxyjasmonic acid in wounded plants. These results show that JAMs negatively regulate the JA responses in a manner that is mostly antagonistic to MYC2.

  17. Basic Helix-Loop-Helix Transcription Factors JASMONATE-ASSOCIATED MYC2-LIKE1 (JAM1), JAM2, and JAM3 Are Negative Regulators of Jasmonate Responses in Arabidopsis1[W][OPEN

    PubMed Central

    Sasaki-Sekimoto, Yuko; Jikumaru, Yusuke; Obayashi, Takeshi; Saito, Hikaru; Masuda, Shinji; Kamiya, Yuji; Ohta, Hiroyuki; Shirasu, Ken

    2013-01-01

    Jasmonates regulate transcriptional reprogramming during growth, development, and defense responses. Jasmonoyl-isoleucine, an amino acid conjugate of jasmonic acid (JA), is perceived by the protein complex composed of the F-box protein CORONATINE INSENSITIVE1 (COI1) and JASMONATE ZIM DOMAIN (JAZ) proteins, leading to the ubiquitin-dependent degradation of JAZ proteins. This activates basic helix-loop-helix-type MYC transcription factors to regulate JA-responsive genes. Here, we show that the expression of genes encoding other basic helix-loop-helix transcription factors, JASMONATE ASSOCIATED MYC2-LIKE1 (JAM1), JAM2, and JAM3, is positively regulated in a COI1- and MYC2-dependent manner in Arabidopsis (Arabidopsis thaliana). However, contrary to myc2, the jam1jam2jam3 triple mutant exhibited shorter roots when treated with methyl jasmonate (MJ), indicating enhanced responsiveness to JA. Our genome-wide expression analyses revealed that key jasmonate metabolic genes as well as a set of genes encoding transcription factors that regulate the JA-responsive metabolic genes are negatively regulated by JAMs after MJ treatment. Consistently, loss of JAM genes resulted in higher accumulation of anthocyanin in MJ-treated plants as well as higher accumulation of JA and 12-hydroxyjasmonic acid in wounded plants. These results show that JAMs negatively regulate the JA responses in a manner that is mostly antagonistic to MYC2. PMID:23852442

  18. Mechanisms of jamming in the Nagel-Schreckenberg model for traffic flow.

    PubMed

    Bette, Henrik M; Habel, Lars; Emig, Thorsten; Schreckenberg, Michael

    2017-01-01

    We study the Nagel-Schreckenberg cellular automata model for traffic flow by both simulations and analytical techniques. To better understand the nature of the jamming transition, we analyze the fraction of stopped cars P(v=0) as a function of the mean car density. We present a simple argument that yields an estimate for the free density where jamming occurs, and show satisfying agreement with simulation results. We demonstrate that the fraction of jammed cars P(v∈{0,1}) can be decomposed into the three factors (jamming rate, jam lifetime, and jam size) for which we derive, from random walk arguments, exponents that control their scaling close to the critical density.

  19. Mechanisms of jamming in the Nagel-Schreckenberg model for traffic flow

    NASA Astrophysics Data System (ADS)

    Bette, Henrik M.; Habel, Lars; Emig, Thorsten; Schreckenberg, Michael

    2017-01-01

    We study the Nagel-Schreckenberg cellular automata model for traffic flow by both simulations and analytical techniques. To better understand the nature of the jamming transition, we analyze the fraction of stopped cars P (v =0 ) as a function of the mean car density. We present a simple argument that yields an estimate for the free density where jamming occurs, and show satisfying agreement with simulation results. We demonstrate that the fraction of jammed cars P (v ∈{0 ,1 }) can be decomposed into the three factors (jamming rate, jam lifetime, and jam size) for which we derive, from random walk arguments, exponents that control their scaling close to the critical density.

  20. Methods for developing jam-resistant security communications networks at fixed-site facilities

    NASA Astrophysics Data System (ADS)

    Gangel, D. J.; Heustess, J. E.; Snell, M. K.

    Considerable work has been done identifying and developing equipment and procedures that can be used to improve the survivability of a security communications network during a jamming assault. Insight is given into alternate communications methods that can be used to develop resistance to jamming by supplementing existing radio communications. The spatial properties of jamming are then discussed and examples of how these properties can be explocited are examined. Also discussed are spread-spectrum radios that are highly resistant to jamming and the importance of jamming exercises.

  1. Electromagnetic anti-jam telemetry tool

    DOEpatents

    Ganesan, Harini [Sugar Land, TX; Mayzenberg, Nataliya [Missouri City, TX

    2008-02-12

    A mud-pulse telemetry tool includes a tool housing, a motor disposed in the tool housing, and a magnetic coupling coupled to the motor and having an inner shaft and an outer shaft. The tool may also include a stator coupled to the tool housing, a restrictor disposed proximate the stator and coupled to the magnetic coupling, so that the restrictor and the stator adapted to generate selected pulses in a drilling fluid when the restrictor is selectively rotated. The tool may also include a first anti-jam magnet coupled to the too housing, and an second anti-jam magnet disposed proximate the first anti-jam magnet and coupled to the inner shaft and/or the outer shaft, wherein at least one of the first anti-jam magnet and the second anti-jam magnet is an electromagnet, and wherein the first anti-jam magnet and the second anti-jam magnet are positioned with adjacent like poles.

  2. Complexity of spatiotemporal traffic phenomena in flow of identical drivers: Explanation based on fundamental hypothesis of three-phase theory

    NASA Astrophysics Data System (ADS)

    Kerner, Boris S.

    2012-03-01

    Based on numerical simulations of a stochastic three-phase traffic flow model, we reveal the physics of the fundamental hypothesis of three-phase theory that, in contrast with a fundamental diagram of classical traffic flow theories, postulates the existence of a two-dimensional (2D) region of steady states of synchronized flow where a driver makes an arbitrary choice of a space gap (time headway) to the preceding vehicle. We find that macroscopic and microscopic spatiotemporal effects of the entire complexity of traffic congestion observed up to now in real measured traffic data can be explained by simulations of traffic flow consisting of identical drivers and vehicles, if a microscopic model used in these simulations incorporates the fundamental hypothesis of three-phase theory. It is shown that the driver's choice of space gaps within the 2D region of synchronized flow associated with the fundamental hypothesis of three-phase theory can qualitatively change types of congested patterns that can emerge at a highway bottleneck. In particular, if drivers choose long enough spaces gaps associated with the fundamental hypothesis, then general patterns, which consist of synchronized flow and wide moving jams, do not emerge independent of the flow rates and bottleneck characteristics: Even at a heavy bottleneck leading to a very low speed within congested patterns, only synchronized flow patterns occur in which no wide moving jams emerge spontaneously.

  3. Complexity of spatiotemporal traffic phenomena in flow of identical drivers: explanation based on fundamental hypothesis of three-phase theory.

    PubMed

    Kerner, Boris S

    2012-03-01

    Based on numerical simulations of a stochastic three-phase traffic flow model, we reveal the physics of the fundamental hypothesis of three-phase theory that, in contrast with a fundamental diagram of classical traffic flow theories, postulates the existence of a two-dimensional (2D) region of steady states of synchronized flow where a driver makes an arbitrary choice of a space gap (time headway) to the preceding vehicle. We find that macroscopic and microscopic spatiotemporal effects of the entire complexity of traffic congestion observed up to now in real measured traffic data can be explained by simulations of traffic flow consisting of identical drivers and vehicles, if a microscopic model used in these simulations incorporates the fundamental hypothesis of three-phase theory. It is shown that the driver's choice of space gaps within the 2D region of synchronized flow associated with the fundamental hypothesis of three-phase theory can qualitatively change types of congested patterns that can emerge at a highway bottleneck. In particular, if drivers choose long enough spaces gaps associated with the fundamental hypothesis, then general patterns, which consist of synchronized flow and wide moving jams, do not emerge independent of the flow rates and bottleneck characteristics: Even at a heavy bottleneck leading to a very low speed within congested patterns, only synchronized flow patterns occur in which no wide moving jams emerge spontaneously.

  4. Participation As Relational Process: Unpacking Involvement in Social Action and Community Service

    ERIC Educational Resources Information Center

    Jones, Jeffrey N.; Bench, Joshua H.; Warnaar, Bethany L.; Stroup, John T.

    2013-01-01

    Educators, policymakers, and other concerned adults share an interest in promoting lifelong patterns of community service in youth. Practitioners and researchers alike highlight the importance of youth participation in afterschool service activities so the author's focus in this paper is on youth involved in PeaceJam, an innovative…

  5. FH/MFSK performance in multitone jamming

    NASA Technical Reports Server (NTRS)

    Levitt, B. K.

    1985-01-01

    The performance of frequency-hopped (FH) M-ary frequency-shift keyed (MFSK) signals in partial-band noise was analyzed in the open literature. The previous research is extended to the usually more effective class of multitone jamming. Some objectives researched are: (1) To categorize several different multitone jamming strategies; (2) To analyze the performance of FH/MSFK signaling, both uncoded with diversity, assuming a noncoherent energy detection metric with linear combining and perfect jamming state side information, in the presence of worst case interference for each of these multitone categories; and (3) To compare the effectiveness of the various multitone jamming techniques, and contrast the results with the partial band noise jamming case.

  6. Self-Organization in 2D Traffic Flow Model with Jam-Avoiding Drive

    NASA Astrophysics Data System (ADS)

    Nagatani, Takashi

    1995-04-01

    A stochastic cellular automaton (CA) model is presented to investigate the traffic jam by self-organization in the two-dimensional (2D) traffic flow. The CA model is the extended version of the 2D asymmetric exclusion model to take into account jam-avoiding drive. Each site contains either a car moving to the up, a car moving to the right, or is empty. A up car can shift right with probability p ja if it is blocked ahead by other cars. It is shown that the three phases (the low-density phase, the intermediate-density phase and the high-density phase) appear in the traffic flow. The intermediate-density phase is characterized by the right moving of up cars. The jamming transition to the high-density jamming phase occurs with higher density of cars than that without jam-avoiding drive. The jamming transition point p 2c increases with the shifting probability p ja. In the deterministic limit of p ja=1, it is found that a new jamming transition occurs from the low-density synchronized-shifting phase to the high-density moving phase with increasing density of cars. In the synchronized-shifting phase, all up cars do not move to the up but shift to the right by synchronizing with the move of right cars. We show that the jam-avoiding drive has an important effect on the dynamical jamming transition.

  7. Altered expression of junctional adhesion molecule 4 in injured podocytes.

    PubMed

    Harita, Yutaka; Miyauchi, Naoko; Karasawa, Tamaki; Suzuki, Koichi; Han, Gi Dong; Koike, Hiroko; Igarashi, Takashi; Shimizu, Fujio; Kawachi, Hiroshi

    2006-02-01

    Recent investigations have revealed the importance of glomerular podocytes with its diaphragm as the major filtration barrier. Junctional adhesion molecule 4 (JAM4) has been identified as a protein that interacts with membrane-associated guanyl kinase inverted (MAGI)-1 and is reported to be expressed on podocytes. To elucidate the role of JAM4 on podocytes, we examined the expression of JAM4 and MAGI-1 in normal and two different proteinuric rat models: puromycin aminonucleoside (PAN) nephropathy and anti-nephrin antibody-induced (ANA) nephropathy, one model with and one without effacement of podocyte foot processes. JAM4 was detected by immunomicroscopy at the apical membrane of normal podocytes. JAM4 immunostaining was focally increased in the podocytes in PAN nephropathy but not in ANA nephropathy. In proteinuric podocytes, the expression of JAM4 was distinct from that of MAGI-1 or other slit diaphragm molecules such as nephrin and ZO-1. Close colocalization of JAM4 and ezrin was maintained in PAN nephropathy. By immunoelectron microscopy, the signals for JAM4 were detected at the free apical membrane of the podocytes with effaced foot processes. Studies with selective detergent extract revealed that the subcellular localization of JAM4 was altered in PAN nephropathy. Thus the altered expression of JAM4 appears to be associated with morphological changes in podocytes and can be a useful marker of injured podocytes. JAM4 may have a different role at the apical membrane besides the role as a junctional molecule and is likely associated with the unique structure of this epithelium.

  8. 21 CFR 150.160 - Fruit preserves and jams.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Fruit preserves and jams. 150.160 Section 150.160... jams. (a) The preserves or jams for which definitions and standards of identity are prescribed by this..., Pineapple, Raspberry, red raspberry, Rhubarb, Strawberry, Tangerine, Tomato, Yellow tomato, Youngberry Group...

  9. Dense granular flow around a rigid or flexible intruder

    NASA Astrophysics Data System (ADS)

    Kolb, Evelyne; Adda-Bedia, Mokhtar

    2012-02-01

    We experimentally studied the flow of a dense granular material around an obstacle (rigid cylinder or flexible plate) placed in a 2 dimensional confined cell at a packing fraction near the 2D jamming threshold. In the case of the rigid obstacle, the displacement field of grains as well as the drag force experienced by the obstacle were simultaneously recorded and a parametric study was done by changing the cell size, the intruder diameter or the packing fraction. The drag force experienced by the intruder and the formation of a wake behind the obstacle were very sensitive to the approach to jamming. The same experimental set-up was adapted to a flexible intruder and coupling between the granular flow and fibre deflexion were imaged. The deformation of the fibre could be compared with theoretical predictions from elastica.

  10. Unjamming and cell shape in the asthmatic airway epithelium

    NASA Astrophysics Data System (ADS)

    Park, Jin-Ah; Kim, Jae Hun; Bi, Dapeng; Mitchel, Jennifer A.; Qazvini, Nader Taheri; Tantisira, Kelan; Park, Chan Young; McGill, Maureen; Kim, Sae-Hoon; Gweon, Bomi; Notbohm, Jacob; Steward, Robert, Jr.; Burger, Stephanie; Randell, Scott H.; Kho, Alvin T.; Tambe, Dhananjay T.; Hardin, Corey; Shore, Stephanie A.; Israel, Elliot; Weitz, David A.; Tschumperlin, Daniel J.; Henske, Elizabeth P.; Weiss, Scott T.; Manning, M. Lisa; Butler, James P.; Drazen, Jeffrey M.; Fredberg, Jeffrey J.

    2015-10-01

    From coffee beans flowing in a chute to cells remodelling in a living tissue, a wide variety of close-packed collective systems--both inert and living--have the potential to jam. The collective can sometimes flow like a fluid or jam and rigidify like a solid. The unjammed-to-jammed transition remains poorly understood, however, and structural properties characterizing these phases remain unknown. Using primary human bronchial epithelial cells, we show that the jamming transition in asthma is linked to cell shape, thus establishing in that system a structural criterion for cell jamming. Surprisingly, the collapse of critical scaling predicts a counter-intuitive relationship between jamming, cell shape and cell-cell adhesive stresses that is borne out by direct experimental observations. Cell shape thus provides a rigorous structural signature for classification and investigation of bronchial epithelial layer jamming in asthma, and potentially in any process in disease or development in which epithelial dynamics play a prominent role.

  11. JAM-C regulates tight junctions and integrin-mediated cell adhesion and migration.

    PubMed

    Mandicourt, Guillaume; Iden, Sandra; Ebnet, Klaus; Aurrand-Lions, Michel; Imhof, Beat A

    2007-01-19

    Junctional Adhesion Molecules (JAMs) have been described as major components of tight junctions in endothelial and epithelial cells. Tight junctions are crucial for the establishment and maintenance of cell polarity. During tumor development, they are remodeled, enabling neoplastic cells to escape from constraints imposed by intercellular junctions and to adopt a migratory behavior. Using a carcinoma cell line we tested whether JAM-C could affect tight junctions and migratory properties of tumor cells. We show that transfection of JAM-C improves the tight junctional barrier in tumor cells devoid of JAM-C expression. This is dependent on serine 281 in the cytoplasmic tail of JAM-C because serine mutation into alanine abolishes the specific localization of JAM-C in tight junctions and establishment of cell polarity. More importantly, the same mutation stimulates integrin-mediated cell migration and adhesion via the modulation of beta1 and beta3 integrin activation. These results highlight an unexpected function for JAM-C in controlling epithelial cell conversion from a static, polarized state to a pro-migratory phenotype.

  12. Stronger at Depth: Jamming Grippers as Deep Sea Sampling Tools.

    PubMed

    Licht, Stephen; Collins, Everett; Mendes, Manuel Lopes; Baxter, Christopher

    2017-12-01

    In this work we experimentally demonstrate (a) that the holding strength of universal jamming grippers increases as a function of the jamming pressure to greater than three atmospheres, and (b) that jamming grippers can be operated in the deep sea in ambient pressures exceeding one hundred atmospheres, where such high jamming pressures can be readily achieved. Laboratory experiments in a pressurized, water-filled test cell are used to measure the holding force of a "universal" style jamming gripper as a function of the pressure difference between internal membrane pressure and ambient pressure. Experiments at sea are used to demonstrate that jamming grippers can be installed on, and operated from, remotely operated vehicles at depths in excess of 1200 m. In both experiments, the jamming gripper consists of a latex balloon filled with a mixture of fresh water and ∼200 μm glass beads, which are cheaply available in large quantities as sand blasting media. The use of a liquid, rather than a gas, as the fluid media allows operation of the gripper with a closed-loop fluid system; jamming pressure is controlled with an electrically driven water hydraulic cylinder in the laboratory and with an oil hydraulic-driven large-bore water hydraulic cylinder at sea.

  13. Intelligent cognitive radio jamming - a game-theoretical approach

    NASA Astrophysics Data System (ADS)

    Dabcevic, Kresimir; Betancourt, Alejandro; Marcenaro, Lucio; Regazzoni, Carlo S.

    2014-12-01

    Cognitive radio (CR) promises to be a solution for the spectrum underutilization problems. However, security issues pertaining to cognitive radio technology are still an understudied topic. One of the prevailing such issues are intelligent radio frequency (RF) jamming attacks, where adversaries are able to exploit on-the-fly reconfigurability potentials and learning mechanisms of cognitive radios in order to devise and deploy advanced jamming tactics. In this paper, we use a game-theoretical approach to analyze jamming/anti-jamming behavior between cognitive radio systems. A non-zero-sum game with incomplete information on an opponent's strategy and payoff is modelled as an extension of Markov decision process (MDP). Learning algorithms based on adaptive payoff play and fictitious play are considered. A combination of frequency hopping and power alteration is deployed as an anti-jamming scheme. A real-life software-defined radio (SDR) platform is used in order to perform measurements useful for quantifying the jamming impacts, as well as to infer relevant hardware-related properties. Results of these measurements are then used as parameters for the modelled jamming/anti-jamming game and are compared to the Nash equilibrium of the game. Simulation results indicate, among other, the benefit provided to the jammer when it is employed with the spectrum sensing algorithm in proactive frequency hopping and power alteration schemes.

  14. Loss of partitioning-defective-3/isotype-specific interacting protein (par-3/ASIP) in the elongating spermatid of RA175 (IGSF4A/SynCAM)-deficient mice.

    PubMed

    Fujita, Eriko; Tanabe, Yuko; Hirose, Tomonori; Aurrand-Lions, Michel; Kasahara, Tadashi; Imhof, Beat A; Ohno, Shigeo; Momoi, Takashi

    2007-12-01

    IGSF4a/RA175/SynCAM (RA175) and junctional adhesion molecules (Jams) are members of the immunoglobulin superfamily with a PDZ-binding domain at their C termini. Deficiency of Ra175 (Ra175(-/-)) as well as Jam-C deficiency (Jam-C(-/-)) causes the defect of the spermatid differentiation, oligo-astheno-teratozoospermia. Ra175(-/-) elongating spermatids fail to mature further, whereas Jam-C(-/-) round spermatids lose cell polarity, and most of Jam-C(-/-) elongated spermatids are completely lost. RA175 and Jam-C seem to have similar but distinct functional roles during spermatid differentiation. Here we show that the cell polarity protein Par-3 with PDZ domains, a binding partner of Jams, is one of the associated proteins of the cytoplasmic region of RA175 in testis. Par-3 and Jam-C are partly co-localized with RA175 in the elongating and elongated spermatids; their distributions overlapped with that of RA175 on the tips of the dorsal region of the head of the elongating spermatid (steps 9 to 12) in the wild type. In the Ra175(-/-) elongating spermatid, Par-3 was absent, and Jam-C was absent or abnormally localized. The RA175 formed a ternary complex with Jam-C via interaction with Par-3. The lack of the ternary complex in the Ra175(-/-) elongating spermatid may cause the defect of the specialized adhesion structures, resulting in the oligo-astheno-teratozoospermia.

  15. Junctional Adhesion Molecule A Serves as a Receptor for Prototype and Field-Isolate Strains of Mammalian Reovirus

    PubMed Central

    Campbell, Jacquelyn A.; Schelling, Pierre; Wetzel, J. Denise; Johnson, Elizabeth M.; Forrest, J. Craig; Wilson, Greame A. R.; Aurrand-Lions, Michel; Imhof, Beat A.; Stehle, Thilo; Dermody, Terence S.

    2005-01-01

    Reovirus infections are initiated by the binding of viral attachment protein σ1 to receptors on the surface of host cells. The σ1 protein is an elongated fiber comprised of an N-terminal tail that inserts into the virion and a C-terminal head that extends from the virion surface. The prototype reovirus strains type 1 Lang/53 (T1L/53) and type 3 Dearing/55 (T3D/55) use junctional adhesion molecule A (JAM-A) as a receptor. The C-terminal half of the T3D/55 σ1 protein interacts directly with JAM-A, but the determinants of receptor-binding specificity have not been identified. In this study, we investigated whether JAM-A also mediates the attachment of the prototype reovirus strain type 2 Jones/55 (T2J/55) and a panel of field-isolate strains representing each of the three serotypes. Antibodies specific for JAM-A were capable of inhibiting infections of HeLa cells by T1L/53, T2J/55, and T3D/55, demonstrating that strains of all three serotypes use JAM-A as a receptor. To corroborate these findings, we introduced JAM-A or the structurally related JAM family members JAM-B and JAM-C into Chinese hamster ovary cells, which are poorly permissive for reovirus infection. Both prototype and field-isolate reovirus strains were capable of infecting cells transfected with JAM-A but not those transfected with JAM-B or JAM-C. A sequence analysis of the σ1-encoding S1 gene segment of the strains chosen for study revealed little conservation in the deduced σ1 amino acid sequences among the three serotypes. This contrasts markedly with the observed sequence variability within each serotype, which is confined to a small number of amino acids. Mapping of these residues onto the crystal structure of σ1 identified regions of conservation and variability, suggesting a likely mode of JAM-A binding via a conserved surface at the base of the σ1 head domain. PMID:15956543

  16. Smeared spectrum jamming suppression based on generalized S transform and threshold segmentation

    NASA Astrophysics Data System (ADS)

    Li, Xin; Wang, Chunyang; Tan, Ming; Fu, Xiaolong

    2018-04-01

    Smeared Spectrum (SMSP) jamming is an effective jamming in countering linear frequency modulation (LFM) radar. According to the time-frequency distribution difference between jamming and echo, a jamming suppression method based on Generalized S transform (GST) and threshold segmentation is proposed. The sub-pulse period is firstly estimated based on auto correlation function firstly. Secondly, the time-frequency image and the related gray scale image are achieved based on GST. Finally, the Tsallis cross entropy is utilized to compute the optimized segmentation threshold, and then the jamming suppression filter is constructed based on the threshold. The simulation results show that the proposed method is of good performance in the suppression of false targets produced by SMSP.

  17. The ATLAS3D project - XX. Mass-size and mass-σ distributions of early-type galaxies: bulge fraction drives kinematics, mass-to-light ratio, molecular gas fraction and stellar initial mass function

    NASA Astrophysics Data System (ADS)

    Cappellari, Michele; McDermid, Richard M.; Alatalo, Katherine; Blitz, Leo; Bois, Maxime; Bournaud, Frédéric; Bureau, M.; Crocker, Alison F.; Davies, Roger L.; Davis, Timothy A.; de Zeeuw, P. T.; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnović, Davor; Kuntschner, Harald; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Serra, Paolo; Weijmans, Anne-Marie; Young, Lisa M.

    2013-07-01

    In the companion Paper XV of this series, we derive accurate total mass-to-light ratios (M/L)_JAM≈ (M/L)({r}= {R_e}) within a sphere of radius r= {R_e} centred on the galaxy, as well as stellar (M/L)stars (with the dark matter removed) for the volume-limited and nearly mass-selected (stellar mass M_star ≳ 6× 10^9 { M_{⊙}}) ATLAS3D sample of 260 early-type galaxies (ETGs, ellipticals Es and lenticulars S0s). Here, we use those parameters to study the two orthogonal projections ({M_JAM}, {σ _e}) and ({M_JAM}, {R_e^maj}) of the thin Mass Plane (MP) ({M_JAM}, {σ _e}, {R_e^maj}) which describes the distribution of the galaxy population, where {M_JAM}≡ L× (M/L)_JAM≈ M_star. The distribution of galaxy properties on both projections of the MP is characterized by: (i) the same zone of exclusion (ZOE), which can be transformed from one projection to the other using the scalar virial equation. The ZOE is roughly described by two power laws, joined by a break at a characteristic mass {M_JAM}≈ 3× 10^{10} { M_{⊙}}, which corresponds to the minimum Re and maximum stellar density. This results in a break in the mean {M_JAM}-{σ _e} relation with trends {M_JAM}∝ σ _e^{2.3} and {M_JAM}∝ σ _e^{4.7} at small and large σe, respectively; (ii) a characteristic mass {M_JAM}≈ 2× 10^{11} { M_{⊙}} which separates a population dominated by flat fast rotator with discs and spiral galaxies at lower masses, from one dominated by quite round slow rotators at larger masses; (iii) below that mass the distribution of ETGs' properties on the two projections of the MP tends to be constant along lines of roughly constant σe, or equivalently along lines with {R_e^maj}∝ {M_JAM}, respectively (or even better parallel to the ZOE: {R_e^maj}∝ M_JAM^{0.75}); (iv) it forms a continuous and parallel sequence with the distribution of spiral galaxies; (v) at even lower masses, the distribution of fast-rotator ETGs and late spirals naturally extends to that of dwarf ETGs (Sph) and dwarf irregulars (Im), respectively. We use dynamical models to analyse our kinematic maps. We show that σe traces the bulge fraction, which appears to be the main driver for the observed trends in the dynamical (M/L)JAM and in indicators of the (M/L)pop of the stellar population like Hβ and colour, as well as in the molecular gas fraction. A similar variation along contours of σe is also observed for the mass normalization of the stellar initial mass function (IMF), which was recently shown to vary systematically within the ETGs' population. Our preferred relation has the form log _{10} [(M/L)_stars/(M/L)_Salp]=a+b× log _{10}({σ _e}/130 {km s^{-1}}) with a = -0.12 ± 0.01 and b = 0.35 ± 0.06. Unless there are major flaws in all stellar population models, this trend implies a transition of the mean IMF from Kroupa to Salpeter in the interval log _{10}({σ _e}/{km s}^{-1})≈ 1.9-2.5 (or {σ _e}≈ 90-290 km s-1), with a smooth variation in between, consistently with what was shown in Cappellari et al. The observed distribution of galaxy properties on the MP provides a clean and novel view for a number of previously reported trends, which constitute special two-dimensional projections of the more general four-dimensional parameters trends on the MP. We interpret it as due to a combination of two main effects: (i) an increase of the bulge fraction, which increases σe, decreases Re, and greatly enhance the likelihood for a galaxy to have its star formation quenched, and (ii) dry merging, increasing galaxy mass and Re by moving galaxies along lines of roughly constant σe (or steeper), while leaving the population nearly unchanged.

  18. Nature of the Congested Traffic and Quasi-steady States of the General Motor Models

    NASA Astrophysics Data System (ADS)

    Yang, Bo; Xu, Xihua; Pang, John Z. F.; Monterola, Christopher

    2015-03-01

    We look at the general motor (GM) class microscopic traffic models and analyze some of the universal features of the (multi-)cluster solutions, including the emergence of an intrinsic scale and the quasisoliton dynamics. We show that the GM models can capture the essential physics of the real traffic dynamics, especially the phase transition from the free flow to the congested phase, from which the wide moving jams emerges (the F-S-J transition pioneered by B.S. Kerner). In particular, the congested phase can be associated with either the multi-cluster quasi-steady states, or their more homogeneous precursor states. In both cases the states can last for a long time, and the narrow clusters will eventually grow and merge, leading to the formation of the wide moving jams. We present a general method to fit the empirical parameters so that both quantitative and qualitative macroscopic empirical features can be reproduced with a minimal GM model. We present numerical results for the traffic dynamics both with and without the bottleneck, including various types of spontaneous and induced ``synchronized flow,'' as well as the evolution of wide moving jams. We also discuss its implications to the nature of different phases in traffic dynamics.

  19. Kinetics of particle deposition at heterogeneous surfaces

    NASA Astrophysics Data System (ADS)

    Stojiljković, D. Lj.; Vrhovac, S. B.

    2017-12-01

    The random sequential adsorption (RSA) approach is used to analyze adsorption of spherical particles of fixed diameter d0 on nonuniform surfaces covered by square cells arranged in a square lattice pattern. To characterize such pattern two dimensionless parameters are used: the cell size α and the cell-cell separation β, measured in terms of the particle diameter d0. Adsorption is assumed to occur if the particle (projected) center lies within a cell area. We focus on the kinetics of deposition process in the case when no more than a single disk can be placed onto any square cell (α < 1 /√{ 2 } ≈ 0 . 707). We find that the asymptotic approach of the coverage fraction θ(t) to the jamming limit θJ is algebraic if the parameters α and β satisfy the simple condition, β + α / 2 < 1. If this condition is not satisfied, the late time kinetics of deposition process is not consistent with the power law behavior. However, if the geometry of the pattern approaches towards ;noninteracting conditions; (β > 1), when adsorption on each cell can be decoupled, approach of the coverage fraction θ(t) to θJ becomes closer to the exponential law. Consequently, changing the pattern parameters in the present model allows to interpolate the deposition kinetics between the continuum limit and the lattice-like behavior. Structural properties of the jammed-state coverings are studied in terms of the radial distribution function g(r) and spatial distribution of particles inside the cell. Various, non-trivial spatial distributions are observed depending on the geometry of the pattern.

  20. Loss of Partitioning-Defective-3/Isotype-Specific Interacting Protein (Par-3/ASIP) in the Elongating Spermatid of RA175 (IGSF4A/SynCAM)-Deficient Mice

    PubMed Central

    Fujita, Eriko; Tanabe, Yuko; Hirose, Tomonori; Aurrand-Lions, Michel; Kasahara, Tadashi; Imhof, Beat A.; Ohno, Shigeo; Momoi, Takashi

    2007-01-01

    IGSF4a/RA175/SynCAM (RA175) and junctional adhesion molecules (Jams) are members of the immunoglobulin superfamily with a PDZ-binding domain at their C termini. Deficiency of Ra175 (Ra175−/−) as well as Jam-C deficiency (Jam-C−/−) causes the defect of the spermatid differentiation, oligo-astheno-teratozoospermia. Ra175−/− elongating spermatids fail to mature further, whereas Jam-C−/− round spermatids lose cell polarity, and most of Jam-C−/− elongated spermatids are completely lost. RA175 and Jam-C seem to have similar but distinct functional roles during spermatid differentiation. Here we show that the cell polarity protein Par-3 with PDZ domains, a binding partner of Jams, is one of the associated proteins of the cytoplasmic region of RA175 in testis. Par-3 and Jam-C are partly co-localized with RA175 in the elongating and elongated spermatids; their distributions overlapped with that of RA175 on the tips of the dorsal region of the head of the elongating spermatid (steps 9 to 12) in the wild type. In the Ra175−/− elongating spermatid, Par-3 was absent, and Jam-C was absent or abnormally localized. The RA175 formed a ternary complex with Jam-C via interaction with Par-3. The lack of the ternary complex in the Ra175−/− elongating spermatid may cause the defect of the specialized adhesion structures, resulting in the oligo-astheno-teratozoospermia. PMID:18055550

  1. A model of irreversible jam formation in dense traffic

    NASA Astrophysics Data System (ADS)

    Brankov, J. G.; Bunzarova, N. Zh.; Pesheva, N. C.; Priezzhev, V. B.

    2018-03-01

    We study an one-dimensional stochastic model of vehicular traffic on open segments of a single-lane road of finite size L. The vehicles obey a stochastic discrete-time dynamics which is a limiting case of the generalized Totally Asymmetric Simple Exclusion Process. This dynamics has been previously used by Bunzarova and Pesheva (2017) for an one-dimensional model of irreversible aggregation. The model was shown to have three stationary phases: a many-particle one, MP, a phase with completely filled configuration, CF, and a boundary perturbed MP+CF phase, depending on the values of the particle injection (α), ejection (β) and hopping (p) probabilities. Here we extend the results for the stationary properties of the MP+CF phase, by deriving exact expressions for the local density at the first site of the chain and the probability P(1) of a completely jammed configuration. The unusual phase transition, characterized by jumps in both the bulk density and the current (in the thermodynamic limit), as α crosses the boundary α = p from the MP to the CF phase, is explained by the finite-size behavior of P(1). By using a random walk theory, we find that, when α approaches from below the boundary α = p, three different regimes appear, as the size L → ∞: (i) the lifetime of the gap between the rightmost clusters is of the order O(L) in the MP phase; (ii) small jams, separated by gaps with lifetime O(1) , exist in the MP+CF phase close to the left chain boundary; and (iii) when β = p, the jams are divided by gaps with lifetime of the order O(L 1 / 2) . These results are supported by extensive Monte Carlo calculations.

  2. Evaluation of jamming efficiency for the protection of a single ground object

    NASA Astrophysics Data System (ADS)

    Matuszewski, Jan

    2018-04-01

    The electronic countermeasures (ECM) include methods to completely prevent or restrict the effective use of the electromagnetic spectrum by the opponent. The most widespread means of disorganizing the operation of electronic devices is to create active and passive radio-electronic jamming. The paper presents the way of jamming efficiency calculations for protecting ground objects against the radars mounted on the airborne platforms. The basic mathematical formulas for calculating the efficiency of active radar jamming are presented. The numerical calculations for ground object protection are made for two different electronic warfare scenarios: the jammer is placed very closely and in a determined distance from the protecting object. The results of these calculations are presented in the appropriate figures showing the minimal distance of effective jamming. The realization of effective radar jamming in electronic warfare systems depends mainly on the precise knowledge of radar and the jammer's technical parameters, the distance between them, the assumed value of the degradation coefficient, the conditions of electromagnetic energy propagation and the applied jamming method. The conclusions from these calculations facilitate making a decision regarding how jamming should be conducted to achieve high efficiency during the electronic warfare training.

  3. Jamming effect analysis of infrared reticle seeker for directed infrared countermeasures

    NASA Astrophysics Data System (ADS)

    Bae, Tae-Wuk; Kim, Byoung-Ik; Kim, Young-Choon; Ahn, Sang-Ho

    2012-09-01

    In directed infrared countermeasures (DIRCM), the purpose of jamming toward missiles is making missiles miss the target (aircraft of our forces) in the field of view. Since the DIRCM system directly emits the pulsing flashes of infrared (IR) energy to missiles, it is more effective than present flare method emitting IR source to omni-direction. In this paper, we implemented a reticle seeker simulation tool using MATLAB-SIMULINK, in order to analyze jamming effect of spin-scan and con-scan reticle missile seeker used widely in the world, though it was developed early. Because the jammer signal has influence on the missile guidance system using its variable frequency, it is very important technique among military defense systems protecting our forces from missiles of enemy. Simulation results show that jamming effect is greatly influenced according to frequency, phase and intensity of jammer signal. Especially, jammer frequency has the largest influence on jamming effect. Through our reticle seeker simulation tool, we can confirm that jamming effect toward missiles is significantly increased when jammer frequency is similar to reticle frequency. Finally, we evaluated jamming effect according to jammer frequencies, by using correlation coefficient as an evaluation criterion of jamming performance in two reticle missile seekers.

  4. Jamming of Cylindrical Grains in Featureless Vertical Channels

    NASA Astrophysics Data System (ADS)

    Baxter, G. William; Barr, Nicholas; Weible, Seth; Friedl, Nicholas

    2013-03-01

    We study jamming of low aspect-ratio cylindrical Delrin grains falling through a featureless vertical channel. With a grain height less than the grain diameter, these grains resemble aspirin tablets, poker chips, or coins. Unidisperse grains are allowed to fall under the influence of gravity through a uniform channel of square cross-section where the channel width is greater than the grain size and constant along the length of the channel. Channel widths are chosen so that no combination of grain heights and diameters is equal to the channel width. Collections of grains sometimes form jams, stable structures in which the grains are supported by the channel walls and not by grains or walls beneath them. The probability of a jam occurring and the jam's strength are influenced by the grain dimensions and channel width. We will present experimental measurements of the jamming probability and jam strength and discuss the relationship of these results to other experiments and theories. Supported by an Undergraduate Research Grant from Penn State Erie, The Behrend College

  5. Target deception jamming method against spaceborne synthetic aperture radar using electromagnetic scattering

    NASA Astrophysics Data System (ADS)

    Sun, Qingyang; Shu, Ting; Tang, Bin; Yu, Wenxian

    2018-01-01

    A method is proposed to perform target deception jamming against spaceborne synthetic aperture radar. Compared with the traditional jamming methods using deception templates to cover the target or region of interest, the proposed method aims to generate a verisimilar deceptive target in various attitude with high fidelity using the electromagnetic (EM) scattering. Based on the geometrical model for target deception jamming, the EM scattering data from the deceptive target was first simulated by applying an EM calculation software. Then, the proposed jamming frequency response (JFR) is calculated offline by further processing. Finally, the deception jamming is achieved in real time by a multiplication between the proposed JFR and the spectrum of intercepted radar signals. The practical implementation is presented. The simulation results prove the validity of the proposed method.

  6. Intrinsic development of choroidal and thalamic collaterals in hemorrhagic-onset moyamoya disease: case-control study of the Japan Adult Moyamoya Trial.

    PubMed

    Fujimura, Miki; Funaki, Takeshi; Houkin, Kiyohiro; Takahashi, Jun C; Kuroda, Satoshi; Tomata, Yasutake; Tominaga, Teiji; Miyamoto, Susumu

    2018-05-04

    OBJECTIVE This study was performed to identify the angiographic features of hemorrhagic-onset moyamoya disease (MMD) in comparison with those of patients with ischemic-onset MMD. METHODS This case-control study compared the data set of the Japan Adult Moyamoya (JAM) Trial with the angiographic data of adult patients with ischemic-onset MMD. The authors analyzed angiograms obtained at onset, classifying the collaterals into 3 subtypes: lenticulostriate anastomosis, thalamic anastomosis, and choroidal anastomosis. They then compared the extent of these collaterals, as indicated by the collateral development grade from 0 to 2 in each subtype, between the JAM Trial group and the ischemic-onset group. They also compared the involvement of the posterior cerebral artery (PCA) and Suzuki's angiographic staging between each group. RESULTS Among 89 ischemic-onset patients, 103 symptomatic hemispheres in 80 patients were analyzed and compared with 75 hemorrhagic hemispheres from the JAM Trial. The hemorrhagic-onset patients showed a significantly higher proportion of thalamic anastomosis (p = 0.043) and choroidal anastomosis (< 0.001), as indicated by grade 2 in each subtype, compared with ischemic-onset patients. Suzuki's angiographic staging was significantly higher in the hemorrhagic group (< 0.038). There was no difference in the extent of lenticulostriate anastomosis and PCA involvement between the groups. CONCLUSIONS In adult MMD, the characteristic pattern of the abnormal vascular networks at the base of the brain is different between each onset type. In light of the more prominent development of thalamic and choroidal anastomosis in the JAM Trial group in the present study, development of these collaterals, especially the choroidal collateral extending beyond the lateral ventricle, may play a critical role in hemorrhagic presentation in MMD. Clinical trial registration no. C000000166 ( http://www.umin.ac.jp/ctr/index.htm ).

  7. Absence of jamming in ant trails: feedback control of self-propulsion and noise.

    PubMed

    Chaudhuri, Debasish; Nagar, Apoorva

    2015-01-01

    We present a model of ant traffic considering individual ants as self-propelled particles undergoing single-file motion on a one-dimensional trail. Recent experiments on unidirectional ant traffic in well-formed natural trails showed that the collective velocity of ants remains approximately unchanged, leading to the absence of jamming even at very high densities [John et al., Phys. Rev. Lett. 102, 108001 (2009)]. Assuming a feedback control mechanism of self-propulsion force generated by each ant using information about the distance from the ant in front, our model captures all the main features observed in the experiment. The distance headway distribution shows a maximum corresponding to separations within clusters. The position of this maximum remains independent of average number density. We find a non-equilibrium first-order transition, with the formation of an infinite cluster at a threshold density where all the ants in the system suddenly become part of a single cluster.

  8. Edwards statistical mechanics for jammed granular matter

    NASA Astrophysics Data System (ADS)

    Baule, Adrian; Morone, Flaviano; Herrmann, Hans J.; Makse, Hernán A.

    2018-01-01

    In 1989, Sir Sam Edwards made the visionary proposition to treat jammed granular materials using a volume ensemble of equiprobable jammed states in analogy to thermal equilibrium statistical mechanics, despite their inherent athermal features. Since then, the statistical mechanics approach for jammed matter—one of the very few generalizations of Gibbs-Boltzmann statistical mechanics to out-of-equilibrium matter—has garnered an extraordinary amount of attention by both theorists and experimentalists. Its importance stems from the fact that jammed states of matter are ubiquitous in nature appearing in a broad range of granular and soft materials such as colloids, emulsions, glasses, and biomatter. Indeed, despite being one of the simplest states of matter—primarily governed by the steric interactions between the constitutive particles—a theoretical understanding based on first principles has proved exceedingly challenging. Here a systematic approach to jammed matter based on the Edwards statistical mechanical ensemble is reviewed. The construction of microcanonical and canonical ensembles based on the volume function, which replaces the Hamiltonian in jammed systems, is discussed. The importance of approximation schemes at various levels is emphasized leading to quantitative predictions for ensemble averaged quantities such as packing fractions and contact force distributions. An overview of the phenomenology of jammed states and experiments, simulations, and theoretical models scrutinizing the strong assumptions underlying Edwards approach is given including recent results suggesting the validity of Edwards ergodic hypothesis for jammed states. A theoretical framework for packings whose constitutive particles range from spherical to nonspherical shapes such as dimers, polymers, ellipsoids, spherocylinders or tetrahedra, hard and soft, frictional, frictionless and adhesive, monodisperse, and polydisperse particles in any dimensions is discussed providing insight into a unifying phase diagram for all jammed matter. Furthermore, the connection between the Edwards ensemble of metastable jammed states and metastability in spin glasses is established. This highlights the fact that the packing problem can be understood as a constraint satisfaction problem for excluded volume and force and torque balance leading to a unifying framework between the Edwards ensemble of equiprobable jammed states and out-of-equilibrium spin glasses.

  9. Traffic jams induce dynamical phase transition in spatial rock-paper-scissors game

    NASA Astrophysics Data System (ADS)

    Nagatani, Takashi; Ichinose, Genki; Tainaka, Kei-ichi

    2018-02-01

    Spatial and temporal behaviors of the rock-paper-scissors (RPS) game is key to understanding not only biodiversity but also a variety of cyclic systems. It has been demonstrated that, in the stochastic cellular automaton of RPS game, three species cannot survive on one-dimensional (1-d) lattice; only a single species survives. Previous studies have shown that three species are able to coexist if the migration of species is considered. However, their definitions of migration are the swapping of two species or the random walk of species, which rarely occurs in nature. Here, we investigate the effect of migration by using the 1-d lattice traffic model in which species can move rightward if the site ahead is empty. Computer simulations reveal that three species can survive at the same time within the wide range of parameter values. At low densities, all species can coexist. In contrast, the extinction of two species occurs if the density exceeds the critical limit of the jamming transition. This dynamical phase transition between the coexistence and single (non-coexistence) phase clearly separates due to the self-organized pattern: condensation and rarefaction in the stripe-pattern of three species.

  10. River predisposition to ice jams: a simplified geospatial model

    NASA Astrophysics Data System (ADS)

    De Munck, Stéphane; Gauthier, Yves; Bernier, Monique; Chokmani, Karem; Légaré, Serge

    2017-07-01

    Floods resulting from river ice jams pose a great risk to many riverside municipalities in Canada. The location of an ice jam is mainly influenced by channel morphology. The goal of this work was therefore to develop a simplified geospatial model to estimate the predisposition of a river channel to ice jams. Rather than predicting the timing of river ice breakup, the main question here was to predict where the broken ice is susceptible to jam based on the river's geomorphological characteristics. Thus, six parameters referred to potential causes for ice jams in the literature were initially selected: presence of an island, narrowing of the channel, high sinuosity, presence of a bridge, confluence of rivers, and slope break. A GIS-based tool was used to generate the aforementioned factors over regular-spaced segments along the entire channel using available geospatial data. An ice jam predisposition index (IJPI) was calculated by combining the weighted optimal factors. Three Canadian rivers (province of Québec) were chosen as test sites. The resulting maps were assessed from historical observations and local knowledge. Results show that 77 % of the observed ice jam sites on record occurred in river sections that the model considered as having high or medium predisposition. This leaves 23 % of false negative errors (missed occurrence). Between 7 and 11 % of the highly predisposed river sections did not have an ice jam on record (false-positive cases). Results, limitations, and potential improvements are discussed.

  11. Cultur(ally) Jammed: Culture Jams as a Form of Culturally Responsive Teaching

    ERIC Educational Resources Information Center

    Martinez, Ulyssa

    2012-01-01

    Does the person become the name or does the name become the person? This question was asked by a participant of my culture jam entitled, "What's my name?" In this culture jam, I asked people to discern the name of a person based solely on their appearance and a list of possible names below their picture. This article aims to show how culture jams…

  12. Effect of Friction on Shear Jamming

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Ren, Jie; Dijksman, Joshua; Bares, Jonathan; Behringer, Robert

    2015-03-01

    Shear jamming of granular materials was first found for systems of frictional disks, with a static friction coefficient μ ~ 0 . 6 (Bi et al. Nature (2011)). Jamming by shear is obtained by starting from a zero-stress state with a packing fraction ϕ between ϕJ (isotropic jamming) and a lowest ϕS for shear jamming. This phenomenon is associated with strong anisotropy in stress and the contact network in the form of force chains, which are stabilized and/or enhanced by the presence of friction. Whether shear jamming occurs for frictionless particles is under debate. The issue we address experimentally is how reducing friction affects shear jamming. We put the Teflon-wrapped photoelastic disks, lowering the friction substantially from previous experiments, in a well-studied 2D shear apparatus (Ren et al. PRL (2013)), which provides a uniform simple shear. Shear jamming is still observed; however, the difference ϕJ -ϕS is smaller with lower friction. We also observe larger anisotropies in fragile states compared to experiments with higher friction particles at the same density. In ongoing work we are studying systems using photoelastic disks with fine gears on the edge to generate very large effective friction. We acknowledge support from NSF Grant DMR1206351, NSF Grant DMS-1248071, NASA Grant NNX10AU01G and William M. Keck Foundation.

  13. Size and density avalanche scaling near jamming.

    PubMed

    Arévalo, Roberto; Ciamarra, Massimo Pica

    2014-04-28

    The current microscopic picture of plasticity in amorphous materials assumes local failure events to produce displacement fields complying with linear elasticity. Indeed, the flow properties of nonaffine systems, such as foams, emulsions and granular materials close to jamming, that produce a fluctuating displacement field when failing, are still controversial. Here we show, via a thorough numerical investigation of jammed materials, that nonaffinity induces a critical scaling of the flow properties dictated by the distance to the jamming point. We rationalize this critical behavior by introducing a new universal jamming exponent and hyperscaling relationships, and we use these results to describe the volume fraction dependence of the friction coefficient.

  14. Systems and methods for short range RF communication

    NASA Technical Reports Server (NTRS)

    Hershey, John Erik (Inventor); Tomlinson, Harold Woodruff (Inventor); DeCristofaro, Richard Anthony (Inventor); Ross, John Anderson Fergus (Inventor); Sexton, Daniel White (Inventor)

    2012-01-01

    A method transmitting a message over at least one of a plurality of channels of a communications network is provided. The method comprises the steps of detecting a presence of jamming pulses in the at least one of the plurality of channels. The characteristics of the jamming pulses in the at least one of the plurality of channels is determined wherein the determined characteristics define at least interstices between the jamming pulses. The message is transmitted over the at least one of the plurality of channels wherein the message is transmitted within the interstices of the jamming pulse determined from the step of determining characteristics of the jamming pulses.

  15. Exploring new kinds of relationships using generative music-making software.

    PubMed

    Dillon, Steve; Jones, Anita

    2009-08-01

    This project focuses upon the use of jam2jam, a generative computer system, to increase access to improvization experiences for children and to facilitate new kinds of relationships with artists. The network jamming system uses visual and audio cultural materials to enable communities to be expressive with artistic materials that they value as a community. As the system is part of a network, performances can be shared between communities at great distances and recordings of performances can be uploaded to a digital social network (http://www.jam2jam.com/) and shared both locally and with the wider community. This paper examines a preliminary project where artwork made by Indigenous mental health clients in Far North Queensland was digitized and given to a group of 8-12-year-old urban Indigenous children to 'improvize' with and make music/video clips using the jam2jam instrument. It seeks to generate a discussion and identify applications within creative arts-led community health settings to facilitate new kinds of relationships with self, peers, local community, culture and artists through collaborative improvization.

  16. Anti-jamming communication for body area network using chaotic frequency hopping.

    PubMed

    Gopalakrishnan, Balamurugan; Bhagyaveni, Marcharla Anjaneyulu

    2017-12-01

    The healthcare industries research trends focus on patient reliable communication and security is a paramount requirement of healthcare applications. Jamming in wireless communication medium has become a major research issue due to the ease of blocking communication in wireless networks and throughput degradation. The most commonly used technique to overcome jamming is frequency hopping (FH). However, in traditional FH pre-sharing of key for channel selection and a high-throughput overhead is required. So to overcome this pre-sharing of key and to increase the security chaotic frequency hopping (CFH) has been proposed. The design of chaos-based hop selection is a new development that offers improved performance in transmission of information without pre-shared key and also increases the security. The authors analysed the performance of proposed CFH system under different reactive jamming durations. The percentage of error reduction by the reactive jamming for jamming duration 0.01 and 0.05 s for FH and CFH is 55.03 and 84.24%, respectively. The obtained result shows that CFH is more secure and difficult to jam by the reactive jammer.

  17. Jamming of Monodisperse Cylindrical Grains in Featureless Vertical Channels

    NASA Astrophysics Data System (ADS)

    Friedl, Nicholas; Baxter, G. William

    2014-03-01

    We study jamming of low aspect-ratio cylindrical Delrin grains falling through a featureless vertical channel under the influence of gravity. These grains have an aspect-ratio less than two (H/D < 2) and resemble aspirin tablets, 35mm film canisters, poker chips, or coins. Monodisperse grains are allowed to fall under the influence of gravity through a uniform channel of square cross-section where the channel width is greater than the grain size and constant along the length of the channel. No combination of grain heights and diameters is equal to the channel width. Collections of grains sometimes form jams, stable structures in which the grains are supported by the channel walls and not by grains or walls beneath them. The probability of a jam occurring and the jam's strength are influenced by the grain dimensions and channel width. We will present experimental measurements of the jamming probability and jam strength and discuss the relationship of these results to other experiments and theories. Supported by an Undergraduate Research Grant from Penn State Erie, The Behrend College.

  18. Applying Subject Matter Expertise (SME) Elicitation Techniques to TRAC Studies

    DTIC Science & Technology

    2014-09-30

    prioritisation, budgeting and resource allocation with multi-criteria decision analysis and decision conferencing ”. English. In: Annals of Operations... electronically . Typically, in responding to survey items, experts are not expected to elaborate beyond providing responses in the format requested in the...between them, however irrelevant to probability Kynn and Ayyub.84 For example, an electronic jamming device might disrupt a cell phone signal at certain

  19. Time resolved native ion-mobility mass spectrometry to monitor dynamics of IgG4 Fab arm exchange and "bispecific" monoclonal antibody formation.

    PubMed

    Debaene, François; Wagner-Rousset, Elsa; Colas, Olivier; Ayoub, Daniel; Corvaïa, Nathalie; Van Dorsselaer, Alain; Beck, Alain; Cianférani, Sarah

    2013-10-15

    Monoclonal antibodies (mAbs) and derivatives such as antibody-drug conjugates (ADC) and bispecific antibodies (bsAb), are the fastest growing class of human therapeutics. Most of the therapeutic antibodies currently on the market and in clinical trials are chimeric, humanized, and human immunoglobulin G1 (IgG1). An increasing number of IgG2s and IgG4s that have distinct structural and functional properties are also investigated to develop products that lack or have diminished antibody effector functions compared to IgG1. Importantly, wild type IgG4 has been shown to form half molecules (one heavy chain and one light chain) that lack interheavy chain disulfide bonds and form intrachain disulfide bonds. Moreover, IgG4 undergoes a process of Fab-arm exchange (FAE) in which the heavy chains of antibodies of different specificities can dissociate and recombine in bispecific antibodies both in vitro and in vivo. Here, native mass spectrometry (MS) and time-resolved traveling wave ion mobility MS (TWIM-MS) were used for the first time for online monitoring of FAE and bsAb formation using Hz6F4-2v3 and natalizumab, two humanized IgG4s which bind to human Junctional Adhesion Molecule-A (JAM-A) and alpha4 integrin, respectively. In addition, native MS analysis of bsAb/JAM-A immune complexes revealed that bsAb can bind up to two antigen molecules, confirming that the Hz6F4 family preferentially binds dimeric JAM-A. Our results illustrate how IM-MS can rapidly assess bsAb structural heterogeneity and be easily implemented into MS workflows for bsAb production follow up and bsAb/antigen complex characterization. Altogether, these results provide new MS-based methodologies for in-depth FAE and bsAb formation monitoring. Native MS and IM-MS will play an increasing role in next generation biopharmaceutical product characterization like bsAbs, antibody mixtures, and antibody-drug conjugates (ADC) as well as for biosimilar and biobetter antibodies.

  20. Short range RF communication for jet engine control

    NASA Technical Reports Server (NTRS)

    Sexton, Daniel White (Inventor); Hershey, John Erik (Inventor)

    2007-01-01

    A method transmitting a message over at least one of a plurality of radio frequency (RF) channels of an RF communications network is provided. The method comprises the steps of detecting a presence of jamming pulses in the at least one of the plurality of RF channels. The characteristics of the jamming pulses in the at least one of the plurality of RF channels is determined wherein the determined characteristics define at least interstices between the jamming pulses. The message is transmitted over the at least one of the plurality of RF channels wherein the message is transmitted within the interstices of the jamming pulse determined from the step of determining characteristics of the jamming pulses.

  1. Early Detection of Junctional Adhesion Molecule-1 (JAM-1) in the Circulation after Experimental and Clinical Polytrauma

    PubMed Central

    Denk, Stephanie; Wiegner, Rebecca; Hönes, Felix M.; Messerer, David A. C.; Radermacher, Peter; Kalbitz, Miriam; Braumüller, Sonja; McCook, Oscar; Gebhard, Florian; Weckbach, Sebastian; Huber-Lang, Markus

    2015-01-01

    Severe tissue trauma-induced systemic inflammation is often accompanied by evident or occult blood-organ barrier dysfunctions, frequently leading to multiple organ dysfunction. However, it is unknown whether specific barrier molecules are shed into the circulation early after trauma as potential indicators of an initial barrier dysfunction. The release of the barrier molecule junctional adhesion molecule-1 (JAM-1) was investigated in plasma of C57BL/6 mice 2 h after experimental mono- and polytrauma as well as in polytrauma patients (ISS ≥ 18) during a 10-day period. Correlation analyses were performed to indicate a linkage between JAM-1 plasma concentrations and organ failure. JAM-1 was systemically detected after experimental trauma in mice with blunt chest trauma as a driving force. Accordingly, JAM-1 was reduced in lung tissue after pulmonary contusion and JAM-1 plasma levels significantly correlated with increased protein levels in the bronchoalveolar lavage as a sign for alveolocapillary barrier dysfunction. Furthermore, JAM-1 was markedly released into the plasma of polytrauma patients as early as 4 h after the trauma insult and significantly correlated with severity of disease and organ dysfunction (APACHE II and SOFA score). The data support an early injury- and time-dependent appearance of the barrier molecule JAM-1 in the circulation indicative of a commencing trauma-induced barrier dysfunction. PMID:26556956

  2. ADDRESSING THE DEFICIT: Updating the Budgetary Implications of Selected GAO Work

    DTIC Science & Technology

    1996-06-01

    DGPS DI DLA DOD DOE DOT DUR EDWAA EM EPA FAIR FAA FAS FDIC FHWA FY GAO GSA HACCP HCFA HHS HMO HUD IDB IFAD INS IRS JCT...Marti, the broadcasts are constantly and effectively jammed , USIA’S research data shows that, mainly as a result of the jamming , the number of Cubans...hours (from 3:30 am to 8:00 am), but Cuban jamming also expanded. In an attempt to overcome jamming , TV Marti has plans to convert from VHF to UHF

  3. Life Times of Simulated Traffic Jams

    NASA Astrophysics Data System (ADS)

    Nagel, Kai

    We study a model for freeway traffic which includes strong noise taking into account the fluctuations of individual driving behavior. The model shows emergent traffic jams with a self-similar appearance near the throughput maximum of the traffic. The lifetime distribution of these jams shows a short scaling regime, which gets considerably longer if one reduces the fluctuations when driving at maximum speed but leaves the fluctuations for slowing down or accelerating unchanged. The outflow from a traffic jam self-organizes into this state of maximum throughput.

  4. Longitudinal distribution and parameters of large wood in a Mediterranean ephemeral stream

    NASA Astrophysics Data System (ADS)

    Galia, T.; Škarpich, V.; Tichavský, R.; Vardakas, L.; Šilhán, K.

    2018-06-01

    Although large wood (LW) has been intensively studied in forested basins of humid temperate climates, data on LW patterns in different fluvial environments are rather scarce. Therefore, we investigated the dimensions, characteristics, longitudinal distribution, and dynamics of LW along a 4.05-km-long reach of an ephemeral channel typical of European Mediterranean mountainous landscape (Sfakiano Gorge, Crete, Greece). We analysed a total of 795 LW pieces, and the mean observed abundance of LW was generally lower (14.3 m3/ha of active valley floor or 19.6 LW pieces/100 m of stream length) than is usually documented for more humid environments. The number of LW pieces was primarily controlled by trees growing on the valley floor. These living trees acted as important LW supply agents (by tree throws or the supply of individual branches with sufficient LW dimensions) and flow obstructions during large flood events, causing storage of transported LW pieces in jams. However, the downstream transport of LW is probably episodic, and large jams are likely formed only during major floods; after >15 years, we still observed significant imprints of the last major flood event on the present distribution of LW. The geomorphic function of LW in the studied stream can only be perceived to be a spatially limited stabilising element for sediments, which was documented by a few accumulations of coarse clastic material by LW steps and jams.

  5. FCC press release and consumer/retailer enforcement advisories regarding cell jammers, GPS jammers, and other jamming devices

    DOT National Transportation Integrated Search

    2011-02-09

    FCC ENFORCEMENT BUREAU STEPS UP EDUCATION AND ENFORCEMENT EFFORTS AGAINST CELLPHONE AND GPS JAMMING. CONSUMERS BEWARE: It is Unlawful to Use Cell Jammers and Other Equipment : that Blocks, Jams, or Interferes with Authorized Radio Communication...

  6. The thermodynamics of dense granular flow and jamming

    NASA Astrophysics Data System (ADS)

    Lu, Shih Yu

    The scope of the thesis is to propose, based on experimental evidence and theoretical validation, a quantifiable connection between systems that exhibit the jamming phenomenon. When jammed, some materials that flow are able to resist deformation so that they appear solid-like on the laboratory scale. But unlike ordinary fusion, which has a critically defined criterion in pressure and temperature, jamming occurs under a wide range of conditions. These condition have been rigorously investigated but at the moment, no self-consistent framework can apply to grains, foam and colloids that may have suddenly ceased to flow. To quantify the jamming behavior, a constitutive model of dense granular flows is deduced from shear-flow experiments. The empirical equations are then generalized, via a thermodynamic approach, into an equation-of-state for jamming. Notably, the unifying theory also predicts the experimental data on the behavior of molecular glassy liquids. This analogy paves a crucial road map for a unifying theoretical framework in condensed matter, for example, ranging from sand to fire retardants to toothpaste.

  7. Jamming by compressing a system of granular crosses

    NASA Astrophysics Data System (ADS)

    Zheng, Hu; Wang, Dong; Barés, Jonathan; Behringer, Robert

    2017-06-01

    A disordered stress-free granular packing can be jammed, transformed into a mechanically rigid structure, by increasing the density of particles or by applying shear deformation. The jamming behavior of systems made of 2D circular discs has been investigated in detail, but very little is known about jamming for non-spherical particles, and particularly, non-convex particles. Here, we perform an experimental study on jamming by compression of a system of quasi-2D granular crosses made of photo-elastic crosses. We measure the pressure evolution during cyclic compression and decompression. The Jamming packing fraction of these quasi-2D granular crosses is ϕJ ≃ 0.475, which is much smaller than the value ϕJ ≃ 0.84 for-2D granular disks. The packing fraction shifts systematically to higher values under compressive cycling, corresponding to systematic shifts in the stress-strain response curves. Associated with these shifts are rotations of the crosses, with minimal changes in their centers of mass.

  8. Nonuniversality of density and disorder in jammed sphere packings

    NASA Astrophysics Data System (ADS)

    Jiao, Yang; Stillinger, Frank H.; Torquato, Salvatore

    2011-01-01

    We show for the first time that collectively jammed disordered packings of three-dimensional monodisperse frictionless hard spheres can be produced and tuned using a novel numerical protocol with packing density ϕ as low as 0.6. This is well below the value of 0.64 associated with the maximally random jammed state and entirely unrelated to the ill-defined "random loose packing" state density. Specifically, collectively jammed packings are generated with a very narrow distribution centered at any density ϕ over a wide density range ϕ ɛ(0.6,0.740 48…) with variable disorder. Our results support the view that there is no universal jamming point that is distinguishable based on the packing density and frequency of occurrence. Our jammed packings are mapped onto a density-order-metric plane, which provides a broader characterization of packings than density alone. Other packing characteristics, such as the pair correlation function, average contact number, and fraction of rattlers are quantified and discussed.

  9. Research on the laser angle deception jamming technology of laser countermeasure

    NASA Astrophysics Data System (ADS)

    Ma, Shi-wei; Chen, Wen-jian; Gao, Wei; Duan, Yuan-yuan

    2015-10-01

    In recent years , laser guided weapons behave very well at destroying the military goals in the local wars, the single-shot probability, effective range and hitting precision getting better. And the semi-active laser guided weapons are the most widely used laser guided weapons. In order to improve the viability and protect important military goals, it's necessary to study the technology to against the semi-active guided weapons. This paper studies the working principle, the advantages and disadvantages of the semi-active guided weapons at first, and analyze the possibility of laser angle deception jamming system working. Then it analyzes the working principle and process of laser angle deception jamming technology. Finally it designs a half-real simulation system of laser angle deception jamming, which consists of semi-active laser guided weapons simulation system and laser angle deception jamming system. The simulation system demonstrates the working process of the laser angle deception jamming system. This paper provides fundamental base for the research on the countermeasure technology of semi-active laser guided weapons.

  10. Shape effects on time-scale divergence at athermal jamming transition of frictionless non-spherical particles

    NASA Astrophysics Data System (ADS)

    Yuan, Ye; Jin, Weiwei; Liu, Lufeng; Li, Shuixiang

    2017-10-01

    The critical behaviors of a granular system at the jamming transition have been extensively studied from both mechanical and thermodynamic perspectives. In this work, we numerically investigate the jamming behaviors of a variety of frictionless non-spherical particles, including spherocylinder, ellipsoid, spherotetrahedron and spherocube. In particular, for a given particle shape, a series of random configurations at different fixed densities are generated and relaxed to minimize interparticle overlaps using the relaxation algorithm. We find that as the jamming point (i.e., point J) is approached, the number of iteration steps (defined as the "time-scale" for our systems) required to completely relax the interparticle overlaps exhibits a clear power-law divergence. The dependence of the detailed mathematical form of the power-law divergence on particle shapes is systematically investigated and elucidated, which suggests that the shape effects can be generally categorized as elongation and roundness. Importantly, we show the jamming transition density can be accurately determined from the analysis of time-scale divergence for different non-spherical shapes, and the obtained values agree very well with corresponding ones reported in literature. Moreover, we study the plastic behaviors of over-jammed packings of different particles under a compression-expansion procedure and find that the jamming of ellipsoid is much more robust than other non-spherical particles. This work offers an alternative approximate procedure besides conventional packing algorithms for studying athermal jamming transition in granular system of frictionless non-spherical particles.

  11. Jamming and Learning: Analysing Changing Collective Practice of Changing Participation

    ERIC Educational Resources Information Center

    Brinck, Lars

    2017-01-01

    This article reports a long-term ethnographic study on jamming and learning from an entwined artistic and educational perspective. The study investigates aspects of learning during a professional band's jamming and recording eight groove-jazz frameworks and a series of subsequent concerts with pre-academy students "sitting in." Fieldwork…

  12. Topology-selective jamming of fully-connected, code-division random-access networks

    NASA Technical Reports Server (NTRS)

    Polydoros, Andreas; Cheng, Unjeng

    1990-01-01

    The purpose is to introduce certain models of topology selective stochastic jamming and examine its impact on a class of fully-connected, spread-spectrum, slotted ALOHA-type random access networks. The theory covers dedicated as well as half-duplex units. The dominant role of the spatial duty factor is established, and connections with the dual concept of time selective jamming are discussed. The optimal choices of coding rate and link access parameters (from the users' side) and the jamming spatial fraction are numerically established for DS and FH spreading.

  13. Aircraft Loss-of-Control Accident Prevention: Switching Control of the GTM Aircraft with Elevator Jam Failures

    NASA Technical Reports Server (NTRS)

    Chang, Bor-Chin; Kwatny, Harry G.; Belcastro, Christine; Belcastro, Celeste

    2008-01-01

    Switching control, servomechanism, and H2 control theory are used to provide a practical and easy-to-implement solution for the actuator jam problem. A jammed actuator not only causes a reduction of control authority, but also creates a persistent disturbance with uncertain amplitude. The longitudinal dynamics model of the NASA GTM UAV is employed to demonstrate that a single fixed reconfigured controller design based on the proposed approach is capable of accommodating an elevator jam failure with arbitrary jam position as long as the thrust control has enough control authority. This paper is a first step towards solving a more comprehensive in-flight loss-of-control accident prevention problem that involves multiple actuator failures, structure damages, unanticipated faults, and nonlinear upset regime recovery, etc.

  14. Research into the usage of integrated jamming of IR weakening and smoke-screen resisting the IR imaging guided missiles

    NASA Astrophysics Data System (ADS)

    Wang, Long-tao; Jiang, Ning; Lv, Ming-shan

    2015-10-01

    With the emergence of the anti-ship missle with the capability of infrared imaging guidance, the traditional single jamming measures, because of the jamming mechanism and technical flaws or unsuitable use, greatly reduced the survival probability of the war-ship in the future naval battle. Intergrated jamming of IR weakening + smoke-screen Can not only make jamming to the search and tracking of IR imaging guidance system , but also has feasibility in conjunction, besides , which also make the best jamming effect. The research conclusion has important realistic meaning for raising the antimissile ability of surface ships. With the development of guidance technology, infrared guidance system has expanded by ir point-source homing guidance to infrared imaging guidance, Infrared imaging guidance has made breakthrough progress, Infrared imaging guidance system can use two-dimensional infrared image information of the target, achieve the precise tracking. Which has Higher guidance precision, better concealment, stronger anti-interference ability and could Target the key parts. The traditional single infrared smoke screen jamming or infrared decoy flare interference cannot be imposed effective interference. So, Research how to effectively fight against infrared imaging guided weapons threat measures and means, improving the surface ship antimissile ability is an urgent need to solve.

  15. Diffusion in jammed particle packs

    NASA Astrophysics Data System (ADS)

    Bolintineanu, Dan S.; Silbert, Leonardo E.; Grest, Gary S.; Lechman, Jeremy B.

    2015-03-01

    Diffusive transport in jammed particle packs is of interest for a number of applications, as well as being a potential indicator of structural properties near the jamming point. To this end, we report stochastic simulations of equilibrium diffusion through monodisperse sphere packs near the jamming point in the limit of a perfectly insulating surrounding medium. The time dependence of various diffusion properties is resolved over several orders of magnitude. Two time regimes of expected Fickian diffusion are observed, separated by an intermediate regime of anomalous diffusion. This intermediate regime grows as the particle volume fraction approaches the critical jamming transition. The diffusion behavior is fully controlled by the extent of the contacts between neighboring particles, which in turn depend on proximity to the jamming point. In particular, the mean first passage time associated with the escape of random walkers between neighboring particles is shown to control both the time to recover Fickian diffusion and the long time diffusivity. Scaling laws are established that relate these quantities to the difference between the actual and critical jamming volume fractions. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's NNSA under Contract DE- AC04-94AL85000.

  16. Effect of xantham gum, steviosides, clove, and cinnamon essential oils on the sensory and microbiological quality of a low sugar tomato jam.

    PubMed

    Gliemmo, María F; Montagnani, María A; Schelegueda, Laura I; González, Malena M; Campos, Carmen A

    2016-03-01

    The partial or total decrease of sugar content in the formulation of jams affects their physical, chemical and microbiological stability. In order to minimize these technological problems, we studied the effect of xanthan gum (XG), steviosides, cinnamon (CO), and clove (CLO) essential oils on the sensory and microbiological quality of a low sugar tomato jam. Levels of 0.250 g/100 g steviosides and 0.450 g/100 g XG showed maximum score of overall acceptability of jam. The combination of essential oils produced synergistic and additive effects in vitro on growth of Z. bailii and Z. rouxii, respectively. However, in the jam, CO was more effective and CLO did not modify the CO action. Cell surface was one of the sites of action of CO since a decrease in yeast cell surface hydrophobicity was observed. From the microbiological and sensory points of view, 0.0060 g/100 g CO showed the maximum score of jam overall acceptability and did not cause yeast inactivation but it could be useful as an additional stress factor against yeast post--process contamination. The adequate levels of XG, steviosides, and CO can improve the quality of a low sugar jam formulation. © The Author(s) 2015.

  17. Investigation on navigation patterns of inertial/celestial integrated systems

    NASA Astrophysics Data System (ADS)

    Luo, Dacheng; Liu, Yan; Liu, Zhiguo; Jiao, Wei; Wang, Qiuyan

    2014-11-01

    It is known that Strapdown Inertial Navigation System (SINS), Global Navigation Satellite System (GNSS) and Celestial Navigation System (CNS) can complement each other's advantages. The SINS/CNS integrated system, which has the characteristics of strong autonomy, high accuracy and good anti-jamming, is widely used in military and civilian applications. Similar to SINS/GNSS integrated system, the SINS/CNS integrated system can also be divided into three kinds according to the difference of integrating depth, i.e., loosely coupled pattern, tightly coupled pattern and deeply coupled pattern. In this paper, the principle and characteristics of each pattern of SINS/CNS system are analyzed. Based on the comparison of these patterns, a novel deeply coupled SINS/CNS integrated navigation scheme is proposed. The innovation of this scheme is that a new star pattern matching method aided by SINS information is put forward. Thus the complementary features of these two subsystems are reflected.

  18. Shear jamming: where does it come from and how is it affected by particle properties?

    NASA Astrophysics Data System (ADS)

    Wang, Dong

    Granular systems have been shown to be able to behave like solids, under shear, even when their densities are below the critical packing fraction for frictionless isotropic jamming. To understand such a phenomena, called shear jamming, the questions we address here is: how does shear bring a system from a unjammed state to a jammed state and how do particle properties, such as inter-particle friction and particle shape, affect shear jamming? Since Z can be used to distinguish jammed states from unjammed ones (Z = 3 is the isotropic jamming point for 2 D frictional disks), it is vital to understand how shear increases Z. In the first part of this talk, we propose a set of three particles in contact, denoted as a trimer, as the basic unit to microscopically characterize the deformation of the system. Trimers, stabilized by inter-grain friction, are then expected to bend in response to shear to make extra contacts to regain stability. By defining a projection operator of the opening angle of the trimer to the compression direction in the shear, O, we see a systematically linear decrease of this quantity with respect to shear strain, demonstrating the bending of trimers as expected. In the second part of this talk, we look into the effect of particle properties on shear jamming. Photoelastic disks either wrapped with Teflon to reduce friction or with fine teeth on the edge to increase friction are used to study the effect of friction. In addition, disks are replaced with ellipses to introduce anisotropy into the particle shape. Shear jamming is observed for all the cases. For the disk system, the lowest packing fraction that can reach a shear jammed state increases with friction. For the ellipse system, shear brings the system to a more ordered state and particles tend to align to a certain angle relative to the principal directions of shear, regardless of packing fraction. Support by NSF DMR1206351, NASA NNX15AD38G, the W. M. Keck Foundation and a Triangle MRSEC fellowship is greatly appreciated.

  19. miR-145-dependent targeting of junctional adhesion molecule A and modulation of fascin expression are associated with reduced breast cancer cell motility and invasiveness.

    PubMed

    Götte, M; Mohr, C; Koo, C-Y; Stock, C; Vaske, A-K; Viola, M; Ibrahim, S A; Peddibhotla, S; Teng, Y H-F; Low, J-Y; Ebnet, K; Kiesel, L; Yip, G W

    2010-12-16

    Micro RNAs are small non-coding RNAs, which regulate fundamental cellular and developmental processes at the transcriptional and translational level. In breast cancer, miR-145 expression is downregulated compared with healthy control tissue. As several predicted targets of miR-145 potentially regulate cell motility, we aimed at investigating a potential role for miR-145 in breast cancer cell motility and invasiveness. Assisted by Affymetrix array technology, we demonstrate that overexpression of miR-145 in MDA-MB-231, MCF-7, MDA-MB-468 and SK-BR-3 breast cancer cells and in Ishikawa endometrial carcinoma cells leads to a downregulation of the cell-cell adhesion protein JAM-A and of the actin bundling protein fascin. Moreover, podocalyxin and Serpin E1 mRNA levels were downregulated, and gamma-actin, transgelin and MYL9 were upregulated upon miR-145 overexpression. These miR-145-dependent expression changes drastically decreased cancer cell motility, as revealed by time-lapse video microscopy, scratch wound closure assays and matrigel invasion assays. Immunofluorescence microscopy demonstrated restructuring of the actin cytoskeleton and a change in cell morphology by miR-145 overexpression, resulting in a more cortical actin distribution, and reduced actin stress fiber and filopodia formation. Nuclear rotation was observed in 10% of the pre-miR-145 transfected MDA-MB-231 cells, accompanied by a reduction of perinuclear actin. Luciferase activation assays confirmed direct miR-145-dependent regulation of the 3'UTR of JAM-A, whereas siRNA-mediated knockdown of JAM-A expression resulted in decreased motility and invasiveness of MDA-MB-231 and MCF-7 breast cancer cells. Our data identify JAM-A and fascin as novel targets of miR-145, firmly establishing a role for miR-145 in modulating breast cancer cell motility. Our data provide a rationale for future miR-145-targeted approaches of antimetastatic cancer therapy.

  20. Combined osmodehydration and high pressure processing on the enzyme stability and antioxidant capacity of a grapefruit jam

    USDA-ARS?s Scientific Manuscript database

    A combined osmodehydration process and high pressure treatment (OD-HHP) was developed for grapefruit jam preservation. The inactivation kinetics of pectinmethylesterase (PME) and peroxidase (POD) in the osmodehydrated (OD) jam treated by combined thermal (45-75°C) and high pressure (550–700 MPa) pro...

  1. V-22 Osprey Joint Services Advanced Vertical Lift Aircraft (V-22)

    DTIC Science & Technology

    2015-12-01

    Be Determined TY - Then Year UCR - Unit Cost Reporting U.S. - United States USD(AT&L) - Under Secretary of Defense (Acquisition, Technology and...Rotor Operational Enviroment DECM SIRFC w/RF Jamming DIRCM SIRFC w/RF Jamming DIRCM SIRFC w/RWR, MW, CMDS SIRFC w/RF, Jamming DIRCM SIRFC w/RF

  2. Effect of substituted gelling agents from pomegranate peel on colour, textural and sensory properties of pomegranate jam.

    PubMed

    Abid, Mouna; Yaich, Héla; Hidouri, Hayfa; Attia, Hamadi; Ayadi, M A

    2018-01-15

    A series of pomegranate jams were prepared from a Tunisian ecotype (Tounsi) with different amounts of sugar (10, 20 and 30%) and low-methoxylated pectin (0.2, 0.7 and 1.2%). The most appreciated formulation was that contaning 30% sugars and 0.2% pectin. Then, commercial pectin was substituted by other gelling agents (pomegranate peel powders dried at 50°C vs lyophilized, pectin and fibre extracted from pomegranate peel) for the preparation of pomegranate peel-based jams. The elaborated jams were evaluated for physichochemical, colour, texture and sensory characteristics. Results revealed that the jam (JPP2) elaborated with 0.2% pectin extracted from pomegranate peel exhibited similar overall acceptability to that prepared with commercial pectin. However, it was more acceptable than other pomegranate peel-based jams, which was related to a better appreciation of sweetness and colour. According to the colour and texture measurements, this sample (JPP2) was more reddish and less firm than other samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Programming jammed Codman Hakim programmable valves: study of an explanted valve and successful programming in a patient.

    PubMed

    Wong, Sui-To; Wen, Eleanor; Fong, Dawson

    2013-08-01

    Malfunction of a Codman Hakim programmable valve due to jamming of its programmable component may necessitate shunt revision. The authors report a method for programming jammed Codman Hakim programmable valves by using a Strata II magnet and additional neodymium magnets. The programming method was derived after studying a jammed valve in the laboratory that was explanted from an 10-year-old boy with a history of fourth ventricle ependymoma. Programming the explanted valve with a Codman programmer failed, but rotating a Strata II magnet above the valve resulted in rotation of the spiral cam in the valve. It was found that the Strata II magnet could be used to program the jammed valve by rotating the magnet 90° or multiples of 90° above the valve. The strength of the magnetic field of the Strata II magnet was able to be increased by putting neodymium magnets on it. The programming method was then successfully used in a patient with a jammed Codman Hakim programmable valve. After successful programming using this method, clinical and radiological follow-up of the patient was advised.

  4. Characteristics of physico-chemical properties of bilberry (Vaccinium myrtillus L.) jams with added herbs.

    PubMed

    Korus, Anna; Jaworska, Grażyna; Bernaś, Emilia; Juszczak, Lesław

    2015-05-01

    Low-sugar bilberry jams without added herbs and those with added mentha (1 %) and lemon balm (1 %) were examined for levels of selected physico-chemical indicators, antioxidant activity, colour and texture. Jams were obtained by two methods: cooked in an open pan and cooked in a vacuum evaporator. 100 g fresh mass contained 0.076-0.481 mg HMF, 5.8-7.1 mg vitamin C, 176-232 mg total polyphenols, 122-156 mg total flavonoids, 73-96 mg total anthocyanins, with antioxidant activity per 1 g of 405-575 μM Trolox (ABTS), 71-89 μM Trolox (DPPH) and 120-176 μM Fe(2+) (FRAP). Jams cooked in a vacuum evaporator had higher levels of the indicators examined, better colour and worse texture. Jams with added herbs generally showed higher levels of all indicators, but their colour and texture were slightly worse. Storing jams for 8 months caused a reduction in antioxidant constituents of 7-20 % along with a deterioration of colour and texture.

  5. Visual traffic jam analysis based on trajectory data.

    PubMed

    Wang, Zuchao; Lu, Min; Yuan, Xiaoru; Zhang, Junping; van de Wetering, Huub

    2013-12-01

    In this work, we present an interactive system for visual analysis of urban traffic congestion based on GPS trajectories. For these trajectories we develop strategies to extract and derive traffic jam information. After cleaning the trajectories, they are matched to a road network. Subsequently, traffic speed on each road segment is computed and traffic jam events are automatically detected. Spatially and temporally related events are concatenated in, so-called, traffic jam propagation graphs. These graphs form a high-level description of a traffic jam and its propagation in time and space. Our system provides multiple views for visually exploring and analyzing the traffic condition of a large city as a whole, on the level of propagation graphs, and on road segment level. Case studies with 24 days of taxi GPS trajectories collected in Beijing demonstrate the effectiveness of our system.

  6. Phenolic profiles of raw apricots, pumpkins, and their purees in the evaluation of apricot nectar and jam authenticity.

    PubMed

    Dragovic-Uzelac, Verica; Delonga, Karmela; Levaj, Branka; Djakovic, Senka; Pospisil, Jasna

    2005-06-15

    The possibility of proving the undeclared addition of pumpkin puree in apricot nectars and jams has been investigated by using the phenol compound fingerprint and sensory evaluation. The cheaper pumpkin admixtures in apricot nectars and jams could not be detected by the sensory evaluation, particularly if present in quantities of <15%. The lower admixtures of pumpkin puree in apricot nectars and jams could be detected by the presence of syringic acid, a phenolic compound characteristic of the investigated pumpkins (Cucurbita pepo cv. Gleisdorff and Table Gold, Cucurbita maxima cv. Turkinja, and Cucurbita moschata cv. Argenta). Syringic acid was isolated from pumpkin puree and determined by using HPLC with diode array detection. By using the phenolic profile, undeclared pumpkin admixture (> or =5%) in the apricot nectars and jams could be proven.

  7. A Jamming Phase Diagram for Pressing Polymers

    NASA Astrophysics Data System (ADS)

    Teng, Chao; Zhang, Zexin; Wang, Xiaoliang; Xue, Gi; Nanjing University Team; Soochow University Collaboration

    2011-03-01

    Molecular glasses begin to flow when they are heated. Other glassy systems, such as dense foams, emulsions, colloidal suspensions and granular materials, begin to flow when subjected to sufficiently large stresses. The equivalence of these two routes to flow is a basic tenet of jamming, a conceptual means of unifying glassy behavior in a swath of disordered, dynamical arrested systems. However, a full understanding of jamming transition for polymers remains elusive. By controlling the packing densities of polymer glasses, we found that polymer glasses could once flow under cold-pressing at temperatures well below its calorimetric glass transition temperature (Tg). The thermomechanical analysis (TMA) results confirmed that Tg changed with density as well as the applied stress, which is exactly what to be expected within the jamming picture. We propose a jamming phase diagram for polymers based on our laboratory experiments.

  8. Effect of friction on shear jamming

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Ren, Jie; Dijksman, Joshua; Behringer, Robert

    2014-03-01

    Shear Jamming of granular materials was first found for systems of frictional disks, with a static friction coefficients μs ~= 0 . 6 . Jamming by shear is obtained by starting from a zero-stress state with a packing fraction ϕS <= ϕ <=ϕJ between ϕJ (isotropic jamming) and a lowest ϕS for shear jamming. This phenomenon is associated with strong anisotropy in stress and the contact network in the form of ``force chains,'' which are stabilized and/or enhanced by the presence of friction. We address experimentally how reducing friction affects shear jamming by using either teflon disks of teflon wrapped photoelastic particles. The teflon disks were placed in a wall driven 2D shear apparatus, in which we can probe shear stresses mechanically. Teflon-wrapped disks were placed in a bottom driven 2D shear apparatus (Ren et al., PRL 2013). Both apparatuses provide uniform simple shear. In all low- μ experiments, the shear jamming occurred, as observed through stress increases on the packing. However, the low- μ differences observed for ϕJ -ϕS were smaller than for higher friction particles. Ongoing work is studying systems using hydrogel disks, which have a lower friction coefficient than teflon. We acknowledge support from NSF Grant No. DMR12-06351, ARO Grant No. W911NF-1-11-0110, and NASA Grant No. NNX10AU01G.

  9. Effect of friction on shear jamming

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Ren, Jie; Dijksman, Joshua; Behringer, Robert

    2014-11-01

    Shear Jamming of granular materials was first found for systems of frictional disks, with a static friction coefficients μs ~= 0 . 6 . Jamming by shear is obtained by starting from a zero-stress state with a packing fraction ϕS <= ϕ <=ϕJ between ϕJ (isotropic jamming) and a lowest ϕS for shear jamming. This phenomenon is associated with strong anisotropy in stress and the contact network in the form of ``force chains,'' which are stabilized and/or enhanced by the presence of friction. The issue that we address experimentally is how reducing friction affects shear jamming. We use photoelastic disks that have been wrapped with Teflon, lowering the friction coefficient substantially from previous experiments. The Teflon-wrapped disks were placed in a well-studied 2D shear apparatus (Ren et al., PRL, 110, 018302 (2013)), which provides uniform simple shear without generating shear bands. Shear jamming is still observed, but the difference ϕJ -ϕS is smaller than for higher friction particles. With Teflon-wrapped disks, we observe larger anisotropies compared to the previous experiment with higher friction particles at the same packing fraction, which indicates force chains tending to be straight in the low friction system. We acknowledge support from NSF Grant No. DMR12-06351, ARO Grant No. W911NF-1-11-0110, and NASA Grant No. NNX10AU01G.

  10. Origins of Shear Jamming for Frictional Grains

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Zheng, Hu; Ren, Jie; Dijksman, Joshua; Bares, Jonathan; Behringer, Robert

    2016-11-01

    Granular systems have been shown to be able to behave like solids, under shear, even when their densities are below the critical packing fraction for frictionless isotropic jamming. To understand such a phenomena, called shear jamming, the question we address here is: how does shear bring a system from a unjammed state to a jammed state, where the coordination number, Z, is no less than 3, the isotropic jamming point for frictional grains? Since Z can be used to distinguish jammed states from unjammed ones, it is vital to understand how shear increases Z. We here propose a set of three particles in contact, denoted as a trimer, as the basic unit to characterize the deformation of the system. Trimers, stabilized by inter-grain friction, fail under a certain amount of shear and bend to make extra contacts to regain stability. By defining a projection operator of the opening angle of the trimer to the compression direction in the shear, O, we see a systematically linear decrease of this quantity with respect to shear strain, demonstrating the bending of trimers as expected. In addition, the average change of O from one shear step to the next shows a good collapse when plotted against Z, indicating a universal behavior in the process of shear jamming. We acknowledge support from NSF DMR1206351, NASA NNX15AD38G, the William M. Keck Foundation and a RT-MRSEC Fellowship.

  11. 21 CFR 150.160 - Fruit preserves and jams.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... jams. (a) The preserves or jams for which definitions and standards of identity are prescribed by this... combination of two, three, four, or five of such fruits in which the weight of each is not less than one-fifth... of the weight of the combination. (ii) Any combination of apple and one, two, three, or four of such...

  12. 75 FR 43395 - Airworthiness Directives; Aircraft Industries a.s. Model L 23 Super Blanik Gliders

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-26

    ... elevator in place and in jamming of the Pilot's elevator control system, and subsequent loss of elevator... elevator in place and in jamming of the Pilot's elevator control system, and subsequent loss of elevator... retaining the elevator in place and in jamming of the Pilot's elevator control system, and subsequent loss...

  13. Situk River Hydrology Following Closure of Russell Fiord by Hubbard Glacier

    DTIC Science & Technology

    2011-03-01

    and in- vestigate potential channel erosion, the impacts on the Old Situk River crossing and Situk Lake, and the potential influence of log jams and...52 Log jams ...crossing and Situk Lake (the upstream source of the Situk River), and the potential impacts of log jams and channel migration. ERDC/CRREL TR-11-5 4 2

  14. Denitrifying metabolism of the methylotrophic marine bacterium Methylophaga nitratireducenticrescens strain JAM1.

    PubMed

    Mauffrey, Florian; Cucaita, Alexandra; Constant, Philippe; Villemur, Richard

    2017-01-01

    Methylophaga nitratireducenticrescens strain JAM1 is a methylotrophic, marine bacterium that was isolated from a denitrification reactor treating a closed-circuit seawater aquarium. It can sustain growth under anoxic conditions by reducing nitrate ([Formula: see text]) to nitrite ([Formula: see text]). These physiological traits are attributed to gene clusters that encode two dissimilatory nitrate reductases (Nar). Strain JAM1 also contains gene clusters encoding two nitric oxide (NO) reductases and one nitrous oxide (N 2 O) reductase, suggesting that NO and N 2 O can be reduced by strain JAM1. Here we characterized further the denitrifying activities of M. nitratireducenticrescens JAM1. Series of oxic and anoxic cultures of strain JAM1 were performed with N 2 O, [Formula: see text] or sodium nitroprusside, and growth and N 2 O, [Formula: see text], [Formula: see text] and N 2 concentrations were measured. Ammonium ([Formula: see text])-free cultures were also tested to assess the dynamics of N 2 O, [Formula: see text] and [Formula: see text]. Isotopic labeling of N 2 O was performed in 15 NH 4 + -amended cultures. Cultures with the JAM1Δ narG1narG2 double mutant were performed to assess the involvement of the Nar systems on N 2 O production. Finally, RT-qPCR was used to measure the gene expression levels of the denitrification genes cytochrome bc -type nitric oxide reductase ( cnorB1 and cnorB2 ) and nitrous oxide reductase ( nosZ ), and also nnrS and norR that encode NO-sensitive regulators. Strain JAM1 can reduce NO to N 2 O and N 2 O to N 2 and can sustain growth under anoxic conditions by reducing N 2 O as the sole electron acceptor. Although strain JAM1 lacks a gene encoding a dissimilatory [Formula: see text] reductase, [Formula: see text]-amended cultures produce N 2 O, representing up to 6% of the N-input. [Formula: see text] was shown to be the key intermediate of this production process. Upregulation in the expression of c norB1 , cnorB2, nnrS and norR during the growth and the N 2 O accumulation phases suggests NO production in strain JAM1 cultures. By showing that all the three denitrification reductases are active, this demonstrates that M. nitratireducenticrescens JAM1 is one of many bacteria species that maintain genes associated primarily with denitrification, but not necessarily related to the maintenance of the entire pathway. The reason to maintain such an incomplete pathway could be related to the specific role of strain JAM1 in the denitrifying biofilm of the denitrification reactor from which it originates. The production of N 2 O in strain JAM1 did not involve Nar, contrary to what was demonstrated in Escherichia coli . M. nitratireducenticrescens JAM1 is the only reported Methylophaga species that has the capacity to grow under anoxic conditions by using [Formula: see text] and N 2 O as sole electron acceptors for its growth. It is also one of a few marine methylotrophs that is studied at the physiological and genetic levels in relation to its capacity to perform denitrifying activities.

  15. Robust multiple frequency multiple power localization schemes in the presence of multiple jamming attacks

    PubMed Central

    2017-01-01

    Localization of the wireless sensor network is a vital area acquiring an impressive research concern and called upon to expand more with the rising of its applications. As localization is gaining prominence in wireless sensor network, it is vulnerable to jamming attacks. Jamming attacks disrupt communication opportunity among the sender and receiver and deeply impact the localization process, leading to a huge error of the estimated sensor node position. Therefore, detection and elimination of jamming influence are absolutely indispensable. Range-based techniques especially Received Signal Strength (RSS) is facing severe impact of these attacks. This paper proposes algorithms based on Combination Multiple Frequency Multiple Power Localization (C-MFMPL) and Step Function Multiple Frequency Multiple Power Localization (SF-MFMPL). The algorithms have been tested in the presence of multiple types of jamming attacks including capture and replay, random and constant jammers over a log normal shadow fading propagation model. In order to overcome the impact of random and constant jammers, the proposed method uses two sets of frequencies shared by the implemented anchor nodes to obtain the averaged RSS readings all over the transmitted frequencies successfully. In addition, three stages of filters have been used to cope with the replayed beacons caused by the capture and replay jammers. In this paper the localization performance of the proposed algorithms for the ideal case which is defined by without the existence of the jamming attack are compared with the case of jamming attacks. The main contribution of this paper is to achieve robust localization performance in the presence of multiple jamming attacks under log normal shadow fading environment with a different simulation conditions and scenarios. PMID:28493977

  16. Study of jamming of the frequency modulation infrared seekers

    NASA Astrophysics Data System (ADS)

    Qian, Fang; Guo, Jin; Shao, Jun-feng; Wang, Ting-feng

    2013-09-01

    The threat of the IR guidance missile is a direct consequence of extensive proliferation of the airborne IR countermeasure. The aim of a countermeasure system is to inject false information into a sensor system to create confusion. Many optical seekers have a single detector that is used to sense the position of its victim in its field of view. A seeker has a spinning reticle in the focal plane of the optical system that collects energy from the thermal scene and focuses it on to the detector. In this paper, the principle of the conical-scan FM reticle is analyzed. Then the effect that different amplitude or frequency modulated mid-infrared laser pulse acts on the reticle system is simulated. When the ratio of jamming energy to target radiation (repression) gradually increases, the azimuth error and the misalignment angle error become larger. The results show that simply increasing the intensity of the jamming light achieves little, but it increases the received signal strength of the FM reticle system ,so that the target will be more easily exposed. A slow variation of amplitude will warp the azimuth information received by the seeker, but the target can't be completely out of the missile tracking. If the repression and the jamming frequency change at the same time, the jamming effects can be more obvious. When the jamming signal's angular frequency is twice as large as the carrier frequency of the reticle system, the seeker will can't receive an accurate signal and the jamming can be achieved. The jamming mechanism of the conical-scan FM IR seeker is described and it is helpful to the airborne IR countermeasure system.

  17. A thermodynamic unification of jamming

    NASA Astrophysics Data System (ADS)

    Lu, Kevin; Brodsky, E. E.; Kavehpour, H. P.

    2008-05-01

    Fragile materials ranging from sand to fire retardant to toothpaste are able to exhibit both solid and fluid-like properties across the jamming transition. Unlike ordinary fusion, systems of grains, foams and colloids jam and cease to flow under conditions that still remain unknown. Here, we quantify jamming using a thermodynamic approach by accounting for the structural ageing and the shear-induced compressibility of dry sand. Specifically, the jamming threshold is defined using a non-thermal temperature that measures the `fluffiness' of a granular mixture. The thermodynamic model, cast in terms of pressure, temperature and free volume, also successfully predicts the entropic data of five molecular glasses. Notably, the predicted configurational entropy averts the Kauzmann paradox-an unresolved crisis where the configurational entropy becomes negative-entirely. Without any free parameters, the proposed equation-of-state also governs the mechanism of shear banding and the associated features of shear softening and thickness invariance.

  18. Chaos Through-Wall Imaging Radar

    NASA Astrophysics Data System (ADS)

    Xu, Hang; Wang, Bingjie; Zhang, Jianguo; Liu, Li; Li, Ying; Wang, Yuncai; Wang, Anbang

    2017-12-01

    We experimentally demonstrate a chaos through-wall imaging radar using ultra-wideband chaotic-pulse-position modulation (CPPM) microwave signal. The CPPM signal based on logistic map with 1-ns pulse width and 1-GHz bandwidth is implemented by a field programmable gate array (FPGA) and then up-converted as the radar transmitting signal. Two-dimensional image of human objects behind obstacles is obtained by correlation method and back projection algorithm. Our experiments successfully perform through-wall imaging for single and multiple human objects through 20-cm thick wall. The down-range resolution of the proposed radar is 15 cm. Furthermore, the anti-jamming properties of the proposed radar in CPPM jamming, linear frequency-modulated jamming, and Gaussian noise jamming environments are demonstrated by electromagnetic simulations using the finite-difference time-domain. The simulation results show the CPPM microwave signal possesses excellent jamming immunity to the noise and radio frequency interference, which makes it perform superbly in multiradar environments.

  19. Developing a vacuum cooking equipment prototype to produce strawberry jam and optimization of vacuum cooking conditions.

    PubMed

    Okut, Dilara; Devseren, Esra; Koç, Mehmet; Ocak, Özgül Özdestan; Karataş, Haluk; Kaymak-Ertekin, Figen

    2018-01-01

    Purpose of this study was to develop prototype cooking equipment that can work at reduced pressure and to evaluate its performance for production of strawberry jam. The effect of vacuum cooking conditions on color soluble solid content, reducing sugars total sugars HMF and sensory properties were investigated. Also, the optimum vacuum cooking conditions for strawberry jam were optimized for Composite Rotatable Design. The optimum cooking temperature and time were determined targeting maximum soluble solid content and sensory attributes (consistency) and minimum Hue value and HMF content. The optimum vacuum cooking conditions determined were 74.4 °C temperature and 19.8 time. The soluble solid content strawberry jam made by vacuum process were similar to those prepared by traditional method. HMF contents of jams produced with vacuum cooking method were well within limit of standards.

  20. Pseudo paths towards minimum energy states in network dynamics

    NASA Astrophysics Data System (ADS)

    Hedayatifar, L.; Hassanibesheli, F.; Shirazi, A. H.; Vasheghani Farahani, S.; Jafari, G. R.

    2017-10-01

    The dynamics of networks forming on Heider balance theory moves towards lower tension states. The condition derived from this theory enforces agents to reevaluate and modify their interactions to achieve equilibrium. These possible changes in network's topology can be considered as various paths that guide systems to minimum energy states. Based on this theory the final destination of a system could reside on a local minimum energy, ;jammed state;, or the global minimum energy, balanced states. The question we would like to address is whether jammed states just appear by chance? Or there exist some pseudo paths that bound a system towards a jammed state. We introduce an indicator to suspect the location of a jammed state based on the Inverse Participation Ratio method (IPR). We provide a margin before a local minimum where the number of possible paths dramatically drastically decreases. This is a condition that proves adequate for ending up on a jammed states.

  1. Stability of Granular Packings Jammed under Gravity: Avalanches and Unjamming

    NASA Astrophysics Data System (ADS)

    Merrigan, Carl; Birwa, Sumit; Tewari, Shubha; Chakraborty, Bulbul

    Granular avalanches indicate the sudden destabilization of a jammed state due to a perturbation. We propose that the perturbation needed depends on the entire force network of the jammed configuration. Some networks are stable, while others are fragile, leading to the unpredictability of avalanches. To test this claim, we simulated an ensemble of jammed states in a hopper using LAMMPS. These simulations were motivated by experiments with vibrated hoppers where the unjamming times followed power-law distributions. We compare the force networks for these simulated states with respect to their overall stability. The states are classified by how long they remain stable when subject to continuous vibrations. We characterize the force networks through both their real space geometry and representations in the associated force-tile space, extending this tool to jammed states with body forces. Supported by NSF Grant DMR1409093 and DGE1068620.

  2. Performance of Complex Spreading MIMO Systems With Interference

    DTIC Science & Technology

    2011-06-01

    14 III. PERFORMANCE ANALYSIS OF DS -PSK MISO ...............................................15 A. SYSTEM DESCRIPTION...15 Figure 9. BER of DS PSK system for broadband jamming and diversity L=1. ..............20 Figure 10. BER of DS PSK system for...broadband jamming and diversity L=2. .............21 Figure 11. BER of DS PSK system for broadband jamming and diversity L=3. ..............22 Figure 12

  3. A thermodynamic equation of jamming

    NASA Astrophysics Data System (ADS)

    Lu, Kevin; Pirouz Kavehpour, H.

    2008-03-01

    Materials ranging from sand to fire-retardant to toothpaste are considered fragile, able to exhibit both solid and fluid-like properties across the jamming transition. Guided by granular flow experiments, our equation of jammed states is path-dependent, definable at different athermal equilibrium states. The non-equilibrium thermodynamics based on a structural temperature incorporate physical ageing to address the non-exponential, non-Arrhenious relaxation of granular flows. In short, jamming is simply viewed as a thermodynamic transition that occurs to preserve a positive configurational entropy above absolute zero. Without any free parameters, the proposed equation-of-state governs the mechanism of shear-banding and the associated features of shear-softening and thickness-invariance.

  4. Information Warfare-Worthy Jamming Attack Detection Mechanism for Wireless Sensor Networks Using a Fuzzy Inference System

    PubMed Central

    Misra, Sudip; Singh, Ranjit; Rohith Mohan, S. V.

    2010-01-01

    The proposed mechanism for jamming attack detection for wireless sensor networks is novel in three respects: firstly, it upgrades the jammer to include versatile military jammers; secondly, it graduates from the existing node-centric detection system to the network-centric system making it robust and economical at the nodes, and thirdly, it tackles the problem through fuzzy inference system, as the decision regarding intensity of jamming is seldom crisp. The system with its high robustness, ability to grade nodes with jamming indices, and its true-detection rate as high as 99.8%, is worthy of consideration for information warfare defense purposes. PMID:22319307

  5. Controllable surface haptics via particle jamming and pneumatics.

    PubMed

    Stanley, Andrew A; Okamura, Allison M

    2015-01-01

    The combination of particle jamming and pneumatics allows the simultaneous control of shape and mechanical properties in a tactile display. A hollow silicone membrane is molded into an array of thin cells, each filled with coffee grounds such that adjusting the vacuum level in any individual cell rapidly switches it between flexible and rigid states. The array clamps over a pressure-regulated air chamber with internal mechanisms designed to pin the nodes between cells at any given height. Various sequences of cell vacuuming, node pinning, and chamber pressurization allow the surface to balloon into a variety of shapes. Experiments were performed to expand existing physical models of jamming at the inter-particle level to define the rheological characteristics of jammed systems from a macroscopic perspective, relevant to force-displacement interactions that would be experienced by human users. Force-displacement data show that a jammed cell in compression fits a Maxwell model and a cell deflected in the center while supported only at the edges fits a Zener model, each with stiffness and damping parameters that increase at higher levels of applied vacuum. This provides framework to tune and control the mechanical properties of a jamming haptic interface.

  6. JAM3 methylation status as a biomarker for diagnosis of preneoplastic and neoplastic lesions of the cervix

    PubMed Central

    Yin, Aijun; Zhang, Qing; Kong, Xiangnan; Jia, Lin; Yang, Ziyan; Meng, Lihua; Li, Li; Wang, Xiao; Qiao, Yunbo; Lu, Nan; Yang, Qifeng; Shen, Keng; Kong, Beihua

    2015-01-01

    DNA methylation is clinically relevant to important tumorigenic mechanisms. This study evaluated the methylation status of candidate genes in cervical neoplasia and determined their diagnostic performance in clinical practice. Cervical cancer and normal cervix tissue was used to select the top 5 discriminating loci among 27 loci in 4 genes (CCNA1, CADM1, DAPK1, JAM3), and one locus of JAM3 (region M4) was identified and confirmed with 267 and 224 cervical scrapings from 2 independent colposcopy referral studies. For patients with atypical squamous cells of unknown significance and those with low-grade squamous intraepithelial lesion, with JAM3-M4 compared to a triage marker of hrHPV testing, the specificity for cervical intraepithelial neoplasia 3 CIN3 and cancer cases (CIN3+) / no neoplasia and CIN1 (CIN1−) was significantly increased, from 21.88 to 81.82 and 15.38 to 85.18, respectively. The corresponding positive predictive value (PPV) was increased from 26.47 to 57.14 and 18.52 to 63.64, respectively. For hrHPV-positive patients, compared to a triage marker of cytology testing, JAM3-M4 showed increased specificity and PPV, from 30.67 to 87.65 and 38.82 to 82.14, respectively. We assessed whether JAM3-M4 could distinguish productive from transforming CIN2; the coincidence rate of JAM3-M4 and P16 was as high as 60.5%. PMID:26517242

  7. Command and Control Vulnerabilities to Communications Jamming

    DTIC Science & Technology

    2013-01-01

    becoming-a-big- problem-in-the-middle-east.ars>. 16 Recent examples of satellite jamming include Indonesia jamming a transponder on a Chinese-owned...15. SUBJECT TERMS 16 . SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT Same as Report (SAR) 18. NUMBER OF PAGES 8 19a. NAME OF...that can provide protection against the full array of potential communications threats is the Advanced Extremely High Frequency (AEHF) system

  8. Patterns, transitions and the role of leaders in the collective dynamics of a simple robotic flock

    NASA Astrophysics Data System (ADS)

    Tarcai, Norbert; Virágh, Csaba; Ábel, Dániel; Nagy, Máté; Várkonyi, Péter L.; Vásárhelyi, Gábor; Vicsek, Tamás

    2011-04-01

    We have developed an experimental setup of very simple self-propelled robots to observe collective motion emerging as a result of inelastic collisions only. A circular pool and commercial RC boats were the basis of our first setup, where we demonstrated that jamming, clustering, disordered and ordered motion are all present in such a simple experiment and showed that the noise level has a fundamental role in the generation of collective dynamics. Critical noise ranges and the transition characteristics between the different collective patterns were also examined. In our second experiment we used a real-time tracking system and a few steerable model boats to introduce intelligent leaders into the flock. We demonstrated that even a very small portion of guiding members can determine group direction and enhance ordering through inelastic collisions. We also showed that noise can facilitate and speed up ordering with leaders. Our work was extended with an agent-based simulation model, too, and close similarity between real and simulation results was observed. The simulation results show clear statistical evidence of three states and negative correlation between density and ordered motion due to the onset of jamming. Our experiments confirm the different theoretical studies and simulation results in the literature on the subject of collision-based, noise-dependent and leader-driven self-propelled particle systems.

  9. Structure of marginally jammed polydisperse packings of frictionless spheres

    NASA Astrophysics Data System (ADS)

    Zhang, Chi; O'Donovan, Cathal B.; Corwin, Eric I.; Cardinaux, Frédéric; Mason, Thomas G.; Möbius, Matthias E.; Scheffold, Frank

    2015-03-01

    We model the packing structure of a marginally jammed bulk ensemble of polydisperse spheres. To this end we expand on the granocentric model [Clusel et al., Nature (London) 460, 611 (2009), 10.1038/nature08158], explicitly taking into account rattlers. This leads to a relationship between the characteristic parameters of the packing, such as the mean number of neighbors and the fraction of rattlers, and the radial distribution function g (r ) . We find excellent agreement between the model predictions for g (r ) and packing simulations, as well as experiments on jammed emulsion droplets. The observed quantitative agreement opens the path towards a full structural characterization of jammed particle systems for imaging and scattering experiments.

  10. Emergent traffic jams

    NASA Astrophysics Data System (ADS)

    Nagel, Kai; Paczuski, Maya

    1995-04-01

    We study a single-lane traffic model that is based on human driving behavior. The outflow from a traffic jam self-organizes to a critical state of maximum throughput. Small perturbations of the outflow far downstream create emergent traffic jams with a power law distribution P(t)~t-3/2 of lifetimes t. On varying the vehicle density in a closed system, this critical state separates lamellar and jammed regimes and exhibits 1/f noise in the power spectrum. Using random walk arguments, in conjunction with a cascade equation, we develop a phenomenological theory that predicts the critical exponents for this transition and explains the self-organizing behavior. These predictions are consistent with all of our numerical results.

  11. DMP: Detouring Using Multiple Paths against Jamming Attack for Ubiquitous Networking System

    PubMed Central

    Kim, Mihui; Chae, Kijoon

    2010-01-01

    To successfully realize the ubiquitous network environment including home automation or industrial control systems, it is important to be able to resist a jamming attack. This has recently been considered as an extremely threatening attack because it can collapse the entire network, despite the existence of basic security protocols such as encryption and authentication. In this paper, we present a method of jamming attack tolerant routing using multiple paths based on zones. The proposed scheme divides the network into zones, and manages the candidate forward nodes of neighbor zones. After detecting an attack, detour nodes decide zones for rerouting, and detour packets destined for victim nodes through forward nodes in the decided zones. Simulation results show that our scheme increases the PDR (Packet Delivery Ratio) and decreases the delay significantly in comparison with rerouting by a general routing protocol on sensor networks, AODV (Ad hoc On Demand Distance Vector), and a conventional JAM (Jammed Area Mapping) service with one reroute. PMID:22319316

  12. Use of oil-in-water emulsions to control fungal deterioration of strawberry jams.

    PubMed

    Ribes, Susana; Fuentes, Ana; Talens, Pau; Barat, José M

    2016-11-15

    This work aimed to control the fungal deterioration of strawberry jams. The antifungal activity of the clove, cinnamon leaf, lemon and mandarin essential oils and their effectiveness in oil-in-water emulsions were evaluated. According to the results obtained, only clove and cinnamon leaf oils were selected to prepare emulsions. All the tested emulsions were stable, independently the amount of polymer and essential oil used. Essential oil loss was affected by the amount of polymer employed to prepare the emulsions. The oil-in-water emulsions with 5.0mg/g xanthan gum, and with 0.55mg/g clove or 0.65mg/g cinnamon leaf essential oil, were used for the in vivo tests. The jams prepared with the oil-in-water emulsions showed a lower fungal decay compared with jams without emulsion. The present work demonstrated that emulsions can be employed to prevent strawberry jam mould spoilage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. DMP: detouring using multiple paths against jamming attack for ubiquitous networking system.

    PubMed

    Kim, Mihui; Chae, Kijoon

    2010-01-01

    To successfully realize the ubiquitous network environment including home automation or industrial control systems, it is important to be able to resist a jamming attack. This has recently been considered as an extremely threatening attack because it can collapse the entire network, despite the existence of basic security protocols such as encryption and authentication. In this paper, we present a method of jamming attack tolerant routing using multiple paths based on zones. The proposed scheme divides the network into zones, and manages the candidate forward nodes of neighbor zones. After detecting an attack, detour nodes decide zones for rerouting, and detour packets destined for victim nodes through forward nodes in the decided zones. Simulation results show that our scheme increases the PDR (Packet Delivery Ratio) and decreases the delay significantly in comparison with rerouting by a general routing protocol on sensor networks, AODV (Ad hoc On Demand Distance Vector), and a conventional JAM (Jammed Area Mapping) service with one reroute.

  14. Roadside bear viewing opportunities in Yellowstone National Park: characteristics, trends, and influence of whitebark pine

    USGS Publications Warehouse

    Haroldson, Mark A.; Gunther, Kerry

    2014-01-01

    Opportunities for viewing grizzly bears (Ursus arctos) and American black bears (U. americanus) from roadways in Yellowstone National Park (YNP) have increased in recent years. Unlike the panhandling bears common prior to the 1970s, current viewing usually involves bears feeding on natural foods. We define roadside bear viewing opportunities that cause traffic congestion as ‘‘bear-jams.’’ We investigated characteristics of bear-jams and their frequency relative to whitebark pine (Pinus albicaulis) cone production, an important fall food for bears, during 1990–2004. We observed a difference in diel distribution of bear-jams between species (x2=70.609, 4 df, P<0.001) with the occurrence of grizzly bear-jams being more crepuscular. We found evidence for decreasing distances between bears and roadways and increasing durations of bears-jams. The annual proportion of bear-jams for both species occurring after the week of 13–19 August were 3–4 times higher during poor cone crop years than good. We suggest that native foods found in road corridors may be especially important to some individual bears during years exhibiting poor whitebark pine crops. We discuss management implications of threats to whitebark pine and increasing habituation of bears to people.

  15. Pectin methyl esterase treatment on high-methoxy pectin for making fruit jam with reduced sugar content.

    PubMed

    Wang, Yuh-Tai; Lien, Ling-Lan; Chang, Ya-Chu; Wu, James Swi-Bea

    2013-01-01

    Pectin methyl esterase (PME) has been postulated to catalyse the transacylation reaction between pectin molecules. The present study aimed to prove the occurrence of this reaction. The feasibility of applying PME-catalysed transacylation between high-methoxy pectin molecules in making fruit jam with reduced sugar content was also investigated. PME treatment increased the turbidity and particle size in pectin solution and the molecular weight of pectin, while it decreased the number of methoxy ester linkages and the intensity of the CH₃ absorption peak in the Fourier transform infrared spectrum without changes in the number of total ester linkages in pectin molecules. These findings support the occurrence of PME-catalysed transacylation between pectin molecules. Higher values of hardness, gumminess and chewiness were found in a jam containing PME-treated citrus pectin (10 g L⁻¹) and sugar (350 g L⁻¹) as compared with either a jam containing untreated citrus pectin (10 g L⁻¹) and sugar (350 g L⁻¹) or strawberry jam containing pectin (10 g L⁻¹) from the fruit and sugar (650 g L⁻¹). The demand for sugar in jam making can be greatly reduced by the use of PME-treated high-methoxy pectin. Copyright © 2012 Society of Chemical Industry.

  16. Discrete-element simulation of sea-ice mechanics: Contact mechanics and granular jamming

    NASA Astrophysics Data System (ADS)

    Damsgaard, A.; Adcroft, A.; Sergienko, O. V.; Stern, A. A.

    2017-12-01

    Lagrangian models of sea-ice dynamics offer several advantages to Eulerian continuum methods. Spatial discretization on the ice-floe scale is natural for Lagrangian models, which additionally offer the convenience of being able to handle arbitrary sea-ice concentrations. This is likely to improve model performance in ice-marginal zones with strong advection. Furthermore, phase transitions in granular rheology around the jamming limit, such as observed when sea ice moves through geometric confinements, includes sharp thresholds in effective viscosity which are typically ignored in Eulerian models. Granular jamming is a stochastic process dependent on having the right grains in the right place at the right time, and the jamming likelihood over time can be described by a probabilistic model. Difficult to parameterize in continuum formulations, jamming occurs naturally in dense granular systems simulated in a Lagrangian framework, and is a very relevant process controlling sea-ice transport through narrow straits. We construct a flexible discrete-element framework for simulating Lagrangian sea-ice dynamics at the ice-floe scale, forced by ocean and atmosphere velocity fields. Using this framework, we demonstrate that frictionless contact models based on compressive stiffness alone are unlikely to jam, and describe two different approaches based on friction and tensile strength which both result in increased bulk shear strength of the granular assemblage. The frictionless but cohesive contact model, with certain tensile strength values, can display jamming behavior which on the large scale is very similar to a more complex and realistic model with contact friction and ice-floe rotation.

  17. Modification of Turbulent Pipe Flow Equations to Estimate the Vertical Velocity Profiles Under Woody Debris Jams

    NASA Astrophysics Data System (ADS)

    Cervania, A.; Knack, I. M. W.

    2017-12-01

    The presence of woody debris (WD) jams in rivers and streams increases the risk of backwater flooding and reduces the navigability of a channel, but adds fish and macroinvertebrate habitat to the stream. When designing river engineering projects engineers use hydraulic models to predict flow behavior around these obstructions. However, the complexities of flow through and beneath WD jams are still poorly understood. By increasing the ability to predict flow behavior around WD jams, landowners and engineers are empowered to develop sustainable practices regarding the removal or placement of WD in rivers and flood plains to balance the desirable and undesirable effects to society and the environment. The objective of this study is to address some of this knowledge gap by developing a method to estimate the vertical velocity profile of flow under WD jams. When flow passes under WD jams, it becomes affected by roughness elements on all sides, similar to turbulent flows in pipe systems. Therefore, the method was developed using equations that define the velocity profiles of turbulent pipe flows: the law of the wall, the logarithmic law, and the velocity defect law. Flume simulations of WD jams were conducted and the vertical velocity profiles were measured along the centerline. A calculated velocity profile was fit to the measured profile through the calibration of eight parameters. An optimal value or range of values have been determined for several of these parameters using cross-validation techniques. The results indicate there may be some promise to using this method in hydraulic models.

  18. ‘Life is motion’: multiscale motility of molecular motors

    NASA Astrophysics Data System (ADS)

    Lipowsky, Reinhard; Klumpp, Stefan

    2005-07-01

    Life is intimately related to complex patterns of directed movement. It is quite remarkable that all of this movement is based on filaments and motor molecules which perform mechanical work on the nanometer scale. This article reviews recent theoretical work on the motility of molecular motors and motor particles that bind to cytoskeletal filaments and walk along these filaments in a directed fashion. It is emphasized that these systems exhibit several motility regimes which are well seperated in time. In their bound state, the motor particles move with a typical velocity of about 1 μm/s. The motor cycles underlying this bound motor movement can be understood in terms of driven Brownian ratchets and networks. On larger length and time scales, the motor particles unbind from the filaments and undergo peculiar motor walks consisting of many diffusional encounters with the filaments. If the mutual exclusion (or hardcore repulsion) of these motor particles is taken into account, one finds a variety of cooperative phenomena and self-organized processes: build-up of traffic jams; active structure formation leading to steady states with spatially nonuniform density and current patterns; and active phase transitions between different steady states far from equilibrium. A particularly simple active phase transition with spontaneous symmetry breaking is predicted to occur in systems with two species of motor particles which walk on the filaments in opposite directions.

  19. Special K: testing the potassium link between radioactive rubidium (86Rb) turnover and metabolic rate.

    PubMed

    Tomlinson, Sean; Mathialagan, Priya D; Maloney, Shane K

    2014-04-01

    The measurement of (86)Rb turnover recently has been suggested as a useful method for measuring field metabolic rate in small animals. We investigated a proposed mechanism of (86)Rb turnover, its analogy to K(+), by comparing the turnover of (86)Rb in a model insect, the rhinoceros beetle Xylotrupes gideon, fed a diet of plum jam or plum jam enriched with K(+) or Rb(+). The turnover of (86)Rb in the beetles on the K(+) and the Rb(+) diets was higher than that for beetles on the jam diet (F2,311=32.4; P=1.58×10(-13)). We also exposed the beetles to different ambient temperatures to induce differences in metabolic rate ( ) while feeding them the jam and K(+) diets. was higher at higher ambient temperature (Ta) for both jam (F1,11=14.56; P=0.003) and K(+) (F1,8=15.39; P=0.004) dietary groups, and the turnover of (86)Rb was higher at higher Ta for both jam (F1,11=10.80; P=0.007) and K(+) (F1,8=12.34; P=0.008) dietary groups. There was a significant relationship between (86)Rb turnover and for both the jam (F1,11=35.00; P=1.0×10(-3)) and the K(+) (F1,8=64.33; P=4.3×10(-5)) diets, but the relationship differed between the diets (F1,19=14.07; P=0.001), with a higher (86)Rb turnover in beetles on the K(+)-enriched than on the jam diet at all Ta. We conclude that (86)Rb turnover is related to K(+) metabolism, and that this is the mechanism of the relationship between (86)Rb turnover and . Studies relating (86)Rb turnover to should maintain dietary [K] as close as possible to that of natural diets for the most accurate calibrations for free-ranging animals.

  20. Een Meetsysteem voor het Testen van Radiocommunicatie-Apparatuur (A measuring Facility for Testing of Radio Communication Equipment)

    DTIC Science & Technology

    1991-08-01

    insert various jamming signals. The criterion for classifying radio equipment under test is the quality of transferred information , that is the SINAD...UNCLASSFED) This report describes a test facility for measuring the behaviour and quality of radio communication equipment in a simulated operational...formation FEL has the disposal of a facility to test the quality of radio equipment in a simulated operational situation. (Y .. ,. -’ , / " " ’ TNO mppon 4

  1. Hyperuniformity, quasi-long-range correlations, and void-space constraints in maximally random jammed particle packings. II. Anisotropy in particle shape.

    PubMed

    Zachary, Chase E; Jiao, Yang; Torquato, Salvatore

    2011-05-01

    We extend the results from the first part of this series of two papers by examining hyperuniformity in heterogeneous media composed of impenetrable anisotropic inclusions. Specifically, we consider maximally random jammed (MRJ) packings of hard ellipses and superdisks and show that these systems both possess vanishing infinite-wavelength local-volume-fraction fluctuations and quasi-long-range pair correlations scaling as r(-(d+1)) in d Euclidean dimensions. Our results suggest a strong generalization of a conjecture by Torquato and Stillinger [Phys. Rev. E 68, 041113 (2003)], namely, that all strictly jammed saturated packings of hard particles, including those with size and shape distributions, are hyperuniform with signature quasi-long-range correlations. We show that our arguments concerning the constrained distribution of the void space in MRJ packings directly extend to hard-ellipse and superdisk packings, thereby providing a direct structural explanation for the appearance of hyperuniformity and quasi-long-range correlations in these systems. Additionally, we examine general heterogeneous media with anisotropic inclusions and show unexpectedly that one can decorate a periodic point pattern to obtain a hard-particle system that is not hyperuniform with respect to local-volume-fraction fluctuations. This apparent discrepancy can also be rationalized by appealing to the irregular distribution of the void space arising from the anisotropic shapes of the particles. Our work suggests the intriguing possibility that the MRJ states of hard particles share certain universal features independent of the local properties of the packings, including the packing fraction and average contact number per particle.

  2. Anti-Jam GPS Antennas for Wearable Dismounted Soldier Navigation Systems

    DTIC Science & Technology

    2016-06-01

    in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents. Citation...Approaches for the design and fabrication of a wearable anti-jam global positioning system (GPS) antenna are explored to support accurate and uninterrupted...including GPS antenna element and array designs , and algorithms for jammer mitigation, and the candidate technologies best fit for wearable anti-jam GPS

  3. Camouflage Traffic: Minimizing Message Delay for Smart Grid Applications Under Jamming

    DTIC Science & Technology

    2015-01-16

    Conf. Wireless Netw. Security, 2011, pp. 47–52. [26] M. Strasser, B. Danev, and S. Capkun, “Detection of reactive jam- ming in sensor networks,” ACM...Evaluation of two anti-islanding schemes for a radial distribution system equipped with self-excited induction generator wind turbines ,” IEEE Trans...technologies. To facilitate efficient information exchange, wireless networks have been proposed to be widely used in the smart grid. However, the jamming

  4. Self-Encoded Spread Spectrum Modulation for Robust Anti-Jamming Communication

    DTIC Science & Technology

    2009-06-30

    experience in both theoretical and experimental aspects of RF and optical communications, multi-user CDMA systems, transmitter precoding and code...the performance of DS - and FH-SESS modulation in the presence of worst-case jamming, develop innovative SESS schemes that further exploit time and...Determine BER and AJ performance of the feedback and iterative detectors in DS -SESS under pulsed-noise and multi-tone jamming • Task 2: Develop a scheme

  5. Military Review, July 1992. Volume 72, Number 7

    DTIC Science & Technology

    1992-07-01

    Electronic tensc. A defender’s raid can force the attacker to Operation Concentration Jamming MILITARY REVIEW * July 1992 37 three days of combat actions...electronic warfare plan is ambitious. more, the strength of the OMG is dissipated Blue CPs and transmitters are jammed on both somewhat by the use of...by an airborne CP. Soviet jamming mitted against the flank of the Blue offensive.] was normally directed at deeper, operational Commitment of the OMG

  6. Numerical test of the Edwards conjecture shows that all packings are equally probable at jamming

    NASA Astrophysics Data System (ADS)

    Martiniani, Stefano; Schrenk, K. Julian; Ramola, Kabir; Chakraborty, Bulbul; Frenkel, Daan

    2017-09-01

    In the late 1980s, Sam Edwards proposed a possible statistical-mechanical framework to describe the properties of disordered granular materials. A key assumption underlying the theory was that all jammed packings are equally likely. In the intervening years it has never been possible to test this bold hypothesis directly. Here we present simulations that provide direct evidence that at the unjamming point, all packings of soft repulsive particles are equally likely, even though generically, jammed packings are not. Typically, jammed granular systems are observed precisely at the unjamming point since grains are not very compressible. Our results therefore support Edwards’ original conjecture. We also present evidence that at unjamming the configurational entropy of the system is maximal.

  7. Hyperuniformity, quasi-long-range correlations, and void-space constraints in maximally random jammed particle packings. I. Polydisperse spheres.

    PubMed

    Zachary, Chase E; Jiao, Yang; Torquato, Salvatore

    2011-05-01

    Hyperuniform many-particle distributions possess a local number variance that grows more slowly than the volume of an observation window, implying that the local density is effectively homogeneous beyond a few characteristic length scales. Previous work on maximally random strictly jammed sphere packings in three dimensions has shown that these systems are hyperuniform and possess unusual quasi-long-range pair correlations decaying as r(-4), resulting in anomalous logarithmic growth in the number variance. However, recent work on maximally random jammed sphere packings with a size distribution has suggested that such quasi-long-range correlations and hyperuniformity are not universal among jammed hard-particle systems. In this paper, we show that such systems are indeed hyperuniform with signature quasi-long-range correlations by characterizing the more general local-volume-fraction fluctuations. We argue that the regularity of the void space induced by the constraints of saturation and strict jamming overcomes the local inhomogeneity of the disk centers to induce hyperuniformity in the medium with a linear small-wave-number nonanalytic behavior in the spectral density, resulting in quasi-long-range spatial correlations scaling with r(-(d+1)) in d Euclidean space dimensions. A numerical and analytical analysis of the pore-size distribution for a binary maximally random jammed system in addition to a local characterization of the n-particle loops governing the void space surrounding the inclusions is presented in support of our argument. This paper is the first part of a series of two papers considering the relationships among hyperuniformity, jamming, and regularity of the void space in hard-particle packings.

  8. Critical scaling of a jammed system after a quench of temperature.

    PubMed

    Otsuki, Michio; Hayakawa, Hisao

    2012-09-01

    Critical behavior of soft repulsive particles after quench of temperature near the jamming transition is numerically investigated. It is found that the plateau of the mean-square displacement of tracer particles and the pressure satisfy critical scaling laws. The critical density for the jamming transition depends on the protocol to prepare the system, while the values of the critical exponents which are consistent with the prediction of a phenomenology are independent of the protocol.

  9. Pinning Susceptibility at the Jamming Transition

    NASA Astrophysics Data System (ADS)

    Graves, Amy; Padgett, Elliot; Goodrich, Carl; Liu, Andrea

    2013-03-01

    Jamming in the presence of fixed or pinned obstacles, representing quenched disorder, is a situation of both practical and theoretical interest. We study the jamming of soft, bidisperse discs in which a subset of discs are pinned while the remaining particles equilibrate around them at a given volume fraction. The obstacles provide a supporting structure for the jammed configuration which not only lowers the jamming threshold, ϕJ, but affects the coordination number and other parameters of interest as the critical point is approached. In the limit of low obstacle density, one can calculate a pinning susceptibility χP, analogous to the magnetic susceptibility, with obstacle density playing the role of the magnetic field. The pinning susceptibility is thus expected to diverge in the thermodynamic limit as χP ~| ϕ -ϕJ | -γP . Finite-size scaling calculations allow us to confirm this and calculate the critical exponent, γP. Acknowledgement is made to the Donors of the Petrolium Research Fund administered by the American Chemical Society, Swarthmore College's Eugene M. Lang Faculty Fellowship, NSF grant DMR-1062638 and DOE grant DE-FG02-05ER46199.

  10. Polyelectrolyte scaling laws for microgel yielding near jamming.

    PubMed

    Bhattacharjee, Tapomoy; Kabb, Christopher P; O'Bryan, Christopher S; Urueña, Juan M; Sumerlin, Brent S; Sawyer, W Gregory; Angelini, Thomas E

    2018-02-28

    Micro-scale hydrogel particles, known as microgels, are used in industry to control the rheology of numerous different products, and are also used in experimental research to study the origins of jamming and glassy behavior in soft-sphere model systems. At the macro-scale, the rheological behaviour of densely packed microgels has been thoroughly characterized; at the particle-scale, careful investigations of jamming, yielding, and glassy-dynamics have been performed through experiment, theory, and simulation. However, at low packing fractions near jamming, the connection between microgel yielding phenomena and the physics of their constituent polymer chains has not been made. Here we investigate whether basic polymer physics scaling laws predict macroscopic yielding behaviours in packed microgels. We measure the yield stress and cross-over shear-rate in several different anionic microgel systems prepared at packing fractions just above the jamming transition, and show that our data can be predicted from classic polyelectrolyte physics scaling laws. We find that diffusive relaxations of microgel deformation during particle re-arrangements can predict the shear-rate at which microgels yield, and the elastic stress associated with these particle deformations predict the yield stress.

  11. Pressure-Driven Suspension Flow near Jamming

    NASA Astrophysics Data System (ADS)

    Oh, Sangwon; Song, Yi-qiao; Garagash, Dmitry I.; Lecampion, Brice; Desroches, Jean

    2015-02-01

    We report here magnetic resonance imaging measurements performed on suspensions with a bulk solid volume fraction (ϕ0) up to 0.55 flowing in a pipe. We visualize and quantify spatial distributions of ϕ and velocity across the pipe at different axial positions. For dense suspensions (ϕ0>0.5 ), we found a different behavior compared to the known cases of lower ϕ0. Our experimental results demonstrate compaction within the jammed region (characterized by a zero macroscopic shear rate) from the jamming limit ϕm≈0.58 at its outer boundary to the random close packing limit ϕrcp≈0.64 at the center. Additionally, we show that ϕ and velocity profiles can be fairly well captured by a frictional rheology accounting for both further compaction of jammed regions as well as normal stress differences.

  12. Rigidity of a Vibrated Amorphous Bi-Dimensional Packing of Grains

    NASA Astrophysics Data System (ADS)

    Coulais, C.; Dauchot, O.

    The Jamming transition can be seen as a general phenomenon occurring whenever a dense assembly of ``things'' gets stuck and resists to an externally applied shear stress. The mechanical response of a vibrated amorphous bi-dimensional packing of grains close to the Jamming transition is investigated. Stress is applied to the media through a constant torque rheometer while surface fraction is tuned around the jamming transition. The rheometer turns, no matter how low is the applied torque. However, its motion is strongly intermittent and displays scale invariance, the fluctuations being maximal at the Jamming transition, where dynamical correlation length had been found to be divergent. We compare our results to previous ones obtained while dragging an intruder at constant force in the same experimental set-up.

  13. Shocks near Jamming

    NASA Astrophysics Data System (ADS)

    Gómez, Leopoldo R.; Turner, Ari M.; van Hecke, Martin; Vitelli, Vincenzo

    2012-02-01

    Nonlinear sound is an extreme phenomenon typically observed in solids after violent explosions. But granular media are different. Right when they jam, these fragile and disordered solids exhibit a vanishing rigidity and sound speed, so that even tiny mechanical perturbations form supersonic shocks. Here, we perform simulations in which two-dimensional jammed granular packings are dynamically compressed and demonstrate that the elementary excitations are strongly nonlinear shocks, rather than ordinary phonons. We capture the full dependence of the shock speed on pressure and impact intensity by a surprisingly simple analytical model.

  14. Impacts of Woody Debris on Fluvial Processes and Channel Morphology in Stable and Unstable Streams

    DTIC Science & Technology

    1996-05-01

    flotation of emergent and riparian trees (Howan, 1987), (Figure 2.1). 0 Fetherston et al. (1995) suggest that debris inputs are either "’chronic or episodic...the channel. Jams are therefore commonly located in bend apices or in unstable reaches downstream of knickpoints. Figure 4.2 demonstrates this...observation, showing debris jam locations just downstream of bend apices on a planform plot of Abiaca Creek. Jams do not, however, appear to have a regular

  15. Simulation of 2D Granular Hopper Flow

    NASA Astrophysics Data System (ADS)

    Li, Zhusong; Shattuck, Mark

    2012-02-01

    Jamming and intermittent granular flow are big problems in industry, and the vertical hopper is a canonical example of these difficulties. We simulate gravity driven flow and jamming of 2D disks in a vertical hopper and compare with identical companion experiments presented in this session. We measure and compare the flow rate and probability for jamming as a function of particle properties and geometry. We evaluate the ability of standard Hertz-Mindlin contact mode to quantitatively predict the experimental flow.

  16. Water Resources and Related Land Management, Buffalo Metropolitan Area, New York

    DTIC Science & Technology

    1991-04-01

    4,797,800 and $2,566,500, respectively. In January 1986, the Buffalo District completed a letter report addressing ice- jam related flood problems at the...opposition to construction of an ice-retentlon structure at Versailles, New York, to reduce damages due to ice- jam flooding at the mouth of the creek. The...consists of two low earth dams In tandem, e:ach with its ,own outle!t works and energJency spillway, and four training dikes. 17 Snags and debris jams

  17. Turmoil, Transition - Triumph? The Democratic Revolution in the Philippines

    DTIC Science & Technology

    1986-06-01

    The entire lobby, mezzanine, bar, and stairways were jammed . We couldn’t even get close to the room in which she was speaking, and that was with her...went to the top of the Manila Hotel to take pictures of the throng. One immediately noticeable difference was the lobby. It was jammed ! The place was...at the entry to the school. It was a real festival atmosphere, and though it was just eight in the morning the school was jammed . Each classroom in

  18. Irsogladine maleate regulates gap junctional intercellular communication-dependent epithelial barrier in human nasal epithelial cells.

    PubMed

    Miyata, Ryo; Nomura, Kazuaki; Kakuki, Takuya; Takano, Ken-Ichi; Kohno, Takayuki; Konno, Takumi; Sawada, Norimasa; Himi, Tetsuo; Kojima, Takashi

    2015-04-01

    The airway epithelium of the human nasal mucosa acts as the first physical barrier that protects against inhaled substances and pathogens. Irsogladine maleate (IM) is an enhancer of gastric mucosal protective factors via upregulation of gap junctional intercellular communication (GJIC). GJIC is thought to participate in the formation of functional tight junctions. However, the effects of IM on GJIC and the epithelial barrier in human nasal epithelial cells (HNECs) remain unknown. To investigate the effects of IM on GJIC and the tight junctional barrier in HNECs, primary cultures of HNECs transfected with human telomerase reverse transcriptase (hTERT-HNECs) were treated with IM and the GJIC inhibitors oleamide and 18β-GA. Some cells were pretreated with IM before treatment with TLR3 ligand poly(I:C) to examine whether IM prevented the changes via TLR3-mediated signal pathways. In hTERT-HNECs, GJIC blockers reduced the expression of tight junction molecules claudin-1, -4, -7, occludin, tricellulin, and JAM-A. IM induced GJIC activity and enhanced the expression of claudin-1, -4, and JAM-A at the protein and mRNA levels with an increase of barrier function. GJIC blockers prevented the increase of the tight junction proteins induced by IM. Furthermore, IM prevented the reduction of JAM-A but not induction of IL-8 and TNF-α induced by poly(I:C). In conclusion, IM can maintain the GJIC-dependent tight junctional barrier via regulation of GJIC in upper airway nasal epithelium. Therefore, it is possible that IM may be useful as a nasal spray to prevent the disruption of the epithelial barrier by viral infections and exposure to allergens in human nasal mucosa.

  19. Deposition of bi-dispersed particles in inkjet-printed evaporating colloidal drops

    NASA Astrophysics Data System (ADS)

    Sun, Ying; Joshi, Abhijit; Chhasatia, Viral

    2010-11-01

    In this study, the deposition behaviors of inkjet-printed evaporating colloidal drops consisting of bi-dispersed micro and nano-sized particles are investigated by fluorescence microscopy and SEM. The results on hydrophilic glass substrates show that, evaporatively-driven outward flow drives the nanoparticles to deposit close to the pinned contact line while an inner ring deposition is formed by microparticles. This size-induced particle separation is consistent with the existence of a wedge-shaped drop edge near the contact line region of an evaporating drop on a hydrophilic substrate. The replenishing evaporatively-driven flow assembles nanoparticles closer to the pinned contact line forming an outer ring of nanoparticles and this particle jamming further enhances the contact line pinning. Microparticles are observed to form an inner ring inside the nano-sized deposits. This size-induced particle separation presents a new challenge to the uniformity of functional materials in bioprinting applications where nanoparticles and micro-sized cells are mixed together. On the other hand, particle self-assembly based on their sizes provides enables easy and well-controlled pattern formation. The effects of particle size contrast, particle volume fraction, substrate surface energy, and relative humidity of the printing environment on particle separation are examined in detail.

  20. Rapid jamming avoidance in biosonar.

    PubMed

    Gillam, Erin H; Ulanovsky, Nachum; McCracken, Gary F

    2007-03-07

    The sonar systems of bats and dolphins are in many ways superior to man-made sonar and radar systems, and considerable effort has been devoted to understanding the signal-processing strategies underlying these capabilities. A major feature determining the efficiency of sonar systems is the sensitivity to noise and jamming signals. Previous studies indicated that echolocating bats may adjust their signal structure to avoid jamming ('jamming avoidance response'; JAR). However, these studies relied on behavioural correlations and not controlled experiments. Here, we provide the first experimental evidence for JAR in bats. We presented bats (Tadarida brasiliensis) with 'playback stimuli' consisting of recorded echolocation calls at one of six frequencies. The bats exhibited a JAR by shifting their call frequency away from the presented playback frequency. When the approaching bats were challenged by an abrupt change in the playback stimulus, they responded by shifting their call frequencies upwards, away from the playback. Interestingly, even bats initially calling below the playback's frequency shifted their frequencies upwards, 'jumping' over the playback frequency. These spectral shifts in the bats' calls occurred often within less than 200 ms, in the first echolocation call emitted after the stimulus switch-suggesting that rapid jamming avoidance is important for the bat.

  1. Self-organized magnetic particles to tune the mechanical behavior of a granular system

    NASA Astrophysics Data System (ADS)

    Cox, Meredith; Wang, Dong; Barés, Jonathan; Behringer, Robert P.

    2016-09-01

    Above a certain density a granular material jams. This property can be controlled by either tuning a global property, such as the packing fraction or by applying shear strain, or at the micro-scale by tuning grain shape, inter-particle friction or externally controlled organization. Here, we introduce a novel way to change a local granular property by adding a weak anisotropic magnetic interaction between particles. We measure the evolution of the pressure, P, and coordination number, Z, for a packing of 2D photo-elastic disks, subject to uniaxial compression. A fraction R m of the particles have embedded cuboidal magnets. The strength of the magnetic interactions between particles is too weak to have a strong direct effect on P or Z when the system is jammed. However, the magnetic interactions play an important role in the evolution of latent force networks when systems containing a large enough fraction of the particles with magnets are driven through unjammed to jammed states. In this case, a statistically stable network of magnetic chains self-organizes before jamming and overlaps with force chains once jamming occurs, strengthening the granular medium. This property opens a novel way to control mechanical properties of granular materials.

  2. Bibliography on Cold Regions Science and Technology. Cumulative Author Index. Volumes 28-32, Cumulative Subject Index. Volumes 28-32, Parts 1 and 2

    DTIC Science & Technology

    1978-12-01

    Jr. 52-58, rusl 29.1345 Arctic ice model basin - design , construction, and operating experience Mathematical modelling of long-term non -stationary...crane KS-6362KhL designed for the North [1974, p.3-4, F11ppov, A.M. rusl 29-266 Experimental study of the dynamics of ice-jam formation in talwaters of... experimental data on glass fiber insulating materials and their France. filrej 32-4349de ~preenseltritie use for a reliable design of insulations at

  3. Nuclear Attack on U.S. Space-Based Assets: Current Strategy, Policy, Reality, and Implications for the Future.

    DTIC Science & Technology

    1998-06-05

    other.46 This can be useful when certain links 70 have been negated through the destruction of a ground station or actual jamming or interference...system is to attack the enemy’s ground station.59 The link segment can be jammed or spoofed60. However, the DoD has nothing in its inventory currently...currently conducted primarily by jamming assets that prevent the enemy use of his systems. These systems are classified and can only be discussed in

  4. CASK interacts with PMCA4b and JAM-A on the Mouse Sperm Flagellum to Regulate Ca2+ Homeostasis and Motility1

    PubMed Central

    Aravindan, Rolands G.; Fomin, Victor P.; Naik, Ulhas P.; Modelski, Mark J.; Naik, Meghna U.; Galileo, Deni S.; Duncan, Randall L.; Martin-DeLeon, Patricia A.

    2012-01-01

    Deletion of the highly conserved gene for the major Ca2+ efflux pump, Plasma membrane calcium/calmodulin-dependent ATPase 4b (Pmca4b), in the mouse leads to loss of progressive and hyperactivated sperm motility and infertility. Here we first demonstrate that compared to wild-type (WT), Junctional adhesion molecule-A (Jam-A) null sperm, previously shown to have motility defects and an abnormal mitochondrial phenotype reminiscent of that seen in Pmca4b nulls, exhibit reduced (P<0.001) ATP levels, significantly (P<0.001) greater cytosolic Ca2+ concentration ([Ca2+]c) and ~10-fold higher mitochondrial sequestration, indicating Ca2+ overload. Investigating the mechanism involved, we used coimmunoprecipitation studies to show that CASK (Ca2+/calmodulin-dependent serine kinase), identified for the first time on the sperm flagellum where it co-localizes with both PMCA4b and JAM-A on the proximal principal piece, acts as a common interacting partner of both. Importantly, CASK binds alternatively and non-synergistically with each of these molecules via its single PDZ (PDS-95/Dlg/ZO-1) domain to either inhibit or promote efflux. In the absence of CASK-JAM-A interaction in Jam-A null sperm, CASK-PMCA4b interaction is increased, resulting in inhibition of PMCA4b’s enzymatic activity, consequent Ca2+ accumulation, and a ~6-fold over-expression of constitutively ATP-utilizing CASK, compared to WT. Thus, CASK negatively regulates PMCA4b by directly binding to it and JAM-A positively regulates it indirectly through CASK. The decreased motility is likely due to the collateral net deficit in ATP observed in nulls. Our data indicate that Ca2+ homeostasis in sperm is maintained by the relative ratios of CASK-PMCA4b and CASK-JAM-A interactions. PMID:22020416

  5. Influence of dry cohesion on the micro- and macro-mechanical properties of dense polydisperse powders & grains

    NASA Astrophysics Data System (ADS)

    Kievitsbosch, Robert; Smit, Hendrik; Magnanimo, Vanessa; Luding, Stefan; Taghizadeh, Kianoosh

    2017-06-01

    Understanding how cohesive granular materials behave is of interest for many industrial applications, such as pharmaceutical or food and civil engineering. Models of the behaviour of granular materials on the microscopic scale can be used to obtain macroscopic continuum relations by a micro-macro transition approach. The Discrete Element Method (DEM) is used to inspect the influence of cohesion on the micro and macro behaviour of granular assemblies by using an elasto-plastic cohesive contact model. Interestingly, we observe that frictional samples prepared with different cohesion values show a significant difference in pressure and coordination number in the jammed regime; the differences become more pronounced when packings are closer to the jamming density, i.e. the lowest density where the system is mechanically stable. Furthermore, we observe that cohesion has an influence on the jamming density for frictional samples, but there is no influence on the jamming density for frictionless samples.

  6. Universal rescaling of flow curves for yield-stress fluids close to jamming

    NASA Astrophysics Data System (ADS)

    Dinkgreve, M.; Paredes, J.; Michels, M. A. J.; Bonn, D.

    2015-07-01

    The experimental flow curves of four different yield-stress fluids with different interparticle interactions are studied near the jamming concentration. By appropriate scaling with the distance to jamming all rheology data can be collapsed onto master curves below and above jamming that meet in the shear-thinning regime and satisfy the Herschel-Bulkley and Cross equations, respectively. In spite of differing interactions in the different systems, master curves characterized by universal scaling exponents are found for the four systems. A two-state microscopic theory of heterogeneous dynamics is presented to rationalize the observed transition from Herschel-Bulkley to Cross behavior and to connect the rheological exponents to microscopic exponents for the divergence of the length and time scales of the heterogeneous dynamics. The experimental data and the microscopic theory are compared with much of the available literature data for yield-stress systems.

  7. Full Envelope Reconfigurable Control Design for the X-33 Vehicle

    NASA Technical Reports Server (NTRS)

    Cotting, M. Christopher; Burken, John J.; Lee, Seung-Hee (Technical Monitor)

    2001-01-01

    In the event of a control surface failure, the purpose of a reconfigurable control system is to redistribute the control effort among the remaining working surfaces such that satisfactory stability and performance are retained. An Off-line Nonlinear General Constrained Optimization (ONCO) approach was used for the reconfigurable X-33 control design method. Three example failures are shown using a high fidelity 6 DOF simulation (case I ascent with a left body flap jammed at 25 deg.; case 2 entry with a right inboard elevon jam at 25 deg.; and case 3, landing (TAEM) with a left rudder jam at -30 deg.) Failure comparisons between responses with the nominal controller and reconfigurable controllers show the benefits of reconfiguration. Single jam aerosurface failures were considered, and failure detection and identification is considered accomplished in the actuator controller. The X-33 flight control system will incorporate reconfigurable flight control in the baseline system.

  8. High-resolution of particle contacts via fluorophore exclusion in deep-imaging of jammed colloidal packings

    NASA Astrophysics Data System (ADS)

    Kyeyune-Nyombi, Eru; Morone, Flaviano; Liu, Wenwei; Li, Shuiqing; Gilchrist, M. Lane; Makse, Hernán A.

    2018-01-01

    Understanding the structural properties of random packings of jammed colloids requires an unprecedented high-resolution determination of the contact network providing mechanical stability to the packing. Here, we address the determination of the contact network by a novel strategy based on fluorophore signal exclusion of quantum dot nanoparticles from the contact points. We use fluorescence labeling schemes on particles inspired by biology and biointerface science in conjunction with fluorophore exclusion at the contact region. The method provides high-resolution contact network data that allows us to measure structural properties of the colloidal packing near marginal stability. We determine scaling laws of force distributions, soft modes, correlation functions, coordination number and free volume that define the universality class of jammed colloidal packings and can be compared with theoretical predictions. The contact detection method opens up further experimental testing at the interface of jamming and glass physics.

  9. Jamming for a system of granular crosses

    NASA Astrophysics Data System (ADS)

    Shang, Zegan; Zheng, Hu; Wang, Dong; Bares, Jonathan; Behringer, Robert

    A disordered stress-free granular packing can be turned into a rigid structure, which is called jammed state, by increasing the density of particles per unit volume or by applying shear deformation. The jamming behavior of systems made of of 2D circular discs have been investigated in detail, but very little is known about the special geometry particles, particularly non-convex particles like crosses. Here, we perform an experimental study on the jamming of a system of quasi-2D granular crosses. In the present experiments, we measure the pressure, and coordinate number evolution of a 2D packing of photo-elastic cross discs. This talk will present results from a simple shear experiment for stresses and for the order parameter associated with the cross orientation and its correlation. We acknowledge support from NSF Grant No. DMR1206351, NASA Grant No. NNX15AD38G and the W.M. Keck Foundation.

  10. Tuning Shear Jamming by Basal Assisted Couette Shear

    NASA Astrophysics Data System (ADS)

    Zhao, Yiqiu; Barés, Jonathan; Behringer, Robert

    Granular matter with packing fraction ϕS < ϕ <ϕJ can be jammed by applying shear strain. However, the stress-strain relation in shear jamming transition is not very well understood. Part of the difficulty is that the strain inside the granular system is very complicated and hard to control. In this work, by using a novel Couette shear apparatus capable of generating arbitrary shear profiles, we study the stress-strain relation during shear jamming transition for granular system under different kinds of controlled interior strain. The novel Couette shear apparatus consists of 21 independently movable rings and two circular boundaries. The apparatus can shear the granular sample not only from the boundaries but also from the bottom. The granular sample is made of about 2000 bi-disperse photo elastic disks, making it possible to extract force information. This work is supported by NSF-DMR1206351, DMS1248071, NASA NNX15AD38G.

  11. Research on the frequency hopping bistatic sonar system

    NASA Astrophysics Data System (ADS)

    Liang, Guo-long; Zhang, Yao; Zhang, Guang-pu; Liu, Kai

    2011-10-01

    A new model for bistatic sonar system is established, in which frequency hopping (FH) signals are used for targets detection according to some rules. This model can decrease the time between adjacent signals and obtain more information in a unit time. The receiving system will receive and process the signals of different frequency respectively, according the FH pattern, for detecting and locating targets. This method can helps yield more stable and accurate outputs, using the characteristic of the FH signals, increase the ability of anti-detection and anti partial-band jamming.

  12. Active acoustic interference elicits echolocation changes in heterospecific bats.

    PubMed

    Jones, Te K; Wohlgemuth, Melville J; Conner, William E

    2018-06-27

    Echolocating bats often forage in the presence of both conspecific and heterospecific individuals who have the potential to produce acoustic interference. Recent studies have shown that at least one bat species, the Brazilian free-tailed bat ( Tadarida brasiliensis ), produces specialized social signals that disrupt the sonar of conspecific competitors. We herein discuss the differences between passive and active jamming signals and test whether heterospecific jamming occurs in species overlapping spatiotemporally as well as whether such interference elicits a jamming avoidance response (JAR). We compare the capture rates of tethered moths and the echolocation parameters of big brown bats ( Eptesicus fuscus ) challenged with the playback of the jamming signal normally produced by Brazilian free-tailed bats and playback of deconstructed versions of this signal. There were no differences in the capture rates of targets with and without the jamming signal although significant changes in both spectral and temporal features of the bats' echolocation were observed. These changes are consistent with improvements of the signal-to-noise ratio in the presence of acoustic interference. Accordingly, we propose to expand the traditional definition of the JAR, stating that echolocation changes in response to interference should decrease similarity between the two signals, to include any change that increases the ability to separate returning echoes from active jamming stimuli originating from conspecific and heterospecific organisms. Flexibility in echolocation is an important characteristic for overcoming various forms of acoustic interference and may serve a purpose in interspecific interactions as well as intraspecific ones. © 2018. Published by The Company of Biologists Ltd.

  13. Jamming dynamics of stretch-induced surfactant release by alveolar type II cells

    PubMed Central

    Majumdar, Arnab; Arold, Stephen P.; Bartolák-Suki, Erzsébet; Parameswaran, Harikrishnan

    2012-01-01

    Secretion of pulmonary surfactant by alveolar epithelial type II cells is vital for the reduction of interfacial surface tension, thus preventing lung collapse. To study secretion dynamics, rat alveolar epithelial type II cells were cultured on elastic membranes and cyclically stretched. The amounts of phosphatidylcholine, the primary lipid component of surfactant, inside and outside the cells, were measured using radiolabeled choline. During and immediately after stretch, cells secreted less surfactant than unstretched cells; however, stretched cells secreted significantly more surfactant than unstretched cells after an extended lag period. We developed a model based on the hypothesis that stretching leads to jamming of surfactant traffic escaping the cell, similar to vehicular traffic jams. In the model, stretch increases surfactant transport from the interior to the exterior of the cell. This transport is mediated by a surface layer with a finite capacity due to the limited number of fusion pores through which secretion occurs. When the amount of surfactant in the surface layer approaches this capacity, interference among lamellar bodies carrying surfactant reduces the rate of secretion, effectively creating a jam. When the stretch stops, the jam takes an extended time to clear, and subsequently the amount of secreted surfactant increases. We solved the model analytically and show that its dynamics are consistent with experimental observations, implying that surfactant secretion is a fundamentally nonlinear process with memory representing collective behavior at the level of single cells. Our results thus highlight the importance of a jamming dynamics in stretch-induced cellular secretory processes. PMID:22033531

  14. Relative Sensor with 4(pi) Coverage for Formation Flying Missions

    NASA Technical Reports Server (NTRS)

    Tien, Jeffrey Y.; Purcell, George H., Jr.; Sirinivasan, Jeffrey M.; Young, Lawrence E.

    2004-01-01

    The Terrestrial Planet Finder (TPF) pre-project, an element of NASA's Origins program, is currently developing two architectures for a mission to search for earth-like planets around nearby stars. One of the architectures being developed is the Formation Flying Interferometer (FFI). The FFI is envisioned to consist of up to seven spacecraft (as many as six 'collectors' with IR telescopes, and a 'combiner') flying in precise formation within f 1 cm of pre-determined trajectories for synchronized observations. The spacecraft-to-spacecraft separations are variable between 20 m and 100 m or more during observations to support various configurations of the interferometer in the planet-finding mode. The challenges involved with TPF autonomous operations, ranging from formation acquisition and formation maneuvering to high precision formation control during science observations, are unprecedented. In this paper we discuss the development of the formation acquisition sensor, which uses novel modulation and duplexing schemes to enable fast signal acquisition, multiple-spacecraft operation, and mitigation of inherent jamming conditions, while providing precise formation sensing and integrated radar capability. This approach performs delay synthesis and carrier cycle ambiguity resolution to improve range measurement, and uses differential carrier cycle ambiguity resolution to make precise bearing angle measurements without calibration maneuvers.

  15. Relative Sensor with 4Pi Coverage for Formation Flying Missions

    NASA Technical Reports Server (NTRS)

    Tien, Jeffrey Y.; Purcell, George H., Jr.; Srinivasan, Jeffrey M.; Young, Lawrence E.

    2004-01-01

    The Terrestrial Planet Finder (TPF) pre-project, an element of NASA s Origins program, is currently developing two architectures for a mission to search for earth-like planets around nearby stars. One of the architectures being developed is the Formation Flying Interferometer (FFI). The FFI is envisioned to consist of up to seven spacecraft (as many as six "collectors" with IR telescopes, and a "combiner") flying in precise formation within +/-1 cm of pre-determined trajectories for synchronized observations. The spacecraft-to-spacecraft separations are variable between 20 m and 100 m or more during observations to support various configurations of the interferometer in the planet-finding mode. The challenges involved with TPF autonomous operations, ranging from formation acquisition and formation maneuvering to high precision formation control during science observations, are unprecedented. In this paper we discuss the development of the formation acquisition sensor, which uses novel modulation and duplexing schemes to enable fast signal acquisition, multiple-spacecraft operation, and mitigation of inherent jamming conditions, while providing precise formation sensing and integrated radar capability. This approach performs delay synthesis and carrier cycle ambiguity resolution to improve range measurement, and uses differential carrier cycle ambiguity resolution to make precise bearing angle measurements without calibration maneuvers.

  16. Ice Jam Flooding and Mitigation: Lower Platte River Basin, Nebraska,

    DTIC Science & Technology

    1996-01-01

    providing much valuable information about ice jam locations and dates. The contents of this report are not to be used for advertising or promotional...52 v Ice Jam Flooding and Mitigation Lower Platte River Basin, Nebraska KATHLEEN D. WHITE AND ROGER L. KAY INTRODUCTION with a...depth below 49 50 I ’ I I I Depth of Charge Below Bottom of Ice Sheet 40- N 0 ft 11 0.6 - 0 1.6 7: V 2.5 .0 -30t- A 3.3 •:Az 6.6 2l) - 3.0 0 20- 0 L

  17. Unifying Suspension and Granular flows near Jamming

    NASA Astrophysics Data System (ADS)

    DeGiuli, Eric; Wyart, Matthieu

    2017-06-01

    Rheological properties of dense flows of hard particles are singular as one approaches the jamming threshold where flow ceases, both for granular flows dominated by inertia, and for over-damped suspensions. Concomitantly, the lengthscale characterizing velocity correlations appears to diverge at jamming. Here we review a theoretical framework that gives a scaling description of stationary flows of frictionless particles. Our analysis applies both to suspensions and inertial flows of hard particles. We report numerical results in support of the theory, and show the phase diagram that results when friction is added, delineating the regime of validity of the frictionless theory.

  18. A study of optimal abstract jamming strategies vs. noncoherent MFSK

    NASA Technical Reports Server (NTRS)

    Mceliece, R. J.; Rodemich, E. R.

    1983-01-01

    The present investigation is concerned with the performance of uncoded MFSK modulation in the presence of arbitrary additive jamming, taking into account the objective to devise robust antijamming strategies. An abstract model is considered, giving attention to the signal strength as a nonnegative real number X, the employment of X as a random variable, its distribution function G(x), the transmitter's strategy G, the jamming noise as an M-dimensional random vector Z, and the error probability. A summary of previous work on the considered problem is provided, and the results of the current study are presented.

  19. Cell Motility and Jamming across the EMT

    NASA Astrophysics Data System (ADS)

    Grosser, Steffen; Oswald, Linda; Lippoldt, Jürgen; Heine, Paul; Kaes, Josef A.

    We use single-cell tracking and cell shape analysis to highlight the different roles that cell jamming plays in the behaviour of epithelial vs. mesenchymal mammary breast cell lines (MCF-10A, MDA-MB-231) in 2D adherent culture. An automatic segmentation allows for the evaluation of cell shapes, which we compare to predictions made by the self-propelled vertex (SPV) model. On top of that, we employ co-cultures to study the emerging demixing behaviour of these cell lines, demonstrating that the mesenchymal MDA-MB-231 cell line forms unjammed islands within the jammed collective.

  20. Hopper Flow: Experiments and Simulation

    NASA Astrophysics Data System (ADS)

    Li, Zhusong; Shattuck, Mark

    2013-03-01

    Jamming and intermittent granular flow are important problems in industry, and the vertical hopper is a canonical example. Clogging of granular hoppers account for significant losses across many industries. We use realistic DEM simulations of gravity driven flow in a hopper to examine flow and jamming of 2D disks and compare with identical companion experiments. We use experimental data to validate simulation parameters and the form of the inter particle force law. We measure and compare flow rate, emptying times, jamming statistics, and flow fields as a function of opening angle and opening size in both experiment and simulations. Suppored by: NSF-CBET-0968013

  1. Training for Decisive Action: Stories of Mission Command. Collected Insights from Commanders and Leaders on their Experience at the National Training Center

    DTIC Science & Technology

    2014-01-01

    If there is no control then friction builds into a colossal traffic jam . It takes a traffic cop that understands the susceptible points of friction...to force control back into the jam so that movement can regain momentum. My position at the BCT TAC, south of the Whale Gap, acted as an effective...him that the COEFOR would most likely rouse the IDP camp north of the Whale Gap to create a massive traffic jam . The plan took all of this into

  2. Influence of different processing and storage conditions on in vitro bioaccessibility of polyphenols in black carrot jams and marmalades.

    PubMed

    Kamiloglu, Senem; Pasli, Ayca Ayfer; Ozcelik, Beraat; Van Camp, John; Capanoglu, Esra

    2015-11-01

    Black carrot is indicated to play an important role in nutrition, as it comprises a variety of health-promoting components, including polyphenols. The objective of the present study was to monitor the stability of total phenolics, antioxidant capacity and phenolic acids in black carrot jams and marmalades after processing, storage and in vitro gastrointestinal digestion. Total phenolic content and antioxidant capacity were determined using spectrophotometric methods, whereas phenolic acids were identified using HPLC-PDA. Jam and marmalade processing significantly decreased total phenolics (89.2-90.5%), antioxidant capacity (83.3-91.3%) and phenolic acids (49.5-96.7%) (p < 0.05). After 20 weeks of storage, the percent decrease in total phenolics in samples stored at 25 °C (26.4-48.0%) was slightly higher than the samples stored at 4 °C (21.0-42.5%). In addition, jam and marmalade processing led to increases in the percent recovery of bioaccessible total phenolics (7.2-12.6%) and phenolic acids (4.7-31.5%), as well as antioxidant capacity (1.4-8.1%). In conclusion, current study highlighted black carrot jams and marmalades as good sources of polyphenols, with high bioaccessibility levels. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Effect of processing and storage on the antioxidant ellagic acid derivatives and flavonoids of red raspberry (Rubus idaeus) jams.

    PubMed

    Zafrilla, P; Ferreres, F; Tomás-Barberán, F A

    2001-08-01

    From red raspberries, ellagic acid, its 4-arabinoside, its 4' (4' '-acetyl) arabinoside, and its 4' (4' '-acetyl)xyloside, as well as quercetin and kaempferol 3-glucosides, were identified. In addition, two unidentified ellagic acid derivatives were detected. The free radical scavenging activity of the ellagic acid derivatives was evaluated by using the DPPH method and compared to that of Trolox. All of the isolated compounds showed antioxidant activity. The effect of processing to obtain jams on raspberry phenolics was evaluated. The flavonol content decreased slightly with processing and more markedly during storage of the jams. The ellagic acid derivatives, with the exception of ellagic acid itself, remained quite stable with processing and during 6 months of jam storage. The content of free ellagic acid increased 3-fold during the storage period. The initial content (10 mg/kg of fresh weight of raspberries) increased 2-fold with processing, and it continued increasing up to 35 mg/kg after 1 month of storage of the jam. Then a slight decrease was observed until 6 months of storage had elapsed. The increase observed in ellagic acid could be explained by a release of ellagic acid from ellagitannins with the thermal treatment.

  4. Processing black mulberry into jam: effects on antioxidant potential and in vitro bioaccessibility.

    PubMed

    Tomas, Merve; Toydemir, Gamze; Boyacioglu, Dilek; Hall, Robert D; Beekwilder, Jules; Capanoglu, Esra

    2017-08-01

    Black mulberries (Morus nigra) were processed into jam on an industrialised scale, including the major steps of: selection of frozen black mulberries, adding glucose-fructose syrup and water, cooking, adding citric acid and apple pectin, removing seeds, and pasteurisation. Qualitative and quantitative determinations of antioxidants in black mulberry samples were performed using spectrophotometric methods, as well as HPLC- and LC-QTOF-MS-based measurements. These analyses included the determination of total polyphenolic content, % polymeric colour, total and individual anthocyanin contents, antioxidant capacity, and in vitro bioaccessibility in processing samples. Jam processing led to a significant reduction in total phenolics (88%), total flavonoids (89%), anthocyanins (97%), and antioxidant capacity (88-93%) (P < 0.05). Individual anthocyanin contents, determined using HPLC analysis, also showed a significant decrease (∼99% loss). In contrast, % recovery of bioaccessible total phenolics, anthocyanins, and antioxidant capacity (ABTS assay) increased after jam processing (16%, 12%, and 37%, respectively). Fruit processing resulted in losses of polyphenols, anthocyanins, and antioxidant capacity of black mulberry jam. Optimisation of food processing could help to protect the phenolic compounds in fruits which might be helpful for the food industry to minimise the antioxidant loss and improve the final product quality. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  5. JAMS - a software platform for modular hydrological modelling

    NASA Astrophysics Data System (ADS)

    Kralisch, Sven; Fischer, Christian

    2015-04-01

    Current challenges of understanding and assessing the impacts of climate and land use changes on environmental systems demand for an ever-increasing integration of data and process knowledge in corresponding simulation models. Software frameworks that allow for a seamless creation of integrated models based on less complex components (domain models, process simulation routines) have therefore gained increasing attention during the last decade. JAMS is an Open-Source software framework that has been especially designed to cope with the challenges of eco-hydrological modelling. This is reflected by (i) its flexible approach for representing time and space, (ii) a strong separation of process simulation components from the declarative description of more complex models using domain specific XML, (iii) powerful analysis and visualization functions for spatial and temporal input and output data, and (iv) parameter optimization and uncertainty analysis functions commonly used in environmental modelling. Based on JAMS, different hydrological and nutrient-transport simulation models were implemented and successfully applied during the last years. We will present the JAMS core concepts and give an overview of models, simulation components and support tools available for that framework. Sample applications will be used to underline the advantages of component-based model designs and to show how JAMS can be used to address the challenges of integrated hydrological modelling.

  6. High-Performance Anti-Retransmission Deception Jamming Utilizing Range Direction Multiple Input and Multiple Output (MIMO) Synthetic Aperture Radar (SAR).

    PubMed

    Wang, Ruijia; Chen, Jie; Wang, Xing; Sun, Bing

    2017-01-09

    Retransmission deception jamming seriously degrades the Synthetic Aperture Radar (SAR) detection efficiency and can mislead SAR image interpretation by forming false targets. In order to suppress retransmission deception jamming, this paper proposes a novel multiple input and multiple output (MIMO) SAR structure range direction MIMO SAR, whose multiple channel antennas are vertical to the azimuth. First, based on the multiple channels of range direction MIMO SAR, the orthogonal frequency division multiplexing (OFDM) linear frequency modulation (LFM) signal was adopted as the transmission signal of each channel, which is defined as a sub-band signal. This sub-band signal corresponds to the transmission channel. Then, all of the sub-band signals are modulated with random initial phases and concurrently transmitted. The signal form is more complex and difficult to intercept. Next, the echoes of the sub-band signal are utilized to synthesize a wide band signal after preprocessing. The proposed method will increase the signal to interference ratio and peak amplitude ratio of the signal to resist retransmission deception jamming. Finally, well-focused SAR imagery is obtained using a conventional imaging method where the retransmission deception jamming strength is degraded and defocused. Simulations demonstrated the effectiveness of the proposed method.

  7. High-Performance Anti-Retransmission Deception Jamming Utilizing Range Direction Multiple Input and Multiple Output (MIMO) Synthetic Aperture Radar (SAR)

    PubMed Central

    Wang, Ruijia; Chen, Jie; Wang, Xing; Sun, Bing

    2017-01-01

    Retransmission deception jamming seriously degrades the Synthetic Aperture Radar (SAR) detection efficiency and can mislead SAR image interpretation by forming false targets. In order to suppress retransmission deception jamming, this paper proposes a novel multiple input and multiple output (MIMO) SAR structure range direction MIMO SAR, whose multiple channel antennas are vertical to the azimuth. First, based on the multiple channels of range direction MIMO SAR, the orthogonal frequency division multiplexing (OFDM) linear frequency modulation (LFM) signal was adopted as the transmission signal of each channel, which is defined as a sub-band signal. This sub-band signal corresponds to the transmission channel. Then, all of the sub-band signals are modulated with random initial phases and concurrently transmitted. The signal form is more complex and difficult to intercept. Next, the echoes of the sub-band signal are utilized to synthesize a wide band signal after preprocessing. The proposed method will increase the signal to interference ratio and peak amplitude ratio of the signal to resist retransmission deception jamming. Finally, well-focused SAR imagery is obtained using a conventional imaging method where the retransmission deception jamming strength is degraded and defocused. Simulations demonstrated the effectiveness of the proposed method. PMID:28075367

  8. Simulation of a Magneto-Rheological Fluid Based, Jamming, Soft Gripper Using the Soft Sphere DEM in LIGGGHTS

    NASA Astrophysics Data System (ADS)

    Leps, Thomas; Hartzell, Christine; Wereley, Norman; Choi, Young

    2017-11-01

    Jamming soft grippers are excellent universal grippers due to their low dependence on the shape of objects to be grabbed, and low stiffness, mitigating the need for object shape data and expensive force control of a stiff system. These grippers now rely on jamming transitions of dry grains under atmospheric pressure to hold objects. In order to expand their use to space environments, a gripper using magnetic actuation of a magneto-rheological fluid (MR Gripper) is being developed. The MR fluid is a suspension of μm scale iron grains in a silicone oil. When un-magnetized the fluid behaves as a dense suspension with low Bagnold number. When magnetized, it behaves like a jammed granular material, with magnetic forces between the grains dominating. We are simulating the gripper using LIGGGHTS, an open-source soft sphere DEM code. We have modeled both the deformable gripper membrane and the MR fluid itself using the LIGGGHTS framework. To our knowledge, this is the first time that the induced magnetic dipoles required to accurately simulate the jamming behavior of MR fluids have been modeled in LIGGGHTS. This simulation allows the rapid optimization of the hardware and magnetic field geometries, as well as the fluid behavior, without time consuming, and costly prototype revisions.

  9. Strain-level genetic diversity of Methylophaga nitratireducenticrescens confers plasticity to denitrification capacity in a methylotrophic marine denitrifying biofilm.

    PubMed

    Geoffroy, Valérie; Payette, Geneviève; Mauffrey, Florian; Lestin, Livie; Constant, Philippe; Villemur, Richard

    2018-01-01

    The biofilm of a methanol-fed, fluidized denitrification system treating a marine effluent is composed of multi-species microorganisms, among which Hyphomicrobium nitrativorans NL23 and Methylophaga nitratireducenticrescens JAM1 are the principal bacteria involved in the denitrifying activities. Strain NL23 can carry complete nitrate (NO[Formula: see text]) reduction to N 2 , whereas strain JAM1 can perform 3 out of the 4 reduction steps. A small proportion of other denitrifiers exists in the biofilm, suggesting the potential plasticity of the biofilm in adapting to environmental changes. Here, we report the acclimation of the denitrifying biofilm from continuous operating mode to batch operating mode, and the isolation and characterization from the acclimated biofilm of a new denitrifying bacterial strain, named GP59. The denitrifying biofilm was batch-cultured under anoxic conditions. The acclimated biofilm was plated on Methylophaga specific medium to isolate denitrifying Methylophaga isolates. Planktonic cultures of strains GP59 and JAM1 were performed, and the growth and the dynamics of NO[Formula: see text], nitrite (NO[Formula: see text]) and N 2 O were determined. The genomes of strains GP59 and JAM1 were sequenced and compared. The transcriptomes of strains GP59 and JAM1 were derived from anoxic cultures. During batch cultures of the biofilm, we observed the disappearance of H. nitrativorans NL23 without affecting the denitrification performance. From the acclimated biofilm, we isolated strain GP59 that can perform, like H. nitrativorans NL23, the complete denitrification pathway. The GP59 cell concentration in the acclimated biofilm was 2-3 orders of magnitude higher than M. nitratireducenticrescens JAM1 and H. nitrativorans NL23. Genome analyses revealed that strain GP59 belongs to the species M. nitratireducenticrescens . The GP59 genome shares more than 85% of its coding sequences with those of strain JAM1. Based on transcriptomic analyses of anoxic cultures, most of these common genes in strain GP59 were expressed at similar level than their counterparts in strain JAM1. In contrast to strain JAM1, strain GP59 cannot reduce NO[Formula: see text] under oxic culture conditions, and has a 24-h lag time before growth and NO[Formula: see text] reduction start to occur in anoxic cultures, suggesting that both strains regulate differently the expression of their denitrification genes. Strain GP59 has the ability to reduce NO[Formula: see text] as it carries a gene encoding a NirK-type NO[Formula: see text] reductase. Based on the CRISPR sequences, strain GP59 did not emerge from strain JAM1 during the biofilm batch cultures but rather was present in the original biofilm and was enriched during this process. These results reinforce the unique trait of the species M. nitratireducenticrescens among the Methylophaga genus as facultative anaerobic bacterium. These findings also showed the plasticity of denitrifying population of the biofilm in adapting to anoxic marine environments of the bioreactor.

  10. Physical-scale models of engineered log jams in rivers

    USDA-ARS?s Scientific Manuscript database

    Stream restoration and river engineering projects are employing engineered log jams increasingly for stabilization and in-stream improvements. To further advance the design of these structures and their morphodynamic effects on corridors, the basis for physical-scale models of rivers with engineere...

  11. Jamming Signal Reduction in Spread Spectrum Systems.

    DTIC Science & Technology

    1979-04-26

    the addition of an appropriate equalizer netowrk . The original signal and the estimate of the jamming signal are matched and added by a resistor...ADDRESS(SI different from Controllln~ OWce) IS. SECURITY CLASS. (of this report) Unclassified IS.. OECLASSIFICATION /DOWNGRAD IHO SCHEDULE $6. DISTRIB

  12. Cavity method for force transmission in jammed disordered packings of hard particles.

    PubMed

    Bo, Lin; Mari, Romain; Song, Chaoming; Makse, Hernán A

    2014-10-07

    The force distribution of jammed disordered packings has always been considered a central object in the physics of granular materials. However, many of its features are poorly understood. In particular, analytic relations to other key macroscopic properties of jammed matter, such as the contact network and its coordination number, are still lacking. Here we develop a mean-field theory for this problem, based on the consideration of the contact network as a random graph where the force transmission becomes a constraint satisfaction problem. We can thus use the cavity method developed in the past few decades within the statistical physics of spin glasses and hard computer science problems. This method allows us to compute the force distribution P(f) for random packings of hard particles of any shape, with or without friction. We find a new signature of jamming in the small force behavior P(f) ∼ f(θ), whose exponent has attracted recent active interest: we find a finite value for P(f = 0), along with θ = 0. Furthermore, we relate the force distribution to a lower bound of the average coordination number z[combining macron](μ) of jammed packings of frictional spheres with coefficient μ. This bridges the gap between the two known isostatic limits z[combining macron]c (μ = 0) = 2D (in dimension D) and z[combining macron]c(μ → ∞) = D + 1 by extending the naive Maxwell's counting argument to frictional spheres. The theoretical framework describes different types of systems, such as non-spherical objects in arbitrary dimensions, providing a common mean-field scenario to investigate force transmission, contact networks and coordination numbers of jammed disordered packings.

  13. Coordination of self-renewal in glioblastoma by integration of adhesion and microRNA signaling.

    PubMed

    Alvarado, Alvaro G; Turaga, Soumya M; Sathyan, Pratheesh; Mulkearns-Hubert, Erin E; Otvos, Balint; Silver, Daniel J; Hale, James S; Flavahan, William A; Zinn, Pascal O; Sinyuk, Maksim; Li, Meizhang; Guda, Maheedhara R; Velpula, Kiran K; Tsung, Andrew J; Nakano, Ichiro; Vogelbaum, Michael A; Majumder, Sadhan; Rich, Jeremy N; Lathia, Justin D

    2016-05-01

    Cancer stem cells (CSCs) provide an additional layer of complexity for tumor models and targets for therapeutic development. The balance between CSC self-renewal and differentiation is driven by niche components including adhesion, which is a hallmark of stemness. While studies have demonstrated that the reduction of adhesion molecules, such as integrins and junctional adhesion molecule-A (JAM-A), decreases CSC maintenance. The molecular circuitry underlying these interactions has yet to be resolved. MicroRNA screening predicted that microRNA-145 (miR-145) would bind to JAM-A. JAM-A overexpression in CSCs was evaluated both in vitro (proliferation and self-renewal) and in vivo (intracranial tumor initiation). miR-145 introduction into CSCs was similarly assessed in vitro. Additionally, The Cancer Genome Atlas dataset was evaluated for expression levels of miR-145 and overall survival of the different molecular groups. Using patient-derived glioblastoma CSCs, we confirmed that JAM-A is suppressed by miR-145. CSCs expressed low levels of miR-145, and its introduction decreased self-renewal through reductions in AKT signaling and stem cell marker (SOX2, OCT4, and NANOG) expression; JAM-A overexpression rescued these effects. These findings were predictive of patient survival, with a JAM-A/miR-145 signature robustly predicting poor patient prognosis. Our results link CSC-specific niche signaling to a microRNA regulatory network that is altered in glioblastoma and can be targeted to attenuate CSC self-renewal. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Traffic Vehicle Counting in Jam Flow Conditions Using Low-Cost and Energy-Efficient Wireless Magnetic Sensors.

    PubMed

    Bao, Xu; Li, Haijian; Xu, Dongwei; Jia, Limin; Ran, Bin; Rong, Jian

    2016-11-06

    The jam flow condition is one of the main traffic states in traffic flow theory and the most difficult state for sectional traffic information acquisition. Since traffic information acquisition is the basis for the application of an intelligent transportation system, research on traffic vehicle counting methods for the jam flow conditions has been worthwhile. A low-cost and energy-efficient type of multi-function wireless traffic magnetic sensor was designed and developed. Several advantages of the traffic magnetic sensor are that it is suitable for large-scale deployment and time-sustainable detection for traffic information acquisition. Based on the traffic magnetic sensor, a basic vehicle detection algorithm (DWVDA) with less computational complexity was introduced for vehicle counting in low traffic volume conditions. To improve the detection performance in jam flow conditions with a "tailgating effect" between front vehicles and rear vehicles, an improved vehicle detection algorithm (SA-DWVDA) was proposed and applied in field traffic environments. By deploying traffic magnetic sensor nodes in field traffic scenarios, two field experiments were conducted to test and verify the DWVDA and the SA-DWVDA algorithms. The experimental results have shown that both DWVDA and the SA-DWVDA algorithms yield a satisfactory performance in low traffic volume conditions (scenario I) and both of their mean absolute percent errors are less than 1% in this scenario. However, for jam flow conditions with heavy traffic volumes (scenario II), the SA-DWVDA was proven to achieve better results, and the mean absolute percent error of the SA-DWVDA is 2.54% with corresponding results of the DWVDA 7.07%. The results conclude that the proposed SA-DWVDA can implement efficient and accurate vehicle detection in jam flow conditions and can be employed in field traffic environments.

  15. Innovative Engagement with NASA Data: Best Practices in Hosting a Space-Themed Game Jam Event

    NASA Astrophysics Data System (ADS)

    Mader, M. M.

    2015-12-01

    Planetary mission milestones provide key opportunities to engage the public in the day to day work and showcase the value, wonder, and innovative technologies of planetary exploration. The Royal Ontario Museum (ROM), Canada, is designing unique experiences that will allow new audiences to relate to planetary mission results, through direct interaction with planetary materials and data. Through co-creation and collaboration, we aim to encourage STEM and STEAM learning through interactive programs that are interest driven by the participants. Based on these principles, the ROM, in collaboration with the University of Toronto, is hosting a Game Jam event (see http://www.rom.on.ca/en/activities-programs/programs/game-jam). A Game Jam invites creative, motivated, and inspired game developers to work in a collaborative environment over the course of 3 days to create games linked to a theme. This year's theme is "Space Rocks". Video games, fuelled by actual mission data, capture public interest in space and science in a unique and powerful way, giving us new insight into the real challenges we have on Earth and in space. The ROM Game Jam will allow 100 game developers to draw inspiration from our collection of over 100,000 rocks, minerals, and gems, including over 500 martian, lunar, and asteroidal meteorites. Participants will learn about the history of these specimens directly from ROM experts. NASA datasets related to our collection will be highlighted and curated for this event. The games produced during the Game Jam will live on and be featured online and at numerous ROM events throughout the year. Our presentation will highlight lessons learned from this experience, best practices, and future plans.

  16. Traffic Vehicle Counting in Jam Flow Conditions Using Low-Cost and Energy-Efficient Wireless Magnetic Sensors

    PubMed Central

    Bao, Xu; Li, Haijian; Xu, Dongwei; Jia, Limin; Ran, Bin; Rong, Jian

    2016-01-01

    The jam flow condition is one of the main traffic states in traffic flow theory and the most difficult state for sectional traffic information acquisition. Since traffic information acquisition is the basis for the application of an intelligent transportation system, research on traffic vehicle counting methods for the jam flow conditions has been worthwhile. A low-cost and energy-efficient type of multi-function wireless traffic magnetic sensor was designed and developed. Several advantages of the traffic magnetic sensor are that it is suitable for large-scale deployment and time-sustainable detection for traffic information acquisition. Based on the traffic magnetic sensor, a basic vehicle detection algorithm (DWVDA) with less computational complexity was introduced for vehicle counting in low traffic volume conditions. To improve the detection performance in jam flow conditions with a “tailgating effect” between front vehicles and rear vehicles, an improved vehicle detection algorithm (SA-DWVDA) was proposed and applied in field traffic environments. By deploying traffic magnetic sensor nodes in field traffic scenarios, two field experiments were conducted to test and verify the DWVDA and the SA-DWVDA algorithms. The experimental results have shown that both DWVDA and the SA-DWVDA algorithms yield a satisfactory performance in low traffic volume conditions (scenario I) and both of their mean absolute percent errors are less than 1% in this scenario. However, for jam flow conditions with heavy traffic volumes (scenario II), the SA-DWVDA was proven to achieve better results, and the mean absolute percent error of the SA-DWVDA is 2.54% with corresponding results of the DWVDA 7.07%. The results conclude that the proposed SA-DWVDA can implement efficient and accurate vehicle detection in jam flow conditions and can be employed in field traffic environments. PMID:27827974

  17. A Comparative Study of Acousto-Optic Time-Integrating Correlators for Adaptive Jamming Cancellation

    DTIC Science & Technology

    1997-10-01

    This final report presents a comparative study of the space-integrating and time-integrating configurations of an acousto - optic correlator...systematically evaluate all existing acousto - optic correlator architectures and to determine which would be most suitable for adaptive jamming

  18. Cell jammers, GPS jammers, and other jamming devices.

    DOT National Transportation Integrated Search

    2012-10-15

    We caution consumers that it is against the law to use a cell or GPS jammer or any other type of device that blocks, : jams or interferes with authorized communications, as well as to import, advertise, sell, or ship such a device. The : FCC Enforcem...

  19. Long-Term Storage Studies on Dehydrated Ration Items and Food Packets

    DTIC Science & Technology

    1976-06-01

    and onions, bacon, corn, fruit salad, steamed fruitcake, chocolate nut bread, plums, rolled oats, raspberry and strawberry Jams , and one brand of... strawberry jam , biscuit spread, and canned peachsa ware unacceptable; scores for chocolate bera, beef and apaghetti, chicksn soup, canned plums

  20. 15. (Credit JAM) Aerial view of the McNeil Street Station, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. (Credit JAM) Aerial view of the McNeil Street Station, date unknown, but comparatively recent. Note the new filter house to the left of the settling basins. - McNeil Street Pumping Station, McNeil Street & Cross Bayou, Shreveport, Caddo Parish, LA

  1. Saddle-node bifurcation to jammed state for quasi-one-dimensional counter-chemotactic flow.

    PubMed

    Fujii, Masashi; Awazu, Akinori; Nishimori, Hiraku

    2010-07-01

    The transition of a counter-chemotactic particle flow from a free-flow state to a jammed state in a quasi-one-dimensional path is investigated. One of the characteristic features of such a flow is that the constituent particles spontaneously form a cluster that blocks the path, called a path-blocking cluster (PBC), and causes a jammed state when the particle density is greater than a threshold value. Near the threshold value, the PBC occasionally collapses on itself to recover the free flow. In other words, the time evolution of the size of the PBC governs the flux of a counter-chemotactic flow. In this Rapid Communication, on the basis of numerical results of a stochastic cellular automata (SCA) model, we introduce a Langevin equation model for the size evolution of the PBC that reproduces the qualitative characteristics of the SCA model. The results suggest that the emergence of the jammed state in a quasi-one-dimensional counterflow is caused by a saddle-node bifurcation.

  2. Stability of micronutrients and phytochemicals of grapefruit jam as affected by the obtention process.

    PubMed

    Igual, M; García-Martínez, E; Camacho, M M; Martínez-Navarrete, N

    2016-04-01

    Fruits are widely revered for their micronutrient properties. They serve as a primary source of vitamins and minerals as well as of natural phytonutrients with antioxidant properties. Jam constitutes an interesting way to preserve fruit. Traditionally, this product is obtained by intense heat treatment that may cause irreversible loss of these bioactive compounds responsible for the health-related properties of fruits. In this work, different grapefruit jams obtained by conventional, osmotic dehydration (OD) without thermal treatment and/or microwave (MW) techniques were compared in terms of their vitamin, organic acid and phytochemical content and their stability through three months of storage. If compared with heating, osmotic treatments lead to a greater loss of organic acids and vitamin C during both processing and storage. MW treatments permit jam to be obtained which has a similar nutritional and functional value than that obtained when using a conventional heating method, but in a much shorter time. © The Author(s) 2015.

  3. Self-organized criticality in asymmetric exclusion model with noise for freeway traffic

    NASA Astrophysics Data System (ADS)

    Nagatani, Takashi

    1995-02-01

    The one-dimensional asymmetric simple-exclusion model with open boundaries for parallel update is extended to take into account temporary stopping of particles. The model presents the traffic flow on a highway with temporary deceleration of cars. Introducing temporary stopping into the asymmetric simple-exclusion model drives the system asymptotically into a steady state exhibiting a self-organized criticality. In the self-organized critical state, start-stop waves (or traffic jams) appear with various sizes (or lifetimes). The typical interval < s>between consecutive jams scales as < s> ≃ Lv with v = 0.51 ± 0.05 where L is the system size. It is shown that the cumulative jam-interval distribution Ns( L) satisfies the finite-size scaling form ( Ns( L) ≃ L- vf( s/ Lv). Also, the typical lifetime ≃ Lv‧ with v‧ = 0.52 ± 0.05. The cumulative distribution Nm( L) of lifetimes satisfies the finite-size scaling form Nm( L)≃ L-1g( m/ Lv‧).

  4. ECCM Scheme against Interrupted Sampling Repeater Jammer Based on Parameter-Adjusted Waveform Design

    PubMed Central

    Wei, Zhenhua; Peng, Bo; Shen, Rui

    2018-01-01

    Interrupted sampling repeater jamming (ISRJ) is an effective way of deceiving coherent radar sensors, especially for linear frequency modulated (LFM) radar. In this paper, for a simplified scenario with a single jammer, we propose a dynamic electronic counter-counter measure (ECCM) scheme based on jammer parameter estimation and transmitted signal design. Firstly, the LFM waveform is transmitted to estimate the main jamming parameters by investigating the discontinuousness of the ISRJ’s time-frequency (TF) characteristics. Then, a parameter-adjusted intra-pulse frequency coded signal, whose ISRJ signal after matched filtering only forms a single false target, is designed adaptively according to the estimated parameters, i.e., sampling interval, sampling duration and repeater times. Ultimately, for typical jamming scenes with different jamming signal ratio (JSR) and duty cycle, we propose two particular ISRJ suppression approaches. Simulation results validate the effective performance of the proposed scheme for countering the ISRJ, and the trade-off relationship between the two approaches is demonstrated. PMID:29642508

  5. Reconfigurable Control Design for the Full X-33 Flight Envelope

    NASA Technical Reports Server (NTRS)

    Cotting, M. Christopher; Burken, John J.

    2001-01-01

    A reconfigurable control law for the full X-33 flight envelope has been designed to accommodate a failed control surface and redistribute the control effort among the remaining working surfaces to retain satisfactory stability and performance. An offline nonlinear constrained optimization approach has been used for the X-33 reconfigurable control design method. Using a nonlinear, six-degree-of-freedom simulation, three example failures are evaluated: ascent with a left body flap jammed at maximum deflection; entry with a right inboard elevon jammed at maximum deflection; and landing with a left rudder jammed at maximum deflection. Failure detection and identification are accomplished in the actuator controller. Failure response comparisons between the nominal control mixer and the reconfigurable control subsystem (mixer) show the benefits of reconfiguration. Single aerosurface jamming failures are considered. The cases evaluated are representative of the study conducted to prove the adequate and safe performance of the reconfigurable control mixer throughout the full flight envelope. The X-33 flight control system incorporates reconfigurable flight control in the existing baseline system.

  6. Jamming criticality revealed by removing localized buckling excitations.

    PubMed

    Charbonneau, Patrick; Corwin, Eric I; Parisi, Giorgio; Zamponi, Francesco

    2015-03-27

    Recent theoretical advances offer an exact, first-principles theory of jamming criticality in infinite dimension as well as universal scaling relations between critical exponents in all dimensions. For packings of frictionless spheres near the jamming transition, these advances predict that nontrivial power-law exponents characterize the critical distribution of (i) small interparticle gaps and (ii) weak contact forces, both of which are crucial for mechanical stability. The scaling of the interparticle gaps is known to be constant in all spatial dimensions d-including the physically relevant d=2 and 3, but the value of the weak force exponent remains the object of debate and confusion. Here, we resolve this ambiguity by numerical simulations. We construct isostatic jammed packings with extremely high accuracy, and introduce a simple criterion to separate the contribution of particles that give rise to localized buckling excitations, i.e., bucklers, from the others. This analysis reveals the remarkable dimensional robustness of mean-field marginality and its associated criticality.

  7. Tracking antioxidant properties and color changes in low-sugar bilberry jam as effect of processing, storage and pectin concentration

    PubMed Central

    2012-01-01

    Background Recently, an increased interest in the identification of valuable possibilities for preserving the antioxidant properties of products obtained by thermal processing of fruits rich in bioactive compounds can be noticed. In this regard, an extensive analysis is necessary in terms of thermal processed products behavior in relation to various factors. The purpose of the present study was to assess the effect which processing and storage at 20°C has on the antioxidant properties and color quality of low-sugar bilberry jam with different low-methoxyl pectin (LMP) concentrations. Results For all measured parameters, it should be noted that thermal processing induced significant alterations reported to the values registered for fresh fruit. Most important losses due to thermal processing were recorded for total monomeric anthocyanins (TMA) (81-84%), followed by L-ascorbic acid (L-AsAc) content (53-58%), total phenolics (TP) content (42-51%) and FRAP (ferric reducing antioxidant power) values (36-47%). Moreover, depreciation of the investigated compounds occurred during storage at 20°C. Jam storage for 7 months resulted in severe losses in TMA content in the range 58-72% from the value recorded one day after processing. This coincided with marked increases in polymeric color percent of these products after 7 months of storage. Also, bilberry jam storage for 7 months resulted in a decrease in L-AsAc content of 40-53% from the value recorded one day after processing, 41-57% in TP content and 33-46% from the value recorded one day after processing for FRAP values. By decreasing of LMP concentration in the jam recipe from 1 to 0.3% there has been an increase in losses of investigated compounds. Conclusion Overall, the results indicated that bilberry jams can also represent a good source of antioxidant compounds, although compared to the fruit, important losses seem to occur. Practical application of this work is that this kind of information will be very useful in optimizing the jam processing technology and storage conditions, in order to improve the quality of these products. PMID:22248151

  8. Shearing Low-frictional 3D Granular Materials

    NASA Astrophysics Data System (ADS)

    Chen, David; Zheng, Hu; Behringer, Robert

    Shear jamming occurs in frictional particles over a range of packing fractions, from random loose to random dense. Simulations show shear jamming for frictionless spheres, but over a vanishing range as the system size grows. We use packings of submerged and diffractive index-matched hydrogel particles to determine the shear-induced microscopic response of 3D, low-frictional granular systems near jamming, bridging the gap between frictionless and low friction packings. We visualize the particles by a laser scanning technique, and we track particle motion along with their interparticle contact forces from its 3D-reconstructions. NSF-DMF-1206351, NASA NNX15AD38G, William M. Keck Foundation, and DARPA.

  9. Simulating pedestrian flow by an improved two-process cellular automaton model

    NASA Astrophysics Data System (ADS)

    Jin, Cheng-Jie; Wang, Wei; Jiang, Rui; Dong, Li-Yun

    In this paper, we study the pedestrian flow with an Improved Two-Process (ITP) cellular automaton model, which is originally proposed by Blue and Adler. Simulations of pedestrian counterflow have been conducted, under both periodic and open boundary conditions. The lane formation phenomenon has been reproduced without using the place exchange rule. We also present and discuss the flow-density and velocity-density relationships of both uni-directional flow and counterflow. By the comparison with the Blue-Adler model, we find the ITP model has higher values of maximum flow, critical density and completely jammed density under different conditions.

  10. The Classroom Traffic Jam

    ERIC Educational Resources Information Center

    Edwards, Arthur W.

    1977-01-01

    The importance of energy conservation is developed in this simulation. Children draw an automobile and then are asked to drive it through the classroom roadways. When a traffic jam results, students offer ways to eliminate it. The importance of mass transportation and car pools is stressed by the teacher. (MA)

  11. Formation and maintenance of a forced pool-riffle couplet following loading of large wood

    NASA Astrophysics Data System (ADS)

    Thompson, D. M.; Fixler, S. A.

    2017-11-01

    Pool-riffle maintenance has been documented in numerous studies, but it has been almost impossible to characterize detailed natural pool-riffle formation mechanisms because of the lack of baseline data prior to pool establishment. In 2013, a study was conducted on the Blackledge River in Connecticut to document the formation of a new pool-riffle couplet on a section of river that had previously been studied from 1999 to 2001. In 2001, the study reach contained a scour hole with a residual depth of 0.08 ± 0.09 m downstream of a 1930s paired deflector with no identifiable riffle immediately downstream. At this time, a large, severely undercut, hemlock tree was noted along the left bank. Sometime between fall 2001 and 2004, the tree fell perpendicular to flow across the channel and formed a large wood (LW) jam and new pool-riffle couplet several meters downstream of the old scour hole. Pool spacing along the reach decreased from 4.47 bankfull widths (BFW) in 1999 to 3.83 BFW after the new pool-riffle couplet formed. The new pool has a residual depth, the water depth of the streambed depression below the elevation of the immediate downstream hydraulic control, of 1.36 ± 0.075 to 1.59 ± 0.075 m, which resulted from a combination of 1.32 ± 0.09 m or less of incision below the old scour hole (95.6% or less of the depth increase) and up to 0.18 ± 0.09 m of downstream deposition and associated backwater formation (13.2% or less of the depth increase). To assess dynamic stability of the pool-riffle couplet over several flood cycles, surficial fine-sediment and organic material along the reach were quantified. The 23-m-long pool stores 25.7% of the surficial fine grained sediments and 15.4% of organic material along a 214-m-long reach that includes one additional artificially created pool. An adjacent 50-m-long secondary channel impacted by the LW jam stores 65.3% of the surficial fine-grained sediments and 54.8% of organic material along the full reach.

  12. Bats adjust their pulse emission rates with swarm size in the field.

    PubMed

    Lin, Yuan; Abaid, Nicole; Müller, Rolf

    2016-12-01

    Flying in swarms, e.g., when exiting a cave, could pose a problem to bats that use an active biosonar system because the animals could risk jamming each other's biosonar signals. Studies from current literature have found different results with regard to whether bats reduce or increase emission rate in the presence of jamming ultrasound. In the present work, the number of Eastern bent-wing bats (Miniopterus fuliginosus) that were flying inside a cave during emergence was estimated along with the number of signal pulses recorded. Over the range of average bat numbers present in the recording (0 to 14 bats), the average number of detected pulses per bat increased with the average number of bats. The result was interpreted as an indication that the Eastern bent-wing bats increased their emission rate and/or pulse amplitude with swarm size on average. This finding could be explained by the hypothesis that the bats might not suffer from substantial jamming probabilities under the observed density regimes, so jamming might not have been a limiting factor for their emissions. When jamming did occur, the bats could avoid it through changing the pulse amplitude and other pulse properties such as duration or frequency, which has been suggested by other studies. More importantly, the increased biosonar activities may have addressed a collision-avoidance challenge that was posed by the increased swarm size.

  13. A theoretical framework for jamming in confluent biological tissues

    NASA Astrophysics Data System (ADS)

    Manning, M. Lisa

    2015-03-01

    For important biological functions such as wound healing, embryonic development, and cancer tumorogenesis, cells must initially rearrange and move over relatively large distances, like a liquid. Subsequently, these same tissues must undergo buckling and support shear stresses, like a solid. Our work suggests that biological tissues can accommodate these disparate requirements because the tissues are close to glass or jamming transition. While recent self propelled particle models generically predict a glass/jamming transition that is driven by packing density φ and happens at some critical φc less than unity, many biological tissues that are confluent with no gaps between cells appear to undergo a jamming transition at a constant density (φ = 1). I will discuss a new theoretical framework for predicting energy barriers and rates of cell migration in 2D tissue monolayers, and show that this model predicts a novel type of rigidity transition, which takes place at constant φ = 1 and depends only on single cell properties such as cell-cell adhesion, cortical tension and cell elasticity. This model additionally predicts that an experimentally observable parameter, the ratio between a cell's perimeter and the square root of its cross-sectional area, attains a specific, critical value at the jamming transition. We show that this prediction is precisely realized in primary epithelial cultures from human patients, with implications for asthma pathology.

  14. System-spanning dynamically jammed region in response to impact of cornstarch and water suspensions

    NASA Astrophysics Data System (ADS)

    Allen, Benjamin; Sokol, Benjamin; Mukhopadhyay, Shomeek; Maharjan, Rijan; Brown, Eric

    2018-05-01

    We experimentally characterize the structure of concentrated suspensions of cornstarch and water in response to impact. Using surface imaging and particle tracking at the boundary opposite the impactor, we observed that a visible structure and particle flow at the boundary occur with a delay after impact. We show the delay time is about the same time as the strong stress response, confirming that the strong stress response results from deformation of the dynamically jammed structure once it spans between the impactor and a solid boundary. A characterization of this strong stress response is reported in a companion paper [Maharjan, Mukhopadhyay, Allen, Storz, and Brown, Phys. Rev. E 97, 052602 (2018), 10.1103/PhysRevE.97.052602]. We observed particle flow in the outer part of the dynamically jammed region at the bottom boundary, with a net transverse displacement of up to about 5% of the impactor displacement, indicating shear at the boundary. Direct imaging of the surface of the outer part of the dynamically jammed region reveals a change in surface structure that appears the same as the result of dilation in other cornstarch suspensions. Imaging also reveals cracks, like a brittle solid. These observations suggest the dynamically jammed structure can temporarily support stress according to an effective modulus, like a soil or dense granular material, along a network of frictional contacts between the impactor and solid boundary.

  15. Geofilum rubicundum gen. nov., sp. nov., isolated from deep subseafloor sediment.

    PubMed

    Miyazaki, Masayuki; Koide, Osamu; Kobayashi, Tohru; Mori, Kozue; Shimamura, Shigeru; Nunoura, Takuro; Imachi, Hiroyuki; Inagaki, Fumio; Nagahama, Takahiko; Nogi, Yuichi; Deguchi, Shigeru; Takai, Ken

    2012-05-01

    A novel, facultatively anaerobic bacterium (strain JAM-BA0501(T)) was isolated from a deep subseafloor sediment sample at a depth of 247 m below seafloor off the Shimokita Peninsula of Japan in the north-western Pacific Ocean (Site C9001, 1180 m water depth). Cells of strain JAM-BA0501(T) were gram-negative, filamentous, non-spore-forming and motile on solid medium by gliding. Phylogenetic analysis based on the 16S rRNA gene sequence of strain JAM-BA0501(T) indicated a distant relationship to strains representing genera within the order Bacteroidales, such as Alkaliflexus imshenetskii Z-7010(T) (91.1 % similarity), Marinilabilia salmonicolor ATCC 19041(T) (86.2 %) and Anaerophaga thermohalophila Fru22(T) (89.3 %). The new isolate produced isoprenoid quinones with menaquinone MK-7 as the major component, and the predominant fatty acids were iso-C(15 : 0) and anteiso-C(15 : 0). The DNA G+C content of the isolate was 42.9 mol%. Based on its taxonomic distinctiveness, strain JAM-BA0501(T) is considered to represent a novel species of a new genus within the family Marinilabiliaceae, for which the name Geofilum rubicundum gen. nov., sp. nov. is proposed. The type strain of Geofilum rubicundum is JAM-BA0501(T) ( = JCM 15548(T)  = NCIMB 14482(T)).

  16. Blocking Junctional Adhesion Molecule C Enhances Dendritic Cell Migration and Boosts the Immune Responses against Leishmania major

    PubMed Central

    Ballet, Romain; Emre, Yalin; Jemelin, Stéphane; Charmoy, Mélanie; Tacchini-Cottier, Fabienne; Imhof, Beat A.

    2014-01-01

    The recruitment of dendritic cells to sites of infections and their migration to lymph nodes is fundamental for antigen processing and presentation to T cells. In the present study, we showed that antibody blockade of junctional adhesion molecule C (JAM-C) on endothelial cells removed JAM-C away from junctions and increased vascular permeability after L. major infection. This has multiple consequences on the output of the immune response. In resistant C57BL/6 and susceptible BALB/c mice, we found higher numbers of innate immune cells migrating from blood to the site of infection. The subsequent migration of dendritic cells (DCs) from the skin to the draining lymph node was also improved, thereby boosting the induction of the adaptive immune response. In C57BL/6 mice, JAM-C blockade after L. major injection led to an enhanced IFN-γ dominated T helper 1 (Th1) response with reduced skin lesions and parasite burden. Conversely, anti JAM-C treatment increased the IL-4-driven T helper 2 (Th2) response in BALB/c mice with disease exacerbation. Overall, our results show that JAM-C blockade can finely-tune the innate cell migration and accelerate the consequent immune response to L. major without changing the type of the T helper cell response. PMID:25474593

  17. Application of optical limiting materials in laser seeker

    NASA Astrophysics Data System (ADS)

    Niu, Yan-xiong; Wu, Dong-sheng; Zhang, Peng; Duan, Xiao-feng

    2005-01-01

    Seeker is the key component in the laser guided weapons. Although the seeker has many anti-jamming measures such as the narrowband filter in the front of the seeker and the tracking gate processing circuit in signal processing part, and these anti-jamming measures are always effective for the low power jamming laser. As far as the high power laser which can pass though the filter is concerned, it is easy to make the detector saturate, which will lead the seeker into losing the capturing and tracking capability for the target. In the past ten years, the applied research of organic nonlinear materials which is according to the optical limiting effect has had great development in the laser technology field. And some of these materials have been put into practicability phase. This kind of materials is characterized by its wide absorption spectrum, obvious nonlinear effect and quick response speed, all of which excel the mineral. If this kind of materials can be applied into the laser seeker, it will remedy the laser seeker's defect that its protective capability is weak for the high power jamming laser. The whole applied scheme is present in this paper. And the anti-jamming capability of seeker is analysed constructively before and after the organic matter is applied in the laser seeker. The result indicates that this kind of method is viable in theory.

  18. Modeling no-jam traffic in ant trails: a pheromone-controlled approach

    NASA Astrophysics Data System (ADS)

    Guo, Ning; Hu, Mao-Bin; Jiang, Rui; Ding, Jianxun; Ling, Xiang

    2018-05-01

    The experiment in John et al (2009 Phys. Rev. Lett. 102 108001) shows that when ants move in a single-file trail, no jam emerges even at very high densities. We propose a self-propelled model of ant traffic to reproduce the fundamental diagram without a jammed branch. In this model, ants can adjust their desired velocities actively by perceiving pheromone concentration near the front of the trail. Moreover, ants will bear the repulsive force when they have physical contact with neighbors. The velocity in the simulation decreases slightly with increasing density, which captures the main feature observed in the experiment. Distributions of velocity and distance headway basically also conform to the experimental ones.

  19. 78 FR 275 - Airworthiness Directives; REIMS Aviation S.A. Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-03

    ... horizontal tail structure, which could cause the elevator pushrod to jam and could result in loss of control... corrected, could lead to failure of a pushrod and consequent jamming of the elevator controls, possibly resulting in loss of control of the aeroplane. For the reasons described above, this AD requires inspection...

  20. Evaluation of Electronic Counter-Countermeasures Training Using Microcomputer-Based Technology: Phase I. Basic Jamming Recognition.

    ERIC Educational Resources Information Center

    Gardner, Susan G.; Ellis, Burl D.

    Seven microcomputer-based training systems with videotape players/monitors were installed to provide electronic counter-countermeasures (ECCM) simulation training, drill and practice, and performance testing for three courses at a fleet combat training center. Narrated videotape presentations of simulated and live jamming followed by a drill and…

  1. Responses of experimental river corridors to engineered log jams

    USDA-ARS?s Scientific Manuscript database

    Physical models of the Big Sioux River, SD, were constructed to assess the impact on flow, drag, and bed erosion and deposition in response to the installation of two different types of engineered log jams (ELJs). A fixed-bed model focused on flow velocity and forces acting on an instrumented ELJ, a...

  2. Electronic Warfare in Operations

    DTIC Science & Technology

    2009-02-25

    intelligence-related portion of the EW running estimate. Provides input to the restricted frequency list by recommending guarded frequencies. Provides...preparation of the restricted frequency list and issuance of emissions control guidance. Coordinates frequency allotment, assignment, and use... frequency list . Validating and approving or denying cease-jamming requests. Maintaining situational awareness of all jamming-capable systems in the area

  3. Effects of Cyclic Prefix Jamming Versus Noise Jamming in OFDM Signals

    DTIC Science & Technology

    2011-03-01

    is even found in the Bluetooth technology used in something as common as videogame con- trollers. It is now a more universally-accepted standard for...Dec 2009. [Online]. Avail- able: http://www.brighthub.com/electronics/gps/articles/60598.aspx. 8. LTE Product Design, “LTE Benefits v 3.3,” May

  4. Jam Injuries of the Finger: Diagnosis and Management of Injuries to the Interphalangeal Joints Across Multiple Sports and Levels of Experience.

    PubMed

    Carruthers, Katherine H; Skie, Martin; Jain, Margaret

    2016-09-01

    Jam injuries of the finger are frequently encountered in general orthopaedic and sports medicine practice. The finger joints in particular are very susceptible to traumatic injury, but in the absence of severe deformity, digital trauma is often downplayed in the hopes of a more rapid return to game play. Articles published from 1966 to 2015 were reviewed to capture historical and current views on the presentation, diagnosis, and treatment of jam injuries in athletes. Clinical review. Level 5. Although jam injuries are frequently grouped together, they represent a host of injuries that can be challenging to differentiate. A thorough knowledge of finger joint anatomy and injury mechanism is critical to perform an appropriate examination, establish an accurate diagnosis, and identify a treatment plan for each patient. Every member of the athletic care team must be aware of the spectrum of digital injuries, including the basic signs present on examination, which may indicate the need for more formal workup. Additionally, preventing injury through athlete education is paramount to athletic care. © 2016 The Author(s).

  5. Microscopic Origins of Shear Jamming for 2D Frictional Grains

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Ren, Jie; Dijksman, Joshua A.; Zheng, Hu; Behringer, Robert P.

    2018-05-01

    Shear jamming (SJ) occurs for frictional granular materials with packing fractions ϕ in ϕS<ϕ <ϕJ0, when the material is subject to shear strain γ starting from a force-free state. Here, ϕJμ is the isotropic jamming point for particles with a friction coefficient μ . SJ states have mechanically stable anisotropic force networks, e.g., force chains. Here, we investigate the origins of SJ by considering small-scale structures—trimers and branches—whose response to shear leads to SJ. Trimers are any three grains where the two outer grains contact a center one. Branches occur where three or more quasilinear force chain segments intersect. Certain trimers respond to shear by compressing and bending; bending is a nonlinear symmetry-breaking process that can push particles in the dilation direction faster than the affine dilation. We identify these structures in physical experiments on systems of two-dimensional frictional discs, and verify their role in SJ. Trimer bending and branch creation both increase Z above Ziso≃3 needed for jamming 2D frictional grains, and grow the strong force network, leading to SJ.

  6. Degradation of anthocyanins and anthocyanidins in blueberry jams/stuffed fish.

    PubMed

    Queiroz, Filipa; Oliveira, Carla; Pinho, Olívia; Ferreira, Isabel M P L V O

    2009-11-25

    This study examined the effects of cooking on the degradation of anthocyanins and anthocyanidins of blueberries (Vaccinium corymbosum L.) from cultivar Bluecrop. Fruits were used to prepare jams with different degrees Brix and stuffed fish. A systematic evaluation of the degradation of anthocyanins and anthocyanidins of blueberries was performed; for that purpose an HPLC/DAD method was used to determine anthocyanin profile and anthocyanidin contents in fresh and cooked blueberries and in jams. Ten anthocyanins were separated and monitored in methanolic extracts. Of the six common anthocyanidins, four were identified in the hydrolysates, namely, delphinidin, cyanidin, petunidin and malvidin. Percentage of degradation of anthocyanins and anthocyanidins in jams is highly dependent on degrees Brix: 64-76 degrees Brix led to 20-30% degradation, whereas 80 degrees Brix resulted in degradation between 50 and 60%. Percentage of degradation of anthocyanins in whole blueberries cooked in stuffed fish ranged between 45 and 50%, however, for anthocyanidins, the percentage of degradation was significantly lower, between 12 and 30%, indicating that this cooking procedure can preserve anthocyanidin degradation.

  7. Climatic effects on ice-jam flooding of the Peace-Athabasca Delta

    NASA Astrophysics Data System (ADS)

    Beltaos, S.; Prowse, T.; Bonsal, B.; Mackay, R.; Romolo, L.; Pietroniro, A.; Toth, B.

    2006-12-01

    The Peace-Athabasca Delta (PAD) in northern Alberta is one of the world's largest inland freshwater deltas, home to large populations of waterfowl, muskrat, beaver, and free-ranging wood bison. In recent decades, a paucity of ice-jam flooding in the lower Peace River has resulted in prolonged dry periods and considerable reduction in the area covered by lakes and ponds that provide habitat for aquatic life in the PAD region. Building on previous work that has identified the salient hydro-climatic factors, the frequency of ice-jam floods is considered under present (1961-1990) and future (2070-2099) climatic conditions. The latter are determined using temperature and precipitation output from the Canadian Climate Centre's second-generation Global Climate Model (CGCM2) for two different greenhouse-gas/sulphate emission scenarios. The analysis indicates that the ice season is likely to be reduced by 2-4 weeks, while future ice covers would be slightly thinner than they are at present. More importantly, a large part of the Peace River basin is expected to experience frequent and sustained mid-winter thaws, leading to significant melt and depleted snowpacks in the spring. Using an empirical relationship between ice-jam flood occurrence and size of the spring snowpack, a severe reduction in the frequency of ice-jam flooding is predicted under both future-climate scenarios that were considered. In turn, this trend is likely to accelerate the loss of aquatic habitat in the PAD region. Implications for potential mitigation and adaptation strategies are discussed. Copyright

  8. The glass and jamming transitions in dense granular matter

    NASA Astrophysics Data System (ADS)

    Coulais, Corentin; Candelier, Raphaël; Dauchot, Olivier

    2013-06-01

    Everyday life tells us that matter acquires rigidity either when it cools down, like lava flows which turn into solid rocks, or when it is compacted, like tablets simply formed by powder compression. As suggested by these examples, solidification is not the sole privilege of crystals but also happens for disordered media such as glass formers, granular media, foams, emulsions and colloidal suspensions. Fifteen years ago the "Jamming paradigm" emerged to encompass in a unique framework the glass transition and the emergence of yield stress, two challenging issues in modern condensed matter physics. One must realize how bold this proposal was, given that the glass transition is a finite temperature transition governing the dynamical properties of supercooled liquids, while Jamming is essentially a zero temperature, zero external stress and purely geometric transition which occurs when a given packing of particles reaches the maximum compression state above which particles start to overlap. More recently, the observation of remarkable scaling properties on the approach to jamming led to the conjecture that this zero temperature "critical point" could determine the properties of dense particle systems within a region of the parameter space to be determined, which in principle could include thermal and stressed systems. Fifteen years of intense theoretical and experimental work later, what have we learned about Jamming and glassy dynamics? In this paper, we discuss these issues in the light of the experiments we have been conducting with vibrated grains.

  9. The impact of engineered log jams on bed morphology, flow characteristics and habitat diversity under low flow

    NASA Astrophysics Data System (ADS)

    Ockelford, A.; Crabbe, E.; Crowe Curran, J.; Parsons, D. R.; Shugar, D. H.; Burr, A.; Kennedy, K.; Coe, T.

    2017-12-01

    Wood jams are an important and ubiquitous feature of many river channels with their number, placement and spatial configuration determining their influence on channel morphology and flow characteristics. Further, engineered log jams are increasingly being constructed to develop, restore or maintain habitat diversity for key indicator specie such as salmon. However, questions remain as to the inter relationships between the logjams, the channel morphology, the flow characteristics and the habitat diversity under low flow conditions. Four engineered and one natural logjam were analyzed over a 3km reach of the South Fork Nooksack River, North Cascades National Park, USA during the summer low flow period. Non-intrusive three-dimensional topographic surveys of the river bed morphology surrounding the logjams was collected using a shallow water multibeam system. This was combined with terrestrial laser scans of the structure of the log jams above the waterline. Co-located high resolution flow velocity data was collected using an Acoustic Doppler Current Profiler. Discussion concentrates on providing a quantitative understanding of the effect of logjams on reach scale morphodynamics under low flow conditions. Multivariate statistical analysis of flow and topographic data in combination with log jam morphology allow the influences of the logjam on habitat suitability for key indicator species to be quantified. Results will be framed in terms of the effectiveness of the different logjam configurations on generating and promoting habitat diversity such as to aid future design and implementation.

  10. Interdisciplinary approach to hydrological hazard mitigation and disaster response and effects of climate change on the occurrence of flood severity in central Alaska

    NASA Astrophysics Data System (ADS)

    Kontar, Y. Y.; Bhatt, U. S.; Lindsey, S. D.; Plumb, E. W.; Thoman, R. L.

    2015-06-01

    In May 2013, a massive ice jam on the Yukon River caused flooding that destroyed much of the infrastructure in the Interior Alaska village of Galena and forced the long-term evacuation of nearly 70% of its residents. This case study compares the communication efforts of the out-of-state emergency response agents with those of the Alaska River Watch program, a state-operated flood preparedness and community outreach initiative. For over 50 years, the River Watch program has been fostering long-lasting, open, and reciprocal communication with flood prone communities, as well as local emergency management and tribal officials. By taking into account cultural, ethnic, and socioeconomic features of rural Alaskan communities, the River Watch program was able to establish and maintain a sense of partnership and reliable communication patterns with communities at risk. As a result, officials and residents in these communities are open to information and guidance from the River Watch during the time of a flood, and thus are poised to take prompt actions. By informing communities of existing ice conditions and flood threats on a regular basis, the River Watch provides effective mitigation efforts in terms of ice jam flood effects reduction. Although other ice jam mitigation attempts had been made throughout US and Alaskan history, the majority proved to be futile and/or cost-ineffective. Galena, along with other rural riverine Alaskan communities, has to rely primarily on disaster response and recovery strategies to withstand the shock of disasters. Significant government funds are spent on these challenging efforts and these expenses might be reduced through an improved understanding of both the physical and climatological principals behind river ice breakup and risk mitigation. This study finds that long term dialogue is critical for effective disaster response and recovery during extreme hydrological events connected to changing climate, timing of river ice breakup, and flood occurrence in rural communities of the Far North.

  11. Interactions among forest age, valley and channel morphology, and log jams regulate animal production in mountain streams

    NASA Astrophysics Data System (ADS)

    Walters, D. M.; Venarsky, M. P.; Hall, R. O., Jr.; Herdrich, A.; Livers, B.; Winkelman, D.; Wohl, E.

    2014-12-01

    Forest age and local valley morphometry strongly influence the form and function of mountain streams in Colorado. Streams in valleys with old growth forest (>350 years) have extensive log jam complexes that create multi-thread channel reaches with extensive pool habitat and large depositional areas. Streams in younger unmanaged forests (e.g., 120 years old) and intensively managed forests have much fewer log jams and lower wood loads. These are single-thread streams dominated by riffles and with little depositional habitat. We hypothesized that log jam streams would retain more organic matter and have higher metabolism, leading to greater production of stream macroinvertebrates and trout. Log jam reaches should also have greater emergence of adult aquatic insects, and consequently have higher densities of riparian spiders taking advantage of these prey. Surficial organic matter was 3-fold higher in old-growth streams, and these streams had much higher ecosystem respiration. Insect production (g m2 y-1) was similar among forest types, but fish density was four times higher in old-growth streams with copious log jams. However, at the valley scale, insect production (g m-1 valley-1) and trout density (number m-1 valley-1) was 2-fold and 10-fold higher, respectively, in old growth streams. This finding is because multi-thread reaches created by log jams have much greater stream area and stream length per meter of valley than single-thread channels. The more limited response of macroinvertebrates may be related to fish predation. Trout in old growth streams had similar growth rates and higher fat content than fish in other streams in spite of occurring at higher densities and higher elevation/colder temperatures. This suggests that the positive fish effect observed in old growth streams is related to greater availability of invertebrate prey, which is consistent with our original hypothesis. Preliminary analyses suggest that spider densities do not respond strongly to differences in stream morphology, but rather to changes in elevation and associated air temperatures. These results demonstrate strong indirect effects of forest age and valley morphometry on organic matter storage and animal secondary production in streams that is mediated by direct effects associated with the presence or absence of logjams.

  12. Maternal Dietary Patterns and Gestational Diabetes Risk: A Case-Control Study.

    PubMed

    Sedaghat, Fatemeh; Akhoondan, Mahdieh; Ehteshami, Mehdi; Aghamohammadi, Vahideh; Ghanei, Nila; Mirmiran, Parvin; Rashidkhani, Bahram

    2017-01-01

    Maternal dietary patterns play an important role in the progress of gestational diabetes mellitus (GDM). The aim of the present study was to explore this association. A total of 388 pregnant women (122 case and 266 control) were included. Dietary intake were collected using a food frequency questionnaire (FFQ). GDM was diagnosed using a 100-gram, 3-hour oral glucose tolerance test. Dietary pattern was identified by factor analysis. To investigate the relation between each of the independent variables with gestational diabetes, the odds ratio (OR) was calculated. Western dietary pattern was high in sweets, jams, mayonnaise, soft drinks, salty snacks, solid fat, high-fat dairy products, potatoes, organ meat, eggs, red meat, processed foods, tea, and coffee. The prudent dietary pattern was characterized by higher intake of liquid oils, legumes, nuts and seeds, fruits and dried fruits, fish and poultry whole, and refined grains. Western dietary pattern was associated with increased risk of gestational diabetes mellitus before and after adjustment for confounders (OR = 1.97, 95% CI: 1.27-3.04, OR = 1.68, 95% CI: 1.04-2.27). However, no significant association was found for a prudent pattern. These findings suggest that the Western dietary pattern was associated with an increased risk of GDM.

  13. 78 FR 19088 - Airworthiness Directives; REIMS AVIATION S.A. Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-29

    ... pushrod to fail. Failure of the elevator pushrod could cause the flight control to jam, which could result... the elevator pushrod to jam and could result in loss of control. We are issuing this AD to require... controls, possibly resulting in loss of control of the aeroplane. For the reasons described above, this AD...

  14. Jelly Jam, the People Preserver. Teaching Guide. An Environmental Manual for Teachers and Parents. Revised Edition.

    ERIC Educational Resources Information Center

    Friedman, Judi

    Designed for teachers of students in grades 2 through 4, this teaching guide for a self-teaching, interdisciplinary reading and activity program comprises a complete supplemental reading, science, and social studies approach to the problems of environmental pollution. Jelly Jam, a caring little animal, helps children understand how air, water, and…

  15. Flow, turbulence, and drag associated with engineered log jams in a fixed-bed experimental channel

    USDA-ARS?s Scientific Manuscript database

    Engineered log jams (ELJs) have become attractive alternatives for river restoration and bank stabilization programs. Yet the effects of ELJs on turbulent flow and the fluid forces acting on the ELJs are not well known, and such information could inform design criteria. In this study, a fixed-bed ph...

  16. Study of the Efficiency of the Polarization-Diversity Reception of a Very Low Frequency Signal Against the Background of Atmospheric Noise and Jamming in the Communication-Channel Model

    NASA Astrophysics Data System (ADS)

    Metelev, S. A.; Lvov, A. V.

    2017-12-01

    We propose a model of forming the signals and interference in the very low frequency wave range. Using this model, we determine the potentials of the space-polarization interference compensators in a communication channel with natural interference and jamming.

  17. Jelly Jam, the People Preserver. An Environmental Self-Teaching Activity Book. Bermuda Edition.

    ERIC Educational Resources Information Center

    Friedman, Judi

    Designed for students in grades 2 through 4, this self-teaching, interdisciplinary reading and activity program approaches the environmental conditions, the state of natural resources, and the problems of pollution in Bermuda. A caring little animal named Jelly Jam is used to help children understand how air, water, and land pollution affect their…

  18. The role of JAM-A in inflammatory bowel disease: unrevealing the ties that bind.

    PubMed

    Vetrano, Stefania; Danese, Silvio

    2009-05-01

    Tight junctions (TJ) are junctional proteins whose function is to maintain an intact intestinal epithelial barrier and regulate the paracellular movement of water and solutes. Altered TJ structure and epithelial permeability are observed in inflammatory bowel disease and seem to have an important role in the pathogenesis of these diseases. Junctional adhesion molecule-A (JAM-A) is a protein expressed at tight junctions of epithelial and endothelial cells, as well as on circulating leukocytes. Its function at tight junctions appears to be crucial as an extracellular adhesive molecule in the direct regulation of intestinal barrier function. This review focuses on the role of JAM-A in controlling mucosal homeostasis by regulating the integrity and permeability of epithelial barrier function.

  19. Soft modes in the perceptron model for jamming.

    NASA Astrophysics Data System (ADS)

    Franz, Silvio

    I will show how a well known neural network model \\x9Dthe perceptro provides a simple solvable model of glassy behavior and jamming. The glassy minima of the energy function of this model can be studied in full analytic detail. This allows the identification of two kind of soft modes the first ones associated to the existence a marginal glass phase and a hierarchical structure of the energy landscape, the second ones associated to isostaticity and marginality of jamming. These results highlight the universality of the spectrum of normal modes in disordered systems, and open the way toward a detailed analytical understanding of the vibrational spectrum of low-temperature glasses. This work was supported by a Grant from the Simons Foundation (454941 to Silvio Franz).

  20. A Homozygous Mutation in the Tight-Junction Protein JAM3 Causes Hemorrhagic Destruction of the Brain, Subependymal Calcification, and Congenital Cataracts

    PubMed Central

    Mochida, Ganeshwaran H.; Ganesh, Vijay S.; Felie, Jillian M.; Gleason, Danielle; Hill, R. Sean; Clapham, Katie Rose; Rakiec, Daniel; Tan, Wen-Hann; Akawi, Nadia; Al-Saffar, Muna; Partlow, Jennifer N.; Tinschert, Sigrid; Barkovich, A. James; Ali, Bassam; Al-Gazali, Lihadh; Walsh, Christopher A.

    2010-01-01

    The tight junction, or zonula occludens, is a specialized cell-cell junction that regulates epithelial and endothelial permeability, and it is an essential component of the blood-brain barrier in the cerebrovascular endothelium. In addition to functioning as a diffusion barrier, tight junctions are also involved in signal transduction. In this study, we identified a homozygous mutation in the tight-junction protein gene JAM3 in a large consanguineous family from the United Arab Emirates. Some members of this family had a rare autosomal-recessive syndrome characterized by severe hemorrhagic destruction of the brain, subependymal calcification, and congenital cataracts. Their clinical presentation overlaps with some reported cases of pseudo-TORCH syndrome as well as with cases involving mutations in occludin, another component of the tight-junction complex. However, massive intracranial hemorrhage distinguishes these patients from others. Homozygosity mapping identified the disease locus in this family on chromosome 11q25 with a maximum multipoint LOD score of 6.15. Sequence analysis of genes in the candidate interval uncovered a mutation in the canonical splice-donor site of intron 5 of JAM3. RT-PCR analysis of a patient lymphoblast cell line confirmed abnormal splicing, leading to a frameshift mutation with early termination. JAM3 is known to be present in vascular endothelium, although its roles in cerebral vasculature have not been implicated. Our results suggest that JAM3 is essential for maintaining the integrity of the cerebrovascular endothelium as well as for normal lens development in humans. PMID:21109224

  1. Carbon storage in mountainous headwater streams: The role of old-growth forest and logjams

    NASA Astrophysics Data System (ADS)

    Beckman, Natalie D.; Wohl, Ellen

    2014-03-01

    We measured wood piece characteristics and particulate organic matter (POM) in stored sediments in 30 channel-spanning logjams along headwater streams in the Colorado Front Range, USA. Logjams are on streams flowing through old-growth (>200 years), disturbed (<200 years, natural disturbance), or altered (<200 years, logged) subalpine conifer forest. We examined how channel-spanning logjams influence riverine carbon storage (measured as the total volatile carbon fraction of stored sediment and instream wood). Details of carbon storage associated with logjams reflect age and disturbance history of the adjacent riparian forest. A majority of the carbon within jams is stored as wood. Wood volume is significantly larger in old-growth and disturbed reaches than in altered reaches. Carbon storage also differs in relation to forest characteristics. Sediment from old-growth streams has significantly higher carbon content than altered streams. Volume of carbon stored in jam sediment correlates with jam wood volume in old-growth and disturbed forests, but not in altered forests. Forest stand age and wood volume within a jam explain 43% of the variation of carbon stored in jam sediment. First-order estimates of the amount of carbon stored within a stream reach show an order of magnitude difference between disturbed and altered reaches. Our first-order estimates of reach-scale riverine carbon storage suggest that the carbon per hectare stored in streams is on the same order of magnitude as the carbon stored as dead biomass in terrestrial subalpine forests of the region. Of particular importance, old-growth forest correlates with more carbon storage in rivers.

  2. 75 FR 28478 - Airworthiness Directives; Eurocopter France (ECF) Model AS332L1 and AS332L2 Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-21

    ... fully tilted the seat shoulder harness could become jammed between the seat and bulkhead. This condition, if not corrected, could result in the shoulder harness binding and causing the inertial reel to... seat backrest is fully tilted, there is a risk of the shoulder harness jamming between the seat and...

  3. Popular Culture, Cultural Resistance, and Anticonsumption Activism: An Exploration of Culture Jamming as Critical Adult Education

    ERIC Educational Resources Information Center

    Sandlin, Jennifer A.

    2007-01-01

    This chapter examines popular culture as a site of cultural resistance. Specifically, it explores how "culture jamming," a cultural-resistance activity, can be a form of adult education. It examines adult education and learning as it intersects with both consumerism and popular culture. Focus is placed on a growing social movement of individuals…

  4. Flood plain and channel dynamics of the Quinault and Queets Rivers, Washington, USA

    USGS Publications Warehouse

    O'Connor, J. E.; Jones, M.A.; Haluska, T.L.

    2003-01-01

    Observations from this study and previous studies on the Queets River show that channel and flood-plain dynamics and morphology are affected by interactions between flow, sediment, and standing and entrained wood, some of which likely involve time frames similar to 200–500-year flood-plain half-lives. On the upper Quinault River and Queets River, log jams promote bar growth and consequent channel shifting, short-distance avulsions, and meander cutoffs, resulting in mobile and wide active channels. On the lower Quinault River, large portions of the channel are stable and flow within vegetated flood plains. However, locally, channel-spanning log jams have caused channel avulsions within reaches that have been subsequently mobile for several decades. In all three reaches, log jams appear to be areas of conifer germination and growth that may later further influence channel and flood-plain conditions on long time scales by forming flood-plain areas resistant to channel migration and by providing key members of future log jams. Appreciation of these processes and dynamics and associated temporal and spatial scales is necessary to formulate effective long-term approaches to managing fluvial ecosystems in forested environments.

  5. The Packing and Jamming of Real Polymer Chains

    NASA Astrophysics Data System (ADS)

    Xue, Gi; Teng, Chao

    2010-03-01

    Jamming make a hope to unifying theme for granular materials, glasses and threshold behavior in materials. Here we experimentally prepared a real polymer (polystyrene, PS) with various packing density which was described by inter-segment distances (r) detected by NMR. We cold-pressed PS powder at 20 ^oC (with shearing) and then released the pressure. We found that a transparent pellet with high modulus was formed. PS is usually manufactured by a hot-melting process at 180 ^oC. The rigidity and transparency of our cold-pressed pellet and its accuracy of the form are testimony that the PS powder once flowed under cold compression to take the shape of its container. This shear-induced melting is exactly what is expected within the jamming picture. By measuring r and the applied pressure σ under which the polymer chain starts to flow, we drew a schematic jamming phase diagram. The σ-r curve for a real polymer is convex at r < 0.5 nm, while it becomes concave as r is larger than 1 nm. It is the van der Waals attraction that acts as a confining pressure on segments, and makes the σ-r curve convex on the very short scales.

  6. Jamming Behavior of Domain Walls in an Antiferromagnetic Film

    NASA Astrophysics Data System (ADS)

    Sinha, Sunil

    2014-03-01

    Over the last few years, attempts have been made to unify many aspects of the freezing behavior of glasses, granular materials, gels, supercooled liquids, etc. into a general conceptual framework of what is called jamming behavior. This occurs when particles reach packing densities high enough that their motions become highly restricted. A general phase diagram has been proposed onto which various materials systems, e.g glasses or granular materials, can be mapped. We will discuss some recent applications of resonant and non-resonant soft X-ray Grazing Incidence Scattering to mesoscopic science, for example the study of magnetic domain wall fluctuations in thin films. For these studies, we use resonant magnetic x-ray scattering with a coherent photon beam and the technique of X-ray Photon Correlation Spectroscopy. find that at the ordering temperature the domains of an antiferromagnetic system, namely Dysprosium metal, behave very much also like a jammed system and their associated fluctuations exhibit behavior which exhibit some of the universal characteristics of jammed systems, such as non-exponential relaxation and Vogel-Fulcher type freezing. Work supported by Basic Energy Sciences, U.S. Dept. of Energy under Grant Number: DE-SC0003678.

  7. Sculpting Pickering Emulsion Droplets by Arrest and Jamming

    NASA Astrophysics Data System (ADS)

    Burke, Christopher; Wei, Zengyi; Caggioni, Marco; Spicer, Patrick; Atherton, Tim

    Pickering emulsion droplets can be arrested into non-spherical shapes--useful for applications such as active delivery--through a general mechanism of deformation followed by absorption of additional colloidal particles onto the interface, relaxation of the droplet caused by surface tension and arrest at some point due to crowding of the particles. We perform simulations of the arrest process to clarify the relative importance of diffusive rearrangement of particles and collective forcing due to surface evolution. Experiment and theory are compared, giving insight into the stability of the resulting capsules and the robustness of the production process for higher-throughput production in, for example, microfluidic systems. We adapt theoretical tools from the jamming literature to better understand the arrested configurations and long timescale evolution of the system: using linear programming and a penalty function approach, we identify unjamming motions in kinetically arrested states. We propose a paradigm of ``metric jamming'' to describe the limiting behavior of this class of system: a structure is metric-jammed if it is stable with respect to collective motion of the particles as well as evolution of the hypersurface on which the packing is embedded. Supported by a Cottrell Award from the Research Corporation for Science Advancement.

  8. Cargo crowding at actin-rich regions along axons causes local traffic jams.

    PubMed

    Sood, Parul; Murthy, Kausalya; Kumar, Vinod; Nonet, Michael L; Menon, Gautam I; Koushika, Sandhya P

    2018-03-01

    Steady axonal cargo flow is central to the functioning of healthy neurons. However, a substantial fraction of cargo in axons remains stationary up to several minutes. We examine the transport of precursors of synaptic vesicles (pre-SVs), endosomes and mitochondria in Caenorhabditis elegans touch receptor neurons, showing that stationary cargo are predominantly present at actin-rich regions along the neuronal process. Stationary vesicles at actin-rich regions increase the propensity of moving vesicles to stall at the same location, resulting in traffic jams arising from physical crowding. Such local traffic jams at actin-rich regions are likely to be a general feature of axonal transport since they also occur in Drosophila neurons. Repeated touch stimulation of C. elegans reduces the density of stationary pre-SVs, indicating that these traffic jams can act as both sources and sinks of vesicles. This suggests that vesicles trapped in actin-rich regions are functional reservoirs that may contribute to maintaining robust cargo flow in the neuron. A video abstract of this article can be found at: Video S1; Video S2. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. An SDR-Based Real-Time Testbed for GNSS Adaptive Array Anti-Jamming Algorithms Accelerated by GPU

    PubMed Central

    Xu, Hailong; Cui, Xiaowei; Lu, Mingquan

    2016-01-01

    Nowadays, software-defined radio (SDR) has become a common approach to evaluate new algorithms. However, in the field of Global Navigation Satellite System (GNSS) adaptive array anti-jamming, previous work has been limited due to the high computational power demanded by adaptive algorithms, and often lack flexibility and configurability. In this paper, the design and implementation of an SDR-based real-time testbed for GNSS adaptive array anti-jamming accelerated by a Graphics Processing Unit (GPU) are documented. This testbed highlights itself as a feature-rich and extendible platform with great flexibility and configurability, as well as high computational performance. Both Space-Time Adaptive Processing (STAP) and Space-Frequency Adaptive Processing (SFAP) are implemented with a wide range of parameters. Raw data from as many as eight antenna elements can be processed in real-time in either an adaptive nulling or beamforming mode. To fully take advantage of the parallelism resource provided by the GPU, a batched method in programming is proposed. Tests and experiments are conducted to evaluate both the computational and anti-jamming performance. This platform can be used for research and prototyping, as well as a real product in certain applications. PMID:26978363

  10. Influence of anisotropy on percolation and jamming of linear k-mers on square lattice with defects

    NASA Astrophysics Data System (ADS)

    Tarasevich, Yu Yu; Laptev, V. V.; Burmistrov, A. S.; Shinyaeva, T. S.

    2015-09-01

    By means of the Monte Carlo simulation, we study the layers produced by the random sequential adsorption of the linear rigid objects (k-mers also known as rigid or stiff rods, sticks, needles) onto the square lattice with defects in the presence of an external field. The value of k varies from 2 to 32. The point defects randomly and uniformly placed on the substrate hinder adsorption of the elongated objects. The external field affects isotropic deposition of the particles, consequently the deposited layers are anisotropic. We study the influence of the defect concentration, the length of the objects, and the external field on the percolation threshold and the jamming concentration. Our main findings are (i) the critical defect concentration at which the percolation never occurs even at jammed state decreases for short k-mers (k < 16) and increases for long k-mers (k > 16) as anisotropy increases, (ii) the corresponding critical k-mer concentration decreases with anisotropy growth, (iii) the jamming concentration decreases drastically with growth of k-mer length for any anisotropy, (iv) for short k-mers, the percolation threshold is almost insensitive to the defect concentration for any anisotropy.

  11. Shear thickening and jamming in suspensions of different particle shapes

    NASA Astrophysics Data System (ADS)

    Brown, Eric; Zhang, Hanjun; Forman, Nicole; Betts, Douglas; Desimone, Joseph; Maynor, Benjamin; Jaeger, Heinrich

    2012-02-01

    We investigated the role of particle shape on shear thickening and jamming in densely packed suspensions. Various particle shapes were fabricated including rods of different aspect ratios and non-convex hooked rods. A rheometer was used to measure shear stress vs. shear rate for a wide range of packing fractions for each shape. Each suspensions exhibits qualitatively similar Discontinuous Shear Thickening, in which the logarithmic slope of the stress vs. shear rate has the same scaling for each convex shape and diverges at a critical packing fraction φc. The value of φc varies with particle shape, and coincides with the onset of a yield stress, a.k.a. the jamming transition. This suggests the jamming transition controls shear thickening, and the only effect of particle shape on steady state bulk rheology of convex particles is a shift of φc. Intriguingly, viscosity curves for non-convex particles do not collapse on the same set as convex particles, showing strong shear thickening over a wider range of packing fraction. Qualitative shape dependence was only found in steady state rheology when the system was confined to small gaps where large aspect ratio particle are forced to order.

  12. An SDR-Based Real-Time Testbed for GNSS Adaptive Array Anti-Jamming Algorithms Accelerated by GPU.

    PubMed

    Xu, Hailong; Cui, Xiaowei; Lu, Mingquan

    2016-03-11

    Nowadays, software-defined radio (SDR) has become a common approach to evaluate new algorithms. However, in the field of Global Navigation Satellite System (GNSS) adaptive array anti-jamming, previous work has been limited due to the high computational power demanded by adaptive algorithms, and often lack flexibility and configurability. In this paper, the design and implementation of an SDR-based real-time testbed for GNSS adaptive array anti-jamming accelerated by a Graphics Processing Unit (GPU) are documented. This testbed highlights itself as a feature-rich and extendible platform with great flexibility and configurability, as well as high computational performance. Both Space-Time Adaptive Processing (STAP) and Space-Frequency Adaptive Processing (SFAP) are implemented with a wide range of parameters. Raw data from as many as eight antenna elements can be processed in real-time in either an adaptive nulling or beamforming mode. To fully take advantage of the parallelism resource provided by the GPU, a batched method in programming is proposed. Tests and experiments are conducted to evaluate both the computational and anti-jamming performance. This platform can be used for research and prototyping, as well as a real product in certain applications.

  13. Jamming and condensation in one-dimensional driven flow

    NASA Astrophysics Data System (ADS)

    Soh, Hyungjoon; Ha, Meesoon; Jeong, Hawoong

    2018-03-01

    We revisit the slow-bond (SB) problem of the one-dimensional (1D) totally asymmetric simple exclusion process (TASEP) with modified hopping rates. In the original SB problem, it turns out that a local defect is always relevant to the system as jamming, so that phase separation occurs in the 1D TASEP. However, crossover scaling behaviors are also observed as finite-size effects. In order to check if the SB can be irrelevant to the system with particle interaction, we employ the condensation concept in the zero-range process. The hopping rate in the modified TASEP depends on the interaction parameter and the distance up to the nearest particle in the moving direction, besides the SB factor. In particular, we focus on the interplay of jamming and condensation in the current-density relation of 1D driven flow. Based on mean-field calculations, we present the fundamental diagram and the phase diagram of the modified SB problem, which are numerically checked. Finally, we discuss how the condensation of holes suppresses the jamming of particles and vice versa, where the partially condensed phase is the most interesting, compared to that in the original SB problem.

  14. Jamming and condensation in one-dimensional driven flow.

    PubMed

    Soh, Hyungjoon; Ha, Meesoon; Jeong, Hawoong

    2018-03-01

    We revisit the slow-bond (SB) problem of the one-dimensional (1D) totally asymmetric simple exclusion process (TASEP) with modified hopping rates. In the original SB problem, it turns out that a local defect is always relevant to the system as jamming, so that phase separation occurs in the 1D TASEP. However, crossover scaling behaviors are also observed as finite-size effects. In order to check if the SB can be irrelevant to the system with particle interaction, we employ the condensation concept in the zero-range process. The hopping rate in the modified TASEP depends on the interaction parameter and the distance up to the nearest particle in the moving direction, besides the SB factor. In particular, we focus on the interplay of jamming and condensation in the current-density relation of 1D driven flow. Based on mean-field calculations, we present the fundamental diagram and the phase diagram of the modified SB problem, which are numerically checked. Finally, we discuss how the condensation of holes suppresses the jamming of particles and vice versa, where the partially condensed phase is the most interesting, compared to that in the original SB problem.

  15. Multifunctional nanocomposite hollow fiber membranes by solvent transfer induced phase separation.

    PubMed

    Haase, Martin F; Jeon, Harim; Hough, Noah; Kim, Jong Hak; Stebe, Kathleen J; Lee, Daeyeon

    2017-11-01

    The decoration of porous membranes with a dense layer of nanoparticles imparts useful functionality and can enhance membrane separation and anti-fouling properties. However, manufacturing of nanoparticle-coated membranes requires multiple steps and tedious processing. Here, we introduce a facile single-step method in which bicontinuous interfacially jammed emulsions are used to form nanoparticle-functionalized hollow fiber membranes. The resulting nanocomposite membranes prepared via solvent transfer-induced phase separation and photopolymerization have exceptionally high nanoparticle loadings (up to 50 wt% silica nanoparticles) and feature densely packed nanoparticles uniformly distributed over the entire membrane surfaces. These structurally well-defined, asymmetric membranes facilitate control over membrane flux and selectivity, enable the formation of stimuli responsive hydrogel nanocomposite membranes, and can be easily modified to introduce antifouling features. This approach forms a foundation for the formation of advanced nanocomposite membranes comprising diverse building blocks with potential applications in water treatment, industrial separations and as catalytic membrane reactors.

  16. Intelligent Sensing and Classification in DSR-Based Ad Hoc Networks

    NASA Astrophysics Data System (ADS)

    Dempsey, Tae; Sahin, Gokhan; Morton, Yu T. (Jade

    Wireless ad hoc networks have fundamentally altered today's battlefield, with applications ranging from unmanned air vehicles to randomly deployed sensor networks. Security and vulnerabilities in wireless ad hoc networks have been considered at different layers, and many attack strategies have been proposed, including denial of service (DoS) through the intelligent jamming of the most critical packet types of flows in a network. This paper investigates the effectiveness of intelligent jamming in wireless ad hoc networks using the Dynamic Source Routing (DSR) and TCP protocols and introduces an intelligent classifier to facilitate the jamming of such networks. Assuming encrypted packet headers and contents, our classifier is based solely on the observable characteristics of size, inter-arrival timing, and direction and classifies packets with up to 99.4% accuracy in our experiments.

  17. Passive and Active Analysis in DSR-Based Ad Hoc Networks

    NASA Astrophysics Data System (ADS)

    Dempsey, Tae; Sahin, Gokhan; Morton, Y. T. (Jade)

    Security and vulnerabilities in wireless ad hoc networks have been considered at different layers, and many attack strategies have been proposed, including denial of service (DoS) through the intelligent jamming of the most critical packet types of flows in a network. This paper investigates the effectiveness of intelligent jamming in wireless ad hoc networks using the Dynamic Source Routing (DSR) and TCP protocols and introduces an intelligent classifier to facilitate the jamming of such networks. Assuming encrypted packet headers and contents, our classifier is based solely on the observable characteristics of size, inter-arrival timing, and direction and classifies packets with up to 99.4% accuracy in our experiments. Furthermore, we investigate active analysis, which is the combination of a classifier and intelligent jammer to invoke specific responses from a victim network.

  18. Finite size scaling analysis on Nagel-Schreckenberg model for traffic flow

    NASA Astrophysics Data System (ADS)

    Balouchi, Ashkan; Browne, Dana

    2015-03-01

    The traffic flow problem as a many-particle non-equilibrium system has caught the interest of physicists for decades. Understanding the traffic flow properties and though obtaining the ability to control the transition from the free-flow phase to the jammed phase plays a critical role in the future world of urging self-driven cars technology. We have studied phase transitions in one-lane traffic flow through the mean velocity, distributions of car spacing, dynamic susceptibility and jam persistence -as candidates for an order parameter- using the Nagel-Schreckenberg model to simulate traffic flow. The length dependent transition has been observed for a range of maximum velocities greater than a certain value. Finite size scaling analysis indicates power-law scaling of these quantities at the onset of the jammed phase.

  19. Research on metal-plated cellulose nitrate flakes and their infrared / millimeter wave characteristics

    NASA Astrophysics Data System (ADS)

    Ye, Shu-qin; Zhu, Chen-guang; Wang, Li-hong; Ou'yang, De-hua; Pan, Gong-pei

    2016-10-01

    Copper-plated and silver-plated cellulose nitrate flakes, which were prepared by using chemical plating technology, were used to jam infrared detector and millimeter-wave radar. It was tested for the conductivity and infrared jamming performance of plating and also the RCS (Radar Cross Section) performance of millimeter-wave radar. Test results showed that the prepared metal-plated cellulose nitrate flakes have obvious conductivity, and infrared total radiation energy of silver plating and copper plating had approximately increased 32% and 21% respectively. Through determination, the millimeter-wave reflecting property and RCS of silver-plated cellulose nitrate flakes were higher than that of copper-plated cellulose nitrate flakes. Therefore, silver-plated cellulose nitrate flakes can be used as an effective infrared / millimeter wave composite jamming material.

  20. Worst case encoder-decoder policies for a communication system in the presence of an unknown probabilistic jammer

    NASA Astrophysics Data System (ADS)

    Cascio, David M.

    1988-05-01

    States of nature or observed data are often stochastically modelled as Gaussian random variables. At times it is desirable to transmit this information from a source to a destination with minimal distortion. Complicating this objective is the possible presence of an adversary attempting to disrupt this communication. In this report, solutions are provided to a class of minimax and maximin decision problems, which involve the transmission of a Gaussian random variable over a communications channel corrupted by both additive Gaussian noise and probabilistic jamming noise. The jamming noise is termed probabilistic in the sense that with nonzero probability 1-P, the jamming noise is prevented from corrupting the channel. We shall seek to obtain optimal linear encoder-decoder policies which minimize given quadratic distortion measures.

  1. How the formation of amyloid plaques and neurofibrillary tangles may be related: a mathematical modelling study

    NASA Astrophysics Data System (ADS)

    Kuznetsov, I. A.; Kuznetsov, A. V.

    2018-02-01

    We develop a mathematical model that enables us to investigate possible mechanisms by which two primary markers of Alzheimer's disease (AD), extracellular amyloid plaques and intracellular tangles, may be related. Our model investigates the possibility that the decay of anterograde axonal transport of amyloid precursor protein (APP), caused by toxic tau aggregates, leads to decreased APP transport towards the synapse and APP accumulation in the soma. The developed model thus couples three processes: (i) slow axonal transport of tau, (ii) tau misfolding and agglomeration, which we simulated by using the Finke-Watzky model and (iii) fast axonal transport of APP. Because the timescale for tau agglomeration is much larger than that for tau transport, we suggest using the quasi-steady-state approximation for formulating and solving the governing equations for these three processes. Our results suggest that misfolded tau most likely accumulates in the beginning of the axon. The analysis of APP transport suggests that APP will also likely accumulate in the beginning of the axon, causing an increased APP concentration in this region, which could be interpreted as a `traffic jam'. The APP flux towards the synapse is significantly reduced by tau misfolding, but not due to the APP traffic jam, which can be viewed as a symptom, but rather due to the reduced affinity of kinesin-1 motors to APP-transporting vesicles.

  2. Influence of landscape geomorphology on large wood jams and salmonids in an old-growth river of Upper Michigan

    Treesearch

    Arthur E. L. Morris; P. Charles Goebel; Lance R. Williams; Brian J. Palik

    2006-01-01

    We investigated the structure of large wood jams (LWJ) and their use by brook trout (Salvelinus fontinalis Mitchill) and other fish in four geomorphically-distinct sections of the Little Carp River, a small river flowing through an uncut, old-growth, northern hardwood-conifer forest along the south shore of Lake Superior, Upper Michigan. We...

  3. Magic at the Marketplace: Choice Blindness for the Taste of Jam and the Smell of Tea

    ERIC Educational Resources Information Center

    Hall, Lars; Johansson, Petter; Tarning, Betty; Sikstrom, Sverker; Deutgen, Therese

    2010-01-01

    We set up a tasting venue at a local supermarket and invited passerby shoppers to sample two different varieties of jam and tea, and to decide which alternative in each pair they preferred the most. Immediately after the participants had made their choice, we asked them to again sample the chosen alternative, and to verbally explain why they chose…

  4. Broadband and High power Reactive Jamming Resilient Wireless Communication

    DTIC Science & Technology

    2017-10-21

    Broadband and High -power Reactive Jamming Resilient Wireless Communication The views, opinions and/or findings contained in this report are those of... available in extremely hostile environments, where FHSS and DSSS are completely defeated by a broadband and high -power reactive jammer. b. Wireless...SECURITY CLASSIFICATION OF: 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY NOTES 12. DISTRIBUTION AVAILIBILITY STATEMENT 6. AUTHORS

  5. Complete genome sequence of the xylan-degrading subseafloor bacterium Microcella alkaliphila JAM-AC0309.

    PubMed

    Kurata, Atsushi; Hirose, Yuu; Misawa, Naomi; Wakazuki, Sachiko; Kishimoto, Noriaki; Kobayashi, Tohru

    2016-03-10

    Here we report the complete genome sequence of Microcella alkaliphila JAM-AC0309, which was newly isolated from the deep subseafloor core sediment from offshore of the Shimokita Peninsula of Japan. An array of genes related to utilization of xylan in this bacterium was identified by whole genome analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Worst-Case Cooperative Jamming for Secure Communications in CIoT Networks.

    PubMed

    Li, Zhen; Jing, Tao; Ma, Liran; Huo, Yan; Qian, Jin

    2016-03-07

    The Internet of Things (IoT) is a significant branch of the ongoing advances in the Internet and mobile communications. The use of a large number of IoT devices makes the spectrum scarcity problem even more serious. The usable spectrum resources are almost entirely occupied, and thus, the increasing radio access demands of IoT devices cannot be met. To tackle this problem, the Cognitive Internet of Things (CIoT) has been proposed. In a CIoT network, secondary users, i.e., sensors and actuators, can access the licensed spectrum bands provided by licensed primary users (such as telephones). Security is a major concern in CIoT networks. However, the traditional encryption method at upper layers (such as symmetric cryptography and asymmetric cryptography) may be compromised in CIoT networks, since these types of networks are heterogeneous. In this paper, we address the security issue in spectrum-leasing-based CIoT networks using physical layer methods. Considering that the CIoT networks are cooperative networks, we propose to employ cooperative jamming to achieve secrecy transmission. In the cooperative jamming scheme, a certain secondary user is employed as the helper to harvest energy transmitted by the source and then uses the harvested energy to generate an artificial noise that jams the eavesdropper without interfering with the legitimate receivers. The goal is to minimize the signal to interference plus noise ratio (SINR) at the eavesdropper subject to the quality of service (QoS) constraints of the primary traffic and the secondary traffic. We formulate the considered minimization problem into a two-stage robust optimization problem based on the worst-case Channel State Information of the Eavesdropper. By using semi-definite programming (SDP), the optimal solutions of the transmit covariance matrices can be obtained. Moreover, in order to build an incentive mechanism for the secondary users, we propose an auction framework based on the cooperative jamming scheme. The proposed auction framework jointly formulates the helper selection and the corresponding energy allocation problems under the constraint of the eavesdropper's SINR. By adopting the Vickrey auction, truthfulness and individual rationality can be guaranteed. Simulation results demonstrate the good performance of the cooperative jamming scheme and the auction framework.

  7. Nonlocal rheological properties of granular flows near a jamming limit.

    PubMed

    Aranson, Igor S; Tsimring, Lev S; Malloggi, Florent; Clément, Eric

    2008-09-01

    We study the rheology of sheared granular flows close to a jamming transition. We use the approach of partially fluidized theory (PFT) with a full set of equations extending the thin layer approximation derived previously for the description of the granular avalanches phenomenology. This theory provides a picture compatible with a local rheology at large shear rates [G. D. R. Midi, Eur. Phys. J. E 14, 341 (2004)] and it works in the vicinity of the jamming transition, where a description in terms of a simple local rheology comes short. We investigate two situations displaying important deviations from local rheology. The first one is based on a set of numerical simulations of sheared soft two-dimensional circular grains. The next case describes previous experimental results obtained on avalanches of sandy material flowing down an incline. Both cases display, close to jamming, significant deviations from the now standard Pouliquen's flow rule [O. Pouliquen, Phys. Fluids 11, 542 (1999); 11, 1956 (1999)]. This discrepancy is the hallmark of a strongly nonlocal rheology and in both cases, we relate the empirical results and the outcomes of PFT. The numerical simulations show a characteristic constitutive structure for the fluid part of the stress involving the confining pressure and the material stiffness that appear in the form of an additional dimensionless parameter. This constitutive relation is then used to describe the case of sandy flows. We show a quantitative agreement as far as the effective flow rules are concerned. A fundamental feature is identified in PFT as the existence of a jammed layer developing in the vicinity of the flow arrest that corroborates the experimental findings. Finally, we study the case of solitary erosive granular avalanches and relate the outcome with the PFT analysis.

  8. Higher-order corrections to the effective potential close to the jamming transition in the perceptron model

    NASA Astrophysics Data System (ADS)

    Altieri, Ada

    2018-01-01

    In view of the results achieved in a previously related work [A. Altieri, S. Franz, and G. Parisi, J. Stat. Mech. (2016) 093301], 10.1088/1742-5468/2016/09/093301, regarding a Plefka-like expansion of the free energy up to the second order in the perceptron model, we improve the computation here focusing on the role of third-order corrections. The perceptron model is a simple example of constraint satisfaction problem, falling in the same universality class as hard spheres near jamming and hence allowing us to get exact results in high dimensions for more complex settings. Our method enables to define an effective potential (or Thouless-Anderson-Palmer free energy), namely a coarse-grained functional, which depends on the generalized forces and the effective gaps between particles. The analysis of the third-order corrections to the effective potential reveals that, albeit irrelevant in a mean-field framework in the thermodynamic limit, they might instead play a fundamental role in considering finite-size effects. We also study the typical behavior of generalized forces and we show that two kinds of corrections can occur. The first contribution arises since the system is analyzed at a finite distance from jamming, while the second one is due to finite-size corrections. We nevertheless show that third-order corrections in the perturbative expansion vanish in the jamming limit both for the potential and the generalized forces, in agreement with the isostaticity argument proposed by Wyart and coworkers. Finally, we analyze the relevant scaling solutions emerging close to the jamming line, which define a crossover regime connecting the control parameters of the model to an effective temperature.

  9. Higher-order corrections to the effective potential close to the jamming transition in the perceptron model.

    PubMed

    Altieri, Ada

    2018-01-01

    In view of the results achieved in a previously related work [A. Altieri, S. Franz, and G. Parisi, J. Stat. Mech. (2016) 093301]10.1088/1742-5468/2016/09/093301, regarding a Plefka-like expansion of the free energy up to the second order in the perceptron model, we improve the computation here focusing on the role of third-order corrections. The perceptron model is a simple example of constraint satisfaction problem, falling in the same universality class as hard spheres near jamming and hence allowing us to get exact results in high dimensions for more complex settings. Our method enables to define an effective potential (or Thouless-Anderson-Palmer free energy), namely a coarse-grained functional, which depends on the generalized forces and the effective gaps between particles. The analysis of the third-order corrections to the effective potential reveals that, albeit irrelevant in a mean-field framework in the thermodynamic limit, they might instead play a fundamental role in considering finite-size effects. We also study the typical behavior of generalized forces and we show that two kinds of corrections can occur. The first contribution arises since the system is analyzed at a finite distance from jamming, while the second one is due to finite-size corrections. We nevertheless show that third-order corrections in the perturbative expansion vanish in the jamming limit both for the potential and the generalized forces, in agreement with the isostaticity argument proposed by Wyart and coworkers. Finally, we analyze the relevant scaling solutions emerging close to the jamming line, which define a crossover regime connecting the control parameters of the model to an effective temperature.

  10. Fragility and hysteretic creep in frictional granular jamming.

    PubMed

    Bandi, M M; Rivera, M K; Krzakala, F; Ecke, R E

    2013-04-01

    The granular jamming transition is experimentally investigated in a two-dimensional system of frictional, bidispersed disks subject to quasistatic, uniaxial compression without vibrational disturbances (zero granular temperature). Three primary results are presented in this experimental study. First, using disks with different static friction coefficients (μ), we experimentally verify numerical results that predict jamming onset at progressively lower packing fractions with increasing friction. Second, we show that the first compression cycle measurably differs from subsequent cycles. The first cycle is fragile-a metastable configuration with simultaneous jammed and unjammed clusters-over a small packing fraction interval (φ(1)<φ<φ(2)) and exhibits simultaneous exponential rise in pressure and exponential decrease in disk displacements over the same packing fraction interval. This fragile behavior is explained through a percolation mechanism of stressed contacts where cluster growth exhibits spatial correlation with disk displacements and contributes to recent results emphasizing fragility in frictional jamming. Control experiments show that the fragile state results from the experimental incompatibility between the requirements for zero friction and zero granular temperature. Measurements with several disk materials of varying elastic moduli E and friction coefficients μ show that friction directly controls the start of the fragile state but indirectly controls the exponential pressure rise. Finally, under repetitive loading (compression) and unloading (decompression), we find the system exhibits pressure hysteresis, and the critical packing fraction φ(c) increases slowly with repetition number. This friction-induced hysteretic creep is interpreted as the granular pack's evolution from a metastable to an eventual structurally stable configuration. It is shown to depend on the quasistatic step size Δφ, which provides the only perturbative mechanism in the experimental protocol, and the friction coefficient μ, which acts to stabilize the pack.

  11. [The diagnostic value of dual-energy CT and 3 Tesla MRI in the diagnosis of German Mardi Gras donuts--where is the mustard, where is the custard and where is the jam?].

    PubMed

    Morhard, D; Dietrich, O; Reiser, M; Ertl-Wagner, B

    2008-04-01

    As a Mardi Gras joke, the original jam or custard fillings of German Mardi Gras donuts are frequently replaced with mustard which cannot be identified on the outside of the donut. The aim of our study was to evaluate the impact of modern CT and MRI techniques on the diagnostic evaluation of donuts filled with mustard, jam or custard. 4 commercially available donuts were included in the study. One was filled with custard (PK) and one with jam (MK). Two donuts were specifically prepared and filled with Bavarian mustard (SK1) or extra-hot (SK2) mustard. 3 Tesla MRI was performed with T 2- and T 1-weighted STIR, diffusion and susceptibility-weighted (SWI) sequences. In addition, the donuts underwent dual-energy CT. PK was able to be easily differentiated from the other donuts due to its hyperintensity in the STIR sequences and hypointensity in the T 1-weighted sequences. MK was able to be differentiated from S 1K and S 2K on the basis of its diffusion properties. S 1K demonstrated a pronounced heterogeneity of its matrix, especially in SWI. In CT, PK showed a pronounced hypoattenuation with negative Hounsfield units in contrast to the strongly hyperdense MK, S 1K and S 2K. S 1K and S 2K demonstrated X-ray attenuation considerably dependent on the X-ray energy. Donuts filled with jam, custard or mustard can be readily differentiated by modern MRI and CT techniques. Therefore, eating a mustard-filled donut can be reliably avoided.

  12. Non-local rheological properties of granular flows near a jamming limit.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aranson, I. S.; Tsimring, L. S.; Malloggi, F.

    2008-01-01

    We study the rheology of sheared granular flows close to a jamming transition. We use the approach of partially fluidized theory (PFT) with a full set of equations extending the thin layer approximation derived previously for the description of the granular avalanches phenomenology. This theory provides a picture compatible with a local rheology at large shear rates [G. D. R. Midi, Eur. Phys. J. E 14, 341 (2004)] and it works in the vicinity of the jamming transition, where a description in terms of a simple local rheology comes short. We investigate two situations displaying important deviations from local rheology.more » The first one is based on a set of numerical simulations of sheared soft two-dimensional circular grains. The next case describes previous experimental results obtained on avalanches of sandy material flowing down an incline. Both cases display, close to jamming, significant deviations from the now standard Pouliquen's flow rule [O. Pouliquen, Phys. Fluids 11, 542 (1999); 11, 1956 (1999)]. This discrepancy is the hallmark of a strongly nonlocal rheology and in both cases, we relate the empirical results and the outcomes of PFT. The numerical simulations show a characteristic constitutive structure for the fluid part of the stress involving the confining pressure and the material stiffness that appear in the form of an additional dimensionless parameter. This constitutive relation is then used to describe the case of sandy flows. We show a quantitative agreement as far as the effective flow rules are concerned. A fundamental feature is identified in PFT as the existence of a jammed layer developing in the vicinity of the flow arrest that corroborates the experimental findings. Finally, we study the case of solitary erosive granular avalanches and relate the outcome with the PFT analysis.« less

  13. Wood and Sediment Dynamics in River Corridors

    NASA Astrophysics Data System (ADS)

    Wohl, E.; Scott, D.

    2015-12-01

    Large wood along rivers influences entrainment, transport, and storage of mineral sediment and particulate organic matter. We review how wood alters sediment dynamics and explore patterns among volumes of instream wood, sediment storage, and residual pools for dispersed pieces of wood, logjams, and beaver dams. We hypothesized that: volume of sediment per unit area of channel stored in association with wood is inversely proportional to drainage area; the form of sediment storage changes downstream; sediment storage correlates most strongly with wood load; and volume of sediment stored behind beaver dams correlates with pond area. Lack of data from larger drainage areas limits tests of these hypotheses, but analyses suggest a negative correlation between sediment volume and drainage area and a positive correlation between wood and sediment volume. The form of sediment storage in relation to wood changes downstream, with wedges of sediment upstream from jammed steps most prevalent in small, steep channels and more dispersed sediment storage in lower gradient channels. Use of a published relation between sediment volume, channel width, and gradient predicted about half of the variation in sediment stored upstream from jammed steps. Sediment volume correlates well with beaver pond area. Historically more abundant instream wood and beaver populations likely equated to greater sediment storage within river corridors. This review of the existing literature on wood and sediment dynamics highlights the lack of studies on larger rivers.

  14. Monolayer nanoparticle-covered liquid marbles derived from a sol-gel coating

    NASA Astrophysics Data System (ADS)

    Li, Xiaoguang; Wang, Yiqi; Huang, Junchao; Yang, Yao; Wang, Renxian; Geng, Xingguo; Zang, Duyang

    2017-12-01

    A sol-gel coating consisting of hydrophobic SiO2 nanoparticles (NPs) was used to produce monolayer NP-covered (mNPc) liquid marbles. The simplest approach was rolling a droplet on this coating, and an identifiable signet allowed determination of the coverage ratio of the resulting liquid marble. Alternatively, the particles were squeezed onto a droplet surface with two such coatings, generating surface buckling from interfacial NP jamming, and then a liquid marble was produced via a jamming-relief process in which water was added into the buckled droplet. This process revealed an ˜7% reduction in particle distance after interfacial jamming. The mNPc liquid marbles obtained by the two methods were transparent with smooth profiles, as naked droplets, and could be advantageously used in fundamental and applied researches for their unique functions.

  15. Simulation of effect of anti-radar stealth principle

    NASA Astrophysics Data System (ADS)

    Zhao, Borao; Xing, Shuchen; Li, Chunyi

    1988-02-01

    The paper presents simulation methods and results of the anti-radar stealth principle, proving that anti-radar stealth aircraft can drastically reduce the combat efficiency of an air defense radar system. In particular, when anti-radar stealth aircraft are coordinated with jamming as a self-defense soft weapon, the discovery probability, response time and hit rate of the air defense radar system are much lower, with extensive reduction in jamming power and maximum exposure distance of self-defense and long-range support. The paper describes an assumed combat situation and construction of a calculation model for the aircraft survival rate, as well as simulation results and analysis. Four figures show an enemy bomber attacking an airfield, as well as the effects of the radar effective reflecting surface on discovery probability, guidance radius, aircraft survival and exposure distance (for long-range support and jamming).

  16. Mean-field velocity difference model considering the average effect of multi-vehicle interaction

    NASA Astrophysics Data System (ADS)

    Guo, Yan; Xue, Yu; Shi, Yin; Wei, Fang-ping; Lü, Liang-zhong; He, Hong-di

    2018-06-01

    In this paper, a mean-field velocity difference model(MFVD) is proposed to describe the average effect of multi-vehicle interactions on the whole road. By stability analysis, the stability condition of traffic system is obtained. Comparison with stability of full velocity-difference (FVD) model and the completeness of MFVD model are discussed. The mKdV equation is derived from MFVD model through nonlinear analysis to reveal the traffic jams in the form of the kink-antikink density wave. Then the numerical simulation is performed and the results illustrate that the average effect of multi-vehicle interactions plays an important role in effectively suppressing traffic jam. The increase strength of the mean-field velocity difference in MFVD model can rapidly reduce traffic jam and enhance the stability of traffic system.

  17. Jamming transitions in cancer

    NASA Astrophysics Data System (ADS)

    Oswald, Linda; Grosser, Steffen; Smith, David M.; Käs, Josef A.

    2017-12-01

    The traditional picture of tissues, where they are treated as liquids defined by properties such as surface tension or viscosity has been redefined during the last few decades by the more fundamental question: under which conditions do tissues display liquid-like or solid-like behaviour? As a result, basic concepts arising from the treatment of tissues as solid matter, such as cellular jamming and glassy tissues, have shifted into the current focus of biophysical research. Here, we review recent works examining the phase states of tissue with an emphasis on jamming transitions in cancer. When metastasis occurs, cells gain the ability to leave the primary tumour and infiltrate other parts of the body. Recent studies have shown that a linkage between an unjamming transition and tumour progression indeed exists, which could be of importance when designing surgery and treatment approaches for cancer patients.

  18. Anti-jamming Technology in Small Satellite Communication

    NASA Astrophysics Data System (ADS)

    Jia, Zixiang

    2018-01-01

    Small satellite communication has an increasingly important position among the wireless communications due to the advantages of low cost and high technology. However, in view of the case that its relay station stays outside the earth, its uplink may face interference from malicious signal frequently. Here this paper classified enumerates existing interferences, and proposes channel signals as main interference by comparison. Based on a basic digital communication process, then this paper discusses the possible anti - jamming techniques that commonly be realized at all stages in diverse processes, and comes to the conclusion that regarding the spread spectrum technology and antenna anti-jamming technology as fundamental direction of future development. This work provides possible thought for the design of new small satellite communication system with the coexistence of multi - technologies. This basic popular science can be consulted for people interested in small satellite communication.

  19. GNSS Signal Authentication Via Power and Distortion Monitoring

    NASA Astrophysics Data System (ADS)

    Wesson, Kyle D.; Gross, Jason N.; Humphreys, Todd E.; Evans, Brian L.

    2018-04-01

    We propose a simple low-cost technique that enables civil Global Positioning System (GPS) receivers and other civil global navigation satellite system (GNSS) receivers to reliably detect carry-off spoofing and jamming. The technique, which we call the Power-Distortion detector, classifies received signals as interference-free, multipath-afflicted, spoofed, or jammed according to observations of received power and correlation function distortion. It does not depend on external hardware or a network connection and can be readily implemented on many receivers via a firmware update. Crucially, the detector can with high probability distinguish low-power spoofing from ordinary multipath. In testing against over 25 high-quality empirical data sets yielding over 900,000 separate detection tests, the detector correctly alarms on all malicious spoofing or jamming attacks while maintaining a <0.6% single-channel false alarm rate.

  20. [Physicochemical and microbiological evaluation of 3 commercial guava jams (Psidium guajava L.)].

    PubMed

    López, R; Ramírez, A O; Graziani de Fariñas, L

    2000-09-01

    Four different production batches were taken from each brand. Samples were purchased from retail markets in Maracay, Cagua and Turmero. (Venezuela). The average physical and chemical values were: vacuum = 38.81 cm Hg; pH = 3.28; titrable acidity (%citric acid) = 0.59%; degree Brix = 67.24; reducing sugars = 55.28%; total sugars = 62.28, and the color parameters a = +14.44, b = +8.77 and L = 17.09. Molds, yeast and aerobic plate counts were lower than 10 UFC/g; it reveals an excellent microbiological quality of the product. The studied jams degree Brix and acidity fulfil COVENIN (1) requirements for jam products, but not pH range. In agreement with variance analysis, there were highly significance differences between the samples and among the shares of each sample for all physical and chemical properties evaluated.

  1. Teen Bands to Battle on a National Stage: NAMM Expands Its SchoolJam Showcase with a Little Help from MENC

    ERIC Educational Resources Information Center

    Giordano, Geoff

    2009-01-01

    SchoolJam, a popular teen musicians' showcase in Texas that provides recognition for young performers as well as funding for their school music programs, is about to go nationwide. The competition, which NAMM, the International Music Products Association, brought to the United States from Germany in 2007, allows groups of musicians age 13 to 18 to…

  2. Camouflage Traffic: Minimizing Message Delay for Smart Grid Applications under Jamming

    DTIC Science & Technology

    2014-04-01

    technologies. To facilitate efficient information exchange, wireless networks have been proposed to be widely used in the smart grid. However, the jamming...attack that constantly broadcasts radio interference is a primary security threat to prevent the deployment of wireless networks in the smart grid. Hence... wireless communications, while at the same time providing latency guarantee for control messages. An open question is how to minimize message delay for

  3. Rendezvous Protocols and Dynamic Frequency Hopping Interference Design for Anti-Jamming Satellite Communication

    DTIC Science & Technology

    2013-11-25

    previously considered this proactive approach to combat unintentional, persistent (non- reactive) interference . In this project, we plan on extending our...channel” (or code ) by chance, through public knowledge of the underlying protocol semantics , or by compromising one of the network devices. An alternative...AFRL-RV-PS- AFRL-RV-PS- TR-2013-0142 TR-2013-0142 RENDEZVOUS PROTOCOLS AND DYNAMIC FREQUENCY HOPPING INTERFERENCE DESIGN FOR ANTI-JAMMING

  4. Flexible fiber in interaction with a dense granular flow close to the jamming transition

    NASA Astrophysics Data System (ADS)

    Algarra, Nicolas; Leang, Marguerite; Lazarus, Arnaud; Vandembroucq, Damien; Kolb, Evelyne

    2017-06-01

    We propose a new fluid/structure interaction in the unusual case of a dense granular medium flowing against an elastic fiber acting as a flexible intruder. We study experimentally the reconfiguration and the forces exerted on the flexible fiber produced by the flow at a constant and low velocity of a two-dimensional disordered packing of grains close but below the jamming transition.

  5. Jamming in Mobile Networks: A Game-Theoretic Approach

    DTIC Science & Technology

    2013-03-01

    general treatment of multiplayer differential games was presented by Starr and Ho [16], Leitmann [36], Vaisbord and Zhukovskiy [65], Zhukovskiy and...REPORT Jamming in mobile networks: A game -theoretic approach. 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: In this paper, we address the problem of...model the intrusion as a pursuit-evasion game between a mobile jammer and a team of agents. First, we consider a differential game -theoretic approach

  6. Modeling, Evaluation and Detection of Jamming Attacks in Time-Critical Wireless Applications

    DTIC Science & Technology

    2014-08-01

    computing, modeling and analysis of wireless networks , network topol- ogy, and architecture design. Dr. Wang has been a Member of the Association for...important, yet open research question is how to model and detect jamming attacks in such wireless networks , where communication traffic is more time...against time-critical wireless networks with applications to the smart grid. In contrast to communication networks where packets-oriented metrics

  7. Optimal Pricing and Power Allocation for Collaborative Jamming with Full Channel Knowledge in Wireless Sensor Networks

    PubMed Central

    Jeong, Dae-Kyo; Kim, Insook; Kim, Dongwoo

    2017-01-01

    This paper presents a price-searching model in which a source node (Alice) seeks friendly jammers that prevent eavesdroppers (Eves) from snooping legitimate communications by generating interference or noise. Unlike existing models, the distributed jammers also have data to send to their respective destinations and are allowed to access Alice’s channel if it can transmit sufficient jamming power, which is referred to as collaborative jamming in this paper. For the power used to deliver its own signal, the jammer should pay Alice. The price of the jammers’ signal power is set by Alice and provides a tradeoff between the signal and the jamming power. This paper presents, in closed-form, an optimal price that maximizes Alice’s benefit and the corresponding optimal power allocation from a jammers’ perspective by assuming that the network-wide channel knowledge is shared by Alice and jammers. For a multiple-jammer scenario where Alice hardly has the channel knowledge, this paper provides a distributed and interactive price-searching procedure that geometrically converges to an optimal price and shows that Alice by a greedy selection policy achieves certain diversity gain, which increases log-linearly as the number of (potential) jammers grows. Various numerical examples are presented to illustrate the behavior of the proposed model. PMID:29165373

  8. Calling louder and longer: how bats use biosonar under severe acoustic interference from other bats.

    PubMed

    Amichai, Eran; Blumrosen, Gaddi; Yovel, Yossi

    2015-12-22

    Active-sensing systems such as echolocation provide animals with distinct advantages in dark environments. For social animals, however, like many bat species, active sensing can present problems as well: when many individuals emit bio-sonar calls simultaneously, detecting and recognizing the faint echoes generated by one's own calls amid the general cacophony of the group becomes challenging. This problem is often termed 'jamming' and bats have been hypothesized to solve it by shifting the spectral content of their calls to decrease the overlap with the jamming signals. We tested bats' response in situations of extreme interference, mimicking a high density of bats. We played-back bat echolocation calls from multiple speakers, to jam flying Pipistrellus kuhlii bats, simulating a naturally occurring situation of many bats flying in proximity. We examined behavioural and echolocation parameters during search phase and target approach. Under severe interference, bats emitted calls of higher intensity and longer duration, and called more often. Slight spectral shifts were observed but they did not decrease the spectral overlap with jamming signals. We also found that pre-existing inter-individual spectral differences could allow self-call recognition. Results suggest that the bats' response aimed to increase the signal-to-noise ratio and not to avoid spectral overlap. © 2015 The Author(s).

  9. Large-scale structure of randomly jammed spheres

    NASA Astrophysics Data System (ADS)

    Ikeda, Atsushi; Berthier, Ludovic; Parisi, Giorgio

    2017-05-01

    We numerically analyze the density field of three-dimensional randomly jammed packings of monodisperse soft frictionless spherical particles, paying special attention to fluctuations occurring at large length scales. We study in detail the two-point static structure factor at low wave vectors in Fourier space. We also analyze the nature of the density field in real space by studying the large-distance behavior of the two-point pair correlation function, of density fluctuations in subsystems of increasing sizes, and of the direct correlation function. We show that such real space analysis can be greatly improved by introducing a coarse-grained density field to disentangle genuine large-scale correlations from purely local effects. Our results confirm that both Fourier and real space signatures of vanishing density fluctuations at large scale are absent, indicating that randomly jammed packings are not hyperuniform. In addition, we establish that the pair correlation function displays a surprisingly complex structure at large distances, which is however not compatible with the long-range negative correlation of hyperuniform systems but fully compatible with an analytic form for the structure factor. This implies that the direct correlation function is short ranged, as we also demonstrate directly. Our results reveal that density fluctuations in jammed packings do not follow the behavior expected for random hyperuniform materials, but display instead a more complex behavior.

  10. Optimal Pricing and Power Allocation for Collaborative Jamming with Full Channel Knowledge in Wireless Sensor Networks.

    PubMed

    Jeong, Dae-Kyo; Kim, Insook; Kim, Dongwoo

    2017-11-22

    This paper presents a price-searching model in which a source node (Alice) seeks friendly jammers that prevent eavesdroppers (Eves) from snooping legitimate communications by generating interference or noise. Unlike existing models, the distributed jammers also have data to send to their respective destinations and are allowed to access Alice's channel if it can transmit sufficient jamming power, which is referred to as collaborative jamming in this paper. For the power used to deliver its own signal, the jammer should pay Alice. The price of the jammers' signal power is set by Alice and provides a tradeoff between the signal and the jamming power. This paper presents, in closed-form, an optimal price that maximizes Alice's benefit and the corresponding optimal power allocation from a jammers' perspective by assuming that the network-wide channel knowledge is shared by Alice and jammers. For a multiple-jammer scenario where Alice hardly has the channel knowledge, this paper provides a distributed and interactive price-searching procedure that geometrically converges to an optimal price and shows that Alice by a greedy selection policy achieves certain diversity gain, which increases log-linearly as the number of (potential) jammers grows. Various numerical examples are presented to illustrate the behavior of the proposed model.

  11. Fish community structure in natural and engineered habitats in the Kansas River

    USGS Publications Warehouse

    White, K.; Gerken, J.; Paukert, Craig P.; Makinster, Andrew S.

    2010-01-01

    We investigated fish assemblage structure in engineered (rip-rap) and natural habitats (log jams and mud banks) in the Kansas River USA to determine if natural structures had higher abundance and diversity of fishes at a local spatial scale. A total of 439 randomly selected sites were boat electrofished from May to August 2005 and 2006. Mean species diversity and richness were significantly higher in rip-rap than log jams and mud banks. Mean relative abundance (CPUE; number of fish collected per hour electrofishing) of six of the 15 most common fishes (>1% of total catch) were most abundant in rip-rap, two were most abundant in log jams, and none in mud banks. Rip-rap had the highest relative abundance of fluvial specialist and macrohabitat generalists, whereas mean CPUE of fluvial dependents was highest in log jams. Although a discriminant function analysis indicated that nine size classes (eight species) discriminated among three habitat types, the high misclassification rate (38%) suggested a high degree of fish assemblage overlap among the habitats. Although previous work has suggested that engineered structures (rip-rap) and urbanization are linked to reduced biotic diversity or reduced growth of fish species, our results suggest that at a local scale rip-rap may not have the same negative impacts on fish assemblages.

  12. Fish community structure in natural and engineered habitats in the Kansas river

    USGS Publications Warehouse

    White, K.; Gerken, J.; Paukert, C.; Makinster, A.

    2010-01-01

    We investigated fish assemblage structure in engineered (rip-rap) and natural habitats (log jams and mud banks) in the Kansas River USA to determine if natural structures had higher abundance and diversity of fishes at a local spatial scale. A total of 439 randomly selected sites were boat electrofished from May to August 2005 and 2006. Mean species diversity and richness were significantly higher in rip-rap than log jams and mud banks. Mean relative abundance (CPUE; number of fish collected per hour electrofishing) of six of the 15 most common fishes (>1% of total catch) were most abundant in rip-rap, two were most abundant in log jams, and none in mud banks. Rip-rap had the highest relative abundance of fluvial specialist and macrohabitat generalists, whereas mean CPUE of fluvial dependents was highest in log jams. Although a discriminant function analysis indicated that nine size classes (eight species) discriminated among three habitat types, the high misclassification rate (38%) suggested a high degree of fish assemblage overlap among the habitats. Although previous work has suggested that engineered structures (rip-rap) and urbanization are linked to reduced biotic diversity or reduced growth of fish species, our results suggest that at a local scale rip-rap may not have the same negative impacts on fish assemblages.

  13. Pseudorandom Switching for Adding Radar to the AFF Sensor

    NASA Technical Reports Server (NTRS)

    Tien, Jeffrey; Purcell, George; Young, Lawrence

    2006-01-01

    A document describes the proposed addition of a radar function to the Autonomous Formation Flying Sensor, making possible coarse relative-position control to prevent collisions in the event of failure of one of the spacecraft. According to the proposal, in addition to tracking GPS-like one-way ranging signals transmitted by the other normally functioning spacecraft, each spacecraft could simultaneously track the reflection of its own ranging signal from a disabled, non-transmitting spacecraft. From the round-trip travel time, the approximate distance to the disabled spacecraft could be estimated. To prevent jamming of the receiver by the transmitter on the same spacecraft, the receiver would be switched off during transmission.

  14. Technique for Geolocation of EMI Emitters by O3B Satellites

    DTIC Science & Technology

    2016-06-01

    1.  Why EMI/Jamming Is an Issue for the DOD ..............................6  2.  How Jamming Occurs...professor in the field. I would also like to thank O3b Networks, particularly Ken Mentasti and J.J. Shaw , for their extensive support by providing...breaking the primary research question into pieces and developing the subject, it is first important to develop what SATCOM EMI is and why it is an issue

  15. On adaptive robustness approach to Anti-Jam signal processing

    NASA Astrophysics Data System (ADS)

    Poberezhskiy, Y. S.; Poberezhskiy, G. Y.

    An effective approach to exploiting statistical differences between desired and jamming signals named adaptive robustness is proposed and analyzed in this paper. It combines conventional Bayesian, adaptive, and robust approaches that are complementary to each other. This combining strengthens the advantages and mitigates the drawbacks of the conventional approaches. Adaptive robustness is equally applicable to both jammers and their victim systems. The capabilities required for realization of adaptive robustness in jammers and victim systems are determined. The employment of a specific nonlinear robust algorithm for anti-jam (AJ) processing is described and analyzed. Its effectiveness in practical situations has been proven analytically and confirmed by simulation. Since adaptive robustness can be used by both sides in electronic warfare, it is more advantageous for the fastest and most intelligent side. Many results obtained and discussed in this paper are also applicable to commercial applications such as communications in unregulated or poorly regulated frequency ranges and systems with cognitive capabilities.

  16. Synchronized flow in oversaturated city traffic.

    PubMed

    Kerner, Boris S; Klenov, Sergey L; Hermanns, Gerhard; Hemmerle, Peter; Rehborn, Hubert; Schreckenberg, Michael

    2013-11-01

    Based on numerical simulations with a stochastic three-phase traffic flow model, we reveal that moving queues (moving jams) in oversaturated city traffic dissolve at some distance upstream of the traffic signal while transforming into synchronized flow. It is found that, as in highway traffic [Kerner, Phys. Rev. E 85, 036110 (2012)], such a jam-absorption effect in city traffic is explained by a strong driver's speed adaptation: Time headways (space gaps) between vehicles increase upstream of a moving queue (moving jam), resulting in moving queue dissolution. It turns out that at given traffic signal parameters, the stronger the speed adaptation effect, the shorter the mean distance between the signal location and the road location at which moving queues dissolve fully and oversaturated traffic consists of synchronized flow only. A comparison of the synchronized flow in city traffic found in this Brief Report with synchronized flow in highway traffic is made.

  17. Stochastic Car-Following Model for Explaining Nonlinear Traffic Phenomena

    NASA Astrophysics Data System (ADS)

    Meng, Jianping; Song, Tao; Dong, Liyun; Dai, Shiqiang

    There is a common time parameter for representing the sensitivity or the lag (response) time of drivers in many car-following models. In the viewpoint of traffic psychology, this parameter could be considered as the perception-response time (PRT). Generally, this parameter is set to be a constant in previous models. However, PRT is actually not a constant but a random variable described by the lognormal distribution. Thus the probability can be naturally introduced into car-following models by recovering the probability of PRT. For demonstrating this idea, a specific stochastic model is constructed based on the optimal velocity model. By conducting simulations under periodic boundary conditions, it is found that some important traffic phenomena, such as the hysteresis and phantom traffic jams phenomena, can be reproduced more realistically. Especially, an interesting experimental feature of traffic jams, i.e., two moving jams propagating in parallel with constant speed stably and sustainably, is successfully captured by the present model.

  18. Fractal free energy landscapes in structural glasses.

    PubMed

    Charbonneau, Patrick; Kurchan, Jorge; Parisi, Giorgio; Urbani, Pierfrancesco; Zamponi, Francesco

    2014-04-24

    Glasses are amorphous solids whose constituent particles are caged by their neighbours and thus cannot flow. This sluggishness is often ascribed to the free energy landscape containing multiple minima (basins) separated by high barriers. Here we show, using theory and numerical simulation, that the landscape is much rougher than is classically assumed. Deep in the glass, it undergoes a 'roughness transition' to fractal basins, which brings about isostaticity and marginal stability on approaching jamming. Critical exponents for the basin width, the weak force distribution and the spatial spread of quasi-contacts near jamming can be analytically determined. Their value is found to be compatible with numerical observations. This advance incorporates the jamming transition of granular materials into the framework of glass theory. Because temperature and pressure control what features of the landscape are experienced, glass mechanics and transport are expected to reflect the features of the topology we discuss here.

  19. Synchronized flow in oversaturated city traffic

    NASA Astrophysics Data System (ADS)

    Kerner, Boris S.; Klenov, Sergey L.; Hermanns, Gerhard; Hemmerle, Peter; Rehborn, Hubert; Schreckenberg, Michael

    2013-11-01

    Based on numerical simulations with a stochastic three-phase traffic flow model, we reveal that moving queues (moving jams) in oversaturated city traffic dissolve at some distance upstream of the traffic signal while transforming into synchronized flow. It is found that, as in highway traffic [Kerner, Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.85.036110 85, 036110 (2012)], such a jam-absorption effect in city traffic is explained by a strong driver's speed adaptation: Time headways (space gaps) between vehicles increase upstream of a moving queue (moving jam), resulting in moving queue dissolution. It turns out that at given traffic signal parameters, the stronger the speed adaptation effect, the shorter the mean distance between the signal location and the road location at which moving queues dissolve fully and oversaturated traffic consists of synchronized flow only. A comparison of the synchronized flow in city traffic found in this Brief Report with synchronized flow in highway traffic is made.

  20. Traffic on complex networks: Towards understanding global statistical properties from microscopic density fluctuations

    NASA Astrophysics Data System (ADS)

    Tadić, Bosiljka; Thurner, Stefan; Rodgers, G. J.

    2004-03-01

    We study the microscopic time fluctuations of traffic load and the global statistical properties of a dense traffic of particles on scale-free cyclic graphs. For a wide range of driving rates R the traffic is stationary and the load time series exhibits antipersistence due to the regulatory role of the superstructure associated with two hub nodes in the network. We discuss how the superstructure affects the functioning of the network at high traffic density and at the jamming threshold. The degree of correlations systematically decreases with increasing traffic density and eventually disappears when approaching a jamming density Rc. Already before jamming we observe qualitative changes in the global network-load distributions and the particle queuing times. These changes are related to the occurrence of temporary crises in which the network-load increases dramatically, and then slowly falls back to a value characterizing free flow.

  1. The Wonderful World of Active Many-Particle Systems

    NASA Astrophysics Data System (ADS)

    Helbing, Dirk

    Since the subject of traffic dynamics has captured the interest of physicists, many astonishing effects have been revealed and explained. Some of the questions now understood are the following: Why are vehicles sometimes stopped by so-called ``phantom traffic jams'', although they all like to drive fast? What are the mechanisms behind stop-and-go traffic? Why are there several different kinds of congestion, and how are they related? Why do most traffic jams occur considerably before the road capacity is reached? Can a temporary reduction of the traffic volume cause a lasting traffic jam? Why do pedestrians moving in opposite directions normally organize in lanes, while nervous crowds are ``freezing by heating''? Why do panicking pedestrians produce dangerous deadlocks? All these questions have been answered by applying and extending methods from statistical physics and non-linear dynamics to self-driven many-particle systems.

  2. Constraint counting for frictional jamming

    NASA Astrophysics Data System (ADS)

    Quint, D. A.; Henkes, S.; Schwarz, J. M.

    2012-02-01

    While the frictionless jamming transition has been intensely studied in recent years, more realistic frictional packings are less well understood. In frictionless sphere packings, the transition is predicted by a simple mean-field constraint counting argument, the isostaticity argument. For frictional packings, a modified constraint counting argument, which includes slipping contacts at the Coulomb threshold, has had limited success in accounting for the transition. We propose that the frictional jamming transition is not mean field and is triggered by the nucleation of unstable regions, which are themselves dynamical objects due to the Coulomb criterion. We create frictional packings using MD simulations and test for the presence and shape of rigid clusters with the pebble game to identify the partition of the packing into stable and unstable regions. To understand the dynamics of these unstable regions we follow perturbations at contacts crucial to the stability of the ``frictional house of cards.''

  3. Strain-level genetic diversity of Methylophaga nitratireducenticrescens confers plasticity to denitrification capacity in a methylotrophic marine denitrifying biofilm

    PubMed Central

    Geoffroy, Valérie; Payette, Geneviève; Mauffrey, Florian; Lestin, Livie; Constant, Philippe

    2018-01-01

    Background The biofilm of a methanol-fed, fluidized denitrification system treating a marine effluent is composed of multi-species microorganisms, among which Hyphomicrobium nitrativorans NL23 and Methylophaga nitratireducenticrescens JAM1 are the principal bacteria involved in the denitrifying activities. Strain NL23 can carry complete nitrate (NO\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}${}_{3}^{-}$\\end{document}3−) reduction to N2, whereas strain JAM1 can perform 3 out of the 4 reduction steps. A small proportion of other denitrifiers exists in the biofilm, suggesting the potential plasticity of the biofilm in adapting to environmental changes. Here, we report the acclimation of the denitrifying biofilm from continuous operating mode to batch operating mode, and the isolation and characterization from the acclimated biofilm of a new denitrifying bacterial strain, named GP59. Methods The denitrifying biofilm was batch-cultured under anoxic conditions. The acclimated biofilm was plated on Methylophaga specific medium to isolate denitrifying Methylophaga isolates. Planktonic cultures of strains GP59 and JAM1 were performed, and the growth and the dynamics of NO\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}${}_{3}^{-}$\\end{document}3−, nitrite (NO\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}${}_{2}^{-}$\\end{document}2−) and N2O were determined. The genomes of strains GP59 and JAM1 were sequenced and compared. The transcriptomes of strains GP59 and JAM1 were derived from anoxic cultures. Results During batch cultures of the biofilm, we observed the disappearance of H. nitrativorans NL23 without affecting the denitrification performance. From the acclimated biofilm, we isolated strain GP59 that can perform, like H. nitrativorans NL23, the complete denitrification pathway. The GP59 cell concentration in the acclimated biofilm was 2–3 orders of magnitude higher than M. nitratireducenticrescens JAM1 and H. nitrativorans NL23. Genome analyses revealed that strain GP59 belongs to the species M. nitratireducenticrescens. The GP59 genome shares more than 85% of its coding sequences with those of strain JAM1. Based on transcriptomic analyses of anoxic cultures, most of these common genes in strain GP59 were expressed at similar level than their counterparts in strain JAM1. In contrast to strain JAM1, strain GP59 cannot reduce NO\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}${}_{3}^{-}$\\end{document}3− under oxic culture conditions, and has a 24-h lag time before growth and NO\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}${}_{3}^{-}$\\end{document}3− reduction start to occur in anoxic cultures, suggesting that both strains regulate differently the expression of their denitrification genes. Strain GP59 has the ability to reduce NO\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}${}_{2}^{-}$\\end{document}2− as it carries a gene encoding a NirK-type NO\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}${}_{2}^{-}$\\end{document}2− reductase. Based on the CRISPR sequences, strain GP59 did not emerge from strain JAM1 during the biofilm batch cultures but rather was present in the original biofilm and was enriched during this process. Discussion These results reinforce the unique trait of the species M. nitratireducenticrescens among the Methylophaga genus as facultative anaerobic bacterium. These findings also showed the plasticity of denitrifying population of the biofilm in adapting to anoxic marine environments of the bioreactor. PMID:29707436

  4. Abundance and Morphological Effects of Large Woody Debris in Forested Basins of Southern Andes

    NASA Astrophysics Data System (ADS)

    Andreoli, A.; Comiti, F.; Lenzi, M. A.

    2006-12-01

    The Southern Andes mountain range represents an ideal location for studying large woody debris (LWD) in streams draining forested basins thanks to the presence of both pristine and managed woodland, and to the general low level of human alteration of stream corridors. However, no published investigations have been performed so far in such a large region. The investigated sites of this research are three basins (9-13 km2 drainage area, third-order channels) covered by Nothofagus forests: two of them are located in the Southern Chilean Andes (the Tres Arroyos in the Malalcahuello National Reserve and the Rio Toro within the Malleco Natural Reserve) and one basin lies in the Argentinean Tierra del Fuego (the Buena Esperanza basin, near the city of Ushuaia). Measured LWD were all wood pieces larger than 10 cm in diameter and 1 m in length, both in the active channel and in the adjacent active floodplain. Pieces forming log jams were all measured and the geometrical dimensions of jams were taken. Jam type was defined based on Abbe and Montgomery (2003) classification. Sediment stored behind log-steps and valley jams was evaluated approximating the sediment accumulated to a solid wedge whose geometrical dimensions were measured. Additional information relative to each LWD piece were recorded during the field survey: type (log, rootwad, log with rootwads attached), orientation to flow, origin (floated, bank erosion, landslide, natural mortality, harvest residuals) and position (log-step, in-channel, channel-bridging, channel margins, bankfull edge). In the Tres Arroyos, the average LWD volume stored within the bankfull channel is 710 m3 ha-1. The average number of pieces is 1,004 per hectare of bankfull channel area. Log-steps represent about 22% of all steps, whereas the elevation loss due to LWD (log-steps and valley jams) results in 27% loss of the total stream potential energy. About 1,600 m3 of sediment (assuming a porosity of 20%) is stored in the main channel behind LWD structures approximately, i.e. 1,000 m3 per km of channel length, corresponding to approximately 150% of the annual sediment yield. In the Rio Toro, the average LWD volume and number of elements stored are much less, respectively 117 m3 ha-1 and 215 pieces ha-1. Neither log-steps or valley jams were observed and the longitudinal profile appear not affected by LWD, and no sediment storage can be attributed to woody debris. The low LWD storage and impact in this channel is likely due to the general stability of its hillslopes, in contrast to the Tres Arroyos where extensive landslides and debris flows convey a great deal of wood into the stream. Finally, in the Buena Esperanza, the average LWD volume stored in the active channel is quite low (120 m3 ha-1, but the average number of pieces is the highest with 1,397 pieces ha-1. This is due to the smaller dimensions of LWD elements delivered by trees growing in a colder climate as that characterizing the Tierra del Fuego. The morphological influence of wood in this channel is however very important, with the presence of large valley jams and high log-steps imparting the channel a macro-scale stepped profile with a total energy dissipation due to LWD (log-steps and valley jams) of about 24 % of the stream potential energy. The sediment stored behind log-steps and valley jams results to be about 1,290 m3, i.e. 700 m3 km-1, but unfortunately no values of sediment yields are available for this basin.

  5. Ice Engineering: Ice Jams, Winter 2002-2003

    DTIC Science & Technology

    2004-07-01

    located between Caribou and Fort Fairfield, and from Presque Isle and Washburn (NWS 2003i). Of the seven, four were reported in December and three...the towns of Washburn and Presque Isle ) was estimated to be one-quarter of a mile long in December. This jam remained in place until 21 April 2003...then appeared to break in half, sending the downstream floe of ice southeast through the town of Presque Isle while the most upstream section of

  6. Defense AR Journal, Volume 15, Number 1, April 2008

    DTIC Science & Technology

    2008-04-01

    Beavers William Ruta DAUAA Research Paper Competition: 3rd Place Employing Organizational Modeling & Simulation of the KC-135 Depot’s Flight Controls Maj...AttAck munition SYStemS (jAmS) Project office imProvinG SuPPort to the wArfiGhter Barry Beavers and William Ruta The Joint Attack Munition Systems...William Ruta . This paper examines how the JAMS Project Office improved support to the warfighter with its implementation of the Life Cycle

  7. Geomorphic and riparian forest influences on characteristics of large wood and large-wood jams in old-growth and second-growth forests in Northern Michigan, USA

    Treesearch

    Arthur E.L. Morris; P. Charles Goebel; Brian J. Palik

    2007-01-01

    Large wood (LW; pieces with diameter greater than 10 cm and length greater than 1 m) and large-wood jams (LWJs; two or more pieces of LW in contact with each other) are important components of stream ecosystems that are often distributed along stream channels in response to geomorphic and riparian forest factors that interact hierarchically. As a result, information on...

  8. The Vulnerabilities of Unmanned Aircraft System Common Data Links to Electronic Attack

    DTIC Science & Technology

    2010-06-11

    jamming, radar acquisition, and radar tracking (US Joint Forces Command 2009b, 101). Electromagnetic Interference ( EMI ). Any electromagnetic...has a range of up to 125 kilometers, and can remain airborne for up to 6 hours (see figure 6). The Shadow 200 is launched using a trailer mounted...disruption by EMI and friendly EW jamming systems. Second, FM 3-04.115 is the only publication that addresses counter-UAS threats and how enemy forces may

  9. 77 FR 73732 - In the Matter of Amendment of the Designation of al-Qa'ida in Iraq, aka Jam'at al Tawhid wa'al...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-11

    ...'ida in Iraq, aka Jam'at al Tawhid wa'al-Jihad, aka The Monotheism and Jihad Group, aka The al-Zarqawi Network, aka al-Tawhid, aka Tanzim Qa`idat al-Jihad fi Bilad al-Rafidayn, aka The Organization of al-Jihad... Rivers, aka al-Qaida of Jihad Organization in the Land of the Two Rivers, aka al- Qaida Group of Jihad in...

  10. 77 FR 73732 - In the Matter of the Amendment of the Designation of al-Qa'ida in Iraq, aka Jam'at al Tawhid wa...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-11

    ...-Qa'ida in Iraq, aka Jam'at al Tawhid wa'al-Jihad, aka The Monotheism and Jihad Group, aka The al-Zarqawi Network, aka al-Tawhid, aka Tanzim Qa`idat al-Jihad fi Bilad al-Rafidayn, aka The Organization of... Group of Jihad in Iraq, aka al-Qaida Group of Jihad in the Land of the Two Rivers, aka The Organization...

  11. Blind Demodulation of Pass Band OFDMA Signals and Jamming Battle Damage Assessment Utilizing Link Adaptation

    DTIC Science & Technology

    2014-03-27

    Access (OFDMA) signal so that jamming effectiveness can be assessed; referred to in this research as Battle Damage Assessment ( BDA ). The research extends...the 802.16 Wireless Metropolitan Area Network (MAN) OFDMA standard, and presents a novel method for performing BDA via observation of Sub Carrier (SC...interferer is also evaluated where the blind demodulator’s performance is degraded. BDA is achieved via observing SC LA modulation behavior of the

  12. Coherent detection of frequency-hopped quadrature modulations in the presence of jamming. II - QPR Class I modulation. [Quadrature Partial Response

    NASA Technical Reports Server (NTRS)

    Simon, M. K.

    1981-01-01

    This paper considers the performance of quadrature partial response (QPR) in the presence of jamming. Although a QPR system employs a single sample detector in its receiver, while quadrature amplitude shift keying (or quadrature phase shift keying) requires a matched-filter type of receiver, it is shown that the coherent detection performances of the two in the presence of the intentional jammer have definite similarities.

  13. Echolocating bats rely on audiovocal feedback to adapt sonar signal design.

    PubMed

    Luo, Jinhong; Moss, Cynthia F

    2017-10-10

    Many species of bat emit acoustic signals and use information carried by echoes reflecting from nearby objects to navigate and forage. It is widely documented that echolocating bats adjust the features of sonar calls in response to echo feedback; however, it remains unknown whether audiovocal feedback contributes to sonar call design. Audiovocal feedback refers to the monitoring of one's own vocalizations during call production and has been intensively studied in nonecholocating animals. Audiovocal feedback not only is a necessary component of vocal learning but also guides the control of the spectro-temporal structure of vocalizations. Here, we show that audiovocal feedback is directly involved in the echolocating bat's control of sonar call features. As big brown bats tracked targets from a stationary position, we played acoustic jamming signals, simulating calls of another bat, timed to selectively perturb audiovocal feedback or echo feedback. We found that the bats exhibited the largest call-frequency adjustments when the jamming signals occurred during vocal production. By contrast, bats did not show sonar call-frequency adjustments when the jamming signals coincided with the arrival of target echoes. Furthermore, bats rapidly adapted sonar call design in the first vocalization following the jamming signal, revealing a response latency in the range of 66 to 94 ms. Thus, bats, like songbirds and humans, rely on audiovocal feedback to structure sonar signal design.

  14. Constraints and vibrations in static packings of ellipsoidal particles.

    PubMed

    Schreck, Carl F; Mailman, Mitch; Chakraborty, Bulbul; O'Hern, Corey S

    2012-06-01

    We numerically investigate the mechanical properties of static packings of frictionless ellipsoidal particles in two and three dimensions over a range of aspect ratio and compression Δφ. While amorphous packings of spherical particles at jamming onset (Δφ=0) are isostatic and possess the minimum contact number z_{iso} required for them to be collectively jammed, amorphous packings of ellipsoidal particles generally possess fewer contacts than expected for collective jamming (z

  15. Preparation of anti-Sudan red monoclonal antibody and development of an indirect competitive enzyme-linked immunosorbent assay for detection of Sudan red in chilli jam and chilli oil.

    PubMed

    Xu, Jing; Zhang, Yuanyang; Yi, Jian; Meng, Meng; Wan, Yuping; Feng, Caiwei; Wang, Shanliang; Lu, Xiao; Xi, Rimo

    2010-10-01

    Sudan dyes are banned to be used in food additives because of the carcinogenicity of their metabolites. A rapid and sensitive indirect competitive enzyme-linked immunosorbent assay (ELISA) was developed to detect the residues of Sudan dyes. Novel immunogen and coating antigen were synthesized via glutaraldehyde linking. The hapten-bovine serum albumin (BSA) was applied as immunogen and the hapten-ovalbumin (OVA) was served as coating antigen. The monoclonal antibody obtained showed high sensitivity to Sudan I with an IC(50) value of 1.7 μg L(-1) in buffer and was suitable to detect the residues of Sudan red in food products. The specificity of the assay was studied by measuring cross-reactivity of the antibody with the structurally related compounds of Sudan II (<1%), Sudan IV (<1%) and para red (120%). Chilli jam and chilli oil samples spiked with Sudan dyes were analyzed by the method. The detection limit (LOD) of the ELISA method applied in chilli jam and chilli oil was 9.0 μg L(-1) and 19.6 μg L(-1), respectively. The recovery rates of Sudan-I in chilli oil and chilli jam were in the range of 80%-110% with coefficients of variation <25%. The intra-assay variation and inter-assay variation in buffer were both <9%.

  16. Preparation and radar absorptive properties of BaFe12O19 -coated glass fiber

    NASA Astrophysics Data System (ADS)

    Jia, F.; Xu, M.; Bao, H. Q.; Cui, K.; Zhang, F.

    2016-07-01

    Traditional passive jamming materials such as chaff and foil showed some limitations in use because they can only reflect the electromagnetic wave. Therefore, to develop a kind of absorptive passive jamming material to make up for deficiencies of traditional passive jamming materials and improve the jamming efficiency is of great significance. In this paper, the BaFe12O19-coated glass fiber, used as a kind of radar absorptive chaff, was prepared by sol-gel dip-coating method. The effects of heat treatment temperature, heat treatment time and coating times on film quality, tensile strength and attenuation efficiency of the samples were discussed. The study shows that an increase of the heat treatment temperature and an extension of the heat treatment time is conducive to the growth of barium ferrite grain, while they would introduce the loss of chaff strength at the same time. In addition, multi-coating process can improve the film quality and attenuation efficiency of the sample. Data show that the 10 times coated samples have a best reflectivity of (15GHz, -6.65dB) and the bandwidth of reflectivity lower than -5dB is11.8 GHz. According to the test results, the prepared material has certain attenuation efficiency in the range of 2GHz-18GHz, having a high practical value.

  17. Large wood dynamics and biophysical consequences for riparian forests: A comparison of an unconfined alluvial river in a temperate rainforest and a bedrock confined river in a semi-arid South African savanna.

    NASA Astrophysics Data System (ADS)

    Latterell, J. J.; Pettit, N. E.; Naiman, R. J.

    2005-05-01

    Large wood shapes the geomorphology and ecology of rivers. We determined the origin, distribution, and fate of large wood in two rivers from contrasting environments. The Queets is an unstable temperate, rainforest river running from the Olympic Mountains (USA) through a glacial valley with colossal trees. In most years, the channel erodes a variety of forested landforms which forms jams that sculpt habitats. Many are displaced in a few years. Remaining jams initiate landform development and forest renewal. Thus, wood is stockpiled in the floodplain where it may become buried. Channel movements recapture most logs within 50 years. In contrast, the Sabie is a perennial river running through a confined bedrock channel in a fire-prone semi-arid South African savanna. Riparian trees are relatively small and many sink in water. A recent flood (February 2000) devastated the riparian forest, introducing wood to the channel. Jams formed on toppled trees, transported logs, and bedrock outcrops. Many trees survived and resprouted. Jams facilitated the establishment of woody plant seedlings and the intrusion of fire into riparian areas. Sunken wood formed unique depositional features. The Queets and Sabie rivers are strikingly different systems. However, large wood appears to promote the renewal and development of complex riparian forests in both rivers.

  18. Thermophilic aeration of cattle slurry with whey and/or jam wastes.

    PubMed

    Heinonen-Tanski, Helvi; Kiuru, Tapio; Ruuskanen, Juhani; Korhonen, Kari; Koivunen, Jari; Ruokojärvi, Arja

    2005-01-01

    Thermophilic aeration of cattle slurry and food industrial by-products was studied with the aim to improve hygienic qualities of the slurry so that it could be used as a safe fertiliser for berries to be eaten raw. We also wanted to study if the process would be energetically favourable in an arctic climate. Cattle slurry alone or with whey and/or jam waste was treated. The tests were done in a well heat-insulated reactor with a 10 m(3) volume. Temperature increases up to over 70 degrees C could be recorded in 19 days even though some processes were carried out in winter time when the ambient air temperature was less than 0 degrees C. The heat energy formed was higher than the electrical energy needed to carry out the aeration. The hygienic qualities of the aerated product were good with only minor nitrogen losses. The end product could be useful as a fertiliser and soil improving compound to increase the organic matter content of agricultural soil. Cattle slurry alone was well suited as the raw material if attaining a high temperature was the main goal. A part of slurry could be replaced with food-industrial side products. Whey waste suited better for co-composting than jam waste but the mixture of whey, jam waste, and slurry was optimal for composting.

  19. Delineation of the Clinical, Molecular and Cellular Aspects of Novel JAM3 Mutations Underlying the Autosomal Recessive Hemorrhagic Destruction of the Brain, Subependymal Calcification and Congenital Cataracts

    PubMed Central

    Akawi, Nadia A.; Canpolat, Fuat E.; White, Susan M.; Quilis-Esquerra, Josep; Sanchez, Martin Morales; Gamundi, Maria José; Mochida, Ganeshwaran H.; Walsh, Christopher A.; Ali, Bassam R.; Al-Gazali, Lihadh

    2014-01-01

    We have recently shown that the hemorrhagic destruction of the brain, subependymal calcification and congenital cataracts is caused by biallelic mutations in the gene encoding junctional adhesion molecule 3 (JAM3) protein. Affected members from three new families underwent detailed clinical examination including imaging of the brain. Affected individuals presented with a distinctive phenotype comprising hemorrhagic destruction of the brain, subependymal calcification and congenital cataracts. All patients had a catastrophic clinical course resulting in death in 7 out of 10 affected individuals. Sequencing the coding exons of JAM3 revealed three novel homozygous mutations: c.2T>G (p.M1R), c.346G>A (p.E116K) and c.656G>A (p.C219Y). The p.M1R mutation affects the start codon and therefore is predicted to impair protein synthesis. Cellular studies showed that the p.C219Y mutation resulted in a significant retention of the mutated protein in the endoplasmic reticulum, suggesting a trafficking defect. The p.E116K mutant traffics normally to the plasma membrane as the wild type and may have lost its function due to the lack of interaction with an interacting partner. Our data further support the importance of JAM3 in the development and function of the vascular system and the brain. PMID:23255084

  20. Order-parameter model for unstable multilane traffic flow

    NASA Astrophysics Data System (ADS)

    Lubashevsky, Ihor A.; Mahnke, Reinhard

    2000-11-01

    We discuss a phenomenological approach to the description of unstable vehicle motion on multilane highways that explains in a simple way the observed sequence of the ``free flow <--> synchronized mode <--> jam'' phase transitions as well as the hysteresis in these transitions. We introduce a variable called an order parameter that accounts for possible correlations in the vehicle motion at different lanes. So, it is principally due to the ``many-body'' effects in the car interaction in contrast to such variables as the mean car density and velocity being actually the zeroth and first moments of the ``one-particle'' distribution function. Therefore, we regard the order parameter as an additional independent state variable of traffic flow. We assume that these correlations are due to a small group of ``fast'' drivers and by taking into account the general properties of the driver behavior we formulate a governing equation for the order parameter. In this context we analyze the instability of homogeneous traffic flow that manifested itself in the above-mentioned phase transitions and gave rise to the hysteresis in both of them. Besides, the jam is characterized by the vehicle flows at different lanes which are independent of one another. We specify a certain simplified model in order to study the general features of the car cluster self-formation under the ``free flow <--> synchronized motion'' phase transition. In particular, we show that the main local parameters of the developed cluster are determined by the state characteristics of vehicle motion only.

  1. Evaluation method based on the image correlation for laser jamming image

    NASA Astrophysics Data System (ADS)

    Che, Jinxi; Li, Zhongmin; Gao, Bo

    2013-09-01

    The jamming effectiveness evaluation of infrared imaging system is an important part of electro-optical countermeasure. The infrared imaging devices in the military are widely used in the searching, tracking and guidance and so many other fields. At the same time, with the continuous development of laser technology, research of laser interference and damage effect developed continuously, laser has been used to disturbing the infrared imaging device. Therefore, the effect evaluation of the infrared imaging system by laser has become a meaningful problem to be solved. The information that the infrared imaging system ultimately present to the user is an image, so the evaluation on jamming effect can be made from the point of assessment of image quality. The image contains two aspects of the information, the light amplitude and light phase, so the image correlation can accurately perform the difference between the original image and disturbed image. In the paper, the evaluation method of digital image correlation, the assessment method of image quality based on Fourier transform, the estimate method of image quality based on error statistic and the evaluation method of based on peak signal noise ratio are analysed. In addition, the advantages and disadvantages of these methods are analysed. Moreover, the infrared disturbing images of the experiment result, in which the thermal infrared imager was interfered by laser, were analysed by using these methods. The results show that the methods can better reflect the jamming effects of the infrared imaging system by laser. Furthermore, there is good consistence between evaluation results by using the methods and the results of subjective visual evaluation. And it also provides well repeatability and convenient quantitative analysis. The feasibility of the methods to evaluate the jamming effect was proved. It has some extent reference value for the studying and developing on electro-optical countermeasures equipments and effectiveness evaluation.

  2. Sunxiuqinia faeciviva sp. nov., a facultatively anaerobic organoheterotroph of the Bacteroidetes isolated from deep subseafloor sediment.

    PubMed

    Takai, Ken; Abe, Mariko; Miyazaki, Masayuki; Koide, Osamu; Nunoura, Takuro; Imachi, Hiroyuki; Inagaki, Fumio; Kobayashi, Tohru

    2013-05-01

    A facultatively anaerobic organoheterotroph, designated JAM-BA0302(T), was isolated from a deep subseafloor sediment at a depth of 247.1 m below the seafloor off the Shimokita Peninsula of Japan in the north-western Pacific Ocean (Site C9001 , water depth 1180 m). Cells of strain JAM-BA0302(T) showed gliding motility and were thin, long rods with peritrichous fimbriae-like structures. Growth occurred at 4-37 °C (optimum 30 °C; doubling time 8 h), at pH 5.4-8.3 (optimum pH 7.5) and with 5-60 g NaCl l(-1) (optimum 20-25 g l(-1)). The isolate utilized proteinaceous substrates such as yeast extract, tryptone, casein and Casamino acids with O2 respiration or fermentation. Strain JAM-BA0302(T) was a piezotolerant bacterium that could grow at pressures as high as 25 MPa under aerobic conditions and 10 MPa under anaerobic conditions. The G+C content of the genomic DNA was 43.2 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain JAM-BA0302(T) was most closely related to yet-undescribed strains recently isolated from various marine sedimentary environments (>99.6 % 16S rRNA gene sequence similarity) and was moderately related to Sunxiuqinia elliptica DQHS-4(T), isolated from a sea cucumber farm sediment (95.5 % 16S rRNA gene sequence similarity) within the Bacteroidetes. The phylogenetic analysis suggested that the isolate should belong to the genus Sunxiuqinia. However, low DNA-DNA relatedness (<11 %) and many physiological and molecular properties differentiated the isolate from those previously describedhttp://dx.doi.org/10.1601/nm.22746. We propose here a novel species of the genus Sunxiuqinia, with the name Sunxiuqinia faeciviva sp. nov. The type strain is JAM-BA0302(T) ( = JCM 15547(T)  = NCIMB 14481(T)).

  3. Evolutionary games of condensates in coupled birth–death processes

    PubMed Central

    Knebel, Johannes; Weber, Markus F.; Krüger, Torben; Frey, Erwin

    2015-01-01

    Condensation phenomena arise through a collective behaviour of particles. They are observed in both classical and quantum systems, ranging from the formation of traffic jams in mass transport models to the macroscopic occupation of the energetic ground state in ultra-cold bosonic gases (Bose–Einstein condensation). Recently, it has been shown that a driven and dissipative system of bosons may form multiple condensates. Which states become the condensates has, however, remained elusive thus far. The dynamics of this condensation are described by coupled birth–death processes, which also occur in evolutionary game theory. Here we apply concepts from evolutionary game theory to explain the formation of multiple condensates in such driven-dissipative bosonic systems. We show that the vanishing of relative entropy production determines their selection. The condensation proceeds exponentially fast, but the system never comes to rest. Instead, the occupation numbers of condensates may oscillate, as we demonstrate for a rock–paper–scissors game of condensates. PMID:25908384

  4. Impact dynamics of liquid marbles

    NASA Astrophysics Data System (ADS)

    Marston, Jeremy; Supakar, Tinku

    2016-11-01

    The impact of particle coated droplets (a.k.a. liquid marbles or armored droplets) onto solid substrates is assessed experimentally with high-speed video. The impact is characterized by the maximum spread diameter, which conforms to scaling laws in terms of the impact Weber number, meaning that the marbles behave similar to water droplets during this stage. However, the motion of the particles across the surface allows us to observe both clustering and divergence of the particle shell and, in particular, we observe the formation of arrested shapes (i.e. jammed interfaces) after impact onto hydrophobic surfaces, from an initially spherical shape. In this case, we postulate that the speed of retraction and rate of change of surface coverage is a key ingredient leading to arrested shapes.

  5. Jammed systems of oriented needles always percolate on square lattices

    NASA Astrophysics Data System (ADS)

    Kondrat, Grzegorz; Koza, Zbigniew; Brzeski, Piotr

    2017-08-01

    Random sequential adsorption (RSA) is a standard method of modeling adsorption of large molecules at the liquid-solid interface. Several studies have recently conjectured that in the RSA of rectangular needles, or k -mers, on a square lattice, percolation is impossible if the needles are sufficiently long (k of order of several thousand). We refute these claims and present rigorous proof that in any jammed configuration of nonoverlapping, fixed-length, horizontal, or vertical needles on a square lattice, all clusters are percolating clusters.

  6. KSC-2012-1552

    NASA Image and Video Library

    2012-02-23

    ORLANDO, Fla. -- At NASA's exhibit inside the Orange County Convention Center in Orlando, Fla., visitors to the NBA All-Star Jam Session participate in hands-on educational activities to learn more about how science plays into sports. One of the events leading up to the NBA All-Star game being held in Orlando on Feb. 26, the NBA All-Star Jam Session is a basketball experience intended for all ages, allowing fans to compete against their friends in skills challenges and collect autographs from players and legends. Photo credit: NASA/Frankie Martin

  7. Experimental investigation of granular dynamics close to the jamming transition

    NASA Astrophysics Data System (ADS)

    Caballero, G.; Kolb, E.; Lindner, A.; Lanuza, J.; Clément, E.

    2005-06-01

    We present different experiments on dense granular assemblies with the aim of clarifying the notion of 'jamming transition' for these assemblies of non-Brownian particles. The experimental set-ups differ in the way in which external perturbations are applied in order to unjam the systems. The first experiment monitors the response to a locally applied deformation of a model packing at rest. The two other experiments study local and collective dynamics in a granular assembly weakly excited by vibration.

  8. Peering into the Future: Peer-to-Peer Technology as a Model for Distributed Joint Battlespace Intelligence Dissemination and Operational Tasking

    DTIC Science & Technology

    2001-06-01

    redundant topology.ൺ For example, assume that a user is looking for a recipe for strawberry rhubarb pie. Once connected to the network, the user asks...relatively quick and thorough. (See Figure 6). 73 John Borland, "Democracy’s Traffic Jams ," CNET...Traffic Jams ." CNET News.Com. 26 October 2000. n.p. On-line, Internet. Available from http://news.cnet.com/news/0-1005-201-3248711-2.html. Clip2

  9. Symmetry associated with symmetry break: Revisiting ants and humans escaping from multiple-exit rooms

    NASA Astrophysics Data System (ADS)

    Ji, Q.; Xin, C.; Tang, S. X.; Huang, J. P.

    2018-02-01

    Crowd panic has incurred massive injuries or deaths throughout the world, and thus understanding it is particularly important. It is now a common knowledge that crowd panic induces "symmetry break" in which some exits are jammed while others are underutilized. Amazingly, here we show, by experiment, simulation and theory, that a class of symmetry patterns come to appear for ants and humans escaping from multiple-exit rooms while the symmetry break exists. Our symmetry pattern is described by the fact that the ratio between the ensemble-averaging numbers of ants or humans escaping from different exits is equal to the ratio between the widths of the exits. The mechanism lies in the effect of heterogeneous preferences of agents with limited information for achieving the Nash equilibrium. This work offers new insights into how to improve public safety because large public areas are always equipped with multiple exits, and it also brings an ensemble-averaging method for seeking symmetry associated with symmetry breaking.

  10. Multi-fingered haptic palpation utilizing granular jamming stiffness feedback actuators

    NASA Astrophysics Data System (ADS)

    Li, Min; Ranzani, Tommaso; Sareh, Sina; Seneviratne, Lakmal D.; Dasgupta, Prokar; Wurdemann, Helge A.; Althoefer, Kaspar

    2014-09-01

    This paper describes a multi-fingered haptic palpation method using stiffness feedback actuators for simulating tissue palpation procedures in traditional and in robot-assisted minimally invasive surgery. Soft tissue stiffness is simulated by changing the stiffness property of the actuator during palpation. For the first time, granular jamming and pneumatic air actuation are combined to realize stiffness modulation. The stiffness feedback actuator is validated by stiffness measurements in indentation tests and through stiffness discrimination based on a user study. According to the indentation test results, the introduction of a pneumatic chamber to granular jamming can amplify the stiffness variation range and reduce hysteresis of the actuator. The advantage of multi-fingered palpation using the proposed actuators is proven by the comparison of the results of the stiffness discrimination performance using two-fingered (sensitivity: 82.2%, specificity: 88.9%, positive predicative value: 80.0%, accuracy: 85.4%, time: 4.84 s) and single-fingered (sensitivity: 76.4%, specificity: 85.7%, positive predicative value: 75.3%, accuracy: 81.8%, time: 7.48 s) stiffness feedback.

  11. Modeling mobile source emissions during traffic jams in a micro urban environment.

    PubMed

    Kondrashov, Valery V; Reshetin, Vladimir P; Regens, James L; Gunter, James T

    2002-01-01

    Urbanization typically involves a continuous increase in motor vehicle use, resulting in congestion known as traffic jams. Idling emissions due to traffic jams combine with the complex terrain created by buildings to concentrate atmospheric pollutants in localized areas. This research simulates emissions concentrations and distributions for a congested street in Minsk, Belarus. Ground-level (up to 50-meters above the street's surface) pollutant concentrations were calculated using STAR (version 3.10) with emission factors obtained from the U.S. Environmental Protection Agency, wind speed and direction, and building location and size. Relative emissions concentrations and distributions were simulated at 1-meter and 10-meters above street level. The findings demonstrate the importance of wind speed and direction, and building size and location on emissions concentrations and distributions, with the leeward sides of buildings retaining up to 99 percent of the emitted pollutants within 1-meter of street level, and up to 77 percent 10-meters above the street.

  12. Improvement of low energy atmospheric neutrino flux calculation using the JAM nuclear interaction model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Honda, M.; Kajita, T.; Kasahara, K.

    We present the calculation of the atmospheric neutrino fluxes with an interaction model named JAM, which is used in PHITS (Particle and Heavy-Ion Transport code System) [K. Niita et al., Radiation Measurements 41, 1080 (2006).]. The JAM interaction model agrees with the HARP experiment [H. Collaboration, Astropart. Phys. 30, 124 (2008).] a little better than DPMJET-III[S. Roesler, R. Engel, and J. Ranft, arXiv:hep-ph/0012252.]. After some modifications, it reproduces the muon flux below 1 GeV/c at balloon altitudes better than the modified DPMJET-III, which we used for the calculation of atmospheric neutrino flux in previous works [T. Sanuki, M. Honda, T.more » Kajita, K. Kasahara, and S. Midorikawa, Phys. Rev. D 75, 043005 (2007).][M. Honda, T. Kajita, K. Kasahara, S. Midorikawa, and T. Sanuki, Phys. Rev. D 75, 043006 (2007).]. Some improvements in the calculation of atmospheric neutrino flux are also reported.« less

  13. Non-Gaussian behavior in jamming / unjamming transition in dense granular materials

    NASA Astrophysics Data System (ADS)

    Atman, A. P. F.; Kolb, E.; Combe, G.; Paiva, H. A.; Martins, G. H. B.

    2013-06-01

    Experiments of penetration of a cylindrical intruder inside a bidimensional dense and disordered granular media were reported recently showing the jamming / unjamming transition. In the present work, we perform molecular dynamics simulations with the same geometry in order to assess both kinematic and static features of jamming / unjamming transition. We study the statistics of the particles velocities at the neighborhood of the intruder to evince that both experiments and simulations present the same qualitative behavior. We observe that the probability density functions (PDF) of velocities deviate from Gaussian depending on the packing fraction of the granular assembly. In order to quantify these deviations we consider a q-Gaussian (Tsallis) function to fit the PDF's. The q-value can be an indication of the presence of long range correlations along the system. We compare the fitted PDF's obtained with those obtained using the stretched exponential, and sketch some conclusions concerning the nature of the correlations along a granular confined flow.

  14. Elastic properties of compressed emulsions

    NASA Astrophysics Data System (ADS)

    Jorjadze, Ivane; Brujic, Jasna

    2012-02-01

    Visualizing the packing of a dense emulsion in 3D as a function of the external pressure allows us to characterize the geometry and the local stress distribution inside this jammed system. We first test the scaling laws of the pressure and average coordination number over two orders of magnitude in density. We find deviations from theoretical exponents due to the non-affine motion of the particles. Second, we observe that the distribution of forces changes from a broad exponential at the jamming point to a narrower Gaussian-like distribution under high compression. Finally, we calculate the density of states from the measured force network in the approximation of a harmonic potential. Close to jamming, the number of low frequency modes is high, while the application of pressure shifts the distribution to higher frequencies, indicative of a rigid network. The confocal images reveal the structural features associated with the low frequency modes, as well as their localization within the packing. These data are then compared with published results from numerical simulations.

  15. Optimization of a matched-filter receiver for frequency hopping code acquisition in jamming

    NASA Astrophysics Data System (ADS)

    Pawlowski, P. R.; Polydoros, A.

    A matched-filter receiver for frequency hopping (FH) code acquisition is optimized when either partial-band tone jamming or partial-band Gaussian noise jamming is present. The receiver is matched to a segment of the FH code sequence, sums hard per-channel decisions to form a test, and uses multiple tests to verify acquisition. The length of the matched filter and the number of verification tests are fixed. Optimization is then choosing thresholds to maximize performance based upon the receiver's degree of knowledge about the jammer ('side-information'). Four levels of side-information are considered, ranging from none to complete. The latter level results in a constant-false-alarm-rate (CFAR) design. At each level, performance sensitivity to threshold choice is analyzed. Robust thresholds are chosen to maximize performance as the jammer varies its power distribution, resulting in simple design rules which aid threshold selection. Performance results, which show that optimum distributions for the jammer power over the total FH bandwidth exist, are presented.

  16. Jamming Attack in Wireless Sensor Network: From Time to Space

    NASA Astrophysics Data System (ADS)

    Sun, Yanqiang; Wang, Xiaodong; Zhou, Xingming

    Classical jamming attack models in the time domain have been proposed, such as constant jammer, random jammer, and reactive jammer. In this letter, we consider a new problem: given k jammers, how does the attacker minimize the pair-wise connectivity among the nodes in a Wireless Sensor Network (WSN)? We call this problem k-Jammer Deployment Problem (k-JDP). To the best of our knowledge, this is the first attempt at considering the position-critical jamming attack against wireless sensor network. We mainly make three contributions. First, we prove that the decision version of k-JDP is NP-complete even in the ideal situation where the attacker has full knowledge of the topology information of sensor network. Second, we propose a mathematical formulation based on Integer Programming (IP) model which yields an optimal solution. Third, we present a heuristic algorithm HAJDP, and compare it with the IP model. Numerical results show that our heuristic algorithm is computationally efficient.

  17. Deterministic Reconfigurable Control Design for the X-33 Vehicle

    NASA Technical Reports Server (NTRS)

    Wagner, Elaine A.; Burken, John J.; Hanson, Curtis E.; Wohletz, Jerry M.

    1998-01-01

    In the event of a control surface failure, the purpose of a reconfigurable control system is to redistribute the control effort among the remaining working surfaces such that satisfactory stability and performance are retained. Four reconfigurable control design methods were investigated for the X-33 vehicle: Redistributed Pseudo-Inverse, General Constrained Optimization, Automated Failure Dependent Gain Schedule, and an Off-line Nonlinear General Constrained Optimization. The Off-line Nonlinear General Constrained Optimization approach was chosen for implementation on the X-33. Two example failures are shown, a right outboard elevon jam at 25 deg. at a Mach 3 entry condition, and a left rudder jam at 30 degrees. Note however, that reconfigurable control laws have been designed for the entire flight envelope. Comparisons between responses with the nominal controller and reconfigurable controllers show the benefits of reconfiguration. Single jam aerosurface failures were considered, and failure detection and identification is considered accomplished in the actuator controller. The X-33 flight control system will incorporate reconfigurable flight control in the baseline system.

  18. Relationship between microscopic dynamics in traffic flow and complexity in networks.

    PubMed

    Li, Xin-Gang; Gao, Zi-You; Li, Ke-Ping; Zhao, Xiao-Mei

    2007-07-01

    Complex networks are constructed in the evolution process of traffic flow, and the states of traffic flow are represented by nodes in the network. The traffic dynamics can then be studied by investigating the statistical properties of those networks. According to Kerner's three-phase theory, there are two different phases in congested traffic, synchronized flow and wide moving jam. In the framework of this theory, we study different properties of synchronized flow and moving jam in relation to complex network. Scale-free network is constructed in stop-and-go traffic, i.e., a sequence of moving jams [Chin. Phys. Lett. 10, 2711 (2005)]. In this work, the networks generated in synchronized flow are investigated in detail. Simulation results show that the degree distribution of the networks constructed in synchronized flow has two power law regions, so the distinction in topological structure can really reflect the different dynamics in traffic flow. Furthermore, the real traffic data are investigated by this method, and the results are consistent with the simulations.

  19. Impact of jammer side information on the performance of anti-jam systems

    NASA Astrophysics Data System (ADS)

    Lim, Samuel

    1992-03-01

    The Chernoff bound parameter, D, provides a performance measure for all coded communication systems. D can be used to determine upper-bounds on bit error probabilities (BEPs) of Viterbi decoded convolutional codes. The impact on BEP bounds of channel measurements that provide additional side information can also be evaluated with D. This memo documents the results of a Chernoff bound parameter evaluation in optimum partial-band noise jamming (OPBNJ) for both BPSK and DPSK modulation schemes. Hard and soft quantized receivers, with and without jammer side information (JSI), were examined. The results of this analysis indicate that JSI does improve decoding performance. However, a knowledge of jammer presence alone achieves a performance level comparable to soft decision decoding with perfect JSI. Furthermore, performance degradation due to the lack of JSI can be compensated for by increasing the number of levels of quantization. Therefore, an anti-jam system without JSI can be made to perform almost as well as a system with JSI.

  20. Combination of different antifungal agents in oil-in-water emulsions to control strawberry jam spoilage.

    PubMed

    Ribes, Susana; Fuentes, Ana; Talens, Pau; Barat, Jose Manuel

    2018-01-15

    The combination of antifungal agents (cinnamon bark oil, zinc gluconate and trans-ferulic acid) in oil-in-water emulsions to control the fungal spoilage of strawberry jams, minimising essential oil's sensory impact, was evaluated in this work. The in vitro assays of free antifungal agents were performed against five fungal strains; meanwhile, the emulsions assays were conducted against Aspergillus niger given its strong resistance and its relevance in strawberry products. The emulsion formulated with 0.08mg/g of essential oil was able to inhibit mould growth after the incubation period. The incorporation of zinc gluconate or trans-ferulic acid, independently of the concentration used, allowed to reduce a 25% the amount of essential oil needed to inhibit the microbial growth. The combination of antifungal agents in the emulsions has demonstrated to be an effective alternative to reduce the amount of essential oil employed, maintaining the hygienic quality and sensory profile of the strawberry jam. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Jamming/flowing transition of non-Brownian particles suspended in a iso-density fluid flowing in a 2D rectangular duct

    NASA Astrophysics Data System (ADS)

    Burel, Maxym; Martin, Sylvain; Bonnefoy, Olivier

    2017-06-01

    We present the results of an experimental study on the jamming/flowing transition. A suspension of neutrally buoyant large particles flows in an horizontal rectangular duct, where an artificial restriction triggers jamming. We show that the avalanche distribution size is exponential, that is memoryless. We further demonstrate that the avalanche size diverges when the restriction size approaches a critical value and that this divergence is well described by a power law. The parameters (critical opening size and divergence velocity) are compared to literature values and show a strong similarity with others systems. Another result of this paper is the study of the influence of the particle morphology. We show that, for a moderate restriction size, the dead-zone formed right upstream of the restriction is larger for angular particles but, paradoxically, that the avalanche size is larger for polyhedra compared to spheres by at least one order of magnitude.

  2. SDSS-IV MaNGA: Variation of the Stellar Initial Mass Function in Spiral and Early-type Galaxies

    NASA Astrophysics Data System (ADS)

    Li, Hongyu; Ge, Junqiang; Mao, Shude; Cappellari, Michele; Long, R. J.; Li, Ran; Emsellem, Eric; Dutton, Aaron A.; Li, Cheng; Bundy, Kevin; Thomas, Daniel; Drory, Niv; Lopes, Alexandre Roman

    2017-04-01

    We perform Jeans anisotropic modeling (JAM) on elliptical and spiral galaxies from the MaNGA DR13 sample. By comparing the stellar mass-to-light ratios estimated from stellar population synthesis and from JAM, we find a systematic variation of the initial mass function (IMF) similar to that in the earlier {{ATLAS}}3{{D}} results. Early-type galaxies (elliptical and lenticular) with lower velocity dispersions within one effective radius are consistent with a Chabrier-like IMF, while galaxies with higher velocity dispersions are consistent with a more bottom-heavy IMF such as the Salpeter IMF. Spiral galaxies have similar systematic IMF variations, but with slightly different slopes and larger scatters, due to the uncertainties caused by the higher gas fractions and extinctions for these galaxies. Furthermore, we examine the effects of stellar mass-to-light ratio gradients on our JAM modeling, and we find that the trends become stronger after considering the gradients.

  3. Effect of particle polydispersity on the irreversible adsorption of fine particles on patterned substrates

    NASA Astrophysics Data System (ADS)

    Marques, J. F.; Lima, A. B.; Araújo, N. A. M.; Cadilhe, A.

    2012-06-01

    We performed extensive Monte Carlo simulations of the irreversible adsorption of polydispersed disks inside the cells of a patterned substrate. The model captures relevant features of the irreversible adsorption of spherical colloidal particles on patterned substrates. The pattern consists of (equal) square cells, where adsorption can take place, centered at the vertices of a square lattice. Two independent, dimensionless parameters are required to control the geometry of the pattern, namely, the cell size and cell-cell distance, measured in terms of the average particle diameter. However, to describe the phase diagram, two additional dimensionless parameters, i.e., the minimum and maximum particle radii, are also required. We find that the transition between any two adjacent regions of the phase diagram solely depends on the largest and smallest particle sizes, but not on the shape of the distribution function of the radii. We consider size dispersions up to 20% of the average radius using a physically motivated, truncated, Gaussian-size distribution, and focus on the regime where adsorbing particles do not interact with those previously adsorbed on neighboring cells to characterize the jammed state structure. The study generalizes previous exact relations on monodisperse particles to account for size dispersion. Due to the presence of the pattern, the coverage shows a nonmonotonic dependence on the cell size. The pattern also affects the radius of adsorbed particles, where one observes preferential adsorption of smaller radii, particularly at high polydispersity.

  4. Application of ELJ to create and maintain side channels in a dynamic gravel bed river

    NASA Astrophysics Data System (ADS)

    Crabbe, E.; Crowe Curran, J.; Ockelford, A.

    2017-12-01

    Braided and anastomosing rivers create and maintain a large amount of side channel habitat. Unfortunately, many rivers that were once multi-channel rivers have been constrained to single thread channels as a consequence of land use changes that occurred in the 19th and 20th centuries or earlier. An increasingly common management goal today is the re-creation of self-maintaining side and tributary habitat through as natural means as possible. This work examines the geomorphic history of one such channel and the success of recent rehabilitation efforts. Our case study comes from the South Fork Nooksack River in the Cascades Range in Washington State. The Nooksack River is a gravel and sand bed channel with a snowmelt dominated hydrograph. Engineered log jams (ELJ) have been employed to direct flow into side and chute channels with the larger goals of increasing overall channel complexity and salmon spawning opportunities. ELJs have been constructed on the channel since the 2000s, and the ELJs in the study reaches range in age up to 10 years. The size and design of individual jams within the reach vary, enabling a comparison between jam types. ELJs are evaluated for their ability to maintain gravel bar locations and open tributary channels through the snowmelt season over the reach scale. Additional goals of trapping wood onto the jams and existing bars, stabilizing channel banks, and allowing for the growth of bar vegetation are also examined.

  5. Linkage Of A Finite Element Flow Model With A Soil Moisture Model: Challanges Under Semiarid Conditions

    NASA Astrophysics Data System (ADS)

    Roediger, T.; Siebert, C.; Krause, P.

    2008-12-01

    The arid to semiarid Middle East is a region of extreme growth of population. Hence, the rare and over- expoitated water resources in that region have to be more protected against antropogenic and geogenic pollution. One way to help solving that complex issue is to develop an intelligent and integrated strategy to manage all available water resources, which is the aim of the multilateral SMART-project in the Lower Jordan Valley. To generate such an IWRM, all water resources (groundwater, surface runoff, waste water) of the valley and its shoulders have to be quanti- and qualitatively evaluated. The strategy of SMART is to upscale knowledge, extracted from local catchment areas to the project scale, which covers the area between Sea of Galilee, Jerusalem, Dead Sea and Amman. The study areas of the here presented sub-project are the Wadis Qilt (Palestine) and Al Arab (Jordan). The aim of the sub-project is to evaluate natural resources on catchment scale by combining hydrochemical and hydraulical methods to develop a high precision model. Concerning the quantification of the system, two seperated models will be linked: a numerical finite element flow-model for the groundwater passage and a new devolped hydrological model JAMS, which is excellently prepared for humid conditions. The power of JAMS is the highly accurate assessment of soil moisture balance and consequently of surface runoff and groundwater recharge. However, the empirical equations and input parameters have to be adjusted onto the conditions of the semiarid Wadi Al Arab and the arid Wadi Qilt. After the adaption of JAMS, the spatially and temporarily differentiated calculation of runoff and groundwater recharge is possible. Beside climatic gradients, the key issue is, to correctly evaluate the evapotranspiration in respect to the different classes of landuse. In the study area Wadi Al Arab, the groundwater recharge was calculated as area-indicated output parameter of JAMS. This output was used to be the spatial differentiated input parameter of the numerical flow model. The advantage is the direct comparability of the finite-element meshs of JAMS and FeFlow. However, the individual definitions of values (recharge, base flow, exfiltration of JAMS, infiltration of FeFlow, etc.) of both models have to be linked by an interface between both systems. One of the biggest challenges is the temporal discretization of recharge between leaving soilcrust and entering groundwater table. In fact, the target was to evaluate the effects of retardation of the unsaturated zone in dependence to the hydraulic parameters of the entire groundwater reservoir.

  6. Planetesimal formation starts at the snow line

    NASA Astrophysics Data System (ADS)

    Drążkowska, J.; Alibert, Y.

    2017-12-01

    Context. The formation stage of planetesimals represents a major gap in our understanding of the planet formation process. Late-stage planet accretion models typically make arbitrary assumptions about planetesimal and pebble distribution, while dust evolution models predict that planetesimal formation is only possible at some orbital distances. Aims: We wish to test the importance of the water snow line in triggering the formation of the first planetesimals during the gas-rich phase of a protoplanetary disk, when cores of giant planets have to form. Methods: We connected prescriptions for gas disk evolution, dust growth and fragmentation, water ice evaporation and recondensation, the transport of both solids and water vapor, and planetesimal formation via streaming instability into a single one-dimensional model for protoplanetary disk evolution. Results: We find that processes taking place around the snow line facilitate planetesimal formation in two ways. First, because the sticking properties between wet and dry aggregates change, a "traffic jam" inside of the snow line slows the fall of solids onto the star. Second, ice evaporation and outward diffusion of water followed by its recondensation increases the abundance of icy pebbles that trigger planetesimal formation via streaming instability just outside of the snow line. Conclusions: Planetesimal formation is hindered by growth barriers and radial drift and thus requires particular conditions to take place. The snow line is a favorable location where planetesimal formation is possible for a wide range of conditions, but not in every protoplanetary disk model, however. This process is particularly promoted in large cool disks with low intrinsic turbulence and an increased initial dust-to-gas ratio. The movie attached to Fig. 3 is only available at http://www.aanda.org

  7. Investigation of the Influence of Air Defense Artillery on Combat Pilot Suppression and Attrition Management Practices

    DTIC Science & Technology

    1992-05-01

    low as possible for better accuracy." (Mamyer, 1979, p. 280) "With the advent of the jamming pod, F-105D flights could once again penetrate at medium...or pumpkins coming at the aircraft." (Fulbrook, 1986a, pp. 43-44) "Generally, there are two types of aviators when bullets start flying. All of us... jamming ; ECM and flare equipment onboard * Importance of targets (both to cummand and control and to pilot) and necessity of achieving target damage

  8. Gain and loss of esteem, direct reciprocity and Heider balance

    NASA Astrophysics Data System (ADS)

    Hassanibesheli, Forough; Hedayatifar, Leila; Gawroński, Przemysław; Stojkow, Maria; Żuchowska-Skiba, Dorota; Kułakowski, Krzysztof

    2017-02-01

    The effect of gain and loss of esteem is introduced into the equations of time evolution of social relations, hostile or friendly, in a group of actors. The equations allow for asymmetric relations. We prove that in the presence of this asymmetry, the majority of stable solutions are jammed states, i.e. the Heider balance is not attained there. A phase diagram is constructed with three phases: the jammed phase, the balanced phase with two mutually hostile groups, and the phase of so-called paradise, where all relations are friendly.

  9. The naming (and misnaming) of America

    USGS Publications Warehouse

    Wexler, Mark

    1979-01-01

    Jim Jam Ridge winds for several hundred feet a long a spectacular section of the High Sierra, near the heart of northern California's Mother Lode country. According to local historians, its name dates back to a night in the late 1800s when a drunk prospector rolled into a campfire, exploding a handful of rifle shells in his pocket. The fatal incident left his two partners with a severe case of the "jim jams" a common term in those days for the "shakes" and that's how the name took hold.

  10. Nanoporous Polymeric Grating-Based Optical Biosensors (Preprint)

    DTIC Science & Technology

    2007-03-01

    Tombelli, S.; Mascini, M.; Bilia, A; Bergonzi, M. C.; Vincieri, F. F. Talanta 2005, 65, 578-585. Haughey, S. A; Baxter, G. A J of AOAC Inter. 2006 , 89, 862...C.; Bowers, M. T. JAm. Chem. Soc 2006 , 128,8484-8492. (6) Wang, l et. al. Anal. Chim. Acta 1997, 347, 1-8. Jena, B. K.; Raj, C. R. Anal. Chem. 2006 ...78, 6332-6339. Hansen, J. A; Wang, l; Kawde, A; Xiang, Y.; Gothelf, K. V.; Collins, G JAm. Chem. Soc 2006 , 128,2228-2229. Huang, T; 14 Liu, M.; Knight

  11. Fiches pratiques: Nouvelles histoires de modes; Pour se faire une tartine; Le Texte litteraire: "Decouverte" de Guy de Maupassant; Un Regiment dans un nuage (Practical Ideas: New Approaches to Grammatical Mood; How to Make Oneself Bread and Jam; The Literary Text: "Discovered" by Guy de Maupassant; A Regiment in a Cloud).

    ERIC Educational Resources Information Center

    Saraceni, Luisa; And Others

    1993-01-01

    Four activities are offered for French second-language classroom use: an exercise to aid comprehension of indicative and subjunctive mood; a lesson in making bread and jam, designed for young children; a study of narration within a novel, using a Guy de Maupassant story; and an exercise in discourse analysis. (MSE)

  12. Coherent detection of frequency-hopped quadrature modulations in the presence of jamming. I - QPSK and QASK modulations

    NASA Technical Reports Server (NTRS)

    Simon, M. K.; Polydoros, A.

    1981-01-01

    This paper examines the performance of coherent QPSK and QASK systems combined with FH or FH/PN spread spectrum techniques in the presence of partial-band multitone or noise jamming. The worst-case jammer and worst-case performance are determined as functions of the signal-to-background noise ratio (SNR) and signal-to-jammer power ratio (SJR). Asymptotic results for high SNR are shown to have a linear dependence between the jammer's optimal power allocation and the system error probability performance.

  13. Stabilizing liquid drops of arbitrary shape by the interfacial jamming of nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, Thomas P.; Cui, Mengmeng; Emrick, Todd

    A stabilized assembly including a first liquid phase of non-spherical droplets in a second liquid phase, wherein the second liquid phase is immiscible with the first phase, and nanoparticle surfactants assembled at an interface of the non-spherical droplets and the second phase is disclosed. The nanoparticle surfactants include nanoparticles and end-functionalized polymers that can interact through ligand type interactions, and the first phase is stabilized by a disordered, jammed layer of nanoparticle surfactants. A method of preparing a stabilized assembly is also disclosed.

  14. Association between dietary patterns and low bone mineral density among adults aged 50 years and above: findings from the North West Adelaide Health Study (NWAHS).

    PubMed

    Melaku, Yohannes Adama; Gill, Tiffany K; Adams, Robert; Shi, Zumin

    2016-10-01

    Studies on the association between dietary patterns and bone mineral density (BMD) have reported inconsistent findings. Data from the North West Adelaide Health Study, a population-based cohort study undertaken in Australia, were used to assess this association among adults aged 50 years and above. In this specific study, 1182 adults (545 males, 45·9 %) had dietary data collected using a FFQ and also had BMD measurements taken using dual-energy X-ray absorptiometry. Factor analysis with principal component method was applied to ascertain dietary patterns. Two distinct dietary patterns were identified. Pattern 1 ('prudent pattern') was characterised by high intake of fruits, vegetables, sugar, nut-based milk, fish, legumes and high-fibre bread. In contrast, pattern 2 ('Western pattern') was characterised by high levels of processed and red meat, snacks, takeaway foods, jam, beer, soft drinks, white bread, poultry, potato with fat, high-fat dairy products and eggs. Compared with the study participants in the first tertile (T1, lowest consumption) of the prudent pattern, participants in the third tertile (T3) had a lower prevalence of low BMD (prevalence ratio (PR)=0·52; 95 % CI 0·33, 0·83) after adjusting for socio-demographic, lifestyle and behavioural characteristics, chronic conditions and energy intake. Participants in T3 of the Western pattern had a higher prevalence of low BMD (PR=1·68; 95 % CI 1·02, 2·77) compared with those in T1. In contrast to the Western diet, a dietary pattern characterised by high intake of fruits, vegetables and dairy products is positively associated with BMD.

  15. Air-fluidized grains as a model system: Self-propelling and jamming

    NASA Astrophysics Data System (ADS)

    Daniels, Lynn J.

    This thesis examines two concepts -- self-propelling and jamming -- that have been employed to unify disparate non-equilibrium systems, in the context of a monolayer of grains fluidized by a temporally and spatially homogeneous upflow of air. The first experiment examines the single particle dynamics of air-fluidized rods. For Brownian rods, equipartition of energy holds and rotational motion sets a timescale after which directional memory is lost. Air-fluidized rods no longer obey equipartion; they self-propel, moving preferentially along their long axis. We show that self-propelling can be treated phenomenologically as an enhanced memory effect causing directional memory to persist for times longer than expected for thermal systems. The second experiment studies dense collections of self-propelling air-fluidized rods. We observe collective propagating modes that give rise to anomalously large fluctuations in the local number density. We quantify these compression waves by calculating the dynamic structure factor and show that the wavespeed is weakly linear with increasing density. It has been suggested that the observed behavior might be explained using the framework put forth by Baskaran et al. [12]. The third experiment seeks to determine whether a force analogous to the critical Casimir force in fluids exists for a large sphere fluidized in the presence of a background of smaller spheres. The behavior of such a large sphere is fully characterized showing that, rather than behaving like a sphere driven by turbulence, the large ball self-propels. We also show that the background is responsible for the purely attractive, intermediate-ranged interaction force between two simultaneously-fluidized large balls. The final experiment seeks to determine what parameters control the diverging relaxation timescale associated with the jamming transition. By tilting our apparatus, we quantify pressure, packing fraction, and temperature simultaneously with dynamics as we approach jamming. We obtain an equation of state that agrees well with simulation and free volume theory. We collapse the relaxation time by defining a time- and energy-scale using pressure, consistent with recent simulation [82]. These experiments are further confirmation of the universality of the concepts of self-propelling and jamming.

  16. The role of large wood in retaining fine sediment, organic matter and plant propagules in a small, single-thread forest river

    NASA Astrophysics Data System (ADS)

    Osei, Nana A.; Gurnell, Angela M.; Harvey, Gemma L.

    2015-04-01

    This paper investigates associations among large wood accumulations, retained sediment, and organic matter and the establishment of a viable propagule bank within a forested reach of a lowland river, the Highland Water, UK. A wood survey within the 2-km study reach, illustrates that the quantity of wood retained within the channel is typical of relatively unmanaged river channels bordered by deciduous woodland and that the wood accumulations (jams) that are present are well developed, typically spanning the river channel and comprised of wood that is well decayed. Sediment samples were obtained in a stratified random design focusing on nine subreaches within which samples were aggregated from five different types of sampling location. Two of these locations were wood-associated (within and on bank faces immediately adjacent to wood jams), and the other three locations represented the broader river environment (gravel bars, bank faces, floodplain). The samples were analysed to establish their calibre, organic, and viable plant propagule content. The gravel bar sampling locations retained significantly coarser sediment containing a lower proportion of organic matter and viable propagules than the other four sampling locations. The two wood-related sampling locations retained sediment of intermediate calibre between the gravel bar and the bank-floodplain samples but they retained significantly more organic matter and viable propagules than were found in the other three sampling locations. In particular, the jam bank samples (areas of sediment accumulation against bank faces adjacent to wood jams) contained the highest number of propagules and the largest number of propagule species. These results suggest that retention of propagules, organic matter and relatively fine sediment in and around wood jams has the potential to support vegetation regeneration, further sediment retention, and as a consequence, landform development within woodland streams, although this process is arrested by grazing at the study site. These results also suggest that self-restoration using wood is a potentially cost-effective and far-reaching river restoration strategy but that its full effects develop gradually and require the establishment of a functioning wood budget coupled with grazing levels that are in balance with vegetation growth.

  17. Application potential for some sugar substitutes in some low energy and diabetic foods.

    PubMed

    Bakr, A A

    1997-06-01

    Preparation of acceptable low energy fiber enriched and diabetic jams, cakes and biscuits using different formulas of sucrose substitutes with the partial replacement of wheat flour with bran as a source of dietary fibre, was studied. Special care was paid to evaluate the nutritional plus keeping qualities and the potential effect of the most acceptable formulae from each food stuffs group on the blood glucose level in lean and obese diabetes mellitus patients. It was technologically possible to prepare acceptable, high nutritional diabetic and low energy apricot, guava and strawberry jams and jellies by combinations of sweeteners using xylitol (i.e. xylitol-sorbitol-aspartame and xylitol-fructose). The attainment of a suitable texture may be more difficult in xylitol and sorbitol jams, therefore 0.2 g CaCl2. 2H2O was added. Storage of these jams at 4 degrees C improved their keeping quality significantly (p < 0.05), where the microbial load was less than 20 cells per gram and the products were free from molds and yeasts. Also, high nutritional and acceptable cakes and biscuits for low energy supply and for diabetic subjects can be sweetened with low level of aspartame in combination with fructose, sorbitol and xylitol. Consumption of such low energic and diabetic food items reduces significantly (p < 0.05) the plasma glucose level in lean and obese diabetics. Addition of wheat bran in bakery products not only reduced both energy value of these foods and blood glucose, but it also improved peripheral insulin activity by its system modification.

  18. Late Holocene earthquakes on the Toe Jam Hill fault, Seattle fault zone, Bainbridge Island, Washington

    USGS Publications Warehouse

    Nelson, A.R.; Johnson, S.Y.; Kelsey, H.M.; Wells, R.E.; Sherrod, B.L.; Pezzopane, S.K.; Bradley, L.A.; Koehler, R. D.; Bucknam, R.C.

    2003-01-01

    Five trenches across a Holocene fault scarp yield the first radiocarbon-measured earthquake recurrence intervals for a crustal fault in western Washington. The scarp, the first to be revealed by laser imagery, marks the Toe Jam Hill fault, a north-dipping backthrust to the Seattle fault. Folded and faulted strata, liquefaction features, and forest soil A horizons buried by hanging-wall-collapse colluvium record three, or possibly four, earthquakes between 2500 and 1000 yr ago. The most recent earthquake is probably the 1050-1020 cal. (calibrated) yr B.P. (A.D. 900-930) earthquake that raised marine terraces and triggered a tsunami in Puget Sound. Vertical deformation estimated from stratigraphic and surface offsets at trench sites suggests late Holocene earthquake magnitudes near M7, corresponding to surface ruptures >36 km long. Deformation features recording poorly understood latest Pleistocene earthquakes suggest that they were smaller than late Holocene earthquakes. Postglacial earthquake recurrence intervals based on 97 radiocarbon ages, most on detrital charcoal, range from ???12,000 yr to as little as a century or less; corresponding fault-slip rates are 0.2 mm/yr for the past 16,000 yr and 2 mm/yr for the past 2500 yr. Because the Toe Jam Hill fault is a backthrust to the Seattle fault, it may not have ruptured during every earthquake on the Seattle fault. But the earthquake history of the Toe Jam Hill fault is at least a partial proxy for the history of the rest of the Seattle fault zone.

  19. Multifrequency OFDM SAR in Presence of Deception Jamming

    NASA Astrophysics Data System (ADS)

    Schuerger, Jonathan; Garmatyuk, Dmitriy

    2010-12-01

    Orthogonal frequency division multiplexing (OFDM) is considered in this paper from the perspective of usage in imaging radar scenarios with deception jamming. OFDM radar signals are inherently multifrequency waveforms, composed of a number of subbands which are orthogonal to each other. While being employed extensively in communications, OFDM has not found comparatively wide use in radar, and, particularly, in synthetic aperture radar (SAR) applications. In this paper, we aim to show the advantages of OFDM-coded radar signals with random subband composition when used in deception jamming scenarios. Two approaches to create a radar signal by the jammer are considered: instantaneous frequency (IF) estimator and digital-RF-memory- (DRFM-) based reproducer. In both cases, the jammer aims to create a copy of a valid target image via resending the radar signal at prescribed time intervals. Jammer signals are derived and used in SAR simulations with three types of signal models: OFDM, linear frequency modulated (LFM), and frequency-hopped (FH). Presented results include simulated peak side lobe (PSL) and peak cross-correlation values for random OFDM signals, as well as simulated SAR imagery with IF and DRFM jammers'-induced false targets.

  20. Simple effective rule to estimate the jamming packing fraction of polydisperse hard spheres.

    PubMed

    Santos, Andrés; Yuste, Santos B; López de Haro, Mariano; Odriozola, Gerardo; Ogarko, Vitaliy

    2014-04-01

    A recent proposal in which the equation of state of a polydisperse hard-sphere mixture is mapped onto that of the one-component fluid is extrapolated beyond the freezing point to estimate the jamming packing fraction ϕJ of the polydisperse system as a simple function of M1M3/M22, where Mk is the kth moment of the size distribution. An analysis of experimental and simulation data of ϕJ for a large number of different mixtures shows a remarkable general agreement with the theoretical estimate. To give extra support to the procedure, simulation data for seventeen mixtures in the high-density region are used to infer the equation of state of the pure hard-sphere system in the metastable region. An excellent collapse of the inferred curves up to the glass transition and a significant narrowing of the different out-of-equilibrium glass branches all the way to jamming are observed. Thus, the present approach provides an extremely simple criterion to unify in a common framework and to give coherence to data coming from very different polydisperse hard-sphere mixtures.

  1. Demonstration of an RF front-end based on GaN HEMT technology

    NASA Astrophysics Data System (ADS)

    Ture, Erdin; Musser, Markus; Hülsmann, Axel; Quay, Rüdiger; Ambacher, Oliver

    2017-05-01

    The effectiveness of the developed front-end on blocking the communication link of a commercial drone vehicle has been demonstrated in this work. A jamming approach has been taken in a broadband fashion by using GaN HEMT technology. Equipped with a modulated-signal generator, a broadband power amplifier, and an omni-directional antenna, the proposed system is capable of producing jamming signals in a very wide frequency range between 0.1 - 3 GHz. The maximum RF output power of the amplifier module has been software-limited to 27 dBm (500 mW), complying to the legal spectral regulations of the 2.4 GHz ISM band. In order to test the proof of concept, a real-world scenario has been prepared in which a commercially-available quadcopter UAV is flown in a controlled environment while the jammer system has been placed in a distance of about 10 m from the drone. It has been proven that the drone of interest can be neutralized as soon as it falls within the range of coverage (˜3 m) which endorses the promising potential of the broadband jamming approach.

  2. Modeling and simulation of driver's anticipation effect in a two lane system on curved road with slope

    NASA Astrophysics Data System (ADS)

    Kaur, Ramanpreet; Sharma, Sapna

    2018-06-01

    The complexity of traffic flow phenomena on curved road with slope is investigated and a new lattice model is presented with the addition of driver's anticipation effect for two lane system. The condition under which the free flow turns into the jammed one, is obtained theoretically by using stability analysis. The results obtained through linear analysis indicates that the stable region increases (decreases) corresponding to uphill (downhill) case due to increasing slope angle for fixed anticipation parameter. It is found that when the vehicular density becomes higher than a critical value, traffic jam appears in the form of kink antikink density waves. Analytically, the kink antikink density waves are described by the solution of mKdV equation obtained from non linear analysis. In addition, the theoretical results has been verified through numerical simulation, which confirm that the slope on a curved highway significantly influence the traffic dynamics and traffic jam can be suppressed efficiently by considering the anticipation parameter in a two lane lattice model when lane changing is allowed.

  3. Distribution of Large Wood Within River Corridors in Relation to Flow Regime in the Semiarid Western US

    NASA Astrophysics Data System (ADS)

    Wohl, Ellen; Cadol, Daniel; Pfeiffer, Andrew; Jackson, Karen; Laurel, DeAnna

    2018-03-01

    The cumulative volume and spatial distribution of large wood (LW) along river corridors (channels and floodplains) reflect interactions between rates and volumes of LW recruitment and channel transport capacity through time. Rivers of the semiarid interior western US can have relatively low-magnitude disturbances associated with annual snowmelt or relatively high-magnitude disturbances associated with episodic rainfall runoff, especially following wildfires. We use characteristics of LW from 25 river segments in four regions of New Mexico and Colorado to analyze wood loads and spatial patterns of wood distribution in relation to disturbance regime. High-magnitude disturbances move LW onto floodplains and create longitudinally nonuniform LW distributions with aggregated (closer together than random) LW pieces and abundant LW jams in the floodplain. Sites with low-magnitude disturbances have a greater proportion of LW in the channel and much of this wood is within segregated (farther apart than random) jams. These results imply that river management, which typically focuses on LW within channels, should focus on floodplain as well as in-channel LW in rivers with high-magnitude disturbances. The results also indicate that the proportions of LW loads in channels versus floodplains can differ significantly among rivers with different disturbance regimes that are otherwise similar in terms of forest type or drainage area. This is particularly relevant to mountainous regions with elevation-related changes in flow and disturbance regime. River management that reintroduces LW to river corridors will be most effective if it incorporates the mobility and spatial distribution of LW.

  4. Effects of High-Definition Anodal Transcranial Direct Current Stimulation Applied Simultaneously to Both Primary Motor Cortices on Bimanual Sensorimotor Performance

    PubMed Central

    Pixa, Nils H.; Steinberg, Fabian; Doppelmayr, Michael

    2017-01-01

    Many daily activities, such as tying one’s shoe laces, opening a jar of jam or performing a free throw in basketball, require the skillful coordinated use of both hands. Even though the non-invasive method of transcranial direct current stimulation (tDCS) has been repeatedly shown to improve unimanual motor performance, little is known about its effects on bimanual motor performance. More knowledge about how tDCS may improve bimanual behavior would be relevant to motor recovery, e.g., in persons with bilateral impairment of hand function. We therefore examined the impact of high-definition anodal tDCS (HD-atDCS) on the performance of a bimanual sequential sensorimotor task. Thirty-two volunteers (age M = 24.25; SD = 2.75; 14 females) participated in this double-blind study and performed sport stacking in six experimental sessions. In sport stacking, 12 specially designed cups must be stacked (stacked up) and dismantled (stacked down) in predefined patterns as fast as possible. During a pretest, posttest and follow-up test, two sport stacking formations (3-6-3 stack and 1-10-1 stack) were performed. Between the pretest and posttest, all participants were trained in sport stacking with concurrent brain stimulation for three consecutive days. The experimental group (STIM-M1) received HD-atDCS over both primary motor cortices (M1), while the control group received a sham stimulation (SHAM). Three-way analysis of variance (ANOVA) revealed a significant main effect of TIME and a significant interaction of TIME × GROUP. No significant effects were found for GROUP, nor for the three-way interaction of TIME × GROUP × FORMATION. Further two-way ANOVAs showed a significant main effect of TIME and a non-significant main effect for GROUP in both sport stacking formations. A significant interaction between TIME × GROUP was found only for the 3-6-3 formation, indicating superior performance gains for the experimental group (STIM-M1). To account and control for baseline influences on the outcome measurements, ANCOVAs treating pretest scores as covariates revealed a significant effect of the stimulation. From this, we conclude that bilateral HD-atDCS over both M1 improves motor performance in a bimanual sequential sensorimotor task. These results may indicate a beneficial use of tDCS for learning and recovery of bimanual motor skills. PMID:28747875

  5. Food sources of free sugars in children's diet and identification of lifestyle patterns associated with free sugars intake: the GRECO (Greek Childhood Obesity) study.

    PubMed

    Farajian, Paul; Risvas, Grigoris; Panagiotakos, Demosthenes B; Zampelas, Antonis

    2016-09-01

    Excessive free sugars consumption has a possible role in health issues, diet quality and obesity development. The present cross-sectional study aimed to identify the major food sources of free sugars in Greek children's diet and investigate possible associations of dietary patterns with free sugars intake. Anthropometric measurements and information on dietary and physical activity habits were obtained. Energy and free sugars intake coming from foods were estimated and principal components analysis was applied to identify dietary patterns. The GRECO (Greek Childhood Obesity) study. Nationwide sample of 3089 children (aged 10-12 years). Adopting WHO criteria, 44·2 % of participants were categorized as having free sugars intake above 10 % of total energy intake. Mean contribution of free sugars to energy intake was 11·2 %, and the major food sources of free sugars differed from those of other childhood populations. Free sugars intake was not associated with overweight/obesity. Multiple linear regression analysis revealed that two lifestyle and dietary patterns, characterized by higher consumption of sweets, fast foods, fries, sugared drinks, frequently ordering/eating outside home and having meals in front of a screen (pattern 1) and higher consumption of whole fruits, 100 % fruit juices, vegetables, legumes and honey/jam (pattern 2), were positively associated with free sugars intake. A large proportion of children exceeded the recommended cut-off and free sugars intake was associated with lifestyle patterns rather than single foods. Public health programmes aiming to reduce free sugars consumption should be tailored on promoting the correct dietary habits of specific childhood populations.

  6. KSC-2012-1551

    NASA Image and Video Library

    2012-02-23

    ORLANDO, Fla. -- Visitors enter the Orange County Convention Center in Orlando, Fla., for the NBA All-Star Jam Session. Representatives from NASA's Kennedy Space Center in Florida were available to highlight some of the contributions the space agency has made to sports, transportation and everyday life. One of the events leading up to the NBA All-Star game being held in Orlando on Feb. 26, the NBA All-Star Jam Session is a basketball experience intended for all ages, allowing fans to compete against their friends in skills challenges and collect autographs from players and legends. Photo credit: NASA/Frankie Martin

  7. KSC-2012-1556

    NASA Image and Video Library

    2012-02-23

    ORLANDO, Fla. -- Representatives from NASA's Kennedy Space Center in Florida talk to visitors attending the NBA All-Star Jam Session at the Orange County Convention Center in Orlando, Fla. The NASA exhibit offers hands-on educational activities highlighting some of the contributions the space agency has made to sports, transportation and everyday life. One of the events leading up to the NBA All-Star game being held in Orlando on Feb. 26, the NBA All-Star Jam Session is a basketball experience intended for all ages, allowing fans to compete against their friends in skills challenges and collect autographs from players and legends. Photo credit: NASA/Frankie Martin

  8. Performance comparison of ISAR imaging method based on time frequency transforms

    NASA Astrophysics Data System (ADS)

    Xie, Chunjian; Guo, Chenjiang; Xu, Jiadong

    2013-03-01

    Inverse synthetic aperture radar (ISAR) can image the moving target, especially the target in the air, so it is important in the air defence and missile defence system. Time-frequency Transform was applied to ISAR imaging process widely. Several time frequency transforms were introduced. Noise jamming methods were analysed, and when these noise jamming were added to the echo of the ISAR receiver, the image can become blur even can't to be identify. But the effect is different to the different time frequency analysis. The results of simulation experiment show the Performance Comparison of the method.

  9. Viscosity of particulate soap films: approaching the jamming of 2D capillary suspensions.

    PubMed

    Timounay, Yousra; Rouyer, Florence

    2017-05-14

    We compute the effective viscosity of particulate soap films thanks to local velocity fields obtained by Particle Image Velocimetry (PIV) during film retraction experiments. We identify the jamming of these 2D capillary suspensions at a critical particle surface fraction (≃0.84) where effective viscosity diverges. Pair correlation function and number of neighbors in contact or close to contact reveal the cohesive nature of this 2D capillary granular media. The experimental 2D dynamic viscosities can be predicted by a model considering viscous dissipation at the liquid interfaces induced by the motion of individual particles.

  10. Machine Monitor

    NASA Technical Reports Server (NTRS)

    1994-01-01

    When a printing press jams, damage is extensive, repairs are costly, and time and production loss can be expensive. James River Corporation requested G.W. Shelton, a design engineer with Logical Control Systems to solve this problem. Shelton found the solution in a NASA Tech Brief article describing a system of pulley and belt drives. This led to the design of a system that monitors drive components for changes in relative speed that would indicate belt slippage and jam probability. When a combination of variables is not met, an emergency "stop" signal is sent to the press and an alarm is triggered.

  11. KSC-2012-1554

    NASA Image and Video Library

    2012-02-23

    ORLANDO, Fla. -- Inside the Orange County Convention Center in Orlando, Fla., representatives from NASA's Kennedy Space Center in Florida speak to attendees visiting the NBA All-Star Jam Session. The NASA exhibit offers hands-on educational activities highlighting some of the contributions the space agency has made to sports, transportation and everyday life. One of the events leading up to the NBA All-Star game being held in Orlando on Feb. 26, the NBA All-Star Jam Session is a basketball experience intended for all ages, allowing fans to compete against their friends in skills challenges and collect autographs from players and legends. Photo credit: NASA/Frankie Martin

  12. KSC-2012-1553

    NASA Image and Video Library

    2012-02-23

    ORLANDO, Fla. -- Inside the Orange County Convention Center in Orlando, Fla., representatives from NASA's Kennedy Space Center in Florida speak to attendees visiting the NBA All-Star Jam Session. The NASA exhibit offers hands-on educational activities highlighting some of the contributions the space agency has made to sports, transportation and everyday life. One of the events leading up to the NBA All-Star game being held in Orlando on Feb. 26, the NBA All-Star Jam Session is a basketball experience intended for all ages, allowing fans to compete against their friends in skills challenges and collect autographs from players and legends. Photo credit: NASA/Frankie Martin

  13. Formation of a disordered solid via a shock-induced transition in a dense particle suspension

    NASA Astrophysics Data System (ADS)

    Petel, Oren E.; Frost, David L.; Higgins, Andrew J.; Ouellet, Simon

    2012-02-01

    Shock wave propagation in multiphase media is typically dominated by the relative compressibility of the two components of the mixture. The difference in the compressibility of the components results in a shock-induced variation in the effective volume fraction of the suspension tending toward the random-close-packing limit for the system, and a disordered solid can take form within the suspension. The present study uses a Hugoniot-based model to demonstrate this variation in the volume fraction of the solid phase as well as a simple hard-sphere model to investigate the formation of disordered structures within uniaxially compressed model suspensions. Both models are discussed in terms of available experimental plate impact data in dense suspensions. Through coordination number statistics of the mesoscopic hard-sphere model, comparisons are made with the trends of the experimental pressure-volume fraction relationship to illustrate the role of these disordered structures in the bulk properties of the suspensions. A criterion for the dynamic stiffening of suspensions under high-rate dynamic loading is suggested as an analog to quasi-static jamming based on the results of the simulations.

  14. Systematic autistic-like behavioral phenotyping of 4 mouse strains using a novel wheel-running assay.

    PubMed

    Karvat, Golan; Kimchi, Tali

    2012-08-01

    Three core symptoms of autistic spectrum disorders are stereotypic movements, resistance to change in routines and deficits in social interaction. In order to understand their neuronal mechanisms, there is a dire need for behavioral paradigms to assess those symptoms in rodents. Here we present a novel method which is based on positive reward in a customized wheel-running apparatus to assess these symptoms. As a proof of concept, 4 mouse strains were tested in the new behavioral paradigm; 2 control lines (C57BL/6 and ICR) and 2 mouse-models of autism (BTBR T+ tf/J and Nlgn3(tm1Sud)). We found that the C57BL/6, ICR and Nlgn3(tm1Sud) mice showed a significant reduction in stereotypical behavior in the presence of the running wheel, ability to forfeit the running habit when the running-wheel was jammed, and preference of interacting with a social stimulus over the jammed running-wheel. No difference was found between genotypes of the Nlgn3(tm1Sud) mice. On the other hand, the BTBR mice exhibited persistent, elevated levels of stereotypical behavior. In addition, they presented a deficit in their ability to adjust to a changing environment, as manifested in persistence to interact with the wheel even when it was jammed. Lastly, the BTBR mice exhibited no significant preference to interact with the stranger mouse over the jammed running-wheel. These results were validated by a set of commonly used behavioral tests. Overall, our novel behavioral paradigm detects multiple components of autistic-like phenotypes, including cognitive rigidity, stereotypic behavior and social deficiency. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Predicting Road Conditions with Internet Search

    PubMed Central

    2016-01-01

    Traffic congestion is an important problem both on an individual and on a societal level and much research has been done to explain and prevent their emergence. There are currently many systems which provide a reasonably good picture of actual road traffic by employing either fixed measurement points on highways or so called “floating car data” i.e. by using velocity and location data from roaming, networked, GPS enabled members of traffic. Some of these systems also offer forecasting of road conditions based on such historical data. To my knowledge there is as yet no system which offers advance notice on road conditions based on a signal which is guaranteed to occur in advance of these conditions and this is the novelty of this paper. Google Search intensity for the German word stau (i.e. traffic jam) peaks 2 hours ahead of the number of traffic jam reports as reported by the ADAC, a well known German automobile club and the largest of its kind in Europe. This is true both in the morning (7 am to 9 am) and in the evening (4 pm to 6 pm). The main result of this paper is then that after controlling for time-of-day and day-of-week effects we can still explain a significant additional portion of the variation of the number of traffic jam reports with Google Trends and we can thus explain well over 80% of the variation of road conditions using Google search activity. A one percent increase in Google stau searches implies a .4 percent increase of traffic jams. Our paper is a proof of concept that aggregate, timely delivered behavioural data can help fine tune modern societies and prompts for more research with better, more disaggregated data in order to also achieve practical solutions. PMID:27571518

  16. APOC3 induces endothelial dysfunction through TNF-α and JAM-1.

    PubMed

    Tao, Yun; Xiong, Yisong; Wang, Huimin; Chu, Shaopeng; Zhong, Renqian; Wang, Jianxin; Wang, Guihua; Ren, Xiumei; Yu, Juan

    2016-09-13

    The fatality rate for cardiovascular disease (CVD) has increased in recent years and higher levels of triglyceride have been shown to be an independent risk factor for atherosclerotic CVD. Dysfunction of endothelial cells (ECs) is also a key factor of CVD. APOC3 is an important molecule in lipid metabolism that is closely associated with hyperlipidemia and an increased risk of developing CVD. But the direct effects of APOC3 on ECs were still unknown. This study was aimed at determining the effects of APOC3 on inflammation, chemotaxis and exudation in ECs. ELISA, qRT-PCR, immunofluorescence, flow cytometry and transwell assays were used to investigate the effects of APOC3 on human umbilical vein endothelial cells (HUVECs). SiRNA-induced TNF-α and JAM-1 silencing were used to observe how APOC3 influenced the inflammatory process in the ECs. Our results showed that APOC3 was closely associated with the inflammatory process in ECs, and that this process was characterized by the increased expression of TNF-α. Inflammatory processes further disrupted the tight junctions (TJs) between HUVECs by causing increased expression of JAM-1. JAM-1 was involved in maintaining the integrity of TJs, and it promoted the assembly of platelets and the exudation of leukocytes. Changes in its expression promoted chemotaxis and the exudation of ECs, which contributed to atherosclerosis. While the integrity of the TJs was disrupted, the adhesion of THP-1 cells to HUVECs was also increased by APOC3. In this study, we describe the mechanism by which APOC3 causes inflammation, chemotaxis and the exudation of ECs, and we suggest that controlling the inflammatory reactions that are caused by APOC3 may be a new method to treat CVD.

  17. Certification of NIST Room Temperature Low-Energy and High-Energy Charpy Verification Specimens

    PubMed Central

    Lucon, Enrico; McCowan, Chris N.; Santoyo, Ray L.

    2015-01-01

    The possibility for NIST to certify Charpy reference specimens for testing at room temperature (21 °C ± 1 °C) instead of −40 °C was investigated by performing 130 room-temperature tests from five low-energy and four high-energy lots of steel on the three master Charpy machines located in Boulder, CO. The statistical analyses performed show that in most cases the variability of results (i.e., the experimental scatter) is reduced when testing at room temperature. For eight out of the nine lots considered, the observed variability was lower at 21 °C than at −40 °C. The results of this study will allow NIST to satisfy requests for room-temperature Charpy verification specimens that have been received from customers for several years: testing at 21 °C removes from the verification process the operator’s skill in transferring the specimen in a timely fashion from the cooling bath to the impact position, and puts the focus back on the machine performance. For NIST, it also reduces the time and cost for certifying new verification lots. For one of the low-energy lots tested with a C-shaped hammer, we experienced two specimens jamming, which yielded unusually high values of absorbed energy. For both specimens, the signs of jamming were clearly visible. For all the low-energy lots investigated, jamming is slightly more likely to occur at 21 °C than at −40 °C, since at room temperature low-energy samples tend to remain in the test area after impact rather than exiting in the opposite direction of the pendulum swing. In the evaluation of a verification set, any jammed specimen should be removed from the analyses. PMID:26958453

  18. Certification of NIST Room Temperature Low-Energy and High-Energy Charpy Verification Specimens.

    PubMed

    Lucon, Enrico; McCowan, Chris N; Santoyo, Ray L

    2015-01-01

    The possibility for NIST to certify Charpy reference specimens for testing at room temperature (21 °C ± 1 °C) instead of -40 °C was investigated by performing 130 room-temperature tests from five low-energy and four high-energy lots of steel on the three master Charpy machines located in Boulder, CO. The statistical analyses performed show that in most cases the variability of results (i.e., the experimental scatter) is reduced when testing at room temperature. For eight out of the nine lots considered, the observed variability was lower at 21 °C than at -40 °C. The results of this study will allow NIST to satisfy requests for room-temperature Charpy verification specimens that have been received from customers for several years: testing at 21 °C removes from the verification process the operator's skill in transferring the specimen in a timely fashion from the cooling bath to the impact position, and puts the focus back on the machine performance. For NIST, it also reduces the time and cost for certifying new verification lots. For one of the low-energy lots tested with a C-shaped hammer, we experienced two specimens jamming, which yielded unusually high values of absorbed energy. For both specimens, the signs of jamming were clearly visible. For all the low-energy lots investigated, jamming is slightly more likely to occur at 21 °C than at -40 °C, since at room temperature low-energy samples tend to remain in the test area after impact rather than exiting in the opposite direction of the pendulum swing. In the evaluation of a verification set, any jammed specimen should be removed from the analyses.

  19. Constitutive relation for the system-spanning dynamically jammed region in response to impact of cornstarch and water suspensions

    NASA Astrophysics Data System (ADS)

    Maharjan, Rijan; Mukhopadhyay, Shomeek; Allen, Benjamin; Storz, Tobias; Brown, Eric

    2018-05-01

    We experimentally characterize the impact response of concentrated suspensions consisting of cornstarch and water. We observe that the suspensions support a large normal stress—on the order of MPa—with a delay after the impactor hits the suspension surface. We show that neither the delay nor the magnitude of the stress can yet be explained by either standard rheological models of shear thickening in terms of steady-state viscosities, or impact models based on added mass or other inertial effects. The stress increase occurs when a dynamically jammed region of the suspension in front of the impactor propagates to the opposite boundary of the container, which can support large stresses when it spans between solid boundaries. We present a constitutive relation for impact rheology to relate the force on the impactor to its displacement. This can be described in terms of an effective modulus but only after the delay required for the dynamically jammed region to span between solid boundaries. Both the modulus and the delay are reported as a function of impact velocity, fluid height, and weight fraction. We report in a companion paper the structure of the dynamically jammed region when it spans between the impactor and the opposite boundary [Allen et al., Phys. Rev. E 97, 052603 (2018), 10.1103/PhysRevE.97.052603]. In a direct follow-up paper, we show that this constitutive model can be used to quantitatively predict, for example, the trajectory and penetration depth of the foot of a person walking or running on cornstarch and water [Mukhopadhyay et al., Phys. Rev. E 97, 052604 (2018), 10.1103/PhysRevE.97.052604].

  20. Microscopic modeling of multi-lane highway traffic flow

    NASA Astrophysics Data System (ADS)

    Hodas, Nathan O.; Jagota, Anand

    2003-12-01

    We discuss a microscopic model for the study of multi-lane highway traffic flow dynamics. Each car experiences a force resulting from a combination of the desire of the driver to attain a certain velocity, aerodynamic drag, and change of the force due to car-car interactions. The model also includes multi-lane simulation capability and the ability to add and remove obstructions. We implement the model via a Java applet, which is used to simulate traffic jam formation, the effect of bottlenecks on traffic flow, and the existence of light, medium, and heavy traffic flow. The simulations also provide insight into how the properties of individual cars result in macroscopic behavior. Because the investigation of emergent characteristics is so common in physics, the study of traffic in this manner sheds new light on how the micro-to-macro transition works in general.

  1. Skylab

    NASA Image and Video Library

    1973-05-01

    This photograph was taken during testing of an emergency procedure to free jammed solar array panels on the Skylab workshop. A metal strap became tangled over one of the folded solar array panels when Skylab lost its micrometeoroid shield during the launch. This photograph shows astronauts Schweickart and Gibson in the Marshall Space Flight Center (MSFC) Neutral Buoyancy Simulator (NBS) using various cutting tools and methods developed by the MSFC to free the jammed solar wing. Extensive testing and many hours of practice in simulators such as the NBS tank helped prepare the Skylab crewmen for extravehicular performance in the weightless environment. This huge water tank simulated the weightless environment that the astronauts would encounter in space.

  2. KSC-2012-1557

    NASA Image and Video Library

    2012-02-23

    ORLANDO, Fla. -- A representative from NASA's Kennedy Space Center in Florida speaks with a young visitor attending the NBA All-Star Jam Session at the Orange County Convention Center in Orlando, Fla. The NASA exhibit offers hands-on educational activities highlighting some of the contributions the space agency has made to sports, transportation and everyday life. One of the events leading up to the NBA All-Star game being held in Orlando on Feb. 26, the NBA All-Star Jam Session is a basketball experience intended for all ages, allowing fans to compete against their friends in skills challenges and collect autographs from players and legends. Photo credit: NASA/Frankie Martin

  3. KSC-2012-1555

    NASA Image and Video Library

    2012-02-23

    ORLANDO, Fla. -- Visitors to the NBA All-Star Jam Session at the Orange County Convention Center in Orlando, Fla., use a large touch-screen to learn more about NASA's activities and missions. Representatives from Kennedy Space Center in Florida helped attendees participate in hands-on educational activities to learn more about how science plays into sports. One of the events leading up to the NBA All-Star game being held in Orlando on Feb. 26, the NBA All-Star Jam Session is a basketball experience intended for all ages, allowing fans to compete against their friends in skills challenges and collect autographs from players and legends. Photo credit: NASA/Frankie Martin

  4. Jamming and liquidity in 3D cancer cell aggregates

    NASA Astrophysics Data System (ADS)

    Oswald, Linda; Grosser, Steffen; Lippoldt, Jürgen; Pawlizak, Steve; Fritsch, Anatol; KäS, Josef A.

    Traditionally, tissues are treated as simple liquids, which holds for example for embryonic tissue. However, recent experiments have shown that this picture is insufficient for other tissue types, suggesting possible transitions to solid-like behavior induced by cellular jamming. The coarse-grained self-propelled Voronoi (SPV) model predicts such a transition depending on cell shape which is thought to arise from an interplay of cell-cell adhesion and cortical tension. We observe non-liquid behavior in 3D breast cancer spheroids of varying metastatic potential and correlate single cell shapes, single cell dynamics and collective dynamic behavior of fusion and segregation experiments via the SPV model.

  5. KSC-2012-1558

    NASA Image and Video Library

    2012-02-23

    ORLANDO, Fla. -- A representative from NASA's Kennedy Space Center in Florida speaks with a young visitor attending the NBA All-Star Jam Session at the Orange County Convention Center in Orlando, Fla. The NASA exhibit offers hands-on educational activities highlighting some of the contributions the space agency has made to sports, transportation and everyday life. One of the events leading up to the NBA All-Star game being held in Orlando on Feb. 26, the NBA All-Star Jam Session is a basketball experience intended for all ages, allowing fans to compete against their friends in skills challenges and collect autographs from players and legends. Photo credit: NASA/Frankie Martin

  6. Modeling perspectives on echolocation strategies inspired by bats flying in groups.

    PubMed

    Lin, Yuan; Abaid, Nicole

    2015-12-21

    Bats navigating with echolocation - which is a type of active sensing achieved by interpreting echoes resulting from self-generated ultrasonic pulses - exhibit unique behaviors during group flight. While bats may benefit from eavesdropping on their peers׳ echolocation, they also potentially suffer from confusion between their own and peers׳ pulses, caused by an effect called frequency jamming. This hardship of group flight is supported by experimental observations of bats simplifying their sound-scape by shifting their pulse frequencies or suppressing echolocation altogether. Here, we investigate eavesdropping and varying pulse emission rate from a modeling perspective to understand these behaviors׳ potential benefits and detriments. We define an agent-based model of echolocating bats avoiding collisions in a three-dimensional tunnel. Through simulation, we show that bats with reasonably accurate eavesdropping can reduce collisions compared to those neglecting information from peers. In large populations, bats minimize frequency jamming by decreasing pulse emission rate, while collision risk increases; conversely, increasing pulse emission rate minimizes collisions by allowing more sensing information generated per bat. These strategies offer benefits for both biological and engineered systems, since frequency jamming is a concern in systems using active sensing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Jammed elastic shells - a 3D experimental soft frictionless granular system

    NASA Astrophysics Data System (ADS)

    Jose, Jissy; Blab, Gerhard A.; van Blaaderen, Alfons; Imhof, Arnout

    2015-03-01

    We present a new experimental system of monodisperse, soft, frictionless, fluorescent labelled elastic shells for the characterization of structure, universal scaling laws and force networks in 3D jammed matter. The interesting fact about these elastic shells is that they can reversibly deform and therefore serve as sensors of local stress in jammed matter. Similar to other soft particles, like emulsion droplets and bubbles in foam, the shells can be packed to volume fractions close to unity, which allows us to characterize the contact force distribution and universal scaling laws as a function of volume fraction, and to compare them with theoretical predictions and numerical simulations. However, our shells, unlike other soft particles, deform rather differently at large stresses. They deform without conserving their inner volume, by forming dimples at contact regions. At each contact one of the shells buckled with a dimple and the other remained spherical, closely resembling overlapping spheres. We conducted 3D quantitative analysis using confocal microscopy and image analysis routines specially developed for these particles. In addition, we analysed the randomness of the process of dimpling, which was found to be volume fraction dependent.

  8. Highly Dynamic and Adaptive Traffic Congestion Avoidance in Real-Time Inspired by Honey Bee Behavior

    NASA Astrophysics Data System (ADS)

    Wedde, Horst F.; Lehnhoff, Sebastian; van Bonn, Bernhard; Bay, Z.; Becker, S.; Böttcher, S.; Brunner, C.; Büscher, A.; Fürst, T.; Lazarescu, A. M.; Rotaru, E.; Senge, S.; Steinbach, B.; Yilmaz, F.; Zimmermann, T.

    Traffic congestions have become a major problem in metropolitan areas world-wide, within and between cities, to an extent where they make driving and transportation times largely unpredictable. Due to the highly dynamic character of congestion building and dissolving this phenomenon appears even to resist a formal treatment. Static approaches, and even more their global management, have proven counterproductive in practice. Given the latest progress in VANET technology and the remarkable commercially driven efforts like in the European C2C consortium, or the VSC Project in the US, allow meanwhile to tackle various aspects of traffic regulation through VANET communication. In this paper we introduce a novel, completely decentralized multi-agent routing algorithm (termed BeeJamA) which we have derived from the foraging behavior of honey bees. It is highly dynamic, adaptive, robust, and scalable, and it allows for both avoiding congestions, and minimizing traveling times to individual destinations. Vehicle guidance is provided well ahead of every intersection, depending on the individual speeds. Thus strict deadlines are imposed on, and respected by, the BeeJamA algorithm. We report on extensive simulation experiments which show the superior performance of BeeJamA over conventional approaches.

  9. PRKAG3 and CAST genetic polymorphisms and quality traits of dry-cured hams--I. Associations in Spanish dry-cured ham Jamón Serrano.

    PubMed

    Gou, P; Zhen, Z Y; Hortós, M; Arnau, J; Diestre, A; Robert, N; Claret, A; Čandek-Potokar, M; Santé-Lhoutellier, V

    2012-12-01

    The functional single polymorphisms identified in the calpastatin (CAST) gene have been related to the rate of meat tenderization and the protein turnover after slaughter, and the Ile199Val polymorphism identified in the coding region of the protein kinase AMP-activated (PRKAG3) gene has been proven to affect ultimate pH in muscle. The aim of the present study was to show the effects of these genetic polymorphisms on the quality traits of Spanish dry-cured ham Jamón Serrano. A tissue sample from 665 crossbreed pigs were genotyped for PRKAG3 Ile199Val, CAST Arg249Lys and CAST Ser638Arg polymorphisms, and a subsample of 120 dry cured hams was selected to perform physico-chemical, rheological, instrumental colour and sensory analyses. Associations between the polymorphisms and several quality traits of dry-cured ham, mainly related to flavour and texture, were found. The genotypes PRKAG3 Ile/Ile, CAST249 Arg/Arg and CAST638 Arg/Arg, and the haplotype CAST 249Arg-638Arg were the most favourable for Jamón Serrano production. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Jamming II: Edwards’ statistical mechanics of random packings of hard spheres

    NASA Astrophysics Data System (ADS)

    Wang, Ping; Song, Chaoming; Jin, Yuliang; Makse, Hernán A.

    2011-02-01

    The problem of finding the most efficient way to pack spheres has an illustrious history, dating back to the crystalline arrays conjectured by Kepler and the random geometries explored by Bernal in the 1960s. This problem finds applications spanning from the mathematician’s pencil, the processing of granular materials, the jamming and glass transitions, all the way to fruit packing in every grocery. There are presently numerous experiments showing that the loosest way to pack spheres gives a density of ∼55% (named random loose packing, RLP) while filling all the loose voids results in a maximum density of ∼63%-64% (named random close packing, RCP). While those values seem robustly true, to this date there is no well-accepted physical explanation or theoretical prediction for them. Here we develop a common framework for understanding the random packings of monodisperse hard spheres whose limits can be interpreted as the experimentally observed RLP and RCP. The reason for these limits arises from a statistical picture of jammed states in which the RCP can be interpreted as the ground state of the ensemble of jammed matter with zero compactivity, while the RLP arises in the infinite compactivity limit. We combine an extended statistical mechanics approach ‘a la Edwards’ (where the role traditionally played by the energy and temperature in thermal systems is substituted by the volume and compactivity) with a constraint on mechanical stability imposed by the isostatic condition. We show how such approaches can bring results that can be compared to experiments and allow for an exploitation of the statistical mechanics framework. The key result is the use of a relation between the local Voronoi volumes of the constituent grains (denoted the volume function) and the number of neighbors in contact that permits us to simply combine the two approaches to develop a theory of volume fluctuations in jammed matter. Ultimately, our results lead to a phase diagram that provides a unifying view of the disordered hard sphere packing problem and further sheds light on a diverse spectrum of data, including the RLP state. Theoretical results are well reproduced by numerical simulations that confirm the essential role played by friction in determining both the RLP and RCP limits. The RLP values depend on friction, explaining why varied experimental results can be obtained.

  11. Statistics, distillation, and ordering emergence in a two-dimensional stochastic model of particles in counterflowing streams

    NASA Astrophysics Data System (ADS)

    Stock, Eduardo Velasco; da Silva, Roberto; Fernandes, H. A.

    2017-07-01

    In this paper, we propose a stochastic model which describes two species of particles moving in counterflow. The model generalizes the theoretical framework that describes the transport in random systems by taking into account two different scenarios: particles can work as mobile obstacles, whereas particles of one species move in the opposite direction to the particles of the other species, or particles of a given species work as fixed obstacles remaining in their places during the time evolution. We conduct a detailed study about the statistics concerning the crossing time of particles, as well as the effects of the lateral transitions on the time required to the system reaches a state of complete geographic separation of species. The spatial effects of jamming are also studied by looking into the deformation of the concentration of particles in the two-dimensional corridor. Finally, we observe in our study the formation of patterns of lanes which reach the steady state regardless of the initial conditions used for the evolution. A similar result is also observed in real experiments involving charged colloids motion and simulations of pedestrian dynamics based on Langevin equations, when periodic boundary conditions are considered (particles counterflow in a ring symmetry). The results obtained through Monte Carlo simulations and numerical integrations are in good agreement with each other. However, differently from previous studies, the dynamics considered in this work is not Newton-based, and therefore, even artificial situations of self-propelled objects should be studied in this first-principles modeling.

  12. Bistatic synthetic aperture radar

    NASA Astrophysics Data System (ADS)

    Yates, Gillian

    Synthetic aperture radar (SAR) allows all-weather, day and night, surface surveillance and has the ability to detect, classify and geolocate objects at long stand-off ranges. Bistatic SAR, where the transmitter and the receiver are on separate platforms, is seen as a potential means of countering the vulnerability of conventional monostatic SAR to electronic countermeasures, particularly directional jamming, and avoiding physical attack of the imaging platform. As the receiving platform can be totally passive, it does not advertise its position by RF emissions. The transmitter is not susceptible to jamming and can, for example, operate at long stand-off ranges to reduce its vulnerability to physical attack. This thesis examines some of the complications involved in producing high-resolution bistatic SAR imagery. The effect of bistatic operation on resolution is examined from a theoretical viewpoint and analytical expressions for resolution are developed. These expressions are verified by simulation work using a simple 'point by point' processor. This work is extended to look at using modern practical processing engines for bistatic geometries. Adaptations of the polar format algorithm and range migration algorithm are considered. The principal achievement of this work is a fully airborne demonstration of bistatic SAR. The route taken in reaching this is given, along with some results. The bistatic SAR imagery is analysed and compared to the monostatic imagery collected at the same time. Demonstrating high-resolution bistatic SAR imagery using two airborne platforms represents what I believe to be a European first and is likely to be the first time that this has been achieved outside the US (the UK has very little insight into US work on this topic). Bistatic target characteristics are examined through the use of simulations. This also compares bistatic imagery with monostatic and gives further insight into the utility of bistatic SAR.

  13. Atmospheric blocking as a traffic jam in the jet stream

    NASA Astrophysics Data System (ADS)

    Nakamura, N.; Huang, S. Y.

    2017-12-01

    It is demonstrated using the ERA-Interim product that synoptic to intraseasonal variabilities of extratropical circulation in the boreal storm track regions are strongly affected by the zonal convergence of the column-integrated eastward flux of local wave activity (LWA). In particular, from the multi-year daily samples of LWA fluxes, we find that the wintertime zonal LWA flux in the jet exit regions tends to maximize for an intermediate value of column-averaged LWA. This is because an increasing LWA decelerates the zonal flow, eventually weakening the eastward advection of LWA. From theory we argue that large wave events on the decreasing side of the flux curve with increasing LWA cannot be maintained as a stable steady state. Consistent with this argument, observed states corresponding to that side of flux curve often exhibit local wave breaking and blocking events. A close parallelism exists for the traffic flow problem, in which the traffic flux (traffic density times traffic speed) is often observed to maximize for an intermediate value of traffic density. This is because the traffic speed is controlled not only by the imposed speed limit but also by the traffic density — an increasingly heavy traffic slows down the flow naturally and eventually decreases the flux. Once the flux starts to decrease with an increasing traffic density, a traffic jam kicks in suddenly (Lighthill and Whitham 1955, Richards 1956). The above idea is demonstrated by a simple conceptual model based on the equivalent barotropic PV contour design (Nakamura and Huang 2017, JAS), which predicts a threshold of blocking onset. The idea also suggests that the LWA that gives the `flux capacity,' i.e., the maximum LWA flux at a given location, is a useful predictor of local wave breaking/block formation.

  14. Roles of ZO-1 and ZO-2 in establishment of the belt-like adherens and tight junctions with paracellular permselective barrier function.

    PubMed

    Tsukita, Sachiko; Katsuno, Tatsuya; Yamazaki, Yuji; Umeda, Kazuaki; Tamura, Atsushi; Tsukita, Shoichiro

    2009-05-01

    Tight junctions (TJs) create the primary permselective barrier to diffusion of solutes and ions through the paracellular pathway. The molecular architecture of TJs has gradually been unraveled in recent years, providing the basis for "barriology" (defined by Shoichiro Tsukita as the science of the barrier in multicellular organisms). Claudins are now considered to be the essential basic components of TJ strands, with which other integral membrane proteins, such as occludin, tricellulin, JAMs, and CAR, are associated. Peripherally associated scaffolding proteins are required for the organization of the integral membrane proteins. Among these, ZO-1, -2, and -3 have attracted a great deal of attention as TJ organizers, since ZO-1 (and in some cases, also ZO-2/3) was reported to be directly associated with claudins, occludin, and JAMs, as well as with AF-6/afadin and alpha-catenin. Here we summarize recent studies on ZO-1/2/3-deficiency in mice and cells, which have provided clear and important information regarding the functions of ZO-1/2/3 in vivo. In addition to the respective suppression of ZO-1/2/3 expression, simultaneous suppression of all three proteins has revealed the essential and nonessential in vivo roles of ZO-1/2 and ZO-3, respectively. ZO-3 shows an epithelial-specific TJ localization in a ZO-1/2-dependent fashion. ZO-1 and ZO-2 play pivotal roles in the final establishment of the belt-like adherens junctions (zonula adherens), followed by the formation of the belt-like TJs (zonula occludens) with paracellular barrier function, thereby providing the general basis for selective paracellular permeability in epithelial and endothelial cells.

  15. Nearest pattern interaction and global pattern formation

    NASA Astrophysics Data System (ADS)

    Jeong, Seong-Ok; Moon, Hie-Tae; Ko, Tae-Wook

    2000-12-01

    We studied the effect of nearest pattern interaction on a global pattern formation in a two-dimensional space, where patterns are to grow initially from a noise in the presence of a periodic supply of energy. Although our approach is general, we found that this study is relevant in particular to the pattern formation on a periodically vibrated granular layer, as it gives a unified perspective of the experimentally observed pattern dynamics such as oscillon and stripe formations, skew-varicose and crossroll instabilities, and also a kink formation and decoration.

  16. Microwave applications range from under the soil to the stratosphere

    NASA Astrophysics Data System (ADS)

    Bierman, Howard

    1990-11-01

    While the current cutback in defense spending had a negative impact on the microwave industry, microwave technology is now being applied to improve mankind's health, to clean up the environment, and provide more food. The paper concentrates on solutions for traffic jams and collision avoidance, the application of microwave hyperthermia to detect and destroy cancer cells, applications for controlling ozone-layer depletion, for investigating iceberg activity and ocean-current patterns in the Arctic, and for measuring soil-moisture content to improve crop efficiency. An experimental 60-GHz communication system for maintaining contact with up to 30 vehicles is described, along with dielectric-loaded lens and multimicrostrip hyperthermia applicators, and microwave equipment for NASA's upper-atmosphere research satellite and ESA's remote-sensing satellite. Stripline techniques to monitor process control on semiconductor wafer and paper production lines are also outlined.

  17. Depinning and nonequilibrium dynamic phases of particle assemblies driven over random and ordered substrates: A review

    DOE PAGES

    Reichhardt, Charles; Olson Reichhardt, Cynthia Jane

    2016-12-20

    Here, we review the depinning and nonequilibrium phases of collectively interacting particle systems driven over random or periodic substrates. This type of system is relevant to vortices in type-II superconductors, sliding charge density waves, electron crystals, colloids, stripe and pattern forming systems, and skyrmions, and could also have connections to jamming, glassy behaviors, and active matter. These systems are also ideal for exploring the broader issues of characterizing transient and steady state nonequilibrium flow phases as well as nonequilibrium phase transitions between distinct dynamical phases, analogous to phase transitions between different equilibrium states. We discuss the differences between elastic andmore » plastic depinning on random substrates and the different types of nonequilibrium phases which are associated with specific features in the velocity-force curves, fluctuation spectra, scaling relations, and local or global particle ordering. We describe how these quantities can change depending on the dimension, anisotropy, disorder strength, and the presence of hysteresis. Within the moving phase we discuss how there can be a transition from a liquid-like state to dynamically ordered moving crystal, smectic, or nematic states. Systems with periodic or quasiperiodic substrates can have multiple nonequilibrium second or first order transitions in the moving state between chaotic and coherent phases, and can exhibit hysteresis. We also discuss systems with competing repulsive and attractive interactions, which undergo dynamical transitions into stripes and other complex morphologies when driven over random substrates. Throughout this work we highlight open issues and future directions such as absorbing phase transitions, nonequilibrium work relations, inertia, the role of non-dissipative dynamics such as Magnus effects, and how these results could be extended to the broader issues of plasticity in crystals, amorphous solids, and jamming phenomena.« less

  18. Depinning and nonequilibrium dynamic phases of particle assemblies driven over random and ordered substrates: a review

    NASA Astrophysics Data System (ADS)

    Reichhardt, C.; Olson Reichhardt, C. J.

    2017-02-01

    We review the depinning and nonequilibrium phases of collectively interacting particle systems driven over random or periodic substrates. This type of system is relevant to vortices in type-II superconductors, sliding charge density waves, electron crystals, colloids, stripe and pattern forming systems, and skyrmions, and could also have connections to jamming, glassy behaviors, and active matter. These systems are also ideal for exploring the broader issues of characterizing transient and steady state nonequilibrium flow phases as well as nonequilibrium phase transitions between distinct dynamical phases, analogous to phase transitions between different equilibrium states. We discuss the differences between elastic and plastic depinning on random substrates and the different types of nonequilibrium phases which are associated with specific features in the velocity-force curves, fluctuation spectra, scaling relations, and local or global particle ordering. We describe how these quantities can change depending on the dimension, anisotropy, disorder strength, and the presence of hysteresis. Within the moving phase we discuss how there can be a transition from a liquid-like state to dynamically ordered moving crystal, smectic, or nematic states. Systems with periodic or quasiperiodic substrates can have multiple nonequilibrium second or first order transitions in the moving state between chaotic and coherent phases, and can exhibit hysteresis. We also discuss systems with competing repulsive and attractive interactions, which undergo dynamical transitions into stripes and other complex morphologies when driven over random substrates. Throughout this work we highlight open issues and future directions such as absorbing phase transitions, nonequilibrium work relations, inertia, the role of non-dissipative dynamics such as Magnus effects, and how these results could be extended to the broader issues of plasticity in crystals, amorphous solids, and jamming phenomena.

  19. Antioxidant protects blood-testis barrier against synchrotron radiation X-ray-induced disruption

    PubMed Central

    Zhang, Tingting; Liu, Tengyuan; Shao, Jiaxiang; Sheng, Caibin; Hong, Yunyi; Ying, Weihai; Xia, Weiliang

    2015-01-01

    Synchrotron radiation (SR) X-ray has wide biomedical applications including high resolution imaging and brain tumor therapy due to its special properties of high coherence, monochromaticity and high intensity. However, its interaction with biological tissues remains poorly understood. In this study, we used the rat testis as a model to investigate how SR X-ray would induce tissue responses, especially the blood-testis barrier (BTB) because BTB dynamics are critical for spermatogenesis. We irradiated the male gonad with increasing doses of SR X-ray and obtained the testicles 1, 10 and 20 d after the exposures. The testicle weight and seminiferous tubule diameter reduced in a dose- and time-dependent manner. Cryosections of testes were stained with tight junction (TJ) component proteins such as occludin, claudin-11, JAM-A and ZO-1. Morphologically, increasing doses of SR X-ray consistently induced developing germ cell sloughing from the seminiferous tubules, accompanied by shrinkage of the tubules. Interestingly, TJ constituent proteins appeared to be induced by the increasing doses of SR X-ray. Up to 20 d after SR X-ray irradiation, there also appeared to be time-dependent changes on the steady-state level of these protein exhibiting differential patterns at 20-day after exposure, with JAM-A/claudin-11 still being up-regulated whereas occludin/ZO-1 being down-regulated. More importantly, the BTB damage induced by 40 Gy of SR X-ray could be significantly attenuated by antioxidant N-Acetyl-L-Cysteine (NAC) at a dose of 125 mg/kg. Taken together, our studies characterized the changes of TJ component proteins after SR X-ray irradiation, illustrating the possible protective effects of antioxidant NAC to BTB integrity. PMID:26413412

  20. Low loss jammed-array wideband sawtooth filter based on a finite reflection virtually imaged array

    NASA Astrophysics Data System (ADS)

    Tan, Zhongwei; Cao, Dandan; Ding, Zhichao

    2018-03-01

    An edge filter is a potential technology in the fiber Bragg grating interrogation that has the advantages of fast response speed and suitability for dynamic measurement. To build a low loss, wideband jammed-array wideband sawtooth (JAWS) filter, a finite reflection virtually imaged array (FRVIA) is proposed and demonstrated. FRVIA is different from the virtually imaged phased array in that it has a low reflective front end. This change will lead to many differences in the device's performance in output optical intensity distribution, spectral resolution, output aperture, and tolerance of the manufacture errors. A low loss, wideband JAWS filter based on an FRVIA can provide an edge filter for each channel, respectively.

  1. Self-Organized Criticality and Scaling in Lifetime of Traffic Jams

    NASA Astrophysics Data System (ADS)

    Nagatani, Takashi

    1995-01-01

    The deterministic cellular automaton 184 (the one-dimensional asymmetric simple-exclusion model with parallel dynamics) is extended to take into account injection or extraction of particles. The model presents the traffic flow on a highway with inflow or outflow of cars.Introducing injection or extraction of particles into the asymmetric simple-exclusion model drives the system asymptotically into a steady state exhibiting a self-organized criticality. The typical lifetime of traffic jams scales as \\cong Lν with ν=0.65±0.04. It is shown that the cumulative distribution Nm (L) of lifetimes satisfies the finite-size scaling form Nm (L) \\cong L-1 f(m/Lν).

  2. Totally asymmetric simple exclusion process with entrance rate sin(x)

    NASA Astrophysics Data System (ADS)

    Liang, Yifan; Chen, Xiaoyu; Liu, Yanna; Xiao, Song

    2017-03-01

    In recently, traffic jams have become the focus and one used different approaches to study them. In this paper, the function of sin(x) is used to simulate the enter rate α of the peak period to work. The mean field approach has been used to calculate the phase diagrams and these results were compared with Monte Carlo simulations. They are good agreement. When traffic accidents occur at the exit, the exit rate β will be less than 1 and traffic jams will occur. Different fixed the exit rate β is used to calculate the additional energy consumption. The additional energy consumption will increase with the reducing of the exit rate β.

  3. Mechanical Four-Pole Parameters: Transmission Matrices

    DTIC Science & Technology

    1976-04-19

    moment of inertia, it is pcssible to state that 1, = i2 ’jV 2 (127) ~ =v 2 ,(128) B, = B2 ,(129) el e2 (130) 28 1 -JA 0 0 P2 0 1 0 0 VM 0 1 j :(. 131 ...Eq. 129 now becomes + JCI ,2(1.32) so that F1 1 -JaM 0 0 F2 V, 0 1 0 0 V2 ~ :~ (133) B. 0 0o 1 Jcn B 2 1 2 3. Spring of Stiffness K in Cascade [Fig...transmission matrix is that of Eq. 131 in which the element - JaM has been replaced py - Za. 9. VALUES OF TRANSMISSION MATRICES (BERNOULLI-EUER BEANS

  4. Biomechanical ordering and buckling due to microbial growth confined at oil-water interfaces

    NASA Astrophysics Data System (ADS)

    Juarez, Gabriel; Stocker, Roman

    2015-11-01

    Bacteria are unicellular organisms that often exist as densely populated, surface-associated communities. Bacteria are also environmental colloids and spontaneously attach and self-assemble at liquid-liquid interfaces. Here, we present results on the growth dynamics of individual rod-shaped bacteria confined to finite oil-water interfaces of varying curvature. Through experiments using microfluidic chambers and time-lapse microscopy, we study the formation of macroscopic structures observed as adsorbed bacteria grow, divide, and self-assemble in a nematic phase due to biomechanical interactions. The continued growth at the interface leads to a jammed monolayer of cells, which then causes the interface to buckle and undergo large deformations including wrinkling and tubulation. These observations highlight the interplay between physical environment, such as confinement and interface curvature, and active biological processes, such as growth, at the scale of individual agents and shape our understanding of macroscale processes such as microbial degradation of oil in the ocean.

  5. A scenario planning approach for disasters on Swiss road network

    NASA Astrophysics Data System (ADS)

    Mendes, G. A.; Axhausen, K. W.; Andrade, J. S.; Herrmann, H. J.

    2014-05-01

    We study a vehicular traffic scenario on Swiss roads in an emergency situation, calculating how sequentially roads block due to excessive traffic load until global collapse (gridlock) occurs and in this way displays the fragilities of the system. We used a database from Bundesamt für Raumentwicklung which contains length and maximum allowed speed of all roads in Switzerland. The present work could be interesting for government agencies in planning and managing for emergency logistics for a country or a big city. The model used to generate the flux on the Swiss road network was proposed by Mendes et al. [Physica A 391, 362 (2012)]. It is based on the conservation of the number of vehicles and allows for an easy and fast way to follow the formation of traffic jams in large systems. We also analyze the difference between a nonlinear and a linear model and the distribution of fluxes on the Swiss road.

  6. Hard-sphere crystallization gets rarer with increasing dimension

    NASA Astrophysics Data System (ADS)

    van Meel, J. A.; Charbonneau, B.; Fortini, A.; Charbonneau, P.

    2009-12-01

    We recently found that crystallization of monodisperse hard spheres from the bulk fluid faces a much higher free-energy barrier in four than in three dimensions at equivalent supersaturation, due to the increased geometrical frustration between the simplex-based fluid order and the crystal [J. A. van Meel, D. Frenkel, and P. Charbonneau, Phys. Rev. E 79, 030201(R) (2009)]. Here, we analyze the microscopic contributions to the fluid-crystal interfacial free energy to understand how the barrier to crystallization changes with dimension. We find the barrier to grow with dimension and we identify the role of polydispersity in preventing crystal formation. The increased fluid stability allows us to study the jamming behavior in four, five, and six dimensions and to compare our observations with two recent theories [C. Song, P. Wang, and H. A. Makse, Nature (London) 453, 629 (2008); G. Parisi and F. Zamponi, Rev. Mod. Phys. (to be published)].

  7. Calling louder and longer: how bats use biosonar under severe acoustic interference from other bats

    PubMed Central

    Amichai, Eran; Blumrosen, Gaddi; Yovel, Yossi

    2015-01-01

    Active-sensing systems such as echolocation provide animals with distinct advantages in dark environments. For social animals, however, like many bat species, active sensing can present problems as well: when many individuals emit bio-sonar calls simultaneously, detecting and recognizing the faint echoes generated by one's own calls amid the general cacophony of the group becomes challenging. This problem is often termed ‘jamming’ and bats have been hypothesized to solve it by shifting the spectral content of their calls to decrease the overlap with the jamming signals. We tested bats’ response in situations of extreme interference, mimicking a high density of bats. We played-back bat echolocation calls from multiple speakers, to jam flying Pipistrellus kuhlii bats, simulating a naturally occurring situation of many bats flying in proximity. We examined behavioural and echolocation parameters during search phase and target approach. Under severe interference, bats emitted calls of higher intensity and longer duration, and called more often. Slight spectral shifts were observed but they did not decrease the spectral overlap with jamming signals. We also found that pre-existing inter-individual spectral differences could allow self-call recognition. Results suggest that the bats’ response aimed to increase the signal-to-noise ratio and not to avoid spectral overlap. PMID:26702045

  8. Motility-Driven Glass and Jamming Transitions in Biological Tissues

    NASA Astrophysics Data System (ADS)

    Bi, Dapeng; Yang, Xingbo; Marchetti, M. Cristina; Manning, M. Lisa

    2016-04-01

    Cell motion inside dense tissues governs many biological processes, including embryonic development and cancer metastasis, and recent experiments suggest that these tissues exhibit collective glassy behavior. To make quantitative predictions about glass transitions in tissues, we study a self-propelled Voronoi model that simultaneously captures polarized cell motility and multibody cell-cell interactions in a confluent tissue, where there are no gaps between cells. We demonstrate that the model exhibits a jamming transition from a solidlike state to a fluidlike state that is controlled by three parameters: the single-cell motile speed, the persistence time of single-cell tracks, and a target shape index that characterizes the competition between cell-cell adhesion and cortical tension. In contrast to traditional particulate glasses, we are able to identify an experimentally accessible structural order parameter that specifies the entire jamming surface as a function of model parameters. We demonstrate that a continuum soft glassy rheology model precisely captures this transition in the limit of small persistence times and explain how it fails in the limit of large persistence times. These results provide a framework for understanding the collective solid-to-liquid transitions that have been observed in embryonic development and cancer progression, which may be associated with epithelial-to-mesenchymal transition in these tissues.

  9. CYBERWAR-2012/13: Siegel 2011 Predicted Cyberwar Via ACHILLES-HEEL DIGITS BEQS BEC ZERO-DIGIT BEC of/in ACHILLES-HEEL DIGITS Log-Law Algebraic-Inversion to ONLY BEQS BEC Digit-Physics U Barabasi Network/Graph-Physics BEQS BEC JAMMING Denial-of-Access(DOA) Attacks 2012-Instantiations

    NASA Astrophysics Data System (ADS)

    Huffmann, Master; Siegel, Edward Carl-Ludwig

    2013-03-01

    Newcomb-Benford(NeWBe)-Siegel log-law BEC Digit-Physics Network/Graph-Physics Barabasi et.al. evolving-``complex''-networks/graphs BEC JAMMING DOA attacks: Amazon(weekends: Microsoft I.E.-7/8(vs. Firefox): Memorial-day, Labor-day,...), MANY U.S.-Banks:WF,BoA,UB,UBS,...instantiations AGAIN militate for MANDATORY CONVERSION to PARALLEL ANALOG FAULT-TOLERANT but slow(er) SECURITY-ASSURANCE networks/graphs in parallel with faster ``sexy'' DIGITAL-Networks/graphs:``Cloud'', telecomm: n-G,..., because of common ACHILLES-HEEL VULNERABILITY: DIGITS!!! ``In fast-hare versus slow-tortoise race, Slow-But-Steady ALWAYS WINS!!!'' (Zeno). {Euler [#s(1732)] ∑- ∏()-Riemann[Monats. Akad. Berlin (1859)] ∑- ∏()- Kummer-Bernoulli (#s)}-Newcomb [Am.J.Math.4(1),39 (81) discovery of the QUANTUM!!!]-{Planck (01)]}-{Einstein (05)]-Poincar e [Calcul Probabilités,313(12)]-Weyl[Goett. Nach.(14); Math.Ann.77,313(16)]-(Bose (24)-Einstein(25)]-VS. -Fermi (27)-Dirac(27))-Menger [Dimensiontheorie(29)]-Benford [J.Am. Phil.Soc.78,115(38)]-Kac[Maths Stats.-Reason. (55)]- Raimi [Sci.Am.221,109(69)]-Jech-Hill [Proc.AMS,123,3,887(95)] log-function

  10. The impacts of Phalaris arundinacea (reed canary grass) invasion on wetland plant richness in the Oregon Coast Range, USA, depend on beavers

    USGS Publications Warehouse

    Perkins, T.; Wilson, M.

    2005-01-01

    Invasive plants can threaten diversity and ecosystem function. We examined the relationship between the invasive Phalaris arundinacea (reed canarygrass) and species richness in beaver wetlands in Oregon, USA. Four basins (drainages) were chosen and three sites each of beaver impoundments, unimpounded areas and areas upstream of debris jams were randomly chosen in each basin for further study (n = 36). Analysis of covariance (ANCOVA) showed that the relationship between Phalaris and species richness differed significantly (p = 0.01) by site type. Dam sites (beaver impoundments) exhibited a strong inverse relationship between Phalaris and species richness (bD = a??0.15), with one species lost for each 7% increase in Phalaris cover. In contrast, there was essentially no relationship between Phalaris cover and species richness in jam sites (debris jam impoundments formed by flooding; bJ = +0.01) and unimpounded sites (bU = a??0.03). The cycle of beaver impoundment and abandonment both disrupts the native community and provides an ideal environment for Phalaris, which once established tends to exclude development of herbaceous communities and limits species richness. Because beaver wetlands are a dominant wetland type in the Coast Range, Phalaris invasion presents a real threat to landscape heterogeneity and ecosystem function in the region.

  11. a Numerical Investigation of the Jamming Transition in Traffic Flow on Diluted Planar Networks

    NASA Astrophysics Data System (ADS)

    Achler, Gabriele; Barra, Adriano

    In order to develop a toy model for car's traffic in cities, in this paper we analyze, by means of numerical simulations, the transition among fluid regimes and a congested jammed phase of the flow of kinetically constrained hard spheres in planar random networks similar to urban roads. In order to explore as timescales as possible, at a microscopic level we implement an event driven dynamics as the infinite time limit of a class of already existing model (Follow the Leader) on an Erdos-Renyi two-dimensional graph, the crossroads being accounted by standard Kirchoff density conservations. We define a dynamical order parameter as the ratio among the moving spheres versus the total number and by varying two control parameters (density of the spheres and coordination number of the network) we study the phase transition. At a mesoscopic level it respects an, again suitable, adapted version of the Lighthill-Whitham model, which belongs to the fluid-dynamical approach to the problem. At a macroscopic level, the model seems to display a continuous transition from a fluid phase to a jammed phase when varying the density of the spheres (the amount of cars in a city-like scenario) and a discontinuous jump when varying the connectivity of the underlying network.

  12. Flow and Jamming of Granular Materials in a Two-dimensional Hopper

    NASA Astrophysics Data System (ADS)

    Tang, Junyao

    Flow in a hopper is both a fertile testing ground for understanding fundamental granular flow rheology and industrially highly relevant. Despite increasing research efforts in this area, a comprehensive physical theory is still lacking for both jamming and flow of granular materials in a hopper. In this work, I have designed a two dimensional (2D) hopper experiment using photoelastic particles (particles' shape: disk or ellipse), with the goal to build a bridge between macroscopic phenomenon of hopper flow and microscopic particle-scale dynamics. Through synchronized data of particle tracking and stress distributions in particles, I have shown differences between my data of the time-averaged velocity/stress profile of 2D hopper flow with previous theoretical predictions. I have also demonstrated the importance of a mechanical stable arch near the opening on controlling hopper flow rheology and suggested a heuristic phase diagram for the hopper flow/jamming transition. Another part of this thesis work is focused on studying the impact of particle shape of particles on hopper flow. By comparing particle-tracking and photoelastic data for ellipses and disks at the appropriate length scale, I have demonstrated an important role for the rotational freedom of elliptical particles in controlling flow rheology through particle tracking and stress analysis. This work has been supported by International Fine Particle Research Institute (IFPRI) .

  13. Optical Pattern Formation in Cold Atoms: Explaining the Red-Blue Asymmetry

    NASA Astrophysics Data System (ADS)

    Schmittberger, Bonnie; Gauthier, Daniel

    2013-05-01

    The study of pattern formation in atomic systems has provided new insight into fundamental many-body physics and low-light-level nonlinear optics. Pattern formation in cold atoms in particular is of great interest in condensed matter physics and quantum information science because atoms undergo self-organization at ultralow input powers. We recently reported the first observation of pattern formation in cold atoms but found that our results were not accurately described by any existing theoretical model of pattern formation. Previous models describing pattern formation in cold atoms predict that pattern formation should occur using both red and blue-detuned pump beams, favoring a lower threshold for blue detunings. This disagrees with our recent work, in which we only observed pattern formation with red-detuned pump beams. Previous models also assume a two-level atom, which cannot account for the cooling processes that arise when beams counterpropagate through a cold atomic vapor. We describe a new model for pattern formation that accounts for Sisyphus cooling in multi-level atoms, which gives rise to a new nonlinearity via spatial organization of the atoms. This spatial organization causes a sharp red-blue detuning asymmetry, which agrees well with our experimental observations. We gratefully acknowledge the financial support of the NSF through Grant #PHY-1206040.

  14. A Classroom-Based Physical Activity Intervention for Urban Kindergarten and First-Grade Students: A Feasibility Study

    PubMed Central

    Wylie-Rosett, Judith; Kim, Mimi; Ozuah, Philip O.

    2015-01-01

    Abstract Background: Urban elementary schools in minority communities with high obesity prevalence may have limited resources for physical education (PE) to achieve daily activity recommendations. Little is known whether integrating physical activity (PA) into classrooms can increase activity levels of students attending such schools. Methods: We conducted a cluster randomized, controlled trial among kindergarten and first-grade students from four Bronx, New York, schools to determine feasibility and impact of a classroom-based intervention on students' PA levels. Students in two intervention schools received the Children's Hospital at Montefiore Joining Academics and Movement (CHAM JAM), an audio CD consisting of 10-minute, education-focused aerobic activities led by teachers three times a day. PA was objectively measured by pedometer. Each subject wore a sealed pedometer during the 6-hour school day for 5 consecutive days at baseline (Time 1) and 8 weeks postintervention (Time 2). Hierarchical linear models were fit to evaluate differences in mean number of steps between the two groups. Results: A total of 988 students participated (intervention group, n=500; control group, n=488). There was no significant difference at baseline between the two groups on mean number of steps (2581 [standard deviation (SD), 1284] vs. 2476 [SD, 1180]; P=0.71). Eight weeks post–CHAM JAM, intervention group students took significantly greater mean number of steps than controls (2839 [SD, 1262] vs. 2545 [SD, 1153]; P=0.0048) after adjusting for baseline number of steps and other covariates (grade, gender, recess, and PE class). CHAM JAM was equally effective in gender, grade level, and BMI subgroups. Conclusions: CHAM JAM significantly increased school-based PA among kindergarten and first-grade students in inner-city schools. This approach holds promise as a cost-effective means to integrate the physical and cognitive benefits of PA into high-risk schools. PMID:25747719

  15. Mars Science Laboratory Rover Integrated Pump Assembly Bellows Jamming Failure

    NASA Technical Reports Server (NTRS)

    Johnson, Michael R.; Johnson, Joel; Birur, Gajanana; Bhandari, Pradeep; Karlmann, Paul

    2012-01-01

    The Mars Science Laboratory rover and spacecraft utilize two mechanically pumped fluid loops for heat transfer to and from the internal electronics assemblies and the Radioisotope Thermo-Electric Generator (RTG). The heat transfer fluid is Freon R-11 (CFC-11) which has a large coefficient of thermal expansion. The Freon within the heat transfer system must have a volume for safe expansion of the fluid as the system temperature rises. The device used for this function is a gas-over-liquid accumulator. The accumulator uses a metal bellows to separate the fluid and gas sections. During expansion and contraction of the fluid in the system, the bellows extends and retracts to provide the needed volume change. During final testing of a spare unit, the bellows would not extend the full distance required to provide the needed expansion volume. Increasing the fluid pressure did not loosen the jammed bellows either. No amount of stroking the bellows back and forth would get it to pass the jamming point. This type of failure, if it occurred during flight, would result in significant overpressure of the heat transfer system leading to a burst failure at some point in the system piping. A loss of the Freon fluid would soon result in a loss of the mission. The determination of the source of the jamming of the bellows was quite elusive, leading to an extensive series of tests and analyses. The testing and analyses did indicate the root cause of the failure, qualitatively. The results did not provide a set of dimensional limits for the existing hardware design that would guarantee proper operation of the accumulator. In the end, a new design was developed that relied on good engineering judgment combined with the test results to select a reliable enough solution that still met other physical constraints of the hardware, the schedule, and the rover system.

  16. The edge detection method of the infrared imagery of the laser spot

    NASA Astrophysics Data System (ADS)

    Che, Jinxi; Zhang, Jinchun; Li, Zhongmin

    2016-01-01

    In the jamming effectiveness experiments, in which the thermal infrared imager was interfered by the CO2 Laser, in order to evaluate the jamming effect of the thermal infrared imager by the CO2 Laser, it was needed to analyses the obtained infrared imagery of laser spot. Because the laser spot pictures obtained from the thermal infrared imager are irregular, the edge detection is an important process. The image edge is one of the most basic characteristics of the image, and it contains most of the information of the image. Generally, because of the thermal balance effect, the partly temperature of objective is no quite difference; therefore the infrared imagery's ability of reflecting the local detail of object is obvious week. At the same time, when the information of heat distribution of the thermal imagery was combined with the basic information of target, such as the object size, the relative position of field of view, shape and outline, and so on, the information just has more value. Hence, it is an important step for making image processing to extract the objective edge of the infrared imagery. Meanwhile it is an important part of image processing procedure and it is the premise of many subsequent processing. So as to extract outline information of the target from the original thermal imagery, and overcome the disadvantage, such as the low image contrast of the image and serious noise interference, and so on, the edge of thermal imagery needs detecting and processing. The principles of the Roberts, Sobel, Prewitt and Canny operator were analyzed, and then they were used to making edge detection on the thermal imageries of laser spot, which were obtained from the jamming effect experiments of CO2 laser jamming the thermal infrared imager. On the basis of the detection result, their performances were compared. At the end, the characteristics of the operators were summarized, which provide reference for the choice of edge detection operators in thermal imagery processing in future.

  17. Rate Dependence of Elementary Rearrangements and Spatiotemporal Correlations in the 3D Flow of Soft Solids

    NASA Astrophysics Data System (ADS)

    Vasisht, Vishwas V.; Dutta, Sudeep K.; Del Gado, Emanuela; Blair, Daniel L.

    2018-01-01

    We use a combination of confocal microscopy, rheology, and molecular dynamics simulations to investigate jammed emulsions under shear, by analyzing the 3D droplets rearrangements in the shear frame. Our quantitative analysis of local dynamics reveals elementary nonaffine rearrangements that underlie the onset of the flow at small strains. We find that the mechanism of unjamming and the upturn in the material flow curve are associated to a qualitative change in spatiotemporal correlations of such rearrangements with the applied shear rate. At high shear rates, droplet clusters follow coordinated, stringlike motion. Conversely, at low shear rates, the elementary nonaffine rearrangements exhibit longer-ranged correlations, with complex spatiotemporal patterns. The 3D microscopic details provide novel insights into the specific features of the material flow curve, common to a large class of technologically relevant soft disordered solids and new fundamental ingredients for constitutive models.

  18. Characteristics of pattern formation and evolution in approximations of Physarum transport networks.

    PubMed

    Jones, Jeff

    2010-01-01

    Most studies of pattern formation place particular emphasis on its role in the development of complex multicellular body plans. In simpler organisms, however, pattern formation is intrinsic to growth and behavior. Inspired by one such organism, the true slime mold Physarum polycephalum, we present examples of complex emergent pattern formation and evolution formed by a population of simple particle-like agents. Using simple local behaviors based on chemotaxis, the mobile agent population spontaneously forms complex and dynamic transport networks. By adjusting simple model parameters, maps of characteristic patterning are obtained. Certain areas of the parameter mapping yield particularly complex long term behaviors, including the circular contraction of network lacunae and bifurcation of network paths to maintain network connectivity. We demonstrate the formation of irregular spots and labyrinthine and reticulated patterns by chemoattraction. Other Turing-like patterning schemes were obtained by using chemorepulsion behaviors, including the self-organization of regular periodic arrays of spots, and striped patterns. We show that complex pattern types can be produced without resorting to the hierarchical coupling of reaction-diffusion mechanisms. We also present network behaviors arising from simple pre-patterning cues, giving simple examples of how the emergent pattern formation processes evolve into networks with functional and quasi-physical properties including tensionlike effects, network minimization behavior, and repair to network damage. The results are interpreted in relation to classical theories of biological pattern formation in natural systems, and we suggest mechanisms by which emergent pattern formation processes may be used as a method for spatially represented unconventional computation.

  19. Equation of state of wet granular matter.

    PubMed

    Fingerle, A; Herminghaus, S

    2008-01-01

    An expression for the near-contact pair correlation function of D -dimensional weakly polydisperse hard spheres is presented, which arises from elementary free-volume arguments. Its derivative at contact agrees very well with our simulations for D=2 . For jammed states, the expression predicts that the number of exact contacts is equal to 2D, in agreement with established simulations. When the particles are wetted, they interact by the formation and rupture of liquid capillary bridges. Since formation and rupture events of capillary bonds are well separated in configuration space, the interaction is hysteretic with a characteristic energy loss Ecb. The pair correlation is strongly affected by this capillary interaction depending on the liquid-bond status of neighboring particles. A theory is derived for the nonequilibrium probability currents of the capillary interaction which determines the pair correlation function near contact. This finally yields an analytic expression for the equation of state, P=P(N/V,T), of wet granular matter for D=2, valid in the complete density range from gas to jamming. Driven wet granular matter exhibits a van der Waals-like unstable branch at granular temperatures TT, is of relevance for aggregation in general, simulations have been performed which show very good agreement with the theoretically predicted coordination K of capillary bonds as a function of the bond length scrit. This result implies that particles that stick at the surface, scrit=0, form isostatic clusters. An extension of the theory in which the bridge coordination number K plays the role of a self-consistent mean-field is proposed.

  20. Equation of state of wet granular matter

    NASA Astrophysics Data System (ADS)

    Fingerle, A.; Herminghaus, S.

    2008-01-01

    An expression for the near-contact pair correlation function of D -dimensional weakly polydisperse hard spheres is presented, which arises from elementary free-volume arguments. Its derivative at contact agrees very well with our simulations for D=2 . For jammed states, the expression predicts that the number of exact contacts is equal to 2D, in agreement with established simulations. When the particles are wetted, they interact by the formation and rupture of liquid capillary bridges. Since formation and rupture events of capillary bonds are well separated in configuration space, the interaction is hysteretic with a characteristic energy loss Ecb . The pair correlation is strongly affected by this capillary interaction depending on the liquid-bond status of neighboring particles. A theory is derived for the nonequilibrium probability currents of the capillary interaction which determines the pair correlation function near contact. This finally yields an analytic expression for the equation of state, P=P(N/V,T) , of wet granular matter for D=2 , valid in the complete density range from gas to jamming. Driven wet granular matter exhibits a van der Waals-like unstable branch at granular temperatures T

  1. Collective dynamics of soft active particles

    NASA Astrophysics Data System (ADS)

    van Drongelen, Ruben; Pal, Anshuman; Goodrich, Carl P.; Idema, Timon

    2015-03-01

    We present a model of soft active particles that leads to a rich array of collective behavior found also in dense biological swarms of bacteria and other unicellular organisms. Our model uses only local interactions, such as Vicsek-type nearest-neighbor alignment, short-range repulsion, and a local boundary term. Changing the relative strength of these interactions leads to migrating swarms, rotating swarms, and jammed swarms, as well as swarms that exhibit run-and-tumble motion, alternating between migration and either rotating or jammed states. Interestingly, although a migrating swarm moves slower than an individual particle, the diffusion constant can be up to three orders of magnitude larger, suggesting that collective motion can be highly advantageous, for example, when searching for food.

  2. Motion of Knots in DNA Stretched by Elongational Fields

    NASA Astrophysics Data System (ADS)

    Klotz, Alexander R.; Soh, Beatrice W.; Doyle, Patrick S.

    2018-05-01

    Knots in DNA occur in biological systems, serve as a model system for polymer entanglement, and affect the efficacy of modern genomics technologies. We study the motion of complex knots in DNA by stretching molecules with a divergent electric field that provides an elongational force. We demonstrate that the motion of knots is nonisotropic and driven towards the closest end of the molecule. We show for the first time experimentally that knots can go from a mobile to a jammed state by varying an applied strain rate, and that this jamming is reversible. We measure the mobility of knots as a function of strain rate, demonstrating the conditions under which knots can be driven towards the ends of the molecule and untied.

  3. Dynamics and yielding of binary self-suspended nanoparticle fluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agrawal, Akanksha; Yu, Hsiu-Yu; Srivastava, Samanvaya

    Yielding and flow transitions in bi-disperse suspensions of particles are studied using a model system comprised of self-suspended spherical nanoparticles. An important feature of the materials is that the nanoparticles are uniformly dispersed in the absence of a solvent. Addition of larger particles to a suspension of smaller ones is found to soften the suspensions, and in the limit of large size disparities, completely fluidizes the material. We show that these behaviors coincide with a speeding-up of de-correlation dynamics of all particles in the suspensions and are accompanied by a reduction in the energy dissipated at the yielding transition. Wemore » discuss our findings in terms of ligand-mediated jamming and un-jamming of hairy particle suspensions.« less

  4. Clogging and jamming transitions in periodic obstacle arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Hong; Reichhardt, Charles; Olson Reichhardt, Cynthia Jane

    2017-03-29

    We numerically examine clogging transitions for bidisperse disks flowing through a two-dimensional periodic obstacle array. Here, we show that clogging is a probabilistic event that occurs through a transition from a homogeneous flowing state to a heterogeneous or phase-separated jammed state where the disks form dense connected clusters. The probability for clogging to occur during a fixed time increases with increasing particle packing and obstacle number. For driving at different angles with respect to the symmetry direction of the obstacle array, we show that certain directions have a higher clogging susceptibility. It is also possible to have a size-specific cloggingmore » transition in which one disk size becomes completely immobile while the other disk size continues to flow.« less

  5. Classical-quantum arbitrarily varying wiretap channel: Secret message transmission under jamming attacks

    NASA Astrophysics Data System (ADS)

    Boche, Holger; Cai, Minglai; Deppe, Christian; Nötzel, Janis

    2017-10-01

    We analyze arbitrarily varying classical-quantum wiretap channels. These channels are subject to two attacks at the same time: one passive (eavesdropping) and one active (jamming). We elaborate on our previous studies [H. Boche et al., Quantum Inf. Process. 15(11), 4853-4895 (2016) and H. Boche et al., Quantum Inf. Process. 16(1), 1-48 (2016)] by introducing a reduced class of allowable codes that fulfills a more stringent secrecy requirement than earlier definitions. In addition, we prove that non-symmetrizability of the legal link is sufficient for equality of the deterministic and the common randomness assisted secrecy capacities. Finally, we focus on analytic properties of both secrecy capacities: We completely characterize their discontinuity points and their super-activation properties.

  6. Traffic jam dynamics in stochastic cellular automata

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagel, K.; Schreckenberg, M.

    1995-09-01

    Simple models for particles hopping on a grid (cellular automata) are used to simulate (single lane) traffic flow. Despite their simplicity, these models are astonishingly realistic in reproducing start-stop-waves and realistic fundamental diagrams. One can use these models to investigate traffic phenomena near maximum flow. A so-called phase transition at average maximum flow is visible in the life-times of jams. The resulting dynamic picture is consistent with recent fluid-dynamical results by Kuehne/Kerner/Konhaeuser, and with Treiterer`s hysteresis description. This places CA models between car-following models and fluid-dynamical models for traffic flow. CA models are tested in projects in Los Alamos (USA)more » and in NRW (Germany) for large scale microsimulations of network traffic.« less

  7. A dynamic jamming point for shear thickening suspensions

    NASA Astrophysics Data System (ADS)

    Brown, Eric; Jaeger, Heinrich

    2008-11-01

    Densely packed suspensions can shear thicken, in which the viscosity increases with shear rate. We performed rheometry measurements on two model systems: corn starch in water and glass spheres in oils. In both systems we observed shear thickening up to a critical packing fraction φc (=0.55 for spherical grains) above which the flow abruptly transitions to shear thinning. The viscosity and yield stress diverge as power laws at φc. Extrapolating the dynamic ranges of shear rate and stress in the shear thickening regime up to φc suggests a finite change in shear stress with zero change in shear rate. This is a dynamic analog to the jamming point with a yield stress at zero shear rate.

  8. Unjamming a granular hopper by vibration

    NASA Astrophysics Data System (ADS)

    Janda, A.; Maza, D.; Garcimartín, A.; Kolb, E.; Lanuza, J.; Clément, E.

    2009-07-01

    We present an experimental study of the outflow of a hopper continuously vibrated by a piezoelectric device. Outpouring of grains can be achieved for apertures much below the usual jamming limit observed for non-vibrated hoppers. Granular flow persists down to the physical limit of one grain diameter, a limit reached for a finite vibration amplitude. For the smaller orifices, we observe an intermittent regime characterized by alternated periods of flow and blockage. Vibrations do not significantly modify the flow rates both in the continuous and the intermittent regime. The analysis of the statistical features of the flowing regime shows that the flow time significantly increases with the vibration amplitude. However, at low vibration amplitude and small orifice sizes, the jamming time distribution displays an anomalous statistics.

  9. Whole arm manipulation planning based on feedback velocity fields and sampling-based techniques.

    PubMed

    Talaei, B; Abdollahi, F; Talebi, H A; Omidi Karkani, E

    2013-09-01

    Changing the configuration of a cooperative whole arm manipulator is not easy while enclosing an object. This difficulty is mainly because of risk of jamming caused by kinematic constraints. To reduce this risk, this paper proposes a feedback manipulation planning algorithm that takes grasp kinematics into account. The idea is based on a vector field that imposes perturbation in object motion inducing directions when the movement is considerably along manipulator redundant directions. Obstacle avoidance problem is then considered by combining the algorithm with sampling-based techniques. As experimental results confirm, the proposed algorithm is effective in avoiding jamming as well as obstacles for a 6-DOF dual arm whole arm manipulator. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  10. An extended car-following model considering the acceleration derivative in some typical traffic environments

    NASA Astrophysics Data System (ADS)

    Zhou, Tong; Chen, Dong; Liu, Weining

    2018-03-01

    Based on the full velocity difference and acceleration car-following model, an extended car-following model is proposed by considering the vehicle’s acceleration derivative. The stability condition is given by applying the control theory. Considering some typical traffic environments, the results of theoretical analysis and numerical simulation show the extended model has a more actual acceleration of string vehicles than that of the previous models in starting process, stopping process and sudden brake. Meanwhile, the traffic jams more easily occur when the coefficient of vehicle’s acceleration derivative increases, which is presented by space-time evolution. The results confirm that the vehicle’s acceleration derivative plays an important role in the traffic jamming transition and the evolution of traffic congestion.

  11. Soliton and kink jams in traffic flow with open boundaries.

    PubMed

    Muramatsu, M; Nagatani, T

    1999-07-01

    Soliton density wave is investigated numerically and analytically in the optimal velocity model (a car-following model) of a one-dimensional traffic flow with open boundaries. Soliton density wave is distinguished from the kink density wave. It is shown that the soliton density wave appears only at the threshold of occurrence of traffic jams. The Korteweg-de Vries (KdV) equation is derived from the optimal velocity model by the use of the nonlinear analysis. It is found that the traffic soliton appears only near the neutral stability line. The soliton solution is analytically obtained from the perturbed KdV equation. It is shown that the soliton solution obtained from the nonlinear analysis is consistent with that of the numerical simulation.

  12. Research on anti - interference based on GNSS

    NASA Astrophysics Data System (ADS)

    Yu, Huanran; Liu, Yijun

    2017-05-01

    Satellite Navigation System has been widely used in military and civil fields. It has all-functional, all-weather, continuity and real-time characteristics, can provide the precise position, velocity and timing information's for the users. The environments where the receiver of satellite navigation system works become more and more complex, and the satellite signals are susceptible to intentional or unintentional interferences, anti-jamming capability has become a key problem of satellite navigation receiver's ability to work normal. In this paper, we study a DOA estimation algorithm based on linear symmetric matrix to improve the anti-jamming capability of the satellite navigation receiver, has great significance to improve the performance of satellite navigation system in complex electromagnetic environment and enhance its applicability in various environments.

  13. Simple stochastic cellular automaton model for starved beds and implications about formation of sand topographic features in terms of sand flux

    NASA Astrophysics Data System (ADS)

    Endo, Noritaka

    2016-12-01

    A simple stochastic cellular automaton model is proposed for simulating bedload transport, especially for cases with a low transport rate and where available sediments are very sparse on substrates in a subaqueous system. Numerical simulations show that the bed type changes from sheet flow through sand patches to ripples as the amount of sand increases; this is consistent with observations in flume experiments and in the field. Without changes in external conditions, the sand flux calculated for a given amount of sand decreases over time as bedforms develop from a flat bed. This appears to be inconsistent with the general understanding that sand flux remains unchanged under the constant-fluid condition, but it is consistent with the previous experimental data. For areas of low sand abundance, the sand flux versus sand amount (flux-density relation) in the simulation shows a single peak with an abrupt decrease, followed by a long tail; this is very similar to the flux-density relation seen in automobile traffic flow. This pattern (the relation between segments of the curve and the corresponding bed states) suggests that sand sheets, sand patches, and sand ripples correspond respectively to the free-flow phase, congested phase, and jam phase of traffic flows. This implies that sand topographic features on starved beds are determined by the degree of interference between sand particles. Although the present study deals with simple cases only, this can provide a simplified but effective modeling of the more complicated sediment transport processes controlled by interference due to contact between grains, such as the pulsatory migration of grain-size bimodal mixtures with repetition of clustering and scattering.

  14. The Dynamics of Visual Experience, an EEG Study of Subjective Pattern Formation

    PubMed Central

    Elliott, Mark A.; Twomey, Deirdre; Glennon, Mark

    2012-01-01

    Background Since the origin of psychological science a number of studies have reported visual pattern formation in the absence of either physiological stimulation or direct visual-spatial references. Subjective patterns range from simple phosphenes to complex patterns but are highly specific and reported reliably across studies. Methodology/Principal Findings Using independent-component analysis (ICA) we report a reduction in amplitude variance consistent with subjective-pattern formation in ventral posterior areas of the electroencephalogram (EEG). The EEG exhibits significantly increased power at delta/theta and gamma-frequencies (point and circle patterns) or a series of high-frequency harmonics of a delta oscillation (spiral patterns). Conclusions/Significance Subjective-pattern formation may be described in a way entirely consistent with identical pattern formation in fluids or granular flows. In this manner, we propose subjective-pattern structure to be represented within a spatio-temporal lattice of harmonic oscillations which bind topographically organized visual-neuronal assemblies by virtue of low frequency modulation. PMID:22292053

  15. Self-organization principles of intracellular pattern formation.

    PubMed

    Halatek, J; Brauns, F; Frey, E

    2018-05-26

    Dynamic patterning of specific proteins is essential for the spatio-temporal regulation of many important intracellular processes in prokaryotes, eukaryotes and multicellular organisms. The emergence of patterns generated by interactions of diffusing proteins is a paradigmatic example for self-organization. In this article, we review quantitative models for intracellular Min protein patterns in Escherichia coli , Cdc42 polarization in Saccharomyces cerevisiae and the bipolar PAR protein patterns found in Caenorhabditis elegans By analysing the molecular processes driving these systems we derive a theoretical perspective on general principles underlying self-organized pattern formation. We argue that intracellular pattern formation is not captured by concepts such as 'activators', 'inhibitors' or 'substrate depletion'. Instead, intracellular pattern formation is based on the redistribution of proteins by cytosolic diffusion, and the cycling of proteins between distinct conformational states. Therefore, mass-conserving reaction-diffusion equations provide the most appropriate framework to study intracellular pattern formation. We conclude that directed transport, e.g. cytosolic diffusion along an actively maintained cytosolic gradient, is the key process underlying pattern formation. Thus the basic principle of self-organization is the establishment and maintenance of directed transport by intracellular protein dynamics.This article is part of the theme issue 'Self-organization in cell biology'. © 2018 The Authors.

  16. Possible involvement of gap junctions in the barrier function of tight junctions of brain and lung endothelial cells.

    PubMed

    Nagasawa, Kunihiko; Chiba, Hideki; Fujita, Hiroki; Kojima, Takashi; Saito, Tsuyoshi; Endo, Toshiaki; Sawada, Norimasa

    2006-07-01

    Gap-junction plaques are often observed with tight-junction strands of vascular endothelial cells but the molecular interaction and functional relationships between these two junctions remain obscure. We herein show that gap-junction proteins connexin40 (Cx40) and Cx43 are colocalized and coprecipitated with tight-junction molecules occludin, claudin-5, and ZO-1 in porcine blood-brain barrier (BBB) endothelial cells. Gap junction blockers 18beta-glycyrrhetinic acid (18beta-GA) and oleamide (OA) did not influence expression of Cx40, Cx43, occludin, claudin-5, junctional adhesion molecule (JAM)-A, JAM-B, JAM-C, or ZO-1, or their subcellular localization in the porcine BBB endothelial cells. In contrast, these gap-junction blocking agents inhibited the barrier function of tight junctions in cells, determined by measurement of transendothelial electrical resistance and paracellular flux of mannitol and inulin. 18beta-GA also significantly reduced the barrier property in rat lung endothelial (RLE) cells expressing doxycycline-induced claudin-1, but did not change the interaction between Cx43 and either claudin-1 or ZO-1, nor their expression levels or subcellular distribution. These findings suggest that Cx40- and/or Cx43-based gap junctions might be required to maintain the endothelial barrier function without altering the expression and localization of the tight-junction components analyzed. Copyright 2006 Wiley-Liss, Inc.

  17. JAM-A and ALCAM are therapeutic targets to inhibit diapedesis across the BBB of CD14+CD16+ monocytes in HIV-infected individuals.

    PubMed

    Williams, Dionna W; Anastos, Kathryn; Morgello, Susan; Berman, Joan W

    2015-02-01

    Monocyte transmigration across the BBB is a critical step in the development of cognitive deficits termed HAND that affect 40-70% of HIV-infected individuals, even with successful antiretroviral therapy. The monocyte subsets that enter the CNS during HIV infection are not fully characterized. We examined PBMC from HIV-positive individuals from 2 distinct cohorts and enumerated monocyte populations, characterized their transmigration properties across an in vitro human BBB model, and identified surface proteins critical for the entry of these cells into the CNS. We demonstrated that the frequency of peripheral blood CD14(+)CD16(+) and CD14(low)CD16(+) monocytes was increased in HIV-seropositive compared with -seronegative individuals, despite virologic control. We showed that CD14(+)CD16(+) monocytes selectively transmigrated across our BBB model as a result of their increased JAM-A and ALCAM expression. Antibody blocking of these proteins inhibited diapedesis of CD14(+)CD16(+) monocytes but not of T cells from the same HIV-infected people across the BBB. Our data indicate that JAM-A and ALCAM are therapeutic targets to decrease the entry of CD14(+)CD16(+) monocytes into the CNS of HIV-seropositive individuals, contributing to the eradication of neuroinflammation, HAND, and CNS viral reservoirs. © Society for Leukocyte Biology.

  18. Reconfiguration of a flexible fiber immersed in a 2D dense granular flow close to the jamming transition

    NASA Astrophysics Data System (ADS)

    Kolb, Evelyne; Algarra, Nicolas; Vandembroucq, Damien; Lazarus, Arnaud

    2015-11-01

    We propose a new fluid/structure interaction in the unusual case of a dense granular medium flowing against an elastic fibre acting as a flexible intruder. We experimentally studied the deflection of a mylar flexible beam clamped at one side, the other free side facing a 2D granular flow in a horizontal cell moving at a constant velocity. We investigated the reconfiguration of the fibre as a function of the fibre's rigidity and of the granular packing fraction close but below the jamming in 2D. Imposing the fibre geometry like its length or thickness sets the critical buckling force the fibre is able to resist if it was not supported by lateral grains, while increasing the granular packing fraction might laterally consolidate the fibre and prevent it from buckling. But on the other side, the approach to jamming transition by increasing the granular packing fraction will be characterized by a dramatically increasing size of the cluster of connected grains forming a solid block acting against the fibre, which might promote the fibre's deflection. Thus, we investigated the granular flow fields, the fibre's deflexion as well as the forces experienced by the fibre and compared them with theoretical predictions from elastica for different loadings along the fibre. PMMH, CNRS UMR 7636, UPMC, ESPCI-ParisTech, 10 rue Vauquelin, 75231 Paris Cedex 05, France.

  19. Sensuality test result for application to space foods of the disaster food

    NASA Astrophysics Data System (ADS)

    Katayama, Naomi; Okano, Yukimi; Kondou, Syouko

    2016-07-01

    The human became able to stay in the space for a long term. This is very important to step forward to the first step for Mars emigration. The long-term stay in the space has a big great stress. The space foods are important to keep a body and mind from those stress. The maintenance of the function of the astronaut of immunity and a meal for the hormone to keep the balance are necessary. As for both the space foods and the disaster meal, room-temperature preservation is possible for a long term. However, the taste is important to even disaster food. The person is repeated if not delicious and cannot eat disaster foods. The sensuality test result about the taste of the disaster food is important. Melon bun, Strawberry jam bun, Cream bun, Maple caramel, Bean-jam bun, Croissant, Croissant Rich, Ogura croissant, Buran croissant, Waffle, Maple waffle, Buran waffle, Strawberry milk waffle, Chocolate bun A cream bun is special. The bean-jam bun is very familiar bread for a Japanese. Because a lot of dietary fibers were good for health as for the buran croissant, an evaluation was high. We think that it is similar in the space foods. It is necessary to think about a universal meal in the space foods. We think that it is necessary to prepare the food which a person of the whole world likes.

  20. Onset of jamming for gas-fluidized grains

    NASA Astrophysics Data System (ADS)

    Abate, Adam

    2006-03-01

    Upon approach to jamming, whether for molecular liquids or colloidal particles or grains of sand, the microscopic dynamics can develop dramatic long-ranged correlations while the microscopic structure remains relatively unchanged. Experimentally, it has been difficult to study such phenomena in full detail due to the range of temporal and spatial scales involved. Here we introduce a new model system that is both easier to image and to manipulate at the microscale: a bidisperse system of steel beads rolling stochastically due to a nearly-levitating upflow of air. At fixed air flow, we demonstrate that this system exhibits all the hallmarks of a jamming transition as spheres are added and the area fraction increases toward close-packing. In terms of structure, the pair correlation function and the Voronoi cell shape distribution functions exhibit peak splitting. In terms of dynamics, the mean-squared displacement develops a plateau separating the short-time ballistic from the long-time diffusive motions; in this plateau the displacement distribution is non-Gaussian, due to spatial heterogeneities. While this phenomenology is familiar, one feature observed previously only in simulation is the presence of string-like swirls of rearranging grains. We highlight these by movies of an appropriately time-averaged velocity field. We hope to connect such dynamics both to a microscopic measure of effective temperature and to the macroscopic viscosity of the system.

  1. [Sustainable development of the three economic patterns in China: The application of genuine progress indicator in the sustainability assessment of six typical cities.

    PubMed

    Li, Jing; Huang, Lu; Yan, Li Jiao

    2016-06-01

    Three economic patterns, i.e., Zhujiang Model, Wenzhou Model and Sunan Model, were all generated in the developed areas of China. Sustainability assessment of those areas plays an important role in guiding future development of the economy of China. Genuine progress indicator (GPI) was adopted in this study to evaluate the sustainability of 6 typical cities (Guangzhou, Shenzhen, Wenzhou, Suzhou, Wuxi, and Changzhou) of the three economic patterns from 1995 to 2012. During the study period, the values of GDP for the six cities had experienced exponential growth, while the values of GPI started to increase since 2005 after a relatively constant period between 1995 and 2005. The gap between GPI and GDP had been widening from a historical perspective. Zhujiang Model made great progress in economic growth, however, the economic, social, and environmental costs were evident. It should tackle income inequality, traffic jam, and environmental pollution to reach sustainability. The development of Wenzhou Model slowed down in the late pe-riod, with inadequate potential to develop. Its income inequality was tough, social and economic development was slow, and the economic development pattern needed to be urgently changed. Sunan Model had a higher value of GPI and the potential to reach sustainability, with remarkable growth of economy, median level of the GPI costs, and steady improvement of social development, although its natural resources were depleted. Three economic patterns should focus on the three dimensions of sustainability (economy, environment, and society), and Zhujiang Model and Wenzhou Model needed to be more active to search for transition of their development.

  2. Bilberry

    MedlinePlus

    ... diarrhea, scurvy, infections, burns, and diabetes. During World War II, British pilots ate bilberry jam, thinking it ... therapy is not an endorsement by NCCIH. U.S. Department of Health & Human Services, National Institutes of Health, ...

  3. Aging, memory, and nonhierarchical energy landscape of spin jam

    NASA Astrophysics Data System (ADS)

    Samarakoon, Anjana; Sato, Taku J.; Chen, Tianran; Chern, Gai-Wei; Yang, Junjie; Klich, Israel; Sinclair, Ryan; Zhou, Haidong; Lee, Seung-Hun

    2016-10-01

    The notion of complex energy landscape underpins the intriguing dynamical behaviors in many complex systems ranging from polymers, to brain activity, to social networks and glass transitions. The spin glass state found in dilute magnetic alloys has been an exceptionally convenient laboratory frame for studying complex dynamics resulting from a hierarchical energy landscape with rugged funnels. Here, we show, by a bulk susceptibility and Monte Carlo simulation study, that densely populated frustrated magnets in a spin jam state exhibit much weaker memory effects than spin glasses, and the characteristic properties can be reproduced by a nonhierarchical landscape with a wide and nearly flat but rough bottom. Our results illustrate that the memory effects can be used to probe different slow dynamics of glassy materials, hence opening a window to explore their distinct energy landscapes.

  4. Finger-like pattern formation in dilute surfactant pentaethylene glycol monododecyl ether solutions.

    PubMed

    Kubo, Yoshihide; Yokoyama, Yasuhiro; Tanaka, Shinpei

    2013-04-07

    We report here peculiar finger-like patterns observed during the phase separation process of dilute micellar pentaethylene glycol monododecyl ether solutions. The patterns were composed of parallel and periodic threads of micelle-rich domains. Prior to this pattern formation, the phase separation always started with the appearance of water-rich domains rimmed by the micelle-rich domains. It was found that these rims played a significant role in the pattern formation. We explain this pattern formation using a simple simulation model with disconnectable springs. The simulation results suggested that the spatially inhomogeneous elasticity or connectivity of a transient gel of worm-like micelles was responsible for the rim formation. The rims thus formed lead rim-induced nucleation, growth, and elongation of the domains owing to their small mobility and the elastic frustration around them. These rim-induced processes eventually produce the observed finger-like patterns.

  5. T'ai Chi

    MedlinePlus

    ... who practice it wear a martial arts training uniform. T'ai chi is usually practiced barefoot or ... health problem. Is your schedule jam-packed with school, work, and social activities? Here are a few ...

  6. The Constrained Maximal Expression Level Owing to Haploidy Shapes Gene Content on the Mammalian X Chromosome.

    PubMed

    Hurst, Laurence D; Ghanbarian, Avazeh T; Forrest, Alistair R R; Huminiecki, Lukasz

    2015-12-01

    X chromosomes are unusual in many regards, not least of which is their nonrandom gene content. The causes of this bias are commonly discussed in the context of sexual antagonism and the avoidance of activity in the male germline. Here, we examine the notion that, at least in some taxa, functionally biased gene content may more profoundly be shaped by limits imposed on gene expression owing to haploid expression of the X chromosome. Notably, if the X, as in primates, is transcribed at rates comparable to the ancestral rate (per promoter) prior to the X chromosome formation, then the X is not a tolerable environment for genes with very high maximal net levels of expression, owing to transcriptional traffic jams. We test this hypothesis using The Encyclopedia of DNA Elements (ENCODE) and data from the Functional Annotation of the Mammalian Genome (FANTOM5) project. As predicted, the maximal expression of human X-linked genes is much lower than that of genes on autosomes: on average, maximal expression is three times lower on the X chromosome than on autosomes. Similarly, autosome-to-X retroposition events are associated with lower maximal expression of retrogenes on the X than seen for X-to-autosome retrogenes on autosomes. Also as expected, X-linked genes have a lesser degree of increase in gene expression than autosomal ones (compared to the human/Chimpanzee common ancestor) if highly expressed, but not if lowly expressed. The traffic jam model also explains the known lower breadth of expression for genes on the X (and the Z of birds), as genes with broad expression are, on average, those with high maximal expression. As then further predicted, highly expressed tissue-specific genes are also rare on the X and broadly expressed genes on the X tend to be lowly expressed, both indicating that the trend is shaped by the maximal expression level not the breadth of expression per se. Importantly, a limit to the maximal expression level explains biased tissue of expression profiles of X-linked genes. Tissues whose tissue-specific genes are very highly expressed (e.g., secretory tissues, tissues abundant in structural proteins) are also tissues in which gene expression is relatively rare on the X chromosome. These trends cannot be fully accounted for in terms of alternative models of biased expression. In conclusion, the notion that it is hard for genes on the Therian X to be highly expressed, owing to transcriptional traffic jams, provides a simple yet robustly supported rationale of many peculiar features of X's gene content, gene expression, and evolution.

  7. The Constrained Maximal Expression Level Owing to Haploidy Shapes Gene Content on the Mammalian X Chromosome

    PubMed Central

    Hurst, Laurence D.; Ghanbarian, Avazeh T.; Forrest, Alistair R. R.; Huminiecki, Lukasz

    2015-01-01

    X chromosomes are unusual in many regards, not least of which is their nonrandom gene content. The causes of this bias are commonly discussed in the context of sexual antagonism and the avoidance of activity in the male germline. Here, we examine the notion that, at least in some taxa, functionally biased gene content may more profoundly be shaped by limits imposed on gene expression owing to haploid expression of the X chromosome. Notably, if the X, as in primates, is transcribed at rates comparable to the ancestral rate (per promoter) prior to the X chromosome formation, then the X is not a tolerable environment for genes with very high maximal net levels of expression, owing to transcriptional traffic jams. We test this hypothesis using The Encyclopedia of DNA Elements (ENCODE) and data from the Functional Annotation of the Mammalian Genome (FANTOM5) project. As predicted, the maximal expression of human X-linked genes is much lower than that of genes on autosomes: on average, maximal expression is three times lower on the X chromosome than on autosomes. Similarly, autosome-to-X retroposition events are associated with lower maximal expression of retrogenes on the X than seen for X-to-autosome retrogenes on autosomes. Also as expected, X-linked genes have a lesser degree of increase in gene expression than autosomal ones (compared to the human/Chimpanzee common ancestor) if highly expressed, but not if lowly expressed. The traffic jam model also explains the known lower breadth of expression for genes on the X (and the Z of birds), as genes with broad expression are, on average, those with high maximal expression. As then further predicted, highly expressed tissue-specific genes are also rare on the X and broadly expressed genes on the X tend to be lowly expressed, both indicating that the trend is shaped by the maximal expression level not the breadth of expression per se. Importantly, a limit to the maximal expression level explains biased tissue of expression profiles of X-linked genes. Tissues whose tissue-specific genes are very highly expressed (e.g., secretory tissues, tissues abundant in structural proteins) are also tissues in which gene expression is relatively rare on the X chromosome. These trends cannot be fully accounted for in terms of alternative models of biased expression. In conclusion, the notion that it is hard for genes on the Therian X to be highly expressed, owing to transcriptional traffic jams, provides a simple yet robustly supported rationale of many peculiar features of X’s gene content, gene expression, and evolution. PMID:26685068

  8. Bioconvective patterns, synchrony, and survival. [in light-limited growth model of motile algae culture

    NASA Technical Reports Server (NTRS)

    Noever, David A.

    1990-01-01

    With and without bioconvective pattern formation, a theoretical model predicts growth in light-limited cultures of motile algae. At the critical density for pattern formation, the resulting doubly exponential population curves show an inflection. Such growth corresponds quantitatively to experiments in mechanically unstirred cultures. This attaches survival value to synchronized pattern formation.

  9. Specification and spatial arrangement of cells in the germline stem cell niche of the Drosophila ovary depend on the Maf transcription factor Traffic jam

    PubMed Central

    Panchal, Trupti; Chen, Xi; Poon, James; Kouptsova, Jane

    2017-01-01

    Germline stem cells in the Drosophila ovary are maintained by a somatic niche. The niche is structurally and functionally complex and contains four cell types, the escort, cap, and terminal filament cells and the newly identified transition cell. We find that the large Maf transcription factor Traffic jam (Tj) is essential for determining niche cell fates and architecture, enabling each niche in the ovary to support a normal complement of 2–3 germline stem cells. In particular, we focused on the question of how cap cells form. Cap cells express Tj and are considered the key component of a mature germline stem cell niche. We conclude that Tj controls the specification of cap cells, as the complete loss of Tj function caused the development of additional terminal filament cells at the expense of cap cells, and terminal filament cells developed cap cell characteristics when induced to express Tj. Further, we propose that Tj controls the morphogenetic behavior of cap cells as they adopted the shape and spatial organization of terminal filament cells but otherwise appeared to retain their fate when Tj expression was only partially reduced. Our data indicate that Tj contributes to the establishment of germline stem cells by promoting the cap cell fate, and controls the stem cell-carrying capacity of the niche by regulating niche architecture. Analysis of the interactions between Tj and the Notch (N) pathway indicates that Tj and N have distinct functions in the cap cell specification program. We propose that formation of cap cells depends on the combined activities of Tj and the N pathway, with Tj promoting the cap cell fate by blocking the terminal filament cell fate, and N supporting cap cells by preventing the escort cell fate and/or controlling the number of cap cell precursors. PMID:28542174

  10. Confined disordered strictly jammed binary sphere packings

    NASA Astrophysics Data System (ADS)

    Chen, D.; Torquato, S.

    2015-12-01

    Disordered jammed packings under confinement have received considerably less attention than their bulk counterparts and yet arise in a variety of practical situations. In this work, we study binary sphere packings that are confined between two parallel hard planes and generalize the Torquato-Jiao (TJ) sequential linear programming algorithm [Phys. Rev. E 82, 061302 (2010), 10.1103/PhysRevE.82.061302] to obtain putative maximally random jammed (MRJ) packings that are exactly isostatic with high fidelity over a large range of plane separation distances H , small to large sphere radius ratio α , and small sphere relative concentration x . We find that packing characteristics can be substantially different from their bulk analogs, which is due to what we term "confinement frustration." Rattlers in confined packings are generally more prevalent than those in their bulk counterparts. We observe that packing fraction, rattler fraction, and degree of disorder of MRJ packings generally increase with H , though exceptions exist. Discontinuities in the packing characteristics as H varies in the vicinity of certain values of H are due to associated discontinuous transitions between different jammed states. When the plane separation distance is on the order of two large-sphere diameters or less, the packings exhibit salient two-dimensional features; when the plane separation distance exceeds about 30 large-sphere diameters, the packings approach three-dimensional bulk packings. As the size contrast increases (as α decreases), the rattler fraction dramatically increases due to what we call "size-disparity" frustration. We find that at intermediate α and when x is about 0.5 (50-50 mixture), the disorder of packings is maximized, as measured by an order metric ψ that is based on the number density fluctuations in the direction perpendicular to the hard walls. We also apply the local volume-fraction variance στ2(R ) to characterize confined packings and find that these packings possess essentially the same level of hyperuniformity as their bulk counterparts. Our findings are generally relevant to confined packings that arise in biology (e.g., structural color in birds and insects) and may have implications for the creation of high-density powders and improved battery designs.

  11. Confocal Microscopy of Jammed Matter: From Elasticity to Granular Thermodynamics

    NASA Astrophysics Data System (ADS)

    Jorjadze, Ivane

    Packings of particles are ubiquitous in nature and are of interest not only to the scientific community but also to the food, pharmaceutical, and oil industries. In this thesis we use confocal microscopy to investigate packing geometry and stress transmission in 3D jammed particulate systems. By introducing weak depletion attraction we probe the accessible phase-space and demonstrate that a microscopic approach to jammed matter gives validity to statistical mechanics framework, which is intriguing because our particles are not thermally activated. We show that the fluctuations of the local packing parameters can be successfully captured by the recently proposed 'granocentric' model, which generates packing statistics according to simple stochastic processes. This model enables us to calculate packing entropy and granular temperature, the so-called 'compactivity', therefore, providing a basis for a statistical mechanics of granular matter. At a jamming transition point at which there are formed just enough number of contacts to guarantee the mechanical stability, theoretical arguments suggest a singularity which gives rise to the surprising scaling behavior of the elastic moduli and the microstructure, as observed in numerical simulations. Since the contact network in 3D is typically hidden from view, experimental test of the scaling law between the coordination number and the applied pressure is lacking in the literature. Our data show corrections to the linear scaling of the pressure with density which takes into account the creation of contacts. Numerical studies of vibrational spectra, in turn, reveal sudden features such as excess of low frequency modes, dependence of mode localization and structure on the pressure. Chapter four describes the first calculation of vibrational density of states from the experimental 3D data and is in qualitative agreement with the analogous computer simulations. We study the configurational role of the pressure and demonstrate that low frequency modes become progressively localized as the packing density is increased. Another application of our oil-in-water emulsions serves to mimic cell adhesion in biological tissues. By analyzing the microstructure in 3D we find that a threshold compression force is necessary to overcome electrostatic repulsion and surface elasticity and establish protein-mediated adhesion.

  12. Pattern formation in rotating Bénard convection

    NASA Astrophysics Data System (ADS)

    Fantz, M.; Friedrich, R.; Bestehorn, M.; Haken, H.

    1992-12-01

    Using an extension of the Swift-Hohenberg equation we study pattern formation in the Bénard experiment close to the onset of convection in the case of rotating cylindrical fluid containers. For small Taylor numbers we emphasize the existence of slowly rotating patterns and describe behaviour exhibiting defect motion. Finally, we study pattern formation close to the Küppers-Lortz instability. The instability is nucleated at defects and proceeds through front propagation into the bulk patterns.

  13. 14 CFR 29.395 - Control system.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... consideration of fatigue, jamming, ground gusts, control inertia, and friction loads. In the absence of a... inertia, or friction, the system must withstand the limit pilot forces specified in § 29.397, without...

  14. Geological setting control of flood dynamics in lowland rivers (Poland).

    PubMed

    Wierzbicki, Grzegorz; Ostrowski, Piotr; Falkowski, Tomasz; Mazgajski, Michał

    2018-04-27

    We aim to answer a question: how does the geological setting affect flood dynamics in lowland alluvial rivers? The study area covers three river reaches: not trained, relatively large on the European scale, flowing in broad valleys cut in the landscape of old glacial plains. We focus on the locations where levees [both: a) natural or b) artificial] were breached during flood. In these locations we identify (1) the erosional traces of flood (crevasse channels) on the floodplain displayed on DEM derived from ALS LIDAR. In the main river channel, we perform drillings in order to measure the depth of the suballuvial surface and to locate (2) the protrusions of bedrock resistant to erosion. We juxtapose on one map: (1) the floodplain geomorphology with (2) the geological data from the river channel. The results from each of the three study reaches are presented on maps prepared in the same manner in order to enable a comparison of the regularities of fluvial processes written in (1) the landscape and driven by (2) the geological setting. These processes act in different river reaches: (a) not embanked and dominated by ice jam floods, (b) embanked and dominated by rainfall and ice jam floods. We also analyse hydrological data to present hydrodynamic descriptions of the flood. Our principal results indicate similarity of (1) distinctive erosional patterns and (2) specific geological features in all three study reaches. We draw the conclusion: protrusions of suballuvial bedrock control the flood dynamics in alluvial rivers. It happens in both types of rivers. In areas where the floodplain remains natural, the river inundates freely during every flood. In other areas the floodplain has been reclaimed by humans who constructed an artificial levee system, which protects the flood-prone area from inundation, until levee breach occurs. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Automated numerical simulation of biological pattern formation based on visual feedback simulation framework

    PubMed Central

    Sun, Mingzhu; Xu, Hui; Zeng, Xingjuan; Zhao, Xin

    2017-01-01

    There are various fantastic biological phenomena in biological pattern formation. Mathematical modeling using reaction-diffusion partial differential equation systems is employed to study the mechanism of pattern formation. However, model parameter selection is both difficult and time consuming. In this paper, a visual feedback simulation framework is proposed to calculate the parameters of a mathematical model automatically based on the basic principle of feedback control. In the simulation framework, the simulation results are visualized, and the image features are extracted as the system feedback. Then, the unknown model parameters are obtained by comparing the image features of the simulation image and the target biological pattern. Considering two typical applications, the visual feedback simulation framework is applied to fulfill pattern formation simulations for vascular mesenchymal cells and lung development. In the simulation framework, the spot, stripe, labyrinthine patterns of vascular mesenchymal cells, the normal branching pattern and the branching pattern lacking side branching for lung branching are obtained in a finite number of iterations. The simulation results indicate that it is easy to achieve the simulation targets, especially when the simulation patterns are sensitive to the model parameters. Moreover, this simulation framework can expand to other types of biological pattern formation. PMID:28225811

  16. Automated numerical simulation of biological pattern formation based on visual feedback simulation framework.

    PubMed

    Sun, Mingzhu; Xu, Hui; Zeng, Xingjuan; Zhao, Xin

    2017-01-01

    There are various fantastic biological phenomena in biological pattern formation. Mathematical modeling using reaction-diffusion partial differential equation systems is employed to study the mechanism of pattern formation. However, model parameter selection is both difficult and time consuming. In this paper, a visual feedback simulation framework is proposed to calculate the parameters of a mathematical model automatically based on the basic principle of feedback control. In the simulation framework, the simulation results are visualized, and the image features are extracted as the system feedback. Then, the unknown model parameters are obtained by comparing the image features of the simulation image and the target biological pattern. Considering two typical applications, the visual feedback simulation framework is applied to fulfill pattern formation simulations for vascular mesenchymal cells and lung development. In the simulation framework, the spot, stripe, labyrinthine patterns of vascular mesenchymal cells, the normal branching pattern and the branching pattern lacking side branching for lung branching are obtained in a finite number of iterations. The simulation results indicate that it is easy to achieve the simulation targets, especially when the simulation patterns are sensitive to the model parameters. Moreover, this simulation framework can expand to other types of biological pattern formation.

  17. 40 CFR 407.80 - Applicability; description of the canned and miscellaneous specialties subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... VEGETABLES PROCESSING POINT SOURCE CATEGORY Canned and Miscellaneous Specialties Subcategory § 407.80...: Added ingredients; baby food; corn, potato, and tortilla chips; ethnic foods; jams and jellies...

  18. INTEGRATED INS/GPS NAVIGATION FROM A POPULAR PERSPECTIVE

    DOT National Transportation Integrated Search

    2002-02-13

    Inertial navigation, blended with other navigation aids Global Positioning System (GPS) in particular, has gained significance due to enhanced navigation and inertial reference performance and dissimilarity for fault tolerance and anti-jamming. Relat...

  19. Disordered solids: In search of the perfect glass

    NASA Astrophysics Data System (ADS)

    Biroli, Giulio

    2014-08-01

    The jury's still out on how glasses and other disordered materials form. However, a new framework suggests that we can understand their mechanical properties without this information, by using the physics of jamming.

  20. Precision powder feeder

    DOEpatents

    Schlienger, M. Eric; Schmale, David T.; Oliver, Michael S.

    2001-07-10

    A new class of precision powder feeders is disclosed. These feeders provide a precision flow of a wide range of powdered materials, while remaining robust against jamming or damage. These feeders can be precisely controlled by feedback mechanisms.

Top