Sample records for japanese encephalitis virus-infected

  1. Japanese Encephalitis Virus in Meningitis Patients, Japan

    PubMed Central

    Ito, Mikako; Takao, Shinichi; Shimazu, Yukie; Fukuda, Shinji; Miyazaki, Kazuo; Kurane, Ichiro; Takasaki, Tomohiko

    2005-01-01

    Cerebrospinal fluid specimens from 57 patients diagnosed with meningitis were tested for Japanese encephalitis virus. Total RNA was extracted from the specimens and amplified. Two products had highest homology with Nakayama strain and 2 with Ishikawa strain. Results suggest that Japanese encephalitis virus causes some aseptic meningitis in Japan. PMID:15757569

  2. Viral Infection of the Central Nervous System and Neuroinflammation Precede Blood-Brain Barrier Disruption during Japanese Encephalitis Virus Infection.

    PubMed

    Li, Fang; Wang, Yueyun; Yu, Lan; Cao, Shengbo; Wang, Ke; Yuan, Jiaolong; Wang, Chong; Wang, Kunlun; Cui, Min; Fu, Zhen F

    2015-05-01

    Japanese encephalitis is an acute zoonotic, mosquito-borne disease caused by Japanese encephalitis virus (JEV). Japanese encephalitis is characterized by extensive inflammation in the central nervous system (CNS) and disruption of the blood-brain barrier (BBB). However, the pathogenic mechanisms contributing to the BBB disruption are not known. Here, using a mouse model of intravenous JEV infection, we show that virus titers increased exponentially in the brain from 2 to 5 days postinfection. This was accompanied by an early, dramatic increase in the level of inflammatory cytokines and chemokines in the brain. Enhancement of BBB permeability, however, was not observed until day 4, suggesting that viral entry and the onset of inflammation in the CNS occurred prior to BBB damage. In vitro studies revealed that direct infection with JEV could not induce changes in the permeability of brain microvascular endothelial cell monolayers. However, brain extracts derived from symptomatic JEV-infected mice, but not from mock-infected mice, induced significant permeability of the endothelial monolayer. Consistent with a role for inflammatory mediators in BBB disruption, the administration of gamma interferon-neutralizing antibody ameliorated the enhancement of BBB permeability in JEV-infected mice. Taken together, our data suggest that JEV enters the CNS, propagates in neurons, and induces the production of inflammatory cytokines and chemokines, which result in the disruption of the BBB. Japanese encephalitis (JE) is the leading cause of viral encephalitis in Asia, resulting in 70,000 cases each year, in which approximately 20 to 30% of cases are fatal, and a high proportion of patients survive with serious neurological and psychiatric sequelae. Pathologically, JEV infection causes an acute encephalopathy accompanied by BBB dysfunction; however, the mechanism is not clear. Thus, understanding the mechanisms of BBB disruption in JEV infection is important. Our data demonstrate

  3. Serological and molecular epidemiology of Japanese encephalitis virus infections in swine herds in China, 2006-2012.

    PubMed

    Chai, Chunxia; Wang, Qiao; Cao, Sanjie; Zhao, Qin; Wen, Yiping; Huang, Xiaobo; Wen, Xintian; Yan, Qiguai; Ma, Xiaoping; Wu, Rui

    2018-01-31

    Japanese encephalitis virus (JEV) is a mosquito-borne, zoonotic flavivirus causing viral encephalitis in humans and reproductive disorder in swine. JEV is prevalent throughout China in human; however, spatiotemporal analysis of JEV in Chinese swine herds has not been reported previously. Herein, we present serological and molecular epidemiological results and estimates of prevalence of JEV infections among swine herds in various regions of China. The results suggest that JEV infections are widespread and genotype I and III strains co-exist in the same regions. Therefore, there is an urgent need to monitor JEV infection status among swine herds in China.

  4. Diagnosis and genetic analysis of Japanese encephalitis virus infected in horses.

    PubMed

    Lian, W C; Liau, M Y; Mao, C L

    2002-10-01

    Nervous disorders were found in two horses and verified as aseptic encephalitis by necropsy in the summer of 2000. To investigate agents that affected the horses, diagnostic procedures involving virus isolation, neutralization test and reverse transcription-polymerase chain reaction (RT-PCR) were performed. We intracranially inoculated litters of suckling mice with tissues suspected of containing aseptic encephalitis, including cerebrum, cerebellum, brain stem, thalamus, and cerebrospinal fluids; the mice were then observed for 14 days. Neutralizing antibodies against Japanese encephalitis (JE) viruses were present in the cerebrospinal fluid of the horses in titers of 10. Sequences of 500 nucleotides of the premembrane gene of JE virus, synthesized by RT-PCR, from both the cerebrum and cerebellum were determined. The phylogenetic analysis based on sequences of the premembrane gene revealed a relationship with the JE virus. The divergences at the nucleotide level of 1.2-5.7% and at the amino acid level of 0-4.3% were conserved with other JE strains. The results demonstrated that the pathogens causing equine encephalitis were JE viruses. The strains were closely related to Taiwanese isolates.

  5. Serological and molecular epidemiology of Japanese encephalitis virus infections in swine herds in China, 2006–2012

    PubMed Central

    Chai, Chunxia; Wang, Qiao; Cao, Sanjie; Zhao, Qin; Wen, Yiping; Huang, Xiaobo; Wen, Xintian; Yan, Qiguai; Ma, Xiaoping

    2018-01-01

    Japanese encephalitis virus (JEV) is a mosquito-borne, zoonotic flavivirus causing viral encephalitis in humans and reproductive disorder in swine. JEV is prevalent throughout China in human; however, spatiotemporal analysis of JEV in Chinese swine herds has not been reported previously. Herein, we present serological and molecular epidemiological results and estimates of prevalence of JEV infections among swine herds in various regions of China. The results suggest that JEV infections are widespread and genotype I and III strains co-exist in the same regions. Therefore, there is an urgent need to monitor JEV infection status among swine herds in China. PMID:28693301

  6. Integrin αvβ3 promotes infection by Japanese encephalitis virus.

    PubMed

    Fan, Wenchun; Qian, Ping; Wang, Dandan; Zhi, Xianwei; Wei, Yanming; Chen, Huanchun; Li, Xiangmin

    2017-04-01

    Japanese encephalitis virus (JEV) is a mosquito-borne flavivirus that is one of the major causes of viral encephalitis diseases worldwide. The JEV envelope protein facilitates viral entry, and its domain III contains an Arg-Gly-Asp (RGD) motif, that may modulate JEV entry through the RGD-binding integrin. In this study, the roles of integrin αv and β3 on the infection of JEV were evaluated. Reduced expression of integrin αv/β3 by special shRNA confers 2 to 4-fold inhibition of JEV replication in BHK-21 cells. Meanwhile, antibodies specific for integrin αv/β3 displayed ~58% and ~33% inhibition of JEV infectivity and RGD-specific peptides produced ~36% of inhibition. Expression of E protein and JEV RNA loads were clearly increased in CHO cells transfected with cDNA encoding human integrin β3. Moreover, integrin αv mediates JEV infection in viral binding stage of life cycle. Therefore, our study suggested that integrin αv and β3 serve as a host factor associated with JEV entry into the target cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Japanese encephalitis virus invasion of cell: allies and alleys.

    PubMed

    Nain, Minu; Abdin, Malik Z; Kalia, Manjula; Vrati, Sudhanshu

    2016-03-01

    The mosquito-borne flavivirus, Japanese encephalitis virus (JEV), is the leading cause of virus-induced encephalitis globally and a major public health concern of several countries in Southeast Asia, with the potential to become a global pathogen. The virus is neurotropic, and the disease ranges from mild fever to severe hemorrhagic and encephalitic manifestations and death. The early steps of the virus life cycle, binding, and entry into the cell are crucial determinants of infection and are potential targets for the development of antiviral therapies. JEV can infect multiple cell types; however, the key receptor molecule(s) still remains elusive. JEV also has the capacity to utilize multiple endocytic pathways for entry into cells of different lineages. This review not only gives a comprehensive update on what is known about the virus attachment and receptor system (allies) and the endocytic pathways (alleys) exploited by the virus to gain entry into the cell and establish infection but also discusses crucial unresolved issues. We also highlight common themes and key differences between JEV and other flaviviruses in these contexts. Copyright © 2015 John Wiley & Sons, Ltd.

  8. Epidemiologic Survey of Japanese Encephalitis Virus Infection, Tibet, China, 2015

    PubMed Central

    Zhang, Hui; Rehman, Mujeeb Ur; Li, Kun; Luo, Houqiang; Lan, Yanfang; Nabi, Fazul; Zhang, Lihong; Iqbal, Muhammad Kashif; Zhu, Suolangsi; Javed, Muhammad Tariq; Chamba, Yangzom

    2017-01-01

    We investigated Japanese encephalitis virus (JEV) prevalence in high-altitude regions of Tibet, China, by using standard assays to test mosquitoes, pigs, and humans. Results confirmed that JEV has spread to these areas. Disease prevention and control strategies should be used along with surveillance to limit spread of JEV in high-altitude regions of Tibet. PMID:28518046

  9. Japanese encephalitis virus infection, diagnosis and control in domestic animals.

    PubMed

    Mansfield, Karen L; Hernández-Triana, Luis M; Banyard, Ashley C; Fooks, Anthony R; Johnson, Nicholas

    2017-03-01

    Japanese encephalitis virus (JEV) is a significant cause of neurological disease in humans throughout Asia causing an estimated 70,000 human cases each year with approximately 10,000 fatalities. The virus contains a positive sense RNA genome within a host-derived membrane and is classified within the family Flaviviridae. Like many flaviviruses, it is transmitted by mosquitoes, particularly those of the genus Culex in a natural cycle involving birds and some livestock species. Spill-over into domestic animals results in a spectrum of disease ranging from asymptomatic infection in some species to acute neurological signs in others. The impact of JEV infection is particularly apparent in pigs. Although infection in adult swine does not result in symptomatic disease, it is considered a significant reproductive problem causing abortion, still-birth and birth defects. Infected piglets can display fatal neurological disease. Equines are also infected, resulting in non-specific signs including pyrexia, but occasionally leading to overt neurological disease that in extreme cases can lead to death. Veterinary vaccination is available for both pigs and horses. This review of JEV disease in livestock considers the current diagnostic techniques available for detection of the virus. Options for disease control and prevention within the veterinary sector are discussed. Such measures are critical in breaking the link to zoonotic transmission into the human population where humans are dead-end hosts. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  10. Shedding of Japanese Encephalitis Virus in Oral Fluid of Infected Swine.

    PubMed

    Lyons, Amy C; Huang, Yan-Jang S; Park, So Lee; Ayers, Victoria B; Hettenbach, Susan M; Higgs, Stephen; McVey, D Scott; Noronha, Leela; Hsu, Wei-Wen; Vanlandingham, Dana L

    2018-05-09

    Japanese encephalitis virus (JEV) is a zoonotic mosquito-borne flavivirus endemic in the Asia-Pacific region. Maintenance of JEV in nature involves enzootic transmission by competent Culex mosquitoes among susceptible avian and swine species. Historically, JEV has been regarded as one of the most important arthropod-borne viruses in Southeast Asia. Oronasal shedding of JEV from infected amplification hosts was not recognized until the recent discovery of vector-free transmission of JEV among domestic pigs. In this study, oral shedding of JEV was characterized in domestic pigs and miniature swine representing the feral phenotype. A rope-based sampling method followed by the detection of viral RNA using RT-qPCR allowed the collection and detection of JEV in oral fluid samples collected from intradermally challenged animals. The results suggest that the shedding of JEV in oral fluid can be readily detected by molecular diagnostic assays at the acute phase of infection. It also demonstrates the feasibility of this technique for the diagnosis and surveillance of JEV in swine species.

  11. Fatal Infection with Murray Valley Encephalitis Virus Imported from Australia to Canada, 2011.

    PubMed

    Niven, Daniel J; Afra, Kevin; Iftinca, Mircea; Tellier, Raymond; Fonseca, Kevin; Kramer, Andreas; Safronetz, David; Holloway, Kimberly; Drebot, Michael; Johnson, Andrew S

    2017-02-01

    Murray Valley encephalitis virus (MVEV), a flavivirus belonging to the Japanese encephalitis serogroup, can cause severe clinical manifestations in humans. We report a fatal case of MVEV infection in a young woman who returned from Australia to Canada. The differential diagnosis for travel-associated encephalitis should include MVEV, particularly during outbreak years.

  12. Meta-analyses of the proportion of Japanese encephalitis virus infection in vectors and vertebrate hosts.

    PubMed

    Oliveira, Ana R S; Cohnstaedt, Lee W; Strathe, Erin; Hernández, Luciana Etcheverry; McVey, D Scott; Piaggio, José; Cernicchiaro, Natalia

    2017-09-07

    Japanese encephalitis (JE) is a zoonosis in Southeast Asia vectored by mosquitoes infected with the Japanese encephalitis virus (JEV). Japanese encephalitis is considered an emerging exotic infectious disease with potential for introduction in currently JEV-free countries. Pigs and ardeid birds are reservoir hosts and play a major role on the transmission dynamics of the disease. The objective of the study was to quantitatively summarize the proportion of JEV infection in vectors and vertebrate hosts from data pertaining to observational studies obtained in a systematic review of the literature on vector and host competence for JEV, using meta-analyses. Data gathered in this study pertained to three outcomes: proportion of JEV infection in vectors, proportion of JEV infection in vertebrate hosts, and minimum infection rate (MIR) in vectors. Random-effects subgroup meta-analysis models were fitted by species (mosquito or vertebrate host species) to estimate pooled summary measures, as well as to compute the variance between studies. Meta-regression models were fitted to assess the association between different predictors and the outcomes of interest and to identify sources of heterogeneity among studies. Predictors included in all models were mosquito/vertebrate host species, diagnostic methods, mosquito capture methods, season, country/region, age category, and number of mosquitos per pool. Mosquito species, diagnostic method, country, and capture method represented important sources of heterogeneity associated with the proportion of JEV infection; host species and region were considered sources of heterogeneity associated with the proportion of JEV infection in hosts; and diagnostic and mosquito capture methods were deemed important contributors of heterogeneity for the MIR outcome. Our findings provide reference pooled summary estimates of vector competence for JEV for some mosquito species, as well as of sources of variability for these outcomes. Moreover, this

  13. CLEC5A Regulates Japanese Encephalitis Virus-Induced Neuroinflammation and Lethality

    PubMed Central

    Chen, Szu-Ting; Liu, Ren-Shyan; Wu, Ming-Fang; Lin, Yi-Ling; Chen, Se-Yi; Tan, David Tat-Wei; Chou, Teh-Ying; Tsai, I-Shuen; Li, Lei; Hsieh, Shie-Liang

    2012-01-01

    CLEC5A/MDL-1, a member of the myeloid C-type lectin family expressed on macrophages and neutrophils, is critical for dengue virus (DV)-induced hemorrhagic fever and shock syndrome in Stat1 −/− mice and ConA-treated wild type mice. However, whether CLEC5A is involved in the pathogenesis of viral encephalitis has not yet been investigated. To investigate the role of CLEC5A to regulate JEV-induced neuroinflammation, antagonistic anti-CLEC5A mAb and CLEC5A-deficient mice were generated. We find that Japanese encephalitis virus (JEV) directly interacts with CLEC5A and induces DAP12 phosphorylation in macrophages. In addition, JEV activates macrophages to secrete proinflammatory cytokines and chemokines, which are dramatically reduced in JEV-infected Clec5a−/− macrophages. Although blockade of CLEC5A cannot inhibit JEV infection of neurons and astrocytes, anti-CLEC5A mAb inhibits JEV-induced proinflammatory cytokine release from microglia and prevents bystander damage to neuronal cells. Moreover, JEV causes blood-brain barrier (BBB) disintegrity and lethality in STAT1-deficient (Stat1 −/−) mice, whereas peripheral administration of anti-CLEC5A mAb reduces infiltration of virus-harboring leukocytes into the central nervous system (CNS), restores BBB integrity, attenuates neuroinflammation, and protects mice from JEV-induced lethality. Moreover, all surviving mice develop protective humoral and cellular immunity against JEV infection. These observations demonstrate the critical role of CLEC5A in the pathogenesis of Japanese encephalitis, and identify CLEC5A as a target for the development of new treatments to reduce virus-induced brain damage. PMID:22536153

  14. Japanese encephalitis

    PubMed Central

    Yun, Sang-Im; Lee, Young-Min

    2014-01-01

    Japanese encephalitis (JE) is an infectious disease of the central nervous system caused by Japanese encephalitis virus (JEV), a zoonotic mosquito-borne flavivirus. JEV is prevalent in much of Asia and the Western Pacific, with over 4 billion people living at risk of infection. In the absence of antiviral intervention, vaccination is the only strategy to develop long-term sustainable protection against JEV infection. Over the past half-century, a mouse brain-derived inactivated vaccine has been used internationally for active immunization. To date, however, JEV is still a clinically important, emerging, and re-emerging human pathogen of global significance. In recent years, production of the mouse brain-derived vaccine has been discontinued, but 3 new cell culture-derived vaccines are available in various parts of the world. Here we review current aspects of JEV biology, summarize the 4 types of JEV vaccine, and discuss the potential of an infectious JEV cDNA technology for future vaccine development. PMID:24161909

  15. A Japanese Encephalitis Virus Vaccine Inducing Antibodies Strongly Enhancing In Vitro Infection Is Protective in Pigs

    PubMed Central

    García-Nicolás, Obdulio; Ricklin, Meret E.; Liniger, Matthias; Vielle, Nathalie J.; Python, Sylvie; Souque, Philippe; Charneau, Pierre; Summerfield, Artur

    2017-01-01

    The Japanese encephalitis virus (JEV) is responsible for zoonotic severe viral encephalitis transmitted by Culex mosquitoes. Although birds are reservoirs, pigs play a role as amplifying hosts, and are affected in particular through reproductive failure. Here, we show that a lentiviral JEV vector, expressing JEV prM and E proteins (TRIP/JEV.prME), but not JEV infection induces strong antibody-dependent enhancement (ADE) activities for infection of macrophages. Such antibodies strongly promoted infection via Fc receptors. ADE was found at both neutralizing and non-neutralizing serum dilutions. Nevertheless, in vivo JEV challenge of pigs demonstrated comparable protection induced by the TRIP/JEV.prME vaccine or heterologous JEV infection. Thus, either ADE antibodies cause no harm in the presence of neutralizing antibodies or may even have protective effects in vivo in pigs. Additionally, we found that both pre-infected and vaccinated pigs were not fully protected as low levels of viral RNA were found in lymphoid and nervous system tissue in some animals. Strikingly, the virus from the pre-infection persisted in the tonsils throughout the experiment. Finally, despite the vaccination challenge, viral RNA was detected in the oronasal swabs in all vaccinated pigs. These latter data are relevant when JEV vaccination is employed in pigs. PMID:28531165

  16. Modulation of neuronal proteome profile in response to Japanese encephalitis virus infection.

    PubMed

    Sengupta, Nabonita; Ghosh, Sourish; Vasaikar, Suhas V; Gomes, James; Basu, Anirban

    2014-01-01

    In this study we have reported the in vivo proteomic changes during Japanese Encephalitis Virus (JEV) infection in combination with in vitro studies which will help in the comprehensive characterization of the modifications in the host metabolism in response to JEV infection. We performed a 2-DE based quantitative proteomic study of JEV-infected mouse brain as well as mouse neuroblastoma (Neuro2a) cells to analyze the host response to this lethal virus. 56 host proteins were found to be differentially expressed post JEV infection (defined as exhibiting ≥ 1.5-fold change in protein abundance upon JEV infection). Bioinformatics analyses were used to generate JEV-regulated host response networks which reported that the identified proteins were found to be associated with various cellular processes ranging from intracellular protein transport, cellular metabolism and ER stress associated unfolded protein response. JEV was found to invade the host protein folding machinery to sustain its survival and replication inside the host thereby generating a vigorous unfolded protein response, subsequently triggering a number of pathways responsible for the JEV associated pathologies. The results were also validated using a human cell line to correlate them to the human response to JEV. The present investigation is the first report on JEV-host interactome in in vivo model and will be of potential interest for future antiviral research in this field.

  17. New Japanese encephalitis vaccines: alternatives to production in mouse brain.

    PubMed

    Halstead, Scott B; Thomas, Stephen J

    2011-03-01

    Japanese encephalitis virus (JEV), a flavivirus maintained in a zoonotic cycle and transmitted by the mosquito Culex tritaeniorhynchus, causes epidemics of encephalitis throughout much of Asia. Resident populations, including short- or long-term visitors to enzootic regions, are at risk of infection and disease. For the past several decades, killed viral vaccines prepared in tissue culture or mouse brain have been used effectively to immunize travelers and residents of enzootic countries. Cost, efficacy and safety concerns led to the development of a live-attenuated virus vaccine (SA14-14-2) and more recently, to the licensure in the USA, Europe, Canada, and Australia of a purified inactivated, tissue culture-based Japanese encephalitis vaccine (IXIARO(®), referred to as IC51; Intercell AG, Vienna, Austria). In addition, a live-attenuated yellow fever-Japanese encephalitis chimeric vaccine (IMOJEV™, referred to as Japanese encephalitis-CV; Sanofi Pasteur, Lyon, France) was recently licensed in Australia and is under review in Thailand. A broad portfolio of safe and effective Japanese encephalitis vaccines has become available to meet the needs of at-risk populations; when appropriately delivered, these new vaccines should greatly diminish the burden of disease.

  18. Japanese encephalitis - the prospects for new treatments.

    PubMed

    Turtle, Lance; Solomon, Tom

    2018-04-26

    Japanese encephalitis is a mosquito-borne disease that occurs in Asia and is caused by Japanese encephalitis virus (JEV), a member of the genus Flavivirus. Although many flaviviruses can cause encephalitis, JEV causes particularly severe neurological manifestations. The virus causes loss of more disability-adjusted life years than any other arthropod-borne virus owing to the frequent neurological sequelae of the condition. Despite substantial advances in our understanding of Japanese encephalitis from in vitro studies and animal models, studies of pathogenesis and treatment in humans are lagging behind. Few mechanistic studies have been conducted in humans, and only four clinical trials of therapies for Japanese encephalitis have taken place in the past 10 years despite an estimated incidence of 69,000 cases per year. Previous trials for Japanese encephalitis might have been too small to detect important benefits of potential treatments. Many potential treatment targets exist for Japanese encephalitis, and pathogenesis and virological studies have uncovered mechanisms by which these drugs could work. In this Review, we summarize the epidemiology, clinical features, prevention and treatment of Japanese encephalitis and focus on potential new therapeutic strategies, based on repurposing existing compounds that are already suitable for human use and could be trialled without delay. We use our newly improved understanding of Japanese encephalitis pathogenesis to posit potential treatments and outline some of the many challenges that remain in tackling the disease in humans.

  19. Japanese encephalitis.

    PubMed

    Morita, K; Nabeshima, T; Buerano, C C

    2015-08-01

    Japanese encephalitis (JE) is an inflammation of the central nervous system in humans and animals, specifically horses and cattle. The disease, which can sometimes be fatal, is caused by the flavivirus Japanese encephalitis virus (JEV), of which there are five genotypes (genotypes 1, 2, 3, 4 and 5). The transmission cycle of the virus involves pigs and wild birds as virus amplifiers and mosquitoes as vectors for transferring the virus between amplifying hosts and to dead- end hosts, i.e. humans, horses and cattle. In horses and cattle the disease is usually asymptomatic, but when clinical signs do occur they include fever, decreased appetite, frothing at the mouth, rigidity of the legs and recumbency, and neurological signs, such as convulsive fits, circling, marked depression and disordered consciousness. In pigs, it can cause abortion and stillbirths. At present, the virus is detected in a wide area covering eastern and southern Asia, Indonesia, northern Australia, Papua New Guinea and Pakistan. JEV RNA has also been detected in Italy, first in dead birds in 1997 and 2000 and then in mosquitoes in 2010. Genotype shift, i.e. a change of genotype from genotype 3 to genotype 1, has occurred in some countries, namely Japan, South Korea, Chinese Taipei and Vietnam. Laboratory methods are available for confirming the causative agent of the disease. There are control measures to prevent or minimise infection and, among them, vaccination is one of the most important and one which should be adopted in endemic and epidemic areas.

  20. Japanese encephalitis in a racing thoroughbred gelding in Hong Kong.

    PubMed

    Lam, K H K; Ellis, T M; Williams, D T; Lunt, R A; Daniels, P W; Watkins, K L; Riggs, C M

    2005-08-06

    A horse in Hong Kong that had been vaccinated against Japanese encephalitis suffered a pyrexic episode that culminated in a hyperexcitable state and self-inflicted trauma. Japanese encephalitis was diagnosed on the basis of clinical, pathological and serological observations, and confirmed by the detection of genomic sequences of the virus in spinal cord tissue. Phylogenetic analyses of E gene and NS5-3'UTR sequences revealed divergent clustering of these segments with previously described genotypes, suggesting the possibility that the horse might have been infected with a recombinant between genotype I and genotype II viruses. Horses are considered to be dead-end hosts for the disease, but the occurrence of an infected horse in a population may have implications for the health status of the national herd. The effect that this case had on the horse industry in Hong Kong is discussed with specific reference to the movement of horses and the vaccination programme for Japanese encephalitis.

  1. Vectors expressing chimeric Japanese encephalitis dengue 2 viruses.

    PubMed

    Wei, Y; Wang, S; Wang, X

    2014-01-01

    Vectors based on self-replicating RNAs (replicons) of flaviviruses are becoming powerful tool for expression of heterologous genes in mammalian cells and development of novel antiviral and anticancer vaccines. We constructed two vectors expressing chimeric viruses consisting of attenuated SA14-14-2 strain of Japanese encephalitis virus (JEV) in which the PrM/M-E genes were replaced fully or partially with those of dengue 2 virus (DENV-2). These vectors, named pJED2 and pJED2-1770 were transfected to BHK-21 cells and produced chimeric viruses JED2V and JED2-1770V, respectively. The chimeric viruses could be passaged in C6/36 but not BHK-21 cells. The chimeric viruses produced in C6/36 cells CPE 4-5 days after infection and RT-PCR, sequencing, immunofluorescence assay (IFA) and Western blot analysis confirmed the chimeric nature of produced viruses. The immunogenicity of chimeric viruses in mice was proved by detecting DENV-2 E protein-specific serum IgG antibodies with neutralization titer of 10. Successful preparation of infectious clones of chimeric JEV-DENV-2 viruses showed that JEV-based expression vectors are fully functional.

  2. Preclinical and clinical development of YFV 17D-based chimeric vaccines against dengue, West Nile and Japanese encephalitis viruses.

    PubMed

    Guy, Bruno; Guirakhoo, Farshad; Barban, Veronique; Higgs, Stephen; Monath, Thomas P; Lang, Jean

    2010-01-08

    Dengue viruses (DENV), West Nile virus (WNV) and Japanese encephalitis virus (JEV) are major global health and growing medical problems. While a live-attenuated vaccine exists since decades against the prototype flavivirus, yellow fever virus (YFV), there is an urgent need for vaccines against dengue or West Nile diseases, and for improved vaccines against Japanese encephalitis. Live-attenuated chimeric viruses were constructed by replacing the genes coding for Premembrane (prM) and Envelope (E) proteins from YFV 17D vaccine strain with those of heterologous flaviviruses (ChimeriVax technology). This technology has been used to produce vaccine candidates for humans, for construction of a horse vaccine for West Nile fever, and as diagnostic reagents for dengue, Japanese encephalitis, West Nile and St. Louis encephalitis infections. This review focuses on human vaccines and their characterization from the early stages of research through to clinical development. Phenotypic and genetic properties and stability were examined, preclinical evaluation through in vitro or animal models, and clinical testing were carried out. Theoretical environmental concerns linked to the live and genetically modified nature of these vaccines have been carefully addressed. Results of the extensive characterizations are in accordance with the immunogenicity and excellent safety profile of the ChimeriVax-based vaccine candidates, and support their development towards large-scale efficacy trials and registration.

  3. Japanese encephalitis in a French traveler to Nepal.

    PubMed

    Lagarde, S; Lagier, J-C; Charrel, R; Quérat, G; Vanhomwegen, J; Desprès, P; Pelletier, J; Kaphan, E

    2014-02-01

    Japanese encephalitis is frequent in Asia, with a severe prognosis, but rare in travelers. Culex mosquitoes transmit Japanese encephalitis virus. Risk factors are destination, duration of stay, summer and fall seasons, outdoor activities, and type of accommodation. We report the case of a French traveler to Nepal with neutralization-based serological confirmed Japanese encephalitis. He presented classical clinical (viral syndrome before an encephalitis status with behavioral disorder, global hypotonia, mutism, movement disorders, seizure, and coma), radiological (lesions of thalami, cortico-spinal tracts, and brainstem) and biological features (lymphocytic meningitis). Nowadays, the presence of Japanese encephalitis virus in Nepal, including mountain areas, is established but Japanese encephalitis remains rare in travelers returning from this area and neurologist physicians need to become familiar with this. We recommend vaccination for travelers spending a long period of time in Nepal and having at-risk outdoor activities.

  4. Surveillance of Japanese Encephalitis Virus Infection in Mosquitoes in Vietnam from 2006 to 2008

    PubMed Central

    Kuwata, Ryusei; Nga, Phan Thi; Yen, Nguyen Thi; Hoshino, Keita; Isawa, Haruhiko; Higa, Yukiko; Hoang, Nguyen Vet; Trang, Bui Minh; Loan, Do Phuong; Phong, Tran Vu; Sasaki, Toshinori; Tsuda, Yoshio; Kobayashi, Mutsuo; Sawabe, Kyoko; Takagi, Masahiro

    2013-01-01

    Japanese encephalitis virus (JEV) infection in mosquitoes was monitored in Vietnam from 2006 to 2008. A total of 15,225 mosquitoes, identified as 26 species in five genera were collected and 12,621 were grouped into 447 pools for examination of JEV infection by assays for cytopathic effects in C6/36 cells and by RT-PCR to detect flavivirus RNA. Three JEV strains were isolated from Culex tritaeniorhynchus Giles collected in northern and southern Vietnam and two JEV strains were isolated from Culex vishnui Theobald collected in the highlands of Vietnam. Genetic and phylogenetic analyses, based on complete E gene nucleotide sequences, revealed that the five JEV strains were classified into the genotype I group and six amino acid differences were found in these five strains. These results indicated that multiple JEV genotype I populations are circulating countrywide in Vietnam, transmitted by bites of their Cx. tritaeniorhynchus and Cx. vishnui. PMID:23358634

  5. Emergence or improved detection of Japanese encephalitis virus in the Himalayan highlands?

    PubMed Central

    Baylis, Matthew; Barker, Christopher M.; Caminade, Cyril; Joshi, Bhoj R.; Pant, Ganesh R.; Rayamajhi, Ajit; Reisen, William K.; Impoinvil, Daniel E.

    2016-01-01

    The emergence of Japanese encephalitis virus (JEV) in the Himalayan highlands is of significant veterinary and public health concern and may be related to climate warming and anthropogenic landscape change, or simply improved surveillance. To investigate this phenomenon, a One Health approach focusing on the phylogeography of JEV, the distribution and abundance of the mosquito vectors, and seroprevalence in humans and animal reservoirs would be useful to understand the epidemiology of Japanese encephalitis in highland areas. PMID:26956778

  6. Quantification of vector and host competence and abundance for Japanese Encephalitis Virus: a systematic review of the literature.

    USDA-ARS?s Scientific Manuscript database

    Japanese encephalitis (JE) is a vector-borne disease caused by the Japanese encephalitis virus (JEV) that affects humans in Eastern and Southeastern Asia. Although it could be prevented by a vaccine, JE has no treatment and the inadvertent introduction of the virus into JEV-free countries, such as t...

  7. Emergence or improved detection of Japanese encephalitis virus in the Himalayan highlands?

    PubMed

    Baylis, Matthew; Barker, Christopher M; Caminade, Cyril; Joshi, Bhoj R; Pant, Ganesh R; Rayamajhi, Ajit; Reisen, William K; Impoinvil, Daniel E

    2016-04-01

    The emergence of Japanese encephalitis virus (JEV) in the Himalayan highlands is of significant veterinary and public health concern and may be related to climate warming and anthropogenic landscape change, or simply improved surveillance. To investigate this phenomenon, a One Health approach focusing on the phylogeography of JEV, the distribution and abundance of the mosquito vectors, and seroprevalence in humans and animal reservoirs would be useful to understand the epidemiology of Japanese encephalitis in highland areas. © The Author 2016. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene.

  8. Quantification of vector and host competence for Japanese encephalitis virus: a systematic review of the literature

    USDA-ARS?s Scientific Manuscript database

    Japanese encephalitis virus (JEV) is a virus of the Flavivirus genus that may result in encephalitis in human hosts. This vector-borne zoonosis occurs in Eastern and Southeastern Asia and an intentional or inadvertent introduction into the United States (US) will have major public health and economi...

  9. Susceptibility of a North American Culex quinquefasciatus to Japanese encephalitis virus

    USDA-ARS?s Scientific Manuscript database

    Japanese encephalitis virus (JEV) is a flavivirus that is transmitted by Culex (Cx.) tritaeniorhynchus in tropical and subtropical regions of Asia. The endemic transmission cycle involves domestic pigs and avian species that serve as amplification hosts; humans are incidental hosts that cannot devel...

  10. Involvement of cyclophilin B in the replication of Japanese encephalitis virus.

    PubMed

    Kambara, Hiroto; Tani, Hideki; Mori, Yoshio; Abe, Takayuki; Katoh, Hiroshi; Fukuhara, Takasuke; Taguwa, Shuhei; Moriishi, Kohji; Matsuura, Yoshiharu

    2011-03-30

    Japanese encephalitis virus (JEV) is a mosquito-borne RNA virus that belongs to the Flaviviridae family. In this study, we have examined the effect of cyclosporin A (CsA) on the propagation of JEV. CsA exhibited potent anti-JEV activity in various mammalian cell lines through the inhibition of CypB. The propagation of JEV was impaired in the CypB-knockdown cells and this reduction was cancelled by the expression of wild-type but not of peptidylprolyl cis-trans isomerase (PPIase)-deficient CypB, indicating that PPIase activity of CypB is critical for JEV propagation. Infection of pseudotype viruses bearing JEV envelope proteins was not impaired by the knockdown of CypB, suggesting that CypB participates in the replication but not in the entry of JEV. CypB was colocalized and immunoprecipitated with JEV NS4A in infected cells. These results suggest that CypB plays a crucial role in the replication of JEV through an interaction with NS4A. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Virulence of Japanese Encephalitis Virus Genotypes I and III, Taiwan

    PubMed Central

    Fan, Yi-Chin; Lin, Jen-Wei; Liao, Shu-Ying; Chen, Jo-Mei; Chen, Yi-Ying; Chiu, Hsien-Chung; Shih, Chen-Chang; Chen, Chi-Ming; Chang, Ruey-Yi; King, Chwan-Chuen; Chen, Wei-June; Ko, Yi-Ting; Chang, Chao-Chin

    2017-01-01

    The virulence of genotype I (GI) Japanese encephalitis virus (JEV) is under debate. We investigated differences in the virulence of GI and GIII JEV by calculating asymptomatic ratios based on serologic studies during GI- and GIII-JEV endemic periods. The results suggested equal virulence of GI and GIII JEV among humans. PMID:29048288

  12. Detection and isolation of Japanese encephalitis virus from blood clots collected during the acute phase of infection.

    PubMed

    Sapkal, Gajanan N; Wairagkar, Nitin S; Ayachit, Vijay M; Bondre, Vijay P; Gore, Milind M

    2007-12-01

    Clinical specimens from an encephalitis outbreak in the Lakhimpur area of Uttar Pradesh, India, were investigated for identification and characterization of the etiologic agent. IgM capture ELISA showed recent Japanese encephalitis virus (JEV) infection. JEV isolation was attempted from white blood cells (WBCs) separated from blood clots of 12 patients (9 IgM positive and 3 negative) by serial co-culturing with phytohemagglutinin P-stimulated peripheral blood mononuclear leukocytes (PBMCs) obtained from pre-screened JEV sero-negative healthy individuals. JEV was isolated from two IgM-positive blood clots. Isolate 014178 was detected in WBCs and in the first passage of PBMCs by ELISA and reverse transcriptase-polymerase chain reaction. Isolate 014173 was detectable only after a second passage in PBMC co-culture. Sequence analysis of 346 nt of the C-prM region showed homology with JEV strain GP78. This is the first report on isolation of JEV from patient blood clots. Our study shows that the co-cultures of PBMCs separated from patient blood clots provide an additional source for JEV isolation.

  13. Epitope-blocking enzyme-linked immunosorbent assay to differentiate west nile virus from Japanese encephalitis virus infections in equine sera.

    PubMed

    Kitai, Yoko; Shoda, Mizue; Kondo, Takashi; Konishi, Eiji

    2007-08-01

    West Nile virus (WNV) is now widely distributed worldwide, except in most areas of Asia where Japanese encephalitis virus (JEV) is distributed. Considering the movement and migration of reservoir birds, there is concern that WNV may be introduced in Asian countries. Although manuals and guidelines for serological tests have been created in Japan in preparedness for the introduction of WNV, differential diagnosis between WNV and JEV may be complicated by antigenic cross-reactivities between these flaviviruses. Here, we generated a monoclonal antibody specific for the nonstructural protein 1 (NS1) of WNV and established an epitope-blocking enzyme-linked immunosorbent assay that can differentiate WNV from JEV infections in horse sera. Under conditions well suited for our assay system, samples collected from 95 horses in Japan (regarded as negative for WNV antibodies), including those collected from horses naturally infected with JEV, showed a mean inhibition value of 8.2% and a standard deviation (SD) of 6.5%. However, inhibition values obtained with serum used as a positive control (obtained after 28 days from a horse experimentally infected with WNV) in nine separate experiments showed a mean of 54.4% and an SD of 7.1%. We tentatively determined 27.6% (mean + 3 x SD obtained with 95 negative samples) as the cutoff value to differentiate positive from negative samples. Under this criterion, two horses experimentally infected with WNV were diagnosed as positive at 12 and 14 days, respectively, after infection.

  14. Cross-neutralisation of viruses of the tick-borne encephalitis complex following tick-borne encephalitis vaccination and/or infection.

    PubMed

    McAuley, Alexander J; Sawatsky, Bevan; Ksiazek, Thomas; Torres, Maricela; Korva, Miša; Lotrič-Furlan, Stanka; Avšič-Županc, Tatjana; von Messling, Veronika; Holbrook, Michael R; Freiberg, Alexander N; Beasley, David W C; Bente, Dennis A

    2017-01-01

    The tick-borne encephalitis complex contains a number of flaviviruses that share close genetic homology, and are responsible for significant human morbidity and mortality with widespread geographical range. Although many members of this complex have been recognised for decades, licenced human vaccines with broad availability are only available for tick-borne encephalitis virus. While tick-borne encephalitis virus vaccines have been demonstrated to induce significant protective immunity, as determined by virus-neutralisation titres, vaccine breakthrough (clinical infection following complete vaccination), has been described. The aim of this study was to confirm the cross-neutralisation of tick-borne flaviviruses using mouse immune ascitic fluids, and to determine the magnitude of cross-neutralising antibody titres in sera from donors following tick-borne encephalitis vaccination, infection, and vaccine breakthrough. The results demonstrate that there is significant cross-neutralisation of representative members of the tick-borne encephalitis complex following vaccination and/or infection, and that the magnitude of immune responses varies based upon the exposure type. Donor sera successfully neutralised most of the viruses tested, with 85% of vaccinees neutralising Kyasanur forest disease virus and 73% of vaccinees neutralising Alkhumra virus. By contrast, only 63% of vaccinees neutralised Powassan virus, with none of these neutralisation titres exceeding 1:60. Taken together, the data suggest that tick-borne encephalitis virus vaccination may protect against most of the members of the tick-borne encephalitis complex including Kyasanur forest disease virus and Alkhumra virus, but that the neutralisation of Powassan virus following tick-borne encephalitis vaccination is minimal.

  15. Outbreak of Japanese encephalitis on the island of Saipan, 1990.

    PubMed

    Paul, W S; Moore, P S; Karabatsos, N; Flood, S P; Yamada, S; Jackson, T; Tsai, T F

    1993-05-01

    During October 1990, an outbreak of encephalitis occurred on Saipan. Although no virus was isolated, patients seroconverted to Japanese encephalitis (JE) virus, indicating the first known occurrence of JE on US territory since 1947. Ten cases occurred among a population of 40,000. The prevalence of antibody to JE virus among 234 lifelong Saipan residents surveyed after the outbreak was 4.2%. Age, household crowding, and lack of air conditioning were risk factors for infection. The seroprevalence in pigs, which are important amplifying hosts of JE virus, was 96% (n = 52). None of 288 stored serum specimens from lifelong Saipan residents sampled in 1984 were seropositive. These data suggest that JE virus was recently introduced onto Saipan and that peridomestic factors affected the risk of human infection. Transmission of JE virus probably ended with exhaustion of the supply of susceptible amplifying hosts. Surveillance for human cases and seroconversions in pigs during 1991 revealed no evidence of ongoing JE virus transmission.

  16. North American Birds as Potential Amplifying Hosts of Japanese Encephalitis Virus

    PubMed Central

    Nemeth, Nicole; Bosco-Lauth, Angela; Oesterle, Paul; Kohler, Dennis; Bowen, Richard

    2012-01-01

    Japanese encephalitis virus (JEV) is an emerging arbovirus, and inter-continental spread is an impending threat. The virus is maintained in a transmission cycle between mosquito vectors and vertebrate hosts, including birds. We detected variation in interspecies responses among North American birds to infection with strains of two different JEV genotypes (I and III). Several native North American passerine species and ring-billed gulls had the highest average peak viremia titers after inoculation with a Vietnamese (genotype I) JEV strain. Oral JEV shedding was minimal and cloacal shedding was rarely detected. The majority of birds, both viremic (72 of 74; 97.3%) and non-viremic (31 of 37; 83.8%), seroconverted by 14 days post-inoculation and West Nile virus-immune individuals had cross-protection against JEV viremia. Reservoir competence and serologic data for a variety of avian taxa are important for development of JEV surveillance and control strategies and will aid in understanding transmission ecology in the event of JEV expansion to North America. PMID:22927494

  17. GRP78 Is an Important Host Factor for Japanese Encephalitis Virus Entry and Replication in Mammalian Cells.

    PubMed

    Nain, Minu; Mukherjee, Sriparna; Karmakar, Sonali Porey; Paton, Adrienne W; Paton, James C; Abdin, M Z; Basu, Anirban; Kalia, Manjula; Vrati, Sudhanshu

    2017-03-15

    Japanese encephalitis virus (JEV), a mosquito-borne flavivirus, is the leading cause of viral encephalitis in Southeast Asia with potential to become a global pathogen. Here, we identify glucose-regulated protein 78 (GRP78) as an important host protein for virus entry and replication. Using the plasma membrane fractions from mouse neuronal (Neuro2a) cells, mass spectroscopy analysis identified GRP78 as a protein interacting with recombinant JEV envelope protein domain III. GRP78 was found to be expressed on the plasma membranes of Neuro2a cells, mouse primary neurons, and human epithelial Huh-7 cells. Antibodies against GRP78 significantly inhibited JEV entry in all three cell types, suggesting an important role of the protein in virus entry. Depletion of GRP78 by small interfering RNA (siRNA) significantly blocked JEV entry into Neuro2a cells, further supporting its role in virus uptake. Immunofluorescence studies showed extensive colocalization of GRP78 with JEV envelope protein in virus-infected cells. This interaction was also confirmed by immunoprecipitation studies. Additionally, GRP78 was shown to have an important role in JEV replication, as treatment of cells post-virus entry with subtilase cytotoxin that specifically cleaved GRP78 led to a substantial reduction in viral RNA replication and protein synthesis, resulting in significantly reduced extracellular virus titers. Our results indicate that GRP78, an endoplasmic reticulum chaperon of the HSP70 family, is a novel host factor involved at multiple steps of the JEV life cycle and could be a potential therapeutic target. IMPORTANCE Recent years have seen a rapid spread of mosquito-borne diseases caused by flaviviruses. The flavivirus family includes West Nile, dengue, Japanese encephalitis, and Zika viruses, which are major threats to public health with potential to become global pathogens. JEV is the major cause of viral encephalitis in several parts of Southeast Asia, affecting a predominantly pediatric

  18. A decade of Japanese encephalitis surveillance in Sarawak, Malaysia: 1997-2006.

    PubMed

    Wong, See C; Ooi, Mong H; Abdullah, Abdul R; Wong, See Y; Krishnan, Shekhar; Tio, Phaik H; Pek, Peng C; Lai, Boon F; Mohan, Anand; Muhi, Jamail; Kiyu, Andrew; Arif, Mohamad T; Cardosa, Mary J

    2008-01-01

    Japanese encephalitis virus (JEV) is an important encephalitis virus in Asia, but there are few data on Malaysia. A hospital-based surveillance system for Japanese encephalitis (JE) has been in operation in Sarawak, Malaysia, for the last 10 years. JEV is endemic in Sarawak, with cases occurring throughout the year and a seasonal peak in the last quarter (one-way anova, P < 0.0001). Ninety-two per cent of 133 cases were children aged 12 years or younger; the introduction of JE vaccination in July 2001 reduced the number of JE cases (84 in the four seasons prior to vs. 49 in the six seasons after, McNemar's test, P = 0.0001). After implementation of the programme, the mean age of infected children increased from 6.3 to 8.0 years (Student's t-test, P = 0.0037), suggesting the need for a catch-up programme.

  19. Serosurveillance for Japanese encephalitis and West Nile viruses in resident birds in Hawai'i.

    PubMed

    Nemeth, Nicole M; Bosco-Lauth, Angela M; Sciulli, Rebecca H; Gose, Remedios B; Nagata, Mark T; Bowen, Richard A

    2010-04-01

    Japanese encephalitis virus (JEV) and West Nile virus (WNV) are emerging zoonotic arboviruses that have recently undergone intercontinental expansion. Both JEV and WNV are naturally transmitted between mosquito vectors and vertebrate reservoir hosts, including birds. A potential route of JEV introduction from Asia to western North America is via the Hawaiian archipelago, while the spread of WNV from mainland North America to Hawai'i is also considered an impending threat. We surveyed resident, non-native bird sera for antibodies to JEV and WNV on two Hawaiian Islands from 2004-2005. Three of 1,835 birds (0.16%) had evidence of antiflavivirus antibodies, demonstrating neutralizing activity to JEV and St. Louis encephalitis virus (SLEV). These detections could represent a limited transmission focus of either, or both, JEV and SLEV, or cross-reactive antibodies due to primary infection with an alternate flavivirus. Frequent air traffic from both Asia and North America to Hawai'i, along with the presence of probable competent vectors and amplifying vertebrate hosts in Hawai'i, increases the likelihood of introduction and maintenance of novel flaviviruses. Therefore, it is important to monitor for the presence of these viruses.

  20. Dengue, Japanese encephalitis and Chikungunya virus antibody prevalence among captive monkey (Macaca nemestrina) colonies of Northern Thailand.

    PubMed

    Nakgoi, Khajornpong; Nitatpattana, Narong; Wajjwalku, Worawidh; Pongsopawijit, Pornsawan; Kaewchot, Supakarn; Yoksan, Sutee; Siripolwat, Voravit; Souris, Marc; Gonzalez, Jean-Paul

    2014-01-01

    The potential of macaque Macaca nemestrina leonina in Thailand to be infected by endemic arboviruses was assessed. The prevalence of antibodies of three arboviruses actively circulating in Thailand was determined by Plaque Reduction Neutralization assay procedures using samples from captive colonies in Northern Thailand. Out of 38 macaques, 9 (24%) presented reacting antibodies against dengue virus, 5 (13%) against Japanese encephalitis virus, and 4 (10%) against Chikungunya virus. Our results indicate that the northern pig-tailed macaque in Thailand can be infected by these arboviruses, inferring therefore that their virus specific vectors have bitten them. Given that, northern pig-tailed macaque represents an abundant population, living in close range to human or in peridomestic setting, they could play a role as potential reservoir host for arboviruses circulating in Thailand. © 2013 Wiley Periodicals, Inc.

  1. Characterization of two mosquito STATs, AaSTAT and CtSTAT. Differential regulation of tyrosine phosphorylation and DNA binding activity by lipopolysaccharide treatment and by Japanese encephalitis virus infection.

    PubMed

    Lin, Chang-Chi; Chou, Chih-Ming; Hsu, Ya-Li; Lien, Jih-Ching; Wang, Yu-Ming; Chen, Shui-Tsung; Tsai, Shu-Chuan; Hsiao, Pei-Wen; Huang, Chang-Jen

    2004-01-30

    Two mosquito STATs, AaSTAT and CtSTAT, have been cloned from Aedes albopictus and Culex tritaeniorhynchus mosquitoes, respectively. These two STATs are more similar to those of Drosophila, Anopheles, and mammalian STAT5 in the DNA binding and Src homology 2 domains. The mRNA transcripts are expressed at all developmental stages, and the proteins are present predominantly at the pupal and adult stages in both mosquitoes. Stimulation with lipopolysaccharide resulted in an increase of tyrosine phosphorylation and DNA binding activity of AaSTAT and CtSTAT as well as an increase of luciferase activity of a reporter gene containing Drosophila STAT binding motif in mosquito C6/36 cells. After being infected with Japanese encephalitis virus, nuclear extracts of C6/36 cells revealed a decrease of tyrosine phosphorylation and DNA binding activity of AaSTAT which could be restored by sodium orthovanadate treatment. Taking all of the data together, this is the first report to clone and characterize two mosquito STATs with 81% identity and to demonstrate a different response of tyrosine phosphorylation and DNA binding of these two STATs by lipopolysaccharide treatment and by Japanese encephalitis virus infection.

  2. Seasonal abundance and potential of Japanese encephalitis virus infection in mosquitoes at the nesting colony of ardeid birds, Thailand.

    PubMed

    Changbunjong, Tanasak; Weluwanarak, Thekhawet; Taowan, Namaoy; Suksai, Parut; Chamsai, Tatiyanuch; Sedwisai, Poonyapat

    2013-03-01

    To investigate the abundance and seasonal dynamics of mosquitoes, and to detect Japanese encephalitis virus (JEV) in these mosquitoes at the nesting colony of ardeid birds. Mosquitoes were collected bimonthly from July 2009 to May 2010 by Centers for Disease Control. Light traps and dry ice, as a source of CO2, were employed to attract mosquitoes. Mosquitoes were first identified, pooled into groups of upto 50 mosquitoes by species, and tested for JEV infection by viral isolation and reverse transcriptase polymerase chain reaction. A total of 20 370 mosquitoes comprising 14 species in five genera were collected. The five most abundant mosquito species collected were Culex tritaeniorhynchus (95.46%), Culex vishnui (2.68%), Culex gelidus (0.72%), Anopheles peditaeniatus (0.58%) and Culex quinquefasciatus (0.22%). Mosquito peak densities were observed in July. All of 416 mosquito pools were negative for JEV. This study provides new information about mosquito species and status of JEV infection in mosquitoes in Thailand. Further study should be done to continue a close survey for the presence of this virus in the ardeid birds.

  3. Chandipura virus infection causing encephalitis in a tribal population of Odisha in eastern India.

    PubMed

    Dwibedi, Bhagirathi; Sabat, Jyotsnamayee; Hazra, Rupenangshu K; Kumar, Anu; Dinesh, Diwakar Singh; Kar, Shantanu K

    2015-01-01

    The sudden death of 10 children in a tribal village of Kandhamal district, Odisha in eastern India led to this investigation. We conducted a door-to-door survey to identify cases. Antibodies for Chandipura, Japanese encephalitis, dengue, chikungunya and West Nile viruses were tested by ELISA in probable cases. Chandipura virus RNA was tested from both human blood samples and sand flies by reverse transcriptase polymerase chain reaction. We conducted vector surveys in domestic and peridomestic areas, and collected sand flies. Entomological investigations revealed the presence of Phlebotomus argentipes and Sergentomiya sp. Thirty-five patients presented with fever, 12 of them had altered sensorium including 4 who had convulsions. The blood samples of 21 patients were tested; four samples revealed Chandipura virusspecific IgM antibody. Chandipura virus infection causing encephalitis affected this tribal population in eastern India at 1212 m above sea level. Copyright 2015, NMJI.

  4. Neuro-Immune Mechanisms in Response to Venezuelan Equine Encephalitis Virus Infection

    DTIC Science & Technology

    2000-01-01

    iii ABSTRACT NEURO-IMMUNE MECHANISMS IN RESPONSE TO VENEZUELAN EQUINE ENCEPHALITIS VIRUS INFECTION Major Bruce A. Schoneboom directed by Franziska B...Grieder, DVM, Ph.D., Assistant Professor of Microbiology and Immunology, Molecular and Cellular Biology, and Neuroscience Venezuelan equine ...3. DATES COVERED - 4. TITLE AND SUBTITLE NEURO-IMMUNE MECHANISMS IN RESPONSE TO VENEZUELAN EQUINE ENCEPHALITIS VIRUS INFECTION 5a. CONTRACT

  5. Antibodies to H5 subtype avian influenza virus and Japanese encephalitis virus in northern pintails (Anas acuta) sampled in Japan

    USDA-ARS?s Scientific Manuscript database

    Blood samples from 105 northern pintails (Anas acuta) captured on Hokkaido, Japan were tested for antibodies to avian influenza virus (AIV), Japanese encephalitis virus (JEV) and West Nile virus (WNV) to assess possible involvement of this species in the transmission and spread of economically impor...

  6. Points to consider in the development of a surrogate for efficacy of novel Japanese encephalitis virus vaccines.

    PubMed

    Markoff, L

    2000-05-26

    Although an effective killed virus vaccine to prevent illness due to Japanese encephalitis virus (JEV) infection exists, many authorities recognize that a safe, effective live JEV vaccine is desirable in order to reduce the cost and the number of doses of vaccine required per immunization. A large-scale clinical efficacy trail for such a vaccine would be both unethical and impractical. Therefore, a surrogate for the efficacy of JE vaccines should be established. Detection of virus-neutralizing antibodies in sera of vaccinees could constitute such a surrogate for efficacy. Field studies of vaccinees in endemic areas and studies done in mice already exist to support this concept. Also, titers of virus-neutralizing antibodies are already accepted as a surrogate for the efficacy of yellow fever virus vaccines and for the efficacy of other viral vaccines as well. In developing a correlation between N antibody titers and protection from JEV infection, standard procedures must be validated and adopted for both measuring N antibodies and for testing in animals. A novel live virus vaccine could be tested in the mouse and/or the monkey model of JEV infection to establish a correlation between virus-neutralizing antibodies elicited by the vaccines and protection from encephalitis. In addition, sera of subjects receiving the novel live JEV vaccine in early clinical trials could be passively transferred to mice or monkeys in order to establish the protective immunogenicity of the vaccine in humans. A monkey model for JEV infection was recently established by scientists at WRAIR in the US. From this group, pools of JEV of known infectivity for Rhesus macaques may be obtained for testing of immunity elicited by live JE vaccine virus.

  7. Molecular Epidemiology of Japanese Encephalitis Virus in Mosquitoes in Taiwan during 2005–2012

    PubMed Central

    Su, Chien-Ling; Yang, Cheng-Fen; Teng, Hwa-Jen; Lu, Liang-Chen; Lin, Cheo; Tsai, Kun-Hsien; Chen, Yu-Yu; Chen, Li-Yu; Chang, Shu-Fen; Shu, Pei-Yun

    2014-01-01

    Japanese encephalitis (JE) is a mosquito-borne zoonotic disease caused by the Japanese encephalitis virus (JEV). Pigs and water birds are the main amplifying and maintenance hosts of the virus. In this study, we conducted a JEV survey in mosquitoes captured in pig farms and water bird wetland habitats in Taiwan during 2005 to 2012. A total of 102,633 mosquitoes were collected. Culex tritaeniorhynchus was the most common mosquito species found in the pig farms and wetlands. Among the 26 mosquito species collected, 11 tested positive for JEV by RT-PCR, including Cx. tritaeniorhynchus, Cx. annulus, Anopheles sinensis, Armigeres subalbatus, and Cx. fuscocephala. Among those testing positive, Cx. tritaeniorhynchus was the predominant vector species for the transmission of JEV genotypes I and III in Taiwan. The JEV infection rate was significantly higher in the mosquitoes from the pig farms than those from the wetlands. A phylogenetic analysis of the JEV envelope gene sequences isolated from the captured mosquitoes demonstrated that the predominant JEV genotype has shifted from genotype III to genotype I (GI), providing evidence for transmission cycle maintenance and multiple introductions of the GI strains in Taiwan during 2008 to 2012. This study demonstrates the intense JEV transmission activity in Taiwan, highlights the importance of JE vaccination for controlling the epidemic, and provides valuable information for the assessment of the vaccine's efficacy. PMID:25275652

  8. Transcriptional regulation of miR-15b by c-Rel and CREB in Japanese encephalitis virus infection

    PubMed Central

    Zhu, Bibo; Ye, Jing; Ashraf, Usama; Li, Yunchuan; Chen, Huanchun; Song, Yunfeng; Cao, Shengbo

    2016-01-01

    MicroRNAs (miRNAs) have been well known to play diverse roles in viral infection at the level of posttranscriptional repression. However, much less is understood about the mechanism by which miRNAs are regulated during viral infection. It is likely that both host and virus contain factors to modulate miRNA expression. Here we report the up-regulation of microRNA-15b (miR-15b) in vitro upon infection with Japanese encephalitis virus (JEV). Analysis of miR-15b precursor, pri-miR-15b and pre-miR-15b, suggest that the regulation occurs transcriptionally. Further, we identified the transcriptional regulatory region of miR-15b that contains consensus binding motif for NF-κB subunit c-Rel and cAMP-response element binding protein (CREB), which are known as transcription factor to regulate gene expression. By promoter fusion and mutational analyses, we demonstrated that c-Rel and CREB bind directly to the promoter elements of miR-15b, which are responsible for miR-15b transcription in response to JEV infection. Finally, we showed that pharmacological inhibition of ERK and NF-κB signaling pathway blocked induction of miR-15b in JEV infection, suggesting important roles of ERK and NF-κB pathway in the regulation of miR-15b gene. Therefore, our observations indicate that induced expression of miR-15b is modulated by c-Rel and CREB in response to JEV infection. PMID:26931521

  9. A systematic review of the literature to identify and quantify host and vector competence and abundance of Japanese Encephalitis Virus

    USDA-ARS?s Scientific Manuscript database

    Japanese Encephalitis virus (JEV) is a mosquito-borne arbovirus that causes endemic and epidemic encephalitis in Eastern and Southeastern Asia. Swine and wading birds serve as reservoirs for the virus, which can be transmitted to humans via mosquitos. Currently, there is no specific treatment availa...

  10. Japanese Encephalitis in Malaysia: An Overview and Timeline.

    PubMed

    Kumar, Kiven; Arshad, Siti Suri; Selvarajah, Gayathri Thevi; Abu, Jalila; Toung, Ooi Peck; Abba, Yusuf; Yasmin, A R; Bande, Faruku; Sharma, Reuben; Ong, Bee Lee

    2018-05-29

    Japanese encephalitis (JE) is a vector-borne zoonotic disease caused by the Japanese encephalitis virus (JEV). It causes encephalitis in human and horses, and may lead to reproductive failure in sows. The first human encephalitis case in Malaya (now Malaysia) was reported during World War II in a British prison in 1942. Later, encephalitis was observed among race horses in Singapore. In 1951, the first JEV was isolated from the brain of an encephalitis patient. The true storyline of JE exposure among humans and animals has not been documented in Malaysia. In some places such as Sarawak, JEV has been isolated from mosquitoes before an outbreak in 1992. JE is an epidemic in Malaysia except Sarawak. There are four major outbreaks reported in Pulau Langkawi (1974), Penang (1988), Perak and Negeri Sembilan (1998-1999), and Sarawak (1992). JE is considered endemic only in Sarawak. Initially, both adults and children were victims of JE in Malaysia, however, according to the current reports; JE infection is only lethal to children in Malaysia. This paper describes a timeline of JE cases (background of each case) from first detection to current status, vaccination programs against JE, diagnostic methods used in hospitals and factors which may contribute to the transmission of JE among humans and animals in Malaysia. Copyright © 2018. Published by Elsevier B.V.

  11. Serological evidence of widespread West Nile virus and Japanese encephalitis virus infection in native domestic ducks (Anas platyrhynchos var domesticus) in Kuttanad region, Kerala, India.

    PubMed

    Kalaiyarasu, Semmannan; Mishra, Niranjan; Khetan, Rohit Kumar; Singh, Vijendra Pal

    2016-10-01

    Birds can act as reservoirs of West Nile virus (WNV) with a key role in its epidemiology. WNV lineage 1 associated fatal cases of human encephalitis in 2011 and acute flaccid paralysis in 2013 were reported in Alappuzha district, Kerala, India. But no information is available on WNV circulation in domestic ducks, which are abundant, cohabit with humans and occupy wetlands and water bodies in the region. To determine the extent of WNV infection, we investigated 209 sera, 250 oral and 350 cloacal swab samples from local Chara and Chemballi domestic ducks (Anas platyrhynchos var domesticus) in the districts of Alappuzha, Kottayam, Kollam and Pathanamthitta collected during January and March 2015. The serum samples were tested for WNV antibodies first by a competition ELISA and then by a micro virus neutralization test (micro-VNT), while oral and cloacal swabs were subjected to WNV real-time RT-PCR. Ninety five ducks showed evidence of flavivirus antibodies by ELISA. End point neutralizing antibody titre against WNV and Japanese encephalitis virus (JEV) revealed WNV specific antibodies in 24 (11.5%) ducks in 3 districts, JEV specific antibodies in 21 (10%) ducks in 2 districts and flavivirus specific antibodies in 19 (9%) ducks. However, no WNV genomic RNA could be detected. The results of this study demonstrate evidence of widespread WNV and JEV infection in domestic ducks in Kuttanad region, Kerala with a higher seroprevalence to WNV than JEV. Additionally, it highlights the utility of domestic ducks as a surveillance tool to detect WNV/JEV circulation in a region. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Acute encephalitis, a poliomyelitis-like syndrome and neurological sequelae in a hamster model for flavivirus infections.

    PubMed

    Leyssen, Pieter; Croes, Romaric; Rau, Philipp; Heiland, Sabine; Verbeken, Erik; Sciot, Raphael; Paeshuyse, Jan; Charlier, Nathalie; De Clercq, Erik; Meyding-Lamadé, Uta; Neyts, Johan

    2003-07-01

    Infection of hamsters with the murine flavivirus Modoc results in (meningo)encephalitis, which is, during the acute phase, frequently associated with flaccid paralysis, as also observed in patients with West Nile virus encephalitis. Twenty percent of the hamsters that recover from the acute encephalitis develop life-long neurological sequelae, reminiscent of those observed, for example, in survivors of Japanese encephalitis. Magnetic resonance imaging and histology revealed severe lesions predominantly located in the olfactory-limbic system, both in hamsters with acute encephalitis as in survivors. Prominent pathology was also detected in the spinal cord of hamsters with paralysis. Modoc virus infections in hamsters provide a unique model for the study of encephalitis, a poliomyelitis-like syndrome and neurological sequelae following flavivirus infection.

  13. Immunogenicity of Japanese encephalitis virus envelope protein by Hyphantria cunea nuclear polyhedrosis virus vector in guinea pig.

    PubMed

    Lee, Hyung-Hoan; Hong, Seung-Kuk; Yoon, Sang-Ho; Jang, Sung-Jae; Bahk, Young-Yil; Song, Min-Dong; Park, Pyo-Jam; Lee, Kwang-Ho; Kim, Chan-Gil; Kim, Bokyung; Park, Tae-Kyu; Kang, Hyun

    2012-05-01

    Japanese encephalitis virus (JEV) is an important pathogen causing febrile syndrome, encephalitis, and death. Envelop (E) glycoprotein is the major target of inducing neutralizing antibodies and protective immunity in host. In this study, E glycoprotein of JEV was expressed in Spodoptera frugiperd 9 cells as a fusion protein containing a gX signal sequence of pseudorabies virus. This purified HcE recombinant protein was evaluated for their immunogenicity and protective efficacy in guinea pig. The survival rates of guinea pig immunized with HcE protein was significantly increased over that of JE vaccine. This result indicates helpful information for developing a subunit vaccine against JEV.

  14. Brain microvascular endothelial-astrocyte cell responses following Japanese encephalitis virus infection in an in vitro human blood-brain barrier model.

    PubMed

    Patabendige, Adjanie; Michael, Benedict D; Craig, Alister G; Solomon, Tom

    2018-06-01

    Japanese encephalitis virus (JEV) remains a leading cause of encephalitis, globally, which continues to grow in importance despite the availability of vaccines. Viral entry into the brain can occur via the blood-brain barrier (BBB), and inflammation at the BBB is a common final pathway in many brain infections. However, the role of the BBB during JEV infection and the contribution of the endothelial and astrocytic cell inflammation in facilitating virus entry into the brain are incompletely understood. We established a BBB model using human brain endothelial cells (HBECs) and human astrocytes. HBECs are polarised, and therefore the model was inoculated by JEV from the apical side to simulate the in vivo situation. The effects of JEV on the BBB permeability and release of inflammatory mediators from both apical and basolateral sides, representing the blood and the brain side respectively were investigated. JEV infected HBECs with limited active virus production, before crossing the BBB and infecting astrocytes. Control of JEV production by HBECs was associated with a significant increase in permeability, and with elevation of many host mediators, including cytokines, chemokines, cellular adhesion molecules, and matrix metalloproteases. When compared to the controls, significantly higher amounts of mediators were released from the apical side as opposed to the basolateral side. The increased release of mediators over time also correlated with increased BBB permeability. Treatment with dexamethasone led to a significant reduction in the release of interleukin 6 (IL6), C-C motif chemokine ligand 5 (CCL5) and C-X-C motif chemokine ligand 10 (CXCL10) from the apical side with a reduction in BBB disruption and no change in JEV production. The results are consistent with the hypothesis that JEV infection of the BBB triggers the production of a range of host mediators from both endothelial cells and astrocytes, which control JEV production but disrupt BBB integrity thus

  15. Flaviviruses, an expanding threat in public health: focus on Dengue, West Nile, and Japanese encephalitis virus

    PubMed Central

    Daep, Carlo Amorin; Muñoz-Jordán, Jorge L.; Eugenin, Eliseo Alberto

    2014-01-01

    The flaviviruses Dengue, West Nile, and Japanese encephalitis represent three major mosquito-borne viruses worldwide. These pathogens impact the lives of millions of individuals and potentially could affect non-endemic areas already colonized by mosquito vectors. Unintentional transport of infected vectors (Aedes and Culex sp), traveling within endemic areas, rapid adaptation of the insects into new geographic locations, climate change, and lack of medical surveillance have greatly contributed to the increase in flaviviral infections worldwide. The mechanisms by which flaviviruses alter the immune and the central nervous system have only recently been examined despite the alarming number of infections, related deaths, and increasing global distribution. In this review, we will discuss the expansion of the geographic areas affected by flaviviruses, the potential threats to previously unaffected countries, the mechanisms of pathogenesis, and the potential therapeutic interventions to limit the devastating consequences of these viruses. PMID:25287260

  16. Flaviviruses, an expanding threat in public health: focus on dengue, West Nile, and Japanese encephalitis virus.

    PubMed

    Daep, Carlo Amorin; Muñoz-Jordán, Jorge L; Eugenin, Eliseo Alberto

    2014-12-01

    The flaviviruses dengue, West Nile, and Japanese encephalitis represent three major mosquito-borne viruses worldwide. These pathogens impact the lives of millions of individuals and potentially could affect non-endemic areas already colonized by mosquito vectors. Unintentional transport of infected vectors (Aedes and Culex spp.), traveling within endemic areas, rapid adaptation of the insects into new geographic locations, climate change, and lack of medical surveillance have greatly contributed to the increase in flaviviral infections worldwide. The mechanisms by which flaviviruses alter the immune and the central nervous system have only recently been examined despite the alarming number of infections, related deaths, and increasing global distribution. In this review, we will discuss the expansion of the geographic areas affected by flaviviruses, the potential threats to previously unaffected countries, the mechanisms of pathogenesis, and the potential therapeutic interventions to limit the devastating consequences of these viruses.

  17. Cross-protection between West Nile and Japanese encephalitis viruses in red-winged blackbirds (Agelaius phoeniceus).

    PubMed

    Nemeth, Nicole M; Bosco-Lauth, Angela M; Bowen, Richard A

    2009-09-01

    Similar to West Nile virus (WNV), Japanese encephalitis virus (JEV) has a history of intercontinental spread, and birds are important for the maintenance and transmission of both of these closely related viruses. We examined viremic and serologic responses of blackbirds (Agelaius phoeniceus), with and without immunity to WNV, following experimental inoculation with two strains of JEV. Japanese encephalitis (JE) viremia was detected in only one of 16 (6.3%) WNV-immune birds, while all 16 nonimmune birds had detectable JE viremia. Two weeks after JEV inoculation, all birds without pre-existing WNV immunity had clearly distinguishable anti-JEV antibodies, while in all birds with pre-existing WNV immunity, antibodies to WNV and JEV were either indistinguishable or the anti-WNV antibody titers were significantly higher. As WNV is endemic throughout much of North America, WNV immunity among birds may dampen transmission while complicating the serologic diagnosis of JEV, should this pathogen be introduced to North America.

  18. Recombinant Measles AIK-C Vaccine Strain Expressing the prM-E Antigen of Japanese Encephalitis Virus.

    PubMed

    Higuchi, Akira; Toriniwa, Hiroko; Komiya, Tomoyoshi; Nakayama, Tetsuo

    2016-01-01

    An inactivated Japanese encephalitis virus (JEV) vaccine, which induces neutralizing antibodies, has been used for many years in Japan. In the present study, the JEV prM-E protein gene was cloned, inserted at the P/M junction of measles AIK-C cDNA, and an infectious virus was recovered. The JEV E protein was expressed in B95a cells infected with the recombinant virus. Cotton rats were inoculated with recombinant virus. Measles PA antibodies were detected three weeks after immunization. Neutralizing antibodies against JEV developed one week after inoculation, and EIA antibodies were detected three weeks after immunization. The measles AIK-C-based recombinant virus simultaneously induced measles and JEV immune responses, and may be a candidate for infant vaccines. Therefore, the present strategy of recombinant viruses based on a measles vaccine vector would be applicable to the platform for vaccine development.

  19. Japanese Encephalitis: Frequently Asked Questions

    MedlinePlus

    ... the vaccine, what should I do? What is Japanese encephalitis? Japanese encephalitis (JE) is a potentially severe ... cause inflammation of the brain (encephalitis). Where does Japanese encephalitis occur? JE occurs in Asia and parts ...

  20. Subclinical infection without encephalitis in mice following intranasal exposure to Nipah virus-Malaysia and Nipah virus-Bangladesh.

    PubMed

    Dups, Johanna; Middleton, Deborah; Long, Fenella; Arkinstall, Rachel; Marsh, Glenn A; Wang, Lin-Fa

    2014-06-02

    Nipah virus and Hendra virus are closely related and following natural or experimental exposure induce similar clinical disease. In humans, encephalitis is the most serious outcome of infection and, hitherto, research into the pathogenesis of henipavirus encephalitis has been limited by the lack of a suitable model. Recently we reported a wild-type mouse model of Hendra virus (HeV) encephalitis that should facilitate detailed investigations of its neuropathogenesis, including mechanisms of disease recrudescence. In this study we investigated the possibility of developing a similar model of Nipah virus encephalitis. Aged and young adult wild type mice did not develop clinical disease including encephalitis following intranasal exposure to either the Malaysia (NiV-MY) or Bangladesh (NiV-BD) strains of Nipah virus. However viral RNA was detected in lung tissue of mice at euthanasia (21 days following exposure) accompanied by a non-neutralizing antibody response. In a subsequent time course trial this viral RNA was shown to be reflective of an earlier self-limiting and subclinical lower respiratory tract infection through successful virus re-isolation and antigen detection in lung. There was no evidence for viremia or infection of other organs, including brain. Mice develop a subclinical self-limiting lower respiratory tract infection but not encephalitis following intranasal exposure to NiV-BD or NiV-MY. These results contrast with those reported for HeV under similar exposure conditions in mice, demonstrating a significant biological difference in host clinical response to exposure with these viruses. This finding provides a new platform from which to explore the viral and/or host factors that determine the neuroinvasive ability of henipaviruses.

  1. miR-370 mimic inhibits replication of Japanese encephalitis virus in glioblastoma cells.

    PubMed

    Li, Wenjuan; Cheng, Peng; Nie, Shangdan; Cui, Wen

    2016-01-01

    Japanese encephalitis (JE) is one of the most severe viral infections of the central nervous system. No effective treatment for JE currently exists, because its pathogenesis remains largely unknown. The present study was designed to screen the potential microRNAs (miRNAs) involved in JE. Glioblastoma cells were collected, after being infected with the Japanese encephalitis virus (JEV). Total miRNAs were extracted and analyzed using an miRNA chip. One of the most severely affected miRNAs was selected, and the role of miR-370 in JEV infection was investigated. Cell viability and apoptosis of the host cells were evaluated. JEV replication was detected via analysis of gene E expression. Real-time polymerase chain reaction was used to determine the levels of endogenous miR-370 and expression of innate immunity-related genes. Following JEV infection, 114 miRNAs were affected, as evidenced by the miRNA chip. Among them, 30 miRNAs were upregulated and 84 were downregulated. The changes observed in five miRNAs were confirmed by real-time polymerase chain reaction. One of the significantly downregulated miRNAs was miR-370. Therefore, miR-370 mimic was transfected into the cells, following which the levels of endogenous miR-370 were significantly elevated. Concurrently, JEV replication was significantly reduced 24 hours after transfection of miR-370 mimic. Functionally, miR-370 mimic mitigated both JEV-induced apoptosis and the inhibition of host cell proliferation. Following JEV infection, interferon-β and nuclear factor-kappa B were upregulated, whereas miR-370 mimic prevented the upregulation of the genes induced by JEV infection. The present study demonstrated that miR-370 expression in host cells is downregulated following JEV infection, which further mediates innate immunity-related gene expression. Taken together, miR-370 mimic might be useful to prevent viral replication and infection-induced host cell injury.

  2. Pathogenic and Genotypic Characterization of a Japanese Encephalitis Virus Isolate Associated with Reproductive Failure in an Indian Pig Herd

    PubMed Central

    Desingu, P. A.; Ray, Pradeep K.; Patel, B. H. M.; Singh, R.; Singh, R. K.; Saikumar, G

    2016-01-01

    Background India is endemic to Japanese encephalitis virus (JEV) and recurrent outbreaks occur mainly in rice growing areas. Pigs are considered to be the amplifying host for JEV and infection in gestating pigs results in reproductive failure. Most studies conducted on JEV infection in Indian pigs have been serological surveys and very little is known about JEV genotypes circulating in pigs. So the potential risk posed by pigs in JEV transmission and the genetic relationship between viruses circulating in pigs, mosquitoes and humans is poorly understood. Methodology/Principal Findings This study was conducted in pigs with a history of reproductive failure characterized by stillborn piglets with neuropathological lesions. Japanese encephalitis (JE) suspected brain specimens inoculated intracerebrally into mice and Vero cells resulted in successful isolation of JEV/SW/IVRI/395A/2014. Clinicopathological observations in infected mice, demonstration of JEV antigen in brain, and analysis of the envelope protein identified the swine isolate as being neurovirulent. Phylogenetic analysis based on prM and E gene sequences showed that it belonged to genotype III. This swine isolate was closely related to JEV associated with the 2005 outbreak in India and JaoArS982 from Japan. Phylogenetic analysis of JEV strains collected between 1956 and 2014 in India categorized the GIII viruses into different clades blurring their spatial distribution, which has been discernible in the previous century. Conclusions/Significance Isolation of JEV from stillborn piglets and its close genetic relationship with viruses detected at least three decades ago in humans and mosquitoes in Japan suggests that the virus may have been circulating among Indian pigs for several decades. The close similarity between the present swine isolate and those detected in humans affected in the 2005 outbreak in Uttar Pradesh, India, suggests the need for more intensive surveillance of pigs and implementation of

  3. The ubiquitin-proteasome system is essential for the productive entry of Japanese encephalitis virus.

    PubMed

    Wang, Shaobo; Liu, Haibin; Zu, Xiangyang; Liu, Yang; Chen, Liman; Zhu, Xueqin; Zhang, Leike; Zhou, Zheng; Xiao, Gengfu; Wang, Wei

    2016-11-01

    The host-virus interaction during the cellular entry of Japanese encephalitis virus (JEV) is poorly characterized. The ubiquitin-proteasome system (UPS), the major intracellular proteolytic pathway, mediates diverse cellular processes, including endocytosis and signal transduction, which may be involved in the entry of virus. Here, we showed that the proteasome inhibitors, MG132 and lactacystin, impaired the productive entry of JEV by effectively interfering with viral intracellular trafficking at the stage between crossing cell membrane and the initial translation of the viral genome after uncoating. Using confocal microscopy, it was demonstrated that a proportion of the internalized virions were misdirected to lysosomes following treatment with MG132, resulting in non-productive entry. In addition, using specific siRNAs targeting ubiquitin, we verified that protein ubiquitination was involved in the entry of JEV. Overall, our study demonstrated the UPS is essential for the productive entry of JEV and might represent a potential antiviral target for JEV infection. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. The blood-brain barrier in the cerebrum is the initial site for the Japanese encephalitis virus entering the central nervous system.

    PubMed

    Liu, Tsan-Hsiun; Liang, Li-Ching; Wang, Chien-Chih; Liu, Huei-Chung; Chen, Wei-June

    2008-11-01

    Japanese encephalitis (JE) virus is a member of the encephalitic flaviviruses and frequently causes neurological sequelae in a proportion of patients who survive the acute phase of the infection. In the present study, we molecularly identified viral infection in the brain of mice with rigidity of hindlimbs and/or abnormal gait, in which JE virus particles appeared within membrane-bound vacuoles of neurons throughout the central nervous system. Deformation of tight junctions (TJs) shown as dissociation of endothelial cells in capillaries, implying that the integrity of the blood-brain barrier (BBB) has been compromised by JE virus infection. BBB permeability evidently increased in the cerebrum, but not in the cerebellum, of JE virus-infected mice intravenously injected with the tracer of Evans blue dye. This suggests that the permeability of the BBB differentially changed in response to viral infection, leading to the entry of JE virions and/or putatively infected leukocytes from the periphery to the cerebrum as the initial site of infection in the central nervous system (CNS). Theoretically, the virus spread to the cerebellum soon after the cerebrum became infected.

  5. Japanese encephalitis virus replicon-based vaccine expressing enterovirus-71 epitope confers dual protection from lethal challenges.

    PubMed

    Huang, Yi-Ting; Liao, Jia-Teh; Yen, Li-Chen; Chang, Yung-Kun; Lin, Yi-Ling; Liao, Ching-Len

    2015-09-11

    To construct safer recombinant flavivirus vaccine, we exploited Japanese encephalitis virus (JEV) replicon-based platform to generate single-round infectious particles (SRIPs) that expressed heterologous neutralizing epitope SP70 derived from enterovirus-71 (EV71). Such pseudo-infectious virus particles, named SRIP-SP70, although are not genuine viable viruses, closely mimic live virus infection to elicit immune responses within one round of viral life cycle. We found that, besides gaining of full protection to thwart JEV lethal challenge, female outbred ICR mice, when were immunized with SRIP-SP70 by prime-boost protocol, could not only induce SP70-specific and IgG2a predominant antibodies but also provide their newborns certain degree of protection against EV71 lethal challenge. Our results therefore exemplify that this vaccination strategy could indeed confer an immunized host a dual protective immunity against subsequent lethal challenge from JEV or EV71.

  6. IMOJEV(®): a Yellow fever virus-based novel Japanese encephalitis vaccine.

    PubMed

    Appaiahgari, Mohan Babu; Vrati, Sudhanshu

    2010-12-01

    Japanese encephalitis (JE) is a disease of the CNS caused by Japanese encephalitis virus (JEV). The disease appears in the form of frequent outbreaks in most south- and southeast Asian countries and the virus has become endemic in several areas. There is no licensed therapy available and disease control by vaccination is considered to be most effective. Mouse brain-derived inactivated JE vaccines, although immunogenic, have several limitations in terms of safety, availability and requirement for multiple doses. Owing to these drawbacks, the WHO called for the development of novel, safe and more efficacious JE vaccines. Several candidate vaccines have been developed and at least three of them that demonstrated strong immunogenicity after one or two doses of the vaccine in animal models were subsequently tested in various clinical trials. One of these vaccines, IMOJEV(®) (JE-CV and previously known as ChimeriVax™-JE), is a novel recombinant chimeric virus vaccine, developed using the Yellow fever virus (YFV) vaccine vector YFV17D, by replacing the cDNA encoding the envelope proteins of YFV with that of an attenuated JEV strain SA14-14-2. IMOJEV was found to be safe, highly immunogenic and capable of inducing long-lasting immunity in both preclinical and clinical trials. Moreover, a single dose of IMOJEV was sufficient to induce protective immunity, which was similar to that induced in adults by three doses of JE-VAX(®), a mouse brain-derived inactivated JE vaccine. Recently, Phase III trials evaluating the immunogenicity and safety of the chimeric virus vaccine have been successfully completed in some JE-endemic countries and the vaccine manufacturers have filed an application for vaccine registration. IMOJEV may thus be licensed for use in humans as an improved alternative to the currently licensed JE vaccines.

  7. Pathogenesis of Aerosolized Eastern Equine Encephalitis Virus Infection in Guinea Pigs

    DTIC Science & Technology

    2009-01-01

    BioMed CentralVirology Journal ss Approved for public release. Distribution is unlimitedOpen AcceResearch Pathogenesis of aerosolized Eastern Equine ...NJ1959 or ArgM) of eastern equine encephalitis virus (EEEV) at two exclusive particle size distributions. Mice were more susceptible to either strain...fatal human infection and thus should serve as a suitable animal model for aerosol exposure to EEEV. Introduction Eastern equine encephalitis (EEE) virus

  8. Japanese encephalitis virus NS1' protein depends on pseudoknot secondary structure and is cleaved by caspase during virus infection and cell apoptosis.

    PubMed

    Sun, Jin; Yu, Yongxin; Deubel, Vincent

    2012-09-01

    Japanese encephalitis virus (JEV) is a flavivirus with a complex life cycle involving mosquito vectors that mainly target birds and pigs, and causes severe encephalitis in children in Asia. Neurotropic flaviviruses of the JEV serogroup have a particular characteristic of expressing a unique nonstructural NS1' protein, which is a prolongation of NS1 at the C terminus by 52 amino acids derived from a pseudoknot-driven-1 translation frameshift. Protein NS1' is associated with virus neuro-invasiveness. In this study, the need of the pseudoknot structure for NS1' synthesis was confirmed. By using a specific antibody against the prolonged peptide, NS1' was found to be absent from the JEV SA14-14-2 vaccine strain, resulting from a single nucleotide silent mutation in the pseudoknot. A partial cleavage of NS1' at a specific site of its C-terminal appendix recognized by caspases and inhibited by caspase inhibitors suggests a unique feature of intracellular NS1'. Copyright © 2012 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  9. Structural Study of the C-Terminal Domain of Nonstructural Protein 1 from Japanese Encephalitis Virus.

    PubMed

    Poonsiri, Thanalai; Wright, Gareth S A; Diamond, Michael S; Turtle, Lance; Solomon, Tom; Antonyuk, Svetlana V

    2018-04-01

    Japanese encephalitis virus (JEV) is a mosquito-transmitted flavivirus that is closely related to other emerging viral pathogens, including dengue virus (DENV), West Nile virus (WNV), and Zika virus (ZIKV). JEV infection can result in meningitis and encephalitis, which in severe cases cause permanent brain damage and death. JEV occurs predominantly in rural areas throughout Southeast Asia, the Pacific Islands, and the Far East, causing around 68,000 cases of infection worldwide each year. In this report, we present a 2.1-Å-resolution crystal structure of the C-terminal β-ladder domain of JEV nonstructural protein 1 (NS1-C). The surface charge distribution of JEV NS1-C is similar to those of WNV and ZIKV but differs from that of DENV. Analysis of the JEV NS1-C structure, with in silico molecular dynamics simulation and experimental solution small-angle X-ray scattering, indicates extensive loop flexibility on the exterior of the protein. This, together with the surface charge distribution, indicates that flexibility influences the protein-protein interactions that govern pathogenicity. These factors also affect the interaction of NS1 with the 22NS1 monoclonal antibody, which is protective against West Nile virus infection. Liposome and heparin binding assays indicate that only the N-terminal region of NS1 mediates interaction with membranes and that sulfate binding sites common to NS1 structures are not glycosaminoglycan binding interfaces. This report highlights several differences between flavivirus NS1 proteins and contributes to our understanding of their structure-pathogenic function relationships. IMPORTANCE JEV is a major cause of viral encephalitis in Asia. Despite extensive vaccination, epidemics still occur. Nonstructural protein 1 (NS1) plays a role in viral replication, and, because it is secreted, it can exhibit a wide range of interactions with host proteins. NS1 sequence and protein folds are conserved within the Flavivirus genus, but variations in

  10. Production of Japanese encephalitis virus-like particles in insect cells.

    PubMed

    Yamaji, Hideki; Konishi, Eiji

    2013-01-01

    Virus-like particles (VLPs) are composed of one or several recombinant viral surface proteins that spontaneously assemble into particulate structures without the incorporation of virus DNA or RNA. The baculovirus-insect cell system has been used extensively for the production of recombinant virus proteins including VLPs. While the baculovirus-insect cell system directs the transient expression of recombinant proteins in a batch culture, stably transformed insect cells allow constitutive production. In our recent study, a secretory form of Japanese encephalitis (JE) VLPs was successfully produced by Trichoplusia ni BTI-TN-5B1-4 (High Five) cells engineered to coexpress the JE virus (JEV) premembrane (prM) and envelope (E) proteins. A higher yield of E protein was attained with recombinant High Five cells than with the baculovirus-insect cell system. This study demonstrated that recombinant insect cells offer a promising approach to the high-level production of VLPs for use as vaccines and diagnostic antigens.

  11. Treatment of Venezuelan Equine Encephalitis Virus Infection with (-)-Carbodine

    PubMed Central

    Bowen, Richard A.; Rao, Jagadeeshwar R.; Day, Craig; Shafer, Kristiina; Smee, Donald F.; Morrey, John D.; Chu, Chung K.

    2008-01-01

    Venezuelan equine encephalitis virus (VEEV) may cause encephalitis in humans, for which no FDA-approved antiviral treatment is available. Carbocyclic cytosine (carbodine) has broad-spectrum activity but toxicity has limited its utility. It was anticipated that one of the enantiomers of carbodine would show enhanced activity and reduced toxicity. The activity of the D-(-) enantiomer of carbodine [(-)-carbodine] was evaluated by infectious cell culture assay and was found to have a 50% effective concentration (EC50) of 0.2 μg/ml against the TC-83 vaccine strain of VEEV in Vero cells, while the L-(+) enantiomer had no activity. Virus titer inhibition correlated with intracellular cytidine triphosphate reduction after treatment with (-)-carbodine, as determined by HPLC analysis. Pre-treatment with 200 mg/kg/d resulted in significant improvement in survival, virus load in the brain, weight change, and mean day to death in a mouse model of TC-83 VEEV disease. A single dose of (-)-Carbodine resulted in a slight extension of mean time to death in mice infected with wild-type VEEV. Post-virus exposure treatment with (-)-carbodine was effective in significantly improving disease parameters in mice infected with TC-83 VEEV when treatment was initiated as late as 4 days post-virus installation (dpi). It is remarkable that (-)-carbodine is effective when initiated after the establishment of brain infection. PMID:18675850

  12. Utility of Japanese encephalitis virus subgenomic replicon-based single-round infectious particles as antigens in neutralization tests for Zika virus and three other flaviviruses.

    PubMed

    Yamanaka, Atsushi; Moi, Meng Ling; Takasaki, Tomohiko; Kurane, Ichiro; Matsuda, Mami; Suzuki, Ryosuke; Konishi, Eiji

    2017-05-01

    The introduction of a foreign virus into an area may cause an outbreak, as with the Zika virus (ZIKV) outbreak in the Americas. Preparedness for handling a viral outbreak involves the development of tests for the serodiagnosis of foreign virus infections. We previously established a gene-based technology to generate some flaviviral antigens useful for functional antibody assays. The technology utilizes a Japanese encephalitis virus subgenomic replicon to generate single-round infectious particles (SRIPs) that possess designed surface antigens. In the present study, we successfully expanded the capacity of SRIPs to four human-pathogenic mosquito-borne flaviviruses that could potentially be introduced from endemic to non-endemic countries: ZIKV, Sepik virus, Wesselsbron virus, and Usutu virus. Flavivirus-crossreactive monoclonal antibodies dose-dependently neutralized these SRIPs. ZIKV-SRIPs also produced antibody-dose-dependent neutralization curves equivalent to those shown by authentic ZIKV particles using sera from a Zika fever patient. The faithful expression of designed surface antigens on SRIPs will allow their use in neutralization tests to diagnose foreign flaviviral infections. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. St. Louis encephalitis virus possibly transmitted through blood transfusion-Arizona, 2015.

    PubMed

    Venkat, Heather; Adams, Laura; Sunenshine, Rebecca; Krow-Lucal, Elisabeth; Levy, Craig; Kafenbaum, Tammy; Sylvester, Tammy; Smith, Kirk; Townsend, John; Dosmann, Melissa; Kamel, Hany; Patron, Roberto; Kuehnert, Matthew; Annambhotla, Pallavi; Basavaraju, Sridhar V; Rabe, Ingrid B

    2017-12-01

    St. Louis encephalitis virus is a mosquito-borne flavivirus that infrequently causes epidemic central nervous system infections. In the United States, blood donors are not screened for St. Louis encephalitis virus infection, and transmission through blood transfusion has not been reported. During September 2015, St. Louis encephalitis virus infection was confirmed in an Arizona kidney transplant recipient. An investigation was initiated to determine the infection source. The patient was interviewed, and medical records were reviewed. To determine the likelihood of mosquito-borne infection, mosquito surveillance data collected at patient and blood donor residences in timeframes consistent with their possible exposure periods were reviewed. To investigate other routes of exposure, organ and blood donor and recipient specimens were obtained and tested for evidence of St. Louis encephalitis virus infection. The patient presented with symptoms of central nervous system infection. Recent St. Louis encephalitis virus infection was serologically confirmed. The organ donor and three other organ recipients showed no laboratory or clinical evidence of St. Louis encephalitis virus infection. Among four donors of blood products received by the patient via transfusion, one donor had a serologically confirmed, recent St. Louis encephalitis virus infection. Exposure to an infected mosquito was unlikely based on the patient's minimal outdoor exposure. In addition, no St. Louis encephalitis virus-infected mosquito pools were identified around the patient's residence. This investigation provides evidence of the first reported possible case of St. Louis encephalitis virus transmission through blood product transfusion. Health care providers and public health professionals should maintain heightened awareness for St. Louis encephalitis virus transmission through blood transfusion in settings where outbreaks are identified. © 2017 AABB.

  14. Phylogeography of Japanese Encephalitis Virus: Genotype Is Associated with Climate

    PubMed Central

    Schuh, Amy J.; Ward, Melissa J.; Leigh Brown, Andrew J.; Barrett, Alan D. T.

    2013-01-01

    The circulation of vector-borne zoonotic viruses is largely determined by the overlap in the geographical distributions of virus-competent vectors and reservoir hosts. What is less clear are the factors influencing the distribution of virus-specific lineages. Japanese encephalitis virus (JEV) is the most important etiologic agent of epidemic encephalitis worldwide, and is primarily maintained between vertebrate reservoir hosts (avian and swine) and culicine mosquitoes. There are five genotypes of JEV: GI-V. In recent years, GI has displaced GIII as the dominant JEV genotype and GV has re-emerged after almost 60 years of undetected virus circulation. JEV is found throughout most of Asia, extending from maritime Siberia in the north to Australia in the south, and as far as Pakistan to the west and Saipan to the east. Transmission of JEV in temperate zones is epidemic with the majority of cases occurring in summer months, while transmission in tropical zones is endemic and occurs year-round at lower rates. To test the hypothesis that viruses circulating in these two geographical zones are genetically distinct, we applied Bayesian phylogeographic, categorical data analysis and phylogeny-trait association test techniques to the largest JEV dataset compiled to date, representing the envelope (E) gene of 487 isolates collected from 12 countries over 75 years. We demonstrated that GIII and the recently emerged GI-b are temperate genotypes likely maintained year-round in northern latitudes, while GI-a and GII are tropical genotypes likely maintained primarily through mosquito-avian and mosquito-swine transmission cycles. This study represents a new paradigm directly linking viral molecular evolution and climate. PMID:24009790

  15. Phylogeography of Japanese encephalitis virus: genotype is associated with climate.

    PubMed

    Schuh, Amy J; Ward, Melissa J; Brown, Andrew J Leigh; Barrett, Alan D T

    2013-01-01

    The circulation of vector-borne zoonotic viruses is largely determined by the overlap in the geographical distributions of virus-competent vectors and reservoir hosts. What is less clear are the factors influencing the distribution of virus-specific lineages. Japanese encephalitis virus (JEV) is the most important etiologic agent of epidemic encephalitis worldwide, and is primarily maintained between vertebrate reservoir hosts (avian and swine) and culicine mosquitoes. There are five genotypes of JEV: GI-V. In recent years, GI has displaced GIII as the dominant JEV genotype and GV has re-emerged after almost 60 years of undetected virus circulation. JEV is found throughout most of Asia, extending from maritime Siberia in the north to Australia in the south, and as far as Pakistan to the west and Saipan to the east. Transmission of JEV in temperate zones is epidemic with the majority of cases occurring in summer months, while transmission in tropical zones is endemic and occurs year-round at lower rates. To test the hypothesis that viruses circulating in these two geographical zones are genetically distinct, we applied Bayesian phylogeographic, categorical data analysis and phylogeny-trait association test techniques to the largest JEV dataset compiled to date, representing the envelope (E) gene of 487 isolates collected from 12 countries over 75 years. We demonstrated that GIII and the recently emerged GI-b are temperate genotypes likely maintained year-round in northern latitudes, while GI-a and GII are tropical genotypes likely maintained primarily through mosquito-avian and mosquito-swine transmission cycles. This study represents a new paradigm directly linking viral molecular evolution and climate.

  16. Molecular evidence for the occurrence of Japanese encephalitis virus genotype I and III infection associated with acute Encephalitis in Patients of West Bengal, India, 2010

    PubMed Central

    2012-01-01

    Background Japanese encephalitis virus (JEV), a mosquito-borne zoonotic pathogen, is the sole etiologic agent of Japanese Encephalitis (JE); a neurotropic killer disease which is one of the major causes of viral encephalitis worldwide with prime public health concern. JE was first reported in the state of West Bengal, India in 1973. Since then it is being reported every year from different districts of the state, though the vaccination has already been done. Therefore, it indicates that there might be either partial coverage of the vaccine or the emergence of mutated/new strain of JEV. Considering this fact, to understand the JEV genotype distribution, we conducted a molecular epidemiological study on a total of 135 serum/cerebrospinal fluid (CSF) samples referred and/or collected from the clinically suspected patients with Acute encephalitis syndrome (AES), admitted in different district hospitals of West Bengal, India, 2010. Findings JEV etiology was confirmed in 36/135 (26.6%) and 13/61 (21.3%) 2–15 days’ febrile illness samples from AES cases by analyzing Mac-ELISA followed by RT-PCR test respectively. Phylogenetic analysis based on complete envelope gene sequences of 13 isolates showed the emergence of JEV genotype I (GI), co-circulating with genotype III (GIII). Conclusion This study represents the first report of JEV GI with GIII, co-circulating in West Bengal. The efficacy of the vaccine (derived from JEV GIII strain SA-14-14-2) to protect against emerging JEV GI needs careful evaluation. In future, JE outbreak is quite likely in the state, if this vaccine fails to protect sufficiently against GI of JEV. PMID:23153306

  17. Rab5 and Rab11 Are Required for Clathrin-Dependent Endocytosis of Japanese Encephalitis Virus in BHK-21 Cells.

    PubMed

    Liu, Chun-Chun; Zhang, Yun-Na; Li, Zhao-Yao; Hou, Jin-Xiu; Zhou, Jing; Kan, Lin; Zhou, Bin; Chen, Pu-Yan

    2017-10-01

    During infection Japanese encephalitis virus (JEV) generally enters host cells via receptor-mediated clathrin-dependent endocytosis. The trafficking of JEV within endosomes is controlled by Rab GTPases, but which Rab proteins are involved in JEV entry into BHK-21 cells is unknown. In this study, entry and postinternalization of JEV were analyzed using biochemical inhibitors, RNA interference, and dominant negative (DN) mutants. Our data demonstrate that JEV entry into BHK-21 cells depends on clathrin, dynamin, and cholesterol but not on caveolae or macropinocytosis. The effect on JEV infection of dominant negative (DN) mutants of four Rab proteins that regulate endosomal trafficking was examined. Expression of DN Rab5 and DN Rab11, but not DN Rab7 and DN Rab9, significantly inhibited JEV replication. These results were further tested by silencing Rab5 or Rab11 expression before viral infection. Confocal microscopy showed that virus particles colocalized with Rab5 or Rab11 within 15 min after virus entry, suggesting that after internalization JEV moves to early and recycling endosomes before the release of the viral genome. Our findings demonstrate the roles of Rab5 and Rab11 on JEV infection of BHK-21 cells through the endocytic pathway, providing new insights into the life cycle of flaviviruses. IMPORTANCE Although Japanese encephalitis virus (JEV) utilizes different endocytic pathways depending on the cell type being infected, the detailed mechanism of its entry into BHK-21 cells is unknown. Understanding the process of JEV endocytosis and postinternalization will advance our knowledge of JEV infection and pathogenesis as well as provide potential novel drug targets for antiviral intervention. With this objective, we used systematic approaches to dissect this process. The results show that entry of JEV into BHK-21 cells requires a low-pH environment and that the process occurs through dynamin-, actin-, and cholesterol-dependent clathrin-mediated endocytosis that

  18. Experimental evidence that RNA recombination occurs in the Japanese encephalitis virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chuang, C.-K.; Chen, W.-J., E-mail: wjchen@mail.cgu.edu.t; Department of Public Health and Parasitology, Chang Gung University, Kwei-San, Tao-Yuan 33332, Taiwan

    2009-11-25

    Due to the lack of a proofreading function and error-repairing ability of genomic RNA, accumulated mutations are known to be a force driving viral evolution in the genus Flavivirus, including the Japanese encephalitis (JE) virus. Based on sequencing data, RNA recombination was recently postulated to be another factor associated with genomic variations in these viruses. We herein provide experimental evidence to demonstrate the occurrence of RNA recombination in the JE virus using two local pure clones (T1P1-S1 and CJN-S1) respectively derived from the local strains, T1P1 and CJN. Based on results from a restriction fragment length polymorphism (RFLP) assay onmore » the C/preM junction comprising a fragment of 868 nucleotides (nt 10-877), the recombinant progeny virus was primarily formed in BHK-21 cells that had been co-infected with the two clones used in this study. Nine of 20 recombinant forms of the JE virus had a crossover in the nt 123-323 region. Sequencing data derived from these recombinants revealed that no nucleotide deletion or insertion occurred in this region favoring crossovers, indicating that precisely, not aberrantly, homologous recombination was involved. With site-directed mutagenesis, three stem-loop secondary structures were destabilized and re-stabilized in sequence, leading to changes in the frequency of recombination. This suggests that the conformation, not the free energy, of the secondary structure is important in modulating RNA recombination of the virus. It was concluded that because RNA recombination generates genetic diversity in the JE virus, this must be considered particularly in studies of viral evolution, epidemiology, and possible vaccine safety.« less

  19. Fatal Tick-Borne Encephalitis Virus Infections Caused by Siberian and European Subtypes, Finland, 2015.

    PubMed

    Kuivanen, Suvi; Smura, Teemu; Rantanen, Kirsi; Kämppi, Leena; Kantonen, Jonas; Kero, Mia; Jääskeläinen, Anu; Jääskeläinen, Anne J; Sane, Jussi; Myllykangas, Liisa; Paetau, Anders; Vapalahti, Olli

    2018-05-01

    In most locations except for Russia, tick-borne encephalitis is mainly caused by the European virus subtype. In 2015, fatal infections caused by European and Siberian tick-borne encephalitis virus subtypes in the same Ixodes ricinus tick focus in Finland raised concern over further spread of the Siberian subtype among widespread tick species.

  20. Phylogeographic analysis of Japanese encephalitis virus in India (1956-2012).

    PubMed

    Cherian, Sarah S; Walimbe, A M

    2015-12-01

    Japanese encephalitis virus (JEV) isolates from India phylogenetically belong to two genotypes, III and I. We used envelope gene sequences from GenBank, representing different states of India and other countries, to study the spatiotemporal transmission histories of these two JEV genotypes separately. Genotype III was found to have been successively introduced in the 1930s, 1950s and 1960s, followed by genotype I twice around 2003-2006. Changes in JEV disease patterns in India over the last five decades could thus be attributed to multiple introductions of JEV strains from neighboring Asian countries along with increased transmission potential due to altered ecological settings.

  1. Molecular detection and genotyping of Japanese Encephalitis Virus in mosquitoes during a 2010 outbreak in the Republic of Korea

    USGS Publications Warehouse

    Seo, Hyun-Ji; Kim, Heung Chul; Klein, Terry A.; Ramey, Andrew M.; Lee, Ji-Hyee; Kyung, Soon-Goo; Park, Jee-Yong; Cho, In-Soo; Yeh, Jung-Yong

    2013-01-01

    Japanese encephalitis virus (JEV), a mosquito-borne zoonotic pathogen, is one of the major causes of viral encephalitis. To reduce the impact of Japanese encephalitis among children in the Republic of Korea (ROK), the government established a mandatory vaccination program in 1967. Through the efforts of this program only 0-7 (mean 2.1) cases of Japanese encephalitis were reported annually in the ROK during the period of 1984-2009. However, in 2010 there was an outbreak of 26 confirmed cases of Japanese encephalitis, including 7 deaths. This represented a >12-fold increase in the number of confirmed cases of Japanese encephalitis in the ROK as compared to the mean number reported over the last 26 years and a 3.7-fold increase over the highest annual number of cases during this same period (7 cases). Surveillance of adult mosquitoes was conducted during the 2010 outbreak of Japanese encephalitis in the ROK. A total of 6,328 culicine mosquitoes belonging to 12 species from 5 genera were collected at 6 survey sites from June through October 2010 and assayed by reverse-transcription polymerase chain reaction (RT-PCR) for the presence of JEV. A total of 34/371 pooled samples tested positive for JEV (29/121 Culex tritaeniorhynchus, 4/64 Cx. pipiens, and 1/26 Cx. bitaeniorhynchus) as confirmed by sequencing of the pre-membrane and envelope protein coding genes. The maximum likelihood estimates of JEV positive individuals per 1,000 culicine vectors for Cx. tritaeniorhynchus, Cx. pipiens, and Cx. bitaeniorhynchus were 11.8, 5.6, and 2.8, respectively. Sequences of the JEV pre-membrane and envelope protein coding genes amplified from the culicine mosquitoes by RT-PCR were compared with those of JEV genotypes I-V. Phylogenetic analyses support the detection of a single genotype (I) among samples collected from the ROK in 2010.

  2. Neuro-Immune Mechanisms in Response to Venezuelan equine encephalitis Virus Infection

    DTIC Science & Technology

    2000-05-01

    horses . They were subsequently shown to be previously unrecognized viral agents of severe equine encephalitis (Smith et al., 1997). One member of...iii ABSTRACT NEURO-IMMUNE MECHANISMS IN RESPONSE TO VENEZUELAN EQUINE ENCEPHALITIS VIRUS INFECTION Major Bruce A. Schoneboom directed by Franziska B...Grieder, DVM, Ph.D., Assistant Professor of Microbiology and Immunology, Molecular and Cellular Biology, and Neuroscience Venezuelan equine

  3. Inhibition of aldolase A blocks biogenesis of ATP and attenuates Japanese encephalitis virus production.

    PubMed

    Tien, Chih-Feng; Cheng, Shih-Ching; Ho, Yen-Peng; Chen, Yi-Shiuan; Hsu, Jung-Hsin; Chang, Ruey-Yi

    2014-01-10

    Viral replication depends on host proteins to supply energy and replication accessories for the sufficient production of viral progeny. In this study, we identified fructose-bisphosphate aldolase A as a binding partner of Japanese encephalitis virus (JEV) untranslated regions (UTRs) on the antigenome via RNA affinity capture and mass spectrometry. Direct interaction of aldolase A with JEV RNAs was confirmed by gel mobility shift assay and colocalization with active replication of double-stranded RNA in JEV-infected cells. Infection of JEV caused an increase in aldolase A expression of up to 33%. Knocking down aldolase A reduced viral translation, genome replication, and viral production significantly. Furthermore, JEV infection consumed 50% of cellular ATP, and the ATP level decreased by 70% in the aldolase A-knockdown cells. Overexpression of aldolase A in aldolase A-knockdown cells increased ATP levels significantly. Taken together, these results indicate that JEV replication requires aldolase A and consumes ATP. This is the first report of direct involvement of a host metabolic enzyme, aldolase A protein, in JEV replication. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Estimating the Burden of Japanese Encephalitis Virus and Other Encephalitides in Countries of the Mekong Region

    PubMed Central

    Tarantola, Arnaud; Goutard, Flavie; Newton, Paul; de Lamballerie, Xavier; Lortholary, Olivier; Cappelle, Julien; Buchy, Philippe

    2014-01-01

    Diverse aetiologies of viral and bacterial encephalitis are widely recognized as significant yet neglected public health issues in the Mekong region. A robust analysis of the corresponding health burden is lacking. We retrieved 75 articles on encephalitis in the region published in English or in French from 1965 through 2011. Review of available data demonstrated that they are sparse and often derived from hospital-based studies with significant recruitment bias. Almost half (35 of 75) of articles were on Japanese encephalitis virus (JEV) alone or associated with dengue. In the Western Pacific region the WHO reported 30,000–50,000 annual JEV cases (15,000 deaths) between 1966 and 1996 and 4,633 cases (200 deaths) in 2008, a decline likely related to the introduction of JEV vaccination in China, Vietnam, or Thailand since the 1980s. Data on dengue, scrub typhus and rabies encephalitis, among other aetiologies, are also reviewed and discussed. Countries of the Mekong region are undergoing profound demographic, economic and ecological change. As the epidemiological aspects of Japanese encephalitis (JE) are transformed by vaccination in some countries, highly integrated expert collaborative research and objective data are needed to identify and prioritize the human health, animal health and economic burden due to JE and other pathogens associated with encephalitides. PMID:24498443

  5. Crystal structure of the Japanese encephalitis virus envelope protein.

    PubMed

    Luca, Vincent C; AbiMansour, Jad; Nelson, Christopher A; Fremont, Daved H

    2012-02-01

    Japanese encephalitis virus (JEV) is the leading global cause of viral encephalitis. The JEV envelope protein (E) facilitates cellular attachment and membrane fusion and is the primary target of neutralizing antibodies. We have determined the 2.1-Å resolution crystal structure of the JEV E ectodomain refolded from bacterial inclusion bodies. The E protein possesses the three domains characteristic of flavivirus envelopes and epitope mapping of neutralizing antibodies onto the structure reveals determinants that correspond to the domain I lateral ridge, fusion loop, domain III lateral ridge, and domain I-II hinge. While monomeric in solution, JEV E assembles as an antiparallel dimer in the crystal lattice organized in a highly similar fashion as seen in cryo-electron microscopy models of mature flavivirus virions. The dimer interface, however, is remarkably small and lacks many of the domain II contacts observed in other flavivirus E homodimers. In addition, uniquely conserved histidines within the JEV serocomplex suggest that pH-mediated structural transitions may be aided by lateral interactions outside the dimer interface in the icosahedral virion. Our results suggest that variation in dimer structure and stability may significantly influence the assembly, receptor interaction, and uncoating of virions.

  6. miR-146a negatively regulates the induction of proinflammatory cytokines in response to Japanese encephalitis virus infection in microglial cells.

    PubMed

    Deng, Minnan; Du, Ganqin; Zhao, Jiegang; Du, Xiaowei

    2017-06-01

    Increasing evidence confirms the involvement of virus infection and miRNA, such as miR-146a, in neuroinflammation-associated epilepsy. In the present study, we investigated the upregulation of miR-146a with RT-qPCR and in situ hybridization methods in a mice infection model of Japanese encephalitis virus (JEV) and in vitro. Subsequently we investigated the involvement of miR-146a in modulating JEV-induced neuroinflammation. It was demonstrated that JEV infection promoted miR-146a production in BALB/c mice brain and in cultured mouse microglial C8-B4 cells, along with pro-inflammatory cytokines, such as IL-1β, IL-6, TNF-α, IFN-β and IFN-α. We also found that miR-146a exerted negative regulatory effects upon IL-1β, IL-6, TNF-α, IFN-β and IFN-α in C8-B4 cells. Accordingly, miR-146a downregulation with a miR-146a inhibitor promoted the upregulation of IL-1β, IL-6, TNF-α, IFN-β and IFN-α, whereas miR-146a upregulation with miR-146a mimics reduced the upregulation of these cytokines. Moreover, miR-146a exerted no regulation upon JEV growth in C8-B4 cells. In conclusion, JEV infection upregulated miR-146a and pro-inflammatory cytokine production, in mice brain and in cultured C8-B4 cells. Furthermore, miR-146a negatively regulated the production of JEV-induced pro-inflammatory cytokines, in virus growth independent fashion, identifying miR-146a as a negative feedback regulator in JEV-induced neuroinflammation, and possibly in epilepsy.

  7. Detection of Japanese Encephalitis Virus RNA in Human Throat Samples in Laos - A Pilot study.

    PubMed

    Bharucha, Tehmina; Sengvilaipaseuth, Onanong; Seephonelee, Malee; Vongsouvath, Malavanh; Vongsouvath, Manivanh; Rattanavong, Sayaphet; Piorkowski, Géraldine; Lecuit, Marc; Gorman, Christopher; Pommier, Jean-David; Newton, Paul N; de Lamballerie, Xavier; Dubot-Pérès, Audrey

    2018-05-22

    Japanese encephalitis virus (JEV) is the most commonly identified cause of acute encephalitis syndrome (AES) in Asia. The WHO recommended test is anti-JEV IgM-antibody-capture-enzyme-linked-immunosorbent-assay (JEV MAC-ELISA). However, data suggest this has low positive predictive value, with false positives related to other Flavivirus infections and vaccination. JEV RT-PCR in cerebrospinal fluid (CSF) and/or serum is highly specific, but is rarely positive; 0-25% of patients that fulfil the WHO definition of JE (clinical Acute Encephalitis Syndrome (AES) and JEV MAC-ELISA positive). Testing other body fluids by JEV RT-qPCR may improve the diagnosis. As a pilot study thirty patients admitted to Mahosot Hospital 2014-2017, recruited to the South-East-Asia-Encephalitis study, were tested by JEV MAC-ELISA and two JEV real-time RT-PCR (RT-qPCR) assays (NS2A and NS3). Eleven (36.7%) were JEV MAC-ELISA positive. Available CSF and serum samples of these patients were JEV RT-qPCR negative but 2 (7%) had JEV RNA detected in their throat swabs. JEV RNA was confirmed by re-testing, and sequencing of RT-qPCR products. As the first apparent report of JEV RNA detection in human throat samples, the provides new perspectives on human JEV infection, potentially informing improving JEV detection. We suggest that testing patients' throat swabs for JEV RNA is performed, in combination with molecular and serological CSF and serum investigations, on a larger scale to investigate the epidemiology of the presence of JEV in human throats. Throat swabs are an easy and non-invasive tool that could be rolled out to a wider population to improve knowledge of JEV molecular epidemiology.

  8. Production of single-round infectious chimeric flaviviruses with DNA-based Japanese encephalitis virus replicon.

    PubMed

    Suzuki, Ryosuke; Ishikawa, Tomohiro; Konishi, Eiji; Matsuda, Mami; Watashi, Koichi; Aizaki, Hideki; Takasaki, Tomohiko; Wakita, Takaji

    2014-01-01

    A method for rapid production of single-round infectious particles (SRIPs) of flavivirus would be useful for viral mutagenesis studies. Here, we established a DNA-based production system for SRIPs of flavivirus. We constructed a Japanese encephalitis virus (JEV) subgenomic replicon plasmid, which lacked the C-prM-E (capsid-pre-membrane-envelope) coding region, under the control of the cytomegalovirus promoter. When the JEV replicon plasmid was transiently co-transfected with a JEV C-prM-E expression plasmid into 293T cells, SRIPs were produced, indicating successful trans-complementation with JEV structural proteins. Equivalent production levels were observed when C and prM-E proteins were provided separately. Furthermore, dengue types 1-4, West Nile, yellow fever or tick-borne encephalitis virus prM-E proteins could be utilized for production of chimaeric flavivirus SRIPs, although the production was less efficient for dengue and yellow fever viruses. These results indicated that our plasmid-based system is suitable for investigating the life cycles of flaviviruses, diagnostic applications and development of safer vaccine candidates.

  9. Powassan virus encephalitis, Minnesota, USA.

    PubMed

    Birge, Justin; Sonnesyn, Steven

    2012-10-01

    Powassan virus (POWV) is a rare tick-borne agent of encephalitis in North America. Historically, confirmed cases occurred mainly in the northeastern United States. Since 2008, confirmed cases in Minnesota and Wisconsin have increased. We report a fatal case of POWV encephalitis in Minnesota. POWV infection should be suspected in tick-exposed patients with viral encephalitis.

  10. Powassan Virus Encephalitis, Minnesota, USA

    PubMed Central

    Sonnesyn, Steven

    2012-01-01

    Powassan virus (POWV) is a rare tick-borne agent of encephalitis in North America. Historically, confirmed cases occurred mainly in the northeastern United States. Since 2008, confirmed cases in Minnesota and Wisconsin have increased. We report a fatal case of POWV encephalitis in Minnesota. POWV infection should be suspected in tick-exposed patients with viral encephalitis. PMID:23017222

  11. Genotype I of Japanese Encephalitis Virus Virus-like Particles Elicit Sterilizing Immunity against Genotype I and III Viral Challenge in Swine.

    PubMed

    Fan, Yi-Chin; Chen, Jo-Mei; Lin, Jen-Wei; Chen, Yi-Ying; Wu, Guan-Hong; Su, Kuan-Hsuan; Chiou, Ming-Tang; Wu, Shang-Rung; Yin, Ji-Hang; Liao, Jiunn-Wang; Chang, Gwong-Jen J; Chiou, Shyan-Song

    2018-05-10

    Swine are a critical amplifying host involved in human Japanese encephalitis (JE) outbreaks. Cross-genotypic immunogenicity and sterile protection are important for the current genotype III (GIII) virus-derived vaccines in swine, especially now that emerging genotype I (GI) JE virus (JEV) has replaced GIII virus as the dominant strain. Herein, we aimed to develop a system to generate GI JEV virus-like particles (VLPs) and evaluate the immunogenicity and protection of the GI vaccine candidate in mice and specific pathogen-free swine. A CHO-heparan sulfate-deficient (CHO-HS(-)) cell clone, named 51-10 clone, stably expressing GI-JEV VLP was selected and continually secreted GI VLPs without signs of cell fusion. 51-10 VLPs formed a homogeneously empty-particle morphology and exhibited similar antigenic activity as GI virus. GI VLP-immunized mice showed balanced cross-neutralizing antibody titers against GI to GIV viruses (50% focus-reduction micro-neutralization assay titers 71 to 240) as well as potent protection against GI or GIII virus infection. GI VLP-immunized swine challenged with GI or GIII viruses showed no fever, viremia, or viral RNA in tonsils, lymph nodes, and brains as compared with phosphate buffered saline-immunized swine. We thus conclude GI VLPs can provide sterile protection against GI and GIII viruses in swine.

  12. Crystal Structure of the Japanese Encephalitis Virus Envelope Protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luca, Vincent C.; AbiMansour, Jad; Nelson, Christopher A.

    2012-03-13

    Japanese encephalitis virus (JEV) is the leading global cause of viral encephalitis. The JEV envelope protein (E) facilitates cellular attachment and membrane fusion and is the primary target of neutralizing antibodies. We have determined the 2.1-{angstrom} resolution crystal structure of the JEV E ectodomain refolded from bacterial inclusion bodies. The E protein possesses the three domains characteristic of flavivirus envelopes and epitope mapping of neutralizing antibodies onto the structure reveals determinants that correspond to the domain I lateral ridge, fusion loop, domain III lateral ridge, and domain I-II hinge. While monomeric in solution, JEV E assembles as an antiparallel dimermore » in the crystal lattice organized in a highly similar fashion as seen in cryo-electron microscopy models of mature flavivirus virions. The dimer interface, however, is remarkably small and lacks many of the domain II contacts observed in other flavivirus E homodimers. In addition, uniquely conserved histidines within the JEV serocomplex suggest that pH-mediated structural transitions may be aided by lateral interactions outside the dimer interface in the icosahedral virion. Our results suggest that variation in dimer structure and stability may significantly influence the assembly, receptor interaction, and uncoating of virions.« less

  13. Modulation of the immune-related gene responses to protect mice against Japanese encephalitis virus using the antimicrobial peptide, tilapia hepcidin 1-5.

    PubMed

    Huang, Han-Ning; Rajanbabu, Venugopal; Pan, Chieh-Yu; Chan, Yi-Lin; Hui, Cho-Fat; Chen, Jyh-Yih; Wu, Chang-Jer

    2011-10-01

    Japanese encephalitis virus (JEV), a neurotropic flavivirus, is one of the major causes of acute encephalitis in humans. After infection, it is commonly associated with inflammatory reactions and neurological disease. There is still no effective antiviral drug available against Japanese encephalitis virus infection. Recently, a number of investigators found that antimicrobial peptide (AMPs) present a broad range of biological activities including antimicrobial and immunomodulatory activities. In this study, we found that an AMP, tilapia hepcidin (TH)1-5, caused no harm to either cells or test animals during the test course and could control JEV viral infection in BHK-21 cells. Mice co-injected with TH1-5/JEV and subsequently subjected to JEV re-challenge survived and behaved normally. The neuroprotective effects were associated with marked decreases in: (i) the viral load and viral replication within the brain, (ii) neuronal death, and (iii) secondary inflammation resulting from microglial activation. TH1-5 was also determined to enhance adaptive immunity by elevating levels of anti-JEV-neutralizing antibodies in the serum. The microarray data also showed that TH1-5 modulated Socs-6, interleukin (IL)-6, Toll-like receptor (TLR)-1, TLR-7, caspase-4, interferon (IFN)-β1, ATF-3, and several immune-responsive genes to protect mice against JEV infection. In addition, TH1-5 was confirmed to modulate the expressions of several proinflammatory and immune-responsive genes, such as IL-2, IL-4, IL-5, IL-6, IL-10, IL-12, tumor necrosis factor (TNF)-α, IFN-γ and monocyte chemoattractant protein (MCP)-1 at both the transcriptional and translational levels in JEV-infected mice. In conclusion, our findings provide mechanistic insights into the actions of TH1-5 against JEV. Results from our in vivo and in vitro experiments clearly indicate that TH1-5 has antiviral, neuroprotective, anti-inflammatory, and immunomodulatory activities. Furthermore, TH1-5 successfully reduced the

  14. [Acute encephalitis. Neuropsychiatric manifestations as expression of influenza virus infection].

    PubMed

    Moreno-Flagge, Noris; Bayard, Vicente; Quirós, Evelia; Alonso, Tomás

    2009-01-01

    The aim is to review the encephalitis in infants and adolescents as well as its etiology, clinical manifestation, epidemiology, physiopathology, diagnostic methods and treatment, and the neuropsyquiatric signs appearing an influenza epidemy. Encephalitis is an inflammation of the central nervous system (CNS) which involves the brain. The clinical manifestations usually are: headache, fever and confusional stage. It could also be manifested as seizures, personality changes, or psiqyiatric symptoms. The clinical manifestations are related to the virus and the cell type affected in the brain. A meningitis or encephalopathy need to be ruled out. It could be present as an epidemic or isolated form, beeing this the most frequent form. It could be produced by a great variety of infections agents including virus, bacterias, fungal and parasitic. Viral causes are herpesvirus, arbovirus, rabies and enterovirus. Bacterias such as Borrelia burgdorferi, Rickettsia and Mycoplasma neumoniae. Some fungal causes are: Coccidioides immitis and Histoplasma capsulatum. More than 100 agents are related to encephalitis. The diagnosis of encephalitis is a challenge for the clinician and its infectious etiology is clear in only 40 to 70% of all cases. The diagnosis of encephalitis can be established with absolute certainty only by the microscopic examination of brain tissue. Epidemiology is related to age of the patients, geographic area, season, weather or the host immune system. Early intervention can reduce the mortality rate and sequels. We describe four patients with encephalitis and neuropsychiatric symptoms during an influenza epidemic.

  15. Infection of Macaca Radiata with Viruses of the Tick-Borne Encephalitis Group

    DTIC Science & Technology

    1992-01-01

    3411 IC Microbial Patho genesis 1 992, 13: 399 409 ET AD-A265 505 N9 3U 9312898 I Infection of Macaca radiata with viruses of the tick - borne...Diseases, Frederick, MD 21702-5011, U.SA.), M. K. Rippy, K. T. McKee Jr., P. M. Zack and C. J. Peters. Infection of Macaca radiata with viruses of the tick ...for human disease caused by other, related strains of this group of viruses. Key words: Macaca radiata; tick -borne encephalitis; pathogenesis; Kyasanur

  16. [Experimental monkey encephalitis caused by Powassan virus].

    PubMed

    Frolova, M P; Isachkova, L M; Shestopalova, N M; Pogodina, V V

    1981-01-01

    A comparative study of the experimental infection of monkeys caused by brain P-40 of Powassan virus isolated in the Primorye Territory of the USSR and by the prototype Canadian strain LB was carried out. Powassan virus was found to be pathogenic for Macaca rhesus. Clinical and pathomorphological picture of the experimental encephalitis was studied. Full identity of the infection caused in the monkeys by the strain P-40 and the Canadian strain LB of Powassan virus has been proved. On electronmicroscopic examination of the central nervous system the virus was detected in the neurons, glial cells and intercellular spaces. The virions of the strains studied have identical morphological parameters, being 37 to 45 nm in diameter and having spherical shape. The data obtained point to a marked neurotropism of the virus. They will contribute to elucidation of the virus role in the infectious pathology of man, and namely, in verification of encephalitis cases not associated etiologically with the virus of the spring-summer tick-borne encephalitis.

  17. Eastern Equine Encephalitis Virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borucki, M.

    2010-08-05

    Eastern equine encephalitis virus (EEEV) is a mosquito-borne virus capable of causing large outbreaks of encephalitis in humans and horses. In North America, EEEV infection has a very high mortality rate in humans, and survivors often suffer severe neurological sequelae. Interestingly, EEEV infections from South American isolates are generally subclinical. Although EEEV is divided into two antigenic varieties and four lineages, only eleven isolates have been sequenced and eight of these are from the North American variety (Lineage I). Most sequenced strains were collected from mosquitoes and only one human isolate has been sequenced. EEEV isolates exist from a varietymore » of hosts, vectors, years, and geographical locations and efforts should focus on sequencing strains that represent this diversity.« less

  18. Characterization of codon usage pattern and influencing factors in Japanese encephalitis virus.

    PubMed

    Singh, Niraj K; Tyagi, Anuj; Kaur, Rajinder; Verma, Ramneek; Gupta, Praveen K

    2016-08-02

    Recently, several outbreaks of Japanese encephalitis (JE), caused by Japanese encephalitis virus (JEV), have been reported and it has become cause of concern across the world. In this study, detailed analysis of JEV codon usage pattern was performed. The relative synonymous codon usage (RSCU) values along with mean effective number of codons (ENC) value of 55.30 indicated the presence of low codon usages bias in JEV. The effect of mutational pressure on codon usage bias was confirmed by significant correlations of A3s, U3s, G3s, C3s, GC3s, ENC values, with overall nucleotide contents (A%, U%, G%, C%, and GC%). The correlation analysis of A3s, U3s, G3s, C3s, GC3s, with axis values of correspondence analysis (CoA) further confirmed the role of mutational pressure. However, the correlation analysis of Gravy values and Aroma values with A3s, U3s, G3s, C3s, and GC3s, indicated the presence of natural selection on codon usage bias in addition to mutational pressure. The natural selection was further confirmed by codon adaptation index (CAI) analysis. Additionally, relative dinucleotide frequencies, geographical distribution, and evolutionary processes also influenced the codon usage pattern to some extent. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. A highly pathogenic porcine reproductive and respiratory syndrome virus candidate vaccine based on Japanese encephalitis virus replicon system

    PubMed Central

    Huang, Lihong; Liu, Shukai; Zang, Fuyu; Xing, Jinchao; Zhang, Youyue; Liang, Jiaqi; Zhang, Guihong

    2017-01-01

    In the swine industry, porcine reproductive and respiratory syndrome (PRRS) is a highly contagious disease which causes heavy economic losses worldwide. Effective prevention and disease control is an important issue. In this study, we described the construction of a Japanese encephalitis virus (JEV) DNA-based replicon with a cytomegalovirus (CMV) promoter based on the genome of Japanese encephalitis live vaccine virus SA14-14-2, which is capable of offering a potentially novel way to develop and produce vaccines against a major pathogen of global health. This JEV DNA-based replicon contains a large deletion in the structural genes (C-prM-E). A PRRSV GP5/M was inserted into the deletion position of JEV DNA-based replicons to develop a chimeric replicon vaccine candidate for PRRSV. The results showed that BALB/c mice models with the replicon vaccines pJEV-REP-G-2A-M-IRES and pJEV-REP-G-2A-M stimulated antibody responses and induced a cellular immune response. Analysis of ELSA data showed that vaccination with the replicon vaccine expressing GP5/M induced a better antibodies response than traditional DNA vaccines. Therefore, the results suggested that this ectopic expression system based on JEV DNA-based replicons may represent a useful molecular platform for various biological applications, and the JEV DNA-based replicons expressing GP5/M can be further developed into a novel, safe vaccine candidate for PRRS. PMID:28740748

  20. Epidemiology of Japanese encephalitis: past, present, and future prospects

    PubMed Central

    Wang, Huanyu; Liang, Guodong

    2015-01-01

    Japanese encephalitis (JE) is one of severe viral encephalitis that affects individuals in Asia, western Pacific countries, and northern Australia. Although 67,900 JE cases have been estimated among 24 JE epidemic countries annually, only 10,426 have been reported in 2011. With the establishment of JE surveillance and vaccine use in some countries, the JE incidence rate has decreased; however, serious outbreaks still occur. Understanding JE epidemics and identifying the circulating JE virus genotypes will improve JE prevention and control. This review summarizes the current epidemiology data in these countries. PMID:25848290

  1. Venezuelan encephalitis virus infection in neotropical bats. III. Experimental studies on virus excretion and non-arthropod transmission.

    PubMed

    Seymour, C; Dickerman, R W

    1978-03-01

    A total of 80 Neotropical bats of five species was inoculated with one of four strains of Venezuelan encephalitis (VE) virus. Virus was detected in the oropharynges of 56% of bats, and most regularly in Artibeus jamaicensis (75%). Titers of virus in oropharyngeal secretions were occasionally very high (8.5 log10 SMicLD50/ml in one A. jamaicensis). Only 2 of 123 urine samples from 50 bats and 2 of 86 fecal samples from 46 bats yielded VE virus. No contact or aerosol virus transmission from bat to bat was detected. VE virus passed transplacentally from two infected mothers to their fetuses, which were aborted. Virus did not pass from one infected mother to her nursing young.

  2. Protective immunity to Japanese encephalitis virus associated with anti-NS1 antibodies in a mouse model.

    PubMed

    Li, Yize; Counor, Dorian; Lu, Peng; Duong, Veasna; Yu, Yongxin; Deubel, Vincent

    2012-07-24

    Japanese encephalitis virus (JEV) is a major mosquito-borne pathogen that causes viral encephalitis throughout Asia. Vaccination with an inactive JEV particle or attenuated virus is an efficient preventative measure for controlling infection. Flavivirus NS1 protein is a glycoprotein secreted during viral replication that plays multiple roles in the viral life cycle and pathogenesis. Utilizing JEV NS1 as an antigen in viral vectors induces a limited protective immune response against infection. Previous studies using E. coli-expressed JEV NS1 to immunize mice induced protection against lethal challenge; however, the protection mechanism through cellular and humoral immune responses was not described. JEV NS1 was expressed in and purified from Drosophila S2 cells in a native glycosylated multimeric form, which induced T-cell and antibody responses in immunized C3H/HeN mice. Mice vaccinated with 1 μg NS1 with or without water-in-oil adjuvant were partially protected against viral challenge and higher protection was observed in mice with higher antibody titers. IgG1 was preferentially elicited by an adjuvanted NS1 protein, whereas a larger load of IFN-γ was produced in splenocytes from mice immunized with aqueous NS1. Mice that passively received anti-NS1 mouse polyclonal immune sera were protected, and this phenomenon was dose-dependent, whereas protection was low or delayed after the passive transfer of anti-NS1 MAbs. The purified NS1 subunit induced protective immunity in relation with anti-NS1 IgG1 antibodies. NS1 protein efficiently stimulated Th1-cell proliferation and IFN-γ production. Protection against lethal challenge was elicited by passive transfer of anti-NS1 antisera, suggesting that anti-NS1 antibodies play a substantial role in anti-viral immunity.

  3. Morphological changes in human neural cells following tick-borne encephalitis virus infection.

    PubMed

    Růzek, Daniel; Vancová, Marie; Tesarová, Martina; Ahantarig, Arunee; Kopecký, Jan; Grubhoffer, Libor

    2009-07-01

    Tick-borne encephalitis (TBE) is one of the leading and most dangerous human viral neuroinfections in Europe and north-eastern Asia. The clinical manifestations include asymptomatic infections, fevers and debilitating encephalitis that might progress into chronic disease or fatal infection. To understand TBE pathology further in host nervous systems, three human neural cell lines, neuroblastoma, medulloblastoma and glioblastoma, were infected with TBE virus (TBEV). The susceptibility and virus-mediated cytopathic effect, including ultrastructural and apoptotic changes of the cells, were examined. All the neural cell lines tested were susceptible to TBEV infection. Interestingly, the neural cells produced about 100- to 10,000-fold higher virus titres than the conventional cell lines of extraneural origin, indicating the highly susceptible nature of neural cells to TBEV infection. The infection of medulloblastoma and glioblastoma cells was associated with a number of major morphological changes, including proliferation of membranes of the rough endoplasmic reticulum and extensive rearrangement of cytoskeletal structures. The TBEV-infected cells exhibited either necrotic or apoptotic morphological features. We observed ultrastructural apoptotic signs (condensation, margination and fragmentation of chromatin) and other alterations, such as vacuolation of the cytoplasm, dilatation of the endoplasmic reticulum cisternae and shrinkage of cells, accompanied by a high density of the cytoplasm. On the other hand, infected neuroblastoma cells did not exhibit proliferation of membranous structures. The virions were present in both the endoplasmic reticulum and the cytoplasm. Cells were dying preferentially by necrotic mechanisms rather than apoptosis. The neuropathological significance of these observations is discussed.

  4. Pigsties near dwellings as a potential risk factor for the prevalence of Japanese encephalitis virus in adult in Shanxi, China.

    PubMed

    Ren, Xiaojie; Fu, Shihong; Dai, Peifang; Wang, Huanyu; Li, Yuanyuan; Li, Xiaolong; Lei, Wenwen; Gao, Xiaoyan; He, Ying; Lv, Zhi; Cheng, Jingxia; Wang, Guiqin; Liang, Guodong

    2017-06-08

    The increasing trend of adult cases of Japanese encephalitis (JE) in China, particularly in northern China, has become an important public health issue. We conducted an epidemiological investigation in the south of Shanxi Province to examine the relationships between mosquitoes, Japanese encephalitis virus (JEV), and adult JE cases. Mosquito specimens were collected from the courtyards of farmers' households and pig farms in Shanxi Province. Mosquitoes were pooled, homogenized, and centrifuged. Reverse transcription-polymerase chain reaction (RT-PCR) was used to detect mosquito-borne arbovirus genes in homogenates. Specimens positive for these genes were inoculated into the baby hamster kidney cell line (BHK-21) to isolate virus. Minimum infection rate was calculated and phylogenetic analyses were performed. A total of 7 943 mosquitoes belonging to six species in four genera were collected; Culex tritaeniorhynchus accounted for 73.08% (5 805/7 943), C. pipiens pallens for 24.75% (1 966/7 943), and the remaining 3% (104/ 7943) consisted of Anopheles sinensis, Aedes vexans, Ae. dorsalis, and Armigeres subalbatus. Sixteen pools were positive for JEV based on RT-PCR using JEV pre-membrane gene nested primers. Phylogenetic analyses showed that all JEVs belonged to genotype I; two pools were positive using Getah Virus (GETV) gene primers. In addition, one JEV strain (SXYC1523) was isolated from C. pipiens pallens specimens. These results indicate that the minimum infection rate of JEV in mosquito specimens collected from the courtyards of farmers' households with pigsties was 7.39/1 000; the rate for pig farms was 2.68/1 000; and the rate for farmers' courtyards without pigsties was zero. The high-prevalence regions of adult JE investigated in this study are still the natural epidemic focus of JEV. Having pigsties near dwellings is a potential risk factor contributing to the prevalence of adult JE. To prevent the occurrence of local adult JE cases, a recommendation was

  5. A Single Amino Acid Substitution in the NS2A Protein of Japanese Encephalitis Virus Affects Virus Propagation In Vitro but Not In Vivo.

    PubMed

    Takamatsu, Yuki; Morita, Kouichi; Hayasaka, Daisuke

    2015-06-01

    We identified a unique amino acid of NS2A113, phenylalanine, that affects the efficient propagation of two Japanese encephalitis virus strains, JaTH160 and JaOArS982, in neuroblastoma Neuro-2a cells but not in cell lines of extraneural origin. This amino acid did not affect viral loads in the brain or survival curves in mice. These findings suggest that virus propagation in vitro may not reflect the level of virus neuroinvasiveness in vivo. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  6. Experimental encephalitis in monkeys caused by the Powassan virus.

    PubMed

    Frolova, M P; Isachkova, L M; Shestopalova, N M; Pogodina, V V

    1985-01-01

    We have carried out a comparative study of the experimental infection of monkeys with the P-40 strain of the Powassen virus, isolated in the Primor'e Territory of the USSR, and with the Canadian prototype LB strain. The Powassan virus was found to be pathogenic for Macaca rhesus. The clinical and pathomorphological picture of the experimental encephalitis was studied, and the full identity of the infection produced in the monkeys by the P-40 strain and the Canadian LB strain of the Powassan virus was demonstrated. On electron microscopic examination of the central nervous system the virus was detected in the neurons, glial cells, and intercellular spaces. The virions of the strains studied have identical morphological parameters, being 37-45 nm in diameter and of spherical shape. The data obtained indicated a marked neurotropism of the virus. They will contribute to the elucidation of the role of the virus in the infection pathology of humans, i.e., in the differentiation of encephalitis cases not associated etiologically with the virus of the spring-summer tickborne encephalitis.

  7. Japanese encephalitis virus/yellow fever virus chimera is safe and confers full protection against yellow fever virus in intracerebrally challenged mice.

    PubMed

    Yang, Huiqiang; Yang, Huan; Li, Zhushi; Liu, Lina; Wang, Wei; He, Ting; Fan, Fengming; Sun, Yan; Liu, Jie; Li, Yuhua; Zeng, Xianwu

    2018-04-25

    Yellow fever (YF) is an acute viral haemorrhagic disease caused by the yellow fever virus (YFV), which remains a potential threat to public health. The live-attenuated YF vaccine (17D strain) is a safe and highly effective measure against YF. However, increasing adverse events have been associated with YF vaccinations in recent years; thus, safer, alternative vaccines are needed. In this study, using the Japanese encephalitis live vaccine strain SA14-14-2 as a backbone, a novel chimeric virus was constructed by replacing the pre-membrane (prM) and envelope (E) genes with their YFV 17D counterparts.The chimeric virus exhibited a reduced growth rate and a much smaller plaque morphology than did either parental virus. Furthermore, the chimera was much less neurovirulent than was YF17D and protected mice that were challenged with a lethal dose of the YF virus. These results suggest that this chimera has potential as a novel attenuated YF vaccine. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Japanese encephalitis in a 114-month-old cow: pathological investigation of the affected cow and genetic characterization of Japanese encephalitis virus isolate

    PubMed Central

    2014-01-01

    Background Japanese encephalitis virus (JEV) is classified into the genus Flavivirus in the family Flaviviridae. JEV can cause febrile illness and encephalitis mainly in humans and horses, and occasionally in cattle. Case presentation In late September 2010, a 114-month-old cow showed neurological symptoms similar to the symptoms observed in previous bovine cases of Japanese encephalitis (JE); therefore, we conducted virological and pathological tests on the cow. As a result, JEV was isolated from the cerebrum of the affected cow. We determined the complete genome sequence of the JEV isolate, which we named JEV/Bo/Aichi/1/2010, including the envelope (E) gene region and 3’ untranslated region (3’UTR). Our phylogenetic analyses of the E region and complete genome showed that the isolate belongs to JEV genotype 1 (G1). The isolate, JEV/Bo/Aichi/1/2010, was most closely related to several JEV G1 isolates in Toyama Prefecture, Japan in 2007–2009 by the phylogenetic analysis of the E region. In addition, the nucleotide alignment revealed that the deletion in the 3’UTR was the same between JEV/Bo/Aichi/1/2010 and several other JEV G1 isolates identified in Toyama Prefecture in 2008–2009. A hemagglutination inhibition (HI) test was conducted for the detection of anti-JEV antibodies in the affected cow, and the test detected 2-mercaptoethanol (2-ME)-sensitive HI antibodies against JEV in the serum of the affected cow. The histopathological investigation revealed nonsuppurative encephalomyelitis in the affected cow, and the immunohistochemical assay detected JEV antigen in the cerebrum. Conclusion We diagnosed the case as JE of a cow based on the findings of nonsuppurative encephalomyelitis observed in the central nervous system, JEV antigen detected in the cerebrum, JEV isolated from the cerebrum, and 2-ME-sensitive HI antibodies against JEV detected in the serum. This is the first reported case of JE in a cow over 24 months old. PMID:24618225

  9. Japanese encephalitis in a 114-month-old cow: pathological investigation of the affected cow and genetic characterization of Japanese encephalitis virus isolate.

    PubMed

    Kako, Naomi; Suzuki, Seiji; Sugie, Norie; Kato, Tomoko; Yanase, Tohru; Yamakawa, Makoto; Shirafuji, Hiroaki

    2014-03-11

    Japanese encephalitis virus (JEV) is classified into the genus Flavivirus in the family Flaviviridae. JEV can cause febrile illness and encephalitis mainly in humans and horses, and occasionally in cattle. In late September 2010, a 114-month-old cow showed neurological symptoms similar to the symptoms observed in previous bovine cases of Japanese encephalitis (JE); therefore, we conducted virological and pathological tests on the cow. As a result, JEV was isolated from the cerebrum of the affected cow. We determined the complete genome sequence of the JEV isolate, which we named JEV/Bo/Aichi/1/2010, including the envelope (E) gene region and 3' untranslated region (3'UTR). Our phylogenetic analyses of the E region and complete genome showed that the isolate belongs to JEV genotype 1 (G1). The isolate, JEV/Bo/Aichi/1/2010, was most closely related to several JEV G1 isolates in Toyama Prefecture, Japan in 2007-2009 by the phylogenetic analysis of the E region. In addition, the nucleotide alignment revealed that the deletion in the 3'UTR was the same between JEV/Bo/Aichi/1/2010 and several other JEV G1 isolates identified in Toyama Prefecture in 2008-2009. A hemagglutination inhibition (HI) test was conducted for the detection of anti-JEV antibodies in the affected cow, and the test detected 2-mercaptoethanol (2-ME)-sensitive HI antibodies against JEV in the serum of the affected cow. The histopathological investigation revealed nonsuppurative encephalomyelitis in the affected cow, and the immunohistochemical assay detected JEV antigen in the cerebrum. We diagnosed the case as JE of a cow based on the findings of nonsuppurative encephalomyelitis observed in the central nervous system, JEV antigen detected in the cerebrum, JEV isolated from the cerebrum, and 2-ME-sensitive HI antibodies against JEV detected in the serum. This is the first reported case of JE in a cow over 24 months old.

  10. A novel immunochromatographic test applied to a serological survey of Japanese encephalitis virus on pig farms in Korea.

    PubMed

    Cha, Go-Woon; Lee, Eun Ju; Lim, Eun-Joo; Sin, Kang Suk; Park, Woo Won; Jeon, Doo Young; Han, Myung Guk; Lee, Won-Ja; Choi, Woo-Young; Jeong, Young Eui

    2015-01-01

    Among vertebrate species, pigs are a major amplifying host of Japanese encephalitis virus (JEV) and measuring their seroconversion is a reliable indicator of virus activity. Traditionally, the hemagglutination inhibition test has been used for serological testing in pigs; however, it has several limitations and, thus, a more efficient and reliable replacement test is required. In this study, we developed a new immunochromatographic test for detecting antibodies to JEV in pig serum within 15 min. Specifically, the domain III region of the JEV envelope protein was successfully expressed in soluble form and used for developing the immunochromatographic test. The test was then applied to the surveillance of Japanese encephalitis (JE) in Korea. We found that our immunochromatographic test had good sensitivity (84.8%) and specificity (97.7%) when compared with an immunofluorescence assay used as a reference test. During the surveillance of JE in Korea in 2012, the new immunochromatographic test was used to test the sera of 1,926 slaughtered pigs from eight provinces, and 228 pigs (11.8%) were found to be JEV-positive. Based on these results, we also produced an activity map of JEV, which marked the locations of pig farms in Korea that tested positive for the virus. Thus, the immunochromatographic test reported here provides a convenient and effective tool for real-time monitoring of JEV activity in pigs.

  11. A Novel Immunochromatographic Test Applied to a Serological Survey of Japanese Encephalitis Virus on Pig Farms in Korea

    PubMed Central

    Cha, Go-Woon; Lee, Eun Ju; Lim, Eun-Joo; Sin, Kang Suk; Park, Woo Won; Jeon, Doo Young; Han, Myung Guk; Lee, Won-Ja; Choi, Woo-Young; Jeong, Young Eui

    2015-01-01

    Among vertebrate species, pigs are a major amplifying host of Japanese encephalitis virus (JEV) and measuring their seroconversion is a reliable indicator of virus activity. Traditionally, the hemagglutination inhibition test has been used for serological testing in pigs; however, it has several limitations and, thus, a more efficient and reliable replacement test is required. In this study, we developed a new immunochromatographic test for detecting antibodies to JEV in pig serum within 15 min. Specifically, the domain III region of the JEV envelope protein was successfully expressed in soluble form and used for developing the immunochromatographic test. The test was then applied to the surveillance of Japanese encephalitis (JE) in Korea. We found that our immunochromatographic test had good sensitivity (84.8%) and specificity (97.7%) when compared with an immunofluorescence assay used as a reference test. During the surveillance of JE in Korea in 2012, the new immunochromatographic test was used to test the sera of 1,926 slaughtered pigs from eight provinces, and 228 pigs (11.8%) were found to be JEV-positive. Based on these results, we also produced an activity map of JEV, which marked the locations of pig farms in Korea that tested positive for the virus. Thus, the immunochromatographic test reported here provides a convenient and effective tool for real-time monitoring of JEV activity in pigs. PMID:25992769

  12. Autoimmune encephalitis and its relation to infection.

    PubMed

    Venkatesan, Arun; Benavides, David R

    2015-03-01

    Encephalitis, an inflammatory condition of the brain that results in substantial morbidity and mortality, has numerous causes. Over the past decade, it has become increasingly recognized that autoimmune conditions contribute significantly to the spectrum of encephalitis causes. Clinical suspicion and early diagnosis of autoimmune etiologies are of particular importance due to the need for early institution of immune suppressive therapies to improve outcome. Emerging clinical observations suggest that the most commonly recognized cause of antibody-mediated autoimmune encephalitis, anti-N-methyl-D-aspartate (NMDA) receptor encephalitis, may in some cases be triggered by herpes virus infection. Other conditions such as Rasmussen's encephalitis (RE) and febrile infection-related epilepsy syndrome (FIRES) have also been posited to be autoimmune conditions triggered by infectious agents. This review focuses on emerging concepts in central nervous system autoimmunity and addresses clinical and mechanistic findings linking autoimmune encephalitis and infections. Particular consideration will be given to anti-NMDA receptor encephalitis and its relation to herpes simplex encephalitis.

  13. Powassan virus encephalitis resembling herpes simplex encephalitis.

    PubMed

    Embil, J A; Camfield, P; Artsob, H; Chase, D P

    1983-02-01

    A boy from New York traveling in Nova Scotia had olfactory hallucinations and other signs of temporal lobe involvement, leading to a diagnosis of herpes simplex encephalitis. The patient was treated with vidarabine and made a complete recovery. However, hemagglutination inhibition, complement fixation, and neutralization tests identified Powassan virus (POW) as the pathogen. Shortly before his trip to Nova Scotia, the patient had traveled in an area where POW encephalitis had occurred in humans (the eastern part of the state of New York), and he also came in contact with a known reservoir of POW infection (a groundhog) at home.

  14. Epidemiology of Japanese encephalitis in the Philippines: a systematic review.

    PubMed

    Lopez, Anna Lena; Aldaba, Josephine G; Roque, Vito G; Tandoc, Amado O; Sy, Ava Kristy; Espino, Fe Esperanza; DeQuiroz-Castro, Maricel; Jee, Youngmee; Ducusin, Maria Joyce; Fox, Kimberley K

    2015-03-01

    Japanese encephalitis virus (JEV) is an important cause of encephalitis in most of Asia, with high case fatality rates and often significant neurologic sequelae among survivors. The epidemiology of JE in the Philippines is not well defined. To support consideration of JE vaccine for introduction into the national schedule in the Philippines, we conducted a systematic literature review and summarized JE surveillance data from 2011 to 2014. We conducted searches on Japanese encephalitis and the Philippines in four databases and one library. Data from acute encephalitis syndrome (AES) and JE surveillance and from the national reference laboratory from January 2011 to March 2014 were tabulated and mapped. We identified 29 published reports and presentations on JE in the Philippines, including 5 serologic surveys, 18 reports of clinical cases, and 8 animal studies (including two with both clinical cases and animal data). The 18 clinical studies reported 257 cases of laboratory-confirmed JE from 1972 to 2013. JE virus (JEV) was the causative agent in 7% to 18% of cases of clinical meningitis and encephalitis combined, and 16% to 40% of clinical encephalitis cases. JE predominantly affected children under 15 years of age and 6% to 7% of cases resulted in death. Surveillance data from January 2011 to March 2014 identified 73 (15%) laboratory-confirmed JE cases out of 497 cases tested. This comprehensive review demonstrates the endemicity and extensive geographic range of JE in the Philippines, and supports the use of JE vaccine in the country. Continued and improved surveillance with laboratory confirmation is needed to systematically quantify the burden of JE, to provide information that can guide prioritization of high risk areas in the country and determination of appropriate age and schedule of vaccine introduction, and to measure the impact of preventive measures including immunization against this important public health threat.

  15. Epidemiology of Japanese Encephalitis in the Philippines: A Systematic Review

    PubMed Central

    Lopez, Anna Lena; Aldaba, Josephine G.; Roque, Vito G.; Tandoc, Amado O.; Sy, Ava Kristy; Espino, Fe Esperanza; DeQuiroz-Castro, Maricel; Jee, Youngmee; Ducusin, Maria Joyce; Fox, Kimberley K.

    2015-01-01

    Background Japanese encephalitis virus (JEV) is an important cause of encephalitis in most of Asia, with high case fatality rates and often significant neurologic sequelae among survivors. The epidemiology of JE in the Philippines is not well defined. To support consideration of JE vaccine for introduction into the national schedule in the Philippines, we conducted a systematic literature review and summarized JE surveillance data from 2011 to 2014. Methods We conducted searches on Japanese encephalitis and the Philippines in four databases and one library. Data from acute encephalitis syndrome (AES) and JE surveillance and from the national reference laboratory from January 2011 to March 2014 were tabulated and mapped. Results We identified 29 published reports and presentations on JE in the Philippines, including 5 serologic surveys, 18 reports of clinical cases, and 8 animal studies (including two with both clinical cases and animal data). The 18 clinical studies reported 257 cases of laboratory-confirmed JE from 1972 to 2013. JE virus (JEV) was the causative agent in 7% to 18% of cases of clinical meningitis and encephalitis combined, and 16% to 40% of clinical encephalitis cases. JE predominantly affected children under 15 years of age and 6% to 7% of cases resulted in death. Surveillance data from January 2011 to March 2014 identified 73 (15%) laboratory-confirmed JE cases out of 497 cases tested. Summary This comprehensive review demonstrates the endemicity and extensive geographic range of JE in the Philippines, and supports the use of JE vaccine in the country. Continued and improved surveillance with laboratory confirmation is needed to systematically quantify the burden of JE, to provide information that can guide prioritization of high risk areas in the country and determination of appropriate age and schedule of vaccine introduction, and to measure the impact of preventive measures including immunization against this important public health threat

  16. Persistent West Nile Virus Transmission and the Apparent Displacement St. Louis Encephalitis Virus in Southeastern California, 2003−2006

    PubMed Central

    REISEN, WILLIAM K.; LOTHROP, HUGH D.; WHEELER, SARAH S.; KENNSINGTON, MARC; GUTIERREZ, ARTURO; FANG, YING; GARCIA, SANDRA; LOTHROP, BRANKA

    2008-01-01

    West Nile virus (family Flaviviridae, genus Flavivirus, WNV) invaded the Colorado Desert biome of southern California during summer 2003 and seemed to displace previously endemic St. Louis encephalitis virus (family Flaviviridae, genus Flavivirus, SLEV, an antigenically similar Flavivirus in the Japanese encephalitis virus serocomplex). Western equine encephalomyelitis virus (family Togaviridae, genus Alphavirus, WEEV), an antigenically distinct Alphavirus, was detected during 2005 and 2006, indicating that conditions were suitable for encephalitis virus introduction and detection. Cross-protective “avian herd immunity” due to WNV infection possibly may have prevented SLEV reintroduction and/or amplification to detectable levels. During 2003−2006, WNV was consistently active at wetlands and agricultural habitats surrounding the Salton Sea where Culex tarsalis Coquillett served as the primary enzootic maintenance and amplification vector. Based on published laboratory infection studies and the current seroprevalence estimates, house sparrows, house finches, and several Ardeidae may have been important avian amplifying hosts in this region. Transmission efficiency may have been dampened by high infection rates in incompetent avian hosts, including Gamble's quail, mourning doves, common ground doves, and domestic pigeons. Early season WNV amplification and dispersal from North Shore in the southeastern portion of the Coachella Valley resulted in sporadic WNV incursions into the urbanized Upper Valley near Palm Springs, where Culex pipiens quinquefasciatus Say was the primary enzootic and bridge vector. Although relatively few human cases were detected during the 2003−2006 period, all were concentrated in the Upper Valley and were associated with high human population density and WNV infection in peridomestic populations of Cx. p. quinquefasciatus. Intensive early mosquito control during 2006 seemed to interrupt and delay transmission, perhaps setting the stage

  17. Safety and immunogenicity of a live attenuated Japanese encephalitis chimeric virus vaccine (IMOJEV®) in children.

    PubMed

    Chokephaibulkit, K; Houillon, G; Feroldi, E; Bouckenooghe, A

    2016-01-01

    JE-CV (IMOJEV®, Sanofi Pasteur, France) is a live attenuated virus vaccine constructed by inserting coding sequences of the prM and E structural proteins of the Japanese encephalitis SA14-14-2 virus into the genome of yellow fever 17D virus. Primary immunization with JE-CV requires a single dose of the vaccine. This article reviews clinical trials of JE-CV in children aged up to 6 years conducted in countries across South-East Asia. Strong and persistent antibody responses were observed after single primary and booster doses, with 97% of children seroprotected up to five years after booster vaccination. Models of long-term antibody persistence predict a median duration of protection of approximately 30 years after a booster dose. The safety and reactogenicity profiles of JE-CV primary and booster doses are comparable to other widely used childhood vaccines.

  18. Serologic diagnosis of West Nile and St. Louis encephalitis virus infections in domestic chickens.

    PubMed

    Patiris, Peter J; Oceguera, Leopoldo F; Peck, George W; Chiles, Robert E; Reisen, William K; Hanson, Carl V

    2008-03-01

    Adult domestic chickens were infected with West Nile virus (WNV) or St. Louis encephalitis virus (SLEV) and challenged with homologous or heterologous virus at 21 or 56 days postinfection (dpi). Sera were collected at selected time points after infection and assayed by enzyme immunoassay (EIA), plaque reduction neutralization test (PRNT), and a Western blot (WB) alternative to PRNT. EIA results were sensitive and accurate (few false positives) but not specific, requiring a confirmatory test to determine virus infection history. PRNT results generally were specific until challenge, after which test results were frequently equivocal and inadequate to determine first or second infecting virus. WB results confirmed the serologic cross-reactivity between WNV and SLEV envelope protein. Non-structural protein 1 and pre-membrane protein reactivities were highly specific for WNV during SLEV infection, but less specific for SLEV during WNV infection. WB and PRNT specificities were similar for both viruses from 6 to 14 dpi, and sensitivities to WNV were virtually identical.

  19. Replication of Japanese Encephalitis Virus.

    DTIC Science & Technology

    1980-12-10

    persistently infected with JEV were studied. Over 200 cells were cloned from these cultures and all but four were nonproducers of infectious virus and viral...obtained for release of interfering particles by persis- tently infected cultures and clones , no new size classes of virus RNA could be demonstrated. iI...denaturing or non-dena- turing conditions. Both virus producer and non-producer cell clones were examined, and whether superinfected or not, they

  20. Japanese encephalitis virus non-coding RNA inhibits activation of interferon by blocking nuclear translocation of interferon regulatory factor 3.

    PubMed

    Chang, Ruey-Yi; Hsu, Ta-Wen; Chen, Yen-Lin; Liu, Shu-Fan; Tsai, Yi-Jer; Lin, Yun-Tong; Chen, Yi-Shiuan; Fan, Yi-Hsin

    2013-09-27

    Noncoding RNA (ncRNA) plays a critical role in modulating a broad range of diseases. All arthropod-borne flaviviruses produce short fragment ncRNA (sfRNA) collinear with highly conserved regions of the 3'-untranslated region (UTR) in the viral genome. We show that the molar ratio of sfRNA to genomic RNA in Japanese encephalitis virus (JEV) persistently infected cells is greater than that in acutely infected cells, indicating an sfRNA role in establishing persistent infection. Transfecting excess quantities of sfRNA into JEV-infected cells reduced interferon-β (IFN-β) promoter activity by 57% and IFN-β mRNA levels by 52%, compared to mock-transfected cells. Transfection of sfRNA into JEV-infected cells also reduced phosphorylation of interferon regulatory factor-3 (IRF-3), the IFN-β upstream regulator, and blocked roughly 30% of IRF-3 nuclear localization. Furthermore, JEV-infected sfRNA transfected cells produced 23% less IFN-β-stimulated apoptosis than mock-transfected groups did. Taken together, these results suggest that sfRNA plays a role against host-cell antiviral responses, prevents cells from undergoing apoptosis, and thus contributes to viral persistence. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Molecular phylogenetic and evolutionary analyses of Muar strain of Japanese encephalitis virus reveal it is the missing fifth genotype.

    PubMed

    Mohammed, Manal A F; Galbraith, Sareen E; Radford, Alan D; Dove, Winifred; Takasaki, Tomohiko; Kurane, Ichiro; Solomon, Tom

    2011-07-01

    Japanese encephalitis virus (JEV) is the most important cause of epidemic encephalitis worldwide but its origin is unknown. Epidemics of encephalitis suggestive of Japanese encephalitis (JE) were described in Japan from the 1870s onwards. Four genotypes of JEV have been characterised and representatives of each genotype have been fully sequenced. Based on limited information, a single isolate from Malaysia is thought to represent a putative fifth genotype. We have determined the complete nucleotide and amino acid sequence of Muar strain and compared it with other fully sequenced JEV genomes. Muar was the least similar, with nucleotide divergence ranging from 20.2 to 21.2% and amino acid divergence ranging from 8.5 to 9.9%. Phylogenetic analysis of Muar strain revealed that it does represent a distinct fifth genotype of JEV. We elucidated Muar signature amino acids in the envelope (E) protein, including E327 Glu on the exposed lateral surface of the putative receptor binding domain which distinguishes Muar strain from the other four genotypes. Evolutionary analysis of full-length JEV genomes revealed that the mean evolutionary rate is 4.35 × 10(-4) (3.4906 × 10(-4) to 5.303 × 10(-4)) nucleotides substitutions per site per year and suggests JEV originated from its ancestral virus in the mid 1500s in the Indonesia-Malaysia region and evolved there into different genotypes, which then spread across Asia. No strong evidence for positive selection was found between JEV strains of the five genotypes and the E gene has generally been subjected to strong purifying selection. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Gold nanoparticle-based RT-PCR and real-time quantitative RT-PCR assays for detection of Japanese encephalitis virus

    NASA Astrophysics Data System (ADS)

    Huang, Su-Hua; Yang, Tsuey-Ching; Tsai, Ming-Hong; Tsai, I.-Shou; Lu, Huang-Chih; Chuang, Pei-Hsin; Wan, Lei; Lin, Ying-Ju; Lai, Chih-Ho; Lin, Cheng-Wen

    2008-10-01

    Virus isolation and antibody detection are routinely used for diagnosis of Japanese encephalitis virus (JEV) infection, but the low level of transient viremia in some JE patients makes JEV isolation from clinical and surveillance samples very difficult. We describe the use of gold nanoparticle-based RT-PCR and real-time quantitative RT-PCR assays for detection of JEV from its RNA genome. We tested the effect of gold nanoparticles on four different PCR systems, including conventional PCR, reverse-transcription PCR (RT-PCR), and SYBR green real-time PCR and RT-PCR assays for diagnosis in the acute phase of JEV infection. Gold nanoparticles increased the amplification yield of the PCR product and shortened the PCR time compared to the conventional reaction. In addition, nanogold-based real-time RT-PCR showed a linear relationship between Ct and template amount using ten-fold dilutions of JEV. The nanogold-based RT-PCR and real-time quantitative RT-PCR assays were able to detect low levels (1-10 000 copies) of the JEV RNA genomes extracted from culture medium or whole blood, providing early diagnostic tools for the detection of low-level viremia in the acute-phase infection. The assays described here were simple, sensitive, and rapid approaches for detection and quantitation of JEV in tissue cultured samples as well as clinical samples.

  3. Following Acute Encephalitis, Semliki Forest Virus is Undetectable in the Brain by Infectivity Assays but Functional Virus RNA Capable of Generating Infectious Virus Persists for Life.

    PubMed

    Fragkoudis, Rennos; Dixon-Ballany, Catherine M; Zagrajek, Adrian K; Kedzierski, Lukasz; Fazakerley, John K

    2018-05-18

    Alphaviruses are mosquito-transmitted RNA viruses which generally cause acute disease including mild febrile illness, rash, arthralgia, myalgia and more severely, encephalitis. In the mouse, peripheral infection with Semliki Forest virus (SFV) results in encephalitis. With non-virulent strains, infectious virus is detectable in the brain, by standard infectivity assays, for around ten days. As we have shown previously, in severe combined immunodeficient (SCID) mice, infectious virus is detectable for months in the brain. Here we show that in MHC-II -/- mice, with no functional CD4 T-cells, infectious virus is also detectable in the brain for long periods. In contrast, in the brains of CD8 -/- mice, virus RNA persists but infectious virus is not detectable. In SCID mice infected with SFV, repeated intraperitoneal administration of anti-SFV immune serum rapidly reduced the titer of infectious virus in the brain to undetectable, however virus RNA persisted. Repeated intraperitoneal passive transfer of immune serum resulted in maintenance of brain virus RNA, with no detectable infectious virus, for several weeks. When passive antibody transfer was stopped, antibody levels declined and infectious virus was again detectable in the brain. In aged immunocompetent mice, previously infected with SFV, immunosuppression of antibody responses many months after initial infection also resulted in renewed ability to detect infectious virus in the brain. In summary, antiviral antibodies control and determine whether infectious virus is detectable in the brain but immune responses cannot clear this infection from the brain. Functional virus RNA capable of generating infectious virus persists and if antibody levels decline, infectious virus is again detectable.

  4. Inhibitory effect of the green tea molecule EGCG against dengue virus infection.

    PubMed

    Raekiansyah, Muhareva; Buerano, Corazon C; Luz, Mark Anthony D; Morita, Kouichi

    2018-06-01

    Dengue virus (DENV) infection is a major public health problem worldwide; however, specific antiviral drugs against it are not available. Hence, identifying effective antiviral agents for the prevention of DENV infection is important. In this study, we showed that the reportedly highly biologically active green-tea component epigallocatechin gallate (EGCG) inhibited dengue virus infection regardless of infecting serotype, but no or minimal inhibition was observed with other flaviviruses, including Japanese encephalitis virus, yellow fever virus, and Zika virus. EGCG exerted its antiviral effect mainly at the early stage of infection, probably by interacting directly with virions to prevent virus infection. Our results suggest that EGCG specifically targets DENV and might be used as a lead structure to develop an antiviral drug for use against the virus.

  5. Variation of the Specificity of the Human Antibody Responses after Tick-Borne Encephalitis Virus Infection and Vaccination

    PubMed Central

    Jarmer, Johanna; Zlatkovic, Jürgen; Tsouchnikas, Georgios; Vratskikh, Oksana; Strauß, Judith; Aberle, Judith H.; Chmelik, Vaclav; Kundi, Michael; Stiasny, Karin

    2014-01-01

    ABSTRACT Tick-borne encephalitis (TBE) virus is an important human-pathogenic flavivirus endemic in large parts of Europe and Central and Eastern Asia. Neutralizing antibodies specific for the viral envelope protein E are believed to mediate long-lasting protection after natural infection and vaccination. To study the specificity and individual variation of human antibody responses, we developed immunoassays with recombinant antigens representing viral surface protein domains and domain combinations. These allowed us to dissect and quantify antibody populations of different fine specificities in sera of TBE patients and vaccinees. Postinfection and postvaccination sera both displayed strong individual variation of antibody titers as well as the relative proportions of antibodies to different domains of E, indicating that the immunodominance patterns observed were strongly influenced by individual-specific factors. The contributions of these antibody populations to virus neutralization were quantified by serum depletion analyses and revealed a significantly biased pattern. Antibodies to domain III, in contrast to what was found in mouse immunization studies with TBE and other flaviviruses, did not play any role in the human neutralizing antibody response, which was dominated by antibodies to domains I and II. Importantly, most of the neutralizing activity could be depleted from sera by a dimeric soluble form of the E protein, which is the building block of the icosahedral herringbone-like shell of flaviviruses, suggesting that antibodies to more complex quaternary epitopes involving residues from adjacent dimers play only a minor role in the total response to natural infection and vaccination in humans. IMPORTANCE Tick-borne encephalitis (TBE) virus is a close relative of yellow fever, dengue, Japanese encephalitis, and West Nile viruses and distributed in large parts of Europe and Central and Eastern Asia. Antibodies to the viral envelope protein E prevent viral

  6. Japanese encephalitis: the vectors, ecology and potential for expansion.

    PubMed

    Pearce, James C; Learoyd, Tristan P; Langendorf, Benjamin J; Logan, James G

    2018-05-01

    Japanese encephalitis (JE) is a viral disease predominantly located in South East Asia and commonly associated with transmission between amplifying hosts, such as pigs, and the mosquito Culex tritaeniorhynchus, where human infection represents a dead end in the life cycle of the virus. The expansion of JE beyond an Asiatic confine is dependent on a multitude of complex factors that stem back to genetic subtype variation. A complex interplay of the genetic variation and vector competencies combine with variables such as geography, climate change and urbanization. Our understanding of JE is still at an early stage with long-term longitudinal vector surveillance necessary to better understand the dynamics of JE transmission and to characterize the role of potential secondary vectors such as Cx. pipiens and Cx. bitaeniorhynchus. The authors review the vectors indicated in transmission and the ecological, genetic and anthropological factors that affect the disease's range and epidemiology. Monitoring for the presence of JE virus in mosquitoes in general can be used to estimate levels of potential JE exposure, intensity of viral activity and genetic variation of JEV throughout surveyed areas. Increased surveillance and diagnosis of viral encephalitis caused by genotype 5 JE virus is required in particular, with the expansion in epidemiology and disease prevalence in new geographic areas an issue of great concern. Additional studies that measure the impact of vectors (e.g. bionomics and vector competence) in the transmission of JEV and that incorporate environmental factors (e.g. weekly rainfall) are needed to define the roles of Culex species in the viral pathogenesis during outbreak and non-outbreak years.

  7. Distinction between serological responses following tick-borne encephalitis virus (TBEV) infection vs vaccination, Sweden 2017.

    PubMed

    Albinsson, Bo; Vene, Sirkka; Rombo, Lars; Blomberg, Jonas; Lundkvist, Åke; Rönnberg, Bengt

    2018-01-01

    Tick-borne encephalitis virus (TBEV) is an important European vaccine-preventable pathogen. Discrimination of vaccine-induced antibodies from those elicited by infection is important. We studied anti-TBEV IgM/IgG responses, including avidity and neutralisation, by multiplex serology in 50 TBEV patients and 50 TBEV vaccinees. Infection induced antibodies reactive to both whole virus (WV) and non-structural protein 1 (NS1) in 48 clinical cases, whereas 47 TBEV vaccinees had WV, but not NS1 antibodies, enabling efficient discrimination of infection/vaccination.

  8. Antibodies to H5 subtype avian influenza virus and Japanese encephalitis virus in northern pintails (Anas acuta) sampled in Japan

    USGS Publications Warehouse

    Ramey, Andy M.; Spackman, Erica; Yeh, Jung-Yong; Fujita, Go; Konishi, Kan; Reed, John A.; Wilcox, Benjamin R.; Brown, Justin D.; Stallknecht, David E.

    2013-01-01

    Blood samples from 105 northern pintails (Anas acuta) captured on Hokkaido, Japan were tested for antibodies to avian influenza virus (AIV), Japanese encephalitis virus (JEV), and West Nile virus (WNV) to assess possible involvement of this species in the spread of economically important and potentially zoonotic pathogens. Antibodies to AIV were detected in 64 of 105 samples (61%). Of the 64 positives, 95% and 81% inhibited agglutination of two different H5 AIV antigens (H5N1 and H5N9), respectively. Antibodies to JEV and WNV were detected in five (5%) and none of the samples, respectively. Results provide evidence for prior exposure of migrating northern pintails to H5 AIV which couldhave implications for viral shedding and disease occurrence. Results also provide evidence for limited involvement of this species in the transmission and spread of flaviviruses during spring migration.

  9. Viperin Restricts Zika Virus and Tick-Borne Encephalitis Virus Replication by Targeting NS3 for Proteasomal Degradation.

    PubMed

    Panayiotou, Christakis; Lindqvist, Richard; Kurhade, Chaitanya; Vonderstein, Kirstin; Pasto, Jenny; Edlund, Karin; Upadhyay, Arunkumar S; Överby, Anna K

    2018-04-01

    Flaviviruses are arthropod-borne viruses that constitute a major global health problem, with millions of human infections annually. Their pathogenesis ranges from mild illness to severe manifestations such as hemorrhagic fever and fatal encephalitis. Type I interferons (IFNs) are induced in response to viral infection and stimulate the expression of interferon-stimulated genes (ISGs), including that encoding viperin (virus-inhibitory protein, endoplasmic reticulum associated, IFN inducible), which shows antiviral activity against a broad spectrum of viruses, including several flaviviruses. Here we describe a novel antiviral mechanism employed by viperin against two prominent flaviviruses, tick-borne encephalitis virus (TBEV) and Zika virus (ZIKV). Viperin was found to interact and colocalize with the structural proteins premembrane (prM) and envelope (E) of TBEV, as well as with nonstructural (NS) proteins NS2A, NS2B, and NS3. Interestingly, viperin expression reduced the NS3 protein level, and the stability of the other interacting viral proteins, but only in the presence of NS3. We also found that although viperin interacted with NS3 of mosquito-borne flaviviruses (ZIKV, Japanese encephalitis virus, and yellow fever virus), only ZIKV was sensitive to the antiviral effect of viperin. This sensitivity correlated with viperin's ability to induce proteasome-dependent degradation of NS3. ZIKV and TBEV replication was rescued completely when NS3 was overexpressed, suggesting that the viral NS3 is the specific target of viperin. In summary, we present here a novel antiviral mechanism of viperin that is selective for specific viruses in the genus Flavivirus , affording the possible availability of new drug targets that can be used for therapeutic intervention. IMPORTANCE Flaviviruses are a group of enveloped RNA viruses that cause severe diseases in humans and animals worldwide, but no antiviral treatment is yet available. Viperin, a host protein produced in response to

  10. Serologic Evidence of Tick-Borne Encephalitis Virus Infection in a Patient with Suspected Lyme Disease in Japan.

    PubMed

    Yoshii, Kentaro; Sato, Kozue; Ishizuka, Mariko; Kobayashi, Shintaro; Kariwa, Hiroaki; Kawabata, Hiroki

    2018-05-29

    Tick-borne encephalitis (TBE) is widely prevalent on the Eurasian continent, including Japan, but four cases of TBE have been reported in Japan. To inspect unconfirmed TBE cases in Japan, we conducted a retrospective seroepidemiological study of a total of 158 samples from 81 meningoencephalitis patients suspected as Lyme disease. Two serum samples from one patient showed neutralizing antibodies against TBE virus. The patient with severe and progressive encephalitis had a history of tick bite in Hokkaido in 2012. These results demonstrated that tick-borne encephalitis virus (TBEV) case was actually unconfirmed in Japan. Further seroepidemiological surveys are required to identify unconfirmed TBEV infections to consider the pros and cons of introducing specific countermeasures including vaccination in Japan.

  11. Prevalence of antibodies to Japanese encephalitis virus among pigs in Bali and East Java, Indonesia, 2008.

    PubMed

    Yamanaka, Atsushi; Mulyatno, Kris Cahyo; Susilowati, Helen; Hendrianto, Eryk; Utsumi, Takako; Amin, Mochamad; Lusida, Maria Inge; Soegijanto, Soegeng; Konishi, Eiji

    2010-01-01

    Japanese encephalitis virus (JEV) is a fatal disease in Asia. Pigs are considered to be the effective amplifying host for JEV in the peridomestic environment. Bali Island and Java Island in Indonesia provide a model to assess the effect of pigs on JEV transmission, since the pig density is nearly 100-fold higher in Bali than Java, while the geographic and climatologic environments are equivalent in these areas. We surveyed antibodies to JEV among 123 pigs in Mengwi (Bali) and 96 pigs in Tulungagung (East Java) in 2008 by the hemagglutination-inhibition (HAI) test. Overall prevalences were 49% in Bali and 6% in Java, with a significant difference between them (P < 0.001). Monthly infection rates estimated from age-dependent antibody prevalences were 11% in Bali and 2% in Java. In addition, 2-mercaptoethanol-sensitive antibodies were found only from Bali samples. Further, the average HAI antibody titer obtained from positive samples was significantly higher in Bali (1:52) than Java (1:10; P < 0.001). These results indicated that JEV transmission in nature is more active in Bali than East Java.

  12. Seasonal Patterns of Japanese Encephalitis and Associated Meteorological Factors in Taiwan.

    PubMed

    Lin, Che-Liang; Chang, Hsiao-Ling; Lin, Chuan-Yao; Chen, Kow-Tong

    2017-10-29

    The persistent transmission of Japanese encephalitis virus (JEV) in Taiwan necessitates exploring the risk factors of occurrence of Japanese encephalitis (JE). The purpose of this study was to assess the relationship between meteorological factors and the incidence of JE in Taiwan. We collected data for cases of JE reported to the Taiwan Centers for Disease Control (Taiwan CDC) from 2000 to 2014. Meteorological data were obtained from the Taiwan Central Weather Bureau. The relationships between weather variability and the incidence of JE in Taiwan were determined via Poisson regression analysis and a case-crossover methodology. During the 15-year study period, a total of 379 cases of JE were reported. The incidence of JE showed significant seasonality, with the majority of cases occurring in summertime (for oscillation, p < 0.001). The number of JE cases started to increase at temperatures of 22 °C (r² = 0.88, p < 0.001). Similarly, the number of JE cases began to increase at a relative humidity of 70-74% (r² = 0.75, p < 0.005). The number of JE cases was positively associated with mean temperature and relative humidity in the period preceding the infection. In conclusion, the occurrence of JE is significantly associated with increasing temperature and relative humidity in Taiwan. Therefore, these factors could be regarded as warning signals indicating the need to implement preventive measures.

  13. Distemper virus encephalitis exerts detrimental effects on hippocampal neurogenesis.

    PubMed

    von Rüden, E-L; Avemary, J; Zellinger, C; Algermissen, D; Bock, P; Beineke, A; Baumgärtner, W; Stein, V M; Tipold, A; Potschka, H

    2012-08-01

    Despite knowledge about the impact of brain inflammation on hippocampal neurogenesis, data on the influence of virus encephalitis on dentate granule cell neurogenesis are so far limited. Canine distemper is considered an interesting model of virus encephalitis, which can be associated with a chronic progressing disease course and can cause symptomatic seizures. To determine the impact of canine distemper virus (CDV) infection on hippocampal neurogenesis, we compared post-mortem tissue from dogs with infection with and without seizures, from epileptic dogs with non-viral aetiology and from dogs without central nervous system diseases. The majority of animals with infection and with epilepsy of non-viral aetiology exhibited neuronal progenitor numbers below the age average in controls. Virus infection with and without seizures significantly decreased the mean number of neuronal progenitor cells by 43% and 76% as compared to age-matched controls. Ki-67 labelling demonstrated that hippocampal cell proliferation was neither affected by infection nor by epilepsy of non-viral aetiology. Analysis of CDV infection in cells expressing caspase-3, doublecortin or Ki-67 indicated that infection of neuronal progenitor cells is extremely rare and suggests that infection might damage non-differentiated progenitor cells, hamper neuronal differentiation and promote glial differentiation. A high inter-individual variance in the number of lectin-reactive microglial cells was evident in dogs with distemper infection. Statistical analyses did not reveal a correlation between the number of lectin-reactive microglia cells and neuronal progenitor cells. Our data demonstrate that virus encephalitis with and without seizures can exert detrimental effects on hippocampal neurogenesis, which might contribute to long-term consequences of the disease. The lack of a significant impact of distemper virus on Ki-67-labelled cells indicates that the infection affected neuronal differentiation and

  14. Unusual Necrotizing Encephalitis in Raccoons and Skunks Concurrently Infected With Canine Distemper Virus and Sarcocystis sp.

    PubMed

    Kubiski, S V; Sisó, S; Church, M E; Cartoceti, A N; Barr, B; Pesavento, P A

    2016-05-01

    Canine distemper virus commonly infects free-ranging, terrestrial mesopredators throughout the United States. Due to the immunosuppressive effects of the virus, concurrent opportunistic infections are also common. Among these, secondary systemic protozoal infections have been described in a number of species. We report an unusual presentation of necrotizing encephalitis associated withSarcocystissp in four raccoons and one skunk concurrently infected with canine distemper virus. Lesions were characterized by variably sized necrotizing cavitations composed of abundant mineral admixed with inflammatory cells and protozoa.Sarcocystissp was confirmed via immunohistochemistry using a monoclonal antibody toSarcocystis neurona The pathologic changes are similar to lesions in human AIDS patients infected withToxoplasma gondii. © The Author(s) 2015.

  15. Nonstructural protein 1 antibody-based epitope-blocking enzyme-linked immunosorbent assay to differentiate Japanese encephalitis virus from dengue virus infections in humans.

    PubMed

    Konishi, Eiji; Konishi, Mayu

    2011-01-01

    Japanese encephalitis virus (JEV) and the four dengue viruses (DENV1-4) are co-distributed in Southeast and South Asia. Since JEV is antigenically cross-reactive with DENV1-4, the differentiation between these viruses using antibody assays may be difficult. Herein, we describe the development of an epitope-blocking enzyme-linked immunosorbent assay (ELISA) using a monoclonal antibody specific for the nonstructural protein 1 (NS1) of JEV (JEV-NS1) to differentiate antibodies against JEV from those against DENV1-4. Hyperimmune mouse sera against JEV-NS1 showed >60% inhibition, whereas those against NS1 of DENV1-4 showed <30% inhibition. The present assay could therefore detect antibodies specific for JEV. For testing of human sera, a temporary cutoff value (30.8%) was calculated the average and standard deviation obtained for sera of control humans negative for JEV antibodies. Human sera positive for antibodies to any of DENV1-4 NS1 but negative for antibodies to JEV-NS1 showed a lower percentage inhibition than the cutoff value. On the other hand, sera with JEV-NS1 antibody levels of ≥0.400, as determined by the conventional ELISA (medially/strongly positive for JEV-NS1 antibodies), showed percentage inhibition greater than the cutoff. Although this blocking ELISA afforded false-negative results for most sera that were weakly positive for JEV-NS1 antibodies, it may be useful for investigating the seroepidemiology of JEV antibodies in dengue-endemic areas.

  16. Venezuelan Equine Encephalitis Virus Infection of Spiny Rats

    PubMed Central

    Carrara, Anne-Sophie; Gonzales, Marta; Ferro, Cristina; Tamayo, Margarita; Aronson, Judith; Paessler, Slobodan; Anishchenko, Michael; Boshell, Jorge

    2005-01-01

    Enzootic strains of Venezuelan equine encephalitis virus (VEEV) circulate in forested habitats of Mexico, Central, and South America, and spiny rats (Proechimys spp.) are believed to be the principal reservoir hosts in several foci. To better understand the host-pathogen interactions and resistance to disease characteristic of many reservoir hosts, we performed experimental infections of F1 progeny from Proechimys chrysaeolus collected at a Colombian enzootic VEEV focus using sympatric and allopatric virus strains. All animals became viremic with a mean peak titer of 3.3 log10 PFU/mL, and all seroconverted with antibody titers from 1:20 to 1:640, which persisted up to 15 months. No signs of disease were observed, including after intracerebral injections. The lack of detectable disease and limited histopathologic lesions in these animals contrast dramatically with the severe disease and histopathologic findings observed in other laboratory rodents and humans, and support their role as reservoir hosts with a long-term coevolutionary relationship to VEEV. PMID:15890116

  17. Variation of the specificity of the human antibody responses after tick-borne encephalitis virus infection and vaccination.

    PubMed

    Jarmer, Johanna; Zlatkovic, Jürgen; Tsouchnikas, Georgios; Vratskikh, Oksana; Strauß, Judith; Aberle, Judith H; Chmelik, Vaclav; Kundi, Michael; Stiasny, Karin; Heinz, Franz X

    2014-12-01

    Tick-borne encephalitis (TBE) virus is an important human-pathogenic flavivirus endemic in large parts of Europe and Central and Eastern Asia. Neutralizing antibodies specific for the viral envelope protein E are believed to mediate long-lasting protection after natural infection and vaccination. To study the specificity and individual variation of human antibody responses, we developed immunoassays with recombinant antigens representing viral surface protein domains and domain combinations. These allowed us to dissect and quantify antibody populations of different fine specificities in sera of TBE patients and vaccinees. Postinfection and postvaccination sera both displayed strong individual variation of antibody titers as well as the relative proportions of antibodies to different domains of E, indicating that the immunodominance patterns observed were strongly influenced by individual-specific factors. The contributions of these antibody populations to virus neutralization were quantified by serum depletion analyses and revealed a significantly biased pattern. Antibodies to domain III, in contrast to what was found in mouse immunization studies with TBE and other flaviviruses, did not play any role in the human neutralizing antibody response, which was dominated by antibodies to domains I and II. Importantly, most of the neutralizing activity could be depleted from sera by a dimeric soluble form of the E protein, which is the building block of the icosahedral herringbone-like shell of flaviviruses, suggesting that antibodies to more complex quaternary epitopes involving residues from adjacent dimers play only a minor role in the total response to natural infection and vaccination in humans. Tick-borne encephalitis (TBE) virus is a close relative of yellow fever, dengue, Japanese encephalitis, and West Nile viruses and distributed in large parts of Europe and Central and Eastern Asia. Antibodies to the viral envelope protein E prevent viral attachment and entry

  18. Animal models of highly pathogenic RNA viral infections: encephalitis viruses.

    PubMed

    Holbrook, Michael R; Gowen, Brian B

    2008-04-01

    The highly pathogenic RNA viruses that cause encephalitis include a significant number of emerging or re-emerging viruses that are also considered potential bioweapons. Many of these viruses, including members of the family Flaviviridae, the genus Alphavirus in the family Togaviridae, and the genus Henipavirus in the family Paramyxoviridae, circulate widely in their endemic areas, where they are transmitted by mosquitoes or ticks. They use a variety of vertebrate hosts, ranging from birds to bats, in their natural life cycle. As was discovered in the United States, the introduction of a mosquito-borne encephalitis virus such as West Nile virus can cause significant health and societal concerns. There are no effective therapeutics for treating diseases caused by any of these viruses and there is limited, if any, vaccine availability for most. In this review we provide a brief summary of the current status of animal models used to study highly pathogenic encephalitic RNA viruses for the development of antiviral therapeutics and vaccines.

  19. Unrecognized Subclinical Infection with Tickborne Encephalitis Virus, Japan

    PubMed Central

    Yoshii, Kentaro; Kojima, Reiji

    2017-01-01

    During early 2017, we conducted a seroepidemiologic investigation for tickborne encephalitis virus among 291 Japan Self-Defense Forces members in Hokkaido. Two (0.7%) tested positive. Neither had clinically apparent symptoms after removing ticks. PMID:28930025

  20. A Japanese Encephalitis Virus Peptide Present on Johnson Grass Mosaic Virus-Like Particles Induces Virus-Neutralizing Antibodies and Protects Mice against Lethal Challenge

    PubMed Central

    Saini, Manisha; Vrati, Sudhanshu

    2003-01-01

    Protection against Japanese encephalitis virus (JEV) is antibody dependent, and neutralizing antibodies alone are sufficient to impart protection. Thus, we are aiming to develop a peptide-based vaccine against JEV by identifying JEV peptide sequences that could induce virus-neutralizing antibodies. Previously, we have synthesized large amounts of Johnson grass mosaic virus (JGMV) coat protein (CP) in Escherichia coli and have shown that it autoassembled to form virus-like particles (VLPs). The envelope (E) protein of JEV contains the virus-neutralization epitopes. Four peptides from different locations within JEV E protein were chosen, and these were fused to JGMV CP by recombinant DNA methods. The fusion protein autoassembled to form VLPs that could be purified by sucrose gradient centrifugation. Immunization of mice with the recombinant VLPs containing JEV peptide sequences induced anti-peptide and anti-JEV antibodies. A 27-amino-acid peptide containing amino acids 373 to 399 from JEV E protein, present on JGMV VLPs, induced virus-neutralizing antibodies. Importantly, these antibodies were obtained without the use of an adjuvant. The immunized mice showed significant protection against a lethal JEV challenge. PMID:12610124

  1. Manipulation of host factors optimizes the pathogenesis of western equine encephalitis virus infections in mice for antiviral drug development.

    PubMed

    Blakely, Pennelope K; Delekta, Phillip C; Miller, David J; Irani, David N

    2015-02-01

    While alphaviruses spread naturally via mosquito vectors, some can also be transmitted as aerosols making them potential bioterrorism agents. One such pathogen, western equine encephalitis virus (WEEV), causes fatal human encephalitis via multiple routes of infection and thus presumably via multiple mechanisms. Although WEEV also produces acute encephalitis in non-human primates, a small animal model that recapitulates features of human disease would be useful for both pathogenesis studies and to evaluate candidate antiviral therapies. We have optimized conditions to infect mice with a low passage isolate of WEEV, thereby allowing detailed investigation of virus tropism, replication, neuroinvasion, and neurovirulence. We find that host factors strongly influence disease outcome, and in particular, that age, gender, and genetic background all have significant effects on disease susceptibility independent of virus tropism or replication within the central nervous system. Our data show that experimental variables can be adjusted in mice to recapitulate disease features known to occur in both non-human primates and humans, thus aiding further study of WEEV pathogenesis and providing a realistic therapeutic window for antiviral drug delivery.

  2. Manipulation of host factors optimizes the pathogenesis of western equine encephalitis virus infections in mice for antiviral drug development

    PubMed Central

    Blakely, Pennelope K.; Delekta, Phillip C.; Miller, David J.; Irani, David N.

    2014-01-01

    While alphaviruses spread naturally via mosquito vectors, some can also be transmitted as aerosols making them potential bioterrorism agents. One such pathogen, western equine encephalitis virus (WEEV), causes fatal human encephalitis via multiple routes of infection and thus presumably via multiple mechanisms. Although WEEV also produces acute encephalitis in non-human primates, a small animal model that recapitulates features of human disease would be useful for both pathogenesis studies and to evaluate candidate antiviral therapies. We have optimized conditions to infect mice with a low passage isolate of WEEV, thereby allowing detailed investigation of virus tropism, replication, neuroinvasion, and neurovirulence. We find that host factors strongly influence disease outcome, and in particular that age, gender and genetic background all have significant effects on disease susceptibility independent of virus tropism or replication within the central nervous system. Our data show that experimental variables can be adjusted in mice to recapitulate disease features known to occur in both non-human primates and humans, thus aiding further study of WEEV pathogenesis and providing a realistic therapeutic window for antiviral drug delivery. PMID:25361697

  3. West Nile Virus Encephalitis: The First Human Case Recorded in Brazil

    PubMed Central

    Vieira, Marcelo A. C. S.; Romano, Alessandro P. M.; Borba, Amaríles S.; Silva, Eliana V. P.; Chiang, Jannifer O.; Eulálio, Kelsen D.; Azevedo, Raimunda S. S.; Rodrigues, Sueli G.; Almeida-Neto, Walfrido S.; Vasconcelos, Pedro F. C.

    2015-01-01

    A Brazilian ranch worker with encephalitis and flaccid paralysis was evaluated in the regional Acute Encephalitis Syndromic Surveillance Program. This was the first Brazilian patient who met the Centers for Disease Control and Prevention (CDC) confirmation criteria for West Nile virus disease. Owing to the overlapping of neurological manifestations attributable to several viral infections of the central nervous system, this report exemplifies the importance of human acute encephalitis surveillance. The syndromic approach to human encephalitis cases may enable early detection of the introduction of unusual virus or endemic occurrence of potentially alarming diseases within a region. PMID:26055749

  4. Absent anti-N-methyl-D-aspartate receptor NR1a antibodies in herpes simplex virus encephalitis and varicella zoster virus infections.

    PubMed

    Berger, Benjamin; Pytlik, Maximilian; Hottenrott, Tilman; Stich, Oliver

    2017-02-01

    A 2012 report and subsequent case series described anti-N-methyl-D-aspartate receptor (NMDAR) antibodies in patients during the acute phase and relapse of herpes simplex virus 1 (HSV1) encephalitis (HSV1E). However, the prevalence of this phenomenon is unknown and systematic studies on other viral infections of the nervous system are missing. We retrospectively analyzed serial cerebrospinal fluid (CSF) and serum samples of consecutive patients treated for neurological HSV1, HSV2 and varicella zoster virus (VZV) infections in our tertiary care university hospital between 2003 and 2013 for the presence of antibodies directed against the NR1a subunit of the NMDAR using indirect immunofluorescence. In total, 88 patients with the following infections were identified through an electronic database search: HSV1 (24 with encephalitis), HSV2 (6 with meningitis, 3 with encephalitis and 1 with myelitis), or VZV (3 with meningitis, 33 with encephalitis, 17 with radiculitis and 1 with myelitis). Two patients with HSV1E and HSV2E, respectively, experienced a clinical relapse. Clinical follow-up was for up to 85 months, and repetitive serum and CSF analyses for up to 43 months. However, at no time did any of the 88 patients exhibit anti-NMDAR NR1a antibodies. In this study, we did not detect anti-NMDAR NR1a antibodies in serial CSF and serum samples of HSV1E patients or patients with other viral infections (HSV2 and VZV). However, the presence of antibodies directed against other epitopes of the NMDAR and other neuronal cell surface antigens cannot be excluded, necessitating further studies.

  5. Characterization of tick-borne encephalitis virus from Latvia.

    PubMed

    Mavtchoutko, V; Vene, S; Haglund, M; Forsgren, M; Duks, A; Kalnina, V; Hörling, J; Lundkvist, A

    2000-02-01

    Viruses of the tick-borne encephalitis (TBE) antigenic complex, within the family Flaviviridae, cause a variety of diseases including uncomplicated febrile illness, encephalitis, meningo-encephalitis, hemorrhagic fever and chronic disease in humans, domesticated animals or wildlife species. TBE is a serious problem in Latvia with up to a 1,000 patients confirmed serologically annually 1994-1995. No previous data had been reported on the causative agent of TBE in Latvia. In the present study, a virus was isolated from serum of a patient with clinical symptoms of an acute TBE infection. Nucleotide sequence information obtained by direct reverse transcription-polymerase chain reaction (RT-PCR) and the serological characteristics of the isolated virus strain, designated TBE-Latvia-1-96, indicated a closer relationship to the Vasilchenko strain, isolated in Novosibirsk (Siberia, Russia), as compared to the western European or far eastern subtypes of TBE viruses. In a mouse neurovirulence assay, a significant difference in survival rates (days) was shown between Latvia-1-96 and the western European TBE virus subtype. Copyright 2000 Wiley-Liss, Inc.

  6. THE PATHOGENESIS OF HERPES VIRUS ENCEPHALITIS

    PubMed Central

    Johnson, Richard T.

    1964-01-01

    The pathogenesis of herpes simplex virus encephalitis and myelitis was studied in suckling mice using routine titration procedures and fluorescent antibody staining for the identification of infected cells. After intracerebral inoculation virus was shown to disperse rapidly in the cerebrospinal fluid (CSF), multiply in meninges and ependyma, and then invade the underlying parenchyma infecting both neurons and glia. Following extraneural inoculation virus gained access to the central nervous system (CNS) by both hematogenous and neural pathways. After intraperitoneal and intranasal inoculation virus was found to multiply in viscera and produce viremia; foci of CNS infection then developed around small cerebral vessels. After subcutaneous and intranasal inoculation neural spread of virus was demonstrated along corresponding peripheral and cranial nerves. This spread resulted from the centripetal infection of endoneural cells (Schwann cells and fibroblasts). Antigen was not found in axons even after infection of the corresponding ganglion cell perikaryon. Subsequent spread within the CNS was unrelated to neural tracts, and there was no evidence of axonal spread of virus in the host-virus system studied. These findings are discussed in relation to previous and current theories of the viral "blood-brain barrier" and neural pathways of infection. PMID:14164487

  7. An in vitro recombination-based reverse genetic system for rapid mutagenesis of structural genes of the Japanese encephalitis virus.

    PubMed

    Du, Ruikun; Wang, Manli; Hu, Zhihong; Wang, Hualin; Deng, Fei

    2015-10-01

    Japanese encephalitis virus (JEV) is one of the most common pathogens of severe viral encephalitis, which is a severe threat to human health. Despite instability of the JEV genome in bacteria, many strategies have been developed to establish molecular clone systems of JEV, providing convenient tools for studying the virus life cycle and virus-host interactions. In this study, we adapted an In-Fusion enzyme-based in vitro recombination method to construct a reverse genetic system of JEV, thereby providing a rapid approach to introduce mutations into the structural genes. A truncated genome without the structural genes was constructed as the backbone, and the complementary segment containing the structural genes was recombined in vitro, which was then transfected directly into virus-permissive cells. The progeny of the infectious virus was successfully detected in the supernatant of the transfected cells, and showed an identical phenotype to its parental virus. To provide a proof-of-principle, the 12 conserved cysteine residues in the envelope (E) protein of JEV were respectively mutated using this approach, and all mutations resulted in a complete failure to generate infectious virus. However, a leucine-tophenylanine mutation at amino acid 107 of the E protein did not interfere with the production of the infectious virus. These results suggested that all 12 cysteines in the E protein are essential for the JEV life cycle. In summary, a novel reverse genetic system of JEV was established for rapidly introducing mutations into structural genes, which will serve as a useful tool for functional studies.

  8. Emerging Causes of Arbovirus Encephalitis in North America: Powassan, Chikungunya, and Zika Viruses.

    PubMed

    Doughty, Christopher T; Yawetz, Sigal; Lyons, Jennifer

    2017-02-01

    Arboviruses are arthropod-borne viruses transmitted by the bite of mosquitoes, ticks, or other arthropods. Arboviruses are a common and an increasing cause of human illness in North America. Powassan virus, Chikungunya virus, and Zika virus are arboviruses that have all recently emerged as increasing causes of neurologic illness. Powassan virus almost exclusively causes encephalitis, but cases are rare, sporadic, and restricted to portions of North America and Russia. Chikungunya virus has spread widely across the world, causing millions of infections. Encephalitis is a rare manifestation of illness but is more common and severe in neonates and older adults. Zika virus has recently spread through much of the Americas and has been associated mostly with microcephaly and other congenital neurologic complications. Encephalitis occurring in infected adults has also been recently reported. This review will discuss the neuropathogenesis of these viruses, their transmission and geographic distribution, the spectrum of their neurologic manifestations, and the appropriate method of diagnosis.

  9. Detection of Japanese encephalitis virus genotype V in Culex orientalis and Culex pipiens (Diptera: Culicidae) in Korea.

    PubMed

    Kim, Hyunwoo; Cha, Go-Woon; Jeong, Young Eui; Lee, Wook-Gyo; Chang, Kyu Sik; Roh, Jong Yul; Yang, Sung Chan; Park, Mi Yeoun; Park, Chan; Shin, E-Hyun

    2015-01-01

    Japanese encephalitis virus (JEV) causes significant viral encephalitis and is distributed throughout the Asian countries. The virus is known to be transmitted by Culex tritaeniorhynchus, which mainly breeds in rice paddies in Korea. In this study, we investigated the presence of other mosquito species that can transmit JEV as a second or regional vector. We selected five cities where patients have experienced JE in the last 5 years as mosquito-collecting locations and subdivided them into four collection sites according to the mosquito habitats (cowshed, downtown area, forest, and swamp). Mosquitoes were caught using the BG-Sentinel trap, CDC black-light trap, Fay-Prince trap, and Gravid trap. A total of 993 pools from 22,774 mosquitoes were prepared according to their species, collection date, and site. We performed a SYBR Green 1-based real-time RT-PCR assay to detect JEV from the mosquito pools. A total of six JEV-positive pools were detected from Culex orientalis and Culex pipiens caught in the Gangwon-do and Gyeonngi-do provinces. All the detected JEVs were revealed as genotype V by phylogenetic analysis of the envelope gene. Our findings confirm that a new genotype of JEV was introduced in Korea and suggest that two mosquito species may play a role in JEV transmission.

  10. A Cluster of Fatal Tick-borne Encephalitis Virus Infection in Organ Transplant Setting.

    PubMed

    Lipowski, Dariusz; Popiel, Marta; Perlejewski, Karol; Nakamura, Shota; Bukowska-Osko, Iwona; Rzadkiewicz, Ewa; Dzieciatkowski, Tomasz; Milecka, Anna; Wenski, Wojciech; Ciszek, Michal; Debska-Slizien, Alicja; Ignacak, Ewa; Cortes, Kamila Caraballo; Pawelczyk, Agnieszka; Horban, Andrzej; Radkowski, Marek; Laskus, Tomasz

    2017-03-15

    Tick-borne encephalitis virus (TBEV) infection has become a major health problem in Europe and is currently a common cause of viral brain infection in many countries. Encephalitis in transplant recipients, althrough rare, is becoming a recognized complication. Our study provides the first description of transmission of TBEV through transplantation of solid organs. Three patients who received solid organ transplants from a single donor (2 received kidney, and 1 received liver) developed encephalitis 17-49 days after transplantation and subsequently died. Blood and autopsy tissue samples were tested by next-generation sequencing (NGS) and reverse transcription polymerase chain reaction (RT-PCR). All 3 recipients were first analyzed in autopsy brain tissue samples and/or cerebrospinal fluid by NGS, which yielded 24-52 million sequences per sample and 9-988 matched TBEV sequences in each patient. The presence of TBEV was confirmed by RT-PCR in all recipients and in the donor, and direct sequencing of amplification products corroborated the presence of the same viral strain. We demonstrated transmission of TBEV by transplantation of solid organs. In such a setting, TBEV infection may be fatal, probably due to pharmacological immunosuppression. Organ donors should be screened for TBEV when coming from or visiting endemic areas. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  11. Venezuelan equine encephalitis virus infection causes modulation of inflammatory and immune response genes in mouse brain

    PubMed Central

    Sharma, Anuj; Bhattacharya, Bhaskar; Puri, Raj K; Maheshwari, Radha K

    2008-01-01

    Background Neurovirulent Venezuelan equine encephalitis virus (VEEV) causes lethal encephalitis in equines and is transmitted to humans by mosquitoes. VEEV is highly infectious when transmitted by aerosol and has been developed as a bio-warfare agent, making it an important pathogen to study from a military and civilian standpoint. Molecular mechanisms of VEE pathogenesis are poorly understood. To study these, the gene expression profile of VEEV infected mouse brains was investigated. Changes in gene expression were correlated with histological changes in the brain. In addition, a molecular framework of changes in gene expression associated with progression of the disease was studied. Results Our results demonstrate that genes related to important immune pathways such as antigen presentation, inflammation, apoptosis and response to virus (Cxcl10, CxCl11, Ccl5, Ifr7, Ifi27 Oas1b, Fcerg1,Mif, Clusterin and MHC class II) were upregulated as a result of virus infection. The number of over-expressed genes (>1.5-fold level) increased as the disease progressed (from 197, 296, 400, to 1086 at 24, 48, 72 and 96 hours post infection, respectively). Conclusion Identification of differentially expressed genes in brain will help in the understanding of VEEV-induced pathogenesis and selection of biomarkers for diagnosis and targeted therapy of VEEV-induced neurodegeneration. PMID:18558011

  12. [Mono- and mixed infection by the tick-borne encephalitis and Powassan viruses of tissue explants from ticks of the genus Hyalomma].

    PubMed

    Chunikhin, S P; Khozinskaia, G A; Stefutkina, L F; Korolev, M B

    1984-01-01

    The paper presents results of virusological and electron microscope studies of the reproduction of viruses of tick-borne encephalitis and Povassan at mono- and mixed persistent infection of explants of imaginal tissues of Hyalomma anatolicum and H. dromedarii with these viruses. The virus reproduction in explants was observed within 208 to 217 days after the infection. Joint reproduction of two model viruses within 1-2 months after the infection can take place and after that the inhibition of the reproduction of one of the viruses. This inhibition can be of cyclic character.

  13. Postepizootic Persistence of Venezuelan Equine Encephalitis Virus, Venezuela

    PubMed Central

    Navarro, Juan-Carlos; Medina, Gladys; Vasquez, Clovis; Coffey, Lark L.; Wang, Eryu; Suárez, Alexander; Biord, Hernán; Salas, Marlene

    2005-01-01

    Five years after the apparent end of the major 1995 Venezuelan equine encephalitis (VEE) epizootic/epidemic, focal outbreaks of equine encephalitis occurred in Carabobo and Barinas States of western Venezuela. Virus isolates from horses in each location were nearly identical in sequence to 1995 isolates, which suggests natural persistence of subtype IC VEE virus (VEEV) strains in a genetically stable mode. Serologic evidence indicated that additional outbreaks occurred in Barinas State in 2003. Field studies identified known Culex (Melanoconion) spp. vectors and reservoir hosts of enzootic VEEV but a dearth of typical epidemic vectors. Cattle serosurveys indicated the recent circulation of enzootic VEEV strains, and possibly of epizootic strains. Persistence of VEEV subtype IC strains and infection of horses at the end of the rainy season suggest the possibility of an alternative, cryptic transmission cycle involving survival through the dry season of infected vectors or persistently infected vertebrates. PMID:16485478

  14. CSF herpes virus and autoantibody profiles in the evaluation of encephalitis

    PubMed Central

    Linnoila, Jenny J.; Binnicker, Matthew J.; Majed, Masoud; Klein, Christopher J.

    2016-01-01

    Objective: To report the frequency of coexisting herpes viruses (herpes simplex virus 1 [HSV-1] or HSV-2, varicella zoster virus, Epstein-Barr virus [EBV], cytomegalovirus, or human herpes virus 6 [HHV-6]) and autoantibodies in patients with encephalitis (herpes or autoimmune) in clinical laboratory service. Methods: Three groups were evaluated for herpes viruses and antibodies: group 1—patients whose CSF was positive for a herpes virus by real-time PCR over a period of 6 months; group 2—patients whose CSF was positive for an autoimmune encephalitis–associated antibody over 5 years (e.g., NMDA receptor [NMDA-R] antibody), and the same number of controls without autoimmune/infectious disease; and group 3—incidental autoimmune parainfectious encephalitis cases encountered over 1 year. Results: In group 1, antibodies were detected in 27 of 100 herpes PCR-positive CSF specimens (CSFs), either unclassified neural or nonneural in all but one patient with NMDA-R antibody detected after EBV infection. Antibodies were also detected in 3 of 7 CSFs submitted for repeat PCR testing (unclassified, 2; AMPA receptor, 1). In group 2, herpes viruses were detected in 1 of 77 controls (HHV-6) and 4 of 77 patients with autoimmune encephalitis (EBV, 2; HHV-6, 2); autoantibodies targeted NMDA-R in 3/4 and GABAB-R in 1/4. In group 3, NMDA-R antibody was detected in 7 patients post–HSV-1 encephalitis. Of the remaining 3 patients, 2 had unclassified neural antibodies detected, and one had GABAB-R autoimmunity. Concomitant neoplasms were discovered in 2 patients each from groups 2 and 3. Conclusions: Autoantibodies and herpes virus DNA frequently coexist in encephalitic CSF. Some patients develop parainfectious autoimmunity following viral CNS infection (usually HSV-1 encephalitis). The significance of detecting herpes nucleic acids in others remains unclear. PMID:27308306

  15. Overview of Japanese encephalitis disease and its prevention. Focus on IC51 vaccine (IXIARO®)

    PubMed Central

    AMICIZIA, D.; ZANGRILLO, F.; LAI, P.L.; IOVINE, M.; PANATTO, D.

    2018-01-01

    Summary Japanese encephalitis (JE) is a vector-borne disease caused by the Japanese encephalitis virus (JEV). JEV is transmitted by mosquitoes to a wide range of vertebrate hosts, including birds and mammals. Domestic animals, especially pigs, are generally implicated as reservoirs of the virus, while humans are not part of the natural transmission cycle and cannot pass the virus to other hosts. Although JEV infection is very common in endemic areas (many countries in Asia), less than 1% of people affected develop clinical disease, and severe disease affects about 1 case per 250 JEV infections. Although rare, severe disease can be devastating; among the 30,000-50,000 global cases per year, approximately 20-30% of patients die and 30-50% of survivors develop significant neurological sequelae. JE is a significant public health problem for residents in endemic areas and may constitute a substantial risk for travelers to these areas. The epidemiology of JE and its risk to travelers have changed, and continue to evolve. The rapid economic growth of Asian countries has led to a surge in both inbound and outbound travel, making Asia the second most-visited region in the world after Europe, with 279 million international travelers in 2015. The top destination is China, followed by Thailand, Hong Kong, Malaysia and Japan, and the number of travelers is forecast to reach 535 million by 2030 (+ 4.9% per year). Because of the lack of treatment and the infeasibility of eliminating the vector, vaccination is recognized as the most efficacious means of preventing JE. The IC51 vaccine (IXIARO®) is a purified, inactivated, whole virus vaccine against JE. It is safe, well tolerated, efficacious and can be administered to children, adults and the elderly. The vaccination schedule involves administering 2 doses four weeks apart. For adults, a rapid schedule (0-7 days) is available, which could greatly enhance the feasibility of its use. Healthcare workers should inform both short

  16. Prevalence of Neutralizing Antibodies to Japanese Encephalitis Virus among High-Risk Age Groups in South Korea, 2010

    PubMed Central

    Ju, Young Ran; Han, Myung Guk; Lee, Won-Ja; Jeong, Young Eui

    2016-01-01

    After an extensive vaccination policy, Japanese encephalitis (JE) was nearly eliminated since the mid-1980s in South Korea. Vaccination in children shifted the affected age of JE patients from children to adults. However, an abrupt increase in JE cases occurred in 2010, and this trend has continued. The present study aimed to investigate the prevalence of neutralizing antibodies to the JE virus (JEV) among high-risk age groups (≥40 years) in South Korea. A plaque reduction neutralization test was conducted to evaluate the prevalence of neutralizing antibodies to JEV in 945 subjects within four age groups (30–39, 40–49, 50–59, and 60–69 years) in 10 provinces. Of the 945 enrolled subjects, 927 (98.1%) exhibited antibodies against JEV. No significant differences were found in the prevalence of neutralizing antibodies according to sex, age, or occupation. However, there were significant differences in the plaque reduction rate according to age and occupation; oldest age group had a higher reduction rate, and subjects who were employed in agriculture or forestry also had a higher value than the other occupations. We also found that three provinces (Gangwon, Jeonnam, and Gyeongnam) had a relatively lower plaque reduction rate than the other locations. In addition, enzyme-linked immunosorbent assays were conducted to determine recent viral infections and 12 (2.2%) subjects were found to have been recently infected by the virus. In conclusion, the present study clearly indicated that the prevalence of neutralizing antibodies has been maintained at very high levels among adult age groups owing to vaccination or natural infections, or both. In the future, serosurveillance should be conducted periodically using more representative samples to better understand the population-level immunity to JE in South Korea. PMID:26807709

  17. Crystal structure of full-length Zika virus NS5 protein reveals a conformation similar to Japanese encephalitis virus NS5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Upadhyay, Anup K.; Cyr, Matthew; Longenecker, Kenton

    The rapid spread of the recentZika virus(ZIKV) epidemic across various countries in the American continent poses a major health hazard for the unborn fetuses of pregnant women. To date, there is no effective medical intervention. The nonstructural protein 5 ofZika virus(ZIKV-NS5) is critical for ZIKV replication through the 5'-RNA capping and RNA polymerase activities present in its N-terminal methyltransferase (MTase) and C-terminal RNA-dependent RNA polymerase (RdRp) domains, respectively. The crystal structure of the full-length ZIKV-NS5 protein has been determined at 3.05 Å resolution from a crystal belonging to space groupP2 12 12 and containing two protein molecules in the asymmetricmore » unit. The structure is similar to that reported for the NS5 protein fromJapanese encephalitis virusand suggests opportunities for structure-based drug design targeting either its MTase or RdRp domain.« less

  18. Transient widespread cortical and splenial lesions in acute encephalitis/encephalopathy associated with primary Epstein-Barr virus infection.

    PubMed

    Zhang, Shuo; Feng, Juan; Shi, Yifang

    2016-01-01

    Infection with Epstein-Barr virus (EBV) is very common and usually occurs in childhood or early adulthood. Encephalitis/encephalopathy is an uncommon but serious neurological complication of EBV. A case of EBV-associated encephalitis/encephalopathy with involvement of reversible widespread cortical and splenial lesions is presented herein. An 8-year-old Chinese girl who presented with fever and headache, followed by seizures and drowsiness, was admitted to the hospital. Magnetic resonance imaging revealed high signal intensities on diffusion-weighted imaging in widespread cortical and splenial lesions. The clinical and laboratory examination results together with the unusual radiology findings suggested acute encephalitis/encephalopathy due to primary EBV infection. After methylprednisolone pulse therapy together with ganciclovir, the patient made a full recovery without any brain lesions. The hallmark clinical-radiological features of this patient included severe encephalitis/encephalopathy at onset, the prompt and complete recovery, and rapidly reversible widespread involvement of the cortex and splenium. Patients with EBV encephalitis/encephalopathy who have multiple lesions, even with the widespread involvement of cortex and splenium of the corpus callosum, may have a favorable outcome with complete disappearance of all brain lesions. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. The Role of IKKβ in Venezuelan Equine Encephalitis Virus Infection

    PubMed Central

    Amaya, Moushimi; Voss, Kelsey; Sampey, Gavin; Senina, Svetlana; de la Fuente, Cynthia; Mueller, Claudius; Calvert, Valerie; Kehn-Hall, Kylene; Carpenter, Calvin; Kashanchi, Fatah; Bailey, Charles; Mogelsvang, Soren; Petricoin, Emanuel; Narayanan, Aarthi

    2014-01-01

    Venezuelan equine encephalitis virus (VEEV) belongs to the genus Alphavirus, family Togaviridae. VEEV infection is characterized by extensive inflammation and studies from other laboratories implicated an involvement of the NF-κB cascade in the in vivo pathology. Initial studies indicated that at early time points of VEEV infection, the NF-κB complex was activated in cells infected with the TC-83 strain of VEEV. One upstream kinase that contributes to the phosphorylation of p65 is the IKKβ component of the IKK complex. Our previous studies with Rift valley fever virus, which exhibited early activation of the NF-κB cascade in infected cells, had indicated that the IKKβ component underwent macromolecular reorganization to form a novel low molecular weight form unique to infected cells. This prompted us to investigate if the IKK complex undergoes a comparable macromolecular reorganization in VEEV infection. Size-fractionated VEEV infected cell extracts indicated a macromolecular reorganization of IKKβ in VEEV infected cells that resulted in formation of lower molecular weight complexes. Well-documented inhibitors of IKKβ function, BAY-11-7082, BAY-11-7085 and IKK2 compound IV, were employed to determine whether IKKβ function was required for the production of infectious progeny virus. A decrease in infectious viral particles and viral RNA copies was observed with inhibitor treatment in the attenuated and virulent strains of VEEV infection. In order to further validate the requirement of IKKβ for VEEV replication, we over-expressed IKKβ in cells and observed an increase in viral titers. In contrast, studies carried out using IKKβ−/− cells demonstrated a decrease in VEEV replication. In vivo studies demonstrated that inhibitor treatment of TC-83 infected mice increased their survival. Finally, proteomics studies have revealed that IKKβ may interact with the viral protein nsP3. In conclusion, our studies have revealed that the host IKKβ protein may be

  20. ST. LOUIS ENCEPHALITIS

    PubMed Central

    Smith, Margaret G.; Blattner, Russell J.; Heys, Florence M.

    1947-01-01

    Transmission of the virus of St. Louis encephalitis to normal chickens by the bite of infected mites (Dermanyssus gallinae) has been demonstrated. Both experimentally infected and naturally infected mites were shown to be capable of transferring the virus of St. Louis encephalitis to chickens by bite. Virus is present in the blood of such chickens in small amounts, so that demonstration of viremia was possible only by utilizing chorioallantoic passage in hens' eggs. However, there is sufficient virus present in the blood for uninfected chicken mites to acquire the virus by feeding on chickens in which viremia has resulted from previous bite of infected mites. Thus it has been shown that the arachnid vector Dermanyssus gallinae is capable of transmitting the virus of St. Louis encephalitis to normal chickens by bite and that such chickens can serve as a source of virus for uninfected mites. PMID:19871673

  1. Effect of cytokine-encoding plasmid delivery on immune response to Japanese encephalitis virus DNA vaccine in mice.

    PubMed

    Bharati, Kaushik; Appaiahgari, Mohan Babu; Vrati, Sudhanshu

    2005-01-01

    We have previously shown that immunization of mice with plasmid pMEa synthesizing Japanese encephalitis virus (JEV) envelope protein induced anti-JEV humoral and cellular immune responses. We now show that intra-muscular co-administration of mice with pMEa and pGM-CSF, encoding murine granulocyte-macrophage colony-stimulating factor or pIL-2, encoding murine interleukin-2 given 4 days after pMEa, augmented anti-JEV antibody titers. This did not enhance the level of protection in immunized mice against JEV. However, intra-dermal co-administration of pMEa and pGM-CSF in mice using the gene gun, enhanced anti-JEV antibody titers resulting in an increased level of protection in mice against lethal JEV challenge.

  2. Structure of a Venezuelan equine encephalitis virus assembly intermediate isolated from infected cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamb, Kristen; Lokesh, G.L.; Sherman, Michael

    2010-10-25

    Venezuelan equine encephalitis virus (VEEV) is a prototypical enveloped ssRNA virus of the family Togaviridae. To better understand alphavirus assembly, we analyzed newly formed nucleocapsid particles (termed pre-viral nucleocapsids) isolated from infected cells. These particles were intermediates along the virus assembly pathway, and ultimately bind membrane-associated viral glycoproteins to bud as mature infectious virus. Purified pre-viral nucleocapsids were spherical with a unimodal diameter distribution. The structure of one class of pre-viral nucleocapsids was determined with single particle reconstruction of cryo-electron microscopy images. These studies showed that pre-viral nucleocapsids assembled into an icosahedral structure with a capsid stoichiometry similar to themore » mature nucleocapsid. However, the individual capsomers were organized significantly differently within the pre-viral and mature nucleocapsids. The pre-viral nucleocapsid structure implies that nucleocapsids are highly plastic and undergo glycoprotein and/or lipid-driven rearrangements during virus self-assembly. This mechanism of self-assembly may be general for other enveloped viruses.« less

  3. Can Herpes Simplex Virus Encephalitis Cause Aphasia?

    ERIC Educational Resources Information Center

    Naude, H.; Pretorius, E.

    2003-01-01

    Aphasia implies the loss or impairment of language caused by brain damage. The key to understanding the nature of aphasic symptoms is the neuro-anatomical site of brain damage, and not the causative agent. However, because "Herpes simplex" virus (HSV) encephalitis infection usually affects the frontal and temporal lobes, subcortical…

  4. Tick-borne encephalitis.

    PubMed

    Gritsun, T S; Lashkevich, V A; Gould, E A

    2003-01-01

    Tick-borne encephalitis (TBE) is one of the most dangerous human infections occurring in Europe and many parts of Asia. The etiological agent Tick-borne encephalitis virus (TBEV), is a member of the virus genus Flavivirus, of the family Flaviviridae. TBEV is believed to cause at least 11,000 human cases of encephalitis in Russia and about 3000 cases in the rest of Europe annually. Related viruses within the same group, Louping ill virus (LIV), Langat virus (LGTV) and Powassan virus (POWV), also cause human encephalitis but rarely on an epidemic scale. Three other viruses within the same group, Omsk hemorrhagic fever virus (OHFV), Kyasanur Forest disease virus (KFDV) and Alkhurma virus (ALKV), are closely related to the TBEV complex viruses and tend to cause fatal hemorrhagic fevers rather than encephalitis. This review describes the clinical manifestations associated with TBEV infections, the main molecular-biological properties of these viruses, and the different factors that define the incidence and severity of disease. The role of ticks and their local hosts in the emergence of new virus variants with different pathogenic characteristics is also discussed. This review also contains a brief history of vaccination against TBE including trials with live attenuated vaccine and modern tendencies in developing of vaccine virus strains.

  5. West Nile virus infection.

    PubMed

    Guharoy, Roy; Gilroy, Shelley A; Noviasky, John A; Ference, Jonathan

    2004-06-15

    The epidemiology, virology, and transmission of West Nile virus (WNV) are reviewed, and the clinical features, diagnosis, and treatment of WNV infection are examined. WNV infection is caused by a flavivirus transmitted from birds to humans through the bite of culicine mosquitoes. WNV was discovered in the blood of a febrile woman from Uganda's West Nile province in 1937. The first case of domestically acquired WNV infection was reported in the United States in 1999 in New York. Since then, WNV infection has spread rapidly across the United States, with 9306 confirmed cases and 210 deaths reported from 45 states in 2003. It is still not clear how WNV was introduced into North America. WNV is a small, single-stranded RNA virus and a member of the Japanese encephalitis virus antigenic complex. While most humans infected with WNV are asymptomatic, some may develop an influenza-like illness. Disease surveillance remains the cornerstone for the early recognition and control of WNV. We describe one case of WNV infection with an update on the disease. Strategies for the prevention and control of this infection are reviewed. There is no established treatment for WNV infection. Currently, prevention and control are the only measures that help decrease the morbidity and mortality associated with WNV infection. As the number of cases escalates and the geographic distribution of WNV infection widens, the epidemic will continue to pose a major challenge to clinicians in the coming years. There is an urgent need for more research on the pathogenesis and treatment of WNV infection.

  6. Analysis of ChimeriVax Japanese Encephalitis Virus envelope for T-cell epitopes and comparison to circulating strain sequences.

    PubMed

    De Groot, Anne S; Martin, William; Moise, Leonard; Guirakhoo, Farshad; Monath, Thomas

    2007-11-19

    T-cell epitope variability is associated with viral immune escape and may influence the outcome of vaccination against the highly variable Japanese Encephalitis Virus (JEV). We computationally analyzed the ChimeriVax-JEV vaccine envelope sequence for T helper epitopes that are conserved in 12 circulating JEV strains and discovered 75% conservation among putative epitopes. Among non-identical epitopes, only minor amino acid changes that would not significantly affect HLA-binding were present. Therefore, in most cases, circulating strain epitopes could be restricted by the same HLA and are likely to stimulate a cross-reactive T-cell response. Based on this analysis, we predict no significant abrogation of ChimeriVax-JEV-conferred protection against circulating JEV strains.

  7. Structure of the recombinant alphavirus Western equine encephalitis virus revealed by cryoelectron microscopy.

    PubMed

    Sherman, Michael B; Weaver, Scott C

    2010-10-01

    Western equine encephalitis virus (WEEV; Togaviridae, Alphavirus) is an enveloped RNA virus that is typically transmitted to vertebrate hosts by infected mosquitoes. WEEV is an important cause of viral encephalitis in humans and horses in the Americas, and infection results in a range of disease, from mild flu-like illnesses to encephalitis, coma, and death. In addition to spreading via mosquito vectors, human WEEV infections can potentially occur directly via aerosol transmission. Due to its aerosol infectivity and virulence, WEEV is thus classified as a biological safety level 3 (BSL-3) agent. Because of its highly infectious nature and containment requirements, it has not been possible to investigate WEEV's structure or assembly mechanism using standard structural biology techniques. Thus, to image WEEV and other BSL-3 agents, we have constructed a first-of-its-kind BSL-3 cryoelectron microscopy (cryoEM) containment facility. cryoEM images of WEEV were used to determine the first three-dimensional structure of this important human pathogen. The overall organization of WEEV is similar to those of other alphaviruses, consistent with the high sequence similarity among alphavirus structural proteins. Surprisingly, the nucleocapsid of WEEV, a New World virus, is more similar to the Old World alphavirus Sindbis virus than to other New World alphaviruses.

  8. Tick-borne encephalitis virus and the immune response of the mammalian host.

    PubMed

    Dörrbecker, Bastian; Dobler, Gerhard; Spiegel, Martin; Hufert, Frank T

    2010-07-01

    Tick-borne encephalitis (TBE) is caused by Tick-borne encephalitis virus (TBEV), one of the most prevalent arboviruses in Europe and in many parts of Asia. Transmission of TBEV to humans usually occurs by bite of an infected tick or rarely by ingestion of unpasteurized milk products of infected livestock. TBEV infection induces an innate and adaptive immune response, nevertheless it is able to replicate in several cell types of the immune system at the same time which probably contributes to the spread of the virus in the human host. Furthermore, TBEV can enter the central nervous system (CNS) by yet not well understood mechanisms via the blood brain barrier (BBB) or the olfactory neurons which leads to serious neurological disorders like meningitis, encephalitis or even meningoencephalitis. In this article we review the known facts and possible hypotheses of interaction of TBEV with components of the mammalian immune system and their implications for TBEV-mediated pathogenesis. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Herpes Simplex Virus-1 Encephalitis in Adults: Pathophysiology, Diagnosis, and Management.

    PubMed

    Bradshaw, Michael J; Venkatesan, Arun

    2016-07-01

    Herpetic infections have plagued humanity for thousands of years, but only recently have advances in antiviral medications and supportive treatments equipped physicians to combat the most severe manifestations of disease. Prompt recognition and treatment can be life-saving in the care of patients with herpes simplex-1 virus encephalitis, the most commonly identified cause of sporadic encephalitis worldwide. Clinicians should be able to recognize the clinical signs and symptoms of the infection and familiarize themselves with a rational diagnostic approach and therapeutic modalities, as early recognition and treatment are key to improving outcomes. Clinicians should also be vigilant for the development of acute complications, including cerebral edema and status epilepticus, as well as chronic complications, including the development of autoimmune encephalitis associated with antibodies to the N-methyl-D-aspartate receptor and other neuronal cell surface and synaptic epitopes. Herein, we review the pathophysiology, differential diagnosis, and clinical and radiological features of herpes simplex virus-1 encephalitis in adults, including a discussion of the most common complications and their treatment. While great progress has been made in the treatment of this life-threatening infection, a majority of patients will not return to their previous neurologic baseline, indicating the need for further research efforts aimed at improving the long-term sequelae.

  10. West Nile Virus Encephalitis in a Barbary Macaque (Macaca sylvanus)

    PubMed Central

    Barker, Ian K.; Crawshaw, Graham J.; Bertelsen, Mads F.; Drebot, Michael A.; Andonova, Maya

    2004-01-01

    An aged Barbary ape (Macaca sylvanus) at the Toronto Zoo became infected with naturally acquired West Nile virus (WNV) encephalitis that caused neurologic signs, which, associated with other medical problems, led to euthanasia. The diagnosis was based on immunohistochemical assay of brain lesions, reverse transcriptase–polymerase chain reaction, and virus isolation. PMID:15200866

  11. Dynamic changes in global microRNAome and transcriptome reveal complex miRNA-mRNA regulated host response to Japanese Encephalitis Virus in microglial cells

    PubMed Central

    Kumari, Bharti; Jain, Pratistha; Das, Shaoli; Ghosal, Suman; Hazra, Bibhabasu; Trivedi, Ashish Chandra; Basu, Anirban; Chakrabarti, Jayprokas; Vrati, Sudhanshu; Banerjee, Arup

    2016-01-01

    Microglia cells in the brain play essential role during Japanese Encephalitis Virus (JEV) infection and may lead to change in microRNA (miRNA) and mRNA profile. These changes may together control disease outcome. Using Affymetrix microarray platform, we profiled cellular miRNA and mRNA expression at multiple time points during viral infection in human microglial (CHME3) cells. In silico analysis of microarray data revealed a phased pattern of miRNAs expression, associated with JEV replication and provided unique signatures of infection. Target prediction and pathway enrichment analysis identified anti correlation between differentially expressed miRNA and the gene expression at multiple time point which ultimately affected diverse signaling pathways including Notch signaling pathways in microglia. Activation of Notch pathway during JEV infection was demonstrated in vitro and in vivo. The expression of a subset of miRNAs that target multiple genes in Notch signaling pathways were suppressed and their overexpression could affect JEV induced immune response. Further analysis provided evidence for the possible presence of cellular competing endogenous RNA (ceRNA) associated with innate immune response. Collectively, our data provide a uniquely comprehensive view of the changes in the host miRNAs induced by JEV during cellular infection and identify Notch pathway in modulating microglia mediated inflammation. PMID:26838068

  12. Dynamic changes in global microRNAome and transcriptome reveal complex miRNA-mRNA regulated host response to Japanese Encephalitis Virus in microglial cells.

    PubMed

    Kumari, Bharti; Jain, Pratistha; Das, Shaoli; Ghosal, Suman; Hazra, Bibhabasu; Trivedi, Ashish Chandra; Basu, Anirban; Chakrabarti, Jayprokas; Vrati, Sudhanshu; Banerjee, Arup

    2016-02-03

    Microglia cells in the brain play essential role during Japanese Encephalitis Virus (JEV) infection and may lead to change in microRNA (miRNA) and mRNA profile. These changes may together control disease outcome. Using Affymetrix microarray platform, we profiled cellular miRNA and mRNA expression at multiple time points during viral infection in human microglial (CHME3) cells. In silico analysis of microarray data revealed a phased pattern of miRNAs expression, associated with JEV replication and provided unique signatures of infection. Target prediction and pathway enrichment analysis identified anti correlation between differentially expressed miRNA and the gene expression at multiple time point which ultimately affected diverse signaling pathways including Notch signaling pathways in microglia. Activation of Notch pathway during JEV infection was demonstrated in vitro and in vivo. The expression of a subset of miRNAs that target multiple genes in Notch signaling pathways were suppressed and their overexpression could affect JEV induced immune response. Further analysis provided evidence for the possible presence of cellular competing endogenous RNA (ceRNA) associated with innate immune response. Collectively, our data provide a uniquely comprehensive view of the changes in the host miRNAs induced by JEV during cellular infection and identify Notch pathway in modulating microglia mediated inflammation.

  13. Fatal human eosinophilic meningo-encephalitis caused by CNS co-infection with Halicephalobus gingivalis and West Nile virus.

    PubMed

    Anwar, M A; Gokozan, H N; Ball, M K; Otero, J; McGwire, B S

    2015-10-01

    The saprophytic nematode Halicephalobus is a rare cause of fatal human meningo-encephalitis, and West Nile virus is neurotropic flavivirus implicated in a variety of clinical neurologic syndromes. Here we report a case of rapidly progressive CNS encephalopathy and death. Serologic, immuno-histochemical, histopathologic and nucleic acid studies demonstrate the presence of active Halicephalobus and West Nile virus in the CNS tissue. This is the first reported case of co-infection with these neurotropic pathogens. Copyright © 2015. Published by Elsevier Ireland Ltd.

  14. Properties of the tick-borne encephalitis virus population during persistent infection of ixodid ticks and tick cell lines.

    PubMed

    Belova, Oxana A; Litov, Alexander G; Kholodilov, Ivan S; Kozlovskaya, Liubov I; Bell-Sakyi, Lesley; Romanova, Lidiya Iu; Karganova, Galina G

    2017-10-01

    Tick-borne encephalitis virus (TBEV) is the causative agent of tick-borne encephalitis (TBE), a vector-borne zoonotic neuroinfection. For successful circulation in natural foci the virus has to survive in the vector for a long period of time. Information about the effect of long-term infection of ticks on properties of the viral population is of great importance. In recent years, changes in the eco-epidemiology of TBEV due to changes in distribution of ixodid ticks have been observed. These changes in TBEV-endemic areas could result in a shift of the main tick vector species, which in turn may lead to changes in properties of the virus. In the present study we evaluated the selective pressure on the TBEV population during persistent infection of various species of ticks and tick cell lines. TBEV effectively replicated and formed persistent infection in ticks and tick cell lines of the vector species (Ixodes spp.), potential vectors (Dermacentor spp.) and non-vector ticks (Hyalomma spp.). During TBEV persistence in Ixodes and Dermacentor ticks, properties of the viral population remained virtually unchanged. In contrast, persistent TBEV infection of tick cell lines from both vector and non-vector ticks favoured selection of viral variants with low neuroinvasiveness for laboratory mice and substitutions in the E protein that increased local positive charge of the virion. Thus, selective pressure on viral population may differ in ticks and tick cell lines during persistent infection. Nevertheless, virus variants with properties of the original strain adapted to mouse CNS were not eliminated from the viral population during long-term persistence of TBEV in ticks and tick cell lines. Copyright © 2017 Elsevier GmbH. All rights reserved.

  15. Exposure-based screening for Nipah virus encephalitis, Bangladesh.

    PubMed

    Sazzad, Hossain M S; Luby, Stephen P; Ströher, Ute; Daszak, Peter; Sultana, Sharmin; Afroj, Sayma; Rahman, Mahmudur; Gurley, Emily S

    2015-02-01

    We measured the performance of exposure screening questions to identify Nipah virus encephalitis in hospitalized encephalitis patients during the 2012-13 Nipah virus season in Bangladesh. The sensitivity (93%), specificity (82%), positive predictive value (37%), and negative predictive value (99%) results suggested that screening questions could more quickly identify persons with Nipah virus encephalitis.

  16. Usutu virus: an emerging flavivirus in Europe.

    PubMed

    Ashraf, Usama; Ye, Jing; Ruan, Xindi; Wan, Shengfeng; Zhu, Bibo; Cao, Shengbo

    2015-01-19

    Usutu virus (USUV) is an African mosquito-borne flavivirus belonging to the Japanese encephalitis virus serocomplex. USUV is closely related to Murray Valley encephalitis virus, Japanese encephalitis virus, and West Nile virus. USUV was discovered in South Africa in 1959. In Europe, the first true demonstration of circulation of USUV was reported in Austria in 2001 with a significant die-off of Eurasian blackbirds. In the subsequent years, USUV expanded to neighboring countries, including Italy, Germany, Spain, Hungary, Switzerland, Poland, England, Czech Republic, Greece, and Belgium, where it caused unusual mortality in birds. In 2009, the first two human cases of USUV infection in Europe have been reported in Italy, causing meningoencephalitis in immunocompromised patients. This review describes USUV in terms of its life cycle, USUV surveillance from Africa to Europe, human cases, its cellular tropism and pathogenesis, its genetic relationship with other flaviviruses, genetic diversity among USUV strains, its diagnosis, and a discussion of the potential future threat to Asian countries.

  17. Experimental infection of goats with tick-borne encephalitis virus and the possibilities to prevent virus transmission by raw goat milk.

    PubMed

    Balogh, Zsuzsanna; Egyed, László; Ferenczi, Emőke; Bán, Enikő; Szomor, Katalin N; Takács, Mária; Berencsi, György

    2012-01-01

    The aim of this work was to study the tick-borne encephalitis virus (TBEV) infection of goats and the possibilities to prevent human milk-borne infections either by immunizing animals or the heat treatment of milk. An experiment was conducted with 20 milking goats. Ten goats (half of them immunized) were challenged with live TBEV and 10 were left uninfected. Clinical signs and body temperatures of the animals were recorded and milk samples were collected daily. The presence of viral RNA and infectious virions in milk were detected by RT-PCR and intracerebral inoculation of suckling mice, respectively. Milk samples containing infectious virions were subjected to various heat treatment conditions and retested afterwards to assess the effect on infectivity. The infected goats did not show any clinical signs or fever compared to uninfected ones. Infectious virions were detected for 8-19 days from the milk samples (genome for 3-18 days by PCR) of infected goats. Immunized goats did not shed the virus. After heat treatment of the milk, the inoculated mice survived. Goats shed the virus with their milk without showing any symptoms. Human milk-borne infections can be avoided both by immunizing goats and boiling/pasteurizing infected milk. Copyright © 2011 S. Karger AG, Basel.

  18. Measles-induced encephalitis.

    PubMed

    Fisher, D L; Defres, S; Solomon, T

    2015-03-01

    Encephalitis is the most frequent neurological complication of measles virus infection. This review examines the pathophysiology of measles infection and the presentations, diagnosis and treatment of the four types of measles-induced encephalitis including primary measles encephalitis, acute post-measles encephalitis, measles inclusion body encephalitis and subacute sclerosing panencephalitis. The early symptoms of encephalitis may be non-specific and can be mistakenly attributed to a systemic infection leading to a delay in diagnosis. This review provides a summary of the symptoms that should cause health care workers to suspect measles-induced encephalitis. © The Author 2014. Published by Oxford University Press on behalf of the Association of Physicians. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Surveillance for Western Equine Encephalitis, St. Louis Encephalitis, and West Nile Viruses Using Reverse Transcription Loop-Mediated Isothermal Amplification

    PubMed Central

    Wheeler, Sarah S.; Ball, Cameron S.; Langevin, Stanley A.; Fang, Ying; Coffey, Lark L.; Meagher, Robert J.

    2016-01-01

    Collection of mosquitoes and testing for vector-borne viruses is a key surveillance activity that directly influences the vector control efforts of public health agencies, including determining when and where to apply insecticides. Vector control districts in California routinely monitor for three human pathogenic viruses including West Nile virus (WNV), Western equine encephalitis virus (WEEV), and St. Louis encephalitis virus (SLEV). Reverse transcription quantitative polymerase chain reaction (RT-qPCR) offers highly sensitive and specific detection of these three viruses in a single multiplex reaction, but this technique requires costly, specialized equipment that is generally only available in centralized public health laboratories. We report the use of reverse transcription loop-mediated isothermal amplification (RT-LAMP) to detect WNV, WEEV, and SLEV RNA extracted from pooled mosquito samples collected in California, including novel primer sets for specific detection of WEEV and SLEV, targeting the nonstructural protein 4 (nsP4) gene of WEEV and the 3’ untranslated region (3’-UTR) of SLEV. Our WEEV and SLEV RT-LAMP primers allowed detection of <0.1 PFU/reaction of their respective targets in <30 minutes, and exhibited high specificity without cross reactivity when tested against a panel of alphaviruses and flaviviruses. Furthermore, the SLEV primers do not cross-react with WNV, despite both viruses being closely related members of the Japanese encephalitis virus complex. The SLEV and WEEV primers can also be combined in a single RT-LAMP reaction, with discrimination between amplicons by melt curve analysis. Although RT-qPCR is approximately one order of magnitude more sensitive than RT-LAMP for all three targets, the RT-LAMP technique is less instrumentally intensive than RT-qPCR and provides a more cost-effective method of vector-borne virus surveillance. PMID:26807734

  20. Surveillance for Western equine encephalitis St. Louis encephalitis and West Nile viruses using reverse transcription loop-mediated isothermal amplification

    DOE PAGES

    Meagher, Robert J.; Ball, Cameron Scott; Langevin, Stanley A.; ...

    2016-01-25

    In this study, collection of mosquitoes and testing for vector-borne viruses is a key surveillance activity that directly influences the vector control efforts of public health agencies, including determining when and where to apply insecticides. Vector control districts in California routinely monitor for three human pathogenic viruses including West Nile virus (WNV), Western equine encephalitis virus (WEEV), and St. Louis encephalitis virus (SLEV). Reverse transcription quantitative polymerase chain reaction (RT-qPCR) offers highly sensitive and specific detection of these three viruses in a single multiplex reaction, but this technique requires costly, specialized equipment that is generally only available in centralized publicmore » health laboratories. We report the use of reverse transcription loop-mediated isothermal amplification (RT-LAMP) to detect WNV, WEEV, and SLEV RNA extracted from pooled mosquito samples collected in California, including novel primer sets for specific detection of WEEV and SLEV, targeting the nonstructural protein 4 (nsP4) gene of WEEV and the 3’ untranslated region (3’-UTR) of SLEV. Our WEEV and SLEV RT-LAMP primers allowed detection of <0.1 PFU/reaction of their respective targets in <30 minutes, and exhibited high specificity without cross reactivity when tested against a panel of alphaviruses and flaviviruses. Furthermore, the SLEV primers do not cross-react with WNV, despite both viruses being closely related members of the Japanese encephalitis virus complex. The SLEV and WEEV primers can also be combined in a single RT-LAMP reaction, with discrimination between amplicons by melt curve analysis. Although RT-qPCR is approximately one order of magnitude more sensitive than RT-LAMP for all three targets, the RT-LAMP technique is less instrumentally intensive than RT-qPCR and provides a more cost-effective method of vector-borne virus surveillance.« less

  1. Japanese encephalitis surveillance and immunization--Asia and the Western Pacific, 2012.

    PubMed

    2013-08-23

    Japanese encephalitis (JE) virus is a leading cause of encephalitis in Asia, causing an estimated 67,900 JE cases annually. To control JE, the World Health Organization (WHO) recommends that JE vaccine be incorporated into immunization programs in all areas where JE is a public health problem. For many decades, progress mainly occurred in a small number of high-income Asian countries. Recently, prospects for control have improved with better disease burden awareness as a result of increased JE surveillance and wider availability of safe, effective vaccines. This report summarizes the status of JE surveillance and immunization programs in 2012 in Asia and the Western Pacific. Data were obtained from the WHO/United Nations Children's Fund (UNICEF) Joint Reporting Form (JRF), published literature, meeting reports, and websites. In 2012, 18 (75%) of the 24 countries with areas of JE virus transmission risk conducted at least some JE surveillance, and 11 (46%) had a JE immunization program. Further progress toward JE control requires increased awareness of disease burden at the national and regional levels, availability of WHO-prequalified pediatric JE vaccines, and international support for surveillance and vaccine introduction in countries with limited resources.

  2. Antiviral macrophage responses in flavivirus encephalitis

    PubMed Central

    Ashhurst, Thomas Myles; van Vreden, Caryn; Munoz-Erazo, Luis; Niewold, Paula; Watabe, Kanami; Terry, Rachael L.; Deffrasnes, Celine; Getts, Daniel R.; King, Nicholas Jonathan Cole

    2013-01-01

    Mosquito-borne flaviviruses are a major current and emerging threat, affecting millions of people worldwide. Global climate change, combined with increasing proximity of humans to animals and mosquito vectors by expansion into natural habitats, coupled with the increase in international travel, have resulted in significant spread and concomitant increase in the incidence of infection and severe disease. Although neuroinvasive disease has been well described for some viral infections such as Japanese Encephalitis virus (JEV) and West Nile virus (WNV), others such as dengue virus (DENV) have recently displayed an emerging pattern of neuroinvasive disease, distinct from the previously observed, systemically-induced encephalomyelopathy. In this setting, the immune response is a crucial component of host defence, in preventing viral dissemination and invasion of the central nervous system (CNS). However, subversion of the anti-viral activities of macrophages by flaviviruses can facilitate viral replication and spread, enhancing the intensity of immune responses, leading to severe immune-mediated disease which may be further exacerbated during the subsequent infection with some flaviviruses. Furthermore, in the CNS myeloid cells may be responsible for inducing specific inflammatory changes, which can lead to significant pathological damage during encephalitis. The interaction of virus and cells of the myeloid lineage is complex, and this interaction is likely responsible at least in part, for crucial differences between viral clearance and pathology. Recent studies on the role of myeloid cells in innate immunity and viral control, and the mechanisms of evasion and subversion used by flaviviruses are rapidly advancing our understanding of the immunopathological mechanisms involved in flavivirus encephalitis and will lead to the development of therapeutic strategies previously not considered. PMID:24434318

  3. Recent progress in West Nile virus diagnosis and vaccination

    PubMed Central

    2012-01-01

    West Nile virus (WNV) is a positive-stranded RNA virus belonging to the Flaviviridae family, a large family with 3 main genera (flavivirus, hepacivirus and pestivirus). Among these viruses, there are several globally relevant human pathogens including the mosquito-borne dengue virus (DENV), yellow fever virus (YFV), Japanese encephalitis virus (JEV) and West Nile virus (WNV), as well as tick-borne viruses such as tick-borne encephalitis virus (TBEV). Since the mid-1990s, outbreaks of WN fever and encephalitis have occurred throughout the world and WNV is now endemic in Africa, Asia, Australia, the Middle East, Europe and the Unites States. This review describes the molecular virology, epidemiology, pathogenesis, and highlights recent progress regarding diagnosis and vaccination against WNV infections. PMID:22380523

  4. Tick-borne encephalitis virus infects human brain microvascular endothelial cells without compromising blood-brain barrier integrity.

    PubMed

    Palus, Martin; Vancova, Marie; Sirmarova, Jana; Elsterova, Jana; Perner, Jan; Ruzek, Daniel

    2017-07-01

    Alteration of the blood-brain barrier (BBB) is a hallmark of tick-borne encephalitis (TBE), a life-threating human viral neuroinfection. However, the mechanism of BBB breakdown during TBE, as well as TBE virus (TBEV) entry into the brain is unclear. Here, primary human microvascular endothelial cells (HBMECs) were infected with TBEV to study interactions with the BBB. Although the number of infected cells was relatively low in culture (<5%), the infection was persistent with high TBEV yields (>10 6 pfu/ml). Infection did not induce any significant changes in the expression of key tight junction proteins or upregulate the expression of cell adhesion molecules, and did not alter the highly organized intercellular junctions between HBMECs. In an in vitro BBB model, the virus crossed the BBB via a transcellular pathway without compromising the integrity of the cell monolayer. The results indicate that HBMECs may support TBEV entry into the brain without altering BBB integrity. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Comparing the immunogenicity and safety of 3 Japanese encephalitis vaccines in Asia-Pacific area: A systematic review and meta-analysis.

    PubMed

    Wang, Shi-Yuan; Cheng, Xiao-Hua; Li, Jing-Xin; Li, Xi-Yan; Zhu, Feng-Cai; Liu, Pei

    2015-01-01

    Japanese encephalitis virus (JEV), a leading cause of Japanese encephalitis (JE) in children and adults, is a major public health problem in Asian countries. This study reports a meta-analysis of the immunogenicity and safety of vaccines used to protect infants or children from JE. Three types of JE vaccine were examined, namely, Japanese encephalitis live-attenuated vaccine (JEV-L), Japanese encephalitis inactivated vaccine (Vero cell) (JEV-I(Vero)), and Japanese encephalitis inactivated vaccine (primary hamster kidney cell) (JEV-I(PHK)). These vaccines are used to induce fundamental immunity against JE; however, few studies have compared their immunogenicity and safety in infants and young children less than 2 years of age. Data were obtained by searching 5 databases: Web of Science, PubMed, China National Knowledge Infrastructure, the China Wanfang database, and the Cochrane database. Fifteen articles were identified and scored using the Jadad score for inclusion in the meta-analysis. Random effect models were used to calculate the pooled seroconversion rate and adverse reaction rate when tests for heterogeneity were significant. The results showed that the pooled seroconversion rate for JEV-I(PHK) (62.23%) was lower than that for JEV-I(Vero) (86.49%) and JEV-L (83.52%), and that the pooled adverse reaction rate for JEV-L (18.09%) was higher than that for JEV-I(PHK) (10.08%) and JEV-I(Vero) (12.49%). The pooled relative risk was then calculated to compare the seroconversion and adverse reaction rates. The results showed that JEV-I(Vero) and JEV-L were more suitable than JEV-I(PHK) for inducing fundamental immunity to JE in infants and children less than 2 years of age.

  6. Herpes simplex encephalitis with thalamic, brainstem and cerebellar involvement.

    PubMed

    Garg, Meenal; Kulkarni, Shilpa; Udwadia Hegde, Anaita

    2018-04-01

    Herpes simplex virus encephalitis is a common and treatable cause of acute encephalitis in all age groups. Certain radiological features such as temporal parenchymal involvement facilitate the diagnosis. The use of herpes simplex virus polymerase chain reaction has expanded the clinical and imaging spectrum. We report the case of a young patient who presented with a movement disorder and predominant involvement of thalami, brainstem and cerebellum on magnetic resonance imaging, and was diagnosed with herpes simplex virus encephalitis. Differentiation from Japanese encephalitis may be difficult in these patients, especially in endemic areas, and may necessitate the use of relevant investigations in all patients.

  7. The Antigenic Structure of Zika Virus and Its Relation to Other Flaviviruses: Implications for Infection and Immunoprophylaxis

    PubMed Central

    Stiasny, Karin

    2017-01-01

    SUMMARY Zika virus was discovered ∼70 years ago in Uganda and maintained a low profile as a human disease agent in Africa and Asia. Only recently has it caused explosive outbreaks in previously unaffected regions, first in Oceania and then in the Americas since 2015. Of special concern is the newly identified link between congenital malformations (especially microcephaly) and Zika virus infections during pregnancy. At present, it is unclear whether Zika virus changed its pathogenicity or whether the huge number of infections allowed the recognition of a previously cryptic pathogenic property. The purpose of this review is to discuss recent data on the molecular antigenic structure of Zika virus in the context of antibody-mediated neutralization and antibody-dependent enhancement (ADE) of infection, a phenomenon that has been implicated in the development of severe disease caused by the related dengue viruses. Emphasis is given to epitopes of antibodies that potently neutralize Zika virus and also to epitopes that provide antigenic links to other important human-pathogenic flaviviruses such as dengue, yellow fever, West Nile, Japanese encephalitis, and tick-borne encephalitis viruses. The antigenic cross talk between Zika and dengue viruses appears to be of special importance, since they cocirculate in many regions of endemicity and sequential infections are likely to occur frequently. New insights into the molecular antigenic structure of Zika virus and flaviviruses in general have provided the foundation for great progress made in developing Zika virus vaccines and antibodies for passive immunization. PMID:28179396

  8. Acute encephalitis in the immunocompromised individual.

    PubMed

    Saylor, Deanna; Thakur, Kiran; Venkatesan, Arun

    2015-08-01

    This article describes recent advances in the diagnosis and management of encephalitis in immunocompromised individuals. Herpes simplex virus (HSV) and varicella zoster virus (VZV) are common causes of encephalitis in immunocompromised individuals, although clinical manifestations may be atypical, and thus challenging to recognize. Recently, an increased incidence of HSV and VZV central nervous system infections has been reported in association with novel immunosuppressive and immunomodulatory treatments. The free-living ameba Balamuthia mandrillaris causes granulomatous encephalitis predominantly in immunocompromised individuals and is associated with nearly uniform fatality. In the setting of organ transplantation, the recipient's immunocompromised state along with the potential for donor-transmitted infections can result in a unique epidemiology of encephalitis, including infection by human herpes virus-6 and BK virus. Recent studies utilizing next-generation sequencing techniques have identified several pathogens, including Leptospira santarosai and a neurotropic astrovirus, as causes of encephalitis in immunocompromised individuals. Diagnosis and management of encephalitis is challenging in immunocompromised individuals, in part because of atypical clinical presentations and the presence of uncommon or novel infectious agents. Unbiased techniques for pathogen discovery are likely to play an increasing role in the diagnosis of central nervous system infections in immunocompromised individuals.

  9. Genetic Determinants of Differential Oral Infection Phenotypes of West Nile and St. Louis Encephalitis Viruses in Culex spp. Mosquitoes

    PubMed Central

    Maharaj, Payal D.; Bolling, Bethany G.; Anishchenko, Michael; Reisen, William K.; Brault, Aaron C.

    2014-01-01

    St. Louis encephalitis virus (SLEV) has shown greater susceptibility to oral infectivity than West Nile virus (WNV) in Culex mosquitoes. To identify the viral genetic elements that modulate these disparate phenotypes, structural chimeras (WNV–pre-membrane [prM] and envelope [E] proteins [prME]/SLEV.IC (infectious clone) and SLEV-prME/WNV.IC) were constructed in which two of the structural proteins, the prM and E, were interchanged between viruses. Oral dose–response assessment with the chimeric/parental WNV and SLEV was performed to characterize the infection phenotypes in Culex mosquitoes by artificial blood meals. The median infectious dose required to infect 50% of Cx. quinquefasciatus with WNV was indistinguishable from that of the SLEV-prME/WNV.IC chimeric virus. Similarly, SLEV and WNV-prME/SLEV.IC virus exhibited an indistinguishable oral dose–response relationship in Cx. quinquefasciatus. Infection rates for WNV.IC and SLEV-prME/WNV.IC were significantly lower than SLEV.IC and WNV-prME/SLEV.IC infection rates. These results indicated that WNV and SLEV oral infectivities are not mediated by genetic differences within the prM and E proteins. PMID:25157120

  10. ST. LOUIS ENCEPHALITIS

    PubMed Central

    Smith, Margaret G.; Blattner, Russell J.; Heys, Florence M.

    1946-01-01

    A colony of chicken mites (Dermanyssus gallinae) was established from a single adult female mite and her offspring. This colony of mites was shown to be free of the virus of St. Louis encephalitis. Infection of mites from this homogeneous colony with the virus of St. Louis encephalitis was accomplished by feeding on chickens having viremia. The virus was recovered as readily from mites which had not been allowed to feed for 8 days as from mites freshly engorged, showing that the demonstration of virus in the mites does not depend on the presence of fresh infective chicken blood. Transovarian passage of the St. Louis virus into the second generation has been demonstrated in mites infected experimentally. The female mite infected as an adult can pass the St. Louis virus through eggs laid after additional feeding on normal blood. Persistence of the virus for a period of 6 months has been shown in a colony of mites infected experimentally in the laboratory. PMID:19871548

  11. Japanese Encephalitis Surveillance and Immunization - Asia and Western Pacific Regions, 2016.

    PubMed

    Heffelfinger, James D; Li, Xi; Batmunkh, Nyambat; Grabovac, Varja; Diorditsa, Sergey; Liyanage, Jayantha B; Pattamadilok, Sirima; Bahl, Sunil; Vannice, Kirsten S; Hyde, Terri B; Chu, Susan Y; Fox, Kimberley K; Hills, Susan L; Marfin, Anthony A

    2017-06-09

    Japanese encephalitis (JE) virus is the most important vaccine-preventable cause of encephalitis in the Asia-Pacific region. The World Health Organization (WHO) recommends integration of JE vaccination into national immunization schedules in all areas where the disease is a public health priority (1). This report updates a previous summary of JE surveillance and immunization programs in Asia and the Western Pacific in 2012 (2). Since 2012, funding for JE immunization has become available through the GAVI Alliance, three JE vaccines have been WHO-prequalified,* and an updated WHO JE vaccine position paper providing guidance on JE vaccines and vaccination strategies has been published (1). Data for this report were obtained from a survey of JE surveillance and immunization practices administered to health officials in countries with JE virus transmission risk, the 2015 WHO/United Nations Children's Fund Joint Reporting Form on Immunization, notes and reports from JE meetings held during 2014-2016, published literature, and websites. In 2016, 22 (92%) of 24 countries with JE virus transmission risk conducted JE surveillance, an increase from 18 (75%) countries in 2012, and 12 (50%) countries had a JE immunization program, compared with 11 (46%) countries in 2012. Strengthened JE surveillance, continued commitment, and adequate resources for JE vaccination should help maintain progress toward prevention and control of JE.

  12. [Role of Toscana virus in meningo-encephalitis in Tunisia].

    PubMed

    Bahri, O; Fazaa, O; Ben Alaya-Bouafif, N; Bouloy, M; Triki, H; Bouattour, A

    2011-12-01

    To detect the presence of Toscana virus (TOSV) circulation in Tunisia and to study its role in viral meningo-encephalitis. A total of 315 (167 sera and 178 cerobrospinal fluid [CSF]) samples was investigated. These samples are colleted from Tunisian patients with neurological diseases during the period between January 2003 and December 2009. All samples were tested negative for enterovirus, Herpes Simplex virus and West Nile virus. Detection for IgM and IgG specific to TOSV was done by ELISA tests. Specific IgM for TOSV were detected in 10 % of patients with neurological diseases (31 cases). These recent infections were distributed throughout the study period and predominated during summer and automn. Patients were originated, in the majority from the coastal region. IgG were isolated in 22 cases (7 %) corresponding to previous infection. This is the first report of TOSV circulating in Tunisia and its frequent implication in neurological diseases. These results incited to include TOSV as one of the viral etiologies to target in the diagnosis of viral meningitis and encephalitis in the country. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  13. Mutation of I176R in the E coding region weakens Japanese encephalitis virus neurovirulence, but not its growth rate in BHK-21 cells.

    PubMed

    Zhou, Yuyong; Wu, Rui; Zhao, Qin; Chang, Yung-Fu; Wen, Xintian; Feng, Yao; Huang, Xiaobo; Wen, Yiping; Yan, Qigui; Huang, Yong; Ma, Xiaoping; Han, Xinfeng; Cao, Sanjie

    2018-05-01

    Previously, we isolated the Japanese encephalitis virus (JEV) strain SCYA201201. In this study, we passed the SCYA201201 strain in Syrian baby hamster kidney (BHK-21) cells 120 times to obtain the SCYA201201-0901 strain, which exhibited an attenuated phenotype in mice. Comparison of SCYA201201-0901 amino acid sequences with those of other JEV strains revealed a single mutation, I176R, in the E coding region. Using reverse genetic technology, we provide evidence that this single E-I176R mutation does not affect virus growth in BHK-21 cells but significantly decreases JEV neurovirulence in mice. This study provides critical information for understanding the molecular mechanism of JEV attenuation.

  14. Recombinant vaccinia/Venezuelan equine encephalitis (VEE) virus expresses VEE structural proteins.

    PubMed

    Kinney, R M; Esposito, J J; Johnson, B J; Roehrig, J T; Mathews, J H; Barrett, A D; Trent, D W

    1988-12-01

    cDNA molecules encoding the structural proteins of the virulent Trinidad donkey and the TC-83 vaccine strains of Venezuelan equine encephalitis (VEE) virus were inserted under control of the vaccinia virus 7.5K promoter into the thymidine kinase gene of vaccinia virus. Synthesis of the capsid protein and glycoproteins E2 and E1 of VEE virus was demonstrated by immunoblotting of lysates of CV-1 cells infected with recombinant vaccinia/VEE viruses. VEE glycoproteins were detected in recombinant virus-infected cells by fluorescent antibody (FA) analysis performed with a panel of VEE-specific monoclonal antibodies. Seven E2-specific epitopes and two of four E1-specific epitopes were demonstrated by FA.

  15. Outbreak of Powassan encephalitis--Maine and Vermont, 1999-2001.

    PubMed

    2001-09-07

    Powassan (POW) virus, a North American tickborne flavivirus related to the Eastern Hemisphere's tickborne encephalitis viruses, was first isolated from a patient with encephalitis in 1958. During 1958-1998, 27 human POW encephalitis cases were reported from Canada and the northeastern United States. During September 1999-July 2001, four Maine and Vermont residents with encephalitis were found to be infected with POW virus. These persons were tested for other arbovirus infections found in the northeast after testing for West Nile virus (WNV) infection was negative. This report describes these four cases, summarizes the results of ecologic investigations, and discusses a potential association between ticks that infest medium-sized mammals and the risk for human exposure to POW virus. The findings underscore the need for personal protective measures to prevent tick bites and continued encephalitis surveillance.

  16. Long-term follow-up of Japanese encephalitis chimeric virus vaccine: Immune responses in children.

    PubMed

    Chokephaibulkit, Kulkanya; Sirivichayakul, Chukiat; Thisyakorn, Usa; Pancharoen, Chitsanu; Boaz, Mark; Bouckenooghe, Alain; Feroldi, Emmanuel

    2016-11-04

    A single dose of live attenuated Japanese encephalitis chimeric virus vaccine (JE-CV) was shown to be immunogenic and well tolerated when given either as a booster to formalin-inactivated Japanese encephalitis (JE)-vaccine (mouse brain-derived vaccine [MBDV])-primed 2-5-year-olds, or as a primary vaccination to JE-vaccine-naïve 12-24-month-old toddlers in Thailand. A 5-year follow-up assessment of immune response persistence over time was conducted. Four additional visits (at 2, 3, 4, and 5years) for immunologic assessments were added to the original 12-month open-label crossover study, in which 100 healthy children aged 2-5years with a history of two-dose primary vaccination with MBDV (according to the Thai Expanded Program for Immunization schedule), and 200 healthy JE-vaccine-naïve 12-24-month-old toddlers, were randomized 1:1 to receive JE-CV, containing ⩾4 log 10 plaque forming units, 1month before or after hepatitis A control vaccine. In MBDV-primed 2-5-year-olds (n=78), the immune response to the JE-CV vaccine persisted up to at least 5years after vaccination with a single dose of JE-CV, with all (n=78) children seroprotected at the year 5 visit (geometric mean titers [GMT]: 2521/dil). There was no decrease of seroprotection rate over time (100% at 6months post-vaccination and 96.8% (90.3-98.9) at 5yearspost-vaccination). In JE-vaccine-naïve toddlers, a protective immune response persisted up to at least 5years in 58.8% (50.9-66.4) after a single-dose administration of JE-CV (GMT 26.71/dil; sensitivity analysis). A single-dose of JE-CV as a booster following MBDV administration provided long-lasting immunity. In JE-vaccine-naïve toddlers, despite relatively high seroprotection rates persisting over time, a subsequent booster dose is recommended following a JE-CV primary vaccination for long-term protection. This study was registered on www.clinicaltrials.gov (NCT00621764). Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Markedly severe dystonia in Japanese encephalitis.

    PubMed

    Kalita, J; Misra, U K

    2000-11-01

    Encephalitis has been reported to be a rare cause of severe dystonia. We describe five patients with markedly severe dystonia from Japanese encephalitis. These patients with markedly severe dystonia were seen during the past 8 years as a subgroup of 50 patients with Japanese encephalitis. The diagnosis of markedly severe dystonia was based on increasingly frequent episodes of generalized dystonia with bulbar, respiratory, or metabolic derangement or leading to exhaustion or pain. The diagnosis of JE was based on clinicoradiologic features and a fourfold increase of hemagglutination-inhibiting antibody titers in paired serum. The outcome of the patients was defined as a good, partial, or poor recovery on the basis of 1-year clinical status. All the patients were males, and their ages ranged from 6 to 19 years. Movement disorders appeared 1 to 3 weeks after the illness as the level of consciousness started improving. During the next 1 to 4 weeks, patients began to experience markedly severe dystonia. It was associated with marked axial dystonia resulting in opisthotonus and retrocollis in five patients, jaw-opening dystonia in two patients, teeth clenching in one patient, and oculogyric crisis and neck deviation in another patient. The attacks of markedly severe dystonia lasted for 2 to 30 minutes and occurred as many as 20 to 30 times daily. Other developments included fixed limb dystonia in one patient, severe spasticity and rigidity in five patients, and focal muscle wasting in one patient. These patients had only a modest improvement after treatment. Markedly severe dystonia abated by 2 to 6 months in all the patients who were followed up. Cranial magnetic resonance imaging showed bilateral thalamic involvement in all patients, brainstem involvement in three patients, and basal ganglia involvement in two patients. At the 3-month follow-up, all patients had a poor outcome. At 1 year, one patient had a complete recovery; one had a partial recovery; and two were

  18. Nipah encephalitis - an update.

    PubMed

    Sherrini, B A; Chong, T T

    2014-08-01

    Between September 1998 to May 1999, Malaysia and Singapore were hit by an outbreak of fatal encephalitis caused by a novel virus from the paramyxovirus family. This virus was subsequently named as Nipah virus, after the Sungei Nipah village in Negeri Sembilan, where the virus was first isolated. The means of transmission was thought to be from bats-topigs and subsequently pigs-to-human. Since 2001, almost yearly outbreak of Nipah encephalitis has been reported from Bangladesh and West Bengal, India. These outbreaks were characterized by direct bats-to-human, and human-to-human spread of infection. Nipah virus shares many similar characteristics to Hendra virus, first isolated in an outbreak of respiratory illness involving horses in Australia in 1994. Because of their homology, a new genus called Henipavirus (Hendra + Nipah) was introduced. Henipavirus infection is a human disease manifesting most often as acute encephalitis (which may be relapsing or late-onset) or pneumonia, with a high mortality rate. Pteropus bats act as reservoir for the virus, which subsequently lead to human spread. Transmission may be from consumption of food contaminated by bats secretion, contact with infected animals, or human-to-human spread. With wide geographical distribution of Pteropus bats, Henipavirus infection has become an important emerging human infection with worldwide implication.

  19. Tick-Borne Encephalitis Virus Vaccine-Induced Human Antibodies Mediate Negligible Enhancement of Zika Virus Infection InVitro and in a Mouse Model.

    PubMed

    Duehr, James; Lee, Silviana; Singh, Gursewak; Foster, Gregory A; Krysztof, David; Stramer, Susan L; Bermúdez González, Maria C; Menichetti, Eva; Geretschläger, Robert; Gabriel, Christian; Simon, Viviana; Lim, Jean K; Krammer, Florian

    2018-01-01

    Recent reports in the scientific literature have suggested that anti-dengue virus (DENV) and anti-West Nile virus (WNV) immunity exacerbates Zika virus (ZIKV) pathogenesis in vitro and in vivo in mouse models. Large populations of immune individuals exist for a related flavivirus (tick-borne encephalitis virus [TBEV]), due to large-scale vaccination campaigns and endemic circulation throughout most of northern Europe and the southern Russian Federation. As a result, the question of whether anti-TBEV immunity can affect Zika virus pathogenesis is a pertinent one. For this study, we obtained 50 serum samples from individuals vaccinated with the TBEV vaccine FSME-IMMUN (Central European/Neudörfl strain) and evaluated their enhancement capacity in vitro using K562 human myeloid cells expressing CD32 and in vivo using a mouse model of ZIKV pathogenesis. Among the 50 TBEV vaccinee samples evaluated, 29 had detectable reactivity against ZIKV envelope (E) protein by enzyme-linked immunosorbent assay (ELISA), and 36 showed enhancement of ZIKV infection in vitro . A pool of the most highly reacting and enhanced samples resulted in no significant change in the morbidity/mortality of ZIKV disease in immunocompromised Stat2 -/- mice. Our results suggest that humoral immunity against TBEV is unlikely to enhance Zika virus pathogenesis in humans. No clinical reports indicating that TBEV vaccinees experiencing enhanced ZIKV disease have been published so far, and though the epidemiological data are sparse, our findings suggest that there is little reason for concern. This study also displays a clear relationship between the phylogenetic distance between two flaviviruses and their capacity for pathogenic enhancement. IMPORTANCE The relationship between serial infections of two different serotypes of dengue virus and more severe disease courses is well-documented in the literature, driven by so-called antibody-dependent enhancement (ADE). Recently, studies have shown the

  20. A database of human genes and a gene network involved in response to tick-borne encephalitis virus infection.

    PubMed

    Ignatieva, Elena V; Igoshin, Alexander V; Yudin, Nikolay S

    2017-12-28

    Tick-borne encephalitis is caused by the neurotropic, positive-sense RNA virus, tick-borne encephalitis virus (TBEV). TBEV infection can lead to a variety of clinical manifestations ranging from slight fever to severe neurological illness. Very little is known about genetic factors predisposing to severe forms of disease caused by TBEV. The aims of the study were to compile a catalog of human genes involved in response to TBEV infection and to rank genes from the catalog based on the number of neighbors in the network of pairwise interactions involving these genes and TBEV RNA or proteins. Based on manual review and curation of scientific publications a catalog comprising 140 human genes involved in response to TBEV infection was developed. To provide access to data on all genes, the TBEVhostDB web resource ( http://icg.nsc.ru/TBEVHostDB/ ) was created. We reconstructed a network formed by pairwise interactions between TBEV virion itself, viral RNA and viral proteins and 140 genes/proteins from TBEVHostDB. Genes were ranked according to the number of interactions in the network. Two genes/proteins (CCR5 and IFNAR1) that had maximal number of interactions were revealed. It was found that the subnetworks formed by CCR5 and IFNAR1 and their neighbors were a fragments of two key pathways functioning during the course of tick-borne encephalitis: (1) the attenuation of interferon-I signaling pathway by the TBEV NS5 protein that targeted peptidase D; (2) proinflammation and tissue damage pathway triggered by chemokine receptor CCR5 interacting with CD4, CCL3, CCL4, CCL2. Among nine genes associated with severe forms of TBEV infection, three genes/proteins (CCR5, IL10, ARID1B) were found to have protein-protein interactions within the network, and two genes/proteins (IFNL3 and the IL10, that was just mentioned) were up- or down-regulated in response to TBEV infection. Based on this finding, potential mechanisms for participation of CCR5, IL10, ARID1B, and IFNL3 in the host

  1. The Antigenic Structure of Zika Virus and Its Relation to Other Flaviviruses: Implications for Infection and Immunoprophylaxis.

    PubMed

    Heinz, Franz X; Stiasny, Karin

    2017-03-01

    Zika virus was discovered ∼70 years ago in Uganda and maintained a low profile as a human disease agent in Africa and Asia. Only recently has it caused explosive outbreaks in previously unaffected regions, first in Oceania and then in the Americas since 2015. Of special concern is the newly identified link between congenital malformations (especially microcephaly) and Zika virus infections during pregnancy. At present, it is unclear whether Zika virus changed its pathogenicity or whether the huge number of infections allowed the recognition of a previously cryptic pathogenic property. The purpose of this review is to discuss recent data on the molecular antigenic structure of Zika virus in the context of antibody-mediated neutralization and antibody-dependent enhancement (ADE) of infection, a phenomenon that has been implicated in the development of severe disease caused by the related dengue viruses. Emphasis is given to epitopes of antibodies that potently neutralize Zika virus and also to epitopes that provide antigenic links to other important human-pathogenic flaviviruses such as dengue, yellow fever, West Nile, Japanese encephalitis, and tick-borne encephalitis viruses. The antigenic cross talk between Zika and dengue viruses appears to be of special importance, since they cocirculate in many regions of endemicity and sequential infections are likely to occur frequently. New insights into the molecular antigenic structure of Zika virus and flaviviruses in general have provided the foundation for great progress made in developing Zika virus vaccines and antibodies for passive immunization. Copyright © 2017 American Society for Microbiology.

  2. Molecular epidemiology of Japanese encephalitis in northern Vietnam, 1964-2011: genotype replacement.

    PubMed

    Do, Loan Phuong; Bui, Trang Minh; Hasebe, Futoshi; Morita, Kouichi; Phan, Nga Thi

    2015-04-01

    Japanese encephalitis virus (JEV) is an arthropod-borne virus causing serious public health issues in Asia. JEV consists of five genotypes and recent studies have shown the emergence of JEV genotype I (GI) and its replacement of genotype III (GIII). Using an archival JEV collection, we investigated the molecular evolution of JEV in Vietnam over the last 48 years (1964-2012) in humans, mosquitoes, and pigs, within the global context. The nine JEV isolates from humans, pigs, and mosquitoes sequenced in this study and 29 sequences available in GenBank were used to analyze the envelope (E) protein of the Vietnamese JEVs. A collection of 225 cerebrospinal fluid specimens from patients with suspected Japanese encephalitis (JE) was also tested and genotyped with real-time RT-PCR. The 38 E genes identified with sequencing and nine Vietnamese JEV strains genotyped with real-time RT-PCR, belonging to two lineages, evolved in accordance with those in the rest of the world. The first GIII strain was detected in humans in Vietnam in 1964, and in mosquitoes in 1979, whereas GI strains were first detected in humans and mosquitoes in 1990 and 1994, respectively. After 2004, GI was the only genotype detected in Vietnam, demonstrating that the GIIII strains had been displaced by GI strains. Five haplotypes were identified in the Vietnamese JEVs, with SKSS predominant. The S123N and S123R substitutions in the E protein were already present in the Vietnamese JEVs. This study describes the long evolutionary history of JEV in Vietnam over 34 years, which correlates well with the global evolution of JEV. The Vietnamese GIII strains have been replaced by GI strains in mosquitoes, pigs, and humans. The predominant haplotypes of the Vietnamese strains support this genotype displacement in Vietnam. Further surveillance is required to confirm the disappearance of the GIII strains in nature and the emergence of new pathogens causing encephalitis in Vietnam, after the long-term use of JEV

  3. West Nile Virus Encephalitis 16 Years Later.

    PubMed

    Kleinschmidt-DeMasters, Bette K; Beckham, J David

    2015-09-01

    Arboviruses (Arthropod-borne viruses) include several families of viruses (Flaviviridae, Togaviradae, Bunyaviradae, Reoviradae) that are spread by arthropod vectors, most commonly mosquitoes, ticks and sandflies. The RNA genome allows these viruses to rapidly adapt to ever-changing host and environmental conditions. Thus, these virus families are largely responsible for the recent expansion in geographic range of emerging viruses including West Nile virus (WNV), dengue virus and Chikungunya virus. This review will focus on WNV, especially as it has progressively spread westward in North America since its introduction in New York in 1999. By 2003, WNV infections in humans had reached almost all lower 48 contiguous United States (US) and since that time, fluctuations in outbreaks have occurred. Cases decreased between 2008 and 2011, followed by a dramatic flair in 2012, with the epicenter in the Dallas-Fort Worth region of Texas. The 2012 outbreak was associated with an increase in reported neuroinvasive cases. Neuroinvasive disease continues to be a problem particularly in the elderly and immunocompromised populations, although WNV infections also represented the second most frequent cause of pediatric encephalitis in these same years. Neuropathological features in cases from the 2012 epidemic highlight the extent of viral damage that can occur in the CNS. © 2015 International Society of Neuropathology.

  4. Diagnosis of Zika Virus Infection by Peptide Array and Enzyme-Linked Immunosorbent Assay

    PubMed Central

    Caciula, Adrian; Price, Adam; Thakkar, Riddhi; Ng, James; Chauhan, Lokendra V.; Jain, Komal; Che, Xiaoyu; Espinosa, Diego A.; Montoya Cruz, Magelda; Balmaseda, Angel; Sullivan, Eric H.; Patel, Jigar J.; Jarman, Richard G.; Rakeman, Jennifer L.; Egan, Christina T.; Reusken, Chantal B. E. M.; Koopmans, Marion P. G.; Harris, Eva; Tokarz, Rafal; Briese, Thomas

    2018-01-01

    ABSTRACT Zika virus (ZIKV) is implicated in fetal stillbirth, microcephaly, intracranial calcifications, and ocular anomalies following vertical transmission from infected mothers. In adults, infection may trigger autoimmune inflammatory polyneuropathy. Transmission most commonly follows the bite of infected Aedes mosquitoes but may also occur through sexual intercourse or receipt of blood products. Definitive diagnosis through detection of viral RNA is possible in serum or plasma within 10 days of disease onset, in whole blood within 3 weeks of onset, and in semen for up to 3 months. Serological diagnosis is nonetheless critical because few patients have access to molecular diagnostics during the acute phase of infection and infection may be associated with only mild or inapparent disease that does not prompt molecular testing. Serological diagnosis is confounded by cross-reactivity of immune sera with other flaviviruses endemic in the areas where ZIKV has recently emerged. Accordingly, we built a high-density microarray comprising nonredundant 12-mer peptides that tile, with one-residue overlap, the proteomes of Zika, dengue, yellow fever, West Nile, Ilheus, Oropouche, and chikungunya viruses. Serological analysis enabled discovery of a ZIKV NS2B 20-residue peptide that had high sensitivity (96.0%) and specificity (95.9%) versus natural infection with or vaccination against dengue, chikungunya, yellow fever, West Nile, tick-borne encephalitis, or Japanese encephalitis virus in a microarray assay and an enzyme-linked immunosorbent assay (ELISA) of early-convalescent-phase sera (2 to 3 weeks after onset of symptomatic infection). PMID:29511073

  5. Yellow fever vector live-virus vaccines: West Nile virus vaccine development.

    PubMed

    Arroyo, J; Miller, C A; Catalan, J; Monath, T P

    2001-08-01

    By combining molecular-biological techniques with our increased understanding of the effect of gene sequence modification on viral function, yellow fever 17D, a positive-strand RNA virus vaccine, has been manipulated to induce a protective immune response against viruses of the same family (e.g. Japanese encephalitis and dengue viruses). Triggered by the emergence of West Nile virus infections in the New World afflicting humans, horses and birds, the success of this recombinant technology has prompted the rapid development of a live-virus attenuated candidate vaccine against West Nile virus.

  6. Sampling Design Influences the Observed Dominance of Culex tritaeniorhynchus: Considerations for Future Studies of Japanese Encephalitis Virus Transmission

    PubMed Central

    Lord, Jennifer S.; Al-Amin, Hasan Mohammad; Chakma, Sumit; Alam, Mohammad Shafiul; Gurley, Emily S.; Pulliam, Juliet R. C.

    2016-01-01

    Mosquito sampling during Japanese encephalitis virus (JEV)-associated studies, particularly in India, has usually been conducted via aspirators or light traps to catch mosquitoes around cattle, which are dead-end hosts for JEV. High numbers of Culex tritaeniorhynchus, relative to other species, have often been caught during these studies. Less frequently, studies have involved sampling outdoor resting mosquitoes. We aimed to compare the relative abundance of mosquito species between these two previously used mosquito sampling methods. From September to December 2013 entomological surveys were undertaken in eight villages in a Japanese encephalitis (JE) endemic area of Bangladesh. Light traps were used to collect active mosquitoes in households, and resting boxes and a Bina Pani Das hop cage were used near oviposition sites to collect resting mosquitoes. Numbers of humans and domestic animals present in households where light traps were set were recorded. In five villages Cx. tritaeniorhynchus was more likely to be selected from light trap samples near hosts than resting collection samples near oviposition sites, according to log odds ratio tests. The opposite was true for Cx. pseudovishnui and Armigeres subalbatus, which can also transmit JEV. Culex tritaeniorhynchus constituted 59% of the mosquitoes sampled from households with cattle, 28% from households without cattle and 17% in resting collections. In contrast Cx. pseudovishnui constituted 5.4% of the sample from households with cattle, 16% from households with no cattle and 27% from resting collections, while Ar. subalbatus constituted 0.15%, 0.38%, and 8.4% of these samples respectively. These observations may be due to differences in timing of biting activity, host preference and host-seeking strategy rather than differences in population density. We suggest that future studies aiming to implicate vector species in transmission of JEV should consider focusing catches around hosts able to transmit JEV. PMID

  7. Sampling Design Influences the Observed Dominance of Culex tritaeniorhynchus: Considerations for Future Studies of Japanese Encephalitis Virus Transmission.

    PubMed

    Lord, Jennifer S; Al-Amin, Hasan Mohammad; Chakma, Sumit; Alam, Mohammad Shafiul; Gurley, Emily S; Pulliam, Juliet R C

    2016-01-01

    Mosquito sampling during Japanese encephalitis virus (JEV)-associated studies, particularly in India, has usually been conducted via aspirators or light traps to catch mosquitoes around cattle, which are dead-end hosts for JEV. High numbers of Culex tritaeniorhynchus, relative to other species, have often been caught during these studies. Less frequently, studies have involved sampling outdoor resting mosquitoes. We aimed to compare the relative abundance of mosquito species between these two previously used mosquito sampling methods. From September to December 2013 entomological surveys were undertaken in eight villages in a Japanese encephalitis (JE) endemic area of Bangladesh. Light traps were used to collect active mosquitoes in households, and resting boxes and a Bina Pani Das hop cage were used near oviposition sites to collect resting mosquitoes. Numbers of humans and domestic animals present in households where light traps were set were recorded. In five villages Cx. tritaeniorhynchus was more likely to be selected from light trap samples near hosts than resting collection samples near oviposition sites, according to log odds ratio tests. The opposite was true for Cx. pseudovishnui and Armigeres subalbatus, which can also transmit JEV. Culex tritaeniorhynchus constituted 59% of the mosquitoes sampled from households with cattle, 28% from households without cattle and 17% in resting collections. In contrast Cx. pseudovishnui constituted 5.4% of the sample from households with cattle, 16% from households with no cattle and 27% from resting collections, while Ar. subalbatus constituted 0.15%, 0.38%, and 8.4% of these samples respectively. These observations may be due to differences in timing of biting activity, host preference and host-seeking strategy rather than differences in population density. We suggest that future studies aiming to implicate vector species in transmission of JEV should consider focusing catches around hosts able to transmit JEV.

  8. Proposal for Japanese encephalitis surveillance using captured invasive mongooses under an eradication project on Okinawa Island, Japan.

    PubMed

    Saito, Mika; Nakata, Katsushi; Nishijima, Taku; Yamashita, Katsuhiro; Saito, Anna; Ogura, Go

    2009-06-01

    A project to eradicate invasive small Asian mongooses (Herpestes javanicus) is underway to conserve the unique ecosystem of Okinawa Island, Japan. In the present study, we tried to elucidate whether the mongoose is a host of Japanese encephalitis virus (JEV) and to evaluate the reliability of surveillance of Japanese encephalitis (JE) using this species. Culex tritaeniorhynchus, the main vector mosquito of JEV, feeds on the mongoose. Eighty-five (35.4%) of 240 wild small Asian mongooses captured between 2001 and 2005 had neutralizing antibodies against more than one of four JEV strains. Prevalence rates of JEV antibodies tended to increase with body weight and length of the animals. One of three sentinel mongooses showed a temporal change in antibody titer. These results indicate that the small Asian mongooses on Okinawa Island are sensitive to JEV. From the antibody titers and the locations of capture, the JEV active area was clarified. We propose that surveillance of JE using mongooses captured under the eradication program is reliable.

  9. Interim Report on SNP analysis and forensic microarray probe design for South American hemorrhagic fever viruses, tick-borne encephalitis virus, henipaviruses, Old World Arenaviruses, filoviruses, Crimean-Congo hemorrhagic fever viruses, Rift Valley fever

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaing, C; Gardner, S

    The goal of this project is to develop forensic genotyping assays for select agent viruses, enhancing the current capabilities for the viral bioforensics and law enforcement community. We used a multipronged approach combining bioinformatics analysis, PCR-enriched samples, microarrays and TaqMan assays to develop high resolution and cost effective genotyping methods for strain level forensic discrimination of viruses. We have leveraged substantial experience and efficiency gained through year 1 on software development, SNP discovery, TaqMan signature design and phylogenetic signature mapping to scale up the development of forensics signatures in year 2. In this report, we have summarized the whole genomemore » wide SNP analysis and microarray probe design for forensics characterization of South American hemorrhagic fever viruses, tick-borne encephalitis viruses and henipaviruses, Old World Arenaviruses, filoviruses, Crimean-Congo hemorrhagic fever virus, Rift Valley fever virus and Japanese encephalitis virus.« less

  10. Multi-Gene Detection and Identification of Mosquito-Borne RNA Viruses Using an Oligonucleotide Microarray

    PubMed Central

    Grubaugh, Nathan D.; McMenamy, Scott S.; Turell, Michael J.; Lee, John S.

    2013-01-01

    Background Arthropod-borne viruses are important emerging pathogens world-wide. Viruses transmitted by mosquitoes, such as dengue, yellow fever, and Japanese encephalitis viruses, infect hundreds of millions of people and animals each year. Global surveillance of these viruses in mosquito vectors using molecular based assays is critical for prevention and control of the associated diseases. Here, we report an oligonucleotide DNA microarray design, termed ArboChip5.1, for multi-gene detection and identification of mosquito-borne RNA viruses from the genera Flavivirus (family Flaviviridae), Alphavirus (Togaviridae), Orthobunyavirus (Bunyaviridae), and Phlebovirus (Bunyaviridae). Methodology/Principal Findings The assay utilizes targeted PCR amplification of three genes from each virus genus for electrochemical detection on a portable, field-tested microarray platform. Fifty-two viruses propagated in cell-culture were used to evaluate the specificity of the PCR primer sets and the ArboChip5.1 microarray capture probes. The microarray detected all of the tested viruses and differentiated between many closely related viruses such as members of the dengue, Japanese encephalitis, and Semliki Forest virus clades. Laboratory infected mosquitoes were used to simulate field samples and to determine the limits of detection. Additionally, we identified dengue virus type 3, Japanese encephalitis virus, Tembusu virus, Culex flavivirus, and a Quang Binh-like virus from mosquitoes collected in Thailand in 2011 and 2012. Conclusions/Significance We demonstrated that the described assay can be utilized in a comprehensive field surveillance program by the broad-range amplification and specific identification of arboviruses from infected mosquitoes. Furthermore, the microarray platform can be deployed in the field and viral RNA extraction to data analysis can occur in as little as 12 h. The information derived from the ArboChip5.1 microarray can help to establish public health

  11. Fatal Case of Deer Tick Virus Encephalitis

    PubMed Central

    Tavakoli, Norma P.; Wang, Heng; Dupuis, Michelle; Hull, Rene; Ebel, Gregory D.; Gilmore, Emily J.; Faust, Phyllis L.

    2010-01-01

    SUMMARY Deer tick virus is related to Powassan virus, a tickborne encephalitis virus. A 62-year-old man presented with a meningoencephalitis syndrome and eventually died. Analyses of tissue samples obtained during surgery and at autopsy revealed a widespread necrotizing meningoencephalitis. Nucleic acid was extracted from formalin-fixed tissue, and the presence of deer tick virus was verified on a flavivirus-specific polymerase-chain-reaction (PCR) assay, followed by sequence confirmation. Immunohistochemical analysis with antisera specific for deer tick virus identified numerous immunoreactive neurons, with prominent involvement of large neurons in the brain stem, cerebellum, basal ganglia, thalamus, and spinal cord. This case demonstrates that deer tick virus can be a cause of fatal encephalitis. PMID:19439744

  12. Fatal case of deer tick virus encephalitis.

    PubMed

    Tavakoli, Norma P; Wang, Heng; Dupuis, Michelle; Hull, Rene; Ebel, Gregory D; Gilmore, Emily J; Faust, Phyllis L

    2009-05-14

    Deer tick virus is related to Powassan virus, a tickborne encephalitis virus. A 62-year-old man presented with a meningoencephalitis syndrome and eventually died. Analyses of tissue samples obtained during surgery and at autopsy revealed a widespread necrotizing meningoencephalitis. Nucleic acid was extracted from formalin-fixed tissue, and the presence of deer tick virus was verified on a flavivirus-specific polymerase-chain-reaction (PCR) assay, followed by sequence confirmation. Immunohistochemical analysis with antisera specific for deer tick virus identified numerous immunoreactive neurons, with prominent involvement of large neurons in the brain stem, cerebellum, basal ganglia, thalamus, and spinal cord. This case demonstrates that deer tick virus can be a cause of fatal encephalitis. 2009 Massachusetts Medical Society

  13. A New Model for Hendra Virus Encephalitis in the Mouse

    PubMed Central

    Dups, Johanna; Middleton, Deborah; Yamada, Manabu; Monaghan, Paul; Long, Fenella; Robinson, Rachel; Marsh, Glenn A.; Wang, Lin-Fa

    2012-01-01

    Hendra virus (HeV) infection in humans is characterized by an influenza like illness, which may progress to pneumonia or encephalitis and lead to death. The pathogenesis of HeV infection is poorly understood, and the lack of a mouse model has limited the opportunities for pathogenetic research. In this project we reassessed the role of mice as an animal model for HeV infection and found that mice are susceptible to HeV infection after intranasal exposure, with aged mice reliably developing encephalitic disease. We propose an anterograde route of neuroinvasion to the brain, possibly along olfactory nerves. This is supported by evidence for the development of encephalitis in the absence of viremia and the sequential distribution of viral antigen along pathways of olfaction in the brain of intranasally challenged animals. In our studies mice developed transient lower respiratory tract infection without progressing to viremia and systemic vasculitis that is common to other animal models. These studies report a new animal model of HeV encephalitis that will allow more detailed studies of the neuropathogenesis of HeV infection, particularly the mode of viral spread and possible sequestration within the central nervous system; investigation of mechanisms that moderate the development of viremia and systemic disease; and inform the development of improved treatment options for human patients. PMID:22808132

  14. A rapid and quantitative assay for measuring antibody-mediated neutralization of West Nile virus infection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierson, Theodore C.; Sanchez, Melissa D.; Puffer, Bridget A.

    2006-03-01

    West Nile virus (WNV) is a neurotropic flavivirus within the Japanese encephalitis antigenic complex that is responsible for causing West Nile encephalitis in humans. The surface of WNV virions is covered by a highly ordered icosahedral array of envelope proteins that is responsible for mediating attachment and fusion with target cells. These envelope proteins are also primary targets for the generation of neutralizing antibodies in vivo. In this study, we describe a novel approach for measuring antibody-mediated neutralization of WNV infection using virus-like particles that measure infection as a function of reporter gene expression. These reporter virus particles (RVPs) aremore » produced by complementation of a sub-genomic replicon with WNV structural proteins provided in trans using conventional DNA expression vectors. The precision and accuracy of this approach stem from an ability to measure the outcome of the interaction between antibody and viral antigens under conditions that satisfy the assumptions of the law of mass action as applied to virus neutralization. In addition to its quantitative strengths, this approach allows the production of WNV RVPs bearing the prM-E proteins of different WNV strains and mutants, offering considerable flexibility for the study of the humoral immune response to WNV in vitro. WNV RVPs are capable of only a single round of infection, can be used under BSL-2 conditions, and offer a rapid and quantitative approach for detecting virus entry and its inhibition by neutralizing antibody.« less

  15. Cerebrospinal fluid biomarkers of simian immunodeficiency virus encephalitis

    PubMed Central

    Bissel, Stephanie J.; Kofler, Julia; Nyaundi, Julia; Murphey-Corb, Michael; Wisniewski, Stephen R.; Wiley, Clayton A.

    2016-01-01

    Antiretroviral therapy has led to increased survival of HIV-infected patients but also increased prevalence of HIV-associated neurocognitive disorders. We previously identified YKL40 as a potential cerebrospinal fluid (CSF) biomarker of lentiviral central nervous system (CNS) disease in HIV-infected patients and in the macaque model of HIV encephalitis. The aim of this study was to define the specificity and sensitivity along with the predictive value of YKL40 as a biomarker of encephalitis and to assess its relationship to CSF viral load. CSF YKL40 and SIV RNA concentrations were analyzed over the course of infection in 19 SIV-infected pigtailed macaques and statistical analyses were performed to evaluate the relationship to encephalitis. Using these relationships, CSF alterations of 31 neuroimmune markers were studied pre-infection, during acute and asymptomatic infection, at the onset of encephalitis, and at necropsy. YKL40 CSF concentrations above 1122 ng/ml were found to be a specific and sensitive biomarker for the presence of encephalitis and were highly correlated with CSF viral load. Macaques that developed encephalitis had evidence of chronic CNS immune activation during early, asymptomatic, and end stages of infection. At the onset of encephalitis, CSF demonstrated a rise of neuroimmune markers associated with macrophage recruitment, activation and interferon response. CSF YKL40 concentration and viral load are valuable biomarkers to define the onset of encephalitis. Chronic CNS immune activation precedes the development of encephalitis while some responses suggest protection from CNS lentiviral disease. PMID:27059917

  16. Genomic changes in an attenuated genotype I Japanese encephalitis virus and comparison with virulent parental strain.

    PubMed

    Zhou, Yuyong; Wu, Rui; Feng, Yao; Zhao, Qin; Wen, Xintian; Huang, Xiaobo; Wen, Yiping; Yan, Qigui; Huang, Yong; Ma, Xiaoping; Han, Xinfeng; Cao, Sanjie

    2018-06-01

    Genotype I Japanese encephalitis virus (JEV) strain SCYA201201 was previously isolated from brain tissues of aborted piglets. In this study, we obtained an attenuated SCYA201201-0901 strain by serial passage of strain SCYA201201-1 in Syrian baby hamster kidney cells, combined with multiple plaque purifications and selection for virulence in mice. We investigated the genetic changes associated with attenuation by comparing the entire genomes of SCYA201201-0901 and SCYA201201-1. Sequence comparisons identified 14 common amino acid substitutions in the coding region, with two nucleotide point mutations in the 5'-untranslated region (UTR) and another three in the 3'-UTR, which differed between the attenuated and virulent strains. In addition, a total of 13 silent nucleotide mutations were found after attenuation. These substitutions, alone or in combination, may be responsible for the attenuated phenotype of the SCYA201201-0901 strain in mice. This information will contribute to our understanding of attenuation and of the molecular basis of virulence in genotype I strains such as SCYA201201-0901, as well as aiding the development of safer JEV vaccines.

  17. Tick-Borne Encephalitis Virus Nonstructural Protein NS5 Induces RANTES Expression Dependent on the RNA-Dependent RNA Polymerase Activity.

    PubMed

    Zheng, Zifeng; Yang, Jieyu; Jiang, Xuan; Liu, Yalan; Zhang, Xiaowei; Li, Mei; Zhang, Mudan; Fu, Ming; Hu, Kai; Wang, Hanzhong; Luo, Min-Hua; Gong, Peng; Hu, Qinxue

    2018-05-14

    Tick-borne encephalitis virus (TBEV) is one of the flaviviruses that targets the CNS and causes encephalitis in humans. The mechanism of TBEV that causes CNS destruction remains unclear. It has been reported that RANTES-mediated migration of human blood monocytes and T lymphocytes is specifically induced in the brain of mice infected with TBEV, which causes ensuing neuroinflammation and may contribute to brain destruction. However, the viral components responsible for RANTES induction and the underlying mechanisms remain to be fully addressed. In this study, we demonstrate that the NS5, but not other viral proteins of TBEV, induces RANTES production in human glioblastoma cell lines and primary astrocytes. TBEV NS5 appears to activate the IFN regulatory factor 3 (IRF-3) signaling pathway in a manner dependent on RIG-I/MDA5, which leads to the nuclear translocation of IRF-3 to bind with RANTES promoter. Further studies reveal that the activity of RNA-dependent RNA polymerase (RdRP) but not the RNA cap methyltransferase is critical for TBEV NS5-induced RANTES expression, and this is likely due to RdRP-mediated synthesis of dsRNA. Additional data indicate that the residues at K359, D361, and D664 of TBEV NS5 are critical for RdRP activity and RANTES induction. Of note, NS5s from other flaviviruses, including Japanese encephalitis virus, West Nile virus, Zika virus, and dengue virus, can also induce RANTES expression, suggesting the significance of NS5-induced RANTES expression in flavivirus pathogenesis. Our findings provide a foundation for further understanding how flaviviruses cause neuroinflammation and a potential viral target for intervention. Copyright © 2018 by The American Association of Immunologists, Inc.

  18. Experimental Transmission of Eastern Equine Encephalitis Virus by Strains of Aedes albopictus and A. taeniorhynchus (Diptera: Culicidae)

    DTIC Science & Technology

    1994-01-01

    AD-A281 335 0 Experimental Transmission of Eastern Equine Encephaliti Vi 4 by Strains of Aedes albopictus and A. taeniorhynch &1j (Diptera: Culicidae...co m •strains of Aedes albopictus (Skuse) was assessed for eastern equine encephalitis (EEE) virus isolated from Ae. albopictus collected in Polk...County, Florida. Both species became infected with and transmitted EEE virus by bite after feeding on 1-d-old chicks that had _been inoculated with EEE

  19. Vaccination against mosquito borne viral infections: current status.

    PubMed

    Wiwanitkit, Viroj

    2007-12-01

    Mosquito borne infectious diseases are among important group of diseases worldwide. Vaccination is available for some tropical mosquito-borne diseases, especially for Japanese encephalitis virus infection and yellow fever. There are also several attempts to develop new vaccines for the other mosquito-borne diseases such as malaria, dengue infection and West Nile virus infection. In this article, the author reviews the issues on vaccination of some important tropical mosquito borne infectious diseases.

  20. Post-marketing surveillance of live-attenuated Japanese encephalitis vaccine safety in China.

    PubMed

    Wang, Yali; Dong, Duo; Cheng, Gang; Zuo, Shuyan; Liu, Dawei; Du, Xiaoxi

    2014-10-07

    Japanese encephalitis (JE) is the most severe form of viral encephalitis in Asia and no specific treatment is available. Vaccination provides an effective intervention to prevent JE. In this paper, surveillance data for adverse events following immunization (AEFI) related to SA-14-14-2 live-attenuated Japanese encephalitis vaccine (Chengdu Institute of Biological Products) was presented. This information has been routinely generated by the Chinese national surveillance system for the period 2009-2012. There were 6024 AEFI cases (estimated reported rate 96.55 per million doses). Most common symptoms of adverse events were fever, redness, induration and skin rash. There were 70 serious AEFI cases (1.12 per million doses), including 9 cases of meningoencephalitis and 4 cases of death. The post-marketing surveillance data add the evidence that the Chengdu institute live attenutated vaccine has a reasonable safety profile. The relationship between encephalitis and SA-14-14-2 vaccination should be further studied. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Defining Hsp70 Subnetworks in Dengue Virus Replication Reveals Key Vulnerability in Flavivirus Infection

    PubMed Central

    Taguwa, Shuhei; Maringer, Kevin; Li, Xiaokai; Bernal-Rubio, Dabeiba; Rauch, Jennifer N.; Gestwicki, Jason E.; Andino, Raul; Fernandez-Sesma, Ana; Frydman, Judith

    2015-01-01

    Summary Viral protein homeostasis depends entirely on the machinery of the infected cell. Accordingly, viruses can illuminate the interplay between cellular proteostasis components and their distinct substrates. Here we define how the Hsp70 chaperone network mediates the dengue virus life cycle. Cytosolic Hsp70 isoforms are required at distinct steps of the viral cycle, including entry, RNA replication and virion biogenesis. Hsp70 function at each step is specified by nine distinct DNAJ cofactors. Of these, DnaJB11 relocalizes to virus-induced replication complexes to promote RNA synthesis, while DnaJB6 associates with capsid protein and facilitates virion biogenesis. Importantly, an allosteric Hsp70 inhibitor, JG40, potently blocks infection of different dengue serotypes in human primary blood cells without eliciting viral resistance or exerting toxicity to the host cells. JG40 also blocks replication of other medically-important flaviviruses including yellow fever, West Nile and Japanese encephalitis viruses. Thus, targeting host Hsp70 subnetworks provides a path for broad-spectrum antivirals. PMID:26582131

  2. Influence of Sex and Age on Natural Resistance to St. Louis Encephalitis Virus Infection in Mice

    PubMed Central

    Andersen, Arthur A.; Hanson, Robert P.

    1974-01-01

    A difference was observed in susceptibility of adult male and female mice to St. Louis encephalitis (SLE) virus as measured by the death rate after intravenous challenge. Female mice that had susceptibility similar to that of males at 2 months of age had increased resistance to SLE virus at 3 and 4 months of age. The increased resistance occurred after sexual maturity, indicating that the resistance factor possibly was related to an aging process in the female. The susceptibility of male mice remained unchanged over the 2- to 4-month period. Neither pregnancy nor castration had any effect on resistance of adult mice to St. Louis encephalitis virus. PMID:4857422

  3. Parasitic Cowbirds have increased immunity to West Nile and other mosquitoborne encephalitis viruses

    USGS Publications Warehouse

    Reisen, W.K.; Hahn, D.C.

    2006-01-01

    The rapid geographic spread of West Nile Virus [WNV, Flaviviridae, Flavivirus] across the United States has stimulated interest in comparative host infection studies of avian species to delineate competent reservoir hosts critical for viral amplification. Striking taxonomic differences in avian susceptibility have been noted, offering the opportunity to strategically select species on the basis of life history traits to examine aspects of pathogen virulence or host immunity. We hypothesized that avian brood parasites would show increased resistance to pathogens compared to related taxa, because they have been exposed in their evolutionary history to a wide array of infectious organisms from their different parenting species. The Brown-headed Cowbird (Molothrus ater) is a generalist brood parasite that parasitizes 200+ North American species. Elevated exposure to other species? parasites may have created an unusual degree of pathogen resistance. We compared the relative susceptibility of adult cowbirds to three closely-related non-parasitic species, Red-winged blackbirds, Tricolored blackbirds and Brewer?s blackbirds, to invading NY99 strain of WNV that is highly virulent for many passeriform birds. Previously we had experimentally infected these species with two North American mosquitoborne encephalitis viruses, western equine encephalomyelitis virus [WEEV, Togaviridae, Alphavirus] and St. Louis encephalitis virus [SLEV, Flaviviridae, Flavivirus]. Our results showed that cowbirds exhibited significantly lower viremia responses against all three viruses as well as after co-infection with both WEEV and WNV than did the three related, non-parasitic species. These data supported our hypothesis and indicated that cowbirds were more resistant to infection to both native and introduced viruses.

  4. Three-dimensional morphometric analysis of microglial changes in a mouse model of virus encephalitis: age and environmental influences.

    PubMed

    de Sousa, Aline A; Dos Reis, Renata R; de Lima, Camila M; de Oliveira, Marcus A; Fernandes, Taiany N; Gomes, Giovanni F; Diniz, Daniel G; Magalhães, Nara M; Diniz, Cristovam G; Sosthenes, Marcia C K; Bento-Torres, João; Diniz, José Antonio P; Vasconcelos, Pedro F da C; Diniz, Cristovam Wanderley P

    2015-08-01

    Many RNA virus CNS infections cause neurological disease. Because Piry virus has a limited human pathogenicity and exercise reduces activation of microglia in aged mice, possible influences of environment and aging on microglial morphology and behavior in mice sublethal encephalitis were investigated. Female albino Swiss mice were raised either in standard (S) or in enriched (EE) cages from age 2 to 6 months (young - Y), or from 2 to 16 months (aged - A). After behavioral tests, mice nostrils were instilled with Piry-virus-infected or with normal brain homogenates. Brain sections were immunolabeled for virus antigens or microglia at 8 days post-infection (dpi), when behavioral changes became apparent, and at 20 and 40 dpi, after additional behavioral testing. Young infected mice from standard (SYPy) and enriched (EYPy) groups showed similar transient impairment in burrowing activity and olfactory discrimination, whereas aged infected mice from both environments (EAPy, SAPy) showed permanent reduction in both tasks. The beneficial effects of an enriched environment were smaller in aged than in young mice. Six-hundred and forty microglial cells, 80 from each group were reconstructed. An unbiased, stereological sampling approach and multivariate statistical analysis were used to search for microglial morphological families. This procedure allowed distinguishing between microglial morphology of infected and control subjects. More severe virus-associated microglial changes were observed in young than in aged mice, and EYPy seem to recover microglial homeostatic morphology earlier than SYPy . Because Piry-virus encephalitis outcomes were more severe in aged mice, it is suggested that the reduced inflammatory response in those individuals may aggravate encephalitis outcomes. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  5. A Molecularly Cloned, Live-Attenuated Japanese Encephalitis Vaccine SA14-14-2 Virus: A Conserved Single Amino Acid in the ij Hairpin of the Viral E Glycoprotein Determines Neurovirulence in Mice

    PubMed Central

    Kim, Jin-Kyoung; Yun, Gil-Nam; Lee, Eun-Young; Li, Long; Kuhn, Richard J.; Rossmann, Michael G.; Morrey, John D.; Lee, Young-Min

    2014-01-01

    Japanese encephalitis virus (JEV), a mosquito-borne flavivirus that causes fatal neurological disease in humans, is one of the most important emerging pathogens of public health significance. JEV represents the JE serogroup, which also includes West Nile, Murray Valley encephalitis, and St. Louis encephalitis viruses. Within this serogroup, JEV is a vaccine-preventable pathogen, but the molecular basis of its neurovirulence remains unknown. Here, we constructed an infectious cDNA of the most widely used live-attenuated JE vaccine, SA14-14-2, and rescued from the cDNA a molecularly cloned virus, SA14-14-2MCV, which displayed in vitro growth properties and in vivo attenuation phenotypes identical to those of its parent, SA14-14-2. To elucidate the molecular mechanism of neurovirulence, we selected three independent, highly neurovirulent variants (LD50, <1.5 PFU) from SA14-14-2MCV (LD50, >1.5×105 PFU) by serial intracerebral passage in mice. Complete genome sequence comparison revealed a total of eight point mutations, with a common single G1708→A substitution replacing a Gly with Glu at position 244 of the viral E glycoprotein. Using our infectious SA14-14-2 cDNA technology, we showed that this single Gly-to-Glu change at E-244 is sufficient to confer lethal neurovirulence in mice, including rapid development of viral spread and tissue inflammation in the central nervous system. Comprehensive site-directed mutagenesis of E-244, coupled with homology-based structure modeling, demonstrated a novel essential regulatory role in JEV neurovirulence for E-244, within the ij hairpin of the E dimerization domain. In both mouse and human neuronal cells, we further showed that the E-244 mutation altered JEV infectivity in vitro, in direct correlation with the level of neurovirulence in vivo, but had no significant impact on viral RNA replication. Our results provide a crucial step toward developing novel therapeutic and preventive strategies against JEV and possibly other

  6. The Molecular Specificity of the Human Antibody Response to Dengue Virus Infections.

    PubMed

    Gallichotte, Emily N; Baric, Ralph S; de Silva, Aravinda M

    2018-01-01

    Dengue viruses (DENV) are mosquito-borne positive sense RNA viruses in the family Flaviviridae. The four serotypes of DENV (DENV1, DENV2, DENV3, DENV4) are widely distributed and it is estimated over a third of the world's population is at risk of infection [4]. While the majority of infections are asymptomatic, DENV infection can cause a spectrum of disease, from mild flu-like symptoms, to the more severe DENV hemorrhagic fever and shock syndrome [24]. Over the past 20 years, there have been intense efforts to develop a tetravalent live-attenuated DENV vaccine [36]. The process of vaccine development has been largely empirical, because effective live attenuated vaccines have been developed for other flaviviruses like yellow fever and Japanese encephalitis viruses. However, recent results from phase III live attenuated DENV vaccine efficacy trials are mixed with evidence for efficacy in some populations but not others [20]. In light of unexpected results from DENV vaccine trials, in this chapter we will review recent discoveries about the human antibody response to natural DENV infection and discuss the relevance of this work to understanding vaccine performance.

  7. Infectious Causes and Infectious Mimics of Acute Encephalitis: a Prospective Study from Thailand

    PubMed Central

    Skulsujirapa, Benjawan; Wacharapluesadee, Supaporn; Petcharat, Sininat; Hemachudha, Thiravat; Wasontiwong, Abhinbhen Saraya; Putcharoen, Opass

    2017-01-01

    Abstract Background Previous reports of infectious encephalitis in Thailand showed viruses as major pathogens similar to worldwide data. Major viruses in studies varied among Japanese encephalitis, Enteroviruses and Herpesviruses. Infectious etiologies vary by regions, seasons and preventive strategies done. Dynamic change of pathogen is believed to occur continually. Local data in each region is important to develop an algorithm of investigations for the cost-effectiveness. Methods This is a prospective study of patients with encephalitis between January 2014 to March 2017 at a tertiary hospital in Bangkok. Microbiological and serological studies were done according to an algorithm based on initial cerebrospinal fluid analysis. Initial tests were for bacteria, fungus, mycobacterium and commonly prevalent viruses. Further tests for infectious etiology were done by stepwise approach if initial tests yielded negative. Results Fifty-two patients were enrolled. Twenty-seven (51.9%) patients had no etiology identified. Three patients (5.8%) had bacterial etiology, 10 (19.2%) had viral etiology, and 12 (23%) had immune-mediated encephalitis. Among viral etiologies, VZV was identified in 4 cases, HSV in 3 cases, CMV in 2 cases and measles in 1 case. Baseline characteristic of HIV infection or skin rash was associated with viral infection (p 0.031, p 0.006). Patients with VZV encephalitis might not have active skin lesion. The presence of prodrome, duration of prodrome, neurological onset to peak and physical examination of focal neurodeficit, meningeal irritation signs, and reflex were similar across all etiologies. White blood cell [mean 7.0 (range 0–30) cells/µL] and protein [mean 32.5 (range 11–70.4) mg/dL] from the cerebrospinal fluid of noninfectious etiologies tended to be lower than the levels of infectious causes (p 0.009, p 0.020). All patients survived at 7 days after admission. Conclusion A quarter of patients presenting with acute encephalitis in this

  8. Evaluation of a caprine arthritis-encephalitis virus/maedi-visna virus indirect enzyme-linked immunosorbent assay in the serological diagnosis of ovine progressive pneumonia virus in U.S. sheep

    USDA-ARS?s Scientific Manuscript database

    Serological diagnostic testing of sheep and goats using enzyme immunosorbent assays (ELISAs) is the most common method of determining small ruminant lentivirus (SRLV) infection. A caprine arthritis-encephalitis virus (CAEV)/maedi-visna virus (MVV) indirect (i) ELISA, which utilizes MVV EV1 capsid a...

  9. Alexander the Great and West Nile virus encephalitis.

    PubMed

    Marr, John S; Calisher, Charles H

    2003-12-01

    Alexander the Great died in Babylon in 323 BC. His death at age 32 followed a 2-week febrile illness. Speculated causes of death have included poisoning; assassination, and a number of infectious diseases. One incident, mentioned by Plutarch but not considered by previous investigators, may shed light on the cause of Alexander's death. The incident, which occurred as he entered Babylon, involved a flock of ravens exhibiting unusual behavior and subsequently dying at his feet. The inexplicable behavior of ravens is reminiscent of avian illness and death weeks before the first human cases of West Nile virus infection were identified in the United States. We posit that Alexander may have died of West Nile virus encephalitis.

  10. Post-licensure, phase IV, safety study of a live attenuated Japanese encephalitis recombinant vaccine in children in Thailand.

    PubMed

    Chotpitayasunondh, Tawee; Pruekprasert, Pornpimol; Puthanakit, Thanyawee; Pancharoen, Chitsanu; Tangsathapornpong, Auchara; Oberdorfer, Peninnah; Kosalaraksa, Pope; Prommalikit, Olarn; Tangkittithaworn, Suwimon; Kerdpanich, Phirangkul; Techasaensiri, Chonnamet; Korejwo, Joanna; Chuenkitmongkol, Sunate; Houillon, Guy

    2017-01-05

    Japanese encephalitis is a mosquito-borne viral disease endemic in most countries in Asia. A recombinant live, attenuated Japanese encephalitis virus vaccine, JE-CV, is licensed in 14 countries, including Thailand, for the prevention of Japanese encephalitis in adults and children. This was a prospective, phase IV, open-label, multicentre, safety study of JE-CV conducted from November 2013 to April 2015, to evaluate rare serious adverse events (AEs). JE-CV was administered to 10,000 healthy children aged 9months to <5years in Thailand as a primary (Group 1) or booster (Group 2) vaccination. Serious AEs (SAEs), including AEs of special interest, up to 60days after administration were evaluated. Immediate Grade 3 systemic AEs up to 30min after JE-CV administration were also described. The median age of participants was 1.1years in Group 1 and 3.8years in Group 2. SAEs were reported in 204 (3.0%) participants in Group 1 and 59 (1.9%) participants in Group 2. Among a total of 294 SAEs in 263 participants, only three events occurring in two participants were considered related to vaccination. All three cases were moderate urticaria, none of which met the definition of AEs of special interest for hypersensitivity. AEs of special interest were reported in 28 (0.4%) participants in Group 1 and 4 (0.1%) participants in Group 2; none were considered related to vaccination. Febrile convulsion was the most frequently reported AE of special interest: 25 (0.4%) participants in Group 1; and 2 (<0.1%) in Group 2. There were no cases of Japanese encephalitis reported. No Grade 3 immediate systemic AEs were reported after any JE-CV vaccination. Our study did not identify any new safety concerns with JE-CV and confirms its good safety profile. This study was registered on www.clinicaltrials.gov (NCT01981967; Universal Trial Number: U1111-1127-7052). Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Powassan virus infection: case series and literature review from a single institution.

    PubMed

    Raval, Mihir; Singhal, Mayank; Guerrero, Dubert; Alonto, Augusto

    2012-10-30

    Powassan virus is a flavivirus related to eastern hemisphere's tick-borne encephalitis viruses. It can cause a rare but potentially life-threatening disease including encephalitis. We report four cases of POWV infection in Minnesota and North Dakota with known exposure to tick bites in 2011. Our first case was an 18-year-old male who dramatically presented with seizure and headache with positive serum analysis for Powassan virus immunoglobulin M. The second case was a 60 year old gentleman with intraparenchymal hemorrhage and was diagnosed via cerebrospinal fluid analysis. Thirdly, a 61 year old male developed altered mental status and encephalitis. Our fourth patient was a 69 year old male who had headache and non-focal weakness who was diagnosed with serum analysis. Symptoms of Powassan virus infection ranged from headaches to seizures and severe neurological symptoms. This study serves to highlight the increased detection of Powassan virus infection in the central north United States. This report focuses on the increasing incidence that can lead to increasing efforts for raising awareness regarding this infection. There is a need for clinician vigilance and public attention due to its increasing detection, westward progression and varied clinical presentations.

  12. Neurologic Complications of Influenza B Virus Infection in Adults, Romania.

    PubMed

    Popescu, Corneliu P; Florescu, Simin A; Lupulescu, Emilia; Zaharia, Mihaela; Tardei, Gratiela; Lazar, Mihaela; Ceausu, Emanoil; Ruta, Simona M

    2017-04-01

    We characterized influenza B virus-related neurologic manifestations in an unusually high number of hospitalized adults at a tertiary care facility in Romania during the 2014-15 influenza epidemic season. Of 32 patients with a confirmed laboratory diagnosis of influenza B virus infection, neurologic complications developed in 7 adults (median age 31 years). These complications were clinically diagnosed as confirmed encephalitis (4 patients), possible encephalitis (2 patients), and cerebellar ataxia (1 patient). Two of the patients died. Virus sequencing identified influenza virus B (Yam)-lineage clade 3, which is representative of the B/Phuket/3073/2013 strain, in 4 patients. None of the patients had been vaccinated against influenza. These results suggest that influenza B virus can cause a severe clinical course and should be considered as an etiologic factor for encephalitis.

  13. Nipah Virus Infection in Dogs, Malaysia, 1999

    PubMed Central

    Alim, Asiah N.M.; Bunning, Michel L.; Lee, Ong Bee; Wagoner, Kent D.; Amman, Brian R.; Stockton, Patrick C.; Ksiazek, Thomas G.

    2009-01-01

    The 1999 outbreak of Nipah virus encephalitis in humans and pigs in Peninsular Malaysia ended with the evacuation of humans and culling of pigs in the epidemic area. Serologic screening showed that, in the absence of infected pigs, dogs were not a secondary reservoir for Nipah virus. PMID:19523300

  14. Antibodies generated by immunization with the NS1 protein of West Nile virus confer partial protection against lethal Japanese encephalitis virus challenge.

    PubMed

    Sun, EnCheng; Zhao, Jing; TaoYang; Xu, QingYuan; Qin, YongLi; Wang, WenShi; Wei, Peng; Wu, DongLai

    2013-09-27

    Japanese encephalitis virus (JEV) and West Nile virus (WNV) are two medically important flaviviruses that can cause severe hemorrhagic and encephalitic diseases in humans. Immune responses directed against the NS1 protein of flaviviruses can confer protection against lethal viral challenge. Previous studies have shown that the WNV NS1 protein harbors epitopes that elicit antibodies that cross react with JEV. Here we demonstrate that the WNV NS1 protein not only contains cross-reactive epitopes, but that the antibodies elicited by these cross-reactive epitopes provide partial protection against lethal JEV challenge in a mouse model. Mice immunized with WNV NS1 protein showed reduced morbidity and mortality following both intracerebral and intraperitoneal JEV challenge. WNV NS1 immunization attenuated the extent of lung pathology generated following JEV challenge, and delayed the appearance of other pathological findings including vascular cuffing. By screening and identifying the specific WNV NS1 protein-derived peptides recognized by serum antibodies elicited by immunization with WNV NS1 protein and by JEV challenge, we found after JEV challenge will induce several new epitopes, but which epitope primarily contribute to antibody-mediated cross protection need further evaluation. The knowledge and reagents generated in this study have potential applications in vaccine and subunit vaccine development for WNV and JEV. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Can we differentiate between herpes simplex encephalitis and Japanese encephalitis?

    PubMed

    Kalita, Jayantee; Misra, Usha Kant; Mani, Vinita Elizabeth; Bhoi, Sanjeev Kumar

    2016-07-15

    Herpes simplex encephalitis (HSE) occurs without regional and seasonal predilections. HSE is important to differentiate from arboviral encephalitis in endemic areas because of therapeutic potential of HSE. This study evaluates clinical features, MRI and laboratory findings which may help in differentiating HSE from Japanese encephalitis (JE). Confirmed patients with JE and HSE in last 10years were included. The presenting clinical symptoms including demographic information, seizure, behavioral abnormality, focal weakness and movement disorders were noted. Cranial MRI was done and location and nature of signal alteration were noted. Electroencephalography (EEG), cerebrospinal fluid (CSF), blood counts and serum chemistry were done. Outcome was measured by modified Rankin Scale (mRS). Death, functional outcome and neurological sequelae were noted at 3, 6 and 12months follow up, and compared between HSE and JE. Outcome was categorized as poor (mRS;>2) and good (mRS≤2). 97 patients with JE and 40 HSE were included. JE patients were younger than HSE and occurred in post monsoon period whereas HSE occurred throughout the year. Seizure (86% vs 40%) and behavioral abnormality (48% vs 10%) were commoner in HSE; whereas movement disorders (76% vs 0%) and focal reflex loss (42% vs 10%) were commoner in JE. CSF findings and laboratory parameters were similar in both the groups. Thalamic involvement in JE and temporal involvement in HSE were specific markers of respective encephalitis. Delta slowing on EEG was more frequent in JE than HSE. 20% JE and 30% HSE died in the hospital, and at 1year follow up JE patients showed better outcome compared to HSE (48% vs 24%). Memory loss (72% vs 22%) was the predominant sequelae in HSE. Seizure and behavioral abnormality are common features in HSE whereas focal reflex loss is commoner in JE. In a patient with acute encephalitis, thalamic lesion suggests JE and temporal lobe involvement HSE. Long term outcome in JE is better compared to

  16. Herpes simplex virus-1 evasion of CD8+ T cell accumulation contributes to viral encephalitis.

    PubMed

    Koyanagi, Naoto; Imai, Takahiko; Shindo, Keiko; Sato, Ayuko; Fujii, Wataru; Ichinohe, Takeshi; Takemura, Naoki; Kakuta, Shigeru; Uematsu, Satoshi; Kiyono, Hiroshi; Maruzuru, Yuhei; Arii, Jun; Kato, Akihisa; Kawaguchi, Yasushi

    2017-10-02

    Herpes simplex virus-1 (HSV-1) is the most common cause of sporadic viral encephalitis, which can be lethal or result in severe neurological defects even with antiviral therapy. While HSV-1 causes encephalitis in spite of HSV-1-specific humoral and cellular immunity, the mechanism by which HSV-1 evades the immune system in the central nervous system (CNS) remains unknown. Here we describe a strategy by which HSV-1 avoids immune targeting in the CNS. The HSV-1 UL13 kinase promotes evasion of HSV-1-specific CD8+ T cell accumulation in infection sites by downregulating expression of the CD8+ T cell attractant chemokine CXCL9 in the CNS of infected mice, leading to increased HSV-1 mortality due to encephalitis. Direct injection of CXCL9 into the CNS infection site enhanced HSV-1-specific CD8+ T cell accumulation, leading to marked improvements in the survival of infected mice. This previously uncharacterized strategy for HSV-1 evasion of CD8+ T cell accumulation in the CNS has important implications for understanding the pathogenesis and clinical treatment of HSV-1 encephalitis.

  17. Herpes simplex virus type 1 encephalitis and unusual retinitis in a patient with systemic lupus erythematosus.

    PubMed

    Zhang, L; Liu, J J; Li, M T

    2013-11-01

    In this report we discuss a case of a patient with systemic lupus erythematosus who developed herpes simplex virus type 1(HSV-1) infection presenting with encephalitis as well as necrotic and non-necrotic retinitis. The patient presented with typical clinical symptoms and radiologic abnormalities consistent with HSV-1 encephalitis and HSV-1 retinitis in patients with HIV infection, but lacked cerebrospinal fluid pleocytosis and had bilateral retinitis with poor visual acuity. To the best of our knowledge, this is the first such case reported in the literature.

  18. West Nile encephalitis outbreak in Kerala, India, 2011.

    PubMed

    Anukumar, B; Sapkal, Gajanan N; Tandale, Babasheb V; Balasubramanian, R; Gangale, Daya

    2014-09-01

    An outbreak of acute encephalitis syndrome (AES) was reported in Kerala in India in May 2011. The outbreak features were unusual in terms of seasonality, geographical distribution, age group, and clinical manifestations in comparison to the epidemiological features of Japanese Encephalitis. To detect the etiology of the acute encephalitis syndrome outbreak. Investigation of outbreak was undertaken by collection of brief clinical history and epidemiological details along with the specimens for viral diagnosis. The serum/CSF samples (patients=208) received from the sentinel hospitals were subjected to IgM capture ELISA and RT-PCR specific for Japanese encephalitis (JE) virus and West Nile virus (WNV). The JE/WN IgM positive samples were further tested by serum neutralization assay for the presence of JE and WNV specific neutralizing antibody. Most of the affected patients were aged above 15 years. No spatial clustering of the disease was noticed. Cases were observed in premonsoon and early monsoon season and in JE non-endemic area of Kerala. A total of 47 patient samples were positive for in-house JE IgM capture ELISA and WNV IgM capture ELISA. Serum neutralization assay result revealed that 32 of 42 (76.19%) sera were positive for WNV neutralization antibodies. WNV was isolated from a clinical specimen. Phylogenetic analysis of WNV envelope gene revealed 99% homology with Russian Lineage 1 WNV. West Nile virus (WNV) etiology was confirmed by virus isolation and detection of virus specific antibody from clinical specimen. Phylogenetic analysis grouped the current strain in lineage I West Nile virus. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. The Effect of Vaccination Coverage and Climate on Japanese Encephalitis in Sarawak, Malaysia

    PubMed Central

    Impoinvil, Daniel E.; Ooi, Mong How; Diggle, Peter J.; Caminade, Cyril; Cardosa, Mary Jane; Morse, Andrew P.

    2013-01-01

    Background Japanese encephalitis (JE) is the leading cause of viral encephalitis across Asia with approximately 70,000 cases a year and 10,000 to 15,000 deaths. Because JE incidence varies widely over time, partly due to inter-annual climate variability effects on mosquito vector abundance, it becomes more complex to assess the effects of a vaccination programme since more or less climatically favourable years could also contribute to a change in incidence post-vaccination. Therefore, the objective of this study was to quantify vaccination effect on confirmed Japanese encephalitis (JE) cases in Sarawak, Malaysia after controlling for climate variability to better understand temporal dynamics of JE virus transmission and control. Methodology/principal findings Monthly data on serologically confirmed JE cases were acquired from Sibu Hospital in Sarawak from 1997 to 2006. JE vaccine coverage (non-vaccine years vs. vaccine years) and meteorological predictor variables, including temperature, rainfall and the Southern Oscillation index (SOI) were tested for their association with JE cases using Poisson time series analysis and controlling for seasonality and long-term trend. Over the 10-years surveillance period, 133 confirmed JE cases were identified. There was an estimated 61% reduction in JE risk after the introduction of vaccination, when no account is taken of the effects of climate. This reduction is only approximately 45% when the effects of inter-annual variability in climate are controlled for in the model. The Poisson model indicated that rainfall (lag 1-month), minimum temperature (lag 6-months) and SOI (lag 6-months) were positively associated with JE cases. Conclusions/significance This study provides the first improved estimate of JE reduction through vaccination by taking account of climate inter-annual variability. Our analysis confirms that vaccination has substantially reduced JE risk in Sarawak but this benefit may be overestimated if climate effects

  20. The effect of vaccination coverage and climate on Japanese encephalitis in Sarawak, Malaysia.

    PubMed

    Impoinvil, Daniel E; Ooi, Mong How; Diggle, Peter J; Caminade, Cyril; Cardosa, Mary Jane; Morse, Andrew P; Baylis, Matthew; Solomon, Tom

    2013-01-01

    Japanese encephalitis (JE) is the leading cause of viral encephalitis across Asia with approximately 70,000 cases a year and 10,000 to 15,000 deaths. Because JE incidence varies widely over time, partly due to inter-annual climate variability effects on mosquito vector abundance, it becomes more complex to assess the effects of a vaccination programme since more or less climatically favourable years could also contribute to a change in incidence post-vaccination. Therefore, the objective of this study was to quantify vaccination effect on confirmed Japanese encephalitis (JE) cases in Sarawak, Malaysia after controlling for climate variability to better understand temporal dynamics of JE virus transmission and control. Monthly data on serologically confirmed JE cases were acquired from Sibu Hospital in Sarawak from 1997 to 2006. JE vaccine coverage (non-vaccine years vs. vaccine years) and meteorological predictor variables, including temperature, rainfall and the Southern Oscillation index (SOI) were tested for their association with JE cases using Poisson time series analysis and controlling for seasonality and long-term trend. Over the 10-years surveillance period, 133 confirmed JE cases were identified. There was an estimated 61% reduction in JE risk after the introduction of vaccination, when no account is taken of the effects of climate. This reduction is only approximately 45% when the effects of inter-annual variability in climate are controlled for in the model. The Poisson model indicated that rainfall (lag 1-month), minimum temperature (lag 6-months) and SOI (lag 6-months) were positively associated with JE cases. This study provides the first improved estimate of JE reduction through vaccination by taking account of climate inter-annual variability. Our analysis confirms that vaccination has substantially reduced JE risk in Sarawak but this benefit may be overestimated if climate effects are ignored.

  1. New hematological key for bovine leukemia virus-infected Japanese Black cattle.

    PubMed

    Mekata, Hirohisa; Yamamoto, Mari; Kirino, Yumi; Sekiguchi, Satoshi; Konnai, Satoru; Horii, Yoichiro; Norimine, Junzo

    2018-02-20

    The European Community's (EC) Key, which is also called Bendixen's Key, is a well-established bovine leukemia virus (BLV) diagnostic method that classifies cattle according to the absolute lymphocyte count and age. The EC Key was originally designed for dairy cattle and is not necessarily suitable for Japanese Black (JB) beef cattle. This study revealed the lymphocyte counts in the BLV-free and -infected JB cattle were significantly lower than those in the Holstein cattle. Therefore, applying the EC Key to JB cattle could result in a large number of undetected BLV-infected cattle. Our proposed hematological key, which was designed for JB cattle, improves the detection of BLV-infected cattle by approximately 20%. We believe that this study could help promote BLV control.

  2. Enterovirus 71 encephalomyelitis and Japanese encephalitis can be distinguished by topographic distribution of inflammation and specific intraneuronal detection of viral antigen and RNA.

    PubMed

    Wong, K T; Ng, K Y; Ong, K C; Ng, W F; Shankar, S K; Mahadevan, A; Radotra, B; Su, I J; Lau, G; Ling, A E; Chan, K P; Macorelles, P; Vallet, S; Cardosa, M J; Desai, A; Ravi, V; Nagata, N; Shimizu, H; Takasaki, T

    2012-08-01

    To investigate if two important epidemic viral encephalitis in children, Enterovirus 71 (EV71) encephalomyelitis and Japanese encephalitis (JE) whose clinical and pathological features may be nonspecific and overlapping, could be distinguished. Tissue sections from the central nervous system of infected cases were examined by light microscopy, immunohistochemistry and in situ hybridization. All 13 cases of EV71 encephalomyelitis collected from Asia and France invariably showed stereotyped distribution of inflammation in the spinal cord, brainstem, hypothalamus, cerebellar dentate nucleus and, to a lesser extent, cerebral cortex and meninges. Anterior pons, corpus striatum, thalamus, temporal lobe, hippocampus and cerebellar cortex were always uninflamed. In contrast, the eight JE cases studied showed inflammation involving most neuronal areas of the central nervous system, including the areas that were uninflamed in EV71 encephalomyelitis. Lesions in both infections were nonspecific, consisting of perivascular and parenchymal infiltration by inflammatory cells, oedematous/necrolytic areas, microglial nodules and neuronophagia. Viral inclusions were absent. Immunohistochemistry and in situ hybridization assays were useful to identify the causative virus, localizing viral antigens and RNA, respectively, almost exclusively to neurones. The stereotyped distribution of inflammatory lesions in EV71 encephalomyelitis appears to be very useful to help distinguish it from JE. © 2011 The Authors. Neuropathology and Applied Neurobiology © 2011 British Neuropathological Society.

  3. Ablation of CD11c(hi) dendritic cells exacerbates Japanese encephalitis by regulating blood-brain barrier permeability and altering tight junction/adhesion molecules.

    PubMed

    Kim, Jin Hyoung; Hossain, Ferdaus Mohd Altaf; Patil, Ajit Mahadev; Choi, Jin Young; Kim, Seong Bum; Uyangaa, Erdenebelig; Park, Sang-Youel; Lee, John-Hwa; Kim, Bumseok; Kim, Koanhoi; Eo, Seong Kug

    2016-10-01

    Japanese encephalitis (JE), characterized by extensive neuroinflammation following infection with neurotropic JE virus (JEV), is becoming a leading cause of viral encephalitis due to rapid changes in climate and demography. The blood-brain barrier (BBB) plays an important role in restricting neuroinvasion of peripheral leukocytes and virus, thereby regulating the progression of viral encephalitis. In this study, we explored the role of CD11c(hi) dendritic cells (DCs) in regulating BBB integrity and JE progression using a conditional depletion model of CD11c(hi) DCs. Transient ablation of CD11c(hi) DCs resulted in markedly increased susceptibility to JE progression along with highly increased neuro-invasion of JEV. In addition, exacerbated JE progression in CD11c(hi) DC-ablated hosts was closely associated with increased expression of proinflammatory cytokines (IFN-β, IL-6, and TNF-α) and CC chemokines (CCL2, CCL3, CXCL2) in the brain. Moreover, our results revealed that the exacerbation of JE progression in CD11c(hi) DC-ablated hosts was correlated with enhanced BBB permeability and reduced expression of tight junction and adhesion molecules (claudin-5, ZO-1, occluding, JAMs). Ultimately, our data conclude that the ablation of CD11c(hi) DCs provided a subsidiary impact on BBB integrity and the expression of tight junction/adhesion molecules, thereby leading to exacerbated JE progression. These findings provide insight into the secondary role of CD11c(hi) DCs in JE progression through regulation of BBB integrity and the expression of tight junction/adhesion molecules. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Defining Hsp70 Subnetworks in Dengue Virus Replication Reveals Key Vulnerability in Flavivirus Infection.

    PubMed

    Taguwa, Shuhei; Maringer, Kevin; Li, Xiaokai; Bernal-Rubio, Dabeiba; Rauch, Jennifer N; Gestwicki, Jason E; Andino, Raul; Fernandez-Sesma, Ana; Frydman, Judith

    2015-11-19

    Viral protein homeostasis depends entirely on the machinery of the infected cell. Accordingly, viruses can illuminate the interplay between cellular proteostasis components and their distinct substrates. Here, we define how the Hsp70 chaperone network mediates the dengue virus life cycle. Cytosolic Hsp70 isoforms are required at distinct steps of the viral cycle, including entry, RNA replication, and virion biogenesis. Hsp70 function at each step is specified by nine distinct DNAJ cofactors. Of these, DnaJB11 relocalizes to virus-induced replication complexes to promote RNA synthesis, while DnaJB6 associates with capsid protein and facilitates virion biogenesis. Importantly, an allosteric Hsp70 inhibitor, JG40, potently blocks infection of different dengue serotypes in human primary blood cells without eliciting viral resistance or exerting toxicity to the host cells. JG40 also blocks replication of other medically-important flaviviruses including yellow fever, West Nile and Japanese encephalitis viruses. Thus, targeting host Hsp70 subnetworks provides a path for broad-spectrum antivirals. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Diagnosis of Fatal Human Case of St. Louis Encephalitis Virus Infection by Metagenomic Sequencing, California, 2016.

    PubMed

    Chiu, Charles Y; Coffey, Lark L; Murkey, Jamie; Symmes, Kelly; Sample, Hannah A; Wilson, Michael R; Naccache, Samia N; Arevalo, Shaun; Somasekar, Sneha; Federman, Scot; Stryke, Doug; Vespa, Paul; Schiller, Gary; Messenger, Sharon; Humphries, Romney; Miller, Steve; Klausner, Jeffrey D

    2017-10-01

    We used unbiased metagenomic next-generation sequencing to diagnose a fatal case of meningoencephalitis caused by St. Louis encephalitis virus in a patient from California in September 2016. This case is associated with the recent 2015-2016 reemergence of this virus in the southwestern United States.

  6. Differentiation of West Nile and St. Louis Encephalitis Virus Infections by Use of Noninfectious Virus-Like Particles with Reduced Cross-Reactivity▿ †

    PubMed Central

    Roberson, Jill A.; Crill, Wayne D.; Chang, Gwong-Jen J.

    2007-01-01

    Differential diagnosis of St. Louis encephalitis virus (SLEV) and West Nile virus (WNV) infections can be complicated due to the high degree of cross-reactivity observed in most serodiagnostic assays. In an effort to provide a more specific diagnostic test, we developed virus-like particle (VLP) antigens with reduced cross-reactivity for both SLEV and WNV by identifying and mutating envelope protein amino acids within the cross-reactive epitopes of VLP expression plasmids. To determine the serodiagnostic discriminatory ability of the antigens with reduced cross-reactivity, a panel of 134 human serum samples collected predominately from North American patients with SLEV or WNV infections was used to evaluate the performance of these novel antigens in imunoglobulin M antibody-capture enzyme-linked immunosorbent assays. Positive/negative ratios and the resulting diagnostic classifications were compared between the mutant and the wild-type (WT) VLPs. The mutant VLP antigens were more specific, with higher positive predictive values and higher likelihood ratios than the WT VLP antigens. Both the SLEV and WNV mutant VLPs greatly reduced the observed cross-reactivity, significantly increasing the specificity and sensitivity of the assay. The use of these novel VLP antigens with reduced cross-reactivity in these serodiagnostic assays and others should lead to more accurate diagnoses of current infections, thereby reducing the need for time-consuming and cumbersome confirmatory plaque-reduction neutralization tests to differentiate between SLEV and WNV infections in North America. PMID:17715375

  7. Development of electrochemical immunosensors based on different serum antibody immobilization methods for detection of Japanese encephalitis virus

    NASA Astrophysics Data System (ADS)

    Tran, Quang Huy; Hanh Nguyen, Thi Hong; Mai, Anh Tuan; Thuy Nguyen, Thi; Khue Vu, Quang; Nga Phan, Thi

    2012-03-01

    This paper describes the development of electrochemical immunosensors based on human serum antibodies with different immobilization methods for detection of Japanese encephalitis virus (JEV). Human serum containing anti-JEV antibodies was used to immobilize onto the surface of silanized interdigitated electrodes by four methods: direct adsorption (APTES-serum), covalent binding with a cross linker of glutaraldehyde (APTES-GA-serum), covalent binding with a cross linker of glutaraldehyde combined with anti-human IgG (APTES-GA-anti-HIgG-serum) and covalent binding with a cross linker of glutaraldehyde combined with a bioaffinity of protein A (APTES-GA-PrA-serum). Atomic force microscopy was used to verify surface characteristics of the interdigitated electrodes before and after treatment with serum antibodies. The output signal of the immunosensors was measured by the change of conductivity resulting from the specific binding of JEV antigens and serum antibodies immobilized on the electrodes, with the help of horseradish peroxidase (HRP)-labeled secondary antibody against JEV. The results showed that the APTES-GA-PrA-serum method provided the highest signal of the electrochemical immunosensor for detection of JEV antigens, with the linear range from 25 ng ml-1 to 1 μg ml-1, and the limit of detection was about 10 ng ml-1. This study shows a potential development of novel electrochemical immunosensors applied for virus detection in clinical samples in case of possible outbreaks.

  8. Powassan virus infection: case series and literature review from a single institution

    PubMed Central

    2012-01-01

    Background Powassan virus is a flavivirus related to eastern hemisphere’s tick-borne encephalitis viruses. It can cause a rare but potentially life-threatening disease including encephalitis. Case presentation We report four cases of POWV infection in Minnesota and North Dakota with known exposure to tick bites in 2011. Our first case was an 18-year-old male who dramatically presented with seizure and headache with positive serum analysis for Powassan virus immunoglobulin M. The second case was a 60 year old gentleman with intraparenchymal hemorrhage and was diagnosed via cerebrospinal fluid analysis. Thirdly, a 61 year old male developed altered mental status and encephalitis. Our fourth patient was a 69 year old male who had headache and non-focal weakness who was diagnosed with serum analysis. Conclusion Symptoms of Powassan virus infection ranged from headaches to seizures and severe neurological symptoms. This study serves to highlight the increased detection of Powassan virus infection in the central north United States. This report focuses on the increasing incidence that can lead to increasing efforts for raising awareness regarding this infection. There is a need for clinician vigilance and public attention due to its increasing detection, westward progression and varied clinical presentations. PMID:23111001

  9. Nonstructural Protein L* Species Specificity Supports a Mouse Origin for Vilyuisk Human Encephalitis Virus.

    PubMed

    Drappier, Melissa; Opperdoes, Fred R; Michiels, Thomas

    2017-07-15

    Vilyuisk human encephalitis virus (VHEV) is a picornavirus related to Theiler's murine encephalomyelitis virus (TMEV). VHEV was isolated from human material passaged in mice. Whether this VHEV is of human or mouse origin is therefore unclear. We took advantage of the species-specific activity of the nonstructural L* protein of theiloviruses to track the origin of TMEV isolates. TMEV L* inhibits RNase L, the effector enzyme of the interferon pathway. By using coimmunoprecipitation and functional RNase L assays, the species specificity of RNase L antagonism was tested for L* from mouse (DA) and rat (RTV-1) TMEV strains as well as for VHEV. Coimmunoprecipitation and functional assay data confirmed the species specificity of L* activity and showed that L* from rat strain RTV-1 inhibited rat but not mouse or human RNase L. Next, we showed that the VHEV L* protein was phylogenetically related to L* of mouse viruses and that it failed to inhibit human RNase L but readily antagonized mouse RNase L, unambiguously showing the mouse origin of VHEV. IMPORTANCE Defining the natural host of a virus can be a thorny issue, especially when the virus was isolated only once or when the isolation story is complex. The species Theilovirus includes Theiler's murine encephalomyelitis virus (TMEV), infecting mice and rats, and Saffold virus (SAFV), infecting humans. One TMEV strain, Vilyuisk human encephalitis virus (VHEV), however, was isolated from mice that were inoculated with cerebrospinal fluid of a patient presenting with chronic encephalitis. It is therefore unclear whether VHEV was derived from the human sample or from the inoculated mouse. The L* protein encoded by TMEV inhibits RNase L, a cellular enzyme involved in innate immunity, in a species-specific manner. Using binding and functional assays, we show that this species specificity even allows discrimination between TMEV strains of mouse and of rat origins. The VHEV L* protein clearly inhibited mouse but not human RNase L

  10. Tranylcypromine Reduces Herpes Simplex Virus 1 Infection in Mice

    PubMed Central

    Yao, Hui-Wen; Lin, Pin-Hung; Shen, Fang-Hsiu; Perng, Guey-Chuen; Tung, Yuk-Ying

    2014-01-01

    Herpes simplex virus 1 (HSV-1) infects the majority of the human population and establishes latency by maintaining viral genomes in neurons of sensory ganglia. Latent virus can undergo reactivation to cause recurrent infection. Both primary and recurrent infections can cause devastating diseases, including encephalitis and corneal blindness. Acyclovir is used to treat patients, but virus resistance to acyclovir is frequently reported. Recent in vitro findings reveal that pretreatment of cells with tranylcypromine (TCP), a drug widely used in the clinic to treat neurological disorders, restrains HSV-1 gene transcription by inhibiting the histone-modifying enzyme lysine-specific demethylase 1. The present study was designed to examine the anti-HSV-1 efficacy of TCP in vivo because of the paucity of reports on this issue. Using the murine model, we found that TCP decreased the severity of wild-type-virus-induced encephalitis and corneal blindness, infection with the acyclovir-resistant (thymidine kinase-negative) HSV-1 mutant, and tissue viral loads. Additionally, TCP blocked in vivo viral reactivation in trigeminal ganglia. These results support the therapeutic potential of TCP for controlling HSV-1 infection. PMID:24590478

  11. La Crosse Encephalitis Virus Infection in Field-Collected Aedes albopictus, Aedes japonicus, and Aedes triseriatus in Tennessee.

    PubMed

    Westby, Katie M; Fritzen, Charissa; Paulsen, Dave; Poindexter, Stephanie; Moncayo, Abelardo C

    2015-09-01

    La Crosse virus (LACV) is a mosquito-borne virus and a major cause of pediatric encephalitis in the USA. La Crosse virus emerged in Tennessee and other states in the Appalachian region in 1997. We investigated LACV infection rates and seasonal abundances of the native mosquito vector, Aedes triseriatus, and 2 recently introduced mosquito species, Ae. albopictus and Ae. japonicus, in an emerging disease focus in Tennessee. Mosquitoes were collected using multiple trapping methods specific for Aedes mosquitoes at recent human case sites. Mosquito pools were tested via reverse transcriptase-polymerase chain reaction (RT-PCR) of the S segment to detect multiple Bunyamwera and California serogroup viruses, including LACV, as well as real-time RT-PCR of the M segment. A total of 54 mosquito pools were positive, including wild-caught adult females and laboratory-reared adults, demonstrating transovarial transmission in all 3 species. Maximum likelihood estimates (per 1,000 mosquitoes) were 2.72 for Ae. triseriatus, 3.01 for Ae. albopictus, and 0.63 for Ae. japonicus. We conclude that Ae. triseriatus and Ae. albopictus are important LACV vectors and that Ae. japonicus also may be involved in virus maintenance and transmission.

  12. Interferon production by cells infected with subacute sclerosing panencephalitis (SSPE) virus or measles virus.

    PubMed

    Hasegawa, Shunji; Mori, Natsumi; Satomi, Mika; Jiang, Da-Peng; Hotta, Hak; Matsushige, Takeshi; Ichiyama, Takashi

    2011-12-01

    Subacute sclerosing panencephalitis (SSPE) is a rare progressive neurodegenerative encephalitis caused by some variants of measles virus (MV). The structure of SSPE virus in the brains of SSPE patients is different from that of MV. The difference in interferon (IFN) production between cells infected with SSPE virus and those infected with MV remains unclear. We measured the concentrations of IFN-α, β, γ, and λ1 (interleukin (IL)-29) from MV- or SSPE virus-infected B95a cells (a marmoset B-lymphoblastoid cell line). SSPE virus-infected B95a cells produced significantly higher levels of IFN-α and λ1 than did MV-infected or mock-infected cells. Our results suggest that SSPE virus and MV induce different IFN production profiles. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Complete inactivation of Venezuelan equine encephalitis virus by 1,5-iodonaphthylazide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Anuj; Birla Institute of Technology and Science, Pilani; Raviv, Yossef

    2007-06-29

    Hydrophobic alkylating compounds like 1,5-iodonaphthylazide (INA) partitions into biological membranes and accumulates selectively into the hydrophobic domain of the lipid bilayer. Upon irradiation with far UV light, INA binds selectively to transmembrane proteins in the viral envelope and renders them inactive. Such inactivation does not alter the ectodomains of the membrane proteins thus preserving the structural and conformational integrity of immunogens on the surface of the virus. In this study, we have used INA to inactivate Venezuelan equine encephalitis virus (VEEV). Treatment of VEEV with INA followed by irradiation with UV light resulted in complete inactivation of the virus. Immuno-fluorescencemore » for VEEV and virus titration showed no virus replication in-vitro. Complete loss of infectivity was also achieved in mice infected with INA treated plus irradiated preparations of VEEV. No change in the structural integrity of VEEV particles were observed after treatment with INA plus irradiation as assessed by electron microscopy. This data suggest that such inactivation strategies can be used for developing vaccine candidates for VEEV and other enveloped viruses.« less

  14. CCL2, but not its receptor, is essential to restrict immune privileged central nervous system-invasion of Japanese encephalitis virus via regulating accumulation of CD11b(+) Ly-6C(hi) monocytes.

    PubMed

    Kim, Jin Hyoung; Patil, Ajit Mahadev; Choi, Jin Young; Kim, Seong Bum; Uyangaa, Erdenebileg; Hossain, Ferdaus Mohd Altaf; Park, Sang-Youel; Lee, John Hwa; Kim, Koanhoi; Eo, Seong Kug

    2016-10-01

    Japanese encephalitis virus (JEV) is a re-emerging zoonotic flavivirus that poses an increasing threat to global health and welfare due to rapid changes in climate and demography. Although the CCR2-CCL2 axis plays an important role in trafficking CD11b(+) Ly-6C(hi) monocytes to regulate immunopathological diseases, little is known about their role in monocyte trafficking during viral encephalitis caused by JEV infection. Here, we explored the role of CCR2 and its ligand CCL2 in JE caused by JEV infection using CCR2- and CCL2-ablated murine models. Somewhat surprisingly, the ablation of CCR2 and CCL2 resulted in starkly contrasting susceptibility to JE. CCR2 ablation induced enhanced resistance to JE, whereas CCL2 ablation highly increased susceptibility to JE. This contrasting regulation of JE progression by CCR2 and CCL2 was coupled to central nervous system (CNS) infiltration of Ly-6C(hi) monocytes and Ly-6G(hi) granulocytes. There was also enhanced expression of CC and CXC chemokines in the CNS of CCL2-ablated mice, which appeared to induce CNS infiltration of these cell populations. However, our data revealed that contrasting regulation of JE in CCR2- and CCL2-ablated mice was unlikely to be mediated by innate natural killer and adaptive T-cell responses. Furthermore, CCL2 produced by haematopoietic stem cell-derived leucocytes played a dominant role in CNS accumulation of Ly-6C(hi) monocytes in infected bone marrow chimeric models, thereby exacerbating JE progression. Collectively, our data indicate that CCL2 plays an essential role in conferring protection against JE caused by JEV infection. In addition, blockage of CCR2, but not CCL2, will aid in the development of strategies for prophylactics and therapeutics of JE. © 2016 John Wiley & Sons Ltd.

  15. Neurological Manifestations of Dengue Infection.

    PubMed

    Li, Guo-Hong; Ning, Zhi-Jie; Liu, Yi-Ming; Li, Xiao-Hong

    2017-01-01

    Dengue counts among the most commonly encountered arboviral diseases, representing the fastest spreading tropical illness in the world. It is prevalent in 128 countries, and each year >2.5 billion people are at risk of dengue virus infection worldwide. Neurological signs of dengue infection are increasingly reported. In this review, the main neurological complications of dengue virus infection, such as central nervous system (CNS), peripheral nervous system, and ophthalmic complications were discussed according to clinical features, treatment and possible pathogenesis. In addition, neurological complications in children were assessed due to their atypical clinical features. Finally, dengue infection and Japanese encephalitis were compared for pathogenesis and main clinical manifestations.

  16. [Activating effect of cyclophosphane at late stages of persistence of the tick-borne encephalitis virus].

    PubMed

    Frolova, T V; Pogodina, V V; Larina, G I; Frolova, M P; Karmysheva, V Ia

    1982-01-01

    Conditions of activation of persistent infection caused by subcutaneous inoculation of Syrian hamsters with the B-383 and Vasilchenko strains of tick-borne encephalitis virus (TBE) were studied. After 2 administrations of cyclophosphane (CP) on day 170 of infection clinically manifest disease developed in some animals with increasingly severe pathomorphological lesions in the CNS. Several variants of activated TBE virus were isolated from brains and spleens of CP-treated hamsters. The activation of persistent infection was observed in the presence of marked decreased of humoral immunity level, weight of the thymus, and values of spontaneous rosette-formation.

  17. Zika Virus Antagonizes Type I Interferon Responses during Infection of Human Dendritic Cells

    PubMed Central

    Maddur, Mohan S.; O’Neal, Justin T.; Fedorova, Nadia B.; Puri, Vinita; Pulendran, Bali; Suthar, Mehul S.

    2017-01-01

    Zika virus (ZIKV) is an emerging mosquito-borne flavivirus that is causally linked to severe neonatal birth defects, including microcephaly, and is associated with Guillain-Barre syndrome in adults. Dendritic cells (DCs) are an important cell type during infection by multiple mosquito-borne flaviviruses, including dengue virus, West Nile virus, Japanese encephalitis virus, and yellow fever virus. Despite this, the interplay between ZIKV and DCs remains poorly defined. Here, we found human DCs supported productive infection by a contemporary Puerto Rican isolate with considerable variability in viral replication, but not viral binding, between DCs from different donors. Historic isolates from Africa and Asia also infected DCs with distinct viral replication kinetics between strains. African lineage viruses displayed more rapid replication kinetics and infection magnitude as compared to Asian lineage viruses, and uniquely induced cell death. Infection of DCs with both contemporary and historic ZIKV isolates led to minimal up-regulation of T cell co-stimulatory and MHC molecules, along with limited secretion of inflammatory cytokines. Inhibition of type I interferon (IFN) protein translation was observed during ZIKV infection, despite strong induction at the RNA transcript level and up-regulation of other host antiviral proteins. Treatment of human DCs with RIG-I agonist potently restricted ZIKV replication, while type I IFN had only modest effects. Mechanistically, we found all strains of ZIKV antagonized type I IFN-mediated phosphorylation of STAT1 and STAT2. Combined, our findings show that ZIKV subverts DC immunogenicity during infection, in part through evasion of type I IFN responses, but that the RLR signaling pathway is still capable of inducing an antiviral state, and therefore may serve as an antiviral therapeutic target. PMID:28152048

  18. A case of Powassan virus encephalitis.

    PubMed

    Rossier, E; Harrison, R J; Lemieux, B

    1974-05-18

    A case of encephalitis due to Powassan virus, probably transmitted through tick-bite, is reported in an 8-year-old boy. There was a 50-fold increase in neutralization titre against Powassan virus, but the virus could not be isolated. Other virological investigations were negative.The patient survived and early physiotherapy and speech re-education could be instituted. Nine months after onset of illness the patient showed moderate sequelae, despite a very severe illness.

  19. Incidence and clinical features of herpes simplex viruses (1 and 2) and varicella-zoster virus infections in an adult Korean population with aseptic meningitis or encephalitis.

    PubMed

    Choi, Rihwa; Kim, Gyeong-Moon; Jo, Ik Joon; Sim, Min Seob; Song, Keun Jeong; Kim, Byoung Joon; Na, Duk L; Huh, Hee Jae; Kim, Jong-Won; Ki, Chang-Seok; Lee, Nam Yong

    2014-06-01

    Since there are limited data on the incidence and clinical findings of central nervous system (CNS) infection by three α-herpesviruses including human herpes simplex virus 1 (HSV-1), HSV-2 and varicella-zoster virus (VZV) in Korea, a retrospective analysis of clinical data and polymerase chain reaction (PCR) results was performed in patients who presented with suspicion of acute viral meningitis and/or encephalitis at the emergency department of a tertiary referral hospital in Seoul, Korea. During the 3-year study period, a total of 224 cerebrospinal fluid (CSF) samples from 224 patients were examined. Among the 224 patients, 135 (60.3%) patients were identified as having aseptic meningitis (n = 70, 51.9%), encephalitis (n = 41, 30.4%) or meningoencephalitis (n = 24, 17.8%) at discharge. Twenty-four (17.8%) patients were identified as having VZV meningitis (n = 16, 11.9%), VZV meningoencephalitis (n = 2, 1.5%), HSV-2 meningitis (n = 4, 3.0%), or HSV-1 encephalitis (n = 2, 1.5%). Of the 24 patients infected with the three herpesviruses, immunocompromised patients accounted for 33.3% (n = 8). Skin rashes were observed in half (n = 9) of the patients with VZV, and none with HSV-1 or HSV-2. One patient with VZV meningitis and four patients with brain parenchymal involvement had neurologic sequelae. In conclusion, three herpesviruses are important causative agents of CNS infectious disease with significant morbidity in adults, regardless of the immunologic status. Therefore, CSF should be examined for HSV-1, HSV-2, and VZV using sensitive diagnostic methods in all cases of adult patients with clinical manifestations of CNS disease in order to identify the correct etiology and to determine appropriate therapy. © 2014 Wiley Periodicals, Inc.

  20. Development of a Genetically Engineered Venezuelan Equine Encephalitis Virus Vaccine

    DTIC Science & Technology

    1988-12-20

    immunization, the horses will be returned to the large animal biocontainment facility to be challenged with equine virulent VEE virus. The animals will be...AD £IT FiLE C p DEVELOPMENT OF A GENETICALLY ENGINEERED VENEZUELAN EQUINE ENCEPHALITIS VIRUS VACCINE ANNUAL REPORT to DENNIS W. TRENT 0DECEMBER 20...Engineered Venezuelan Equine Encephalitis Virus Vaccine 12. PERSONAL AUTHOR(S) Dennis W. Trent 13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT

  1. Effects of virus dose and extrinsic incubation temperature on vector competence of Culex nigripalpus (Diptera: Culicidae) for St. Louis encephalitis virus.

    PubMed

    Richards, Stephanie L; Anderson, Sheri L; Lord, Cynthia C; Tabachnick, Walter J

    2012-11-01

    Culex nigripalpus Theobald is a primary vector of St. Louis encephalitis virus in the southeastern United States. Cx. nigripalpus females were fed blood containing a low (4.0 +/- 0.01 log10 plaque-forming unit equivalents (PFUeq) /ml) or high (4.7 +/- 0.1 log10 PFUeq/ml) St. Louis encephalitis virus dose and maintained at extrinsic incubation temperatures (EIT) of 25 or 28 degrees C for 12 d. Vector competence was measured via quantitative real-time reverse transcriptase polymerase chain reaction to estimate PFUeq using rates of infection, dissemination, and transmission. There were no differences in infection rates between the two EITs at either dose. The low dose had higher infection rates at both EITs. Dissemination rates were significantly higher at 28 degrees C compared with 25 degrees C at both doses. Virus transmission was observed (<7%) only at 28 degrees C for both doses. The virus titer in body tissues was greater at 28 degrees C compared with 25 degrees C at both doses. The difference between the EITs was greater at the low dose, resulting in a higher titer for the low dose than the high dose at 28 degrees C. Virus titers in leg tissues were greater in mosquitoes fed the high versus low dose, but were not influenced by EIT. Further investigations using a variety of environmental and biological factors would be useful in exploring the complexity of vector competence.

  2. Effects of Virus Dose and Extrinsic Incubation Temperature on Vector Competence of Culex nigripalpus (Diptera: Culicidae) for St. Louis Encephalitis Virus

    PubMed Central

    RICHARDS, STEPHANIE L.; ANDERSON, SHERI L.; LORD, CYNTHIA C.; TABACHNICK, WALTER J.

    2013-01-01

    Culex nigripalpus Theobald is a primary vector of St. Louis encephalitis virus in the southeastern United States. Cx. nigripalpus females were fed blood containing a low (4.0 ± 0.01 log10 plaque-forming unit equivalents (PFUeq)/ml) or high (4.7 ± 0.1 log10 PFUeq/ml) St. Louis encephalitis virus dose and maintained at extrinsic incubation temperatures (EIT) of 25 or 28°C for 12 d. Vector competence was measured via quantitative real-time reverse transcriptase polymerase chain reaction to estimate PFUeq using rates of infection, dissemination, and transmission. There were no differences in infection rates between the two EITs at either dose. The low dose had higher infection rates at both EITs. Dissemination rates were significantly higher at 28°C compared with 25°C at both doses. Virus transmission was observed (<7%) only at 28°C for both doses. The virus titer in body tissues was greater at 28°C compared with 25°C at both doses. The difference between the EITs was greater at the low dose, resulting in a higher titer for the low dose than the high dose at 28°C. Virus titers in leg tissues were greater in mosquitoes fed the high versus low dose, but were not influenced by EIT. Further investigations using a variety of environmental and biological factors would be useful in exploring the complexity of vector competence. PMID:23270182

  3. Comparison of immune responses of brown-headed cowbird and related blackbirds to west Nile and other mosquito-borne encephalitis viruses.

    PubMed

    Reisen, William K; Hahn, D Caldwell

    2007-07-01

    The rapid geographic spread of West Nile virus (family Flaviviridae, genus Flavivirus, WNV) across the United States has stimulated interest in comparative host infection studies to delineate competent avian hosts critical for viral amplification. We compared the host competence of four taxonomically related blackbird species (Icteridae) after experimental infection with WNV and with two endemic, mosquito-borne encephalitis viruses, western equine encephalomyelitis virus (family Togaviridae, genus Alphavirus, WEEV), and St. Louis encephalitis virus (family Flaviviridae, genus Flavivirus, SLEV). We predicted differences in disease resistance among the blackbird species based on differences in life history, because they differ in geographic range and life history traits that include mating and breeding systems. Differences were observed among the response of these hosts to all three viruses. Red-winged Blackbirds were more susceptible to SLEV than Brewer's Blackbirds, whereas Brewer's Blackbirds were more susceptible to WEEV than Red-winged Blackbirds. In response to WNV infection, cowbirds showed the lowest mean viremias, cleared their infections faster, and showed lower antibody levels than concurrently infected species. Brown-headed Cowbirds also exhibited significantly lower viremia responses after infection with SLEV and WEEV as well as coinfection with WEEV and WNV than concurrently infected icterids. We concluded that cowbirds may be more resistant to infection to both native and introduced viruses because they experience heightened exposure to a variety of pathogens of parenting birds during the course of their parasitic life style.

  4. Comparison of immune responses of brown-headed cowbird and related blackbirds to West Nile and other mosquito-borne encephalitis viruses

    USGS Publications Warehouse

    Reisen, W.K.; Hahn, D.C.

    2007-01-01

    The rapid geographic spread of West Nile virus (family Flaviviridae, genus Flavivirus, WNV) across the United States has stimulated interest in comparative host infection studies to delineate competent avian hosts critical for viral amplification. We compared the host competence of four taxonomically related blackbird species (Icteridae) after experimental infection with WNV and with two endemic, mosquito-borne encephalitis viruses, western equine encephalomyelitis virus (family Togaviridae, genus Alphavirus, WEEV), and St, Louis encephalitis virus (family Flaviviridae, genus Flavivirus, SLEV). We predicted differences in disease resistance among the blackbird species based on differences in life history, because they differ in geographic range and life history traits that include mating and breeding systems. Differences were observed among the response of these hosts to all three viruses, Red-winged Blackbirds were more susceptible to SLEV than Brewer's Blackbirds, whereas Brewer's Blackbirds were more susceptible to WEEV than Red-winged Blackbirds. In response to WNV infection, cowbirds showed the lowest mean viremias, cleared their infections faster, and showed lower antibody levels than concurrently infected species. Brown-headed Cowbirds also exhibited significantly lower viremia responses after infection with SLEV and WEEV as well as coinfection with WEEV and WNV than concurrently infected icterids. We concluded that cowbirds may be more resistant to infection to both native and introduced viruses because they experience heightened exposure to a variety of pathogens of parenting birds during the course of their parasitic life style.

  5. Change in Dengue and Japanese Encephalitis Seroprevalence Rates in Sri Lanka

    PubMed Central

    Jeewandara, Chandima; Gomes, Laksiri; Paranavitane, S. A.; Tantirimudalige, Mihiri; Panapitiya, Sumedha Sandaruwan; Jayewardene, Amitha; Fernando, Samitha; Fernando, R. H.; Prathapan, Shamini

    2015-01-01

    Background Sri Lanka has been affected by epidemics of dengue infections for many decades and the incidence and severity of dengue infections have been rising each year. Therefore, we investigated the age stratified seroprevalence of dengue infections in order to facilitate future dengue vaccine strategies. In addition, since the symptomatic dengue infections have increased during the past few decades, we also investigated the possible association with Japanese Encephalitis Virus (JEV) antibody seropositivity with symptomatic dengue in a community cohort in Sri Lanka. Methods 1689 healthy individuals who were attending a primary health care facility were recruited. Dengue and JEV antibody status was determined in all individuals and JEV vaccination status was recorded. Results 1152/1689 (68.2%) individuals were seropositive for dengue and only 133/1152 (11.5%) of them had been hospitalized to due to dengue. A significant and positive correlation was observed for dengue antibody seropositivity and age in children (Spearmans R = 0.84, p = 0.002) and in adults (Spearmans R = 0.96, p = 0.004). We observed a significant rise in the age stratified seroprevalence rates in children over a period of 12 years. For instance, in year 2003 the annual seroconversion rate was 1.5% per annum, which had risen to 3.79% per annum by 2014. We also found that both adults (p<0.001) and in children (p = 0.03) who were hospitalized due to dengue were more likely to be seropositive for JEV antibodies. However, 244 (91.4%) of adults who were seropositive for JEV had not had the JEV vaccine. Conclusions Dengue seroprevalence rates have risen significantly over the last 12 years in Sri Lanka, possibly due to increased transmission. As individuals who were hospitalized due to dengue were more likely to be seropositive for JEV, the possibility of cross-reactive assays and/or of JEV infection on immunity to the DENV and clinical disease severity should be further investigated. PMID:26696417

  6. Tick-borne encephalitis virus in dogs - is this an issue?

    PubMed Central

    2011-01-01

    The last review on Tick-borne encephalitis (TBE) in dogs was published almost ten years ago. Since then, this zoonotic tick-borne arbovirus has been geographically spreading and emerging in many regions in Eurasia and continues to do so. Dogs become readily infected with TBE virus but they are accidental hosts not capable to further spread the virus. They seroconvert upon infection but they seem to be much more resistant to the clinical disease than humans. Apart from their use as sentinels in endemic areas, however, an increasing number of case reports appeared during the last decade thus mirroring the rising public health concerns. Owing to the increased mobility of people travelling to endemic areas with their companion dogs, this consequently leads to problems in recognizing and diagnosing this severe infection in a yet non-endemic area, simply because the veterinarians are not considering TBE. This situation warrants an update on the epidemiology, clinical presentation and possible preventions of TBE in the dog. PMID:21489255

  7. Innate immune response during herpes simplex virus encephalitis and development of immunomodulatory strategies.

    PubMed

    Piret, Jocelyne; Boivin, Guy

    2015-09-01

    Herpes simplex viruses are large double-stranded DNA viruses. These viruses have the ability to establish a lifelong latency in sensory ganglia and to invade and replicate in the CNS. Apart from relatively benign mucosal infections, HSV is responsible for severe illnesses including HSV encephalitis (HSE). HSE is the most common cause of sporadic, potentially fatal viral encephalitis in Western countries. If left untreated, the mortality rate associated with HSE is approximately 70%. Despite antiviral therapy, the mortality is still higher than 30%, and almost 60% of surviving individuals develop neurological sequelae. It is suggested that direct virus-related and indirect immune-mediated mechanisms contribute to the damages occurring in the CNS during HSE. In this manuscript, we describe the innate immune response to HSV, the development of HSE in mice knock-out for proteins of the innate immune system as well as inherited deficiencies in key components of the signaling pathways involved in the production of type I interferon that could predispose individuals to develop HSE. Finally, we review several immunomodulatory strategies aimed at modulating the innate immune response at a critical time after infection that were evaluated in mouse models and could be combined with antiviral therapy to improve the prognosis of HSE. In conclusion, the cerebral innate immune response that develops during HSE is a "double-edged sword" as it is critical to control viral replication in the brain early after infection, but, if left uncontrolled, may also result in an exaggerated inflammatory response that could be detrimental to the host. Copyright © 2015 John Wiley & Sons, Ltd.

  8. Diagnosis of Zika Virus Infection by Peptide Array and Enzyme-Linked Immunosorbent Assay.

    PubMed

    Mishra, Nischay; Caciula, Adrian; Price, Adam; Thakkar, Riddhi; Ng, James; Chauhan, Lokendra V; Jain, Komal; Che, Xiaoyu; Espinosa, Diego A; Montoya Cruz, Magelda; Balmaseda, Angel; Sullivan, Eric H; Patel, Jigar J; Jarman, Richard G; Rakeman, Jennifer L; Egan, Christina T; Reusken, Chantal B E M; Koopmans, Marion P G; Harris, Eva; Tokarz, Rafal; Briese, Thomas; Lipkin, W Ian

    2018-03-06

    Zika virus (ZIKV) is implicated in fetal stillbirth, microcephaly, intracranial calcifications, and ocular anomalies following vertical transmission from infected mothers. In adults, infection may trigger autoimmune inflammatory polyneuropathy. Transmission most commonly follows the bite of infected Aedes mosquitoes but may also occur through sexual intercourse or receipt of blood products. Definitive diagnosis through detection of viral RNA is possible in serum or plasma within 10 days of disease onset, in whole blood within 3 weeks of onset, and in semen for up to 3 months. Serological diagnosis is nonetheless critical because few patients have access to molecular diagnostics during the acute phase of infection and infection may be associated with only mild or inapparent disease that does not prompt molecular testing. Serological diagnosis is confounded by cross-reactivity of immune sera with other flaviviruses endemic in the areas where ZIKV has recently emerged. Accordingly, we built a high-density microarray comprising nonredundant 12-mer peptides that tile, with one-residue overlap, the proteomes of Zika, dengue, yellow fever, West Nile, Ilheus, Oropouche, and chikungunya viruses. Serological analysis enabled discovery of a ZIKV NS2B 20-residue peptide that had high sensitivity (96.0%) and specificity (95.9%) versus natural infection with or vaccination against dengue, chikungunya, yellow fever, West Nile, tick-borne encephalitis, or Japanese encephalitis virus in a microarray assay and an enzyme-linked immunosorbent assay (ELISA) of early-convalescent-phase sera (2 to 3 weeks after onset of symptomatic infection). IMPORTANCE The emergence of Zika virus (ZIKV) as a teratogen is a profound challenge to global public health. Molecular diagnosis of infection is straightforward during the 3-week period when patients are viremic. However, serological diagnosis thereafter of historical exposure has been confounded by cross-reactivity. Using high-density peptide

  9. A case of Powassan virus encephalitis

    PubMed Central

    Rossier, Edmond; Harrison, Robert J.; Lemieux, Bernard

    1974-01-01

    A case of encephalitis due to Powassan virus, probably transmitted through tick-bite, is reported in an 8-year-old boy. There was a 50-fold increase in neutralization titre against Powassan virus, but the virus could not be isolated. Other virological investigations were negative. The patient survived and early physiotherapy and speech re-education could be instituted. Nine months after onset of illness the patient showed moderate sequelae, despite a very severe illness. PMID:4829843

  10. West Nile Virus Infection in Sheep.

    PubMed

    Rimoldi, G; Mete, A; Adaska, J M; Anderson, M L; Symmes, K P; Diab, S

    2017-01-01

    West Nile virus (WNV) infection has been detected in many species of birds and mammals, but scant information is available about the disease in small ruminants. West Nile virus was diagnosed in 6 sheep with neurological signs and encephalitis, in California between 2002 and 2014. All sheep had severe lymphoplasmacytic meningoencephalitis. Lymphoplasmacytic myelitis was also detected in 2 sheep where the spinal cord was examined. Brain tissue was positive for WNV detected by polymerase chain reaction in 6 of 6 sheep and by immunohistochemistry (IHC) in 5 of 6 sheep. Viral antigen was not detected by IHC in extraneural tissues in the 3 sheep examined. West Nile virus RNA was sequenced from 2 of 6 sheep, and each one clusters closely with WNV isolated from mosquito pools from nearby locations at similar times. West Nile virus was the most common cause of viral encephalitis in sheep diagnosed at this laboratory between 2002 and 2014, accounting for 6 of 9 sheep.

  11. Vertical and horizontal transmission of tilapia larvae encephalitis virus: the bad and the ugly.

    PubMed

    Sinyakov, Michael S; Belotsky, Sandro; Shlapobersky, Mark; Avtalion, Ramy R

    2011-02-05

    Impairment of innate immunity in tilapia larvae after vertical and horizontal infection with the newly characterized tilapia larvae encephalitis virus (TLEV) was accessed by evaluation of cell-mediated reactive oxygen species (ROS) production in affected fish with the use of horseradish peroxidase-amplified luminol-dependent chemiluminescence assay. The priming in-vivo infection with TLEV resulted in downregulation of ROS response in both vertically- and horizontally-infected fish; this suppression was further exacerbated by specific in-vitro booster infection with the same virus. Application of Ca ionophore and phorbol myristate acetate as alternative nonspecific boosters enabled restoration of ROS release in vertically-infected but not in horizontally-infected larvae. The results indicate severe TLEV-imposed phagocyte dysfunction in affected larvae. The difference in restoration potential of ROS production after vertical and horizontal virus transmission is interpreted in the frame of principal distinctions between the two modes. Copyright © 2010 Elsevier Inc. All rights reserved.

  12. Bovine herpes virus infections in cattle.

    PubMed

    Nandi, S; Kumar, Manoj; Manohar, M; Chauhan, R S

    2009-06-01

    Bovine herpes virus 1 (BHV-1) is primarily associated with clinical syndromes such as rhinotracheitis, pustular vulvovaginitis and balanoposthitis, abortion, infertility, conjunctivitis and encephalitis in bovine species. The main sources of infection are the nasal exudates and the respiratory droplets, genital secretions, semen, fetal fluids and tissues. The BHV-1 virus can become latent following a primary infection with a field isolate or vaccination with an attenuated strain. The viral genomic DNA has been demonstrated in the sensory ganglia of the trigeminal nerve in infectious bovine rhinotracheitis (IBR) and in sacral spinal ganglia in pustular vulvovaginitis and balanoposthitis cases. BHV-1 infections can be diagnosed by detection of virus or virus components and antibody by serological tests or by detection of genomic DNA by polymerase chain reaction (PCR), nucleic acid hybridization and sequencing. Inactivated vaccines and modified live virus vaccines are used for prevention of BHV-1 infections in cattle; subunit vaccines and marker vaccines are under investigation.

  13. Encephalitis

    MedlinePlus

    ... due to some viruses, including: Measles Mumps Polio Rabies Rubella Varicella (chickenpox) Other viruses that cause encephalitis ... Vaccinate animals to prevent encephalitis caused by the rabies virus.

  14. Diagnosis of herpes simplex virus infection by immunofluorescence.

    PubMed Central

    Taber, L H; Brasier, F; Couch, R B; Greenberg, S B; Jones, D; Knight, V

    1976-01-01

    The utility of the indirect immunofluorescent antibody (IFA) technique for diagnosis of herpes simplex virus (HSV) infection was examined by testing specimens for this agent from 31 patients with encephalitis or meningitis, 17 with conjunctivitis, 19 with genital disease, and 1 with genital disease and meningitis. Brain biopsy tissue from four patients with encephalitis was positive by IFA and virus culture for HSV. Leukocytes in cerebrospinal fluid from these four patients and one with HSV meningitis were also positive by IFA, but virus isolation attempts on the fluid were all negative. Conjunctival scrapings from two patients with conjunctivitis were positive for HSV by both IFA and virus culture. Eleven of 12 culture-positive lesions of herpes progenitalis were positive by IFA, and 1 dark field-positive syphilitic chancre was also positive for HSV by both IFA and culture. Evidence for specificity of the results was provided by internal controls in each test and negative results from patients with other diagnoses. Thus, the IFA technique constituted a rapid, sensitive, and specific diagnostic method for the diagnosis of HSV infections. PMID:178689

  15. Challenges of Vaccine Development for Zika Virus.

    PubMed

    Blackman, Marcia A; Kim, In-Jeong; Lin, Jr-Shiuan; Thomas, Stephen J

    2018-03-01

    The emergence of outbreaks of Zika virus (ZIKV) in Brazil in 2015 was associated with devastating effects on fetal development and prompted a world health emergency and multiple efforts to generate an effective vaccine against infection. There are now more than 40 vaccine candidates in preclinical development and six in clinical trials. Despite similarities with other flaviviruses to which successful vaccines have been developed, such as yellow fever virus and Japanese Encephalitis virus, there are unique challenges to the development and clinical trials of a vaccine for ZIKV.

  16. Encephalitis - Multiple Languages

    MedlinePlus

    ... dialect) (繁體中文) Expand Section Vaccine Information Statement (VIS) -- Japanese Encephalitis Vaccine: What You Need to Know - English PDF Vaccine Information Statement (VIS) -- Japanese Encephalitis Vaccine: What You Need to Know - 繁體中文 ( ...

  17. Development of a recombinase polymerase amplification lateral flow dipstick (RPA-LFD) for the field diagnosis of caprine arthritis-encephalitis virus (CAEV) infection.

    PubMed

    Tu, Po-An; Shiu, Jia-Shian; Lee, Shu-Hwae; Pang, Victor Fei; Wang, De-Chi; Wang, Pei-Hwa

    2017-05-01

    Caprine arthritis-encephalitis (CAE) in goats is a complex disease syndrome caused by a lentivirus. This persistent viral infection results in arthritis in adult goats and encephalitis in lambs. The prognosis for the encephalitic form is normally poor, and this form of the disease has caused substantial economic losses for goat farmers. Hence, a more efficient detection platform based on recombinase polymerase amplification (RPA) and a lateral flow dipstick (LFD) was developed in the present study for detecting the proviral DNA of caprine arthritis-encephalitis virus (CAEV). Under the optimal incubation conditions, specifically, 30min at 37°C for RPA followed by 5min at room temperature for LFD, the assay was found to be sensitive to a lower limit of 80pg of total DNA and 10 copies of plasmid DNA. Furthermore, there was no cross-reaction with other tested viruses, including goat pox virus and bovine leukemia virus. Given its simplicity and portability, this RPA-LFD protocol can serve as an alternative tool to ELISA for the primary screening of CAEV, one that is suitable for both laboratory and field application. When the RPA-LFD was applied in parallel with serological ELISA for the detection of CAEV in field samples, the RPA-LFD assay exhibited a higher sensitivity than the traditional method, and 82% of the 200 samples collected in Taiwan were found to be positive. To our knowledge, this is the first report providing evidence to support the use of an RPA-LFD assay as a specific and sensitive platform for detecting CAEV proviral DNA in goats in a faster manner, one that is also applicable for on-site utilization at farms and that should be useful in both eradication programs and epidemiological studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. [Meningitis and encephalitis in Poland in 2010].

    PubMed

    Parda, Natalia; Polkowska, Aleksandra

    2012-01-01

    Annually 2 000-3 000 cases of meningitis and encephalitis are notified to the Polish surveillance system. The leading etiologic agents of the bacterial infections are: N. meningitidis, S. pneumoniae, H. influenzae type B and L. monocytogenes. The most common causes of bacterial infections in children are: E. coli, S. agalactiae and H. influenzae type B. The viral infections are mainly caused by the following pathogens: Echovirus, Coxsackie virus group A and B. The agents responsible for the viral infections are also: arboviruses, Herpes simplex virus and mumps virus. The objectives of the present article are to analyze the epidemiology of meningitis and encephalitis in Poland in 2010 and to present the information on the vaccines used to prevent the discussed infections. The analysis was based on the data retrieved from the questionnaires used for the surveillance purposes, aggregated data on meningitis and encephalitis published in "Infectious diseases and poisonings in Poland in 2010", aggregated data on the vaccination coverage published in "Vaccinations in Poland in 2010", "Case definitions for the infectious diseases used for the surveillance purposes in 2009-2011" and Polish Immunization Programme for 2010. In 2010, Poland reported 3 063 neuroinfections--nearly 22% more than in 2009. The incidence rate was 8.03 cases per 100 000 population. From the analysis of data transpired that of the notified cases, 1 619 were of viral etiology, 846--were bacterial and 598 of other or unknown origin. Given the bacterial infections of determined etiology, the leading pathogenic agent was S. pneumoniae (180 cases), following by N. meningitidis (146 cases) and Haemophilus influenzae typu B (11 cases). Among confirmed cases of the viral infections, the predominant were tick-borne encephalitis cases (294). Compared to the data from 2009, the epidemiologic situation of the meningitis and encephalitis in Poland in 2010 has not changed significantly.

  19. Functionality of Dengue Virus Specific Memory T Cell Responses in Individuals Who Were Hospitalized or Who Had Mild or Subclinical Dengue Infection

    PubMed Central

    Jeewandara, Chandima; Adikari, Thiruni N.; Gomes, Laksiri; Fernando, Samitha; Fernando, R. H.; Perera, M. K. T.; Ariyaratne, Dinuka; Kamaladasa, Achala; Salimi, Maryam; Prathapan, Shamini

    2015-01-01

    Background Although antibody responses to dengue virus (DENV) in naturally infected individuals have been extensively studied, the functionality of DENV specific memory T cell responses in relation to clinical disease severity is incompletely understood. Methodology/Principal findings Using ex vivo IFNγ ELISpot assays, and by determining cytokines produced in ELISpot supernatants, we investigated the functionality of DENV-specific memory T cell responses in a large cohort of individuals from Sri Lanka (n=338), who were naturally infected and were either hospitalized due to dengue or had mild or sub clinical dengue infection. We found that T cells of individuals with both past mild or sub clinical dengue infection and who were hospitalized produced multiple cytokines when stimulated with DENV-NS3 peptides. However, while DENV-NS3 specific T cells of those with mild/sub clinical dengue infection were more likely to produce only granzyme B (p=0.02), those who were hospitalized were more likely to produce both TNFα and IFNγ (p=0.03) or TNFα alone. We have also investigated the usefulness of a novel T cell based assay, which can be used to determine the past infecting DENV serotype. 92.4% of DENV seropositive individuals responded to at least one DENV serotype of this assay and none of the seronegatives responded. Individuals who were seronegative, but had received the Japanese encephalitis vaccine too made no responses, suggesting that the peptides used in this assay did not cross react with the Japanese encephalitis virus. Conclusions/significance The types of cytokines produced by DENV-specific memory T cells appear to influence the outcome of clinical disease severity. The novel T cell based assay, is likely to be useful in determining the past infecting DENV serotype in immune-epidemiological studies and also in dengue vaccine trials. PMID:25875020

  20. Autophagy interaction with herpes simplex virus type-1 infection

    PubMed Central

    O'Connell, Douglas; Liang, Chengyu

    2016-01-01

    abstract More than 50% of the U.S. population is infected with herpes simplex virus type-I (HSV-1) and global infectious estimates are nearly 90%. HSV-1 is normally seen as a harmless virus but debilitating diseases can arise, including encephalitis and ocular diseases. HSV-1 is unique in that it can undermine host defenses and establish lifelong infection in neurons. Viral reactivation from latency may allow HSV-1 to lay siege to the brain (Herpes encephalitis). Recent advances maintain that HSV-1 proteins act to suppress and/or control the lysosome-dependent degradation pathway of macroautophagy (hereafter autophagy) and consequently, in neurons, may be coupled with the advancement of HSV-1-associated pathogenesis. Furthermore, increasing evidence suggests that HSV-1 infection may constitute a gradual risk factor for neurodegenerative disorders. The relationship between HSV-1 infection and autophagy manipulation combined with neuropathogenesis may be intimately intertwined demanding further investigation. PMID:26934628

  1. [Role of Powassan virus in the etiological structure of tick-borne encephalitis in the Primorsky Kray].

    PubMed

    Leonova, G N; Isachkova, L M; Baranov, N I; Krugliak, S P

    1980-01-01

    Composite studies conducted annually in the Primorsky kray showed the tick-borne encephalitis virus to play the main etiological role in the group of encephalites with the spring-summer incidence. In 1976--1978, virological studies of 69 cases of the disease yielded 11 strains of tick-borne encephalitis virus. In 1978, from the blood of clinically normal woman after a tick bite strain 555 was first isolated which was identified as Powassan virus, and antigenemia was observed for 53 days using the fluorescent antibody technique. In the same period, serological examinations of the blood sera from 117 patients demonstrated antibody to tick-borne encephalitis virus in 69.2%, to Powassan virus in 4,3% and to both viruses simultaneously in 4.3%. Besides, antibody to tick-borne encephalitis virus, Powassan virus and both viruses simultaneously was found in patients with progredient forms of tick-borne encephalitis and in subjects with the history of tick attachment.

  2. Purpura fulminans associated with acute West Nile virus encephalitis.

    PubMed

    Shah, Sheevam; Fite, Laura Paul; Lane, Natalie; Parekh, Palak

    2016-02-01

    Purpura fulminans is a progressive thrombotic disorder that presents with widespread purpura due to deficiency or dysfunction of protein C or protein S. Lesions present as well-demarcated erythematous macules that progress to irregular areas of hemorrhagic necrosis.West Nile virus is a member of the Flaviviridae family transmitted to humans through the bite of various mosquito species. It manifests as West Nile fever in 25% of those infected and less commonly as neuroinvasive disease. An African American man in his fortiespresented with altered mental status and was noted to have evidence of disseminated intravascular coagulation according to his lab data. He then developed dusky skin discoloration and systemic flaccid bullae with desquamation. Biopsy was consistent with purpura fulminans and the patient eventually developed symmetric peripheral gangrene, requiring amputations of all four extremities. Infectious work up revealed positive testing for IgM and IgG antibodies in serum and cerebrospinal fluid leading to the diagnosis of acute West Nile Virus encephalitis. We present this case to describe the rarely reported association of purpura fulminans with West Nile Virus infection. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Eastern Equine Encephalitis in Latin America

    PubMed Central

    Carrera, Jean-Paul; Forrester, Naomi; Wang, Eryu; Vittor, Amy Y.; Haddow, Andrew D.; López-Vergès, Sandra; Abadía, Ivan; Castaño, Elizabeth; Sosa, Nestor; Báez, Carmen; Estripeaut, Dora; Díaz, Yamilka; Beltrán, Davis; Cisneros, Julio; Cedeño, Hector G.; da Rosa, Amelia P. Travassos; Hernandez, Humberto; Martínez-Torres, Alex O.; Tesh, Robert B.; Weaver, Scott C.

    2013-01-01

    BACKGROUND The eastern equine encephalitis (EEE) and Venezuelan equine encephalitis (VEE) viruses are pathogens that infect humans and horses in the Americas. Outbreaks of neurologic disease in humans and horses were reported in Panama from May through early August 2010. METHODS We performed antibody assays and tests to detect viral RNA and isolate the viruses in serum samples from hospitalized patients. Additional cases were identified with enhanced surveillance. RESULTS A total of 19 patients were hospitalized for encephalitis. Among them, 7 had confirmed EEE, 3 had VEE, and 1 was infected with both viruses; 3 patients died, 1 of whom had confirmed VEE. The clinical findings for patients with EEE included brain lesions, seizures that evolved to status epilepticus, and neurologic sequelae. An additional 99 suspected or probable cases of alphavirus infection were detected during active surveillance. In total, 13 cases were confirmed as EEE, along with 11 cases of VEE and 1 case of dual infection. A total of 50 cases in horses were confirmed as EEE and 8 as VEE; mixed etiologic factors were associated with 11 cases in horses. Phylogenetic analyses of isolates from 2 cases of equine infection with the EEE virus and 1 case of human infection with the VEE virus indicated that the viruses were of enzootic lineages previously identified in Panama rather than new introductions. CONCLUSIONS Cases of EEE in humans in Latin America may be the result of ecologic changes that increased human contact with enzootic transmission cycles, genetic changes in EEE viral strains that resulted in increased human virulence, or an altered host range. (Funded by the National Institutes of Health and the Secretaría Nacional de Ciencia, Tecnología e Innovación, Panama.) PMID:23964935

  4. [Epidemiology of encephalitis caused by arbovirus in the Brazilian Amazonia].

    PubMed

    Vasconcelos, P F; Da Rosa, J F; Da Rosa, A P; Dégallier, N; Pinheiro, F de P; Sá Filho, G C

    1991-01-01

    An overview of ecological, epidemiological and clinical findings of potential arthropod-borne encephalitis viruses circulating in the Amazon Region of Brazil are discussed. These viruses are the Eastern Equine Encephalitis (EEE), Western Equine Encephalitis (WEE), St. Louis Encephalitis (SLE), Mucambo (MUC) and Pixuna (PIX). These last two are subtypes (III and IV) of Venezuelan Equine Encephalitis virus. The areas of study were the highways and projects of development, as well as places where outbreaks of human diseases caused by arboviruses had been detected. These viruses are widespread in all Amazonia, and at least four of them, EEE, WEE, SLE and MUC are pathogenic to man. EEE and WEE infections were detected by serology, while SLE and MUC by either serology and virus isolation. The PIX virus has the lowest prevalence and, it was isolated in only a few cases, one being from a laboratory infection. Wild birds are the main hosts for all these viruses, except MUC, whose major hosts are rodents. The symptoms presented by infected people were generally a mild febrile illness. Although, jaundice was observed in two individuals from whom SLE was isolated. A comparison of the clinical symptoms presented by the patients in the Amazon Region and other areas of America, especially in the USA is made. In Brazilian Amazon region epidemics have not been detected although, at least, one EEE epizootic was recorded in Bragança, Para State, in 1960. At that time, of 500 horses that were examined 61% were positive to EEE by HI and of them 8.2% died. On the other hand, SLE has caused four epizootics in a forest near Belem. Wild birds and sentinel monkeys were infected, but no human cases were reported.

  5. Potential Role of Deer Tick Virus in Powassan Encephalitis Cases in Lyme Disease–endemic Areas of New York, USA

    PubMed Central

    Camargo, Jose F.; White, Jennifer L.; Backenson, Bryon P.; Dupuis, Alan P.; Escuyer, Kay L.; Kramer, Laura; St. George, Kirsten; Chatterjee, Debarati; Prusinski, Melissa; Wormser, Gary P.; Wong, Susan J.

    2013-01-01

    Powassan virus, a member of the tick-borne encephalitis group of flaviviruses, encompasses 2 lineages with separate enzootic cycles. The prototype lineage of Powassan virus (POWV) is principally maintained between Ixodes cookei ticks and the groundhog (Marmota momax) or striped skunk (Mephitis mephitis), whereas the deer tick virus (DTV) lineage is believed to be maintained between Ixodes scapularis ticks and the white-footed mouse (Peromyscus leucopus). We report 14 cases of Powassan encephalitis from New York during 2004–2012. Ten (72%) of the patients were residents of the Lower Hudson Valley, a Lyme disease–endemic area in which I. scapularis ticks account for most human tick bites. This finding suggests that many of these cases were caused by DTV rather than POWV. In 2 patients, DTV infection was confirmed by genetic sequencing. As molecular testing becomes increasingly available, more cases of Powassan encephalitis may be determined to be attributable to the DTV lineage. PMID:24274334

  6. Mutation analysis of the fusion domain region of St. Louis encephalitis virus envelope protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trainor, Nicole B.; Crill, Wayne D.; Roberson, Jill A.

    2007-04-10

    The immune response to flavivirus infections produces both species-specific and flavivirus cross-reactive antibodies. The presence of cross-reactive antibodies complicates serodiagnosis of flavivirus infections, especially secondary infections caused by a heterologous virus. A successful public health response to the growing global threat posed by flaviviruses necessitates the development of virus-specific diagnostic antigens. The flavivirus envelope (E) glycoprotein is the principle antigen stimulating protective immunity during infection. Using recombinant St. Louis encephalitis virus-like particles (VLPs), we have identified amino acid residues involved in flavivirus cross-reactive epitope determinants. Most significant among the residues studied are three highly conserved amino acids in the fusionmore » peptide: Gly104, Gly106, and Leu107. Substitutions of these residues dramatically influenced VLP secretion and cross-reactive monoclonal antibody reactivity. These results provide critical insight into the antigenic structure of the flaviviral E protein and toward development of species-specific diagnostic antigens that should improve both flavivirus diagnosis and estimates of disease burden.« less

  7. Influence of the CCR-5/MIP-1 α Axis in the Pathogenesis of Rocio Virus Encephalitis in a Mouse Model

    PubMed Central

    Chávez, Juliana H.; França, Rafael F. O.; Oliveira, Carlo J. F.; de Aquino, Maria T. P.; Farias, Kleber J. S.; Machado, Paula R. L.; de Oliveira, Thelma F. M.; Yokosawa, Jonny; Soares, Edson G.; da Silva, João S.; da Fonseca, Benedito A. L.; Figueiredo, Luiz T. M.

    2013-01-01

    Rocio virus (ROCV) caused an outbreak of human encephalitis during the 1970s in Brazil and its immunopathogenesis remains poorly understood. CC-chemokine receptor 5 (CCR5) is a chemokine receptor that binds to macrophage inflammatory protein (MIP-1 α). Both molecules are associated with inflammatory cells migration during infections. In this study, we demonstrated the importance of the CCR5 and MIP-1 α, in the outcome of viral encephalitis of ROCV-infected mice. CCR5 and MIP-1 α knockout mice survived longer than wild-type (WT) ROCV-infected animals. In addition, knockout mice had reduced inflammation in the brain. Assessment of brain viral load showed mice virus detection five days post-infection in wild-type and CCR5−/− mice, while MIP-1 α−/− mice had lower viral loads seven days post-infection. Knockout mice required a higher lethal dose than wild-type mice as well. The CCR5/MIP-1 α axis may contribute to migration of infected cells to the brain and consequently affect the pathogenesis during ROCV infection. PMID:24080631

  8. [The clinico-epidemiological characteristics of Powassan encephalitis in the southern Soviet Far East].

    PubMed

    Leonova, G N; Sorokina, M N; Krugliak, S P

    1991-03-01

    The present communication deals with the analysis of 14 cases of Powassan encephalitis. As shown in this study, the course of this infection may be accompanied by symptoms indicating the presence of cerebral and meningeal lesions (in 7 cases meningoencephalitic forms with one fatal outcome and in 2 cases meningeal forms were registered) or take febrile and inapparent forms (5 cases). Powassan encephalitis was found to give characteristic symptoms of cerebellovestibular lesions, differentiating this disease from tick-borne encephalitis (TBE). The cases of mixed infections caused by TBE virus, Powassan encephalitis virus and tick-born Borrelia were found to be possible.

  9. [Streptomycin--an activator of persisting tick-borne encephalitis virus].

    PubMed

    Malenko, G V; Pogodina, V V; Karmysheva, V Ia

    1984-01-01

    The effect of streptomycin (C) on persistence of tick-borne encephalitis (TBE) virus in Syrian hamsters infected with 3 strains of the virus (41/65, Aina/1448, Vasilchenko ) intracerebrally or subcutaneously was studied. In the animals not given C the infectious virus could be detected in the brain for 8-14 days but not later although their organs (mostly brains and spleens) contained the hemagglutinating antigen and viral antigen detectable by immunofluorescence. Intramuscularly C was given twice daily for 13-35 days in a daily dose of 200 mg/kg. The C-treated hamsters yielded 7 virulent TBE virus strains: 3 from the brain, 3 from the spleen, and one from the blood. No virus could be isolated from the liver, kidneys, or lungs despite the use of various methods for isolation including tissue explantation. The activating effect of C was observed against the background of 4-fold decrease in the titre of complement-fixing and antihemagglutinating antibodies. C exerted its activating effect both at early (70 days) and late (9 months) stages of TBE virus persistence. The activating effect of C appears to be due to its immunosuppressive properties and neurotoxic action on the CNS.

  10. [West Nile virus expanding in Europe].

    PubMed

    Reusken, Chantal B E M; van Maanen, C Kees; Martina, Byron E; Sonder, Gerard J B; van Gorp, Eric C M; Koopmans, Marion P G

    2011-01-01

    The areas of Europe in which West Nile virus (WNV)-transmission to humans is observed have expanded over the last few years, with endemic circulation amongst animals of southern Europe. This situation calls for heightened vigilance to the clinical presentation of WNV infection in humans. The average incubation period lasts 2-6 days. Of those infected, 20% will experience a mild, non-specific disease presentation such as high fever, headache, myalgia, possibly with rash and lymphadenopathy; <1% will develop severe neurological symptoms. Rare complications include: myelitis, optic neuritis, rhombencephalitis, polyradiculitis, myocarditis, pancreatitis and fulminant hepatitis. Clinicians should take WNV infection into consideration when making a differential diagnosis for such symptoms in patients who have returned from areas with potential virus circulation. Given the increase in the spread of WNV within Europe, this now holds true for continental travellers as well as those destined for the Americas, Africa and Asia. It is important to include the patient's travel history, clinical symptoms and any occurrences of vaccination against viruses causing Japanese encephalitis, tick-borne encephalitis and yellow fever into the diagnostic workup, as the antibodies against these diseases show cross-reactivity.

  11. [Herpetic encephalitis: a clinical case].

    PubMed

    Dryhant, L P; Sereda, V H; Kushpiĭ, O V; Tkachenko, V V; Kravchuk, N A; Inhula, N I; Sizina, A V; Sachko, Iu Iu; Andrusenko, A S; Tytenko, Iu I; Babirad, A M

    2012-01-01

    An example of diagnostics and treatment of patient is in-process made with herpetic encephalitis. It is well-proven in researches, that a herpetic encephalitis is 11.5% among sharp encephalitises. Morbidity is sporadic, some researchers specify on an increase its spring. An infection can be passed tiny and pin a way. Seasonal vibrations are not incident to the herpetic encephalitis. Two peaks of morbidity are on 5-30 years and age more senior 50 years. More than in 95% cases the virus of simple herpes of type serves as an exciter of herpetic encephalitis 1. A characteristic triad of herpetic encephalitis is the sharp feverish beginning, development of cramps of dzheksonovskogo type and violation of consciousness, developing usually after a brief respirator infection. Sometimes sudden development of cramps and loss of consciousness is preceded a fever. Example of such development of disease is made an in our work.

  12. [Interaction of the Siberian and Far Eastern subtypes of tick-borne encephalitis virus in mammals with mixed infection. Competition of the subtypes in acute and inapparent infection].

    PubMed

    Gerasimov, S G; Pogodina, V V; Koliasnikova, N M; Karan', L S; Malenko, G V; Levina, L S

    2011-01-01

    Long-term monitoring of natural tick-borne encephalitis virus (TBEV) populations could reveal the change of TBEV subtypes, the displacement of the Far Eastern (FE) subtype, and its substitution for the Siberian (Sib) subtype. Acute and inapparent mixed infections were studied in Syrian hamsters to understand this phenomenon. The animals were inoculated with the Sib subtype and then with the FE one of TBEV (JQ845440-YaroslavI-Aver-08 and Fj214132-Kemerovo-Phateev-1954 strains). The inapparent form developed more frequently in mixed infection. Viral progeny was genotyped by reverse transcription polymerase chain reaction and hybridization fluorescence detection using genotype-specific probes. Independent reproduction of strains in the brain gave way to competition. The FE subtype dominated in hamster youngsters with acute infection. The Sib subtype had selective benefits in asymptomatic infection (adult hamsters infected intracerebrally and subcutaneously and youngsters infected subcutaneously). The competition of the subtypes was imperfect.

  13. Virus signaling and apoptosis in the central nervous system infection.

    PubMed

    Perkins, Dana

    2005-09-01

    Viruses target the central nervous system (CNS) incidentally, due to complications of systemic infection, or specifically, by ascending via the axons of peripheral and cranial nerves. In the CNS, viruses cause acute disease (viz. encephalitis), latent infections or neurodegenerative pathology. Causation of acute disease or immune-mediated pathology, and virus involvement in the etiology of chronic neurodegenerative diseases depends, at least in part, on the ability to commander signaling pathways. Better understanding of these virus-host cell interactions will help identify molecular targets for the development of improved therapeutic strategies.

  14. [Activating effect of adrenaline, prednisolone and vincristine in the late periods of tick-borne encephalitis virus persistence].

    PubMed

    Frolova, T V; Pogodina, V V

    1984-01-01

    The activating effect of adrenalin (A), prednisolone (P), and vincristine (V) on persistent infection caused by subcutaneous inoculation of Syrian hamsters with the Vasilchenko and B-383 strains of tick-borne encephalitis virus (TBE) was studied. The drugs were administered once, twice, or three times 250-270 days after virus inoculation. Complement-fixing antigen was found in the organs of the infected animals given no A, P, or V; in the organ explants synthesis of hemagglutinin was observed but no infectious virus could be isolated. After treatment of the infected hamsters with A, P, or V organ explants yielded TBE virus strains which showed either high or low virulence for white mice. The activated TBE virus strains were obtained from explants of hamster brains and spleens but not liver. V produced the most marked activating effect, A the least.

  15. Herpes simplex encephalitis : from virus to therapy.

    PubMed

    Rozenberg, Flore; Deback, Claire; Agut, Henri

    2011-06-01

    Herpes simplex virus (HSV) is the cause of herpes simplex encephalitis (HSE), a devastating human disease which occurs in 2-4 cases per million/year. HSE results either from a primary infection or virus reactivation, in accordance with the common pattern of HSV infection which is a chronic lifelong process. However its pathophysiology remains largely unknown and its poor prognosis is in contrast with the usually good tolerance of most clinical herpetic manifestations. HSE is due to HSV type 1 (HSV-1) in most cases but HSV type 2 (HSV-2) may be also implicated, especially in infants in the context of neonatal herpes. Polymerase chain reaction detection of HSV DNA in cerebrospinal fluid is the diagnosis of choice for HSE. Acyclovir, a nucleoside analogue which inhibits viral DNA polymerase activity, is the reference treatment of HSE while foscarnet constitutes an alternative therapy and the efficacy of cidofovir is currently uncertain in that context. The emergence of HSV resistance to acyclovir, a phenomenon which is mainly observed among immunocompromised patients, is a current concern although no case of HSE due to an acyclovir-resistant HSV strain has been reported to date. Nevertheless the identification and development of novel therapeutic strategies against HSV appears to be a non dispensable objective for future research in virology.

  16. Diagnosis and treatment of viral encephalitis

    PubMed Central

    Chaudhuri, A; Kennedy, P

    2002-01-01

    Acute encephalitis constitutes a medical emergency. In most cases, the presence of focal neurological signs and focal seizures will distinguish encephalitis from encephalopathy. Acute disseminated encephalomyelitis is a non-infective inflammatory encephalitis that may require to be treated with steroids. Acute infective encephalitis is usually viral. Herpes simplex encephalitis (HSE) is the commonest sporadic acute viral encephalitis in the Western world. Magnetic resonance imaging of brain is the investigation of choice in HSE and the diagnosis may be confirmed by the polymerase chain reaction test for the virus in the cerebrospinal fluid. In this article, we review the diagnosis, investigations, and management of acute encephalitis. With few exceptions (for example, aciclovir for HSE), no specific therapy is available for most forms of viral encephalitis. Mortality and morbidity may be high and long term sequelae are known among survivors. The emergence of unusual forms of zoonotic encephalitis has posed an important public health problem. Vaccination and vector control measures are useful preventive strategies in certain arboviral and zoonotic encephalitis. However, we need better antiviral therapy to meet the challenge of acute viral encephalitis more effectively. PMID:12415078

  17. Controlling Nipah virus encephalitis in Bangladesh: Policy options.

    PubMed

    Dhillon, Jasmine; Banerjee, Arinjay

    2015-08-01

    Nipah virus (NiV) encephalitis is endemic in Bangladesh, with yearly seasonal outbreaks occurring since 2003. NiV has a notable case fatality rate, 75-100 per cent depending on the strain. In Bangladesh, primary transmission to humans is believed to be because of consumption of bat-contaminated date palm sap (DPS). Both the disease and the virus have been investigated extensively, however efforts to implement preventive strategies have met social and cultural challenges. Here we present a variety of community approaches to control the spread of Nipah encephalitis, along with advantages and disadvantages of each. This information may be useful to health workers and policymakers in potential NiV outbreak areas in Southeast Asia.

  18. Alexander the Great and West Nile Virus Encephalitis

    PubMed Central

    Marr, John S.

    2003-01-01

    Alexander the Great died in Babylon in 323 BC. His death at age 32 followed a 2-week febrile illness. Speculated causes of death have included poisoning, assassination, and a number of infectious diseases. One incident, mentioned by Plutarch but not considered by previous investigators, may shed light on the cause of Alexander’s death. The incident, which occurred as he entered Babylon, involved a flock of ravens exhibiting unusual behavior and subsequently dying at his feet. The inexplicable behavior of ravens is reminiscent of avian illness and death weeks before the first human cases of West Nile virus infection were identified in the United States. We posit that Alexander may have died of West Nile encephalitis. PMID:14725285

  19. Chikungunya infection presenting as mild encephalitis with a reversible lesion in the splenium: a case report.

    PubMed

    Nagpal, Kadam; Agarwal, Puneet; Kumar, Amit; Reddi, Rajashekhar

    2017-06-01

    Chikungunya fever is an Aedes mosquito-transmitted infection caused by chikungunya virus, an RNA virus in the family Togaviridae. The disease is characteristically manifested as fever, arthralgia, and/or rash. Various neurological manifestations like meningoencephalitis, myelitis, and myeloneuropathy have been mentioned in various reports. We present a rare case of chikungunya fever presenting with mild encephalitis with a reversible lesion of the splenium (MERS), which showed complete clinical and radiological recovery.

  20. Nominal dysphasia and euphoria caused by EBV encephalitis

    PubMed Central

    Carman, Kursat Bora; Yakut, Ayten; Ekici, Arzu; Isikay, Sedat

    2013-01-01

    Encephalitis is an uncommon neurological complication of Ebstein-Barr virus (EBV) infection and usually presents with confusion, decreased level of consciousness, fever, epileptic seizure, emotional instability and chorea. We present a patient with EBV encephalitis, characterised by nominal dysphasia, euphoria and personality changes. PMID:23307455

  1. Powassan virus infection presenting as acute disseminated encephalomyelitis in Tennessee.

    PubMed

    Hicar, Mark D; Edwards, Kathryn; Bloch, Karen

    2011-01-01

    Powassan virus is a rarely diagnosed cause of encephalitis, and is associated with significant neurologic sequelae. Although symptomatic infections with Powassan virus occur primarily in adults, we report a case of confirmed Powassan neuroinvasive disease in a child presenting to a Tennessee hospital, with symptoms and imaging studies suggestive of acute disseminated encephalomyelitis.

  2. BK virus encephalitis with thrombotic microangiopathy in an allogeneic hematopoietic stem cell transplant recipient.

    PubMed

    Lopes da Silva, R; Ferreira, I; Teixeira, G; Cordeiro, D; Mafra, M; Costa, I; Bravo Marques, J M; Abecasis, M

    2011-04-01

    BK virus (BKV) infection occurs most often in immunocompromised hosts, in the setting of renal or bone marrow transplantation. Hemorrhagic cystitis is the commonest manifestation but in recent years infections in other organ systems have been reported. We report an unusual case of biopsy-proven BKV encephalitis in a hematopoietic stem cell transplant patient who subsequently developed thrombotic microangiopathy. As far as we know, this is the first report of such an association in a transplant patient. © 2010 John Wiley & Sons A/S.

  3. Fulminant encephalitis associated with a vaccine strain of rubella virus.

    PubMed

    Gualberto, Felipe Augusto Souza; de Oliveira, Maria Isabel; Alves, Venancio A F; Kanamura, Cristina T; Rosemberg, Sérgio; Sato, Helena Keico; Arantes, Benedito A F; Curti, Suely Pires; Figueiredo, Cristina Adelaide

    2013-12-01

    Involvement of the central nervous system is common in measles, but rare in rubella. However, rubella virus (RV) can cause a variety of central nervous system syndromes, including meningitis, encephalitis, Guillain-Barré syndrome and sub acute sclerosing panencephalitis. We report the occurrence of one fatal case of the encephalitis associated with measles-rubella (MR) vaccine during an immunization campaign in São Paulo, Brazil. A 31 year-old-man, previously in good health, was admitted at emergency room, with confusion, agitation, inability to stand and hold his head up. Ten days prior to admission, he was vaccinated with combined MR vaccine (Serum Institute of India) and three days later he developed 'flu-like' illness with fever, myalgia and headache. Results of clinical and laboratory exams were consistent with a pattern of viral encephalitis. During hospitalization, his condition deteriorated rapidly with tetraplegia and progression to coma. On the 3rd day of hospitalization he died. Histopathology confirmed encephalitis and immunohistochemistry was positive for RV on brain tissue. RV was also detected by qPCR and virus isolation in cerebrospinal fluid, brain and other clinical samples. The sequence obtained from the isolated virus was identical to that of the RA 27/3 vaccine strain. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Japanese encephalitis vaccines: Immunogenicity, protective efficacy, effectiveness, and impact on the burden of disease

    PubMed Central

    Gore, Milind M.

    2017-01-01

    ABSTRACT Japanese encephalitis (JE) is a serious public health concern in most of Asia. The disease is caused by JE virus (JEV), a flavivirus transmitted by Culex mosquitoes. Several vaccines have been developed to control JE in endemic areas as well as to protect travelers and military personnel who visit or are commissioned from non-endemic to endemic areas. The vaccines include inactivated vaccines produced in mouse brain or cell cultures, live attenuated vaccines, and a chimeric vaccine based on the live attenuated yellow fever virus 17D vaccine strain. All the marketed vaccines belong to the JEV genotype III, but have been shown to be efficacious against other genotypes and strains, with varying degrees of cross-neutralization, albeit at levels deemed to be protective. The protective responses have been shown to last three or more years, depending on the type of vaccine and the number of doses. This review presents a brief account of the different JE vaccines, their immunogenicity and protective ability, and the impact of JE vaccines in reducing the burden of disease in endemic countries. PMID:28301270

  5. Ecologic studies of Venezuelan encephalitis virus in Peru during 1970-1971.

    PubMed

    Scherer, W F; Madalengoitia, J; Flores, W; Acosta, M

    1975-04-01

    Venezuelan encephalitis (VE) virus has intermittently produced epidemics and equine epizootics on the dry Pacific coastal plain of Peru since at least the 1930's. However, evidence that the virus exists in the Amazon region of Peru to the east of the Andes mountains was not obtained until antibodies were found in human sera collected in 1965, and 10 strains of the virus were isolated in a forest near the city of Iquitos, Peru during February and March 1971. Eight strains came from mosquitoes and two from dead sentinel hamsters. Three hamsters exposed in forests near Iquitos developed VE virus antibodies suggesting that hamster-benign strains also exist there. Antibody tests of equine sera revealed no evidence that VE virus was actively cycling during the late 1950's or 1960's in southern coastal Peru, where equine epizootics had occurred in the 1930's and 1940's. In northern coastal Peru bordering Ecuador, antibodies were present in equine sera, presumably residual from the 1969 outbreak caused by subtype I virus, since neutralizing antibody titers were higher to subtype I virus than to subtypes III or IV. No VE virus was detected in this northern region during the dry season of 1970 by use of sentinel hamsters. The possibility is considered that VE epidemics and equine epizootics on the Pacific coast of Peru are caused by movements of virus in infected vertebrates traversing Andean passes or in infected vertebrates or mosquitoes carried in airplanes from the Amazon region.

  6. Fatal Transplant-Associated West Nile Virus Encephalitis and Public Health Investigation—California, 2010

    PubMed Central

    Rabe, Ingrid B.; Schwartz, Brian S.; Farnon, Eileen C.; Josephson, S. Andrew; Webber, Allison B.; Roberts, John Paul; de Mattos, Angelo M.; Gallay, Brian J.; van Slyck, Sean; Messenger, Sharon L.; Yen, Cynthia J.; Bloch, Evan M.; Drew, Clifton P.; Fischer, Marc; Glaser, Carol A.

    2017-01-01

    Background In December 2010, a case of West Nile virus (WNV) encephalitis occurring in a kidney recipient shortly after organ transplantation was identified. Methods A public health investigation was initiated to determine the likely route of transmission, detect potential WNV infections among recipients from the same organ donor, and remove any potentially infected blood products or tissues. Available serum, cerebrospinal fluid, and urine samples from the organ donor and recipients were tested for WNV infection by nucleic acid testing and serology. Results Two additional recipients from the same organ donor were identified, their clinical and exposure histories were reviewed, and samples were obtained. WNV RNA was retrospectively detected in the organ donor’s serum. After transplantation, the left kidney recipient had serologic and molecular evidence of WNV infection and the right kidney recipient had prolonged but clinically inapparent WNV viremia. The liver recipient showed no clinical signs of infection but had flavivirus IgG antibodies; however, insufficient samples were available to determine the timing of infection. No remaining infectious products or tissues were identified. Conclusions Clinicians should suspect WNV as a cause of encephalitis in organ transplant recipients and report cases to public health departments for prompt investigation of the source of infection. Increased use of molecular testing and retaining pretransplantation sera may improve the ability to detect and diagnose transplant-associated WNV infection in organ transplant recipients. PMID:23823653

  7. Characterization of a novel insect-specific flavivirus from Brazil: Potential for inhibition of infection of arthropod cells with medically important flaviviruses.

    DOE PAGES

    Kenney, Joan L.; Solberg, Owen D.; Langevin, Stanley A.; ...

    2014-01-12

    In the past decade, there has been an upsurge in the number of newly described insect-specific flaviviruses isolated pan-globally. We recently described the isolation of a novel flavivirus (tentatively designated ‘Nhumirim virus’; NHUV) that represents an example of a unique subset of apparently insect-specific viruses that phylogenetically affiliate with dual-host mosquito-borne flaviviruses despite appearing to be limited to replication in mosquito cells. We characterized the in vitro growth potential and 3' untranslated region (UTR) sequence homology with alternative flaviviruses, and evaluated the virus’s capacity to suppress replication of representative Culex spp.-vectored pathogenic flaviviruses in mosquito cells. Only mosquito cell linesmore » were found to support NHUV replication, further reinforcing the insect-specific phenotype of this virus. Analysis of the sequence and predicted RNA secondary structures of the 3' UTR indicated NHUV to be most similar to viruses within the yellow fever serogroup and Japanese encephalitis serogroup, and viruses in the tick-borne flavivirus clade. NHUV was found to share the fewest conserved sequence elements when compared with traditional insect-specific flaviviruses. This suggests that, despite apparently being insect specific, this virus probably diverged from an ancestral mosquito-borne flavivirus. Co-infection experiments indicated that prior or concurrent infection of mosquito cells with NHUV resulted in a significant reduction in virus production of West Nile virus (WNV), St Louis encephalitis virus (SLEV) and Japanese encephalitis virus. As a result, the inhibitory effect was most effective against WNV and SLEV with over a 106-fold and 104-fold reduction in peak titres, respectively.« less

  8. Characterization of a novel insect-specific flavivirus from Brazil: Potential for inhibition of infection of arthropod cells with medically important flaviviruses.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kenney, Joan L.; Solberg, Owen D.; Langevin, Stanley A.

    In the past decade, there has been an upsurge in the number of newly described insect-specific flaviviruses isolated pan-globally. We recently described the isolation of a novel flavivirus (tentatively designated ‘Nhumirim virus’; NHUV) that represents an example of a unique subset of apparently insect-specific viruses that phylogenetically affiliate with dual-host mosquito-borne flaviviruses despite appearing to be limited to replication in mosquito cells. We characterized the in vitro growth potential and 3' untranslated region (UTR) sequence homology with alternative flaviviruses, and evaluated the virus’s capacity to suppress replication of representative Culex spp.-vectored pathogenic flaviviruses in mosquito cells. Only mosquito cell linesmore » were found to support NHUV replication, further reinforcing the insect-specific phenotype of this virus. Analysis of the sequence and predicted RNA secondary structures of the 3' UTR indicated NHUV to be most similar to viruses within the yellow fever serogroup and Japanese encephalitis serogroup, and viruses in the tick-borne flavivirus clade. NHUV was found to share the fewest conserved sequence elements when compared with traditional insect-specific flaviviruses. This suggests that, despite apparently being insect specific, this virus probably diverged from an ancestral mosquito-borne flavivirus. Co-infection experiments indicated that prior or concurrent infection of mosquito cells with NHUV resulted in a significant reduction in virus production of West Nile virus (WNV), St Louis encephalitis virus (SLEV) and Japanese encephalitis virus. As a result, the inhibitory effect was most effective against WNV and SLEV with over a 106-fold and 104-fold reduction in peak titres, respectively.« less

  9. A simian hemorrhagic fever virus isolate from persistently infected baboons efficiently induces hemorrhagic fever disease in Japanese macaques

    PubMed Central

    Vatter, Heather A.; Donaldson, Eric F.; Huynh, Jeremy; Rawlings, Stephanie; Manoharan, Minsha; Legasse, Alfred; Planer, Shannon; Dickerson, Mary F.; Lewis, Anne D.; Colgin, Lois M.A.; Axthelm, Michael K.; Pecotte, Jerilyn K.; Baric, Ralph S.; Wong, Scott W.; Brinton, Margo A.

    2014-01-01

    Simian hemorrhagic fever virus is an arterivirus that naturally infects species of African nonhuman primates causing acute or persistent asymptomatic infections. Although it was previously estimated that 1% of baboons are SHFV-positive, more than 10% of wild-caught and captive-bred baboons tested were SHFV positive and the infections persisted for more than 10 years with detectable virus in the blood (100–1000 genomes/ml). The sequences of two baboon SHFV isolates that were amplified by a single passage in primary macaque macrophages showed a very high degree of identity to each other as well as to the genome of SHFV-LVR, a laboratory strain isolated in the 1960s. Infection of Japanese macaques with 100 PFU of a baboon isolate consistently produced high level viremia, pro-inflammatory cytokines, elevated tissue factor levels and clinical signs indicating coagulation defects. The baboon virus isolate provides a reliable BSL2 model of viral hemorrhagic fever disease in macaques. PMID:25463617

  10. A simian hemorrhagic fever virus isolate from persistently infected baboons efficiently induces hemorrhagic fever disease in Japanese macaques.

    PubMed

    Vatter, Heather A; Donaldson, Eric F; Huynh, Jeremy; Rawlings, Stephanie; Manoharan, Minsha; Legasse, Alfred; Planer, Shannon; Dickerson, Mary F; Lewis, Anne D; Colgin, Lois M A; Axthelm, Michael K; Pecotte, Jerilyn K; Baric, Ralph S; Wong, Scott W; Brinton, Margo A

    2015-01-01

    Simian hemorrhagic fever virus is an arterivirus that naturally infects species of African nonhuman primates causing acute or persistent asymptomatic infections. Although it was previously estimated that 1% of baboons are SHFV-positive, more than 10% of wild-caught and captive-bred baboons tested were SHFV positive and the infections persisted for more than 10 years with detectable virus in the blood (100-1000 genomes/ml). The sequences of two baboon SHFV isolates that were amplified by a single passage in primary macaque macrophages had a high degree of identity to each other as well as to the genome of SHFV-LVR, a laboratory strain isolated in the 1960s. Infection of Japanese macaques with 100PFU of a baboon isolate consistently produced high level viremia, pro-inflammatory cytokines, elevated tissue factor levels and clinical signs indicating coagulation defects. The baboon virus isolate provides a reliable BSL2 model of viral hemorrhagic fever disease in macaques. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Regulation of Apoptosis during Flavivirus Infection

    PubMed Central

    Okamoto, Toru; Suzuki, Tatsuya; Kusakabe, Shinji; Tokunaga, Makoto; Hirano, Junki; Miyata, Yuka; Matsuura, Yoshiharu

    2017-01-01

    Apoptosis is a type of programmed cell death that regulates cellular homeostasis by removing damaged or unnecessary cells. Its importance in host defenses is highlighted by the observation that many viruses evade, obstruct, or subvert apoptosis, thereby blunting the host immune response. Infection with Flaviviruses such as Japanese encephalitis virus (JEV), Dengue virus (DENV) and West Nile virus (WNV) has been shown to activate several signaling pathways such as endoplasmic reticulum (ER)-stress and AKT/PI3K pathway, resulting in activation or suppression of apoptosis in virus-infected cells. On the other hands, expression of some viral proteins induces or protects apoptosis. There is a discrepancy between induction and suppression of apoptosis during flavivirus infection because the experimental situation may be different, and strong links between apoptosis and other types of cell death such as necrosis may make it more difficult. In this paper, we review the effects of apoptosis on viral propagation and pathogenesis during infection with flaviviruses. PMID:28846635

  12. Regulation of Apoptosis during Flavivirus Infection.

    PubMed

    Okamoto, Toru; Suzuki, Tatsuya; Kusakabe, Shinji; Tokunaga, Makoto; Hirano, Junki; Miyata, Yuka; Matsuura, Yoshiharu

    2017-08-28

    Apoptosis is a type of programmed cell death that regulates cellular homeostasis by removing damaged or unnecessary cells. Its importance in host defenses is highlighted by the observation that many viruses evade, obstruct, or subvert apoptosis, thereby blunting the host immune response. Infection with Flaviviruses such as Japanese encephalitis virus (JEV), Dengue virus (DENV) and West Nile virus (WNV) has been shown to activate several signaling pathways such as endoplasmic reticulum (ER)-stress and AKT/PI3K pathway, resulting in activation or suppression of apoptosis in virus-infected cells. On the other hands, expression of some viral proteins induces or protects apoptosis. There is a discrepancy between induction and suppression of apoptosis during flavivirus infection because the experimental situation may be different, and strong links between apoptosis and other types of cell death such as necrosis may make it more difficult. In this paper, we review the effects of apoptosis on viral propagation and pathogenesis during infection with flaviviruses.

  13. Diagnosis and management of acute encephalitis.

    PubMed

    Halperin, J J

    2017-01-01

    Encephalitis is typically viral (approximately half of diagnosed cases) or autoimmune (about a quarter) with the remainder remaining undiagnosable at this time. All require general supportive care but only a minority requires intensive care admission - in these intubation, to protect the airway or to treat status epilepticus with anesthetic drugs, may be needed. In some dysautonomia with wide blood pressure fluctuations is the principal concern. Remarkably, in addition to supportive care, specific treatment options are available for the majority - immune-modulating therapy for those with autoimmune disorders, antiviral therapy for herpes simplex 1 and 2, and varicella-zoster encephalitis. Flavivirus infections (West Nile, Japanese encephalitis, tick-borne encephalitis) remain the most common other identified cause of encephalitis but no specific intervention is available. Overall long-term outcomes are favorable in the majority of patients with encephalitis, a proportion that hopefully will improve with further advances in diagnostic technology and therapeutic interventions. © 2017 Elsevier B.V. All rights reserved.

  14. Etiology and prognosis of acute viral encephalitis and meningitis in Chinese children: a multicentre prospective study.

    PubMed

    Ai, Junhong; Xie, Zhengde; Liu, Gang; Chen, Zongbo; Yang, Yong; Li, Yuning; Chen, Jing; Zheng, Guo; Shen, Kunling

    2017-07-14

    In China, there were few studies about the pathogens of acute viral encephalitis and meningitis in children in recent years. The aims of this study were to characterize the etiology and prognosis of acute viral encephalitis and meningitis in Chinese children. This was a multicentre prospective study. Two hundred and sixty one viral encephalitis patients and 285 viral meningitis patients were enrolled. The mean age of viral encephalitis and meningitis were 5.88 ± 3.60 years and 6.39 ± 3.57 years, respectively. Real-time reverse transcription PCR and multiplex PCR were used to detect human enteroviruses and herpes viruses in cerebrospinal fluid (CSF) of patients with encephalitis or meningitis. The enzyme-linked immune absorbent assay (ELISA) was used for detecting IgM antibody against Japanese encephalitis virus (JEV) in CSF and against mumps virus, tick-borne encephalitis virus (TBEV), dengue virus and rubella virus in acute serum. The clinical and outcome data were collected during patients' hospitalization. The etiology of viral encephalitis was confirmed in 52.5% patients. The primary pathogen was human enteroviruses (27.7%) in viral encephalitis. The incidence of sequelae and the fatality rate of viral encephalitis with confirmed etiology were 7.5% and 0.8%, respectively. The etiology of viral meningitis was identified in 42.8% cases. The leading pathogen was also human enteroviruses (37.7%) in viral meningitis. The prognosis of viral meningitis was favorable with only 0.7% patients had neurological sequelae. Human enteroviruses were the leading cause both in acute viral encephalitis and viral meningitis in children. The incidence of sequelae and fatality rate of viral encephalitis with confirmed etiology were 7.5% and 0.8%, respectively. The prognosis of viral meningitis was favorable compared to viral encephalitis.

  15. Pathology of whooper swans (Cygnus cygnus) infected with H5N1 avian influenza virus in Akita, Japan, in 2008.

    PubMed

    Ogawa, Shuji; Yamamoto, Yu; Yamada, Manabu; Mase, Masaji; Nakamura, Kikuyasu

    2009-10-01

    Two (1 adult and 1 young bird) of 4 H5N1-highly-pathogenic-avian-influenza (HPAI)-virus-infected whooper swans in Akita, Japan, in 2008 were investigated pathologically. Macroscopically, white spots with hemorrhages were scattered in the pancreas in the adult bird. Histologically, the adult bird had severe necrotizing pancreatitis and mild nonpurulent encephalitis. The young bird had severe nonpurulent encephalitis and nonpurulent enteric ganglionitis, and intestinal venous wall thickening. Virus antigens were detected in the lesions of pancreatitis in the adult bird and of encephalitis in adult and young birds. These findings suggest that the swans died or became moribund due to neurological disorders and necrotizing pancreatitis caused by H5N1 HPAI virus infection.

  16. Powassan encephalitis and Colorado tick fever.

    PubMed

    Romero, José R; Simonsen, Kari A

    2008-09-01

    This article discusses two tick-borne illnesses: Powassan encephalitis, a rare cause of central nervous system infection caused by the Powassan virus, and Colorado tick fever, an acute febrile illness caused by the Colorado tick fever virus common to the Rocky Mountain region of North America.

  17. Potential role of deer tick virus in Powassan encephalitis cases in Lyme disease-endemic areas of New York, U.S.A.

    PubMed

    El Khoury, Marc Y; Camargo, Jose F; White, Jennifer L; Backenson, Bryon P; Dupuis, Alan P; Escuyer, Kay L; Kramer, Laura; St George, Kirsten; Chatterjee, Debarati; Prusinski, Melissa; Wormser, Gary P; Wong, Susan J

    2013-12-01

    Powassan virus, a member of the tick-borne encephalitis group of flaviviruses, encompasses 2 lineages with separate enzootic cycles. The prototype lineage of Powassan virus (POWV) is principally maintained between Ixodes cookei ticks and the groundhog (Marmota momax) or striped skunk (Mephitis mephitis), whereas the deer tick virus (DTV) lineage is believed to be maintained between Ixodes scapularis ticks and the white-footed mouse (Peromyscus leucopus). We report 14 cases of Powassan encephalitis from New York during 2004-2012. Ten (72%) of the patients were residents of the Lower Hudson Valley, a Lyme disease-endemic area in which I. scapularis ticks account for most human tick bites. This finding suggests that many of these cases were caused by DTV rather than POWV. In 2 patients, DTV infection was confirmed by genetic sequencing. As molecular testing becomes increasingly available, more cases of Powassan encephalitis may be determined to be attributable to the DTV lineage.

  18. Lentiviral infection of proliferating brain macrophages in HIV and simian immunodeficiency virus encephalitis despite sterile alpha motif and histidine-aspartate domain-containing protein 1 expression

    PubMed Central

    Lindgren, Allison A.; Filipowicz, Adam R.; Hattler, Julian B.; Kim, Soon Ok; Chung, Hye Kyung; Kuroda, Marcelo J.; Johnson, Edward M.; Kim, Woong-Ki

    2018-01-01

    Objective: HIV-1 infection of the brain and related cognitive impairment remain prevalent in HIV-1-infected individuals despite combination antiretroviral therapy. Sterile alpha motif and histidine-aspartate domain-containing protein 1 (SAMHD1) is a newly identified host restriction factor that blocks the replication of HIV-1 and other retroviruses in myeloid cells. Cell cycle-regulated phosphorylation at residue Thr592 and viral protein X (Vpx)-mediated degradation of SAMHD1 have been shown to bypass SAMHD1 restriction in vitro. Herein, we investigated expression and phosphorylation of SAMHD1 in vivo in relation to macrophage infection and proliferation during the neuropathogenesis of HIV-1 and simian immunodeficiency virus (SIV) encephalitis. Methods: Using brain and other tissues from uninfected and SIV-infected macaques with or without encephalitis, we performed immunohistochemistry, multilabel fluorescence microscopy and western blot to examine the expression, localization and phosphorylation of SAMHD1. Results: The number of SAMHD1+ nuclei increased in encephalitic brains despite the presence of Vpx. Many of these cells were perivascular macrophages, although subsets of SAMHD1+ microglia and endothelial cells were also observed. The SAMHD1+ macrophages were shown to be both infected and proliferating. Moreover, the presence of cycling SAMHD1+ brain macrophages was confirmed in the tissue of HIV-1-infected patients with encephalitis. Finally, western blot analysis of brain-protein extracts from SIV-infected macaques showed that SAMHD1 protein exists in the brain mainly as an inactive Thr592-phosphorylated form. Conclusion: The ability of SAMHD1 to act as a restriction factor for SIV/HIV in the brain is likely bypassed in proliferating brain macrophages through the phosphorylation-mediated inactivation, not Vpx-mediated degradation of SAMHD1. PMID:29698322

  19. A hospital-based surveillance for Japanese encephalitis in Bali, Indonesia.

    PubMed

    Kari, Komang; Liu, Wei; Gautama, Kompiang; Mammen, Mammen P; Clemens, John D; Nisalak, Ananda; Subrata, Ketut; Kim, Hyei Kyung; Xu, Zhi-Yi

    2006-04-07

    Japanese encephalitis (JE) is presumed to be endemic throughout Asia, yet only a few cases have been reported in tropical Asian countries such as Indonesia, Malaysia and the Philippines. To estimate the true disease burden due to JE in this region, we conducted a prospective, hospital-based surveillance with a catchment population of 599,120 children less than 12 years of age in Bali, Indonesia, from July 2001 through December 2003. Balinese children presenting to any health care facility with acute viral encephalitis or aseptic meningitis were enrolled. A "confirmed" diagnosis of JE required the detection of JE virus (JEV)-specific IgM in cerebrospinal fluid, whereas a diagnosis of "probable JE" was assigned to those cases in which JEV-specific IgM was detected only in serum. In all, 86 confirmed and 4 probable JE cases were identified. The annualized JE incidence rate was 7.1 and adjusted to 8.2 per 100,000 for children less than 10 years of age over the 2.5 consecutive years of study. Only one JE case was found among 96,920 children 10-11 years old (0.4 per 100,000). Nine children (10%) died and 33 (37%) of the survivors had neurological sequelae at discharge. JEV was transmitted in Bali year-round with 70% of cases in the rainy season. JE incidence and case-fatality rates in Bali were comparable to those of other JE-endemic countries of Asia. Our findings contradict the common wisdom that JE is rare in tropical Asia. Hence, the geographical range of endemic JE is broader than previously described. The results of the study support the need to introduce JE vaccination into Bali.

  20. Naloxone-induced seizures in rats infected with Borna disease virus.

    PubMed

    Solbrig, M V; Koob, G F; Lipkin, W I

    1996-04-01

    The opioid antagonist naloxone is widely used in the emergency treatment of nontraumatic coma. Although it is uncommon for serious side effects to result from administration of opiate antagonists, we report that naloxone can have epileptogenic effects in the context of encephalitis. In an experimental model of viral encephalitis, rats infected with Borna disease virus developed myoclonic, generalized clonic, or atonic seizures; behavior arrest; and staring spells when treated with naloxone. These findings suggest a novel neuropharmacologic link, through opioid peptide systems, between epilepsy and encephalitis and disclose a potential contraindication to use of opioid antagonists in nontraumatic coma.

  1. Characterization of a novel insect-specific flavivirus from Brazil: potential for inhibition of infection of arthropod cells with medically important flaviviruses

    PubMed Central

    Kenney, Joan L.; Solberg, Owen D.; Langevin, Stanley A.; Brault, Aaron C.

    2015-01-01

    In the past decade there has been an upsurge in the number of newly described insect-specific flaviviruses isolated pan-globally. We recently described the isolation of a novel flavivirus (tentatively designated “Nhumirim virus”; NHUV) (Pauvolid-Correa et al., in review) that represents an example of a unique subset of apparently insect-specific viruses that phylogenetically affiliate with dual-host mosquito-borne flaviviruses despite appearing to be limited to replication in mosquito cells. We characterized the in vitro growth potential, 3’ untranslated region (UTR) sequence homology with alternative flaviviruses, and evaluated the virus’s capacity to suppress replication of representative Culex spp. vectored pathogenic flaviviruses in mosquito cells. Only mosquito cell lines were found to support NHUV replication, further reinforcing the insect-specific phenotype of this virus. Analysis of the sequence and predicted RNA secondary structures of the 3’ UTR indicate NHUV to be most similar to viruses within the yellow fever serogroup, Japanese encephalitis serogroup, and viruses in the tick-borne flavivirus clade. NHUV was found to share the fewest conserved sequence elements when compared to traditional insect-specific flaviviruses. This suggests that, despite being apparently insect-specific, this virus likely diverged from an ancestral mosquito-borne flavivirus. Co-infection experiments indicated that prior or concurrent infection of mosquito cells with NHUV resulted in significant reduction in viral production of West Nile virus (WNV), St. Louis encephalitis virus (SLEV) and Japanese encephalitis virus. The inhibitory effect was most effective against WNV and SLEV with over a million-fold and 10,000-fold reduction in peak titers, respectively. PMID:25146007

  2. Comparison of PanBio Dengue Duo Enzyme-Linked Immunosorbent Assay (ELISA) and MRL Dengue Fever Virus Immunoglobulin M Capture ELISA for Diagnosis of Dengue Virus Infections in Southeast Asia

    PubMed Central

    Cuzzubbo, Andrea J.; Vaughn, David W.; Nisalak, Ananda; Solomon, Tom; Kalayanarooj, Siripen; Aaskov, John; Dung, Nguyen Minh; Devine, Peter L.

    1999-01-01

    The performances of the MRL dengue fever virus immunoglobulin M (IgM) capture enzyme-linked immunosorbent assay (ELISA) and the PanBio Dengue Duo IgM capture and IgG capture ELISA were compared. Eighty sera from patients with dengue virus infections, 24 sera from patients with Japanese encephalitis (JE), and 78 sera from patients with nonflavivirus infections, such as malaria, typhoid, leptospirosis, and scrub typhus, were used. The MRL test showed superior sensitivity for dengue virus infections (94 versus 89%), while the PanBio test showed superior specificity for JE (79 versus 25%) and other infections (100 versus 91%). The PanBio ELISA showed better overall performance, as assessed by the sum of sensitivity and specificity (F value). When dengue virus and nonflavivirus infections were compared, F values of 189 and 185 were obtained for the PanBio and MRL tests, respectively, while when dengue virus infections and JE were compared, F values of 168 and 119 were obtained. The results obtained with individual sera in the PanBio and MRL IgM ELISAs showed good correlation, but this analysis revealed that the cutoff value of the MRL test was set well below that of the PanBio test. Comparing the sensitivity and specificity of the tests at different cutoff values (receiver-operator analysis) revealed that the MRL and PanBio IgM ELISAs performed similarly in distinguishing dengue virus from nonflavivirus infections, although the PanBio IgM ELISA showed significantly better distinction between dengue virus infections and JE. The implications of these findings for the laboratory diagnosis of dengue are discussed. PMID:10473522

  3. Quantitative autoradiographic mapping of herpes simplex virus encephalitis with a radiolabeled antiviral drug

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saito, Y.; Price, R.W.; Rottenberg, D.A.

    1982-09-17

    2'-Fluoro-5-methyl-1-..beta..-D-arabinosyluracil (FMAU) labeled with carbon-14 was used to image herpes simplex virus type 1-infected regions of rat brain by quantitative autoradiography. FMAU is a potent antiviral pyrimidine nucleoside which is selectively phosphorylated by virus-coded thymidine kinase. When the labeled FMAU was administered 6 hours before the rats were killed, the selective uptake and concentration of the drug and its metabolites by infected cells (defined by immunoperoxidase staining of viral antigens) allowed quantitative definition and mapping of HSV-1-infected structures in autoradiograms of brain sections. These results shown that quantitative autoradiography can be used to characterize the local metabolism of antiviral drugsmore » by infected cells in vivo. They also suggest that the selective uptake of drugs that exploit viral thymidine kinase for their antiviral effect can, by appropriate labeling, be used in conjunction with clinical neuroimaging techniques to define infected regions of human brain, thereby providing a new approach to the diagnosis of herpes encephalitis in man.« less

  4. Research in Drug Development against Viral Diseases of Military Importance (Biological Testing).

    DTIC Science & Technology

    HAMSTERS, HEMORRHAGIC FEVERS, KOREA, VIRUSES , SECONDARY, STRAINS(BIOLOGY), VESICULAR STOMATITIS, VIRUS DISEASES, JAPANESE ENCEPHALITIS VIRUSES , MICE...SANDFLY FEVER VIRUS INFECTION, SPECTRA, VACCINIA VIRUS , VENEZUELAN EQUINE ENCEPHALOMYELITIS VIRUS , YELLOW FEVER VIRUS .

  5. [Multiplex real-time PCR method for rapid detection of Marburg virus and Ebola virus].

    PubMed

    Yang, Yu; Bai, Lin; Hu, Kong-Xin; Yang, Zhi-Hong; Hu, Jian-Ping; Wang, Jing

    2012-08-01

    Marburg virus and Ebola virus are acute infections with high case fatality rates. A rapid, sensitive detection method was established to detect Marburg virus and Ebola virus by multiplex real-time fluorescence quantitative PCR. Designing primers and Taqman probes from highly conserved sequences of Marburg virus and Ebola virus through whole genome sequences alignment, Taqman probes labeled by FAM and Texas Red, the sensitivity of the multiplex real-time quantitative PCR assay was optimized by evaluating the different concentrations of primers and Probes. We have developed a real-time PCR method with the sensitivity of 30.5 copies/microl for Marburg virus positive plasmid and 28.6 copies/microl for Ebola virus positive plasmids, Japanese encephalitis virus, Yellow fever virus, Dengue virus were using to examine the specificity. The Multiplex real-time PCR assays provide a sensitive, reliable and efficient method to detect Marburg virus and Ebola virus simultaneously.

  6. Japanese encephalitis on Saipan: a survey of suspected mosquito vectors.

    PubMed

    Mitchell, C J; Savage, H M; Smith, G C; Flood, S P; Castro, L T; Roppul, M

    1993-04-01

    An outbreak of Japanese encephalitis (JE) occurred on Saipan, Commonwealth of Northern Mariana Islands, in October 1990. Adult and larval mosquitoes were collected during September-October 1991 to retrospectively determine the probable mosquito vector(s). Virus was not isolated from 119 mosquito pools composed of 7,250 adult specimens as follows: Aedes vexans nocturnis (14%), Culex tritaeniorhynchus (39%), Cx. sitiens group (11%), Culex (Culex) species (35%), and < 1% each of Ae. albopictus, Ae. oakleyi, Aedes saipanensis, Cx. annulirostris marianae, and Cx. fuscanus. Three additional species were collected only as larvae: Anopheles indefinitus, Ae. neopandani, and Cx. quinquefasciatus. Among the vectors of JE incriminated in other areas, Cx. tritaeniorhynchus was the predominant species in our collections and the principal species feeding on swine. This is the first published record of the occurrence of this species on Saipan. Culex tritaeniorhynchus is abundant and widely distributed on the southern half of Saipan where human JE cases occurred in 1990, and where swine seroconversions were detected. Although the identity of the mosquito vector(s) responsible for the 1990 outbreak cannot be established with certainty, our results suggest that Cx. tritaeniorhychus was probably involved.

  7. Environmental and biological factors influencing Culex pipiens quinquefasciatus Say (Diptera: Culicidae) vector competence for Saint Louis encephalitis virus.

    PubMed

    Richards, Stephanie L; Lord, Cynthia C; Pesko, Kendra; Tabachnick, Walter J

    2009-08-01

    Complex interactions between environmental and biological factors influence the susceptibility of Culex pipiens quinquefasciatus to St. Louis encephalitis virus and could affect the epidemiology of virus transmission. Similar interactions could have epidemiologic implications for other vector-virus systems. We conducted an experiment to examine four such factors in combination: mosquito age, extrinsic incubation temperature (EIT), virus dose, and colony. The proportion of mosquitoes with body infections or disseminated infections varied between colonies, and was dependant on age, EIT, and dose. We also show that the probability of a body or leg infection interacted in complex ways between colonies, ages, EITs, and doses. The complex interactive effects of environmental and biological factors must be taken into account for studies of vector competence and epidemiology, especially when laboratory studies are used to generalize to natural transmission dynamics where the extent of variation is largely unknown.

  8. Care beyond the hospital ward: understanding the socio-medical trajectory of herpes simplex virus encephalitis.

    PubMed

    Cooper, Jessie; Kierans, Ciara; Defres, Sylviane; Easton, Ava; Kneen, Rachel; Solomon, Tom

    2017-09-12

    Herpes simplex virus (HSV) encephalitis is a life-threatening infection of the brain, which has significant physical, cognitive and social consequences for survivors. Despite increasing recognition of the long-term effects of encephalitis, research and policy remains largely focused on its acute management, meaning there is little understanding of the difficulties people face after discharge from acute care. This paper aims to chart the problems and challenges which people encounter when they return home after treatment for HSV encephalitis. The paper reports on data from 30 narrative interviews with 45 people affected by HSV encephalitis and their significant others. The study was conducted as part of the ENCEPH-UK programme grant on Understanding and Improving the Outcome of Encephalitis. The findings show the diverse challenges which are experienced by people after treatment for HSV encephalitis. We first chart how peoples' everyday lives are fragmented following their discharge from hospital. Second, we document the social consequences which result from the longer-term effects of encephalitis. Finally, we show how the above struggles are exacerbated by the lack of support systems for the post-acute effects of encephalitis, and describe how people are consequently forced to devise their own care routines and strategies for managing their problems. The paper argues that in order to improve long-term outcomes in encephalitis, it is vital that we develop pathways of support for the condition beyond the acute hospital setting. We conclude by making recommendations to enhance communication and care for the post-acute consequences of encephalitis, to ensure those affected are fully supported through the chronic effects of this devastating disease.

  9. Fatal Powassan Encephalitis (Deer Tick Virus, Lineage II) in a Patient With Fever and Orchitis Receiving Rituximab.

    PubMed

    Solomon, Isaac H; Spera, Kristyn M; Ryan, Sophia L; Helgager, Jeffrey; Andrici, Juliana; Zaki, Sherif R; Vaitkevicius, Henrikas; Leon, Kristoffer E; Wilson, Michael R; DeRisi, Joseph L; Koo, Sophia; Smirnakis, Stelios M; De Girolami, Umberto

    2018-06-01

    Powassan virus is a rare but increasingly recognized cause of severe neurological disease. To highlight the diagnostic challenges and neuropathological findings in a fatal case of Powassan encephalitis caused by deer tick virus (lineage II) in a patient with follicular lymphoma receiving rituximab, with nonspecific anti-GAD65 antibodies, who was initially seen with fever and orchiepididymitis. Comparison of clinical, radiological, histological, and laboratory findings, including immunohistochemistry, real-time polymerase chain reaction, antibody detection, and unbiased sequencing assays, in a single case report (first seen in December 2016) at an academic medical center. Infection with Powassan virus. Results of individual assays compared retrospectively. In a 63-year-old man with fatal Powassan encephalitis, serum and cerebrospinal fluid IgM antibodies were not detected via standard methods, likely because of rituximab exposure. Neuropathological findings were extensive, including diffuse leptomeningeal and parenchymal lymphohistiocytic infiltration, microglial proliferation, marked neuronal loss, and white matter microinfarctions most severely involving the cerebellum, thalamus, and basal ganglia. Diagnosis was made after death by 3 independent methods, including demonstration of Powassan virus antigen in brain biopsy and autopsy tissue, detection of viral RNA in serum and cerebrospinal fluid by targeted real-time polymerase chain reaction, and detection of viral RNA in cerebrospinal fluid by unbiased sequencing. Extensive testing for other etiologies yielded negative results, including mumps virus owing to prodromal orchiepididymitis. Low-titer anti-GAD65 antibodies identified in serum, suggestive of limbic encephalitis, were not detected in cerebrospinal fluid. Owing to the rarity of Powassan encephalitis, a high degree of suspicion is required to make the diagnosis, particularly in an immunocompromised patient, in whom antibody-based assays may be falsely

  10. Aerial applications of ultra-low-volume insecticides to control the vector of Japanese encephalitis in Korea

    PubMed Central

    Self, L. S.; Ree, H. I.; Lofgren, C. S.; Shim, J. C.; Chow, C. Y.; Shin, H. K.; Kim, K. H.

    1973-01-01

    As a suitable emergency measure to arrest epidemics of Japanese encephalitis in Korea, the ultra-low-volume method of spraying insecticide to control the mosquito vector Culex tritaeniorhynchus has been tested in 2 successive years over a 16-km 2 area, utilizing a large fixed-wing aircraft. Malathion concentrate applied at 0.36 litres/ha gave insufficient control of the parous (infective) females, and no reduction in total numbers of this species. Fenitrothion concentrate applied at 0.45 litres/ha resulted in a 77-87% reduction in total numbers and an 87-98% reduction in parous females over a 4-day period. PMID:4368385

  11. Emerging Cases of Powassan Virus Encephalitis in New England: Clinical Presentation, Imaging, and Review of the Literature

    PubMed Central

    Piantadosi, Anne; Rubin, Daniel B.; McQuillen, Daniel P.; Hsu, Liangge; Lederer, Philip A.; Ashbaugh, Cameron D.; Duffalo, Chad; Duncan, Robert; Thon, Jesse; Bhattacharyya, Shamik; Basgoz, Nesli; Feske, Steven K.; Lyons, Jennifer L.

    2016-01-01

    Background. Powassan virus (POWV) is a rarely diagnosed cause of encephalitis in the United States. In the Northeast, it is transmitted by Ixodes scapularis, the same vector that transmits Lyme disease. The prevalence of POWV among animal hosts and vectors has been increasing. We present 8 cases of POWV encephalitis from Massachusetts and New Hampshire in 2013–2015. Methods. We abstracted clinical and epidemiological information for patients with POWV encephalitis diagnosed at 2 hospitals in Massachusetts from 2013 to 2015. We compared their brain imaging with those in published findings from Powassan and other viral encephalitides. Results. The patients ranged in age from 21 to 82 years, were, for the most part, previously healthy, and presented with syndromes of fever, headache, and altered consciousness. Infections occurred from May to September and were often associated with known tick exposures. In all patients, cerebrospinal fluid analyses showed pleocytosis with elevated protein. In 7 of 8 patients, brain magnetic resonance imaging demonstrated deep foci of increased T2/fluid-attenuation inversion recovery signal intensity. Conclusions. We describe 8 cases of POWV encephalitis in Massachusetts and New Hampshire in 2013–2015. Prior to this, there had been only 2 cases of POWV encephalitis identified in Massachusetts. These cases may represent emergence of this virus in a region where its vector, I. scapularis, is known to be prevalent or may represent the emerging diagnosis of an underappreciated pathogen. We recommend testing for POWV in patients who present with encephalitis in the spring to fall in New England. PMID:26668338

  12. The impact of eastern equine encephalitis virus on efforts to recover the endangered whooping crane

    USGS Publications Warehouse

    Carpenter, J.W.; Clark, G.G.; Watts, D.M.; Cooper, J.E.

    1989-01-01

    The whooping crane (Grus americana), although never abundant in North America, became endangered primarily because of habitat modification and destruction. To help recovery, a captive propagation and reintroduction program was initiated at the Patuxent Wildlife Research Center (PWRC) in 1966. However, in 1984, 7 of 39 whooping cranes at PWRC died from infection by eastern equine encephalitis (EEE) virus, an arbovirus that infects a wide variety of indigenous bird species, although mortality is generally restricted to introduced birds. Following identification of the aetiological agent, surveillance and control measures were implemented, including serological monitoring of both wild and captive birds for EEE viral antibody and assay of locally-trapped mosquitoes for virus. In addition, an inactivated EEE virus vaccine developed for use in humans was evaluated in captive whooping cranes. Results so far suggest that the vaccine will afford protection to susceptible birds.

  13. Herpes encephalitis is a disease of middle aged and elderly people: polymerase chain reaction for detection of herpes simplex virus in the CSF of 516 patients with encephalitis. The Study Group.

    PubMed

    Koskiniemi, M; Piiparinen, H; Mannonen, L; Rantalaiho, T; Vaheri, A

    1996-02-01

    To assess the diagnostic potential of the polymerase chain reaction (PCR) in herpes simplex virus (HSV) encephalitis. Samples of CSF from 516 patients with encephalitis were studied for HSV-DNA by PCR. Samples taken one to 29 days from the onset of symptoms from 38 patients (7.4%) were positive, 32 (6.2%) for HSV-1 and six (1.2%) for HSV-2. At follow up, eight of 28 patients studied were still HSV-PCR positive. A diagnostic serum:CSF antibody ratio to HSV but not to other viruses was detected in 25 of the 38 HSV-PCR positive patients thus supporting the initial PCR findings. Patients positive by HSV-PCR were concentrated in the age group > or = 40 years, and especially in patients aged 60-64 years, of whom nine of 24 (37.5%) were positive. The HSV-PCR was negative in all other patients with encephalitis of known or unknown aetiology. This group included 34 patients with a diagnostic serum:CSF antibody ratio to other viruses. A dual infection, HSV and another microbe, was considered possible in seven patients. The HSV-PCR is a rapid and useful diagnostic method during the early phase of encephalitis. It may be useful in monitoring the efficacy of treatment and allowing the recognition of new features in the appearance of herpes encephalitis. The HSV-PCR test and antibody determinations from serum and CSF are complementary methods, which should both be applied in pursuit of clinical laboratory diagnosis of these conditions.

  14. Detection of West Nile virus and tick-borne encephalitis virus in birds in Slovakia, using a universal primer set.

    PubMed

    Csank, Tomáš; Bhide, Katarína; Bencúrová, Elena; Dolinská, Saskia; Drzewnioková, Petra; Major, Peter; Korytár, Ľuboš; Bocková, Eva; Bhide, Mangesh; Pistl, Juraj

    2016-06-01

    West Nile virus (WNV) is a mosquito-borne neurotropic pathogen that presents a major public health concern. Information on WNV prevalence and circulation in Slovakia is insufficient. Oral and cloacal swabs and bird brain samples were tested for flavivirus RNA by RT-PCR using newly designed generic primers. The species designation was confirmed by sequencing. WNV was detected in swab and brain samples, whereas one brain sample was positive for tick-borne encephalitis virus (TBEV). The WNV sequences clustered with lineages 1 and 2. These results confirm the circulation of WNV in birds in Slovakia and emphasize the risk of infection of humans and horses.

  15. Microbial study of meningitis and encephalitis cases.

    PubMed

    Selim, Heba S; El-Barrawy, Mohamed A; Rakha, Magda E; Yingst, Samuel L; Baskharoun, Magda F

    2007-01-01

    Meningitis and/or encephalitis can pose a serious public health problem especially during outbreaks. A rapid and accurate diagnosis is important for effective earlier treatment. This study aimed to identify the possible microbial causes of meningitis and/or encephalitis cases. CSF and serum samples were collected from 322 patients who had signs and symptoms suggestive of meningitis and/or encephalitis. Out of 250 cases with confirmed clinical diagnosis, 83 (33.2%) were definitely diagnosed as bacterial meningitis and/or encephalitis cases (by using CSF culture, biochemical tests, latex agglutination test, and CSF stain), 17 (6.8%) were definitely diagnosed as having viral causes ( by viral isolation on tissue culture, PCR and ELISA), and one (0.4%) was diagnosed as fungal meningitis case (by India ink stain, culture, and biochemical tests). Also, there was one encephalitis case with positive serum ELISA IgM antibodies against Sandfly scilian virus. N. meningitidis, S. pneumonia and M. tuberculosis were the most frequently detected bacterial agents, while Enteroviruses, herpes simplex viruses and varicella zoster viruses were the most common viral agents encountered. Further studies are needed to assess the role of different microbial agents in CNS infections and their effective methods of diagnosis.

  16. Resistance to Viral Challenge in the Days Immediately Following Vaccination.

    DTIC Science & Technology

    Powassan or yellow fever, by the intraperitoneal route into guinea pigs failed to induce visible signs of illness; however, with Japanese encephalitis... Powassan , and Banzi viruses, high titered complement-fixing antibodies developed. Since no disease and death could be used as a criterion of successful...infection of guinea pigs inoculated with Japanese encephalitis virus, or of hamsters inoculated with Powassan , an alternative method of determining

  17. Concomitant or sequential administration of live attenuated japanese encephalitis chimeric virus vaccine and yellow fever 17D vaccine

    PubMed Central

    Nasveld, Peter E; Marjason, Joanne; Bennett, Sonya; Aaskov, John; Elliott, Suzanne; McCarthy, Karen; Kanesa-thasan, Niranjan; Feroldi, Emmanuel

    2010-01-01

    A randomized, double-blind, study was conducted to evaluate the safety, tolerability and immunogenicity of a live attenuated Japanese encephalitis chimeric virus vaccine (JE-CV) co-administered with live attenuated yellow fever (YF) vaccine (YF-17D strain; Stamaril®, Sanofi Pasteur) or administered sequentially. Participants (n = 108) were randomized to receive: YF followed by JE-CV 30 days later, JE followed by YF 30 days later, or the co-administration of JE and YF followed or preceded by placebo 30 days later or earlier. Placebo was used in a double-dummy fashion to ensure masking. Neutralizing antibody titers against JE-CV, YF-17D and selected wild-type JE virus strains was determined using a 50% serum-dilution plaque reduction neutralization test (PRNT50). Seroconversion was defined as the appearance of a neutralizing antibody titer above the assay cut-off post-immunization when not present pre-injection at day 0, or a least a four-fold rise in neutralizing antibody titer measured before the pre-injection day 0 and later post vaccination samples. There were no serious adverse events. Most adverse events (AEs) after JE vaccination were mild to moderate in intensity, and similar to those reported following YF vaccination. Seroconversion to JE-CV was 100% and 91% in the JE/YF and YF/JE sequential vaccination groups, respectively, compared with 96% in the co-administration group. All participants seroconverted to YF vaccine and retained neutralizing titers above the assay cut-off at month six. Neutralizing antibodies against JE vaccine were detected in 82–100% of participants at month six. These results suggest that both vaccines may be successfully co-administered simultaneously or 30 days apart. PMID:20864814

  18. High-Resolution Functional Mapping of the Venezuelan Equine Encephalitis Virus Genome by Insertional Mutagenesis and Massively Parallel Sequencing

    DTIC Science & Technology

    2010-10-14

    High-Resolution Functional Mapping of the Venezuelan Equine Encephalitis Virus Genome by Insertional Mutagenesis and Massively Parallel Sequencing...Venezuelan equine encephalitis virus (VEEV) genome. We initially used a capillary electrophoresis method to gain insight into the role of the VEEV...Smith JM, Schmaljohn CS (2010) High-Resolution Functional Mapping of the Venezuelan Equine Encephalitis Virus Genome by Insertional Mutagenesis and

  19. Tick-Borne Encephalitis (TBE)

    MedlinePlus

    ... virus, Siberian tick-borne encephalitis virus, and Far eastern Tick-borne encephalitis virus (formerly known as Russian ... viruses are closely related to TBEV and Far-eastern TBE, and include Omsk hemorrhagic fever virus in ...

  20. Experimental transmission of St. Louis encephalitis virus by Ochlerotatus j. japonicus.

    PubMed

    Sardelis, Michael R; Turell, Michael J; Andre, Richard G

    2003-06-01

    Ochlerotatus japonicus japonicus a newly discovered nonindigenous mosquito species in North America, and a colonized strain of Culex pipiens were compared for their vector competence for St. Louis encephalitis virus (SLE). Infection rates in Oc. j. japonicus were 0-33% after feeding on chickens with viremias between 10(4.1) and 10(4.7) plaque-forming units (PFU)/ml of blood. In comparison, infection rates were 12-94% for Cx. pipiens that fed on the same chickens. When fed on chickens with viremias between 10(5.3) and 10(5.6) PFU/ml of blood, infection rates for Oc. j. japonicus and Cx. pipiens were similar, 96% and 100%, respectively. After 12-14 days of extrinsic incubation at 26 degrees C, all 34 infected Oc. j. japonicus had a disseminated infection. In contrast, only 23 (43%) of 54 infected Cx. pipiens had a disseminated infection after feeding on the same chickens. If they developed a disseminated infection, both species efficiently transmitted (> or = 87%) SLE. Estimated transmission rates at viral doses sufficient to infect both of the tested species were 29-84% for Oc. j. japonicus and 30-50% for Cx. pipiens. Because of its continued geographic expansion, field and laboratory evidence incriminating it as a vector of the closely related West Nile virus, and its ability to transmit SLE in the laboratory, Oc. j. japonicus should be considered as a potential enzootic or epizootic vector of SLE.

  1. Experimental Transmission of Karshi and Langat (Tick-Borne Encephalitis Virus Complex) Viruses by Ornithodoros Ticks (Acari: Argasidae)

    DTIC Science & Technology

    2004-01-01

    mosquitoes and Ornithodoros ticks were evaluated for their potential to transmit Karshi and Langat (tick-borne encephalitis virus complex) viruses in the...orally exposed to Langat virus, were able to transmit this virus after more than 3 years, the longest interval tested. Therefore, Ornithodoros spp

  2. Environmental and Biological Factors Influencing Culex pipiens quinquefasciatus Say (Diptera: Culicidae) Vector Competence for Saint Louis Encephalitis Virus

    PubMed Central

    Richards, Stephanie L.; Lord, Cynthia C.; Pesko, Kendra; Tabachnick, Walter J.

    2009-01-01

    Complex interactions between environmental and biological factors influence the susceptibility of Culex pipiens quinquefasciatus to St. Louis encephalitis virus and could affect the epidemiology of virus transmission. Similar interactions could have epidemiologic implications for other vector-virus systems. We conducted an experiment to examine four such factors in combination: mosquito age, extrinsic incubation temperature (EIT), virus dose, and colony. The proportion of mosquitoes with body infections or disseminated infections varied between colonies, and was dependant on age, EIT, and dose. We also show that the probability of a body or leg infection interacted in complex ways between colonies, ages, EITs, and doses. The complex interactive effects of environmental and biological factors must be taken into account for studies of vector competence and epidemiology, especially when laboratory studies are used to generalize to natural transmission dynamics where the extent of variation is largely unknown. PMID:19635881

  3. A hospital-based surveillance for Japanese encephalitis in Bali, Indonesia

    PubMed Central

    Kari, Komang; Liu, Wei; Gautama, Kompiang; Mammen, Mammen P; Clemens, John D; Nisalak, Ananda; Subrata, Ketut; Kim, Hyei Kyung; Xu, Zhi-Yi

    2006-01-01

    Background Japanese encephalitis (JE) is presumed to be endemic throughout Asia, yet only a few cases have been reported in tropical Asian countries such as Indonesia, Malaysia and the Philippines. To estimate the true disease burden due to JE in this region, we conducted a prospective, hospital-based surveillance with a catchment population of 599,120 children less than 12 years of age in Bali, Indonesia, from July 2001 through December 2003. Methods Balinese children presenting to any health care facility with acute viral encephalitis or aseptic meningitis were enrolled. A "confirmed" diagnosis of JE required the detection of JE virus (JEV)-specific IgM in cerebrospinal fluid, whereas a diagnosis of "probable JE" was assigned to those cases in which JEV-specific IgM was detected only in serum. Results In all, 86 confirmed and 4 probable JE cases were identified. The annualized JE incidence rate was 7.1 and adjusted to 8.2 per 100,000 for children less than 10 years of age over the 2.5 consecutive years of study. Only one JE case was found among 96,920 children 10–11 years old (0.4 per 100,000). Nine children (10%) died and 33 (37%) of the survivors had neurological sequelae at discharge. JEV was transmitted in Bali year-round with 70% of cases in the rainy season. Conclusion JE incidence and case-fatality rates in Bali were comparable to those of other JE-endemic countries of Asia. Our findings contradict the common wisdom that JE is rare in tropical Asia. Hence, the geographical range of endemic JE is broader than previously described. The results of the study support the need to introduce JE vaccination into Bali. PMID:16603053

  4. Pre-cut Filter Paper for Detecting Anti-Japanese Encephalitis Virus IgM from Dried Cerebrospinal Fluid Spots

    PubMed Central

    Bharucha, Tehmina; Chanthongthip, Anisone; Phuangpanom, Soumphou; Phonemixay, Ooyanong; Sengvilaipaseuth, Onanong; Vongsouvath, Manivanh; Lee, Sue; Newton, Paul N.; Dubot-Pérès, Audrey

    2016-01-01

    Background The use of filter paper as a simple, inexpensive tool for storage and transportation of blood, ‘Dried Blood Spots’ or Guthrie cards, for diagnostic assays is well-established. In contrast, there are a paucity of diagnostic evaluations of dried cerebrospinal fluid (CSF) spots. These have potential applications in low-resource settings, such as Laos, where laboratory facilities for central nervous system (CNS) diagnostics are only available in Vientiane. In Laos, a major cause of CNS infection is Japanese encephalitis virus (JEV). We aimed to develop a dried CSF spot protocol and to evaluate its diagnostic performance using the World Health Organisation recommended anti-JEV IgM antibody capture enzyme-linked immunosorbent assay (JEV MAC-ELISA). Methodology and Principal Findings Sample volumes, spotting techniques and filter paper type were evaluated using a CSF-substitute of anti-JEV IgM positive serum diluted in Phosphate Buffer Solution (PBS) to end-limits of detection by JEV MAC-ELISA. A conventional protocol, involving eluting one paper punch in 200μl PBS, did not detect the end-dilution, nor did multiple punches utilising diverse spotting techniques. However, pre-cut filter paper enabled saturation with five times the volume of CSF-substitute, sufficiently improving sensitivity to detect the end-dilution. The diagnostic accuracy of this optimised protocol was compared with routine, neat CSF in a pilot, retrospective study of JEV MAC-ELISA on consecutive CSF samples, collected 2009–15, from three Lao hospitals. In comparison to neat CSF, 132 CSF samples stored as dried CSF spots for one month at 25–30°C showed 81.6% (65.7–92.3 95%CI) positive agreement, 96.8% (91.0–99.3 95%CI) negative agreement, with a kappa coefficient of 0.81 (0.70–0.92 95%CI). Conclusions/Significance The novel design of pre-cut filter paper saturated with CSF could provide a useful tool for JEV diagnostics in settings with limited laboratory access. It has the

  5. Immunogenicity of a Japanese encephalitis chimeric virus vaccine as a booster dose after primary vaccination with SA14-14-2 vaccine in Thai children.

    PubMed

    Janewongwirot, Pakpoom; Puthanakit, Thanyawee; Anugulruengkitt, Suvaporn; Jantarabenjakul, Watsamon; Phasomsap, Chayapa; Chumket, Sompong; Yoksan, Sutee; Pancharoen, Chitsanu

    2016-10-17

    Japanese Encephalitis chimeric virus vaccine (JE-CV) and SA14-14-2 vaccine are live-attenuated JE vaccines produced from the same virus strain. Data on interchangeability is limited. To evaluate the immunogenicity and safety of JE-CV booster after primary vaccination with SA14-14-2 vaccine. This study was an open-label clinical trial in Thai children who had received a primary SA14-14-2 vaccination at 12-24monthsbefore enrollment (ClinicalTrials.gov NCT02602652). JE-CV was administered. A 50% plaque reduction neutralization test (PRNT 50 ) against three virus strains; JE-CV, SA-14-14-2andwild-type JE virus was measured before and 28-days post vaccination. The laboratory was performed at PRNT 50 titers ⩾10 (1/dil) were considered seroprotective against JE. Geometric mean titer (GMT) of PRNT 50 was calculated. Adverse events were observed for 28days. From March 2014 to June 2015, 50 children (64% male) were enrolled. Mean age and duration after primary vaccination was 26.9 (SD 4.6) and 12.8 (SD 2.7) months, respectively. The proportion of participants who had PRNT 50 pre and post-booster vaccination were 92% and 96% against JE-CV virus, 56% and 98% against SA-14-14-2 strain and 70% and 98% against wild-type JE virus, respectively. Solicited injection site reactions including erythema, pain and swelling occurred in 18%, 10% and 4% of subjects, respectively. Four children (8%) had fever (⩾37.7Celsius). Eight children (16%) had adverse events, which were not related to the vaccine. AJE-CV booster dose is highly immunogenic and safe among children who previously received SA14-14-2 vaccine. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Peromyscus leucopus mouse brain transcriptome response to Powassan virus infection.

    PubMed

    Mlera, Luwanika; Meade-White, Kimberly; Dahlstrom, Eric; Baur, Rachel; Kanakabandi, Kishore; Virtaneva, Kimmo; Porcella, Stephen F; Bloom, Marshall E

    2018-02-01

    Powassan virus (POWV) is a tick-borne Flavivirus responsible for life-threatening encephalitis in North America and some regions of Russia. The ticks that have been reported to transmit the virus belong to the Ixodes species, and they feed on small-to-medium-sized mammals, such as Peromyscus leucopus mice, skunks, and woodchucks. We previously developed a P. leucopus mouse model of POWV infection, and the model is characterized by a lack of clinical signs of disease following intraperitoneal or intracranial inoculation. However, intracranial inoculation results in mild subclinical encephalitis from 5 days post infection (dpi), but the encephalitis resolves by 28 dpi. We used RNA sequencing to profile the P. leucopus mouse brain transcriptome at different time points after intracranial challenge with POWV. At 24 h post infection, 42 genes were significantly differentially expressed and the number peaked to 232 at 7 dpi before declining to 31 at 28 dpi. Using Ingenuity Pathway Analysis, we determined that the genes that were significantly expressed from 1 to 15 dpi were mainly associated with interferon signaling. As a result, many interferon-stimulated genes (ISGs) were upregulated. Some of the ISGs include an array of TRIMs (genes encoding tripartite motif proteins). These results will be useful for the identification of POWV restriction factors.

  7. Hantavirus pulmonary syndrome: encephalitis caused by virus Andes.

    PubMed

    Talamonti, Lionel; Padula, Paula J; Canteli, María Sol; Posner, Federico; Marczeski, Fanny Pires; Weller, Carlos

    2011-04-01

    Hemorrhagic fever with renal syndrome and hantavirus pulmonary syndrome (HPS) are rodent-borne emerging diseases caused by members of the genus Hantavirus, family Bunyaviridae. Some species of hantavirus may cause encephalitis, but this is the first report in Andes virus associated to HPS.

  8. Liposome-antigen-nucleic acid complexes protect mice from lethal challenge with western and eastern equine encephalitis viruses.

    PubMed

    Phillips, Aaron T; Schountz, Tony; Toth, Ann M; Rico, Amber B; Jarvis, Donald L; Powers, Ann M; Olson, Ken E

    2014-02-01

    Alphaviruses are mosquito-borne viruses that cause significant disease in animals and humans. Western equine encephalitis virus (WEEV) and eastern equine encephalitis virus (EEEV), two New World alphaviruses, can cause fatal encephalitis, and EEEV is a select agent of concern in biodefense. However, we have no antiviral therapies against alphaviral disease, and current vaccine strategies target only a single alphavirus species. In an effort to develop new tools for a broader response to outbreaks, we designed and tested a novel alphavirus vaccine comprised of cationic lipid nucleic acid complexes (CLNCs) and the ectodomain of WEEV E1 protein (E1ecto). Interestingly, we found that the CLNC component, alone, had therapeutic efficacy, as it increased survival of CD-1 mice following lethal WEEV infection. Immunization with the CLNC-WEEV E1ecto mixture (lipid-antigen-nucleic acid complexes [LANACs]) using a prime-boost regimen provided 100% protection in mice challenged with WEEV subcutaneously, intranasally, or via mosquito. Mice immunized with LANACs mounted a strong humoral immune response but did not produce neutralizing antibodies. Passive transfer of serum from LANAC E1ecto-immunized mice to nonimmune CD-1 mice conferred protection against WEEV challenge, indicating that antibody is sufficient for protection. In addition, the LANAC E1ecto immunization protocol significantly increased survival of mice following intranasal or subcutaneous challenge with EEEV. In summary, our LANAC formulation has therapeutic potential and is an effective vaccine strategy that offers protection against two distinct species of alphavirus irrespective of the route of infection. We discuss plausible mechanisms as well the potential utility of our LANAC formulation as a pan-alphavirus vaccine.

  9. The first detection of the tick-borne encephalitis virus (TBEV) RNA in Dermacentor reticulatus ticks collected from the lowland European bison (Bison bonasus bonasus L.).

    PubMed

    Biernat, Beata; Karbowiak, Grzegorz; Stańczak, Joanna; Masny, Aleksander; Werszko, Joanna

    2016-01-01

    Tick borne encephalitis virus (TBEV) (Flaviviridae, Flavivirus) is the causative agent of tick-borne encephalitis (TBE), a potentially fatal neurological infection. The disease is endemic in a large region in Eurasia, where is transmitted mainly by hard ticks: Ixodes ricinus and I. persulcatus. It is known that also Dermacentor reticulatus is involved in a circulation of TBEV, but the knowledge of its importance in the TBE epidemiology is still insufficient. The Białowieża Primeval Forest is located in eastern Poland and it is a well-known endemic focus of tick-borne encephalitis. The aim of this study was to identify the prevalence of tick-borne encephalitis virus (TBEV) in Dermacentor reticulatus ticks collected from European bison (Bison bonasus bonasus), an important host of hard ticks in the Białowieża Primeval Forest. In the years 2008-2009, a total of 114 adult D. reticulatus ticks were collected from 7 European bison and examined individually for the presence of TBEV RNA using nested RT-PCR assay. Positive results were noted in 18.42% of ticks. This is the first record of TBEV infection in ticks collected from European bison.

  10. Emerging Cases of Powassan Virus Encephalitis in New England: Clinical Presentation, Imaging, and Review of the Literature.

    PubMed

    Piantadosi, Anne; Rubin, Daniel B; McQuillen, Daniel P; Hsu, Liangge; Lederer, Philip A; Ashbaugh, Cameron D; Duffalo, Chad; Duncan, Robert; Thon, Jesse; Bhattacharyya, Shamik; Basgoz, Nesli; Feske, Steven K; Lyons, Jennifer L

    2016-03-15

    Powassan virus (POWV) is a rarely diagnosed cause of encephalitis in the United States. In the Northeast, it is transmitted by Ixodes scapularis, the same vector that transmits Lyme disease. The prevalence of POWV among animal hosts and vectors has been increasing. We present 8 cases of POWV encephalitis from Massachusetts and New Hampshire in 2013-2015. We abstracted clinical and epidemiological information for patients with POWV encephalitis diagnosed at 2 hospitals in Massachusetts from 2013 to 2015. We compared their brain imaging with those in published findings from Powassan and other viral encephalitides. The patients ranged in age from 21 to 82 years, were, for the most part, previously healthy, and presented with syndromes of fever, headache, and altered consciousness. Infections occurred from May to September and were often associated with known tick exposures. In all patients, cerebrospinal fluid analyses showed pleocytosis with elevated protein. In 7 of 8 patients, brain magnetic resonance imaging demonstrated deep foci of increased T2/fluid-attenuation inversion recovery signal intensity. We describe 8 cases of POWV encephalitis in Massachusetts and New Hampshire in 2013-2015. Prior to this, there had been only 2 cases of POWV encephalitis identified in Massachusetts. These cases may represent emergence of this virus in a region where its vector, I. scapularis, is known to be prevalent or may represent the emerging diagnosis of an underappreciated pathogen. We recommend testing for POWV in patients who present with encephalitis in the spring to fall in New England. © The Author 2015. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  11. Novel Variant of Tickborne Encephalitis Virus, Russia

    PubMed Central

    Ternovoi, Vladimir A.; Protopopova, Elena V.; Chausov, Eugene V.; Novikov, Dmitry V.; Leonova, Galina N.; Netesov, Sergey V.

    2007-01-01

    We isolated a novel strain of tickborne encephalitis virus (TBEV), Glubinnoe/2004, from a patient with a fatal case in Russia. We sequenced the strain, whose landmark features included 57 amino acid substitutions and 5 modified cleavage sites. Phylogenetically, Glubinnoe/2004 is a novel variant that belongs to the Eastern type of TBEV. PMID:18258012

  12. Arsenite-induced stress granule formation is inhibited by elevated levels of reduced glutathione in West Nile virus-infected cells

    PubMed Central

    Basu, Mausumi; Courtney, Sean C.

    2017-01-01

    Oxidative stress activates the cellular kinase HRI, which then phosphorylates eIF2α, resulting in stalled translation initiation and the formation of stress granules (SGs). SG assembly redirects cellular translation to stress response mRNAs and inhibits cap-dependent viral RNA translation. Flavivirus infections were previously reported to induce oxidative stress in infected cells but flavivirus-infected cells paradoxically develop resistance to arsenite (Ars)-induced SG formation with time after infection. This resistance was previously postulated to be due to sequestration of the SG protein Caprin1 by Japanese encephalitis virus capsid protein. However, Caprin1 did not co-localize with West Nile virus (WNV) capsid protein in infected cells. Other stressors induced SGs with equal efficiency in mock- and WNV-infected cells indicating the intrinsic ability of cells to assemble SGs was not disabled. Induction of both reactive oxygen species (ROS) and the antioxidant response was detected at early times after WNV-infection. The transcription factors, Nrf2 and ATF4, which activate antioxidant genes, were upregulated and translocated to the nucleus. Knockdown of Nrf2, ATF4 or apoptosis-inducing factor (AIF), a mitochondrial protein involved in regenerating intracellular reduced glutathione (GSH) levels, with siRNA or treatment of cells with buthionine sulphoximine, which induces oxidative stress by inhibiting GSH synthesis, decreased intracellular GSH levels and increased the number of SG-positive, infected cells. Mitochondria were protected from Ars-induced damage by WNV infection until late times in the infection cycle. The results indicate that the increase in virus-induced ROS levels is counterbalanced by a virus-induced antioxidant response that is sufficient to also overcome the increase in ROS induced by Ars treatment and prevent Ars-induced SG assembly and mitochondrial damage. The virus-induced alterations in the cellular redox status appear to provide benefits

  13. Distribution of mosquitoes and mosquito-borne arboviruses in Yunnan Province near the China-Myanmar-Laos border.

    PubMed

    Wang, Jinglin; Zhang, Hailin; Sun, Xiaohong; Fu, Shihong; Wang, Huanqin; Feng, Yun; Wang, Huanyu; Tang, Qing; Liang, Guo-Dong

    2011-05-01

    Economic development and increased tourism in the southern region of Yunnan Province in China, adjacent to several countries in Southeast Asia, has increased the likelihood of import and export of vectors and vector-borne diseases. We report the results of surveillance of mosquitoes and mosquito-borne arboviruses along the border of China-Myanmar-Laos in 2005 and 2006, and information associating several arboviruses with infections and possibly disease in local human populations. Seventeen mosquito species representing four genera were obtained, and 14 strains of mosquito-borne viruses representing six viruses in five genera were isolated from Culex tritaeniorhynchus. In addition, IgM against Japanese encephalitis virus, Sindbis virus, Yunnan orbivirus and novel Banna virus was detected in acute-phase serum samples obtained from hospitalized patients with fever and encephalitis near the areas where the viruses were isolated. This investigation suggests that Japanese encephalitis virus, Sindbis virus, and lesser-known arboviruses circulate and may be infecting humans in the China-Myanmar-Laos border region.

  14. SAINT LOUIS ENCEPHALITIS VIRUS IN MATO GROSSO, CENTRAL-WESTERN BRAZIL.

    PubMed

    Heinen, Letícia Borges da Silva; Zuchi, Nayara; Serra, Otacília Pereira; Cardoso, Belgath Fernandes; Gondim, Breno Herman Ferreira; Dos Santos, Marcelo Adriano Mendes; Souto, Francisco José Dutra; Paula, Daphine Ariadne Jesus de; Dutra, Valéria; Dezengrini-Slhessarenko, Renata

    2015-01-01

    The dengue virus (DENV), which is frequently involved in large epidemics, and the yellow fever virus (YFV), which is responsible for sporadic sylvatic outbreaks, are considered the most important flaviviruses circulating in Brazil. Because of that, laboratorial diagnosis of acute undifferentiated febrile illness during epidemic periods is frequently directed towards these viruses, which may eventually hinder the detection of other circulating flaviviruses, including the Saint Louis encephalitis virus (SLEV), which is widely dispersed across the Americas. The aim of this study was to conduct a molecular investigation of 11 flaviviruses using 604 serum samples obtained from patients during a large dengue fever outbreak in the state of Mato Grosso (MT) between 2011 and 2012. Simultaneously, 3,433 female Culex spp. collected with Nasci aspirators in the city of Cuiabá, MT, in 2013, and allocated to 409 pools containing 1-10 mosquitoes, were also tested by multiplex semi-nested reverse transcription PCR for the same flaviviruses. SLEV was detected in three patients co-infected with DENV-4 from the cities of Cuiabá and Várzea Grande. One of them was a triple co-infection with DENV-1. None of them mentioned recent travel or access to sylvatic/rural regions, indicating that transmission might have occurred within the metropolitan area. Regarding mosquito samples, one pool containing one Culex quinquefasciatus female was positive for SLEV, with a minimum infection rate (MIR) of 0.29 per 1000 specimens of this species. Phylogenetic analysis indicates both human and mosquito SLEV cluster, with isolates from genotype V-A obtained from animals in the Amazon region, in the state of Pará. This is the first report of SLEV molecular identification in MT.

  15. [Explantation method of isolating a persistent tick-borne encephalitis virus from the organs of infected monkeys].

    PubMed

    Levina, L S; Pogodina, V V

    1981-01-01

    The method of explantation was used to examine 63 organs from M. rhesus monkeys 92-783 days after intracerebral and subcutaneous inoculation with the Vasilchenko, Aina/1448 and 41/65 strains of tick-borne encephalitis virus. The optimal time for examination of the explants by tests of the hemagglutinating, cytopathogenic activity of the virus and its pathogenicity for mice was found to be the 15th day of cultivation. A comparative study of the properties of 3 isolates obtained from explants of the spleen, liver and subcortical cerebral ganglia 202 and 307 days after inoculation of monkeys was carried out. The isolates differed from the parental TBE virus strains by their capacity to form small plaques in PEKV cell cultures (pig embryo kidney cells in versen medium).

  16. Vaccination against Louping Ill Virus Protects Goats from Experimental Challenge with Spanish Goat Encephalitis Virus.

    PubMed

    Salinas, L M; Casais, R; García Marín, J F; Dalton, K P; Royo, L J; Del Cerro, A; Gayo, E; Dagleish, M P; Alberdi, P; Juste, R A; de la Fuente, J; Balseiro, A

    2017-05-01

    Spanish goat encephalitis virus (SGEV) is a recently described member of the genus Flavivirus belonging to the tick-borne encephalitis group of viruses, and is closely related to louping ill virus (LIV). Naturally acquired disease in goats results in severe, acute encephalitis and 100% mortality. Eighteen goats were challenged subcutaneously with SGEV; nine were vaccinated previously against LIV and nine were not. None of the vaccinated goats showed any clinical signs of disease or histological lesions, but all of the non-vaccinated goats developed pyrexia and 5/9 developed neurological clinical signs, primarily tremors in the neck and ataxia. All non-vaccinated animals developed histological lesions restricted to the central nervous system and consistent with a lymphocytic meningomyeloencephalitis. Vaccinated goats had significantly (P <0.003) greater concentrations of serum IgG and lower levels of IgM (P <0.0001) compared with unvaccinated animals. SGEV RNA levels were below detectable limits in the vaccinated goats throughout the experiment, but increased rapidly and were significantly (P <0.0001) greater 2-10 days post challenge in the non-vaccinated group. In conclusion, vaccination of goats against LIV confers highly effective protection against SGEV; this is probably mediated by IgG and prevents an increase in viral RNA load in serum such that vaccinated animals would not be an effective reservoir of the virus. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Transmembrane Domains of NS2B Contribute to both Viral RNA Replication and Particle Formation in Japanese Encephalitis Virus.

    PubMed

    Li, Xiao-Dan; Deng, Cheng-Lin; Ye, Han-Qing; Zhang, Hong-Lei; Zhang, Qiu-Yan; Chen, Dong-Dong; Zhang, Pan-Tao; Shi, Pei-Yong; Yuan, Zhi-Ming; Zhang, Bo

    2016-06-15

    Flavivirus nonstructural protein 2B (NS2B) is a transmembrane protein that functions as a cofactor for viral NS3 protease. The cytoplasmic region (amino acids 51 to 95) alone of NS2B is sufficient for NS3 protease activity, whereas the role of transmembrane domains (TMDs) remains obscure. Here, we demonstrate for the first time that flavivirus NS2B plays a critical role in virion assembly. Using Japanese encephalitis virus (JEV) as a model, we performed a systematic mutagenesis at the flavivirus conserved residues within the TMDs of NS2B. As expected, some mutations severely attenuated (L38A and R101A) or completely destroyed (G12L) viral RNA synthesis. Interestingly, two mutations (G37L and P112A) reduced viral RNA synthesis and blocked virion assembly. None of the mutations affected NS2B-NS3 protease activity. Because mutations G37L and P112A affected virion assembly, we selected revertant viruses for these two mutants. For mutant G37L, replacement with G37F, G37H, G37T, or G37S restored virion assembly. For mutant P112A, insertion of K at position K127 (leading to K127KK) of NS2B rescued virion assembly. A biomolecular fluorescent complementation (BiFC) analysis demonstrated that (i) mutation P112A selectively weakened NS2B-NS2A interaction and (ii) the adaptive mutation K127KK restored NS2B-NS2A interaction. Collectively, our results demonstrate that, in addition to being a cofactor for NS3 protease, flavivirus NS2B also functions in viral RNA replication, as well as virion assembly. Many flaviviruses are important human pathogens. Understanding the molecular mechanisms of the viral infection cycle is essential for vaccine and antiviral development. In this study, we demonstrate that the TMDs of JEV NS2B participate in both viral RNA replication and virion assembly. A viral genetic study and a BiFC assay demonstrated that interaction between NS2B and NS2A may participate in modulating viral assembly in the flavivirus life cycle. Compensatory-mutation analysis

  18. Human and Equine Infection with Alphaviruses and Flaviviruses in Panamá during 2010: A Cross-Sectional Study of Household Contacts during an Encephalitis Outbreak.

    PubMed

    Carrera, Jean-Paul; Bagamian, Karoun H; Travassos da Rosa, Amelia P; Wang, Eryu; Beltran, Davis; Gundaker, Nathan D; Armien, Blas; Arroyo, Gianfranco; Sosa, Néstor; Pascale, Juan Miguel; Valderrama, Anayansi; Tesh, Robert B; Vittor, Amy Y; Weaver, Scott C

    2018-06-01

    Members of the genera Alphavirus (family Togaviridae ) and Flavivirus (family Flaviridae ) are important zoonotic human and equine etiologic agents of neurologic diseases in the New World. In 2010, an outbreak of Madariaga virus (MADV; formerly eastern equine encephalitis virus) and Venezuelan equine encephalitis virus (VEEV) infections was reported in eastern Panamá. We further characterized the epidemiology of the outbreak by studying household contacts of confirmed human cases and of equine cases with neurological disease signs. Serum samples were screened using a hemagglutination inhibition test, and human results were confirmed using plaque reduction neutralization tests. A generalized linear model was used to evaluate the human MADV and VEEV seroprevalence ratios by age (in tercile) and gender. Overall, antibody prevalence for human MADV infection was 19.4%, VEEV 33.3%, and Mayaro virus 1.4%. In comparison with individuals aged 2-20 years, people from older age groups (21-41 and > 41 years) were five times more likely to have antibodies against VEEV, whereas the MADV prevalence ratio was independent of age. The overall seroprevalence of MADV in equids was 26.3%, VEEV 29.4%, West Nile virus (WNV) 2.6%, and St. Louis encephalitis virus (SLEV) was 63.0%. Taken together, our results suggest that multiple arboviruses are circulating in human and equine populations in Panamá. Our findings of a lack of increase in the seroprevalence ratio with age support the hypothesis of recent MADV exposure to people living in the affected region.

  19. Phase III Clinical Trials Comparing the Immunogenicity and Safety of the Vero Cell-Derived Japanese Encephalitis Vaccine Encevac with Those of Mouse Brain-Derived Vaccine by Using the Beijing-1 Strain

    PubMed Central

    Miyazaki, Chiaki; Okada, Kenji; Ozaki, Takao; Hirose, Mizuo; Iribe, Kaneshige; Ishikawa, Yuji; Togashi, Takehiro; Ueda, Kohji

    2014-01-01

    The immunogenicity and safety of an inactivated cell culture Japanese encephalitis vaccine (CC-JEV) were compared with those of an inactivated mouse brain-derived Japanese encephalitis vaccine (MB-JEV) in phase III clinical multicenter trials conducted in children. The vaccines contain the same Japanese encephalitis virus strain, the Beijing-1 strain. Two independent clinical trials (trials 1 and 2) were conducted. Trial 1 was conducted in 468 healthy children. Each subject was injected with 17 μg per dose of either CC-JEV or MB-JEV, and the immunogenicity and safety of the vaccines were investigated. Trial 1 showed that CC-JEV was more immunogenic and reactive than MB-JEV at the same dose. Therefore, to adjust the immunogenicity of CC-JEV to that of MB-JEV, a vaccine that has had a good track record regarding its efficacy for a long time, trial 2 was conducted in 484 healthy children. To improve the stability, CC-JEV was converted from a liquid type to a freeze-dried type of vaccine. Each subject was injected subcutaneously with either 4 μg per dose of CC-JEV, 8 μg per dose of CC-JEV, or 17 μg per dose of MB-JEV twice, at an interval of 2 to 4 weeks, followed by an additional booster immunization 1 to 15 months after the primary immunization. Based on the results of trial 2, 4 μg per dose of the freeze-dried CC-JEV (under the label Encevac) was selected as a substitute for the MB-JEV. Encevac was approved and launched in 2011 and has since been in use as a 2nd-generation Japanese encephalitis vaccine in Japan. (These studies have been registered at the JapicCTI under registration no. JapicCTI-132063 and JapicCTI-080586 for trials 1 and 2, respectively.) PMID:24334689

  20. [Characteristics of long-term persisting strains of tick-borne encephalitis virus in different forms of the chronic process in animals].

    PubMed

    Frolova, T V; Pogodina, V V; Frolova, M P; Karmysheva, V Ia

    1982-01-01

    The properties of the Vasilchenko strain of tick-borne encephalitis (TBE) virus and its 3 variants isolated at various stages of persistent infection (383, 453, and 535 days) in Macaca rhesus monkeys and Syrian hamsters with different forms of the chronic TBE were studied. The process characterized by chronic focal inflammatory-degenerative changes in the brains of hamsters without the disturbance of motor functions was associated with persistence of different kinds of virus-specific antigens without virulent virus production. Brain explants of this group of hamsters yielded a virus with cytopathogenic properties but not pathogenic for mice. In a chronic disease developing without the initial acute period, a virus was recovered from hamsters which proved to be virulent for mice and to possess the hemagglutinating and high invasive activity. The most virulent strain was isolated from monkeys with continuously progressive chronic encephalitis with steady paralysis of the extremities. This isolate differed from the parental Vasilchenko strain by a high pathogenicity for hamsters by intracerebral and subcutaneous routes, and thermostability at 50 degrees C.

  1. Study on the occurrence of tick-borne encephalitis virus RNA in European bison (Bison bonasus) eliminated at Białowieza Primeval Forest (north-eastern Poland) in 2005-2009.

    PubMed

    Biernat, Beata; Karbowiak, Grzegorz

    2014-01-01

    Tick-borne encephalitis virus (TBEV) (Flaviviridae, Flavivirus) is an arthropod-borne virus, an etiologic agent of tick-borne encephalitis (TBE), an infection involving the central nervous system. The disease is endemic in a large region in Eurasia where it is transmitted mainly by Ixodes ricinus in Europe and I. persulcatus ticks in Asia. This is the most important tick-transmitted arbovirus of human pathogenicity in Europe. The Białowieza Primeval Forest is a well-known endemic focus of tick-borne encephalitis. The aim of this study was to identify the prevalence of tickborne encephalitis virus (TBEV) in European bison, the important hosts of ticks in the Białowieza Primeval Forest. In the years 2005-2009, 95 blood samples were collected from European bison and examined for the presence of TBEV using nRT-PCR method. No positive results were obtained. For better understanding of TBEV vertebrate reservoir hosts in Poland, further investigations are needed.

  2. Laser Capture Microdissection Assessment of Virus Compartmentalization in the Central Nervous Systems of Macaques Infected with Neurovirulent Simian Immunodeficiency Virus

    PubMed Central

    Matsuda, Kenta; Brown, Charles R.; Foley, Brian; Goeken, Robert; Whitted, Sonya; Dang, Que; Wu, Fan; Plishka, Ronald; Buckler-White, Alicia

    2013-01-01

    Nonhuman primate-simian immunodeficiency virus (SIV) models are powerful tools for studying the pathogenesis of human immunodeficiency virus type 1 (HIV-1) in the brain. Our laboratory recently isolated a neuropathogenic viral swarm, SIVsmH804E, a derivative of SIVsmE543-3, which was the result of sequential intravenous passages of viruses isolated from the brains of rhesus macaques with SIV encephalitis. Animals infected with SIVsmH804E or its precursor (SIVsmH783Br) developed SIV meningitis and/or encephalitis at high frequencies. Since we observed macaques with a combination of meningitis and encephalitis, as well as animals in which meningitis or encephalitis was the dominant component, we hypothesized that distinct mechanisms could be driving the two pathological states. Therefore, we assessed viral populations in the meninges and the brain parenchyma by laser capture microdissection. Viral RNAs were isolated from representative areas of the meninges, brain parenchyma, terminal plasma, and cerebrospinal fluid (CSF) and from the inoculum, and the SIV envelope fragment was amplified by PCR. Phylogenetic analysis of envelope sequences from the conventional progressors revealed compartmentalization of viral populations between the meninges and the parenchyma. In one of these animals, viral populations in meninges were closely related to those from CSF and shared signature truncations in the cytoplasmic domain of gp41, consistent with a common origin. Apart from magnetic resonance imaging (MRI) and positron-emission tomography (PET) imaging, CSF is the most accessible assess to the central nervous system for HIV-1-infected patients. However, our results suggest that the virus in the CSF may not always be representative of viral populations in the brain and that caution should be applied in extrapolating between the properties of viruses in these two compartments. PMID:23720733

  3. Postviral autoimmune encephalitis: manifestations in children and adults.

    PubMed

    Prüss, Harald

    2017-06-01

    Autoimmune encephalitis is an increasingly recognized neuropsychiatric condition seen in patients of all ages. Herpes virus infections of the brain can antedate the development of pathogenic autoantibodies against N-methyl-D-aspartate receptors and further neuronal surface proteins, leading to neuronal dysfunction and relapsing symptoms. This review will recapitulate the recent scientific progress, clinical manifestations in children and adults, therapeutic options, and etiological concepts on how autoimmunity develops. Postviral autoimmune encephalitis has been established as disease mechanism after herpes simplex virus encephalitis. Relapsing symptoms in the absence of virus occur in up to 20% of cases. The clinical presentation is relatively stereotyped in children, consisting of choreoathetosis and reduced levels of consciousness. Adults commonly present with psychiatric abnormalities and cognitive changes. Virus-induced antibody generation seems to be a widespread mechanism not confined to Herpesviridae and N-methyl-D-aspartate receptor antibodies SUMMARY: The presence of prolonged, atypical, or relapsing symptoms after virus encephalitis must be actively determined, requiring early follow-up visits of patients, and should always prompt the search for underlying autoantibodies. Relapsing symptoms can markedly improve with immunotherapy, thus treatment, including corticosteroids, plasma separation, immunoglobulins, and rituximab is usually recommended, even if no specific antibody was detected.

  4. Utilisation of ISA Reverse Genetics and Large-Scale Random Codon Re-Encoding to Produce Attenuated Strains of Tick-Borne Encephalitis Virus within Days.

    PubMed

    de Fabritus, Lauriane; Nougairède, Antoine; Aubry, Fabien; Gould, Ernest A; de Lamballerie, Xavier

    2016-01-01

    Large-scale codon re-encoding is a new method of attenuating RNA viruses. However, the use of infectious clones to generate attenuated viruses has inherent technical problems. We previously developed a bacterium-free reverse genetics protocol, designated ISA, and now combined it with large-scale random codon-re-encoding method to produce attenuated tick-borne encephalitis virus (TBEV), a pathogenic flavivirus which causes febrile illness and encephalitis in humans. We produced wild-type (WT) and two re-encoded TBEVs, containing 273 or 273+284 synonymous mutations in the NS5 and NS5+NS3 coding regions respectively. Both re-encoded viruses were attenuated when compared with WT virus using a laboratory mouse model and the relative level of attenuation increased with the degree of re-encoding. Moreover, all infected animals produced neutralizing antibodies. This novel, rapid and efficient approach to engineering attenuated viruses could potentially expedite the development of safe and effective new-generation live attenuated vaccines.

  5. Nipah Virus Infection Outbreak with Nosocomial and Corpse-to-Human Transmission, Bangladesh

    PubMed Central

    Hossain, M. Jahangir; Gurley, Emily S.; Ameen, Kazi M.H.; Parveen, Shahana; Islam, M. Saiful; Faruque, Labib I.; Podder, Goutam; Banu, Sultana S.; Lo, Michael K.; Rollin, Pierre E.; Rota, Paul A.; Daszak, Peter; Rahman, Mahmudur; Luby, Stephen P.

    2013-01-01

    Active Nipah virus encephalitis surveillance identified an encephalitis cluster and sporadic cases in Faridpur, Bangladesh, in January 2010. We identified 16 case-patients; 14 of these patients died. For 1 case-patient, the only known exposure was hugging a deceased patient with a probable case, while another case-patient’s exposure involved preparing the same corpse for burial by removing oral secretions and anogenital excreta with a cloth and bare hands. Among 7 persons with confirmed sporadic cases, 6 died, including a physician who had physically examined encephalitis patients without gloves or a mask. Nipah virus–infected patients were more likely than community-based controls to report drinking raw date palm sap and to have had physical contact with an encephalitis patient (29% vs. 4%, matched odds ratio undefined). Efforts to prevent transmission should focus on reducing caregivers’ exposure to infected patients’ bodily secretions during care and traditional burial practices. PMID:23347678

  6. [Strategy for choosing antibiotics for treating bacterial infections associated with chronic tick-borne encephalitis].

    PubMed

    Malenko, G V; Pogodina, V V; Frolova, M P; Ivannikova, T A

    1996-01-01

    The capacity of wide-spectrum antibiotics kefzol and ristomycin to activate the persisting tick-borne encephalitis (TBE) virus and cause an exacerbation of chronic process was investigated in Syrian hamsters in whom a prolonged (77 to 270 days) persistent TBE infection was induced by three TBE strains: Vasilchenko, V-383, and 205. The degree of antibiotic-induced activation was assessed using the criteria characterizing the reproduction and peculiarities of persisting TBE virus, immunodepression, and morphologic changes in the central nervous system. Effects of kefzol and ristomycin were compared with those of 8 antibiotics studied previously. Ristomycin, levomycetin (chloramphycin), penicillin, ampicillin (ampital), and levoridan were referred to drugs devoid of evident provoking effect. Kefzol (cefamezin), florimycin (viomycin), and kanamycin (kanamytrex) were characterized as weak activators and streptomycin and tetracycline as potent activators of the persisting TBE virus. These data may be used when selecting alternative agents for therapy of secondary bacterial infections concomitant with TBE.

  7. Acute retinal necrosis results in low vision in a young patient with a history of herpes simplex virus encephalitis.

    PubMed

    Shahi, Sanjeet K

    2017-05-01

    Acute retinal necrosis (ARN), secondary to herpes simplex encephalitis, is a rare syndrome that can present in healthy individuals, as well as immuno-compromised patients. Most cases are caused by a secondary infection from the herpes virus family, with varicella zoster virus being the leading cause of this syndrome. Potential symptoms include blurry vision, floaters, ocular pain and photophobia. Ocular findings may consist of severe uveitis, retinal vasculitis, retinal necrosis, papillitis and retinal detachment. Clinical manifestations of this disease may include increased intraocular pressure, optic disc oedema, optic neuropathy and sheathed retinal arterioles. A complete work up is essential to rule out cytomegalovirus retinitis, herpes simplex encephalitis, herpes virus, syphilis, posterior uveitis and other conditions. Depending on the severity of the disease, the treatment options consist of anticoagulation therapy, cycloplegia, intravenous acyclovir, systemic steroids, prophylactic laser photocoagulation and pars plana vitrectomy with silicon oil for retinal detachment. An extensive history and clinical examination is crucial in making the correct diagnosis. Also, it is very important to be aware of low vision needs and refer the patients, if expressing any sort of functional issues with completing daily living skills, especially reading. In this article, we report one case of unilateral ARN 20 years after herpetic encephalitis. © 2016 Optometry Australia.

  8. [Interaction of the Siberian and Far Eastern subtypes of tick-borne encephalitis virus in mammals with mixed infection. I. Factors influencing the type of interaction].

    PubMed

    Gerasimov, S G; Pogodina, V V; Kolyasnikova, N M; Karan, L S; Malenko, G V; Levina, L S

    2011-01-01

    Polytypic strains containing the fragments of genes of Siberian and Far Eastern tick-borne encephalitis (TBE) virus subtypes were isolated from the brain of fatal TBE patients, the blood of TBE patients, and Ixodes persulcatus ticks in the foci of concomitant circulation of the two subtypes. The interaction of the Siberian and Far Eastern TBE virus subtypes was studied in the neural phase of the infection of albino mice and Syrian hamsters in order to understand conditions for formation of these strains and their role in the etiology of acute TBE. Their viral progeny was genotyped by reverse transcription-polymerase chain reaction and fluorescence hybridization assay with genotype-specific probes. Mixed infection showed an effect of synergism, independent reproduction of the two subtypes in the brain and spleen, competitive exclusion of one subtype from the viral population. The type of the Interaction depended on the species of animals, the properties of partner strains, and the target organ.

  9. Viruses in reptiles.

    PubMed

    Ariel, Ellen

    2011-09-21

    The etiology of reptilian viral diseases can be attributed to a wide range of viruses occurring across different genera and families. Thirty to forty years ago, studies of viruses in reptiles focused mainly on the zoonotic potential of arboviruses in reptiles and much effort went into surveys and challenge trials of a range of reptiles with eastern and western equine encephalitis as well as Japanese encephalitis viruses. In the past decade, outbreaks of infection with West Nile virus in human populations and in farmed alligators in the USA has seen the research emphasis placed on the issue of reptiles, particularly crocodiles and alligators, being susceptible to, and reservoirs for, this serious zoonotic disease. Although there are many recognised reptilian viruses, the evidence for those being primary pathogens is relatively limited. Transmission studies establishing pathogenicity and cofactors are likewise scarce, possibly due to the relatively low commercial importance of reptiles, difficulties with the availability of animals and permits for statistically sound experiments, difficulties with housing of reptiles in an experimental setting or the inability to propagate some viruses in cell culture to sufficient titres for transmission studies. Viruses as causes of direct loss of threatened species, such as the chelonid fibropapilloma associated herpesvirus and ranaviruses in farmed and wild tortoises and turtles, have re-focused attention back to the characterisation of the viruses as well as diagnosis and pathogenesis in the host itself.

  10. Infectious Causes of Encephalitis and Meningoencephalitis in Thailand, 2003–2005

    PubMed Central

    Campbell, Angela P.; Supawat, Krongkaew; Liamsuwan, Sahas; Chotpitayasunondh, Tawee; Laptikulthum, Somsak; Viriyavejakul, Akravudh; Tantirittisak, Tasanee; Tunlayadechanont, Supoch; Visudtibhan, Anannit; Vasiknanonte, Punnee; Janjindamai, Supachai; Boonluksiri, Pairoj; Rajborirug, Kiatsak; Watanaveeradej, Veerachai; Khetsuriani, Nino; Dowell, Scott F.

    2015-01-01

    Acute encephalitis is a severe neurologic syndrome. Determining etiology from among ≈100 possible agents is difficult. To identify infectious etiologies of encephalitis in Thailand, we conducted surveillance in 7 hospitals during July 2003–August 2005 and selected patients with acute onset of brain dysfunction with fever or hypothermia and with abnormalities seen on neuroimages or electroencephalograms or with cerebrospinal fluid pleocytosis. Blood and cerebrospinal fluid were tested for >30 pathogens. Among 149 case-patients, median age was 12 (range 0–83) years, 84 (56%) were male, and 15 (10%) died. Etiology was confirmed or probable for 54 (36%) and possible or unknown for 95 (64%). Among confirmed or probable etiologies, the leading pathogens were Japanese encephalitis virus, enteroviruses, and Orientia tsutsugamushi. No samples were positive for chikungunya, Nipah, or West Nile viruses; Bartonella henselae; or malaria parasites. Although a broad range of infectious agents was identified, the etiology of most cases remains unknown. PMID:25627940

  11. A Population-Based Acute Meningitis and Encephalitis Syndromes Surveillance in Guangxi, China, May 2007- June 2012

    PubMed Central

    Chongsuvivatwong, Virasakdi; Wu, Xinghua; Bi, Fuyin; Hadler, Stephen C.; Jiraphongsa, Chuleeporn; Sornsrivichai, Vorasith; Lin, Mei; Quan, Yi

    2015-01-01

    Objectives Acute meningitis and encephalitis (AME) are common diseases with the main pathogens being viruses and bacteria. As specific treatments are different, it is important to develop clinical prediction rules to distinguish aseptic from bacterial or fungal infection. In this study we evaluated the incidence rates, seasonal variety and the main etiologic agents of AME, and identified factors that could be used to predict the etiologic agents. Methods A population-based AME syndrome surveillance system was set up in Guigang City, Guangxi, involving 12 hospitals serving the study communities. All patients meeting the case definition were investigated. Blood and/or cerebrospinal fluid were tested for bacterial pathogens using culture or RT-PCR and serological tests for viruses using enzyme-linked immunosorbent assays. Laboratory testing variables were grouped using factor analysis. Multinomial logistic regression was used to predict the etiology of AME. Results From May 2007 to June 2012, the annual incidence rate of AME syndrome, and disease specifically caused by Japanese encephalitis (JE), other viruses, bacteria and fungi were 12.55, 0.58, 4.57, 0.45 and 0.14 per 100,000 population, respectively. The top three identified viral etiologic agents were enterovirus, mumps virus, and JE virus, and for bacteria/fungi were Streptococcus sp., Cryptococcus neoformans and Staphylococcus sp. The incidence of JE and other viruses affected younger populations and peaked from April to August. Alteration of consciousness and leukocytosis were more likely to be caused by JE, bacteria and fungi whereas CSF inflammation was associated with bacterial/fungal infection. Conclusions With limited predictive validity of symptoms and signs and routine laboratory tests, specific tests for JE virus, mumps virus and enteroviruses are required to evaluate the immunization impact and plan for further intervention. CSF bacterial culture cannot be omitted in guiding clinical decisions

  12. A 3-year-old boy with Guillain-Barré syndrome and encephalitis associated with Mycoplasma pneumoniae infection.

    PubMed

    Hanzawa, Fumie; Fuchigami, Tatsuo; Ishii, Wakako; Nakajima, Sonoko; Kawamura, Yuki; Endo, Ayumi; Arakawa, Chikako; Kohira, Ryutaro; Fujita, Yukihiko; Takahashi, Shori

    2014-02-01

    Mycoplasma pneumoniae is a common cause of respiratory tract illness in children. Among the most common extrapulmonary manifestations are disorders of the central nervous system, including meningitis, meningoencephalitis, cerebellitis, polyneuropathy, acute disseminated encephalomyelitis, and Guillain-Barré syndrome. Guillain-Barré syndrome, also known as acute inflammatory demyelinating polyradiculoneuropathy, is an acute-onset, immune-mediated disorder of the peripheral nervous system. The central nervous system is usually intact in patients with Guillain-Barré syndrome. However, there have been some reports of an association of Guillain-Barré syndrome with central nervous system involvement in children. We report a 3-year-old boy with M. pneumoniae infection associated with Guillain-Barré syndrome and encephalitis. Both serum anti-GM1 ganglioside (IgG and IgM) and anti-galactocerebroside IgG antibodies were detected in our patient: the former in the earlier stage of the disease, and the latter in the later stage. We speculate that anti-GM1 ganglioside was associated more with encephalitis, and anti-galactocerebroside antibody was associated more with GBS in our case. Our patient is the youngest report of Guillain-Barré syndrome with central nervous system involvement, and the first report of a pediatric patient with associated M. pneumoniae infection. Such cases are rarely reported, but highlight the need for awareness of the association of the infection with Guillain-Barré syndrome with central nervous system involvement. Copyright © 2013 Japanese Society of Chemotherapy and The Japanese Association for Infectious Disease. Published by Elsevier Ltd. All rights reserved.

  13. Cytokine Protein Expression Levels in Tracheobronchial Lymph Node Homogenates of Pigs Infected with Pseudorabies Virus

    USDA-ARS?s Scientific Manuscript database

    Pseudorabies virus (PRV) is a neurotropic alphaherpesvirus that produces fatal encephalitis in newborn pigs, respiratory disorders in fattening pigs and reproductive failure in sows. Following primary infection of the respiratory tract, PRV can develop into a systemic infection with dispersion of t...

  14. Rabies direct fluorescent antibody test does not inactivate rabies or eastern equine encephalitis viruses.

    PubMed

    Jarvis, Jodie A; Franke, Mary A; Davis, April D

    2016-08-01

    An examination using the routine rabies direct fluorescent antibody test was performed on rabies or Eastern equine encephalitis positive mammalian brain tissue to assess inactivation of the virus. Neither virus was inactivated with acetone fixation nor the routine test, thus laboratory employees should treat all samples as rabies and when appropriate Eastern equine encephalitis positive throughout the whole procedure. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Seroprevalence of West Nile Virus in Wild Birds in Far Eastern Russia Using a Focus Reduction Neutralization Test

    PubMed Central

    Murata, Ryo; Hashiguchi, Kazuaki; Yoshii, Kentaro; Kariwa, Hiroaki; Nakajima, Kensuke; Ivanov, Leonid I.; Leonova, Galina N.; Takashima, Ikuo

    2011-01-01

    West Nile (WN) virus has been spreading geographically to non-endemic areas in various parts of the world. However, little is known about the extent of WN virus infection in Russia. Japanese encephalitis (JE) virus, which is closely related to WN virus, is prevalent throughout East Asia. We evaluated the effectiveness of a focus reduction neutralization test in young chicks inoculated with JE and WN viruses, and conducted a survey of WN infection among wild birds in Far Eastern Russia. Following single virus infection, only neutralizing antibodies specific to the homologous virus were detected in chicks. The neutralization test was then applied to serum samples from 145 wild birds for WN and JE virus. Twenty-one samples were positive for neutralizing antibodies to WN. These results suggest that WN virus is prevalent among wild birds in the Far Eastern region of Russia. PMID:21363987

  16. Tick-borne encephalitis: A review of epidemiology, clinical characteristics, and management

    PubMed Central

    Bogovic, Petra; Strle, Franc

    2015-01-01

    Tick-borne encephalitis is an infection of central nervous system caused by tick-borne encephalitis virus transmitted to humans predominantly by tick bites. During the last few decades the incidence of the disease has been increasing and poses a growing health problem in almost all endemic European and Asian countries. Most cases occur during the highest period of tick activity, in Central Europe mainly from April to November. Tick-borne encephalitis is more common in adults than in children. Clinical spectrum of the disease ranges from mild meningitis to severe meningoencephalitis with or without paralysis. Rare clinical manifestations are an abortive form of the disease and a chronic progressive form. A post-encephalitic syndrome, causing long-lasting morbidity that often affects the quality of life develops in up to 50% of patients after acute tick-borne encephalitis. Clinical course and outcome vary by subtype of tick-borne encephalitis virus (the disease caused by the European subtype has milder course and better outcome than the disease caused by Siberian and Far-Easter subtypes), age of patients (increasing age is associated with less favorable outcome), and host genetic factors. Since clinical features and laboratory results of blood and cerebrospinal fluid are nonspecific, the diagnosis must be confirmed by microbiologic findings. The routine laboratory confirmation of the tick-borne encephalitis virus infection is based mainly on the detection of specific IgM and IgG antibodies in serum (and cerebrospinal fluid), usually by enzyme-linked immunosorbent assay. There is no specific antiviral treatment for tick-borne encephalitis. Vaccination can effectively prevent the disease and is indicated for persons living in or visiting tick-borne encephalitis endemic areas. PMID:25984517

  17. SAINT LOUIS ENCEPHALITIS VIRUS IN MATO GROSSO, CENTRAL-WESTERN BRAZIL

    PubMed Central

    HEINEN, Letícia Borges da Silva; ZUCHI, Nayara; SERRA, Otacília Pereira; CARDOSO, Belgath Fernandes; GONDIM, Breno Herman Ferreira; dos SANTOS, Marcelo Adriano Mendes; SOUTO, Francisco José Dutra; de PAULA, Daphine Ariadne Jesus; DUTRA, Valéria; DEZENGRINI-SLHESSARENKO, Renata

    2015-01-01

    The dengue virus (DENV), which is frequently involved in large epidemics, and the yellow fever virus (YFV), which is responsible for sporadic sylvatic outbreaks, are considered the most important flaviviruses circulating in Brazil. Because of that, laboratorial diagnosis of acute undifferentiated febrile illness during epidemic periods is frequently directed towards these viruses, which may eventually hinder the detection of other circulating flaviviruses, including the Saint Louis encephalitis virus (SLEV), which is widely dispersed across the Americas. The aim of this study was to conduct a molecular investigation of 11 flaviviruses using 604 serum samples obtained from patients during a large dengue fever outbreak in the state of Mato Grosso (MT) between 2011 and 2012. Simultaneously, 3,433 female Culex spp. collected with Nasci aspirators in the city of Cuiabá, MT, in 2013, and allocated to 409 pools containing 1-10 mosquitoes, were also tested by multiplex semi-nested reverse transcription PCR for the same flaviviruses. SLEV was detected in three patients co-infected with DENV-4 from the cities of Cuiabá and Várzea Grande. One of them was a triple co-infection with DENV-1. None of them mentioned recent travel or access to sylvatic/rural regions, indicating that transmission might have occurred within the metropolitan area. Regarding mosquito samples, one pool containing one Culex quinquefasciatus female was positive for SLEV, with a minimum infection rate (MIR) of 0.29 per 1000 specimens of this species. Phylogenetic analysis indicates both human and mosquito SLEV cluster, with isolates from genotype V-A obtained from animals in the Amazon region, in the state of Pará. This is the first report of SLEV molecular identification in MT. PMID:26200961

  18. [The study of adaptation syndrome in mixed-infection of tick-borne encephalitis and borreliosis in children].

    PubMed

    Subbotin, A V; Poponnikova, T V; Zinchuk, S F

    2003-01-01

    Twenty two children with mixed-infection of tick-borne encephalitis (TBE) and ixodic tick borreliosis (ITB) were studied. Blood hydrocortisone level was changed in 94.5% of the cases. The most significant activation of hydrocortisone secretion in combination with the most pronounced and prolonged general brain manifestations, was detected in infants. Blood hydrocortisone level correlated with clinical symptoms of combined TBE and ITB infections. Along with higher hydrocortisone level, down-regulation of production of antibodies both to B. burgdorferi and to TBE virus was specific for all children studied.

  19. Prevalence of Intrathecal Acyclovir Resistant Virus in Herpes Simplex Encephalitis Patients.

    PubMed

    Mitterreiter, Johanna G; Titulaer, Maarten J; van Nierop, Gijsbert P; van Kampen, Jeroen J A; Aron, Georgina I; Osterhaus, Albert D M E; Verjans, Georges M G M; Ouwendijk, Werner J D

    2016-01-01

    Herpes simplex encephalitis (HSE) is a life-threatening complication of herpes simplex virus (HSV) infection. Acyclovir (ACV) is the antiviral treatment of choice, but may lead to emergence of ACV-resistant (ACVR) HSV due to mutations in the viral UL23 gene encoding for the ACV-targeted thymidine kinase (TK) protein. Here, we determined the prevalence of intrathecal ACVR-associated HSV TK mutations in HSE patients and compared TK genotypes of sequential HSV isolates in paired cerebrospinal fluid (CSF) and blister fluid of mucosal HSV lesions. Clinical samples were obtained from 12 HSE patients, encompassing 4 HSV type 1 (HSV-1) and 8 HSV-2 encephalitis patients. HSV DNA load was determined by real-time PCR and complete HSV TK gene sequences were obtained by nested PCR followed by Sanger sequencing. All HSV-1 HSE patients contained viral TK mutations encompassing 30 unique nucleotide and 13 distinct amino acid mutations. By contrast, a total of 5 unique nucleotide and 4 distinct amino acid changes were detected in 7 of 8 HSV-2 patients. Detected mutations were identified as natural polymorphisms located in non-conserved HSV TK gene regions. ACV therapy did not induce the emergence of ACVR-associated HSV TK mutations in consecutive CSF and mucocutaneous samples of 5 individual patients. Phenotypic susceptibility analysis of these mucocutaneous HSV isolates demonstrated ACV-sensitive virus in 2 HSV-1 HSE patients, whereas in two HSV-2 HSE patients ACVR virus was detected in the absence of known ACVR-associated TK mutations. In conclusion, we did not detect intrathecal ACVR-associated TK mutations in HSV isolates obtained from 12 HSE patients.

  20. Venezuelan equine encephalitis and Oropouche virus infections among Peruvian army troops in the Amazon region of Peru.

    PubMed

    Watts, D M; Lavera, V; Callahan, J; Rossi, C; Oberste, M S; Roehrig, J T; Cropp, C B; Karabatsos, N; Smith, J F; Gubler, D J; Wooster, M T; Nelson, W M; Hayes, C G

    1997-06-01

    An outbreak of a febrile illness characterized by headache, ocular pain, myalgia, and arthralgia occurred during June 1994 among Peruvian army troops in Northern Peru. On June 14-16, 1994, clinical data and blood samples were obtained from eight soldiers with a febrile illness, and from 26 others who had a history of febrile illness during the past three months. A follow-up blood sample was obtained 107 days later from four of the febrile and seven of the afebrile soldiers. Serum samples were tested for dengue (DEN), Oropouche (ORO), and Venezuelan equine encephalitis (VEE) IgM and IgG antibodies by an enzyme-linked immunosorbent assay (ELISA). Virus isolation was performed by inoculation of newborn mice and Vero cell cultures. Viral isolates were identified by immunofluorescence, ELISA, and nucleotide sequencing. A VEE virus infection was confirmed in three of the eight febrile soldiers, two by virus isolation, and one by serology. Antigenic analysis indicated that one of the virus isolates was similar to VEE subtype I, variety ID, viruses previously isolated in Colombia and Venezuela. Nucleotide sequence data showed that both viral isolates were identical to one another and closely related to VEE ID viruses previously isolated in Peru, Colombia, and Venezuela. Serologic results showed that two of 26 afebrile soldiers had IgM antibody to VEE and four had IgG antibody to VEE; two febrile soldiers had IgG antibody in their first serum samples. Oropouche-specific IgM antibody was detected in one of the eight febrile and five of the afebrile soldiers, and 18 of the 34 soldiers had low titers of ORO IgG antibody titers, which did not meet the diagnostic criteria for confirmed cases. All soldiers were negative for DEN IgM antibody, and 10 had flavivirus IgG antibody that reacted with DEN antigens. These data indicated that VEE ID virus was one of the causes of illness among Peruvians soldiers and that this was the first association of this VEE subtype with human disease

  1. [Usutu virus: a novel flavivirus in Croatia].

    PubMed

    Vilibić-Čavlek, Tatjana; Barbić Ljubo; Stevanović, Vladimir; Mlinarić-Galinović, Gordana

    2015-01-01

    Usutu virus (USUV) belongs to the family Flaviviridae, genus Flavivirus, Japanese encephalitis serocomplex. The virus was discovered in 1959 in South Africa and has emerged since 1996 causing epizootics with high avian mortality in Europe. The importance of USUV in humans is not fully understood. However, several human clinical cases of USUV infection described so far indicate the role of this virus as an antropozoonotic agent. In Croatia, serologic evidence of USUV was first documented in 2011 in two horses from Zagreb and Sisak-Moslavina County. In 2012, USUV neutralizing antibodies were found in one human sample from a resident of a Vukovar-Srijem County. Human clinical cases of USUV infection were detected for the first time during the West Nile virus outbreak from July to September 2013. Three patients with USUV neuroinvasive disease were detected in the City of Zagreb and Zagreb County. Our results indicate USUV circulation in Croatia. Further human cases could be expected in the next transmission seasons.

  2. Characterization of simian T-cell leukemia virus type 1 in naturally infected Japanese macaques as a model of HTLV-1 infection

    PubMed Central

    2013-01-01

    Background Human T-cell leukemia virus type 1 (HTLV-1) causes chronic infection leading to development of adult T-cell leukemia (ATL) and inflammatory diseases. Non-human primates infected with simian T-cell leukemia virus type 1 (STLV-1) are considered to constitute a suitable animal model for HTLV-1 research. However, the function of the regulatory and accessory genes of STLV-1 has not been analyzed in detail. In this study, STLV-1 in naturally infected Japanese macaques was analyzed. Results We identified spliced transcripts of STLV-1 corresponding to HTLV-1 tax and HTLV-1 bZIP factor (HBZ). STLV-1 Tax activated the NFAT, AP-1 and NF-κB signaling pathways, whereas STLV-1 bZIP factor (SBZ) suppressed them. Conversely, SBZ enhanced TGF-β signaling and induced Foxp3 expression. Furthermore, STLV-1 Tax activated the canonical Wnt pathway while SBZ suppressed it. STLV-1 Tax enhanced the viral promoter activity while SBZ suppressed its activation. Then we addressed the clonal proliferation of STLV-1+ cells by massively sequencing the provirus integration sites. Some clones proliferated distinctively in monkeys with higher STLV-1 proviral loads. Notably, one of the monkeys surveyed in this study developed T-cell lymphoma in the brain; STLV-1 provirus was integrated in the lymphoma cell genome. When anti-CCR4 antibody, mogamulizumab, was administered into STLV-1-infected monkeys, the proviral load decreased dramatically within 2 weeks. We observed that some abundant clones recovered after discontinuation of mogamulizumab administration. Conclusions STLV-1 Tax and SBZ have functions similar to those of their counterparts in HTLV-1. This study demonstrates that Japanese macaques naturally infected with STLV-1 resemble HTLV-1 carriers and are a suitable model for the investigation of persistent HTLV-1 infection and asymptomatic HTLV-1 carrier state. Using these animals, we verified that mogamulizumab, which is currently used as a drug for relapsed ATL, is also effective

  3. Identification of host genes leading to West Nile virus encephalitis in mice brain using RNA-seq analysis

    PubMed Central

    Kumar, Mukesh; Belcaid, Mahdi; Nerurkar, Vivek R.

    2016-01-01

    Differential host responses may be critical determinants of distinct pathologies of West Nile virus (WNV) NY99 (pathogenic) and WNV Eg101 (non-pathogenic) strains. We employed RNA-seq technology to analyze global differential gene expression in WNV-infected mice brain and to identify the host cellular factors leading to lethal encephalitis. We identified 1,400 and 278 transcripts, which were differentially expressed after WNV NY99 and WNV Eg101 infections, respectively, and 147 genes were common to infection with both the viruses. Genes that were up-regulated in infection with both the viruses were mainly associated with interferon signaling. Genes associated with inflammation and cell death/apoptosis were only expressed after WNV NY99 infection. We demonstrate that differences in the activation of key pattern recognition receptors resulted in the induction of unique innate immune profiles, which corresponded with the induction of interferon and inflammatory responses. Pathway analysis of differentially expressed genes indicated that after WNV NY99 infection, TREM-1 mediated activation of toll-like receptors leads to the high inflammatory response. In conclusion, we have identified both common and specific responses to WNV NY99 and WNV Eg101 infections as well as genes linked to potential resistance to infection that may be targets for therapeutics. PMID:27211830

  4. Role of host cell factors in flavivirus infection: Implications for pathogenesis and development of antiviral drugs.

    PubMed

    Pastorino, Boris; Nougairède, Antoine; Wurtz, Nathalie; Gould, Ernest; de Lamballerie, Xavier

    2010-09-01

    The genus Flavivirus contains approximately 70 arthropod-borne enveloped RNA viruses many of which cause severe human and in some cases, animal disease. They include dengue virus, yellow fever virus, West Nile virus, Japanese encephalitis virus, and tick-borne encephalitis virus. Hundreds of thousands of deaths due to flavivirus infections occur each year, many of which are unpreventable due to lack of availability of appropriate vaccines and/or antiviral drugs. Flaviviruses exploit the cytoplasmic cellular machinery to facilitate propagation of infectious progeny virions. They engage in dynamic and antagonistic interactions with host cell membranes and biochemical processes. Following infection, the cells initiate various antiviral strategies to counteract viral invasion. In its defense, the virus has alternative strategies to suppress these host responses to infection. The fine balance between these interactions determines the outcome of the viral infection and disease progression. Published studies have revealed specific effects of flaviviruses on cellular processes, but the underlying mechanisms that determine the specific cytopathogenetic changes induced by different flaviviruses have not, as yet, been elucidated. Independently of the suppression of the type I IFN response which has been described in detail elsewhere, this review focuses on recent discoveries relating to alterations of host metabolism following viral infection. Such studies may contribute to new approaches to antiviral drug development. The role of host cellular factors will be examined in the context of protection and/or pathogenesis resulting from flavivirus infection, with particular emphasis on West Nile virus and dengue virus. 2010 Elsevier B.V. All rights reserved.

  5. A case of urinary retention in the early stages of herpes simplex virus type-1 encephalitis.

    PubMed

    Fukuoka, Takuya; Nakazato, Yoshihiko; Miyake, Akifumi; Tamura, Naotoshi; Araki, Nobuo; Yamamoto, Toshimasa

    2017-06-01

    A 70-year-old man developed urinary retention in the early stages of herpes simplex virus (HSV) type-1 encephalitis. A nerve conduction study suggested latent myeloradiculitis. This is the first report of human herpes simplex virus-1 encephalitis followed by urinary retention at early stage from the onset like the Elsberg syndrome. Although relatively few similar cases have been reported, we consider that urinary retention is common in HSV-1 encephalitis, in which disturbances of consciousness usually require bladder catheterization from the onset. We further emphasize that urinary retention may occasionally occur in early stages of HSV-1 encephalitis, with a significant possibility of recovery. Copyright © 2017. Published by Elsevier B.V.

  6. Genetic and Biological Characterization of Tick-Borne Encephalitis Virus Isolated from Wild Rodents in Southern Hokkaido, Japan in 2008

    PubMed Central

    Yamazaki, Shoko; Mottate, Keita; Nagata, Noriyo; Seto, Takahiro; Sanada, Takashiro; Sakai, Mizuki; Kariwa, Hiroaki; Takashima, Ikuo

    2013-01-01

    Abstract Tick-borne encephalitis virus (TBEV) is a zoonotic agent causing severe encephalitis in humans. A recent epizootiological survey indicated that endemic foci of TBEV have been maintained in the southern part of Hokkaido until recently. In this study, we sought to isolate TBEV from wild rodents in the area. One virus, designated Oshima 08-As, was isolated from an Apodemus speciosus captured in Hokuto in 2008. Oshima 08-As was classified as the Far Eastern subtype of TBEV and formed a cluster with the other strains isolated in Hokkaido from 1995 to 1996. Thirty-six nucleotide differences resulted in 12 amino acid changes between Oshima 08-As and Oshima 5–10 isolated in 1995. Oshima 08-As caused high mortality and morbidity in a mouse model compared with Oshima 5–10. Although similar transient viral multiplication in the spleen was observed in the mice infected with Oshima 08-As and Oshima 5–10, greater viral multiplication with an inflammatory response was noted in the brains of mice infected with Oshima 08-As than those infected with Oshima 5–10. These data indicate that a few naturally occurring mutations affect the pathogenicity of the Oshima strains endemic in the southern part of Hokkaido. PMID:23590320

  7. Characterization of a siberian virus isolated from a patient with progressive chronic tick-borne encephalitis.

    PubMed

    Gritsun, T S; Frolova, T V; Zhankov, A I; Armesto, M; Turner, S L; Frolova, M P; Pogodina, V V; Lashkevich, V A; Gould, E A

    2003-01-01

    A strain of Tick-borne encephalitis virus designated Zausaev (Za) was isolated in Siberia from a patient who died of a progressive (2-year) form of tick-borne encephalitis 10 years after being bitten by a tick. The complete genomic sequence of this virus was determined, and an attempt was made to correlate the sequence with the biological characteristics of the virus. Phylogenetic analysis demonstrated that this virus belongs to the Siberian subtype of Tick-borne encephalitis virus. Comparison of Za virus with two related viruses, a Far Eastern isolate, Sofjin, and a Siberian isolate, Vasilchenko, revealed differences among the three viruses in pathogenicity for Syrian hamsters, cytopathogenicity for PS cells, plaque morphology, and the electrophoretic profiles of virus-specific nonstructural proteins. Comparative amino acid alignments revealed 10 individual amino acid substitutions in the Za virus polyprotein sequence that were different from those of other tick-borne flaviviruses. Notably, the dimeric form of the Za virus NS1 protein migrated in polyacrylamide gels as a heterogeneous group of molecules with a significantly higher electrophoretic mobility than those of the Sofjin and Vasilchenko viruses. Two amino acid substitutions, T(277)-->V and E(279)-->G, within the NS1 dimerization domain are probably responsible for the altered oligomerization of Za virus NS1. These studies suggest that the patient from whom Za virus was isolated died due to increased pathogenicity of the latent virus following spontaneous mutagenesis.

  8. Characterization of a Siberian Virus Isolated from a Patient with Progressive Chronic Tick-Borne Encephalitis

    PubMed Central

    Gritsun, T. S.; Frolova, T. V.; Zhankov, A. I.; Armesto, M.; Turner, S. L.; Frolova, M. P.; Pogodina, V. V.; Lashkevich, V. A.; Gould, E. A.

    2003-01-01

    A strain of Tick-borne encephalitis virus designated Zausaev (Za) was isolated in Siberia from a patient who died of a progressive (2-year) form of tick-borne encephalitis 10 years after being bitten by a tick. The complete genomic sequence of this virus was determined, and an attempt was made to correlate the sequence with the biological characteristics of the virus. Phylogenetic analysis demonstrated that this virus belongs to the Siberian subtype of Tick-borne encephalitis virus. Comparison of Za virus with two related viruses, a Far Eastern isolate, Sofjin, and a Siberian isolate, Vasilchenko, revealed differences among the three viruses in pathogenicity for Syrian hamsters, cytopathogenicity for PS cells, plaque morphology, and the electrophoretic profiles of virus-specific nonstructural proteins. Comparative amino acid alignments revealed 10 individual amino acid substitutions in the Za virus polyprotein sequence that were different from those of other tick-borne flaviviruses. Notably, the dimeric form of the Za virus NS1 protein migrated in polyacrylamide gels as a heterogeneous group of molecules with a significantly higher electrophoretic mobility than those of the Sofjin and Vasilchenko viruses. Two amino acid substitutions, T277→V and E279→G, within the NS1 dimerization domain are probably responsible for the altered oligomerization of Za virus NS1. These studies suggest that the patient from whom Za virus was isolated died due to increased pathogenicity of the latent virus following spontaneous mutagenesis. PMID:12477807

  9. INFLUENCE OF ANESTHESIA ON EXPERIMENTAL NEUROTROPIC VIRUS INFECTIONS

    PubMed Central

    Sulkin, S. Edward; Zarafonetis, Christine; Goth, Andres

    1946-01-01

    Anesthesia with diethyl ether significantly alters the course and outcome of experimental infections with the equine encephalomyelitis virus (Eastern or Western type) or with the St. Louis encephalitis virus. No comparable effect is observed in experimental infections produced with rabies or poliomyelitis (Lansing) viruses. The neurotropic virus infections altered by ether anesthesia are those caused by viruses which are destroyed in vitro by this anesthetic, and those infections not affected by ether anesthesia are caused by viruses which apparently are not destroyed by ether in vitro. Another striking difference between these two groups of viruses is their pathogenesis in the animal host; those which are inhibited in vivo by ether anesthesia tend to infect cells of the cortex, basal ganglia, and only occasionally the cervical region of the cord. On the other hand, those which are not inhibited in vivo by ether anesthesia tend to involve cells of the lower central nervous system and in the case of rabies, peripheral nerves. This difference is of considerable importance in view of the fact that anesthetics affect cells of the lower central nervous system only in very high concentrations. It is obvious from the complexity of the problem that no clear-cut statement can be made at this point as to the mechanism of the observed effect of ether anesthesia in reducing the mortality rate in certain of the experimental neurotropic virus infections. Important possibilities include a direct specific effect of diethyl ether upon the virus and a less direct effect of the anesthetic upon the virus through its alteration of the metabolism of the host cell. PMID:19871570

  10. Cytokine Expression in the Tracheobronchial Lymph Nodes of Pigs Infected with Pseudorabies Virus

    USDA-ARS?s Scientific Manuscript database

    Pseudorabies virus (PRV) is a neurotropic alphaherpesvirus that produces fatal encephalitis in newborn pigs, respiratory disorders in fattening pigs and reproductive failure in sows. Infection of the respiratory tract by PRV, involves mononuclear cells in draining tracheobronchial lymph nodes (TBLN)...

  11. TC-83 vaccine protects against airborne or subcutaneous challenge with heterologous mouse-virulent strains of Venezuelan equine encephalitis virus.

    PubMed

    Phillpotts, R J; Wright, A J

    1999-02-26

    Vaccination with TC-83 virus produced solid protection against subcutaneous challenge with Venezuelan equine encephalitis (VEEV) viruses from homologous and heterologous serogroups, but breakthrough infection and disease occurred after airborne challenge. Breakthrough occurred more often with time after vaccination, and was more frequent with epizootic, homologous serogroup 1A/B viruses than with enzootic, heterologous serogroup viruses. A decrease in VEEV-specific IgA levels in the respiratory tract of vaccinated mice may explain the increased frequency of breakthrough with time after vaccination. However increased breakthrough with the highly virulent homologous serogroup 1A/B viruses (compared to less virulent viruses from heterologous serogroups) may be a consequence of their greater ability to invade the brain via the olfactory neuroepithelium and olfactory nerve.

  12. Susceptibility of Peruvian mosquitoes to eastern equine encephalitis virus.

    PubMed

    Turell, M J; O'Guinn, M L; Dohm, D; Zyzak, M; Watts, D; Fernandez, R; Calampa, C; Klein, T A; Jones, J W

    2008-07-01

    Mosquitoes were collected in the Amazon Basin, near Iquitos, Peru, and used in experimental studies to evaluate their susceptibility to strains of eastern equine encephalitis virus (EEEV) that were isolated from mosquitoes captured within 20 km of Iquitos. When fed on hamsters or chickens with a viremia of 4105 plaque-forming units (PFU) of EEEV/ml, Culex pedroi Sirivanakarn and Belkin, Aedesfulvus (Wiedemann), Psorophora albigenu (Peryassu), and Psorophoraferox (Von Humboldt) were susceptible to infection, whereas none of the Aedes serratus (Theobald), Culex vomerifer Komp, Culex gnomatos Sallum, Huchings, and Ferreira, Culex portesi Senevet and Abonnenc, or Culex coronator Dyar and Knab became infected, even though they fed on the same viremic blood sources. When these mosquito species fed on animals with viremias of approximately 10(8) PFU/ml, Cx. pedroi, Ae.II (Brazil-Peru) and a lineage III (Argentina-Panama) isolate of EEEV. This study, combined with the repeated isolation of strains of EEEV from Cx. pedroi captured in the Amazon Basin region of Peru, suggests that Cx. pedroi may be the primary enzootic vector of EEEV in this region.

  13. The outbreak of West Nile virus infection in the New York City area in 1999.

    PubMed

    Nash, D; Mostashari, F; Fine, A; Miller, J; O'Leary, D; Murray, K; Huang, A; Rosenberg, A; Greenberg, A; Sherman, M; Wong, S; Layton, M

    2001-06-14

    In late August 1999, an unusual cluster of cases of meningoencephalitis associated with muscle weakness was reported to the New York City Department of Health. The initial epidemiologic and environmental investigations suggested an arboviral cause. Active surveillance was implemented to identify patients hospitalized with viral encephalitis and meningitis. Cerebrospinal fluid, serum, and tissue specimens from patients with suspected cases underwent serologic and viral testing for evidence of arboviral infection. Outbreak surveillance identified 59 patients who were hospitalized with West Nile virus infection in the New York City area during August and September of 1999. The median age of these patients was 71 years (range, 5 to 95). The overall attack rate of clinical West Nile virus infection was at least 6.5 cases per million population, and it increased sharply with age. Most of the patients (63 percent) had clinical signs of encephalitis; seven patients died (12 percent). Muscle weakness was documented in 27 percent of the patients and flaccid paralysis in 10 percent; in all of the latter, nerve conduction studies indicated an axonal polyneuropathy in 14 percent. An age of 75 years or older was an independent risk factor for death (relative risk adjusted for the presence or absence of diabetes mellitus, 8.5; 95 percent confidence interval, 1.2 to 59.1), as was the presence of diabetes mellitus (age-adjusted relative risk, 5.1; 95 percent confidence interval, 1.5 to 17.3). This outbreak of West Nile meningoencephalitis in the New York City metropolitan area represents the first time this virus has been detected in the Western Hemisphere. Given the subsequent rapid spread of the virus, physicians along the eastern seaboard of the United States should consider West Nile virus infection in the differential diagnosis of encephalitis and viral meningitis during the summer months, especially in older patients and in those with muscle weakness.

  14. Distinguishing West Nile virus infection using a recombinant envelope protein with mutations in the conserved fusion-loop.

    PubMed

    Chabierski, Stefan; Barzon, Luisa; Papa, Anna; Niedrig, Matthias; Bramson, Jonathan L; Richner, Justin M; Palù, Giorgio; Diamond, Michael S; Ulbert, Sebastian

    2014-05-09

    West Nile Virus (WNV) is an emerging mosquito-transmitted flavivirus that continues to spread and cause disease throughout several parts of the world, including Europe and the Americas. Specific diagnosis of WNV infections using current serological testing is complicated by the high degree of cross-reactivity between antibodies against other clinically relevant flaviviruses, including dengue, tick-borne encephalitis (TBEV), Japanese encephalitis (JEV), and yellow fever (YFV) viruses. Cross-reactivity is particularly problematic in areas where different flaviviruses co-circulate or in populations that have been immunized with vaccines against TBEV, JEV, or YFV. The majority of cross-reactive antibodies against the immunodominant flavivirus envelope (E) protein target a conserved epitope in the fusion loop at the distal end of domain II. We tested a loss-of-function bacterially expressed recombinant WNV E protein containing mutations in the fusion loop and an adjacent loop domain as a possible diagnostic reagent. By comparing the binding of sera from humans infected with WNV or other flaviviruses to the wild type and the mutant E proteins, we analyzed the potential of this technology to specifically detect WNV antibodies. Using this system, we could reliably determine WNV infections. Antibodies from WNV-infected individuals bound equally well to the wild type and the mutant protein. In contrast, sera from persons infected with other flaviviruses showed significantly decreased binding to the mutant protein. By calculating the mean differences between antibody signals detected using the wild type and the mutant proteins, a value could be assigned for each of the flaviviruses, which distinguished their pattern of reactivity. Recombinant mutant E proteins can be used to discriminate infections with WNV from those with other flaviviruses. The data have important implications for the development of improved, specific serological assays for the detection of WNV antibodies

  15. Aedes albopictus (Diptera: Culicidae) as a potential vector of endemic and exotic arboviruses in Australia.

    PubMed

    Nicholson, J; Ritchie, S A; van den Hurk, A F

    2014-05-01

    In 2005, established populations of Aedes albopictus (Skuse) were discovered in the Torres Strait, the region that separates Papua New Guinea from northern Australia. This increased the potential for this species to be introduced to mainland Australia. Because it is an arbovirus vector elsewhere, we undertook laboratory-based infection and transmission experiments to determine the potential for Ae. albopictus from the Torres Strait to become infected with and transmit the four major Australian endemic arboviruses--Murray Valley encephalitis virus, West Nile virus Kunjin strain (WNV(KUN)), Ross River virus (RRV), and Barmah Forest virus--as well as the exotic Japanese encephalitis virus. Ae. albopictus is susceptible to infection with all viruses, with infection rates ranging between 8% for WNV(KUN) and 71% for RRV. Transmission rates of approximately 25% were observed for RRV and Barmah Forest virus, but these were < 17% for Murray Valley encephalitis virus, WNV(KUN), and Japanese encephalitis virus. Given its relative vector competence for alphaviruses, we also examined the replication kinetics and extrinsic incubation periods required for transmission of RRV and chikungunya virus. Despite lower body titers, more mosquitoes reared and maintained at 28 degrees C became infected with and transmitted the virus than those reared and maintained at 22 degrees C. The minimum time between Ae. albopictus consuming an infected bloodmeal and transmitting chikungunya virus was 2 d at 28 degrees C and 4 d at 22 degrees C, and for RRV, it was 4 d, irrespective of the temperature. Given its opportunistic feeding habits and aggressive biting behavior, the establishment of Ae. albopictus on the Australian mainland could have a considerable impact on alphavirus transmission.

  16. Transmission of human infection with Nipah Virus

    PubMed Central

    Luby, Stephen P.; Gurley, Emily S.; Hossain, M. Jahangir

    2009-01-01

    Nipah virus (NiV) is a paramyxovirus whose reservoir host is fruit bats of the genus Pteropus. Occasionally the virus is introduced into human populations and causes severe illness characterized by encephalitis or respiratory disease. The first outbreak of NiV was recognized in Malaysia, but since 2001 eight outbreaks have been reported from Bangladesh. The primary pathways of transmission from bats to people in Bangladesh are through contamination of raw date palm sap by bats with subsequent consumption by humans and through infection of domestic animals (cattle, pigs, and goats), presumably from consumption of food contaminated with bat saliva or urine with subsequent transmission to people. Approximately half of recognized Nipah cases in Bangladesh developed their disease following person to person transmission of the virus. Efforts to prevent transmission should focus on decreasing bat access to date palm sap and reducing family members' and friends' exposure to infected patients' saliva. PMID:19886791

  17. Zika virus: a new arboviral public health problem.

    PubMed

    Demir, Tulin; Kilic, Selcuk

    2016-11-01

    Zika virus (ZIKV) is a single-stranded RNA virus in the Flaviviridae family and transmitted to human through infected mosquitos (Aedes aegypti and Aedes albopictus). Virus is closely related with other flaviviruses; dengue virus, yellow fever virus, West Nile virus, and Japanese encephalitis virus phylogenetically. Due to the possible relationship between virus and clinical features including microcephaly, ventricule, and eye deformities, Guillain-Barre syndrome increases the interest on this virus gradually. Along with the vector-borne transmission, exposure via blood transfusion and sexual contact are further concerns. Since December 2015, CDC reported 440.000-1.300.000 possible cases in Brazil and as of 19 January 2016, El Salvador, Venezuela, Colombia, Brazil, Surinam, French Guana, Honduras, Mexico, and Panama are the countries with active epidemic. CDC recommends ZIKV screening for all pregnants including asymptomatic cases those living in the active epidemic areas. Recently, virus is detected in the USA and most European countries including UK, Netherlands, Denmark, Switzerland, and Italy as a travel-associated infection. Owing to the changing world with increased capabilities for transportation globally, this vector-borne infection represents a valuable marker for the ability of spreading of any infection from its original area that it was first seen. In this review, we summarized the up-to-date data and reports in terms of the importance of the ZIKV infection in the public health.

  18. Blood and milk polymorphonuclear leukocyte and monocyte/macrophage functions in naturally caprine arthritis encephalitis virus infection in dairy goats.

    PubMed

    Santos, Bruna Parapinski; Souza, Fernando Nogueira; Blagitz, Maiara Garcia; Batista, Camila Freitas; Bertagnon, Heloísa Godoi; Diniz, Soraia Araújo; Silva, Marcos Xavier; Haddad, João Paulo Amaral; Della Libera, Alice Maria Melville Paiva

    2017-06-01

    The exact influence of caprine arthritis encephalitis virus (CAEV) infection on blood and milk polymorphonuclear leukocytes (PMNLs) and monocyte/macrophages of goats remains unclear. Thus, the present study sought to explore the blood and milk PMNL and monocyte/macrophage functions in naturally CAEV-infected goats. The present study used 18 healthy Saanen goats that were segregated according to sera test outcomes into serologically CAEV negative (n=8; 14 halves) and positive (n=10; 14 halves) groups. All milk samples from mammary halves with milk bacteriologically positive outcomes, somatic cell count ≥2×10 6 cellsmL -1 , and abnormal secretions in the strip cup test were excluded. We evaluated the percentage of blood and milk PMNLs and monocyte/macrophages, the viability of PMNLs and monocyte/macrophages, the levels of intracellular reactive oxygen species (ROS) and the nonopsonized phagocytosis of Staphylococcus aureus and Escherichia coli by flow cytometry. In the present study, a higher percentage of milk macrophages (CD14 + ) and milk polymorphonuclear leukocytes undergoing late apoptosis or necrosis (Annexin-V + /Propidium iodide + ) was observed in CAEV-infected goats; we did not find any further alterations in blood and milk PMNL and monocyte/macrophage functions. Thus, regarding our results, the goats naturally infected with CAEV did not reveal pronounced dysfunctions in blood and milk polymorphonuclear leukocytes and monocytes/macrophages. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Toscana virus meningo-encephalitis: an important differential diagnosis for elderly travellers returning from Mediterranean countries.

    PubMed

    Veater, James; Mehedi, Farhan; Cheung, Chee Kay; Nabarro, Laura; Osborne, Jane; Wong, Nicholas; Wiselka, Martin; Tang, Julian W

    2017-08-29

    Elderly patients have a long list of differentials for causes of acute confusion and altered consciousness levels, including infectious agents. In addition, elderly, retired patients often have more time to travel for tourism, particularly to exotic, warmer locations. Mediterranean countries such as Spain and Italy are popular holiday destinations for British and other tourists, especially during the winter months. However, these warm climates allow insect vectors to proliferate, increasing the risk of exposure to endemic vectorborne viral infections whilst on vacation. Such infections may not be routinely considered by geriatric medical teams. An 87-year old gentleman presented with a three-day history of worsening confusion, lethargy, ataxia, and fevers following a trip to Spain, where he may have sustained a sandfly bite. By the time of admission, he had a reduced GCS, was hallucinating, and was incontinent of urine and faeces, though blood pressure and heart rate were normal. He also appeared hyperaesthetic, and found even capillary blood sugar testing extremely painful. He had no history of cognitive defect or other neurological conditions. He had been previously independently active, with frequent trips to Spain where he maintained a holiday home. He probably sustained a sandfly bite during this most recent trip, whilst cleaning out a shed. Acute and convalescent sera demonstrated IgG antibodies to Toscana virus at extremely high titres of ≥1:10,000 by immunofluorescence assay, though no Toscana virus RNA was detectable in these sera by the time of presentation. Toscana virus should be included in the differential diagnosis of any patients presenting with meningo-encephalitis who have recently returned from a Mediterranean country. Testing for Toscana virus infection is performed by serological testing on acute/convalescent paired sera, and/or a polymerase chain reaction (PCR) assay on blood or cerebrospinal fluid (CSF) if presenting within 5 days of

  20. Diagnosis of Caprine Arthritis Encephalitis Virus infection in dairy goats by ELISA, PCR and Viral Culture.

    PubMed

    Panneum, S; Rukkwamsuk, T

    2017-03-01

    For preventive and control strategies of Caprine Arthritis Encephalitis Virus (CAEV) infection in dairy goats, performance of the available diagnostic tests was described as one of the most important and necessary aspects. The study aimed at evaluating the diagnostic test performance, including PCR, ELISA and viral culture, for CAEV infection in dairy goats in Thailand. Blood samples of 29 dairy goats from five low- to medium-prevalence herds and one very low-prevalence herd were collected for PCR and ELISA methods. The performance of these two diagnostic methods was evaluated by comparing with cytopathic effects (CPE) in the co-cultivation of CAEV and primary synovial cells. Results indicated that sensitivity, specificity were, respectively, 69.6%, 100%, for PCR; and 95.7%, 83.3% for ELISA. The PCR assay tended to have lower sensitivity and higher specificity than ELISA. When multiple tests were applied, parallel testing provided sensitivity and specificity of 98.7% and 83.3%, while series testing showed sensitivity and specificity of 66.6% and 100% respectively. These results indicated that combination of ELISA and PCR provided some advantages and possibly offered optimal methods to detect CAEV-infected goats. Kappa value of the agreement between PCR and ELISA test was 0.34, indicating fair agreement. Regarding the possibility of antigenic variation between CAEV strains used in both PCR and ELISA assays, the actual circulating CAEV strain should be reviewed in order to develop and enhance the diagnostic tests using the CAE viral antigens derived from specific local strains of Thailand.

  1. The Type I Interferon Response Determines Differences in Choroid Plexus Susceptibility between Newborns and Adults in Herpes Simplex Virus Encephalitis.

    PubMed

    Wilcox, Douglas R; Folmsbee, Stephen S; Muller, William J; Longnecker, Richard

    2016-04-12

    Newborns are significantly more susceptible to severe viral encephalitis than adults, with differences in the host response to infection implicated as a major factor. However, the specific host signaling pathways responsible for differences in susceptibility and neurologic morbidity have remained unknown. In a murine model of HSV encephalitis, we demonstrated that the choroid plexus (CP) is susceptible to herpes simplex virus 1 (HSV-1) early in infection of the newborn but not the adult brain. We confirmed susceptibility of the CP to HSV infection in a human case of newborn HSV encephalitis. We investigated components of the type I interferon (IFN) response in the murine brain that might account for differences in cell susceptibility and found that newborns have a dampened interferon response and significantly lower basal levels of the alpha/beta interferon (IFN-α/β) receptor (IFNAR) than do adults. To test the contribution of IFNAR to restricting infection from the CP, we infected IFNAR knockout (KO) adult mice, which showed restored CP susceptibility to HSV-1 infection in the adult. Furthermore, reduced IFNAR levels did not account for differences we found in the basal levels of several other innate signaling proteins in the wild-type newborn and the adult, including protein kinase R (PKR), that suggested specific regulation of innate immunity in the developing brain. Viral targeting of the CP, a region of the brain that plays a critical role in neurodevelopment, provides a link between newborn susceptibility to HSV and long-term neurologic morbidity among survivors of newborn HSV encephalitis. Compared to adults, newborns are significantly more susceptible to severe disease following HSV infection. Over half of newborn HSV infections result in disseminated disease or encephalitis, with long-term neurologic morbidity in 2/3 of encephalitis survivors. We investigated differences in host cell susceptibility between newborns and adults that contribute to severe

  2. [Analysis of pathogen spectrum of Encephalitis/Meningitis in northwestern area of China].

    PubMed

    Zhang, Xiao-shu; Wang, Xu-xia; Yu, De-shan; Jiang, Jian-xiang; Zhang, Guang-ye; Wang, Fang; Li, Hui

    2013-10-01

    To learn the characteristics of pathogen spectrum of Encephalitis /Meningitis in northwestern area of China. Between January 1st 2009 and March 31st 2011, a total of 569 patients with clinical symptoms of Encephalitis/Meningitis were selected from the hospitals in Gansu, Qinghai,Inner Mongolia and Xinjiang province. 1514 samples of specimen were collected from the 515 patients, to detect the IgM of Japanese encephalitis virus (JEV), enterovirus (EV, including Coxsackie virus, ECHO virus and enterovirus 71), Mumps virus, Herpes simplex virus (HSV) in blood and cerebrospinal fluid. Meanwhile, Neisseria meningitis (Nm), Haemophilus influenzae Type B (Hib), Staphylococcus, Streptococcus pneumonia, Streptococcus Suis, E. Coli and Cryptococci were also identified. The detection results were analyzed by different region, time and age range. Pathogenic bacteria were identified in the specimen from 16 patients, with the rate at 3.65%, of which the dominant ones were Streptococcus pneumonia (7 patients, 43.75%). Virus were identified in the specimen from 132 patients, with the rate at 27.05%, of which the dominant types were EV and HSV, accounting for 33.33% (44 cases) and 31.82% (42 cases) respectively. The detection rate of virus showed a significant seasonal trend, with the peak appearing between June and November each year. The peak of EV detection was between July and September, with 24 cases detected out; the peak of HSV was between June and August (11 cases detected out); mumps virus was mainly found between July and December (25 cases). There was no significant time-distribution found in the detection of bacteria. The EV and HSV were mainly distributed in Gansu and Qinghai province (70 cases) ;most of mumps virus were found in Gansu province (24 cases);and JEV were only found in Gansu province (20 cases). The viral pathogen spectrum was identified in all ages, and the EV and mumps virus were mainly found in children aged 0-14 years old (42 and 17 cases respectively

  3. Vaccine Strategies for the Control and Prevention of Japanese Encephalitis in Mainland China, 1951–2011

    PubMed Central

    Li, Minghua; Fu, Shihong; Wang, Huanyu; Lu, Zhi; Cao, Yuxi; He, Ying; Zhu, Wuyang; Zhang, Tingting; Gould, Ernest A.; Liang, Guodong

    2014-01-01

    Japanese encephalitis (JE) is arguably one of the most serious viral encephalitis diseases worldwide. China has a long history of high prevalence of Japanese encephalitis, with thousands of cases reported annually and incidence rates often exceeding 15/100,000. In global terms, the scale of outbreaks and high incidence of these pandemics has almost been unique, placing a heavy burden on the Chinese health authorities. However, the introduction of vaccines, developed in China, combined with an intensive vaccination program initiated during the 1970s, as well as other public health interventions, has dramatically decreased the incidence from 20.92/100,000 in 1971, to 0.12/100,000 in 2011. Moreover, in less readily accessible areas of China, changes to agricultural practices designed to reduce chances of mosquito bites as well as mosquito population densities have also been proven effective in reducing local JE incidence. This unprecedented public health achievement has saved many lives and provided valuable experience that could be directly applicable to the control of vector-borne diseases around the world. Here, we review and discuss strategies for promotion and expansion of vaccination programs to reduce the incidence of JE even further, for the benefit of health authorities throughout Asia and, potentially, worldwide. PMID:25121596

  4. The dominant roles of ICAM-1-encoding gene in DNA vaccination against Japanese encephalitis virus are the activation of dendritic cells and enhancement of cellular immunity.

    PubMed

    Zhai, Yong-Zhen; Zhou, Yan; Ma, Li; Feng, Guo-He

    2013-01-01

    We investigated the cellular immune responses elicited by a plasmid DNA vaccine encoding prM-E protein from the Japanese encephalitis (JE) virus (JEV) with or without various forms of intercellular adhesion molecule (ICAM)-1 gene to maximize the immune responses evoked by the JE DNA vaccine. We observed that co-immunization with the construct containing murine ICAM-1 gene (pICAM-1) resulted in a significant increase in the percentage of CD4(+)T cells, high level of JEV-specific cytotoxic T lymphocyte response, and high production of T helper 1 (Th1)-type cytokines in splenic T cells. Furthermore, the co-expression of ICAM-1 and DNA immunogens was found to be more effective in generating T cell-mediated immune responses than those induced by immunization with pJME in combination with pICAM-1. Our results suggested that ICAM-1 enhanced T cell receptor signaling and activated Th1 immune responses in the JEV model system by increasing the induction of CD4(+)Th1 cell subset and activating dendritic cells. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Detection of West Nile virus genome and specific antibodies in Iranian encephalitis patients.

    PubMed

    Chinikar, S; Javadi, A; Ataei, B; Shakeri, H; Moradi, M; Mostafavi, E; Ghiasi, S M

    2012-08-01

    West Nile virus (WNV) is a mosquito-borne flavivirus which circulates in birds, horses and humans. An estimated 80% of WNV infections are asymptomatic. Fewer than 1% of infected persons develop neuroinvasive disease, which typically presents as encephalitis, meningitis, or acute flaccid paralysis. This study was conducted from January 2008 to June 2009 in Isfahan, Iran. Patients attending the emergency department with fever and loss of consciousness were consecutively included. Cerebrospinal fluids (CSF) were initially analysed through bacteriology and biochemistry examinations, resulting in those with evidence of meningitis being excluded. Patients' CSF and serum were diagnosed by serological and molecular assays. A total of 632 patients with fever and loss of consciousness were tested by CSF analyses. Samples of the remaining patients (39·4%) were referred for WNV investigation. Three (1·2%) of the patients were positive for both serum and CSF by RT-PCR, and six (2·4%) were positive only for IgG antibodies. History of insect bite, and blood transfusion and transplantation were risk factors for being positive by RT-PCR (P=0·048) and being IgG positive (P=0·024), respectively. The results of this study showed that the prevalence of West Nile fever is low in patients with encephalitis.

  6. Development of simple and rapid assay to detect viral RNA of tick-borne encephalitis virus by reverse transcription-loop-mediated isothermal amplification.

    PubMed

    Hayasaka, Daisuke; Aoki, Kotaro; Morita, Kouichi

    2013-03-04

    Tick-borne encephalitis virus (TBEV) is a causative agent of acute central nervous system disease in humans. It has three subtypes, far eastern (FE), Siberian (Sib) and European (Eu) subtypes, which are distributed over a wide area of Europe and Asia. The objective of this study was to develop a simple and rapid assay for the detection of TBEV RNA by using reverse-transcriptase loop-mediated isothermal amplification (RT-LAMP) method that can differentiate the three subtypes of TBEV and can be used for clinical diagnosis and epidemiological study. Primers for TBEV-specific and subtype-specific RT-LAMP assay were designed to target the consensus sequence in NS1 of all subtypes and the consensus sequence in the E gene of each subtype, respectiveluy. In vitro transcribed RNA of Oshima strain that belongs to FE subtype was serially diluted and used to examine the sensitivity of the assay. Cross-reactivity of subtype-specific RT-LAMP assay was tested by using the RNA of Oshima and Sofjin (FE), IR-99 (Sib) and Hochosterwitz (Eu) strains. RNA extracted from the mixtures of TBEV and ticks, and of TBEV and human blood, and the mouse tissues infected with TBEV, were evaluated in the assay. Positive amplification was observed by real-time monitoring of turbidity and by visual detection of color change. The sensitivity of TBEV-specific RT-LAMP assay was 102 copies of target RNA per reaction volume. FE-specific RT-LAMP assay amplified viral genes of Oshima and Sofjin strains but not of IR-99 and Hochosterwitz strains, and of Japanese encephalitis virus. RT-LAMP assay for Sib and for Eu specifically amplified viral genes of IR-99 and Hochosterwitz strains, respectively. We also showed that tick or human blood extract did not inhibit the amplification of viral gene during the assay. Furthermore, we confirmed that the TBEV RT-LAMP could detect virus RNA from peripheral and central nervous system tissues of laboratory mice infected with TBEV. TBEV RT-LAMP assay offers a sensitive

  7. A Serological Protein Microarray for Detection of Multiple Cross-Reactive Flavivirus Infections in Horses for Veterinary and Public Health Surveillance.

    PubMed

    Cleton, N B; van Maanen, K; Bergervoet, S A; Bon, N; Beck, C; Godeke, G-J; Lecollinet, S; Bowen, R; Lelli, D; Nowotny, N; Koopmans, M P G; Reusken, C B E M

    2017-12-01

    The genus Flavivirus in the family Flaviviridae includes some of the most important examples of emerging zoonotic arboviruses that are rapidly spreading across the globe. Japanese encephalitis virus (JEV), West Nile virus (WNV), St. Louis encephalitis virus (SLEV) and Usutu virus (USUV) are mosquito-borne members of the JEV serological group. Although most infections in humans are asymptomatic or present with mild flu-like symptoms, clinical manifestations of JEV, WNV, SLEV, USUV and tick-borne encephalitis virus (TBEV) can include severe neurological disease and death. In horses, infection with WNV and JEV can lead to severe neurological disease and death, while USUV, SLEV and TBEV infections are mainly asymptomatic, however, and induce antibody responses. Horses often serve as sentinels to monitor active virus circulation in serological surveillance programmes specifically for WNV, USUV and JEV. Here, we developed and validated a NS1-antigen protein microarray for the serological differential diagnosis of flavivirus infections in horses using sera of experimentally and naturally infected symptomatic as well as asymptomatic horses. Using samples from experimentally infected horses, an IgG and IgM specificity of 100% and a sensitivity of 95% for WNV and 100% for JEV was achieved with a cut-off titre of 1 : 20 based on ROC calculation. In field settings, the microarray identified 93-100% of IgG-positive horses with recent WNV infections and 87% of TBEV IgG-positive horses. WNV IgM sensitivity was 80%. Differentiation between closely related flaviviruses by the NS1-antigen protein microarray is possible, even though we identified some instances of cross-reactivity among antibodies. However, the assay is not able to differentiate between naturally infected horses and animals vaccinated with an inactivated WNV whole-virus vaccine. We showed that the NS1-microarray can potentially be used for diagnosing and distinguishing flavivirus infections in horses and for public

  8. A humanised murine monoclonal antibody protects mice from Venezuelan equine encephalitis virus, Everglades virus and Mucambo virus when administered up to 48 h after airborne challenge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Brien, Lyn M., E-mail: lmobrien@dstl.gov.uk; Goodchild, Sarah A.; Phillpotts, Robert J.

    2012-05-10

    Currently there are no licensed antiviral treatments for the Alphaviruses Venezuelan equine encephalitis virus (VEEV), Everglades virus and Mucambo virus. We previously developed a humanised version of the mouse monoclonal antibody 1A3B-7 (Hu1A3B-7) which exhibited a wide range of reactivity in vitro and was able to protect mice from infection with VEEV. Continued work with the humanised antibody has now demonstrated that it has the potential to be a new human therapeutic. Hu1A3B-7 successfully protected mice from infection with multiple Alphaviruses. The effectiveness of the humanisation process was determined by assessing proliferation responses in human T-cells to peptides derived frommore » the murine and humanised versions of the V{sub H} and V{sub L} domains. This analysis showed that the number of human T-cell epitopes within the humanised antibody had been substantially reduced, indicating that Hu1A3B-7 may have reduced immunogenicity in vivo.« less

  9. Chemokine Receptor Ccr7 Restricts Fatal West Nile Virus Encephalitis.

    PubMed

    Bardina, Susana V; Brown, Julia A; Michlmayr, Daniela; Hoffman, Kevin W; Sum, Janet; Pletnev, Alexander G; Lira, Sergio A; Lim, Jean K

    2017-05-15

    West Nile virus (WNV) is a mosquito-transmitted flavivirus that can cause debilitating encephalitis. To delineate the mechanisms behind this pathology, we studied Ccr7-deficient mice, which afforded us the capacity to study infection in mice with disrupted peripheral cellular trafficking events. The loss of Ccr7 resulted in an immediate pan-leukocytosis that remained elevated throughout the infection. This leukocytosis resulted in a significant enhancement of leukocyte accumulation within the central nervous system (CNS). Despite an excess of virus-specific T cells in the CNS, Ccr7-deficient mice had significantly higher CNS viral loads and mortality rates than wild-type animals. Mechanistically, the elevated trafficking of infected myeloid cells into the brain in Ccr7-deficient mice resulted in increased levels of WNV in the CNS, thereby effectively contributing to neuroinflammation and lowering viral clearance. Combined, our experiments suggest that during WNV infection, Ccr7 is a gatekeeper for nonspecific viral transference to the brain. IMPORTANCE In this study, we show that Ccr7 is required for the sufficient migration of dendritic cells and T cells into the draining lymph node immediately following infection and for the restriction of leukocyte migration into the brain. Further, the severe loss of dendritic cells in the draining lymph node had no impact on viral replication in this organ, suggesting that WNV may migrate from the skin into the lymph node through another mechanism. Most importantly, we found that the loss of Ccr7 results in a significant leukocytosis, leading to hypercellularity within the CNS, where monocytes/macrophages contribute to CNS viremia, neuroinflammation, and increased mortality. Together, our data point to Ccr7 as a critical host defense restriction factor limiting neuroinflammation during acute viral infection. Copyright © 2017 American Society for Microbiology.

  10. Wetland characteristics linked to broad-scale patterns in Culiseta melanura abundance and eastern equine encephalitis virus infection.

    PubMed

    Skaff, Nicholas K; Armstrong, Philip M; Andreadis, Theodore G; Cheruvelil, Kendra S

    2017-10-18

    Eastern equine encephalitis virus (EEEV) is an expanding mosquito-borne threat to humans and domestic animal populations in the northeastern United States. Outbreaks of EEEV are challenging to predict due to spatial and temporal uncertainty in the abundance and viral infection of Cs. melanura, the principal enzootic vector. EEEV activity may be closely linked to wetlands because they provide essential habitat for mosquito vectors and avian reservoir hosts. However, wetlands are not homogeneous and can vary by vegetation, connectivity, size, and inundation patterns. Wetlands may also have different effects on EEEV transmission depending on the assessed spatial scale. We investigated associations between wetland characteristics and Cs. melanura abundance and infection with EEEV at multiple spatial scales in Connecticut, USA. Our findings indicate that wetland vegetative characteristics have strong associations with Cs. melanura abundance. Deciduous and evergreen forested wetlands were associated with higher Cs. melanura abundance, likely because these wetlands provide suitable subterranean habitat for Cs. melanura development. In contrast, Cs. melanura abundance was negatively associated with emergent and scrub/shrub wetlands, and wetland connectivity to streams. These relationships were generally strongest at broad spatial scales. Additionally, the relationships between wetland characteristics and EEEV infection in Cs. melanura were generally weak. However, Cs. melanura abundance was strongly associated with EEEV infection, suggesting that wetland-associated changes in abundance may be indirectly linked to EEEV infection in Cs. melanura. Finally, we found that wet hydrological conditions during the transmission season and during the fall/winter preceding the transmission season were associated with higher Cs. melanura abundance and EEEV infection, indicating that wet conditions are favorable for EEEV transmission. These results expand the broad-scale understanding

  11. Venezuelan equine encephalitis virus activity in the Gulf Coast region of Mexico, 2003-2010.

    PubMed

    Adams, A Paige; Navarro-Lopez, Roberto; Ramirez-Aguilar, Francisco J; Lopez-Gonzalez, Irene; Leal, Grace; Flores-Mayorga, Jose M; Travassos da Rosa, Amelia P A; Saxton-Shaw, Kali D; Singh, Amber J; Borland, Erin M; Powers, Ann M; Tesh, Robert B; Weaver, Scott C; Estrada-Franco, Jose G

    2012-01-01

    Venezuelan equine encephalitis virus (VEEV) has been the causative agent for sporadic epidemics and equine epizootics throughout the Americas since the 1930s. In 1969, an outbreak of Venezuelan equine encephalitis (VEE) spread rapidly from Guatemala and through the Gulf Coast region of Mexico, reaching Texas in 1971. Since this outbreak, there have been very few studies to determine the northward extent of endemic VEEV in this region. This study reports the findings of serologic surveillance in the Gulf Coast region of Mexico from 2003-2010. Phylogenetic analysis was also performed on viral isolates from this region to determine whether there have been substantial genetic changes in VEEV since the 1960s. Based on the findings of this study, the Gulf Coast lineage of subtype IE VEEV continues to actively circulate in this region of Mexico and appears to be responsible for infection of humans and animals throughout this region, including the northern State of Tamaulipas, which borders Texas.

  12. Cross-protection elicited by primary and booster vaccinations against Japanese encephalitis: a two-year follow-up study.

    PubMed

    Erra, Elina O; Askling, Helena Hervius; Yoksan, Sutee; Rombo, Lars; Riutta, Jukka; Vene, Sirkka; Lindquist, Lars; Vapalahti, Olli; Kantele, Anu

    2013-12-17

    The inactivated Vero cell-derived vaccine (JE-VC, IXIARO) has replaced the traditional mouse brain-derived preparations (JE-MB) in travelers' vaccinations against Japanese encephalitis. We showed recently that a single JE-VC dose efficiently boosts immunity in JE-MB-primed vaccinees, and that JE-VC elicits cross-protective immunity against non-vaccine genotypes, including the emerging genotype I. While these studies only provided short-term data, the present investigation evaluates the longevity of seroprotection in the same volunteers. The study comprised 48 travelers who had received (1) JE-VC primary series, (2) JE-MB primary series followed by a single JE-VC booster dose, or (3) JE-MB primary series and a single JE-MB booster dose. Serum samples were collected two years after the last vaccine dose, and evaluated with the plaque-reduction neutralization test against seven Japanese encephalitis virus strains representing genotypes I-IV. PRNT50 titers ≥ 10 were considered protective. Two years after the primary series with JE-VC, 87-93% of the vaccinees proved to be cross-protected against test strains representing genotypes II-IV and 73% against those of genotype I. After a single homologous or heterologous booster dose to JE-MB-primed subjects, the two-year seroprotection rates against genotype I-IV strains were 89-100%. After JE-VC primary series, seroprotection appeared to wane first against genotype I. The first booster should not be delayed beyond two years. In JE-MB-primed subjects, a single JE-VC booster provided cross-protective immunity against genotype I-IV strains in almost all vaccinees, suggesting an interval of two years or even longer for the second booster. These data further support the use of a single JE-VC dose for boosting JE-MB immunity. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Novel Indole-2-Carboxamide Compounds Are Potent Broad-Spectrum Antivirals Active against Western Equine Encephalitis Virus In Vivo

    PubMed Central

    Delekta, Phillip C.; Dobry, Craig J.; Sindac, Janice A.; Barraza, Scott J.; Blakely, Pennelope K.; Xiang, Jianming; Kirchhoff, Paul D.; Keep, Richard F.; Irani, David N.; Larsen, Scott D.

    2014-01-01

    ABSTRACT Neurotropic alphaviruses, including western, eastern, and Venezuelan equine encephalitis viruses, cause serious and potentially fatal central nervous system infections in humans for which no currently approved therapies exist. We previously identified a series of thieno[3,2-b]pyrrole derivatives as novel inhibitors of neurotropic alphavirus replication, using a cell-based phenotypic assay (W. Peng et al., J. Infect. Dis. 199:950–957, 2009, doi:http://dx.doi.org/10.1086/597275), and subsequently developed second- and third-generation indole-2-carboxamide derivatives with improved potency, solubility, and metabolic stability (J. A. Sindac et al., J. Med. Chem. 55:3535–3545, 2012, doi:http://dx.doi.org/10.1021/jm300214e; J. A. Sindac et al., J. Med. Chem. 56:9222–9241, 2013, http://dx.doi.org/10.1021/jm401330r). In this report, we describe the antiviral activity of the most promising third-generation lead compound, CCG205432, and closely related analogs CCG206381 and CCG209023. These compounds have half-maximal inhibitory concentrations of ∼1 μM and selectivity indices of >100 in cell-based assays using western equine encephalitis virus replicons. Furthermore, CCG205432 retains similar potency against fully infectious virus in cultured human neuronal cells. These compounds show broad inhibitory activity against a range of RNA viruses in culture, including members of the Togaviridae, Bunyaviridae, Picornaviridae, and Paramyxoviridae families. Although their exact molecular target remains unknown, mechanism-of-action studies reveal that these novel indole-based compounds target a host factor that modulates cap-dependent translation. Finally, we demonstrate that both CCG205432 and CCG209023 dampen clinical disease severity and enhance survival of mice given a lethal western equine encephalitis virus challenge. These studies demonstrate that indole-2-carboxamide compounds are viable candidates for continued preclinical development as inhibitors of

  14. Novel indole-2-carboxamide compounds are potent broad-spectrum antivirals active against western equine encephalitis virus in vivo.

    PubMed

    Delekta, Phillip C; Dobry, Craig J; Sindac, Janice A; Barraza, Scott J; Blakely, Pennelope K; Xiang, Jianming; Kirchhoff, Paul D; Keep, Richard F; Irani, David N; Larsen, Scott D; Miller, David J

    2014-10-01

    Neurotropic alphaviruses, including western, eastern, and Venezuelan equine encephalitis viruses, cause serious and potentially fatal central nervous system infections in humans for which no currently approved therapies exist. We previously identified a series of thieno[3,2-b]pyrrole derivatives as novel inhibitors of neurotropic alphavirus replication, using a cell-based phenotypic assay (W. Peng et al., J. Infect. Dis. 199:950-957, 2009, doi:http://dx.doi.org/10.1086/597275), and subsequently developed second- and third-generation indole-2-carboxamide derivatives with improved potency, solubility, and metabolic stability (J. A. Sindac et al., J. Med. Chem. 55:3535-3545, 2012, doi:http://dx.doi.org/10.1021/jm300214e; J. A. Sindac et al., J. Med. Chem. 56:9222-9241, 2013, http://dx.doi.org/10.1021/jm401330r). In this report, we describe the antiviral activity of the most promising third-generation lead compound, CCG205432, and closely related analogs CCG206381 and CCG209023. These compounds have half-maximal inhibitory concentrations of ∼1 μM and selectivity indices of >100 in cell-based assays using western equine encephalitis virus replicons. Furthermore, CCG205432 retains similar potency against fully infectious virus in cultured human neuronal cells. These compounds show broad inhibitory activity against a range of RNA viruses in culture, including members of the Togaviridae, Bunyaviridae, Picornaviridae, and Paramyxoviridae families. Although their exact molecular target remains unknown, mechanism-of-action studies reveal that these novel indole-based compounds target a host factor that modulates cap-dependent translation. Finally, we demonstrate that both CCG205432 and CCG209023 dampen clinical disease severity and enhance survival of mice given a lethal western equine encephalitis virus challenge. These studies demonstrate that indole-2-carboxamide compounds are viable candidates for continued preclinical development as inhibitors of neurotropic

  15. Deep sequencing reveals persistence of cell-associated mumps vaccine virus in chronic encephalitis.

    PubMed

    Morfopoulou, Sofia; Mee, Edward T; Connaughton, Sarah M; Brown, Julianne R; Gilmour, Kimberly; Chong, W K 'Kling'; Duprex, W Paul; Ferguson, Deborah; Hubank, Mike; Hutchinson, Ciaran; Kaliakatsos, Marios; McQuaid, Stephen; Paine, Simon; Plagnol, Vincent; Ruis, Christopher; Virasami, Alex; Zhan, Hong; Jacques, Thomas S; Schepelmann, Silke; Qasim, Waseem; Breuer, Judith

    2017-01-01

    Routine childhood vaccination against measles, mumps and rubella has virtually abolished virus-related morbidity and mortality. Notwithstanding this, we describe here devastating neurological complications associated with the detection of live-attenuated mumps virus Jeryl Lynn (MuV JL5 ) in the brain of a child who had undergone successful allogeneic transplantation for severe combined immunodeficiency (SCID). This is the first confirmed report of MuV JL5 associated with chronic encephalitis and highlights the need to exclude immunodeficient individuals from immunisation with live-attenuated vaccines. The diagnosis was only possible by deep sequencing of the brain biopsy. Sequence comparison of the vaccine batch to the MuV JL5 isolated from brain identified biased hypermutation, particularly in the matrix gene, similar to those found in measles from cases of SSPE. The findings provide unique insights into the pathogenesis of paramyxovirus brain infections.

  16. Molecular characterization of two Rocio flavivirus strains isolated during the encephalitis epidemic in São Paulo State, Brazil and the development of a one-step RT-PCR assay for diagnosis.

    PubMed

    Coimbra, Terezinha Lisieux Moraes; Santos, Raimundo N; Petrella, Selma; Nagasse-Sugahara, Teresa Keico; Castrignano, Silvana Beres; Santos, Cecília L Simões

    2008-01-01

    Rocio virus (ROCV) was responsible for an explosive encephalitis epidemic in the 1970s affecting about 1,000 residents of 20 coastland counties in São Paulo State, Brazil. ROCV was first isolated in 1975 from the cerebellum of a fatal human case of encephalitis. Clinical manifestations of the illness are similar to those described for St. Louis encephalitis. ROCV shows intense antigenic cross-reactivity with Japanese encephalitis complex (JEC) viruses, particularly with Ilheus (ILHV), St. Louis encephalitis, Murray Valley and West Nile viruses. In this study, we report a specific RT-PCR assay for ROCV diagnosis and the molecular characterization of the SPAn37630 and SPH37623 strains. Partial nucleotide sequences of NS5 and E genes determined from both strains were used in phylogenetic analysis. The results indicated that these strains are closely related to JEC viruses, but forming a distinct subclade together with ILHV, in accordance with results recently reported by Medeiros et al. (2007).

  17. Viral encephalitis of tilapia larvae: primary characterization of a novel herpes-like virus.

    PubMed

    Shlapobersky, Mark; Sinyakov, Michael S; Katzenellenbogen, Mark; Sarid, Ronit; Don, Jeremy; Avtalion, Ramy R

    2010-04-10

    We report here an outbreak of an acute disease that caused high mortality rate in laboratory-reared tilapia larvae. The disease was initially observed in inbred gynogenetic line of blue tilapia larvae (Oreochromis aureus) and could be transmitted to larvae of other tilapia species. Based on the clinical manifestation (a whirling syndrome), we refer to the disease as viral encephalitis of tilapia larvae. The disease-associated DNA virus is described and accordingly designated tilapia larvae encephalitis virus (TLEV). A primary morphological, biophysical and molecular characterization of TLEV is presented. By virtue of these properties, the newly discovered virus is a herpes-like virus. Phylogenetic analysis, albeit limited, confirms this assumption and places TLEV within the family of Herpesviridae and distantly from the families Alloherpesviridae and Iridoviridae. By using PCR with virus-specific primers, diseased larvae and adult TLEV carriers were also identified in tilapia delivered from external hatcheries. Copyright 2010 Elsevier Inc. All rights reserved.

  18. Tick-borne encephalitis in a naturally infected sheep.

    PubMed

    Böhm, Brigitte; Schade, Benjamin; Bauer, Benjamin; Hoffmann, Bernd; Hoffmann, Donata; Ziegler, Ute; Beer, Martin; Klaus, Christine; Weissenböck, Herbert; Böttcher, Jens

    2017-08-22

    Tick-borne encephalitis (TBE) is the most important viral tick borne zoonosis in Europe. In Germany, about 250 human cases are registered annually, with the highest incidence reported in the last years coming from the federal states Bavaria and Baden-Wuerttemberg. In veterinary medicine, only sporadic cases in wild and domestic animals have been reported; however, a high number of wild and domestic animals have tested positive for the tick-borne encephalitis virus (TBEV) antibody. In May 2015, a five-month-old lamb from a farm with 15 Merino Land sheep and offspring in Nersingen/Bavaria, a TBEV risk area, showed impaired general health with pyrexia and acute neurological signs. The sheep suffered from ataxia, torticollis, tremor, nystagmus, salivation and finally somnolence with inappetence and recumbency. After euthanasia, pathological, histopathological, immunohistochemical, bacteriological, parasitological and virological analyses were performed. Additionally, blood samples from the remaining, healthy sheep in the herd were taken for detection of TBEV antibody titres. At necropsy and accompanying parasitology, the sheep showed a moderate to severe infection with Trichostrongylids, Moniezia and Eimeria species. Histopathology revealed mild to moderate necrotising, lymphohistiocytic and granulocytic meningoencephalitis with gliosis and neuronophagia. Immunohistochemistry for TBEV was negative. RNA of a TBEV strain, closely related to the Kumlinge A52 strain, was detected in the brain by quantitative reverse transcriptase polymerase chain reaction (RT-qPCR) and subsequent PCR product sequencing. A phylogenetic analysis revealed a close relationship to the TBEV of central Europe. TBEV was cultured from brain tissue. Serologically, one of blood samples from the other sheep in the herd was positive for TBEV in an enzyme-linked immunosorbent assay (ELISA) and in a serum neutralisation test (SNT), and one was borderline in an ELISA. To the authors' knowledge this is the

  19. Persistence of antibodies six years after booster vaccination with inactivated vaccine against Japanese encephalitis.

    PubMed

    Paulke-Korinek, Maria; Kollaritsch, Herwig; Kundi, Michael; Zwazl, Ines; Seidl-Friedrich, Claudia; Jelinek, Tomas

    2015-07-09

    Japanese Encephalitis (JE) virus occurs in wide regions of Asia with over 3 billion people living in areas at risk for JE. An estimated 68,000 clinical cases of JE occur every year, and vaccination is the most effective prophylactic measure. One internationally licensed vaccine containing the inactivated JE virus strain SA14-14-2 is Ixiaro (Valneva, Austria). According to recommendations, basic immunization consists of vaccinations on day 0, day 28, and a booster dose 12-24 months later. Protection in terms of neutralizing antibody titers has been assessed up to 12 months after the third dose of the vaccine. The current investigation was designed to evaluate antibody decline over time and to predict long-term duration of seroprotection after a booster dose. In a preceding trial, volunteers received basic immunization (day 0, day 28) and one booster dose against JE 15 months later. A follow up blood draw 6 years following their booster dose was carried out in 67 subjects. For antibody testing, a 50% plaque reduction neutralization test (PRNT50-test) was used. PRNT50 values of 10 and above are surrogate levels of protection according to WHO standards. Seventy-six months following the booster dose, 96% of the tested subjects had PRNT50 titers of 10 or higher. Geometric mean titer (GMT) was 148 (95% CI confidence interval: 107-207). Antibody titers were lower in volunteers 50 years of age and older. Vaccination history against other flaviviruses (yellow fever or tick borne encephalitis) did not significantly influence PRNT50 titers. A two-step log-linear decline model predicted protection against JE of approximately 14 years after the booster dose. Six years after a booster dose against JE, long-term protection could be demonstrated. According to our results, further booster doses should be scheduled 10 years following the first booster dose. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Development and characterization of polyclonal peptide antibodies for the detection of Yellow fever virus proteins.

    PubMed

    Stock, N K; Escadafal, C; Achazi, K; Cissé, M; Niedrig, M

    2015-09-15

    There is still a considerable need for development of new tools and methods detecting specific viral proteins for the diagnosis and pathogenesis study of the Yellow fever virus (YFV). This study aimed to develop and characterize polyclonal peptide antisera for detection of YFV-C and -NS1 proteins. The antisera were used further to investigate NS1 protein expression during YFV infection in mammalian cells. YFV target proteins were detected by all antisera in western blot and immunofluorescence assays. No cross-reactivity was observed with Dengue virus, West Nile virus, Tick-borne encephalitis virus and Japanese encephalitis virus. Nuclear localization of the YFV-C protein was demonstrated for the first time. Experiments investigating NS1 expression suggested a potential use of the YFV-NS1 antisera for development of diagnostic approaches targeting the secreted form of the NS1 protein. The antisera described in this study offer new possibilities for use in YFV research and for the development of novel diagnostic tests. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Purification and crystallization of Kokobera virus helicase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Colibus, Luigi; Speroni, Silvia; Coutard, Bruno

    2007-03-01

    Kokobera virus is a mosquito-borne flavivirus belonging, like West Nile virus, to the Japanese encephalitis virus serocomplex. Crystals of the Kokobera virus helicase domain were obtained by the hanging-drop vapour-diffusion method and exhibit a diffraction limit of 2.3 Å. Kokobera virus is a mosquito-borne flavivirus belonging, like West Nile virus, to the Japanese encephalitis virus serocomplex. The flavivirus genus is characterized by a positive-sense single-stranded RNA genome. The unique open reading frame of the viral RNA is transcribed and translated as a single polyprotein which is post-translationally cleaved to yield three structural and seven nonstructural proteins, one of which ismore » the NS3 gene that encodes a C-terminal helicase domain consisting of 431 amino acids. Helicase inhibitors are potential antiviral drugs as the helicase is essential to viral replication. Crystals of the Kokobera virus helicase domain were obtained by the hanging-drop vapour-diffusion method. The crystals belong to space group P3{sub 1}21 (or P3{sub 2}21), with unit-cell parameters a = 88.6, c = 138.6 Å, and exhibit a diffraction limit of 2.3 Å.« less

  2. TRIM79α, an interferon-stimulated gene product, restricts tick-borne encephalitis virus replication by degrading the viral RNA polymerase

    PubMed Central

    Taylor, R. Travis; Lubick, Kirk J.; Robertson, Shelly J.; Broughton, James P.; Bloom, Marshall E.; Bresnahan, Wade A.; Best, Sonja M.

    2011-01-01

    In response to virus infection, type I interferons (IFNs) induce several genes, most of whose functions are largely unknown. Here we show that the tripartite motif (TRIM) protein, TRIM79α, is an IFN-stimulated gene (ISG) product that specifically targets tick-borne encephalitis virus (TBEV), a Flavivirus that causes encephalitides in humans. TRIM79α restricts TBEV replication by mediating lysosome-dependent degradation of the flavivirus NS5 protein, an RNA-dependent RNA polymerase essential for virus replication. NS5 degradation was specific to tick-borne flaviviruses as TRIM79α did not recognize NS5 from West Nile virus (WNV) or inhibit WNV replication. In the absence of TRIM79α, IFN-β was less effective in inhibiting tick-borne flavivirus infection of mouse macrophages, highlighting the importance of a single virus-specific ISG in establishing an antiviral state. The specificity of TRIM79α for TBEV reveals a remarkable ability of the innate IFN response to discriminate between closely related flaviviruses. PMID:21925107

  3. Caprine arthritis encephalitis virus: prevalence and risk factors in Lebanon.

    PubMed

    Tabet, E; Hosri, C; Abi-Rizk, A

    2015-12-01

    An epidemiological survey, accompanied by a serological analysis,was conducted on samples taken from Lebanese goat herds in order to determine the prevalence of infection with the caprine arthritis encephalitis virus (CAEV) in Lebanon. The results of the survey provided information on various livestock production, animal health and herd management factors. Serum samplesfrom 952 goats, including the local breeds (Baladi and Damascene) and imported breeds (Alpine and Saneen), were taken from 60 farms distributed throughout Lebanon and tested for the presence of anti-CAEV antibodies. The data obtained were analysed using a statistical model to assess CAEV infection risk factors in Lebanon. In total, 125 samples proved to be positive, representing a prevalence in selected individuals of 13.1% and in selected herds of 51.7%. The Bekaa region had the highest number of herds with seropositive goats (90% of herds); the level was lower in Mount Lebanon, the North and the South (54%, 34% and 33%, respectively). The prevalence in relation to the livestock production system was 70% in herds in intensive systems, 54% in semi-intensive systems and 45% in extensive systems. The indigenous breeds were more resistant and tolerant of CAEV than the imported breeds. This study confirms the presence of CAEV in Lebanese goat herds and identifies the different livestock production practices likely to favour the rapid spread of the virus.

  4. Comparisons of Venezuelan encephalitis virus strains by hemagglutination-inhibition tests with chicken antibodies.

    PubMed Central

    Scherer, W F; Pancake, B A

    1977-01-01

    Twenty strains of Venezuelan encephalitis (VE) virus inoculated intravenously in large doses into roosters produced hemagglutination-inhibition (HI) antibodies detectable in plasmas within 7 to 10 days. No signs of illness occurred, and there was no evidence of viral growth in tissues since blood concentrations of infectious virus steadily decreased after inoculation. HI antibodies in early plasmas were specific for VE virus and did not cross-react significantly with two other North American alphaviruses, eastern and western encephalitis viruses. VE virus strains could be distinquished by virus-dilution, short-incubation HI, but not by plasma-dilution neutralization tests, by using early rooster antibodies. The distinctions by HI test were similar with some strains to, but different with other strains from, those described by Young and Johnson with the spiny rat antisera used to establish their subtype classifications of VE virus (14, 28). Nevertheless, results of HI tests with rooster antibodies correlated with equine virulence, as did results with spiny rat antibodies, and distinguished the new strains of virus that appeared in Middle America during the VE outbreak of 1969 from preexisting strains. PMID:591629

  5. Host factor SPCS1 regulates the replication of Japanese encephalitis virus through interactions with transmembrane domains of NS2B.

    PubMed

    Ma, Le; Li, Fang; Zhang, Jing-Wei; Li, Wei; Zhao, Dong-Ming; Wang, Han; Hua, Rong-Hong; Bu, Zhi-Gao

    2018-03-28

    Signal peptidase complex subunit 1 (SPCS1) is a newly identified host factor that regulates flavivirus replication, but the molecular mechanism is not fully understood. Herein, using Japanese encephalitis virus (JEV) as a model, we investigated the mechanism through which host factor SPCS1 regulates the replication of flaviviruses. We first validated the regulatory function of SPCS1 in JEV propagation by knocking down and knocking out endogenous SPCS1. Loss of SPCS1 function markedly reduced intracellular virion assembly and production of infectious JEV particles, but did not affect virus cell entry, RNA replication, or translation. SPCS1 was found to interact with NS2B, which is involved in post-translational protein processing and viral assembly. Serial deletion mutation of the JEV NS2B protein revealed that two transmembrane domains, NS2B (1-49) and NS2B (84-131), interact with SPCS1. Further mutagenesis analysis of conserved flavivirus residues in two SPCS1 interaction domains of NS2B demonstrated that G12A, G37A, and G47A in NS2B (1-49), and P112A in NS2B (84-131), weakened the interaction with SPCS1. Deletion mutation of SPCS1 revealed that SPCS1 (91-169) which containing two transmembrane domains was involved in the interaction with both NS2B (1-49) and NS2B (84-131). Taken together, the results demonstrate that SPCS1 affects viral replication by interacting with NS2B, thereby influencing post-translational processing of JEV proteins and the assembly of virions. IMPORTANCE Understanding viral-host interactions is important for elucidating the molecular mechanisms of viral propagation, and identifying potential anti-viral targets. Previous reports demonstrated that SPCS1 is involved in the flavivirus life cycle, but the mechanism remains unknown. In this study, we confirmed that SPCS1 participates in the post-translational protein processing and viral assembly stages of the JEV lifecycle, but not in the cell entry, genome RNA replication, or translation

  6. Use of an inactivated eastern equine encephalitis virus vaccine in cranes

    USGS Publications Warehouse

    Carpenter, J.W.; Dein, F.J.; Clark, G.G.; Watts, D.M.; Crabbs, C.L.

    1986-01-01

    An unprecedented outbreak of fatal eastern equine encephalitis (EEE) virus occurred during the late summer and fall of 1984 in endangered whooping cranes (Grus americana) at the Patuxent Wildlife Research Center, Laurel, Maryland. As part of efforts to prevent future epizootics of EEE. studies were conducted to evaluate the antibody response of cranes following vaccination with a formalin-inactivated EEE virus vaccine. Viral specific neutralizing antibody was elicited in sandhill cranes (Grus canadensis) and whooping cranes following 1M inoculation with the vaccine. Among the 1M-inoculated cranes, peak antibody titers of 1:80 on days 30 to 60 had waned to undetectable levels by days 90 to 120. Although the initial titers were not increased by the first booster dose, the duration of the antibody was extended considerably. Whooping cranes, receiving vaccine 6 months after their first vaccination, developed titers of 1:80 to 1:320 by day 30. At 45 days after the final vaccination, these titers had dropped to 1:10 to 1:160. Cranes with preexisting EEE virus antibody, apparently reflecting natural infection, exhibited an anamnestic response indicated by a rapid increase and sustained high antibody titer. Even though EEE virus vaccine induced neutralizing antibody and produced no adverse side effects, further studies will be required to assess the significance of this response as a strategy for protecting whooping cranes against natural EEE virus infection. The loss of captive whooping cranes to the EEE virus presented a previously unrecognized risk and obstacle to recovery of this species. Not only was, there a setback in the captive breeding and reintroduction program for the whooping crane, but, because of the susceptibility of the species to the EEE virus. establishment of additional crane populations may be more complicated than initially envisioned. However, through continued surveillance, serological monitoring, and vaccination activities, we are confident that

  7. Sertoli Cells Are Susceptible to ZIKV Infection in Mouse Testis.

    PubMed

    Sheng, Zi-Yang; Gao, Na; Wang, Zhao-Yang; Cui, Xiao-Yun; Zhou, De-Shan; Fan, Dong-Ying; Chen, Hui; Wang, Pei-Gang; An, Jing

    2017-01-01

    Flaviviruses including Dengue virus (DENV), Yellow fever virus (YFV), West Nile virus (WNV), and Japanese encephalitis virus (JEV) are global health problems that caused several serious diseases such as fever, hemorrhagic fever, and encephalitis in the past century. Recently, Zika virus (ZIKV) which spreads from Asia to American and causes millions of infections emerges as a new dangerous member of the genus of Flavivirus . Unlike other well-known flaviviruses, ZIKV can be transmitted sexually and infect testes in murine models. Its impacts on sperm functions, and the exact susceptible cells, however, are not entirely clear. To investigate these issues, we infected interferon α/β and γ receptors deficient AG6 mice with ZIKV and examined the outcomes of infection using an assortment of physiological, histopathological, immunological, and virological techniques. We found that infected mice displayed signs of reproductive system disorder, altered androgen levels in serum, and high viral load in semen and testes. Additionally, histopathological examinations revealed marked atrophy of seminiferous tubules and significant reduction in lumen size. Notably, these were accompanied by positive staining of ZIKV antigens on sertoli cells, detection of viral particles and vacuole changes within cytoplasm of sertoli cells. The susceptibility of sertoli cells to ZIKV was further validated in vitro study using cell lines. Importantly, the disruption of tight junctions within testis and altered sperm morphology were also observed in ZIKV infected mice. It is well-known that tight junctions formed by adjacent sertoli cells are major component of blood testis barrier, which plays important roles in maintenance of microenvironment for spermagenesis in testis. Taken together, these results demonstrate that sertoli cells are susceptible to ZIKV infection, which results in the disruption of tight junctions in testis and causes abnormal spermatogenesis in mice. These results also imply

  8. Caprine arthritis encephalitis virus dysregulates the expression of cytokines in macrophages.

    PubMed Central

    Lechner, F; Machado, J; Bertoni, G; Seow, H F; Dobbelaere, D A; Peterhans, E

    1997-01-01

    Caprine arthritis encephalitis virus (CAEV) is a lentivirus of goats that leads to chronic mononuclear infiltration of various tissues, in particular, the radiocarpal joints. Cells of the monocyte/macrophage lineage are the major host cells of CAEV in vivo. We have shown that infection of cultured goat macrophages with CAEV results in an alteration of cytokine expression in vitro. Constitutive expression of interleukin 8 (IL-8) and monocyte chemoattractant protein 1 (MCP-1) was increased in infected macrophages, whereas transforming growth factor beta1 (TGF-beta1) mRNA was down-regulated. When macrophages were infected with a CAEV clone lacking the trans-acting nuclear regulatory gene tat, IL-8 and MCP-1 were also increased. No significant differences from cells infected with the wild-type clone were observed, suggesting that Tat is not required for the increased expression of IL-8 and MCP-1 in infected macrophages. Furthermore, infection with CAEV led to an altered pattern of cytokine expression in response to lipopolysaccharide (LPS), heat-killed Listeria monocytogenes plus gamma interferon, or fixed cells of Staphylococcus aureus Cowan I. In infected macrophages, tumor necrosis factor alpha, IL-1beta, IL-6, and IL-12 p40 mRNA expression was reduced in response to all stimuli tested whereas changes in expression of granulocyte-macrophage colony-stimulating factor depended on the stimulating agent. Electrophoretic mobility shift assays demonstrated that, in contrast to effects of human immunodeficiency virus infection of macrophages, CAEV infection had no effect on the level of constitutive nuclear factor-kappaB (NF-kappaB) activity or on the level of LPS-stimulated NF-kappaB activity, suggesting that NF-kappaB is not involved in altered regulation of cytokine expression in CAEV-infected cells. In contrast, activator protein 1 (AP-1) binding activity was decreased in infected macrophages. These data show that CAEV infection may result in a dysregulation of

  9. Competency of reptiles and amphibians for eastern equine encephalitis virus.

    PubMed

    White, Gregory; Ottendorfer, Christy; Graham, Sean; Unnasch, Thomas R

    2011-09-01

    Eastern equine encephalitis virus (EEEV) is endemic throughout most of the eastern United States. Although it is transmitted year round in Florida, transmission elsewhere is seasonal. The mechanism that enables EEEV to overwinter in seasonal foci remains obscure. In previous field studies, early season EEEV activity was detected in mosquito species that feed primarily upon ectothermic hosts, suggesting that reptiles and amphibians might represent overwintering reservoir hosts for EEEV. To determine if this might be possible, two commonly fed upon amphibian and reptile species were evaluated as hosts for the North American subtype I strain of EEEV. Neither amphibian species was a competent host. However, circulating viremias were detected in both reptile species examined. Hibernating infected garter snakes remained viremic after exiting hibernation. These data suggest that snakes may represent an overwintering host for North American EEEV.

  10. Correlation of Acute Humoral Response with Brain Virus Burden and Survival Time in Pig-Tailed Macaques Infected with the Neurovirulent Simian Immunodeficiency Virus SIVsmmFGb

    PubMed Central

    O’Neil, Shawn P.; Suwyn, Carolyn; Anderson, Daniel C.; Niedziela, Genevieve; Bradley, Juliette; Novembre, Francis J.; Herndon, James G.; McClure, Harold M.

    2004-01-01

    Infection of pig-tailed macaques with the simian immunodeficiency virus (SIV) isolate SIVsmmFGb frequently results in SIV encephalitis (SIVE) in addition to immunodeficiency and acquired immune deficiency syndrome. We used in situ hybridization to quantitate the number of SIV-infected cells in brain parenchyma, choroid plexus, and meninges from 17 macaques that developed acquired immune deficiency syndrome after infection with SIVsmmFGb. SIV-infected cells and histopathological lesions of SIVE were identified in 15 of 17 animals (88.2%), including 12 of 12 rapid progressors (RP) and 3 of 5 slow progressors (SP). The parenchymal virus burden was much greater in RP macaques than in the three SP macaques with SIVE (median values of 24.3 versus 0.3 infected cells/mm2, respectively; P < 0.05). Viral load differences between RP and SP with SIVE were less marked in choroid plexus (29.6 versus 12.8 infected cells/mm2, respectively) and meninges (133.0 versus 34.2 infected cells/mm2, respectively). A significant negative correlation was observed between the magnitude of the anti-SIV antibody titer at 1 month after inoculation and brain virus burden at necropsy (r = −0.614; P < 0.01). The close association between immune response and SIVE in this model should prove useful for identifying correlates of immune protection against primate lentiviral encephalitis. PMID:15039205

  11. Ocular histopathology in Eastern equine encephalitis: A case report.

    PubMed

    Lad, Eleonora M; Ong, Sally S; Proia, Alan D

    2017-04-01

    To describe the ophthalmic symptoms and histopathological findings in a human case of Eastern equine encephalitis (EEE). The patient was a septuagenarian male whose presentation and clinical course were thought to be most consistent with viral meningoencephalitis. ELISA suggested recent infection with EEE virus. Microscopic analysis of the brain demonstrated perivascular lymphohistiocytic cuffing which was consistent with viral type encephalitis. Similarly, both eyes manifested a lymphohistiocytic infiltrate in the retina and optic nerve and a reduced number of ganglion cells. To our knowledge, this is the first report of ophthalmological and ocular pathology observations in an EEE patient. Interestingly, the inflammatory findings in the retina are reminiscent of the central nervous system effects of EEE virus. These findings are relevant given the recent epidemic of microcephaly and ophthalmic complications secondary to another arboviral virus, the Zika virus.

  12. Lymphadenopathy and non-suppurative meningo-encephalitis in calves experimentally infected with bovine immunodeficiency-like virus (FL112).

    PubMed

    Munro, R; Lysons, R; Venables, C; Horigan, M; Jeffrey, M; Dawson, M

    1998-08-01

    In an experiment on bovine immunodeficiency-like virus (BIV), the virological and serological aspects of which were reported in an earlier paper, three groups (A, B and C) of three calves were inoculated subcutaneously with a recently isolated strain (FL112). For group B and group C, the virus was suspended in milk, and for group C (controls) the viral suspension was subjected to pasteurization before inoculation. The calves were killed for necropsy 12 months later. Clinical assessment revealed subtle ataxia in two group A calves, which took the form of an intermittent "shifting" (from one leg to another) lameness, and palpable enlargement of the pre-scapular lymph nodes in one group B animal. At necropsy, haemal lymph nodes (0.1 to 0.5 cm in diameter), occurring singly, were observed in all animals. However, in groups A and B (but not C), enlarged haemal lymph nodes (< or = 2 cm in diameter) were also seen, occurring singly and in chains; and in one group A animal they occurred in grape-like clusters. In groups A and B (but not C), histopathological examination revealed generalized hyperplastic changes in lymph nodes, especially the haemal lymph nodes. This finding was particularly striking in the two clinically ataxic animals from group A, which also showed a non-suppurative meningo-encephalitis; the latter was possibly the cause of the subtle clinical signs. This study supports previous findings on lymphadenopathy resulting from experimental infection with BIV.

  13. Encephalitis Surveillance through the Emerging Infections Program, 1997–2010

    PubMed Central

    Glaser, Carol A.

    2015-01-01

    Encephalitis is a devastating illness that commonly causes neurologic disability and has a case fatality rate >5% in the United States. An etiologic agent is identified in <50% of cases, making diagnosis challenging. The Centers for Disease Control and Prevention Emerging Infections Program (EIP) Encephalitis Project established syndromic surveillance for encephalitis in New York, California, and Tennessee, with the primary goal of increased identification of causative agents and secondary goals of improvements in treatment and outcome. The project represents the largest cohort of patients with encephalitis studied to date and has influenced case definition and diagnostic evaluation of this condition. Results of this project have provided insight into well-established causal pathogens and identified newer causes of infectious and autoimmune encephalitis. The recognition of a possible relationship between enterovirus D68 and acute flaccid paralysis with myelitis underscores the need for ongoing vigilance for emerging causes of neurologic disease. PMID:26295485

  14. Structural gene (prME) chimeras of St Louis encephalitis virus and West Nile virus exhibit altered in vitro cytopathic and growth phenotypes

    PubMed Central

    Maharaj, Payal D.; Anishchenko, Michael; Langevin, Stanley A.; Fang, Ying; Reisen, William K.

    2012-01-01

    Despite utilizing the same avian hosts and mosquito vectors, St Louis encephalitis virus (SLEV) and West Nile virus (WNV) display dissimilar vector-infectivity and vertebrate-pathogenic phenotypes. SLEV exhibits a low oral infection threshold for Culex mosquito vectors and is avirulent in avian hosts, producing low-magnitude viraemias. In contrast, WNV is less orally infective to mosquitoes and elicits high-magnitude viraemias in a wide range of avian species. In order to identify the genetic determinants of these different phenotypes and to assess the utility of mosquito and vertebrate cell lines for recapitulating in vivo differences observed between these viruses, reciprocal WNV and SLEV pre-membrane and envelope protein (prME) chimeric viruses were generated and growth of these mutant viruses was characterized in mammalian (Vero), avian (duck) and mosquito [Aedes (C6/36) and Culex (CT)] cells. In both vertebrate lines, WNV grew to 100-fold higher titres than SLEV, and growth and cytopathogenicity phenotypes, determined by chimeric phenotypes, were modulated by genetic elements outside the prME gene region. Both chimeras exhibited distinctive growth patterns from those of SLEV in C6/36 cells, indicating the role of both structural and non-structural gene regions for growth in this cell line. In contrast, growth of chimeric viruses was indistinguishable from that of virus containing homologous prME genes in CT cells, indicating that structural genetic elements could specifically dictate growth differences of these viruses in relevant vectors. These data provide genetic insight into divergent enzootic maintenance strategies that could also be useful for the assessment of emergence mechanisms of closely related flaviviruses. PMID:21940408

  15. Virulence variation among epidemic and non-epidemic strains of Saint Louis encephalitis virus circulating in Argentina

    PubMed Central

    Rivarola, María Elisa; Tauro, Laura Beatriz; Llinás, Guillermo Albrieu; Contigiani, Marta Silvia

    2014-01-01

    Saint Louis encephalitis virus caused an outbreak of febrile illness and encephalitis cases in Córdoba, Argentina, in 2005. During this outbreak, the strain CbaAr-4005 was isolated from Culex quinquefasciatus mosquitoes. We hypothesised that this epidemic variant would be more virulent in a mouse model than two other non-epidemic strains (78V-6507 and CorAn-9275) isolated under different epidemiological conditions. To test this hypothesis, we performed a biological characterisation in a murine model, including mortality, morbidity and infection percentages and lethal infection indices using the three strains. Mice were separated into age groups (7, 10 and 21-day-old mice) and analysed after infection. The strain CbaAr-4005 was the most infective and lethal of the three variants, whereas the other two strains exhibited a decreasing mortality percentage with increasing animal age. The strain CbaAr-4005 produced the highest morbidity percentages and no significant differences among age groups were observed. The epidemic strain caused signs of illness in all inoculated animals and showed narrower ranges from the onset of symptoms than the other strains. CbaAr-4005 was the most virulent for Swiss albino mice. Our results highlight the importance of performing biological characterisations of arbovirus strains likely to be responsible for emerging or reemerging human diseases. PMID:24810175

  16. Venezuelan Equine Encephalitis Virus Activity in the Gulf Coast Region of Mexico, 2003–2010

    PubMed Central

    Adams, A. Paige; Navarro-Lopez, Roberto; Ramirez-Aguilar, Francisco J.; Lopez-Gonzalez, Irene; Leal, Grace; Flores-Mayorga, Jose M.; Travassos da Rosa, Amelia P. A.; Saxton-Shaw, Kali D.; Singh, Amber J.; Borland, Erin M.; Powers, Ann M.; Tesh, Robert B.; Weaver, Scott C.; Estrada-Franco, Jose G.

    2012-01-01

    Venezuelan equine encephalitis virus (VEEV) has been the causative agent for sporadic epidemics and equine epizootics throughout the Americas since the 1930s. In 1969, an outbreak of Venezuelan equine encephalitis (VEE) spread rapidly from Guatemala and through the Gulf Coast region of Mexico, reaching Texas in 1971. Since this outbreak, there have been very few studies to determine the northward extent of endemic VEEV in this region. This study reports the findings of serologic surveillance in the Gulf Coast region of Mexico from 2003–2010. Phylogenetic analysis was also performed on viral isolates from this region to determine whether there have been substantial genetic changes in VEEV since the 1960s. Based on the findings of this study, the Gulf Coast lineage of subtype IE VEEV continues to actively circulate in this region of Mexico and appears to be responsible for infection of humans and animals throughout this region, including the northern State of Tamaulipas, which borders Texas. PMID:23133685

  17. [The role of wild murine rodents in the selection of different strains of tick-borne encephalitis and Powassan viruses].

    PubMed

    Leonova, G N; Krugliak, S P; Lozovskaia, S A; Rybachuk, V N

    1987-01-01

    The study demonstrated the role of wild murine rodents in selection of different strains of tick-borne encephalitis and Powassan viruses, determined their ecological characteristics reflected in the epidemiological features of tick-borne encephalitis and Powassan encephalitis in southern Far East.

  18. Herpes Simplex Virus Infections of the Central Nervous System.

    PubMed

    Whitley, Richard J

    2015-12-01

    This article summarizes knowledge of herpes simplex virus (HSV) infections of the central nervous system (CNS). Disease pathogenesis, detection of DNA polymerase chain reaction (PCR) for diagnosis and prognosis, and approaches to therapy warrant consideration. HSV infection of the CNS is one of few treatable viral diseases. Clinical trials indicate that outcome following neonatal herpes simplex virus type 2 (HSV-2) infections of the CNS is significantly improved when 6 months of suppressive oral acyclovir therapy follows IV antiviral therapy. In contrast, herpes simplex virus type 1 (HSV-1) infections of the brain do not benefit from extended oral antiviral therapy. This implies a difference in disease pathogenesis between HSV-2 and HSV-1 infections of the brain. PCR detection of viral DNA in the CSF is the gold standard for diagnosis. Use of PCR is now being adopted as a basis for determining the duration of therapy in the newborn. HSV infections are among the most common encountered by humans; seropositivity occurs in 50% to 90% of adult populations. Herpes simplex encephalitis, however, is an uncommon result of this infection. Since no new antiviral drugs have been introduced in nearly 3 decades, much effort has focused on learning how to better use acyclovir and how to use existing databases to establish earlier diagnosis.

  19. Human Antibody Responses to Emerging Mayaro Virus and Cocirculating Alphavirus Infections Examined by Using Structural Proteins from Nine New and Old World Lineages

    PubMed Central

    Smith, Jessica L.; Pugh, Christine L.; Cisney, Emily D.; Keasey, Sarah L.; Guevara, Carolina; Ampuero, Julia S.; Comach, Guillermo; Gomez, Doris; Ochoa-Diaz, Margarita; Hontz, Robert D.

    2018-01-01

    ABSTRACT Mayaro virus (MAYV), Venezuelan equine encephalitis virus (VEEV), and chikungunya virus (CHIKV) are vector-borne alphaviruses that cocirculate in South America. Human infections by these viruses are frequently underdiagnosed or misdiagnosed, especially in areas with high dengue virus endemicity. Disease may progress to debilitating arthralgia (MAYV, CHIKV), encephalitis (VEEV), and death. Few standardized serological assays exist for specific human alphavirus infection detection, and antigen cross-reactivity can be problematic. Therefore, serological platforms that aid in the specific detection of multiple alphavirus infections will greatly expand disease surveillance for these emerging infections. In this study, serum samples from South American patients with PCR- and/or isolation-confirmed infections caused by MAYV, VEEV, and CHIKV were examined by using a protein microarray assembled with recombinant capsid, envelope protein 1 (E1), and E2 from nine New and Old World alphaviruses. Notably, specific antibody recognition of E1 was observed only with MAYV infections, whereas E2 was specifically targeted by antibodies from all of the alphavirus infections investigated, with evidence of cross-reactivity to E2 of o’nyong-nyong virus only in CHIKV-infected patient serum samples. Our findings suggest that alphavirus structural protein microarrays can distinguish infections caused by MAYV, VEEV, and CHIKV and that this multiplexed serological platform could be useful for high-throughput disease surveillance. IMPORTANCE Mayaro, chikungunya, and Venezuelan equine encephalitis viruses are closely related alphaviruses that are spread by mosquitos, causing diseases that produce similar influenza-like symptoms or more severe illnesses. Moreover, alphavirus infection symptoms can be similar to those of dengue or Zika disease, leading to underreporting of cases and potential misdiagnoses. New methods that can be used to detect antibody responses to multiple

  20. Neuropharmacological sequelae of persistent CNS viral infections: lessons from Borna disease virus.

    PubMed

    Solbrig, Marylou V; Koob, George F

    2003-03-01

    Borna Disease Virus (BDV) is a neurotropic RNA virus that is worldwide in distribution, causing movement and behavior disorders in a wide range of animal species. BDV has also been reported to be associated with neuropsychiatric diseases of humans by serologic study and by recovery of nucleic acid or virus from blood or brain. Natural infections of horses and sheep produce encephalitis with erratic excited behaviors, hyperkinetic movement or gait abnormalities; naturally infected cats have ataxic "staggering disease." Experimentally infected primates develop hyperactivity, aggression, disinhibition, then apathy; prosimians (lower primates) have hyperactivity, circadian disruption, abnormal social and dominance behaviors, and postural disorders. However, the neuropharmacological determinants of BD phenotypes in laboratory and natural hosts are incompletely understood. Here we review how experimentally infected rodents have provided models for examining behavioral, pharmacologic, and biochemical responses to viral challenge, and how rodents experimentally infected as neonates or as adolescents are providing models for examining age-specific neuropharmacological adaptations to viral injury.

  1. Fatal Deer Tick Virus Infection in Maine.

    PubMed

    Cavanaugh, Catherine E; Muscat, Paul L; Telford, Sam R; Goethert, Heidi; Pendlebury, William; Elias, Susan P; Robich, Rebecca; Welch, Margret; Lubelczyk, Charles B; Smith, Robert P

    2017-09-15

    Deer tick virus (DTV), a genetic variant (lineage II) of Powassan virus, is a rare cause of encephalitis in North America. We report a fatal case of DTV encephalitis following a documented bite from an Ixodes scapularis tick and the erythema migrans rash associated with Lyme disease. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  2. Molecular Detection and Serological Evidence of Tick-Borne Encephalitis Virus in Serbia.

    PubMed

    Potkonjak, Aleksandar; Petrović, Tamaš; Ristanović, Elizabeta; Lalić, Ivica; Vračar, Vuk; Savić, Sara; Turkulov, Vesna; Čanak, Grozdana; Milošević, Vesna; Vidanović, Dejan; Jurišić, Aleksandar; Petrović, Aleksandra; Petrović, Vladimir

    2017-12-01

    Tick-borne encephalitis (TBE) is a zoonotic flaviviral infection that is a growing public health concern in European countries. The aims of this research were to detect and characterize tick-borne encephalitis virus (TBEV) in Ixodes ricinus ticks at presumed natural foci in Serbia, and to determine seroprevalence of TBEV IgG antibodies in humans and animals. A total of 500 I. ricinus ticks were examined for the presence of TBEV by real-time RT-PCR, and conventional nested PCR and sequencing. To determine TBEV seroprevalence, 267 human sera samples were collected, as were 200 sera samples from different animal species. All sera samples were examined by ELISA for the presence of anti-TBEV antibodies. To exclude cross-reactivity, all sera samples were tested for anti-West Nile virus (WNV) antibodies and all human sera samples were also tested for anti-Usutu virus antibodies by ELISA. Results of this preliminary study indicated TBEV activity in Serbia at two microfoci. Several decades after the previous documentation of TBEV in Serbia, we have demonstrated the presence of TBEV in I. ricinus questing nymphs (prevalence 2% and 6.6% at the two different localities) and anti-TBEV antibodies in humans (seroprevalence 0.37%). Moreover, we show for the first time TBEV seroprevalence in several animal species in Serbia, including dogs (seroprevalence 17.5%), horses (5%), wild boars (12.5%), cattle (2.5%), and roe deer (2.5%). None of the goats tested was positive for anti-TBEV IgG antibodies. TBEV isolate from I. ricinus tick in this study belonged to the Western European subtype. To understand the true public health concern in Serbia, detailed epidemiological, clinical, virological, and acarological research are required. This is important for implementation of effective control measures to reduce the incidence of TBE in Serbia.

  3. Viral Etiology of Encephalitis in Children in Southern Vietnam: Results of a One-Year Prospective Descriptive Study

    PubMed Central

    Tan, Le Van; Qui, Phan Tu; Ha, Do Quang; Hue, Nguyen Bach; Bao, Lam Quoi; Cam, Bach Van; Khanh, Truong Huu; Hien, Tran Tinh; Vinh Chau, Nguyen Van; Tram, Tran Tan; Hien, Vo Minh; Nga, Tran Vu Thieu; Schultsz, Constance; Farrar, Jeremy; van Doorn, H. Rogier; de Jong, Menno D.

    2010-01-01

    Background Acute encephalitis is an important and severe disease in children in Vietnam. However, little is known about the etiology while such knowledge is essential for optimal prevention and treatment. To identify viral causes of encephalitis, in 2004 we conducted a one-year descriptive study at Children's Hospital Number One, a referral hospital for children in southern Vietnam including Ho Chi Minh City. Methodology/Principal Findings Children less than 16 years of age presenting with acute encephalitis of presumed viral etiology were enrolled. Diagnostic efforts included viral culture, serology and real time (RT)-PCRs. A confirmed or probable viral causative agent was established in 41% of 194 enrolled patients. The most commonly diagnosed causative agent was Japanese encephalitis virus (n = 50, 26%), followed by enteroviruses (n = 18, 9.3%), dengue virus (n = 9, 4.6%), herpes simplex virus (n = 1), cytomegalovirus (n = 1) and influenza A virus (n = 1). Fifty-seven (29%) children died acutely. Fatal outcome was independently associated with patient age and Glasgow Coma Scale (GCS) on admission. Conclusions/Significance Acute encephalitis in children in southern Vietnam is associated with high mortality. Although the etiology remains unknown in a majority of the patients, the result from the present study may be useful for future design of treatment and prevention strategies of the disease. The recognition of GCS and age as predictive factors may be helpful for clinicians in managing the patient. PMID:21049060

  4. Cellular Immune Responses to Live Attenuated Japanese Encephalitis (JE) Vaccine SA14-14-2 in Adults in a JE/Dengue Co-Endemic Area.

    PubMed

    Turtle, Lance; Tatullo, Filippo; Bali, Tanushka; Ravi, Vasanthapuram; Soni, Mohammed; Chan, Sajesh; Chib, Savita; Venkataswamy, Manjunatha M; Fadnis, Prachi; Yaïch, Mansour; Fernandez, Stefan; Klenerman, Paul; Satchidanandam, Vijaya; Solomon, Tom

    2017-01-01

    Japanese encephalitis (JE) virus (JEV) causes severe epidemic encephalitis across Asia, for which the live attenuated vaccine SA14-14-2 is being used increasingly. JEV is a flavivirus, and is closely related to dengue virus (DENV), which is co-endemic in many parts of Asia, with clinically relevant interactions. There is no information on the human T cell response to SA14-14-2, or whether responses to SA14-14-2 cross-react with DENV. We used live attenuated JE vaccine SA14-14-2 as a model for studying T cell responses to JEV infection in adults, and to determine whether these T cell responses are cross-reactive with DENV, and other flaviviruses. We conducted a single arm, open label clinical trial (registration: clinicaltrials.gov NCT01656200) to study T cell responses to SA14-14-2 in adults in South India, an area endemic for JE and dengue. Ten out of 16 (62.5%) participants seroconverted to JEV SA14-14-2, and geometric mean neutralising antibody (NAb) titre was 18.5. Proliferation responses were commonly present before vaccination in the absence of NAb, indicating a likely high degree of previous flavivirus exposure. Thirteen of 15 (87%) participants made T cell interferon-gamma (IFNγ) responses against JEV proteins. In four subjects tested, at least some T cell epitopes mapped cross-reacted with DENV and other flaviviruses. JEV SA14-14-2 was more immunogenic for T cell IFNγ than for NAb in adults in this JE/DENV co-endemic area. The proliferation positive, NAb negative combination may represent a new marker of long term immunity/exposure to JE. T cell responses can cross-react between JE vaccine and DENV in a co-endemic area, illustrating a need for greater knowledge on such responses to inform the development of next-generation vaccines effective against both diseases. clinicaltrials.gov (NCT01656200).

  5. Experimental biology and pathogenesis of Junin virus infection in animals and man*

    PubMed Central

    Weissenbacher, M. C.; De Guerrero, L. B.; Boxaca, M. C.

    1975-01-01

    A fatal disease resembling Argentine haemorrhagic fever of man has been produced in guinea-pigs and mice by inoculation with Junin virus. Infected guinea-pigs show macroscopic and microscopic haemorrhagic lesions, marked bone marrow changes, decreased leukocytes and platelets in the peripheral blood, and impairment of immunological response. This response permits differentiation between pathogenic (XJ) and attenuated (XJ Cl3) strains. Guinea-pigs inoculated with the XJ Cl3 strain develop an inapparent infection accompanied by slight haematological changes, the appearance of antibody, and protection against challenge with the pathogenic strain. The attenuated strain has been used successfully as an immunizing antigen in 636 human volunteers. Guinea-pigs infected with Tacaribe virus show cross-protection against Junin virus, with the presence of heterologous neutralizing antibodies. Suckling mice infected with Junin virus develop a typical viral encephalitis; the pathogenicity of the virus decreases with increasing age of the mice. Experiments with thymectomized mice and with mice treated with antithymocyte serum suggest that the pathogenicity of Junin virus in this host is related to the integrity of the thymus-dependent immune system. There is evidence that humoral antibodies do not play any role in the development of the encephalitic lesions but rather protect mice against Junin virus infection. A recent serological survey among laboratory workers and inhabitants of the endemic area has demonstrated the presence of inapparent infection with Junin virus. PMID:182401

  6. Comparative Spatial Dynamics of Japanese Encephalitis and Acute Encephalitis Syndrome in Nepal

    PubMed Central

    Robertson, Colin; Pant, Dhan Kumar; Joshi, Durga Datt; Sharma, Minu; Dahal, Meena; Stephen, Craig

    2013-01-01

    Japanese Encephalitis (JE) is a vector-borne disease of major importance in Asia. Recent increases in cases have spawned the development of more stringent JE surveillance. Due to the difficulty of making a clinical diagnosis, increased tracking of common symptoms associated with JE—generally classified as the umbrella term, acute encephalitis syndrome (AES) has been developed in many countries. In Nepal, there is some debate as to what AES cases are, and how JE risk factors relate to AES risk. Three parts of this analysis included investigating the temporal pattern of cases, examining the age and vaccination status patterns among AES surveillance data, and then focusing on spatial patterns of risk factors. AES and JE cases from 2007–2011 reported at a district level (n = 75) were examined in relation to landscape risk factors. Landscape pattern indices were used to quantify landscape patterns associated with JE risk. The relative spatial distribution of landscape risk factors were compared using geographically weighted regression. Pattern indices describing the amount of irrigated land edge density and the degree of landscape mixing for irrigated areas were positively associated with JE and AES, while fragmented forest measured by the number of forest patches were negatively associated with AES and JE. For both JE and AES, the local GWR models outperformed global models, indicating spatial heterogeneity in risks. Temporally, the patterns of JE and AES risk were almost identical; suggesting the relative higher caseload of AES compared to JE could provide a valuable early-warning signal for JE surveillance and reduce diagnostic testing costs. Overall, the landscape variables associated with a high degree of landscape mixing and small scale irrigated agriculture were positively linked to JE and AES risk, highlighting the importance of integrating land management policies, disease prevention strategies and promoting healthy sustainable livelihoods in both rural

  7. Human surveillance for West Nile virus infection in Ontario in 2000

    PubMed Central

    Ford-Jones, E. Lee; Fearon, Margaret; Leber, Chuck; Dwight, Prabo; Myszak, Moira; Cole, Beverly; Greene, Pam Baker; Artes, Sheila; McGeer, Allison; D'Cunha, Colin; Naus, Monika

    2002-01-01

    Background The first reports of West Nile virus (WNV) infection in the United States in 1999 prompted Ontario to establish a surveillance protocol to monitor for the possible spread of the virus into the province. Surveillance components included evaluation of dead birds, sentinel chickens, mosquito pools and human disease. We report the results of human surveillance in 2000. Methods Between July 1 and Oct. 31, 2000, an active surveillance program was undertaken in which designated site coordinators in sentinel hospitals identified patients who met the suspect case definition (fever and fluctuating level of consciousness [encephalopathy], with or without muscle weakness). During the same period, following province-wide distribution of educational material, all other patients tested for WNV antibodies were identified through review of provincial laboratory reports (laboratory-based enhanced passive surveillance). Results Of the 60 hospitals contacted, 59 agreed to participate in the active surveillance program; 52 provided information on a regular (weekly) basis, and 7 submitted fewer than 8 reports. Thirty-six (61%) of the sentinel sites reported suspect cases. In total, 188 patients were tested (130 identified through active surveillance and 58 through enhanced passive surveillance). Patients identified through active surveillance were more likely than those identified through passive surveillance to meet the suspect case definition (43% [n = 56] v. 7% [n = 4]), to be admitted to hospital (75% [n = 99] v. 16% [n = 9]), to have a longer hospital stay (mean 25 v. 3 days), to have had a second (convalescent) serum sample collected (37% [n = 48] v. 31% [n = 18]), to have had a cerebrospinal fluid (CSF) sample banked (56% [n = 73] v. 14% [n = 8]) and to have had a discharge diagnosis reported (79% [n = 103] v. 28% [n = 16]). Of the 60 patients (32%) who met the suspect case definition, 34 (57% [31 active, 3 passive]) had a discharge diagnosis of encephalitis. Of these

  8. INFLUENCE OF ANESTHESIA ON EXPERIMENTAL NEUROTROPIC VIRUS INFECTIONS

    PubMed Central

    Sulkin, S. Edward; Zarafonetis, Christine

    1947-01-01

    1. Experimental neurotropic virus infections previously shown to be altered by ether anesthesia are caused by viruses destroyed in vitro by anesthetic ether; this group includes the viruses of Eastern equine encephalomyelitis, Western equine encephalomyelitis, and St. Louis encephalitis. 2. Experimental neurotropic virus infections which were not altered by ether anesthesia are caused by viruses which are refractory to the in vitro virucidal activity of even large amounts of anesthetic ether; this group includes the viruses of poliomyelitis (Lansing) and rabies. 3. Quantitative studies of the in vitro virucidal activity of ether indicate that concentrations of this anesthetic within the range found in central nervous system tissues of anesthetized animals possess no virucidal activity. 4. The lowest concentration of ether possessing significant virucidal capacity is more than fifteen times the maximum concentration of the anesthetic tolerated by the experimental animal. 5. Concentrations of ether 50 to 100 times the maximum amount tolerated by the anesthetized animal are capable of destroying large amounts of susceptible viruses, the average lethal dose (LD50) being reduced more than 5 log units. 6. On the basis of the studies presented in this report, it cannot be concluded that direct virucidal activity of ether is not the underlying mechanism of the inhibition by anesthesia of certain experimental neurotropic virus infections. Indirect inhibition of the virus by the anesthetic through an alteration in the metabolism of either the host cell or the host animal as a whole appears at this point to be a more likely possibility. PMID:19871636

  9. Anti-NMDA receptor encephalitis and nonencephalitic HSV-1 infection.

    PubMed

    Salovin, Amy; Glanzman, Jason; Roslin, Kylie; Armangue, Thais; Lynch, David R; Panzer, Jessica A

    2018-07-01

    To determine whether there is an association between nonencephalitic herpes simplex virus 1 (HSV-1) infection and anti-NMDA receptor encephalitis (anti-NMDARE). Antibody testing was performed using samples from 2 cohorts in a case-control observational study. The cohort "Philadelphia" included 16 serum samples of pediatric anti-NMDARE cases and 42 age-matched controls with other neuroinflammatory disorders studied at the Children's Hospital of Philadelphia and University of Pennsylvania. The cohort "Barcelona" contained 23 anti-NMDARE patient samples and 26 age-matched participants with other neuroinflammatory disorders studied at IDIBAPS-Hospital Clinic, University of Barcelona. The presence of HSV-1 IgG antibodies was examined by ELISA. As an additional control, IgG antibodies to cytomegalovirus (CMV) and Epstein-Barr virus viral capsid antigen (EBV-VCA) were determined. In each cohort, more participants with anti-NMDARE than controls had anti-HSV-1 IgG antibodies. In the Philadelphia cohort (58 participants), 44% of anti-NMDARE cases had antibodies to HSV-1 compared with 14% controls (OR 4.67, 95% CI 1.3-17.3, p = 0.031). In the Barcelona cohort (49 participants), 52% of participants with anti-NMDARE had antibodies to HSV-1 compared with 31% of controls (OR 2.45, 95% CI 0.7-7.9, p = 0.155). Overall, 49% of anti-NMDARE cases have antibodies to HSV-1 in these 2 combined cohorts compared with 21% of controls (Mantel-Haenszel OR 3.21, 95% CI 1.3-7.7, p = 0.007). Past HSV-1 infection was found in significantly more anti-NMDARE cases than controls. This suggests a meaningful association between nonencephalitic HSV-1 infection and development of anti-NMDARE.

  10. Isolation, preliminary characterization, and full-genome analyses of tick-borne encephalitis virus from Mongolia.

    PubMed

    Frey, Stefan; Mossbrugger, Ilona; Altantuul, Damdin; Battsetseg, Jigjav; Davaadorj, Rendoo; Tserennorov, Damdindorj; Buyanjargal, Tsoodol; Otgonbaatar, Dashdavaa; Zöller, Lothar; Speck, Stephanie; Wölfel, Roman; Dobler, Gerhard; Essbauer, Sandra

    2012-12-01

    Tick-borne encephalitis virus (TBEV) causes one of the most important inflammatory diseases of the central nervous system, namely severe encephalitis in Europe and Asia. Since the 1980s tick-borne encephalitis is known in Mongolia with increasing numbers of human cases reported during the last years. So far, however, data on TBEV strains are still sparse. We herein report the isolation of a TBEV strain from Ixodes persulcatus ticks collected in Mongolia in 2010. Phylogenetic analysis of the E-gene classified this isolate as Siberian subtype of TBEV. The Mongolian TBEV strain showed differences in virus titers, plaque sizes, and growth properties in two human neuronal cell-lines. In addition, the 10,242 nucleotide long open-reading frame and the corresponding polyprotein sequence were revealed. The isolate grouped in the genetic subclade of the Siberian subtype. The strain Zausaev (AF527415) and Vasilchenko (AF069066) had 97 and 94 % identity on the nucleotide level. In summary, we herein describe first detailed data regarding TBEV from Mongolia. Further investigations of TBEV in Mongolia and adjacent areas are needed to understand the intricate dispersal of this virus.

  11. Characterization of Rabensburg Virus, a Flavivirus Closely Related to West Nile Virus of the Japanese Encephalitis Antigenic Group

    PubMed Central

    Aliota, Matthew T.; Jones, Susan A.; Dupuis, Alan P.; Ciota, Alexander T.; Hubalek, Zdenek; Kramer, Laura D.

    2012-01-01

    Rabensburg virus (RABV), a Flavivirus with ∼76% nucleotide and 90% amino acid identity with representative members of lineage one and two West Nile virus (WNV), previously was isolated from Culex pipiens and Aedes rossicus mosquitoes in the Czech Republic, and phylogenetic and serologic analyses demonstrated that it was likely a new lineage of WNV. However, no direct link between RABV and human disease has been definitively established and the extent to which RABV utilizes the typical WNV transmission cycle is unknown. Herein, we evaluated vector competence and capacity for vertical transmission (VT) in Cx. pipiens; in vitro growth on avian, mammalian, and mosquito cells; and infectivity and viremia production in birds. RABV infection and replication only were detected on mosquito cells. Experimentally inoculated birds did not become infected. Cx. pipiens had poor peroral vector competence and a higher VT rate as compared to US-WNV in Cx. pipiens. As a result, we postulate that RABV is an intermediate between the mosquito-specific and horizontally transmitted flaviviruses. PMID:22724010

  12. Fever of Unknown Origin in a Patient with Confirmed West Nile Virus Meningoencephalitis

    PubMed Central

    Sabre, Alexander; Farricielli, Laurie

    2014-01-01

    West Nile Virus (WNV), an RNA arbovirus and member of the Japanese encephalitis virus antigenic complex, causes a wide range of clinical symptoms, from asymptomatic to encephalitis and meningitis. Nearly all human infections of WNV are due to mosquito bites with birds being the primary amplifying hosts. Advanced age is the most important risk factor for neurological disease leading most often to poor prognosis in those afflicted. We report a case of WNV meningoencephalitis in a 93-year-old Caucasian male who presented with fever of unknown origin (FUO) and nuchal rigidity that rapidly decompensated within 24 h to a persistent altered mental state during inpatient stay. The patient's ELISA antibody titers confirmed pathogenesis of disease by WNV; he given supportive measures and advanced to an excellent recovery. In regard to the approach of FUO, it is important to remain impartial yet insightful to all elements when determining pathogenesis in atypical presentation. PMID:25580318

  13. Systematic analysis of protein identity between Zika virus and other arthropod-borne viruses.

    PubMed

    Chang, Hsiao-Han; Huber, Roland G; Bond, Peter J; Grad, Yonatan H; Camerini, David; Maurer-Stroh, Sebastian; Lipsitch, Marc

    2017-07-01

    To analyse the proportions of protein identity between Zika virus and dengue, Japanese encephalitis, yellow fever, West Nile and chikungunya viruses as well as polymorphism between different Zika virus strains. We used published protein sequences for the Zika virus and obtained protein sequences for the other viruses from the National Center for Biotechnology Information (NCBI) protein database or the NCBI virus variation resource. We used BLASTP to find regions of identity between viruses. We quantified the identity between the Zika virus and each of the other viruses, as well as within-Zika virus polymorphism for all amino acid k -mers across the proteome, with k ranging from 6 to 100. We assessed accessibility of protein fragments by calculating the solvent accessible surface area for the envelope and nonstructural-1 (NS1) proteins. In total, we identified 294 Zika virus protein fragments with both low proportion of identity with other viruses and low levels of polymorphisms among Zika virus strains. The list includes protein fragments from all Zika virus proteins, except NS3. NS4A has the highest number (190 k -mers) of protein fragments on the list. We provide a candidate list of protein fragments that could be used when developing a sensitive and specific serological test to detect previous Zika virus infections.

  14. Potential Sympatric Vectors and Mammalian Hosts of Venezuelan Equine Encephalitis Virus in Southern Mexico.

    PubMed

    Sotomayor-Bonilla, Jesús; Abella-Medrano, Carlos Antonio; Chaves, Andrea; Álvarez-Mendizábal, Paulina; Rico-Chávez, Óscar; Ibáñez-Bernal, Sergio; Rostal, Melinda K; Ojeda-Flores, Rafael; Barbachano-Guerrero, Arturo; Gutiérrez-Espeleta, Gustavo; Aguirre, A Alonso; Daszak, Peter; Suzán, Gerardo

    2017-07-01

    Arboviruses are important zoonotic agents with complex transmission cycles and are not well understood because they may involve many vectors and hosts. We studied sympatric wild mammals and hematophagous mosquitoes having the potential to act as hosts and vectors in two areas of southern Mexico. Mosquitoes, bats, and rodents were captured in Calakmul (Campeche) and Montes Azules (Chiapas), between November 2010 and August 2011. Spleen samples from 146 bats and 14 rodents were tested for molecular evidence of Venezuelan equine encephalitis virus (VEEV), eastern equine encephalitis virus (EEEV), western equine encephalitis virus (WEEV), and West Nile virus (WNV) using PCR protocols. Bat ( Artibeus lituratus , Carollia sowelli , Glossophaga soricina , and Sturnira parvidens) and rodent ( Sigmodon hispidus and Oryzomys alfaroi ) species were positive for VEEV. No individuals were positive for WNV, EEEV, or WEEV. A total of 1,298 mosquitoes were collected at the same sites, and five of the mosquito species collected were known VEEV vectors (Aedes fulvus, Mansonia indubitans, Psorophora ferox, Psorophora cilipes, and Psorophora confinnis). This survey simultaneously presents the first molecular evidence, to our knowledge, of VEEV in bats and rodents from southern Mexico and the identification of potential sympatric vectors. Studies investigating sympatric nonhuman hosts, vectors, and arboviruses must be expanded to determine arboviral dynamics in complex systems in which outbreaks of emerging and reemerging zoonoses are continuously occurring.

  15. Rift valley Fever virus encephalitis is associated with an ineffective systemic immune response and activated T cell infiltration into the CNS in an immunocompetent mouse model.

    PubMed

    Dodd, Kimberly A; McElroy, Anita K; Jones, Tara L; Zaki, Sherif R; Nichol, Stuart T; Spiropoulou, Christina F

    2014-06-01

    Rift Valley fever virus (RVFV) causes outbreaks of severe disease in livestock and humans throughout Africa and the Arabian Peninsula. In people, RVFV generally causes a self-limiting febrile illness but in a subset of individuals, it progresses to more serious disease. One manifestation is a delayed-onset encephalitis that can be fatal or leave the afflicted with long-term neurologic sequelae. In order to design targeted interventions, the basic pathogenesis of RVFV encephalitis must be better understood. To characterize the host immune responses and viral kinetics associated with fatal and nonfatal infections, mice were infected with an attenuated RVFV lacking NSs (ΔNSs) that causes lethal disease only when administered intranasally (IN). Following IN infection, C57BL/6 mice developed severe neurologic disease and succumbed 7-9 days post-infection. In contrast, inoculation of ΔNSs virus subcutaneously in the footpad (FP) resulted in a subclinical infection characterized by a robust immune response with rapid antibody production and strong T cell responses. IN-inoculated mice had delayed antibody responses and failed to clear virus from the periphery. Severe neurological signs and obtundation characterized end stage-disease in IN-inoculated mice, and within the CNS, the development of peak virus RNA loads coincided with strong proinflammatory responses and infiltration of activated T cells. Interestingly, depletion of T cells did not significantly alter survival, suggesting that neurologic disease is not a by-product of an aberrant immune response. Comparison of fatal (IN-inoculated) and nonfatal (FP-inoculated) ΔNSs RVFV infections in the mouse model highlighted the role of the host immune response in controlling viral replication and therefore determining clinical outcome. There was no evidence to suggest that neurologic disease is immune-mediated in RVFV infection. These results provide important insights for the future design of vaccines and therapeutic

  16. Role of communally nesting ardeid birds in the epidemiology of West Nile virus revisited.

    PubMed

    Reisen, William K; Wheeler, Sarah; Armijos, M Veronica; Fang, Ying; Garcia, Sandra; Kelley, Kara; Wright, Stan

    2009-06-01

    Although herons and egrets in the family Ardeidae frequently have been associated with viruses in the Japanese encephalitis virus serocomplex, communal nesting colonies do not appear to be a focus of early season and rapid amplification of West Nile virus (WNV) in California. Evidence for repeated WNV infection was found by testing living and dead nestlings collected under trees with mixed species ardeid colonies nesting above in an oak grove near the University of California arboretum in Davis and in a Eucalyptus grove at a rural farmstead. However, mosquito infection rates at both nesting sites were low and positive pools did not occur earlier than at comparison sites within the City of Davis or at the Yolo Bypass wetlands managed for rice production and waterfowl habitat. Black-crowned night herons (Nycticorax nycticorax) were the most abundant and frequently infected ardeid species, indicating that WNV may be an important cause of mortality among nestlings of this species.

  17. Detection of tick-borne encephalitis virus in I. ricinus ticks collected from autumn migratory birds in Latvia.

    PubMed

    Kazarina, Alisa; Japiņa, Kristīne; Keišs, Oskars; Salmane, Ineta; Bandere, Dace; Capligina, Valentina; Ranka, Renāte

    2015-03-01

    Birds have a potential of spreading ticks via bird migration routes. In this study, we screened 170 ticks removed during autumn 2010 from 55 birds belonging to 10 species for the presence of tick-borne encephalitis virus (TBEV). In total, TBEV RNA was detected in 14% of I. ricinus tick samples obtained from different birds species. The results of this study indicate the possible role of migrating birds in the dispersal of TBEV-infected ticks along the southward migration route. Copyright © 2014 Elsevier GmbH. All rights reserved.

  18. Management of adult infectious encephalitis in metropolitan France.

    PubMed

    Goulenok, T; Buzelé, R; Duval, X; Bruneel, F; Stahl, J P; Fantin, B

    2017-05-01

    Infectious encephalitis is a severe disease leading to a high mortality and morbidity. The most frequent causes include Herpes simplex virus, Varicella Zoster virus, Listeria monocytogenes, and Mycobacterium tuberculosis. Urgent treatment is required (anti-infective therapy and nonspecific supportive care). The aim of this study was to define treatment strategy, empirical and after microbiological documentation at 48hours, through a systematic literature review. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. Immunogenicity and safety of the inactivated Japanese encephalitis vaccine IXIARO® in elderly subjects: Open-label, uncontrolled, multi-center, phase 4 study.

    PubMed

    Cramer, Jakob P; Dubischar, Katrin; Eder, Susanne; Burchard, Gerd D; Jelinek, Tomas; Jilma, Bernd; Kollaritsch, Herwig; Reisinger, Emil; Westritschnig, Kerstin

    2016-08-31

    IXIARO® is a Vero cell-derived, inactivated Japanese encephalitis (JE) vaccine licensed mainly in western countries for children and adults traveling to JE endemic areas. Limited immunogenicity and safety data in elderly travelers have been available. To evaluate safety and immunogenicity of IXIARO in elderly subjects. Open-label, single arm, multi-centered study. Two-hundred subjects with good general health, including adequately controlled chronic conditions, received two doses of IXIARO®, 28days apart. Protective levels of antibodies were tested 42days after the second dose. Systemic and local adverse events (AEs) were solicited for 7days after each dose, unsolicited AEs were collected up to day 70 and in a phone call at month 7. Subjects were aged 64-83years (median 69.0years). Nineteen percent of subjects had serious or medically attended AEs up to Day 70 (primary endpoint), none of them causally linked to IXIARO. Solicited local AEs were reported by 33.5% (most common: local tenderness) and solicited systemic AEs by 27% (most common: headache) of subjects. The seroprotection rate was 65% with a geometric mean titre (GMT) of 37. Subjects with tick borne encephalitis (TBE) vaccinations in the past 5years (N=29) had a SCR of 90% and GMT of 65. IXIARO is generally well tolerated in the elderly, and the safety profile is largely comparable with younger adults. SCR and GMT are lower compared to younger adults, but SCR is in the range reported in elderly for other vaccines e.g. against TBE, hepatitis-A virus (HAV)/hepatitis-B virus (HBV), influenza. The differences in SCR and GMT from younger to elderly adults were in the range of other vaccines. Duration of protection is uncertain in older persons, therefore a booster dose (third dose) should be considered before any further exposure to JE virus. Copyright © 2016. Published by Elsevier Ltd.

  20. Mapping eastern equine encephalitis virus risk for white-tailed deer in Michigan

    PubMed Central

    Downs, Joni A.; Hyzer, Garrett; Marion, Eric; Smith, Zachary J.; Kelen, Patrick Vander; Unnasch, Thomas R.

    2015-01-01

    Eastern equine encephalitis (EEE) is a mosquito-borne viral disease that is often fatal to humans and horses. Some species including white-tailed deer and passerine birds can survive infection with the EEE virus (EEEV) and develop antibodies that can be detected using laboratory techniques. In this way, collected serum samples from free ranging white-tailed deer can be used to monitor the presence of the virus in ecosystems. This study developed and tested a risk index model designed to predict EEEV activity in white-tailed deer in a three-county area of Michigan. The model evaluates EEEV risk on a continuous scale from 0.0 (no measurable risk) to 1.0 (highest possible risk). High risk habitats are identified as those preferred by white-tailed deer that are also located in close proximity to an abundance of wetlands and lowland forests, which support disease vectors and hosts. The model was developed based on relevant literature and was tested with known locations of infected deer that showed neurological symptoms. The risk index model accurately predicted the known locations, with the mean value for those sites equal to the 94th percentile of values in the study area. The risk map produced by the model could be used refine future EEEV monitoring efforts that use serum samples from free-ranging white-tailed deer to monitor viral activity. Alternatively, it could be used focus educational efforts targeted toward deer hunters that may have elevated risks of infection. PMID:26494931

  1. Thiosemicarbazones and Phthalyl-Thiazoles compounds exert antiviral activity against yellow fever virus and Saint Louis encephalitis virus.

    PubMed

    Pacca, Carolina Colombelli; Marques, Rafael Elias; Espindola, José Wanderlan P; Filho, Gevânio B O Oliveira; Leite, Ana Cristina Lima; Teixeira, Mauro Martins; Nogueira, Mauricio L

    2017-03-01

    Arboviruses, arthropod-borneviruses, are frequency associated to human outbreak and represent a serious health problem. The genus Flavivirus, such as Yellow Fever Virus (YFV) and Saint Louis Encephalitis Virus (SLEV), are important pathogens with high morbidity and mortality worldwide. In Brazil, YFV is maintained in sylvatic cycle, but many cases are notified annually, despite the efficiency of vaccine. SLEV causes an acute encephalitis and is widely distributed in the Americas. There is no specific antiviral drugs for these viruses, only supporting treatment that can alleviate symptoms and prevent complications. Here, we evaluated the potential anti-YFV and SLEV activity of a series of thiosemicarbazones and phthalyl-thiazoles. Plaque reduction assay, flow cytometry, immunofluorescence and cellular viability were used to test the compounds in vitro. Treated cells showed efficient inhibition of the viral replication at concentrations that presented minimal toxicity to cells. The assays showed that phthalyl-thiazole and phenoxymethyl-thiosemicarbazone reduced 60% of YFV replication and 75% of SLEV replication. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  2. MAVS Expressed by Hematopoietic Cells Is Critical for Control of West Nile Virus Infection and Pathogenesis.

    PubMed

    Zhao, Jincun; Vijay, Rahul; Zhao, Jingxian; Gale, Michael; Diamond, Michael S; Perlman, Stanley

    2016-08-15

    West Nile virus (WNV) is the most important cause of epidemic encephalitis in North America. Innate immune responses, which are critical for control of WNV infection, are initiated by signaling through pathogen recognition receptors, RIG-I and MDA5, and their downstream adaptor molecule, MAVS. Here, we show that a deficiency of MAVS in hematopoietic cells resulted in increased mortality and delayed WNV clearance from the brain. In Mavs(-/-) mice, a dysregulated immune response was detected, characterized by a massive influx of macrophages and virus-specific T cells into the infected brain. These T cells were polyfunctional and lysed peptide-pulsed target cells in vitro However, virus-specific T cells in the brains of infected Mavs(-/-) mice exhibited lower functional avidity than those in wild-type animals, and even virus-specific memory T cells generated by prior immunization could not protect Mavs(-/-) mice from WNV-induced lethal disease. Concomitant with ineffective virus clearance, macrophage numbers were increased in the Mavs(-/-) brain, and both macrophages and microglia exhibited an activated phenotype. Microarray analyses of leukocytes in the infected Mavs(-/-) brain showed a preferential expression of genes associated with activation and inflammation. Together, these results demonstrate a critical role for MAVS in hematopoietic cells in augmenting the kinetics of WNV clearance and thereby preventing a dysregulated and pathogenic immune response. West Nile virus (WNV) is the most important cause of mosquito-transmitted encephalitis in the United States. The innate immune response is known to be critical for protection in infected mice. Here, we show that expression of MAVS, a key adaptor molecule in the RIG-I-like receptor RNA-sensing pathway, in hematopoietic cells is critical for protection from lethal WNV infection. In the absence of MAVS, there is a massive infiltration of myeloid cells and virus-specific T cells into the brain and overexuberant

  3. Inefficient Mechanical Transmission of Langat (Tick-Borne Encephalitis Virus Complex) Virus by Blood-Feeding Mites (Acari) to Laboratory Mice

    DTIC Science & Technology

    1993-05-01

    AD--A269 706 SPSSHORT C:OMMNUNICATION 8 Inefficient Mechanical Transmission of Langat (Tick-Bornee Encephalitis Virus Complex) Virus by Blood-Feeding...I d after a . iremic blood meal. but onhv immediatelIy after the vi re muo. LANGAT (LGT) VIRUS is a member of the tick- No isolations of LCT virus...Use of ulatus collected in the Ulu Langat Forest re- Laboratory Animals." as promulgated by the Committee on serve, Malaysia. in l959’(Struth 1956

  4. Brainstem encephalitis and acute polyneuropathy associated with hepatitis E infection.

    PubMed

    Salim, Omar Jabbar; Davidson, Amy; Li, Kathy; Leach, John Paul; Heath, Craig

    2017-09-11

    A 59-year-old man presented with feverish illness. His Glasgow Coma Scale was 15, had reduced visual acuity in the left eye with partial left ptosis and mild left hemiparesis with an extensor left plantar. Over 48 hours, he accrued multiple cranial nerves palsies and progressed to a flaccid paralysis necessitating admission to an intensive care unit.Cerebrospinal fluid (CSF) study showed 20 lymphocytes and raised protein. Viral and bacterial PCRs were negative. Samples for Lyme, blood-borne viruses, syphilis and autoantibodies were also negative. MRI brain showed T2 abnormalities within the brainstem. Nerve conduction studies revealed an acute motor and sensory axonal neuropathy pattern of Guillian Barre Syndrome (GBS). The patient was treated for both infective and inflammatory causes of brainstem encephalitis and GBS.Retrospective studies confirmed the presence of hepatitis E virus (HEV) RNA in CSF and serum studies showed positive HEV IgG and IgM prior to intravenous infusion. After 3 months of intensive rehabilitation, the patient was discharged home walking with a frame. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  5. Experimental West Nile Virus Infection in Rabbits: An Alternative Model for Studying Induction of Disease and Virus Control

    PubMed Central

    Suen, Willy W.; Uddin, Muhammad J.; Wang, Wenqi; Brown, Vienna; Adney, Danielle R.; Broad, Nicole; Prow, Natalie A.; Bowen, Richard A.; Hall, Roy A.; Bielefeldt-Ohmann, Helle

    2015-01-01

    The economic impact of non-lethal human and equine West Nile virus (WNV) disease is substantial, since it is the most common presentation of the infection. Experimental infection with virulent WNV strains in the mouse and hamster models frequently results in severe neural infection and moderate to high mortality, both of which are not representative features of most human and equine infections. We have established a rabbit model for investigating pathogenesis and immune response of non-lethal WNV infection. Two species of rabbits, New Zealand White (Oryctolagus cuniculus) and North American cottontail (Sylvilagus sp.), were experimentally infected with virulent WNV and Murray Valley encephalitis virus strains. Infected rabbits exhibited a consistently resistant phenotype, with evidence of low viremia, minimal-absent neural infection, mild-moderate neuropathology, and the lack of mortality, even though productive virus replication occurred in the draining lymph node. The kinetics of anti-WNV neutralizing antibody response was comparable to that commonly seen in infected horses and humans. This may be explained by the early IFNα/β and/or γ response evident in the draining popliteal lymph node. Given this similarity to the human and equine disease, immunocompetent rabbits are, therefore, a valuable animal model for investigating various aspects of non-lethal WNV infections. PMID:26184326

  6. Anti-N-methyl-D-aspartate receptor encephalitis after Herpes simplex virus-associated encephalitis: an emerging disease with diagnosis and therapeutic challenges.

    PubMed

    Schein, Flora; Gagneux-Brunon, Amandine; Antoine, Jean-Christophe; Lavernhe, Sylvie; Pillet, Sylvie; Paul, Stéphane; Frésard, Anne; Boutet, Claire; Grange, Rémi; Cazorla, Céline; Lucht, Frédéric; Botelho-Nevers, Elisabeth

    2017-08-01

    Morbidity and mortality of Herpes simplex virus encephalitis (HSE) remain high. Relapses of neurological signs may occur after initial clinical improvement under acyclovir treatment. We report here a case of post-HSE anti-N-methyl-d-aspartate receptor-mediated encephalitis in an adult and perform a systematic search on PubMed to identify other cases in adults. We identified 11 previously published cases, to discuss diagnostic and therapeutic management. Symptoms in adults are often inappropriate behaviors, confusion and agitation. Diagnosis of anti-NMDA-R encephalitis after HSE is often delayed. Treatment consists in steroids, plasma exchange, and rituximab. Prognosis is often favorable. Anti-NMDA-R antibodies should be searched in cerebrospinal fluid of patients with unexpected evolution of HSE. This emerging entity reopens the hot debate about steroids in HSE.

  7. Psychiatric aspects of herpes simplex encephalitis, tick-borne encephalitis and herpes zoster encephalitis among immunocompetent patients.

    PubMed

    Więdłocha, Magdalena; Marcinowicz, Piotr; Stańczykiewicz, Bartłomiej

    2015-01-01

    The psychopathological symptoms occurring in the course of diseases associated with infections are often initially isolated and non-characteristic, and may cause diagnostic difficulties. Moreover, such disorders tend to be less responsive to psychiatric management. Among possible causes such as trauma, neoplasm and vascular changes, inflammatory changes of the brain as a result of a viral infection should also be considered. There were 452 registered cases of viral encephalitis in Poland in 2010, and although not very prevalent they remain a severe and life-threatening condition. What is more, the frequently occurring neurological and psychiatric complications of viral encephalitis often result in permanent disabilities, causing a significant decrease in the quality of life. This article presents the three types of encephalitis that are most prevalent among immunocompetent patients in Poland, i.e. herpes simplex encephalitis (HSE), tick-borne encephalitis (TBE) and herpes zoster encephalitis (HZE). The psychopathology of the acute phase of the infection, the residual symptoms, features apparent in imaging studies and some neuropathological aspects are also presented. The paper also focuses on psychiatric aspects of the diagnostics and treatment of the described conditions. The clinical pictures of these infections are quite specific, although they cover a wide range of symptoms, and these characteristic features are described. The aim of this review is also to show the significance of thorough diagnostics and a multidisciplinary approach to patients with viral CNS infections.

  8. The occurrence of Ixodes ricinus ticks and important tick-borne pathogens in areas with high tick-borne encephalitis prevalence in different altitudinal levels of the Czech Republic Part I. Ixodes ricinus ticks and tick-borne encephalitis virus.

    PubMed

    Daniel, M; Danielová, V; Kříž, B; Růžek, D; Fialová, A; Malý, M; Materna, J; Pejčoch, M; Erhart, J

    The aim of the three-year study (2011-2013) was to monitor population density of Ixodes ricinus ticks and its infection rate with the tick-borne encephalitis virus in areas with a high incidence of tick-borne encephalitis as reported in the previous decade 2001-2010. Such a comprehensive and long-term study based on existing epidemiolo-gical findings has not previously been conducted in Europe. In the areas of the Ústí nad Labem Region, Olomouc Region, South Bohemian Region, and Highlands Region, 600 m2 plots were selected in the local optimal I. ricinus habitats where tick flagging was performed every year in the spring-summer and autumn seasons of the questing activity. In total, 18,721 I. ricinus ticks (1448 females, 1425 males, and 15,848 nymphs) were collected and investigated. The results have shown that the differences in the infection rate of I. ricinus observed between regions are driven by variation in the density of the local I. ricinus populations which is influenced by the characteris-tics of the whole local biocenosis. The overall prevalence estimate of TBE virus in Ixodes ricinus ticks at the altitudes below 600 m a.s.l. was 0.096 % (95% CI 0.055-0.156) for nymphs, and 0.477 % (95% CI 0.272-0.773) for adults. The dynamics of the seasonal variation in I. ricinus populations, depending primarily on the climatic factors, are behind the interyear differences in the infection rate of ticks and, consequently, in the epidemiological situation of tick-borne encephalitis. The nymph to adult ratio was 5.5 on average but showed great interregional variability (from 10.3 in the Ústí nad Labem Region to 1.8 in the Highlands Region). It might be used in the future as one of the indicators of the composition of the local I. ricinus population and of the level of the circulation of tick-borne pathogens in zoonotic sphere and also for use in the health risk assessment in a given area. Despite the permanent expansion of ticks and tick-borne pathogens in higher

  9. Defining the chemokine basis for leukocyte recruitment during viral encephalitis.

    PubMed

    Michlmayr, Daniela; McKimmie, Clive S; Pingen, Marieke; Haxton, Ben; Mansfield, Karen; Johnson, Nicholas; Fooks, Anthony R; Graham, Gerard J

    2014-09-01

    The encephalitic response to viral infection requires local chemokine production and the ensuing recruitment of immune and inflammatory leukocytes. Accordingly, chemokine receptors present themselves as plausible therapeutic targets for drugs aimed at limiting encephalitic responses. However, it remains unclear which chemokines are central to this process and whether leukocyte recruitment is important for limiting viral proliferation and survival in the brain or whether it is predominantly a driver of coincident inflammatory pathogenesis. Here we examine chemokine expression and leukocyte recruitment in the context of avirulent and virulent Semliki Forest virus (SFV) as well as West Nile virus infection and demonstrate rapid and robust expression of a variety of inflammatory CC and CXC chemokines in all models. On this basis, we define a chemokine axis involved in leukocyte recruitment to the encephalitic brain during SFV infection. CXCR3 is the most active; CCR2 is also active but less so, and CCR5 plays only a modest role in leukocyte recruitment. Importantly, inhibition of each of these receptors individually and the resulting suppression of leukocyte recruitment to the infected brain have no effect on viral titer or survival following infection with a virulent SFV strain. In contrast, simultaneous blockade of CXCR3 and CCR2 results in significantly reduced mortality in response to virulent SFV infection. In summary, therefore, our data provide an unprecedented level of insight into chemokine orchestration of leukocyte recruitment in viral encephalitis. Our data also highlight CXCR3 and CCR2 as possible therapeutic targets for limiting inflammatory damage in response to viral infection of the brain. Brain inflammation (encephalitis) in response to viral infection can lead to severe illness and even death. This therefore represents an important clinical problem and one that requires the development of new therapeutic approaches. Central to the pathogenesis of

  10. Prevalence of tick-borne encephalitis virus (TBEV) in samples of raw milk taken randomly from cows, goats and sheep in eastern Poland.

    PubMed

    Cisak, Ewa; Wójcik-Fatla, Angelina; Zając, Violetta; Sroka, Jacek; Buczek, Alicja; Dutkiewicz, Jacek

    2010-01-01

    A total of 119 unpasteurized milk samples taken from 63 cows, 29 goats and 27 sheep bred on 8 farms situated on the territory of the Lublin province (eastern Poland), an area of risk of tick-borne encephalitis (TBE), were examined for the presence of RNA of tick-borne encephalitis virus (TBEV) by the nested RT-PCR method. Milk samples were also tested for the presence of anti-TBEV antibodies by ELISA test. By RT-PCR, the greatest prevalence of TBE virus was found in the milk of sheep (22.2%), followed by milk of goats (20.7%) and cows (11.1%). By ELISA, the greatest prevalence of anti- TBEV antibodies was found also in the milk of sheep (14.8%), followed by milk of cows (3.2%) and goats (0%). The results suggest a potential risk of infection with TBEV by drinking raw milk on endemic areas of TBE, and indicate a need for milk pasteurization before consumption.

  11. Pathogenesis of Dengue Vaccine Viruses in Mosquitoes.

    DTIC Science & Technology

    1984-01-01

    type 2 (Price, 1973), and attenuated Japanese encephalitis vaccine virus (Chen and Beaty, 1982). Sabin (1948) showed that attenuated dengue virus...M194 992 PATHOGENESIS OF DENGUJE VACCINE VIRUSES IN NOSSUITOES vi1 (u) COLORADO STATE UNIV FORT COLLINS DEPT OF MICROBIOLOGY AND ENVIRONMENTAL...IW AV wWW W N A A~~ Nq .. mcFILE COPY 0)0 AD PATHOGENESIS OF DENGUE VACCINE VIRUSES IN MOSQUITOES Annual Report Barry J. Beaty, Ph.D. D T IC ELECTE

  12. Specificities of Human CD4+ T Cell Responses to an Inactivated Flavivirus Vaccine and Infection: Correlation with Structure and Epitope Prediction

    PubMed Central

    Schwaiger, Julia; Aberle, Judith H.; Stiasny, Karin; Knapp, Bernhard; Schreiner, Wolfgang; Fae, Ingrid; Fischer, Gottfried; Scheinost, Ondrej; Chmelik, Vaclav

    2014-01-01

    ABSTRACT Tick-borne encephalitis (TBE) virus is endemic in large parts of Europe and Central and Eastern Asia and causes more than 10,000 annual cases of neurological disease in humans. It is closely related to the mosquito-borne yellow fever, dengue, Japanese encephalitis, and West Nile viruses, and vaccination with an inactivated whole-virus vaccine can effectively prevent clinical disease. Neutralizing antibodies are directed to the viral envelope protein (E) and an accepted correlate of immunity. However, data on the specificities of CD4+ T cells that recognize epitopes in the viral structural proteins and thus can provide direct help to the B cells producing E-specific antibodies are lacking. We therefore conducted a study on the CD4+ T cell response against the virion proteins in vaccinated people in comparison to TBE patients. The data obtained with overlapping peptides in interleukin-2 (IL-2) enzyme-linked immunosorbent spot (ELISpot) assays were analyzed in relation to the three-dimensional structures of the capsid (C) and E proteins as well as to epitope predictions based on major histocompatibility complex (MHC) class II peptide affinities. In the C protein, peptides corresponding to two out of four alpha helices dominated the response in both vaccinees and patients, whereas in the E protein concordance of immunodominance was restricted to peptides of a single domain (domain III). Epitope predictions were much better for C than for E and were especially erroneous for the transmembrane regions. Our data provide evidence for a strong impact of protein structural features that influence peptide processing, contributing to the discrepancies observed between experimentally determined and computer-predicted CD4+ T cell epitopes. IMPORTANCE Tick-borne encephalitis virus is endemic in large parts of Europe and Asia and causes more than 10,000 annual cases of neurological disease in humans. It is closely related to yellow fever, dengue, Japanese encephalitis, and

  13. Molecular identification of chronic bee paralysis virus infection in Apis mellifera colonies in Japan.

    PubMed

    Morimoto, Tomomi; Kojima, Yuriko; Yoshiyama, Mikio; Kimura, Kiyoshi; Yang, Bu; Kadowaki, Tatsuhiko

    2012-07-01

    Chronic bee paralysis virus (CBPV) infection causes chronic paralysis and loss of workers in honey bee colonies around the world. Although CBPV shows a worldwide distribution, it had not been molecularly detected in Japan. Our investigation of Apis mellifera and Apis cerana japonica colonies with RT-PCR has revealed CBPV infection in A. mellifera but not A. c. japonica colonies in Japan. The prevalence of CBPV is low compared with that of other viruses: deformed wing virus (DWV), black queen cell virus (BQCV), Israel acute paralysis virus (IAPV), and sac brood virus (SBV), previously reported in Japan. Because of its low prevalence (5.6%) in A. mellifera colonies, the incidence of colony losses by CBPV infection must be sporadic in Japan. The presence of the (-) strand RNA in dying workers suggests that CBPV infection and replication may contribute to their symptoms. Phylogenetic analysis demonstrates a geographic separation of Japanese isolates from European, Uruguayan, and mainland US isolates. The lack of major exchange of honey bees between Europe/mainland US and Japan for the recent 26 years (1985-2010) may have resulted in the geographic separation of Japanese CBPV isolates.

  14. Evolution and dispersal of St. Louis encephalitis virus in the Americas.

    PubMed

    Auguste, Albert J; Pybus, Oliver G; Carrington, Christine V F

    2009-07-01

    Using a Bayesian coalescent approach on a dataset of 73 envelope gene sequences we estimated substitution rates and dates of divergence for St. Louis encephalitis virus (SLEV) in the Americas. We found significant rate heterogeneity among lineages, such that "relaxed" molecular clock models were much better supported than a strict molecular clock. The mean substitution rate estimated for all SLEV was 4.1x10(-4)substitutions/site/year (95% HPD 2.5-5.7)-higher than previous estimates that relied on the less well-suited strict clock. Mean substitution rates for individual lineages varied from 3.7x10(-4) to 7.2x10(-4)substitutions/site/year. For the first time we also assessed the magnitude and direction of viral gene flow within the Americas. The overall direction of gene flow during the period represented by the phylogeny is from South to North, and the region between 15 degrees N and 30 degrees N latitude appears to be the major source of virus for the rest of North America, which is consistent with migratory birds returning to their northern breeding grounds having acquired infection while wintering in the region of the Gulf of Mexico.

  15. Recombinant domains III of Tick-Borne Encephalitis Virus envelope protein in combination with dextran and CpGs induce immune response and partial protectiveness against TBE virus infection in mice.

    PubMed

    Ershova, Anna S; Gra, Olga A; Lyaschuk, Alexander M; Grunina, Tatyana M; Tkachuk, Artem P; Bartov, Mikhail S; Savina, Darya M; Sergienko, Olga V; Galushkina, Zoya M; Gudov, Vladimir P; Kozlovskaya, Liubov I; Kholodilov, Ivan S; Gmyl, Larissa V; Karganova, Galina G; Lunin, Vladimir G; Karyagina, Anna S; Gintsburg, Alexander L

    2016-10-07

    E protein of tick-borne encephalitis virus (TBEV) and other flaviviruses is located on the surface of the viral particle. Domain III of this protein seems to be a promising component of subunit vaccines for prophylaxis of TBE and kits for diagnostics of TBEV. Three variants of recombinant TBEV E protein domain III of European, Siberian and Far Eastern subtypes fused with dextran-binding domain of Leuconostoc citreum KM20 were expressed in E. coli and purified. The native structure of domain III was confirmed by ELISA antibody kit and sera of patients with tick-borne encephalitis. Immunogenic and protective properties of the preparation comprising these recombinant proteins immobilized on a dextran carrier with CpG oligonucleotides as an adjuvant were investigated on the mice model. All 3 variants of recombinant proteins immobilized on dextran demonstrate specific interaction with antibodies from the sera of TBE patients. Thus, constructed recombinant proteins seem to be promising for TBE diagnostics. The formulation comprising the 3 variants of recombinant antigens immobilized on dextran and CpG oligonucleotides, induces the production of neutralizing antibodies against TBEV of different subtypes and demonstrates partial protectivity against TBEV infection. Studied proteins interact with the sera of TBE patients, and, in combination with dextran and CPGs, demonstrate immunogenicity and limited protectivity on mice compared with reference "Tick-E-Vac" vaccine.

  16. Anti-NMDA receptor encephalitis and nonencephalitic HSV-1 infection

    PubMed Central

    Salovin, Amy; Glanzman, Jason; Roslin, Kylie; Armangue, Thais; Panzer, Jessica A.

    2018-01-01

    Objective To determine whether there is an association between nonencephalitic herpes simplex virus 1 (HSV-1) infection and anti-NMDA receptor encephalitis (anti-NMDARE). Methods Antibody testing was performed using samples from 2 cohorts in a case-control observational study. The cohort “Philadelphia” included 16 serum samples of pediatric anti-NMDARE cases and 42 age-matched controls with other neuroinflammatory disorders studied at the Children's Hospital of Philadelphia and University of Pennsylvania. The cohort “Barcelona” contained 23 anti-NMDARE patient samples and 26 age-matched participants with other neuroinflammatory disorders studied at IDIBAPS-Hospital Clinic, University of Barcelona. The presence of HSV-1 IgG antibodies was examined by ELISA. As an additional control, IgG antibodies to cytomegalovirus (CMV) and Epstein-Barr virus viral capsid antigen (EBV-VCA) were determined. Results In each cohort, more participants with anti-NMDARE than controls had anti-HSV-1 IgG antibodies. In the Philadelphia cohort (58 participants), 44% of anti-NMDARE cases had antibodies to HSV-1 compared with 14% controls (OR 4.67, 95% CI 1.3–17.3, p = 0.031). In the Barcelona cohort (49 participants), 52% of participants with anti-NMDARE had antibodies to HSV-1 compared with 31% of controls (OR 2.45, 95% CI 0.7–7.9, p = 0.155). Overall, 49% of anti-NMDARE cases have antibodies to HSV-1 in these 2 combined cohorts compared with 21% of controls (Mantel-Haenszel OR 3.21, 95% CI 1.3–7.7, p = 0.007). Conclusion Past HSV-1 infection was found in significantly more anti-NMDARE cases than controls. This suggests a meaningful association between nonencephalitic HSV-1 infection and development of anti-NMDARE. PMID:29629396

  17. Alkhumra virus infection, a new viral hemorrhagic fever in Saudi Arabia.

    PubMed

    Madani, Tariq A

    2005-08-01

    Four patients with typical acute viral hemorrhagic fever were identified in the holy city of Makkah, Saudi Arabia, between 8 and 23 February 2001, the Hajj (pilgrimage) period of that year. Tests for Rift Valley fever (RVF), Crimean-Congo hemorrhagic fever (CCHF), and dengue were negative. Blood specimens were sent to the Centres for Disease Control and Prevention (CDC), Atlanta for viral culture and testing for other hemorrhagic fever viruses. A new flavivirus closely related to the tick-borne Kyasanur forest disease virus was isolated. This new flavivirus was originally isolated in 1995 from 6 patients with dengue-like hemorrhagic fever from Alkhumra district, south of Jeddah, Saudi Arabia. A case definition was formulated for surveillance of this new disease in Saudi Arabia. Blood specimens were collected from all patients with suspect 'Alkhumra' virus (ALKV) infection and tested for ALKV, RVF, CCHF, dengue, and West Nile encephalitis. Patients data were prospectively collected on standardized data collection forms. From 8 February 2001 through 9 February 2003, a total of 37 cases were identified in Makkah, 20 of them were laboratory confirmed. Acute febrile flu-like illness with hepatitis (100%), hemorrhagic manifestations (55%), and encephalitis (20%) were the main clinical features. The case fatality was 25%. The disease seemed to be transmitted from sheep or goat to humans by the mosquito bites or direct contact with these animals. ALKV infection is a novel serious zoonotic hemorrhagic fever virus discovered in Saudi Arabia. The role of arthropods such as ticks and mosquitoes, and animals such as sheep, goat, and rodents in the transmission and maintenance of the virus remains to be elucidated.

  18. Spinal cord toxoplasmosis in human immunodeficiency virus infection/acquired immunodeficiency syndrome.

    PubMed

    García-García, Concepción; Castillo-Álvarez, Federico; Azcona-Gutiérrez, José M; Herraiz, María J; Ibarra, Valvanera; Oteo, José A

    2015-05-01

    Neurological complications in patients with human immunodeficiency virus infection/acquired immunodeficiency syndrome (HIV/AIDS) are still common, even in the era of highly active antiretroviral therapy. Opportunistic infections, immune reconstitution, the virus itself, antiretroviral drugs and neurocognitive disorders have to be considered when establishing the differential diagnosis. Toxoplasmic encephalitis remains the major cause of space-occupying lesions in the brain of patients with HIV/AIDS; however, spinal cord involvement has been reported infrequently. Here, we review spinal cord toxoplasmosis in HIV infection and illustrate the condition with a recent case from our hospital. We suggest that most patients with HIV/AIDS and myelitis with enhanced spine lesions, multiple brain lesions and positive serology for Toxoplasma gondii should receive immediate empirical treatment for toxoplasmosis, and a biopsy should be performed in those cases without clinical improvement or with deterioration.

  19. [Modeling of mixed infection by tick-borne encephalitis and Powassan viruses in mice].

    PubMed

    Khozinskaia, G A; Pogodina, V V

    1982-01-01

    Simultaneous inoculation of mice with tick-borne and Powassan viruses was shown, depending on experimental conditions, to result either in stimulation of infection or its unchanged course as compared with monoinfection and inoculation with the viruses at 2--3-week intervals in cross protection of mice against the superinfecting virus. Simultaneous inoculation of mice with the two viruses was accompanied by their multiplication in the blood and brains of mice and formation of antihemagglutinating antibodies to each of them. In the virus population in the brains of mice there was either formation of a mixture of two viruses or their phenotypic mixing. In cross protection, multiplication of the superinfecting virus in the blood and brain of mice was slightly inhibited, the antihemagglutinating antibody to a second virus either did not form or appeared in low titres.

  20. Characterization of genetic variability of Venezuelan equine encephalitis viruses

    DOE PAGES

    Gardner, Shea N.; McLoughlin, Kevin; Be, Nicholas A.; ...

    2016-04-07

    Venezuelan equine encephalitis virus (VEEV) is a mosquito-borne alphavirus that has caused large outbreaks of severe illness in both horses and humans. New approaches are needed to rapidly infer the origin of a newly discovered VEEV strain, estimate its equine amplification and resultant epidemic potential, and predict human virulence phenotype. We performed whole genome single nucleotide polymorphism (SNP) analysis of all available VEE antigenic complex genomes, verified that a SNP-based phylogeny accurately captured the features of a phylogenetic tree based on multiple sequence alignment, and developed a high resolution genome-wide SNP microarray. We used the microarray to analyze a broadmore » panel of VEEV isolates, found excellent concordance between array- and sequence-based SNP calls, genotyped unsequenced isolates, and placed them on a phylogeny with sequenced genomes. The microarray successfully genotyped VEEV directly from tissue samples of an infected mouse, bypassing the need for viral isolation, culture and genomic sequencing. Lastly, we identified genomic variants associated with serotypes and host species, revealing a complex relationship between genotype and phenotype.« less

  1. Estimation of parameters and basic reproduction ratio for Japanese encephalitis transmission in the Philippines using sequential Monte Carlo filter

    USDA-ARS?s Scientific Manuscript database

    We developed a sequential Monte Carlo filter to estimate the states and the parameters in a stochastic model of Japanese Encephalitis (JE) spread in the Philippines. This method is particularly important for its adaptability to the availability of new incidence data. This method can also capture the...

  2. Influence of altitude on tick-borne encephalitis infection risk in the natural foci of the Altai Republic, Southern Siberia.

    PubMed

    Shchuchinova, L D; Kozlova, I V; Zlobin, V I

    2015-04-01

    The Altai Republic is a highly endemic area as far as tick-borne encephalitis (TBE) is concerned. The aim of the research was to study the effect of altitude on the risk of tick-borne encephalitis infection in the Altai Republic. The paper analyzes the following data: the study of ixodid ticks collected from the vegetation in 116 sites at the 200-2383m elevation above sea level in 2012-2014, TBE virus prevalence of these vectors, tick-bite incidence rate, and TBE incidence rate of the population. Species identification of 4503 specimens has shown that the most common species are Dermacentor nuttalli (45.3%), Ixodes persulcatus (33.1%), Dermacentor silvarum (9.4%), Dermacentor reticulatus (8.9%), and Haemaphysalis concinna (5.0%). A total of 2997 adult ixodid ticks were studied for the presence of the TBE virus; 2163 samples were examined by ELISA, while 834 specimens were tested by PCR. The TBE virus prevalence of Dermacentor spp. ticks in both reactions was significantly higher than of Ixodes persulcatus ticks (p<0.001). The work shows that the altitude is an important factor in the development of the epidemiological situation of tick-borne encephalitis: the higher the elevation of the area above sea level, the smaller the range of vectors. There is also a change of a leading species: in middle altitude (800-1700m above sea level) the virus is transmitted by ticks of D. nuttalli along with I. persulcatus, and in high mountains (above 1700m above sea level) D. nuttalli becomes an absolute dominant species. However, these species of ticks are less effective vectors than I. persulcatus. With the increase of altitude the tick-bite incidence rate decreases (r=-0.78, p<0.05), and TBE incidence also reduces (r=-0.67, p<0.05). Copyright © 2015 Elsevier GmbH. All rights reserved.

  3. West Nile virus infection and postoperative neurological symptoms: a case report and review of the literature.

    PubMed

    Moreland, Natalie C; Hemmer, Laura B; Koht, Antoun

    2014-08-01

    The incidence of West Nile virus, which may cause a range of clinical presentations including subclinical infections, mild febrile illness, meningitis, or encephalitis, has increased over recent years. Rare complications, including optic neuritis, also have been reported. A patient who presented with preoperative asymptomatic West Nile virus developed fever, altered mental status and temporary vision loss after elective multilevel spine fusion surgery. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Diagnostic Approach to Viral Acute Encephalitis Syndrome (AES) in Paediatric Age Group: A Study from New Delhi.

    PubMed

    Goel, Shipra; Chakravarti, Anita; Mantan, Mukta; Kumar, Surinder; Ashraf, Md Anzar

    2017-09-01

    Acute Encephalitis Syndrome has heralded the emergence of multiple virulent pathogens, which may result in severe morbidity and mortality. In India, encephalitis is not notified and there has been a dearth of analysis for trends in encephalitis death rates and causation. A downward trend has been observed in encephalitis deaths, due to 'known' causes, which can be largely explained by improvement in diagnostic, treatment, and prevention methods. There is still a very high proportion of encephalitis deaths in developing countries, where the aetiological diagnosis of the pathogen is not established and thus, lies the importance of monitoring encephalitis morbidity and mortality with a view to improve pathogen diagnosis and identify emerging infectious diseases. To formulate a diagnostic approach to viral acute encephalitis syndrome in paediatric age group. A cross-sectional study including 50 paediatric patients, clinically diagnosed with acute encephalitis syndrome using WHO criteria was conducted. The CSF of all the patients was evaluated to diagnose the aetiology for viral pathogens. ELISA was used for diagnosing Japanese encephalitis and dengue encephalitis; and multiplex real time PCR was used for detecting HSV-1, HSV-2, Varicella zoster virus, Mumps virus, Enterovirus and Parechovirus. Confirmed diagnosis was established in 11 (22%) of 50 cases. A confirmed or probable viral agent of encephalitis was found in 7 (14%), bacterial agent was found in 2 (4%), non-infectious aetiology was found in 2 (4%). Fatal outcome was independently associated with patient age. Despite extensive testing, the aetiologies of more than three fourth of the cases remains elusive. Nevertheless the result from the present study may be useful for future design of early diagnosis and treatment of the disease. New strategies for pathogen identification and continued analysis of clinical features and case histories should help us improve our ability to diagnose, treat and prevent

  5. Lessons from the Murine Models of West Nile Virus Infection.

    PubMed

    McGruder, Brenna; Saxena, Vandana; Wang, Tian

    2016-01-01

    West Nile virus (WNV), a mosquito-borne, single positive-stranded RNA virus, has been the leading cause of arboviral encephalitis in the U.S. and other parts of the world over the past decade. Up to 50 % of WNV convalescent patients were reported to have long-term neurological sequelae or chronic kidney diseases. However, there are neither antiviral drugs nor vaccines available for humans. The underlying mechanism of the long-term sequelae is not clearly understood either. Animal models have been an effective tool to investigate viral pathogenesis and host immunity in humans. Here, we will review several commonly used murine models of WNV infection.

  6. Structure and function of the Zika virus full-length NS5 protein

    DOE PAGES

    Zhao, Baoyu; Yi, Guanghui; Du, Fenglei; ...

    2017-03-27

    The recent outbreak of Zika virus (ZIKV) has infected over 1 million people in over 30 countries. ZIKV replicates its RNA genome using virally encoded replication proteins. Nonstructural protein 5 (NS5) contains a methyltransferase for RNA capping and a polymerase for viral RNA synthesis. Here we report the crystal structures of full-length NS5 and its polymerase domain at 3.0 Å resolution. The NS5 structure has striking similarities to the NS5 protein of the related Japanese encephalitis virus. The methyltransferase contains in-line pockets for substrate binding and the active site. Key residues in the polymerase are located in similar positions tomore » those of the initiation complex for the hepatitis C virus polymerase. The polymerase conformation is affected by the methyltransferase, which enables a more efficiently elongation of RNA synthesis in vitro. Altogether, our results will contribute to future studies on ZIKV infection and the development of inhibitors of ZIKV replication.« less

  7. A Protective Role for Interleukin-1 Signaling during Mouse Adenovirus Type 1-Induced Encephalitis.

    PubMed

    Castro-Jorge, Luiza A; Pretto, Carla D; Smith, Asa B; Foreman, Oded; Carnahan, Kelly E; Spindler, Katherine R

    2017-02-15

    Interleukin-1β (IL-1β), an inflammatory cytokine and IL-1 receptor ligand, has diverse activities in the brain. We examined whether IL-1 signaling contributes to the encephalitis observed in mouse adenovirus type 1 (MAV-1) infection, using mice lacking the IL-1 receptor (Il1r1 -/- mice). Il1r1 -/- mice demonstrated reduced survival, greater disruption of the blood-brain barrier (BBB), higher brain viral loads, and higher brain inflammatory cytokine and chemokine levels than control C57BL/6J mice. We also examined infections of mice defective in IL-1β production (Pycard -/- mice) and mice defective in trafficking of Toll-like receptors to the endosome (Unc93b1 -/- mice). Pycard -/- and Unc93b1 -/- mice showed lower survival (similar to Il1r1 -/- mice) than control mice but, unlike Il1r1 -/- mice, did not have increased brain viral loads or BBB disruption. Based on the brain cytokine levels, MAV-1-infected Unc93b1 -/- mice had a very different inflammatory profile from infected Il1r1 -/- and Pycard -/- mice. Histological examination demonstrated pathological findings consistent with encephalitis in control and knockout mice; however, intranuclear viral inclusions were seen only in Il1r1 -/- mice. A time course of infection of control and Il1r1 -/- mice evaluating the kinetics of viral replication and cytokine production revealed differences between the mouse strains primarily at 7 to 8 days after infection, when mice began succumbing to MAV-1 infection. In the absence of IL-1 signaling, we noted an increase in the transcription of type I interferon (IFN)-stimulated genes. Together, these results indicate that IL-1 signaling is important during MAV-1 infection and suggest that, in its absence, increased IFN-β signaling may result in increased neuroinflammation. The investigation of encephalitis pathogenesis produced by different viruses is needed to characterize virus and host-specific factors that contribute to disease. MAV-1 produces viral encephalitis in its

  8. Predicting St. Louis encephalitis virus epidemics: lessons from recent, and not so recent, outbreaks.

    PubMed

    Day, J F

    2001-01-01

    St. Louis encephalitis virus was first identified as the cause of human disease in North America after a large urban epidemic in St. Louis, Missouri, during the summer of 1933. Since then, numerous outbreaks of St. Louis encephalitis have occurred throughout the continent. In south Florida, a 1990 epidemic lasted from August 1990 through January 1991 and resulted in 226 clinical cases and 11 deaths in 28 counties. This epidemic severely disrupted normal activities throughout the southern half of the state for 5 months and adversely impacted tourism in the affected region. The accurate forecasting of mosquito-borne arboviral epidemics will help minimize their impact on urban and rural population centers. Epidemic predictability would help focus control efforts and public education about epidemic risks, transmission patterns, and elements of personal protection that reduce the probability of arboviral infection. Research associated with arboviral outbreaks has provided an understanding of the strengths and weaknesses associated with epidemic prediction. The purpose of this paper is to review lessons from past arboviral epidemics and determine how these observations might aid our ability to predict and respond to future outbreaks.

  9. Tickborne Powassan virus infections among Wisconsin residents.

    PubMed

    Johnson, Diep K Hoang; Staples, J Erin; Sotir, Mark J; Warshauer, David M; Davis, Jeffrey P

    2010-04-01

    Powassan virus (POWV) is a tickborne Flavivirus that causes a rare but potentially life-threatening illness. The first reported case of POWV infection in a Wisconsin resident occurred in 2003. Enhanced surveillance and testing detected 2 additional cases. Patient specimens with a positive or equivocal immunoglobulin M (IgM) antibody to an arbovirus were sent from commercial laboratories to the Wisconsin State Laboratory of Hygiene and forwarded to the Centers for Disease Control and Prevention (CDC) for confirmatory testing. Patients with laboratory confirmed POWV infections were interviewed to obtain demographic, clinical, and epidemiologic information. POWV infections were confirmed in 3 adult Wisconsin residents in 2003, 2006, and 2007; illness onsets occurred during May and June. Two patients were hospitalized and all survived. One patient had a dual infection with POWV and Anaplasma phaghocytophilum. Specimens from all 3 patients were initially reported as positive for IgM antibody to either St Louis encephalitis or California serogroup viruses; POWV-specific antibody was detected during confirmatory testing at the CDC. Each patient had exposures to known or likely tick habitats in different counties within 30 days before illness onset. These are the first diagnosed human POWV infections in Wisconsin. Because all 3 patients were initially identified as having other arboviral infections using commercial screening kits, routine confirmatory testing is essential for proper diagnosis of most arboviral infections. Wisconsin residents should be educated regarding risks of acquiring and ways to prevent POWV infection and other tickborne diseases when spending time outdoors.

  10. A conserved predicted pseudoknot in the NS2A-encoding sequence of West Nile and Japanese encephalitis flaviviruses suggests NS1' may derive from ribosomal frameshifting

    PubMed Central

    Firth, Andrew E; Atkins, John F

    2009-01-01

    Japanese encephalitis, West Nile, Usutu and Murray Valley encephalitis viruses form a tight subgroup within the larger Flavivirus genus. These viruses utilize a single-polyprotein expression strategy, resulting in ~10 mature proteins. Plotting the conservation at synonymous sites along the polyprotein coding sequence reveals strong conservation peaks at the very 5' end of the coding sequence, and also at the 5' end of the sequence encoding the NS2A protein. Such peaks are generally indicative of functionally important non-coding sequence elements. The second peak corresponds to a predicted stable pseudoknot structure whose biological importance is supported by compensatory mutations that preserve the structure. The pseudoknot is preceded by a conserved slippery heptanucleotide (Y CCU UUU), thus forming a classical stimulatory motif for -1 ribosomal frameshifting. We hypothesize, therefore, that the functional importance of the pseudoknot is to stimulate a portion of ribosomes to shift -1 nt into a short (45 codon), conserved, overlapping open reading frame, termed foo. Since cleavage at the NS1-NS2A boundary is known to require synthesis of NS2A in cis, the resulting transframe fusion protein is predicted to be NS1-NS2AN-term-FOO. We hypothesize that this may explain the origin of the previously identified NS1 'extension' protein in JEV-group flaviviruses, known as NS1'. PMID:19196463

  11. Aetiology of acute encephalitis syndrome in Uttar Pradesh, India from 2014 to 2016.

    PubMed

    Jain, Parul; Prakash, Shantanu; Khan, Danish N; Garg, Ravindra Kumar; Kumar, Rashmi; Bhagat, Amit; Ramakrishna, V; Jain, Amita

    2017-01-01

    It is imperative to know the aetiology of acute encephalitis syndrome (AES) for patient management and policy making. The present study was carried out to determine the prevalence of common aetiological agents of AES in Uttar Pradesh (UP) state of India. Serum and/or CSF samples were collected from AES patients admitted at Gandhi Memorial and Associated Hospital, King George's Medical University, Lucknow, a tertiary care centre, UP during 2014-16. Cerebrospinal fluid (CSF) and serum samples from cases were tested for IgM antibodies against Japanese encephalitis virus (anti-JEV), and dengue virus (anti-DENV) by ELISA; and for enterovirus, herpes simplex virus (HSV) and varicella zoster virus (VZV) by real-time PCR. Serum samples of cases having sufficient CSF volume, were also tested for anti-scrub typhus IgM antibodies and for Neisseria meningitides, Streptococcus pneumoniae and Haemophilus influenzae. JEV and DENV (8% each) were the most common identified aetiology from the 4092 enrolled patients. Enterovirus, HSV and VZV, each were detected in <1% AES cases. Co-positivity occurred in 48 cases. Scrub typhus (31.8%) was the most common aetiology detected. Haemophilus influenzae and S. pneumoniae were detected in 0.97 and 0.94% cases, respectively, however, N. meningitides was not detected in any of the cases. About 40% of the JEV/DENV positive AES cases were adults. The gap between the total number of AES cases and those with JEV/ DENV infection increased during monsoon and post-monsoon seasons. Scrub typhus, JEV and DENV are the main aetiological agents of AES in UP. DENV and JEV can no longer be considered paediatric diseases. The prevalence of non-JEV/DENV aetiology of AES increases in the monsoon and post-monsoon seasons.

  12. Epidemiology, surveillance and control of Nipah virus infections in Malaysia.

    PubMed

    Chua, K B

    2010-12-01

    The outbreak of Nipah virus, affecting pigs and pig-farm workers, was first noted in September 1998 in the north-western part of peninsular Malaysia. By March 1999, the outbreak had spread to other pig-farming areas of the country, inclusive of the neighbouring country, Singapore. A total of 283 human cases of viral encephalitis with 109 deaths were recorded in Malaysia from 29 September 1998 to December 1999. During the outbreak period, a number of surveillances under three broad groups; Surveillance in Human Health Sector, Surveillance in Animal Health Sector, and Surveillance for the Reservoir Hosts, were carried out to determine the prevalence, risk of virus infections and transmission in human and swine populations as well as the source and reservoir hosts of Nipah virus. Surveillance data showed that the virus spread rapidly among pigs within infected farms and transmission was attributed to direct contact with infective excretions and secretions. The spread of the virus among pig farms within and between states of peninsular Malaysia was due to movement of pigs. The transmission of the virus to humans was through close contact with infected pigs. Human to human transmission was considered a rare event though the Nipah virus could be isolated from saliva, urine, nasal and pharyngeal secretions of patients. Field investigations identified fruitbats of the Pteropid species as the natural reservoir hosts of the viruses. The outbreak was effectively brought under control following the discovery of the virus and institution of correct control measures through a combined effort of multi-ministerial and multidisciplinary teams working in close co-operation and collaboration with other international agencies.

  13. Activation/proliferation and apoptosis of bystander goat lymphocytes induced by a macrophage-tropic chimeric caprine arthritis encephalitis virus expressing SIV Nef

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bouzar, Baya Amel; Rea, Angela; Hoc-Villet, Stephanie

    Caprine arthritis encephalitis virus (CAEV) is the natural lentivirus of goats, well known for its tropism for macrophages and its inability to cause infection in lymphocytes. The viral genome lacks nef, tat, vpu and vpx coding sequences. To test the hypothesis that when nef is expressed by the viral genome, the virus became toxic for lymphocytes during replication in macrophages, we inserted the SIVsmm PBj14 nef coding sequences into the genome of CAEV thereby generating CAEV-nef. This recombinant virus is not infectious for lymphocytes but is fully replication competent in goat macrophages in which it constitutively expresses the SIV Nef.more » We found that goat lymphocytes cocultured with CAEV-nef-infected macrophages became activated, showing increased expression of the interleukin-2 receptor (IL-2R). Activation correlated with increased proliferation of the cells. Interestingly, a dual effect in terms of apoptosis regulation was observed in exposed goat lymphocytes. Nef was found first to induce a protection of lymphocytes from apoptosis during the first few days following exposure to infected macrophages, but later it induced increased apoptosis in the activated lymphocytes. This new recombinant virus provides a model to study the functions of Nef in the context of infection of macrophages, but in absence of infection of T lymphocytes and brings new insights into the biological effects of Nef on lymphocytes.« less

  14. Partial Characterization of Tick-Borne Encephalitis Virus Isolates from Ticks of Southern Ukraine.

    PubMed

    Yurchenko, Oksana O; Dubina, Dmytro O; Vynograd, Nataliya O; Gonzalez, Jean-Paul

    2017-08-01

    Tick-borne encephalitis (TBE) is the most common tick-borne viral infection in Eurasia; thousands of human cases are annually reported from several European countries. Several tick species are vectors of the tick-borne encephalitis virus (TBEV), while TBE appears to be spreading from the Eurasian continent westward to Europe. Fifteen study sites were chosen from five territories of southern Ukraine, including Odessa, Mykolaiv, Kherson Oblast, the Autonomous Republic of Crimea, and Sevastopol. Tick collection was performed in spring season of three consecutive years (1988-1990) using either flagging technique or direct collection of specimens feeding on cattle. A total of 15,243 tick imagoes and nymphs were collected from nine species, including Dermacentor marginatus, D. reticulatus, Haemaphysalis parva, H. punctata, Hyalomma marginatum, Ixodes ricinus, Rhipicephalus bursa, R. rossicus, and R. sanguineus, pooled in 282 monospecific samples. Supernatant of grinded pool was used for inoculation to suckling mice for virus isolation. Eight TBEV isolates were identified from ticks among six study sites. Ticks showed a minimum infection rate from 0.11% to 0.81%. Phylogenetic analysis of the envelope (E) protein gene of seven isolates, assigned all to the European subtype (TBEV-Eu) showing a maximum identity of 97.17% to the "Pan" TBEV-Eu reference strain. Compared to 104 TBEV-Eu isolates they clustered within the same clade as the Pan reference strain and distinguished from other TBEV-Eu isolates. Amino acid sequence analysis of the South Ukrainian TBEV-Eu isolates revealed the presence of four amino acid substitutions 67 (N), 266 (R), 306 (V), and 407 (R), in the ectodomains II and III and in the stem-anchor region of the E protein gene. This study confirmed TBEV-Eu subtype distribution in the southern region of Ukraine, which eventually overlaps with TBEV-FE (Far Eastern subtype) and TBEV-Sib (Siberian subtype) domains, showing the heterogeneity of TBEV circulating in

  15. Partial Characterization of Tick-Borne Encephalitis Virus Isolates from Ticks of Southern Ukraine

    PubMed Central

    Dubina, Dmytro O.; Vynograd, Nataliya O.; Gonzalez, Jean-Paul

    2017-01-01

    Abstract Tick-borne encephalitis (TBE) is the most common tick-borne viral infection in Eurasia; thousands of human cases are annually reported from several European countries. Several tick species are vectors of the tick-borne encephalitis virus (TBEV), while TBE appears to be spreading from the Eurasian continent westward to Europe. Fifteen study sites were chosen from five territories of southern Ukraine, including Odessa, Mykolaiv, Kherson Oblast, the Autonomous Republic of Crimea, and Sevastopol. Tick collection was performed in spring season of three consecutive years (1988–1990) using either flagging technique or direct collection of specimens feeding on cattle. A total of 15,243 tick imagoes and nymphs were collected from nine species, including Dermacentor marginatus, D. reticulatus, Haemaphysalis parva, H. punctata, Hyalomma marginatum, Ixodes ricinus, Rhipicephalus bursa, R. rossicus, and R. sanguineus, pooled in 282 monospecific samples. Supernatant of grinded pool was used for inoculation to suckling mice for virus isolation. Eight TBEV isolates were identified from ticks among six study sites. Ticks showed a minimum infection rate from 0.11% to 0.81%. Phylogenetic analysis of the envelope (E) protein gene of seven isolates, assigned all to the European subtype (TBEV-Eu) showing a maximum identity of 97.17% to the “Pan” TBEV-Eu reference strain. Compared to 104 TBEV-Eu isolates they clustered within the same clade as the Pan reference strain and distinguished from other TBEV-Eu isolates. Amino acid sequence analysis of the South Ukrainian TBEV-Eu isolates revealed the presence of four amino acid substitutions 67 (N), 266 (R), 306 (V), and 407 (R), in the ectodomains II and III and in the stem-anchor region of the E protein gene. This study confirmed TBEV-Eu subtype distribution in the southern region of Ukraine, which eventually overlaps with TBEV-FE (Far Eastern subtype) and TBEV-Sib (Siberian subtype) domains, showing the heterogeneity of TBEV

  16. Rapid Detection of Powassan Virus in a Patient With Encephalitis by Metagenomic Sequencing.

    PubMed

    Piantadosi, Anne; Kanjilal, Sanjat; Ganesh, Vijay; Khanna, Arjun; Hyle, Emily P; Rosand, Jonathan; Bold, Tyler; Metsky, Hayden C; Lemieux, Jacob; Leone, Michael J; Freimark, Lisa; Matranga, Christian B; Adams, Gordon; McGrath, Graham; Zamirpour, Siavash; Telford, Sam; Rosenberg, Eric; Cho, Tracey; Frosch, Matthew P; Goldberg, Marcia B; Mukerji, Shibani S; Sabeti, Pardis C

    2018-02-10

    We describe a patient with severe and progressive encephalitis of unknown etiology. We performed rapid metagenomic sequencing from cerebrospinal fluid and identified Powassan virus, an emerging tick-borne flavivirus that has been increasingly detected in the United States.

  17. Babesia canis and tick-borne encephalitis virus (TBEV) co-infection in a sled dog.

    PubMed

    Bajer, Anna; Rodo, Anna; Bednarska, Malgorzata; Mierzejewska, Ewa; Welc-Falęciak, Renata

    2013-01-01

    Sporting dogs, including sled dogs, are particularly prone to tick-borne infection either due to training/racing in forest areas or through visits to endemic areas. The aim was to present tick-borne infections in a 6-dog racing team after a race in Estonia. On the 4th day after return to Poland, the first dog presented with babesiosis symptoms and was diagnosed and treated accordingly. Next morning, the dog showed neurological symptoms and was diagnosed with tick-borne encephalitis (TBE). Diagnosis was confirmed by a high level of IgG antibodies (922 IU/ml), detected in serum 3 months later. The second dog presented with babesiosis symptoms on the 7th day after return. Babesia DNA was extracted from blood, amplified and sequenced to answer the question of whether the dogs became infected during the race in Estonia or in Poland. Sequencing of a fragment of Babesia 18S rDNA revealed that these two isolates were identical to one another and closely related to the B. canis sequence originally isolated from the dog and Dermacentor reticulatus ticks in Poland. Thus, this is the first confirmed case of B.canis and TBEV co-infection and first confirmed case of TBE in a dog in Poland.

  18. Tick-Borne Encephalitis Virus in Ticks and Roe Deer, the Netherlands.

    PubMed

    Jahfari, Setareh; de Vries, Ankje; Rijks, Jolianne M; Van Gucht, Steven; Vennema, Harry; Sprong, Hein; Rockx, Barry

    2017-06-01

    We report the presence of tick-borne encephalitis virus (TBEV) in the Netherlands. Serologic screening of roe deer found TBEV-neutralizing antibodies with a seroprevalence of 2%, and TBEV RNA was detected in 2 ticks from the same location. Enhanced surveillance and awareness among medical professionals has led to the identification of autochthonous cases.

  19. Common Marmosets (Callithrix jacchus) as a Nonhuman Primate Model To Assess the Virulence of Eastern Equine Encephalitis Virus Strains▿

    PubMed Central

    Adams, A. Paige; Aronson, Judith F.; Tardif, Suzette D.; Patterson, Jean L.; Brasky, Kathleen M.; Geiger, Robert; de la Garza, Melissa; Carrion, Ricardo; Weaver, Scott C.

    2008-01-01

    Eastern equine encephalitis virus (EEEV) produces the most severe human arboviral disease in North America (NA) and is a potential biological weapon. However, genetically and antigenically distinct strains from South America (SA) have seldom been associated with human disease or mortality despite serological evidence of infection. Because mice and other small rodents do not respond differently to the NA versus SA viruses like humans, we tested common marmosets (Callithrix jacchus) by using intranasal infection and monitoring for weight loss, fever, anorexia, depression, and neurologic signs. The NA EEEV-infected animals either died or were euthanized on day 4 or 5 after infection due to anorexia and neurologic signs, but the SA EEEV-infected animals remained healthy and survived. The SA EEEV-infected animals developed peak viremia titers of 2.8 to 3.1 log10 PFU/ml on day 2 or 4 after infection, but there was no detectable viremia in the NA EEEV-infected animals. In contrast, virus was detected in the brain, liver, and muscle of the NA EEEV-infected animals at the time of euthanasia or death. Similar to the brain lesions described for human EEE, the NA EEEV-infected animals developed meningoencephalitis in the cerebral cortex with some perivascular hemorrhages. The findings of this study identify the common marmoset as a useful model of human EEE for testing antiviral drugs and vaccine candidates and highlight their potential for corroborating epidemiological evidence that some, if not all, SA EEEV strains are attenuated for humans. PMID:18614636

  20. Viruses in reptiles

    PubMed Central

    2011-01-01

    The etiology of reptilian viral diseases can be attributed to a wide range of viruses occurring across different genera and families. Thirty to forty years ago, studies of viruses in reptiles focused mainly on the zoonotic potential of arboviruses in reptiles and much effort went into surveys and challenge trials of a range of reptiles with eastern and western equine encephalitis as well as Japanese encephalitis viruses. In the past decade, outbreaks of infection with West Nile virus in human populations and in farmed alligators in the USA has seen the research emphasis placed on the issue of reptiles, particularly crocodiles and alligators, being susceptible to, and reservoirs for, this serious zoonotic disease. Although there are many recognised reptilian viruses, the evidence for those being primary pathogens is relatively limited. Transmission studies establishing pathogenicity and cofactors are likewise scarce, possibly due to the relatively low commercial importance of reptiles, difficulties with the availability of animals and permits for statistically sound experiments, difficulties with housing of reptiles in an experimental setting or the inability to propagate some viruses in cell culture to sufficient titres for transmission studies. Viruses as causes of direct loss of threatened species, such as the chelonid fibropapilloma associated herpesvirus and ranaviruses in farmed and wild tortoises and turtles, have re-focused attention back to the characterisation of the viruses as well as diagnosis and pathogenesis in the host itself. 1. Introduction 2. Methods for working with reptilian viruses 3. Reptilian viruses described by virus families 3.1. Herpesviridae 3.2. Iridoviridae 3.2.1 Ranavirus 3.2.2 Erythrocytic virus 3.2.3 Iridovirus 3.3. Poxviridae 3.4. Adenoviridae 3.5. Papillomaviridae 3.6. Parvoviridae 3.7. Reoviridae 3.8. Retroviridae and inclusion body disease of Boid snakes 3.9. Arboviruses 3.9.1. Flaviviridae 3.9.2. Togaviridae 3.10. Caliciviridae