Sample records for japanese astro-h mission

  1. The ASTRO-H (Hitomi) X-Ray Astronomy Satellite

    NASA Technical Reports Server (NTRS)

    Takahashi, Tadayuki; Kokubun, Motohide; Mitsuda, Kazuhisa; Kelley, Richard; Ohashi, Takaya; Aharonian, Felix; Akamatsu, Hiroki; Akimoto, Fumie; Allen, Steve; Anabuki, Naohisa; hide

    2016-01-01

    The Hitomi (ASTRO-H) mission is the sixth Japanese X-ray astronomy satellite developed by a large international collaboration, including Japan, USA, Canada, and Europe. The mission aimed to provide the highest energy resolution ever achieved at E greater than 2 keV, using a microcalorimeter instrument, and to cover a wide energy range spanning four decades in energy from soft X-rays to gamma-rays. After a successful launch on 2016 February 17, the spacecraft lost its function on 2016 March 26, but the commissioning phase for about a month provided valuable information on the on-board instruments and the spacecraft system, including astrophysical results obtained from first light observations. The paper describes the Hitomi (ASTRO-H) mission, its capabilities, the initial operation, and the instruments/spacecraft performances confirmed during the commissioning operations for about a month.

  2. The ASTRO-H (Hitomi) x-ray astronomy satellite

    NASA Astrophysics Data System (ADS)

    Takahashi, Tadayuki; Kokubun, Motohide; Mitsuda, Kazuhisa; Kelley, Richard; Ohashi, Takaya; Aharonian, Felix; Akamatsu, Hiroki; Akimoto, Fumie; Allen, Steve; Anabuki, Naohisa; Angelini, Lorella; Arnaud, Keith; Asai, Makoto; Audard, Marc; Awaki, Hisamitsu; Axelsson, Magnus; Azzarello, Philipp; Baluta, Chris; Bamba, Aya; Bando, Nobutaka; Bautz, Marshall; Bialas, Thomas; Blandford, Roger; Boyce, Kevin; Brenneman, Laura; Brown, Greg; Bulbul, Esra; Cackett, Edward; Canavan, Edgar; Chernyakova, Maria; Chiao, Meng; Coppi, Paolo; Costantini, Elisa; de Plaa, Jelle; den Herder, Jan-Willem; DiPirro, Michael; Done, Chris; Dotani, Tadayasu; Doty, John; Ebisawa, Ken; Eckart, Megan; Enoto, Teruaki; Ezoe, Yuichiro; Fabian, Andrew; Ferrigno, Carlo; Foster, Adam; Fujimoto, Ryuichi; Fukazawa, Yasushi; Furuzawa, Akihiro; Galeazzi, Massimiliano; Gallo, Luigi; Gandhi, Poshak; Gilmore, Kirk; Giustini, Margherita; Goldwurm, Andrea; Gu, Liyi; Guainazzi, Matteo; Haas, Daniel; Haba, Yoshito; Hagino, Kouichi; Hamaguchi, Kenji; Harayama, Atsushi; Harrus, Ilana; Hatsukade, Isamu; Hayashi, Takayuki; Hayashi, Katsuhiro; Hayashida, Kiyoshi; Hiraga, Junko; Hirose, Kazuyuki; Hornschemeier, Ann; Hoshino, Akio; Hughes, John; Ichinohe, Yuto; Iizuka, Ryo; Inoue, Yoshiyuki; Inoue, Hajime; Ishibashi, Kazunori; Ishida, Manabu; Ishikawa, Kumi; Ishimura, Kosei; Ishisaki, Yoshitaka; Itoh, Masayuki; Iwata, Naoko; Iyomoto, Naoko; Jewell, Chris; Kaastra, Jelle; Kallman, Timothy; Kamae, Tuneyoshi; Kara, Erin; Kataoka, Jun; Katsuda, Satoru; Katsuta, Junichiro; Kawaharada, Madoka; Kawai, Nobuyuki; Kawano, Taro; Kawasaki, Shigeo; Khangulyan, Dmitry; Kilbourne, Caroline; Kimball, Mark; King, Ashley; Kitaguchi, Takao; Kitamoto, Shunji; Kitayama, Tetsu; Kohmura, Takayoshi; Kosaka, Tatsuro; Koujelev, Alex; Koyama, Katsuji; Koyama, Shu; Kretschmar, Peter; Krimm, Hans; Kubota, Aya; Kunieda, Hideyo; Laurent, Philippe; Lebrun, François; Lee, Shiu-Huang; Leutenegger, Maurice; Limousin, Olivier; Loewenstein, Michael; Long, Knox; Lumb, David; Madejski, Grzegorz; Maeda, Yoshitomo; Maier, Daniel; Makishima, Kazuo; Markevitch, Maxim; Masters, Candace; Matsumoto, Hironori; Matsushita, Kyoko; McCammon, Dan; McGuinness, Daniel; McNamara, Brian; Mehdipour, Missagh; Miko, Joseph; Miller, Jon; Miller, Eric; Mineshige, Shin; Minesugi, Kenji; Mitsuishi, Ikuyuki; Miyazawa, Takuya; Mizuno, Tsunefumi; Mori, Koji; Mori, Hideyuki; Moroso, Franco; Moseley, Harvey; Muench, Theodore; Mukai, Koji; Murakami, Hiroshi; Murakami, Toshio; Mushotzky, Richard; Nagano, Housei; Nagino, Ryo; Nakagawa, Takao; Nakajima, Hiroshi; Nakamori, Takeshi; Nakano, Toshio; Nakashima, Shinya; Nakazawa, Kazuhiro; Namba, Yoshiharu; Natsukari, Chikara; Nishioka, Yusuke; Nobukawa, Masayoshi; Nobukawa, Kumiko; Noda, Hirofumi; Nomachi, Masaharu; O'Dell, Steve; Odaka, Hirokazu; Ogawa, Hiroyuki; Ogawa, Mina; Ogi, Keiji; Ohno, Masanori; Ohta, Masayuki; Okajima, Takashi; Okamoto, Atsushi; Okazaki, Tsuyoshi; Ota, Naomi; Ozaki, Masanobu; Paerels, Frederik; Paltani, Stéphane; Parmar, Arvind; Petre, Robert; Pinto, Ciro; Pohl, Martin; Pontius, James; Porter, F. Scott; Pottschmidt, Katja; Ramsey, Brian; Reynolds, Christopher; Russell, Helen; Safi-Harb, Samar; Saito, Shinya; Sakai, Shin-ichiro; Sakai, Kazuhiro; Sameshima, Hiroaki; Sasaki, Toru; Sato, Goro; Sato, Yoichi; Sato, Kosuke; Sato, Rie; Sawada, Makoto; Schartel, Norbert; Serlemitsos, Peter; Seta, Hiromi; Shibano, Yasuko; Shida, Maki; Shidatsu, Megumi; Shimada, Takanobu; Shinozaki, Keisuke; Shirron, Peter; Simionescu, Aurora; Simmons, Cynthia; Smith, Randall; Sneiderman, Gary; Soong, Yang; Stawarz, Łukasz; Sugawara, Yasuharu; Sugita, Hiroyuki; Sugita, Satoshi; Szymkowiak, Andrew; Tajima, Hiroyasu; Takahashi, Hiromitsu; Takeda, Shin'ichiro; Takei, Yoh; Tamagawa, Toru; Tamura, Takayuki; Tamura, Keisuke; Tanaka, Takaaki; Tanaka, Yasuo; Tanaka, Yasuyuki; Tashiro, Makoto; Tawara, Yuzuru; Terada, Yukikatsu; Terashima, Yuichi; Tombesi, Francesco; Tomida, Hiroshi; Tsuboi, Yohko; Tsujimoto, Masahiro; Tsunemi, Hiroshi; Tsuru, Takeshi; Uchida, Hiroyuki; Uchiyama, Yasunobu; Uchiyama, Hideki; Ueda, Yoshihiro; Ueda, Shutaro; Ueno, Shiro; Uno, Shin'ichiro; Urry, Meg; Ursino, Eugenio; de Vries, Cor; Wada, Atsushi; Watanabe, Shin; Watanabe, Tomomi; Werner, Norbert; Wik, Daniel; Wilkins, Dan; Williams, Brian; Yamada, Takahiro; Yamada, Shinya; Yamaguchi, Hiroya; Yamaoka, Kazutaka; Yamasaki, Noriko; Yamauchi, Makoto; Yamauchi, Shigeo; Yaqoob, Tahir; Yatsu, Yoichi; Yonetoku, Daisuke; Yoshida, Atsumasa; Yuasa, Takayuki; Zhuravleva, Irina; Zoghbi, Abderahmen

    2016-07-01

    The Hitomi (ASTRO-H) mission is the sixth Japanese X-ray astronomy satellite developed by a large international collaboration, including Japan, USA, Canada, and Europe. The mission aimed to provide the highest energy resolution ever achieved at E > 2 keV, using a microcalorimeter instrument, and to cover a wide energy range spanning four decades in energy from soft X-rays to gamma-rays. After a successful launch on 2016 February 17, the spacecraft lost its function on 2016 March 26, but the commissioning phase for about a month provided valuable information on the on-board instruments and the spacecraft system, including astrophysical results obtained from first light observations. The paper describes the Hitomi (ASTRO-H) mission, its capabilities, the initial operation, and the instruments/spacecraft performances confirmed during the commissioning operations for about a month.

  3. Expected radiation damage of reverse-type APDs for the Astro-H mission

    NASA Astrophysics Data System (ADS)

    Kataoka, J.; Saito, T.; Yoshino, M.; Mizoma, H.; Nakamori, T.; Yatsu, Y.; Ishikawa, Y.; Matsunaga, Y.; Tajima, H.; Kokubun, M.; Edwards, P. G.

    2012-06-01

    Scheduled for launch in 2014, Astro-H is the sixth Japanese X-ray astronomy satellite mission. More than 60 silicon avalanche photodiodes (Si-APDs; hereafter APDs) will be used to read out BGO scintillators, which are implemented to generate a veto signal to reduce background contamination for the hard X-ray imager (HXI) and a soft gamma-ray detector (SGD). To date, however, APDs have rarely been used in space experiments. Moreover, strict environmental tests are necessary to guarantee APD performance for missions expected to extend beyond five years. The radiation hardness of APDs, as for most semiconductors, is particularly crucial, since radiation in the space environment is severe. In this paper, we present the results of radiation tests conducted on reverse-type APDs (provided by Hamamatsu Photonics) irradiated by gamma rays (60Co) and 150 MeV protons. We show that, even under the same 100 Gy dose, high energy protons can cause displacement (bulk) damage in the depletion region and possibly change the activation energy, whereas gamma-ray irradiation is less prone to cause damage, because ionization damage dominates only the surface region. We also present quantitative guidance on how to estimate APD noise deterioration over a range of temperatures and radiation doses. As a practical example, we discuss the expected degradation of the BGO energy threshold for the generation of veto signals, following several years of Astro-H operation in Low Earth Orbit (LEO), and directly compare it to experimental results obtained using a small BGO crystal.

  4. SPIKE: Application for ASTRO-D mission planning

    NASA Technical Reports Server (NTRS)

    Isobe, T.; Johnston, M.; Morgan, E.; Clark, G.

    1992-01-01

    SPIKE is a mission planning software system developed by a team of programmers at the STScI for use with the Hubble Space Telescope (HST). SPIKE has been developed for the purpose of automating observatory scheduling to increase the effective utilization and ultimately, scientific return from orbiting telescopes. High-level scheduling strategies using both rule-based and neural network approaches have been incorporated. Graphical displays of activities, constraints, and schedules are an important feature of the system. Although SPIKE was originally developed for the HST, it can be used for other astronomy missions including ground-based observatories. One of the missions that has decided to use SPIKE is ASTRO-D, a Japanese X-ray satellite for which the U.S. is providing a part of the scientific payload. Scheduled to fly in Feb. 1993, its four telescopes will focus X-rays over a wide energy range onto CCD's and imaging gas proportional counters. ASTRO-D will be the first X-ray imaging mission operating over the 0.5-12 keV band with high energy resolution. This combination of capabilities will enable a varied and exciting program of astronomical research to be carried out. ASTRO-D is expected to observe 5 to 20 objects per day and a total of several thousands per year. This requires the implementation of an efficient planning and scheduling system which SPIKE can provide. Although the version of SPIKE that will be used for ASTRO-D mission is almost identical to that used for the HST, there are a few differences. For example, ASTRO-D will use two ground stations for data downlinks, instead of the TDRSS system for data transmission. As a consequence ASTRO-D is constrained by limited on-board data storage capacity to schedule high data-rate observations during periods of frequent high bit rate observations accordingly. We will demonstrate the ASTRO-D version of SPIKE to show what SPIKE can provide and how efficiently it creates an observational schedule.

  5. The Astro-E2 Mission

    NASA Technical Reports Server (NTRS)

    Kelley, Richard L.

    2004-01-01

    The Astro-E2 observatory is a rebuild of the original Astro-E observatory that was lost during launch in February 2000. It is scheduled for launch into low earth orbit on a Japanese M-V rocket in early 2005. The Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, is developing the observatory with major contributions from the US. The three instruments on the observatory are the high-resolution x-ray spectrometer (the XRS) featuring a 30-pixel x-ray microcalorimeter array, a set of four CCD cameras (the XIS) and a combination photo-diode/scintillator detector system (the HXD) that will extend the band pass up to nearly 700 keV. A significant feature of Astro-E2 is that all of the instruments are coaligned and operated simultaneously. With its high spectral resolution and collecting area for spectroscopy above 1 keV, Astro-E2 should enable major discovery space and pioneer new technology for use in space. Prime areas for investigation are supernova remnants, active galaxies and the measurement of black hole properties via relativistically-broadened Fe-K emission galaxies. A number of enhancements have been made for the Astro-E2/XRS, including a higher resolution microcalorimeter array, ii mechanical cooler for longer cryogen life, and an improved in-flight calibration system. The Astro-E2/XIS has also been improved to include two back-side-illuminated CCDs to enhance the low energy response. Improvements have also been made to the x-ray mirrors used for both the XRS and XIS to sharpen the point spread function and reduce the effects of stray light. In this talk we will present the essential features of Astro-E2, paying particular attention to the enhancements, and describe the major scientific strengths of the observatory.

  6. The X-ray Mirrors for the Astro-E2 Mission

    NASA Technical Reports Server (NTRS)

    Chan, Kai-Wing; Soong, Yang; Serlemitsos, Peter J.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    The X-Ray telescopes (XRT) for the US/Japan collaborative mission Astro-E2 will be of the same basic design as those built for the original Astro-E mission which failed to reach orbit in Feb. 2000. The NASA/GSFC X-ray Astrophysics Branch will again provide the five lightweight, broad-band mirrors for the mission. X-ray calibrations of the mirrors delivered for the original Astro-E instrument showed spatial resolutions characterized by Half-Power Diameters (HPD) in the range of 1.8 - 2.2 minutes of arc, essentially independent of photon energy in the soft X-ray band. For the mission Astro-E2, both funding constraints and management decisions drastically limit any design modifications, so reflector fabrication and assembly procedures have remained largely unchanged. Nevertheless, in view of the importance in scientific return of attaining even a modest improvement in the spatial resolution of these mirrors, we have carefully considered the various sources of spatial error and, whenever possible, incorporated promising modifications. In this paper, we discuss our current understanding of the various error components as well as the small changes we have been able to implement.

  7. The ASTRO-H X-ray astronomy satellite

    NASA Astrophysics Data System (ADS)

    Takahashi, Tadayuki; Mitsuda, Kazuhisa; Kelley, Richard; Aharonian, Felix; Akamatsu, Hiroki; Akimoto, Fumie; Allen, Steve; Anabuki, Naohisa; Angelini, Lorella; Arnaud, Keith; Asai, Makoto; Audard, Marc; Awaki, Hisamitsu; Azzarello, Philipp; Baluta, Chris; Bamba, Aya; Bando, Nobutaka; Bautz, Marshall; Bialas, Thomas; Blandford, Roger D.; Boyce, Kevin; Brenneman, Laura; Brown, Gregory; Cackett, Ed; Canavan, Edgar; Chernyakova, Maria; Chiao, Meng; Coppi, Paolo; Costantini, Elisa; de Plaa, Jelle; den Herder, Jan-Willem; DiPirro, Michael; Done, Chris; Dotani, Tadayasu; Doty, John; Ebisawa, Ken; Enoto, Teruaki; Ezoe, Yuichiro; Fabian, Andrew; Ferrigno, Carlo; Foster, Adam; Fujimoto, Ryuichi; Fukazawa, Yasushi; Funk, Stefan; Furuzawa, Akihiro; Galeazzi, Massimiliano; Gallo, Luigi; Gandhi, Poshak; Gilmore, Kirk; Guainazzi, Matteo; Haas, Daniel; Haba, Yoshito; Hamaguchi, Kenji; Harayama, Atsushi; Hatsukade, Isamu; Hayashi, Katsuhiro; Hayashi, Takayuki; Hayashida, Kiyoshi; Hiraga, Junko; Hirose, Kazuyuki; Hornschemeier, Ann; Hoshino, Akio; Hughes, John; Hwang, Una; Iizuka, Ryo; Inoue, Yoshiyuki; Ishibashi, Kazunori; Ishida, Manabu; Ishikawa, Kumi; Ishimura, Kosei; Ishisaki, Yoshitaka; Itoh, Masayuki; Iwata, Naoko; Iyomoto, Naoko; Jewell, Chris; Kaastra, Jelle; Kallman, Timothy; Kamae, Tuneyoshi; Kataoka, Jun; Katsuda, Satoru; Katsuta, Junichiro; Kawaharada, Madoka; Kawai, Nobuyuki; Kawano, Taro; Kawasaki, Shigeo; Khangaluyan, Dmitry; Kilbourne, Caroline; Kimball, Mark; Kimura, Masashi; Kitamoto, Shunji; Kitayama, Tetsu; Kohmura, Takayoshi; Kokubun, Motohide; Konami, Saori; Kosaka, Tatsuro; Koujelev, Alexander; Koyama, Katsuji; Krimm, Hans; Kubota, Aya; Kunieda, Hideyo; LaMassa, Stephanie; Laurent, Philippe; Lebrun, François; Leutenegger, Maurice; Limousin, Olivier; Loewenstein, Michael; Long, Knox; Lumb, David; Madejski, Grzegorz; Maeda, Yoshitomo; Makishima, Kazuo; Markevitch, Maxim; Masters, Candace; Matsumoto, Hironori; Matsushita, Kyoko; McCammon, Dan; McGuinness, Daniel; McNamara, Brian; Miko, Joseph; Miller, Jon; Miller, Eric; Mineshige, Shin; Minesugi, Kenji; Mitsuishi, Ikuyuki; Miyazawa, Takuya; Mizuno, Tsunefumi; Mori, Koji; Mori, Hideyuki; Moroso, Franco; Muench, Theodore; Mukai, Koji; Murakami, Hiroshi; Murakami, Toshio; Mushotzky, Richard; Nagano, Housei; Nagino, Ryo; Nakagawa, Takao; Nakajima, Hiroshi; Nakamori, Takeshi; Nakashima, Shinya; Nakazawa, Kazuhiro; Namba, Yoshiharu; Natsukari, Chikara; Nishioka, Yusuke; Nobukawa, Masayoshi; Noda, Hirofumi; Nomachi, Masaharu; O'Dell, Steve; Odaka, Hirokazu; Ogawa, Hiroyuki; Ogawa, Mina; Ogi, Keiji; Ohashi, Takaya; Ohno, Masanori; Ohta, Masayuki; Okajima, Takashi; Okazaki, Tsuyoshi; Ota, Naomi; Ozaki, Masanobu; Paerels, Frits; Paltani, Stéphane; Parmar, Arvind; Petre, Robert; Pinto, Ciro; Pohl, Martin; Pontius, James; Porter, F. S.; Pottschmidt, Katja; Ramsey, Brian; Reis, Rubens; Reynolds, Christopher; Ricci, Claudio; Russell, Helena; Safi-Harb, Samar; Saito, Shinya; Sakai, Shin-ichiro; Sameshima, Hiroaki; Sato, Kosuke; Sato, Rie; Sato, Goro; Sawada, Makoto; Serlemitsos, Peter; Seta, Hiromi; Shibano, Yasuko; Shida, Maki; Shimada, Takanobu; Shirron, Peter; Simionescu, Aurora; Simmons, Cynthia; Smith, Randall; Sneiderman, Gary; Soong, Yang; Stawarz, Lukasz; Sugawara, Yasuharu; Sugita, Satoshi; Szymkowiak, Andrew; Tajima, Hiroyasu; Takahashi, Hiroaki; Takahashi, Hiromitsu; Takeda, Shin-ichiro; Takei, Yoh; Tamagawa, Toru; Tamura, Keisuke; Tamura, Takayuki; Tanaka, Takaaki; Tanaka, Yasuyuki; Tanaka, Yasuo; Tashiro, Makoto; Tawara, Yuzuru; Terada, Yukikatsu; Terashima, Yuichi; Tombesi, Francesco; Tomida, Hiroshi; Tsuboi, Yoko; Tsujimoto, Masahiro; Tsunemi, Hiroshi; Tsuru, Takeshi; Uchida, Hiroyuki; Uchiyama, Hideki; Uchiyama, Yasunobu; Ueda, Yoshihiro; Ueda, Shutaro; Ueno, Shiro; Uno, Shinichiro; Urry, Meg; Ursino, Eugenio; de Vries, Cor; Wada, Atsushi; Watanabe, Shin; Watanabe, Tomomi; Werner, Norbert; White, Nicholas; Wilkins, Dan; Yamada, Shinya; Yamada, Takahiro; Yamaguchi, Hiroya; Yamaoka, Kazutaka; Yamasaki, Noriko; Yamauchi, Makoto; Yamauchi, Shigeo; Yaqoob, Tahir; Yatsu, Yoichi; Yonetoku, Daisuke; Yoshida, Atsumasa; Yuasa, Takayuki; Zhuravleva, Irina; Zoghbi, Abderahmen; ZuHone, John

    2014-07-01

    The joint JAXA/NASA ASTRO-H mission is the sixth in a series of highly successful X-ray missions developed by the Institute of Space and Astronautical Science (ISAS), with a planned launch in 2015. The ASTRO-H mission is equipped with a suite of sensitive instruments with the highest energy resolution ever achieved at E > 3 keV and a wide energy range spanning four decades in energy from soft X-rays to gamma-rays. The simultaneous broad band pass, coupled with the high spectral resolution of ΔE <= 7 eV of the micro-calorimeter, will enable a wide variety of important science themes to be pursued. ASTRO-H is expected to provide breakthrough results in scientific areas as diverse as the large-scale structure of the Universe and its evolution, the behavior of matter in the gravitational strong field regime, the physical conditions in sites of cosmic-ray acceleration, and the distribution of dark matter in galaxy clusters at different redshifts.

  8. The Hard X-ray Imager (HXI) for the ASTRO-H mission

    NASA Astrophysics Data System (ADS)

    Kokubun, Motohide; Nakazawa, Kazuhiro; Enoto, Teruaki; Fukazawa, Yasushi; Kataoka, Jun; Kawaharada, Madoka; Laurent, Philippe; Lebrun, François; Limousin, Olivier; Makishima, Kazuo; Mizuno, Tsunefumi; Mori, Kunishiro; Nakamori, Takeshi; Odaka, Hirokazu; Ohno, Masanori; Ohta, Masayuki; Sato, Goro; Sato, Rie; Tajima, Hiroyasu; Takahashi, Hiromitsu; Takahashi, Tadayuki; Tanaka, Takaaki; Terada, Yukikatsu; Uchiyama, Hideki; Uchiyama, Yasunobu; Watanabe, Shin; Yatsu, Yoichi; Yuasa, Takayuki

    2012-09-01

    The Hard X-ray Imager (HXI) is one of the four detectors on board the ASTRO-H mission (6th Japanese X-ray satellite), which is scheduled to be launched in 2014. Using the hybrid structure composed of double-sided silicon strip detectors and a cadmium telluride double-sided strip detector, both with a high spatial resolution of 250 μm. Combined with the hard X-ray telescope (HXT), it consists a hard X-ray imaging spectroscopic instrument covering the energy range from 5 to 80 keV with an effective area of <300 cm2 in total at 30 keV. An energy resolution of 1-2 keV (FWHM) and lower threshold of 5 keV are both achieved with using a low noise front-end ASICs. In addition, the thick BGO active shields surrounding the main detector package is a heritage of the successful performance of the Hard X-ray Detector on board the Suzaku satellite. This feature enables the instrument to achieve an extremely good reduction of background caused by cosmic-ray particles, cosmic X-ray background, and in-orbit radiation activation. In this paper, we present the detector concept, design, latest results of the detector development, and the current status of the hardware.

  9. Soft gamma-ray detector (SGD) onboard the ASTRO-H mission

    NASA Astrophysics Data System (ADS)

    Fukazawa, Yasushi; Tajima, Hiroyasu; Watanabe, Shin; Blandford, Roger; Hayashi, Katsuhiro; Harayama, Atsushi; Kataoka, Jun; Kawaharada, Madoka; Kokubun, Motohide; Laurent, Philippe; Lebrun, François; Limousin, Olivier; Madejski, Grzegorz M.; Makishima, Kazuo; Mizuno, Tsunefumi; Mori, Kunishiro; Nakamori, Takeshi; Nakazawa, Kazuhiro; Noda, Hirofumi; Odaka, Hirokazu; Ohno, Masanori; Ohta, Masayuki; Saito, Shin'ya; Sato, Goro; Sato, Rie; Takeda, Shin'ichiro; Takahashi, Hiromitsu; Takahashi, Tadayuki; Tanaka, Yasuyuki; Terada, Yukikatsu; Uchiyama, Hideki; Uchiyama, Yasunobu; Yamaoka, Kazutaka; Yatsu, Yoichi; Yonetoku, Daisuke; Yuasa, Takayuki

    2014-07-01

    The Soft Gamma-ray Detector (SGD) is one of observational instruments onboard the ASTRO-H, and will provide 10 times better sensitivity in 60{600 keV than the past and current observatories. The SGD utilizes similar technologies to the Hard X-ray Imager (HXI) onboard the ASTRO-H. The SGD achieves low background by constraining gamma-ray events within a narrow field-of-view by Compton kinematics, in addition to the BGO active shield. In this paper, we will present the results of various tests using engineering models and also report the flight model production and evaluations.

  10. The Hard X-ray Imager (HXI) for the ASTRO-H Mission

    NASA Astrophysics Data System (ADS)

    Sato, Goro; Kokubun, Motohide; Nakazawa, Kazuhiro; Enoto, Teruaki; Fukazawa, Yasushi; Harayama, Atsushi; Hayashi, Katsuhiro; Kataoka, Jun; Katsuta, Junichiro; Kawaharada, Madoka; Laurent, Philippe; Lebrun, François; Limousin, Olivier; Makishima, Kazuo; Mizuno, Tsunefumi; Mori, Kunishiro; Nakamori, Takeshi; Noda, Hirofumi; Odaka, Hirokazu; Ohno, Masanori; Ohta, Masayuki; Saito, Shinya; Sato, Rie; Tajima, Hiroyasu; Takahashi, Hiromitsu; Takahashi, Tadayuki; Takeda, Shinichiro; Terada, Yukikatsu; Uchiyama, Hideki; Uchiyama, Yasunobu; Watanabe, Shin; Yamaoka, Kazutaka; Yatsu, Yoichi; Yuasa, Takayuki

    2014-07-01

    The 6th Japanese X-ray satellite, ASTRO-H, is scheduled for launch in 2015. The hard X-ray focusing imaging system will observe astronomical objects with the sensitivity for detecting point sources with a brightness of 1/100,000 times fainter than the Crab nebula at > 10 keV. The Hard X-ray Imager (HXI) is a focal plane detector 12 m below the hard X-ray telescope (HXT) covering the energy range from 5 to 80 keV. The HXI is composed of a stacked Si/CdTe semiconductor detector module and surrounding BGO scintillators. The latter work as active shields for efficient reduction of background events caused by cosmic-ray particles, cosmic X-ray background, and in-orbit radiation activation. In this paper, we describe the detector system, and present current status of flight model development, and performance of HXI using an engineering model of HXI.

  11. Alignment monitoring system for ASTRO-H

    NASA Astrophysics Data System (ADS)

    Grandmont, Frédéric; Dupont, Fabien; Moreau, Louis; Larouche, Martin; Bibeau, Louis-Philippe; Laplante, Sylvio

    2017-11-01

    High Energy Astrophysics (HEA) encompasses a broad range of astrophysical science, with sources that include stars and stellar clusters, compact objects (black holes, neutron stars, and white dwarfs), supernova remnants, the interstellar medium, galaxies and clusters of galaxies, Active Galactic Nuclei (AGN), and gamma ray bursters, as well as a variety of fundamental physical processes. The physics involved includes extremes of gravity, density and magnetic field and is often inaccessible via any other waveband. HEA investigates and answers crucial questions in all fields of contemporary astrophysics. Unlike the focusing of radio and optical light, X-rays are brought to focus through shallow, grazing incident angles. The analogy of skimming a stone across a pond is appropriate in describing how X-rays are focused. The higher the energy of the X-ray photon the shallower the incident angle must be, thereby introducing the requirement of longer focal lengths for focusing high-energy X-rays (E > 10 keV). This technical challenge has hindered scientific advancement in the high-energy regime, while at lower X-ray energies the community has prospered immensely with spectacular data from focusing observatories like XMM-Newton, Chandra, and Suzaku. Now, with ASTRO-H, the community will reap similar rewards from the tremendous improvement in spatial and spectral resolution at high energies. ASTRO-H is a JAXA mission. More information can be found on the ASTRO-H web site [1]. Because of the grazing-angle optics, high-energy X-ray instruments have a long focal length. The Hard X-ray Imager (HXI) of ASTRO-H has its detector housed in a boom that will extend by about 6 m in orbit so that a focal length of 12 m can be achieved for that instrument. This long structure will inevitably oscillate and flex, especially when passing across the orbital day/night boundary. In order to retain the essential imaging resolution, it is important that the boom has a metrology system that

  12. Soft gamma-ray detector for the ASTRO-H Mission

    NASA Astrophysics Data System (ADS)

    Watanabe, Shin; Tajima, Hiroyasu; Fukazawa, Yasushi; Blandford, Roger; Enoto, Teruaki; Kataoka, Jun; Kawaharada, Madoka; Kokubun, Motohide; Laurent, Philippe; Lebrun, François; Limousin, Olivier; Madejski, Greg; Makishima, Kazuo; Mizuno, Tsunefumi; Nakamori, Takeshi; Nakazawa, Kazuhiro; Mori, Kunishiro; Odaka, Hirokazu; Ohno, Masanori; Ohta, Masayuki; Sato, Goro; Sato, Rie; Takeda, Shin'ichiro; Takahashi, Hiromitsu; Takahashi, Tadayuki; Tanaka, Takaaki; Tashiro, Makoto; Terada, Yukikatsu; Uchiyama, Hideki; Uchiyama, Yasunobu; Yamada, Shinya; Yatsu, Yoichi; Yonetoku, Daisuke; Yuasa, Takayuki

    2012-09-01

    ASTRO-H is the next generation JAXA X-ray satellite, intended to carry instruments with broad energy coverage and exquisite energy resolution. The Soft Gamma-ray Detector (SGD) is one of ASTRO-H instruments and will feature wide energy band (60-600 keV) at a background level 10 times better than the current instruments on orbit. The SGD is complimentary to ASTRO-H’s Hard X-ray Imager covering the energy range of 5-80 keV. The SGD achieves low background by combining a Compton camera scheme with a narrow field-of-view active shield where Compton kinematics is utilized to reject backgrounds. The Compton camera in the SGD is realized as a hybrid semiconductor detector system which consists of silicon and CdTe (cadmium telluride) sensors. Good energy resolution is afforded by semiconductor sensors, and it results in good background rejection capability due to better constraints on Compton kinematics. Utilization of Compton kinematics also makes the SGD sensitive to the gamma-ray polarization, opening up a new window to study properties of gamma-ray emission processes. In this paper, we will present the detailed design of the SGD and the results of the final prototype developments and evaluations. Moreover, we will also present expected performance based on the measurements with prototypes.

  13. Astro-H/Hitomi data analysis, processing, and archive

    NASA Astrophysics Data System (ADS)

    Angelini, Lorella; Terada, Yukikatsu; Dutka, Michael; Eggen, Joseph; Harrus, Ilana; Hill, Robert S.; Krimm, Hans; Loewenstein, Michael; Miller, Eric D.; Nobukawa, Masayoshi; Rutkowski, Kristin; Sargent, Andrew; Sawada, Makoto; Takahashi, Hiromitsu; Yamaguchi, Hiroya; Yaqoob, Tahir; Witthoeft, Michael

    2018-01-01

    Astro-H is the x-ray/gamma-ray mission led by Japan with international participation, launched on February 17, 2016. Soon after launch, Astro-H was renamed Hitomi. The payload consists of four different instruments (SXS, SXI, HXI, and SGD) that operate simultaneously to cover the energy range from 0.3 keV up to 600 keV. On March 27, 2016, JAXA lost contact with the satellite and, on April 28, they announced the cessation of the efforts to restore mission operations. Hitomi collected about one month's worth of data with its instruments. This paper presents the analysis software and the data processing pipeline created to calibrate and analyze the Hitomi science data, along with the plan for the archive. These activities have been a collaborative effort shared between scientists and software engineers working in several institutes in Japan and United States.

  14. The High Resolution Microcalorimeter Soft X-Ray Spectrometer for the Astro-H Mission

    NASA Technical Reports Server (NTRS)

    Kelley, Richard L.; Mitsuda, Kazuhisa; den Herder, Jan-Willem A.; Aarts, Henri J. M.; Azzarello, Philipp; Boyce, Kevin R.; Brown, Gregory V.; Chiao, Meng P.; de Vries, Cor P.; DiPirro, Michael J.; hide

    2012-01-01

    We are developing the Soft X-Ray Spectrometer for the JAXA Astro-H mission. The instrument features a 5 eV, 36-pixel array of micro calorimeters designed for high spectral resolution from 0.3-12 keV at the focus of an x-ray mirror, providing a field of view of3 x 3 arcmin. The principal components of the spectrometer are the microcalorimeter detector system, a 3-stage ADR and dewar. The dewar is a long-life, hybrid design with a superfluid He cryostat, Joule-Thomson cooler, and Stirling coolers. We describe the present design of the SXS instrument and initial engineering model test results.

  15. The ASTRO-H X-ray Observatory

    NASA Astrophysics Data System (ADS)

    Takahashi, Tadayuki; Mitsuda, Kazuhisa; Kelley, Richard; Aarts, Henri; Aharonian, Felix; Akamatsu, Hiroki; Akimoto, Fumie; Allen, Steve; Anabuki, Naohisa; Angelini, Lorella; Arnaud, Keith; Asai, Makoto; Audard, Marc; Awaki, Hisamitsu; Azzarello, Philipp; Baluta, Chris; Bamba, Aya; Bando, Nobutaka; Bautz, Mark; Blandford, Roger; Boyce, Kevin; Brown, Greg; Cackett, Ed; Chernyakova, Mara; Coppi, Paolo; Costantini, Elisa; de Plaa, Jelle; den Herder, Jan-Willem; DiPirro, Michael; Done, Chris; Dotani, Tadayasu; Doty, John; Ebisawa, Ken; Eckart, Megan; Enoto, Teruaki; Ezoe, Yuichiro; Fabian, Andrew; Ferrigno, Carlo; Foster, Adam; Fujimoto, Ryuichi; Fukazawa, Yasushi; Funk, Stefan; Furuzawa, Akihiro; Galeazzi, Massimiliano; Gallo, Luigi; Gandhi, Poshak; Gendreau, Keith; Gilmore, Kirk; Haas, Daniel; Haba, Yoshito; Hamaguchi, Kenji; Hatsukade, Isamu; Hayashi, Takayuki; Hayashida, Kiyoshi; Hiraga, Junko; Hirose, Kazuyuki; Hornschemeier, Ann; Hoshino, Akio; Hughes, John; Hwang, Una; Iizuka, Ryo; Inoue, Yoshiyuki; Ishibashi, Kazunori; Ishida, Manabu; Ishimura, Kosei; Ishisaki, Yoshitaka; Ito, Masayuki; Iwata, Naoko; Iyomoto, Naoko; Kaastra, Jelle; Kallman, Timothy; Kamae, Tuneyoshi; Kataoka, Jun; Katsuda, Satoru; Kawahara, Hajime; Kawaharada, Madoka; Kawai, Nobuyuki; Kawasaki, Shigeo; Khangaluyan, Dmitry; Kilbourne, Caroline; Kimura, Masashi; Kinugasa, Kenzo; Kitamoto, Shunji; Kitayama, Tetsu; Kohmura, Takayoshi; Kokubun, Motohide; Kosaka, Tatsuro; Koujelev, Alex; Koyama, Katsuji; Krimm, Hans; Kubota, Aya; Kunieda, Hideyo; LaMassa, Stephanie; Laurent, Philippe; Lebrun, Francois; Leutenegger, Maurice; Limousin, Olivier; Loewenstein, Michael; Long, Knox; Lumb, David; Madejski, Grzegorz; Maeda, Yoshitomo; Makishima, Kazuo; Marchand, Genevieve; Markevitch, Maxim; Matsumoto, Hironori; Matsushita, Kyoko; McCammon, Dan; McNamara, Brian; Miller, Jon; Miller, Eric; Mineshige, Shin; Minesugi, Kenji; Mitsuishi, Ikuyuki; Miyazawa, Takuya; Mizuno, Tsunefumi; Mori, Hideyuki; Mori, Koji; Mukai, Koji; Murakami, Toshio; Murakami, Hiroshi; Mushotzky, Richard; Nagano, Hosei; Nagino, Ryo; Nakagawa, Takao; Nakajima, Hiroshi; Nakamori, Takeshi; Nakazawa, Kazuhiro; Namba, Yoshiharu; Natsukari, Chikara; Nishioka, Yusuke; Nobukawa, Masayoshi; Nomachi, Masaharu; O'Dell, Steve; Odaka, Hirokazu; Ogawa, Hiroyuki; Ogawa, Mina; Ogi, Keiji; Ohashi, Takaya; Ohno, Masanori; Ohta, Masayuki; Okajima, Takashi; Okamoto, Atsushi; Okazaki, Tsuyoshi; Ota, Naomi; Ozaki, Masanobu; Paerels, Fritzs; Paltani, Stéphane; Parmar, Arvind; Petre, Robert; Pohl, Martin; Porter, F. Scott; Ramsey, Brian; Reis, Rubens; Reynolds, Christopher; Russell, Helen; Safi-Harb, Samar; Sakai, Shin-ichiro; Sameshima, Hiroaki; Sanders, Jeremy; Sato, Goro; Sato, Rie; Sato, Yohichi; Sato, Kosuke; Sawada, Makoto; Serlemitsos, Peter; Seta, Hiromi; Shibano, Yasuko; Shida, Maki; Shimada, Takanobu; Shinozaki, Keisuke; Shirron, Peter; Simionescu, Aurora; Simmons, Cynthia; Smith, Randall; Sneiderman, Gary; Soong, Yang; Stawarz, Lukasz; Sugawara, Yasuharu; Sugita, Hiroyuki; Sugita, Satoshi; Szymkowiak, Andrew; Tajima, Hiroyasu; Takahashi, Hiromitsu; Takeda, Shin-ichiro; Takei, Yoh; Tamagawa, Toru; Tamura, Takayuki; Tamura, Keisuke; Tanaka, Takaaki; Tanaka, Yasuo; Tashiro, Makoto; Tawara, Yuzuru; Terada, Yukikatsu; Terashima, Yuichi; Tombesi, Francesco; Tomida, Hiroshi; Tsuboi, Yohko; Tsujimoto, Masahiro; Tsunemi, Hiroshi; Tsuru, Takeshi; Uchida, Hiroyuki; Uchiyama, Yasunobu; Uchiyama, Hideki; Ueda, Yoshihiro; Ueno, Shiro; Uno, Shinichiro; Urry, Meg; Ursino, Eugenio; de Vries, Cor; Wada, Atsushi; Watanabe, Shin; Werner, Norbert; White, Nicholas; Yamada, Takahiro; Yamada, Shinya; Yamaguchi, Hiroya; Yamasaki, Noriko; Yamauchi, Shigeo; Yamauchi, Makoto; Yatsu, Yoichi; Yonetoku, Daisuke; Yoshida, Atsumasa; Yuasa, Takayuki

    2012-09-01

    The joint JAXA/NASA ASTRO-H mission is the sixth in a series of highly successful X-ray missions initiated by the Institute of Space and Astronautical Science (ISAS). ASTRO-H will investigate the physics of the highenergy universe via a suite of four instruments, covering a very wide energy range, from 0.3 keV to 600 keV. These instruments include a high-resolution, high-throughput spectrometer sensitive over 0.3-12 keV with high spectral resolution of ΔE ≦ 7 eV, enabled by a micro-calorimeter array located in the focal plane of thin-foil X-ray optics; hard X-ray imaging spectrometers covering 5-80 keV, located in the focal plane of multilayer-coated, focusing hard X-ray mirrors; a wide-field imaging spectrometer sensitive over 0.4-12 keV, with an X-ray CCD camera in the focal plane of a soft X-ray telescope; and a non-focusing Compton-camera type soft gamma-ray detector, sensitive in the 40-600 keV band. The simultaneous broad bandpass, coupled with high spectral resolution, will enable the pursuit of a wide variety of important science themes.

  16. Shuttle PRCS plume contamination analysis for Astro-2 mission

    NASA Technical Reports Server (NTRS)

    Wang, Francis C.; Greene, Cindy

    1993-01-01

    The Astro-2 mission scheduled for Jan. 1995 flight is co-manifested with the Spartan experiment. The Astro instrument array consists of several telescopes operating in the UV spectrum. To obtain the desired 300 observations with the telescope array in a shorter time than the Astro-1 mission, it will be necessary to use the primary reaction control system (PRCS) rather than just the Vernier reaction control system. The high mass flow rate of the PRCS engines cause considerable concern about contamination due to PRCS plume return flux. Performance of these instruments depends heavily on the environment they encounter. The ability of the optical system to detect a remote signal depends not only on the intensity of the incoming signal, but also on the ensuing transmission loss through the optical train of the instrument. Performance of these instruments is thus dependent on the properties of the optical surface and the medium through which it propagates. The on-orbit contamination environment will have a strong influence on the performance of these instruments. The finding of a two-month study of the molecular contamination environment of the Astro-2 instruments due to PRCS thruster plumes during the planned Astro-2 mission are summarized.

  17. ASTRO-2 Spacelab Instrument Pointing System mission performance

    NASA Technical Reports Server (NTRS)

    Wessling, Francis C., III; Singh, S. P.

    1995-01-01

    This paper reports the performance of the Instrument Pointing System (IPS) that flew on the National Aeronautics and Space Administration (NASA) ASTRO-2 Spacelab mission aboard the Space Shuttle Endeavour in March 1995. The IPS provides a stabilizing platform for the ASTRO-2 instrument payload complement that consists of three main experiments (telescopes). The telescopes observe stellar targets in the universe within the ultraviolet portion of the electromagnetic spectrum that must be observed from beyond the earth's atmospheric filtering effects. The three main experiments for observation are the Hopkins Ultraviolet Telescope (HUT), the Ultraviolet Imaging Telescope (UIT), and the Wisconsin Ultraviolet Photo-Polarimetry Experiment (WUPPE). The HUT uses spectroscopy to obtain the structure and chemical makeup of ultraviolet targets. UIT is responsible for wide field photographing to capture the hidden view of the ultraviolet universe. The WUPPE gathers data on the polarization of the ultraviolet electromagnetic energy coming from the astronomical targets. The capability of IPS enables the experiments to 'see' faint celestial objects. A brief explanation of the IPS is given followed by a review of engineering efforts to improve IPS performance over the ASTRO-1 mission. The main focus of improvements was on enhancing the star acquisition capability through improved guide star selection, lab simulations, computer upgrades, data display systems improvements, and software modifications. A star simulator was developed in the lab to enable IPS to be simulated on the ground pre-mission with flight hardware and software in the loop. The paper concludes with results from the ASTRO-2 mission. The number of targets acquired and the IPS pointing accuracy/stability is reported along with recommendations for the future use of the Instrument Pointing System.

  18. The Astro-H Soft X-Ray Mirror

    NASA Technical Reports Server (NTRS)

    Robinson, David; Okajima, Takashi; Serlemitsos, Peter; Soong, Yang

    2012-01-01

    The Astro-H is led by the Japanese Space Agency (JAXA) in collaboration with many other institutions including the NASA Goddard Space Flight Center. Goddard's contributions include two soft X-ray telescopes (SXTs). The telescopes have an effective area of 562 square cm at 1 keV and 425 square cm at 6 keV with an image quality requirement of 1.7 arc-minutes half power diameter (HPD). The engineering model has demonstrated 1.1 arc-minutes HPD error. The design of the SXT is based on the successful Suzaku mission mirrors with some enhancements to improve the image quality. Two major enhancements are bonding the X-ray mirror foils to alignment bars instead of allowing the mirrors to float, and fabricating alignment bars with grooves within 5 microns of accuracy. An engineering model SXT was recently built and subjected to several tests including vibration, thermal, and X-ray performance in a beamline. Several lessons were learned during this testing that will be incorporated in the flight design. Test results and optical performance are discussed, along with a description of the design of the SXT.

  19. The HEASARC in 2013 and Beyond: NuSTAR, Astro-H, NICER..

    NASA Astrophysics Data System (ADS)

    Drake, Stephen A.; Smale, A. P.; McGlynn, T. A.; Arnaud, K. A.

    2013-04-01

    The High Energy Astrophysics Archival Research Center or HEASARC (http://heasarc.gsfc.nasa.gov/) is in its third decade as the NASA astrophysics discipline node supporting multi-mission cosmic X-ray and gamma-ray astronomy research. It provides a unified archive and software structure aimed both at 'legacy' missions such as Einstein, EXOSAT, ROSAT and RXTE, contemporary missions such as Fermi, Swift, Suzaku, Chandra, etc., and upcoming missions, such as NuSTAR, Astro-H and NICER. The HEASARC's high-energy astronomy archive has grown so that it presently contains 45 TB of data from 28 orbital missions. The HEASARC is the designated archive which supports NASA's Physics of the Cosmos theme (http://pcos.gsfc.nasa.gov/). We discuss some of the upcoming new initiatives and developments for the HEASARC, including the arrival of public data from the hard X-ray imaging NuSTAR mission in the summer of 2013, and the ongoing preparations to support the JAXA/NASA Astro-H mission and the NASA MoO Neutron Star Interior Composition Explorer (NICER), which are expected to become operational in 2015-2016. We also highlight some of the new software capabilities of the HEASARC, such as Xamin, a next-generation archive interface which will eventually supersede Browse, and the latest update of XSPEC (v 12.8.0).

  20. OPTIMIZATION OF A TWO-STAGE ADR FOR THE SOFT X-RAY SPECTROMETER (SXS) INSTRUMENT ON THE ASTRO-H MISSION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirron, P. J.; Kimball, M. O.; Wegel, D. C.

    2010-04-09

    NASA/Goddard Space Flight Center has begun developing the Soft X-ray Spectrometer (SXS) instrument that will be flown on the Japanese Astro-H mission. The SXS's 36-pixel detector array will be cooled to 50 mK using a two-stage adiabatic demagnetization refrigerator (ADR). A complicating factor for its design is that the ADR will be integrated into a superfluid helium dewar at 1.3 K that will be coupled to a 1.8 K Joule-Thomson (JT) stage through a heat switch. When liquid helium is present, the coupling will be weak, and the JT stage will act primarily as a shield to reduce parasitic heatmore » loads. When the liquid is depleted, the heat switch will couple more strongly so that the ADR can continue to operate using the JT stage as its heat sink. A two-stage ADR is the most mass efficient option and it has the operational flexibility to work well with a stored cryogen and a cryocooler. The stages are operated independently, and this opens up a very large parameter space for optimizing the design. This paper discusses the optimization process and most relevant trades considered in the design of the SXS ADR, and its expected performance.« less

  1. Space Students Visit MSFC During STS-35 Astro-1 Mission

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The primary objective of the STS-35 mission was round the clock observation of the celestial sphere in ultraviolet and X-Ray astronomy with the Astro-1 observatory which consisted of four telescopes: the Hopkins Ultraviolet Telescope (HUT); the Wisconsin Ultraviolet Photo-Polarimeter Experiment (WUPPE); the Ultraviolet Imaging Telescope (UIT); and the Broad Band X-Ray Telescope (BBXRT). The Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at the Marshall Space Flight Center (MSFC) was the air/ground communication channel used between the astronauts and ground control teams during the Spacelab missions. Teams of controllers and researchers directed on-orbit science operations, sent commands to the spacecraft, received data from experiments aboard the Space Shuttle, adjusted mission schedules to take advantage of unexpected science opportunities or unexpected results, and worked with crew members to resolve problems with their experiments. This photo is of Space classroom students in the Discovery Optics Lab at MSFC during STS-35, ASTRO-1 mission payload operations.

  2. Astro-H Data Analysis, Processing and Archive

    NASA Technical Reports Server (NTRS)

    Angelini, Lorella; Terada, Yukikatsu; Loewenstein, Michael; Miller, Eric D.; Yamaguchi, Hiroya; Yaqoob, Tahir; Krimm, Hans; Harrus, Ilana; Takahashi, Hiromitsu; Nobukawa, Masayoshi; hide

    2016-01-01

    Astro-H (Hitomi) is an X-ray Gamma-ray mission led by Japan with international participation, launched on February 17, 2016. The payload consists of four different instruments (SXS, SXI, HXI and SGD) that operate simultaneously to cover the energy range from 0.3 keV up to 600 keV. This paper presents the analysis software and the data processing pipeline created to calibrate and analyze the Hitomi science data along with the plan for the archive and user support.These activities have been a collaborative effort shared between scientists and software engineers working in several institutes in Japan and USA.

  3. Design of a 3-Stage ADR for the Soft X-Ray Spectrometer Instrument on the Astro-H Mission

    NASA Technical Reports Server (NTRS)

    Shirron, Peter J.; Kimball, Mark O.; Wegel, Donald C.; Canavan, Edgar R.; DiPirro, Michael J.

    2011-01-01

    The Japanese Astro-H mission will include the Soft X-ray Spectrometer (SXS) instrument, whose 36-pixel detector array of ultra-sensitive x-ray microcalorimeters requires cooling to 50 mK. This will be accomplished using a 3-stage adiabatic demagnetization refrigerator (ADR). The design is dictated by the need to operate with full redundancy with both a superfluid helium dewar at 1.3 K or below, and with a 4.5 K Joule-Thomson (JT) cooler. The ADR is configured as a 2-stage unit that is located in a well in the helium tank, and a third stage that is mounted to the top of the helium tank. The third stage is directly connected through two heat switches to the JT cooler and the helium tank, and manages heat flow between the two. When liquid helium is present, the 2-stage ADR operates in a single-shot manner using the superfluid helium as a heat sink. The third stage may be used independently to reduce the time-average heat load on the liquid to extend its lifetime. When the liquid is depleted, the 2nd and 3rd stages operate as a continuous ADR to maintain the helium tank at as low a temperature as possible - expected to be 1.2 K - and the 1st stage cools from that temperature as a single-stage, single-shot ADR. The ADR s design and operating modes are discussed, along with test results of the prototype 3-stage ADR.

  4. Proposal Tools for ASTRO-E

    NASA Astrophysics Data System (ADS)

    Mukai, K.; ASTRO-E Guest Observer Facility Team

    1998-12-01

    The XRS instrument on board ASTRO-E is expected to last about two years, before it runs out of cryogen. This leads us to place a particular emphasis on the technical aspects of the observing proposals to maximize the scientific return, more so than for missions/instruments with longer life times. In this talk, we will introduce the tools that we provide for you to write technically sound ASTRO-E XRS proposals. They include PIMMS/W3pimms and xspec/WebSpec for exposure time calculation, simaste for more detailed simulations (particularly of extended sources), and Wasabi, the Web-based observation visualization tool.

  5. The Evolution of Spacelab Ultraviolet Astronomy Missions from OSS-3 through -7 to Astro-1

    NASA Astrophysics Data System (ADS)

    Gull, Theodore

    2018-01-01

    In the 1960s and 1970s, NASA was building towards a robust program in space astronomy. An evolutionary step from ground-based astronomy to space astronomy was human operation of space telescopes as astronomy in general evolved from astronomers directly at the telescope to application of computers and long distance communications to control to operate remote telescopes. Today ground-based telescopes and space observatories from cubesats to the Hubble Space Telescope and soon the James Webb Space Telescope are routinely operated remotely.In response to the Spacelab Announcement of Opportunity in the early 1980s, three ultraviolet experiments – the Hopkins Ultraviolet Telescope, the Ultraviolet Imaging Telescope and the Wisconsin Ultraviolet PhotoPolarimetry Experiment -- all instruments derived from multiple sounding rocket flights--were selected to fly as an integrated payload attached to a space shuttle. The justification for professional astronomers, both as Mission Specialists from the astronaut cadre and Payload Specialists from the instrument teams, was built to ensure key technical skills both of the science and the instruments. Bundled together as OSS-3 through -7 flights focused on Comet Halley, the experiments went through many changes and delays as a pathfinder for an anticipated series of attached astronomy payloads.By 1986, the five-flight mission had evolved into two missions, Astro-1 dedicated primarily to observe Halley’s Comet in early March 1986 and Astro-2 to fly about one year later. Due to the Challenger disaster 35 days before scheduled launch of Astro-1, the mission went through an initial cancellation and then re-scheduling once the instrument complement of Astro-1 was expanded to include Broad Band X-ray Telescope with emphasis on studying SN1987A. Ultimately Astro-1 flew in December 1990 partnered with an X-ray experiment focused on SN1987A.The nine-day mission was mostly successful despite multiple technical issues overcome by the NASA

  6. In-Orbit Operation of the ASTRO-H SXS

    NASA Technical Reports Server (NTRS)

    Tsujimoto, Masahiro; Mitsuda, Kazuhisa; Kelley, Richard L.; den Herder, Jan-Willem A.; Akamatsu, Hiroki; Bialas, Thomas G.; Boyce, Kevin R.; Brown, Gregory V.; Chiao, Meng P.; Costantini, Elisa; hide

    2016-01-01

    We summarize all the in-orbit operations of the Soft X-ray Spectrometer (SXS) onboard the ASTRO-H (Hitomi) satellite. The satellite was launched on 2016-02- 17 and the communication with the satellite ceased on2016-03-26. The SXS was still in the commissioning phase, in which the setups were progressively changed. This article is intended to serve as a reference of the events in the orbit to properly interpret the SXS data taken during its short life time, and as a test case for planning the in-orbit operation for future micro-calorimeter missions.

  7. In-orbit operation of the ASTRO-H SXS

    NASA Astrophysics Data System (ADS)

    Tsujimoto, Masahiro; Mitsuda, Kazuhisa; Kelley, Richard L.; den Herder, Jan-Willem A.; Akamatsu, Hiroki; Bialas, Thomas G.; Boyce, Kevin R.; Brown, Gregory V.; Chiao, Meng P.; Costantini, Elisa; de Vries, Cor P.; DiPirro, Michael J.; Eckart, Megan E.; Ezoe, Yuichiro; Fujimoto, Ryuichi; Haas, Daniel; Hoshino, Akio; Ishikawa, Kumi; Ishisaki, Yoshitaka; Iyomoto, Naoko; Kilbourne, Caroline A.; Kitamoto, Shunji; Koyama, Shu; Leutenegger, Maurice A.; McCammon, Dan; Mitsuishi, Ikuyuki; Murakami, Hiroshi; Murakami, Masahide; Noda, Hirofumi; Ogawa, Mina; Ota, Naomi; Paltani, Stéphane; Porter, Frederick S.; Sato, Kosuke; Sato, Yoichi; Sawada, Makoto; Seta, Hiromi; Shinozaki, Keisuke; Shirron, Peter J.; Sneiderman, Gary A.; Sugita, Hiroyuki; Szymkowiak, Andrew E.; Takei, Yoh; Tamagawa, Toru; Tashiro, Makoto S.; Terada, Yukikatsu; Yamada, Shinya; Yamasaki, Noriko Y.; Yatsu, Yoichi

    2016-07-01

    We summarize all the in-orbit operations of the Soft X-ray Spectrometer (SXS) onboard the ASTRO-H (Hit- omi) satellite. The satellite was launched on 2016/02/17 and the communication with the satellite ceased on 2016/03/26. The SXS was still in the commissioning phase, in which the setups were progressively changed. This article is intended to serve as a reference of the events in the orbit to properly interpret the SXS data taken during its short life time, and as a test case for planning the in-orbit operation for future micro-calorimeter missions.

  8. The AstroSat Production Line: From AstroSat 100 to AstroSat 1000

    NASA Astrophysics Data System (ADS)

    Maliet, E.; Pawlak, D.; Koeck, C.; Beaufumé, E.

    2008-08-01

    From the late 90s onward, Astrium Satellites has developed and improved several classes of high resolution optical Earth Observation satellites. The resulting product line ranges from micro-satellites (about 120 kg) type to the large satellites (in the range of 1 200 kg). They all make uses of state of the art technologies for optical payloads, as well as for avionics. Several classes of platforms have thus been defined and standardised: AstroSat 100 for satellites up to 150 kg, allowing affordable but fully operational missions, AstroSat 500 for satellites up to 800 kg, allowing complex high resolution missions, and AstroSat 1000 for satellites up to 1 200 kg, providing very high resolution and outstanding imaging and agility capabilities. A new class, AstroSat 250, has been developed by Astrium Satellites, and is now proposed, offering a state-of-the-art 3-axis agile platform for high- resolution missions, with a launch mass below 550 kg. The Astrosat platforms rely on a centralised architecture avionics based on an innovative AOCS hybridising of measurements from GPS, stellar sensors and inertial reference unit. Operational safety has been emphasised through thruster free safe modes. All optical payloads make use of all Silicon Carbide (SiC) telescopes. High performance and low consumption linear CCD arrays provide state of the art images. The satellites are designed for simple flight operations, large data collection capability, and large versatility of payload and missions. They are adaptable to a large range of performances. Astrium satellites have already been selected by various customers worldwide.

  9. Mechanical design of a 3-stage ADR for the Astro-H mission

    NASA Astrophysics Data System (ADS)

    James, Bryan L.; Martinez, Raul M.; Shirron, Peter; Tuttle, Jim; Francis, John J.; San Sebastian, Marcelino; Wegel, Donald C.; Galassi, Nicholas M.; McGuinness, Daniel S.; Puckett, David; Flom, Yury

    2012-04-01

    The X-ray micro-calorimeter array in the Soft X-ray Spectrometer (SXS) instrument on Astro-H will be cooled by a 3-stage adiabatic demagnetization refrigerator (ADR). The ADR consists of two mechanically independent assemblies. When integrated with a mounting structure and the detector assembly, they form a self-contained unit that will be inserted into the top end of a liquid helium tank. The unique configuration requires many components and sub-assemblies to be thermally isolated from their structural mount. Normally in an ADR this is limited to suspending cold salt pills within their (much warmer) magnets, but in the case of SXS, it also involves one ADR stage being supported by, but thermally isolated from, the helium tank. This paper will describe the complex thermal and mechanical design of the SXS ADR, and summarize vibration and mechanical properties tests that have been performed to validate the design.

  10. Far-ultraviolet astronomy on the Astro-1 space shuttle mission

    NASA Technical Reports Server (NTRS)

    Davidsen, Arthur F.

    1993-01-01

    The Astro-1 mission obtained observations related to a wide variety of current problems in astronomy during a 9-day flight of the space shuttle Columbia. Early results from one of the instruments, the Hopkins Ultraviolet Telescope, are reviewed here. Among these are new insights concerning the origin of the ultraviolet light from the old stellar population in elliptical galaxies, new evidence for a hot, gaseous corona surrounding the Milky Way, improved views of the physical conditions in active galactic nuclei, and a measurement of the ionization state of the local interstellar medium.

  11. The AstroBiology Explorer (ABE) MIDEX Mission: Using Infrared Spectroscopy to Identify Organic Molecules in Space

    NASA Technical Reports Server (NTRS)

    Sandford, S. A.

    2002-01-01

    The AstroBiology Explorer (ABE) mission is one of four selected for Phase A Concept Study in NASA's current call for MIDEX class missions. ABE is a cooled space telescope equipped with spectrographs covering the 2.5-20 micron spectral range. The ABE mission is devoted to the detection and identification of organic and related molecular species in space. ABE is currently under study at NASA's Ames Research Center in collaboration with Ball Aerospace.

  12. The Soft X-ray Imager (SXI) for the ASTRO-H Mission

    NASA Astrophysics Data System (ADS)

    Tanaka, Takaaki; Tsunemi, Hiroshi; Hayashida, Kiyoshi; Tsuru, Takeshi G.; Dotani, Tadayasu; Nakajima, Hiroshi; Anabuki, Naohisa; Nagino, Ryo; Uchida, Hiroyuki; Nobukawa, Masayoshi; Ozaki, Masanobu; Natsukari, Chikara; Tomida, Hiroshi; Ueda, Shutaro; Kimura, Masashi; Hiraga, Junko S.; Kohmura, Takayoshi; Murakami, Hiroshi; Mori, Koji; Yamauchi, Makoto; Hatsukade, Isamu; Nishioka, Yusuke; Bamba, Aya; Doty, John P.

    2015-09-01

    The Soft X-ray Imager (SXI) is an X-ray CCD camera onboard the ASTRO-H X-ray observatory. The CCD chip used is a P-channel back-illuminated type, and has a 200-µm thick depletion layer, with which the SXI covers the energy range between 0.4 keV and 12 keV. Its imaging area has a size of 31 mm x 31 mm. We arrange four of the CCD chips in a 2 by 2 grid so that we can cover a large field-of-view of 38' x 38'. We cool the CCDs to -120 °C with a single-stage Stirling cooler. As was done for the CCD camera of the Suzaku satellite, XIS, artificial charges are injected to selected rows in order to recover charge transfer inefficiency due to radiation damage caused by in-orbit cosmic rays. We completed fabrication of flight models of the SXI and installed them into the satellite. We verified the performance of the SXI in a series of satellite tests. On-ground calibrations were also carried out and detailed studies are ongoing.

  13. Simulating Astro-H Observations of Sloshing Gas Motions in the Cores of Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    ZuHone, J. A.; Miller, E. D.; Simionescu, A.; Bautz, M. W.

    2016-04-01

    Astro-H will be the first X-ray observatory to employ a high-resolution microcalorimeter, capable of measuring the shift and width of individual spectral lines to the precision necessary for estimating the velocity of the diffuse plasma in galaxy clusters. This new capability is expected to bring significant progress in understanding the dynamics, and therefore the physics, of the intracluster medium. However, because this plasma is optically thin, projection effects will be an important complicating factor in interpreting future Astro-H measurements. To study these effects in detail, we performed an analysis of the velocity field from simulations of a galaxy cluster experiencing gas sloshing and generated synthetic X-ray spectra, convolved with model Astro-H Soft X-ray Spectrometer (SXS) responses. We find that the sloshing motions produce velocity signatures that will be observable by Astro-H in nearby clusters: the shifting of the line centroid produced by the fast-moving cold gas underneath the front surface, and line broadening produced by the smooth variation of this motion along the line of sight. The line shapes arising from inviscid or strongly viscous simulations are very similar, indicating that placing constraints on the gas viscosity from these measurements will be difficult. Our spectroscopic analysis demonstrates that, for adequate exposures, Astro-H will be able to recover the first two moments of the velocity distribution of these motions accurately, and in some cases multiple velocity components may be discerned. The simulations also confirm the importance of accurate treatment of point-spread function scattering in the interpretation of Astro-H/SXS spectra of cluster plasmas.

  14. Astro Camp Goes to Florida

    NASA Image and Video Library

    2007-08-08

    Katie Craig, daughter of former Stennis Space Center Deputy Director Mark Craig, launches a 'balloon rocket' with the help of Rebecca Compretta, Astro Camp coordinator at SSC. SSC took Astro Camp on the road to Florida this week to engage children and their parents during activities surrounding the Aug. 8 launch of Space Shuttle Endeavour on NASA's STS-118 mission to the International Space Station. Astro Camp is SSC's popular space camp program designed to inspire and educate students using science and math principles.

  15. Astro Camp Goes to Florida

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Katie Craig, daughter of former Stennis Space Center Deputy Director Mark Craig, launches a 'balloon rocket' with the help of Rebecca Compretta, Astro Camp coordinator at SSC. SSC took Astro Camp on the road to Florida this week to engage children and their parents during activities surrounding the Aug. 8 launch of Space Shuttle Endeavour on NASA's STS-118 mission to the International Space Station. Astro Camp is SSC's popular space camp program designed to inspire and educate students using science and math principles.

  16. AstroSat: From Inception to Realization and Launch

    NASA Astrophysics Data System (ADS)

    Agrawal, P. C.

    2017-06-01

    The origin of the idea of AstroSat multi wavelength satellite mission and how it evolved over the next 15 years from a concept to the successful development of instruments for giving concrete shape to this mission, is recounted in this article. AstroSat is the outcome of intense deliberations in the Indian astronomy community leading to a consensus for a multi wavelength Observatory having broad spectral coverage over five decades in energy covering near-UV, far-UV, soft X-ray and hard X-ray bands. The multi wavelength observation capability of AstroSat with a suite of 4 co-aligned instruments and an X-ray sky monitor on a single satellite platform, imparts a unique character to this mission. AstroSat owes its realization to the collaborative efforts of the various ISRO centres, several Indian institutions, and a few institutions abroad which developed the 5 instruments and various sub systems of the satellite. AstroSat was launched on September 28, 2015 from India in a near equatorial 650 km circular orbit. The instruments are by and large working as planned and in the past 14 months more than 200 X-ray and UV sources have been studied with it. The important characteristics of AstroSat satellite and scientific instruments will be highlighted.

  17. First Peek of ASTRO-H Soft X-Ray Telescope (SXT) In-Orbit Performance

    NASA Technical Reports Server (NTRS)

    Okajima, Takashi; Soong, Yang; Serlemitsos, Peter J.; Mori, Hideyuki; Olsen, Lawrence; Robinson, David; Koenecke, Richard; Chang, William; Hahne, David; Iisuka, Ryo; hide

    2016-01-01

    ASTRO-H (Hitomi) is a Japanese X-ray astrophysics satellite just launched in February, 2016, from Tanegashima, Japan by a JAXA's H-IIA launch vehicle. It has two Soft X-ray Telescopes (SXTs), among other instruments, that were developed by the NASA Goddard Space Flight Center in collaboration with ISAS/JAXA and Nagoya University. One is for an X-ray micro-calorimeter instrument (Soft X-ray Spectrometer, SXS) and the other for an X-ray CCD camera (Soft X-ray Imager, SXI), both covering the X-ray energy band up to 15 keV. The two SXTs were fully characterized at the 30-m X-ray beam line at ISAS/JAXA. The combined SXT+SXS system effective area is about 250 and 300 cm(exp 2) at 1 and 6 keV, respectively, although observations were performed with the gate valve at the dewar entrance closed, which blocks most of low energy X-rays and some of high energy ones. The angular resolution for SXS is 1.2 arcmin (Half Power Diameter, HPD). The combined SXT+SXI system effective area is about 370 and 350 cm (exp 2) at 1 and 6 keV, respectively. The angular resolution for SXI is 1.3 arcmin (HPD). The both SXTs have a field of view of about 16 arcmin (FWHM of their vignetting functions).The SXT+SXS field of view is limited to 3 x 3 arcmin by the SXS array size. In-flight data available to the SXT team was limited at the time of this conference and a point-like source data is not available for the SXT+SXS. Although due to lack of attitude information we were unable to reconstruct a point spread function of SXT+SXI, according to RXJ1856.5-3754 data, the SXT seems to be working as expected in terms of imaging capability. As for the overall effective area response for both SXT+SXS and SXT+SXI, consistent spectral model fitting parameters with the previous measurements were obtained for Crab and G21.5-0.9 data. On the other hand, their 2-10 keV fluxes differ by about 20% at this point. Calibration work is still under progress. The SXT is the latest version of the aluminum foil X

  18. The ASTRO-H SXT Performance to the Large Off-Set Angles

    NASA Technical Reports Server (NTRS)

    Sato, Toshiki; Iizuka, Ryo; Mori, Hideyuki; Hayashi, Takayuki; Maeda, Yoshitomo; Ishida, Manabu; Kikuchi, Naomichi; Kurashima, Sho; Nakaniwa, Nozomi; Okajima, Takashi; hide

    2016-01-01

    The X-ray astronomy satellite ASTRO-H, which is the 6th Japanese X-ray astronomy satellite and is renamed Hitomi after launch, is designed to observe celestial X-ray objects in a wide energy band from a few hundred eV to 600 keV. The Soft X-ray Telescopes (SXTs) onboard ASTRO-H play a role of collecting and imaging X-rays up to approximately 12 keV. Although the field of view of the SXT is approximately 15' (FWHM), due to the thin-foil-nested Wolter-I type optics adopted in the SXTs, X-rays out of the field of view can reach the focal plane without experiencing a normal double reflection. This component is referred to as 'stray light'. Owing to investigation of the stray light so far, 'secondary reflection' is now identified as the main component of the stray light, which is composed of X-rays reflected only by secondary reflectors. In order to cut the secondary reflections, a 'pre-collimator' is equipped on top of the SXTs. However, we cannot cut all the stray lights with the pre-collimator in some off-axis angle domain. In this study, we measure the brightness of the stray light of the SXTs at some representative off-axis angles by using the ISAS X-ray beam line. ASTRO-H is equipped with two modules of the SXT; one is for the Soft X-ray Spectrometer (SXS), an X-ray calorimeter, and the other is for the Soft X-ray Imager (SXI), an X-ray CCD camera. These SXT modules are called SXT-S and SXT-I, respectively. Of the two detector systems, the SXI has a large field of view, a square with 38' on a side. To cope with this, we have made a mosaic mapping of the stray light at a representative off-axis angle of 30' in the X-ray beam line at the Institute of Space and Astronautical Science. The effective area of the brightest secondary reflection is found of order approximately 0.1% of the on-axis effective area at the energy of 1.49 keV. The other components are not so bright (less than 5 x 10(exp -4) times smaller than the on-axis effective area). On the other hand, we

  19. The soft gamma-ray detector (SGD) onboard ASTRO-H

    NASA Astrophysics Data System (ADS)

    Watanabe, Shin; Tajima, Hiroyasu; Fukazawa, Yasushi; Blandford, Roger; Enoto, Teruaki; Goldwurm, Andrea; Hagino, Kouichi; Hayashi, Katsuhiro; Ichinohe, Yuto; Kataoka, Jun; Katsuta, Junichiro; Kitaguchi, Takao; Kokubun, Motohide; Laurent, Philippe; Lebrun, François; Limousin, Olivier; Madejski, Grzegorz M.; Makishima, Kazuo; Mizuno, Tsunefumi; Mori, Kunishiro; Nakamori, Takeshi; Nakano, Toshio; Nakazawa, Kazuhiro; Noda, Hirofumu; Odaka, Hirokazu; Ohno, Masanori; Ohta, Masayuki; Saito, Shinya; Sato, Goro; Sato, Rie; Takeda, Shin'ichiro; Takahashi, Hiromitsu; Takahashi, Tadayuki; Tanaka, Takaaki; Tanaka, Yasuyuki; Terada, Yukikatsu; Uchiyama, Hideki; Uchiyama, Yasunobu; Yamaoka, Kazutaka; Yatsu, Yoichi; Yonetoku, Daisuke; Yuasa, Takayuki

    2016-07-01

    The Soft Gamma-ray Detector (SGD) is one of science instruments onboard ASTRO-H (Hitomi) and features a wide energy band of 60{600 keV with low backgrounds. SGD is an instrument with a novel concept of "Narrow field-of-view" Compton camera where Compton kinematics is utilized to reject backgrounds which are inconsistent with the field-of-view defined by the active shield. After several years of developments, the flight hardware was fabricated and subjected to subsystem tests and satellite system tests. After a successful ASTRO-H (Hitomi) launch on February 17, 2016 and a critical phase operation of satellite and SGD in-orbit commissioning, the SGD operation was moved to the nominal observation mode on March 24, 2016. The Compton cameras and BGO-APD shields of SGD worked properly as designed. On March 25, 2016, the Crab nebula observation was performed, and, the observation data was successfully obtained.

  20. Performance Testing of the Astro-H Flight Model 3-Stage ADR

    NASA Technical Reports Server (NTRS)

    Shirron, Peter J.; Kimball, Mark Oliver; DiPirro, Michael; Bialas, Tom G.

    2014-01-01

    The Soft X-ray Spectrometer (SXS) is one of four instruments that will be flown on the Japanese Astro-H satellite, planned for launch in late 2015early 2016. The SXS will perform imaging spectroscopy in the soft x-ray band using a 6x6 array of silicon micro calorimeters operated at 50 mK, cooled by an adiabatic demagnetization refrigerator (ADR). NASAGSFC is providing the detector array and ADR, and Sumitomo Heavy Industries, Inc. is providing the remainder of the cryogenic system (superfluid helium dewar (1.3 K), Stirling cryocoolers and a 4.5 K Joule-Thomson (JT) cryocooler). The ADR is unique in that it is designed to use both the liquid helium and the JT cryocooler as it heat sink. The flight detector and ADR assembly have successfully undergone vibration and performance testing at GSFC, and have now undergone initial performance testing with the flight dewar at Sumitomo Heavy Industries, Inc. in Japan. This presentation summarizes the performance of the flight ADR in both cryogen-based and cryogen-free operating modes.

  1. Performance Testing of the Astro-H Flight Model 3-stage ADR

    NASA Astrophysics Data System (ADS)

    Shirron, Peter J.; Kimball, Mark O.; DiPirro, Michael J.; Bialas, Thomas G.

    The Soft X-ray Spectrometer (SXS) is one of four instruments that will be flown on the Japanese Astro-H satellite, planned for launch in late 2015/early 2016. The SXS will perform imaging spectroscopy in the soft x-ray band using a 6x6 array of silicon microcalorimeters operated at 50 mK, cooled by an adiabatic demagnetization refrigerator (ADR). NASA/GSFC is providing the detector array and ADR, and Sumitomo Heavy Industries, Inc. is providing the remainder of the cryogenic system (superfluid helium dewar (<1.3 K), Stirling cryocoolers and a 4.5 K Joule-Thomson (JT) cryocooler). The ADR is unique in that it is designed to use both the liquid helium and the JT cryocooler as it heat sink. The flight detector and ADR assembly have successfully undergone vibration and performance testing at GSFC, and have now undergone initial performance testing with the flight dewar at Sumitomo Heavy Industries, Inc. in Japan. This paper summaries the performance of the flight ADR in both cryogen-based and cryogen-free operating modes.

  2. MAPPING THE GAS TURBULENCE IN THE COMA CLUSTER: PREDICTIONS FOR ASTRO-H

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ZuHone, J. A.; Markevitch, M.; Zhuravleva, I.

    2016-02-01

    Astro-H will be able for the first time to map gas velocities and detect turbulence in galaxy clusters. One of the best targets for turbulence studies is the Coma cluster, due to its proximity, absence of a cool core, and lack of a central active galactic nucleus. To determine what constraints Astro-H will be able to place on the Coma velocity field, we construct simulated maps of the projected gas velocity and compute the second-order structure function, an analog of the velocity power spectrum. We vary the injection scale, dissipation scale, slope, and normalization of the turbulent power spectrum, andmore » apply measurement errors and finite sampling to the velocity field. We find that even with sparse coverage of the cluster, Astro-H will be able to measure the Mach number and the injection scale of the turbulent power spectrum—the quantities determining the energy flux down the turbulent cascade and the diffusion rate for everything that is advected by the gas (metals, cosmic rays, etc.). Astro-H will not be sensitive to the dissipation scale or the slope of the power spectrum in its inertial range, unless they are outside physically motivated intervals. We give the expected confidence intervals for the injection scale and the normalization of the power spectrum for a number of possible pointing configurations, combining the structure function and velocity dispersion data. Importantly, we also determine that measurement errors on the line shift will bias the velocity structure function upward, and show how to correct this bias.« less

  3. Mapping the Gas Turbulence in the Coma Cluster: Predictions for Astro-H

    NASA Technical Reports Server (NTRS)

    ZuHone, J. A.; Markevitch, M.; Zhuravleva, I.

    2016-01-01

    Astro-H will be able for the first time to map gas velocities and detect turbulence in galaxy clusters. One of the best targets for turbulence studies is the Coma cluster, due to its proximity, absence of a cool core, and lack of a central active galactic nucleus. To determine what constraints Astro-H will be able to place on the Coma velocity field, we construct simulated maps of the projected gas velocity and compute the second-order structure function, an analog of the velocity power spectrum. We vary the injection scale, dissipation scale, slope, and normalization of the turbulent power spectrum, and apply measurement errors and finite sampling to the velocity field. We find that even with sparse coverage of the cluster, Astro-H will be able to measure the Mach number and the injection scale of the turbulent power spectrum-the quantities determining the energy flux down the turbulent cascade and the diffusion rate for everything that is advected by the gas (metals, cosmic rays, etc.). Astro-H will not be sensitive to the dissipation scale or the slope of the power spectrum in its inertial range, unless they are outside physically motivated intervals. We give the expected confidence intervals for the injection scale and the normalization of the power spectrum for a number of possible pointing configurations, combining the structure function and velocity dispersion data. Importantly, we also determine that measurement errors on the line shift will bias the velocity structure function upward, and show how to correct this bias.

  4. Performance of ASTRO-H Hard X-Ray Telescope (HXT)

    NASA Technical Reports Server (NTRS)

    Awaki, Hisamitsu; Kunieda, Hideyo; Ishida, Manabu; Matsumoto, Hironori; Furuzawa, Akihiro; Haba, Yohsito; Hayashi, Takayuki; Iizuka, Ryo; Ishibashi, Kazunori; Itoh, Masayuki; hide

    2016-01-01

    The Japanese X-ray Astronomy Satellite, Hitomi (ASTRO-H) carries hard X-ray imaging system, covering the energy band from 5 keV to 80 keV. The hard X-ray imaging system consists of two hard X-ray telescopes (HXT) and two hard X-ray imagers (HXI). The HXT employs tightly-nested, conically-approximated thin foil Wolter-I optics. The mirror surfaces of HXT were coated with PtC depth-graded multilayers. We carried out ground calibrations of HXTs at the synchrotron radiation facility SPring-8 BL20B2 in Japan, and found that total effective area of two HXTs was about 350 sq cm at 30 keV, and the half power diameter of HXT was about 1.9. After the launch of Hitomi, Hitomi observed several targets during the initial functional verification of the onboard instruments. The Hitomi software and calibration team (SCT) provided the Hitomis data of G21.5-0.9, a pulsar wind nebula, to the hardware team for the purpose of the instrument calibration. Through the analysis of the in-flight data, we have confirmed that the X-ray performance of HXTs in orbit was consistent with that estimated by the ground calibrations.

  5. Astro-1 Image Taken by Ultraviolet Imaging Telescope

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This image shows a part of the Cygnus loop supernova remnant, taken by the Ultraviolet Imaging Telescope (UIT) on the Astro Observatory during the Astro-1 mission (STS-35) on December 5, 1990. Pictured is a portion of the huge Cygnus loop, an array of interstellar gas clouds that have been blasted by a 900,000 mile per hour shock wave from a prehistoric stellar explosion, which occurred about 20,000 years ago, known as supernova. With ultraviolet and x-rays, astronomers can see emissions from extremely hot gases, intense magnetic fields, and other high-energy phenomena that more faintly appear in visible and infrared light or in radio waves that are crucial to deepening the understanding of the universe. The Astro Observatory was designed to explore the universe by observing and measuring the ultraviolet radiation from celestial objects. Three instruments make up the Astro Observatory: The Hopkins Ultraviolet Telescope (HUT), the Ultraviolet Imaging Telescope (UIT), and the Wisconsin Ultraviolet Photo-Polarimetry Experiment (WUPPE). The Marshall Space Flight Center had managment responsibilities for the Astro-1 mission. The Astro-1 Observatory was launched aboard the Space Shuttle Orbiter Columbia (STS-35) on December 2, 1990.

  6. Astronaut John Grunsfeld uses camera to record ASTRO-2 payload

    NASA Image and Video Library

    1995-03-17

    STS067-377-008 (2-18 March 1995) --- Astronaut John M. Grunsfeld, mission specialist, uses a handheld Hasselblad camera to record the Astro-2 payload. Orbiting Earth at 190 nautical miles, Grunsfeld joined four other NASA astronauts and two scientists for almost 17 days conducting research in support of the Astro-2 mission.

  7. A simulation of the instrument pointing system for the Astro-1 mission

    NASA Technical Reports Server (NTRS)

    Whorton, M.; West, M.; Rakoczy, J.

    1991-01-01

    NASA has recently completed a shuttle-borne stellar ultraviolet astronomy mission known as Astro-1. A three axis instrument pointing system (IPS) was employed to accurately point the science instruments. In order to analyze the pointing control system and verify pointing performance, a simulation of the IPS was developed using the multibody dynamics software TREETOPS. The TREETOPS IPS simulation is capable of accurately modeling the multibody IPS system undergoing large angle, nonlinear motion. The simulation is documented and example cases are presented demonstrating disturbance rejection, fine pointing operations, and multiple target pointing and slewing of the IPS.

  8. Japanese H-IIA rocket

    NASA Image and Video Library

    2013-11-14

    The Japanese H-IIA rocket will be launching the GPM Core Observatory into orbit in 2014. Credit: JAXA The Global Precipitation Measurement (GPM) mission is an international partnership co-led by NASA and the Japan Aerospace Exploration Agency (JAXA) that will provide next-generation global observations of precipitation from space. GPM will study global rain, snow and ice to better understand our climate, weather, and hydrometeorological processes. As of Novermber 2013 the GPM Core Observatory is in the final stages of testing at NASA Goddard Space Flight Center. The satellite will be flown to Japan in the fall of 2013 and launched into orbit on an HII-A rocket in early 2014. For more on the GPM mission, visit gpm.gsfc.nasa.gov/. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  9. Astro-1 Image Taken by the Ultraviolet Imaging Telescope

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This is a presentation of two comparison images of the Spiral Galaxy M81 in the constellation URA Major. The galaxy is about 12-million light years from Earth. The left image is the Spiral Galaxy M81 as photographed by the Ultraviolet Imaging Telescope (UIT) during the Astro-1 Mission (STS-35) on December 9, 1990. This UIT photograph, made with ultraviolet light, reveals regions where new stars are forming at a rapid rate. The right image is a photograph of the same galaxy in red light made with a 36-inch (0.9-meter) telescope at the Kitt Peak National Observatory near Tucson, Arizona. The Astro Observatory was designed to explore the universe by observing and measuring ultraviolet radiation from celestial objects. Three instruments made up the Astro Observatory: The Hopkins Ultraviolet Telescope (HUT), the Ultraviolet Imaging Telescope (UIT), and the Wisconsin Ultraviolet Photo-Polarimetry Experiment (WUPPE). The Marshall Space Flight Center had management responsibilities for the Astro-1 mission. The Astro-1 Observatory was launched aboard the Space Shuttle Orbiter Columbia (STS-35) on December 2, 1990.

  10. The Capabilities of the Graphical Observation Scheduling System (GROSS) as Used by the Astro-2 Spacelab Mission

    NASA Technical Reports Server (NTRS)

    Phillips, Shaun

    1996-01-01

    The Graphical Observation Scheduling System (GROSS) and its functionality and editing capabilities are reported on. The GROSS system was developed as a replacement for a suite of existing programs and associated processes with the aim of: providing a software tool that combines the functionality of several of the existing programs, and provides a Graphical User Interface (GUI) that gives greater data visibility and editing capabilities. It is considered that the improved editing capability provided by this approach enhanced the efficiency of the second astronomical Spacelab mission's (ASTRO-2) mission planning.

  11. Results from the Ultraviolet Imaging Telescope on the Astro-2 Mission

    NASA Astrophysics Data System (ADS)

    Stecher, T. P.; Bohlin, R. C.; Neff, S. G.; O'Connell, R. W.; Roberts, M. R.; Smith, A. M.

    1995-03-01

    The solar-blind UIT camera with a CsI cathode obtained 722 frames with a cumulative exposure time of 260705 seconds during the March 1995 Astro-2 mission of Space Shuttle Endeavour. Filters were used to isolate selected bandpasses in the range 1200-1800 Angstroms, over the 40 arcmin field of view. Spatial resolution on most of the images is about 3 arcsec. Calibrated data, converted to machine-readable form, are under analysis and several posters on these investigations are presented in the Astro-2 poster session at this meeting (a first look at the UIT observations of Omega Cen, M31, and the Cygnus Loop is further elaborated here). UIT imagery of 20 spiral galaxies was obtained as part of a Guest Investigator program (Wendy Freedman et al.). UV imaging suppresses the red stellar population as expected and enhances the appearance of tracers of recent star formation. Known \\hii regions in these galaxies are made apparent through the scattering of stellar ultraviolet light by interstellar dust; typically their shapes differ from those seen in \\ha. A radial color gradient investigation will be delayed until ground observations can be made as the long-wavelength camera failed on launch and only the 1520 Angstroms and 1620 Angstroms images were made. The far-UV (1520 Angstroms) features are detected well beyond the Holmberg radius. UV/visible color-magnitude diagrams will be made as they were for the data from Astro-1. Our deepest images of the Magellanic Clouds reveal a rich field of luminous clusters and stars that are being searched for UV counterparts of the known x-ray sources in the photographed areas. The observed stars in the Clouds will be used to determine the current mass function. The respective contributions of nebular and stellar UV light in reflection nebulae are will be studied as several nebulae were observed with differing geometries and will provide interesting results on the far-UV albedo and phase function of nebular dust. A dozen globular and

  12. Identifying Organic Molecules in Space: The AstroBiology Explorer (ABE) Mission Concept

    NASA Technical Reports Server (NTRS)

    Ennico, Kimberly; Sandford, S.; Allamandola, L.; Bregman, J.; Cohen, M.; Cruikshank, D.; Dumas, C.; Greene, T.; Hudgins, D.; Kwok, S.

    2004-01-01

    The AstroBiology Explorer (ABE) mission concept consists of a modest dedicated space observatory having a 60 cm class primary mirror cooled to T less than 50 K equipped with medium resolution cross-dispersed spectrometers having cooled large format near- and mid-infrared detector arrays. Such a system would be capable of addressing outstanding problems in Astrochemistry and Astrophysics that are particularly relevant to Astrobiology and addressable via astronomical observation. The mission's observaticxiai program woiild make fundamental scieztific: prngress in establishing the nature, distribution, formation and evolution of organic and other molecular materials in the following extra-terrestrial environments: 1) The Outflow of Dying Stars; 2) The Diffuse Interstellar Medium (DISM); 3) Dense Molecular Clouds, Star Formation Regions, and Young Stellar/Planetary Systems; 4) Planets, Satellites, and Small Bodies within the Solar System; and 5) The Interstellar Media of Other Galaxies ABE could make fundamental progress in all of these area by conducting a 1 to 2 year mission to obtain a coordinated set of infrared spectroscopic observations over the 2.5 - 20 micron spectral range at a spectral resolution of R greater than 2500 of about 1500 galaxies, stars, planetary nebulae, young stellar objects, and solar system objects.

  13. The X-ray Astronomy Recovery Mission

    NASA Astrophysics Data System (ADS)

    Tashiro, M.; Kelley, R.

    2017-10-01

    On 25 March 2016, the Japanese 6th X-ray astronomical satellite ASTRO-H (Hitomi), launched on February 17, lost communication after a series of mishap in its attitude control system. In response to the mishap the X-ray astronomy community and JAXA analyzed the direct and root cause of the mishap and investigated possibility of a recovery mission with the international collaborator NASA and ESA. Thanks to great effort of scientists, agencies, and governments, the X-ray Astronomy Recovery Mission (XARM) are proposed. The recovery mission is planned to resume high resolution X-ray spectroscopy with imaging realized by Hitomi under the international collaboration in the shortest time possible, simply by focusing one of the main science goals of Hitomi Resolving astrophysical problems by precise high-resolution X-ray spectroscopy'. XARM will carry a 6 x 6 pixelized X-ray micro-calorimeter on the focal plane of an X-ray mirror assembly, and an aligned X-ray CCD camera covering the same energy band and wider field of view, but no hard X-ray or soft gamma-ray instruments are onboard. In this paper, we introduce the science objectives, mission concept, and schedule of XARM.

  14. Development status of the mechanical cryocoolers for the Soft X-ray Spectrometer on board Astro-H

    NASA Astrophysics Data System (ADS)

    Sato, Yoichi; Sawada, Kenichiro; Shinozaki, Keisuke; Sugita, Hiroyuki; Nishibori, Toshiyuki; Sato, Ryota; Mitsuda, Kazuhisa; Yamasaki, Noriko Y.; Takei, Yoh; Goto, Ken; Nakagawa, Takao; Fujimoto, Ryuichi; Kikuchi, Kenichi; Murakami, Masahide; Tsunematsu, Shoji; Ootsuka, Kiyomi; Kanao, Kenichi; Narasaki, Katsuhiro

    2014-11-01

    Astro-H is the Japanese X-ray astronomy satellite to be launched in 2015. The Soft X-ray Spectrometer (SXS) on board Astro-H is a high energy resolution spectrometer utilizing an X-ray micro-calorimeter array, which is operated at 50 mK by the ADR with the 30 liter superfluid liquid helium. The mechanical cryocoolers, 4 K-class Joule Thomson (JT) cooler and 20 K-class double-staged Stirling (2ST) cooler, are key components of the SXS cooling system to extend the lifetime of LHe cryogen beyond 3 years as required. Higher reliability was therefore investigated with higher cooling capability based on the heritage of existing cryocoolers. As the task of assessing further reliability dealt with the pipe-choking phenomena by contaminant solidification of the on-orbit SMILES JT cryocooler, outgassing from materials and component parts used in the cryocoolers was measured quantitatively to verify the suppression of carbon dioxide gas by their storage process and predict the total accumulated carbon dioxide for long-term operation. A continuous running test to verify lifetime using the engineering model (EM) of the 4 K-JT cooler is underway, having operated for a total of 720 days as of June 2013 and showing no remarkable change in cooling performance. During the current development phase, prototype models (PM) of the cryocoolers were installed to the test SXS dewar (EM) to verify the overall cooling performance from room temperature to 50 mK. During the EM dewar test, the requirement to reduce the transmitted vibration from the 2ST cooler compressor was recognized as mitigating the thermal instability of the SXS microcalorimeter at 50 mK.

  15. Soft x-ray spectrometer (SXS): the high-resolution cryogenic spectrometer onboard ASTRO-H

    NASA Astrophysics Data System (ADS)

    Mitsuda, Kazuhisa; Kelley, Richard L.; Akamatsu, Hiroki; Bialas, Thomas; Boyce, Kevin R.; Brown, Gregory V.; Canavan, Edgar; Chiao, Meng; Costantini, Elisa; den Herder, Jan-Willem; de Vries, Cor; DiPirro, Michael J.; Eckart, Megan E.; Ezoe, Yuichiro; Fujimoto, Ryuichi; Haas, Daniel; Hoshino, Akio; Ishikawa, Kumi; Ishisaki, Yoshitaka; Iyomoto, Naoko; Kilbourne, Caroline A.; Kimball, Mark; Kitamoto, Shunji; Konami, Saori; Leutenegger, Maurice A.; McCammon, Dan; Miko, Joseph; Mitsuishi, Ikuyuki; Murakami, Hiroshi; Murakami, Masahide; Noda, Hirofumi; Ogawa, Mina; Ohashi, Takaya; Okamoto, Atsushi; Ota, Naomi; Paltani, Stéphane; Porter, F. Scott; Sato, Kosuke; Sato, Yoichi; Sawada, Makoto; Seta, Hiromi; Shinozaki, Keisuke; Shirron, Peter J.; Sneiderman, Gary A.; Sugita, Hiroyuki; Szymkowiak, Andrew; Takei, Yoh; Tamagawa, Toru; Tashiro, Makoto S.; Terada, Yukikatsu; Tsujimoto, Masahiro; Yamada, Shinya; Yamasaki, Noriko Y.

    2014-07-01

    We present the development status of the Soft X-ray Spectrometer (SXS) onboard the ASTRO-H mission. The SXS provides the capability of high energy-resolution X-ray spectroscopy of a FWHM energy resolution of < 7eV in the energy range of 0.3 - 10 keV. It utilizes an X-ray micorcalorimeter array operated at 50 mK. The SXS microcalorimeter subsystem is being developed in an EM-FM approach. The EM SXS cryostat was developed and fully tested and, although the design was generally confirmed, several anomalies and problems were found. Among them is the interference of the detector with the micro-vibrations from the mechanical coolers, which is the most difficult one to solve. We have pursued three different countermeasures and two of them seem to be effective. So far we have obtained energy resolutions satisfying the requirement with the FM cryostat.

  16. Development of signal processing system of avalanche photo diode for space observations by Astro-H

    NASA Astrophysics Data System (ADS)

    Ohno, M.; Goto, K.; Hanabata, Y.; Takahashi, H.; Fukazawa, Y.; Yoshino, M.; Saito, T.; Nakamori, T.; Kataoka, J.; Sasano, M.; Torii, S.; Uchiyama, H.; Nakazawa, K.; Watanabe, S.; Kokubun, M.; Ohta, M.; Sato, T.; Takahashi, T.; Tajima, H.

    2013-01-01

    Astro-H is the sixth Japanese X-ray space observatory which will be launched in 2014. Two of onboard instruments of Astro-H, Hard X-ray Imager and Soft Gamma-ray Detector are surrounded by many number of large Bismuth Germanate (Bi4Ge3O12; BGO) scintillators. Optimum readout system of scintillation lights from these BGOs are essential to reduce the background signals and achieve high performance for main detectors because most of gamma-rays from out of field-of-view of main detectors or radio-isotopes produced inside them due to activation can be eliminated by anti-coincidence technique using BGO signals. We apply Avalanche Photo Diode (APD) for light sensor of these BGO detectors since their compactness and high quantum efficiency make it easy to design such large number of BGO detector system. For signal processing from APDs, digital filter and other trigger logics on the Field-Programmable Gate Array (FPGA) is used instead of discrete analog circuits due to limitation of circuit implementation area on spacecraft. For efficient observations, we have to achieve as low threshold of anti-coincidence signal as possible by utilizing the digital filtering. In addition, such anti-coincident signals should be sent to the main detector within 5 μs to make it in time to veto the A-D conversion. Considering this requirement and constraint from logic size of FPGA, we adopt two types of filter, 8 delay taps filter with only 2 bit precision coefficient and 16 delay taps filter with 8 bit precision coefficient. The data after former simple filter provides anti-coincidence signal quickly in orbit, and the latter filter is used for detail analysis after the data is down-linked.

  17. Identifying Organic Molecules in Space: The AstroBiology Explorer (ABE) Mission Concept

    NASA Technical Reports Server (NTRS)

    Ennico, K. A.; Sandford, S. A.; Allamandola, L.; Bregman, J.; Cohen, M.; Cruikshank, D.; Dumas, C.; Greene, T.; Hudgins, D.; Kwok, S.

    2004-01-01

    The AstroBiology Explorer (ABE) mission concept consists of a dedicated space observatory having a 60 cm class primary mirror cooled to T < 50 K equipped with medium resolution cross-dispersed spectrometers having cooled large format near- and mid-infrared detector arrays. Such a system would be capable of addressing outstanding problems in Astrochemistry and Astrophysics that are particularly relevant to Astrobiology and addressable via astronomical observation. The mission s observational program would make fundamental scientific progress in establishing the nature, distribution, formation and evolution of organic and other molecular materials in the following extra-terrestrial environments: 1) The Outflow of Dying Stars, 2) The Diffuse Interstellar Medium, 3) Dense Molecular Clouds, Star Formation Regions, and Young StellarPlanetary Systems, 4) Planets, Satellites, and Small Bodies within the Solar System, and 5 ) The Interstellar Media of Other Galaxies. ABE could make fundamental progress in all of these areas by conducting a 1 to 2 year mission to obtain a coordinated set of infrared spectroscopic observations over the 2.5-20 micron spectral range at a spectral resolution of R > 2000 of about 1500 objects including galaxies, stars, planetary nebulae, young stellar objects, and solar system objects. Keywords: Astrobiology, infrared, Explorers, interstellar organics, telescope, spectrometer, space, infrared detectors

  18. System Design and Implementation of the Detector Assembly of the Astro-H Soft X-Ray Spectrometer

    NASA Technical Reports Server (NTRS)

    Chiao, M. P.; Adams, J.; Goodwin, P.; Hobson, C.W.; Kelley, R. L.; Kilbourne, C. A.; McCammom, D.; McGuinness, D. S.; Moseley, S. J.; Porter, F. S.; hide

    2016-01-01

    The soft x-ray spectrometer (SXS) onboard Astro-H presents to the science community unprecedented capability (less than 7 eV at 6 keV) for high-resolution spectral measurements in the range of 0.5-12 keV to study extended celestial sources. At the heart of this SXS is the x-ray calorimeter spectrometer (XCS) where detectors (calorimeter array and anticoincidence detector) operate at 50 mK, the bias circuit operates at nominal 1.3 K, and the first stage amplifiers operateat 130 K, all within a nominal 20 cm envelope. The design of the detector assembly in this XCS originates from the Astro-E x-ray spectrometer (XRS) and lessons learned from Astro-E and Suzaku. After the production of our engineering model, additional changes were made in order to improve our flight assembly process for better reliability and overall performance. In this poster, we present the final design and implementation of the flight detector assembly, show comparison of parameters and performance to Suzakus XRS, and list susceptibilities to other subsystems as well as our lessons learned.

  19. Ground-based x-ray calibration of the Astro-H/Hitomi soft x-ray telescopes

    NASA Astrophysics Data System (ADS)

    Iizuka, Ryo; Hayashi, Takayuki; Maeda, Yoshitomo; Ishida, Manabu; Tomikawa, Kazuki; Sato, Toshiki; Kikuchi, Naomichi; Okajima, Takashi; Soong, Yang; Serlemitsos, Peter J.; Mori, Hideyuki; Izumiya, Takanori; Minami, Sari

    2018-01-01

    We present the summary of the on-ground calibration of two soft x-ray telescopes (SXT-I and SXT-S), developed by NASA's Goddard Space Flight Center (GSFC), onboard Astro-H/Hitomi. After the initial x-ray measurements with a diverging beam at the GSFC 100-m beamline, we performed the full calibration of the x-ray performance, using the 30-m x-ray beamline facility at the Institute of Space and Astronautical Science of Japan Aerospace Exploration Agency in Japan. We adopted a raster scan method with a narrow x-ray pencil beam with a divergence of ˜15″. The on-axis effective area (EA), half-power diameter, and vignetting function were measured at several energies between 1.5 and 17.5 keV. The detailed results appear in tables and figures in this paper. We measured and evaluated the performance of the SXT-S and the SXT-I with regard to the detector-limited field-of-view and the pixel size of the paired flight detector, i.e., SXS and the SXI, respectively. The primary items measured are the EA, image quality, and stray light for on-axis and off-axis sources. The accurate measurement of these parameters is vital to make the precise response function of the ASTRO-H SXTs. This paper presents the definitive results of the ground-based calibration of the ASTRO-H SXTs.

  20. Resolve Instrument on X-ray Astronomy Recovery Mission (XARM)

    NASA Astrophysics Data System (ADS)

    Ishisaki, Y.; Ezoe, Y.; Yamada, S.; Ichinohe, Y.; Fujimoto, R.; Takei, Y.; Yasuda, S.; Ishida, M.; Yamasaki, N. Y.; Maeda, Y.; Tsujimoto, M.; Iizuka, R.; Koyama, S.; Noda, H.; Tamagawa, T.; Sawada, M.; Sato, K.; Kitamoto, S.; Hoshino, A.; Brown, G. V.; Eckart, M. E.; Hayashi, T.; Kelley, R. L.; Kilbourne, C. A.; Leutenegger, M. A.; Mori, H.; Okajima, T.; Porter, F. S.; Soong, Y.; McCammon, D.; Szymkowiak, A. E.

    2018-04-01

    The X-ray Astronomy Recovery Mission (XARM) is a recovery mission of ASTRO-H/Hitomi, which is expected to be launched in Japanese Fiscal Year of 2020 at the earliest. The Resolve instrument on XARM consists of an array of 6 × 6 silicon-thermistor microcalorimeters cooled down to 50 mK and a high-throughput X-ray mirror assembly with the focal length of 5.6 m. Hitomi was launched into orbit in February 2016 and observed several celestial objects, although the operation of Hitomi was terminated in April 2016. The soft X-ray spectrometer (SXS) on Hitomi demonstrated high-resolution X-ray spectroscopy of 5 eV FWHM in orbit for most of the pixels. The Resolve instrument is planned to mostly be a copy of the Hitomi SXS and soft X-ray telescope designs, though several changes are planned based on the lessons learned from Hitomi. We report a brief summary of the SXS performance and the status of the Resolve instrument.

  1. Thermal design of the hard x-ray imager and the soft gamma-ray detector onboard ASTRO-H

    NASA Astrophysics Data System (ADS)

    Noda, Hirofumi; Nakazawa, Kazuhiro; Makishima, Kazuo; Iwata, Naoko; Ogawa, Hiroyuki; Ohta, Masayuki; Sato, Goro; Kawaharada, Madoka; Watanabe, Shin; Kokubun, Motohide; Takahashi, Tadayuki; Ohno, Masanori; Fukazawa, Yasushi; Tajima, Hiroyasu; Uchiyama, Hideki; Ito, Shuji; Fukuzawa, Keita

    2014-07-01

    The Hard X-ray Imager and the Soft Gamma-ray Detector, onboard the 6th Japanese X-ray satellite ASTRO-H, aim at unprecedentedly-sensitive observations in the 5-80 keV and 40-600 keV bands, respectively. Because their main sensors are composed of a number of semi-conductor devices, which need to be operated in a temperature of -20 to -15°C, heat generated in the sensors must be efficiently transported outwards by thermal conduction. For this purpose, we performed thermal design, with the following three steps. First, we additionally included thermally-conductive parts, copper poles and graphite sheets. Second, constructing a thermal mathematical model of the sensors, we estimated temperature distributions in thermal equilibria. Since the model had rather large uncertainties in contact thermal conductions, an accurate thermal dummy was constructed as our final step. Vacuum measurement with the dummy successfully reduced the conductance uncertainties. With these steps, we confirmed that our thermal design of the main sensors satisfies the temperature requirement.

  2. Japanese Next Solar Mission: SOLAR-C

    NASA Astrophysics Data System (ADS)

    Sakao, T.; Solar-C, W. G.

    2008-09-01

    We present introductory overview on the next Japanese solar mission, SOLAR-C, which has been envisaged following the success of Hinode (SOLAR-B) mission. Two plans, Plan A and Plan B, are under extensive study from science objectives as well as engineering point of view. Plan A aims to perform out-of-ecliptic observations for investigating, with helioseismic approach, internal structure and dynamo mechanisms of the Sun. It also explores polar regions where fast solar wind is believed to be originated. The baseline orbit for Plan A is a circular orbit of 1 AU distance from the Sun, with its inclination at around, or greater than, 40 degrees. Plan B pursues small-scale plasma processes and structures in the solar atmosphere which attract growing interest, following Hinode discoveries, for understanding fully dynamism and magnetic nature of the atmosphere. With Plan B, high-angular-resolution investigation of the entire solar atmosphere (from the photosphere to the corona, including their interface layers, i.e., chromosphere and transition region) is to be performed with enhanced spectroscopic and spectro-polarimetric capability as compared with Hinode, together with enhanced sensitivity towards ultra-violet wavelengths. There has been wide and evolving support for the SOLAR-C mission not only from solar physics community but also from related research areas in Japan. We request SOLAR-C to be launched in mid. 2010s. Following the highly-successful achievements of international collaboration for Yohkoh and Hinode, we strongly hope the SOLAR-C mission be realized under extensive collaboration with European and U.S. partners. Japanese SOLAR-C working group was officially approved by ISAS/JAXA in December 2007 for mission studies and promoting international collaboration. It is expected that a single mission plan is to be proposed after one year of investigation on Plan A and Plan B.

  3. Measuring the Heat Load on the Flight ASTRO-H Soft Xray Spectrometer Dewar

    NASA Technical Reports Server (NTRS)

    DiPirro, M.; Shirron, P.; Yoshida, S.; Kanao, K.; Tsunematsu, S.; Fujimoto, R.; Sneiderman, G.; Kimball, M.; Ezoe, Y.; Ishikawa, K.; hide

    2015-01-01

    The Soft Xray Spectrometer (SXS) instrument on-board the ASTRO-H X-ray mission is based on microcalorimeters operating at 50 mK. Low temperature is achieved by use of an adiabatic demagnetization refrigerator (ADR) cyclically operating up to a heat sink at either 1.2 K or 4.5 K. The 1.2 K heat sink is provided by a 40 liter superfluid helium dewar. The parasitic heat to the helium from supports, plumbing, wires, and radiation, and the cyclic heat dumped by the ADR operation determine the liquid helium lifetime. To measure this lifetime we have used various techniques to rapidly achieve thermal equilibrium and then measure the boil-off rate of the helium. We have measured a parasitic heat of 650 microwatts and a cyclic heat of 100 microwatts for a total of 750 microwatts. This closely matches the predicted heat load. Starting with a fill level at launch of more than 33 liters results in a lifetime of greater than 4 years for the liquid helium. The techniques and accuracy for this measurement will be explained in this paper.

  4. AstroCappella: Songs of the Universe

    NASA Astrophysics Data System (ADS)

    Boyd, Patricia T.; Smale, A. P.; Smale, K. M.

    2008-05-01

    The AstroCappella Project is a classroom-ready collection of upbeat pop songs, lesson plans, and background information, all rich in science content. It was developed as a collaboration between working research astronomers, educators, and an established contemporary vocal band, The Chromatics. A multimedia music CD, "AstroCappella 2.0", has been produced containing 13 astronomically correct songs with original lyrics and music. Song topics range from the Sun, Moon, planets and small bodies of the Solar System, through the Doppler shift, the nearest stars, and extra-solar planets, to radio and X-ray astronomy. The CD also contains extensive CD-ROM materials including science background information, curriculum notes, lesson plans and activities for each song, images, movies, and slide shows. The songs and accompanying information have been extensively field-tested, and align to the K-12 National Science Education Standards. The AstroCappella materials are in widespread use in classrooms and homes across the US, and are supplemented with frequent live performances and teacher workshops. Full information can be found at http://www.astrocappella.com. Since the release of AstroCappella 2.0, additional songs have been written for missions as diverse as Messenger ("Messenger to Mercury") and AIM ("Noctilucent Cloud"; with music video available on YouTube). Now, to commemorate IYA, and in collaboration with the Johannes Kepler Project, the Chromatics are continuing their mission to spread science through a cappella and a cappella through science by creating a new original song celebrating the discoveries of the telescope, from Galileo's first glimpse of mountains and craters on the moon to the detection of planets around nearby stars and the expansion of the Universe."

  5. Onboard photo:Astro-1 in Cargo Bay

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Onboard the Space Shuttle Orbiter Columbia (STS-35), the various components of the Astro-1 payload are seen backdropped against dark space. Parts of the Hopkins Ultraviolet Telescope (HUT), Ultraviolet Imaging Telescope (UIT), and the Wisconsin Ultraviolet Photo-Polarimetry Experiment (WUPPE) are visible on the Spacelab pallet. The Broad-Band X-Ray Telescope (BBXRT) is behind the pallet and is not visible in this scene. The smaller cylinder in the foreground is the igloo. The igloo was a pressurized container housing the Command Data Management System, that interfaced with the in-cabin controllers to control the Instrument Pointing System (IPS) and the telescopes. The Astro Observatory was designed to explore the universe by observing and measuring the ultraviolet radiation from celestial objects. Astronomical targets of observation selected for Astro missions included planets, stars, star clusters, galaxies, clusters of galaxies, quasars, remnants of exploded stars (supernovae), clouds of gas and dust (nebulae), and the interstellar medium. Managed by the Marshall Space Flight Center, the Astro-1 was launched aboard the Space Shuttle Orbiter Columbia (STS-35) on December 2, 1990.

  6. In-orbit performance of a helium dewar for the soft X-ray spectrometer onboard ASTRO-H

    NASA Astrophysics Data System (ADS)

    Yoshida, Seiji; Miyaoka, Mikio; Kanao, Ken'ichi; Tsunematsu, Shoji; Otsuka, Kiyomi; Hoshika, Shunji; Narasaki, Katsuhiro; Mitsuda, Kazuhisa; Yamasaki, Noriko; Takei, Yoh; Fujimoto, Ryuichi; Ezoe, Yuichiro; Sato, Yoichi; Okamoto, Atsushi; Noda, Hirofumi; DiPirro, Michael; Shirron, Peter

    2018-04-01

    ASTRO-H was an X-ray astronomy satellite that the Japan Aerospace Exploration Agency (JAXA) developed to study the evolution of the universe and physical phenomena yet to be discovered. The primary scientific instrument of ASTRO-H was the Soft X-ray Spectrometer (SXS). Its detectors were to be cooled to 50 m K using a complex cryogenic system with a multistage adiabatic demagnetization refrigerator (ADR) developed by the National Aeronautics and Space Administration (NASA), and a cryogenic system developed by Sumitomo Heavy Industries, Ltd. (SHI). SHI's cryogenic system was required to cool the ADR's heatsink to 1.3 K or less in orbit for three years or longer. To meet these requirements, SHI developed a hybrid cryogenic system consisting of a liquid helium tank, a 4 K Joule-Thomson cooler, and two two-stage Stirling coolers. ASTRO-H was launched from Tanegashima Space Center on February 17, 2016. The initial operation of the SXS cryogenic system in orbit was completed successfully. The cooling performance was as expected and could have exceeded the lifetime requirement of three years. This paper describes results of ground tests, results of top-off filling of superfluid liquid helium just before launch, and cooling performance in orbit.

  7. Astro Camp

    NASA Image and Video Library

    2012-06-12

    Each year, more than 400 Mississippi and out-of-state youths visit Stennis Space Center for weeklong Astro Camp activities. Astro Camp sessions are for children ages 7-12. The focus for 2012 Astro Camp participants was on 'What's Next for NASA! Moon, Mars, Asteroids and Beyond.'

  8. Payload missions integration

    NASA Technical Reports Server (NTRS)

    Mitchell, R. A. K.

    1983-01-01

    Highlights of the Payload Missions Integration Contract (PMIC) are summarized. Spacelab Missions no. 1 to 3, OSTA partial payloads, Astro-1 Mission, premission definition, and mission peculiar equipment support structure are addressed.

  9. Augmenting the Funding Sources for Space Science and the ASTRO-1 Space Telescope

    NASA Astrophysics Data System (ADS)

    Morse, Jon

    2015-08-01

    The BoldlyGo Institute was formed in 2013 to augment the planned space science portfolio through philanthropically funded robotic space missions, similar to how some U.S. medical institutes and ground-based telescopes are funded. I introduce BoldlyGo's two current projects: the SCIM mission to Mars and the ASTRO-1 space telescope. In particular, ASTRO-1 is a 1.8-meter off-axis (unobscured) ultraviolet-visible space observatory to be located in a Lagrange point or heliocentric orbit with a wide-field panchromatic camera, medium- and high-resolution spectrograph, and high-contrast imaging coronagraph and/or an accompanying starshade/occulter. It is intended for the post-Hubble Space Telescope era in the 2020s, enabling unique measurements of a broad range of celestial targets, while providing vital complementary capabilities to other ground- and space-based facilities such as the JWST, ALMA, WFIRST-AFTA, LSST, TESS, Euclid, and PLATO. The ASTRO-1 architecture simultaneously wields great scientific power while being technically viable and affordable. A wide variety of scientific programs can be accomplished, addressing topics across space astronomy, astrophysics, fundamental physics, and solar system science, as well as being technologically informative to future large-aperture programs. ASTRO-1 is intended to be a new-generation research facility serving a broad national and international community, as well as a vessel for impactful public engagement. Traditional institutional partnerships and consortia, such as are common with private ground-based observatories, may play a role in the support and governance of ASTRO-1; we are currently engaging interested international organizations. In addition to our planned open guest observer program and accessible data archive, we intend to provide a mechanism whereby individual scientists can buy in to a fraction of the gauranteed observing time. Our next step in ASTRO-1 development is to form the ASTRO-1 Requirements Team

  10. Onboard Photo:Astro-1 Ultraviolet Telescope in Cargo Bay

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Onboard the Space Shuttle Orbiter Columbia (STS-35), the various components of the Astro-1 payload are seen backdropped against a blue and white Earth. Parts of the Hopkins Ultraviolet Telescope (HUT), the Ultraviolet Imaging Telescope (UIT), and the Wisconsin Ultraviolet Photo-Polarimetry Experiment (WUPPE) are visible on the Spacelab pallet. The Broad-Band X-Ray Telescope (BBXRT) is behind the pallet and is not visible in this scene. The smaller cylinder in the foreground is the igloo. The igloo was a pressurized container housing the Command Data Management System, that interfaced with the in-cabin controllers to control the Instrument Pointing System (IPS) and the telescopes. The Astro Observatory was designed to explore the universe by observing and measuring the ultraviolet radiation from celestial objects. Astronomical targets of observation selected for Astro missions included planets, stars, star clusters, galaxies, clusters of galaxies, quasars, remnants of exploded stars (supernovae), clouds of gas and dust (nebulae), and the interstellar medium. Managed by the Marshall Space Flight Center, the Astro-1 was launched aboard the Space Shuttle Orbiter Columbia (STS-35) on December 2, 1990.

  11. Planning for future X-ray astronomy missions .

    NASA Astrophysics Data System (ADS)

    Urry, C. M.

    Space science has become an international business. Cutting-edge missions are too expensive and too complex for any one country to have the means and expertise to construct. The next big X-ray mission, Astro-H, led by Japan, has significant participation by Europe and the U.S. The two premier missions currently operating, Chandra and XMM-Newton, led by NASA and ESA, respectively, are thoroughly international. The science teams are international and the user community is International. It makes sense that planning for future X-ray astronomy missions -- and the eventual missions themselves -- be fully integrated on an international level.

  12. ASTRO-H CdTe detectors proton irradiation at PIF

    NASA Astrophysics Data System (ADS)

    Limousin, O.; Renaud, D.; Horeau, B.; Dubos, S.; Laurent, P.; Lebrun, F.; Chipaux, R.; Boatella Polo, C.; Marcinkowski, R.; Kawaharada, M.; Watanabe, S.; Ohta, M.; Sato, G.; Takahashi, T.

    2015-07-01

    ASTRO-H will be operated in a Low Earth Orbit with a 31° inclination at 550 km altitude, thus passing daily through the South Atlantic Anomaly radiation belt, a specially harsh environment where the detectors are suffering the effect of the interaction with trapped high energy protons. As CdTe detector performance might be affected by the irradiation, we investigate the effect of the accumulated proton fluence on their spectral response. To do so, we have characterized and irradiated representative samples of SGD and HXI detector under different conditions. The detectors in question, from ACRORAD, are single-pixels having a size of 2 mm by 2 mm and 750 μm thick. The Schottky contact is either made of an Indium or Aluminum for SGD and HXI respectively. We ran the irradiation test campaign at the Proton Irradiation Facility (PIF) at PSI, and ESA approved equipment to evaluate the radiation hardness of flight hardware. We simulated the proton flux expected on the sensors over the entire mission, and secondary neutrons flux due to primary proton interactions into the surrounding BGO active shielding. We eventually characterized the detector response evolution, emphasizing each detector spectral response as well as its stability by studying the so-called Polarization effect. The latter is provoking a spectral response degradation against time as a charge accumulation process occurs in Schottky type CdTe sensors. In this paper, we report on the test campaigns at PIF and will show up our experimental setup. We will pursue describing the irradiation conditions associated with our GEANT 4 predictions and finally, we report the main results of our campaigns concluding that the proton effect does not severely affect the CdTe response neither the detector stability while the secondary neutrons might be more active to reduce the performance on the long run.

  13. Dynamics of Galaxy Clusters and Expectations from Astro-H

    NASA Technical Reports Server (NTRS)

    Markevitch, Maxim

    2012-01-01

    Galaxy clusters span a range of dynamical states, from violent mergers -- the most energetic events in the Universe -- to systems near hydrostatic equilibrium that allow us to map their dark matter distribution using X-ray observations of the intracluster gas. Accurate knowledge of the cluster physics, and in particular, the physics of the hot intracluster gas, is required to realize the full potential of clusters as cosmological probes. So far, we have been studying the cluster dynamics indirectly, deducing merger geometries, cluster masses, etc., using X-ray brightness and gas temperature mapping. For the first time, the calorimeter onboard Astro-H will provide direct measurements of line-of-sight velocities and turbulent broadening in the intracluster gas, testing many of our key assumptions about clusters. This talk will summarize expectations for cluster dynamic studies with this new instrument.

  14. MIT-CSR XIS Project

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This report outlines the proposers' progress toward MIT's contribution to the X-Ray Imaging Spectrometer (XIS) experiment on the Japanese ASTRO-E mission. The report discusses electrical system design, mechanical system design, and ground support equipment.

  15. Astro Camp is a blast!

    NASA Image and Video Library

    2006-06-08

    An Astro Camp counselor and her campers perform a science experiment to learn what types of `fuel' will best propel their 'rockets.' Stennis Space Center's popular series of day camps have campers design, build and test model rockets based on the principles that would be used to build different types of rockets suitable for a mission to the moon or Mars. They learn details like how far they would travel, how long it would take, what supplies they would need and how to survive in that environment.

  16. Progress report on the Astro-H Soft X-Ray Spectrometer

    NASA Astrophysics Data System (ADS)

    Kelley, Richard L.; Mitsuda, Kazuhisa

    2016-04-01

    We describe the initial in-orbit operations and performance of the Astro-H Soft X-Ray Spectrometer (SXS). Astro-H, JAXA's sixth X-ray observatory, is scheduled for launch on February 12, 2016, from the Tanegashima Space Center in Japan abord an H-IIA rocket. The instrument is based on a 36-pixel array of microcalorimeters designed for high resolution over the 0.3-12 keV energy band at the focus of a high throughput, grazing-incidence x-ray mirror. The instrument is the result of a joint collaboration between the JAXA Institute of Space and Astronautical Science and many partners in Japan, and the NASA/Goddard Space Flight Center and collaborators in the US. The principal components of the spectrometer are the microcalorimeter detector system, a low-temperature anticoincidence detector, a 3-stage adiabatic demagnetization refrigerator (ADR) to maintain 50 mK operation under both cryogen and cryogen-free operation, a hybrid liquid helium/cryogen-free dewar with both Stirling and Joule-Thomson coolers, electronics for reading out the array, processing the x-ray data for spectroscopy, and operating the ADR and cryocoolers. The dewar is closed out by an aperture system with five thin-film filters designed to provide high x-ray transmission with low heat loads to the dewar and detector system, and prevent contamination from condensing on the filters. The instrument was designed to have better than 7 eV energy resolution, and was demonstrated to achieve 4-5 eV resolution across the array at the full spacecraft level of integration during extensive ground testing prior to launch. The overall cooling chain has been designed to provide a lifetime of at least 3 years in orbit, and continue to operate without liquid helium to provide redundancy and the longest operational lifetime for the instrument. In this presentation, we will describe the early phases of the SXS instrument in orbit and provide a sense of the astronomical results that can be expected. This presentation is

  17. FTS: Fourier transform spectrometer onboard ASTRO-F/FIS

    NASA Astrophysics Data System (ADS)

    Takahashi, Hidenori; Kawada, Mitsunobu; Murakami, Noriko; Ozawa, Keita; Shibai, Hiroshi; Nakagawa, Takao

    2003-03-01

    Far-Infrared Surveyor (FIS) is one of the two focal plane instruments of ASTRO-F which is a Japanese infrared astronomical satellite and is planned to launch in 2004. The FIS has spectroscopic capability by a Fourier transform spectrometer (FTS) covering 50-200cm-1 with spectral resolution of 0.2-0.33 cm-1 in addition to the primary purpose of FIS (an all-sky photometric survey). The Martin-Puplett interferometer is adopted as the method for spectroscopy in order to achieve high optical efficiency in a wide wavelength range. The most important issue of the FTS is the development of driving mechanism in order to scan a moving mirror with high optical performances. By the present we succeed to develop the driving mechanism satisfying a lot of limitations and requirements as a instrument onboard satellite. Furthermore the wire-grid polarizers are evaluated in optical performance, these are usable for polarized interferomter. We also measure FIR spectrum using Spectroscopy mode of FIS, and many absorption lines of H2O are detected on continuum spectrum of atmosphere. And the interferogram and spectrum are derived at low temperature (2K) that is practically used in space. The spectrum resembles expected one which are considered with optical components for flight model. The detection limit are estimated combining performances of optical components and detectors, the FISP has sufficient performance to archive objective sciences. FTS will provide a lot of astronomical information; determination of the SED in high-z objects detected by the survey observation of ASTRO-F, the redshift of such objects, and the physical conditions that are hard to be derived by optical/NIR-MIR observations, from FIR lines.

  18. On-Orbit Operation of the Adiabatic Demagnetization Refrigerator on the Astro-H/Hitomi Soft X-ray Spectrometer Instrument

    NASA Technical Reports Server (NTRS)

    Shirron, Peter; Kimball, Mark; James, Bryan; Muench, Theodore; Canavan, Edgar; DiPirro, Michael; Bialas, Thomas; Sneiderman, Gary; Boyce, Kevin; Kilbourne, Caroline; hide

    2016-01-01

    The Soft X-ray Spectrometer instrument on the Astro-H observatory contains a 6x6 array of x-ray microcalorimeters, which is cooled to 50 mK by an adiabatic demagnetization refrigerator (ADR). The ADR consists of three stages in order to provide stable detector cooling using either a 1.2 K superfluid helium bath or a 4.5 K Joule-Thomson (JT) cryocooler as its heat sink. When liquid helium is present, two of the ADRs stages are used to single-shot cool the detectors while rejecting heat to the helium. After the helium is depleted, all three stages are used to cool both the helium tank (to about 1.5 K) and the detectors (to 50 mK) using the JT cryocooler as its heat sink. The Astro-H observatory, renamed Hitomi after its successful launch in February 2016, carried approximately 36 liters of helium into orbit. On day 5, the helium had cooled sufficiently (1.4 K) to allow operation of the ADR. This paper describes the design, operation and on-orbit performance of the ADR.

  19. Current status of the CALET mission

    NASA Astrophysics Data System (ADS)

    Mori, Masaki

    2017-01-01

    The CALorimeteric Electron Telescope (CALET) is a Japanese-led international mission being developed as part of the utilization plan for the International Space Station (ISS). CALET was launched by an H-II B rocket utilizing the Japanese developed HTV (H-II Transfer Vehicle) in August 2015, and has been measuring high-energy electrons, cosmic rays as well as gamma rays above 10 GeV to about 10 TeV with high accuracy. In this paper we describe the current status of the CALET mission focused on gamma-ray observations.

  20. The Astro-H High Resolution Soft X-Ray Spectrometer

    NASA Technical Reports Server (NTRS)

    Kelley, Richard L.; Akamatsu, Hiroki; Azzarell, Phillip; Bialas, Tom; Boyce, Kevin R.; Brown, Gregory V.; Canavan, Edgar; Chiao, Meng P.; Costantini, Elisa; DiPirro, Michael J.; hide

    2016-01-01

    We present the overall design and performance of the Astro-H (Hitomi) Soft X-Ray Spectrometer (SXS). The instrument uses a 36-pixel array of x-ray microcalorimeters at the focus of a grazing-incidence x-ray mirror Soft X-Ray Telescope (SXT) for high-resolution spectroscopy of celestial x-ray sources. The instrument was designed to achieve an energy resolution better than 7 eV over the 0.3-12 keV energy range and operate for more than 3 years in orbit. The actual energy resolution of the instrument is 4-5 eV as demonstrated during extensive ground testing prior to launch and in orbit. The measured mass flow rate of the liquid helium cryogen and initial fill level at launch predict a lifetime of more than 4 years assuming steady mechanical cooler performance. Cryogen-free operation was successfully demonstrated prior to launch. The successful operation of the SXS in orbit, including the first observations of the velocity structure of the Perseus cluster of galaxies, demonstrates the viability and power of this technology as a tool for astrophysics.

  1. The Astro-H high resolution soft x-ray spectrometer

    NASA Astrophysics Data System (ADS)

    Kelley, Richard L.; Akamatsu, Hiroki; Azzarello, Phillipp; Bialas, Tom; Boyce, Kevin R.; Brown, Gregory V.; Canavan, Edgar; Chiao, Meng P.; Costantini, Elisa; DiPirro, Michael J.; Eckart, Megan E.; Ezoe, Yuichiro; Fujimoto, Ryuichi; Haas, Daniel; den Herder, Jan-Willem; Hoshino, Akio; Ishikawa, Kumi; Ishisaki, Yoshitaka; Iyomoto, Naoko; Kilbourne, Caroline A.; Kimball, Mark O.; Kitamoto, Shunji; Konami, Saori; Koyama, Shu; Leutenegger, Maurice A.; McCammon, Dan; Mitsuda, Kazuhisa; Mitsuishi, Ikuyuki; Moseley, Harvey; Murakami, Hiroshi; Murakami, Masahide; Noda, Hirofumi; Ogawa, Mina; Ohashi, Takaya; Okamoto, Atsushi; Ota, Naomi; Paltani, Stéphane; Porter, F. S.; Sakai, Kazuhiro; Sato, Kosuke; Sato, Yohichi; Sawada, Makoto; Seta, Hiromi; Shinozaki, Keisuke; Shirron, Peter J.; Sneiderman, Gary A.; Sugita, Hiroyuki; Szymkowiak, Andrew E.; Takei, Yoh; Tamagawa, Toru; Tashiro, Makoto; Terada, Yukikatsu; Tsujimoto, Masahiro; de Vries, Cor P.; Yamada, Shinya; Yamasaki, Noriko Y.; Yatsu, Yoichi

    2016-07-01

    We present the overall design and performance of the Astro-H (Hitomi) Soft X-Ray Spectrometer (SXS). The instrument uses a 36-pixel array of x-ray microcalorimeters at the focus of a grazing-incidence x-ray mirror Soft X-Ray Telescope (SXT) for high-resolution spectroscopy of celestial x-ray sources. The instrument was designed to achieve an energy resolution better than 7 eV over the 0.3-12 keV energy range and operate for more than 3 years in orbit. The actual energy resolution of the instrument is 4-5 eV as demonstrated during extensive ground testing prior to launch and in orbit. The measured mass flow rate of the liquid helium cryogen and initial fill level at launch predict a lifetime of more than 4 years assuming steady mechanical cooler performance. Cryogen-free operation was successfully demonstrated prior to launch. The successful operation of the SXS in orbit, including the first observations of the velocity structure of the Perseus cluster of galaxies, demonstrates the viability and power of this technology as a tool for astrophysics.

  2. Astro Camp Plus

    NASA Image and Video Library

    2006-06-19

    Stennis Space Center's new Astro Camp Plus camp kicked off June 19 for teens ages 13-15. The new camp delves more deeply into the science, math and technology concepts introduced in the center's popular Astro Camp series. Campers including Jasmyne White (left) and Dana Yingst, both of Slidell, La., learn how NASA uses 'podcasting' to broadcast video, and made their own podcasts.

  3. Astro Camp Plus

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Stennis Space Center's new Astro Camp Plus camp kicked off June 19 for teens ages 13-15. The new camp delves more deeply into the science, math and technology concepts introduced in the center's popular Astro Camp series. Campers including Jasmyne White (left) and Dana Yingst, both of Slidell, La., learn how NASA uses 'podcasting' to broadcast video, and made their own podcasts.

  4. Astro-E2 Magnesium Diboride High Current Leads

    NASA Technical Reports Server (NTRS)

    Panek, J. S.; Tuttle, J. G.; Riall, S.; Mustafi, S.; Gray, A.; Edmonds, R.; Marrero, V.

    2003-01-01

    The recent discovery of superconducting properties in MgB_2 and rapid development of small diameter steel-clad wires has opened up the possibility of enhancing the design of the baseline Astro-E2 high current lead assembly. Replacing YBCO filaments with MgB_2 wires and modifying the heat sink location can give much higher margins against quench from temperature oscillations of the 4 K heat sink, although wih some overall thermal penalty. The design and performance of a new lead assembly during flight qualification is discussed, with emphasis on thermal, structural, and electrical test results.

  5. Multi-Stage ADRs for Current and Future Astronomy Missions: Performance and Requirements for Cryogen-Free Operation

    NASA Technical Reports Server (NTRS)

    Shirron, Peter; Kimball, Mark; Vlahacos, Kosta

    2010-01-01

    The cooling requirements for current (e.g. Astro-H) and future (e.g. IXO and ASP) astronomy missions pose significant challenges for the sub-Kelvin Cooler. In particular, the use of large detector arrays increases the cooling power needed, and the variety of cryocoolers that can be used for pre-cooling greatly expands the range of temperatures at which the sub-Kelvin cooler can be designed to reject heat. In most cases, there is also a need for a stable higher temperature stage for cooling amplifiers or telescope components. NASA/GSFC is currently building a 3-stage ADR for the Astro-H mission, and is developing a 5-stage ADR suitable for IXO and ASP, as well as many other missions in the early planning stages. The architecture of these ADRs allows them to be adapted rather easily for different cooling requirements and to accommodate different cryocooler capabilities (operating temperature and cooling power). This paper will discuss the performance of these ADRs, which operate in both continuous, and single-shot cooling modes, and the minimum cryocooler capabilities needed to meet the requirements of future missions.

  6. ASTRO's core physics curriculum for radiation oncology residents.

    PubMed

    Klein, Eric E; Balter, James M; Chaney, Edward L; Gerbi, Bruce J; Hughes, Lesley

    2004-11-01

    In 2002, the Radiation Physics Committee of the American Society of Therapeutic Radiology and Oncology (ASTRO) appointed an Ad-hoc Committee on Physics Teaching to Medical Residents. The main initiative of the committee was to develop a core curriculum for physics education. Prior publications that have analyzed physics teaching have pointed to wide discrepancies among teaching programs. The committee was composed of physicists or physicians from various residency program based institutions. Simultaneously, members had associations with the American Association of Physicists in Medicine (AAPM), ASTRO, Association of Residents in Radiation Oncology (ARRO), American Board of Radiology (ABR), and the American College of Radiology (ACR). The latter two organizations' representatives were on the physics examination committees, as one of the main agendas was to provide a feedback loop between the examining organizations and ASTRO. The document resulted in a recommended 54-h course. Some of the subjects were based on American College of Graduate Medical Education (ACGME) requirements (particles, hyperthermia), whereas the majority of the subjects along with the appropriated hours per subject were devised and agreed upon by the committee. For each subject there are learning objectives and for each hour there is a detailed outline of material to be covered. Some of the required subjects/h are being taught in most institutions (i.e., Radiation Measurement and Calibration for 4 h), whereas some may be new subjects (4 h of Imaging for Radiation Oncology). The curriculum was completed and approved by the ASTRO Board in late 2003 and is slated for dissemination to the community in 2004. It is our hope that teaching physicists will adopt the recommended curriculum for their classes, and simultaneously that the ABR for its written physics examination and the ACR for its training examination will use the recommended curriculum as the basis for subject matter and depth of

  7. IPS guidestar selection for stellar mode (ASTRO)

    NASA Technical Reports Server (NTRS)

    Mullins, Larry; Wooten, Lewis

    1988-01-01

    This report describes how guide stars are selected for the Optical Sensor Package (OSP) for the Instrument Pointing System (IPS) when it is operating in the stellar mode on the ASTRO missions. It also describes how the objective loads are written and how the various roll angles are related; i.e., the celestial roll or position angle, the objective load roll angles, and the IPS gimbal angles. There is a brief description of how the IPS operates and its various modes of operation; i.e., IDOP, IDIN, and OSPCAL.

  8. Astro Tourism in Chile | CTIO

    Science.gov Websites

    Program PIA Program GO-FAAR Program Other Opportunities Tourism Visits to Tololo Astro tourism in Chile Tourism in Chile Information for travelers Visit Tololo Media Relations News Press Release Publications ‹› You are here CTIO Home » Outreach » Tourism » Astro Tourism in Chile Astro Tourism in

  9. Astro Camp 2000 Rocketry Exercise

    NASA Image and Video Library

    2000-06-23

    Children at Astro Camp at the John C. Stennis Space Center in Hancock County, Miss., launch rockets as one of their activities in the weeklong camp. Each week during the summer, approximately 30 children ages 9-12 from across Mississippi and Louisiana spend a week learning about space flight. Astro Camp Saturday offers a condensed version of Astro Camp on the third Saturday of each month from January through May 2001.

  10. A Broadband X-Ray Imaging Spectroscopy with High-Angular Resolution: the FORCE Mission

    NASA Technical Reports Server (NTRS)

    Mori, Koji; Tsuru, Takeshi Go; Nakazawac, Kazuhiro; Ueda, Yoshihiro; Okajima, Takashi; Murakami, Hiroshi; Awaki, Hisamitsu; Matsumoto, Hironori; Fukazawai, Yasushi; Tsunemi, Hiroshi; hide

    2016-01-01

    We are proposing FORCE (Focusing On Relativistic universe and Cosmic Evolution) as a future Japan-lead X-ray observatory to be launched in the mid 2020s. Hitomi (ASTRO-H) possesses a suite of sensitive instruments enabling the highest energy-resolution spectroscopy in soft X-ray band, a broadband X-ray imaging spectroscopy in soft and hard X-ray bands, and further high energy coverage up to soft gamma-ray band. FORCE is the direct successor to the broadband X-ray imaging spectroscopy aspect of Hitomi (ASTRO-H) with significantly higher angular resolution. The current design of FORCE defines energy band pass of 1-80 keV with angular resolution of <15" in half-power diameter, achieving a 10 times higher sensitivity above 10 keV compared to any previous missions with simultaneous soft X-ray coverage. Our primary scientific objective is to trace the cosmic formation history by searching for "missing black holes" in various mass-scales: "buried supermassive black holes (SMBHs)" (> 10(exp 4) Stellar Mass) residing in the center of galaxies in a cosmological distance, "intermediate-mass black holes" (10(exp 2)-(10(exp 4) Stellar Mass) acting as the possible seeds from which SMBHs grow, and "orphan stellar-mass black holes" (< 10(exp 2) Stellar Mass) without companion in our Galaxy. In addition to these missing BHs, hunting for the nature of relativistic particles at various astrophysical shocks is also in our scope, utilizing the broadband X-ray coverage with high angular-resolution. FORCE are going to open a new era in these fields. The satellite is proposed to be launched with the Epsilon vehicle that is a Japanese current solid-fuel rocket. FORCE carries three identical pairs of Super-mirror and wide-band X-ray detector. The focal length is currently planned to be 10 m. The silicon mirror with multi-layer coating is our primary choice to achieve lightweight, good angular optics. The detector is a descendant of hard X-ray imager onboard Hitomi (ASTRO-H) replacing its

  11. A broadband x-ray imaging spectroscopy with high-angular resolution: the FORCE mission

    NASA Astrophysics Data System (ADS)

    Mori, Koji; Tsuru, Takeshi Go; Nakazawa, Kazuhiro; Ueda, Yoshihiro; Okajima, Takashi; Murakami, Hiroshi; Awaki, Hisamitsu; Matsumoto, Hironori; Fukazawa, Yasushi; Tsunemi, Hiroshi; Takahashi, Tadayuki; Zhang, William W.

    2016-07-01

    We are proposing FORCE (Focusing On Relativistic universe and Cosmic Evolution) as a future Japan-lead Xray observatory to be launched in the mid 2020s. Hitomi (ASTRO-H) possesses a suite of sensitive instruments enabling the highest energy-resolution spectroscopy in soft X-ray band, a broadband X-ray imaging spectroscopy in soft and hard X-ray bands, and further high energy coverage up to soft gamma-ray band. FORCE is the direct successor to the broadband X-ray imaging spectroscopy aspect of Hitomi (ASTRO-H) with significantly higher angular resolution. The current design of FORCE defines energy band pass of 1-80 keV with angular resolution of < 15 in half-power diameter, achieving a 10 times higher sensitivity above 10 keV compared to any previous missions with simultaneous soft X-ray coverage. Our primary scientific objective is to trace the cosmic formation history by searching for "missing black holes" in various mass-scales: "buried supermassive black holes (SMBHs)" (> 104 M⊙) residing in the center of galaxies in a cosmological distance, "intermediate-mass black holes" (102-104 M⊙) acting as the possible seeds from which SMBHs grow, and "orphan stellar-mass black holes" (< 102 M⊙) without companion in our Galaxy. In addition to these missing BHs, hunting for the nature of relativistic particles at various astrophysical shocks is also in our scope, utilizing the broadband X-ray coverage with high angular-resolution. FORCE are going to open a new era in these fields. The satellite is proposed to be launched with the Epsilon vehicle that is a Japanese current solid-fuel rocket. FORCE carries three identical pairs of Super-mirror and wide-band X-ray detector. The focal length is currently planned to be 10 m. The silicon mirror with multi-layer coating is our primary choice to achieve lightweight, good angular optics. The detector is a descendant of hard X-ray imager onboard Hitomi (ASTRO-H) replacing its silicon strip detector with SOI-CMOS silicon pixel

  12. Astro STARS Camp

    NASA Image and Video Library

    2011-06-28

    Tom Nicolaides, an aerospace technologist in the Engineering & Test Directorate at Stennis Space Center, looks on as 2011 Astro STARS participants take turns gazing at the sun through a special telescope. The sun-gazing activity was part of the Astro STARS (Spaceflight, Technology, Astronomy & Robotics at Stennis) camp for 13-to-15-year-olds June 27 - July 1. The weeklong science and technology camp is held each year onsite at the rocket engine test facility.

  13. Astro Algebra [CD-ROM].

    ERIC Educational Resources Information Center

    1997

    Astro Algebra is one of six titles in the Mighty Math Series from Edmark, a comprehensive line of math software for students from kindergarten through ninth grade. Many of the activities in Astro Algebra contain a unique technology that uses the computer to help students make the connection between concrete and abstract mathematics. This software…

  14. Seeing in a new light: Astro-1 teacher's guide with activities

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A teacher's guide that concentrates on the electromagnetic spectrum is presented. The subject was chosen because it is part of the middle school curriculum and because an understanding of the different ranges of energy is crucial to an understanding of the high energy astronomy performed by the Astro-1 telescopes to be carried on the Space Shuttle's first astrophysics mission. Various learning activities are outlined.

  15. Modeling the spectral response for the soft X-ray imager onboard the ASTRO-H satellite

    NASA Astrophysics Data System (ADS)

    Inoue, Shota; Hayashida, Kiyoshi; Katada, Shuhei; Nakajima, Hiroshi; Nagino, Ryo; Anabuki, Naohisa; Tsunemi, Hiroshi; Tsuru, Takeshi Go; Tanaka, Takaaki; Uchida, Hiroyuki; Nobukawa, Masayoshi; Nobukawa, Kumiko Kawabata; Washino, Ryosaku; Mori, Koji; Isoda, Eri; Sakata, Miho; Kohmura, Takayoshi; Tamasawa, Koki; Tanno, Shoma; Yoshino, Yuma; Konno, Takahiro; Ueda, Shutaro; ASTRO-H/SXI Team

    2016-09-01

    The ASTRO-H satellite is the 6th Japanese X-ray astronomical observatory to be launched in early 2016. The satellite carries four kinds of detectors, and one of them is an X-ray CCD camera, the soft X-ray imager (SXI), installed on the focal plane of an X-ray telescope. The SXI contains four CCD chips, each with an imaging area of 31 mm × 31 mm , arrayed in mosaic, covering the field-of-view of 38‧ ×38‧ , the widest ever flown in orbit. The CCDs are a P-channel back-illuminated (BI) type with a depletion layer thickness of 200 μ m . We operate the CCDs in a photon counting mode in which the position and energy of each photon are measured in the energy band of 0.4-12 keV. To evaluate the X-ray spectra obtained with the SXI, an accurate calibration of its response function is essential. For this purpose, we performed calibration experiments at Kyoto and Photon Factory of KEK, each with different X-ray sources with various X-ray energies. We fit the obtained spectra with 5 components; primary peak, secondary peak, constant tail, Si escape and Si fluorescence, and then model their energy dependence using physics-based or empirical formulae. Since this is the first adoption of P-channel BI-type CCDs on an X-ray astronomical satellite, we need to take special care on the constant tail component which is originated in partial charge collection. It is found that we need to assume a trapping layer at the incident surface of the CCD and implement it in the response model. In addition, the Si fluorescence component of the SXI response is significantly weak, compared with those of front-illuminated type CCDs.

  16. STS-35 MS Hoffman operates ASTRO-1 MPC on OV-102's aft flight deck

    NASA Image and Video Library

    1990-12-10

    STS035-12-015 (2-11 Dec 1990) --- Astronaut Jeffrey A. Hoffman, STS 35 mission specialist, uses a manual pointing controller (MPC) for the Astro-1 mission's Instrument Pointing System (IPS). By using the MPC, Hoffman and other crewmembers on Columbia's aft flight deck, were able to command the IPS, located in the cargo bay, to record astronomical data. Hoffman is serving the "Blue" shift which complemented the currently sleeping "Red" shift of crewmembers as the mission collected scientific data on a 24-hour basis. The scene was photographed with a 35mm camera.

  17. Calibration sources and filters of the soft x-ray spectrometer instrument on the Hitomi spacecraft

    NASA Astrophysics Data System (ADS)

    de Vries, Cor P.; Haas, Daniel; Yamasaki, Noriko Y.; Herder, Jan-Willem den; Paltani, Stephane; Kilbourne, Caroline; Tsujimoto, Masahiro; Eckart, Megan E.; Leutenegger, Maurice A.; Costantini, Elisa; Dercksen, Johannes P. C.; Dubbeldam, Luc; Frericks, Martin; Laubert, Phillip P.; van Loon, Sander; Lowes, Paul; McCalden, Alec J.; Porter, Frederick S.; Ruijter, Jos; Wolfs, Rob

    2018-01-01

    The soft x-ray spectrometer was designed to operate onboard the Japanese Hitomi (ASTRO-H) satellite. In the beam of this instrument, there was a filter wheel containing x-ray filters and active calibration sources. This paper describes this filter wheel. We show the purpose of the filters and the preflight calibrations performed. In addition, we present the calibration source design and measured performance. Finally, we conclude with prospects for future missions.

  18. NASA Night at Houston Astros, pregame ceremonies

    NASA Image and Video Library

    2005-09-13

    Images from the pregame ceremonies during NASA Night at the Houston Astros game, taken at Minute Maid Park, Houston. View of Center Director Jefferson Howell, Astros owner Drayton McLane, and STS-114 crewmembers Eileen Collins, James Kelly and Charles Camarda, with Collins holding an Astros jersey reading Discovery 114.

  19. Astro tourism: Astro Izery project

    NASA Astrophysics Data System (ADS)

    Mrozek, Tomasz; Kołomański, Sylwester; Żakowicz, Grzegorz; Kornafel, Stanisław; Czarnecki, Tomasz L.; Suchan, Pavel; Kamiński, Zbigniew

    2015-03-01

    The Astro Izery project is carried by several institutions from Poland and Czech Republic. Its aim is to educate and inform tourists, who visit the Izery Mountains, about astronomy and light pollution. The project consists of two activities: permanent (sundials, planetary path etc.) and periodic (meetings, workshops). After five years the project is in good health and will gain more elements in next years.

  20. Performance of the XRS/ASTRO-E engineering model ADR.

    NASA Astrophysics Data System (ADS)

    Serlemitsos, A. T.; Sansebastian, M.; Kunes, E. S.; Behr, J.

    1999-04-01

    NASA's Goddard Space Flight Center (GSFC) has developed an X-ray Spectrometer (XRS) to be flown aboard ASTRO-E, in cooperation with the Japanese Institute of Space and Astronomical Science (ISAS). XRS uses an array of 32 microcalorimeters capable of detecting X-rays in the energy range of 0.3 - 10 keV with a resolution of 12 eV. In order to accomplish this, the detectors must be operated at a temperature of 0.065K. In space, an Adiabatic Demagnetization Refrigerator (ADR) must be used to cool the detectors to that temperature. A spaceworthy ADR has been developed at GSFC to be used in the XRS. Originally, the ADR was developed to be flown aboard the Advanced X-ray Astrophysics Facility (AXAF). The allowable average thermal load of the ADR to the LHe dewar was changed from 2.6 mW to 270 μW. Time constraints did not allow a complete redesign of the ADR. The original shape and size were left unchanged and the new specifications were met by streamlining the heat switch and lengthening the salt pill magnetization cycle time. For a LHe bath temperature of 1.3K the gas gap heat switch presently used has an on/off ratio of 22000 and a parasitic heat leak of 2.9 μW/K.

  1. Astro4Girls and Their Families: Sharing Science via Public Libraries

    NASA Astrophysics Data System (ADS)

    Sharma, M.; Smith, D.; Eisenhamer, B.; Ryer, H.; Dussault, M.; Braswell, E.; Cominsky, L.; Apple, N.; Della, T.; Whiffen, P.; Harman, P.; Mitchell, S.; Eyermann, S.; Brandehoff, S.; Dominiak, J.

    2013-04-01

    The “Astro4Girls and Their Families” pilot program offered a variety of informal science events at nine public libraries nationwide in conjunction with Women's History Month (March) 2012. The goals were to engage girls and their families in science, by helping them discover the Universe for themselves and celebrating the contribution of women to astronomy and science. We offered a wide range of activities, from using robotic telescopes for “Do-It-Yourself (DIY) astrophotography” to making edible black holes, to exploring the infrared Universe. Our main target audience was middle-school aged girls, but students of all ages, their families and the public were welcome to participate in many of the activities. Five NASA Science Mission Directorate-funded Astrophysics Education and Public Outreach teams partnered with public libraries in this pilot program; each worked with 1 or 2 libraries to offer a total of about 15 events reaching over 300 people in both urban and rural areas. The American Library Association Public Programs Office identified participating libraries and facilitated their participation through its role in the SMD-funded “Visions of the Universe: Four Centuries of Discovery” traveling exhibit. The NASA Astrophysics Science Education and Public Outreach Forum coordinated the collaboration. The website is: http://www.ala.org/programming/astro4girls. This poster outlines the details of planning and implementing the 2012 pilot program, its successes, and lessons learned. The collaborators would like to engage the EPO community in a discussion of how to sustain Astro4Girls and engage additional public libraries nationwide during future Women's History Months.

  2. Wide-field direct CCD observations supporting the Astro-1 Space Shuttle mission's Ultraviolet Imaging Telescope

    NASA Technical Reports Server (NTRS)

    Hintzen, Paul; Angione, Ron; Talbert, Freddie; Cheng, K.-P.; Smith, Eric; Stecher, Theodore P.

    1993-01-01

    Wide field direct CCD observations are being obtained to support and complement the vacuum-ultraviolet (VUV) images provided by Astro's Ultraviolet Imaging Telescope (UIT) during a Space Shuttle flight in December 1990. Because of the wide variety of projects addressed by UIT, the fields observed include (1) galactic supernova remnants such as the Cygnus Loop and globular clusters such as Omega Cen and M79; (2) the Magellanic Clouds, M33, M81, and other galaxies in the Local Group; and (3) rich clusters of galaxies, principally the Perseus cluster and Abell 1367. Ground-based observations have been obtained for virtually all of the Astro-1 UIT fields. The optical images allow identification of individual UV sources in each field and provide the long baseline in wavelength necessary for accurate analysis of UV-bright sources. To facilitate use of our optical images for analysis of UIT data and other projects, we plan to archive them, with the UIT images, at the National Space Science Data Center (NSSDC), where they will be universally accessible via anonymous FTP. The UIT, one of three telescopes comprising the Astro spacecraft, is a 38-cm f/9 Ritchey-Chretien telescope on which high quantum efficiency, solar-blind image tubes are used to record VUV images on photographic film. Five filters with passbands centered between 1250A and 2500A provide both VUV colors and a measurement of extinction via the 2200A dust feature. The resulting calibrated VUV pictures are 40 arcminutes in diameter at 2.5 arcseconds resolution. The capabilities of UIT, therefore, complement HST's WFPC: the latter has 40 times greater collecting area, while UIT's usable field has 170 times WFPC's field area.

  3. AstroBus On-Board Software

    NASA Astrophysics Data System (ADS)

    Biscarros, D.; Cantenot, C.; Séronie-Vivien, J.; Schmidt, G.

    AstroBus on-board software is a customisable software for ERC32 based avionics implementing standard ESA Packet Utilization Standard functions. Its architecture based on generic design templates and relying on a library providing standard PUS TC, TM and event services enhances its reusability on various programs. Finally, AstroBus on-board software development and validation environment is based on last generation tools providing an optimised customisation environment.

  4. NASDA President Communicates With Japanese Crew Member Aboard the STS-47 Spacelab-J Mission

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The science laboratory, Spacelab-J (SL-J), flown aboard the STS-47 flight was a joint venture between NASA and the National Space Development Agency of Japan (NASDA) utilizing a manned Spacelab module. The mission conducted 24 materials science and 20 life science experiments, of which 35 were sponsored by NASDA, 7 by NASA, and two collaborative efforts. Materials science investigations covered such fields as biotechnology, electronic materials, fluid dynamics and transport phenomena, glasses and ceramics, metals and alloys, and acceleration measurements. Life sciences included experiments on human health, cell separation and biology, developmental biology, animal and human physiology and behavior, space radiation, and biological rhythms. Test subjects included the crew, Japanese koi fish (carp), cultured animal and plant cells, chicken embryos, fruit flies, fungi and plant seeds, and frogs and frog eggs. From the Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC), NASDA President, Mr. Yamano, speaks to Payload Specialist Mamoru Mohri, a Japanese crew member aboard the STS-47 Spacelab J mission.

  5. The Detector Subsystem for the SXS Instrument on the Astro-H Observatory

    NASA Technical Reports Server (NTRS)

    Porter, Frederick; Adams, J. S.; Brown, G. V.; Chervenak, J. A.; Chiao, M. P.; Fujimoto, R.; Ishisaki, Y.; Kelley, R. L.; Kilbourne, C. A.; McCammon, D.; hide

    2011-01-01

    The Soft X-ray Spectrometer (SXS) instrument on the Astro-H observatory is based on a 36 pixel x-ray calorimeter array cooled to 50 mK in a sophisticated spaceflight cryostat. The SXS is a true spatial-spectral instrument, where each spatially discrete pixel functions as a high-resolution spectrometer. Here we discuss the SXS detector subsystem that includes the detector array, the anticoincidence detector, the first stage amplifiers, the thermal and mechanical staging of the detector, and the cryogenic bias electronics. The design of the SXS detector subsystem has significant heritage from the Suzaku/XRS instrument but has some important modifications that increase performance margins and simplify the focal plane assembly. Notable improvements include x-ray absorbers with significantly lower heat capacity, improved load resistors, improved thermometry, and a decreased sensitivity to thermal radiation. These modifications have yielded an energy resolution of 3.5-4.0 eV FWHM at 6 keV for representative devices in the laboratory, giving considerable margin against the 7 eV instrument requirement. We expect similar performance in flight

  6. The Hitomi (ASTRO-H) Soft X-ray Telescope (SXT): current status of calibration

    NASA Astrophysics Data System (ADS)

    Maeda, Yoshitomo; Kikuchi, Naomichi; Kurashima, Sho; Ishida, Manabu; Iizuka, Ryo; Hayashi, Takayuki; Okajima, Takashi; Matsumoto, Hironori; Mitsuishi, Ikuyuki; Saji, Shigetaka; Sato, Toshiki; Tachibana, Sasagu; Mori, Hideyuki; Christensen, Finn; Brejnholt, Nicolai; Nitta, Kiyofumi; Uruga, Tomoya

    2017-08-01

    We report the atomic scattering factor in the 11.2-15.4 keV for the ASTRO-H Soft X-ray Telescope (SXT)9 obtained in the ground based measurements. The large effective area of the SXT covers above 10 keV. In fact, the flight data show the spectra of the celestical objects in the hard X-ray band. In order to model the area, the reflectivity measurements in the 11.2-15.4 keV band with the energy pitch of 0.4 - 0.7 eV were made in the synchrotron beamline Spring-8 BL01B1. We obtained atomic scattering factors f1 and f2 by the curve fitting to the reflectivities of our witness sample. The edges associated with the gold' s L-I, II, and III transitions are identified, of which the depths are found to be roughly 60% shallower than those expected from the Henke's atomic scattering factor.

  7. Ultra-Flexible Thermal Bus for Use in the Astro-H Adiabatic Demagnetization Refrigerator

    NASA Technical Reports Server (NTRS)

    Kimball, Mark O.; Shirron, Peter J.

    2015-01-01

    The adiabatic demagnetization refrigerator (ADR) developed for the Astro-H Soft-X-ray Spectrometer (SXS) is a multi-stage solid-state cooler. It is capable of holding the SXS detector array at 0.050 K for greater than 24 hours with a recycle time of less than one hour. This quick recycle time relies upon high-conductivity thermal straps to couple the individual stages to a pair of heat switches without imposing a lateral load on the paramagnetic salt pills. To accomplish this we construct thermal straps using a technique of diffusion bonding together the ends of high-purity copper straps leaving the length between as individual foils. A thermal bus created this way has a thermal conductivity comparable to a solid strap of the equivalent thickness but with much-increased flexibility. The technique for selecting the base material, machining, cleaning, forming into final shape, and finally bonding together individual foils will be discussed along with examples of complete straps in various geometries.

  8. AstroBiology Explorer (ABE) MIDEX mission concept

    NASA Astrophysics Data System (ADS)

    Ennico, Kimberly A.; Sandford, Scott; Cox, Sylvia; Ellis, Benton; Gallagher, Dennis J.; Gautier, Nick; Greene, Thomas P.; McCreight, Craig R.; Mills, Gary; Purcell, William R.

    2002-02-01

    The Astrobiology Explorer (ABE) is a MIDEX mission concept under study at NASA's Ames Research Center in collaboration with Ball Aerospace & Technologies, Corp. ABE will conduct IR spectroscopic observations to address important problems in astrobiology, astrochemistry, and astrophysics. The core observational program would make fundamental scientific progress in understanding the distribution, identity, and evolution of ices and organic matter in dense molecular clouds, young forming stellar systems, stellar outflows, the general diffuse ISM, HII regions, Solar System bodies, and external galaxies. The ABE instrument concept includes a 0.6 m aperture Cassegrain telescope and two moderate resolution (R equals 2000-3000) spectrographs covering the 2.5-16 micron spectral region. Large format (1024x1024 pixel or larger) IR detector arrays and bandpass filters will allow each spectrograph to cover an entire octave of spectral range or more per exposure without any moving parts. The telescope will be cooled below 50 K by a cryogenic dewar shielded by a sunshade. The detectors will be cooled to ~8K. The optimum orbital configuration for achieving the scientific objectives of the ABE mission is a low background, 1 AU Earth driftaway orbit requiring a Delta II launch vehicle. This configuration provides a low thermal background and allows adequate communications bandwidth and good access to the entire sky over the ~1-2 year mission lifetime.

  9. AstroPAL: A Mentoring Program for Grad Students

    NASA Astrophysics Data System (ADS)

    Cabrera, Nicole

    2016-01-01

    The Astronomy Peer Advising Leaders program (AstroPAL) provides guidance for incoming grad students from a team of student volunteers who have passed their 2nd year Qualifier Exam. The purpose is to pair first years with a mentor who can help them through some of the stresses or difficulties that come with being a new grad student. AstroPALs and mentees meet privately about once a month in a casual setting to talk about how they're adjusting to the new surroundings, how they're handling the workload, etc. New students can join AstroPAL at any time during their first two years, and can stop receiving guidance once they feel comfortable in the program. Mentees will be assigned an AstroPAL based on preference and availability, and an AstroPAL Liason will always be in place to facilitate mentor reassignments or other issues if necessary. After passing the 2nd year Qualifier Exam, mentees are eligible to serve as mentors to incoming students.

  10. The Si/CdTe semiconductor camera of the ASTRO-H Hard X-ray Imager (HXI)

    NASA Astrophysics Data System (ADS)

    Sato, Goro; Hagino, Kouichi; Watanabe, Shin; Genba, Kei; Harayama, Atsushi; Kanematsu, Hironori; Kataoka, Jun; Katsuragawa, Miho; Kawaharada, Madoka; Kobayashi, Shogo; Kokubun, Motohide; Kuroda, Yoshikatsu; Makishima, Kazuo; Masukawa, Kazunori; Mimura, Taketo; Miyake, Katsuma; Murakami, Hiroaki; Nakano, Toshio; Nakazawa, Kazuhiro; Noda, Hirofumi; Odaka, Hirokazu; Onishi, Mitsunobu; Saito, Shinya; Sato, Rie; Sato, Tamotsu; Tajima, Hiroyasu; Takahashi, Hiromitsu; Takahashi, Tadayuki; Takeda, Shin`ichiro; Yuasa, Takayuki

    2016-09-01

    The Hard X-ray Imager (HXI) is one of the instruments onboard the ASTRO-H mission [1-4] to be launched in early 2016. The HXI is the focal plane detector of the hard X-ray reflecting telescope that covers an energy range from 5 to 80 keV. It will execute observations of astronomical objects with a sensitivity for point sources as faint as 1/100,000 of the Crab nebula at > 10 keV. The HXI camera - the imaging part of the HXI - is realized by a hybrid semiconductor detector system that consists of silicon (Si) and cadmium telluride (CdTe) semiconductor detectors. Here, we present the final design of the HXI camera and report on the development of the flight model. The camera is composed of four layers of Double-sided Silicon Strip Detectors (DSSDs) and one layer of CdTe Double-sided Strip Detector (CdTe-DSD), each with an imaging area of 32 mm×32 mm. The strip pitch of the Si and CdTe sensors is 250 μm, and the signals from all 1280 strips are processed by 40 Application Specified Integrated Circuits (ASICs) developed for the HXI. The five layers of sensors are vertically stacked with a 4 mm spacing to increase the detection efficiency. The thickness of the sensors is 0.5 mm for the Si, and 0.75 mm for the CdTe. In this configuration, soft X-ray photons will be absorbed in the Si part, while hard X-ray photons will go through the Si part and will be detected in the CdTe part. The design of the sensor trays, peripheral circuits, power connections, and readout schemes are also described. The flight models of the HXI camera have been manufactured, tested and installed in the HXI instrument and then on the satellite.

  11. AstroTech 21. Volume 1: Missions.

    DTIC Science & Technology

    1993-03-26

    and evolution, and the sun and other solar system bodies . It will thus complement die capabilities of other NASA missions, such as HST and SIRTF, and...the line of sight - be nearly perfectly isolated from the motions of the rest of the aircraft. Current Status: Rotational isolation will be...types of bearings or isolators. The telescope’s gross elevation motion will be actuated by a spur gear, 11 3/19/93 and its fine motion by three

  12. Astro Camp

    NASA Image and Video Library

    2012-06-12

    Each year, more than 400 Mississippi and out-of-state youths visit Stennis Space Center for weeklong Astro Camp activities. In 2012, campers investigated the science behind 21st century space travel, particularly related to the International Space Station and how astronauts live and work aboard the orbiting space laboratory.

  13. AstroGrid: the UK's Virtual Observatory Initiative

    NASA Astrophysics Data System (ADS)

    Mann, Robert G.; Astrogrid Consortium; Lawrence, Andy; Davenhall, Clive; Mann, Bob; McMahon, Richard; Irwin, Mike; Walton, Nic; Rixon, Guy; Watson, Mike; Osborne, Julian; Page, Clive; Allan, Peter; Giaretta, David; Perry, Chris; Pike, Dave; Sherman, John; Murtagh, Fionn; Harra, Louise; Bentley, Bob; Mason, Keith; Garrington, Simon

    AstroGrid is the UK's Virtual Observatory (VO) initiative. It brings together the principal astronomical data centres in the UK, and has been funded to the tune of ˜pounds 5M over the next three years, via PPARC, as part of the UK e--science programme. Its twin goals are the provision of the infrastructure and tools for the federation and exploitation of large astronomical (X-ray to radio), solar and space plasma physics datasets, and the delivery of federations of current datasets for its user communities to exploit using those tools. Whilst AstroGrid's work will be centred on existing and future (e.g. VISTA) UK datasets, it will seek solutions to generic VO problems and will contribute to the developing international virtual observatory framework: AstroGrid is a member of the EU-funded Astrophysical Virtual Observatory project, has close links to a second EU Grid initiative, the European Grid of Solar Observations (EGSO), and will seek an active role in the development of the common standards on which the international virtual observatory will rely. In this paper we shall primarily describe the concrete plans for AstroGrid's one-year Phase A study, which will centre on: (i) the definition of detailed science requirements through community consultation; (ii) the undertaking of a ``functionality market survey" to test the utility of existing technologies for the VO; and (iii) a pilot programme of database federations, each addressing different aspects of the general database federation problem. Further information on AstroGrid can be found at AstroGrid .

  14. KENNEDY SPACE CENTER, FLA. - STS-114 Mission Specialist Soichi Noguchi, who is with the Japanese Aerospace and Exploration Agency, looks at the inside of the Japanese Experiment Module (JEM) in the Space Station Processing Facility. He and other crew members are at KSC becoming familiar with Shuttle and mission equipment. The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

    NASA Image and Video Library

    2004-03-05

    KENNEDY SPACE CENTER, FLA. - STS-114 Mission Specialist Soichi Noguchi, who is with the Japanese Aerospace and Exploration Agency, looks at the inside of the Japanese Experiment Module (JEM) in the Space Station Processing Facility. He and other crew members are at KSC becoming familiar with Shuttle and mission equipment. The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

  15. Ground Calibration of the Astro-H (Hitomi) Soft X-Ray Spectrometer

    NASA Technical Reports Server (NTRS)

    Eckart, M. E.; Adams, J. S.; Boyce, K. R.; Brown, G. V.; Chiao, Meng P.; Fujimoto, R. J.; Haas, D.; Den Herder, J. W.; Ishisaki, Y.; Kelley, R. L.; hide

    2016-01-01

    The Astro-H (Hitomi) Soft X-ray Spectrometer (SXS) was a pioneering imaging x-ray spectrometer with 5 eV energy resolution at 6 keV. The instrument used a microcalorimeter array at the focus of a high-throughput soft x-ray telescope to enable high-resolution non-dispersive spectroscopy in the soft x-ray waveband (0.3-12 keV). We present the suite of ground calibration measurements acquired from 2012-2015, including characterization of the detector system, anti-coincidence detector, optical blocking filters, and filter-wheel filters. The calibration of the 36-pixel silicon thermistor microcalorimeter array includes parameterizations of the energy gain scale and line spread function for each event grade over a range of instrument operating conditions, as well as quantum efficiency measurements. The x-ray transmission of the set of five Al/polyimide thin-film optical blocking filters mounted inside the SXS dewar has been modeled based on measurements at synchrotron beamlines, including with high spectral resolution at the C, N, O, and Al K-edges. In addition, we present the x-ray transmission of the dewar gate valve and of the filters mounted on the SXS filter wheel (external to the dewar), including beryllium, polyimide, and neutral density filters.

  16. In-flight performance of pulse-processing system of the ASTRO-H/Hitomi soft x-ray spectrometer

    NASA Astrophysics Data System (ADS)

    Ishisaki, Yoshitaka; Yamada, Shinya; Seta, Hiromi; Tashiro, Makoto S.; Takeda, Sawako; Terada, Yukikatsu; Kato, Yuka; Tsujimoto, Masahiro; Koyama, Shu; Mitsuda, Kazuhisa; Sawada, Makoto; Boyce, Kevin R.; Chiao, Meng P.; Watanabe, Tomomi; Leutenegger, Maurice A.; Eckart, Megan E.; Porter, Frederick Scott; Kilbourne, Caroline Anne

    2018-01-01

    We summarize results of the initial in-orbit performance of the pulse shape processor (PSP) of the soft x-ray spectrometer instrument onboard ASTRO-H (Hitomi). Event formats, kind of telemetry, and the pulse-processing parameters are described, and the parameter settings in orbit are listed. The PSP was powered-on 2 days after launch, and the event threshold was lowered in orbit. The PSP worked fine in orbit, and there was neither memory error nor SpaceWire communication error until the break-up of spacecraft. Time assignment, electrical crosstalk, and the event screening criteria are studied. It is confirmed that the event processing rate at 100% central processing unit load is ˜200 c / s / array, compliant with the requirement on the PSP.

  17. Astro Chile | CTIO

    Science.gov Websites

    Program PIA Program GO-FAAR Program Other Opportunities Tourism Visits to Tololo Astro tourism in Chile Tourism in Chile Information for travelers Visit Tololo Media Relations News Press Release Publications

  18. STS-72 Mission Highlights Resource Tape

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The flight crew of the STS-72 Space Shuttle Orbiter Endeavour Cmdr. Brian Duffy, Pilot Brent W. Jett, and Mission Specialists; Leroy Chiao, Daniel T. Barry, Winston E. Scott, and Koichi Wakata (NASDA) present an overview of their mission, whose primary objective is the retrieval of two research satellites. The major activities of the mission will include retrieval of the Japanese Space Flyer Unit (SFU), which was launched aboard a Japanese H-2 rocket to conduct a variety of microgravity experiments. In addition, the STS-72 crew will deploy the AST-Flyer, a satellite, that will fly free of the Shuttle for about 50 hours. Four experiments on the science platform will operate autonomously before the satellite is retrieved by Endeavour's robot arm. Three of Endeavour's astronauts will conduct a pair of spacewalks during the mission to test hardware and tools that will be used in the assembly of the Space Station. Video footage includes the following: prelaunch and launch activities; the crew eating breakfast; shuttle launch; retrieval of the Japanese Space Flyer Unit (SFU); suit-up and EVA-1; EVA-2; crew members performing various physical exercises; various earth views; and the night landing of the shuttle at KSC.

  19. Comprehensive planning of data archive in Japanese planetary missions

    NASA Astrophysics Data System (ADS)

    Yamamoto, Yukio; Shinohara, Iku; Hoshino, Hirokazu; Tateno, Naoki; Hareyama, Makoto; Okada, Naoki; Ebisawa, Ken

    Comprehensive planning of data archive in Japanese planetary missions Japan Aerospace Exploration Agency (JAXA) provides HAYABUSA and KAGUYA data as planetary data archives. These data archives, however, were prepared independently. Therefore the inconsistency of data format has occurred, and the knowledge of data archiving activity is not inherited. Recently, the discussion of comprehensive planning of data archive has started to prepare up-coming planetary missions, which indicates the comprehensive plan of data archive is required in several steps. The framework of the comprehensive plan is divided into four items: Preparation, Evaluation, Preservation, and Service. 1. PREPARATION FRAMEWORK Data is classified into several types: raw data, level-0, 1, 2 processing data, ancillary data, and etc. The task of mission data preparation is responsible for instrument teams, but preparations beside mission data and support of data management are essential to make unified conventions and formats over instruments in a mission, and over missions. 2. EVALUATION FRAMEWORK There are two meanings of evaluation: format and quality. The format evaluation is often discussed in the preparation framework. The data quality evaluation which is often called quality assurance (QA) or quality control (QC) must be performed by third party apart from preparation teams. An instrument team has the initiative for the preparation itself, and the third-party group is organized to evaluate the instrument team's activity. 3. PRESERVATION FRAMEWORK The main topic of this framework is document management, archiving structure, and simple access method. The mission produces many documents in the process of the development. Instrument de-velopment is no exception. During long-term development of a mission, many documents are obsoleted and updated repeatedly. A smart system will help instrument team to reduce some troubles of document management and archiving task. JAXA attempts to follow PDS manners

  20. Vibration Isolation System for Cryocoolers of Soft X-Ray Spectrometer (SXS) Onboard ASTRO-H (Hitomi)

    NASA Technical Reports Server (NTRS)

    Takei, Yoh; Yasuda, Susumu; Ishimura, Kosei; Iwata, Naoko; Okamoto, Atsushi; Sato, Yoichi; Ogawa, Mina; Sawada, Makoto; Kawano, Taro; Obara, Shingo; hide

    2016-01-01

    Soft X-ray Spectrometer (SXS) onboard ASTRO-H (named Hitomi after launch) is a micro-calorimeter-type spectrometer, installed in a dewar to be cooled at 50 mK. The energy resolution of the SXS engineering model suffered from micro-vibration from cryocoolers mounted on the dewar. This is mitigated for the flight model by introducing vibration isolation systems between the cryocoolers and the dewar. The detector performance of the flight model was verified before launch of the spacecraft in both ambient condition and thermal-vac condition, showing no detectable degradation in energy resolution. The in-orbit performance was also consistent with that on ground, indicating that the cryocoolers were not damaged by launch environment. The design and performance of the vibration isolation system along with the mechanism of how the micro-vibration could degrade the cryogenic detector is shown.

  1. Astro Camp Counselors

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Barbara Marino (left), Stennis Space Center education technology specialist, shows Astro Camp Counselor Beverly Fitzsimmons a LEGO model during a teambuilding exercise May 29 at SSC's North Gate computer lab as a part of the counselors' `new hire' orientation.

  2. Astro Camp Counselors

    NASA Image and Video Library

    2007-06-08

    Barbara Marino (left), Stennis Space Center education technology specialist, shows Astro Camp Counselor Beverly Fitzsimmons a LEGO model during a teambuilding exercise May 29 at SSC's North Gate computer lab as a part of the counselors' `new hire' orientation.

  3. Historical Review of Astro-Geodetic Observations in Serbia

    NASA Astrophysics Data System (ADS)

    Ogrizovic, V.; Delcev, S.; Vasilic, V.; Gucevic, J.

    2008-10-01

    Astro-geodetic determinations of vertical deflections in Serbia began during the first years of 20th century. The first field works were led by S. Bo\\vsković. After the 2nd World War, Military Geographic Institute, Department of Geodesy from the Faculty of Civil Engineering, and Federal Geodetic Directorate continued the determinations, needed for reductions of terrestrial geodetic measurements and the astro-geodetic geoid determination. Last years improvements of the astro-geodetic methods are carried out in the area of implementing modern measurement equipment and technologies.

  4. Project ASTRO-Tucson: An Educational Outreach Program For All Seasons

    NASA Astrophysics Data System (ADS)

    Walker, C. E.; Pompea, S. M.; Wilson, R.

    2002-12-01

    Project ASTRO-Tucson represents a flexible program that is broad in content coverage and has utility for a diverse educational audience. As such, Project ASTRO forms the core of the National Optical Astronomy Observatory's successful regional outreach program. The program is aligned with the National Science Education Standards, appeals to different teaching and learning styles and can be adapted for space, staff, and money constraints at individual schools. ASTRO is broad in its astronomy content coverage and also addresses the scientific process, best practices and pedagogy, student misconceptions, and authentic assessment issues. In Tucson it has been used successfully with elementary, middle and high school students of different ethnic backgrounds, as well as with handicap-challenged and under-served students. ASTRO-Tucson is one of 13 sites nationally that have collectively reached over 100,000 students in the last 6 years. The program's core element is the partnering of professional and amateur astronomers with K-12 teachers and community educators who want to enrich their astronomy and science teaching. The partnerships are extended through a training workshop, hands-on activities, effective educational materials, follow-up workshops, continued staff support, and connections to community resources. In turn, the interest generated by Project ASTRO has fostered new programs such as Family ASTRO (just begun in Tucson), which invites families to evening or weekend family events doing fun astronomy activities together. We will describe some of the lessons learned from the Project ASTRO and Family ASTRO programs in Tucson and discuss efforts to jump-start and localize a Project ASTRO-type program in Chile at Cerro Tololo Inter-American Observatory.

  5. Cryogen free cooling of ASTRO-H SXS Helium Dewar from 300 K to 4 K

    NASA Astrophysics Data System (ADS)

    Kanao, Ken'ichi; Yoshida, Seiji; Miyaoka, Mikio; Tsunematsu, Shoji; Otsuka, Kiyomi; Hoshika, Shunji; Narasaki, Katsuhiro; Mitsuda, Kazuhisa; Yamasaki, Noriko; Takei, Yoh; Fujimoto, Ryuji; Sato, Yoichi; Okamoto, Atsushi; Noda, Hirofumi; DiPirro, Michel J.; Shirron, Peter J.

    2017-12-01

    Soft X-ray Spectrometer instrument (SXS) is one of the primary scientific instruments of ASTRO-H. SXS has a cold detector that is cooled to 50 mK by using a multi-stage Adiabatic Demagnetization Refrigerator (ADR). SXS Dewar containing ADR provides 1.3 K heat sink by using liquid helium in nominal operation. After liquid helium is dried up, 4 K heat sink is provided by using mechanical coolers. Both nominal operation and cryogen free operation were successfully demonstrated. This paper describes the test result of cryogen free operation and cool-down performance from room temperature by using only mechanical coolers without liquid helium. The coolers on the Dewar cooled down cold mass from around 300 K to 4 K with 260 W electric power in 40 days. Cold mass is 35 kg in 4 K area including the helium tank, ADR and detector assembly.

  6. The Astro-Blaster.

    ERIC Educational Resources Information Center

    Mancuso, Richard V.; Long, Kevin R.

    1995-01-01

    Presents the Astro-Blaster as a method of the laws of conservation of momentum and energy during the creation of a supernova. Several elastic balls are aligned for a drop, followed by multiple collisions which result in the top ball reaching tremendous heights relative to the drop height. (JRH)

  7. Porous plug phase separator and superfluid film flow suppression system for the soft x-ray spectrometer onboard ASTRO-H

    NASA Astrophysics Data System (ADS)

    Ezoe, Yuichiro; Ishikawa, Kumi; Mitsuishi, Ikuyuki; Ohashi, Takaya; Mitsuda, Kazuhisa; Fujimoto, Ryuichi; Murakami, Masahide; Kanao, Kenichi; Yoshida, Seiji; Tsunematsu, Shoji; DiPirro, Michael; Shirron, Peter

    2016-07-01

    Suppression of super fluid helium flow is critical for the Soft X-ray Spectrometer onboard ASTRO-H (Hitomi). In nominal operation, a small helium gas flow of 30 μg/s must be safely vented and a super fluid film flow must be sufficiently small <2 μg/s. To achieve a life time of the liquid helium, a porous plug phase separator and a film flow suppression system composed of an orifice, a heat exchanger, and knife edge devices are employed. In this paper, design, on-ground testing results and in-orbit performance of the porous plug and the film flow suppression system are described.

  8. AstroCappella: Songs of the Universe

    NASA Astrophysics Data System (ADS)

    Boyd, P. T.; Smale, A. P.; Smale, K. M.

    2008-11-01

    The AstroCappella Project is a classroom-ready collection of upbeat pop songs, lesson plans, and background information, all rich in science content. It was developed as a collaboration between working research astronomers, educators, and a contemporary vocal band, The Chromatics. A multimedia music CD, ``AstroCappella 2.0,'' has been produced containing 13 astronomically correct songs with original lyrics and music. Song topics range from the Sun, Moon, planets and small bodies of the Solar System, through the Doppler shift, the nearest stars, and extra-solar planets, to radio and X-ray astronomy. The CD also contains extensive CD-ROM materials including science background information, curriculum notes, lesson plans and activities for each song, images, movies, and slide shows. The songs and accompanying information have been extensively field-tested, and align to the K--12 National Science Education Standards. The AstroCappella materials are in widespread use in classrooms and homes across the U.S., and are supplemented with frequent live performances and teacher workshops.

  9. Thermodynamic Performance of the 3-Stage ADR for the Astro-H Soft X-Ray Spectrometer Instrument

    NASA Technical Reports Server (NTRS)

    Shirron, Peter J.; Kimball, Mark O.; James, Bryan L.; Muench, Theodore; DiPirro, Michael J.; Bialas, Thomas G.; Sneiderman, Gary A.; Porter, Frederick S.; Kelley, Richard L.

    2015-01-01

    The Soft X-ray Spectrometer (SXS) instrument[1] on Astro-H[2] will use a 3-stage ADR[3] to cool the microcalorimeter array to 50 mK. In the primary operating mode, two stages of the ADR cool the detectors using superfluid helium at =1.20 K as the heat sink[4]. In the secondary mode, which is activated when the liquid helium is depleted, the ADR uses a 4.5 K Joule-Thomson cooler as its heat sink. In this mode, all three stages operate together to continuously cool the (empty) helium tank and singleshot cool the detectors. The flight instrument - dewar, ADR, detectors and electronics - were integrated in 2014 and have since undergone extensive performance testing. This paper presents a thermodynamic analysis of the ADR's operation, including cooling capacity, heat rejection to the heat sinks, and various measures of efficiency.

  10. Strategy of Planetary Data Archives in Japanese Missions for Planetary Data System

    NASA Astrophysics Data System (ADS)

    Yamamoto, Y.; Ishihara, Y.; Murakami, S. Y.

    2017-12-01

    To preserve data acquired by Japanese planetary explorations for a long time, we need a data archiving strategy in a form suitable for resources. Planetary Data System(PDS) developed by NASA is an excellent system for saving data over a long period. Especially for the current version 4 (PDS4), it is possible to create a data archive with high completeness using information technology. Historically, the Japanese planetary missions have archived data by scientists in their ways, but in the past decade, JAXA has been aiming to conform data to PDS considering long term preservation. Hayabusa, Akatsuki are archived in PDS3. Kaguya(SELENE) data have been newly converted from the original format to PDS3. Hayabusa2 and BepiColombo, and future planetary explorations will release data in PDS4. The cooperation of engineers who are familiar with information technology is indispensable to create data archives for scientists. In addition, it is essential to have experience, information sharing, and a system to support it. There is a challenge in Japan about the system.

  11. Data Requirement (DR) MA-03: Payload missions integration. [Spacelab payloads

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Project management and payload integration requirements definition activities are reported. Mission peculiar equipment; systems integration; ground operations analysis and requirement definition; safety and quality assurance; and support systems development are examined for payloads planned for the following missions: EOM-1; SL-2; Sl-3 Astro-1; MSL-2; EASE/ACCESS; MPESS; and the middeck ADSF flight.

  12. Vibration isolation system for cryocoolers of soft x-ray spectrometer on-board ASTRO-H (Hitomi)

    NASA Astrophysics Data System (ADS)

    Takei, Yoh; Yasuda, Susumu; Ishimura, Kosei; Iwata, Naoko; Okamoto, Atsushi; Sato, Yoichi; Ogawa, Mina; Sawada, Makoto; Kawano, Taro; Obara, Shingo; Natsukari, Chikara; Wada, Atsushi; Yamada, Shinya; Fujimoto, Ryuichi; Kokubun, Motohide; Yamasaki, Noriko Y.; Sugita, Hiroyuki; Minesugi, Kenji; Nakamura, Yasuo; Mitsuda, Kazuhisa; Takahashi, Tadayuki; Yoshida, Seiji; Tsunematsu, Shoji; Kanao, Kenichi; Narasaki, Katsuhiro; Otsuka, Kiyomi; Scott Porter, F.; Kilbourne, Caroline A.; Chiao, Meng P.; Eckart, Megan E.; Sneiderman, Gary A.; Pontius, James T.; McCammon, Dan; Wilke, Paul; Basile, John

    2018-01-01

    The soft x-ray spectrometer (SXS) onboard ASTRO-H (named Hitomi after launch) is a microcalorimeter-type spectrometer, installed in a dewar to be cooled at 50 mK. The energy resolution of the SXS engineering model suffered from microvibration from cryocoolers mounted on the dewar. This is mitigated for the flight model (FM) by introducing vibration isolation systems between the cryocoolers and the dewar. The detector performance of the FM was verified before launch of the spacecraft in both ambient condition and thermal-vacuum condition, showing no detectable degradation in energy resolution. The in-orbit detector spectral performance and cryocooler cooling performance were also consistent with that on ground, indicating that the cryocoolers were not damaged by launch environment. The design and performance of the vibration isolation system along with the mechanism of how the microvibration could degrade the cryogenic detector is shown. Lessons learned from the development to mitigate unexpected issues are also described.

  13. AstroML: Python-powered Machine Learning for Astronomy

    NASA Astrophysics Data System (ADS)

    Vander Plas, Jake; Connolly, A. J.; Ivezic, Z.

    2014-01-01

    As astronomical data sets grow in size and complexity, automated machine learning and data mining methods are becoming an increasingly fundamental component of research in the field. The astroML project (http://astroML.org) provides a common repository for practical examples of the data mining and machine learning tools used and developed by astronomical researchers, written in Python. The astroML module contains a host of general-purpose data analysis and machine learning routines, loaders for openly-available astronomical datasets, and fast implementations of specific computational methods often used in astronomy and astrophysics. The associated website features hundreds of examples of these routines being used for analysis of real astronomical datasets, while the associated textbook provides a curriculum resource for graduate-level courses focusing on practical statistics, machine learning, and data mining approaches within Astronomical research. This poster will highlight several of the more powerful and unique examples of analysis performed with astroML, all of which can be reproduced in their entirety on any computer with the proper packages installed.

  14. Developing Resource Guides for Astro 101 Instructors, as a Higher Education Community Collaboration from the NASA Astrophysics SEPOF

    NASA Astrophysics Data System (ADS)

    Schultz, Gregory R.; Fraknoi, A.; Smith, D.; Manning, J.

    2012-01-01

    The NASA/SMD-funded Astrophysics SEPOF (Science Education & Public Outreach Forum) has been organizing EPO "community collaborations” as part of its coordination efforts with missions and EPO programs within NASA Astrophysics. One of the community collaborations that emerged has been focusing on higher education, with a particular emphasis on introductory astronomy courses ("Astro 101"), and how NASA EPO programs and materials can help serve the needs of these courses’ instructors. One of the consequent efforts that has begun is the compiling and development of topical Resource Guides for Astro 101 instructors, with the initial subject tackled being cosmology. This is an area in basic astronomy where rapid progress is being made, older textbooks are quickly out of date, and ideas are challenging for many students, and even instructors! We have had informal conversations so far with about a dozen instructors, divided among universities, liberal-arts colleges, and 2-year community colleges. We have also gathered feedback regarding suggested cosmology resources from the EPO community served by the NASA Astrophysics Forum. And we have undertaken an independent search for Astro 101-suitable curriculum materials, from NASA and other sources, and identified a useful set of such materials, in print and on the Web. Results from this investigation will be shared, along with our project's initial Cosmology Resource Guide, and plans for follow-up guides. Feedback is solicited from Astro 101 instructors, resource developers, and EPO professionals.

  15. Development and verification of signal processing system of avalanche photo diode for the active shields onboard ASTRO-H

    NASA Astrophysics Data System (ADS)

    Ohno, M.; Kawano, T.; Edahiro, I.; Shirakawa, H.; Ohashi, N.; Okada, C.; Habata, S.; Katsuta, J.; Tanaka, Y.; Takahashi, H.; Mizuno, T.; Fukazawa, Y.; Murakami, H.; Kobayashi, S.; Miyake, K.; Ono, K.; Kato, Y.; Furuta, Y.; Murota, Y.; Okuda, K.; Wada, Y.; Nakazawa, K.; Mimura, T.; Kataoka, J.; Ichinohe, Y.; Uchida, Y.; Katsuragawa, M.; Yoneda, H.; Sato, G.; Sato, R.; Kawaharada, M.; Harayama, A.; Odaka, H.; Hayashi, K.; Ohta, M.; Watanabe, S.; Kokubun, M.; Takahashi, T.; Takeda, S.; Kinoshita, M.; Yamaoka, K.; Tajima, H.; Yatsu, Y.; Uchiyama, H.; Saito, S.; Yuasa, T.; Makishima, K.; ASTRO-H HXI/SGD Team

    2016-09-01

    The hard X-ray Imager and Soft Gamma-ray Detector onboard ASTRO-H demonstrate high sensitivity to hard X-ray (5-80 keV) and soft gamma-rays (60-600 keV), respectively. To reduce the background, both instruments are actively shielded by large, thick Bismuth Germanate scintillators. We have developed the signal processing system of the avalanche photodiode in the BGO active shields and have demonstrated its effectiveness after assembly in the flight model of the HXI/SGD sensor and after integration into the satellite. The energy threshold achieved is about 150 keV and anti-coincidence efficiency for cosmic-ray events is almost 100%. Installed in the BGO active shield, the developed signal processing system successfully reduces the room background level of the main detector.

  16. AstroMadrid: Astrophysics and technological developments in Comunidad de Madrid

    NASA Astrophysics Data System (ADS)

    Mas-Hesse, J. M.

    2011-11-01

    AstroMadrid is a network constituted by different research groups in the Comunidad de Madrid area, with the objective of coordinating the activities related to the development of astronomical instrumentation in the various centres. AstroMadrid is a multidisciplinar team which benefits from the synergies provided by the different participating groups, optimizing our capabilities to develop instrumentation, and minimizing the problems related to the geographical dispersion within our region. AstroMadrid is also participated by several aerospace industries, which complement the capabilities and facilities available in the research centres. In addition to optimizing the development of instrumentation, AstroMadrid plays an essential role in the formation of new engineers and scientists, by actively contributing to some Master degree courses organized by different Universities in Madrid.

  17. Songs of the Universe - The AstroCappella Project

    NASA Astrophysics Data System (ADS)

    Boyd, P. T.; Smale, K. M.; Smale, A. P.

    2004-12-01

    The AstroCappella Project is a classroom-ready collection of upbeat pop songs, lesson plans, and background information, all rich in science content. It was developed as a collaboration between working research astronomers, educators, and a contemporary vocal band. A multimedia music CD ("AstroCappella 2.0") has been produced containing 13 astronomically correct songs with original lyrics and music. Song topics range from the Sun, Moon, planets and small bodies of the Solar System, through the Doppler shift, the nearest stars, and extra-solar planets, to radio astronomy, X-ray astronomy, and the Hubble Space Telescope and Swift astronomy satellites. The CD also contains extensive CD-ROM materials including science background information, curriculum notes, lesson plans and activities for each song, images, movies, and slide shows. The songs and accompanying information have been extensively field-tested, and align to the K-12 National Science Education Standards. The AstroCappella materials are in widespread use in classrooms and homes across the US, and are supplemented with frequent live performances and teacher workshops. We describe here the history, content, and educational strategy behind the AstroCappella Project, and the plans for its future development.

  18. Implementation Options for the PROPEL Electrodynamic Tether Demonstration Mission

    NASA Technical Reports Server (NTRS)

    Bilen, Sven G.; Johnson, Les; Gilchrist, Brian E.; Hoyt, Robert P.; Elder, Craig H.; Fuhrhop, Keith P.; Scadera, Michael P.; Stone, Nobie H.

    2014-01-01

    The PROPEL flight mission concept will demonstrate the safe use of an electrodynamic tether for generating thrust. PROPEL is being designed to be a versatile electrodynamic-tether system for multiple end users and to be flexible with respect to platform. As such, several implementation options are being explored, including a comprehensive mission design for PROPEL with a mission duration of six months; a space demonstration mission concept design with configuration of a pair of tethered satellites, one of which is the Japanese H-II Transfer Vehicle; and an ESPA-based system. We report here on these possible implementation options for PROPEL. electrodynamic tether; PROPEL demonstration mission; propellantless propulsion

  19. Performance of the Three-Stage ADR that Provides Cooling of the Soft X-Ray Spectrometer Aboard Astro-H

    NASA Technical Reports Server (NTRS)

    Kimball, Mark 0.; Shirron, Peter J.

    2011-01-01

    The requirements levied upon the cooling system for the soft X-ray spectrometer (SXS) aboard the Astro-H satellite are demanding: Provide an operating temperature of 0.050 degrees Kelvin for a minimum of 24 hours, recycle in less than 2 hours (less than 1 hour in some cases), produce a dipole moment of less than 10 amperes per square meter at the detector location, and do all this with a mass less than 15 kilograms. This is further complicated by the availability of both a 1.3 degrees Kelvin helium bath and a 4.5 degrees Kelvin JT (Joule-Thomson) cooler to recycle the refrigerator. Here we detail the performance of the adiabatic demagnetization refrigerator (ADR) built specifically for SXS that is capable of meeting, and often significantly exceeding, the requirements placed upon it.

  20. Thermodynamic performance of the 3-stage ADR for the Astro-H Soft-X-ray Spectrometer instrument

    NASA Astrophysics Data System (ADS)

    Shirron, Peter J.; Kimball, Mark O.; James, Bryan L.; Muench, Theodore; DiPirro, Michael J.; Bialas, Thomas G.; Sneiderman, Gary A.; Porter, Frederick S.; Kelley, Richard L.

    2016-03-01

    The Soft X-ray Spectrometer (SXS) instrument (Mitsuda et al., 2010) [1] on Astro-H (Takahashi et al., 2010) [2] will use a 3-stage ADR (Shirron et al., 2012) to cool the microcalorimeter array to 50 mK. In the primary operating mode, two stages of the ADR cool the detectors using superfluid helium at ⩽1.20 K as the heat sink (Fujimoto et al., 2010). In the secondary mode, which is activated when the liquid helium is depleted, the ADR uses a 4.5 K Joule-Thomson cooler as its heat sink. In this mode, all three stages operate together to continuously cool the (empty) helium tank and single-shot cool the detectors. The flight instrument - dewar, ADR, detectors and electronics - were integrated in 2014 and have since undergone extensive performance testing. This paper presents a thermodynamic analysis of the ADR's operation, including cooling capacity, heat rejection to the heat sinks, and various measures of efficiency.

  1. Atomic Scattering Factor of the ASTRO-H (Hitomi) SXT Reflector Around the Gold's L Edges

    NASA Technical Reports Server (NTRS)

    Kikuchi, Naomichi; Kurashima, Sho; Ishida, Manabu; Iizuka, Ryo; Maeda, Yoshitomo; Hayashi, Takayuki; Okajima, Takashi; Matsumoto, Hironori; Mitsubishi, Ikuyuki; Saji, Shigetaka

    2016-01-01

    The atomic scattering factor in the energy range of 11.2 - 15.4 keV for the ASTRO-H Soft X-ray Telescope (SXT) is reported. The large effective area of the SXT makes use of photon spectra above 10 keV viable, unlike most other X-ray satellites with total-reflection mirror optics. Presence of gold's L-edges in the energy band is a major issue, as it complicates the function of the effective area. In order to model the area, the reflectivity measurements in the 11.2 - 15.4 keV band with the energy pitch of 0.4 - 0.7 eV were made in the synchrotron beam-line Spring-8 BL01B1. We obtained atomic scattering factors f1 and f2 by the curve fitting to the reflectivities of our witness sample. The edges associated with the L-I, II, and III transitions are identified, of which the depths are found to be roughly 60 shallower than those expected from the Henkes atomic scattering factor.

  2. AstroBetter: A Blog and Wiki for Professional Astronomers

    NASA Technical Reports Server (NTRS)

    Rigby, Jane

    2011-01-01

    AstroBetter.com is a multi-contributor blog and wiki website designed for information sharing among professional astronomers. The goal of the site is to increase the productivity of astronomers by creating a centralized location for tips and tools of our multifaceted trade. Our content includes topics related to data reduction and analysis, general computing, writing papers and proposals, giving talks, teaching, career planning, productivity, organization, and diversity and equity in science and education. While we have several contributors, the site is intended to be community driven and we encourage everyone to publish to the wiki, submit guest posts, suggest post ideas, and to comment on blog entries. One of our primary goals is to consolidate and reduce the transient nature of the astronomy community's collective knowledge base by having an active wiki. Currently, the most common way to share astro-centric tools and tips that are not appropriate for a published paper, is to put them on an individual's website. However, the average astronomer's website will have at least four different addresses over the course of their career and only the site owner can edit the content. As a result, information on personal websites goes stale very quickly and deal links to such sites abound. It is our hope that community maintained wikis, such as the one hosted on AstroBetter, will gradually replace the personal website. In this poster we introduce the contributors to AstroBetter, show statistics about our current readership, give excerpts of some of our most popular posts and wiki entries, and show how anyone can add or edit content on the wiki. The goal of this poster is to spread the work about AstroBetter and increase our community of readers and wiki editors, because together, we can AstroBetter.

  3. AstroGrid-D: Grid technology for astronomical science

    NASA Astrophysics Data System (ADS)

    Enke, Harry; Steinmetz, Matthias; Adorf, Hans-Martin; Beck-Ratzka, Alexander; Breitling, Frank; Brüsemeister, Thomas; Carlson, Arthur; Ensslin, Torsten; Högqvist, Mikael; Nickelt, Iliya; Radke, Thomas; Reinefeld, Alexander; Reiser, Angelika; Scholl, Tobias; Spurzem, Rainer; Steinacker, Jürgen; Voges, Wolfgang; Wambsganß, Joachim; White, Steve

    2011-02-01

    We present status and results of AstroGrid-D, a joint effort of astrophysicists and computer scientists to employ grid technology for scientific applications. AstroGrid-D provides access to a network of distributed machines with a set of commands as well as software interfaces. It allows simple use of computer and storage facilities and to schedule or monitor compute tasks and data management. It is based on the Globus Toolkit middleware (GT4). Chapter 1 describes the context which led to the demand for advanced software solutions in Astrophysics, and we state the goals of the project. We then present characteristic astrophysical applications that have been implemented on AstroGrid-D in chapter 2. We describe simulations of different complexity, compute-intensive calculations running on multiple sites (Section 2.1), and advanced applications for specific scientific purposes (Section 2.2), such as a connection to robotic telescopes (Section 2.2.3). We can show from these examples how grid execution improves e.g. the scientific workflow. Chapter 3 explains the software tools and services that we adapted or newly developed. Section 3.1 is focused on the administrative aspects of the infrastructure, to manage users and monitor activity. Section 3.2 characterises the central components of our architecture: The AstroGrid-D information service to collect and store metadata, a file management system, the data management system, and a job manager for automatic submission of compute tasks. We summarise the successfully established infrastructure in chapter 4, concluding with our future plans to establish AstroGrid-D as a platform of modern e-Astronomy.

  4. Introducing AstroGen: the Astronomy Genealogy Project

    NASA Astrophysics Data System (ADS)

    Tenn, Joseph S.

    2016-12-01

    The Astronomy Genealogy Project (AstroGen), a project of the Historical Astronomy Division of the American Astronomical Society (AAS), will soon appear on the AAS website. Ultimately, it will list the world's astronomers with their highest degrees, theses for those who wrote them, academic advisors (supervisors), universities, and links to the astronomers or their obituaries, their theses when online, and more. At present the AstroGen team is working on those who earned doctorates with astronomy-related theses. We show what can be learned already, with just ten countries essentially completed.

  5. The Astro-E/XRS Blocking Filter Calibration

    NASA Technical Reports Server (NTRS)

    Audley, Michael D.; Arnaud, Keith A.; Gendreau, Keith C.; Boyce, Kevin R.; Fleetwood, Charles M.; Kelley, Richard L.; Keski-Kuha, Ritva A.; Porter, F. Scott; Stahle, Caroline K.; Szymkowiak, Andrew E.

    1999-01-01

    We describe the transmission calibration of the Astro-E XRS blocking filters. The XRS instrument has five aluminized polyimide blocking filters. These filters are located at thermal stages ranging from 200 K to 60 mK. They are each about 1000 A thick. XRS will have high energy resolution which will enable it to see some of the extended fine structure around the oxygen and aluminum K edges of these filters. Thus, we are conducting a high spectral resolution calibration of the filters near these energies to resolve out extended flue structure and absorption lines.

  6. AstroBlend: Visualization package for use with Blender

    NASA Astrophysics Data System (ADS)

    Naiman, J. P.

    2015-12-01

    AstroBlend is a visualization package for use in the three dimensional animation and modeling software, Blender. It reads data in via a text file or can use pre-fab isosurface files stored as OBJ or Wavefront files. AstroBlend supports a variety of codes such as FLASH (ascl:1010.082), Enzo (ascl:1010.072), and Athena (ascl:1010.014), and combines artistic 3D models with computational astrophysics datasets to create models and animations.

  7. Astro STARS Camp

    NASA Image and Video Library

    2012-06-15

    Summer is a time of educational activity at Stennis Space Center. In June 2012, 25 young people age 13-15 attended the annual Astro STARS (Spaceflight, Technology, Astronomy and Robotics at Stennis) camp at the rocket engine test facility. During the five-day camp, participants engaged in hands-on experiences in a variety of areas, including engineering and robotics. On the final day, campers launched model rockets they had assembled.

  8. Astro Stars Camp features underwater robotics

    NASA Image and Video Library

    2010-06-29

    Ian Tonglet, 13, (left) and Seth Malley, 13, both of Picayune, Miss., and both participants in the 2010 Astro Stars session at Stennis Space Center, work with an underwater robot during a camp activity June 29. NASA joined with the U.S. Navy for the underwater robotics exercise involving Sea Perch robots, which are simple, remotely operated underwater vehicles made from PVC pipe and other inexpensive, easily available materials. During the Stennis exercise, students used robots constructed earlier in the day to maneuver underwater and collect plastic rings, as seen to the left of Tonglet. Astro STARS (Spaceflight, Technology, Astronomy & Robotics @ Stennis) is a science and technology camp for 13-15 year olds.

  9. The ASTRO-1 preliminary design review coupled load analysis

    NASA Technical Reports Server (NTRS)

    Mcghee, D. S.

    1984-01-01

    Results of the ASTRO-1 preliminary design review coupled loads analysis are presented. The M6.0Y Generic Shuttle mathematical models were used. Internal accelerations, interface forces, relative displacements, and net e.g., accelerations were recovered for two ASTRO-1 payloads in a tandem configuration. Twenty-seven load cases were computed and summarized. Load exceedences were found and recommendations made.

  10. An introduction to the Astro Edge solar array

    NASA Technical Reports Server (NTRS)

    Spence, B. R.; Marks, G. W.

    1994-01-01

    The Astro Edge solar array is a new and innovative low concentrator power generating system which has been developed for applications requiring high specific power, high stiffness, low risk, light modular construction which utilizes conventional materials and technology, and standard photovoltaic solar cells and laydown processes. Mechanisms, restraint/release devices, wiring harnesses, substrates, and support structures are designed to be simple, functional, lightweight, and modular. A brief overview of the Astro Edge solar array is discussed.

  11. Sleep and cognitive function of crewmembers and mission controllers working 24-h shifts during a simulated 105-day spaceflight mission

    NASA Astrophysics Data System (ADS)

    Barger, Laura K.; Wright, Kenneth P.; Burke, Tina M.; Chinoy, Evan D.; Ronda, Joseph M.; Lockley, Steven W.; Czeisler, Charles A.

    2014-01-01

    The success of long-duration space missions depends on the ability of crewmembers and mission support specialists to be alert and maintain high levels of cognitive function while operating complex, technical equipment. We examined sleep, nocturnal melatonin levels and cognitive function of crewmembers and the sleep and cognitive function of mission controllers who participated in a high-fidelity 105-day simulated spaceflight mission at the Institute of Biomedical Problems (Moscow). Crewmembers were required to perform daily mission duties and work one 24-h extended duration work shift every sixth day. Mission controllers nominally worked 24-h extended duration shifts. Supplemental lighting was provided to crewmembers and mission controllers. Participants' sleep was estimated by wrist-actigraphy recordings. Overall, results show that crewmembers and mission controllers obtained inadequate sleep and exhibited impaired cognitive function, despite countermeasure use, while working extended duration shifts. Crewmembers averaged 7.04±0.92 h (mean±SD) and 6.94±1.08 h (mean±SD) in the two workdays prior to the extended duration shifts, 1.88±0.40 h (mean±SD) during the 24-h work shift, and then slept 10.18±0.96 h (mean±SD) the day after the night shift. Although supplemental light was provided, crewmembers' average nocturnal melatonin levels remained elevated during extended 24-h work shifts. Naps and caffeine use were reported by crewmembers during ˜86% and 45% of extended night work shifts, respectively. Even with reported use of wake-promoting countermeasures, significant impairments in cognitive function were observed. Mission controllers slept 5.63±0.95 h (mean±SD) the night prior to their extended duration work shift. On an average, 89% of night shifts included naps with mission controllers sleeping an average of 3.4±1.0 h (mean±SD) during the 24-h extended duration work shift. Mission controllers also showed impaired cognitive function during extended

  12. Design, implementation, and performance of the Astro-H SXS calorimeter array and anticoincidence detector

    NASA Astrophysics Data System (ADS)

    Kilbourne, Caroline A.; Adams, Joseph S.; Brekosky, Regis P.; Chervenak, James A.; Chiao, Meng P.; Eckart, Megan E.; Figueroa-Feliciano, Enectali; Galeazzi, Masimilliano; Grein, Christoph; Jhabvala, Christine A.; Kelly, Daniel; Leutenegger, Maurice A.; McCammon, Dan; Scott Porter, F.; Szymkowiak, Andrew E.; Watanabe, Tomomi; Zhao, Jun

    2018-01-01

    The calorimeter array of the JAXA Astro-H (renamed Hitomi) soft x-ray spectrometer (SXS) was designed to provide unprecedented spectral resolution of spatially extended cosmic x-ray sources and of all cosmic x-ray sources in the Fe-K band around 6 keV, enabling essential plasma diagnostics. The SXS had a square array of 36 x-ray calorimeters at the focal plane. These calorimeters consisted of ion-implanted silicon thermistors and HgTe thermalizing x-ray absorbers. These devices demonstrated a resolution of better than 4.5 eV at 6 keV when operated at a heat-sink temperature of 50 mK. We will discuss the basic physical parameters of this array, including the array layout, thermal conductance of the link to the heat sink, resistance function, absorber details, and means of attaching the absorber to the thermistor-bearing element. We will also present the thermal characterization of the whole array, including thermal conductance and crosstalk measurements and the results of pulsing the frame temperature via alpha particles, heat pulses, and the environmental background. A silicon ionization detector was located behind the calorimeter array and served to reject events due to cosmic rays. We will briefly describe this anticoincidence detector and its performance.

  13. Operating Modes and Cooling Capabilities of the Flight ADR for the SXS Instrument on Astro-H

    NASA Technical Reports Server (NTRS)

    Shirron, Peter; Kimball, Mark; DiPirro, Michael

    2015-01-01

    The microcalorimeter array on the Soft X-ray Spectrometer instrument on Astro-H requires cooling to 50 mK, which will be accomplished by a 3-stage adiabatic demagnetization refrigerator (ADR). The ADR is surrounded by a cryogenic system consisting of a superfluid helium tank, a 4.5 K Joule-Thomson (JT) cryocooler, and additional 2-stage Stirling cryocoolers that pre-cool the JT cooler and radiation shields within the cryostat. The unique ADR design allows the instrument to meet all of its science requirements using either the stored cryogen or the JT cryocooler as its heat sink, giving the instrument an unusual degree of tolerance for component failures or degradation in the cryogenic system. The flight detector assembly, ADR and dewar were integrated in early 2014, and have since been extensively characterized and calibrated. At present, the four instruments are being integrated with the spacecraft in preparation for an early 2016 launch. This presentation summarizes the operation and performance of the ADR in all of its operating modes.

  14. Exoplanet Direct Imaging: Coronagraph Probe Mission Study EXO-C

    NASA Technical Reports Server (NTRS)

    Stapelfeldt, Karl R.

    2013-01-01

    Flagship mission for spectroscopy of ExoEarths is a long-term priority for space astrophysics (Astro2010). Requires 10(exp 10) contrast at 3 lambda/D separation, ( (is) greater than 10,000 times beyond HST performance) and large telescope (is) greater than 4m aperture. Big step. Mission for spectroscopy of giant planets and imaging of disks requires 10(exp 9) contrast at 3 lambda/D (already demonstrated in lab) and (is) approximately 1.5m telescope. Should be much more affordable, good intermediate step.Various PIs have proposed many versions of the latter mission 17 times since 1999; no unified approach.

  15. The Design, Implementation, and Performance of the Astro-H SXS Aperture Assembly and Blocking Filters

    NASA Technical Reports Server (NTRS)

    Kilbourne, C. A.; Adams, J. S.; Arsenovic, P.; Ayers, T.; Chiao, M. P.; DiPirro, M. J.; Eckart, M. E.; Fujimoto, R.; Kazeva, J. D.; Kelley, R. L.; hide

    2016-01-01

    The calorimeter array of the JAXA Astro-H (renamed Hitomi) Soft X-ray Spectrometer (SXS) was designed to provide unprecedented spectral resolution of spatially extended cosmic x-ray sources and of all cosmic x-ray sources in the Fe-K band around 6 keV. The properties that make the SXS a powerful x-ray spectrometer also make it sensitive to the entire electromagnetic band. If characterized as a bolometer, it would have a noise equivalent power (NEP) of < 4x10(exp -18) W/(Hz)0.5. Thus it was imperative to shield the detector from thermal radiation from the instrument and optical and UV photons from the sky. Additionally, it was necessary to shield the coldest stages of the instrument from the thermal radiation emanating from the warmer stages. These needs are addressed by a series of five thin-film radiation blocking filters that block long-wavelength radiation while minimizing x-ray attenuation. The SXS aperture assembly is a system of barriers, baffles, filter carriers, and filter mounts that supports the filters and inhibits their potential contamination. The three warmer filters also were equipped with thermometers and heaters for decontamination.

  16. Keesler Astro Camp

    NASA Image and Video Library

    2011-06-29

    Young people prepare model rockets during an Astro Camp activity at Keesler Air Force Base in Biloxi. Stennis hosted the camp June 28 - July 1 in support of the White House Military Families Initiative. The camp also marked the beginning of a partnership between Stennis and Keesler to provide NASA education experiences to military children and to train children and youth care-providers. It is hoped that this activity can be expanded to other military bases next summer.

  17. ASTRO's 2007 core physics curriculum for radiation oncology residents.

    PubMed

    Klein, Eric E; Gerbi, Bruce J; Price, Robert A; Balter, James M; Paliwal, Bhudatt; Hughes, Lesley; Huang, Eugene

    2007-08-01

    In 2004, the American Society for Therapeutic Radiology and Oncology (ASTRO) published a curriculum for physics education. The document described a 54-hour course. In 2006, the committee reconvened to update the curriculum. The committee is composed of physicists and physicians from various residency program teaching institutions. Simultaneously, members have associations with the American Association of Physicists in Medicine, ASTRO, Association of Residents in Radiation Oncology, American Board of Radiology, and American College of Radiology. Representatives from the latter two organizations are key to provide feedback between the examining organizations and ASTRO. Subjects are based on Accreditation Council for Graduate Medical Education requirements (particles and hyperthermia), whereas the majority of subjects and appropriated hours/subject were developed by consensus. The new curriculum is 55 hours, containing new subjects, redistribution of subjects with updates, and reorganization of core topics. For each subject, learning objectives are provided, and for each lecture hour, a detailed outline of material to be covered is provided. Some changes include a decrease in basic radiologic physics, addition of informatics as a subject, increase in intensity-modulated radiotherapy, and migration of some brachytherapy hours to radiopharmaceuticals. The new curriculum was approved by the ASTRO board in late 2006. It is hoped that physicists will adopt the curriculum for structuring their didactic teaching program, and simultaneously, the American Board of Radiology, for its written examination. The American College of Radiology uses the ASTRO curriculum for their training examination topics. In addition to the curriculum, the committee added suggested references, a glossary, and a condensed version of lectures for a Postgraduate Year 2 resident physics orientation. To ensure continued commitment to a current and relevant curriculum, subject matter will be updated

  18. ASTRO's 2007 Core Physics Curriculum for Radiation Oncology Residents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klein, Eric E.; Gerbi, Bruce J.; Price, Robert A.

    2007-08-01

    In 2004, American Society for Therapeutic Radiology and Oncology (ASTRO) published a curriculum for physics education. The document described a 54-hour course. In 2006, the committee reconvened to update the curriculum. The committee is composed of physicists and physicians from various residency program teaching institutions. Simultaneously, members have associations with American Association of Physicists in Medicine, ASTRO, Association of Residents in Radiation Oncology, American Board of Radiology, and American College of Radiology. Representatives from the latter two organizations are key to provide feedback between the examining organizations and ASTRO. Subjects are based on Accreditation Council for Graduate Medical Education requirementsmore » (particles and hyperthermia), whereas the majority of subjects and appropriated hours/subject were developed by consensus. The new curriculum is 55 hours, containing new subjects, redistribution of subjects with updates, and reorganization of core topics. For each subject, learning objectives are provided, and for each lecture hour, a detailed outline of material to be covered is provided. Some changes include a decrease in basic radiologic physics, addition of informatics as a subject, increase in intensity-modulated radiotherapy, and migration of some brachytherapy hours to radiopharmaceuticals. The new curriculum was approved by the ASTRO board in late 2006. It is hoped that physicists will adopt the curriculum for structuring their didactic teaching program, and simultaneously, American Board of Radiology, for its written examination. American College of Radiology uses the ASTRO curriculum for their training examination topics. In addition to the curriculum, the committee added suggested references, a glossary, and a condensed version of lectures for a Postgraduate Year 2 resident physics orientation. To ensure continued commitment to a current and relevant curriculum, subject matter will be updated again in 2

  19. Complement factor H polymorphisms in Japanese population with age-related macular degeneration.

    PubMed

    Okamoto, Haru; Umeda, Shinsuke; Obazawa, Minoru; Minami, Masayoshi; Noda, Toru; Mizota, Atsushi; Honda, Miki; Tanaka, Minoru; Koyama, Risa; Takagi, Ikue; Sakamoto, Yoshihiro; Saito, Yoshihiro; Miyake, Yozo; Iwata, Takeshi

    2006-03-06

    To study the frequency of five haplotypes previously reported in the complement factor H (CFH) gene for Japanese patients with age-related macular degeneration (AMD). Genomic DNA was isolated from peripheral blood samples taken from 96 Japanese AMD patients and 89 age-matched controls. All patients were diagnosed as having exudative (wet-type) AMD. The amplified polymerase chain reaction (PCR) products of CFH exons 2, 9, and 13, and intron 6 were analyzed by temperature gradient capillary electrophoresis (TGCE) and by direct sequencing. The haplotypes were identified, and their frequencies were calculated and compared with reported results. Five haplotypes were identified in the Japanese population including four already reported in the American population. The frequencies of these haplotypes were significantly different between Japanese and American in both control and case groups. The haplotype containing Y402H, which was previously reported to be associated with AMD, was only 4% in the control and case population, with a p value of 0.802. However, two other haplotypes were found as risk factors, which gave an increased likelihood of AMD of 1.9 and 2.5 fold (95% CI 1.12-3.69 and 1.42-6.38). One protective haplotype that decreased the likelihood of AMD by 1.6 fold (95% CI 0.26-0.67) was identified. The frequencies for five haplotypes previously identified were analyzed in a Japanese population with AMD. Four previously found haplotypes were identified and one additional haplotype was found. The frequencies of each haplotype were significantly different from that in found Americans affected with AMD. Two of the haplotypes were identified as risk factors and one was considered protective.

  20. An Open Specification for Space Project Mission Operations Control Architectures

    NASA Technical Reports Server (NTRS)

    Hooke, A.; Heuser, W. R.

    1995-01-01

    An 'open specification' for Space Project Mission Operations Control Architectures is under development in the Spacecraft Control Working Group of the American Institute for Aeronautics and Astro- nautics. This architecture identifies 5 basic elements incorporated in the design of similar operations systems: Data, System Management, Control Interface, Decision Support Engine, & Space Messaging Service.

  1. Expert Images for All Audiences: The AstroPix Archive

    NASA Astrophysics Data System (ADS)

    Hurt, Robert; Llamas, Jacob; Wyatt, Ryan Jason; Christensen, Lars

    2018-01-01

    The AstroPix project provides one-stop-shopping for an extensive collection of the finest astronomical imagery, sourced from some of the world’s most prominent observatories. The archive is made possible by a grassroots effort to tag publicly-released imagery using the Astronomical Visualization Metadata (AVM) standard, which captures rich contextual information for each image. While the site has been in development for many years, it is now supported under NASA’s Universe of Learning collaboration, and AstroPix has been updated and deployed to cloud services. The AVM tags provide many unique features including spectral color assignments, sky context (using AAS WorldWide Telescope APIs), and direct links to the original source material on the web. The 7,000+ assets currently include imagery provided by Chandra, ESO, GALEX, Herschel, Hubble, NuSTAR, Spitzer, and WISE. The assets are also provided for use in the planetarium community by supporting the Data2Dome (D2D) initiative. AstroPix imagery is designed to be used in a variety of unique ways that benefit formal and informal education as well as astronomers and the general public. Observatories can add their own image archives to AstroPix by tagging their assets and providing a simple XML feed, increasing the value of their data to the community at large.

  2. Onboard data-processing architecture of the soft X-ray imager (SXI) on NeXT satellite

    NASA Astrophysics Data System (ADS)

    Ozaki, Masanobu; Dotani, Tadayasu; Tsunemi, Hiroshi; Hayashida, Kiyoshi; Tsuru, Takeshi G.

    2004-09-01

    NeXT is the X-ray satellite proposed for the next Japanese space science mission. While the satellite total mass and the launching vehicle are similar to the prior satellite Astro-E2, the sensitivity is much improved; it requires all the components to be lighter and faster than previous architecture. This paper shows the data processing architecture of the X-ray CCD camera system SXI (Soft X-ray Imager), which is the top half of the WXI (Wide-band X-ray Imager) of the sensitivity in 0.2-80keV. The system is basically a variation of Astro-E2 XIS, but event extraction speed is much faster than it to fulfill the requirements coming from the large effective area and fast exposure period. At the same time, data transfer lines between components are redesigned in order to reduce the number and mass of the wire harnesses that limit the flexibility of the component distribution.

  3. Thermodynamic Analysis of the 3-Stage ADR for the Astro-H Soft X-Ray Spectrometer Instrument

    NASA Technical Reports Server (NTRS)

    Shirron, Peter; Kimball, Mark; DiPirro, Michael; Bialas, Tom; Sneiderman, Gary; Porter, Scott; Kelley, Richard

    2015-01-01

    The Soft X-ray Spectrometer (SXS) instrument on Astro-H will use a 3-stage ADR to cool the microcalorimeter array to 50 mK. In the primary operating mode, two stages of the ADR cool the detectors using superfluid helium at 1.20 K as the heat sink. In the secondary mode, which is activated when the liquid helium is depleted, two of the stages continuously cool the (empty) helium tank using a 4.5 K Joule-Thomson cooler as the heat sink, and the third stage cools the detectors. In the design phase, a high-fidelity model of the ADR was developed in order to predict both the cooling capacity and heat rejection rates in both operating modes. The primary sources of heat flow are from the salt pills, hysteresis heat from the magnets and magnetic shields, and power dissipated by the heat switches. The flight instrument dewar, ADR, detectors and electronics were integrated in mid-2014 and have since undergone extensive performance testing, in part to validate the performance model. This paper will present the thermodynamic performance of the ADR, including cooling capacity, heat rejection to the heat sinks, and various measures of efficiency.

  4. Identifying Organic Molecules in Space: The AstroBiology Explorer (ABE) MIDEX Mission Concept

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.; Allamandola, Louis; Bregman, Jesse; Ennico, Kimberly; Greene, Thomas; Hudgins, Douglas; Strecker, Donald; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    Infrared spectroscopy in the 2.5-16 micron range is a principle means by which organic compounds are detected and identified in space. Ground-based, airborne, and spaceborne IR spectral studies have already demonstrated that a significant fraction of the carbon in the interstellar medium (ISM) resides in the form of complex organic molecular species. Unfortunately, neither the distribution of these materials nor their genetic and evolutionary relationships with each other or their environments are well understood. The Astrobiology Explorer (ABE) is a MIDEX mission concept currently under study at NASA's Ames Research Center in collaboration with Ball Aerospace and Technologies Corporation. ABE will conduct IR spectroscopic observations to address outstanding important problems in astrobiology, astrochemistry, and astrophysics. The core observational program would make fundamental scientific progress in understanding (1) the evolution of ices and organic matter in dense molecular clouds and young forming stellar systems, (2) the chemical evolution of organic molecules in the ISM as they transition from AGB outflows to planetary nebulae to the general diffuse ISM to H II regions and dense clouds, (3) the distribution of organics in the diffuse ISM, (4) the nature of organics in the Solar System (in comets, asteroids, satellites), and (5) the nature and distribution of organics in local galaxies. The technical considerations of achieving these science objectives in a MIDEX-sized mission will be described.

  5. AstroVis: Visualizing astronomical data cubes

    NASA Astrophysics Data System (ADS)

    Finniss, Stephen; Tyler, Robin; Questiaux, Jacques

    2016-08-01

    AstroVis enables rapid visualization of large data files on platforms supporting the OpenGL rendering library. Radio astronomical observations are typically three dimensional and stored as data cubes. AstroVis implements a scalable approach to accessing these files using three components: a File Access Component (FAC) that reduces the impact of reading time, which speeds up access to the data; the Image Processing Component (IPC), which breaks up the data cube into smaller pieces that can be processed locally and gives a representation of the whole file; and Data Visualization, which implements an approach of Overview + Detail to reduces the dimensions of the data being worked with and the amount of memory required to store it. The result is a 3D display paired with a 2D detail display that contains a small subsection of the original file in full resolution without reducing the data in any way.

  6. International mission planning for space Very Long Baseline Interferometry

    NASA Technical Reports Server (NTRS)

    Ulvestad, James S.

    1994-01-01

    Two spacecraft dedicated to Very Long Baseline Interferometry (VLBI) will be launched in 1996 and 1997 to make observations using baselines between the space telescopes and many of the world's ground radio telescopes. The Japanese Institute of Space and Astronautical Science (ISAS) will launch VSOP (VLBI Space Observatory Program) in September 1996, while the Russian Astro Space Center (ASC) is scheduled to launch RadioAstron in 1997. Both spacecraft will observe radio sources at frequencies near 1.7, 4.8, and 22 GHz; RadioAstron will also observe at 0.33 GHz. The baselines between space and ground telescopes will provide 3-10 times the resolution available for ground VLBI at the same observing frequencies. Ground tracking stations on four continents will supply the required precise frequency reference to each spacecraft measure the two-way residual phase and Doppler on the ground-space link, and record 128 Megabit/s of VLBI data downlinked from the spacecraft. The spacecraft data are meaningless without cross-correlation against the data from Earth-bound telescopes, which must take place at special-purpose VLBI correlation facilities. Therefore, participation by most of the world's radio observatories is needed to achieve substantial science return from VSOP and RadioAstron. The collaboration of several major space agencies and the ground observatories, which generally follow very different models for allocation of observing time and for routine operations, leads to great complexity in mission planning and in day-to-day operations. This paper describes some of those complications and the strategies being developed to assure productive scientific missions.

  7. AstroCom NYC: Expanding the Partnership

    NASA Astrophysics Data System (ADS)

    Paglione, Timothy; Ford, Saavik; Agueros, Marcel A.; Mac Low, Mordecai-Mark; Robbins, Dennis

    2015-01-01

    AstroCom NYC is an undergraduate mentoring program designed to improve urban minority student access to opportunities in astrophysical research by greatly enhancing partnerships between research astronomers in New York City (City University of New York - an MSI, American Museum of Natural History, and Columbia). AstroCom NYC provides centralized, personalized mentoring as well as financial and academic support, to CUNY undergraduates throughout their studies, plus the resources and opportunities to further CUNY faculty research with students. The goal is that students' residency at AMNH helps them build a sense of belonging in the field, and readies and inspires them for graduate study. AstroCom NYC provides a rigorous Methods of Scientific Research course developed specifically to this purpose, a laptop, research and career mentors, outreach activities, scholarships and stipends, Metrocards, and regular assessment for maximum effectiveness. Stipends in part alleviate the burdens at home typical for CUNY students so they may concentrate on their academic success. AMNH serves as the central hub for our faculty and students, who are otherwise dispersed among all five boroughs of the City. For our second cohort, we dramatically improved the application and screening process, implemented a number of tools to evaluate their potential for grad school, and began growing a network of potential hosts for summer internships around NY State and the US. We review these implementations and outcomes, as well as plans for Year 3, when we expect many of our current students to compete for external summer REUs, and after greatly expanding the program reach through a NASA community college initiative.

  8. Examining the Angular Resolution of the Astro-H's Soft X-Ray Telescopes

    NASA Technical Reports Server (NTRS)

    Sato, Toshiki; Iizuka, Ryo; Ishida, Manabu; Kikuchi, Naomichi; Maeda, Yoshitomo; Kurashima, Sho; Nakaniwa, Nozomi; Tomikawa, Kazuki; Hayashi, Takayuki; Mori, Hideyuki; hide

    2016-01-01

    The international x-ray observatory ASTRO-H was renamed Hitomi after launch. It covers a wide energy range from a few hundred eV to 600 keV. It is equipped with two soft x-ray telescopes (SXTs: SXT-I and SXT-S) for imaging the soft x-ray sky up to 12 keV, which focus an image onto the respective focal-plane detectors: CCD camera (SXI) and a calorimeter (SXS). The SXTs are fabricated in a quadrant unit. The angular resolution in half-power diameter (HPD) of each quadrant of the SXTs ranges between 1.1 and 1.4 arc min at 4.51 keV. It was also found that one quadrant has an energy dependence on the HPD. We examine the angular resolution with spot scan measurements. In order to understand the cause of imaging capability deterioration and to reflect it to the future telescope development, we carried out spot scan measurements, in which we illuminate all over the aperture of each quadrant with a square beam 8 mm on a side. Based on the scan results, we made maps of image blurring and a focus position. The former and the latter reflect figure error and positioning error, respectively, of the foils that are within the incident 8 mm x 8 mm beam. As a result, we estimated those errors in a quadrant to be approx. 0.9 to 1.0 and approx. 0.6 to 0.9 arc min, respectively. We found that the larger the positioning error in a quadrant is, the larger its HPD is. The HPD map, which manifests the local image blurring, is very similar from quadrant to quadrant, but the map of the focus position is different from location to location in each telescope. It is also found that the difference in local performance causes energy dependence of the HPD.

  9. Reflectivity around the gold L-edges of x-ray reflector of the soft x-ray telescope onboard ASTRO-H

    NASA Astrophysics Data System (ADS)

    Maeda, Yoshitomo; Kikuchi, Naomichi; Kurashima, Sho; Ishida, Manabu; Iizuka, Ryo; Hayashi, Takayuki; Okajima, Takashi; Matsumoto, Hironori; Mitsuishi, Ikuyuki; Saji, Shigetaka; Sato, Toshiki; Tachibana, Sasagu; Mori, Hideyuki; Christensen, Finn; Brejnholt, Nicolai; Nitta, Kiyofumi; Uruga, Tomoya

    2016-07-01

    We report the atomic scattering factor in the 11.2{15.4 keV for the ASTRO-H Soft X-ray Telescope (SXT)9 obtained in the ground based measurements. The large effective area of the SXT covers above 10 keV. In fact, the flight data show the spectra of the celestical objects in the hard X-ray band. In order to model the area, the reflectivity measurements in the 11.2{15.4 keV band with the energy pitch of 0.4 { 0.7 eV were made in the synchrotron beamline Spring-8 BL01B1. We obtained atomic scattering factors f1 and f2 by the curve fitting to the reflectivities of our witness sample. The edges associated with the gold's L-I, II, and III transitions are identified, of which the depths are found to be roughly 60% shallower than those expected from the Henke's atomic scattering factor.

  10. Reflectivity Around the Gold L-Edges of X-Ray Reflector of the Soft X-Ray Telescope Onboard ASTRO-H

    NASA Technical Reports Server (NTRS)

    Maeda, Yoshitomo; Kikuchi, Naomichi; Kurashima, Sho; Ishida, Manabu; Iizuka, Ryo; Hayashi, Takayuki; Okajima, Takashi; Matsumoto, Hironori; Mitsuishi, Ikuyuki; Saji, Shigetaka; hide

    2016-01-01

    We report the atomic scattering factor in the 11.215.4 keV for the ASTRO-H Soft X-ray Telescope (SXT) obtained in the ground based measurements. The large effective area of the SXT covers above 10 keV. In fact, the flight data show the spectra of the celestical objects in the hard X-ray band. In order to model the area, the reflectivity measurements in the 11.2-15.4 keV band with the energy pitch of 0.4-0.7 eV were made in the synchrotron beamline Spring-8 BL01B1. We obtained atomic scattering factors f1 and f2 by the curve fitting to the reflectivities of our witness sample. The edges associated with the golds L-I, II, and III transitions are identified, of which the depths are found to be roughly 60 percent shallower than those expected from the Henke's atomic scattering factor.

  11. Concept of a small satellite for sub-MeV and MeV all sky survey: the CAST mission

    NASA Astrophysics Data System (ADS)

    Nakazawa, Kazuhiro; Takahashi, Tadayuki; Ichinohe, Yuto; Takeda, Shin'ichiro; Tajima, Hiroyasu; Kamae, Tuneyoshi; Kokubun, Motohide; Takashima, Takeshi; Tashiro, Makoto; Tamagawa, Toru; Terada, Yukikatsu; Nomachi, Masaharu; Fukazawa, Yasushi; Makishima, Kazuo; Mizuno, Tsunefumi; Mitani, Takefumi; Yoshimitsu, Tetsuo; Watanabe, Shin

    2012-09-01

    MeV and sub-MeV energy band from ~200 keV to ~2 MeV contains rich information of high-energy phenomena in the universe. The CAST (Compton Telescope for Astro and Solar Terrestrial) mission is planned to be launched at the end of 2010s, and aims at providing all-sky map in this energy-band for the first time. It is made of a semiconductor Compton telescope utilizing Si as a scatterer and CdTe as an absorber. CAST provides allsky sub-MeV polarization map for the first time, as well. The Compton telescope technology is based on the design used in the Soft Gamma-ray Detector (SGD) onboard ASTRO-H, characterized by its tightly stacked semiconductor layers to obtain high Compton reconstruction efficiency. The CAST mission is currently planned as a candidate for the small scientific satellite series in ISAS/JAXA, weighting about 500 kg in total. Scalable detector design enables us to consider other options as well. Scientific outcome of CAST is wide. It will provide new information from high-energy sources, such as AGN and/or its jets, supernova remnants, magnetors, blackhole and neutron-star binaries and others. Polarization map will tell us about activities of jets and reflections in these sources, as well. In addition, CAST will simultaneously observe the Sun, and depending on its attitude, the Earth.

  12. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-23

    Envelopes with stamps depicting various space missions are shown at the visitor's center of the Tanegashima Space Center (TNSC), Sunday, Feb. 23, 2014, Tanegashima Island, Japan. A Japanese H-IIA rocket carrying the NASA-Japan Aerospace Exploration Agency (JAXA), Global Precipitation Measurement (GPM) Core Observatory is planned for launch from the space center on Feb. 28, 2014. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  13. Accessing eSDO Solar Image Processing and Visualization through AstroGrid

    NASA Astrophysics Data System (ADS)

    Auden, E.; Dalla, S.

    2008-08-01

    The eSDO project is funded by the UK's Science and Technology Facilities Council (STFC) to integrate Solar Dynamics Observatory (SDO) data, algorithms, and visualization tools with the UK's Virtual Observatory project, AstroGrid. In preparation for the SDO launch in January 2009, the eSDO team has developed nine algorithms covering coronal behaviour, feature recognition, and global / local helioseismology. Each of these algorithms has been deployed as an AstroGrid Common Execution Architecture (CEA) application so that they can be included in complex VO workflows. In addition, the PLASTIC-enabled eSDO "Streaming Tool" online movie application allows users to search multi-instrument solar archives through AstroGrid web services and visualise the image data through galleries, an interactive movie viewing applet, and QuickTime movies generated on-the-fly.

  14. Fluid-loading solutions and plasma volume: Astro-ade and salt tablets with water

    NASA Technical Reports Server (NTRS)

    Fortney, Suzanne M.; Seinmann, Laura; Young, Joan A.; Hoskin, Cherylynn N.; Barrows, Linda H.

    1994-01-01

    Fluid loading with salt and water is a countermeasure used after space flight to restore body fluids. However, gastrointestinal side effects have been frequently reported in persons taking similar quantities of salt and water in ground-based studies. The effectiveness of the Shuttle fluid-loading countermeasure (8 gms salt, 0.97 liters of water) was compared to Astro-ade (an isotonic electrolyte solution), to maintain plasma volume (PV) during 4.5 hrs of resting fluid restriction. Three groups of healthy men (n=6) were studied: a Control Group (no drinking), an Astro-ade Group, and a Salt Tablet Group. Changes in PV after drinking were calculated from hematocrit and hemoglobin values. Both the Salt Tablet and Astro-ade Groups maintained PV at 2-3 hours after ingestion compared to the Control Group, which had a 6 percent decline. Side effects (thirst, stomach cramping, and diarrhea) were noted in at least one subject in both the Astro-ade and Salt Tablet Groups. Nausea and vomiting were reported in one subject in the Salt Tablet Group. It was concluded that Astro-ade may be offered as an alternate fluid-loading countermeasure but further work is needed to develop a solution that is more palatable and has fewer side effects.

  15. AstroCV: Astronomy computer vision library

    NASA Astrophysics Data System (ADS)

    González, Roberto E.; Muñoz, Roberto P.; Hernández, Cristian A.

    2018-04-01

    AstroCV processes and analyzes big astronomical datasets, and is intended to provide a community repository of high performance Python and C++ algorithms used for image processing and computer vision. The library offers methods for object recognition, segmentation and classification, with emphasis in the automatic detection and classification of galaxies.

  16. The Design, Implementation, and Performance of the Astro-H SXS Calorimeter Array and Anti-Coincidence Detector

    NASA Technical Reports Server (NTRS)

    Kilbourne, Caroline A.; Adams, Joseph S.; Brekosky, Regis P.; Chiao, Meng P.; Chervenak, James A.; Eckart, Megan E.; Figueroa-Feliciano, Enectali; Galeazzi, Masimilliano; Grein, Christoph; Jhabvala, Christine A.; hide

    2016-01-01

    The calorimeter array of the JAXA Astro-H (renamed Hitomi) Soft X-ray Spectrometer (SXS) was designed to provide unprecedented spectral resolution of spatially extended cosmic x-ray sources and of all cosmic x-ray sources in the Fe-K band around 6 keV, enabling essential plasma diagnostics. The SXS has a square array of 36 microcalorimeters at the focal plane. These calorimeters consist of ion-implanted silicon thermistors and HgTe thermalizing x-ray absorbers. These devices have demonstrated a resolution of better than 4.5 eV at 6 keV when operated at a heat-sink temperature of 50 mK. We will discuss the basic physical parameters of this array, including the array layout, thermal conductance of the link to the heat sink, resistance function, absorber details, and means of attaching the absorber to the thermistor-bearing element. We will also present the thermal characterization of the whole array, including thermal conductance and crosstalk measurements and the results of pulsing the frame temperature via alpha particles, heat pulses, and the environmental background. A silicon ionization detector is located behind the calorimeter array and serves to reject events due to cosmic rays. We will briefly describe this anti-coincidence detector and its performance.

  17. Japanese Experiment Module arrival

    NASA Image and Video Library

    2007-03-29

    The Experiment Logistics Module Pressurized Section for the Japanese Experiment Module arrives at the Space Station Processing Facility. The logistics module is one of the components of the Japanese Experiment Module or JEM, also known as Kibo, which means "hope" in Japanese. Kibo comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007.

  18. Japanese Experiment Module arrival

    NASA Image and Video Library

    2007-03-29

    Inside the Space Station Processing Facility, the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module is revealed after the top of the crate is removed. The logistics module is one of the components of the Japanese Experiment Module or JEM, also known as Kibo, which means "hope" in Japanese. Kibo comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007.

  19. Japanese Experiment Module arrival

    NASA Image and Video Library

    2007-03-29

    The Experiment Logistics Module Pressurized Section for the Japanese Experiment Module arrives at the Space Station Processing Facility for uncrating. The logistics module is one of the components of the Japanese Experiment Module or JEM, also known as Kibo, which means "hope" in Japanese. Kibo comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007.

  20. Astro Talk in Social Media - Indonesia

    NASA Astrophysics Data System (ADS)

    Yamani, A.; Soegijoko, W.

    2015-03-01

    Social media is a new trend in communicating and connecting to people. It is also a good choice to build awareness of astronomy as issues spread easily and quickly, creating hot topics. This paper will analyze the trend of astro talk in Indonesia and hope to inspire astronomers to use social media in raising awareness.

  1. Instrument Overview of the JEM-EUSO Mission

    NASA Technical Reports Server (NTRS)

    Kajino, F.; Yamamoto, T.; Sakata, M.; Yamamoto, Y.; Sato, H.; Ebizuka, N.; Ebisuzaki, T.; Uehara, Y.; Ohmori, H.; Kawasaki, Y.; hide

    2007-01-01

    JEM-EUSO with a large and wide-angle telescope mounted on the International Space Station (ISS) has been planned as a space mission to explore extremes of the universe through the investigation of extreme energy cosmic rays by detecting photons which accompany air showers developed in the earth's atmosphere. JEM-EUSO will be launched by Japanese H-II Transfer Vehicle (HTV) and mounted at the Exposed Facility of Japanese Experiment Module (JEM/EF) of the ISS in the second phase of utilization plan. The telescope consists of high transmittance optical Fresnel lenses with a diameter of 2.5m, 200k channels of multi anode-photomultiplier tubes, focal surface front-end, readout, trigger and system electronics. An infrared camera and a LIDAR system will be also used to monitor the earth's atmosphere.

  2. VLBI2010: The Astro-Geo Connection

    NASA Technical Reports Server (NTRS)

    Porcas, Richard

    2010-01-01

    VLBI2010 holds out promise for greatly increased precision in measuring geodetic and Earth rotation parameters. As a by-product there will be a wealth of interesting new astronomical data. At the same time, astronomical knowledge may be needed to disentangle the astronomical and geodetic contributions to the measured delays and phases. This presentation explores this astro-geo link.

  3. AstroML: "better, faster, cheaper" towards state-of-the-art data mining and machine learning

    NASA Astrophysics Data System (ADS)

    Ivezic, Zeljko; Connolly, Andrew J.; Vanderplas, Jacob

    2015-01-01

    We present AstroML, a Python module for machine learning and data mining built on numpy, scipy, scikit-learn, matplotlib, and astropy, and distributed under an open license. AstroML contains a growing library of statistical and machine learning routines for analyzing astronomical data in Python, loaders for several open astronomical datasets (such as SDSS and other recent major surveys), and a large suite of examples of analyzing and visualizing astronomical datasets. AstroML is especially suitable for introducing undergraduate students to numerical research projects and for graduate students to rapidly undertake cutting-edge research. The long-term goal of astroML is to provide a community repository for fast Python implementations of common tools and routines used for statistical data analysis in astronomy and astrophysics (see http://www.astroml.org).

  4. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-23

    A NASA Global Precipitation Measurement (GPM) mission shirt is seen drying in the mid-day sun outside the Sun Pearl Hotel where many of the NASA GPM team are staying, Sunday, Feb. 23, 2014, Tanegashima Island, Japan. A Japanese H-IIA rocket carrying the NASA-Japan Aerospace Exploration Agency (JAXA), Global Precipitation Measurement (GPM) Core Observatory is planned for launch from the space center on Feb. 28, 2014. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  5. Wavelength calibration with PMAS at 3.5 m Calar Alto Telescope using a tunable astro-comb

    NASA Astrophysics Data System (ADS)

    Chavez Boggio, J. M.; Fremberg, T.; Bodenmüller, D.; Sandin, C.; Zajnulina, M.; Kelz, A.; Giannone, D.; Rutowska, M.; Moralejo, B.; Roth, M. M.; Wysmolek, M.; Sayinc, H.

    2018-05-01

    On-sky tests conducted with an astro-comb using the Potsdam Multi-Aperture Spectrograph (PMAS) at the 3.5 m Calar Alto Telescope are reported. The proposed astro-comb approach is based on cascaded four-wave mixing between two lasers propagating through dispersion optimized nonlinear fibers. This approach allows for a line spacing that can be continuously tuned over a broad range (from tens of GHz to beyond 1 THz) making it suitable for calibration of low- medium- and high-resolution spectrographs. The astro-comb provides 300 calibration lines and his line-spacing is tracked with a wavemeter having 0.3 pm absolute accuracy. First, we assess the accuracy of Neon calibration by measuring the astro-comb lines with (Neon calibrated) PMAS. The results are compared with expected line positions from wavemeter measurement showing an offset of ∼5-20 pm (4%-16% of one resolution element). This might be the footprint of the accuracy limits from actual Neon calibration. Then, the astro-comb performance as a calibrator is assessed through measurements of the Ca triplet from stellar objects HD3765 and HD219538 as well as with the sky line spectrum, showing the advantage of the proposed astro-comb for wavelength calibration at any resolution.

  6. Outline of Infrared Space Astrometry missions:JASMINE

    NASA Astrophysics Data System (ADS)

    Gouda, N.

    2018-04-01

    Japanese group is promoting infrared space astrometry missions, JASMINE project series, in international collaboration with Gaia DPAC team. In this paper, the outline of Nano-JASMINE and Small-JASMINE missions is shown.

  7. Proton radiation damage experiment on P-Channel CCD for an X-ray CCD camera onboard the ASTRO-H satellite

    NASA Astrophysics Data System (ADS)

    Mori, Koji; Nishioka, Yusuke; Ohura, Satoshi; Koura, Yoshiaki; Yamauchi, Makoto; Nakajima, Hiroshi; Ueda, Shutaro; Kan, Hiroaki; Anabuki, Naohisa; Nagino, Ryo; Hayashida, Kiyoshi; Tsunemi, Hiroshi; Kohmura, Takayoshi; Ikeda, Shoma; Murakami, Hiroshi; Ozaki, Masanobu; Dotani, Tadayasu; Maeda, Yukie; Sagara, Kenshi

    2013-12-01

    We report on a proton radiation damage experiment on P-channel CCD newly developed for an X-ray CCD camera onboard the ASTRO-H satellite. The device was exposed up to 109 protons cm-2 at 6.7 MeV. The charge transfer inefficiency (CTI) was measured as a function of radiation dose. In comparison with the CTI currently measured in the CCD camera onboard the Suzaku satellite for 6 years, we confirmed that the new type of P-channel CCD is radiation tolerant enough for space use. We also confirmed that a charge-injection technique and lowering the operating temperature efficiently work to reduce the CTI for our device. A comparison with other P-channel CCD experiments is also discussed. We performed a proton radiation damage experiment on a new P-channel CCD. The device was exposed up to 109 protons cm-2 at 6.7 MeV. We confirmed that it is radiation tolerant enough for space use. We confirmed that a charge-injection technique reduces the CTI. We confirmed that lowering the operating temperature also reduces the CTI.

  8. Point Spread Function of ASTRO-H Soft X-Ray Telescope (SXT)

    NASA Technical Reports Server (NTRS)

    Hayashi, Takayuki; Sato, Toshiki; Kikuchi, Naomichi; Iizuka, Ryo; Maeda, Yoshitomo; Ishida, Manabu; Kurashima, Sho; Nakaniwa, Nozomi; Okajima, Takashi; Mori, Hideyuki; hide

    2016-01-01

    ASTRO-H (Hitomi) satellite equips two Soft X-ray Telescopes (SXTs), one of which (SXT-S) is coupled to Soft-X-ray Spectrometer (SXS) while the other (SXT-I) is coupled to Soft X-ray Imager (SXI). Although SXTs are lightweight of approximately 42 kgmodule1 and have large on-axis effective area (EA) of approximately 450 cm(exp 2) at 4.5 keV module(sub 1) by themselves, their angular resolutions are moderate approximately 1.2 arcmin in half power diameter. The amount of contamination into the SXS FOV (3.05 times 3.05 arcmin(exp 2) from nearby sources was measured in the ground-based calibration at the beamline in Institute of Space and Astronautical Science. The contamination at 4.5 keV were measured with sources distant from the SXS center by one width of the FOV in perpendicular and diagonal directions, that is, 3 and 4.5 arcmin-off, respectively. The average EA of the contamination in the four directions with the 3 and 4.5 arcmin-off were measured to be 2 and 0.6% of the on-axis EA of 412 cm (exp) for the SXS FOV, respectively. The contamination from a source distant by two FOV widths in a diagonal direction, that is, 8.6 arcmin-off was measured to be 0.1% of the on-axis at 4.5 keV. The contamination amounts were also measured at 1.5 keV and 8.0 keV which indicated that the ratio of the contamination EA to that of on-axis hardly depended on the source energy. The off-axis SXT-I images from 4.5 to 27 arcmin were acquired at intervals of -4.5 arcmin for the SXI FOV of 38 times 38 arcmin(exp 2). The image shrinked as the off-axis angle increased. Above 13.5 arcmin of off-angle, a stray appeared around the image center in the off-axis direction. As for the on-axis image, a ring-shaped stray appeared at the edge of SXI of approximately 18 arcmin distant from the image center.

  9. The Design, Implementation, and Performance of the Astro-H SXS Aperture Assembly and Blocking Filters

    NASA Technical Reports Server (NTRS)

    Kilbourne, Caroline A.; Adams, Joseph S.; Arsenovic, Petar; Ayers, Travis; Chiao, Meng P.; DiPirro, Michael J.; Eckart, Megan E.; Fujimoto, Ryuichi; Kazeva, John D.; Kelley, Richard L.; hide

    2016-01-01

    The calorimeter array of the JAXA Astro-H (renamed Hitomi) Soft X-ray Spectrometer (SXS) was designed to provide unprecedented spectral resolution of spatially extended cosmic x-ray sources and of all cosmic x-ray sources in the Fe-K band around 6 keV, enabling essential plasma diagnostics. The properties that make the SXS array a powerful x-ray spectrometer also make it sensitive to photons from the entire electromagnetic band, and particles as well. If characterized as a bolometer, it would have a noise equivalent power (NEP) of less than 4x10(exp -18) W/(Hz)0.5(exp 0.5). Thus it was imperative to shield the detector from thermal radiation from the instrument and optical and UV photons from the sky. Additionally, it was necessary to shield the coldest stages of the instrument from the thermal radiation emanating from the warmer stages. Both of these needs are addressed by a series of five thin-film radiation-blocking filters, anchored to the nested temperature stages, that block long-wavelength radiation while minimizing x-ray attenuation. The aperture assembly is a system of barriers, baffles, filter carriers, and filter mounts that supports the filters and inhibits their potential contamination. The three outer filters also have been equipped with thermometers and heaters for decontamination. We present the requirements, design, implementation, and performance of the SXS aperture assembly and blocking filters.

  10. AstroCloud, a Cyber-Infrastructure for Astronomy Research: Architecture

    NASA Astrophysics Data System (ADS)

    Xiao, J.; Yu, C.; Cui, C.; He, B.; Li, C.; Fan, D.; Hong, Z.; Yin, S.; Wang, C.; Cao, Z.; Fan, Y.; Li, S.; Mi, L.; Wan, W.; Wang, J.; Zhang, H.

    2015-09-01

    AstroCloud is a cyber-Infrastructure for Astronomy Research initiated by Chinese Virtual Observatory (China-VO) under funding support from NDRC (National Development and Reform commission) and CAS (Chinese Academy of Sciences). The ultimate goal of this project is to provide a comprehensive end-to-end astronomy research environment where several independent systems seamlessly collaborate to support the full lifecycle of the modern observational astronomy based on big data, from proposal submission, to data archiving, data release, and to in-situ data analysis and processing. In this paper, the architecture and key designs of the AstroCloud platform are introduced, including data access middleware, access control and security framework, extendible proposal workflow, and system integration mechanism.

  11. Astro-geodetic platform for high accuracy geoid determinat ion

    NASA Astrophysics Data System (ADS)

    Bǎdescu, Octavian; Nedelcu, Dan Alin; Cǎlin, Alexandru; Dumitru, Paul Daniel; Cǎlin, Lavinia A.; Popescu, Marcel

    The paper presents first technical realizations of a mobile platform for vertical deviation determination at a satisfactory precision and low cost. The conception of the platform was made in the framework of a project regarding CCD astro-geodetic vertical deviation for geoid determination or geoid modeling. The project with the acronym A-GEO represents a collaboration between Technical University of Civil Engineering Bucharest - Faculty of Geodesy, (TUCEB-FG), Astronomical Institute of the Romanian academy (AIRA), and a private partner GeoGIS Proiect S.R.L. The paper presents some hardware and software aspects regarding design, development, and automation of the platform, based on an electro-optical geodetic instrument, CCD observations and satellite time synchronization for astro-geodetic measurements.

  12. Japanese Experiment Module arrival

    NASA Image and Video Library

    2007-03-29

    Inside the Space Station Processing Facility, workers monitor progress as a huge crane is used to remove the top of the crate carrying the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module. The logistics module is one of the components of the Japanese Experiment Module or JEM, also known as Kibo, which means "hope" in Japanese. Kibo comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007.

  13. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, workers (in protective clothing) brief STS-117 Mission Specialist James Reilly (center) and STS-115 Mission Specialist Joseph Tanner (right) about the Japanese Experiment Module (JEM). Equipment familiarization is a routine part of astronaut training and launch preparations.

    NASA Image and Video Library

    2003-10-21

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, workers (in protective clothing) brief STS-117 Mission Specialist James Reilly (center) and STS-115 Mission Specialist Joseph Tanner (right) about the Japanese Experiment Module (JEM). Equipment familiarization is a routine part of astronaut training and launch preparations.

  14. Automated and Adaptive Mission Planning for Orbital Express

    NASA Technical Reports Server (NTRS)

    Chouinard, Caroline; Knight, Russell; Jones, Grailing; Tran, Daniel; Koblick, Darin

    2008-01-01

    The Orbital Express space mission was a Defense Advanced Research Projects Agency (DARPA) lead demonstration of on-orbit satellite servicing scenarios, autonomous rendezvous, fluid transfers of hydrazine propellant, and robotic arm transfers of Orbital Replacement Unit (ORU) components. Boeing's Autonomous Space Transport Robotic Operations (ASTRO) vehicle provided the servicing to the Ball Aerospace's Next Generation Serviceable Satellite (NextSat) client. For communication opportunities, operations used the high-bandwidth ground-based Air Force Satellite Control Network (AFSCN) along with the relatively low-bandwidth GEO-Synchronous space-borne Tracking and Data Relay Satellite System (TDRSS) network. Mission operations were conducted out of the RDT&E Support Complex (RSC) at the Kirtland Air Force Base in New Mexico. All mission objectives were met successfully: The first of several autonomous rendezvous was demonstrated on May 5, 2007; autonomous free-flyer capture was demonstrated on June 22, 2007; the fluid and ORU transfers throughout the mission were successful. Planning operations for the mission were conducted by a team of personnel including Flight Directors, who were responsible for verifying the steps and contacts within the procedures, the Rendezvous Planners who would compute the locations and visibilities of the spacecraft, the Scenario Resource Planners (SRPs), who were concerned with assignment of communications windows, monitoring of resources, and sending commands to the ASTRO spacecraft, and the Mission planners who would interface with the real-time operations environment, process planning products and coordinate activities with the SRP. The SRP position was staffed by JPL personnel who used the Automated Scheduling and Planning ENvironment (ASPEN) to model and enforce mission and satellite constraints. The lifecycle of a plan began three weeks outside its execution on-board. During the planning timeframe, many aspects could change the plan

  15. AstroCom NYC: Equity, Inclusion, and the Next Generation of Astrophysicists

    NASA Astrophysics Data System (ADS)

    Paglione, Timothy; Ford, Saavik; Robbins, Dennis; Agueros, Marcel A.; Mac Low, Mordecai-Mark

    2017-01-01

    AstroCom NYC is an undergraduate mentoring program designed to improve urban minority student access to opportunities in astrophysical research by greatly enhancing partnerships between research astronomers in New York City (City University of New York - an MSI, American Museum of Natural History, and Columbia). AstroCom NYC provides centralized, personalized mentoring as well as financial and academic support, to CUNY undergraduates throughout their studies, plus the resources and opportunities to further CUNY faculty research with students. The goal is that students’ residency at AMNH helps them build a sense of belonging in the field, and readies and inspires them for graduate study. AstroCom NYC provides a rigorous Methods of Scientific Research course developed specifically to this purpose, a laptop, research and career mentors, outreach activities, scholarships and stipends, Metrocards, and regular assessment for maximum effectiveness. The goal of this support is to remove barriers to access and success. AMNH serves as the central hub for our faculty and students, who are otherwise dispersed among all five boroughs of the City. We welcomed our fourth cohort last year, along with 25 additional students through a NASA community college initiative. Our advanced AstroCom NYC students earned external summer internships at REU sites, and we had our first graduate school acceptance. We review plans for Year 5, when we have a number of graduate school applicants, and our deepening participation and leadership within partner activities.

  16. Operating Modes and Cooling Capabilities of the 3-Stage ADR Developed for the Soft-X-ray Spectrometer Instrument on Astro-H

    PubMed Central

    Shirron, Peter J; Kimball, Mark O; James, Bryan L; Muench, Theo; DiPirro, Michael J; Letmate, Richard V; Sampson, Michael A; Bialas, Tom G; Sneiderman, Gary A; Porter, Frederick S; Kelley, Richard L

    2017-01-01

    A 3-stage adiabatic demagnetization refrigerator (ADR)[1] is used on the Soft X-ray Spectrometer instrument[2] on Astro-H[3] to cool a 6×6 array of x-ray microcalorimeters to 50 mK. The ADR is supported by a cryogenic system[4] consisting of a superfluid helium tank, a 4.5 K Joule-Thomson (JT) cryocooler, and additional 2-stage Stirling cryocoolers that pre-cool the JT cooler and cool radiation shields within the cryostat. The ADR is configured so that it can use either the liquid helium or the JT cryocooler as its heat sink, giving the instrument an unusual degree of tolerance for component failures or degradation in the cryogenic system. The flight detector assembly, ADR and dewar were integrated into the flight dewar in early 2014, and have since been extensively characterized and calibrated. This paper summarizes the operation and performance of the ADR in all of its operating modes. PMID:28111478

  17. Operating Modes and Cooling Capabilities of the 3-Stage ADR Developed for the Soft-X-ray Spectrometer Instrument on Astro-H.

    PubMed

    Shirron, Peter J; Kimball, Mark O; James, Bryan L; Muench, Theo; DiPirro, Michael J; Letmate, Richard V; Sampson, Michael A; Bialas, Tom G; Sneiderman, Gary A; Porter, Frederick S; Kelley, Richard L

    2016-03-01

    A 3-stage adiabatic demagnetization refrigerator (ADR)[1] is used on the Soft X-ray Spectrometer instrument[2] on Astro-H[3] to cool a 6×6 array of x-ray microcalorimeters to 50 mK. The ADR is supported by a cryogenic system[4] consisting of a superfluid helium tank, a 4.5 K Joule-Thomson (JT) cryocooler, and additional 2-stage Stirling cryocoolers that pre-cool the JT cooler and cool radiation shields within the cryostat. The ADR is configured so that it can use either the liquid helium or the JT cryocooler as its heat sink, giving the instrument an unusual degree of tolerance for component failures or degradation in the cryogenic system. The flight detector assembly, ADR and dewar were integrated into the flight dewar in early 2014, and have since been extensively characterized and calibrated. This paper summarizes the operation and performance of the ADR in all of its operating modes.

  18. Operating Modes and Cooling Capabilities of the 3-Stage ADR Developed for the Soft-X-Ray Spectrometer Instrument on Astro-H

    NASA Technical Reports Server (NTRS)

    Shirron, Peter J.; Kimball, Mark O.; James, Bryan L.; Muench, Theo; DiPirro, Michael J.; Letmate, Richard V.; Sampson, Michael A.; Bialas, Tom G.; Sneiderman, Gary A.; Porter, Frederick S.; hide

    2015-01-01

    A 3-stage adiabatic demagnetization refrigerator (ADR) is used on the Soft X-ray Spectrometer instrument on Astro-H to cool a 6x6 array of x-ray microcalorimeters to 50 mK. The ADR is supported by a cryogenic system consisting of a superfluid helium tank, a 4.5 K Joule-Thomson (JT) cryocooler, and additional 2-stage Stirling cryocoolers that pre-cool the JT cooler and cool radiation shields within the cryostat. The ADR is configured so that it can use either the liquid helium or the JT cryocooler as its heat sink, giving the instrument an unusual degree of tolerance for component failures or degradation in the cryogenic system. The flight detector assembly, ADR and dewar were integrated into the flight dewar in early 2014, and have since been extensively characterized and calibrated. This paper summarizes the operation and performance of the ADR in all of its operating modes

  19. One Click to the Cosmos: The AstroPix Image Archive

    NASA Astrophysics Data System (ADS)

    Hurt, Robert L.; Llamas, J.; Squires, G. K.; Brinkworth, C.; X-ray Center, Chandra; ESO/ESA; Science Center, Spitzer; STScI

    2013-01-01

    Imagine a single website that acts as a portal to the entire wealth of public imagery spanning the world's observatories. This is the goal of the AstroPix project (astropix.ipac.caltech.edu), and you can use it today! Although still in a beta development state, this past year has seen the inclusion of thousands of images spanning some of the most prominent observatories in the world, including Chandra, ESO, Galex, Herschel, Hubble, Spitzer, and WISE, with more on the way. The archive is unique as it is built around the Astronomical Visualization Metadata (AVM) standard, which captures the rich contextual information for each image. This ranges from titles and descriptions, to color representations and observation details, to sky coordinates. AVM enables AstroPix imagery to be used in a variety of unique ways that benefit formal and informal education as well as astronomers and the general public. Visitors to Astropix can search the database using simple free-text queries, or use a structured search (similar to "Smart Playlists" found in iTunes, for example). We are also developing public application programming interfaces (APIs) to allow third party software and websites to access the growing content for a variety of uses (planetarium software, museum kiosks, mobile apps, and creative web interfaces, to name a few). Contributing image assets to AstroPix is as easy as tagging the images with the relevant metadata and including the web links to the images in a simple RSS feed. We will cover some of the latest information about tools to contribute images to AstroPix and ways to use the site.

  20. In-Flight Performance of the Soft X-Ray Spectrometer Detector System on ASTRO-H

    NASA Technical Reports Server (NTRS)

    Porter, Frederick S.; Boyce, Kevin R.; Chiao, Meng P.; Eckart, Megan E.; Fujimoto, Ryuichi; Ishisaki, Yoshitaka; Kelley, Richard L.; Kilbourne, Carolina A.; Leutenegger, Maurice A.; McCammon, Dan; hide

    2016-01-01

    The SXS instrument was launched aboard the Astro-H observatory on February 17, 2016. The SXS spectrometer is based on a high sensitivity x-ray calorimeter detector system that has been successfully deployed in many ground and sub-orbital spectrometers. The instrument was to provide essential diagnostics for nearly every class of x-ray emitting objects from the atmosphere of Jupiter to the outskirts of galaxy clusters, without degradation for spatially extended objects. The SXS detector system consisted of a 36-pixel cryogenic microcalorimeter array operated at a heat sink temperature of 50 mK. In pre-flight testing, the detector system demonstrated a resolving power of better than 1300 at 6 keV with a simultaneous band-pass from below 0.3 keV to above 12 keV with a timing precision better than 100 microsecond. In addition, a solid-state anti-coincidence detector was placed directly behind the detector array for background suppression. The detector error budget included the measured interference from the SXS cooling system and the spacecraft. Additional margin for on-orbit gain-stability, and on-orbit spacecraft interference were also included predicting an on-orbit performance that meets or exceeds the 7 eV FWHM at 6 keV requirement. The actual on-orbit spectral resolution was better than 5 eV FWHM at 6 keV, easily satisfying the instrument requirement. Here we discuss the actual on-orbit performance of the SXS detector system and compare this to performance in pre-flight testing and the on-orbit predictions. We will also discuss the on-orbit gain stability, additional on-orbit interference, and measurements of the on-orbit background.

  1. In-flight performance of the soft x-ray spectrometer detector system on Astro-H

    NASA Astrophysics Data System (ADS)

    Porter, Frederick S.; Boyce, Kevin R.; Chiao, Meng P.; Eckart, Megan E.; Fujimoto, Ryuichi; Ishisaki, Yoshitaka; Kilbourne, Caroline Anne; Leutenegger, Maurice A.; McCammon, Daniel; Mitsuda, Kazuhisa; Sato, Kosuke; Seta, Hiromi; Sawada, Makoto; Sneiderman, Gary A.; Szymkowiak, Andrew E.; Takei, Yoh; Tashiro, Makoto S.; Tsujimoto, Masahiro; Watanabe, Tomomi; Yamada, Shinya

    2018-01-01

    The soft x-ray spectrometer (SXS) instrument was launched aboard the Astro-H (Hitomi) observatory on February 17, 2016. The SXS is based on a high-sensitivity x-ray calorimeter detector system that has been successfully deployed in many ground and suborbital spectrometers. The instrument was to provide essential diagnostics for nearly every class of x-ray emitting objects from the atmosphere of Jupiter to the outskirts of galaxy clusters, without degradation for spatially extended objects. The SXS detector system consisted of a 36-pixel cryogenic microcalorimeter array operated at a heat sink temperature of 50 mK. In preflight testing, the detector system demonstrated a resolving power of better than 1300 at 6 keV with a simultaneous bandpass from below 0.3 keV to above 12 keV with a timing precision better than 100 μs. In addition, a solid-state anticoincidence detector was placed directly behind the detector array for background suppression. The detector error budget included the measured interference from the SXS cooling system and the spacecraft. Additional margin for on-orbit gain stability and on-orbit spacecraft interference were also included predicting an on-orbit performance that meets or exceeds the 7-eV FWHM at 6-keV requirement. The actual on-orbit spectral resolution was better than 5 eV FWHM at 6 keV, easily satisfying the instrument requirement. Here, we discuss the actual on-orbit performance of the SXS detector system and compare this to performance in preflight testing and the on-orbit predictions. We will also discuss the on-orbit gain stability, additional on-orbit interference, and measurements of the on-orbit background.

  2. Design and Performance of the Astro-E/XRS Signal Processing System

    NASA Technical Reports Server (NTRS)

    Boyce, Kevin R.; Audley, M. D.; Baker, R. G.; Dumonthier, J. J.; Fujimoto, R.; Gendreau, K. C.; Ishisaki, Y.; Kelley, R. L.; Stahle, C. K.; Szymkowiak, A. E.

    1999-01-01

    We describe the signal processing system of the Astro-E XRS instrument. The Calorimeter Analog Processor (CAP) provides bias and power for the detectors and amplifies the detector signals by a factor of 20,000. The Calorimeter Digital Processor (CDP) performs the digital processing of the calorimeter signals, detecting X-ray pulses and analyzing them by optimal filtering. We describe the operation of pulse detection, Pulse height analysis. and risetime determination. We also discuss performance, including the three event grades (hi-res mid-res, and low-res). anticoincidence detection, counting rate dependence, and noise rejection.

  3. Japanese Experiment Module arrival

    NASA Image and Video Library

    2007-03-29

    Several components for delivery to the International Space Station sit in test stands inside the Space Station Processing Facility highbay. To the right, from back to front, are the Japanese Experiment Module, the Raffaello multi-purpose logistics module, and the European Space Agency's Columbus scientific research module. To the left in front is the starboard truss segment S5. Behind it is the test stand that will hold the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module. The logistics module is one of the components of the Japanese Experiment Module or JEM, also known as Kibo, which means "hope" in Japanese. Kibo comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007.

  4. Discovery STS-131 Mission Landing

    NASA Image and Video Library

    2010-04-20

    The space shuttle Discovery is seen as it lands at the Kennedy Space Center in Cape Canaveral, Florida, Tuesday, April 20, 2010. Discovery and the STS-131 mission crew, Commander Alan G. Poindexter, Pilot James P. Dutton Jr. and Mission Specialists Dorothy Metcalf-Lindenburger, Rick Mastracchio, Stephanie Wilson, Clayton Anderson and Japanese astronaut Naoko Yamazaki returned from their mission to the International Space Station. Photo credit: (NASA/Bill Ingalls)

  5. View of ASTRO-2 payload in cargo bay of STS-67 Endeavour

    NASA Image and Video Library

    1995-03-17

    STS067-713-072 (2-18 March 1995) --- This 70mm cargo bay scene, backdropped against a desert area of Namibia, typifies the view that daily greeted the Astro-2 crew members during their almost 17-days aboard the Space Shuttle Endeavour. Positioned on the Spacelab pallet amidst other hardware, the Astro-2 payload is in its operational mode. Visible here are the Instrument Pointing System (IPS), Hopkins Ultraviolet Telescope (HUT), Star Tracker (ST), Ultraviolet Imaging Telescope (UIT), Wisconsin Ultraviolet Photo-Polarimeter Experiment (WUPPE), and Integrated Radiator System (IRS). At this angle, the Optical Sensor Package (OPS) is not seen. The Igloo, which supports the package of experiments, is in center foreground. Two Get-Away Special (GAS) canisters are in lower left foreground. The Extended Duration Orbiter (EDO) pallet, located aft of the cargo bay, is obscured by the Astro-2 payload. The Endeavour was 190 nautical miles above Earth.

  6. STS-47 Mission Highlights Resource Tape

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The mission of the STS-47 flight is highlighted in this video. The flight crew consisted of: Cmdr. 'Hoot' Gibson, Pilot Kurt Brown, Payload Cmdr. Jan Davis, Payload Specialist. M. Mohri (Japanese Astronaut), and Mission Specialists Jay Apt and May Jemison. The primary goal of this mission was the set-up and carrying out of experiments in the accompanying Japanese Spacelab (SL-J) in cooperation with the Japanese Space Program. Dr. Mohri is the first professional Japanese astronaut to fly in space. Vice President Dan Quayle and his wife are shown addressing the astronauts of the Space Shuttle Endeavour with a small pre-launch speech. On this flight many different physical, physiological, and biological spaceborne experiments were performed. These experiments included: a gas evaporation in low gravity environment experiment; a brainwave signals from carp experiment; several human eye movement and visual physiological tests; various physiological tests on a variety of insects and frogs; a embryology experiments on tadpoles; several experiments concerned with fluid dynamics; an imaging furnace test with heated glass containing gold particles (flow measurement); a Solid Surface Combustion Experiment; and a protein crystal growth experiment. Launch, in-orbit, and landing footage is shown, along with a variety of crew activities. One feature that astronauts were able to videotape was the actual in-orbit movement of the side wing flaps of the Space Shuttle.

  7. Officials welcome the arrival of the Japanese Experiment Module

    NASA Image and Video Library

    2007-04-17

    In the Space Station Processing Facility, NASA and Japanese Aerospace and Exploration Agency (JAXA) officials welcome the arrival of the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module, or JEM, to the Kennedy Space Center. Seen here at right are JAXA representatives, including Japanese astronaut Takao Doi (center of front row), who is a crew member for mission STS-123 that will deliver the module to the space station. The new International Space Station component arrived at Kennedy March 12 to begin preparations for its future launch on mission STS-123. It will serve as an on-orbit storage area for materials, tools and supplies. It can hold up to eight experiment racks and will attach to the top of another larger pressurized module.

  8. Discovery STS-131 Mission Landing

    NASA Image and Video Library

    2010-04-20

    STS131-S-092 (20 April 2010) --- Japanese astronaut Naoko Yamazaki, left, and Dr. Kuniaki Shiraki, Executive Director, Japan Aerospace Exploration Agency (JAXA), talk near the space shuttle Discovery shortly after Discovery and the STS-131 crew landed at the Kennedy Space Center in Cape Canaveral, Fla., on April 20, 2010. NASA astronauts Alan Poindexter, commander; James P. Dutton Jr., pilot; Dorothy Metcalf-Lindenburger, Rick Mastracchio, Stephanie Wilson, Clayton Anderson and Japanese astronaut Naoko Yamazaki, all mission specialists, returned from their 15-day journey of more than 6.2 million miles. The STS-131 mission to the International Space Station delivered science racks, new crew sleeping quarters, equipment and supplies. Photo credit: NASA/Bill Ingalls

  9. Logistics support of the Japanese Experiment Module by the H-II rocket

    NASA Astrophysics Data System (ADS)

    Shibato, Yoji; Eto, Takao; Fukushima, Yukio; Takatsuka, Hitoshi

    1988-10-01

    This paper describes salient design features of the Japanese Experiment Module (JEM), which will be attached to the Space Station. Special attention is given to the logistic support of the JEM (which is planned to become operational in 1990s) by the HOPE orbiter, which will be used for the resupply and the retrieval of the JEM, and the H-II rocket, which will be used to launch the HOPE. The concepts of HOPE and the H-II rocket are discussed together with the estimated logistics requirements of this system. Configuration diagrams are included.

  10. ASTROS: A multidisciplinary automated structural design tool

    NASA Technical Reports Server (NTRS)

    Neill, D. J.

    1989-01-01

    ASTROS (Automated Structural Optimization System) is a finite-element-based multidisciplinary structural optimization procedure developed under Air Force sponsorship to perform automated preliminary structural design. The design task is the determination of the structural sizes that provide an optimal structure while satisfying numerous constraints from many disciplines. In addition to its automated design features, ASTROS provides a general transient and frequency response capability, as well as a special feature to perform a transient analysis of a vehicle subjected to a nuclear blast. The motivation for the development of a single multidisciplinary design tool is that such a tool can provide improved structural designs in less time than is currently needed. The role of such a tool is even more apparent as modern materials come into widespread use. Balancing conflicting requirements for the structure's strength and stiffness while exploiting the benefits of material anisotropy is perhaps an impossible task without assistance from an automated design tool. Finally, the use of a single tool can bring the design task into better focus among design team members, thereby improving their insight into the overall task.

  11. Cure-WISE: HETDEX data reduction with Astro-WISE

    NASA Astrophysics Data System (ADS)

    Snigula, J. M.; Cornell, M. E.; Drory, N.; Fabricius, Max.; Landriau, M.; Hill, G. J.; Gebhardt, K.

    2012-09-01

    The Hobby-Eberly Telescope Dark Energy Experiment (HETDEX) is a blind spectroscopic survey to map the evolution of dark energy using Lyman-alpha emitting galaxies at redshifts 1:9 < z < 3:5 as tracers. The survey instrument, VIRUS, consists of 75 IFUs distributed across the 22-arcmin field of the upgraded 9.2-m HET. Each exposure gathers 33,600 spectra. Over the projected five year run of the survey we expect about 170 GB of data per night. For the data reduction we developed the Cure pipeline. Cure is designed to automatically find and calibrate the observed spectra, subtract the sky background, and detect and classify different types of sources. Cure employs rigorous statistical methods and complete pixel-level error propagation throughout the reduction process to ensure Poisson-limited performance and meaningful significance values. To automate the reduction of the whole dataset we implemented the Cure pipeline in the Astro-WISE framework. This integration provides for HETDEX a database backend with complete dependency tracking of the various reduction steps, automated checks, and a searchable interface to the detected sources and user management. It can be used to create various web interfaces for data access and quality control. Astro-WISE allows us to reduce the data from all the IFUs in parallel on a compute cluster. This cluster allows us to reduce the observed data in quasi real time and still have excess capacity for rerunning parts of the reduction. Finally, the Astro-WISE interface will be used to provide access to reduced data products to the general community.

  12. Selections from 2017: Image Processing with AstroImageJ

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-12-01

    Editors note:In these last two weeks of 2017, well be looking at a few selections that we havent yet discussed on AAS Nova from among the most-downloaded paperspublished in AAS journals this year. The usual posting schedule will resume in January.AstroImageJ: Image Processing and Photometric Extraction for Ultra-Precise Astronomical Light CurvesPublished January2017The AIJ image display. A wide range of astronomy specific image display options and image analysis tools are available from the menus, quick access icons, and interactive histogram. [Collins et al. 2017]Main takeaway:AstroImageJ is a new integrated software package presented in a publication led byKaren Collins(Vanderbilt University,Fisk University, andUniversity of Louisville). Itenables new users even at the level of undergraduate student, high school student, or amateur astronomer to quickly start processing, modeling, and plotting astronomical image data.Why its interesting:Science doesnt just happen the momenta telescope captures a picture of a distantobject. Instead, astronomical images must firstbe carefully processed to clean up thedata, and this data must then be systematically analyzed to learn about the objects within it. AstroImageJ as a GUI-driven, easily installed, public-domain tool is a uniquelyaccessible tool for thisprocessing and analysis, allowing even non-specialist users to explore and visualizeastronomical data.Some features ofAstroImageJ:(as reported by Astrobites)Image calibration:generate master flat, dark, and bias framesImage arithmetic:combineimages viasubtraction, addition, division, multiplication, etc.Stack editing:easily perform operations on a series of imagesImage stabilization and image alignment featuresPrecise coordinate converters:calculate Heliocentric and Barycentric Julian DatesWCS coordinates:determine precisely where atelescope was pointed for an image by PlateSolving using Astronomy.netMacro and plugin support:write your own macrosMulti-aperture photometry

  13. The High-Resolution X-Ray Microcalorimeter Spectrometer, SXS, on Astro-H

    NASA Technical Reports Server (NTRS)

    Mitsuda, Kazuhisa; Kelley, Richard L.; Boyce, Kevin R.; Brown, Gregory V.; Costantini, Elisa; DiPirro, Michael J.; Ezoe, Yuichiro; Fujimoto, Ryuichi; Gendreau, Keith C.; denHerder, Jan-Willem; hide

    2012-01-01

    The science and an overview of the Soft X-ray Spectrometer onboard the STRO-H mission are presented. The SXS consists of X-ray focusing mirrors and a microcalorimeter array and is developed by international collaboration lead by JAXA and NASA with European participation. The detector is a 6 x 6 format microcalorimeter array operated at a cryogenic temperature of 50 mK and covers a 3' x 3' field of view of the X-ray telescope of 5.6 m focal length. We expect an energy resolution better than 7 eV (FWHM, requirement) with a goal of 4 eV. The effective area of the instrument will be 225 square centimeters at 7 keV; by a factor of about two larger than that of the X-ray microcalorimeter on board Suzaku. One of the main scientific objectives of the SXS is to investigate turbulent and/or macroscopic motions of hot gas in clusters of galaxies.

  14. Design, implementation, and performance of the Astro-H soft x-ray spectrometer aperture assembly and blocking filters

    NASA Astrophysics Data System (ADS)

    Kilbourne, Caroline A.; Adams, Joseph S.; Arsenovic, Petar; Ayers, Travis; Chiao, Meng P.; DiPirro, Michael J.; Eckart, Megan E.; Fujimoto, Ryuichi; Kazeva, John D.; Kripps, Kari L.; Lairson, Bruce M.; Leutenegger, Maurice A.; Lopez, Heidi C.; McCammon, Dan; McGuinness, Daniel S.; Mitsuda, Kazuhisa; Moseley, Samuel J.; Porter, F. Scott; Schweiss, Andrea N.; Takei, Yoh; Thorpe, Rosemary Schmidt; Watanabe, Tomomi; Yamasaki, Noriko Y.; Yoshida, Seiji

    2018-01-01

    The calorimeter array of the JAXA Astro-H (renamed Hitomi) soft x-ray spectrometer (SXS) was designed to provide unprecedented spectral resolution of spatially extended cosmic x-ray sources and of all cosmic x-ray sources in the Fe-K band around 6 keV. The properties that made the SXS array a powerful x-ray spectrometer also made it sensitive to photons from the entire electromagnetic band as well as particles. If characterized as a bolometer, it would have had a noise equivalent power of <4 × 10 ? 18 W / (Hz)0.5. Thus, it was imperative to shield the detector from thermal radiation from the instrument and optical and UV photons from the sky. In addition, it was necessary to shield the coldest stages of the instrument from the thermal radiation emanating from the warmer stages. These needs were addressed by a series of five thin-film radiation-blocking filters, anchored to the nested temperature stages, that blocked long-wavelength radiation while minimizing x-ray attenuation. The aperture assembly was a system of barriers, baffles, filter carriers, and filter mounts that supported the filters and inhibited their potential contamination. The three outer filters also had been equipped with thermometers and heaters for decontamination. We present the requirements, design, implementation, and performance of the SXS aperture assembly and blocking filters.

  15. AstroBlend: An astrophysical visualization package for Blender

    NASA Astrophysics Data System (ADS)

    Naiman, J. P.

    2016-04-01

    The rapid growth in scale and complexity of both computational and observational astrophysics over the past decade necessitates efficient and intuitive methods for examining and visualizing large datasets. Here, I present AstroBlend, an open-source Python library for use within the three dimensional modeling software, Blender. While Blender has been a popular open-source software among animators and visual effects artists, in recent years it has also become a tool for visualizing astrophysical datasets. AstroBlend combines the three dimensional capabilities of Blender with the analysis tools of the widely used astrophysical toolset, yt, to afford both computational and observational astrophysicists the ability to simultaneously analyze their data and create informative and appealing visualizations. The introduction of this package includes a description of features, work flow, and various example visualizations. A website - www.astroblend.com - has been developed which includes tutorials, and a gallery of example images and movies, along with links to downloadable data, three dimensional artistic models, and various other resources.

  16. Discovery STS-131 Mission Landing

    NASA Image and Video Library

    2010-04-20

    STS131-S-086 (20 April 2010) --- The space shuttle Discovery is seen as it lands at the Kennedy Space Center in Cape Canaveral, Florida, on April 20, 2010. Discovery and the STS-131 mission crew, NASA astronauts Alan Poindexter, commander; James P. Dutton Jr., pilot; Dorothy Metcalf-Lindenburger, Rick Mastracchio, Stephanie Wilson, Clayton Anderson and Japanese astronaut Naoko Yamazaki, all mission specialists, returned from their mission to the International Space Station. Photo credit: NASA/Bill Ingalls

  17. Discovery STS-131 Mission Landing

    NASA Image and Video Library

    2010-04-20

    STS131-S-088 (20 April 2010) --- The space shuttle Discovery is seen as it lands at the Kennedy Space Center in Cape Canaveral, Florida, on April 20, 2010. Discovery and the STS-131 mission crew, NASA astronauts Alan Poindexter, commander; James P. Dutton Jr., pilot; Dorothy Metcalf-Lindenburger, Rick Mastracchio, Stephanie Wilson, Clayton Anderson and Japanese astronaut Naoko Yamazaki, all mission specialists, returned from their mission to the International Space Station. Photo credit: NASA/Bill Ingalls

  18. Development and calibration of fine collimators for the ASTRO-H Soft Gamma-ray Detector

    NASA Astrophysics Data System (ADS)

    Mizuno, T.; Kimura, D.; Fukazawa, Y.; Furui, S.; Goto, K.; Hayashi, T.; Kawabata, K. S.; Kawano, T.; Kitamura, Y.; Shirakawa, H.; Tanabe, T.; Makishima, K.; Nakajima, K.; Nakazawa, K.; Fukuyama, T.; Ichinohe, Y.; Ishimura, K.; Ohta, M.; Sato, T.; Takahashi, T.; Uchida, Y.; Watanabe, S.; Ishibashi, K.; Sakanobe, K.; Matsumoto, H.; Miyazawa, T.; Mori, H.; Sakai, M.; Tajima, H.

    2014-07-01

    The Soft Gamma-ray Detector (SGD) is a Si/CdTe Compton telescope surrounded by a thick BGO active shield and is scheduled to be onboard the ASTRO-H satellite when it is launched in 2015. The SGD covers the energy range from 40 to 600 keV with high sensitivity, which allows us to study nonthermal phenomena in the universe. The SGD uses a Compton camera with the narrow field-of-view (FOV) concept to reduce the non-Xray background (NXB) and improve the sensitivity. Since the SGD is essentially a nonimaging instrument, it also has to cope with the cosmic X-ray background (CXB) within the FOV. The SGD adopts passive shields called "fine collimators" (FCs) to restrict the FOV to <= 0.6° for low-energy photons (<= 100 keV), which reduces contamination from CXB to less than what is expected due to NXB. Although the FC concept was already adopted by the Hard X-ray Detector onboard Suzaku, FCs for the SGD are about four times larger in size and are technically more difficult to operate. We developed FCs for the SGD and confirmed that the prototypes function as required by subjecting them to an X-ray test and environmental tests, such as vibration tests. We also developed an autocollimator system, which uses visible light to determine the transmittance and the optical axis, and calibrated it against data from the X-ray test. The acceptance tests of flight models started in December 2013: five out of six FCs were deemed acceptable, and one more unit is currently being produced. The activation properties were studied based on a proton-beam test and the results were used to estimate the in-orbit NXB.

  19. Spacelab

    NASA Image and Video Library

    1994-07-01

    Astronaut Donald Thomas conducts the Fertilization and Embryonic Development of Japanese Newt in Space (AstroNewt) experiment at the Aquatic Animal Experiment Unit (AAEU) inside the International Microgravity Laboratory-2 (IML-2) science module. The AstroNewt experiment aims to know the effects of gravity on the early developmental process of fertilized eggs using a unique aquatic animal, the Japanese red-bellied newt. The newt egg is a large single cell at the begirning of development. The Japanese newt mates in spring and autumn. In late autumn, female newts enter hibernation with sperm in their body cavity and in spring lay eggs and fertilize them with the stored sperm. The experiment takes advantage of this feature of the newt. Groups of newts were sent to the Kennedy Space Center and kept in hibernation until the mission. The AAEU cassettes carried four newts aboard the Space Shuttle. Two newts in one cassette are treated by hormone injection on the ground to simulate egg laying. The other two newts are treated on orbit by the crew. The former group started maturization of eggs before launch. The effects of gravity on that early process were differentiated by comparison of the two groups. The IML-2 was the second in a series of Spacelab flights designed to conduct research by the international science community in a microgravity environment. Managed by the Marshall Space Flight Center, the IML-2 was launched on July 8, 1994 aboard the STS-65 Space Shuttle mission, Orbiter Columbia.

  20. Spacelab

    NASA Image and Video Library

    1994-07-01

    Astronaut Donald Thomas conducts the Fertilization and Embryonic Development of Japanese Newt in Space (AstroNewt) experiment at the Aquatic Animal Experiment Unit (AAEU) inside the International Microgravity Laboratory-2 (IML-2) science module. The AstroNewt experiment aims to know the effects of gravity on the early developmental process of fertilized eggs using a unique aquatic animal, the Japanese red-bellied newt. The newt egg is a large single cell at the begirning of development. The Japanese newt mates in spring and autumn. In late autumn, female newts enter hibernation with sperm in their body cavity and in spring lay eggs and fertilized them with the stored sperm. The experiment takes advantage of this feature of the newt. Groups of newts were sent to the Kennedy Space Center and kept in hibernation until the mission. The AAEU cassettes carried four newts aboard the Space Shuttle. Two newts in one cassette are treated by hormone injection on the ground to simulate egg laying. The other two newts are treated on orbit by the crew. The former group started maturization of eggs before launch. The effects of gravity on that early process were differentiated by comparison of the two groups. The IML-2 was the second in a series of Spacelab flights designed to conduct research by the international science community in a microgravity environment. Managed by the Marshall Space Flight Center, the IML-2 was launch on July 8, 1994 aboard the STS-65 Space Shuttle Orbiter Columbia mission.

  1. Detecting and Identifying Organic Molecules in Space - The AstroBiology Explorer (ABE) MIDEX Mission Concept

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.

    2001-01-01

    Infrared spectroscopy in the 2.5-16 micron (4000-625/cm) range is a principle means by which organic compounds are detected and identified in space. Ground-based, airborne, and spaceborne IR spectral studies have already demonstrated that a significant fraction of the carbon in the interstellar medium (ISM) resides in the form of complex organic molecular species. Unfortunately, neither the distribution of these materials nor their genetic and evolutionary relationships with each other or their environments are well understood. The Astrobiology Explorer (ABE) is a MIDEX (Medium-class Explorer) mission concept currently under study at NASA's Ames Research Center in collaboration with Ball Aerospace and Technologies Corporation. ABE will conduct IR spectroscopic observations to address outstanding important problems in astrobiology, astrochemistry, and astrophysics. The core observational program would make fundamental scientific progress in understanding (1) the evolution of ices and organic matter in dense molecular clouds and young forming stellar systems, (2) the chemical evolution of organic molecules in the ISM as they transition from AGB outflows to planetary nebulae to the general diffuse ISM to H II regions and dense clouds, (3) the distribution of organics in the diffuse ISM, (4) the nature of organics in the Solar System (in comets, asteroids, satellites), and (5) the nature and distribution of organics in local galaxies. Both the scientific goals of the mission and how they would be achieved will be discussed.

  2. Detecting and Identifying Organic Molecules in Space: The AstroBiology Explorer (ABE) MIDEX Mission Concept

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    Infrared spectroscopy in the 2.5-16 microns (4000-625/cm) range is a principle means by which organic compounds are detected and identified in space. Ground-based, airborne, and spaceborne IR spectral studies have already demonstrated that a significant fraction of the carbon in the interstellar medium (ISM) resides in the form of complex organic molecular species. Unfortunately, neither the distribution of these materials nor their genetic and evolutionary relationships with each other or their environments are well understood. The Astrobiology Explorer (ABE) is a MIDEX (Medium-class Explorer) mission concept currently under study at NASA's Ames Research Center in collaboration with Ball Aerospace and Technologies Corporation. ABE will conduct IR spectroscopic observations to address outstanding important problems in astrobiology, astrochemistry, and astrophysics. The core observational program would make fundamental scientific progress in understanding (1) the evolution of ices and organic matter in dense molecular clouds and young forming stellar systems, (2) the chemical evolution of organic molecules in the ISM as they transition from AGB outflows to planetary nebulae to the general diffuse ISM to H II regions and dense clouds, (3) the distribution of organics in the diffuse ISM, (4) the nature of organics in the Solar System (in comets, asteroids, satellites), and (5) the nature and distribution of organics in local galaxies. Both the scientific goals of the mission and how they would be achieved will be discussed.

  3. STS-35 Space Shuttle mission report

    NASA Technical Reports Server (NTRS)

    Camp, David W.; Germany, D. M.; Nicholson, Leonard S.

    1991-01-01

    The STS-35 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem activities during this thirty-eighth flight of the Space Shuttle and the tenth flight of the Orbiter vehicle Columbia (OV-102). In addition to the Columbia vehicle, the flight vehicle consisted of an External Tank (ET) (designated as ET-35/LWT-28), three Space Shuttle main engines (SSME's) (serial numbers 2024, 2012, and 2028 in positions 1, 2, and 3, respectively), and two Solid Rocket Boosters (SRB's) designated as BI-038. The primary objectives of this flight were to successfully perform the planned operations of the Ultraviolet Astronomy (Astro-1) payload and the Broad-Band X-Ray Telescope (BBXRT) payload in a 190-nmi. circular orbit which had an inclination of 28.45 degrees. The sequence of events for this mission is shown in tablular form. Summarized are the significant problems that occurred in the Orbiter subsystems during the mission. The official problem tracking list is presented. In addition, each Orbiter subsystem problem is cited in the applicable subsystem discussion.

  4. Status of the ESA L1 mission candidate ATHENA

    NASA Astrophysics Data System (ADS)

    Rando, N.; Martin, D.; Lumb, D.; Verhoeve, P.; Oosterbroek, T.; Bavdaz, M.; Fransen, S.; Linder, M.; Peyrou-Lauga, R.; Voirin, T.; Braghin, M.; Mangunsong, S.; van Pelt, M.; Wille, E.

    2012-09-01

    ATHENA (Advanced Telescope for High Energy Astrophysics) was an L class mission candidate within the science programme Cosmic Vision 2015-2025 of the European Space Agency, with a planned launch by 2022. ATHENA was conceived as an ESA-led project, open to the possibility of focused contributions from JAXA and NASA. By allowing astrophysical observations between 100 eV and 10 keV, it would represent the new generation X-ray observatory, following the XMM-Newton, Astro-H and Chandra heritage. The main scientific objectives of ATHENA include the study of large scale structures, the evolution of black holes, strong gravity effects, neutron star structure as well as investigations into dark matter. The ATHENA mission concept would be based on focal length of 12m achieved via a rigid metering tube and a twoaperture, x-ray telescope. Two identical x-ray mirrors would illuminate fixed focal plane instruments: a cryogenic imaging spectrometer (XMS) and a wide field imager (WFI). The S/C is designed to be fully compatible with Ariane 5 ECA. The observatory would operate at SE-L2, with a nominal lifetime of 5 yr. This paper provides a summary of the reformulation activities, completed in December 2011. An overview of the spacecraft design and of the payload is provided, including both telescope and instruments. Following the ESA Science Programme Committee decision on the L1 mission in May 2012, ATHENA was not selected to enter Definition Phase.

  5. Space Shuttle mission: STS-67

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Space Shuttle Endeavor, scheduled to launch March 2, 1995 from NASA's Kennedy Space Center, will conduct NASA's longest Shuttle flight prior to date. The mission, designated STS-67, has a number of experiments and payloads, which the crew, commanded by Stephen S. Oswald, will have to oversee. This NASA press kit for the mission contains a general background (general press release, media services information, quick-look facts page, shuttle abort modes, summary timeline, payload and vehicle weights, orbital summary, and crew responsibilities); cargo bay payloads and activities (Astro 2, Get Away Special Experiments); in-cabin payloads (Commercial Minimum Descent Altitude Instrumentation Technology Associates Experiments, protein crystal growth experiments, Middeck Active Control Experiment, and Shuttle Amateur Radio Experiment); and the STS-67 crew biographies. The payloads and experiments are described and summarized to give an overview of the goals, objectives, apparatuses, procedures, sponsoring parties, and the assigned crew members to carry out the tasks.

  6. AstroCappella: A Musical Exploration of the Universe. Activities and Information To Accompany the AstroCappella CD. Grades 7-12.

    ERIC Educational Resources Information Center

    Boyd, Padi; Granger, Kara C.; Smale, Alan

    AstroCappella combines the love of music with the love of astronomy. The booklet contains hands-on activities that can be done in the classroom coupled with rocking, high-energy, professionally recorded and produced songs written and performed by an established vocal band. The lesson plans help students learn how convection works, how radio…

  7. Operating modes and cooling capabilities of the 3-stage ADR developed for the Soft-X-ray Spectrometer instrument on Astro-H

    NASA Astrophysics Data System (ADS)

    Shirron, Peter J.; Kimball, Mark O.; James, Bryan L.; Muench, Theodore; DiPirro, Michael J.; Letmate, Richard V.; Sampson, Michael A.; Bialas, Tom G.; Sneiderman, Gary A.; Porter, Frederick S.; Kelley, Richard L.

    2016-03-01

    A 3-stage adiabatic demagnetization refrigerator (ADR) (Shirron et al., 2012) is used on the Soft X-ray Spectrometer instrument (Mitsuda et al., 2010) on Astro-H (Takahashi et al., 2010) [3] to cool a 6 × 6 array of X-ray microcalorimeters to 50 mK. The ADR is supported by a cryogenic system (Fujimoto et al., 2010) consisting of a superfluid helium tank, a 4.5 K Joule-Thomson (JT) cryocooler, and additional 2-stage Stirling cryocoolers that pre-cool the JT cooler and cool radiation shields within the cryostat. The ADR is configured so that it can use either the liquid helium or the JT cryocooler as its heat sink, giving the instrument an unusual degree of tolerance for component failures or degradation in the cryogenic system. The flight detector assembly, ADR and dewar were integrated into the flight dewar in early 2014, and have since been extensively characterized and calibrated. This paper summarizes the operation and performance of the ADR in all of its operating modes.

  8. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, STS-115 Mission Specialist Joseph Tanner (left) and STS-117 Mission Specialist James Reilly (right) are donning protective clothing to interface with the Japanese Experiment Module (JEM), in the background. Equipment familiarization is a routine part of astronaut training and launch preparations.

    NASA Image and Video Library

    2003-10-21

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, STS-115 Mission Specialist Joseph Tanner (left) and STS-117 Mission Specialist James Reilly (right) are donning protective clothing to interface with the Japanese Experiment Module (JEM), in the background. Equipment familiarization is a routine part of astronaut training and launch preparations.

  9. AstroCom NYC: A National Model for Urban Minority Engagement

    NASA Astrophysics Data System (ADS)

    Paglione, Timothy; Ford, Saavik; Robbins, Dennis; Mac Low, Mordecai-Mark; Agueros, Marcel A.

    2016-01-01

    AstroCom NYC is an undergraduate mentoring program designed to improve urban minority student access to opportunities in astrophysical research by greatly enhancing partnerships between research astronomers in New York City (City University of New York - an MSI, American Museum of Natural History, and Columbia). AstroCom NYC provides centralized, personalized mentoring as well as financial and academic support, to CUNY undergraduates throughout their studies, plus the resources and opportunities to further CUNY faculty research with students. The goal is that students' residency at AMNH helps them build a sense of belonging in the field, and readies and inspires them for graduate study. AstroCom NYC provides a rigorous Methods of Scientific Research course developed specifically to this purpose, a laptop, research and career mentors, outreach activities, scholarships and stipends, Metrocards, and regular assessment for maximum effectiveness. The goal of this support is to remove barriers to access and success. AMNH serves as the central hub for our faculty and students, who are otherwise dispersed among all five boroughs of the City. We welcomed our third and largest cohort last year, along with 13 additional students through a NASA community college initiative. We review plans for Year 4, when we expect all of our interns to compete for external summer REUs, and our growing participation and leadership within partner activities.

  10. IAU astroEDU: an open-access platform for peer-reviewed astronomy education activities

    NASA Astrophysics Data System (ADS)

    Heenatigala, Thilina; Russo, Pedro; Strubbe, Linda; Gomez, Edward

    2015-08-01

    astroEDU is an open access platform for peer-reviewed astronomy education activities. It addresses key problems in educational repositories such as variability in quality, not maintained or updated regularly, limited content review, and more. This is achieved through a peer-review process similar to what scholarly articles are based on. Activities submitted are peer-reviewed by an educator and a professional astronomer which gives the credibility to the activities. astroEDU activities are open-access in order to make the activities accessible to educators around the world while letting them discover, review, distribute and remix the activities. The activity submission process allows authors to learn how to apply enquiry-based learning into the activity, identify the process skills required, how to develop core goals and objectives, and how to evaluate the activity to determine the outcome. astroEDU is endorsed by the International Astronomical Union meaning each activity is given an official stamp by the international organisation for professional astronomers.

  11. KENNEDY SPACE CENTER, FLA. - STS-114 Mission Specialists Andrew Thomas and Soichi Noguchi look at the leading edge of Discovery’s wing with RCC panels removed. Noguchi is with the Japanese Aerospace and Exploration Agency. Crew members are at KSC becoming familiar with Shuttle and mission equipment. The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

    NASA Image and Video Library

    2004-03-05

    KENNEDY SPACE CENTER, FLA. - STS-114 Mission Specialists Andrew Thomas and Soichi Noguchi look at the leading edge of Discovery’s wing with RCC panels removed. Noguchi is with the Japanese Aerospace and Exploration Agency. Crew members are at KSC becoming familiar with Shuttle and mission equipment. The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

  12. KENNEDY SPACE CENTER, FLA. - STS-114 Mission Specialist Soichi Noguchi looks at tile on the underside of the orbiter Discovery. Noguchi is with the Japanese Aerospace and Exploration Agency. He and other crew members are at KSC becoming familiar with Shuttle and mission equipment. The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

    NASA Image and Video Library

    2004-03-05

    KENNEDY SPACE CENTER, FLA. - STS-114 Mission Specialist Soichi Noguchi looks at tile on the underside of the orbiter Discovery. Noguchi is with the Japanese Aerospace and Exploration Agency. He and other crew members are at KSC becoming familiar with Shuttle and mission equipment. The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

  13. EPE The Extreme Physics Explorer

    NASA Technical Reports Server (NTRS)

    Garcia, Michael; Elvis, Martin; Bookbinder, Jay; Brenneman, Laura; Bulbul, Esra; Nulsen, Paul; Patnaude, Dan; Smith, Randall; Bandler, Simon; Okajima, Takashi; hide

    2012-01-01

    The Extreme Physics Explorer (EPE) is a mission concept that will address fundamental and timely questions in astrophysics which are primary science objectives of IXO. The reach of EPE to the areas outlined in NASA RFI NNH11ZDA018L is shown as a table. The dark green indicates areas in which EPE can do the basic IXO science, and the light green areas where EPE can contribute but will not reach the full IXO capability. To address these science questions, EPE will trace orbits close to the event horizon of black holes, measure black hole spin in active galactic nuclei (AGN), use spectroscopy to characterize outflows and the environment of AGN, map bulk motions and turbulence in galaxy clusters, and observe the process of cosmic feedback where black holes inject energy on galactic and intergalactic scales. EPE gives up the high resolution imaging of IXO in return for lightweight, high TRL foil mirrors which will provide >20 times the effective area of ASTRO-H and similar spatial resolution, with a beam sufficient to study point sources and nearby galaxies and clusters. Advances in micro-calorimeters allow improved performance at high rates with twice the energy resolution of ASTRO-H. A lower TRL option would provide 200 times the area of ASTRO-H using a micro-channel plate optic (MCPO) and a deployable optical bench. Both options are in the middle range of RFI missions at between $600M and $1000M. The EPE foil optic has direct heritage to ASTRO-H, allowing robust cost estimates. The spacecraft is entirely off the shelf and introduces no difficult requirements. The mission could be started and launched in this decade to an L2 orbit, with a three-year lifetime and consumables for 5 years. While ASTRO-H will give us the first taste of high-resolution, non-dispersive X-ray spectroscopy, it will be limited to small numbers of objects in many categories. EPE will give us the first statistically significant samples in each of these categories.

  14. Cure-WISE: HETDEX Data Reduction with Astro-WISE

    NASA Astrophysics Data System (ADS)

    Snigula, J. M.; Drory, N.; Fabricius, M.; Landriau, M.; Montesano, F.; Hill, G. J.; Gebhardt, K.; Cornell, M. E.

    2014-05-01

    The Hobby-Eberly Telescope Dark Energy Experiment (HETDEX, Hill et al. 2012b) is a blind spectroscopic survey to map the evolution of dark energy using Lyman-alpha emitting galaxies at redshifts 1.9< ɀ <3.5 as tracers. The survey will use an array of 75 integral field spectrographs called the Visible Integral field Replicable Unit (IFU) Spectrograph (VIRUS, Hill et al. 2012c). The 10m HET (Ramsey et al. 1998) currently receives a wide-field upgrade (Hill et al. 2012a) to accomodate the spectrographs and to provide the needed field of view. Over the projected five year run of the survey we expect to obtain approximately 170 GB of data each night. For the data reduction we developed the Cure pipeline, to automatically find and calibrate the observed spectra, subtract the sky background, and detect and classify different types of sources. Cure employs rigorous statistical methods and complete pixel-level error propagation throughout the reduction process to ensure Poisson-limited performance and meaningful significance values. To automate the reduction of the whole dataset we implemented the Cure pipeline in the Astro-WISE framework. This integration provides for HETDEX a database backend with complete dependency tracking of the various reduction steps, automated checks, and a searchable interface to the detected sources and user management. It can be used to create various web interfaces for data access and quality control. Astro-WISE allows us to reduce the data from all the IFUs in parallel on a compute cluster. This cluster allows us to reduce the observed data in quasi real time and still have excess capacity for rerunning parts of the reduction. Finally, the Astro-WISE interface will be used to provide access to reduced data products to the general community.

  15. Global Precipitation Measurement Mission: Architecture and Mission Concept

    NASA Technical Reports Server (NTRS)

    Bundas, David

    2005-01-01

    The Global Precipitation Measurement (GPM) Mission is a collaboration between the National Aeronautics and Space Administration (NASA) and the Japanese Aerospace Exploration Agency (JAXA), and other partners, with the goal of monitoring the diurnal and seasonal variations in precipitation over the surface of the earth. These measurements will be used to improve current climate models and weather forecasting, and enable improved storm and flood warnings. This paper gives an overview of the mission architecture and addresses some of the key trades that have been completed, including the selection of the Core Observatory s orbit, orbit maintenance trades, and design issues related to meeting orbital debris requirements.

  16. A Powerful Protector of the Japanese People: The History of the Japanese Hospital in Steveston, British Columbia, Canada,18961942.

    PubMed

    Vandenberg, Helen

    2017-01-01

    From 1896 to 1942, a Japanese hospital operated in the village of Steveston, British Columbia, Canada. For the first 4 years, Japanese Methodist missionaries utilized a small mission building as a makeshift hospital, until a larger institution was constructed by the local Japanese Fishermen's Association in 1900. The hospital operated until the Japanese internment, after the attack on Pearl Harbor during World War II. This study offers important commentary about the relationships between health, hospitals, and race in British Columbia during a period of increased immigration and economic upheaval. From the unique perspective of Japanese leaders, this study provides new insight about how Japanese populations negotiated hospital care, despite a context of severe racial discrimination. Japanese populations utilized Christianization, fishing expertise, and hospital work to garner more equitable access to opportunities and resources. This study demonstrates that in addition to providing medical treatment, training grounds for health-care workers, and safe refuge for the sick, hospitals played a significant role in confronting broader racialized inequities in Canada's past.

  17. STS-69 Mission Specialist James H. Newman in white room

    NASA Technical Reports Server (NTRS)

    1995-01-01

    At Launch Pad 39A, STS-69 Mission Specialist James H. Newman chats with white room closeout crew members Rene Arriens (far left), Travis Thompson and Bob Saulnier (right) prior to entering the Space Shuttle Endeavour.

  18. ASTRO-1: a 1.8m unobscured space observatory for next generation UV/visible astrophysics and exoplanet exploration

    NASA Astrophysics Data System (ADS)

    Matthews, Gary W.; Egerman, Robert; Morse, Jon A.; Wilkes, Belinda

    2016-07-01

    The Hubble Space Telescope has been a scientific marvel that has provided unimaginable imagery and scientific discovery. Its exquisite UV/Visible imaging performance is unmatched from the ground. In NASA's future planning, the earliest possible successor mission would be in the 3030s, well beyond the expected lifetime of Hubble. The ASTRO-1 space telescope is a 1.8m off-axis (unobscured) observatory that looks to fill this critical void with Hubble-like performance to continue the scientific quest while also providing the possibility for exoplanet research with a coronagraphic instrument and/or a free flying starshade. BoldlyGo Institute seeks to reach beyond NASA funding to leverage the high public interest in space research and exploration, and the search for life beyond Earth.

  19. Frequency and Clinical Implication of the R450H Mutation in the Thyrotropin Receptor Gene in the Japanese Population Detected by Smart Amplification Process 2

    PubMed Central

    Yanagawa, Yoshimaro; Aoki, Tomoyuki; Morimura, Tadashi; Araki, Osamu; Kimura, Takao; Ogiwara, Takayuki; Kotajima, Nobuo; Yanagawa, Masumi; Murakami, Masami

    2014-01-01

    In Japanese pediatric patients with thyrotropin (TSH) resistance, the R450H mutation in TSH receptor gene (TSHR) is occasionally observed. We studied the frequency and clinical implication of the R450H mutation in TSHR in the general population of Japanese adults using smart amplification process 2 (SmartAmp2). We designed SmartAmp2 primer sets to detect this mutation using a drop of whole blood. We analyzed thyroid function, antithyroid antibodies, and this mutation in 429 Japanese participants who had not been found to have thyroid disease. Two cases without antithyroid antibodies were heterozygous for the R450H mutation in TSHR. Thus, the prevalence of this mutation was 0.47% in the general population and 0.63% among those without antithyroid antibodies. Their serum TSH concentrations were higher than the average TSH concentration not only in subjects without antithyroid antibodies but also in those with antithyroid antibodies. The R450H mutation in TSHR is relatively common in the Japanese population and potentially affects thyroid function. The present study demonstrates that the SmartAmp2 method is useful to detect the R450H mutation in TSHR, which is one of the common causes of TSH resistance in the Japanese population. PMID:24895636

  20. In-Orbit Operation of the ASTRO-H SXS

    NASA Technical Reports Server (NTRS)

    Tsujimoto, Masahiro; Mitsuda, Kazuhisa; Kelley, Richard L.; den Herder, Jan-Willem A.; Akamatsu, Hiroki; Bialas, Thomas G.; Boyce, Kevin R.; Brown, Gregory V.; Chiao, Meng P.; Costantini, Elisa; hide

    2016-01-01

    We summarize all of the in-orbit operations of the soft x-ray spectrometer (SXS) onboard the ASTROH (Hitomi) satellite. The satellite was launched on February 17, 2016, and the communication with the satellite ceased on March 26, 2016. The SXS was still in the commissioning phase, in which the set-ups were progressively changed. This paper is intended to serve as a concise reference of the events in orbit in order to properly interpret the SXS data taken during its short lifetime and as a test case for planning the in-orbit operation for future microcalorimeter missions.

  1. KENNEDY SPACE CENTER, FLA. - The STS-114 crew stands underneath Discovery in the Orbiter Processing Facility. From left are Mission Specialist Stephen Robinson, Pilot James Kelly, Mission Specialist Charles Camarda, astronaut John Young, Commander Eileen Collins and Mission Specialists Andrew Thomas, Wendy Lawrence and Soichi Noguchi, who is with the Japanese Aerospace and Exploration Agency. Young is associate director, Technical, at Johnson Space Center. The crew is spending time becoming familiar with Shuttle and mission equipment. The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

    NASA Image and Video Library

    2004-03-05

    KENNEDY SPACE CENTER, FLA. - The STS-114 crew stands underneath Discovery in the Orbiter Processing Facility. From left are Mission Specialist Stephen Robinson, Pilot James Kelly, Mission Specialist Charles Camarda, astronaut John Young, Commander Eileen Collins and Mission Specialists Andrew Thomas, Wendy Lawrence and Soichi Noguchi, who is with the Japanese Aerospace and Exploration Agency. Young is associate director, Technical, at Johnson Space Center. The crew is spending time becoming familiar with Shuttle and mission equipment. The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

  2. "A Powerful Protector of the Japanese People": The History of the Japanese Hospital in Steveston, British Columbia, Canada,1896-1942.

    PubMed

    Vandenberg, Helen

    2017-01-01

    From 1896 to 1942, a Japanese hospital operated in the village of Steveston, British Columbia, Canada. For the first 4 years, Japanese Methodist missionaries utilized a small mission building as a makeshift hospital, until a larger institution was constructed by the local Japanese Fishermen's Association in 1900. The hospital operated until the Japanese internment, after the attack on Pearl Harbor during World War II. This study offers important commentary about the relationships between health, hospitals, and race in British Columbia during a period of increased immigration and economic upheaval. From the unique perspective of Japanese leaders, this study provides new insight about how Japanese populations negotiated hospital care, despite a context of severe racial discrimination. Japanese populations utilized Christianization, fishing expertise, and hospital work to garner more equitable access to opportunities and resources. This study demonstrates that in addition to providing medical treatment, training grounds for health-care workers, and safe refuge for the sick, hospitals played a significant role in confronting broader racialized inequities in Canada's past.

  3. AstroCloud, a Cyber-Infrastructure for Astronomy Research: Cloud Computing Environments

    NASA Astrophysics Data System (ADS)

    Li, C.; Wang, J.; Cui, C.; He, B.; Fan, D.; Yang, Y.; Chen, J.; Zhang, H.; Yu, C.; Xiao, J.; Wang, C.; Cao, Z.; Fan, Y.; Hong, Z.; Li, S.; Mi, L.; Wan, W.; Wang, J.; Yin, S.

    2015-09-01

    AstroCloud is a cyber-Infrastructure for Astronomy Research initiated by Chinese Virtual Observatory (China-VO) under funding support from NDRC (National Development and Reform commission) and CAS (Chinese Academy of Sciences). Based on CloudStack, an open source software, we set up the cloud computing environment for AstroCloud Project. It consists of five distributed nodes across the mainland of China. Users can use and analysis data in this cloud computing environment. Based on GlusterFS, we built a scalable cloud storage system. Each user has a private space, which can be shared among different virtual machines and desktop systems. With this environments, astronomer can access to astronomical data collected by different telescopes and data centers easily, and data producers can archive their datasets safely.

  4. AstroGrid: Taverna in the Virtual Observatory .

    NASA Astrophysics Data System (ADS)

    Benson, K. M.; Walton, N. A.

    This paper reports on the implementation of the Taverna workbench by AstroGrid, a tool for designing and executing workflows of tasks in the Virtual Observatory. The workflow approach helps astronomers perform complex task sequences with little technical effort. Visual approach to workflow construction streamlines highly complex analysis over public and private data and uses computational resources as minimal as a desktop computer. Some integration issues and future work are discussed in this article.

  5. Initial Development and Pilot Study Design of Interactive Lecture Demonstrations for ASTRO 101

    NASA Astrophysics Data System (ADS)

    Schwortz, Andria C.; French, D. A; Gutierrez, Joseph V; Sanchez, Richard L; Slater, Timothy F.; Tatge, Coty

    2014-06-01

    Interactive lecture demonstrations (ILDs) have repeatedly shown to be effective tools for improving student achievement in the context of learning physics. As a first step toward systematic development of interactive lecture demonstrations in ASTRO 101, the introductory astronomy survey course, a systematic review of education research, describing educational computer simulations (ECSs) reveals that initial development requires a targeted study of how ASTRO 101 students respond to ECSs in the non-science majoring undergraduate lecture setting. In this project we have adopted the process by which ILDs were designed, pilot-tested, and successfully implemented in the context of physics teaching (Sokoloff & Thornton, 1997; Sokoloff & Thornton, 2004). We have designed the initial pilot-test set of ASTRO 101 ILD instructional materials relying heavily on ECSs. Both an instructor’s manual and a preliminary classroom-ready student workbook have been developed, and we are implementing a pilot study to explore their effectiveness in communicating scientific content, and the extent to which they might enhance students’ knowledge of and perception about astronomy and science in general. The study design uses a pre-/post-test quasi-experimental study design measuring students’ normalized gain scores, calculated as per Hake (1998) and Prather (2009), using a slightly modified version of S. Slater’s (2011) Test Of Astronomy STandards TOAST combined with other instruments. The results of this initial study will guide the iterative development of ASTRO 101 ILDs that are intended to both be effective at enhancing student achievement and easy for instructors to successfully implement.

  6. Payload specialist Ronald Parise checks on ASTRO-2 payload

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Payload specialist Ronald A. Parise, a senior scientist in the Space Observatories Department of Computer Sciences Corporation (CSC), checks on the ASTRO-2 payload (out of frame in the cargo bay of the Space Shuttle Endeavour). Parise is on the aft flight deck of the Earth orbiting Endeavour during STS-67.

  7. Project ASTRO: How-To Manual for Teachers and Astronomers.

    ERIC Educational Resources Information Center

    Richter, Jessica; Fraknoi, Andrew

    Project ASTRO is an innovative program to support science education by linking teachers and students in grades 4-9 with amateur and professional astronomers with the overall goal being to increase students' interest in astronomy and science in general. This manual was designed for teachers, amateur and professional astronomers, youth group…

  8. The AstroPAL Starter Pack: How to Create a Grad Mentoring Program That Fosters Equity and Inclusion in Your Department

    NASA Astrophysics Data System (ADS)

    Cabrera, Nicole

    2017-01-01

    The Astronomy Peer Advising Leaders program (AstroPAL) at Georgia State University is a grassroots effort initiated by one PhD student with no budget, yet has quickly become a successful program that especially impacts students of marginalized identities. AstroPAL provides guidance for incoming grad students and helps them adjust to the workload, stress, and other difficulties that can come with grad school. This talk will cover the AstroPAL goals and accomplishments, its logistical structure, and its longterm sustainability. We will discuss how the program has helped create a bridge between faculty and students as well as the positive effect it has had on our community. I will also provide tools that anyone can use to launch AstroPAL at their home institution.

  9. MIT Participation in the Data Analysis of the XRS and XIS Instruments on the Astro-E2 Mission

    NASA Technical Reports Server (NTRS)

    Bautz, Mark

    2005-01-01

    Since the inception of this grant six weeks ago, we have completed the initial activation of the Suzaku X-ray Imaging Spectrometer (XIS) (on 13 August) and we have supported initial calibration observations. The instrument is performing very well in all respects. We have characterized the spectral resolution and effective area of each XIS sensor. We are especially excited about the scientific opportunities provided by the XIS'S back- illuminated sensor, which exhibits spectral resolution in the sub-keV band unmatched by any X-ray CCD currently in orbit. As specified in our proposal, we have established a web site (http://space.mit.edu/XIS) on which we maintain an up-to-date summary of instrument performance characteristics. Gain, spectral resolution and system noise, as well as residual background rates, are currently available on this site. Although the particle background level is low compared with Chandra and XMM, we are currently evaluating methods to reduce it still further. Techniques under study include use of 5x5 mode information and alternative grade selection methods. Although the primary responsibility for development of instrument response functions rests with our Japanese colleagues, we are incorporating our latest measurements of spectral resolution into some temporary response functions which we hope to make available to the Suzaku General Observer Facility and the Science Working Group(SWG). We are also preparing proposals for use of SWG observing time.

  10. Mission Manager Area of the Spacelab Payload Operations Control Center (SL POCC)

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The primary objective of the STS-35 mission was round the clock observation of the celestial sphere in ultraviolet and X-Ray astronomy with the Astro-1 observatory which consisted of four telescopes: the Hopkins Ultraviolet Telescope (HUT); the Wisconsin Ultraviolet Photo-Polarimeter Experiment (WUPPE); the Ultraviolet Imaging Telescope (UIT); and the Broad Band X-Ray Telescope (BBXRT). The Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at the Marshall Space Flight Center (MSFC) was the air/ground communication channel used between the astronauts and ground control teams during the Spacelab missions. Teams of controllers and researchers directed on-orbit science operations, sent commands to the spacecraft, received data from experiments aboard the Space Shuttle, adjusted mission schedules to take advantage of unexpected science opportunities or unexpected results, and worked with crew members to resolve problems with their experiments. Pictured is Jack Jones in the Mission Manager Area.

  11. The AstroBiology Explorer (ABE) MIDEX Mission Concept: Identifying Organic Molecules in Space

    NASA Astrophysics Data System (ADS)

    Ennico, Kimberly A.; Sandford, Scott; Allamandola, Louis; Bregman, Jesse D.; Cohen, Martin; Cruikshank, Dale; Greene, Thomas P.; Hudgins, Douglas; Kwok, Sun; Lord, Steven D.; Madden, Suzanne; McCreight, Craig R.; Roellig, Thomas L.; Strecker, Donald W.; Tielens, A. G. G. M.; Werner, Michael W.

    2003-03-01

    The Astrobiology Explorer (ABE) is a MIDEX mission concept, currently under Concept Phase A study at NASA's Ames Research Center in collaboration with Ball Aerospace &Technologies, Corp., and managed by NASA's Jet Propulsion Laboratory. ABE will conduct infrared spectroscopic observations to address important problems in astrobiology, astrochemistry, and astrophysics. The core observational program would make fundamental scientific progress in understanding the distribution, identity, and evolution of ices and organic matter in dense molecular clouds, young forming stellar systems, stellar outflows, the general diffuse ISM, HII regions, Solar System bodies, and external galaxies. The ABE instrument concept includes a 0.6 m aperture Ritchey-Chretien telescope and three moderate resolution (R = 2000-3000) spectrometers together covering the 2.5-20 micron spectral region. Large format (1024 x 1024 pixel) IR detector arrays will allow each spectrometer to cover an entire octave of spectral range per exposure without any moving parts. The telescope will be cooled below 50 K by a cryogenic dewar shielded by a sunshade. The detectors will be cooled to ~7.5 K by a solid hydrogen cryostat. The optimum orbital configuration for achieving the scientific objectives of the ABE mission is a low background, 1 AU Earth driftaway orbit requiring a Delta II launch vehicle. This configuration provides a low thermal background and allows adequate communications bandwidth and good access to the entire sky over the ~1.5 year mission lifetime.

  12. The AstroBiology Explorer (ABE) MIDEX Mission Concept: Identifying Organic Molecules in Space

    NASA Technical Reports Server (NTRS)

    Ennico, Kimberly; Sandford, Scott; Allamandola, Louis; Bregman, Jesse; Cohen, Martin; Cruikshank, Dale; Greene, Thomas; Hudgins, Douglas; Kwok, Sun; Lord, Steven; hide

    2002-01-01

    The Astrobiology Explorer (ABE) is a MIDEX mission concept, currently under Concept Phase A study at NASA's Ames Research Center in collaboration with Ball Aerospace & Technologies, Corp., and managed by NASA's Jet Propulsion Laboratory. ABE will conduct infrared spectroscopic observations to address important problems in astrobiology, astrochemistry, and astrophysics. The core observational program would make fundamental scientific progress in understanding the distribution, identity, and evolution of ices and organic matter in dense molecular clouds, young forming stellar systems, stellar outflows, the general diffuse ISM, HII regions, Solar System bodies, and external galaxies. The ABE instrument concept includes a 0.6 m aperture Ritchey-Chretien telescope and three moderate resolution (R = 2000-3000) spectrometers together covering the 2.5-20 micron spectral region. Large format (1024 x 1024 pixel) IR detector arrays will allow each spectrometer to cover an entire octave of spectral range per exposure without any moving parts. The telescope will be cooled below 50 K by a cryogenic dewar shielded by a sunshade. The detectors will be cooled to approx. 7.5 K by a solid hydrogen cryostat. The optimum orbital configuration for achieving the scientific objectives of the ABE mission is a low background, 1 AU Earth driftaway orbit requiring a Delta II launch vehicle. This configuration provides a low thermal background and allows adequate communications bandwidth and good access to the entire sky over the approx. 1.5 year mission lifetime.

  13. The evaluation of the Hitomi (Astro-H)/SXS spare beryllium window in 3.8-30 keV

    NASA Astrophysics Data System (ADS)

    Hoshino, Akio; Yoshida, Yuki; Kitamoto, Shunji; Fujimoto, Ryuichi; Yamasaki, Noriko Y.; Ina, Toshiaki; Uruga, Tomoya; Eckart, Megan; Leutenegger, Maurice

    2017-08-01

    During the Hitomi (Astro-H) commissioning observations the SXS dewar gate valve (GV) remained closed to protect the instrument from initial spacecraft outgassing. As a result, the optical path of the observations included the Be window installed on the GV. Both x-ray fluorescence (XRF) analysis and x-ray transmission measurements were performed in June 2016 on the flight-spare Be window which is the same lot as the flight material at SPring-8 in Japan. The beamline operating range is 3.8 - 30 keV. We used a beam spot size of 1 mm × 0.2 mm to measure two positions on the Be window, at the center of the window and at one position 6.5 mm off-center. We used simultaneous transmission measurements of standard materials for energy calibration. The transmission data clearly showed Fe and Ni K-edges, plus a marginal detection of the Mn K-edge. We found that our transmission data was best fit using the following component Be: 261.86+/-0.01μm, Cr: 3nm (fixed), Mn: 3.81+/-0.05nm, Fe: 10.83+/-0.05nm, Ni: 16.48+/-0.03nm, Cu: 5nm (fixed). The transmission is reduced 1% at the Fe K-edge. The amount of contaminated materials are comparable to the values of the value provided by the vender. The surface transmission is strained with σ = 0.11% of the unbiased standard deviation calculated variation in the residuals between the measured value and the model.

  14. KENNEDY SPACE CENTER, FLA. - STS-114 Commander Eileen Collins and Mission Specialists Charles Camarda and Soichi Noguchi sit outside the crew hatch on the orbiter Discovery. Noguchi is with the Japanese Aerospace and Exploration Agency. They and other crew members are at KSC becoming familiar with Shuttle and mission equipment. The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

    NASA Image and Video Library

    2004-03-05

    KENNEDY SPACE CENTER, FLA. - STS-114 Commander Eileen Collins and Mission Specialists Charles Camarda and Soichi Noguchi sit outside the crew hatch on the orbiter Discovery. Noguchi is with the Japanese Aerospace and Exploration Agency. They and other crew members are at KSC becoming familiar with Shuttle and mission equipment. The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

  15. Swift J1658.2-4242 as observed by AstroSat LAXPC

    NASA Astrophysics Data System (ADS)

    Beri, Aru; Belloni, Tomaso; Vincentelli, Federico; Gandhi, Poshak; Altamirano, Diego

    2018-03-01

    We report on preliminary analysis of an AstroSat observation of the newly discovered X-ray transient, Swift J1658.2-4242 [J1658] (GCN #22416, #22417, #22419; ATel #11306, #11307, #11310, #11311, #11318, #11321, #11336).

  16. Analysis of Haemophilus influenzae serotype f isolated from three Japanese children with invasive H. influenzae infection.

    PubMed

    Hoshino, Tadashi; Hachisu, Yushi; Kikuchi, Takashi; Tokutake, Shoko; Okui, Hideyuki; Kutsuna, Satoru; Fukasawa, Chie; Murayama, Kei; Oohara, Asami; Shimizu, Hiroyuki; Ito, Midori; Takahashi, Yoshiko; Ishiwada, Naruhiko

    2015-04-01

    In Japan, publicly subsidized Haemophilus influenzae serotype b vaccines became available in 2011; consequently, the incidence of invasive H. influenzae infection in paediatric patients of less than 5 years of age decreased dramatically. In 2013, the first case of H. influenzae serotype f (Hif) meningitis in a Japanese infant was reported, and another case of Hif meningitis in a Japanese infant was observed in 2013. We experienced a fatal paediatric case of Hif bacteraemia in 2004; therefore, we conducted an analysis of the three Hif strains isolated from these three Japanese children with invasive Hif infections. All three strains were β-lactamase-non-producing, ampicillin-sensitive strains, with MICs of 1 µg ml(-1) or less. However, one of the three strains showed slightly elevated MICs for ampicillin (1 µg ml(-1)), cefotaxime (0.25 µg ml(-1)) and meropenem (0.13 µg ml(-1)). A molecular analysis by multilocus sequence typing identified all three strains as sequence type (ST) 124, which is a predominant invasive Hif strain in many countries. SmaI-digested PFGE showed variable DNA fragmentation patterns among the strains, suggesting that some highly virulent strains have originated from a single ST124 clone and caused invasive Hif infections in Japan. Additional studies are needed to determine the factors that have led to the clonal expansion of virulent ST124 strains. © 2015 The Authors.

  17. AstroCloud, a Cyber-Infrastructure for Astronomy Research: Data Archiving and Quality Control

    NASA Astrophysics Data System (ADS)

    He, B.; Cui, C.; Fan, D.; Li, C.; Xiao, J.; Yu, C.; Wang, C.; Cao, Z.; Chen, J.; Yi, W.; Li, S.; Mi, L.; Yang, S.

    2015-09-01

    AstroCloud is a cyber-Infrastructure for Astronomy Research initiated by Chinese Virtual Observatory (China-VO) under funding support from NDRC (National Development and Reform commission) and CAS (Chinese Academy of Sciences)1(Cui et al. 2014). To archive the astronomical data in China, we present the implementation of the astronomical data archiving system (ADAS). Data archiving and quality control are the infrastructure for the AstroCloud. Throughout the data of the entire life cycle, data archiving system standardized data, transferring data, logging observational data, archiving ambient data, And storing these data and metadata in database. Quality control covers the whole process and all aspects of data archiving.

  18. The Sustainable Development of Space: Astro-environmental and dynamical considerations

    NASA Astrophysics Data System (ADS)

    Boley, Aaron; Byers, Michael; Russell, Sara

    2018-04-01

    The sustainable development of space is a global (and exo-global) challenge that is not limited by borders or research disciplines. Sustainable development is "development that meets the needs of the present without compromising the ability of future generations to meet their own needs". While the development of space brings new economic and scientific possibilities, it also carries significant political, legal, and technical uncertainties. For example, the rapidly increasing accessibility of space is motivating states to unilaterally adopt legislation for the new era of space use, which may have significant unintended consequences, such as increased risks to space assets, disputes among state as well as non-state actors, and changes to unique astro-environments. Any policy or legal position must be informed by the dynamical and astrophysical realities of space use, creating complex and interwoven challenges. Here, we explore several of these potential challenges related to astro-environmentalism, space minining operations, and the associated dynamics.

  19. Flight qualified solid argon cooler for the BBXRT instrument. [Broad Band X Ray Telescope for ASTRO-1 payload

    NASA Technical Reports Server (NTRS)

    Cygnarowicz, Thomas A.; Schein, Michael E.; Lindauer, David A.; Scarlotti, Roger; Pederson, Robert

    1990-01-01

    A solid argon cooler (SAC) for attached Shuttle payloads has been developed and qualified to meet the need for low cost cooling of flight instruments to the temperature range of 60-120 K. The SACs have been designed and tested with the intent of flying them up to five times. Two coolers, as part of the Broad Band X-ray Telescope (BBXRT) instrument on the ASTRO-1 payload, are awaiting launch on Space Shuttle mission STS-35. This paper describes the design, testing and performance of the SAC and its vacuum maintenance system (VMS), used to maintain the argon as a solid during launch delays of up to 5 days. BBXRT cryogen system design features used to satisfy Shuttle safety requirements are discussed, along with SAC ground servicing equipment (GSE) and procedures used to fill, freeze and subcool the argon.

  20. Lunar Dust Monitor for the orbiter of the next Japanese lunar mission SELENE2

    NASA Astrophysics Data System (ADS)

    Hirai, Takayuki; Sasaki, Sho; Ohashi, Hideo; Kobayashi, Masanori; Fujii, Masayuki; Shibata, Hiromi; Iwai, Takeo; Nogami, Ken-Ichi; Kimura, Hiroshi; Nakamura, Maki

    2010-05-01

    The next Japanese lunar mission SELENE2, after a successful mission Kaguya (a project named SELENE), is planned to launch in mid 2010 and to consists of a lander, a rover, and an orbiter, as a transmitting satellite to the earth [1]. A dust particle detector is proposed to be onboard the orbiter that is planned to be in operation for one year or more. Dust particles around the Moon include interplanetary dust, beta-meteoroids, interstellar dust, and possibly lunar dust that originate from the subsurface materials of the Moon. It is considered that several tens of thousands of tons of dust particles per year fall onto the Moon and supply materials to its surface layer. "Inflow" and "outflow" dust particles are very important for understanding material compositions of lunar surface. In past missions, dust detectors onboard the Hiten and Nozomi (Hiten-MDC and Nozomi-MDC) measured the flues of dust particles in the lunar orbit [2, 3]. These observations by Hiten- and Nozomi-MDCs created a small dataset of statistics of dust particles excluding earth-orbiting dust once in a week, because the dust detectors had small sensitive areas, 0.01 m2 and 0.014 m^2, respectively. The Lunar Dust EXperiment (LDEX) is designed to map a spatial and temporal variability of the dust size and density distributions in the lunar environment and will be onboard LADEE, which will be launched in 2012 [4]. LDEX will observe the lunar environment for 90 days in a nominal case or for a maximum of 9 months. It has a sensor area of 0.01 m2 at 50 km altitude. For a quantitative study of circumlunar dust, we propose a dust monitoring device with a large aperture size and a large sensor area, called the lunar dust monitor (LDM). The LDM is an impact ionization detector with dimensions 25 cm × 25 cm × 30 cm, and it has a large target (gold-plated Al) of 400 cm^2, to which a high voltage of +500 V is applied. The LDM also has two meshed grids parallel to the target. The grids are 90% transparent: the

  1. Matroshka AstroRad Radiation Experiment (MARE) on the Deep Space Gateway

    NASA Astrophysics Data System (ADS)

    Gaza, R.; Hussein, H.; Murrow, D.; Hopkins, J.; Waterman, G.; Milstein, O.; Berger, T.; Przybyla, B.; Aeckerlein, J.; Marsalek, K.; Matthiae, D.; Rutczynska, A.

    2018-02-01

    The Matroshka AstroRad Radiation Experiment is a science payload on Orion EM-1 flight. A research platform derived from MARE is proposed for the Deep Space Gateway. Feedback is invited on desired Deep Space Gateway design features to maximize its science potential.

  2. ADF/ADC Web Tools for Browsing and Visualizing Astronomical Catalogs and NASA Astrophysics Mission Metadata

    NASA Astrophysics Data System (ADS)

    Shaya, E.; Kargatis, V.; Blackwell, J.; Borne, K.; White, R. A.; Cheung, C.

    1998-05-01

    Several new web based services have been introduced this year by the Astrophysics Data Facility (ADF) at the NASA Goddard Space Flight Center. IMPReSS is a graphical interface to astrophysics databases that presents the user with the footprints of observations of space-based missions. It also aids astronomers in retrieving these data by sending requests to distributed data archives. The VIEWER is a reader of ADC astronomical catalogs and journal tables that allows subsetting of catalogs by column choices and range selection and provides database-like search capability within each table. With it, the user can easily find the table data most appropriate for their purposes and then download either the subset table or the original table. CATSEYE is a tool that plots output tables from the VIEWER (and soon AMASE), making exploring the datasets fast and easy. Having completed the basic functionality of these systems, we are enhancing the site to provide advanced functionality. These will include: market basket storage of tables and records of VIEWER output for IMPReSS and AstroBrowse queries, non-HTML table responses to AstroBrowse type queries, general column arithmetic, modularity to allow entrance into the sequence of web pages at any point, histogram plots, navigable maps, and overplotting of catalog objects on mission footprint maps. When completed, the ADF/ADC web facilities will provide astronomical tabled data and mission retrieval information in several hyperlinked environments geared for users at any level, from the school student to the typical astronomer to the expert datamining tools at state-of-the-art data centers.

  3. Officials welcome the arrival of the Japanese Experiment Module

    NASA Image and Video Library

    2007-04-17

    In the Space Station Processing Facility, astronaut Takao Doi (left) and Commander Dominic Gorie pose in front of the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module, or JEM, that recently arrived at Kennedy. Doi and Gorie are crew members for mission STS-123 that will deliver the logistics module to the International Space Station. Earlier, NASA and Japanese Aerospace and Exploration Agency (JAXA) officials welcomed the arrival of the module. The new International Space Station component arrived at Kennedy March 12 to begin preparations for its future launch on mission STS-123. It will serve as an on-orbit storage area for materials, tools and supplies. It can hold up to eight experiment racks and will attach to the top of another larger pressurized module.

  4. Do You Always Need a Textbook to Teach Astro 101?

    ERIC Educational Resources Information Center

    Rudolph, Alexander L.

    2013-01-01

    The increasing use of interactive learning [IL] strategies in Astro 101 classrooms has led some instructors to consider the usefulness of a textbook in such classes. These strategies provide students a learning modality very different from the traditional lecture supplemented by reading a textbook and homework and raise the question of whether the…

  5. Kepler Mission: A Technical Overview

    NASA Technical Reports Server (NTRS)

    Borucki, W. J.

    2003-01-01

    The Kepler Mission is a Discovery-class mission designed to continuously monitor the brightness of 100,000 solar-like stars to detect the transits of Earth-size and larger planets. It is a wide field of view photometer Schmidt-type telescope with an array of 42 CCDs. It has a 0.95 m aperture and 1.4 m primary and is designed to attain a photometric precision of 2 parts in 10(exp 5) for 12th magnitude solar-like stars for a 6 hr transit duration. It will continuously observe 100,000 main-sequence stars from 9th to 14th magnitude in the Cygnus constellation for a period of four years with a cadence of 4/hour. An additional 250 stars can be monitored at a cadence of l/minute to do astro-seismology of stars brighter than 11.5 mv. The photometer is scheduled to be launched into heliocentric orbit in 2007. A ground-based program to classify all 225,000 stars in the FOV and to do a detailed examination of a subset of the stars that show planetary companions is also planned.

  6. AstroCloud: An Agile platform for data visualization and specific analyzes in 2D and 3D

    NASA Astrophysics Data System (ADS)

    Molina, F. Z.; Salgado, R.; Bergel, A.; Infante, A.

    2017-07-01

    Nowadays, astronomers commonly run their own tools, or distributed computational packages, for data analysis and then visualizing the results with generic applications. This chain of processes comes at high cost: (a) analyses are manually applied, they are therefore difficult to be automatized, and (b) data have to be serialized, thus increasing the cost of parsing and saving intermediary data. We are developing AstroCloud, an agile visualization multipurpose platform intended for specific analyses of astronomical images (https://astrocloudy.wordpress.com). This platform incorporates domain-specific languages which make it easily extensible. AstroCloud supports customized plug-ins, which translate into time reduction on data analysis. Moreover, it also supports 2D and 3D rendering, including interactive features in real time. AstroCloud is under development, we are currently implementing different choices for data reduction and physical analyzes.

  7. KENNEDY SPACE CENTER, FLA. - The STS-114 crew gathers around the work stand holding the insert for Discovery’s nose cap. From left are Mission Specialists Soichi Noguchi, and Charles Camarda; Commander Eileen Collins; Mission Specialists Andrew Thomas and Wendy Lawrence; Pilot James Kelly; and Mission Specialist Stephen Robinson. Noguchi represents the Japanese Aerospace and Exploration Agency. The insert is being fitted with thermal protection system insulation blankets. The crew is spending time becoming familiar with Shuttle and mission equipment. The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

    NASA Image and Video Library

    2004-03-05

    KENNEDY SPACE CENTER, FLA. - The STS-114 crew gathers around the work stand holding the insert for Discovery’s nose cap. From left are Mission Specialists Soichi Noguchi, and Charles Camarda; Commander Eileen Collins; Mission Specialists Andrew Thomas and Wendy Lawrence; Pilot James Kelly; and Mission Specialist Stephen Robinson. Noguchi represents the Japanese Aerospace and Exploration Agency. The insert is being fitted with thermal protection system insulation blankets. The crew is spending time becoming familiar with Shuttle and mission equipment. The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

  8. KENNEDY SPACE CENTER, FLA. - STS-114 Mission Specialist Soichi Noguchi, who is with the Japanese space agency NASDA, poses on the deck of one of the SRB Retrieval Ships docked at Hangar AF on the Banana River. He and other crew members Commander Eileen Collins, Pilot James Kelly and Mission Specialist Stephen Robinson toured the ships. Mission STS-114 will carry the MultiPurpose Logistics Module (MPLM) Raffaello and External Stowage Platform 2 to the International Space Station. The MPLM will contain supplies and equipment. Another goal of the mission is to remove and replace a Control Moment Gyro. Launch date for mission STS-114 is under review.

    NASA Image and Video Library

    2003-08-13

    KENNEDY SPACE CENTER, FLA. - STS-114 Mission Specialist Soichi Noguchi, who is with the Japanese space agency NASDA, poses on the deck of one of the SRB Retrieval Ships docked at Hangar AF on the Banana River. He and other crew members Commander Eileen Collins, Pilot James Kelly and Mission Specialist Stephen Robinson toured the ships. Mission STS-114 will carry the MultiPurpose Logistics Module (MPLM) Raffaello and External Stowage Platform 2 to the International Space Station. The MPLM will contain supplies and equipment. Another goal of the mission is to remove and replace a Control Moment Gyro. Launch date for mission STS-114 is under review.

  9. Autonomous star sensor ASTRO APS: flight experience on Alphasat

    NASA Astrophysics Data System (ADS)

    Schmidt, U.; Fiksel, T.; Kwiatkowski, A.; Steinbach, I.; Pradarutti, B.; Michel, K.; Benzi, E.

    2015-06-01

    Jena-Optronik GmbH, located in Jena/Germany, has profound experience in designing and manufacturing star trackers since the early 80s. Today the company has a worldwide leading position in supplying geo-stationary and Earth observation satellites with robust and reliable star tracker systems. In the first decade of the new century Jena-Optronik received a development contract (17317/2003/F/WE) from the European Space Agency to establish the technologically challenging elements for which advanced star tracker technologies as CMOS Active Pixel Sensors were being introduced or were considered strategic. This activity was performed in the frame of the Alphabus large platform pre-development lead by ESA and the industrial Joint Project Team consisting of Astrium (now Airbus Defence and Space), Thales Alenia Space and CNES (Centre national d'études spatiales). The new autonomous star tracker, ASTRO APS (Active Pixel Sensor), extends the Jena-Optronik A stro-series CCD-based star tracker products taken the full benefit of the CMOS APS technology. ASTRO APS is a fully autonomous compact star tracker carrying either the space-qualified radiation hard STAR1000 or the HAS2 APS detectors. The star tracker is one of four Technology Demonstration Payloads (TDP6) carried by Alphasat as hosted payload in the frame of a successful Private Public Partnership between ESA and Inmarsat who owns and operates the satellite as part of its geo-stationary communication satellites fleet. TDP6 supports also directly TDP1, a Laser Communication Terminal, for fine pointing tasks. Alphasat was flawlessly brought in orbit at the end of July 2013 by a European Ariane 5 launcher. Only a few hours after launch the star tracker received its switch ON command and acquired nominally within 6 s the inertial 3-axes attitude. In the following days of the early in-orbit operations of Alphasat the TDP6 unit tracked reliably all the spacecraft maneuvers including the 0.1 and 0.2°/s spin stabilization for

  10. KENNEDY SPACE CENTER, FLA. - Members of the STS-114 crew spend time becoming familiar with Shuttle and mission equipment. Mission Specialists Soichi Noguchi (left) and Andrew Thomas (center) look at an engine eyelet, which serves as part of the thermal protection system on an orbiter. Noguchi is with the Japanese Aerospace Exploration Agency (JAXA). The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment and the external stowage platform to the International Space Station.

    NASA Image and Video Library

    2004-03-05

    KENNEDY SPACE CENTER, FLA. - Members of the STS-114 crew spend time becoming familiar with Shuttle and mission equipment. Mission Specialists Soichi Noguchi (left) and Andrew Thomas (center) look at an engine eyelet, which serves as part of the thermal protection system on an orbiter. Noguchi is with the Japanese Aerospace Exploration Agency (JAXA). The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment and the external stowage platform to the International Space Station.

  11. The Spacelab J mission

    NASA Technical Reports Server (NTRS)

    Cremin, J. W.; Leslie, F. W.

    1990-01-01

    This paper describes Spacelab J (SL-J), its mission characteristics, features, parameters and configuration, the unique nature of the shared reimbursable cooperative effort with the National Space Development Agency (NASDA) of Japan and the evolution, content and objectives of the mission scientific experiment complement. The mission is planned for launch in 1991. This long module mission has 35 experiments from Japan as well as 9 investigations from the United States. The SL-J payload consists of two broad scientific disciplines which require the extended microgravity or cosmic ray environment: (1) materials science such as crystal growth, solidification processes, drop dynamics, free surface flows, gas dynamics, metallurgy and semiconductor technology; and (2) life science including cell development, human physiology, radiation-induced mutations, vestibular studies, embryo development, and medical technology. Through an international agreement with NASDA, NASA is preparing to fly the first Japanese manned, scientific, cooperative endeavor with the United States.

  12. AstroBioLab: A Mobile Biotic and Soil Analysis Laboratory

    NASA Technical Reports Server (NTRS)

    Bada, J. L.; Zent, A. P.; Grunthaner, F. J.; Quinn, R. C.; Navarro-Gonzalex, R.; Gonez-Silva, B.; McKay, C. P.

    2003-01-01

    The Jet Propulsion Laboratory, Scripps Institution of Oceanography, and NASA Ames Research Center are currently developing a mobile Astrobiology Laboratory (AstroBioLab) for a series of field campaigns using the Chilean Atacama Desert as a Martian surface analog site. The Astrobiology Science and Technology for Exploring Planets (ASTEP) program funded AstroBioLab is designed around the Mars Organic Detector (MOD) instrument and the Mars Oxidant Instrument (MOI) which provide complementary data sets. Using this suite of Mars Instrument Development Program (MIDP) and Planetary Instrument Definition and Development Program (PIDDP) derived in situ instruments, which provide state-of-the-art organic compound detection (attomolar sensitivity) and depth profiling of oxidation chemistry, we measure and correlate the interplay of organic compounds, inorganic oxidants, UV irradiation and water abundance. This mobile laboratory studies the proposition that intense UV irradiation coupled with low levels of liquid water generates metastable oxidizing species that can consume moderate amounts of seeded organic compounds. Results from the initial spring 2003 field campaign will be presented.

  13. Study on JAXA elements for international lunar vicinity mission

    NASA Astrophysics Data System (ADS)

    Imada, Takane; Sato, Naoki

    2014-11-01

    JAXA has commenced technical research for contributing as a part of international partnership for the space exploration in Lunar vicinity. One of the candidates is the cargo transport mission with the combination of Cryogenic Propulsion Stage(s) (CPS) and a transfer vehicle derived from Japanese un-manned vehicle used for ISS. The CPS needs advanced technologies to keep the propellant for long mission duration and they will be useful in further missions beyond moon. This paper reports the profile of the mission, vehicle configurations, and the transport capabilities.

  14. Single-dose pharmacokinetic study comparing the pharmacokinetics of recombinant human chorionic gonadotropin in healthy Japanese and Caucasian women and recombinant human chorionic gonadotropin and urinary human chorionic gonadotropin in healthy Japanese women.

    PubMed

    Bagchus, Wilhelmina; Wolna, Peter; Uhl, Wolfgang

    2018-01-01

    Recombinant hCG (r-hCG) was approved in Japan in 2016. As a prerequisite for a Phase III study in Japan related to this approval, the pharmacokinetic (PK) profile of r-hCG was investigated. An open-label, partly randomized, single-center, single-dose, group-comparison, Phase I PK-bridging study was done that compared a single 250 μg dose of r-hCG with a single 5000 IU dose of urinary hCG (u-hCG) in healthy Japanese women, as well as comparing a single 250 μg dose of r-hCG in Japanese and Caucasian women. The Japanese participants were randomized 1:1 to receive either r-hCG or u-hCG, while the Caucasian participants were weight-matched to the Japanese participants who were receiving r-hCG in a 1:1 fashion. The primary PK parameters were the area under the serum concentration-time curve from time 0 extrapolated to infinity (AUC 0-∞ ) and the maximum serum concentration (C max ). The mean serum hCG concentration-time profiles of r-hCG in the Japanese and Caucasian participants were a similar shape, but the level of overall exposure was ~20% lower in the Japanese participants. For the Japanese participants, r-hCG resulted in an 11% lower C max but a 19% higher AUC 0-∞ compared with u-hCG. No new safety signal was identified. This study cannot exclude a potential difference in the PK profile of r-hCG between Japanese and Caucasian participants. However, this study does not indicate that there are clinically relevant differences in the serum PK of r-hCG and u-hCG in the Japanese participants.

  15. astroABC : An Approximate Bayesian Computation Sequential Monte Carlo sampler for cosmological parameter estimation

    NASA Astrophysics Data System (ADS)

    Jennings, E.; Madigan, M.

    2017-04-01

    Given the complexity of modern cosmological parameter inference where we are faced with non-Gaussian data and noise, correlated systematics and multi-probe correlated datasets,the Approximate Bayesian Computation (ABC) method is a promising alternative to traditional Markov Chain Monte Carlo approaches in the case where the Likelihood is intractable or unknown. The ABC method is called "Likelihood free" as it avoids explicit evaluation of the Likelihood by using a forward model simulation of the data which can include systematics. We introduce astroABC, an open source ABC Sequential Monte Carlo (SMC) sampler for parameter estimation. A key challenge in astrophysics is the efficient use of large multi-probe datasets to constrain high dimensional, possibly correlated parameter spaces. With this in mind astroABC allows for massive parallelization using MPI, a framework that handles spawning of processes across multiple nodes. A key new feature of astroABC is the ability to create MPI groups with different communicators, one for the sampler and several others for the forward model simulation, which speeds up sampling time considerably. For smaller jobs the Python multiprocessing option is also available. Other key features of this new sampler include: a Sequential Monte Carlo sampler; a method for iteratively adapting tolerance levels; local covariance estimate using scikit-learn's KDTree; modules for specifying optimal covariance matrix for a component-wise or multivariate normal perturbation kernel and a weighted covariance metric; restart files output frequently so an interrupted sampling run can be resumed at any iteration; output and restart files are backed up at every iteration; user defined distance metric and simulation methods; a module for specifying heterogeneous parameter priors including non-standard prior PDFs; a module for specifying a constant, linear, log or exponential tolerance level; well-documented examples and sample scripts. This code is hosted

  16. Scanning sky monitor (SSM) onboard AstroSat

    NASA Astrophysics Data System (ADS)

    Ramadevi, M. C.; Seetha, S.; Bhattacharya, Dipankar; Ravishankar, B. T.; Sitaramamurthy, N.; Meena, G.; Sharma, M. Ramakrishna; Kulkarni, Ravi; Babu, V. Chandra; Kumar; Singh, Brajpal; Jain, Anand; Yadav, Reena; Vaishali, S.; Ashoka, B. N.; Agarwal, Anil; Balaji, K.; Nagesh, G.; Kumar, Manoj; Gaan, Dhruti Ranjan; Kulshresta, Prashanth; Agarwal, Pankaj; Sebastian, Mathew; Rajarajan, A.; Radhika, D.; Nandi, Anuj; Girish, V.; Agarwal, Vivek Kumar; Kushwaha, Ankur; Iyer, Nirmal Kumar

    2017-10-01

    Scanning Sky Monitor (SSM) onboard AstroSat is an Xray sky monitor in the soft X-ray band designed with a large field of view to detect and locate transient X-ray sources and alert the astronomical community about interesting phenomena in the X-ray sky. SSM comprises position sensitive proportional counters with 1D coded mask for imaging. There are three detector units mounted on a platform capable of rotation which helps covering about 50% of the sky in one full rotation. This paper discusses the elaborate details of the instrument and few immediate results from the instrument after launch.

  17. Genomic reassortants of pandemic A (H1N1) 2009 virus and endemic porcine H1 and H3 viruses in swine in Japan.

    PubMed

    Kirisawa, Rikio; Ogasawara, Yoshitaka; Yoshitake, Hayato; Koda, Asuka; Furuya, Tokujiro

    2014-11-01

    From 2010 to 2013 in Japan, we isolated 11 swine influenza viruses (SIVs) from pigs showing respiratory symptoms. Sequence and phylogenetic analyses showed that 6 H1N1 viruses originated from the pandemic (H1N1) 2009 (pdm 09) virus and the other 5 viruses were reassortants between SIVs and pdm 09 viruses, representing 4 genotypes. Two H1N2 viruses contained H1 and N2 genes originated from Japanese H1N2 SIV together with internal genes of pdm 09 viruses. Additionally, 1 H1N2 virus contained a further NP gene originating from Japanese H1N2 SIV. One H1N1 virus contained only the H1 gene originating from Japanese H1 SIV in a pdm 09 virus background. One H3N2 virus contained H3 and N2 genes originating from Japanese H3N2 SIV together with internal genes of pdm 09 virus. The results indicate that pdm 09 viruses are distributed widely in the Japanese swine population and that several reassortments with Japanese SIVs have occurred.

  18. HUT Data Inspected at Marshall Space Flight Center During the STS-35 Mission

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The primary objective of the STS-35 mission was round the clock observation of the celestial sphere in ultraviolet and X-Ray astronomy with the Astro-1 observatory which consisted of four telescopes: the Hopkins Ultraviolet Telescope (HUT); the Wisconsin Ultraviolet Photo-Polarimeter Experiment (WUPPE); the Ultraviolet Imaging Telescope (UIT); and the Broad Band X-Ray Telescope (BBXRT). The Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at the Marshall Space Flight Center (MSFC) was the air/ground communication channel used between the astronauts and ground control teams during the Spacelab missions. Teams of controllers and researchers directed on-orbit science operations, sent commands to the spacecraft, received data from experiments aboard the Space Shuttle, adjusted mission schedules to take advantage of unexpected science opportunities or unexpected results, and worked with crew members to resolve problems with their experiments. Due to loss of data used for pointing and operating the ultraviolet telescopes, MSFC ground teams were forced to aim the telescopes with fine tuning by the flight crew. This photo captures the activity of viewing HUT data in the Mission Manager Actions Room during the mission.

  19. The Si/CdTe semiconductor Compton camera of the ASTRO-H Soft Gamma-ray Detector (SGD)

    NASA Astrophysics Data System (ADS)

    Watanabe, Shin; Tajima, Hiroyasu; Fukazawa, Yasushi; Ichinohe, Yuto; Takeda, Shin`ichiro; Enoto, Teruaki; Fukuyama, Taro; Furui, Shunya; Genba, Kei; Hagino, Kouichi; Harayama, Atsushi; Kuroda, Yoshikatsu; Matsuura, Daisuke; Nakamura, Ryo; Nakazawa, Kazuhiro; Noda, Hirofumi; Odaka, Hirokazu; Ohta, Masayuki; Onishi, Mitsunobu; Saito, Shinya; Sato, Goro; Sato, Tamotsu; Takahashi, Tadayuki; Tanaka, Takaaki; Togo, Atsushi; Tomizuka, Shinji

    2014-11-01

    The Soft Gamma-ray Detector (SGD) is one of the instrument payloads onboard ASTRO-H, and will cover a wide energy band (60-600 keV) at a background level 10 times better than instruments currently in orbit. The SGD achieves low background by combining a Compton camera scheme with a narrow field-of-view active shield. The Compton camera in the SGD is realized as a hybrid semiconductor detector system which consists of silicon and cadmium telluride (CdTe) sensors. The design of the SGD Compton camera has been finalized and the final prototype, which has the same configuration as the flight model, has been fabricated for performance evaluation. The Compton camera has overall dimensions of 12 cm×12 cm×12 cm, consisting of 32 layers of Si pixel sensors and 8 layers of CdTe pixel sensors surrounded by 2 layers of CdTe pixel sensors. The detection efficiency of the Compton camera reaches about 15% and 3% for 100 keV and 511 keV gamma rays, respectively. The pixel pitch of the Si and CdTe sensors is 3.2 mm, and the signals from all 13,312 pixels are processed by 208 ASICs developed for the SGD. Good energy resolution is afforded by semiconductor sensors and low noise ASICs, and the obtained energy resolutions with the prototype Si and CdTe pixel sensors are 1.0-2.0 keV (FWHM) at 60 keV and 1.6-2.5 keV (FWHM) at 122 keV, respectively. This results in good background rejection capability due to better constraints on Compton kinematics. Compton camera energy resolutions achieved with the final prototype are 6.3 keV (FWHM) at 356 keV and 10.5 keV (FWHM) at 662 keV, which satisfy the instrument requirements for the SGD Compton camera (better than 2%). Moreover, a low intrinsic background has been confirmed by the background measurement with the final prototype.

  20. An Explorer-Class Astrobiology Mission

    NASA Technical Reports Server (NTRS)

    Sandford, Scott; Greene, Thomas; Allamandola, Louis; Arno, Roger; Bregman, Jesse; Cox, Sylvia; Davis, Paul K.; Gonzales, Andrew; Haas, Michael; Hanel, Robert; hide

    2000-01-01

    In this paper we describe a potential new Explorer-class space mission, the AstroBiology Explorer (ABE), consisting of a relatively modest dedicated space observatory having a 50 cm aperture primary mirror which is passively cooled to T less than 65 K, resides in a low-background orbit (heliocentric orbit at 1 AU, Earth drift-away), and is equipped with a suite of three moderate order (m approx. 10) dispersive spectrographs equipped with first-order cross-dispersers in an "echellette" configuration and large format (1024xl024 pixel) near- and mid-IR detector arrays cooled by a modest amount of cryogen. Such a system would be capable of addressing outstanding problems in Astrochemistry and Astrophysics that are particularly relevant to Astrobiology and addressable via astronomical observation. The observational program of this mission would make fundamental scientific progress in each of the key areas of the cosmic history of molecular carbon, the distribution and chemistry of organic compounds in the diffuse and dense interstellar media, and the evolution of ices and organic matter in young planetary systems. ABE could make fundamental progress in all of these areas by conducting an approximately one year mission to obtain a coordinated set of infrared spectroscopic observations over the 2.5-20 micrometers spectral range at spectral resolutions of R greater than or equal to 1000 of approximately 1000 galaxies, stars, planetary nebulae, and young star planetary systems.

  1. KENNEDY SPACE CENTER, FLA. - - In the Space Station Processing Facility, STS-114 Mission Specialist Stephen Robinson (left) learns about the Japanese Experiment Module (JEM) from Jennifer Goldsmith (center), with United Space Alliance at Johnson Space Center, and Louise Kleba (right), with USA at KSC. Crew members are at KSC to become familiar with Shuttle and mission equipment. The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

    NASA Image and Video Library

    2004-03-05

    KENNEDY SPACE CENTER, FLA. - - In the Space Station Processing Facility, STS-114 Mission Specialist Stephen Robinson (left) learns about the Japanese Experiment Module (JEM) from Jennifer Goldsmith (center), with United Space Alliance at Johnson Space Center, and Louise Kleba (right), with USA at KSC. Crew members are at KSC to become familiar with Shuttle and mission equipment. The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

  2. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, STS-114 Mission Specialist Stephen Robinson (right) learns about the Japanese Experiment Module (JEM) from Louise Kleba (left), with United Space Alliance at KSC, and Jennifer Goldsmith (center), with USA at Johnson Space Center. Crew members are at KSC becoming familiar with Shuttle and mission equipment. The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

    NASA Image and Video Library

    2004-03-05

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, STS-114 Mission Specialist Stephen Robinson (right) learns about the Japanese Experiment Module (JEM) from Louise Kleba (left), with United Space Alliance at KSC, and Jennifer Goldsmith (center), with USA at Johnson Space Center. Crew members are at KSC becoming familiar with Shuttle and mission equipment. The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

  3. AstroCom NYC: A City Partnership for the Next Generation of Astrophysicists

    NASA Astrophysics Data System (ADS)

    Paglione, Timothy; Ford, K. E. Saavik; Robbins, Dennis; Mac Low, Mordecai; Agüeros, Marcel; Anchordoqui, Luis; Acquaviva, Viviana; Bellovary, Jillian; Cruz, Kelle; Liu, Charles; Maller, Ari; McKernan, Barry; Minor, Quinn; O'Dowd, Matthew; Rice, Emily; Sheffield, Allyson

    2018-01-01

    AstroCom NYC is an undergraduate mentoring program designed to improve urban minority student access to opportunities in astrophysical research by greatly enhancing partnerships between research astronomers in New York City (City University of New York – an MSI, American Museum of Natural History, and Columbia). AstroCom NYC also partnered this past year with the Flatiron Institute Center for Computational Astrophysics to provide new and exciting midtown opportunities for students, and foster an expanding mentor network through the city. We provide centralized, personalized mentoring as well as financial and academic support, to CUNY undergraduates throughout their studies, plus the resources and opportunities to further CUNY faculty research with students. The goal is that students’ residency in the unique research environments at AMNH and the CCA helps them build a sense of belonging in the field, and readies and inspires them for graduate study. We welcomed our fifth and largest cohort last year, and had some of our first graduates accepted to grad school and bridge programs.

  4. Soft X-ray Focusing Telescope Aboard AstroSat: Design, Characteristics and Performance

    NASA Astrophysics Data System (ADS)

    Singh, K. P.; Stewart, G. C.; Westergaard, N. J.; Bhattacharayya, S.; Chandra, S.; Chitnis, V. R.; Dewangan, G. C.; Kothare, A. T.; Mirza, I. M.; Mukerjee, K.; Navalkar, V.; Shah, H.; Abbey, A. F.; Beardmore, A. P.; Kotak, S.; Kamble, N.; Vishwakarama, S.; Pathare, D. P.; Risbud, V. M.; Koyande, J. P.; Stevenson, T.; Bicknell, C.; Crawford, T.; Hansford, G.; Peters, G.; Sykes, J.; Agarwal, P.; Sebastian, M.; Rajarajan, A.; Nagesh, G.; Narendra, S.; Ramesh, M.; Rai, R.; Navalgund, K. H.; Sarma, K. S.; Pandiyan, R.; Subbarao, K.; Gupta, T.; Thakkar, N.; Singh, A. K.; Bajpai, A.

    2017-06-01

    The Soft X-ray focusing Telescope (SXT), India's first X-ray telescope based on the principle of grazing incidence, was launched aboard the AstroSat and made operational on October 26, 2015. X-rays in the energy band of 0.3-8.0 keV are focussed on to a cooled charge coupled device thus providing medium resolution X-ray spectroscopy of cosmic X-ray sources of various types. It is the most sensitive X-ray instrument aboard the AstroSat. In its first year of operation, SXT has been used to observe objects ranging from active stars, compact binaries, supernova remnants, active galactic nuclei and clusters of galaxies in order to study its performance and quantify its characteriztics. Here, we present an overview of its design, mechanical hardware, electronics, data modes, observational constraints, pipeline processing and its in-orbit performance based on preliminary results from its characterization during the performance verification phase.

  5. Statistics in Japanese universities.

    PubMed Central

    Ito, P K

    1979-01-01

    The teaching of statistics in the U.S. and Japanese universities is briefly reviewed. It is found that H. Hotelling's articles and subsequent relevant publications on the teaching of statistics have contributed to a considerable extent to the establishment of excellent departments of statistics in U.S. universities and colleges. Today the U.S. may be proud of many well-staffed and well-organized departments of theoretical and applied statistics with excellent undergraduate and graduate programs. On the contrary, no Japanese universities have an independent department of statistics at present, and the teaching of statistics has been spread among a heterogeneous group of departments of application. This was mainly due to the Japanese government regulation concerning the establishment of a university. However, it has recently been revised so that an independent department of statistics may be started in a Japanese university with undergraduate and graduate programs. It is hoped that discussions will be started among those concerned on the question of organization of the teaching of statistics in Japanese universities as soon as possible. PMID:396154

  6. AstroDAbis: Annotations and Cross-Matches for Remote Catalogues

    NASA Astrophysics Data System (ADS)

    Gray, N.; Mann, R. G.; Morris, D.; Holliman, M.; Noddle, K.

    2012-09-01

    Astronomers are good at sharing data, but poorer at sharing knowledge. Almost all astronomical data ends up in open archives, and access to these is being simplified by the development of the global Virtual Observatory (VO). This is a great advance, but the fundamental problem remains that these archives contain only basic observational data, whereas all the astrophysical interpretation of that data — which source is a quasar, which a low-mass star, and which an image artefact — is contained in journal papers, with very little linkage back from the literature to the original data archives. It is therefore currently impossible for an astronomer to pose a query like “give me all sources in this data archive that have been identified as quasars” and this limits the effective exploitation of these archives, as the user of an archive has no direct means of taking advantage of the knowledge derived by its previous users. The AstroDAbis service aims to address this, in a prototype service enabling astronomers to record annotations and cross-identifications in the AstroDAbis service, annotating objects in other catalogues. We have deployed two interfaces to the annotations, namely one astronomy-specific one using the TAP protocol (Dowler et al. 2011), and a second exploiting generic Linked Open Data (LOD) and RDF techniques.

  7. Using pedagogical discipline representations (PDRs) to enable Astro 101 students to reason about modern astrophysics

    NASA Astrophysics Data System (ADS)

    Wallace, Colin Scott; Prather, Edward E.; Chambers, Timothy G.; Kamenetzky, Julia R.; Hornstein, Seth D.

    2017-01-01

    Instructors of introductory, college-level, general education astronomy (Astro 101) often want to include topics from the cutting-edge of modern astrophysics in their course. Unfortunately, the teaching of these cutting-edge topics is typically confined to advanced undergraduate or graduate classes, using representations (graphical, mathematical, etc.) that are inaccessible to the vast majority of Astro 101 students. Consequently, many Astro 101 instructors feel that they have no choice but to cover these modern topics at a superficial level. Pedagogical discipline representations (PDRs) are one solution to this problem. Pedagogical discipline representations are representations that are explicitly designed to enhance the teaching and learning of a topic, even though these representations may not typically be found in traditional textbooks or used by experts in the discipline who are engaged in topic-specific discourse. In some cases, PDRs are significantly simplified or altered versions of typical discipline representations (graphs, data tables, etc.); in others they may be novel and highly contextualized representations with unique features that purposefully engage novice learners’ pre-existing mental models and reasoning difficulties, facilitating critical discourse. In this talk, I will discuss important lessons that my colleagues and I have learned while developing PDRs and describe how PDRs can enable students to reason about complex modern astrophysical topics.

  8. Navigation of space VLBI missions: Radioastron and VSOP

    NASA Technical Reports Server (NTRS)

    Ellis, Jordan

    1993-01-01

    In the mid-1990s, Russian and Japanese space agencies will each place into highly elliptic earth orbit a radio telescope consisting of a large antenna and radio astronomy receivers. Very long baseline interferometry (VLBI) techniques will be used to obtain high resolution images of radio sources observed by the space and ground based antennas. Stringent navigation accuracy requirements are imposed on the space VLBI missions by the need to transfer an ultra-stable ground reference frequency standard to the spacecraft and by the demands of the VLBI correlation process. Orbit determination for the mission will be the joint responsibility of navigation centers in the U.S., Russia, and Japan with orbit estimates based on combining tracking data from NASA, Russian, and Japanese sites. This paper describes the operational plans, the inter-agency coordination, and data exchange between the navigation centers required for space VLBI navigation.

  9. Officials welcome the arrival of the Japanese Experiment Module

    NASA Image and Video Library

    2007-04-17

    In the Space Station Processing Facility, NASA and Japanese Aerospace and Exploration Agency (JAXA) officials welcome the arrival of the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module, or JEM, to the Kennedy Space Center. At the podium is Russ Romanella, director of International Space Station and Spacecraft Processing. Seated at right are Bill Parsons, director of Kennedy Space Center; Dr. Kichiro Imagawa, project manager of the JEM Development Project Team for JAXA; Melanie Saunders, associate manager of the International Space Station Program at Johnson Space Center; and Dominic Gorie, commander on mission STS-123 that will deliver the module to the space station. The new International Space Station component arrived at Kennedy March 12 to begin preparations for its future launch on mission STS-123. It will serve as an on-orbit storage area for materials, tools and supplies. It can hold up to eight experiment racks and will attach to the top of another larger pressurized module.

  10. Officials welcome the arrival of the Japanese Experiment Module

    NASA Image and Video Library

    2007-04-17

    In the Space Station Processing Facility, NASA and Japanese Aerospace and Exploration Agency (JAXA) officials welcome the arrival of the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module, or JEM, to the Kennedy Space Center. At the podium is Bill Parsons, director of Kennedy Space Center. Seated at right are Russ Romanella, director of International Space Station and Spacecraft Processing; Dr. Kichiro Imagawa, project manager of the JEM Development Project Team for JAXA; Melanie Saunders, associate manager of the International Space Station Program at Johnson Space Center; and Dominic Gorie, commander on mission STS-123 that will deliver the module to the space station. The new International Space Station component arrived at Kennedy March 12 to begin preparations for its future launch on mission STS-123. It will serve as an on-orbit storage area for materials, tools and supplies. It can hold up to eight experiment racks and will attach to the top of another larger pressurized module.

  11. Neutrino nuclear responses for double beta decays and astro neutrinos by charge exchange reactions

    NASA Astrophysics Data System (ADS)

    Ejiri, Hiroyasu

    2014-09-01

    Neutrino nuclear responses are crucial for neutrino studies in nuclei. Charge exchange reactions (CER) are shown to be used to study charged current neutrino nuclear responses associated with double beta decays(DBD)and astro neutrino interactions. CERs to be used are high energy-resolution (He3 ,t) reactions at RCNP, photonuclear reactions via IAR at NewSUBARU and muon capture reactions at MUSIC RCNP and MLF J-PARC. The Gamow Teller (GT) strengths studied by CERs reproduce the observed 2 neutrino DBD matrix elements. The GT and spin dipole (SD) matrix elements are found to be reduced much due to the nucleon spin isospin correlations and the non-nucleonic (delta isobar) nuclear medium effects. Impacts of the reductions on the DBD matrix elements and astro neutrino interactions are discussed.

  12. KENNEDY SPACE CENTER, FLA. - While touring the SRB Retrieval Ship Freedom Star, STS-114 Commander Eileen Collins and Mission Specialist Soichi Noguchi point at something on the Banana River. Noguchi is with the Japanese space agency NASDA. The ships routinely are docked at Hangar AF on the river. On their mission, the crew - which also includes Pilot James Kelly and Mission Specialist Stephen Robinson - will carry the MultiPurpose Logistics Module (MPLM) Raffaello and External Stowage Platform 2 to the International Space Station. The MPLM will contain supplies and equipment. Another goal of the mission is to remove and replace a Control Moment Gyro. Launch date for mission STS-114 is under review.

    NASA Image and Video Library

    2003-08-13

    KENNEDY SPACE CENTER, FLA. - While touring the SRB Retrieval Ship Freedom Star, STS-114 Commander Eileen Collins and Mission Specialist Soichi Noguchi point at something on the Banana River. Noguchi is with the Japanese space agency NASDA. The ships routinely are docked at Hangar AF on the river. On their mission, the crew - which also includes Pilot James Kelly and Mission Specialist Stephen Robinson - will carry the MultiPurpose Logistics Module (MPLM) Raffaello and External Stowage Platform 2 to the International Space Station. The MPLM will contain supplies and equipment. Another goal of the mission is to remove and replace a Control Moment Gyro. Launch date for mission STS-114 is under review.

  13. KENNEDY SPACE CENTER, FLA. - The STS-114 crew poses on deck with the captain of the Liberty Star, one of the SRB Retrieval Ships docked at Hangar AF on the Banana River. From left are Pilot James Kelly, Mission Specialist Soichi Noguchi, Capt. Bren Wade, Commander Eileen Collins and Mission Specialist Stephen Robinson. Noguchi is with the Japanese space agency NASDA. Mission STS-114 will carry the MultiPurpose Logistics Module (MPLM) Raffaello and External Stowage Platform 2 to the International Space Station. The MPLM will contain supplies and equipment. Another goal of the mission is to remove and replace a Control Moment Gyro. Launch date for mission STS-114 is under review.

    NASA Image and Video Library

    2003-08-13

    KENNEDY SPACE CENTER, FLA. - The STS-114 crew poses on deck with the captain of the Liberty Star, one of the SRB Retrieval Ships docked at Hangar AF on the Banana River. From left are Pilot James Kelly, Mission Specialist Soichi Noguchi, Capt. Bren Wade, Commander Eileen Collins and Mission Specialist Stephen Robinson. Noguchi is with the Japanese space agency NASDA. Mission STS-114 will carry the MultiPurpose Logistics Module (MPLM) Raffaello and External Stowage Platform 2 to the International Space Station. The MPLM will contain supplies and equipment. Another goal of the mission is to remove and replace a Control Moment Gyro. Launch date for mission STS-114 is under review.

  14. Orbital Express Mission Operations Planning and Resource Management using ASPEN

    NASA Technical Reports Server (NTRS)

    Chouinard, Caroline; Knight, Russell; Jones, Grailing; Tran, Danny

    2008-01-01

    The Orbital Express satellite servicing demonstrator program is a DARPA program aimed at developing "a safe and cost-effective approach to autonomously service satellites in orbit". The system consists of: a) the Autonomous Space Transport Robotic Operations (ASTRO) vehicle, under development by Boeing Integrated Defense Systems, and b) a prototype modular next-generation serviceable satellite, NEXTSat, being developed by Ball Aerospace. Flexibility of ASPEN: a) Accommodate changes to procedures; b) Accommodate changes to daily losses and gains; c) Responsive re-planning; and d) Critical to success of mission planning Auto-Generation of activity models: a) Created plans quickly; b) Repetition/Re-use of models each day; and c) Guarantees the AML syntax. One SRP per day vs. Tactical team

  15. AstroCom NYC: A Partnership Between Astronomers at CUNY, AMNH, and Columbia University

    NASA Astrophysics Data System (ADS)

    Paglione, Timothy; Ford, K. S.; Robbins, D.; Mac Low, M.; Agueros, M. A.

    2014-01-01

    AstroCom NYC is a new program designed to improve urban minority student access to opportunities in astrophysical research by greatly enhancing partnerships between research astronomers in New York City. The partners are minority serving institutions of the City University of New York, and the astrophysics research departments of the American Museum of Natural History and Columbia. AstroCom NYC provides centralized, personalized mentoring as well as financial and academic support, to CUNY undergraduates throughout their studies, plus the resources and opportunities to further CUNY faculty research with students. The goal is that students’ residency at AMNH helps them build a sense of belonging in the field, and inspires and prepares them for graduate study. AstroCom NYC prepares students for research with a rigorous Methods of Scientific Research course developed specifically to this purpose, a laptop, a research mentor, career mentor, involvement in Columbia outreach activities, scholarships and stipends, Metrocards, and regular assessment for maximum effectiveness. Stipends in part alleviate the burdens at home typical for CUNY students so they may concentrate on their academic success. AMNH serves as the central hub for our faculty and students, who are otherwise dispersed among all five boroughs of the City. With our first cohort we experienced the expected challenges from their diverse preparedness, but also far greater than anticipated challenges in scheduling, academic advisement, and molding their expectations. We review Year 1 operations and outcomes, as well as plans for Year 2, when our current students progress to be peer mentors.

  16. STS-35 Mission Manager Actions Room at the Marshall Space Flight Center Spacelab Payload Operations

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The primary objective of the STS-35 mission was round the clock observation of the celestial sphere in ultraviolet and X-Ray astronomy with the Astro-1 observatory which consisted of four telescopes: the Hopkins Ultraviolet Telescope (HUT); the Wisconsin Ultraviolet Photo-Polarimeter Experiment (WUPPE); the Ultraviolet Imaging Telescope (UIT); and the Broad Band X-Ray Telescope (BBXRT). The Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at the Marshall Space Flight Center (MSFC) was the air/ground communication channel used between the astronauts and ground control teams during the Spacelab missions. Teams of controllers and researchers directed on-orbit science operations, sent commands to the spacecraft, received data from experiments aboard the Space Shuttle, adjusted mission schedules to take advantage of unexpected science opportunities or unexpected results, and worked with crew members to resolve problems with their experiments. Due to loss of data used for pointing and operating the ultraviolet telescopes, MSFC ground teams were forced to aim the telescopes with fine tuning by the flight crew. This photo captures the activities at the Mission Manager Actions Room during the mission.

  17. Availability of Japanese subsidies for international telemedicine projects.

    PubMed

    Nakajima, I; Tsurumi, T; Sawada, Y; Juzoji, H; Ogushi, Y

    1999-10-01

    In this article, the authors report the methods for obtaining subsidies for overseas telemedicine projects from Japanese sources based on their own personal experiences. The Japanese Government is already subsidizing such specialized NGOs (Non-Governmental Organizations) as the Telemedicine Society of Japan and Basic Human Needs and, Japanese trading companies are also hiring telemedicine experts. Prospective methods for obtaining subsidies are outlined as under the following headings: Assistance without compensation, Technology transfer, Grass-roots grant assistance, the Telecommunications Advancement Organization, Postal Savings for International Voluntary Aid, Venture business development funds provided by the Ministry of International Trade and Industry, Mission demonstration satellites by the National Space Development Agency of Japan, the Sasakawa Pacific Island Nations Fund, and International Communications Foundation. Key points of the applications are noted under (1) Degree of contribution to local residents, (2) Significance of project continuation and (3) Novelty and economic impact.

  18. AstroFest: A Case Study of an Astronomy Outreach Program at Penn State University

    NASA Astrophysics Data System (ADS)

    Palma, C.; Charlton, J. C.

    2003-12-01

    The Pennsylvania State University Department of Astronomy & Astrophysics has developed a multi-faceted approach to outreach in astronomy. Our programs include In-Service Workshops in Astronomy for middle-school and high-school science teachers, planetarium shows for local elementary school classes, and a series of sponsored, popular level talks, for example. One of our most popular outreach events is called ``AstroFest"; this is a four night festival of astronomy that we hold concurrently with the Central Pennsylvania Festival of the Arts (``ArtsFest"). The AstroFest program was devised by undergraduate students during the summer of 1999, and we continue to hold it annually. Each night of the event, we offer talks at a popular level on subjects such as black holes, life on Mars, and the world's largest telescopes. Throughout the night we also offer planetarium shows, a chance to use our rooftop telescopes, a question & answer table with prizes, kids' activities that include launching bubble rockets, and a number of other demonstrations and tours. In this poster, I present the full complement of astronomy outreach programs offered by Penn State, and I focus in particular on AstroFest as a case study that highlights the challenges we face and the positive outcomes we have realized. Funding for our outreach program has come from several sources, including NASA E/PO supplement grants, the STScI IDEAS program, The Pennsylvania Space Grant Consortium, and the Pennsylvania State University Eberly College of Science.

  19. Early In-orbit Performance of Scanning Sky Monitor Onboard AstroSat

    NASA Astrophysics Data System (ADS)

    Ramadevi, M. C.; Ravishankar, B. T.; Sitaramamurthy, N.; Meena, G.; Singh, Brajpal; Jain, Anand; Yadav, Reena; Agarwal, Anil; Babu, V. Chandra; Kumar; Kushwaha, Ankur; Vaishali, S.; Iyer, Nirmal Kumar; Nandi, Anuj; Girish, V.; Agarwal, Vivek Kumar; Seetha, S.; Bhattacharya, Dipankar; Balaji, K.; Kumar, Manoj; Kulshresta, Prashanth

    2017-06-01

    We report the in-orbit performance of Scanning Sky Monitor (SSM) onboard AstroSat. The SSM operates in the energy range 2.5 to 10 keV and scans the sky to detect and locate transient X-ray sources. This information of any interesting phenomenon in the X-ray sky as observed by SSM is provided to the astronomical community for follow-up observations. Following the launch of AstroSat on 28th September, 2015, SSM was commissioned on October 12th, 2015. The first power ON of the instrument was with the standard X-ray source, Crab in the field-of-view. The first orbit data revealed the basic expected performance of one of the detectors of SSM, SSM1. Following this in the subsequent orbits, the other detectors were also powered ON to find them perform in good health. Quick checks of the data from the first few orbits revealed that the instrument performed with the expected angular resolution of 12' × 2.5° and effective area in the energy range of interest. This paper discusses the instrument aspects along with few on-board results immediately after power ON.

  20. 50 Years of the Astro-Science Workshop at the Adler Planetarium

    NASA Astrophysics Data System (ADS)

    Hammergren, Mark; Martynowycz, M. W.; Ratliff, G.

    2014-01-01

    Since 1964, the Adler Planetarium has hosted a program for highly motivated and interested high-school students known as the Astro-Science Workshop (ASW). Created in response to the national “call to arms” for improved science education following the stunning launch of Sputnik, ASW was originally conducted as an extracurricular astronomy class on Saturday mornings throughout the school year, for many years under the leadership of Northwestern University professor J. Allen Hynek. A gradual decline in student interest in the 1990’s led to a redesign of ASW as a summer program featuring hands-on, student-driven investigation and experimentation. Since 2002, ASW has been organized and taught by graduate student “scientist-educators” and funded through a series of grants from the NSF. For the past seven years, students have designed, built, and flown experiments on helium balloons to altitudes of around 30 km (100,000 feet). Here, as we enter its 50th anniversary, we present the history of the Astro-Science Workshop, its context among the small but still vibrant community of post-Sputnik science enrichment programs, and its rich legacy of inspiring generations of astronomers and other explorers.

  1. Ultraviolet Imaging Telescope ultraviolet images - Large-scale structure, H II regions, and extinction in M81

    NASA Technical Reports Server (NTRS)

    Hill, Jesse K.; Bohlin, Ralph C.; Cheng, Kwang-Ping; Hintzen, Paul M. N.; Landsman, Wayne B.; Neff, Susan G.; O'Connell, Robert W.; Roberts, Morton S.; Smith, Andrew M.; Smith, Eric P.

    1992-01-01

    The study employs UV images of M81 obtained by the Ultraviolet Imaging Telescope (UIT) during the December 1990 Astro-1 spacelab mission to determine 2490- and 1520-A fluxes from 46 H II regions and global surface brightness profiles. Comparison photometry in the V band is obtained from a ground-based CCD image. UV radial profiles show bulge and exponential disk components, with a local decrease in disk surface brightness inside the inner Lindblad Resonance about 4 arcmin from the nucleus. The V profile shows typical bulge plus exponential disk structure, with no local maximum in the disk. There is little change of UV color across the disk, although there is a strong gradient in the bulge. Observed m152-V colors of the H II regions are consistent with model spectra for young clusters, after dereddening using Av determined from m249-V and the Galactic extinction curve. The value of Av, so determined, is 0.4 mag greater on the average than Av derived from radio continuum and H-alpha fluxes.

  2. Antibody responses induced by Japanese whole inactivated vaccines against equine influenza virus (H3N8) belonging to Florida sublineage clade2.

    PubMed

    Yamanaka, Takashi; Bannai, Hiroshi; Nemoto, Manabu; Tsujimura, Koji; Kondo, Takashi; Matsumura, Tomio

    2011-04-01

    In 2010, the World Organisation for Animal Health recommended the inclusion of a Florida sublineage clade2 strain of equine influenza virus (H3N8), which is represented by A/equine/Richmond/1/07 (Richmond07), in equine influenza vaccines. Here, we evaluate the antigenic differences between Japanese vaccine strains and Richmond07 by performing hemagglutination inhibition (HI) assays. Ferret antiserum raised to A/equine/La Plata/93 (La Plata93), which is a Japanese vaccine strain, reacted with Richmond07 at a similar titer to La Plata93. Moreover, two hundred racehorses exhibited similar geometric mean HI antibody titers against La Plata93 and Richmond07 (73.1 and 80.8, respectively). Therefore, we can expect the antibody induced by the current Japanese vaccines to provide some protection against Richmond07-like viruses.

  3. STS-87 Mission Specialist Doi with EVA coordinator Laws participates in the CEIT for his mission

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-87 Mission Specialist Takao Doi , Ph.D., of the National Space Development Agency of Japan, participates in the Crew Equipment Integration Test (CEIT) at Kennedy Space Center (KSC). Glenda Laws, the extravehicular activity (EVA) coordinator, Johnson Space Center, stands behind Dr. Doi. The CEIT gives astronauts an opportunity to get a hands-on look at the payloads with which they will be working on-orbit. STS-87 will be the fourth United States Microgravity Payload and flight of the Spartan-201 deployable satellite. During the mission, Dr. Doi will be the first Japanese astronaut to perform a spacewalk. STS- 87 is scheduled for a Nov. 19 liftoff from KSC.

  4. Lunar Dust Monitor to BE Onboard the Next Japanese Lunar Mission SELENE-2

    NASA Astrophysics Data System (ADS)

    Ohashi, Hideo

    The next Japanese lunar mission SELENE-2, after a successful mission Kaguya (a project named SELENE), is planned to be launched in mid 2010s and is consisted of a lander, a rover, and an orbiter, as a transmitting satellite to the earth. A dust particle detector LDM (Lunar Dust Monitor) is proposed to be onboard the orbiter. The LDM is an impact ionization detector with dimensions 25 cm × 25 cm × 30 cm, and it has a sensor part (LDM-S, upper module) and an electronics part (LDM-E, lower module). The LDM-S has a large target (gold-plated Al) of 400 cm2 , to which a high voltage of +500 V is applied. The LDM-S also has two meshed grids parallel to the target. The grids are etched stainless steel with 90% transparency: the inner grid is 2 cm apart from the target and the outer grid is 15 cm from the target. When a charged dust particle passes through the outer and inner grids, it induces an electric signal on the grids separated by a certain time interval, determined by the velocity of the incident particle and the distance between the outer and inner grids. By measuring the time interval, we can calculate the velocity of the particle, with the ambiguity of its trajectory to the target. When the incident particle impacts on the target, plasma gas of electrons and ions is generated. The electrons of the plasma are collected by the target and the ions are accelerated toward the inner grids as a result of the electric field. Some of the ions drift through the inner grid and reach the outer grid. The outer and inner grids and the target are connected to charge-sensitive amplifiers, which convert charge signals induced by the electrons and ions to voltage signals that are fed to a following flash ADC driven with 10 MHz. The waveforms from two grids and the target can be stored and be sent back to ground for data analysis. We can deduce the mass and velocity information of the incident dust particle from the recorded waveforms. The orbiter of SELENE-2 is planned to be in

  5. Mission-oriented requirements for updating MIL-H-8501: Calspan proposed structure and rationale

    NASA Technical Reports Server (NTRS)

    Chalk, C. R.; Radford, R. C.

    1985-01-01

    This report documents the effort by Arvin/Calspan Corporation to formulate a revision of MIL-H-8501A in terms of Mission-Oriented Flying Qualities Requirements for Military Rotorcraft. Emphasis is placed on development of a specification structure which will permit addressing Operational Missions and Flight Phases, Flight Regions, Classification of Required Operational Capability, Categorization of Flight Phases, and Levels of Flying Qualities. A number of definitions is established to permit addressing the rotorcraft state, flight envelopes, environments, and the conditions under which degraded flying qualities are permitted. Tentative requirements are drafted for Required Operational Capability Class 1. Also included is a Background Information and Users Guide for the draft specification structure proposed for the MIL-H-8501A revision. The report also contains a discussion of critical data gaps and attempts to prioritize these data gaps and to suggest experiments that should be performed to generate data needed to support formulation of quantitative design criteria for the additional Operational Capability Classes 2, 3, and 4.

  6. Discovery STS-131 Mission Landing

    NASA Image and Video Library

    2010-04-20

    STS131-S-091 (20 April 2010) --- NASA Deputy Administrator Lori Garver and NASA astronaut Alan Poindexter, STS-131 commander, walk around under the space shuttle Discovery shortly after Discovery and its seven-member crew landed at the Kennedy Space Center in Cape Canaveral, Fla., on April 20, 2010. Poindexter and NASA astronaut James P. Dutton Jr., pilot; along with NASA astronauts Dorothy Metcalf-Lindenburger, Rick Mastracchio, Stephanie Wilson, Clayton Anderson and Japanese astronaut Naoko Yamazaki, all mission specialists, returned from their 15-day journey of more than 6.2 million miles. The STS-131 mission to the International Space Station delivered science racks, new crew sleeping quarters, equipment and supplies. Photo credit: NASA/Bill Ingalls

  7. Reflectivity Around the Gold M-Edges of X-ray Reflector of the Soft X-Ray Telescope Onboard ASTRO-H

    NASA Technical Reports Server (NTRS)

    Kurashimaa, Sho; Furuzawa, Akihiro; Sato, Toshiki; Kikuchia, Naomichi; Nakaniwaa, Nozomi; Maeda, Yoshitomo; Ishida, Manabu; Izuka, Ryo; Okajima, Takashi; Mori, Hideyuki; hide

    2016-01-01

    The X-ray astronomy satellite ASTRO-H are equipped with two equivalent soft X-ray telescopes (SXT-I and SXT-S) which cover the energy band 0.3-12 keV. The X-ray reflectors of the SXTs are coated with a gold monolayer by means of the replication technique. A series of gold M absorption edges in the 2-4 keV band causes complex structures in the energy response of the SXTs. In the same band, there are astrophysically important emission lines from Si, Ar and S. Since the SXS has unprecedentedly high spectral resolution, we have measured the reflectivity around the gold M-edges in an extremely fine energy pitch at the synchrotron radiation facility KEK PF BL11-B, with the 2 eV pitch in 2100 eV to 4100 eV band that covers the entire series of the absorption edges (M-I through M-V) at grazing incident angles to the reflectors of 0.5, 0.8, 1.0, 1.2, 1.4 degree, and with a finer pitch of 0.25 eV in the 2200 eV to 2350 eV band where the two deepest M-IV and M-V edges are included. In the resultant reflectivity curves, we have clearly identified the fine structures associated with all the M-edges. Using these data, we calculated atomic scattering factor f1 as a function of X-ray energy, with which we have built the mirror response function which can be applied to the Suzaku spectra. As a result, we have found that discrepancy of the spectral model to the Suzaku data of 4U1630-472 (a black hole transient) and the Crab nebula around the M-edges are significantly reduced from those with the official Suzaku response.

  8. Wind Prelaunch Mission Operations Report (MOR)

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The National Aeronautics and Space Administration (NASA) Wind mission is the first mission of the Global Geospace Science (GGS) initiative. The Wind laboratory will study the properties of particles and waves in the region between the Earth and the Sun. Using the Moon s gravity to save fuel, dual lunar swing-by orbits enable the spacecraft to sample regions close to and far from the Earth. During the three year mission, Wind will pass through the bow shock of Earth's magnetosphere to begin a thorough investigation of the solar wind. Mission objectives require spacecraft measurements in two orbits: lunar swing- by ellipses out to distances of 250 Earth radii (RE) and a small orbit around the Lagrangian point L-l that remains between the Earth and the Sun. Wind will be placed into an initial orbit for approximately 2 years. It will then be maneuvered into a transition orbit and ultimately into a halo orbit at the Earth-Sun L-l point where it will operate for the remainder of its lifetime. The Wind satellite development was managed by NASA's Goddard Space Flight Center with the Martin Marietta Corporation, Astro-Space Division serving as the prime contractor. Overall programmatic direction was provided by NASA Headquarters, Office of Space Science. The spacecraft will be launched under a launch service contract with the McDonnell Douglas Corporation on a Delta II Expendable Launch Vehicle (ELV) within a November l-l4, 1994 launch window. The Wind spacecraft carries six U.S. instruments, one French instrument, and the first Russian instrument ever to fly on an American satellite. The Wind and Polar missions are the two components of the GGS Program. Wind is also the second mission of the International Solar Terrestrial Physics (ISTP) Program. The first ISTP mission, Geotail, is a joint project of the Institute of Space and Astronautical Science of Japan and NASA which launched in 1992. The Wind mission is planned to overlap Geotail by six months and Polar by one year

  9. SELENE mission: mathematical model for SST Doppler measurements

    NASA Astrophysics Data System (ADS)

    Ping, J.; Kono, Y.; Kawano, N.; Hanada, H.; Matsumoto, K.

    2001-09-01

    Japanese lunar exploration mission, SELENE, has been planned to be launched into space by using H II-a rocket in the Summer of 2004. This mission is composed of 3 subsatellites, a main lunar orbiter, a relay satellite and a free flying VLBI radio source. One of its main scientific objectives is the estimation of high order and degree spherical harmonic coefficients for the lunar gravity field. Different tracking methods will be employed in SELENE. The key tracking method is 4 way Satellite-to-Satellite Tracking (SST) technique. By this way, the tracking data can be obtained through the relay when the low altitude main orbiter is flying at the far-side of the Moon and can not be "seen" from the Earth. To success the historical tracking data, a complete coverage of Doppler tracking from an orbiter at sufficiently low altitude with high tracking accuracy can be obtained. The 4 way SST has various configurations. For SELENE, the SST tracking mode is introduced here, the mathematical relation between range rate and 4 way Doppler count number is established, and a data processing stream frame by using GEODYN II is suggested.

  10. ASTRO 101 Labs and the Invasion of the Cognitive Scientists

    NASA Astrophysics Data System (ADS)

    Slater, Stephanie J.

    2015-04-01

    Since the mid 1800's there has been widespread agreement that we should be about the business of engaging students in the practices of scientific research in order to best teach the methods and practices of science. There has been significantly less agreement on precisely how to teach science by mimicking scientific inquiry in a way that can be empirically supported, even with our ``top students.'' Engaging ``ASTRO 101 students'' in scientific inquiry is a task that has left our astronomy education research community more than a little stymied, to the extent that it is difficult to find non-major science students practicing anything other than confirmation exercises in college labs. Researchers at the CAPER Center for Astronomy & Physics Education Research have struggled with this problem as well, until in our frustration we had to ask: ``Can research tell us anything about how to get students to do research?'' This talk presents an overview of the cognitive science that we've brought to bear in the ASTRO 101 laboratory setting for non-science majoring undergraduates and future teachers, along with the results of early studies that suggest that a ``backwards faded scaffolding'' approach to instruction in Intro Labs can successfully support large numbers of students in enhancing their understanding of the nature of scientific inquiry. Supported by NSF DUE 1312562.

  11. Astro Academy: Principia--A Suite of Physical Science Demonstrations Conducted Aboard the ISS

    ERIC Educational Resources Information Center

    McMurray, Andy

    2016-01-01

    Astro Academy: Principia is an education programme developed by the UK National Space Academy for the UK Space Agency (UKSA) and the European Space Agency (ESA). The Academy designed, constructed, flight-qualified and developed experimental procedures for a suite of physics and chemistry demonstration experiments that were conducted by ESA…

  12. Automated Structural Optimization System (ASTROS). Volume 2. User’s Manual

    DTIC Science & Technology

    1988-04-07

    preparation and on the use of advanced features that permit the user to modify the standard execution of ASTROS. f^Q^S*. ) I I J...software in considera- ble detail to direct the procedure to perform these alternative functions. The mechanisms by which these more advanced features are...grossly modify the existing capabilities of the system. These more advanced topics are treated in the Programmer’s and Application Manuals which

  13. Performance verification and system integration tests of the pulse shape processor for the soft x-ray spectrometer onboard ASTRO-H

    NASA Astrophysics Data System (ADS)

    Takeda, Sawako; Tashiro, Makoto S.; Ishisaki, Yoshitaka; Tsujimoto, Masahiro; Seta, Hiromi; Shimoda, Yuya; Yamaguchi, Sunao; Uehara, Sho; Terada, Yukikatsu; Fujimoto, Ryuichi; Mitsuda, Kazuhisa

    2014-07-01

    The soft X-ray spectrometer (SXS) aboard ASTRO-H is equipped with dedicated digital signal processing units called pulse shape processors (PSPs). The X-ray microcalorimeter system SXS has 36 sensor pixels, which are operated at 50 mK to measure heat input of X-ray photons and realize an energy resolution of 7 eV FWHM in the range 0.3-12.0 keV. Front-end signal processing electronics are used to filter and amplify the electrical pulse output from the sensor and for analog-to-digital conversion. The digitized pulses from the 36 pixels are multiplexed and are sent to the PSP over low-voltage differential signaling lines. Each of two identical PSP units consists of an FPGA board, which assists the hardware logic, and two CPU boards, which assist the onboard software. The FPGA board triggers at every pixel event and stores the triggering information as a pulse waveform in the installed memory. The CPU boards read the event data to evaluate pulse heights by an optimal filtering algorithm. The evaluated X-ray photon data (including the pixel ID, energy, and arrival time information) are transferred to the satellite data recorder along with event quality information. The PSP units have been developed and tested with the engineering model (EM) and the flight model. Utilizing the EM PSP, we successfully verified the entire hardware system and the basic software design of the PSPs, including their communication capability and signal processing performance. In this paper, we show the key metrics of the EM test, such as accuracy and synchronicity of sampling clocks, event grading capability, and resultant energy resolution.

  14. The Kaguya Mission Overview

    NASA Astrophysics Data System (ADS)

    Kato, Manabu; Sasaki, Susumu; Takizawa, Yoshisada

    2010-07-01

    The Japanese lunar orbiter Kaguya (SELENE) was successfully launched by an H2A rocket on September 14, 2007. On October 4, 2007, after passing through a phasing orbit 2.5 times around the Earth, Kaguya was inserted into a large elliptical orbit circling the Moon. After the apolune altitude was lowered, Kaguya reached its nominal 100 km circular polar observation orbit on October 19. During the process of realizing the nominal orbit, two subsatellites Okina (Rstar) and Ouna (Vstar) were released into elliptical orbits with 2400 km and 800 km apolune, respectively; both elliptical orbits had 100 km perilunes. After the functionality of bus system was verified, four radar antennas and a magnetometer boom were extended, and a plasma imager was deployed. Acquisition of scientific data was carried out for 10 months of nominal mission that began in mid-December 2007. During the 8-month extended mission, magnetic fields and gamma-rays from lower orbits were measured; in addition to this, low-altitude observations were carried out using a Terrain Camera, a Multiband Imager, and an HDTV camera. New data pertaining to an intense magnetic anomaly and GRS data with higher spatial resolution were acquired to study magnetism and the elemental distribution of the Moon. After some orbital maneuvers were performed by using the saved fuel, the Kaguya spacecraft finally impacted on the southeast part of the Moon. The Kaguya team has archived the initial science data, and since November 2, 2009, the data has been made available to public, and can be accessed at the Kaguya homepage of JAXA. The team continues to also study and publish initial results in international journals. Science purposes of the mission and onboard instruments including initial science results are described in this overview.

  15. Cruise status of Hayabusa2: Round trip mission to asteroid 162173 Ryugu

    NASA Astrophysics Data System (ADS)

    Tsuda, Yuichi; Watanabe, Sei-ichiro; Saiki, Takanao; Yoshikawa, Makoto; Nakazawa, Satoru

    2017-07-01

    The Japan Aerospace Exploration Agency launched an asteroid sample return spacecraft "Hayabusa2" on December 3, 2014 by the Japanese H2A launch vehicle. Hayabusa2 aims at the round trip mission to the asteroid 162173 Ryugu. Hayabusa2 successfully conducted the Earth gravity assist on December 3, 2015, and now the spacecraft is flying toward Ryugu with the microwave discharge ion engine as the means of propulsion. As of September 2016, 1346 h of the ion engine operation has been achieved as planned. Three touch downs/sample collections, one kinetic impact/crater generation, four surface rovers deployment and many other in-situ observations are planned in the asteroid proximity phase. The operation team will perform extensive operation practice/rehearsal using a hardware-in-the-loop simulator in the year 2017 to be ready for the asteroid arrival in the summer 2018.

  16. Japanese Competitiveness and Japanese Management.

    ERIC Educational Resources Information Center

    Minabe, Shigeo

    1986-01-01

    Analyzes and compares Japanese and American industrial policy and labor practices. Proposes that certain aspects of the Japanese system be adapted by American businesses for purpose of increasing international competitiveness. Proposes specific actions and plans for both the Japanese and American systems. (ML)

  17. ASTRO 850: Teaching Teachers about Exoplanets

    NASA Astrophysics Data System (ADS)

    Barringer, Daniel; Palma, Christopher

    2017-01-01

    The Earth and Space Science Partnership (ESSP) is a collaboration among Penn State scientists, science educators and seven school districts across Pennsylvania. Penn State also offers through its fully online World Campus the opportunity for In-Service science teachers to earn an M.Ed. degree in Earth Science, and we currently offer a required online astronomy course for that program. We have previously presented descriptions of how have incorporated research-based pedagogical practices into ESSP-sponsored workshops for in-service teachers (Palma et al. 2013), a pilot section of introductory astronomy for non-science majors (Palma et al. 2014), and into the design of an online elective course on exoplanets for the M.Ed. in Earth Science (Barringer and Palma, 2016). Here, we present the finished version of that exoplanet course, ASTRO 850. We gratefully acknowledge support from the NSF MSP program award DUE#0962792.

  18. IXO-XMS LVSID Anti-Coincidence Detector

    NASA Technical Reports Server (NTRS)

    Porter, Scott F.; Kilbourne, Caroline

    2010-01-01

    This document describes a high-TRL backup implementation of the anti-coincidence detector for the IXO/XMS instrument. The backup detector, hereafter referred to as the low-voltage silicon ionization detector (LVSID), has been successfully flown on Astro-E2 (Suzaku)/XRS and is currently being implemented, without significant changes, on the Astro-H/SXS instrument. The LVSID anti-coincidence detector on Astro-E2/XRS operated successfully for almost 2 years, and was not affected by the loss of liquid helium in that instrument. The LVSID continues to operate after almost 5 years on-orbit (LEO, 550 km) but with slightly increased noise following the expected depletion of solid Neon after 22 months. The noise of the device is increased after the loss of sNe due to thermally induced bias and readout noise. No radiation damage, or off-nominal affects have been observed with the LVSID on-orbit during the Astro-E2/XRS program. A detector die from the same fabrication run will be used on the Astro-H/SXS mission. The LVSID technology and cryogenic JFET readout system is thus TRL 9. The technology is described in detail in section 2. The IXO/XMS "backup-up" anti-coincidence detector is a small array of LVSID detectors that are almost identical to those employed for Astro -E2/XRS as described in this document. The readout system is identical and, infact would use the same design as the Astro -E2/XRS JFET amplifier module (19 channels) essentially without changes except for its mechanical mount. The changes required for the IXO/XMS LVSID array are limited to the mounting of the LVSID detectors, and the mechanical mounting of the JFET amplifier sub-assembly. There is no technical development needed for the IXO/XMS implementation and the technology is ready for detailed design-work leading to PDR. The TRL level is thus at least 6, and possibly higher. Characteristics of an IXO/XMS LVSID anti-co detector are given in Table 1 and described in detail in section 3.

  19. Kepler Mission: A Mission to Find Earth-size Planets in the Habitable Zone

    NASA Technical Reports Server (NTRS)

    Borucki, W. J.

    2003-01-01

    The Kepler Mission is a Discovery-class mission designed to continuously monitor the brightness of 100,000 solar-like stars to detect the transits of Earth-size and larger planets. It is a wide field of view photometer Schmidt-type telescope with an array of 42 CCDs. It has a 0.95 m aperture and 1.4 m primary and is designed to attain a photometric precision of 2 parts in 10(exp 5) for 12th magnitude solar-like stars for a 6 hr transit duration. It will continuously observe 100,000 main-sequence stars from 9th to 14th magnitude in the Cygnus constellation for a period of four years with a cadence of 4/hour. An additional 250 stars can be monitored at a cadence of l/minute to do astro-seismology of stars brighter than 11.5 mv. The photometer is scheduled to be launched into heliocentric orbit in 2007. When combined with ground-based spectrometric observations of these stars, the positions of the planets relative to the habitable zone can be found. The spectra of the stars are also used to determine the relationships between the characteristics of terrestrial planets and the characteristics of the stars they orbit. In particular, the association of planet size and occurrence frequency with stellar mass and metallicity will be investigated. Based on the results of the current Doppler-velocity discoveries, over a thousand giant planets will also be found. Information on the albedos and densities of those giants showing transits will be obtained. At the end of the four year mission, hundreds of Earth-size planets should be discovered in and near the HZ of their stars if such planets are common. A null result would imply that terrestrial planets in the HZ are very rare and that life might also be quite rare.

  20. Mission Specialists Dan Barry and Koichi Wakata play Japanese game "GO"

    NASA Image and Video Library

    1996-02-06

    STS072-315-034 (11-20 Jan. 1996) --- During off-duty time aboard the Space Shuttle Endeavour, astronauts Daniel T. Barry (left) and Koichi Wakata join on the middeck for an in-space version of a Japanese game called "Go". Because of microgravity, the usual rock-like pieces that are moved about on the board by each player had to give way to tiny stick-on pieces. Wakata represents Japan's National Space Development Agency (NASDA).

  1. STS-35: Mission Highlights Resource Tape

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Live footage shows the crewmembers of STS-35, Commander Vance D. Brand, Pilot Guy S. Gardner, Mission Specialists Jeffrey A. Hoffman, John M. Lounge, and Robert A. Parker, and Payload Specialists Samuel T. Durrance, and Ronald A. Parise, participating in the traditional breakfast prior to launch. The crew is seen suiting up, and walking out to the Astro-Van for their 1 a.m. launch. Also shown are some beautiful panoramic shots of the shuttle on the launch pad, main engine start, ignition, liftoff, and various shots of the Launch Control Center (LCC). The crew is also shown during flight performing some routine functions such as operating the trash compactor, eating, and getting into and out of their sleeping quarters. The crew is seen taking part in a conversation with the Secretary of State, and the Foreign Minister of the Soviet Union. Footage also includes the landing of Columbia, its rollout on the runway, and its crew as they depart from the vehicle.

  2. Evaluation of two new STR loci 9q2h2 and wg3f12 in a Japanese population.

    PubMed

    Mizutani, M; Huang, X L; Tamaki, K; Yoshimoto, T; Uchihi, R; Yamamoto, T; Katsumata, Y; Armour, J A

    1999-09-01

    Two short tandem repeat (STR) loci (9q2h2 and wg3f12) have been evaluated in a Japanese population. Ten and seven different alleles were observed in 9q2h2 and wg3f12 respectively. 9q2h2 displayed simple polymorphism in tetrameric repeat structure; by contrast, wg3f12 contained variable numbers of tetrameric repeats and a 30-bp deletion/insertion polymorphism. No "interalleles" were found. The expected heterozygosities of 9q2h2 and wg3fl2 were 0.749 and 0.574, respectively. No deviation from Hardy-Weinberg equilibrium was found.

  3. KENNEDY SPACE CENTER, FLA. - STS-114 Pilot James Kelly talks with Bren Wade, captain of the Liberty Star, one of the SRB Retrieval Ships docked at Hangar AF on the Banana River. Kelly and other crew members Commander Eileen Collins and Mission Specialists Soichi Noguchi and Stephen Robinson toured the ships. Noguchi is with the Japanese space agency NASDA. Mission STS-114 will carry the MultiPurpose Logistics Module (MPLM) Raffaello and External Stowage Platform 2 to the International Space Station. The MPLM will contain supplies and equipment. Another goal of the mission is to remove and replace a Control Moment Gyro. Launch date for mission STS-114 is under review.

    NASA Image and Video Library

    2003-08-13

    KENNEDY SPACE CENTER, FLA. - STS-114 Pilot James Kelly talks with Bren Wade, captain of the Liberty Star, one of the SRB Retrieval Ships docked at Hangar AF on the Banana River. Kelly and other crew members Commander Eileen Collins and Mission Specialists Soichi Noguchi and Stephen Robinson toured the ships. Noguchi is with the Japanese space agency NASDA. Mission STS-114 will carry the MultiPurpose Logistics Module (MPLM) Raffaello and External Stowage Platform 2 to the International Space Station. The MPLM will contain supplies and equipment. Another goal of the mission is to remove and replace a Control Moment Gyro. Launch date for mission STS-114 is under review.

  4. Spacelab

    NASA Image and Video Library

    1995-03-02

    ASTRO-2 was the second dedicated Spacelab mission to conduct astronomical observations in the ultraviolet spectral regions. It consisted of three unique instruments: the Hopkins Ultraviolet Telescope (HUT), the Ultraviolet Imaging Telescope (UIT) and the Wisconsin Ultraviolet Photo-Polorimeter Experiment ((WUPPE). These experiments selected targets from a list of over 600 and observed objects ranging from some inside the solar system to individual stars, nebulae, supernova remnants, galaxies, and active extra galactic objects. This data supplemented data collected on the ASTRO-1 mission flown on the STS-35 mission in December 1990. Because most ultraviolet radiation is absorbed by Earth's atmosphere, it carnot be studied from the ground. The far and extreme ultraviolet regions of the spectrum were largely unexplored before ASTRO-1, but knowledge of all wavelengths is essential to obtain an accurate picture of the universe. ASTRO-2 had almost twice the duration of its predecessor, and a launch at a different time of year allows the telescopes to view different portions of the sky. The mission served to fill in large gaps in astronomers' understanding of the universe and laid the foundations for more discovery in the future. ASTRO-2, a primary payload of STS-67 flight, was launched on March 2, 1995 aboard the Space Shuttle Orbiter Endeavour.

  5. Re-excision rates after breast conserving surgery following the 2014 SSO-ASTRO guidelines.

    PubMed

    Heelan Gladden, Alicia A; Sams, Sharon; Gleisner, Ana; Finlayson, Christina; Kounalakis, Nicole; Hosokawa, Patrick; Brown, Regina; Chong, Tae; Mathes, David; Murphy, Colleen

    2017-12-01

    In 2014, SSO-ASTRO published guidelines which recommended "no ink on tumor" as adequate margins for patients undergoing breast conservation for invasive breast cancer. In 2016, new SSO-ASTRO-ASCO guidelines recommended 2 mm margins for DCIS. We evaluated whether these guidelines affected re-excision rates at our institution. Patients treated with breast conservation surgery from January 1, 2010-March 1, 2016 were identified. Re-excision rates, tumor characteristics, and presence of residual disease were recorded. The 2016 guidelines were retrospectively applied to the same cohort and expected re-excision rates calculated. Re-excision rates did not significantly decline before and after 2014 guideline adoption (11.9% before, 10.9% after; p = 0.65) or when the 2016 guidelines were retrospectively applied (8.4%; p = 0.10). The 2014 and 2016 guidelines had minimal impact on our re-excision rates, as most re-excisions were done for DCIS and 2016 guidelines supported our prior institutional practices of 2 mm margins for these patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. The AstroBiology Explorer (ABE) MIDEX Mission Concept: Using Infrared Spectroscopy to Identify Organic Molecules in Space

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.; Vincenzi, Donald (Technical Monitor)

    2002-01-01

    One of the principal means by which organic compounds are detected and identified in space is by infrared spectroscopy. Past IR studies (telescopic and laboratory) have demonstrated that much of the carbon in the interstellar medium (ISM) is in complex organic species of a variety of types, but the distribution, abundance, and evolutionary relationships of these materials are not well understood. The Astrobiology Explorer (ABE) is a MIDEAST mission concept designed to conduct IR spectroscopic observations to detect and identify these materials to address outstanding important problems in astrobiology, astrochemistry, and astrophysics. Systematic studies include the observation of planetary nebulae and stellar outflows, protostellar objects, Solar System Objects, and galaxies, and multiple lines of sight through dense molecular clouds and the diffuse ISM. ABE will also search for evidence of D enrichment in complex molecules in all these environments. The mission is currently under study at NASA's Ames Research Center in collaboration with Ball Aerospace and Technologies Corp. ABE is a cryogenically-cooled 60 cm diameter space telescope equipped with 3 cryogenic cross-dispersed spectrographs that share a single common slit. The 3 spectrometers each measure single spectral octaves (2.5-5, 5-10, 10-20 microns) and together cover the entire 2.5 - 20 micron region simultaneously. The spectrometers use state-of-the-art 1024x1024 pixel detectors, with a single InSb array for the 2.5-5 micron region and two Si:As arrays for the 5-10 and 10-20 micron regions. The spectral resolution is wavelength dependent but is greater than 2000 across the entire spectral range. ABE would operate in a heliocentric, Earth drift-away orbit and is designed to take maximum advantage of this environment for cooling, thermal stability, and mission lifetime. ABE would have a core science mission lasting approximately 1.5 years.

  7. Wide Field Infrared Survey Telescope [WFIRST]: Telescope Design and Simulated Performance

    NASA Technical Reports Server (NTRS)

    Goullioud, R.; Content, D. A.; Kuan, G. M.; Moore, J. D.; Chang, Z.; Sunada, E. T.; Villalvazo, J.; Hawk, J. P.; Armani, N. V.; Johnson, E. L.; hide

    2012-01-01

    The ASTRO2010 Decadal Survey proposed multiple missions with NIR focal planes and 3 mirror wide field telescopes in the 1.5m aperture range. None of them would have won as standalone missions WFIRST is a combination of these missions, created by Astro 2010 committee. WFIRST Science Definition Team (SDT) tasked to examine the design. Project team is a GSFC-JPL-Caltech collaboration. This interim mission design is a result of combined work by the project team with the SDT.

  8. Astrobites: The Astro-ph Reader's Digest For Undergraduates

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna; Weiss, L. M.; Faesi, C. M.; Astrobites Team

    2012-05-01

    Astrobites (http://astrobites.com) is a daily blog aimed primarily at undergraduates interested in astrophysical research and written by a team of graduate students located at diverse institutes around the country and Europe. Every day we present a journal article recently posted to astro-ph in a brief format that is accessible to anyone with a general background in the physical sciences. In addition to summarizing new work, Astrobites provides valuable context for readers not yet familiar with the astrophysical literature. Special posts offer career guidance for undergraduates (e.g. applying for an NSF graduate fellowship) and describe personal experiences (e.g. attending an astronomy summer school). We will discuss the Astrobites format and recent readership statistics.

  9. Astro 101 Students' Perceptions of Science: Results from the "Thinking about Science Survey Instrument"

    ERIC Educational Resources Information Center

    Wallace, Colin S.; Prather, Edward E.; Mendelsohn, Benjamin M.

    2013-01-01

    What are the underlying worldviews and beliefs about the role of science in society held by students enrolled in a college-level, general education, introductory astronomy course (Astro 101)--and are those beliefs affected by active engagement instruction shown to significantly increase students' conceptual knowledge and reasoning abilities…

  10. Officials welcome the arrival of the Japanese Experiment Module

    NASA Image and Video Library

    2007-04-17

    In the Space Station Processing Facility, Scott Higginbotham, payload manager for the International Space Station, discusses the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module (JEM), with Dr. Hidetaka Tanaka, the JEM Project Team resident manager at KSC for the Japanese Aerospace and Exploration Agency (JAXA). Earlier, NASA and JAXA officials welcomed the arrival of the module. The new International Space Station component arrived at Kennedy March 12 to begin preparations for its future launch on mission STS-123. It will serve as an on-orbit storage area for materials, tools and supplies. It can hold up to eight experiment racks and will attach to the top of another larger pressurized module.

  11. The Fukushima Dai-ichi accident: additional lessons from a radiological emergency assistance mission.

    PubMed

    Becker, Steven M

    2013-11-01

    In response to the March 2011 earthquake-tsunami disaster and the Fukushima Dai-ichi nuclear accident, a special nongovernmental Radiological Emergency Assistance Mission flew to Japan from the United States. Invited by one of Japan's largest hospital and healthcare groups and facilitated by a New York-based international disaster relief organization, the mission included an emergency physician, a health physicist, and a disaster management specialist. During the 10 d mission, team members conducted fieldwork in areas affected by the earthquake, tsunami, and nuclear accident; went to cities and towns in the 20-30 km Emergency Evacuation Preparation Zone around the damaged nuclear plant; visited other communities affected by the nuclear accident; went to evacuation shelters; met with mayors and other local officials; met with central government officials; exchanged observations, experiences, and information with Japanese medical, emergency response, and disaster management colleagues; and provided radiological information and training to more than 1,100 Japanese hospital and healthcare personnel and first responders. The mission produced many insights with potential relevance for radiological/nuclear emergency preparedness and response. The first "lessons learned" were published in December 2011. Since that time, additional broad insights from the mission and mission followup have been identified. Five of these new lessons, which focus primarily on community impacts and responses and public communication issues, are presented and discussed in this article.

  12. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, STS-114 Mission Specialist Stephen Robinson (left) looks at an area overhead in the Japanese Experiment Module (JEM). In the center is Jennifer Goldsmith, with United Space Alliance at Johnson Space Center, and at right is Louise Kleba, with USA at KSC. Crew members are at KSC becoming familiar with Shuttle and mission equipment. The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

    NASA Image and Video Library

    2004-03-05

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, STS-114 Mission Specialist Stephen Robinson (left) looks at an area overhead in the Japanese Experiment Module (JEM). In the center is Jennifer Goldsmith, with United Space Alliance at Johnson Space Center, and at right is Louise Kleba, with USA at KSC. Crew members are at KSC becoming familiar with Shuttle and mission equipment. The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

  13. Swift Gamma-Ray Burst Explorer: Mission Design for Rapid, Accurate Location of Gamma-ray Bursts

    NASA Technical Reports Server (NTRS)

    Bundas, David J.

    2004-01-01

    The Swift Gamma-ray Burst Explorer is a NASA Mid-sized Explorer (MIDEX) with the primary mission of determining the origins of Gamma-Ray Bursts (GRBs). It will be the first mission to autonomously respond to newly-discovered GRBs and provide immediate follow-up narrow field instruments capable of multi-wavelength (UV, Optical, X-ray) observations. The characteristics of GRBs that are the key mission design drivers, are their non-repeating and brief duration bursts of multi-wavelength photons. In addition, rapid notification of the location and characteristics of the GRBs to ground-and-space- based observatories drive the end-to-end data analysis and distribution requirements. The Swift mission is managed by the GSFC, and includes an international team of contributors that each bring their unique perspective that have proven invaluable to the mission. The spacecraft bus, provided by Spectrum Astro, Inc. was procured through a Rapid Spacecraft Development Office (RSDO) contract by the GSFC. There are three instruments: the Burst Alert Telescope (BAT) provided by the GSFC; the X-Ray Telescope (XRT) provided by a team led by the Pennsylvania State University (PSU); and the Ultra-Violet Optical Telescope (UVOT), again managed by PSU. The Mission Operations Center (MOC) was developed by and is located at PSU. Science archiving and data analysis centers are located at the GSFC, in the UK and in Italy.

  14. Project ASTRO NOVA brings Standard Based Astronomy to New Jersey Schools.

    NASA Astrophysics Data System (ADS)

    van der Veen, W.; Vinski, J.; Gallagher, A. C.

    2000-12-01

    Begun in 1998, Project ASTRO NOVA is hosted by the Planetarium at Raritan Valley Community College in Somerville, New Jersey. It is part of a National Network of eleven Project ASTRO sites created by the Astronomical Society of the Pacific with financial support of the National Science Foundation (see other papers at this meeting). Our goal is to bring hands-on inquiry based astronomy into classrooms and help teachers meet the New Jersey Science Standards. New Jersey mandates the teaching of astronomy in grades K-12 and statewide assessment takes place in grades 4 and 8. Capitalizing on New Jersey's record number of amateur astronomers per capita our site has trained 75 astronomers (including 21 professional astronomers) over the last three years. Before the start of each school year a new group of astronomers is trained together with their partner teacher(s) in the use of hands-on and age-appropriate astronomy activities that support the New Jersey Science Standards. Astronomers adopt a classroom and visit the same students at least four times during the year. Currently 53 astronomers are participating during the 2000-2001 school year. The program in New Jersey targets teachers in grades 3-9. A total of 114 teachers have been training at our annual workshops and 75 of them are participating during the 2000-2001 school year. Satisfaction with the program has been high with students, teachers and astronomers. When students meet scientists as role models and experience that doing science can be a lot of fun they become more interested. At the same time teachers are re-energized and gain a better understanding of how to teach science and astronomy. Finally, astronomers have the satisfaction of making a real difference in the lives of thousands of children, gain a better understanding of the issues in K-12 education and learn new teaching strategies for use in their college classes or astronomy clubs. In general we find that students and teachers are becoming better

  15. Religion, Modernity and Politics: Colonial Education and the Australian Mission in Korea, 1910-1941

    ERIC Educational Resources Information Center

    Lee, Yoonmi

    2016-01-01

    The work of the Australian mission in the southern part of Korea during the first half of the twentieth century has been a relatively undeveloped subject in scholarly research. By focusing on the educational work of the mission between 1910 and 1941, this article provides an overview of how the missionaries interacted with the Japanese colonial…

  16. Next-Generation X-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    White, Nicholas E.

    2011-01-01

    The future timing capabilities in X-ray astronomy will be reviewed. This will include reviewing the missions in implementation: Astro-H, GEMS, SRG, and ASTROSAT; those under study: currently ATHENA and LOFT; and new technologies that may enable future missions e.g. Lobster eye optics. These missions and technologies will bring exciting new capabilities across the entire time spectrum from micro-seconds to years that e.g. will allow us to probe close to the event horizon of black holes and constrain the equation of state of neutron stars.

  17. Astro Data Science: The Next Generation

    NASA Astrophysics Data System (ADS)

    Mentzel, Chris

    2018-01-01

    Astronomers have been at the forefront of data-driven discovery since before the days of Kepler. Using data in the scientific inquiry into the workings of the the universe is the lifeblood of the field. This said, data science is considered a new thing, and researchers from every discipline are rushing to learn data science techniques, train themselves on data science tools, and even leaving academia to become data scientists. It is undeniable that our ability to harness new computational and statistical methods to make sense of today’s unprecedented size, complexity, and fast streaming data is helping scientists make new discoveries. The question now is how to ensure that researchers can employ these tools and use them appropriately. This talk will cover the state of data science as it relates to scientific research and the role astronomers play in its development, use, and training the next generation of astro-data scientists.

  18. Measuring Atmospheric Carbon Dioxide from Space: The GOSAT and OCO-2 Missions

    NASA Technical Reports Server (NTRS)

    Crisp, David

    2011-01-01

    The Japanese Greenhouse gases Observing Satellite (GOSAT) is providing new insight into atmospheric carbon dioxide trends. The NASA Orbiting Carbon Observatory-2 (OCO-2)Mission will build on this record with increased sensitivity resolution, and coverage.

  19. The HEASARC in 2016: 25 Years and Counting

    NASA Astrophysics Data System (ADS)

    Drake, Stephen Alan; Smale, Alan P.

    2016-04-01

    The High Energy Astrophysics Archival Research Center or HEASARC (http://heasarc.gsfc.nasa.gov/) has been the NASA astrophysics discipline archive supporting multi-mission cosmic X-ray and gamma-ray astronomy research for 25 years, and, through its LAMBDA (Legacy Archive for Microwave Background Data Analysis: http://lambda.gsfc.nasa.gov/) component, the archive for cosmic microwave background data for the last 8 years. The HEASARC is the designated archive which supports NASA's Physics of the Cosmos theme (http://pcos.gsfc.nasa.gov/).The HEASARC provides a unified archive and software structure aimed both at 'legacy' high-energy missions such as Einstein, EXOSAT, ROSAT, RXTE, and Suzaku, contemporary missions such as Fermi, Swift, XMM-Newton, Chandra, NuSTAR, etc., and upcoming missions, such as Astro-H and NICER. The HEASARC's high-energy astronomy archive has grown so that it presently contains more than 80 terabytes (TB) of data from 30 past and present orbital missions. The user community downloaded 160 TB of high-energy data from the HEASARC last year, i.e., an amount equivalent to twice the size of the archive.We discuss some of the upcoming new initiatives and developments for the HEASARC, including the arrival of public data from the JAXA/NASA Astro-H mission, expected to have been launched in February 2016, and the NASA mission of opportunity Neutron Star Interior Composition Explorer (NICER), expected to be deployed in late summer 2016. We also highlight some of the new software and web initiatives of the HEASARC, and discuss our plans for the next 3 years.

  20. Implementation Options for the PROPEL Electrodynamic Tether Demonstration Mission

    NASA Technical Reports Server (NTRS)

    Bilen, Sven G.; Johnson, C. Les; Gilchrist, Brian E.; Hoyt, Robert P.; Elder, Craig H.; Fuhrhop, Keith P.; Scadera, Michael; Stone, Nobie

    2014-01-01

    The PROPEL ("Propulsion using Electrodynamics") flight demonstration mission concept will demonstrate the use of an electrodynamic tether (EDT) for generating thrust, which will allow the propulsion system to overcome the limitations of the rocket equation. The mission concept has been developed by a team of government, industry, and academia partners led by NASA Marshall Space Flight Center (MSFC). PROPEL is being designed for versatility of the EDT system with multiple end users in mind and to be flexible with respect to platform. Previously, we reported on a comprehensive mission design for PROPEL with a mission duration of six months or longer with multiple mission goals including demonstration of significant boost, deboost, inclination change, and drag make-up activities. To explore a range of possible configurations, primarily driven by cost considerations, other mission concept designs have been pursued. In partnership with the NASA's Office of Chief Technologist (OCT) Game Changing Program, NASA MSFC Leadership, and the MSFC Advanced Concepts Office, a mission concept design was developed for a near-term EDT propulsion flight validation mission. The Electrodynamic Tether Propulsion Study (ETPS) defined an EDT propulsion system capable of very large delta-V for use on future missions developed by NASA, DoD, and commercial customers. To demonstrate the feasibility of an ETPS, the study focused on a space demonstration mission concept design with configuration of a pair of tethered satellite busses, one of which is the Japanese H-II Transfer Vehicle (HTV). The HTV would fly its standard ISS resupply mission. When resupply mission is complete, the ISS reconfigures and releases the HTV to perform the EDT experiment at safe orbital altitudes below the ISS. Though the focus of this particular mission concept design addresses a scenario involving the HTV or a similar vehicle, the propulsion system's capability is relevant to a number of applications, as noted above

  1. Discovery & Interaction in Astro 101 Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    Maloney, Frank Patrick; Maurone, Philip; DeWarf, Laurence E.

    2016-01-01

    The availability of low-cost, high-performance computing hardware and software has transformed the manner by which astronomical concepts can be re-discovered and explored in a laboratory that accompanies an astronomy course for arts students. We report on a strategy, begun in 1992, for allowing each student to understand fundamental scientific principles by interactively confronting astronomical and physical phenomena, through direct observation and by computer simulation. These experiments have evolved as :a) the quality and speed of the hardware has greatly increasedb) the corresponding hardware costs have decreasedc) the students have become computer and Internet literated) the importance of computationally and scientifically literate arts graduates in the workplace has increased.We present the current suite of laboratory experiments, and describe the nature, procedures, and goals in this two-semester laboratory for liberal arts majors at the Astro 101 university level.

  2. AstroCloud, a Cyber-Infrastructure for Astronomy Research: Overview

    NASA Astrophysics Data System (ADS)

    Cui, C.; Yu, C.; Xiao, J.; He, B.; Li, C.; Fan, D.; Wang, C.; Hong, Z.; Li, S.; Mi, L.; Wan, W.; Cao, Z.; Wang, J.; Yin, S.; Fan, Y.; Wang, J.

    2015-09-01

    AstroCloud is a cyber-Infrastructure for Astronomy Research initiated by Chinese Virtual Observatory (China-VO) under funding support from NDRC (National Development and Reform commission) and CAS (Chinese Academy of Sciences). Tasks such as proposal submission, proposal peer-review, data archiving, data quality control, data release and open access, Cloud based data processing and analyzing, will be all supported on the platform. It will act as a full lifecycle management system for astronomical data and telescopes. Achievements from international Virtual Observatories and Cloud Computing are adopted heavily. In this paper, backgrounds of the project, key features of the system, and latest progresses are introduced.

  3. Astrobites: The Astro-ph Reader's Digest For Undergraduates

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna; Astrobites Team

    2013-04-01

    Astrobites (http://astrobites.com) is a daily blog aimed primarily at undergraduates interested in astrophysical research and written by a team of graduate students located at diverse institutions around the world. Nearly every day we present a journal article recently posted to astro-ph in a brief format that is accessible to anyone with a general background in the physical sciences. In addition to summarizing new work, Astrobites provides valuable context for readers not yet familiar with the astrophysical literature. Special posts offer career guidance for undergraduates (e.g. applying for an NSF graduate fellowship) and describe personal experiences (e.g. attending an astronomy summer school). We will discuss the Astrobites format and recent readership statistics, as well as potential methods for incorporating Astrobites into the classroom.

  4. [NO and H2S brain systems of the Japanese shore crab Hemigrapsus sanguineus under conditions of anoxia].

    PubMed

    Kotsiuba, E P

    2012-01-01

    The topography and dynamics of the activity of the enzymes of the synthesis of nitric oxide (NO) and hydrogen sulfide (H2S) in the brain of the Japanese shore crab Hemigrapsus sanguineus after 1, 6, and 12 h ofanoxia was studied histochemically and immunocytochemically. Changes in the activity and number of NO- and CBS-immune-positive cells that take place due to anoxia and the intensity of which depends on the duration of the influence were revealed. The fact that the balance between the nitric oxide and hydrogen sulfide systems in the brain of the crabs H. sanguineus is preserved indicates the joint participation of those systems in the central regulation of adaptive mechanisms under the influence of anoxia and, apparently, plays an important role in the adaptation of these hydrobionts to oxygen deficit.

  5. The integration of astro-geodetic data observed with ACSYS to the local geoid models Istanbul-Turkey

    NASA Astrophysics Data System (ADS)

    Halicioglu, Kerem; Ozludemir, M. Tevfik; Deniz, Rasim; Ozener, Haluk; Albayrak, Muge; Ulug, Rasit; Basoglu, Burak

    2017-04-01

    Astro-geodetic deflections of the vertical components provide accurate and valuable information of Earth's gravity filed. Conventional methods require considerable effort and time whereas new methods, namely digital zenith camera systems (DZCS), have been designed to eliminate drawbacks of the conventional methods, such as observer dependent errors, long observation times, and to improve the observation accuracy. The observation principle is based on capturing star images near zenithal direction to determine astronomical coordinates of the station point with the integration of CCD, telescope, tiltmeters, and GNSS devices. In Turkey a new DZCS have been designed and tested on control network located in Istanbul, of which the geoid height differences were known with the accuracy of ±3.5 cm. Astro-geodetic Camera System (ACSYS) was used to determine the deflections of the vertical components with an accuracy of ±0.1 - 0.3 arc seconds, and results were compared with geoid height differences using astronomical levelling procedure. The results have also been compared with the ones calculated from global geopotential models. In this study the recent results of the first digital zenith camera system of Turkey are presented and the future studies are introduced such as the current developments of the system including hardware and software upgrades as well as the new observation strategy of the ACSYS. We also discuss the contribution and integration of the astro-geodetic deflections of the vertical components to the geoid determination studies in the light of information of current ongoing projects being operated in Turkey.

  6. Liquid-containing Refluxes and Acid Refluxes May Be Less Frequent in the Japanese Population Than in Other Populations: Normal Values of 24-hour Esophageal Impedance and pH Monitoring

    PubMed Central

    Kawamura, Osamu; Kohata, Yukie; Kawami, Noriyuki; Iida, Hiroshi; Kawada, Akiyo; Hosaka, Hiroko; Shimoyama, Yasuyuki; Kuribayashi, Shiko; Fujiwara, Yasuhiro; Iwakiri, Katsuhiko; Inamori, Masahiko; Kusano, Motoyasu; Hongo, Micho

    2016-01-01

    Background/Aims Twenty-four-hour esophageal impedance and pH monitoring allows detection of all types of reflux episodes and is considered the best technique for identifying gastroesophageal refluxes. However, normative data for the Japanese population are lacking. This multicenter study aimed to establish the normal range of 24-hour esophageal impedance and pH data both in the distal and the proximal esophagus in Japanese subjects. Methods Forty-two healthy volunteers (25 men and 17 women) with a mean ± standard deviation age of 33.3 ± 12.4 years (range: 22–72 years) underwent a combined 24-hour esophageal impedance and pH monitoring. According to the physical and pH properties, distal or proximal esophageal reflux events were categorized. Results Median 45 reflux events occurred in 24 hours, and the 95th percentile was 85 events. Unlike previous reports, liquid-containing reflux events are median 25/24 hours with the 95th percentile of 62/24 hours. Acidic reflux events were median 11/24 hours with the 95th percentile of 39/24 hours. Non-acidic gas reflux events were median 15/24 hours with the 95th percentile of 39/24 hours. Proximal reflux events accounted for 80% of the total reflux events and were mainly non-acidic gas refluxes. About 19% of liquid and mixed refluxes reached the proximal esophagus. Conclusions Unlike previous studies, liquid-containing and acidic reflux events may be less frequent in the Japanese population. Non-acidic gas reflux events may be frequent and a cause of frequent proximal reflux events. This study provides important normative data for 24-hour impedance and pH monitoring in both the distal and the proximal esophagus in the Japanese population. PMID:27247103

  7. Lifestyle characteristics assessment of Japanese in Pittsburgh, USA.

    PubMed

    Hirooka, Nobutaka; Takedai, Teiichi; D'Amico, Frank

    2012-04-01

    Lifestyle-related chronic diseases such as cancer and cardiovascular disease are the greatest public health concerns. Evidence shows Japanese immigrants to a westernized environment have higher incidence of lifestyle-related diseases. However, little is known about lifestyle characteristics related to chronic diseases for Japanese in a westernized environment. This study is examining the gap in lifestyle by comparing the lifestyle prevalence for Japanese in the US with the Japanese National Data (the National Health and Nutrition Survey in Japan, J-NHANS) as well as the Japan National Health Promotion in the twenty-first Century (HJ21) goals. Japanese adults were surveyed in Pittsburgh, USA, regarding their lifestyle (e.g., diet, exercise, smoking, stress, alcohol, and oral hygiene). The prevalence was compared with J-NHANS and HJ21 goals. Ninety-three responded (response rate; 97.9%). Japanese men (n = 38) and women (n = 55) in Pittsburgh smoke less than Japanese in Japan (P < 0.001 for both genders). Japanese in Pittsburgh perform less physical activity in daily life and have lower prevalence of walking more than 1 h per day (P < 0.001 for both genders). Japanese women in Pittsburgh have significantly higher prevalence of stress than in Japan (P = 0.004). Japanese men in Pittsburgh do not reach HJ21 goal in weight management, BMI, use of medicine or alcohol to sleep, and sleep quality. Japanese women in Pittsburgh do not reach HJ21 goal in weight management and sleep quality. In conclusion, healthy lifestyle promotion including exercise and physical activity intervention for Japanese living in a westernized environment is warranted.

  8. Clustering analysis of line indices for LAMOST spectra with AstroStat

    NASA Astrophysics Data System (ADS)

    Chen, Shu-Xin; Sun, Wei-Min; Yan, Qi

    2018-06-01

    The application of data mining in astronomical surveys, such as the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) survey, provides an effective approach to automatically analyze a large amount of complex survey data. Unsupervised clustering could help astronomers find the associations and outliers in a big data set. In this paper, we employ the k-means method to perform clustering for the line index of LAMOST spectra with the powerful software AstroStat. Implementing the line index approach for analyzing astronomical spectra is an effective way to extract spectral features for low resolution spectra, which can represent the main spectral characteristics of stars. A total of 144 340 line indices for A type stars is analyzed through calculating their intra and inter distances between pairs of stars. For intra distance, we use the definition of Mahalanobis distance to explore the degree of clustering for each class, while for outlier detection, we define a local outlier factor for each spectrum. AstroStat furnishes a set of visualization tools for illustrating the analysis results. Checking the spectra detected as outliers, we find that most of them are problematic data and only a few correspond to rare astronomical objects. We show two examples of these outliers, a spectrum with abnormal continuumand a spectrum with emission lines. Our work demonstrates that line index clustering is a good method for examining data quality and identifying rare objects.

  9. [What is important in disaster relief missions associated with the Great East Japan Earthquake: lessons from disaster relief missions to the Japan Self-Defense Forces Sendai Hospital and Haiti peacekeeping deployments].

    PubMed

    Tanichi, Masaaki; Tatsuki, Toshitaka; Saito, Taku; Wakizono, Tomoki; Shigemura, Jun

    2012-01-01

    We assessed the core factors necessary for mental health of disaster workers according to the following experiences: 1) the Japan Self-Defense Force (JSDF) disaster relief missions associated with the Great East Japan Earthquake and the Haiti peacekeeping deployment associated with the Great Haiti Earthquake, 2) conformations of the peacekeeping mission units of various countries deployed to Haiti, and 3) JSDF assistance activities to the Japanese earthquake victims. We learned that the basic life needs were the major premises for maintaining the mental health of the disaster workers. Food, drinking supplies, medical supplies were particularly crucial, yet overlooked in Japanese worker settings compared with forces of other countries. Conversely, the workers tend to feel guilty (moushi wake nai) for the victims when their basic life infrastructures are better than those of the victims. The Japanese workers and disaster victims both tend to find comfort in styles based on their culture, in particular, open-air baths and music performances. When planning workers' environments in disaster settings, provision of basic infrastructure should be prioritized, yet a sense of balance based on cultural background may be useful to enhance the workers' comfort and minimize their guilt.

  10. STS-85 Mission Specialist Robinson prepares to enter Discovery

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-85 Mission Specialist Stephen K. Robinson prepares to enter the Space Shuttle orbiter Discovery at Launch Complex 39A just prior to launch, scheduled for 10:41 a.m. EDT. The primary payload on this mission is the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2) free-flyer. The CRISTA-SPAS-2 will be deployed on flight day 1 to study trace gases in the Earths atmosphere as a part of NASAs Mission to Planet Earth program. Also aboard the free-flying research platform will be the Middle Atmosphere High Resolution Spectrograph Instrument (MAHRSI). Other payloads on the 11-day mission include the Manipulator Flight Demonstration (MFD), a Japanese Space Agency-sponsored experiment. Also in Discoverys payload bay are the Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments.

  11. Bitsy Thinks Big

    NASA Technical Reports Server (NTRS)

    2001-01-01

    AeroAstro, of Herndon, Virginia, developed a nanospacecraft core module capable of developing recyclable spacecraft designs using standard interfaces. From this core module, known as the Bitsy(TM) kernel, custom spacecraft are able to connect mission-specific instruments and subsystems for variation in mission usage. The nanospacecraft core module may be used in conjunction with an existing microsatellite bus or customized to meet specific requirements. Building on this premise, AeroAstro has developed a line of satellite communications equipment, sun sensors, and Lithium-Ion batteries which are all incorporated in its complete line of mission-specific nanospacecraft. The Bitsy technology is also a key component in AeroAstro#s satellite inspection products and orbital transfer services. In the future, AeroAstro plans to market an even less expensive version of the Bitsy technology. The plan, which is targeted to universities, markets a sort of "satellite in a kit," for less than $1 million. This technology would allow universities to build true space hardware for a fraction of the cost of launching a regular satellite.

  12. Activities During Spacelab-J Mission at Payload Operations and Control Center

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The group of Japanese researchers of the Spacelab-J (SL-J) were thumbs-up in the Payload Operations Control Center (POCC) at the Marshall Space Flight Center after the successful launch of Space Shuttle Orbiter Endeavour that carried their experiments. The SL-J was a joint mission of NASA and the National Space Development Agency of Japan (NASDA) utilizing a marned Spacelab module. The mission conducted microgravity investigations in materials and life sciences. Materials science investigations covered such fields as biotechnology, electronic materials, fluid dynamics and transport phenomena, glasses and ceramics, metals and alloys, and acceleration measurements. Life sciences included experiments on human health, cell separation and biology, developmental biology, animal and human physiology and behavior, space radiation, and biological rhythms. Test subjects included the crew, Japanese koi fish (carp), cultured animal and plant cells, chicken embryos, fruit flies, fungi and plant seeds, frogs, and frog eggs. The POCC was the air/ground communications channel between the astronauts and ground control teams during the Spacelab missions. The Spacelab science operations were a cooperative effort between the science astronaut crew in orbit and their colleagues in the POCC. Spacelab-J was launched aboard the Space Shuttle Orbiter Endeavour on September 12, 1992.

  13. Handling Japanese without a Japanese Operating System.

    ERIC Educational Resources Information Center

    Hatasa, Kazumi; And Others

    1992-01-01

    The Macintosh HyperCard environment has become a popular platform for Japanese language courseware because of its flexibility and ease of programing. This project created Japanese bitmap font files for the JIS Levels 1 and 2, and writing XFCNs for font manipulation, Japanese kana input, and answer correction. (12 references) (Author/LB)

  14. The Quantitative Reasoning for College Science (QuaRCS) Assessment in non-Astro 101 Courses

    NASA Astrophysics Data System (ADS)

    Kirkman, Thomas W.; Jensen, Ellen

    2016-06-01

    The innumeracy of American students and adults is a much lamented educational problem. The quantitative reasoning skills of college students may be particularly addressed and improved in "general education" science courses like Astro 101. Demonstrating improvement requires a standardized instrument. Among the non-proprietary instruments the Quantitative Literacy and Reasoning Assessment[1] (QRLA) and the Quantitative Reasoning for College Science (QuaRCS) Assessment[2] stand out.Follette et al. developed the QuaRCS in the context of Astro 101 at University of Arizona. We report on QuaRCS results in different contexts: pre-med physics and pre-nursing microbiology at a liberal arts college. We report on the mismatch between students' contemporaneous report of a question's difficulty and the actual probability of success. We report correlations between QuaRCS and other assessments of overall student performance in the class. We report differences in attitude towards mathematics in these two different but health-related student populations .[1] QLRA, Gaze et al., 2014, DOI: http://dx.doi.org/10.5038/1936-4660.7.2.4[2] QuaRCS, Follette, et al., 2015, DOI: http://dx.doi.org/10.5038/1936-4660.8.2.2

  15. Spacelab

    NASA Image and Video Library

    1990-12-01

    In this photograph, the instruments of the Astro-1 Observatory are erected in the cargo bay of the Columbia orbiter. Astro-1 was launched aboard the the Space Shuttle Orbiter Columbia (STS-35) mission on December 2, 1990. The Astro Observatory was designed to explore the universe by observing and measuring the ultraviolet radiation from celestial objects. Astronomical targets of observation selected for Astro missions included planets, stars, star clusters, galaxies, clusters of galaxies, quasars, remnants of exploded stars (supernovae), clouds of gas and dust (nebulae), and the interstellar medium. Astro-1 used a Spacelab pallet system with an instrument pointing system and a cruciform structure for bearing the three ultraviolet instruments mounted in a parallel configuration. The three instruments were:The Hopkins Ultraviolet Telescope (HUT), the Wisconsin Ultraviolet Photo-Polarimeter Experiment (WUPPE), and the Ultraviolet Imaging Telescope (UIT). Also in the payload bay was the Broad Band X-Ray Telescope (BBXRT). Scientific return included approximately 1,000 photographs of the ultraviolet sky in the most extensive ultraviolet imagery ever attempted, the longest ultraviolet spectral observation of a comet ever made, and data never before seen on types of active galaxies called Seyfert galaxies. The mission also provided data on a massive supergiant star captured in outburst and confirmed that a spectral feature observed in the interstellar medium was due to graphite. In addition, Astro-1 acquired superb observations of the Jupiter magnetic interaction with one of its satellites.

  16. Spacelab

    NASA Image and Video Library

    1990-12-05

    This image shows a part of the Cygnus loop supernova remnant, taken by the Ultraviolet Imaging Telescope (UIT) on the Astro Observatory during the Astro-1 mission (STS-35) on December 5, 1990. Pictured is a portion of the huge Cygnus loop, an array of interstellar gas clouds that have been blasted by a 900,000 mile per hour shock wave from a prehistoric stellar explosion, which occurred about 20,000 years ago, known as supernova. With ultraviolet and x-rays, astronomers can see emissions from extremely hot gases, intense magnetic fields, and other high-energy phenomena that more faintly appear in visible and infrared light or in radio waves that are crucial to deepening the understanding of the universe. The Astro Observatory was designed to explore the universe by observing and measuring the ultraviolet radiation from celestial objects. Three instruments make up the Astro Observatory: The Hopkins Ultraviolet Telescope (HUT), the Ultraviolet Imaging Telescope (UIT), and the Wisconsin Ultraviolet Photo-Polarimetry Experiment (WUPPE). The Marshall Space Flight Center had managment responsibilities for the Astro-1 mission. The Astro-1 Observatory was launched aboard the Space Shuttle Orbiter Columbia (STS-35) on December 2, 1990.

  17. Updates from Astrobites: The Astro-ph Reader's Digest

    NASA Astrophysics Data System (ADS)

    Montet, Benjamin; Chisari, N.; Donaldson, J.; Dressing, C. D.; Drout, M.; Faesi, C.; Fuchs, J. T.; Kohler, S.; Lovegrove, E.; Mills, E. A.; Nesvold, E.; Newton, E. R.; Olmstead, A.; Vasel, J. A.; Weiss, L. M.; Astrobites Team

    2014-01-01

    Astrobites (http://astrobites.com) is a daily blog aimed at undergraduates interested in astrophysical research and written by a team of graduate students located at diverse institutions across the United States. Primarily, we present journal articles recently posted to astro-ph in a brief format that is accessible to anyone with a general background in the physical sciences, including readers who are not yet familiar with the astrophysical literature. Special posts offer career guidance for undergraduates (e.g. applying for an NSF graduate fellowship) and describe personal experiences (e.g. attending an astronomy summer school). We present recent readership statistics and potential methods for incorporating Astrobites into the classroom. We also discuss the Astrobites format across multiple social media platforms, including the newly launched Astroplots, and highlight our recent work organizing the annual "Communicating Science" workshop for graduate students.

  18. The Cadmium Zinc Telluride Imager on AstroSat

    NASA Astrophysics Data System (ADS)

    Bhalerao, V.; Bhattacharya, D.; Vibhute, A.; Pawar, P.; Rao, A. R.; Hingar, M. K.; Khanna, Rakesh; Kutty, A. P. K.; Malkar, J. P.; Patil, M. H.; Arora, Y. K.; Sinha, S.; Priya, P.; Samuel, Essy; Sreekumar, S.; Vinod, P.; Mithun, N. P. S.; Vadawale, S. V.; Vagshette, N.; Navalgund, K. H.; Sarma, K. S.; Pandiyan, R.; Seetha, S.; Subbarao, K.

    2017-06-01

    The Cadmium Zinc Telluride Imager (CZTI) is a high energy, wide-field imaging instrument on AstroSat. CZTI's namesake Cadmium Zinc Telluride detectors cover an energy range from 20 keV to >200 keV, with 11% energy resolution at 60 keV. The coded aperture mask attains an angular resolution of 17^' over a 4.6° × 4.6° (FWHM) field-of-view. CZTI functions as an open detector above 100 keV, continuously sensitive to GRBs and other transients in about 30% of the sky. The pixellated detectors are sensitive to polarization above ˜ 100 keV, with exciting possibilities for polarization studies of transients and bright persistent sources. In this paper, we provide details of the complete CZTI instrument, detectors, coded aperture mask, mechanical and electronic configuration, as well as data and products.

  19. The Current Status of the Japanese Penetrator Mission: LUNAR-A

    NASA Astrophysics Data System (ADS)

    Tanaka, S.; Shiraishi, H.; Fujimura, A.; Hayakawa, H.

    The scientific objective of the LUNAR-A, Japanese Penetrator Mission, is to explore the lunar interior by seismic and heat-flow experiments. Two penetrators containing two seismometers (horizontal and vertical components) and heat-flow probes will be deployed from a spacecraft onto the lunar surface, one on the nearside and the other on the farside of the moon. The final impact velocity of the penetrator will be about 300m/sec; it will encounter a shock of about 8000 G at impact on the lunar surface. According to numerous experimental impact tests using model penetrators and a lunar regolith analog target, each penetrator is predicted to penetrate to a depth of 1 to 3 m. The data obtained by the penetrators will be transmitted to the earth station via the LUNAR-A mother spacecraft orbiting at an altitude of about 200 km. The penetrator is a missile-shaped instrument carrier, which is about 14cm in diameter, 75cm in length, and about 14kg in weight without attitude control system. It contains a two-component seismometer and heat flow probes together with other supporting instruments such as a tilt meter and an accelerometer. The seismic observations are expected to provide key data on the size of the lunar core, as well as data on deep lunar mantle structure. The heat flow measurements at two penetrator deployment sites will also provide important data on the thermal structure and bulk concentrations of heat-generating elements in the Moon. These data will provide much stronger geophysical constraints on the origin and evolution of the Moon than has been obtained so far. The LUNAR-A spacecraft was supposed to be launched in the summer of 2004, but it was postponed due to the necessity of a replacement of the valves used in the RCS propulsion system of the spacecraft, following a recall issued by the manufacturer who found a malfunction of similar valves. Then, the technological review boards by ISAS and JAXA recommended that both the more robustness of the

  20. STS-87 Mission Specialist Takao Doi during CEIT

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-87 Mission Specialist Takao Doi , Ph.D., of the National Space Development Agency of Japan, participates in the Crew Equipment Integration Test (CEIT) in Kennedy Space Centers (KSC's) Vertical Processing Facility. Glenda Laws, the extravehicular activity (EVA) coordinator, Johnson Space Center, stands behind Dr. Doi. The CEIT gives astronauts an opportunity to get a hands-on look at the payloads with which they will be working on-orbit. STS-87 will be the fourth United States Microgravity Payload and flight of the Spartan-201 deployable satellite. During the mission, Dr. Doi will be the first Japanese astronaut to perform a spacewalk. STS-87 is scheduled for a Nov. 19 liftoff from KSC.

  1. Antibodies to H5 subtype avian influenza virus and Japanese encephalitis virus in northern pintails (Anas acuta) sampled in Japan

    USGS Publications Warehouse

    Ramey, Andy M.; Spackman, Erica; Yeh, Jung-Yong; Fujita, Go; Konishi, Kan; Reed, John A.; Wilcox, Benjamin R.; Brown, Justin D.; Stallknecht, David E.

    2013-01-01

    Blood samples from 105 northern pintails (Anas acuta) captured on Hokkaido, Japan were tested for antibodies to avian influenza virus (AIV), Japanese encephalitis virus (JEV), and West Nile virus (WNV) to assess possible involvement of this species in the spread of economically important and potentially zoonotic pathogens. Antibodies to AIV were detected in 64 of 105 samples (61%). Of the 64 positives, 95% and 81% inhibited agglutination of two different H5 AIV antigens (H5N1 and H5N9), respectively. Antibodies to JEV and WNV were detected in five (5%) and none of the samples, respectively. Results provide evidence for prior exposure of migrating northern pintails to H5 AIV which couldhave implications for viral shedding and disease occurrence. Results also provide evidence for limited involvement of this species in the transmission and spread of flaviviruses during spring migration.

  2. Japanese Experiment Module (JEM)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Japanese Experiment Module (JEM) pressure module is removed from its shipping crate and moved across the floor of the Space Station Processing Facility at Kennedy Space Center (KSC) to a work stand. A research laboratory, the pressurized module is the first element of the JEM, named 'Kibo' (Hope) to arrive at KSC. Japan's primary contribution to the International Space Station, the module will enhance unique research capabilities of the orbiting complex by providing an additional environment in which astronauts will conduct experiments. The JEM also includes an exposed facility or platform for space environment experiments, a robotic manipulator system, and two logistics modules. The various JEM components will be assembled in space over the course of three Shuttle missions.

  3. KENNEDY SPACE CENTER, FLA. - Members of the STS-114 crew spend time becoming familiar with Shuttle and mission equipment. From left (in their blue suits) are Mission Specialists Soichi Noguchi, Stephen Robinson, Charles Camarda, Andrew Thomas and Wendy Lawrence; Commander Eileen Collins and Pilot James Kelly. Noguchi represents the Japanese Aerospace and Exploration Agency. They are looking at the thermal protection system insulation blankets being installed on an insert for Discovery’s nose cap. The STS-114 mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

    NASA Image and Video Library

    2004-03-05

    KENNEDY SPACE CENTER, FLA. - Members of the STS-114 crew spend time becoming familiar with Shuttle and mission equipment. From left (in their blue suits) are Mission Specialists Soichi Noguchi, Stephen Robinson, Charles Camarda, Andrew Thomas and Wendy Lawrence; Commander Eileen Collins and Pilot James Kelly. Noguchi represents the Japanese Aerospace and Exploration Agency. They are looking at the thermal protection system insulation blankets being installed on an insert for Discovery’s nose cap. The STS-114 mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

  4. KENNEDY SPACE CENTER, FLA. - - In the Orbiter Processing Facility, STS-114 Mission Specialists Andrew Thomas, Soichi Noguchi and Charles Camarda greet astronaut John Young (far right), who flew on the first flight of Space Shuttle Columbia with Robert Crippen. Behind Camarda is Pilot James Kelly. Young is associate director, Technical, at Johnson Space Center. Noguchi represents the Japanese Aerospace and Exploration Agency. The STS-114 crew is spending time becoming familiar with Shuttle and mission equipment. The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

    NASA Image and Video Library

    2004-03-05

    KENNEDY SPACE CENTER, FLA. - - In the Orbiter Processing Facility, STS-114 Mission Specialists Andrew Thomas, Soichi Noguchi and Charles Camarda greet astronaut John Young (far right), who flew on the first flight of Space Shuttle Columbia with Robert Crippen. Behind Camarda is Pilot James Kelly. Young is associate director, Technical, at Johnson Space Center. Noguchi represents the Japanese Aerospace and Exploration Agency. The STS-114 crew is spending time becoming familiar with Shuttle and mission equipment. The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

  5. Former President George H. W. Bush and Mrs. Bush visit with Mission Control Center personnel.

    NASA Image and Video Library

    2003-02-03

    JSC2003-E-05202 (3 February 2003) --- In the Station Flight Control Room of JSC's Mission Control Center, former President George H.W. Bush learns about current activity aboard the Earth-orbiting International Space Station (ISS) from Flight Director Sally Davis. The former Chief Executive and First Lady visited the Houston facility on Feb. 3, 2003.

  6. Spacelab

    NASA Image and Video Library

    1990-12-09

    This is a presentation of two comparison images of the Spiral Galaxy M81 in the constellation URA Major. The galaxy is about 12-million light years from Earth. The left image is the Spiral Galaxy M81 as photographed by the Ultraviolet Imaging Telescope (UIT) during the Astro-1 Mission (STS-35) on December 9, 1990. This UIT photograph, made with ultraviolet light, reveals regions where new stars are forming at a rapid rate. The right image is a photograph of the same galaxy in red light made with a 36-inch (0.9-meter) telescope at the Kitt Peak National Observatory near Tucson, Arizona. The Astro Observatory was designed to explore the universe by observing and measuring ultraviolet radiation from celestial objects. Three instruments made up the Astro Observatory: The Hopkins Ultraviolet Telescope (HUT), the Ultraviolet Imaging Telescope (UIT), and the Wisconsin Ultraviolet Photo-Polarimetry Experiment (WUPPE). The Marshall Space Flight Center had management responsibilities for the Astro-1 mission. The Astro-1 Observatory was launched aboard the Space Shuttle Orbiter Columbia (STS-35) on December 2, 1990.

  7. Pharmacokinetics, safety and tolerability of rotigotine transdermal patch in healthy Japanese and Caucasian subjects.

    PubMed

    Cawello, Willi; Kim, Seong R; Braun, Marina; Elshoff, Jan-Peer; Ikeda, Junji; Funaki, Tomoo

    2014-02-01

    Rotigotine is a dopamine receptor agonist with activity across the D1 through to D5 receptors as well as select serotonergic and adrenergic sites; continuous transdermal delivery of rotigotine with replacement of the patch once daily maintains stable plasma concentrations over 24 h. Rotigotine is indicated for the treatment of early and advanced-stage Parkinson's disease and moderate-to-severe idiopathic restless legs syndrome. The pharmacokinetics and pharmacodynamics of a drug may vary between subjects of different ethnic origin. This study evaluated the pharmacokinetics, safety, and tolerability of single-dose treatment with rotigotine transdermal patch in Japanese and Caucasian subjects. In this open-label, parallel-group study, healthy male and female subjects of Japanese or Caucasian ethnic origin were matched by sex, body mass index, and age. A single transdermal patch delivering 2 mg/24 h rotigotine (patch content 4.5 mg) was applied to the ventral/lateral abdomen for 24 h. The main outcome measures were the plasma concentrations of unconjugated and total rotigotine and its desalkyl metabolites and derived pharmacokinetic parameters (area under the concentration-time curve from time zero to last quantifiable concentration [AUClast], maximum plasma concentration [Cmax], and body weight- and dose-normalized values). The pharmacokinetic analysis included 48 subjects (24 Japanese, 24 Caucasian). The mean apparent dose of rotigotine was 2.0±0.5 mg for Japanese subjects and 2.08±0.58 mg for Caucasians. Plasma concentration-time profiles of unconjugated rotigotine and of the main metabolites were similar for both ethnic groups. Parameters of model-independent pharmacokinetics, Cmax, time to Cmax (tmax), and AUClast, for unconjugated rotigotine showed no statistically significant differences between Japanese and Caucasian subjects. Values of concentration-dependent pharmacokinetic parameters were higher in female subjects; this difference was minimized after

  8. Creating Interactive Teaching Methods for ASTRO 101 That Really Work

    NASA Astrophysics Data System (ADS)

    Prather, E. E.; Adams, J. P.; Bailey, J. M.; Huggins, D.; Jones, L. V.; Slater, T. F.

    2004-05-01

    Acknowledging that lecture-based teaching methods are insufficient at promoting significant conceptual gains for students in the introductory astronomy course for non-science majors (ASTRO 101) is only the first step. But then, what can you do besides lecture? The Conceptual Astronomy and Physics Education Research (CAPER) Team at the University of Arizona has been developing and conducting research on the effectiveness of learner-centered instructional materials that put students in an active role in the classroom. With the support of an NSF CCLI (9952232) and NSF Geosciences Education (9907755) awards, we have designed and field-tested a set of innovative instructional materials called Lecture Tutorials. These Lecture Tutorial activities are intended for use with collaborative student learning groups and are designed specifically to be easily integrated into existing conventional lecture-based courses. As such, these instructional materials directly address the needs of heavily loaded teaching faculty in that they offer effective, learner-centered, classroom-ready activities that do not require any outside equipment/staffing or a drastic course revision for implementation. Each 15-minute Lecture-Tutorial poses a carefully crafted sequence of conceptually challenging, Socratic-dialogue driven questions, along with graphs and data tables, all designed to encourage students to reason critically about conceptually challenging and commonly taught topics in astronomy. The materials are based on research into student beliefs and reasoning difficulties and make use of a conceptual change instructional framework that promotes the intellectual engagement of students. Our research into the effectiveness of the Lecture Tutorials illustrates that traditional lectures alone make unsatisfactory gains on student understanding; however, supplementing traditional instruction with the lecture tutorials helps students make impressive conceptual gains over traditional instruction. In

  9. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, astronaut Soichi Noguchi (right), with the National Space Development Agency of Japan (NASDA), stands inside the Japanese Experiment Module (JEM) that is undergoing a Multi-Element Integrated Test (MEIT) with the U.S. Node 2. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 provides attach locations for the Japanese laboratory, as well as European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. Installation of the module will complete the U.S. Core of the ISS.

    NASA Image and Video Library

    2003-09-03

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, astronaut Soichi Noguchi (right), with the National Space Development Agency of Japan (NASDA), stands inside the Japanese Experiment Module (JEM) that is undergoing a Multi-Element Integrated Test (MEIT) with the U.S. Node 2. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 provides attach locations for the Japanese laboratory, as well as European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. Installation of the module will complete the U.S. Core of the ISS.

  10. KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi (left), with the National Space Development Agency of Japan (NASDA), works at a console during a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM) in the Space Station Processing Facility. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 provides attach locations for the Japanese laboratory, as well as European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. Installation of the module will complete the U.S. Core of the ISS.

    NASA Image and Video Library

    2003-09-03

    KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi (left), with the National Space Development Agency of Japan (NASDA), works at a console during a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM) in the Space Station Processing Facility. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 provides attach locations for the Japanese laboratory, as well as European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. Installation of the module will complete the U.S. Core of the ISS.

  11. Japanese plan for SSF utilization

    NASA Technical Reports Server (NTRS)

    Mizuno, Toshio

    1992-01-01

    The Japanese Experiment Module (JEM) program has made significant progress. The JEM preliminary design review was completed in July 1992; construction of JEM operation facilities has begun; and the micro-G airplane, drop shaft, and micro-G experiment rocket are all operational. The national policy for JEM utilization was also established. The Space Experiment Laboratory (SEL) opened in June '92 and will function as a user support center. Eight JEM multiuser facilities are in phase B, and scientific requirements are being defined for 17 candidate multiuser facilities. The National Joint Research Program is about to start. Precursor missions and early Space Station utilization activities are being defined. This paper summarizes the program in outline and graphic form.

  12. Differences in K-ras and mitochondrial DNA mutations and microsatellite instability between colorectal cancers of Vietnamese and Japanese patients.

    PubMed

    Miwata, Tomohiro; Hiyama, Toru; Quach, Duc Trong; Le, Huy Minh; Hua, Ha Ngoc Thi; Oka, Shiro; Tanaka, Shinji; Arihiro, Koji; Chayama, Kazuaki

    2014-11-30

    The incidence of early-onset (under 50 years of age) colorectal cancer (CRC) in the Vietnamese has been reported to be quite higher than that in the Japanese. To clarify the differences in genetic alterations between Vietnamese and Japanese CRCs, we investigated mutations in K-ras and mitochondrial DNA (mtDNA) and high-frequency microsatellite instability (MSI-H) in the CRCs of Vietnamese and Japanese patients. We enrolled 60 Vietnamese and 233 Japanese patients with invasive CRCs. DNA was extracted from formalin-fixed, paraffin-embedded tissue sections. K-ras mutations were examined with PCR-single-strand conformation polymorphism analysis. mtDNA mutations and MSI-H were examined with microsatellite analysis using D310 and BAT-26, respectively. K-ras mutations were examined in 60 Vietnamese and 45 Japanese CRCs. The frequency of the mutations in the Vietnamese CRCs was significantly higher than that in the Japanese CRCs (8 of 24 [33%] vs 5 of 45 [11%], p =0.048). MSI-H was examined in 60 Vietnamese and 130 Japanese CRCs. The frequency of MSI-H in the Vietnamese CRCs was also significantly higher than that in the Japanese CRCs (6 of 27 [22%] vs 10 of 130 [8%], p =0.030). mtDNA mutations were examined in 60 Vietnamese and 138 Japanese CRCs. The frequency of mtDNA mutations in the Vietnamese CRCs was significantly higher than that in the Japanese CRCs (19 of 44 [43%] vs 11 of 133 [9%], p <0.001). There were no significant differences in clinicopathologic characteristics, such as age, sex, tumour location, and depth, in terms of tumours with/without each genetic alteration in the CRCs of the Vietnamese and Japanese patients. These results indicate that the developmental pathways of CRCs in the Vietnamese may differ from those of CRCs in the Japanese.

  13. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, STS-120 Mission Specialist Piers Sellers looks over the Japanese Experiment Module (JEM) Pressurized Module. Known as Kibo, the JEM consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The STS-120 mission will deliver the second of three Station connecting modules, Node 2, which attaches to the end of U.S. Lab. It will provide attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and later Multi-Purpose Logistics Modules. The addition of Node 2 will complete the U.S. core of the International Space Station.

    NASA Image and Video Library

    2003-07-18

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, STS-120 Mission Specialist Piers Sellers looks over the Japanese Experiment Module (JEM) Pressurized Module. Known as Kibo, the JEM consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The STS-120 mission will deliver the second of three Station connecting modules, Node 2, which attaches to the end of U.S. Lab. It will provide attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and later Multi-Purpose Logistics Modules. The addition of Node 2 will complete the U.S. core of the International Space Station.

  14. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, STS-120 Mission Specialist Michael Foreman looks over the Japanese Experiment Module (JEM) Pressurized Module. Known as Kibo, the JEM consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The STS-120 mission will deliver the second of three Station connecting modules, Node 2, which attaches to the end of U.S. Lab. It will provide attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and later Multi-Purpose Logistics Modules. The addition of Node 2 will complete the U.S. core of the International Space Station.

    NASA Image and Video Library

    2003-07-18

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, STS-120 Mission Specialist Michael Foreman looks over the Japanese Experiment Module (JEM) Pressurized Module. Known as Kibo, the JEM consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The STS-120 mission will deliver the second of three Station connecting modules, Node 2, which attaches to the end of U.S. Lab. It will provide attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and later Multi-Purpose Logistics Modules. The addition of Node 2 will complete the U.S. core of the International Space Station.

  15. SSM on AstroSat detects neutron star X-ray transient, Aql_X-1 in its outburst

    NASA Astrophysics Data System (ADS)

    Ramadevi, M. C.; Ravishankar, B. T.; Sarwade, Abhilash R.; Vaishali, S.; Hasan, Mohammed; Agarwal, Vivek Kumar; Baby, Blessy Elizabeth; Bhattacharya, Dipankar; Seetha, S.; Agarwal, Anil

    2017-06-01

    We report on the X-ray outburst of the neutron star X-ray source Aql X-1 as observed by SSM onboard AstroSat. Flux reported by SSM on its first observation of the source during this outburst on 01 June 2017 at 08:55 UT is about 820 milliCrab (2.24 +/- 0.02 photons/s-cm^2).

  16. Mission Operations Control Room (MOCR) activities during STS-6 mission

    NASA Image and Video Library

    1983-04-05

    Astronauts Roy D. Bridges (left) and RIchard O. Covey serve as spacecraft communicators (CAPCOM) for STS-6. They are seated at the CAPCOM console in the mission operations control room (MOCR) of JSC's mission control center (30119); Flight Director Jay H. Greene communicates with a nearby flight controller in the MOCR just after launch of the Challenger (30120).

  17. Global Precipitation Measurement (GPM) Mission Core Spacecraft Systems Engineering Challenges

    NASA Technical Reports Server (NTRS)

    Bundas, David J.; ONeill, Deborah; Field, Thomas; Meadows, Gary; Patterson, Peter

    2006-01-01

    The Global Precipitation Measurement (GPM) Mission is a collaboration between the National Aeronautics and Space Administration (NASA) and the Japanese Aerospace Exploration Agency (JAXA), and other US and international partners, with the goal of monitoring the diurnal and seasonal variations in precipitation over the surface of the earth. These measurements will be used to improve current climate models and weather forecasting, and enable improved storm and flood warnings. This paper gives an overview of the mission architecture and addresses the status of some key trade studies, including the geolocation budgeting, design considerations for spacecraft charging, and design issues related to the mitigation of orbital debris.

  18. Global precipitation measurement (GPM) mission core spacecraft systems engineering challenges

    NASA Astrophysics Data System (ADS)

    Bundas, David J.; O'Neill, Deborah; Rhee, Michael; Feild, Thomas; Meadows, Gary; Patterson, Peter

    2006-09-01

    The Global Precipitation Measurement (GPM) Mission is a collaboration between the National Aeronautics and Space Administration (NASA) and the Japanese Aerospace Exploration Agency (JAXA), and other US and international partners, with the goal of monitoring the diurnal and seasonal variations in precipitation over the surface of the earth. These measurements will be used to improve current climate models and weather forecasting, and enable improved storm and flood warnings. This paper gives an overview of the mission architecture and addresses the status of some key trade studies, including the geolocation budgeting, design considerations for spacecraft charging, and design issues related to the mitigation of orbital debris.

  19. Rainfastness of insecticides used to control Japanese beetle in blueberries.

    PubMed

    Hulbert, Daniel; Reeb, Pablo; Isaacs, Rufus; Vandervoort, Christine; Erhardt, Susan; Wise, John C

    2012-10-01

    Field-based bioassays were used to determine the relative impact of rainfall on the relative toxicity of four insecticides, phosmet, carbaryl, zeta-cypermethrin, or imidacloprid, from different chemical classes on adult Japanese beetles, Popillia japonica Newman, in highbush blueberries, Vaccinium corymbosum L. Bioassays were set up 24 h after spraying occurred and Japanese beetle condition was scored as alive, knockdown or immobile 1, 24, and 48 h after bioassay setup. All insecticides were significantly more toxic than the untreated control and zeta-cypermethrin consistently had the greatest toxic effect against the Japanese beetles. All insecticides experienced a decrease in efficacy after simulated rainfall onto treated blueberry shoots, although the efficacy of zeta-cypermethrin was the least affected by rainfall. This study will help blueberry growers make informed decisions on when reapplications of insecticides are needed in the field with the aim of improving integrated pest management (IPM).

  20. The AstroBiology Explorer (ABE) MIDEX Mission Concept: Using Infrared Spectroscopy to Identify Organic Molecules in Space

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.; Ennico, Kimberly; Allamandola, Louis; Bregman, Jesse; Greene, Thomas; Hudgins, Douglas

    2002-01-01

    One of the principal means by which organic compounds are detected and identified in space is by infrared spectroscopy. Past IR telescopic and laboratory studies have shown that much of the carbon in the interstellar medium (ISM) is in complex organic species but the distribution, abundance and evolutionary relationships of these materials are not well understood. The Astrobiology Explorer (ABE) is a MIDEX mission concept designed to conduct IR spectroscopic observations to detect and identify these materials and address outstanding problems in astrobiology, astrochemistry, and astrophysics. ABE's core science program includes observations of planetary nebulae and stellar outflows, protostellar objects, Solar System objects, and galaxies, and lines of sight through dense molecular clouds and the diffuse ISM. ABE is a cryogenically-cooled 60 cm diameter space telescope equipped with 3 cross-dispersed R-2000 spectrometers that share a single common slit. Each spectrometer measures one spectral octave and together cover the entire 2.5-20 micron region simultaneously. The spectrometers use state-of-the-art InSb and Si:As 1024x1024 pixel detectors. ABE would operate in a heliocentric, Earth drift-away orbit and have a core science mission lasting approximately 1.5 years. ABE is currently under study at NASA's Ames Research Center in collaboration with Ball Aerospace and Technologies Corp.

  1. Ultraviolet imaging telescope and optical emission-line observations of H II regions in M81

    NASA Technical Reports Server (NTRS)

    Hill, Jesse K.; Cheng, K.-P.; Bohlin, Ralph C.; Cornett, Robert H.; Hintzen, P. M. N.; O'Connell, Robert W.; Roberts, Morton S.; Smith, Andrew M.; Smith, Eric P.; Stecher, Theodore P.

    1995-01-01

    Images of the type Sab spiral galaxy M81 were obtained in far-UV and near-UV bands by the Ultraviolet Imaging Telescope (UIT) during the Astro-1 Spacelab mission of 1990 December. Magnitudes in the two UV bands are determined for 52 H II regions from the catalog of Petit, Sivan, & Karachentsev (1988). Fluxes of the H-alpha and H-beta emission lines are determined from CCD images. Extinctions for the brightest H II regions are determined from observed Balmer decrements. Fainter H II regions are assigned the average of published radio-H-alpha extinctions for several bright H II regions. The radiative transfer models of Witt, Thronson, & Capuano (1992) are shown to predict a relationship between Balmer Decrement and H-alpha extinction consistent with observed line and radio fluxes for the brightest 7 H II regions and are used to estimate the UV extinction. Ratios of Lyman continuum with ratios predicted by model spectra computed for initial mass function (IMF) slope equal to -1.0 and stellar masses ranging from 5 to 120 solar mass. Ages and masses are estimated by comparing the H-alpha and far-UV fluxes and their ratio with the models. The total of the estimated stellar masses for the 52 H II regions is 1.4 x 10(exp 5) solar mass. The star-formation rate inferred for M81 from the observed UV and H-alpha fluxes is low for a spiral galaxy at approximately 0.13 solar mass/yr, but consistent with the low star-formation rates obtained by Kennicutt (1983) and Caldwell et al. (1991) for early-type spirals.

  2. Astronaut John H. Casper, mission commander, has finished the final touches of suit donning and

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-77 TRAINING VIEW --- Astronaut John H. Casper, mission commander, has finished the final touches of suit donning and awaits the beginning of a training session for emergency bailout. All six crew members participated in the session, held in the Johnson Space Centers (JSC) Weightless Environment Training Facility (WET-F). The six astronauts will spend nine days aboard the Space Shuttle Endeavour next month.

  3. Astrobites: The Astro-ph Reader's Digest For Undergraduates

    NASA Astrophysics Data System (ADS)

    Vasel, Justin; Faesi, Chris; Drout, Maria; Newton, Elisabeth

    2013-04-01

    Astrobites (http://astrobites.com) is a daily blog aimed primarily at undergraduates interested in astrophysical research and written by a team of graduate students located at institutions around the world. Nearly every day we present a journal article recently posted to astro-ph in a brief format that is accessible to anyone with a general background in the physical sciences. In addition to summarizing new work, Astrobites provides valuable context for readers not yet familiar with the some of the background concepts and jargon present in the astrophysical literature. Special posts offer career guidance for undergraduates (e.g. applying for an NSF graduate fellowship) and describe personal experiences (e.g. attending an astronomy summer school). The readership of astrobites has grown dramatically since our founding in fall of 2010, with individuals now accessing the site from 104 countries worldwide. We will discuss the Astrobites format, recent readership statistics, and future planned initiatives.

  4. Astrobites: The Astro-ph Reader's Digest For Undergraduates

    NASA Astrophysics Data System (ADS)

    Drout, Maria; Vasel, J. A.; Dressing, C. D.; Gifford, D.; Morley, C.; Hall, S.; Newton, E. R.; Astrobites Team

    2013-01-01

    Astrobites (http://astrobites.com) is a daily blog aimed primarily at undergraduates interested in astrophysical research and written by a team of graduate students located at institutions around the world. Nearly every day we present a journal article recently posted to astro-ph in a brief format that is accessible to anyone with a general background in the physical sciences. In addition to summarizing new work, Astrobites provides valuable context for readers not yet familiar with the some of the background concepts and jargon present in the astrophysical literature. Special posts offer career guidance for undergraduates (e.g. applying for an NSF graduate fellowship) and describe personal experiences (e.g. attending an astronomy summer school). The readership of astrobites has grown dramatically since our founding in fall of 2010, with individuals now accessing the site from 104 countries worldwide. We will discuss the Astrobites format, recent readership statistics, and future planned initiatives.

  5. Gastric mucosa in Mongolian and Japanese patients with gastric cancer and Helicobacter pylori infection

    PubMed Central

    Matsuhisa, Takeshi; Yamaoka, Yoshio; Uchida, Tomohisa; Duger, Davaadorj; Adiyasuren, Battulga; Khasag, Oyuntsetseg; Tegshee, Tserentogtokh; Tsogt-Ochir, Byambajav

    2015-01-01

    AIM: To investigate the characteristics of gastric cancer and gastric mucosa in a Mongolian population by comparison with a Japanese population. METHODS: A total of 484 Mongolian patients with gastric cancer were enrolled to study gastric cancer characteristics in Mongolians. In addition, a total of 208 Mongolian and 3205 Japanese consecutive outpatients who underwent endoscopy, had abdominal complaints, no history of gastric operation or Helicobacter pylori eradication treatment, and no use of gastric secretion inhibitors such as histamine H2-receptor antagonists or proton pump inhibitors were enrolled. This study was conducted with the approval of the ethics committees of all hospitals. The triple-site biopsy method was used for the histologic diagnosis of gastritis and H. pylori infection in all Mongolian and Japanese cases. The infection rate of H. pylori and the status of gastric mucosa in H. pylori-infected patients were compared between Mongolian and Japanese subjects. Age (± 5 years), sex, and endoscopic diagnosis were matched between the two countries. RESULTS: Approximately 70% of Mongolian patients with gastric cancer were 50-79 years of age, and approximately half of the cancers were located in the upper part of the stomach. Histologically, 65.7% of early cancers exhibited differentiated adenocarcinoma, whereas 73.9% of advanced cancers displayed undifferentiated adenocarcinoma. The infection rate of H. pylori was higher in Mongolian than Japanese patients (75.9% vs 48.3%, P < 0.0001). When stratified by age, the prevalence was highest among young patients, and tended to decrease in patients aged 50 years or older. The anti-East-Asian CagA-specific antibody was negative in 99.4% of H. pylori-positive Mongolian patients. Chronic inflammation, neutrophil activity, glandular atrophy, and intestinal metaplasia scores were significantly lower in Mongolian compared to Japanese H. pylori-positive patients (P < 0.0001), with the exception of the intestinal

  6. Gastric mucosa in Mongolian and Japanese patients with gastric cancer and Helicobacter pylori infection.

    PubMed

    Matsuhisa, Takeshi; Yamaoka, Yoshio; Uchida, Tomohisa; Duger, Davaadorj; Adiyasuren, Battulga; Khasag, Oyuntsetseg; Tegshee, Tserentogtokh; Tsogt-Ochir, Byambajav

    2015-07-21

    To investigate the characteristics of gastric cancer and gastric mucosa in a Mongolian population by comparison with a Japanese population. A total of 484 Mongolian patients with gastric cancer were enrolled to study gastric cancer characteristics in Mongolians. In addition, a total of 208 Mongolian and 3205 Japanese consecutive outpatients who underwent endoscopy, had abdominal complaints, no history of gastric operation or Helicobacter pylori eradication treatment, and no use of gastric secretion inhibitors such as histamine H2-receptor antagonists or proton pump inhibitors were enrolled. This study was conducted with the approval of the ethics committees of all hospitals. The triple-site biopsy method was used for the histologic diagnosis of gastritis and H. pylori infection in all Mongolian and Japanese cases. The infection rate of H. pylori and the status of gastric mucosa in H. pylori-infected patients were compared between Mongolian and Japanese subjects. Age (± 5 years), sex, and endoscopic diagnosis were matched between the two countries. Approximately 70% of Mongolian patients with gastric cancer were 50-79 years of age, and approximately half of the cancers were located in the upper part of the stomach. Histologically, 65.7% of early cancers exhibited differentiated adenocarcinoma, whereas 73.9% of advanced cancers displayed undifferentiated adenocarcinoma. The infection rate of H. pylori was higher in Mongolian than Japanese patients (75.9% vs 48.3%, P < 0.0001). When stratified by age, the prevalence was highest among young patients, and tended to decrease in patients aged 50 years or older. The anti-East-Asian CagA-specific antibody was negative in 99.4% of H. pylori-positive Mongolian patients. Chronic inflammation, neutrophil activity, glandular atrophy, and intestinal metaplasia scores were significantly lower in Mongolian compared to Japanese H. pylori-positive patients (P < 0.0001), with the exception of the intestinal metaplasia score of

  7. Payload specialist Ronald Parise using SAREX

    NASA Technical Reports Server (NTRS)

    1995-01-01

    ASTRO-2 payload specialist Ronald A. Parise reminisces on his inspace amateur radio experience of five years ago in the ASTRO-1 mission. Using the Shuttle Amateur Radio Experiment (SAREX), Parise talks to students on Earth from the flight deck of the Earth orbiting Space Shuttle Endeavour.

  8. Target and (Astro-)WISE technologies Data federations and its applications

    NASA Astrophysics Data System (ADS)

    Valentijn, E. A.; Begeman, K.; Belikov, A.; Boxhoorn, D. R.; Brinchmann, J.; McFarland, J.; Holties, H.; Kuijken, K. H.; Verdoes Kleijn, G.; Vriend, W.-J.; Williams, O. R.; Roerdink, J. B. T. M.; Schomaker, L. R. B.; Swertz, M. A.; Tsyganov, A.; van Dijk, G. J. W.

    2017-06-01

    After its first implementation in 2003 the Astro-WISE technology has been rolled out in several European countries and is used for the production of the KiDS survey data. In the multi-disciplinary Target initiative this technology, nicknamed WISE technology, has been further applied to a large number of projects. Here, we highlight the data handling of other astronomical applications, such as VLT-MUSE and LOFAR, together with some non-astronomical applications such as the medical projects Lifelines and GLIMPS; the MONK handwritten text recognition system; and business applications, by amongst others, the Target Holding. We describe some of the most important lessons learned and describe the application of the data-centric WISE type of approach to the Science Ground Segment of the Euclid satellite.

  9. KENNEDY SPACE CENTER, FLA. - The STS-114 crew stands in front of the operations desk in the Orbiter Processing Facility. At far right is astronaut John Young, who flew on the first flight of Space Shuttle Columbia with Robert Crippen. Young is associate director, Technical, at Johnson Space Center. From left are Young’s pilot; STS-114 Commander Eileen Collins; Mission Specialists Andrew Thomas, Soichi Noguchi and Stephen Robinson; Pilot James Kelly; and Mission Specialist Charles Camarda. Noguchi represents the Japanese Aerospace and Exploration Agency. The STS-114 crew is spending time becoming familiar with Shuttle and mission equipment. The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

    NASA Image and Video Library

    2004-03-05

    KENNEDY SPACE CENTER, FLA. - The STS-114 crew stands in front of the operations desk in the Orbiter Processing Facility. At far right is astronaut John Young, who flew on the first flight of Space Shuttle Columbia with Robert Crippen. Young is associate director, Technical, at Johnson Space Center. From left are Young’s pilot; STS-114 Commander Eileen Collins; Mission Specialists Andrew Thomas, Soichi Noguchi and Stephen Robinson; Pilot James Kelly; and Mission Specialist Charles Camarda. Noguchi represents the Japanese Aerospace and Exploration Agency. The STS-114 crew is spending time becoming familiar with Shuttle and mission equipment. The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

  10. Fibercore AstroGain fiber: multichannel erbium doped fibers for optical space communications

    NASA Astrophysics Data System (ADS)

    Hill, Mark; Gray, Rebecca; Hankey, Judith; Gillooly, Andy

    2014-03-01

    Fibercore have developed AstroGainTM fiber optimized for multichannel amplifiers used in optical satellite communications and control. The fiber has been designed to take full advantage of the photo-annealing effect that results from pumping in the 980nm region. The proprietary trivalent structure of the core matrix allows optimum recovery following radiation damage to the fiber, whilst also providing a market leading Erbium Doped Fiber Amplifier (EDFA) efficiency. Direct measurements have been taken of amplifier efficiency in a multichannel assembly, which show an effective photo-annealing recovery of up to 100% of the radiation induced attenuation through excitation of point defects.

  11. Embedding Mission Command in Army Culture

    DTIC Science & Technology

    2013-03-01

    analysis of Army culture using ideas and concepts presented by Edgar H . Schein . 15. SUBJECT TERMS Army Leadership, Trust, Empowerment, Operational...The focal point of this study is an analysis of Army culture using ideas and concepts presented by Edgar H . Schein . Embedding...is an analysis of Army culture using ideas and concepts presented by Edgar H . Schein . Auftragstaktik and Mission Command Doctrine Mission command

  12. Do American born Japanese children still grow faster than native Japanese?

    PubMed

    Kano, K; Chung, C S

    1975-09-01

    Growth patterns of Japanese schoolchildren in Hawaii, composed of 2,954 boys and 3,213 girls aged between 11 and 17, were compared with those comparable groups of Japanese schoolchildren in Japan based on the data published by the Japanese Ministry of Education. Growth characteristics studied were height, weight, and relative weight index, weight/(height). The Hawaii-Japanese boys were taller at early ages but the difference disappeared by age 16. Native Japanese girls were shorter than Hawaii-Japanese until age 13, but they overtook the latter by age 14, exceeding them in height after age 15. A similar pattern was found in weights of girls but the Hawaii-Japanese boys remained consistently heavier by 5.0 to 9.0 kg than native Japanese. The relative weight measure indicated that the Hawaii boys were more "obese" than native Japanese boys for the growth period studied; whereas the same tendency was maintained until age 15 in girls. These observations indicate a marked degree of convergence of the patterns of physical growth of the two populations, whose differences were unmistakably in favor of American born children in earlier studies. It is concluded that the convergence is due largely to the improved environmental conditions in Japan in recent years.

  13. Association of Lewis and Secretor gene polymorphisms and Helicobacter pylori seropositivity among Japanese-Brazilians.

    PubMed

    Oba-Shinjo, Sueli Mieko; Uno, Miyuki; Ito, Lucy Sayuri; Shinjo, Samuel Katsuyuki; Marie, Suely Kazue Nagahashi; Hamajima, Nobuyuki

    2004-08-01

    Secretor ( Se) and Lewis ( Le) genes are involved in the synthesis of Lewis b (Le(b)) and type I antigens throughout the body, especially in the epithelial cells of gastric mucosa. Helicobacter pylori can attach to the gastric epithelial cells with the blood group antigen-binding adhesin, which binds to Le(b) or H type I carbohydrate structures. In a previous study, a marked association between H. pylori seropositivity and polymorphism of the Se and Le genes was observed among Japanese outpatients of a gastroenterology clinic. The present work aims to investigate the associations between Se and Le gene polymorphisms and H. pylori infection among Japanese-Brazilians. The subjects consisted of 942 healthy volunteer Japanese-Brazilians, who were tested for the presence of anti- H. pylori IgG antibodies and genotyped for Se and Le polymorphisms. The sex-age-adjusted odds ratios (aORs) for H. pylori seropositivity were 0.99 for the Sese genotype relative to the SeSe genotype (95% confidence interval [CI], 0.73-1.33), and 1.03 for sese relative to SeSe (95% CI, 0.71-1.48). On the other hand, the aOR for the subjects with the le allele ( Lele or lele) relative to the LeLe genotype was 1.48 (95% CI, 1.07-1.79). When the Se and Le genotypes were analyzed in combination according to risk group, no statistically significant association was observed. These results are inconsistent with previous work and may have been modulated by an external factor or some other unidentified factor. Japanese-Brazilians are genotypically the same as Japanese, but their lifestyle is adapted to that of Brazil. Further investigations are necessary to clarify this influence on susceptibility to H. pylori infection.

  14. STS-47 Japanese Payload Specialist Mohri during Homestead water training

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-47 Endeavour, Orbiter Vehicle (OV) 105, Japanese Payload Specialist Mamoru Mohri, wearing inflated life jacket, participates in water survival training at Homestead Air Force Base, Florida. Dockside, Mohri washes the salt water from his personalized helmet (#3) after a water exercise. The three-day course was attended by the STS-47 prime and alternate payload specialists shortly after they were announced for the scheduled summer of 1992 Spacelab Japan (SLJ) mission. Mohri represents the National Space Development Agency of Japan (NASDA).

  15. NASA Science Mission Directorate Science Education and Public Outreach Forums: A Six-Year Retrospective

    NASA Astrophysics Data System (ADS)

    Smith, Denise Anne; Peticolas, Laura; Schwerin, Theresa; Shipp, Stephanie; Lawton, Brandon L.; Meinke, Bonnie; Manning, James G.; Bartolone, Lindsay; Schultz, Gregory

    2015-08-01

    NASA’s Science Mission Directorate (SMD) created four competitively awarded Science Education and Public Outreach Forums (Astrophysics, Heliophysics, Planetary Science, Earth Science) in 2009. The NASA SMD education and public engagement community and Forum teams have worked together to share the science, the story, and the adventure of SMD's science missions with students, educators, and the public. In doing so, SMD's programs have emphasized collaboration between scientists with content expertise and educators with pedagogy expertise. The goal of the Education Forums has been to maximize program efficiency, effectiveness, and coherence by organizing collaborations that reduce duplication of effort; sharing best practices; aligning products to national education standards; creating and maintaining the NASA Wavelength online catalog of SMD education products; and disseminating metrics and evaluation findings. We highlight examples of our activities over the past six years, along with the role of the scientist-educator partnership and examples of program impact. We also discuss our community’s coordinated efforts to expand the Astro4Girls pilot program into the NASA Science4Girls and Their Families initiative, which partners NASA science education programs with public libraries to engage underrepresented audiences in science.

  16. ESA joins forces with Japan on new infrared sky surveyor

    NASA Astrophysics Data System (ADS)

    2006-02-01

    Prof. David Southwood, ESA’s Director of Science, said: “The successful launch of ASTRO-F(Akari) is a big step. A decade ago, our Infrared Space Observatory (ISO) opened up this field of astronomy, and the Japanese took part then. It is wonderful to be cooperating again with Japan in this discipline.” “Our involvement with the Japanese in this programme responds to our long-term commitment in infrared astronomy, whose potential for discovery is huge. We are now off and rolling with ASTRO-F/Akari, but we are also working extremely hard towards the launch of the next-generation infrared telescope, ESA’s Herschel spacecraft, which will go up in the next two years”, he continued. “This will still not be the end of the story. Infrared astronomy is also a fundamental part of the future vision for ESA’s space research, as outlined in the ‘Cosmic Vision 2015-2025’ programme. The truth is, subjects such as the formation of stars and exoplanets, or the evolution of the early universe, are themes at the very core of our programme.” The mission : On 21 February, at 22:28 Central European Time, (22 February, 06:28 local time), a Japanese M-V rocket blasted off from the Uchinoura Space Centre, in the Kagoshima district of Japan, carrying the new infrared satellite into space. In about two weeks' time, ASTRO-F will be in polar orbit around the Earth at an altitude of 745 kilometres. From there, after two months of system check-outs and performance verification, it will survey the whole sky in about half a year, with much better sensitivity, spatial resolution and wider wavelength coverage than its only infrared surveyor predecessor, the Anglo-Dutch-US IRAS satellite (1983). The all-sky survey will be followed by a ten-month phase during which thousands of selected astronomical targets will be observed in detail. This will enable scientists to look at these individual objects for a longer time, and thus with increased sensitivity, to conduct their spectral

  17. Japaneseplex: A forensic SNP assay for identification of Japanese people using Japanese-specific alleles.

    PubMed

    Yuasa, Isao; Akane, Atsushi; Yamamoto, Toshimichi; Matsusue, Aya; Endoh, Minoru; Nakagawa, Mayumi; Umetsu, Kazuo; Ishikawa, Takaki; Iino, Morio

    2018-04-24

    It is sometimes necessary to determine whether a forensic biological sample came from a Japanese person. In this study, we developed a 60-locus SNP assay designed for the differentiation of Japanese people from other East Asians using entirely and nearly Japanese-specific alleles. This multiplex assay consisted of 6 independent PCR reactions followed by single nucleotide extension. The average number and standard deviation of Japanese-specific alleles possessed by an individual were 0.81 ± 0.93 in 108 Koreans from Seoul, 8.87 ± 2.89 in 103 Japanese from Tottori, 17.20 ± 3.80 in 88 Japanese from Okinawa, and 0 in 220 Han Chinese from Wuxi and Changsha. The Koreans had 0-4 Japanese-specific alleles per individual, whereas the Japanese had 4-26 Japanese-specific alleles. Almost all Japanese were distinguished from the Koreans and other people by the factorial correspondence and principal component analyses. The Snipper program was also useful to estimate the degree of Japaneseness. The method described here was successfully applied to the differentiation of Japanese from non-Japanese people in forensic cases. This Japanese-specific SNP assay was named Japaneseplex. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. STS-65 Japanese Payload Specialist Mukai on OV-102's aft flight deck

    NASA Technical Reports Server (NTRS)

    1994-01-01

    STS-65 Japanese Payload Specialist Chiaki Mukai freefloats on Columbia's, Orbiter Vehicle (OV) 102's, aft flight deck in front of overhead windows W7 and W8 while holding a cassette case with bean sprouts in her left hand. Mukai, a physician, represented Japan's National Space Development Agency (NASDA) on the two week mission in support of the International Microgravity Laboratory 2 (IML-2).

  19. KENNEDY SPACE CENTER, FLA. - STS-120 Mission Specialists Piers Sellers and Michael Foreman are in the Space Station Processing Facility for hardware familiarization. The mission will deliver the second of three Station connecting modules, Node 2, which attaches to the end of U.S. Lab. It will provide attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and later Multi-Purpose Logistics Modules. The addition of Node 2 will complete the U.S. core of the International Space Station.

    NASA Image and Video Library

    2003-07-18

    KENNEDY SPACE CENTER, FLA. - STS-120 Mission Specialists Piers Sellers and Michael Foreman are in the Space Station Processing Facility for hardware familiarization. The mission will deliver the second of three Station connecting modules, Node 2, which attaches to the end of U.S. Lab. It will provide attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and later Multi-Purpose Logistics Modules. The addition of Node 2 will complete the U.S. core of the International Space Station.

  20. Mission Command and the United States Navy: Overcoming Doctrinal Hurdles to Enable Mission Command

    DTIC Science & Technology

    2017-05-12

    Press, 2000), 40-44. 13 Carl H. Builder. The Masks of War: American Military Styles in Strategy and Analysis. (Baltimore: Johns Hopkins University...mission command’ clearly represents a ‘mission-specific’ style of command and control, while ‘command by negation’ more clearly represents an...objective-specific’ style . Differing Approaches Create Differing Outcomes Each of the three comparisons above demonstrate that ‘mission command’ and

  1. Teaching Your First Astro 101 Course: What They Don't Tell You

    NASA Astrophysics Data System (ADS)

    Bruning, D.

    2014-07-01

    Designing your Astro 101 course should not be about what topics you can omit but should be a thoughtful process that regards your fundamental teaching goals and which topics and skills promote those goals. Establishing goals and assessments that lead to measurable student outcomes enable one to more constructively design a learning experience for students. Just as any good novel has multiple story lines that weave throughout the book, your course has several narratives that wind through different topics and help to tie goals together. Sharing this underlying organizational structure of your course with students helps them to connect ideas and be more successful.

  2. Left to right, astronauts John H. Casper, mission commander, and Curtis L. Brown, Jr., pilot, get

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-77 TRAINING VIEW --- Left to right, astronauts John H. Casper, mission commander, and Curtis L. Brown, Jr., pilot, get help with the final touches of suit donning during emergency bailout training for STS-77 crew members in the Johnson Space Centers (JSC) Weightless Environment Training Facility (WET-F). Casper and Brown will join four other astronauts for nine days aboard the Space Shuttle Endeavour next month.

  3. KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi (left), with the National Space Development Agency of Japan (NASDA), points to data on the console during a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM) in the Space Station Processing Facility. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 provides attach locations for the Japanese laboratory, as well as European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. Installation of the module will complete the U.S. Core of the ISS.

    NASA Image and Video Library

    2003-09-03

    KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi (left), with the National Space Development Agency of Japan (NASDA), points to data on the console during a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM) in the Space Station Processing Facility. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 provides attach locations for the Japanese laboratory, as well as European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. Installation of the module will complete the U.S. Core of the ISS.

  4. [Understanding the symbolic values of Japanese onomatopoeia: comparison of Japanese and Chinese speakers].

    PubMed

    Haryu, Etsuko; Zhao, Lihua

    2007-10-01

    Do non-native speakers of the Japanese language understand the symbolic values of Japanese onomatopoeia matching a voiced/unvoiced consonant with a big/small sound made by a big/small object? In three experiments, participants who were native speakers of Japanese, Japanese-learning Chinese, or Chinese without knowledge of the Japanese language were shown two pictures. One picture was of a small object making a small sound, such as a small vase being broken, and the other was of a big object making a big sound, such as a big vase being broken. Participants were presented with two novel onomatopoetic words with voicing contrasts, e.g.,/dachan/vs./tachan/, and were told that each word corresponded to one of the two pictures. They were then asked to match the words to the corresponding pictures. Chinese without knowledge of Japanese performed only at chance level, whereas Japanese and Japanese-learning Chinese successfully matched a voiced/unvoiced consonant with a big/small object respectively. The results suggest that the key to understanding the symbolic values of voicing contrasts in Japanese onomatopoeia is some basic knowledge that is intrinsic to the Japanese language.

  5. STS-65 Mission Specialist Chiao in LES at pre-test WETF bailout briefing

    NASA Technical Reports Server (NTRS)

    1994-01-01

    STS-65 Mission Specialist Leroy Chiao, outfitted in a launch and entry suit (LES) and launch and entry helmet (LEH), listens to a briefing on procedures that would become necessary in the event of an emergency egress situation from the Space Shuttle. The astronaut was in the Johnson Space Center's (JSC's) Weightless Environment Training Facility (WETF) Bldg 29 for the launch emergency egress training (bailout) exercise. Chiao will join five other NASA astronauts and a Japanese payload specialist for the second International Microgravity Laboratory 2 (IML-2) mission aboard the Space Shuttle Columbia, Orbiter Vehicle (OV) 102, later this year.

  6. Extreme ultraviolet observations of HZ 43 and the local H/He ratio with the Hopkins Ultraviolet Telescope

    NASA Technical Reports Server (NTRS)

    Kimble, Randy A.; Davidsen, Arthur F.; Long, Knox S.; Feldman, Paul D.

    1993-01-01

    We present a spectrum of the hot DA white dwarf HZ 43 in the EUV, near the 504-A ionization edge of neutral helium, obtained with the Hopkins Ultraviolet Telescope (HUT) during the 1990 December Astro-1 mission. The interstellar column densities derived from this spectrum rule out the anomalous interstellar absorption model proposed by Heise et al.(1991), which required a greater column density of neutral helium than neutral hydrogen toward HZ 43 in order to explain the low EUV flux from HZ 43 reported by EXOSAT. Instead, we find the interstellar neutral H/He ratio toward HZ 43 to be consistent with the canonical cosmic abundance ratio of 10 or with the 11.6 +/- 1.0 ratio measured by HUT along the line of sight toward another DA white dwarf, G191-B2B. The HUT observations suggest that either there is a substantial calibration error in the EXOSAT spectroscopy of HZ 43, or otherwise undetected metals in the nominally pure hydrogen HZ 43 atmosphere suppress its flux between 150 and 300 A, or both.

  7. Far UV Observations of Interstellar Shocks

    NASA Technical Reports Server (NTRS)

    Raymond, John C.

    1998-01-01

    This grant covered analysis of Hopkins Ultraviolet Telescope data from the Astro-2 mission. The proposed research was aimed primarily at SNR shock waves, but the ASTRO-2 GO program was intended to make the GOs part of the instrument teams. The grant therefore covered extensive travel to Marshall Space Flight Center for mission simulations and the mission itself. In keeping with the unique nature of the ASTRO-2 GO program, I participated actively in the instrument team's investigations of HH objects and cataclysmic variables. Over the course of the Astro-2 mission, we obtained good observations of the supernova remnants SN1006 (1 position), Vela (3 positions), the Cygnus Loop (7 positions) and 0519-69 in the LMC (1 position) as part of this GI program, along with Puppis A (1 position), Vela (1 position), the Cygnus Loop (7 positions) and the Schweizer- Middleditch star (HUT PI program on SNRS). We also observed the Herbig-Haro object HH2 and about a dozen cataclysmic variables, including magnetic systems and dwarf novae. This GI grant covered modest travel for data analysis. We anticipate submitting papers on the non-radiative shock in northern Cygnus Loop, on the LMC Balmer-dominated remnant LMC 0519-69, on the radiative shocks in the Eastern Cygnus Loop (the XA region), and on the cataclysmic variable YZ Cnc over the course of the coming year. We have obtained extensive supporting data from ground-based telescopes for the Cygnus Loop spectra.

  8. The Japanese Mind: Understanding Contemporary Japanese Culture.

    ERIC Educational Resources Information Center

    Davies, Roger J., Ed.; Ikeno, Osamu, Ed.

    This collection of essays offers an overview of contemporary Japanese culture, and can serve as a resource for classes studying Japan. The 28 essays offer an informative, accessible look at the values, attitudes, behavior patterns, and communication styles of modern Japan from the unique perspective of the Japanese people. Filled with examples…

  9. STS-67 Space Shuttle mission report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W., Jr.

    1995-01-01

    The STS-67 Space Shuttle Program Mission Report provides the results of the orbiter vehicle performance evaluation during this sixty-eighth flight of the Shuttle Program, the forty-third flight since the return to flight, and the eighth flight of the Orbiter vehicle Endeavour (OV-105). In addition, the report summarizes the payload activities and the performance of the External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle Main Engines (SSME). The serial numbers of the other elements of the flight vehicle were ET-69 for the ET; 2012, 2033, and 2031 for SSME's 1, 2, and 3, respectively; and Bl-071 for the SRB's. The left-hand RSRM was designated 360W043A, and the right-hand RSRM was designated 360L043B. The primary objective of this flight was to successfully perform the operations of the ultraviolet astronomy (ASTRO-2) payload. Secondary objectives of this flight were to complete the operations of the Protein Crystal Growth - Thermal Enclosure System (PCG-TES), the Protein Crystal Growth - Single Locker Thermal Enclosure System (PCG-STES), the Commercial Materials Dispersion Apparatus ITA Experiments (CMIX), the Shuttle Amateur Radio Experiment-2 (SAREX-2), the Middeck Active Control Experiment (MACE), and two Get-Away Special (GAS) payloads.

  10. STS-99 Commander and Pilot for the SRTM Mission, Practice Flight in the Shuttle Training Aircraft

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The primary objective of the STS-99 mission was to complete high resolution mapping of large sections of the Earth's surface using the Shuttle Radar Topography Mission (SRTM), a specially modified radar system. This radar system produced unrivaled 3-D images of the Earth's Surface. The mission was launched at 12:31 on February 11, 2000 onboard the space shuttle Endeavour, and led by Commander Kevin Kregel. The crew was Pilot Dominic L. Pudwill Gorie and Mission Specialists Janet L. Kavandi, Janice E. Voss, Mamoru Mohri from the National Space Development Agency (Japanese Space Agency), and Gerhard P. J. Thiele from DARA (German Space Agency). This tape shows Commander Kregel and Pilot Gorie getting on board the Shuttle Training Aircraft and practicing approaches for the shuttle landing.

  11. Fortissimo: A Japanese Space Test Of Bare Wire Anode Tethers

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Fujii, H. A.; Sanmartin, J. R.

    2008-01-01

    A Japanese led international team is developing a suborbital test of orbital-motion-limited (OML) bare wire anode current collection for application to electrodynamic tether (EDT) propulsion. The tether is a tape with a width of 25 mm, thickness of 0.05 mm, and is 300 m in length. This will be the first space test of OML theory. The mission will launch in the summer of 2009 using an S520 Sounding Rocket. During ascent, and above approx. 100 km in attitude, the tape tether will be deployed at a rate of approx. 8 m/s. Once deployed, the tape tether will serve as an anode, collecting ionospheric electrons. The electrons will be expelled into space by a hollow cathode device, thereby completing the circuit and allowing current to flow. The total amount of current collected will be used to assess the validity of OML theory. This paper will describe the objectives of the proposed mission, the technologies to be employed, and the application of the results to future space missions using EDTs for propulsion or power generation.

  12. The Stocker AstroScience Center at Florida International University

    NASA Astrophysics Data System (ADS)

    Webb, James R.

    2014-01-01

    The new Stocker AstroScience Center located on the MMC campus at Florida International University in Miami Florida represents a unique facility for STEM education that arose from a combination of private, State and university funding. The building, completed in the fall of 2013, contains some unique spaces designed not only to educate, but also to inspire students interested in science and space exploration. The observatory consists of a 4-story building (3 floors) with a 24” ACE automated telescope in an Ash dome, and an observing platform above surrounding buildings. Some of the unique features of the observatory include an entrance/exhibition hall with a 6-ft glass tile floor mural linking the Florida climate to space travel, a state-of-the art telescope control that looks like a starship bridge, and displays such as “Music from the universe”. The observatory will also be the focus of our extensive public outreach program that is entering its 20 year.

  13. STS-65 Japanese Payload Specialist Mukai prepares for MAIL egress training

    NASA Technical Reports Server (NTRS)

    1994-01-01

    STS-65 Japanese Payload Specialist Chiaki Mukai, wearing launch and entry suit (LES), prepares to participate in a training session in the Johnson Space Center's (JSC's) Mockup and Integration Laboratory (MAIL) Bldg 9NE. The entire STS-65 crew was on hand for egress training and countdown rehearsals. Representing Japan's National Space Development Agency (NASDA) Mukai will join six NASA astronauts for the International Microgravity Laboratory 2 (IML-2) mission aboard the Space Shuttle Columbia, Orbiter Vehicle (OV) 102, later this year.

  14. What Is Business Japanese? Designing a Japanese Course for Business Communication.

    ERIC Educational Resources Information Center

    Koike, Shohei

    Experiences in developing "Business Japanese" courses for the undergraduate major in Language and International Trade at Eastern Michigan University are described. In 1987, six new courses in Japanese were proposed so that Japanese could be offered as a language specialty in the program. Issues considered in defining business Japanese…

  15. A Confirmatory Model for Substance Use Among Japanese American and Part-Japanese American Adolescents

    PubMed Central

    Williams, John Kino Yamaguchi; Else, 'Iwalani R. N.; Goebert, Deborah A.; Nishimura, Stephanie T.; Hishinuma, Earl S.; Andrade, Naleen N.

    2013-01-01

    Few studies have examined the effect of ethnicity and cultural identity on substance use among Asian and Pacific Islander adolescents. A cross-sequential study conducted in Hawai'i with 144 Japanese American and part-Japanese American adolescents assessed a model integrating Japanese ethnicity, cultural identity, substance use, major life events, and social support. Japanese American adolescents scored higher on the Japanese Culture Scale and on the Peers’ Social Support than the part-Japanese American adolescents. Significant associations for substance use and impairment included culturally intensified events and Japanese cultural identity- behavior subset. Models had good overall fits and suggested that conflict surrounding cultural identity may contribute to substance use. PMID:23480213

  16. AstroSat/LAXPC Detection of Millisecond Phenomena in 4U 1728-34

    NASA Astrophysics Data System (ADS)

    Verdhan Chauhan, Jai; Yadav, J. S.; Misra, Ranjeev; Agrawal, P. C.; Antia, H. M.; Pahari, Mayukh; Sridhar, Navin; Dedhia, Dhiraj; Katoch, Tilak; Madhwani, P.; Manchanda, R. K.; Paul, B.; Shah, Parag

    2017-05-01

    The low-mass X-ray binary 4U 1728-24 was observed with AstroSat/LAXPC on 2016 March 8th. Data from a randomly chosen orbit of over 3 ks was analyzed for detection of rapid intensity variations. We found that the source intensity was nearly steady but, toward the end of the observation, a typical Type-1 burst was detected. Dynamical power spectrum of the data in the 3-20 keV band, reveals the presence of a kHz Quasi-Periodic Oscillation (QPO) for which the frequency drifted from ˜815 Hz at the beginning of the observation to about 850 Hz just before the burst. The QPO is also detected in the 10-20 keV band, which was not obtainable by earlier RXTE observations of this source. Even for such a short observation with a drifting QPO frequency, the time lag between the 5-10 and 10-20 keV bands can be constrained to be less than 100 microseconds. The Type-1 burst that lasted for about 20 s had a typical profile. During the first four seconds, dynamic power spectra reveal a burst oscillation for which the frequency increased from ˜361.5 to ˜363.5 Hz. This is consistent with the earlier results obtained with RXTE/PCA, showing the same spin frequency of the neutron star. The present results demonstrate the capability of the LAXPC instrument for detecting millisecond variability even from short observations. After RXTE ceased operation, LAXPC on AstroSat is the only instrument at present with the capability of detecting kHz QPOs and other kinds of rapid variations from 3 keV to 20 keV and possibly at higher energies as well.

  17. Inspiring a future generation of Astronomer and Astrophysicists during the 48th and 49th annual Astro-Science Workshop

    NASA Astrophysics Data System (ADS)

    Martynowycz, Michael; Ratliff, G.; Gyuk, G.; Hammergren, M.

    2014-01-01

    Aging of the technological workforce and declining STEM interest among teens gives impetus to a more exciting, hands-on approach to science education. As one of the longest running astronomy & astrophysics programs for high school students in the country, the Adler Planetarium’s Astro-Science Workshop (ASW) has continually evolved to best serve the out-of-school time needs of science-interested teens in the region. More than a decade ago, ASW underwent a major shift in underlying philosophy from a traditional lecture-oriented program to one focused on hands-on, student led inquiry in which students design, build, and conduct their own experiments. This strategy capitalizes on the natural inclinations of curious youth, and has found a strong synergy with the emerging “maker” movement. Over the past two years, a very successful effort has been made to retain students following ASW as volunteers in the Adler’s Far Horizons high-altitude ballooning group. The necessity to continually inspire and spark interests in science futures in our youth has been ongoing; this intense program serves this niche while giving students experiences they will keep with them for their entire lives. Here, we share our successes, failures, and future perspectives on astronomy education and the mission of widening the future pipeline of young scientists in the nation.

  18. Payload bay activity during second EVA of STS-72 mission

    NASA Image and Video Library

    1996-01-17

    STS072-740-044 (17 Jan. 1996) --- Backdropped against Australia's Shark Bay, this panoramic scene of the Space Shuttle Endeavour in Earth-orbit was recorded during the mission's second Extravehicular Activity (EVA-2) on January 17, 1996. Astronaut Leroy Chiao works with a Mobile Foot Restraint (MFR) at bottom left. The Japanese Space Flyer Unit (SFU) satellite and the Office of Aeronautics and Space Technology (OAST) Flyer satellite are seen in their stowed positions in the aft cargo bay.

  19. Performance of the Fourier transform spectrometer (FTS) for FIS onboard ASTRO-F

    NASA Astrophysics Data System (ADS)

    Murakami, Noriko; Kawada, Mitsunobu; Takahashi, Hidenori; Ozawa, Keita; Imamura, Tetsuo; Shibai, Hiroshi; Nakagawa, Takao

    2004-10-01

    We have developed the imaging Fourier Transform Spectrometer (FTS) for the FIS (Far-Infrared Surveyor) onboard the ASTRO-F satellite. A Martin-Puplett interferometer is adopted to achieve high optical efficiency in a wide wavelength range. The total optical efficiency of this spectrometer is achieved 40-80% of the ideal value which is 25% of the incident flux. The wavelength range of 50-200μm is covered with two kinds of detector; the monolithic Ge:Ga photoconductor array for short wavelength (50-110μm) and the stressed Ge:Ga photoconductor array for long wavelength (110-200μm). The spectral resolution expected from the maximum optical path difference is 0.18cm-1. In order to evaluate the spectral resolution of the FTS, we measured absorption lines of H2O in atmosphere using the optics of the FTS with a bolometer at the room temperature. The measured line widths are consistent with the expected instrumental resolution of 0.18 cm-1. Some spectral measurements at the cryogenic temperature were carried out by using cold blackbody sources whose temperatures are controlled in a range from 20 to 50 K. The derived spectra considering with the spectral response of the system are consistent with expected ones. Spectroscopic observations with the FTS will provide a lot of astronomical information; SED of galaxies detected in the all sky survey and the physical diagnostics of the interstellar matter by using the excited atomic or molecular lines.

  20. One-Year Mission on ISS Is a Step Towards Interplanetary Missions.

    PubMed

    Fomina, Elena V; Lysova, Nataliya Yu; Kukoba, Tatyana B; Grishin, Alexey P; Kornienko, Mikhail B

    2017-12-01

    in the 1990s Russian cosmonauts performed six long-duration missions on Mir that went from 312 to 438 d. In 2015 a mission on the International Space Station that continued for 340 d, 8 h, and 47 min was successfully accomplished. It was a joint U.S./Russian mission completed by Scott Kelly and Mikhail Kornienko (KM). The intensity of in-flight physical exercises and postflight motor changes were measured in KM and in the six cosmonauts who made shorter flights (173.3 ± 13.8 d) on ISS while using similar countermeasures against the adverse effects of microgravity. It was found that both parameters varied similarly in spite of the difference in the duration of ISS missions. KM maintained adequate physical performance throughout the entire flight; moreover, the level of postflight changes he displayed was comparable to that recorded in the group of cosmonauts who completed 6-mo missions on ISS. In summary, the 1-yr mission has clearly demonstrated the high efficacy of the countermeasures used by KM.Fomina EV, Lysova NYu, Kukoba TB, Grishin AP, Kornienko MB. One-year mission on ISS is a step towards interplanetary missions. Aerosp Med Hum Perform. 2017; 88(12):1094-1099.

  1. Mission X in Japan, an Education Outreach Program Featuring Astronautical Specialties and Knowledge

    NASA Astrophysics Data System (ADS)

    Niihori, Maki; Yamada, Shin; Matsuo, Tomoaki; Nakao, Reiko; Nakazawa, Takashi; Kamiyama, Yoshito; Takeoka, Hajime; Matsumoto, Akiko; Ohshima, Hiroshi; Mukai, Chiaki

    In the science field, disseminating new information to the public is becoming increasingly important, since it can aid a deeper understanding of scientific significance and increase the number of future scientists. As part of our activities, we at the Japan Aerospace Exploration Agency (JAXA) Space Biomedical Research Office, started work to focus on education outreach featuring space biomedical research. In 2010, we launched the Mission X education program in Japan, named after “Mission X: Train Like an Astronaut” (hereinafter called “Mission X”), mainly led by NASA and European Space Agency (ESA). Mission X is an international public outreach program designed to encourage proper nutrition and exercise and teaching young people to live and eat like astronauts. We adopted Mission X's standpoint, and modified the program based on the originals to suit Japanese culture and the students' grade. Using astronauts as examples, this mission can motivate and educate students to instill and adopt good nutrition and physical fitness as life-long practices.Here we introduce our pilot mission of the “Mission X in Japan” education program, which was held in early 2011. We are continuing the education/public outreach to promote the public understanding of science and contribute to science education through lectures on astronautical specialties and knowledge.

  2. JOICFP included in GII mission to Ghana. Global Issues Initiative.

    PubMed

    1996-03-01

    Among countries in West Africa, Ghana is the main focus of the Global Issues Initiative (GII) on Population and AIDS and one of twelve priority countries selected for official development assistance (ODA) under the program. A ten-member project formulation mission sent to Ghana by the Ministry of Foreign Affairs (MOFA) of Japan was in the country during January 10-18. This mission was the first of its kind to be sent to Africa. It was led by the director of the Third Project Formulation Study Division, Project Formulation Study Department, Japan International Cooperation Agency (JICA), and included representatives of MOFA, JICA, and the Ministry of Health and Welfare, and an observer from UNAIDS. The mission's chief objective was to explore possibilities for Japanese cooperation in the areas of population, child health, and HIV/AIDS in line with the Mid-Term Health Strategy (MTHS) formulated in 1995 by the government of Ghana. The mission also explored the possibility of collaboration with major donors, international organizations, international agencies, and NGOs. The mission met with representatives of NGOs from population, women, AIDS, and health-related areas on January 13, who were then briefed upon Japan's Grant Assistance for Grassroots Project for local NGOs. Views were exchanged upon NGO activities.

  3. German-Japanese relationships in biochemistry: a personal perspective

    PubMed Central

    Sies, Helmut

    2016-01-01

    ABSTRACT The first Institute of Biochemistry in Japan was founded by Leonor Michaelis from Berlin at Nagoya in 1922, and there have been numerous interrelations between Japanese and German biochemists since. Some such relationships are presented here from a personal point of view as one illustrative example, which could be extended amply by the experience of many other scientists from the two countries. Fruitful exchanges are facilitated by organisations such as the Alexander von Humboldt Foundation (AvH) and the Deutscher Akademischer Austauschienst (DAAD) or the Japanese Society for the Promotion of Science (JSPS) and by the many bilateral agreements between universities and research institutions. PMID:28008189

  4. Interactive Dynamic Mission Scheduling for ASCA

    NASA Astrophysics Data System (ADS)

    Antunes, A.; Nagase, F.; Isobe, T.

    The Japanese X-ray astronomy satellite ASCA (Advanced Satellite for Cosmology and Astrophysics) mission requires scheduling for each 6-month observation phase, further broken down into weekly schedules at a few minutes resolution. Two tools, SPIKE and NEEDLE, written in Lisp and C, use artificial intelligence (AI) techniques combined with a graphic user interface for fast creation and alteration of mission schedules. These programs consider viewing and satellite attitude constraints as well as observer-requested criteria and present an optimized set of solutions for review by the planner. Six-month schedules at 1 day resolution are created for an oversubscribed set of targets by the SPIKE software, originally written for HST and presently being adapted for EUVE, XTE and AXAF. The NEEDLE code creates weekly schedules at 1 min resolution using in-house orbital routines and creates output for processing by the command generation software. Schedule creation on both the long- and short-term scale is rapid, less than 1 day for long-term, and one hour for short-term.

  5. NASA Mission Operations Directorate Preparations for the COTS Visiting Vehicles

    NASA Technical Reports Server (NTRS)

    Shull, Sarah A.; Peek, Kenneth E.

    2011-01-01

    With the retirement of the Space Shuttle looming, a series of new spacecraft is under development to assist in providing for the growing logistical needs of the International Space Station (ISS). Two of these vehicles are being built under a NASA initiative known as the Commercial Orbital Transportation Services (COTS) program. These visiting vehicles ; Space X s Dragon and Orbital Science Corporation s Cygnus , are to be domestically produced in the United States and designed to add to the capabilities of the Russian Progress and Soyuz workhorses, the European Automated Transfer Vehicle (ATV) and the Japanese H-2 Transfer Vehicle (HTV). Most of what is known about the COTS program has focused on the work of Orbital and SpaceX in designing, building, and testing their respective launch and cargo vehicles. However, there is also a team within the Mission Operations Directorate (MOD) at NASA s Johnson Space Center working with their operational counterparts in these companies to provide operational safety oversight and mission assurance via the development of operational scenarios and products needed for these missions. Ensuring that the operational aspect is addressed for the initial demonstration flights of these vehicles is the topic of this paper. Integrating Dragon and Cygnus into the ISS operational environment has posed a unique challenge to NASA and their partner companies. This is due in part to the short time span of the COTS program, as measured from initial contract award until first launch, as well as other factors that will be explored in the text. Operational scenarios and products developed for each COTS vehicle will be discussed based on the following categories: timelines, on-orbit checkout, ground documentation, crew procedures, software updates and training materials. Also addressed is an outline of the commonalities associated with the operations for each vehicle. It is the intent of the authors to provide their audience with a better

  6. NASA's Astro-Venture Engages Exceptional Students in Earth System Science Using Inquiry

    NASA Astrophysics Data System (ADS)

    Oguinn, C.

    2003-12-01

    Astro-Venture is an educational, interactive, multimedia Web environment highlighting NASA careers and astrobiology research in the areas of Astronomy, Geology, Biology and Atmospheric Sciences. Students in grades 5-8 role-play NASA careers, as they search for and design a planet with the necessary characteristics for human habitation. Astro-Venture uses online multimedia activities and off-line inquiry explorations to engage students in guided inquiry aligned with the 5 E inquiry model. This model has proven to be effective with exceptional students. Students are presented with the intellectual confrontation of how to design a planet and star system that would be able to meet their biological survival needs. This provides a purpose for the online and off-line explorations used throughout the site. Students first explore "what" conditions are necessary to support human habitability by engaging in multimedia training modules, which allow them to change astronomical, atmospheric, geological and biological aspects of the Earth and our star system and to view the effects of these changes on Earth. By focusing on Earth, students draw on their prior knowledge, which helps them to connect their new knowledge to their existing schema. Cause and effect relationships of Earth provide a concrete model from which students can observe patterns and generalize abstract results to an imagined planet. From these observations, students draw conclusions about what aspects allowed Earth to remain habitable. Once students have generalized needed conditions of "what" we need for a habitable planet, they conduct further research in off-line, standards-based classroom activities that also follow the inquiry model and help students to understand "why" we need these conditions. These lessons focus on standards-based concepts such as states of matter and the structure and movement of the Earth's interior. These lessons follow the inquiry structure commonly referred to as the five E's as

  7. Homogamy and Intermarriage of Japanese and Japanese Americans with Whites Surrounding World War II

    ERIC Educational Resources Information Center

    Ono, Hiromi; Berg, Justin

    2010-01-01

    Although some sociologists have suggested that Japanese Americans quickly assimilated into mainstream America, scholars of Japanese America have highlighted the heightened exclusion that the group experienced. This study tracked historical shifts in the exclusion level of Japanese and Japanese Americans in the United States surrounding World War…

  8. The State-of-the-art HST Astro-photometric Analysis of the Core of ω Centauri. I. The Catalog

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bellini, A.; Anderson, J.; Van der Marel, R. P.

    We have constructed the most comprehensive catalog of photometry and proper motions ever assembled for a globular cluster (GC). The core of ω Cen has been imaged over 650 times through WFC3's UVIS and IR channels for the purpose of detector calibration. There exist from 4 to over 60 exposures through each of 26 filters stretching continuously from F225W in the UV to F160W in the infrared. Furthermore, the 11 yr baseline between these data and a 2002 ACS survey has allowed us to more than double the proper-motion accuracy and triple the number of well-measured stars compared to ourmore » previous groundbreaking effort. This totally unprecedented complete spectral coverage of over 470,000 stars within the cluster’s core, from the tip of the red giant branch down to the white dwarfs, provides the best astro-photometric observational database yet to understand the multiple-population phenomenon in any GC. In this first paper of the series, we describe in detail the data-reduction processes and deliver the astro-photometric catalog to the astronomical community.« less

  9. Risk Factors for Helicobacter pylori Infection and Endoscopic Reflux Esophagitis in Healthy Young Japanese Volunteers.

    PubMed

    Tanaka, Yuichiro; Sakata, Yasuhisa; Hara, Megumi; Kawakubo, Hiroharu; Tsuruoka, Nanae; Yamamoto, Koji; Itoh, Yoichiro; Hidaka, Hidenori; Shimoda, Ryo; Iwakiri, Ryuichi; Fujimoto, Kazuma

    2017-11-15

    Objective The aim of this study was to determine the prevalence and risk factors of reflux esophagitis and Helicobacter pylori (H.pylori) infection and their interrelationship in healthy young Japanese volunteers. Methods Between 2010 and 2016, 550 fifth-year medical students at Saga Medical School, aged 22 to 30 years, underwent upper gastrointestinal endoscopy and completed a questionnaire (frequency scale for symptoms of gastroesophageal reflux disease). H. pylori infection was determined by detecting urinary immunoglobulin G antibodies. Results H. pylori antibodies were detected in 45 of the 550 subjects (8.2%). Endoscopic reflux esophagitis was detected in 38 out of 550 (6.9%): grade A in 37 subjects (97.3%) and grade B in 1. Most subjects with reflux esophagitis were H. pylori-negative (35/37). Nodular gastritis was observed in 33.3% (15/45) of H. pylori-positive subjects. The risk factors for H. pylori infection were drinking well water in childhood, nodular gastritis, and duodenal ulcer scars. The risk factors for endoscopic reflux esophagitis were male gender and obesity (body mass index ≥25). Conclusion This study describes the risk factors for H. pylori infection and reflux esophagitis in healthy young Japanese subjects. The prevalence of reflux esophagitis was relatively high, and the infection rate of H. pylori was low compared with the aged Japanese population.

  10. Astrobites: The Astro-ph Reader's Digest For Undergraduates

    NASA Astrophysics Data System (ADS)

    Newton, Elisabeth R.; Kohler, S.; Gifford, D.; Plunkett, A. L.; Astrobites Team

    2012-01-01

    Astrobites (http://astrobites.com) is a daily blog aimed primarily at undergraduates interested in astrophysical research and written by a team of graduate students from around the country. Every day we present a journal article recently posted to astro-ph in a brief format that is accessible to anyone with a general background in the physical sciences. In addition to summarizing new work, Astrobites provides valuable context for readers not yet familiar with the astrophysical literature. Special posts offer career guidance for undergraduates (e.g. applying for an NSF graduate fellowship) and describe personal experiences (e.g. attending an astronomy summer school). We will discuss the Astrobites format, readership statistics and the results of our October reader survey (117 responses). The Astrobites blog is currently receiving 17000 on-site hits per month with an average of 600 all-time views per post. 17% of our readers are undergraduate students and 34% are graduates, while researchers and astronomy enthusiasts make up the remainder in equal parts. Out of the 60 students surveyed, 75% plan on a career in research in astrophysics. EN and DG acknowledge support from the National Science Foundation through Graduate Research Fellowships.

  11. Apollo 13 - Mission Control Console

    NASA Image and Video Library

    1970-04-15

    S70-35096 (16 April 1970) --- As the problem-plagued Apollo 13 crewmen entered their final 24 hours in space, several persons important to the mission remained attentive at consoles in the Mission Operations Control Room of the Mission Control Center at Manned Spacecraft Center. Among those monitoring communications and serving in supervisory capacities were these four officials from National Aeronautics and Space Administration Headquarters, Washington, D.C.: (from left) Thomas H. McMullen, Office of Manned Space Flight, who served as Shift 1 mission director; Dale Myers, associate administrator, Manned Space Flight; Chester M. Lee of the Apollo Program Directorate, OMSF, Apollo 13 mission director; and Dr. Rocco A. Petrone, Apollo program director, OMSF.

  12. Sleep and sleepiness of pilots operating long-range airplane emergency medical missions.

    PubMed

    Amann, Ulrike; Holmes, Alex; Caldwell, John; Hilditch, Cassie

    2014-09-01

    Airplane emergency medical services (AEMS) operators use fixed-wing airplanes to undertake rapid response, round-the-clock medical transport missions. This paper explores the structure of long-range, multileg AEMS missions and the sleep and sleepiness of the pilots who work them. During nine long-range AEMS missions, pilots kept a sleep and sleepiness logbook and wore a wrist activity monitor to evaluate the timing of sleep/wake. Missions had a mean duration of 20 h 00 min ± 2 h 39 min, involved two to four flight legs, and were crewed by three or four pilots who rotated between operating and sleeping in curtained-off bunks. The pilots obtained a mean of 15 h 26 min ± 4 h 51 min and 7 h 54 min ± 1 h 33 min of sleep in the 48 h and 24 h prior to checking in for duty, respectively. During missions, a mean of 3 h 33 min ± 1 h 46 min of sleep was taken, usually across two in-flight sleep periods. Karolinska Sleepiness Scores (KSS) at top of climb and top of descent were typically less than 5 ('neither alert nor sleepy'). A small number of individual higher KSS scores were recorded on the longest missions and on flights between 02:00 and 06:00. These findings suggest that despite the long duration, timing, and multileg nature of AEMS missions, it is possible via careful design and management to operate these missions with appropriate levels of pilot alertness.

  13. Beyond Astro 101: A First Report on Applying Interactive Education Techniques to an Astronphysics Class for Majors

    NASA Astrophysics Data System (ADS)

    Perrin, Marshall D.; Ghez, A. M.

    2009-05-01

    Learner-centered interactive instruction methods now have a proven track record in improving learning in "Astro 101" courses for non-majors, but have rarely been applied to higher-level astronomy courses. Can we hope for similar gains in classes aimed at astrophysics majors, or is the subject matter too fundamentally different for those techniques to apply? We present here an initial report on an updated calculus-based Introduction to Astrophysics class at UCLA that suggests such techniques can indeed result in increased learning for major students. We augmented the traditional blackboard-derivation lectures and challenging weekly problem sets by adding online questions on pre-reading assignments (''just-in-time teaching'') and frequent multiple-choice questions in class ("Think-Pair-Share''). We describe our approach, and present examples of the new Think-Pair-Share questions developed for this more sophisticated material. Our informal observations after one term are that with this approach, students are more engaged and alert, and score higher on exams than typical in previous years. This is anecdotal evidence, not hard data yet, and there is clearly a vast amount of work to be done in this area. But our first impressions strongly encourage us that interactive methods should be able improve the astrophysics major just as they have improved Astro 101.

  14. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-23

    Minamitane elementary school girls pose for a photo in front of a sign featuring the town's mascot "Chuta-kun", Sunday, Feb. 23, 2014, Tanegashima Island, Japan. The Chuta-kun mascot rides a rocket and has guns on the side of his helmet to show the areas history as the site of the first known contact of Europe and the Japanese, in 1543 and the introduction of the gun. A Japanese H-IIA rocket carrying the NASA-Japan Aerospace Exploration Agency (JAXA), Global Precipitation Measurement (GPM) Core Observatory is planned for launch from the space center on Feb. 28, 2014. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  15. The Anglo-Japanese Alliance and Japanese Expansionism 1902-1923.

    DTIC Science & Technology

    1992-06-05

    Alienation 1919-1952. London: Cambridge University Press. 1982. • The Oriains of the Russo-Japanese War. London: Longman Group Limited. 1985. Nitobe ... Inazo . Bushido - The Soul of Japan. Tokyo: Tuttle. 1981. Okamoto, Shumpei. The Japan Oliaarchv and the Russo-Japanese War. New York: Columbia

  16. A Conceptual Model of Cultural Predictors of Anxiety among Japanese American and Part-Japanese American Adolescents.

    ERIC Educational Resources Information Center

    Williams, John Kino Yamaguchi; Goebert, Deborah; Hishinuma, Earl; Miyamoto, Robin; Anzai, Neal; Izutsu, Satoru; Yanagida, Evelyn; Nishimura, Stephanie; Andrade, Naleen; Baker, F. M.

    2002-01-01

    Develops and assesses a model integrating Japanese ethnicity, cultural identity, and anxiety in Japanese American and part-Japanese American high school seniors. Japanese American adolescents scored higher on the scale and reported fewer anxiety symptoms than part-Japanese American adolescents. The model had a good overall fit, suggesting that…

  17. Atomic Data in X-Ray Astrophysics

    NASA Technical Reports Server (NTRS)

    Brickhouse, N. S.

    2000-01-01

    With the launches of the Chandra X-ray Observatory (CXO) and the X-ray Multimirror Mission (XMM) and the upcoming launch of the Japanese mission ASTRO-E, high resolution X-ray spectroscopy of cosmic sources has begun. Early, deep observations of three stellar coronal sources will provide not only invaluable calibration data, but will also give us benchmarks for the atomic data under collisional equilibrium conditions. Analysis of the Chandra X-ray Observatory data, and data from other telescopes taken simultaneously, for these stars is ongoing as part of the Emission Line Project. Goals of the Emission Line Project are: (1) to determine and verify accurate and robust diagnostics and (2) to identify and prioritize issues in fundamental spectroscopy which will require further theoretical and/or laboratory work. The Astrophysical Plasma Emission Database will be described in some detail, as it is introducing standardization and flexibility into X-ray spectral modeling. Spectral models of X-ray astrophysical plasmas can be generally classified as dominated by either collisional ionization or by X-ray photoionization. While the atomic data needs for spectral models under these two types of ionization are significantly different, there axe overlapping data needs, as I will describe. Early results from the Emission Line Project benchmarks are providing an invaluable starting place, but continuing work to improve the accuracy and completeness of atomic data is needed. Additionally, we consider the possibility that some sources will require that both collisional ionization and photoionization be taken into account, or that time-dependent ionization be considered. Thus plasma spectral models of general use need to be computed over a wide range of physical conditions.

  18. Mission X: Train Like an Astronaut Challenge

    NASA Technical Reports Server (NTRS)

    Lloyd, Charles W.

    2016-01-01

    The Mission X: Train Like an Astronaut Challenge was developed in 2011 to encourage proper exercise and nutrition at an early age by teaching young people to live and eat like space explorers. The strong correlation between an unhealthy childhood diet and adolescent fitness, and the onset of chronic diseases as an adult is the catalyst for Mission X. Mission X is dedicated to assisting people on a global scale to live healthier lifestyles and learn about human space exploration. The Mission X: Train Like an Astronaut 2015 (MX15) International Challenge hosted almost 40,000 children on 800 teams, 28 countries affiliated with 12 space agencies. The MX15 website included 17 languages. MX15, the fifth annual international fitness challenges sponsored by the NASA Human Research Program worked with the European Space Agency and other space agencies from around the world. In comparison to MX14, MX15 expanded to include four additional new countries, increased the number of students by approximately 68% and the number of teams by 29%. Chile' and South Korea participated in the new fall Astro Charlie Walk Around the Earth Challenge. Pre-challenge training materials were made more readily available from the website. South Korea completed a prospective assessment of the usability of the MX content for improving health and fitness in 212 preschool children and their families. Mission X is fortunate to have the support of the NASA, ESA and JAXA astronaut corps. In MX15, they participated in the opening and closing events as well as while on-board the International Space Station. Italian Astronaut Samantha Cristoretti participated as the MX15 Astronaut Ambassador for health and fitness providing the opening video and other videos from ISS. United Kingdom Astronaut Tim Peake and US Astronaut Kate Rubins have agreed to be the MX Ambassadors for 2016 and 2017 respectively. The MX15 International Working Group Face-to-Face meeting and Closing Event were held at the Agenzia Spaziale

  19. Statistical Machine Translation of Japanese

    DTIC Science & Technology

    2007-03-01

    hiragana and katakana) syllabaries…………………….. 20 3.2 Sample Japanese sentence showing kanji and kana……………………... 21 3.5 Japanese formality example...syllabary. 19 Figure 3.1. Japanese kana syllabaries, hiragana for native Japanese words, word endings, and particles, and katakana for foreign...Figure 3.2. Simple Japanese sentence showing the use of kanji, hiragana , and katakana. Kanji is used for nouns and verb, adjective, and

  20. Lessons Learned through the Development and Publication of AstroImageJ

    NASA Astrophysics Data System (ADS)

    Collins, Karen

    2018-01-01

    As lead author of the scientific image processing software package AstroImageJ (AIJ), I will discuss the reasoning behind why we decided to release AIJ to the public, and the lessons we learned related to the development, publication, distribution, and support of AIJ. I will also summarize the AIJ code language selection, code documentation and testing approaches, code distribution, update, and support facilities used, and the code citation and licensing decisions. Since AIJ was initially developed as part of my graduate research and was my first scientific open source software publication, many of my experiences and difficulties encountered may parallel those of others new to scientific software publication. Finally, I will discuss the benefits and disadvantages of releasing scientific software that I now recognize after having AIJ in the public domain for more than five years.

  1. Acculturation of Personality: A Three-Culture Study of Japanese, Japanese Americans, and European Americans.

    PubMed

    Güngör, Derya; Bornstein, Marc H; De Leersnyder, Jozefien; Cote, Linda; Ceulemans, Eva; Mesquita, Batja

    2013-07-01

    The present study tests the hypothesis that involvement with a new culture instigates changes in personality of immigrants that result in (a) better fit with the norms of the culture of destination and (b) reduced fit with the norms of the culture of origin. Participants were 40 Japanese first-generation immigrants to the United States, 57 Japanese monoculturals, and 60 U.S. monoculturals. All participants completed the Jackson Personality Inventory (JPI) as a measure of the Big Five; immigrants completed the Japanese American Acculturation Scale. Immigrants' fits with the cultures of destination and origin were calculated by correlating Japanese American mothers' patterns of ratings on the Big Five with the average patterns of ratings of European Americans and Japanese on the same personality dimensions. Japanese Americans became more "American" and less "Japanese" in their personality as they reported higher participation in the U.S. culture. The results support the view that personality can be subject to cultural influence.

  2. Simulating Shock Triggered Star Formation with AstroBEAR2.0

    NASA Astrophysics Data System (ADS)

    Li, Shule; Frank, Adam; Blackman, Eric

    2013-07-01

    Star formation can be triggered by the compression from shocks running over stable clouds. Triggered star formation is a favored explanation for the traces of SLRI's in our solar system. Previous research has shown that when parameters such as shock speed are within a certain range, the gravitational collapse of otherwise stable, dense cloud cores is possible. However, these studies usually focus on the precursors of star formation, and the conditions for the triggering. We use AstroBEAR2.0 code to simulate the collapse and subsequent evolution of a stable Bonnor-Ebert cloud by an incoming shock. Through our simulations, we show that interesting physics happens when the newly formed star interacts with the cloud residue and the post-shock flow. We identify these interactions as controlled by the initial conditions of the triggering and study the flow pattern as well as the evolution of important physics quantities such as accretion rate and angular momentum.

  3. Current practice of preoperative fasting: a nationwide survey in Japanese anesthesia-teaching hospitals.

    PubMed

    Shime, Nobuaki; Ono, Akira; Chihara, Eiichi; Tanaka, Yoshifumi

    2005-01-01

    We conducted a nationwide survey to investigate the current practice of the preoperative fasting period in Japanese anesthesia-teaching hospitals. Acceptance of the clinical practice guideline published by the American Society of Anesthesiologists (ASA) was also surveyed. A written type of questionnaire was mailed to 795 teaching hospitals. The response rate of the questionnaires was 57%. Most (>90%) of the respondents had been applying a longer fasting period than the ASA-recommended minimum period specifically in adults; the median duration of fasting was 12-13 h for solids and 6-9 h for liquids. Children or infants were allowed a more liberalized fasting period, frequently being permitted an oral intake of clear fluids up to 3 h before anesthesia. The incidence of pulmonary aspiration was 1/12,500 general anesthesia cases, and application of the ASA guideline appeared not to affect the incidence. Japanese anesthesiologists were still reluctant to depart from their traditional long fasting periods, as most of them could find little benefit in reducing the fasting periods. The long preoperative fasting period is still common practice in Japanese anesthesia-teaching hospitals. A national guideline for a preoperative fasting policy is worth exploring to change the current practice.

  4. Helicobacter pylori dupA gene is not associated with clinical outcomes in the Japanese population.

    PubMed

    Nguyen, L T; Uchida, T; Tsukamoto, Y; Kuroda, A; Okimoto, T; Kodama, M; Murakami, K; Fujioka, T; Moriyama, M

    2010-08-01

    The dupA gene of Helicobacter pylori was suggested to be a risk factor for duodenal ulcer but protective against gastric cancer. The present study aimed to re-examine the role of dupA in H. pylori-infected Japanese patients. We found that dupA status was not associated with any gastroduodenal disease, histological score of chronic gastritis or with the extent of interleukin-8 production from gastric cell lines. These results indicate that dupA is unlikely to be a virulence factor of H. pylori in the Japanese population.

  5. Unpiloted Japanese Kounotori HTV-2 Transfer Vehicle

    NASA Image and Video Library

    2011-01-27

    ISS026-E-020844 (27 Jan. 2011) --- The unpiloted Japanese Kounotori2 H-II Transfer Vehicle (HTV2) approaches the International Space Station. The Japan Aerospace Exploration Agency (JAXA) launched HTV2 aboard an H-IIB rocket from the Tanegashima Space Center in southern Japan at 12:37 a.m. (EST) (2:27 p.m. Japan time) on Jan. 22, 2011. HTV2 is the second unpiloted cargo ship launched by JAXA to the station and will deliver more than four tons of food and supplies to the station and its crew members.

  6. Unpiloted Japanese Kounotori HTV-2 Transfer Vehicle

    NASA Image and Video Library

    2011-01-27

    ISS026-E-020916 (27 Jan. 2011) --- The unpiloted Japanese Kounotori2 H-II Transfer Vehicle (HTV2) approaches the International Space Station. The Japan Aerospace Exploration Agency (JAXA) launched HTV2 aboard an H-IIB rocket from the Tanegashima Space Center in southern Japan at 12:37 a.m. (EST) (2:27 p.m. Japan time) on Jan. 22, 2011. HTV2 is the second unpiloted cargo ship launched by JAXA to the station and will deliver more than four tons of food and supplies to the space station and its crew members.

  7. Americans and Japanese Nonverbal Communication. Linguistic Communications 15 (Papers in Japanese Linguistics 3).

    ERIC Educational Resources Information Center

    Taylor, Harvey M.

    Each culture has its own nonverbal as well as its verbal language. Movements, gestures and sounds have distinct and often conflicting interpretations in different countries. For Americans communicating with Japanese, misunderstandings are of two types: Japanese behavior which is completely new to the American, and Japanese behavior which is…

  8. AstroCom NYC: A Partnership to Support Underrepresented Minorities in Astronomy and Astrophysics Research and Education

    NASA Astrophysics Data System (ADS)

    Ford, K. E. Saavik; Paglione, Timothy; Robbins, Dennis; Mac Low, Mordecai-Mark; Agueros, Marcel A.

    2015-01-01

    AstroCom NYC is an NSF-funded partnership between astronomers at The City University of New York (CUNY), The American Museum of Natural History (AMNH) and Columbia University, designed to increase recruitment and retention of underrepresented minorities in astronomy and astrophysics. I will discuss the major program elements, including: recruitment, student selection, a 'Methods of Scientific Research' (MSR) course, summer research experience and ongoing structured mentoring. I will also discuss how the programs are integrated into each institution and present progress updates from our first two years.

  9. Detraditionalisation: Japanese Students in the USA.

    ERIC Educational Resources Information Center

    Ueno, Junko

    2001-01-01

    Focuses on the identity formation of Japanese students temporarily living in the United States. The students were enrolled in Japanese Saturday school and in American public schools. Student interviews reveal a mixture of Japanese and American characteristics. Suggests Japanese students do not reject either culture--Japanese or American--but that…

  10. Planning and Scheduling of Payloads of AstroSat During Initial and Normal Phase Observations

    NASA Astrophysics Data System (ADS)

    Pandiyan, R.; Subbarao, S. V.; Nagamani, T.; Rao, Chaitra; Rao, N. Hari Prasad; Joglekar, Harish; Kumar, Naresh; Dumpa, Surya Ratna Prakash; Chauhan, Anshu; Dakshayani, B. P.

    2017-06-01

    On 28th September 2015, India launched its first astronomical space observatory AstroSat, successfully. AstroSat carried five astronomy payloads, namely, (i) Cadmium Zinc Telluride Imager (CZTI), (ii) Large Area X-ray Proportional Counter (LAXPC), (iii) Soft X-ray Telescope (SXT), (iv) Ultra Violet Imaging Telescope (UVIT) and (v) Scanning Sky Monitor (SSM) and therefore, has the capability to observe celestial objects in multi-wavelength. Four of the payloads are co-aligned along the positive roll axis of the spacecraft and the remaining one is placed along the positive yaw axis direction. All the payloads are sensitive to bright objects and specifically, require avoiding bright Sun within a safe zone of their bore axes in orbit. Further, there are other operational constraints both from spacecraft side and payloads side which are to be strictly enforced during operations. Even on-orbit spacecraft manoeuvres are constrained to about two of the axes in order to avoid bright Sun within this safe zone and a special constrained manoeuvre is exercised during manoeuvres. The planning and scheduling of the payloads during the Performance Verification (PV) phase was carried out in semi-autonomous/manual mode and a complete automation is exercised for normal phase/Guaranteed Time Observation (GuTO) operations. The process is found to be labour intensive and several operational software tools, encompassing spacecraft sub-systems, on-orbit, domain and environmental constraints, were built-in and interacted with the scheduling tool for appropriate decision-making and science scheduling. The procedural details of the complex scheduling of a multi-wavelength astronomy space observatory and their working in PV phase and in normal/GuTO phases are presented in this paper.

  11. Japanese-English language equivalence of the Cognitive Abilities Screening Instrument among Japanese-Americans.

    PubMed

    Gibbons, Laura E; McCurry, Susan; Rhoads, Kristoffer; Masaki, Kamal; White, Lon; Borenstein, Amy R; Larson, Eric B; Crane, Paul K

    2009-02-01

    The Cognitive Abilities Screening Instrument (CASI) was designed for use in cross-cultural studies of Japanese and Japanese-American elderly in Japan and the U.S.A. The measurement equivalence in Japanese and English had not been confirmed in prior studies. We analyzed the 40 CASI items for differential item functioning (DIF) related to test language, as well as self-reported proficiency with written Japanese, age, and educational attainment in two large epidemiologic studies of Japanese-American elderly: the Kame Project (n=1708) and the Honolulu-Asia Aging Study (HAAS; n = 3148). DIF was present if the demographic groups differed in the probability of success on an item, after controlling for their underlying cognitive functioning ability. While seven CASI items had DIF related to language of testing in Kame (registration of one item; recall of one item; similes; judgment; repeating a phrase; reading and performing a command; and following a three-step instruction), the impact of DIF on participants' scores was minimal. Mean scores for Japanese and English speakers in Kame changed by <0.1 SD after accounting for DIF related to test language. In HAAS, insufficient numbers of participants were tested in Japanese to assess DIF related to test language. In both studies, DIF related to written Japanese proficiency, age, and educational attainment had minimal impact. To the extent that DIF could be assessed, the CASI appeared to meet the goal of measuring cognitive function equivalently in Japanese and English. Stratified data collection would be needed to confirm this conclusion. DIF assessment should be used in other studies with multiple language groups to confirm that measures function equivalently or, if not, form scores that account for DIF.

  12. Mission-oriented requirements for updating MIL-H-8501. Volume 1: STI proposed structure. [military rotorcraft

    NASA Technical Reports Server (NTRS)

    Clement, W. F.; Hoh, R. H.; Ferguson, S. W., III; Mitchell, D. G.; Ashkenas, I. L.; Mcruer, D. T.

    1985-01-01

    The structure of a new flying and ground handling qualities specification for military rotorcraft is presented. This preliminary specification structure is intended to evolve into a replacement for specification MIL-H-8501A. The new structure is designed to accommodate a variety of rotorcraft types, mission flight phases, flight envelopes, and flight environmental characteristics and to provide criteria for three levels of flying qualities, a systematic treatment of failures and reliability, both conventional and multiaxis controllers, and external vision aids which may also incorporate synthetic display content. Existing and new criteria were incorporated into the new structure wherever they could be substantiated.

  13. Mission X: Train Like an Astronaut. International Fitness Challenge

    NASA Technical Reports Server (NTRS)

    Lloyd, Charles

    2011-01-01

    The Mission X, Train like an Astronaut, pilot project was a 2-year effort directed by the International Life Science Working Group. The pilot was funded by the Human Research Program and was lead by the Human Research Program Education and Outreach (HRPEO) project and supported by a group of space agencies providing in-kind resources. The aim was to identify an international educational outreach concept that would promote a life science topic utilizing the education and outreach expertise of the various space agencies working on the utilization of the International Space Station. This in turn serves as an inspiration for the younger generation to aspire to go further in school, and provides insight into the capability of a participating country to ensure the effort provided value for their communities and children. The pilot project developed the necessary tools to promote communications between the partners and to use materials and expertise from all the countries? space agencies. The Mission X Website (trainlikeanastronaut.org) provided a single repository for the educational activities as well as a place for the Challenge Teams to provide their progress in the international fitness challenge. It also added to the International flavor as different countries were able to share and learn about what was happening with all those involved in the 6-week challenge period. A point system was utilized to promote constructive, cooperative competition in which 4164 students participated. The points were used to help FitKid, Astro Charlie, "Walk-To-The-Moon". The 18 physical and educational Mission X activities were made available on the Mission X website in seven languages. The Mission X pilot project was considered a success in 1) the design, development, and implementation of the multi-language website, 2) the expansion of healthy lifestyle awareness, and 3) the concept for drawing an international educational community together to highlight global topics in association

  14. Aging gracefully: a comparative study of Japanese and Malaysian women aged 65-75.

    PubMed

    Kok, Jin Kuan; Yap, Yuet Ngor

    2014-12-01

    Longer lives and extended retirement have created a 'young old age' stage of life. How people spend their "young old age" has become increasingly important. This research aims to investigate the different ageing experiences of Japanese and Malaysian women and the activities they engaged in their "young old age". In-depth interviews were conducted to collect data and an adapted grounded theory approach was used for data analysis. Findings reveal many common characteristics for both groups of research participants. The emerging themes show that Japanese and Malaysian Chinese have different life missions evident in their daily activities, one passing on culture and the other passing on family values and life experience. They also differ in their choice of living arrangement (independent versus dependent/interdependent), attitudes to life (fighting versus accepting) and activities in which to engage (aesthetic pursuits versus family oriented activities). Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Solar-A Prelaunch Mission Operation Report (MOR)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Solar-A mission is a Japanese-led program with the participation of the United States and the United Kingdom. The Japanese Institute of Space and Astronautical Science (ISAS) is providing the Solar-A spacecraft, two of the four science instruments, the launch vehicle and launch support, and the principal ground station with Operational Control Center. NASA is providing a science instrument, the Soft X-ray Telescope (SXT)and tracking support using the Deep Space Network (DSN) ground stations. The United Kingdom s Science and Engineering Research Council (SERC) provides the Bragg Crystal Spectrometer. The Solar-A mission will study solar flares using a cluster of instruments on a satellite in a 600 km altitude, 31 degree inclination circular orbit. The emphasis of the mission is on imaging and spectroscopy of hard and soft X-rays. The principal instruments are a pair of X-ray imaging instruments, one for the hard X-ray range and one for the soft X-ray range. The Hard X-Ray Telescope (HXT), provided by ISAS, operates in the energy range of 10-100 keV and uses an array of modulation collimators to record Fourier transform images of the non-thermal and hot plasmas that are formed during the early phases of a flare. These images are thought to be intimately associated with the sites of primary energy release. The Soft X-Ray Telescope (SXT), jointly provided by NASA and ISAS, operates in the wavelength range of 3-50 Angstroms and uses a grazing incidence mirror to form direct images of the lower temperature (but still very hot) plasmas that form as the solar atmosphere responds to the injection of energy. The SXT instrument is a joint development effort between the Lockheed Palo Alto Research Laboratory and the National Astronomical Observatory of Japan. The U.S. effort also involves Stanford University, the University of California at Berkeley and the University of Hawaii, who provide support in the areas of theory, data analysis and interpretation, and ground

  16. The State-of-the-art HST Astro-photometric Analysis of the Core of ω Centauri. I. The Catalog

    NASA Astrophysics Data System (ADS)

    Bellini, A.; Anderson, J.; Bedin, L. R.; King, I. R.; van der Marel, R. P.; Piotto, G.; Cool, A.

    2017-06-01

    We have constructed the most comprehensive catalog of photometry and proper motions ever assembled for a globular cluster (GC). The core of ωCen has been imaged over 650 times through WFC3's UVIS and IR channels for the purpose of detector calibration. There exist from 4 to over 60 exposures through each of 26 filters stretching continuously from F225W in the UV to F160W in the infrared. Furthermore, the 11 yr baseline between these data and a 2002 ACS survey has allowed us to more than double the proper-motion accuracy and triple the number of well-measured stars compared to our previous groundbreaking effort. This totally unprecedented complete spectral coverage of over 470,000 stars within the cluster's core, from the tip of the red giant branch down to the white dwarfs, provides the best astro-photometric observational database yet to understand the multiple-population phenomenon in any GC. In this first paper of the series, we describe in detail the data-reduction processes and deliver the astro-photometric catalog to the astronomical community. Based on archival observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555.

  17. [Japanese epidemiologic investigation for non-steroidal anti-inflammatory drugs-induced ulcers].

    PubMed

    Miyake, Kazumasa; Sakamoto, Choitsu

    2011-06-01

    This review summaried epidemiologic investigation for non-steroidal anti-inflammatory drugs (NSAIDs)-induced ulcers to focus on the Japanese evidence. In Japan, national health insurance does not cover procedures that prevent or lower the risk for NSAIDs-induced ulcer. In NSAIDs treatment to patients with risk factors, it is desirable to administer antiulcer agents. However, in Japan, there are no large-scale studies on the efficacy of co-medication such as proton pump inhibitors, prostaglandin analogs (misoprostol) or histamine-H2 receptor antagonists or on the effectiveness of H. pylori eradication or selective COX-2 antagonists. In the future, large-scale clinical studies should be conducted to accumulate high quality evidence including cost-effectiveness and overall safety including cardiovascular events, because Japanese differ from Westerners in several genetical or acquired factors.

  18. Effect of sex on histological and histochemical structures of different parts of the kidney in Japanese quail.

    PubMed

    Mobini, Behzad; Abdollahi, MohammadHossein

    2016-09-01

    The aim of the present study was to investigate the effect of gender on the histological and histochemical structures of different anatomical regions of the kidney in Japanese quail (Coturnix japonica). Tissue samples from cranial, middle and caudal divisions of each kidney were obtained from 20 male and 20 female adult, healthy Japanese quail. The sections stained with hematoxylin & eosin ( H & E: ), Masson's trichrome, Verhoeff's, Alcian blue (pH 2.5), Periodic acid-Schiff, and Gomori's method for reticulum. Unusual findings of the kidney in Japanese quail were the presence of three types of nephrons, all the connective tissue fibers in capsule and interlobular septa and AB-reactions of the proximal convoluted cells. No significant sex-based differences were found. The various histological structures of the kidney showed no significant differences among different divisions of the left and right kidneys. It is concluded that the general histological and histochemical properties of the kidney in Japanese quail were similar to those of chickens and some other species, but that there were also some differences. One of the major differences was brush border of interdigitating microvilli on luminal surface of collecting ducts in Japanese quail. © 2016 Poultry Science Association Inc.

  19. The Role of Astro-Geodetic in Precise Guidance of Long Tunnels

    NASA Astrophysics Data System (ADS)

    Mirghasempour, M.; Jafari, A. Y.

    2015-12-01

    One of prime aspects of surveying projects is guidance of paths of a long tunnel from different directions and finally ending all paths in a specific place. This kind of underground surveying, because of particular condition, has some different points in relation to the ground surveying, including Improper geometry in underground transverse, low precise measurement in direction and length due to condition such as refraction, distinct gravity between underground point and corresponding point on the ground (both value and direction of gravity) and etc. To solve this problems, astro-geodetic that is part of geodesy science, can help surveying engineers. In this article, the role of astronomy is defined in two subjects: 1- Azimuth determination of directions from entrance and exit nets of tunnel and also calibration of gyro-theodolite to use them in Underground transvers: By astronomical methods, azimuth of directions can be determine with an accuracy of 0.5 arcsecond, whereas, nowadays, no gyroscope can measure the azimuth in this accuracy; For instance, accuracy of the most precise gyroscope (Gyromat 5000) is 1.2 cm over a distance of one kilometre (2.4 arcsecond). Furthermore, the calibration methods that will be mention in this article, have significance effects on underground transverse. 2- Height relation between entrance point and exit point is problematic and time consuming; For example, in a 3 km long tunnel ( in Arak- Khoram Abad freeway), to relate entrance point to exit point, it is necessary to perform levelling about 90 km. Other example of this boring and time consuming levelling is in Kerman tunnel. This tunnel is 36 km length, but to transfer the entrance point height to exit point, 150 km levelling is needed. According to this paper, The solution for this difficulty is application of astro-geodetic and determination of vertical deflection by digital zenith camera system TZK2-D. These two elements make possible to define geoid profile in terms of

  20. An Investigation on the Use of Different Centroiding Algorithms and Star Catalogs in Astro-Geodetic Observations

    NASA Astrophysics Data System (ADS)

    Basoglu, Burak; Halicioglu, Kerem; Albayrak, Muge; Ulug, Rasit; Tevfik Ozludemir, M.; Deniz, Rasim

    2017-04-01

    In the last decade, the importance of high-precise geoid determination at local or national level has been pointed out by Turkish National Geodesy Commission. The Commission has also put objective of modernization of national height system of Turkey to the agenda. Meanwhile several projects have been realized in recent years. In Istanbul city, a GNSS/Levelling geoid was defined in 2005 for the metropolitan area of the city with an accuracy of ±3.5cm. In order to achieve a better accuracy in this area, "Local Geoid Determination with Integration of GNSS/Levelling and Astro-Geodetic Data" project has been conducted in Istanbul Technical University and Bogazici University KOERI since January 2016. The project is funded by The Scientific and Technological Research Council of Turkey. With the scope of the project, modernization studies of Digital Zenith Camera System are being carried on in terms of hardware components and software development. Accentuated subjects are the star catalogues, and centroiding algorithm used to identify the stars on the zenithal star field. During the test observations of Digital Zenith Camera System performed between 2013-2016, final results were calculated using the PSF method for star centroiding, and the second USNO CCD Astrograph Catalogue (UCAC2) for the reference star positions. This study aims to investigate the position accuracy of the star images by comparing different centroiding algorithms and available star catalogs used in astro-geodetic observations conducted with the digital zenith camera system.

  1. A paradigm shift to enable more cost-effective space science telescope missions in the upcoming decades

    NASA Astrophysics Data System (ADS)

    Matthews, Gary; Havey, Keith, Jr.; Egerman, Robert

    2010-07-01

    Modern astronomy currently is dealing with an exciting but challenging dichotomy. On one hand, there has been and will continue to be countless advances in scientific discovery, but on the other the astronomical community is faced with what unfortunately is considered by many to be an insurmountable budgetary impasse for the foreseeable future. The National Academy of Sciences' Astro2010: Decadal Survey has been faced with the difficult challenge of prioritizing sciences and missions for the upcoming decade while still allowing room for new, yet to be discovered opportunities to receive funding. To this end, we propose the consideration of a paradigm shift to the astronomical community that may enable more cost efficient space-based telescope missions to be funded and still provide a high science return per dollar invested. The proposed paradigm shift has several aspects that make it worthy of consideration: 1) Telescopes would leverage existing Commercial Remote Sensing Satellite (CRSS) Architectures such as the 1.1m NextView systems developed by ITT, GeoEye-1, and WorldView-2, or the 0.7m IKONOS system (or perhaps other proprietary systems); 2) By using large EELV class fairings, multiple telescopes with different science missions could be flown on a single spacecraft bus sharing common features such as communications and telemetry (current Earth Science missions in early development phases are considering this approach); 3) Multiple smaller observatories (with multiple spacecraft) could be flown in a single launch vehicle for instances where the different science payloads had incompatible requirements; and 4) by leveraging CRSS architectures, vendors could supply telescopes at a fixed price. Here we discuss the implications and risks that the proposed paradigm shift would carry.

  2. STS-88 Mission Commander Cabana looks at the mission payload Unity at pad

    NASA Technical Reports Server (NTRS)

    1998-01-01

    At Launch Pad 39A, STS-88 Mission Commander Robert D. Cabana gets a close look at the Unity connecting module that is in the payload bay of the orbiter Endeavour. Cabana and the STS-88 crew arrived at KSC in the early morning hours of Nov. 30 for pre- launch preparations. The other crew members are Pilot Frederick W. 'Rick' Sturckow, Mission Specialist Nancy J. Currie, Mission Specialist James H. Newman and Mission Specialist Sergei Konstantinovich Krikalev, a Russian cosmonaut. The scheduled lift-off is at 3:56 a.m. on Dec. 3. Unity is the primary payload of the mission, which is the first U.S. launch for the International Space Station. The crew will be mating Unity with the Russian-built Zarya control module already in orbit. In addition to Unity, two small replacement electronics boxes are on board for possible repairs to Zarya batteries. Endeavour is expected to land at KSC at 10:17 p.m. on Monday, Dec. 14.

  3. STS-35 Astronomy Laboratory 1 (ASTRO-1) in OV-102's payload bay at KSC

    NASA Image and Video Library

    1990-05-07

    S90-36708 (7 May 1990) --- STS-35 Astronomy Laboratory 1 (ASTRO-1) view shows its telescopes, instrument pointing system (IPS), and support equipment installed in Columbia's, Orbiter Vehicle (OV) 102's, payload bay (PLB) at the Kennedy Space Center (KSC) Orbiter Processing Facility (OPF). In the foreground is the Spacelab Pallet System (SPS) igloo. The stowed IPS with its three ultraviolet telescopes appears in the center of the picture. In the background, the Broad Band X Ray Telescope (BBXRT) two axis pointing system (TAPS) is barely visible. View provided by KSC with alternate number KSC-90PC-423.

  4. Bangladesh mission sees great benefits.

    PubMed

    1998-10-01

    A JOICFP 2-member mission visited Bangladesh during August 9-22 to monitor the progress of cooperative projects in Narsingdhi and Feni districts, implemented by the Family Planning Association of Bangladesh (FPAB), and to discuss the implementation of Postal Savings for International Voluntary Aid (POSIVA) funds. POSIVA is in its 4th year of providing funds to Bangladesh. The Population Reference Bureau's (PRB) Japan Representative joined the mission on a study tour during August 9-17 to directly observe reproductive health and family planning, women's empowerment, and micro-credit at the grassroots level. The representative hopes to raise the Japanese public's awareness of international nongovernmental organization (NGO) partnerships in order to encourage them to help rural populations in developing countries. The offices of the Ministry of Health and Family Welfare, the International Secretariat of Partners in Population and Development, UNFPA, Population Council, OECF, the Japan International Cooperation Agency (JICA), and the Grammin Bank were visited, as well as the project areas of Panchdona and Dhalia Unions of the Integrated Family Development Project. ODA assistance should be strengthened to improve grassroots activities, with a focus upon women's empowerment, maternal and child health, and alleviating poverty through NGOs working together with communities. A project to build capacity in reproductive health in Jessore District is described.

  5. Solar neutron observations with ChubuSat-2 satellite

    NASA Astrophysics Data System (ADS)

    Yamaoka, Kazutaka

    2016-07-01

    Solar neutron observation is a key in understanding of ion accerelation mechanism in the Sun surface since neutrons are hardly affected by magnetic field around the Sun and intersteller mediums unlike charged particles. However, there was only a few tenth detections so far since its discovery in 1982. Actually SEDA-AP Fiber detector (FIB) onboard the International Space Station (ISS) was suffered from a high neutron background produced by the ISS itself. ChubuSat is a series of 50-kg class microsatellite jointly depeloped by universities (Nagoya university and Daido university) and aerospace companies at the Chubu area of central Japan. The ChubuSat-2 is the second ChubuSat following the ChubuSat-1 which was launched by Russian DNEPR rocket on November 6, 2014. It was selected as one of four piggyback payloads of the X-ray astronomy satellite ASTRO-H in 2014 summer, and will be launched by the H-IIA launch vehcles from from JAXA Tanegashima Space Center (TNSC) in February 2016. The ChubuSat-2 carries a mission instrument, radiation detector (RD). The main mission of ChubuSat-2 is devoted for monitoring neutrons and gamma-rays which can be background source for ASTRO-H celestrial observations with the RD. The mission also involves a function of solar neutron observations which were originally proposed by graduate students who join the leadership development program for space exploration and research, program for leading graduate schools at Nagoya University. The RD has a similar detection area and efficiency to those of the SEDA-AP FIB, but is expected to have lower backgrounthan the ISS thanks to much smaller mass of the micro-satellite. In this paper, we will describe details of ChubuSat-2 satellite and RD, and in-orbit performance of RD.

  6. Japanese Encephalitis: Frequently Asked Questions

    MedlinePlus

    ... the vaccine, what should I do? What is Japanese encephalitis? Japanese encephalitis (JE) is a potentially severe ... cause inflammation of the brain (encephalitis). Where does Japanese encephalitis occur? JE occurs in Asia and parts ...

  7. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-27

    A Japanese H-IIA rocket with the NASA-Japan Aerospace Exploration Agency (JAXA), Global Precipitation Measurement (GPM) Core Observatory onboard, is seen on launch pad 1 of the Tanegashima Space Center, Friday, Feb. 28, 2014, Tanegashima, Japan. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  8. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-28

    A Japanese H-IIA rocket with the NASA-Japan Aerospace Exploration Agency (JAXA), Global Precipitation Measurement (GPM) Core Observatory onboard, is seen on launch pad 1 of the Tanegashima Space Center, Friday, Feb. 28, 2014, Tanegashima, Japan. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  9. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-27

    A Japanese H-IIA rocket with the NASA-Japan Aerospace Exploration Agency (JAXA), Global Precipitation Measurement (GPM) Core Observatory onboard is seen on launch pad 1 of the Tanegashima Space Center, Thursday, Feb. 27, 2014, Tanegashima, Japan. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  10. NASDA's view of ground control in mission operations

    NASA Technical Reports Server (NTRS)

    Tateno, Satoshi

    1993-01-01

    This paper presents an overview of the present status and future plans of the National Space Development Agency of Japan 's (NASDA's) ground segment and related space missions. The described ground segment consists of the tracking and data acquisition (T&DA) system and the Earth Observation Center (EOC) system. In addition to these systems, the current plan of the Engineering Support Center (ESC) for the Japanese Experiment Module (JEM) attached to Space Station Freedom is introduced. Then, NASDA's fundamental point of view on the future trend of operations and technologies in the coming new space era is discussed. Within the discussion, the increasing importance of international cooperation is also mentioned.

  11. Space Shuttle Projects

    NASA Image and Video Library

    1989-11-27

    The primary payload for Space Shuttle Mission STS-35, launched December 2, 1990, was the ASTRO-1 Observatory. Designed for round the clock observation of the celestial sphere in ultraviolet and X-ray astronomy, ASTRO-1 featured a collection of four telescopes: the Hopkins Ultraviolet Telescope (HUT); the Wisconsin Ultraviolet Photo- Polarimeter Experiment (WUPPE); the Ultraviolet Imaging Telescope (UIT); and the Broad Band X-ray Telescope (BBXRT). Ultraviolet telescopes mounted on Spacelab elements in cargo bay were to be operated in shifts by flight crew. Loss of both data display units (used for pointing telescopes and operating experiments) during mission impacted crew-aiming procedures and forced ground teams at Marshall Space Flight Center to aim ultraviolet telescopes with fine-tuning by flight crew. BBXRT, also mounted in cargo bay, was directed from outset by ground-based operators at Goddard Space Flight Center. This is the logo or emblem that was designed to represent the ASTRO-1 payload.

  12. Official STS-67 preflight crew portrait

    NASA Image and Video Library

    1994-12-01

    STS067-S-002 (December 1994) --- Five NASA astronauts and two payload specialists from the private sector have been named to fly aboard the Space Shuttle Endeavour for the STS-67/ASTRO-2 mission, scheduled for March 1995. In front are astronauts (left to right) Stephen S. Oswald, mission commander; Tamara E. Jernigan, payload commander; and William G. Gregory, pilot. In the back are (left to right) Ronald A. Parise, payload specialist; astronauts Wendy B. Lawrence, and John M. Grunsfeld, both mission specialists; and Samuel T. Durrance, payload specialist. Dr. Durrance is a research scientist in the Department of Physics and Astronomy at Johns Hopkins University, Baltimore, Maryland. Dr. Parise is a senior scientist in the Space Observatories Department, Computer Sciences Corporation, Silver Spring, Maryland. Both payload specialist's flew aboard the Space Shuttle Columbia for the STS-35/ASTRO-1 mission in December 1990.

  13. Acculturation of Personality: A Three-Culture Study of Japanese, Japanese Americans, and European Americans

    PubMed Central

    Güngör, Derya; Bornstein, Marc H.; De Leersnyder, Jozefien; Cote, Linda; Ceulemans, Eva; Mesquita, Batja

    2013-01-01

    The present study tests the hypothesis that involvement with a new culture instigates changes in personality of immigrants that result in (a) better fit with the norms of the culture of destination and (b) reduced fit with the norms of the culture of origin. Participants were 40 Japanese first-generation immigrants to the United States, 57 Japanese monoculturals, and 60 U.S. monoculturals. All participants completed the Jackson Personality Inventory (JPI) as a measure of the Big Five; immigrants completed the Japanese American Acculturation Scale. Immigrants’ fits with the cultures of destination and origin were calculated by correlating Japanese American mothers’ patterns of ratings on the Big Five with the average patterns of ratings of European Americans and Japanese on the same personality dimensions. Japanese Americans became more “American” and less “Japanese” in their personality as they reported higher participation in the U.S. culture. The results support the view that personality can be subject to cultural influence. PMID:23935211

  14. STS-65 Mission Specialist Chiao floats in a single person raft in JSC's WETF

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Having just deployed a small, single-person life raft, astronaut and STS-65 Mission Specialist Leroy Chiao, outfitted in a launch and entry suit (LES) and launch and entry helmet (LEH), floats in a 25-feet deep pool at the Johnson Space Center (JSC). The astronaut was in the Weightless Environment Training Facility (WETF) Bldg 29 pool for a training exercise, designed to familiarize crewmembers with procedures to call on in the event of an emergency egress situation with the Space Shuttle. Chiao will join five other NASA astronauts and a Japanese payload specialist for the second International Microgravity Laboratory 2 (IML-2) mission aboard the Space Shuttle Columbia, Orbiter Vehicle (OV) 102, later this year.

  15. STS-47 Japanese Payload Specialist Mohri and backups during Homestead training

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-47 Endeavour, Orbiter Vehicle (OV) 105, Japanese Payload Specialist Mamoru Mohri (far left), backup Payload Specialist Takao Doi (center), and backup Payload Specialist Chiaki Mukai (right) participate in water survival training at Homestead Air Force Base, Florida. Dockside, Mohri and Mukai wash the salt water from their personalized helmets after a water exercise. The three-day course was attended by the STS-47 prime and alternate payload specialists shortly after they were announced for the scheduled summer of 1992 Spacelab Japan (SLJ) mission. Mohri, Doi, and Mukai all represent the National Space Development Agency of Japan (NASDA).

  16. Study of X-ray transients with Scanning Sky Monitor (SSM) onboard AstroSat

    NASA Astrophysics Data System (ADS)

    Ramadevi, M. C.; Ravishankar, B. T.; Sarwade, Abhilash R.; Vaishali, S.; Iyer, Nirmal Kumar; Nandi, Anuj; Girish, V.; Agarwal, Vivek Kumar; Baby, Blessy Elizabeth; Hasan, Mohammed; Seetha, S.; Bhattacharya, Dipankar

    2018-02-01

    Scanning Sky Monitor (SSM) onboard AstroSat is an X-ray sky monitor in the energy range 2.5-10 keV. SSM scans the sky for X-ray transient sources in this energy range of interest. If an X-ray transient source is detected in outburst by SSM, the information will be provided to the astronomical community for follow-up observations to do a detailed study of the source in various other bands. SSM instrument, since its power-ON in orbit, has observed a number of X-ray sources. This paper discusses observations of few X-ray transients by SSM. The flux reported by SSM for few sources during its Performance Verification phase (PV phase) is studied and the results are discussed.

  17. STS-35 ASTRO-1 telescopes documented in OV-102's payload bay (PLB)

    NASA Image and Video Library

    1990-12-10

    STS035-13-008 (2-10 Dec. 1990) --- The various components of the Astro-1 payload are seen backdropped against the blue and white Earth in this 35mm scene photographed through Columbia's aft flight deck windows. Parts of the Hopkins Ultraviolet Telescope (HUT), Ultraviolet Imaging Telescope (UIT) and the Wisconsin Ultraviolet Photo-Polarimeter Experiment (WUPPE) are visible on the Spacelab Pallet in the foreground. The Broad Band X-Ray Telescope (BBXRT) is behind this pallet and is not visible in this scene. The smaller cylinder in the foreground is the "Igloo," which is a pressurized container housing the Command and Data Management System, which interfaces with the in-cabin controllers to control the Instrument Pointing System (IPS) and the telescopes.

  18. Nationwide surveillance of bacterial respiratory pathogens conducted by the surveillance committee of Japanese Society of Chemotherapy, the Japanese Association for Infectious Diseases, and the Japanese Society for Clinical Microbiology in 2012: General view of the pathogens' antibacterial susceptibility.

    PubMed

    Yanagihara, Katsunori; Watanabe, Akira; Aoki, Nobuki; Matsumoto, Tetsuya; Yoshida, Masaki; Sato, Junko; Wakamura, Tomotaro; Sunakawa, Keisuke; Kadota, Junichi; Kiyota, Hiroshi; Iwata, Satoshi; Kaku, Mitsuo; Hanaki, Hideaki; Ohsaki, Yoshinobu; Fujiuchi, Satoru; Takahashi, Manabu; Takeuchi, Kenichi; Takeda, Hiroaki; Ikeda, Hideki; Miki, Makoto; Nakanowatari, Susumu; Takahashi, Hiroshi; Utagawa, Mutsuko; Nishiya, Hajime; Kawakami, Sayoko; Morino, Eriko; Takasaki, Jin; Mezaki, Kazuhisa; Chonabayashi, Naohiko; Tanaka, Chie; Sugiura, Hideko; Goto, Hajime; Saraya, Takeshi; Kurai, Daisuke; Katono, Yasuhiro; Inose, Rika; Niki, Yoshihito; Takuma, Takahiro; Kudo, Makoto; Ehara, Shigeru; Sato, Yoshimi; Tsukada, Hiroki; Watabe, Nobuei; Honma, Yasuo; Mikamo, Hiroshige; Yamagishi, Yuka; Nakamura, Atsushi; Ohashi, Minoru; Seki, Masafumi; Hamaguchi, Shigeto; Toyokawa, Masahiro; Fujikawa, Yasunori; Mitsuno, Noriko; Ukimura, Akira; Miyara, Takayuki; Nakamura, Takahito; Mikasa, Keiichi; Kasahara, Kei; Ui, Koji; Fukuda, Saori; Nakamura, Akihiro; Morimura, Mika; Yamashita, Mikio; Takesue, Yoshio; Wada, Yasunao; Sugimoto, Keisuke; Kusano, Nobuchika; Nose, Motoko; Mihara, Eiichirou; Kuwabara, Masao; Doi, Masao; Watanabe, Yaeko; Tokuyasu, Hirokazu; Hino, Satoshi; Negayama, Kiyoshi; Mukae, Hiroshi; Kawanami, Toshinori; Ota, Toshiyuki; Fujita, Masaki; Honda, Junichi; Hiramatsu, Kazufumi; Aoki, Yosuke; Fukuoka, Mami; Magarifuchi, Hiroki; Nagasawa, Zenzo; Kaku, Norihito; Fujita, Jiro; Higa, Futoshi; Tateyama, Masao

    2017-09-01

    The nationwide surveillance on antimicrobial susceptibility of bacterial respiratory pathogens from the patients in Japan was conducted by Japanese Society of Chemotherapy, Japanese association for infectious diseases and Japanese society for Clinical Microbiology in 2012. The isolates were collected from clinical specimens obtained from well-diagnosed adult patients with respiratory tract infections during the period between January and December in 2012 by three societies. Antimicrobial susceptibility testing was conducted at the central reference laboratory according to the method recommended by Clinical Laboratory Standard Institutes. Susceptibility testing was evaluated in 1236 strains (232 Staphylococcus aureus, 225 Streptococcus pneumoniae, 16 Streptococcus pyogenes, 231 Haemophilus influenzae, 147 Moraxella catarrhalis, 167 Klebsiella pneumoniae and 218 Pseudomonas aeruginosa). Ratio of methicillin-resistant S. aureus was 51.3%, and those of penicillin-intermediate S. pneumoniae was 0.4%. Among H. influenzae, 5.6% of them were found to be β-lactamase-producing ampicillin-resistant strains, and 37.2% to be β-lactamase-non-producing ampicillin-resistant strains. Extended spectrum β-lactamase-producing K. pneumoniae and multi-drug resistant P. aeruginosa with metallo β-lactamase were 4.2% and 3.2%, respectively. Continuous national surveillance is important to determine the actual situation of the resistance shown by bacterial respiratory pathogens to antimicrobial agents. Copyright © 2017 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  19. Homogamy and Intermarriage of Japanese and Japanese Americans With Whites Surrounding World War II.

    PubMed

    Ono, Hiromi; Berg, Justin

    2010-10-01

    Although some sociologists have suggested that Japanese Americans quickly assimilated into mainstream America, scholars of Japanese America have highlighted the heightened exclusion that the group experienced. This study tracked historical shifts in the exclusion level of Japanese and Japanese Americans in the United States surrounding World War II with homogamy and intermarriage with Whites for the prewar (1930-1940) and resettlement (1946-1966) marriage cohorts. The authors applied log-linear models to census microsamples (N = 1,590,416) to estimate the odds ratios of homogamy versus intermarriage. The unadjusted odds ratios of Japanese Americans declined between cohorts and appeared to be consistent with the assimilation hypothesis. Once compositional influences and educational pairing patterns were adjusted, however, the odds ratios increased and supported the heightened exclusion hypothesis.

  20. Unpiloted Japanese Kounotori HTV-2 Transfer Vehicle

    NASA Image and Video Library

    2011-01-27

    ISS026-E-020887 (27 Jan. 2011) --- Backdropped by a colorful part of Earth, the unpiloted Japanese Kounotori2 H-II Transfer Vehicle (HTV2) approaches the International Space Station. The Japan Aerospace Exploration Agency (JAXA) launched HTV2 aboard an H-IIB rocket from the Tanegashima Space Center in southern Japan at 12:37 a.m. (EST) (2:27 p.m. Japan time) on Jan. 22, 2011. HTV2 is the second unpiloted cargo ship launched by JAXA to the station and will deliver more than four tons of food and supplies to the space station and its crew members.

  1. Unpiloted Japanese Kounotori HTV-2 Transfer Vehicle

    NASA Image and Video Library

    2011-01-27

    ISS026-E-020850 (27 Jan. 2011) --- Backdropped by a cloud-covered part of Earth, the unpiloted Japanese Kounotori2 H-II Transfer Vehicle (HTV2) approaches the International Space Station. The Japan Aerospace Exploration Agency (JAXA) launched HTV2 aboard an H-IIB rocket from the Tanegashima Space Center in southern Japan at 12:37 a.m. (EST) (2:27 p.m. Japan time) on Jan. 22, 2011. HTV2 is the second unpiloted cargo ship launched by JAXA to the station and will deliver more than four tons of food and supplies to the space station and its crew members.

  2. Wage Determination in Japanese Manufacturing: A Review of Recent Literature,

    DTIC Science & Technology

    1981-10-01

    1971), Internal Labor Markets and Manpower Analysis, Heath. Funahashi, Naomichi (1975), ’Naibu Rodo Shijo to Nenkoseiron’ (Internal Labor Markets...and Nenko Theory), Nihon Rodo Kyokai Zasshi, 17, March, pp. 2-12. Galenson, W. and K. Okaka (1976), ’The Japanese Labor Market’ in H. Patrick and H...1977), Shokuba no Rodo Kumiai to Sanka (Labour Unions at -43- the Workshop and Their Participation), Toyokeizai Shimposha, Tokyo. Kuratani, Masatoshi

  3. Trust in One’s Physician: The Role of Ethnic Match, Autonomy, Acculturation, and Religiosity Among Japanese and Japanese Americans

    PubMed Central

    Tarn, Derjung M.; Meredith, Lisa S.; Kagawa-Singer, Marjorie; Matsumura, Shinji; Bito, Seiji; Oye, Robert K.; Liu, Honghu; Kahn, Katherine L.; Fukuhara, Shunichi; Wenger, Neil S.

    2005-01-01

    PURPOSE Trust is a cornerstone of the physician-patient relationship. We investigated the relation of patient characteristics, religiosity, acculturation, physician ethnicity, and insurance-mandated physician change to levels of trust in Japanese American and Japanese patients. METHODS A self-administered, cross-sectional questionnaire in English and Japanese (completed in the language of their choice) was given to community-based samples of 539 English-speaking Japanese Americans, 340 Japanese-speaking Japanese Americans, and 304 Japanese living in Japan. RESULTS Eighty-seven percent of English-speaking Japanese Americans, 93% of Japanese-speaking Japanese Americans, and 58% of Japanese living in Japan responded to trust items and reported mean trust scores of 83, 80, and 68, respectively, on a scale ranging from 0 to 100. In multivariate analyses, English-speaking and Japanese-speaking Japanese American respondents reported more trust than Japanese respondents living in Japan (P values <.001). Greater religiosity (P <.001), less desire for autonomy (P <.001), and physician-patient relationships of longer duration (P <.001) were related to increased trust. Among Japanese Americans, more acculturated respondents reported more trust (P <.001), and Japanese physicians were trusted more than physicians of another ethnicity. Among respondents prompted to change physicians because of insurance coverage, the 48% who did not want to switch reported less trust in their current physician than in their former physician (mean score of 82 vs 89, P <.001). CONCLUSIONS Religiosity, autonomy preference, and acculturation were strongly related to trust in one’s physician among the Japanese American and Japanese samples studied and may provide avenues to enhance the physician-patient relationship. The strong relationship of trust with patient-physician ethnic match and the loss of trust when patients, in retrospect, report leaving a preferred physician suggest unintended

  4. KENNEDY SPACE CENTER, FLA. - Japanese and American students gather at the STS-107 memorial stone at the Spacehab facility, Cape Canaveral, Fla. The Japanese girls are from Urawa Daiichi Girls High School, Urawa, Japan. The group was awarded the trip to Florida when their experiments were chosen to fly on mission STS-107. The American students are from Melbourne and Jacksonville, Fla. The National Space Development Agency of Japan (NASDA) and the KSC International Space Station and Payloads Processing Directorate worked with the NASA KSC Education Programs and University Research Division to coordinate the students’ visit.

    NASA Image and Video Library

    2003-08-20

    KENNEDY SPACE CENTER, FLA. - Japanese and American students gather at the STS-107 memorial stone at the Spacehab facility, Cape Canaveral, Fla. The Japanese girls are from Urawa Daiichi Girls High School, Urawa, Japan. The group was awarded the trip to Florida when their experiments were chosen to fly on mission STS-107. The American students are from Melbourne and Jacksonville, Fla. The National Space Development Agency of Japan (NASDA) and the KSC International Space Station and Payloads Processing Directorate worked with the NASA KSC Education Programs and University Research Division to coordinate the students’ visit.

  5. Simulation of the Simbol-X telescope: imaging performance of a deformable x-ray telescope

    NASA Astrophysics Data System (ADS)

    Chauvin, Maxime; Roques, Jean-Pierre

    2009-08-01

    We have developed a simulation tool for a Wolter I telescope subject to deformations. The aim is to understand and predict the behavior of Simbol-X and other future missions (NuSTAR, Astro-H, IXO, ...). Our code, based on Monte-Carlo ray-tracing, computes the full photon trajectories up to the detector plane, along with the deformations. The degradation of the imaging system is corrected using metrology. This tool allows to perform many analyzes in order to optimize the configuration of any of these telescopes.

  6. [Comparison of dissolution profile and plasma concentration-time profile of the thalidomide formulations made by Japanese, Mexican and British companies].

    PubMed

    Fujita, Yukiyoshi; Yamamoto, Koujirou; Aomori, Tohru; Murakami, Hirokazu; Horiuchi, Ryuya

    2008-10-01

    Thalidomide is an important advance in the treatment of multiple myeloma. In Japan thalidomide is now on the approval step for the treatment of multiple myeloma. The drug has some bothersome side effects such as defect of organogenesis, neuropathy, constipation and fatigue, but is likely more effective than standard chemotherapy and is changing multiple myeloma treatment. At this moment, Japanese patients must import the thalidomide preparations from Mexico, Britain and elsewhere, but after approval, they patients will be able to get the new Japanese thalidomide capsules. In order to determine appropriate amounts of Japanese thalidomide capsules in the treatment of multiple myeloma, we compared the dissolution profile and plasma thalidomide concentrations of Japanese and British capsules and Mexican tablets. The dissolution test was performed according to the Japanese and the United States Pharmacopoeia. The pharmacokinetic data for Japanese capsules were obtained from the clinical trial in Japanese subjects and compared with those data published for other formulations. The dissolution rate of the Japanese capsule was the fastest, followed by British and Mexican formulations. The pharmacokinetic profiles of Japanese and British capsules were similar, while the 100 mg Japanese thalidomide capsule demonstrated a 1.6-fold higher maximum plasma concentration than the 200 mg Mexican thalidomide tablet (1.7 vs. 1.1 microg/ml), greatly shortened t(max) (4.5 vs. 6.2 h), and the apparent half life was only one-third of the Mexican tablet (4.8 vs. 13.5 h). A comparison of the dissolution and the pharmacokinetic absorption profiles demonstrated a rank-order correlation. Physicians and pharmacists should be aware of the probable alteration in plasma thalidomide concentration when switching to the Japanese capsule, especially from the Mexican tablet, and should monitor clinical response carefully.

  7. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-27

    A Japanese H-IIA rocket carrying the NASA-Japan Aerospace Exploration Agency (JAXA), Global Precipitation Measurement (GPM) Core Observatory is seen as it rolls out to launch pad 1 of the Tanegashima Space Center, Thursday, Feb. 27, 2014, Tanegashima, Japan. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  8. The modern Japanese color lexicon.

    PubMed

    Kuriki, Ichiro; Lange, Ryan; Muto, Yumiko; Brown, Angela M; Fukuda, Kazuho; Tokunaga, Rumi; Lindsey, Delwin T; Uchikawa, Keiji; Shioiri, Satoshi

    2017-03-01

    Despite numerous prior studies, important questions about the Japanese color lexicon persist, particularly about the number of Japanese basic color terms and their deployment across color space. Here, 57 native Japanese speakers provided monolexemic terms for 320 chromatic and 10 achromatic Munsell color samples. Through k-means cluster analysis we revealed 16 statistically distinct Japanese chromatic categories. These included eight chromatic basic color terms (aka/red, ki/yellow, midori/green, ao/blue, pink, orange, cha/brown, and murasaki/purple) plus eight additional terms: mizu ("water")/light blue, hada ("skin tone")/peach, kon ("indigo")/dark blue, matcha ("green tea")/yellow-green, enji/maroon, oudo ("sand or mud")/mustard, yamabuki ("globeflower")/gold, and cream. Of these additional terms, mizu was used by 98% of informants, and emerged as a strong candidate for a 12th Japanese basic color term. Japanese and American English color-naming systems were broadly similar, except for color categories in one language (mizu, kon, teal, lavender, magenta, lime) that had no equivalent in the other. Our analysis revealed two statistically distinct Japanese motifs (or color-naming systems), which differed mainly in the extension of mizu across our color palette. Comparison of the present data with an earlier study by Uchikawa & Boynton (1987) suggests that some changes in the Japanese color lexicon have occurred over the last 30 years.

  9. Homogamy and Intermarriage of Japanese and Japanese Americans With Whites Surrounding World War II

    PubMed Central

    Ono, Hiromi; Berg, Justin

    2010-01-01

    Although some sociologists have suggested that Japanese Americans quickly assimilated into mainstream America, scholars of Japanese America have highlighted the heightened exclusion that the group experienced. This study tracked historical shifts in the exclusion level of Japanese and Japanese Americans in the United States surrounding World War II with homogamy and intermarriage with Whites for the prewar (1930–1940) and resettlement (1946–1966) marriage cohorts. The authors applied log-linear models to census microsamples (N = 1,590,416) to estimate the odds ratios of homogamy versus intermarriage. The unadjusted odds ratios of Japanese Americans declined between cohorts and appeared to be consistent with the assimilation hypothesis. Once compositional influences and educational pairing patterns were adjusted, however, the odds ratios increased and supported the heightened exclusion hypothesis. PMID:21116449

  10. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-22

    A sign with a model of the Japanese H-IIB rocket welcomes visitors to Minamitane Town, one of only a few small towns located outside of the Japan Aerospace Exploration Agency’s (JAXA) Tanegashima Space Center (TNSC), where the launch of an H-IIA rocket carrying the Global Precipitation Measurement (GPM) Core Observatory will take place in the next week, Saturday, Feb. 22, 2014, Tanegashima Island, Japan. The NASA-Japan Aerospace Exploration Agency (JAXA) GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  11. Learning by Teaching: Implementation of a Multimedia Project in Astro 101

    NASA Astrophysics Data System (ADS)

    Perrodin, D.; Lommen, A.

    2011-09-01

    Astro 101 students have deep-seated pre-conceptions regarding such topics as the cause of moon phases or the seasons. Beyond exploring the topics in a learner-centered fashion, the "learning by teaching" philosophy enables students to truly master concepts. In order to make students teach the cause of moon phases, we created a multimedia project where groups of students taught other students and filmed the session. They were to produce a 10-minute final movie highlighting their teaching techniques and showing students in the process of learning the concepts. This "experiment" turned out to be a great success for a few reasons. First, students gained experience explaining conceptually-challenging topics, making them learn the material better. Additionally, they learned to apply learner-centered techniques, most likely learning to teach for the first time. Finally, this project provided the students a connection between the classroom and the rest of the college, making them responsible for applying and sharing their knowledge with their peers.

  12. A Multi-Institution Study on the Effectiveness of ClassAction to Promote Student Understanding in Astro 101

    NASA Astrophysics Data System (ADS)

    Lee, Kevin M.; French, R. S.; Hands, D. R.; Loranz, D. R.; Martino, D.; Rudolph, A. L.; Wysong, J.; Young, T. S.; Prather, E. E.; CATS

    2010-01-01

    ClassAction is a computer database of materials designed to enhance the conceptual understanding and reasoning abilities of Astro 101 students by promoting interactive engagement and providing rapid feedback. The main focus is dynamic conceptual questions largely based upon graphics that can be projected in the classroom. Instructors have the capability to select, order, and recast these questions into alternate permutations based on their own preferences and student responses. Instructors may also provide feedback through extensive resources including outlines, graphics, and simulations. The Light and Spectroscopy Concept Inventory (LSCI) is a multiple-choice assessment instrument which focuses on the electromagnetic spectrum, Doppler shift, Wien's Law, Stefan-Boltzmann Law, and Kirchhoff's Laws. Illustrative examples of how these concepts are targeted by the questions and resources of the ClassAction module are shown. ClassAction materials covering light and spectra concepts were utilized in multiple classrooms at 6 different institutions and the LSCI was delivered as a pretest and posttest to measure the gains in student understanding. A comparison of the gains achieved in these classes will be made against the national LSCI data. We will report on our investigation into correlations between gain and the extent of ClassAction usage. ClassAction materials are publicly available at http://astro.unl.edu. We would like to thank the NSF for funding under Grant Nos. 0404988 and 0715517, a CCLI Phase III Grant for the Collaboration of Astronomy Teaching Scholars (CATS) Program.

  13. STS-35 Astronomy Laboratory 1 (ASTRO-1) in OV-102's payload bay at KSC

    NASA Image and Video Library

    1990-03-20

    STS-35 Astronomy Laboratory 1 (ASTRO-1) is installed in Columbia's, Orbiter Vehicle (OV) 102's, payload bay (PLB) at the Kennedy Space Center (KSC) Orbiter Processing Facility (OPF). On the left, in the aft PLB is the Broad Band X Ray Telescope (BBXRT) mounted on the two axis pointing system (TAPS). In the center, the three ultraviolet telescopes - Wisconsin Ultraviolet Photo-Polarimeter Experiment (WUPPE), the Hopkins Ultraviolet Telescope (HUT), and the Ultraviolet Imaging Telescope (UIT) - are mounted on the instrument pointing system (IPS) and are in stowed position. At the far right is the Spacelab Pallet System (SPS) igloo. View provided by KSC with alternate number KSSC-90PC-421.

  14. Health monitoring of Japanese payload specialist: Autonomic nervous and cardiovascular responses under reduced gravity condition (L-0)

    NASA Technical Reports Server (NTRS)

    Sekiguchi, Chiharu

    1993-01-01

    In addition to health monitoring of the Japanese Payload Specialists (PS) during the flight, this investigation also focuses on the changes of cardiovascular hemodynamics during flight which will be conducted under the science collaboration with the Lower Body Negative Pressure (LBNP) Experiment of NASA. For the Japanese, this is an opportunity to examine firsthand the effects of microgravity of human physiology. We are particularly interested in the adaption process and how it relates to space motion sickness and cardiovascular deconditioning. By comparing data from our own experiment to data collected by others, we hope to understand the processes involved and find ways to avoid these problems for future Japanese astronauts onboard Space Station Freedom and other Japanese space ventures. The primary objective of this experiment is to monitor the health condition of Japanese Payload Specialists to maintain a good health status during and after space flight. The second purpose is to investigate the autonomic nervous system's response to space motion sickness. To achieve this, the function of the autonomic nervous system will be monitored using non-invasive techniques. Data obtained will be employed to evaluate the role of autonomic nervous system in space motion sickness and to predict susceptibility to space motion sickness. The third objective is evaluation of the adaption process of the cardiovascular system to microgravity. By observation of the hemodynamics using an echocardiogram we will gain insight on cardiovascular deconditioning. The last objective is to create a data base for use in the health care of Japanese astronauts by obtaining control data in experiment L-O in the SL-J mission.

  15. KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi, with the National Space Development Agency of Japan (NASDA), works at a console during a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM). Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-09-03

    KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi, with the National Space Development Agency of Japan (NASDA), works at a console during a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM). Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  16. KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi, with the National Space Development Agency of Japan (NASDA), is inside the Japanese Experiment Module (JEM), undergoing a Multi-Element Integrated Test (MEIT) in the Space Station Processing Facility. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-09-03

    KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi, with the National Space Development Agency of Japan (NASDA), is inside the Japanese Experiment Module (JEM), undergoing a Multi-Element Integrated Test (MEIT) in the Space Station Processing Facility. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  17. KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi, with the National Space Development Agency of Japan (NASDA), rests inside the Japanese Experiment Module (JEM), undergoing a Multi-Element Integrated Test (MEIT) in the Space Station Processing Facility. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-09-03

    KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi, with the National Space Development Agency of Japan (NASDA), rests inside the Japanese Experiment Module (JEM), undergoing a Multi-Element Integrated Test (MEIT) in the Space Station Processing Facility. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  18. KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi (right), with the National Space Development Agency of Japan (NASDA), is inside the Japanese Experiment Module (JEM), undergoing a Multi-Element Integrated Test (MEIT) in the Space Station Processing Facility. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-09-03

    KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi (right), with the National Space Development Agency of Japan (NASDA), is inside the Japanese Experiment Module (JEM), undergoing a Multi-Element Integrated Test (MEIT) in the Space Station Processing Facility. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  19. KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi, with the National Space Development Agency of Japan (NASDA), signals success during a Multi-Element Integrated Test (MEIT ) of the Japanese Experiment Module (JEM) in the Space Station Processing Facility. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-09-03

    KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi, with the National Space Development Agency of Japan (NASDA), signals success during a Multi-Element Integrated Test (MEIT ) of the Japanese Experiment Module (JEM) in the Space Station Processing Facility. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  20. Cultural Competence in Business Japanese.

    ERIC Educational Resources Information Center

    Koike, Shohei

    Cultural competence in business Japanese requires more than superficial knowledge of business etiquette. One must truly understand why Japanese people think and act differently from their American counterparts. For example, instruction in the use of Japanese taxis must be accompanied by instruction in the concept and implications of seating order…