Sample records for japanese global navigation

  1. Estimates of Embodied Global Energy and Air-Emission Intensities of Japanese Products for Building a Japanese Input–Output Life Cycle Assessment Database with a Global System Boundary

    PubMed Central

    2012-01-01

    To build a life cycle assessment (LCA) database of Japanese products embracing their global supply chains in a manner requiring lower time and labor burdens, this study estimates the intensity of embodied global environmental burden for commodities produced in Japan. The intensity of embodied global environmental burden is a measure of the environmental burden generated globally by unit production of the commodity and can be used as life cycle inventory data in LCA. The calculation employs an input–output LCA method with a global link input–output model that defines a global system boundary grounded in a simplified multiregional input–output framework. As results, the intensities of embodied global environmental burden for 406 Japanese commodities are determined in terms of energy consumption, greenhouse-gas emissions (carbon dioxide, methane, nitrous oxide, perfluorocarbons, hydrofluorocarbons, sulfur hexafluoride, and their summation), and air-pollutant emissions (nitrogen oxide and sulfur oxide). The uncertainties in the intensities of embodied global environmental burden attributable to the simplified structure of the global link input–output model are quantified using Monte Carlo simulation. In addition, by analyzing the structure of the embodied global greenhouse-gas intensities we characterize Japanese commodities in the context of LCA embracing global supply chains. PMID:22881452

  2. An alternative ionospheric correction model for global navigation satellite systems

    NASA Astrophysics Data System (ADS)

    Hoque, M. M.; Jakowski, N.

    2015-04-01

    The ionosphere is recognized as a major error source for single-frequency operations of global navigation satellite systems (GNSS). To enhance single-frequency operations the global positioning system (GPS) uses an ionospheric correction algorithm (ICA) driven by 8 coefficients broadcasted in the navigation message every 24 h. Similarly, the global navigation satellite system Galileo uses the electron density NeQuick model for ionospheric correction. The Galileo satellite vehicles (SVs) transmit 3 ionospheric correction coefficients as driver parameters of the NeQuick model. In the present work, we propose an alternative ionospheric correction algorithm called Neustrelitz TEC broadcast model NTCM-BC that is also applicable for global satellite navigation systems. Like the GPS ICA or Galileo NeQuick, the NTCM-BC can be optimized on a daily basis by utilizing GNSS data obtained at the previous day at monitor stations. To drive the NTCM-BC, 9 ionospheric correction coefficients need to be uploaded to the SVs for broadcasting in the navigation message. Our investigation using GPS data of about 200 worldwide ground stations shows that the 24-h-ahead prediction performance of the NTCM-BC is better than the GPS ICA and comparable to the Galileo NeQuick model. We have found that the 95 percentiles of the prediction error are about 16.1, 16.1 and 13.4 TECU for the GPS ICA, Galileo NeQuick and NTCM-BC, respectively, during a selected quiet ionospheric period, whereas the corresponding numbers are found about 40.5, 28.2 and 26.5 TECU during a selected geomagnetic perturbed period. However, in terms of complexity the NTCM-BC is easier to handle than the Galileo NeQuick and in this respect comparable to the GPS ICA.

  3. Navigation Performance of Global Navigation Satellite Systems in the Space Service Volume

    NASA Technical Reports Server (NTRS)

    Force, Dale A.

    2013-01-01

    This paper extends the results I reported at this year's ION International Technical Meeting on multi-constellation GNSS coverage by showing how the use of multi-constellation GNSS improves Geometric Dilution of Precision (GDOP). Originally developed to provide position, navigation, and timing for terrestrial users, GPS has found increasing use for in space for precision orbit determination, precise time synchronization, real-time spacecraft navigation, and three-axis attitude control of Earth orbiting satellites. With additional Global Navigation Satellite Systems (GNSS) coming into service (GLONASS, Galileo, and Beidou) and the development of Satellite Based Augmentation Services, it is possible to obtain improved precision by using evolving multi-constellation receiver. The Space Service Volume formally defined as the volume of space between three thousand kilometers altitude and geosynchronous altitude ((is) approximately 36,500 km), with the volume below three thousand kilometers defined as the Terrestrial Service Volume (TSV). The USA has established signal requirements for the Space Service Volume (SSV) as part of the GPS Capability Development Documentation (CDD). Diplomatic efforts are underway to extend Space service Volume commitments to the other Position, Navigation, and Timing (PNT) service providers in an effort to assure that all space users will benefit from the enhanced capabilities of interoperating GNSS services in the space domain.

  4. Individual Global Navigation Satellite Systems in the Space Service Volume

    NASA Technical Reports Server (NTRS)

    Force, Dale A.

    2013-01-01

    The use of individual Global Navigation Satellite Services (GPS, GLONASS, Galileo, and Beidou/COMPASS) for the position, navigation, and timing in the Space Service Volume at altitudes of 300 km, 3000 km, 8000 km, 15000 km, 25000 km, 36500km and 70000 km is examined and the percent availability of at least one and at least four satellites is presented.

  5. Autonomous satellite navigation with the Global Positioning System

    NASA Technical Reports Server (NTRS)

    Fuchs, A. J.; Wooden, W. H., II; Long, A. C.

    1977-01-01

    This paper discusses the potential of using the Global Positioning System (GPS) to provide autonomous navigation capability to NASA satellites in the 1980 era. Some of the driving forces motivating autonomous navigation are presented. These include such factors as advances in attitude control systems, onboard science annotation, and onboard gridding of imaging data. Simulation results which demonstrate baseline orbit determination accuracies using GPS data on Seasat, Landsat-D, and the Solar Maximum Mission are presented. Emphasis is placed on identifying error sources such as GPS time, GPS ephemeris, user timing biases, and user orbit dynamics, and in a parametric sense on evaluating their contribution to the orbit determination accuracies.

  6. Modular Software for Spacecraft Navigation Using the Global Positioning System (GPS)

    NASA Technical Reports Server (NTRS)

    Truong, S. H.; Hartman, K. R.; Weidow, D. A.; Berry, D. L.; Oza, D. H.; Long, A. C.; Joyce, E.; Steger, W. L.

    1996-01-01

    The Goddard Space Flight Center Flight Dynamics and Mission Operations Divisions have jointly investigated the feasibility of engineering modular Global Positioning SYSTEM (GPS) navigation software to support both real time flight and ground postprocessing configurations. The goals of this effort are to define standard GPS data interfaces and to engineer standard, reusable navigation software components that can be used to build a broad range of GPS navigation support applications. The paper discusses the GPS modular software (GMOD) system and operations concepts, major requirements, candidate software architecture, feasibility assessment and recommended software interface standards. In additon, ongoing efforts to broaden the scope of the initial study and to develop modular software to support autonomous navigation using GPS are addressed,

  7. 76 FR 63714 - Technical Standard Order (TSO)-C129a, Airborne Supplemental Navigation Equipment Using the Global...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-13

    ..., Airborne Supplemental Navigation Equipment Using the Global Positioning System (GPS) AGENCY: Federal Aviation Administration (FAA), DOT ACTION: Notice of cancellation of TSO-C129a, Airborne Supplemental... cancellation of TSO-C129a, Airborne Supplemental Navigation Equipment Using the Global Positioning System (GPS...

  8. A Self-Tuning Kalman Filter for Autonomous Navigation Using the Global Positioning System (GPS)

    NASA Technical Reports Server (NTRS)

    Truong, Son H.

    1999-01-01

    Most navigation systems currently operated by NASA are ground-based, and require extensive support to produce accurate results. Recently developed systems that use Kalman filter and GPS (Global Positioning Systems) data for orbit determination greatly reduce dependency on ground support, and have potential to provide significant economies for NASA spacecraft navigation. These systems, however, still rely on manual tuning from analysts. A sophisticated neuro-fuzzy component fully integrated with the flight navigation system can perform the self-tuning capability for the Kalman filter and help the navigation system recover from estimation errors in real time.

  9. Fluoroscopy and imageless navigation enable an equivalent reconstruction of leg length and global and femoral offset in THA.

    PubMed

    Weber, Markus; Woerner, Michael; Springorum, Robert; Sendtner, Ernst; Hapfelmeier, Alexander; Grifka, Joachim; Renkawitz, Tobias

    2014-10-01

    Restoration of biomechanics is a major goal in THA. Imageless navigation enables intraoperative control of leg length equalization and offset reconstruction. However, the effect of navigation compared with intraoperative fluoroscopy is unclear. We asked whether intraoperative use of imageless navigation (1) improves the relative accuracy of leg length and global and femoral offset restoration; (2) increases the absolute precision of leg length and global and femoral offset equalization; and (3) reduces outliers in a reconstruction zone of ± 5 mm for leg length and global and femoral offset restoration compared with intraoperative fluoroscopy during minimally invasive (MIS) THA with the patient in a lateral decubitus position. In this prospective study a consecutive series of 125 patients were randomized to either navigation-guided or fluoroscopy-controlled THA using sealed, opaque envelopes. All patients received the same cementless prosthetic components through an anterolateral MIS approach while they were in a lateral decubitus position. Leg length, global or total offset (representing the combination of femoral and acetabular offset), and femoral offset differences were restored using either navigation or fluoroscopy. Postoperatively, residual leg length and global and femoral offset discrepancies were analyzed on magnification-corrected radiographs of the pelvis by an independent and blinded examiner using digital planning software. Accuracy was defined as the relative postoperative difference between the surgically treated and the unaffected contralateral side for leg length and offset, respectively; precision was defined as the absolute postoperative deviation of leg length and global and femoral offset regardless of lengthening or shortening of leg length and offset throughout the THA. All analyses were performed per intention-to-treat. Analyzing the relative accuracy of leg length restoration we found a mean difference of 0.2 mm (95% CI, -1.0 to +1.4 mm; p

  10. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-23

    A surfer navigates the waters in front of the Tanegashima Space Center (TNSC) launch pads on Sunday, Feb. 23, 2014, Tanegashima Island, Japan. A Japanese H-IIA rocket carrying the NASA-Japan Aerospace Exploration Agency (JAXA), Global Precipitation Measurement (GPM) Core Observatory is planned for launch from the space center on Feb. 28, 2014. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  11. High accuracy autonomous navigation using the global positioning system (GPS)

    NASA Technical Reports Server (NTRS)

    Truong, Son H.; Hart, Roger C.; Shoan, Wendy C.; Wood, Terri; Long, Anne C.; Oza, Dipak H.; Lee, Taesul

    1997-01-01

    The application of global positioning system (GPS) technology to the improvement of the accuracy and economy of spacecraft navigation, is reported. High-accuracy autonomous navigation algorithms are currently being qualified in conjunction with the GPS attitude determination flyer (GADFLY) experiment for the small satellite technology initiative Lewis spacecraft. Preflight performance assessments indicated that these algorithms are able to provide a real time total position accuracy of better than 10 m and a velocity accuracy of better than 0.01 m/s, with selective availability at typical levels. It is expected that the position accuracy will be increased to 2 m if corrections are provided by the GPS wide area augmentation system.

  12. Creating a Global Cultural Consciousness in a Japanese EFL Classroom

    ERIC Educational Resources Information Center

    Aubrey, Scott

    2009-01-01

    Recently, culture has taken an important role in language education. In this view, creating a global cultural consciousness among second language (L2) students can help bridge the gap between linguistic ability and functional intercultural communication. This paper, which makes reference to Japanese adult EFL learners, justifies the body of…

  13. The Japanese Experience of the NameExoWorlds Competition: Translating Official Information into Japanese to Enable Domestic Groups to Participate in a Global Event

    NASA Astrophysics Data System (ADS)

    Usuda-Sato, K.; Iizuka, R.; Yamaoka, H.; Handa, T.

    2018-02-01

    Translation of information from English is an essential step toward ensuring the involvement of non-English speakers in global events. The NameExoWorlds competition, led by the International Astronomical Union (IAU), was held from 9 July 2014 to 15 December 2015. It was a unique event that invited the public to name celestial bodies. In Japan, language acts as a significant barrier for amateur astronomers and school students to participate in global events hosted in English. To address this concern, we established a domestic working group to set up a Japanese website and provided a translation of the IAU's official site for the NameExoWorlds competition. We also developed additional original information in Japanese when needed and sent announcements to a mailing lists of astronomy societies in Japan. As a result, 28% of the registered groups and 47% of proposals for names were from Japan, making Japan the most active country for these stages of the competition. After the competition had ended, we carried out a survey in the Japanese astronomy community and received 124 responses. We found that most of the Japanese participants referred to our official Japanese website in order to overcome the language barrier and participate in the competition. This article explores our work of translating the competition information into Japanese and our evaluation of the impact of this action on the uptake by Japanese astronomy enthusiasts.

  14. Navigation of space VLBI missions: Radioastron and VSOP

    NASA Technical Reports Server (NTRS)

    Ellis, Jordan

    1993-01-01

    In the mid-1990s, Russian and Japanese space agencies will each place into highly elliptic earth orbit a radio telescope consisting of a large antenna and radio astronomy receivers. Very long baseline interferometry (VLBI) techniques will be used to obtain high resolution images of radio sources observed by the space and ground based antennas. Stringent navigation accuracy requirements are imposed on the space VLBI missions by the need to transfer an ultra-stable ground reference frequency standard to the spacecraft and by the demands of the VLBI correlation process. Orbit determination for the mission will be the joint responsibility of navigation centers in the U.S., Russia, and Japan with orbit estimates based on combining tracking data from NASA, Russian, and Japanese sites. This paper describes the operational plans, the inter-agency coordination, and data exchange between the navigation centers required for space VLBI navigation.

  15. Wetland monitoring with Global Navigation Satellite System reflectometry

    PubMed Central

    Zuffada, Cinzia; Shah, Rashmi; Chew, Clara; Lowe, Stephen T.; Mannucci, Anthony J.; Cardellach, Estel; Brakenridge, G. Robert; Geller, Gary; Rosenqvist, Ake

    2017-01-01

    Abstract Information about wetland dynamics remains a major missing gap in characterizing, understanding, and projecting changes in atmospheric methane and terrestrial water storage. A review of current satellite methods to delineate and monitor wetland change shows some recent advances, but much improved sensing technologies are still needed for wetland mapping, not only to provide more accurate global inventories but also to examine changes spanning multiple decades. Global Navigation Satellite Systems Reflectometry (GNSS‐R) signatures from aircraft over the Ebro River Delta in Spain and satellite measurements over the Mississippi River and adjacent watersheds demonstrate that inundated wetlands can be identified under different vegetation conditions including a dense rice canopy and a thick forest with tall trees, where optical sensors and monostatic radars provide limited capabilities. Advantages as well as constraints of GNSS‐R are presented, and the synergy with various satellite observations are considered to achieve a breakthrough capability for multidecadal wetland dynamics monitoring with frequent global coverage at multiple spatial and temporal scales. PMID:28331894

  16. Space-based augmentation for global navigation satellite systems.

    PubMed

    Grewal, Mohinder S

    2012-03-01

    This paper describes space-based augmentation for global navigation satellite systems (GNSS). Space-based augmentations increase the accuracy and integrity of the GNSS, thereby enhancing users' safety. The corrections for ephemeris, ionospheric delay, and clocks are calculated from reference station measurements of GNSS data in wide-area master stations and broadcast via geostationary earth orbit (GEO) satellites. This paper discusses the clock models, satellite orbit determination, ionospheric delay estimation, multipath mitigation, and GEO uplink subsystem (GUS) as used in the Wide Area Augmentation System developed by the FAA.

  17. Globalizing Critical Studies of "Official" Knowledge: Lessons from the Japanese History Textbook Controversy over "Comfort Women"

    ERIC Educational Resources Information Center

    Takayama, Keita

    2009-01-01

    This paper discusses the Japanese history textbook controversy over "comfort women" to tease out insights that help globalize the existing theoretical discussion of politics of school knowledge. I begin by documenting how the domestic struggles over Japanese history textbooks are empowered and dis empowered by the regional and…

  18. Technical standing order : airborne supplemental navigation equipment using the global positioning system (GPS)

    DOT National Transportation Integrated Search

    2001-01-01

    This technical standard order (TSO) prescribes the minimum performance standard that airborne supplemental area navigation equipment using the global positioning system (GPS) must meet in order to be identified with the applicable TSO marking. Airbor...

  19. Initial Assessment of Cyclone Global Navigation Satellite System (CYGNSS) Observations

    NASA Astrophysics Data System (ADS)

    McKague, D. S.; Ruf, C. S.

    2017-12-01

    The NASA Cyclone Global Navigation Satellite System (CYNSS) mission provides high temporal resolution observations of cyclones from a constellation of eight low-Earth orbiting satellites. Using the relatively new technique of Global Navigation Satellite System reflectometry (GNSS-R), all-weather observations are possible, penetrating even deep convection within hurricane eye walls. The compact nature of the GNSS-R receivers permits the use of small satellites, which in turn enables the launch of a constellation of satellites from a single launch vehicle. Launched in December of 2016, the eight CYGNSS satellites provide 25 km resolution observations of mean square slope (surface roughness) and surface winds with a 2.8 hour median revisit time from 38 S to 38 N degrees latitude. In addition to the calibration and validation of CYGNSS sea state observations, the CYGNSS science team is assessing the ability of the mission to provide estimates of cyclone size, intensity, and integrated kinetic energy. With its all-weather ability and high temporal resolution, the CYGNSS mission will add significantly to our ability to monitor cyclone genesis and intensification and will significantly reduce uncertainties in our ability to estimate cyclone intensity, a key variable in predicting its destructive potential. Members of the CYGNSS Science Team are also assessing the assimilation of CYGNSS data into hurricane forecast models to determine the impact of the data on forecast skill, using the data to study extra-tropical cyclones, and looking at connections between tropical cyclones and global scale weather, including the global hydrologic cycle. This presentation will focus on the assessment of early on-orbit observations of cyclones with respect to these various applications.

  20. Individual Global Navigation Satellite Systems in the Space Service Volume

    NASA Technical Reports Server (NTRS)

    Force, Dale A.

    2015-01-01

    Besides providing position, navigation, and timing (PNT) to terrestrial users, GPS is currently used to provide for precision orbit determination, precise time synchronization, real-time spacecraft navigation, and three-axis control of Earth orbiting satellites. With additional Global Navigation Satellite Systems (GNSS) coming into service (GLONASS, Beidou, and Galileo), it will be possible to provide these services by using other GNSS constellations. The paper, "GPS in the Space Service Volume," presented at the ION GNSS 19th International Technical Meeting in 2006 (Ref. 1), defined the Space Service Volume, and analyzed the performance of GPS out to 70,000 km. This paper will report a similar analysis of the performance of each of the additional GNSS and compare them with GPS alone. The Space Service Volume, defined as the volume between 3,000 km altitude and geosynchronous altitude, as compared with the Terrestrial Service Volume between the surface and 3,000 km. In the Terrestrial Service Volume, GNSS performance will be similar to performance on the Earth's surface. The GPS system has established signal requirements for the Space Service Volume. A separate paper presented at the conference covers the use of multiple GNSS in the Space Service Volume.

  1. Error Analysis System for Spacecraft Navigation Using the Global Positioning System (GPS)

    NASA Technical Reports Server (NTRS)

    Truong, S. H.; Hart, R. C.; Hartman, K. R.; Tomcsik, T. L.; Searl, J. E.; Bernstein, A.

    1997-01-01

    The Flight Dynamics Division (FDD) at the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) is currently developing improved space-navigation filtering algorithms to use the Global Positioning System (GPS) for autonomous real-time onboard orbit determination. In connection with a GPS technology demonstration on the Small Satellite Technology Initiative (SSTI)/Lewis spacecraft, FDD analysts and programmers have teamed with the GSFC Guidance, Navigation, and Control Branch to develop the GPS Enhanced Orbit Determination Experiment (GEODE) system. The GEODE system consists of a Kalman filter operating as a navigation tool for estimating the position, velocity, and additional states required to accurately navigate the orbiting Lewis spacecraft by using astrodynamic modeling and GPS measurements from the receiver. A parallel effort at the FDD is the development of a GPS Error Analysis System (GEAS) that will be used to analyze and improve navigation filtering algorithms during development phases and during in-flight calibration. For GEAS, the Kalman filter theory is extended to estimate the errors in position, velocity, and other error states of interest. The estimation of errors in physical variables at regular intervals will allow the time, cause, and effect of navigation system weaknesses to be identified. In addition, by modeling a sufficient set of navigation system errors, a system failure that causes an observed error anomaly can be traced and accounted for. The GEAS software is formulated using Object Oriented Design (OOD) techniques implemented in the C++ programming language on a Sun SPARC workstation. The Phase 1 of this effort is the development of a basic system to be used to evaluate navigation algorithms implemented in the GEODE system. This paper presents the GEAS mathematical methodology, systems and operations concepts, and software design and implementation. Results from the use of the basic system to evaluate

  2. Global Positioning System Navigation Above 76,000 km for NASA's Magnetospheric Multiscale Mission

    NASA Technical Reports Server (NTRS)

    Winternitz, Luke B.; Bamford, William A.; Price, Samuel R.; Carpenter, J. Russell; Long, Anne C.; Farahmand, Mitra

    2016-01-01

    NASA's Magnetospheric Multiscale (MMS) mission, launched in March of 2015, consists of a controlled formation of four spin-stabilized spacecraft in similar highly elliptic orbits reaching apogee at radial distances of 12 and 25 Earth radii (RE) in the first and second phases of the mission. Navigation for MMS is achieved independently on-board each spacecraft by processing Global Positioning System (GPS) observables using NASA Goddard Space Flight Center (GSFC)'s Navigator GPS receiver and the Goddard Enhanced Onboard Navigation System (GEONS) extended Kalman filter software. To our knowledge, MMS constitutes, by far, the highest-altitude operational use of GPS to date and represents a high point of over a decade of high-altitude GPS navigation research and development at GSFC. In this paper we will briefly describe past and ongoing high-altitude GPS research efforts at NASA GSFC and elsewhere, provide details on the design of the MMS GPS navigation system, and present on-orbit performance data from the first phase. We extrapolate these results to predict performance in the second phase orbit, and conclude with a discussion of the implications of the MMS results for future high-altitude GPS navigation, which we believe to be broad and far-reaching.

  3. Global Positioning System Navigation Above 76,000 km for NASA's Magnetospheric Multiscale Mission

    NASA Technical Reports Server (NTRS)

    Winternitz, Luke B.; Bamford, William A.; Price, Samuel R.; Carpenter, J. Russell; Long, Anne C.; Farahmand, Mitra

    2016-01-01

    NASA's Magnetospheric Multiscale (MMS) mission, launched in March of 2015, consists of a controlled formation of four spin-stabilized spacecraft in similar highly elliptic orbits reaching apogee at radial distances of 12 and 25 Earth radii (RE) in the first and second phases of the mission. Navigation for MMSis achieved independently on-board each spacecraft by processing Global Positioning System (GPS) observables using NASA Goddard Space Flight Center (GSFC)'s Navigator GPS receiver and the Goddard Enhanced Onboard Navigation System (GEONS) extended Kalman filter software. To our knowledge, MMS constitutes, by far, the highest-altitude operational use of GPS to date and represents a high point of over a decade of high-altitude GPS navigation research and development at GSFC. In this paper we will briefly describe past and ongoing high-altitude GPS research efforts at NASA GSFC and elsewhere, provide details on the design of the MMS GPS navigation system, and present on-orbit performance data from the first phase. We extrapolate these results to predict performance in the second phase orbit, and conclude with a discussion of the implications of the MMS results for future high-altitude GPS navigation, which we believe to be broad and far-reaching.

  4. Shape shifting: Local landmarks interfere with navigation by, and recognition of, global shape.

    PubMed

    Buckley, Matthew G; Smith, Alastair D; Haselgrove, Mark

    2014-03-01

    An influential theory of spatial navigation states that the boundary shape of an environment is preferentially encoded over and above other spatial cues, such that it is impervious to interference from alternative sources of information. We explored this claim with 3 intradimensional-extradimensional shift experiments, designed to examine the interaction of landmark and geometric features of the environment in a virtual navigation task. In Experiments 1 and 2, participants were first required to find a hidden goal using information provided by the shape of the arena or landmarks integrated into the arena boundary (Experiment 1) or within the arena itself (Experiment 2). Participants were then transferred to a different-shaped arena that contained novel landmarks and were again required to find a hidden goal. In both experiments, participants who were navigating on the basis of cues that were from the same dimension that was previously relevant (intradimensional shift) learned to find the goal significantly faster than participants who were navigating on the basis of cues that were from a dimension that was previously irrelevant (extradimensional shift). This suggests that shape information does not hold special status when learning about an environment. Experiment 3 replicated Experiment 2 and also assessed participants' recognition of the global shape of the navigated arenas. Recognition was attenuated when landmarks were relevant to navigation throughout the experiment. The results of these experiments are discussed in terms of associative and non-associative theories of spatial learning.

  5. Autonomous Navigation Above the GNSS Constellations and Beyond: GPS Navigation for the Magnetospheric Multiscale Mission and SEXTANT Pulsar Navigation Demonstration

    NASA Technical Reports Server (NTRS)

    Winternitz, Luke

    2017-01-01

    This talk will describe two first-of-their-kind technology demonstrations attached to ongoing NASA science missions, both of which aim to extend the range of autonomous spacecraft navigation far from the Earth. First, we will describe the onboard GPS navigation system for the Magnetospheric Multiscale (MMS) mission which is currently operating in elliptic orbits reaching nearly halfway to the Moon. The MMS navigation system is a key outgrowth of a larger effort at NASA Goddard Space Flight Center to advance high-altitude Global Navigation Satellite System (GNSS) navigation on multiple fronts, including developing Global Positioning System receivers and onboard navigation software, running simulation studies, and leading efforts to characterize and protect signals at high-altitude in the so-called GNSS Space-Service Volume (SSV). In the second part of the talk, we will describe the Station Explorer for X-ray Timing and Navigation Technology (SEXTANT) mission that aims to make the first in-space demonstration of X-ray pulsar navigation (XNAV). SEXTANT is attached to the NASA astrophysics mission Neutron-star Interior Composition ExploreR (NICER) whose International Space Station mounted X-ray telescope is investigating the fundamental physics of extremes in gravity, material density, and electromagnetic fields found in neutron stars, and whose instrument provides a nearly ideal navigation sensor for XNAV.

  6. Driving clinical study efficiency by using a productivity breakdown model: comparative evaluation of a global clinical study and a similar Japanese study.

    PubMed

    Takahashi, K; Sengoku, S; Kimura, H

    2011-02-01

    A fundamental management imperative of pharmaceutical companies is to contain surging costs of developing and launching drugs globally. Clinical studies are a research and development (R&D) cost driver. The objective of this study was to develop a productivity breakdown model, or a key performance indicator (KPI) tree, for an entire clinical study and to use it to compare a global clinical study with a similar Japanese study. We, thereby, hope to identify means of improving study productivity. We developed the new clinical study productivity breakdown model, covering operational aspects and cost factors. Elements for improving clinical study productivity were assessed from a management viewpoint by comparing empirical tracking data from a global clinical study with a Japanese study with similar protocols. The following unique and material differences, beyond simple international difference in cost of living, that could affect the efficiency of future clinical trials were identified: (i) more frequent site visits in the Japanese study, (ii) head counts at the Japanese study sites more than double those of the global study and (iii) a shorter enrollment time window of about a third that of the global study at the Japanese study sites. We identified major differences in the performance of the two studies. These findings demonstrate the potential of the KPI tree for improving clinical study productivity. Trade-offs, such as those between reduction in head count at study sites and expansion of the enrollment time window, must be considered carefully. © 2010 Blackwell Publishing Ltd.

  7. Global navigation satellite system receiver for weak signals under all dynamic conditions

    NASA Astrophysics Data System (ADS)

    Ziedan, Nesreen Ibrahim

    The ability of the Global Navigation Satellite System (GNSS) receiver to work under weak signal and various dynamic conditions is required in some applications. For example, to provide a positioning capability in wireless devices, or orbit determination of Geostationary and high Earth orbit satellites. This dissertation develops Global Positioning System (GPS) receiver algorithms for such applications. Fifteen algorithms are developed for the GPS C/A signal. They cover all the receiver main functions, which include acquisition, fine acquisition, bit synchronization, code and carrier tracking, and navigation message decoding. They are integrated together, and they can be used in any software GPS receiver. They also can be modified to fit any other GPS or GNSS signals. The algorithms have new capabilities. The processing and memory requirements are considered in the design to allow the algorithms to fit the limited resources of some applications; they do not require any assisting information. Weak signals can be acquired in the presence of strong interfering signals and under high dynamic conditions. The fine acquisition, bit synchronization, and tracking algorithms are based on the Viterbi algorithm and Extended Kalman filter approaches. The tracking algorithms capabilities increase the time to lose lock. They have the ability to adaptively change the integration length and the code delay separation. More than one code delay separation can be used in the same time. Large tracking errors can be detected and then corrected by a re-initialization and an acquisition-like algorithms. Detecting the navigation message is needed to increase the coherent integration; decoding it is needed to calculate the navigation solution. The decoding algorithm utilizes the message structure to enable its decoding for signals with high Bit Error Rate. The algorithms are demonstrated using simulated GPS C/A code signals, and TCXO clocks. The results have shown the algorithms ability to

  8. Space shuttle navigation analysis. Volume 1: GPS aided navigation

    NASA Technical Reports Server (NTRS)

    Matchett, G. A.; Vogel, M. A.; Macdonald, T. J.

    1980-01-01

    Analytical studies related to space shuttle navigation are presented. Studies related to the addition of NAVSTAR Global Positioning System user equipment to the shuttle avionics suite are presented. The GPS studies center about navigation accuracy covariance analyses for both developmental and operational phases of GPS, as well as for various orbiter mission phases.

  9. Navigation Performance of Global Navigation Satellite Systems in the Space Service Volume

    NASA Technical Reports Server (NTRS)

    Force, Dale A.

    2013-01-01

    GPS has been used for spacecraft navigation for many years center dot In support of this, the US has committed that future GPS satellites will continue to provide signals in the Space Service Volume center dot NASA is working with international agencies to obtain similar commitments from other providers center dot In support of this effort, I simulated multi-constellation navigation in the Space Service Volume In this presentation, I extend the work to examine the navigational benefits and drawbacks of the new constellations center dot A major benefit is the reduced geometric dilution of precision (GDOP). I show that there is a substantial reduction in GDOP by using all of the GNSS constellations center dot The increased number of GNSS satellites broadcasting does produce mutual interference, raising the noise floor. A near/far signal problem can also occur where a nearby satellite drowns out satellites that are far away. - In these simulations, no major effect was observed Typically, the use of multi-constellation GNSS navigation improves GDOP by a factor of two or more over GPS alone center dot In addition, at the higher altitudes, four satellite solutions can be obtained much more often center dot This show the value of having commitments to provide signals in the Space Service Volume Besides a commitment to provide a minimum signal in the Space Service Volume, detailed signal gain information is useful for mission planning center dot Knowledge of group and phase delay over the pattern would also reduce the navigational uncertainty

  10. Japanese Flagship Universities at a Crossroads

    ERIC Educational Resources Information Center

    Yonezawa, Akiyoshi

    2007-01-01

    The increasing pace and scope of global structural change has left Japanese flagship universities at a crossroads. Reflecting upon historical trends, current policy changes and respective institutional strategies for global marketing among Japanese top research universities, the author discusses possible future directions for these institutions…

  11. Simulating the Oceanic Migration of Silver Japanese Eels

    PubMed Central

    Chang, Yu-Lin; Miyazawa, Yasumasa; Béguer-Pon, Mélanie

    2016-01-01

    The oceanic migration of silver Japanese eels starts from their continental growth habitats in East Asia and ends at the spawning area near the West Mariana Ridge seamount chain. However, the actual migration routes remain unknown. In this study, we examined the possible oceanic migration routes and strategies of silver Japanese eels using a particle tracking method in which virtual eels (v-eels) were programmed to move vertically and horizontally in an ocean circulation model (Japan Coastal Ocean Predictability Experiment 2, JCOPE2). Four horizontal swimming strategies were tested: random heading, true navigation (readjusted heading), orientation toward the spawning area (fixed heading), and swimming against the Kuroshio. We found that all strategies, except random swimming, allowed v-eels swimming at 0.65 m s−1 to reach the spawning area within eight months after their departure from the south coast of Japan (end of the spawning season). The estimated minimum swimming speed required to reach the area spawning within eight months was 0.1 m s−1 for true navigation, 0.12 m s−1 for constant compass heading, and 0.35 m s−1 for swimming against the Kuroshio. The lowest swimming speed estimated from tracked Japanese eels at sea was 0.03 m.s−1, which would not allow them to reach the spawning area within eight months, through any of the tested orientation strategies. Our numerical experiments also showed that ocean circulation significantly affected the migration of Japanese v-eels. A strong Kuroshio could advect v-eels further eastward. In addition, western Pacific ocean currents accelerated the migration of navigating v-eels. The migration duration was shortened in years with a stronger southward flow, contributed by a stronger recirculation south of Japan, an enhanced subtropical gyre, or a higher southward Kuroshio velocity. PMID:26982484

  12. Simulating the Oceanic Migration of Silver Japanese Eels.

    PubMed

    Chang, Yu-Lin; Miyazawa, Yasumasa; Béguer-Pon, Mélanie

    2016-01-01

    The oceanic migration of silver Japanese eels starts from their continental growth habitats in East Asia and ends at the spawning area near the West Mariana Ridge seamount chain. However, the actual migration routes remain unknown. In this study, we examined the possible oceanic migration routes and strategies of silver Japanese eels using a particle tracking method in which virtual eels (v-eels) were programmed to move vertically and horizontally in an ocean circulation model (Japan Coastal Ocean Predictability Experiment 2, JCOPE2). Four horizontal swimming strategies were tested: random heading, true navigation (readjusted heading), orientation toward the spawning area (fixed heading), and swimming against the Kuroshio. We found that all strategies, except random swimming, allowed v-eels swimming at 0.65 m s-1 to reach the spawning area within eight months after their departure from the south coast of Japan (end of the spawning season). The estimated minimum swimming speed required to reach the area spawning within eight months was 0.1 m s-1 for true navigation, 0.12 m s-1 for constant compass heading, and 0.35 m s-1 for swimming against the Kuroshio. The lowest swimming speed estimated from tracked Japanese eels at sea was 0.03 m.s-1, which would not allow them to reach the spawning area within eight months, through any of the tested orientation strategies. Our numerical experiments also showed that ocean circulation significantly affected the migration of Japanese v-eels. A strong Kuroshio could advect v-eels further eastward. In addition, western Pacific ocean currents accelerated the migration of navigating v-eels. The migration duration was shortened in years with a stronger southward flow, contributed by a stronger recirculation south of Japan, an enhanced subtropical gyre, or a higher southward Kuroshio velocity.

  13. Global Positioning System Navigation Algorithms

    DTIC Science & Technology

    1977-05-01

    Historical Remarks on Navigation In Greek mythology , Odysseus sailed safely by the Sirens only to encounter the monsters Scylla and Charybdis...TNED 000 00 1(.7 BIBLIOGRAPHY 1. Pinsent, John. Greek Mythology . Paul Hamlyn, London, 1969. 2. Kline, Morris. Mathematical Thought from Ancient to

  14. Collective navigation of complex networks: Participatory greedy routing.

    PubMed

    Kleineberg, Kaj-Kolja; Helbing, Dirk

    2017-06-06

    Many networks are used to transfer information or goods, in other words, they are navigated. The larger the network, the more difficult it is to navigate efficiently. Indeed, information routing in the Internet faces serious scalability problems due to its rapid growth, recently accelerated by the rise of the Internet of Things. Large networks like the Internet can be navigated efficiently if nodes, or agents, actively forward information based on hidden maps underlying these systems. However, in reality most agents will deny to forward messages, which has a cost, and navigation is impossible. Can we design appropriate incentives that lead to participation and global navigability? Here, we present an evolutionary game where agents share the value generated by successful delivery of information or goods. We show that global navigability can emerge, but its complete breakdown is possible as well. Furthermore, we show that the system tends to self-organize into local clusters of agents who participate in the navigation. This organizational principle can be exploited to favor the emergence of global navigability in the system.

  15. Autonomous Navigation of the SSTI/Lewis Spacecraft Using the Global Positioning System (GPS)

    NASA Technical Reports Server (NTRS)

    Hart, R. C.; Long, A. C.; Lee, T.

    1997-01-01

    The National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD) is pursuing the application of Global Positioning System (GPS) technology to improve the accuracy and economy of spacecraft navigation. High-accuracy autonomous navigation algorithms are being flight qualified in conjunction with GSFC's GPS Attitude Determination Flyer (GADFLY) experiment on the Small Satellite Technology Initiative (SSTI) Lewis spacecraft, which is scheduled for launch in 1997. Preflight performance assessments indicate that these algorithms can provide a real-time total position accuracy of better than 10 meters (1 sigma) and velocity accuracy of better than 0.01 meter per second (1 sigma), with selective availability at typical levels. This accuracy is projected to improve to the 2-meter level if corrections to be provided by the GPS Wide Area Augmentation System (WAAS) are included.

  16. Navigation and Landing Transition Strategy

    DOT National Transportation Integrated Search

    2002-08-01

    Attached is the Federal Aviation Administration's (FAA) Navigation and Landing Transition Strategy. This report defines the satellite navigation transition strategy that considers the vulnerability of the Global Positioning System (GPS) and describes...

  17. Small Body Landing Accuracy Using In-Situ Navigation

    NASA Technical Reports Server (NTRS)

    Bhaskaran, Shyam; Nandi, Sumita; Broschart, Stephen; Wallace, Mark; Olson, Corwin; Cangahuala, L. Alberto

    2011-01-01

    Spacecraft landings on small bodies (asteroids and comets) can require target accuracies too stringent to be met using ground-based navigation alone, especially if specific landing site requirements must be met for safety or to meet science goals. In-situ optical observations coupled with onboard navigation processing can meet the tighter accuracy requirements to enable such missions. Recent developments in deep space navigation capability include a self-contained autonomous navigation system (used in flight on three missions) and a landmark tracking system (used experimentally on the Japanese Hayabusa mission). The merging of these two technologies forms a methodology to perform autonomous onboard navigation around small bodies. This paper presents an overview of these systems, as well as the results from Monte Carlo studies to quantify the achievable landing accuracies by using these methods. Sensitivity of the results to variations in spacecraft maneuver execution error, attitude control accuracy and unmodeled forces are examined. Cases for two bodies, a small asteroid and on a mid-size comet, are presented.

  18. Beyond "the West as Method": Repositioning the Japanese Education Research Communities in/against the Global Structure of Academic Knowledge

    ERIC Educational Resources Information Center

    Takayama, Keita

    2016-01-01

    Drawing on the recent critiques of the global knowledge economy of social science research, this article explores possible ways in which the Japanese education research communities can reposition themselves in the wider international education research community. The premises of this discussion are that there exists a global structure of academic…

  19. a European Global Navigation Satellite System — the German Market and Value Adding Chain Effects

    NASA Astrophysics Data System (ADS)

    Vollerthun, A.; Wieser, M.

    2002-03-01

    Since Europe is considering to establish a "market-driven" European Global Navigation Satellite System, the German Center of Aerospace initiated a market research to justify a German investment in such a European project. The market research performed included the following market segments: aviation, railway, road traffic, shipping, surveying, farming, military, space applications, leisure, and sport. In these market segments, the forementioned inputs were determined for satellite navigation hardware (receivers) as well as satellite navigation services. The forecast period was from year 2007 to 2017. For the considered period, the market amounts to a total of DM 83.0 billion (approx. US $50 billion), whereas the satellite navigation equipment market makes up DM 39.8 billion, and charges for value-added-services amount to DM 43.2 billion. On closer examination road traffic can be identified as the dominant market share, both in the receiver-market and service-market. With a share of 96% for receivers and 73% for services the significance of the road traffic segment becomes obvious. The second part of this paper investigates the effects the market potential has on the Value-Adding-Chain. Therefore, all participants in the Value-Adding-Chain are identified, using industrial cost structure models the employment effect is analyzed, and possible tax revenues for the state are examined.

  20. INTEGRATED INS/GPS NAVIGATION FROM A POPULAR PERSPECTIVE

    DOT National Transportation Integrated Search

    2002-02-13

    Inertial navigation, blended with other navigation aids Global Positioning System (GPS) in particular, has gained significance due to enhanced navigation and inertial reference performance and dissimilarity for fault tolerance and anti-jamming. Relat...

  1. Combined Global Navigation Satellite Systems in the Space Service Volume

    NASA Technical Reports Server (NTRS)

    Force, Dale A.; Miller, James J.

    2015-01-01

    Besides providing position, navigation, and timing (PNT) services to traditional terrestrial and airborne users, GPS is also being increasingly used as a tool to enable precision orbit determination, precise time synchronization, real-time spacecraft navigation, and three-axis attitude control of Earth orbiting satellites. With additional Global Navigation Satellite System (GNSS) constellations being replenished and coming into service (GLONASS, Beidou, and Galileo), it will become possible to benefit from greater signal availability and robustness by using evolving multi-constellation receivers. The paper, "GPS in the Space Service Volume," presented at the ION GNSS 19th International Technical Meeting in 2006 (Ref. 1), defined the Space Service Volume, and analyzed the performance of GPS out to seventy thousand kilometers. This paper will report a similar analysis of the signal coverage of GPS in the space domain; however, the analyses will also consider signal coverage from each of the additional GNSS constellations noted earlier to specifically demonstrate the expected benefits to be derived from using GPS in conjunction with other foreign systems. The Space Service Volume is formally defined as the volume of space between three thousand kilometers altitude and geosynchronous altitude circa 36,000 km, as compared with the Terrestrial Service Volume between 3,000 km and the surface of the Earth. In the Terrestrial Service Volume, GNSS performance is the same as on or near the Earth's surface due to satellite vehicle availability and geometry similarities. The core GPS system has thereby established signal requirements for the Space Service Volume as part of technical Capability Development Documentation (CDD) that specifies system performance. Besides the technical discussion, we also present diplomatic efforts to extend the GPS Space Service Volume concept to other PNT service providers in an effort to assure that all space users will benefit from the enhanced

  2. Precise positioning with current multi-constellation Global Navigation Satellite Systems: GPS, GLONASS, Galileo and BeiDou.

    PubMed

    Li, Xingxing; Zhang, Xiaohong; Ren, Xiaodong; Fritsche, Mathias; Wickert, Jens; Schuh, Harald

    2015-02-09

    The world of satellite navigation is undergoing dramatic changes with the rapid development of multi-constellation Global Navigation Satellite Systems (GNSSs). At the moment more than 70 satellites are already in view, and about 120 satellites will be available once all four systems (BeiDou + Galileo + GLONASS + GPS) are fully deployed in the next few years. This will bring great opportunities and challenges for both scientific and engineering applications. In this paper we develop a four-system positioning model to make full use of all available observations from different GNSSs. The significant improvement of satellite visibility, spatial geometry, dilution of precision, convergence, accuracy, continuity and reliability that a combining utilization of multi-GNSS brings to precise positioning are carefully analyzed and evaluated, especially in constrained environments.

  3. Global navigation satellite systems performance analysis and augmentation strategies in aviation

    NASA Astrophysics Data System (ADS)

    Sabatini, Roberto; Moore, Terry; Ramasamy, Subramanian

    2017-11-01

    In an era of significant air traffic expansion characterized by a rising congestion of the radiofrequency spectrum and a widespread introduction of Unmanned Aircraft Systems (UAS), Global Navigation Satellite Systems (GNSS) are being exposed to a variety of threats including signal interferences, adverse propagation effects and challenging platform-satellite relative dynamics. Thus, there is a need to characterize GNSS signal degradations and assess the effects of interfering sources on the performance of avionics GNSS receivers and augmentation systems used for an increasing number of mission-essential and safety-critical aviation tasks (e.g., experimental flight testing, flight inspection/certification of ground-based radio navigation aids, wide area navigation and precision approach). GNSS signal deteriorations typically occur due to antenna obscuration caused by natural and man-made obstructions present in the environment (e.g., elevated terrain and tall buildings when flying at low altitude) or by the aircraft itself during manoeuvring (e.g., aircraft wings and empennage masking the on-board GNSS antenna), ionospheric scintillation, Doppler shift, multipath, jamming and spurious satellite transmissions. Anyone of these phenomena can result in partial to total loss of tracking and possible tracking errors, depending on the severity of the effect and the receiver characteristics. After designing GNSS performance threats, the various augmentation strategies adopted in the Communication, Navigation, Surveillance/Air Traffic Management and Avionics (CNS + A) context are addressed in detail. GNSS augmentation can take many forms but all strategies share the same fundamental principle of providing supplementary information whose objective is improving the performance and/or trustworthiness of the system. Hence it is of paramount importance to consider the synergies offered by different augmentation strategies including Space Based Augmentation System (SBAS), Ground

  4. A New Time Measurement Method Using a High-End Global Navigation Satellite System to Analyze Alpine Skiing

    ERIC Educational Resources Information Center

    Supej, Matej; Holmberg, Hans-Christer

    2011-01-01

    Accurate time measurement is essential to temporal analysis in sport. This study aimed to (a) develop a new method for time computation from surveyed trajectories using a high-end global navigation satellite system (GNSS), (b) validate its precision by comparing GNSS with photocells, and (c) examine whether gate-to-gate times can provide more…

  5. Precise positioning with current multi-constellation Global Navigation Satellite Systems: GPS, GLONASS, Galileo and BeiDou

    PubMed Central

    Li, Xingxing; Zhang, Xiaohong; Ren, Xiaodong; Fritsche, Mathias; Wickert, Jens; Schuh, Harald

    2015-01-01

    The world of satellite navigation is undergoing dramatic changes with the rapid development of multi-constellation Global Navigation Satellite Systems (GNSSs). At the moment more than 70 satellites are already in view, and about 120 satellites will be available once all four systems (BeiDou + Galileo + GLONASS + GPS) are fully deployed in the next few years. This will bring great opportunities and challenges for both scientific and engineering applications. In this paper we develop a four-system positioning model to make full use of all available observations from different GNSSs. The significant improvement of satellite visibility, spatial geometry, dilution of precision, convergence, accuracy, continuity and reliability that a combining utilization of multi-GNSS brings to precise positioning are carefully analyzed and evaluated, especially in constrained environments. PMID:25659949

  6. Relative Navigation of Formation-Flying Satellites

    NASA Technical Reports Server (NTRS)

    Long, Anne; Kelbel, David; Lee, Taesul; Leung, Dominic; Carpenter, J. Russell; Grambling, Cheryl

    2002-01-01

    This paper compares autonomous relative navigation performance for formations in eccentric, medium and high-altitude Earth orbits using Global Positioning System (GPS) Standard Positioning Service (SPS), crosslink, and celestial object measurements. For close formations, the relative navigation accuracy is highly dependent on the magnitude of the uncorrelated measurement errors. A relative navigation position accuracy of better than 10 centimeters root-mean-square (RMS) can be achieved for medium-altitude formations that can continuously track at least one GPS signal. A relative navigation position accuracy of better than 15 meters RMS can be achieved for high-altitude formations that have sparse tracking of the GPS signals. The addition of crosslink measurements can significantly improve relative navigation accuracy for formations that use sparse GPS tracking or celestial object measurements for absolute navigation.

  7. The "Global 30" Project and Japanese Higher Education Reform: An Example of a "Closing in" or an "Opening up"?

    ERIC Educational Resources Information Center

    Burgess, Chris; Gibson, Ian; Klaphake, Jay; Selzer, Mark

    2010-01-01

    The Global 30 Project, a new Japanese Government initiative that aims to upgrade a number of existing universities to form a select hub of elite universities for receiving and educating international students, has come in for considerable criticism. Using the dual concepts of "kokusaika" (internationalisation) and "gurobaruka"…

  8. Navigation: National Plans; NAVSTAR-GPS; Laser Gyros

    DTIC Science & Technology

    1982-08-31

    REFERENC-~CP STER . TECHNICAL REPORT ! "NO. 12686,-’-. - NAVIGATION: NATIONAL PLANS ; NAVSTAR-GPS; LASER GYROS CONTRACT NO. DAAK30-80-C-0073 31 AUGUST...Technical ReportAW Ng. riiNational Plans ; Navstar-GPS; S... : NavstarGPS; a3 Sept 1980 - 31 Aug 1982 ....Lasr Gyros. 6. PERFORMING ORG. REPORT NUMBER PRA...identify by block number) Navigation Navigation Satellites Laser Gyros Position-Location . NAVSTAR-GPS Fiberoptic Gyros Planning Global Positioning System

  9. Current Status of Japanese Global Precipitation Measurement (GPM) Research Project

    NASA Astrophysics Data System (ADS)

    Kachi, Misako; Oki, Riko; Kubota, Takuji; Masaki, Takeshi; Kida, Satoshi; Iguchi, Toshio; Nakamura, Kenji; Takayabu, Yukari N.

    2013-04-01

    The Global Precipitation Measurement (GPM) mission is a mission led by the Japan Aerospace Exploration Agency (JAXA) and the National Aeronautics and Space Administration (NASA) under collaboration with many international partners, who will provide constellation of satellites carrying microwave radiometer instruments. The GPM Core Observatory, which carries the Dual-frequency Precipitation Radar (DPR) developed by JAXA and the National Institute of Information and Communications Technology (NICT), and the GPM Microwave Imager (GMI) developed by NASA. The GPM Core Observatory is scheduled to be launched in early 2014. JAXA also provides the Global Change Observation Mission (GCOM) 1st - Water (GCOM-W1) named "SHIZUKU," as one of constellation satellites. The SHIZUKU satellite was launched in 18 May, 2012 from JAXA's Tanegashima Space Center, and public data release of the Advanced Microwave Scanning Radiometer 2 (AMSR2) on board the SHIZUKU satellite was planned that Level 1 products in January 2013, and Level 2 products including precipitation in May 2013. The Japanese GPM research project conducts scientific activities on algorithm development, ground validation, application research including production of research products. In addition, we promote collaboration studies in Japan and Asian countries, and public relations activities to extend potential users of satellite precipitation products. In pre-launch phase, most of our activities are focused on the algorithm development and the ground validation related to the algorithm development. As the GPM standard products, JAXA develops the DPR Level 1 algorithm, and the NASA-JAXA Joint Algorithm Team develops the DPR Level 2 and the DPR-GMI combined Level2 algorithms. JAXA also develops the Global Rainfall Map product as national product to distribute hourly and 0.1-degree horizontal resolution rainfall map. All standard algorithms including Japan-US joint algorithm will be reviewed by the Japan-US Joint

  10. Observation of Wetland Dynamics with Global Navigation Satellite Signals Reflectometry

    NASA Astrophysics Data System (ADS)

    Zuffada, C.; Shah, R.; Nghiem, S. V.; Cardellach, E.; Chew, C. C.

    2015-12-01

    Wetland dynamics is crucial to changes in both atmospheric methane and terrestrial water storage. The Intergovernmental Panel on Climate Change's Fifth Assessment Report (IPCC AR5) highlights the role of wetlands as a key driver of methane (CH4) emission, which is more than one order of magnitude stronger than carbon dioxide as a greenhouse gas in the centennial time scale. Among the multitude of methane emission sources (hydrates, livestock, rice cultivation, freshwaters, landfills and waste, fossil fuels, biomass burning, termites, geological sources, and soil oxidation), wetlands constitute the largest contributor with the widest uncertainty range of 177-284 Tg(CH4) yr-1 according to the IPCC estimate. Wetlands are highly susceptible to climate change that might lead to wetland collapse. Such wetland destruction would decrease the terrestrial water storage capacity and thus contribute to sea level rise, consequently exacerbating coastal flooding problems. For both methane change and water storage change, wetland dynamics is a crucial factor with the largest uncertainty. Nevertheless, a complete and consistent map of global wetlands still needs to be obtained as the Ramsar Convention calls for a wetlands inventory and impact assessment. We develop a new method for observations of wetland change using Global Navigation Satellite Signals Reflectometry (GNSS-R) signatures for global wetland mapping in synergy with the existing capability, not only as a static inventory but also as a temporal dataset, to advance the capability for monitoring the dynamics of wetland extent relevant to addressing the science issues of CH4 emission change and terrestrial water storage change. We will demonstrate the capability of the new GNSS-R method over a rice field in the Ebro Delta wetland in Spain.

  11. Navigation Flight Test Results from the Low Power Transceiver Communications and Navigation Demonstration on Shuttle (CANDOS) Experiment

    NASA Technical Reports Server (NTRS)

    Haas, Lin; Massey, Christopher; Baraban, Dmitri

    2003-01-01

    This paper presents the Global Positioning System (GPS) navigation results from the Communications and Navigation Demonstration on Shuttle (CANDOS) experiment flown on STS-107. This experiment was the initial flight of a Low Power Transceiver (LPT) that featured high capacity space- space and space-ground communications and GPS- based navigation capabilities. The LPT also hosted the GPS Enhanced Orbit Determination Experiment (GEODE) orbit determination software. All CANDOS test data were recovered during the mission using LPT communications links via the Tracking and Data Relay Satellite System (TDRSS). An overview of the LPT s navigation software and the GPS experiment timeline is presented, along with comparisons of test results to the NASA Johnson Space Center (JSC) real-time ground navigation vectors and Best Estimate of Trajectory (BET).

  12. Addressing the Influence of Space Weather on Airline Navigation

    NASA Technical Reports Server (NTRS)

    Sparks, Lawrence

    2012-01-01

    The advent of satellite-based augmentation systems has made it possible to navigate aircraft safely using radio signals emitted by global navigation satellite systems (GNSS) such as the Global Positioning System. As a signal propagates through the earth's ionosphere, it suffers delay that is proportional to the total electron content encountered along the raypath. Since the magnitude of this total electron content is strongly influenced by space weather, the safety and reliability of GNSS for airline navigation requires continual monitoring of the state of the ionosphere and calibration of ionospheric delay. This paper examines the impact of space weather on GNSS-based navigation and provides an overview of how the Wide Area Augmentation System protects its users from positioning error due to ionospheric disturbances

  13. The Cyclone Global Navigation Satellite System (CYGNSS) - Analysis and Data Assimilation for Tropical Convection

    NASA Technical Reports Server (NTRS)

    Li, Xuanli; Lang, Timothy J.; Mecikalski, John; Castillo, Tyler; Hoover, Kacie; Chronis, Themis

    2017-01-01

    Cyclone Global Navigation Satellite System (CYGNSS): a constellation of 8 micro-satellite observatories launched in November 2016, to measure near-surface oceanic wind speed. Main goal: To monitor surface wind fields of the Tropical Cyclones' inner core, including regions beneath the intense eye wall and rain bands that could not previously be measured from space; Cover 38 deg S -38 deg N with unprecedented temporal resolution and spatial coverage, under all precipitating conditions Low flying satellite: Pass over ocean surface more frequently than one large satellite. A median(mean) revisit time of 2.8(7.2) hrs.

  14. A framework and methodology for navigating disaster and global health in crisis literature.

    PubMed

    Chan, Jennifer L; Burkle, Frederick M

    2013-04-04

    Both 'disasters' and 'global health in crisis' research has dramatically grown due to the ever-increasing frequency and magnitude of crises around the world. Large volumes of peer-reviewed literature are not only a testament to the field's value and evolution, but also present an unprecedented outpouring of seemingly unmanageable information across a wide array of crises and disciplines. Disaster medicine, health and humanitarian assistance, global health and public health disaster literature all lie within the disaster and global health in crisis literature spectrum and are increasingly accepted as multidisciplinary and transdisciplinary disciplines. Researchers, policy makers, and practitioners now face a new challenge; that of accessing this expansive literature for decision-making and exploring new areas of research. Individuals are also reaching beyond the peer-reviewed environment to grey literature using search engines like Google Scholar to access policy documents, consensus reports and conference proceedings. What is needed is a method and mechanism with which to search and retrieve relevant articles from this expansive body of literature. This manuscript presents both a framework and workable process for a diverse group of users to navigate the growing peer-reviewed and grey disaster and global health in crises literature. Disaster terms from textbooks, peer-reviewed and grey literature were used to design a framework of thematic clusters and subject matter 'nodes'. A set of 84 terms, selected from 143 curated terms was organized within each node reflecting topics within the disaster and global health in crisis literature. Terms were crossed with one another and the term 'disaster'. The results were formatted into tables and matrices. This process created a roadmap of search terms that could be applied to the PubMed database. Each search in the matrix or table results in a listed number of articles. This process was applied to literature from PubMed from

  15. Exploring Maps with Greedy Navigators

    NASA Astrophysics Data System (ADS)

    Lee, Sang Hoon; Holme, Petter

    2012-03-01

    During the last decade of network research focusing on structural and dynamical properties of networks, the role of network users has been more or less underestimated from the bird’s-eye view of global perspective. In this era of global positioning system equipped smartphones, however, a user’s ability to access local geometric information and find efficient pathways on networks plays a crucial role, rather than the globally optimal pathways. We present a simple greedy spatial navigation strategy as a probe to explore spatial networks. These greedy navigators use directional information in every move they take, without being trapped in a dead end based on their memory about previous routes. We suggest that the centralities measures have to be modified to incorporate the navigators’ behavior, and present the intriguing effect of navigators’ greediness where removing some edges may actually enhance the routing efficiency, which is reminiscent of Braess’s paradox. In addition, using samples of road structures in large cities around the world, it is shown that the navigability measure we define reflects unique structural properties, which are not easy to predict from other topological characteristics. In this respect, we believe that our routing scheme significantly moves the routing problem on networks one step closer to reality, incorporating the inevitable incompleteness of navigators’ information.

  16. Global Neurology: Navigating Career Possibilities.

    PubMed

    Schiess, Nicoline; Saylor, Deanna; Zunt, Joseph

    2018-04-01

    Neurology has not typically been associated with international relief work; however, with the growth of chronic cardiovascular disease and stroke associated with unhealthy eating and sedentary ways, the appearance of "new" neurologic diseases, such as the Zika and West Nile viruses, and the high numbers of seizure disorders resulting from neuroinfectious diseases, more opportunities are arising for international and globally oriented neurologists. Multiple opportunities exist for developing a global clinician-educator career pathway, including private institutions, nongovernmental organizations, government-funded opportunities such as Medical Education Partnership Initiative, Fogarty and Fulbright Scholarships, and the American Academy of Neurology's Global Health Section. Furthermore, increasing research capacity in developing countries and increased funding opportunities for global health research have led to new opportunities for neurologists to establish global health research careers. These opportunities could not have come at a better time, as many faculty members have noted a particularly strong interest in global neurology from medical students and residents. Career categories and opportunities for neurologists desiring to work globally are discussed along with the emerging "global neurologist" academic pathway. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  17. A Short Tutorial on Inertial Navigation System and Global Positioning System Integration

    NASA Technical Reports Server (NTRS)

    Smalling, Kyle M.; Eure, Kenneth W.

    2015-01-01

    The purpose of this document is to describe a simple method of integrating Inertial Navigation System (INS) information with Global Positioning System (GPS) information for an improved estimate of vehicle attitude and position. A simple two dimensional (2D) case is considered. The attitude estimates are derived from sensor data and used in the estimation of vehicle position and velocity through dead reckoning within the INS. The INS estimates are updated with GPS estimates using a Kalman filter. This tutorial is intended for the novice user with a focus on bringing the reader from raw sensor measurements to an integrated position and attitude estimate. An application is given using a remotely controlled ground vehicle operating in assumed 2D environment. The theory is developed first followed by an illustrative example.

  18. National aerospace meeting of the Institute of Navigation

    NASA Astrophysics Data System (ADS)

    Fell, Patrick

    The program for this year's aerospace meeting of The Institute of Navigation addressed developments in the evolving Global Positioning System (GPS) of navigation satellites, inertial navigation systems, and other electronic navigation systems and their applications. Also included in the program were a limited number of papers addressing the geodetic use of the GPS system.The Global Positioning System is a constellation of 18 navigation satellites being developed by the Department of Defense to provide instantaneous worldwide navigation. The system will support a multitude of military applications. The first paper by Jacobson reviewed the engineering development of GPS navigation receivers stressing the use of common hardware and software modules. A later paper by Ould described the mechanization of a digital receiver for GPS applications designed for faster acquisition of the spread spectrum satellite transmissions than analog receivers. The paper by Brady discussed the worldwide coverage that is provided by the limited number of satellites that will constitute the GPS constellation through 1983. The capability provided by the satellites presently on orbit would support a variety of experiments at almost any location. Tables of multiple satellite availability are provided for numerous worldwide locations. For civil aviation applications, Vogel addressed the satellite geometry considerations for low cost GPS user equipment, Esposito described the Federal Aviation Administration acceptance tests of a GPS navigation receiver, and Hopkins discussed the design and capability of an integrated GPS strapdown attitude and heading reference system for avionics.

  19. Navigation Architecture For A Space Mobile Network

    NASA Technical Reports Server (NTRS)

    Valdez, Jennifer E.; Ashman, Benjamin; Gramling, Cheryl; Heckler, Gregory W.; Carpenter, Russell

    2016-01-01

    The Tracking and Data Relay Satellite System (TDRSS) Augmentation Service for Satellites (TASS) is a proposed beacon service to provide a global, space-based GPS augmentation service based on the NASA Global Differential GPS (GDGPS) System. The TASS signal will be tied to the GPS time system and usable as an additional ranging and Doppler radiometric source. Additionally, it will provide data vital to autonomous navigation in the near Earth regime, including space weather information, TDRS ephemerides, Earth Orientation Parameters (EOP), and forward commanding capability. TASS benefits include enhancing situational awareness, enabling increased autonomy, and providing near real-time command access for user platforms. As NASA Headquarters Space Communication and Navigation Office (SCaN) begins to move away from a centralized network architecture and towards a Space Mobile Network (SMN) that allows for user initiated services, autonomous navigation will be a key part of such a system. This paper explores how a TASS beacon service enables the Space Mobile Networking paradigm, what a typical user platform would require, and provides an in-depth analysis of several navigation scenarios and operations concepts.

  20. Japanese experience of evolving nurses' roles in changing social contexts.

    PubMed

    Kanbara, S; Yamamoto, Y; Sugishita, T; Nakasa, T; Moriguchi, I

    2017-06-01

    To discuss the evolving roles of Japanese nurses in meeting the goals and concerns of ongoing global sustainable development. Japanese nurses' roles have evolved as the needs of the country and the communities they served, changed over time. The comprehensive public healthcare services in Japan were provided by the cooperation of hospitals and public health nurses. The nursing profession is exploring ways to identify and systemize nursing skills and competencies that address global health initiatives for sustainable development goals. This paper is based on the summary of a symposium, (part of the 2015 annual meeting of the Japan Association for International Health) with panel members including experts from Japan's Official Development Assistance. The evolving role of nurses in response to national and international needs is illustrated by nursing practices from Japan. Japanese public health nurses have also assisted overseas healthcare plans. In recent catastrophes, Japanese nurses assumed the roles of community health coordinators for restoration and maintenance of public health. The Japanese experience shows that nursing professionals are best placed to work with community health issues, high-risk situations and vulnerable communities. Their cooperation can address current social needs and help global communities to transform our world. Nurses have tremendous potential to make transformative changes in health and bring about the necessary paradigm shift. They must be involved in global sustainable development goals, health policies and disaster risk management. A mutual understanding of global citizen and nurses will help to renew and strengthen their capacities. Nursing professionals can contribute effectively to achieve national and global health goals and make transformative changes. © 2017 International Council of Nurses.

  1. Application of aircraft navigation sensors to enhanced vision systems

    NASA Technical Reports Server (NTRS)

    Sweet, Barbara T.

    1993-01-01

    In this presentation, the applicability of various aircraft navigation sensors to enhanced vision system design is discussed. First, the accuracy requirements of the FAA for precision landing systems are presented, followed by the current navigation systems and their characteristics. These systems include Instrument Landing System (ILS), Microwave Landing System (MLS), Inertial Navigation, Altimetry, and Global Positioning System (GPS). Finally, the use of navigation system data to improve enhanced vision systems is discussed. These applications include radar image rectification, motion compensation, and image registration.

  2. Advancing Global Health - The Need for (Better) Social Science Comment on "Navigating Between Stealth Advocacy and Unconscious Dogmatism: The Challenge of Researching the Norms, Politics and Power of Global Health".

    PubMed

    Hanefeld, Johanna

    2016-02-06

    In his perspective "Navigating between stealth advocacy and unconscious dogmatism: the challenge of researching the norms, politics and power of global health," Ooms argues that actions taken in the field of global health are dependent not only on available resources, but on the normative premise that guides how these resources are spent. This comment sets out how the application of a predominately biomedical positivist research tradition in global health, has potentially limited understanding of the value judgements underlying decisions in the field. To redress this critical social science, including health policy analysis has much to offer, to the field of global health including on questions of governance. © 2016 by Kerman University of Medical Sciences.

  3. Doing Business in the Global Village: Japanese Professionals on EL Needs in Singapore

    ERIC Educational Resources Information Center

    Yoneda, Mitaka

    2015-01-01

    This paper presents an analysis of English language (EL) education from the perspectives of Japanese and non-Japanese professionals in Singapore, based on their experiences of "doing business" in Singapore. As established career business people, the perspectives of Japanese participants offer a retrospective evaluation of their…

  4. Almanac services for celestial navigation

    NASA Astrophysics Data System (ADS)

    Nelmes, S.; Whittaker, J.

    2015-08-01

    Celestial navigation remains a vitally important back up to Global Navigation Satellite Systems (GNSS) and relies on the use of almanac services. HM Nautical Almanac Office (HMNAO) provides a number of these services. The printed book, The Nautical Almanac, produced yearly and now available as an electronic publication, is continuously being improved, making use of the latest ideas and ephemerides to provide the user with their required data. HMNAO also produces NavPac, a software package that assists the user in calculating their position as well as providing additional navigational and astronomical tools. A new version of NavPac will be released in 2015 that will improve the user experience. The development of applications for mobile devices is also being considered. HMNAO continues to combine the latest improvements and theories of astrometry with the creation of books and software that best meet the needs of celestial navigation users.

  5. Navigation study for low-altitude Earth satellites

    NASA Technical Reports Server (NTRS)

    Pastor, P. R.; Fang, B. T.; Yee, C. P.

    1985-01-01

    This document describes several navigation studies for low-altitude Earth satellites. The use of Global Positioning System Navigation Package data for LANDSAT-5 orbit determination is evaluated. In addition, a navigation analysis for the proposed Tracking and Data Aquisition System is presented. This analysis, based on simulations employing one-way Doppler data, is used to determine the agreement between the Research and Development Goddard Trajectory Determination System and the Sequential Error Analysis Program results. Properties of several geopotential error models are studied and an exploratory study of orbit smoother process noise is presented.

  6. A Framework and Methodology for Navigating Disaster and Global Health in Crisis Literature

    PubMed Central

    Chan, Jennifer L.; Burkle, Frederick M.

    2013-01-01

    Both ‘disasters’ and ‘global health in crisis’ research has dramatically grown due to the ever-increasing frequency and magnitude of crises around the world. Large volumes of peer-reviewed literature are not only a testament to the field’s value and evolution, but also present an unprecedented outpouring of seemingly unmanageable information across a wide array of crises and disciplines. Disaster medicine, health and humanitarian assistance, global health and public health disaster literature all lie within the disaster and global health in crisis literature spectrum and are increasingly accepted as multidisciplinary and transdisciplinary disciplines. Researchers, policy makers, and practitioners now face a new challenge; that of accessing this expansive literature for decision-making and exploring new areas of research. Individuals are also reaching beyond the peer-reviewed environment to grey literature using search engines like Google Scholar to access policy documents, consensus reports and conference proceedings. What is needed is a method and mechanism with which to search and retrieve relevant articles from this expansive body of literature. This manuscript presents both a framework and workable process for a diverse group of users to navigate the growing peer-reviewed and grey disaster and global health in crises literature. Methods: Disaster terms from textbooks, peer-reviewed and grey literature were used to design a framework of thematic clusters and subject matter ‘nodes’. A set of 84 terms, selected from 143 curated terms was organized within each node reflecting topics within the disaster and global health in crisis literature. Terms were crossed with one another and the term ‘disaster’. The results were formatted into tables and matrices. This process created a roadmap of search terms that could be applied to the PubMed database. Each search in the matrix or table results in a listed number of articles. This process was applied to

  7. Can global navigation satellite system signals reveal the ecological attributes of forests?

    NASA Astrophysics Data System (ADS)

    Liu, Jingbin; Hyyppä, Juha; Yu, Xiaowei; Jaakkola, Anttoni; Liang, Xinlian; Kaartinen, Harri; Kukko, Antero; Zhu, Lingli; Wang, Yunsheng; Hyyppä, Hannu

    2016-08-01

    Forests have important impacts on the global carbon cycle and climate, and they are also related to a wide range of industrial sectors. Currently, one of the biggest challenges in forestry research is effectively and accurately measuring and monitoring forest variables, as the exploitation potential of forest inventory products largely depends on the accuracy of estimates and on the cost of data collection. A low-cost crowdsourcing solution is needed for forest inventory to collect forest variables. Here, we propose global navigation satellite system (GNSS) signals as a novel type of observables for predicting forest attributes and show the feasibility of utilizing GNSS signals for estimating important attributes of forest plots, including mean tree height, mean diameter at breast height, basal area, stem volume and tree biomass. The prediction accuracies of the proposed technique were better in boreal forest conditions than those of the conventional techniques of 2D remote sensing. More importantly, this technique provides a novel, cost-effective way of collecting large-scale forest measurements in the crowdsourcing context. This technique can be applied by, for example, harvesters or persons hiking or working in forests because GNSS devices are widely used, and the field operation of this technique is simple and does not require professional forestry skills.

  8. Relative Navigation of Formation Flying Satellites

    NASA Technical Reports Server (NTRS)

    Long, Anne; Kelbel, David; Lee, Taesul; Leung, Dominic; Carpenter, Russell; Gramling, Cheryl; Bauer, Frank (Technical Monitor)

    2002-01-01

    The Guidance, Navigation, and Control Center (GNCC) at Goddard Space Flight Center (GSFC) has successfully developed high-accuracy autonomous satellite navigation systems using the National Aeronautics and Space Administration's (NASA's) space and ground communications systems and the Global Positioning System (GPS). In addition, an autonomous navigation system that uses celestial object sensor measurements is currently under development and has been successfully tested using real Sun and Earth horizon measurements.The GNCC has developed advanced spacecraft systems that provide autonomous navigation and control of formation flyers in near-Earth, high-Earth, and libration point orbits. To support this effort, the GNCC is assessing the relative navigation accuracy achievable for proposed formations using GPS, intersatellite crosslink, ground-to-satellite Doppler, and celestial object sensor measurements. This paper evaluates the performance of these relative navigation approaches for three proposed missions with two or more vehicles maintaining relatively tight formations. High-fidelity simulations were performed to quantify the absolute and relative navigation accuracy as a function of navigation algorithm and measurement type. Realistically-simulated measurements were processed using the extended Kalman filter implemented in the GPS Enhanced Inboard Navigation System (GEONS) flight software developed by GSFC GNCC. Solutions obtained by simultaneously estimating all satellites in the formation were compared with the results obtained using a simpler approach based on differencing independently estimated state vectors.

  9. The Availability of Space Service for Inter-Satellite Links in Navigation Constellations

    PubMed Central

    Tang, Yinyin; Wang, Yueke; Chen, Jianyun

    2016-01-01

    Global navigation satellite systems (GNSS) are widely used in low Earth orbit (LEO) satellite navigation; however, their availability is poor for users in medium Earth orbits (MEO), and high Earth orbits (HEO). With the increasing demand for navigation from MEO and HEO users, the inadequate coverage of GNSS has emerged. Inter-satellite links (ISLs) are used for ranging and communication between navigation satellites and can also serve space users that are outside the navigation constellation. This paper aims to summarize their application method and analyze their service performance. The mathematical model of visibility is proposed and then the availability of time division ISLs is analyzed based on global grid points. The BeiDou navigation constellation is used as an example for numerical simulation. Simulation results show that the availability can be enhanced by scheduling more satellites and larger beams, while the presence of more users lowers the availability. The availability of navigation signals will be strengthened when combined with the signals from the ISLs. ISLs can improve the space service volume (SSV) of navigation constellations, and are therefore a promising method for navigation in MEO/HEO spacecraft. PMID:27548181

  10. Global, real-time ionosphere specification for end-user communication and navigation products

    NASA Astrophysics Data System (ADS)

    Tobiska, W.; Carlson, H. C.; Schunk, R. W.; Thompson, D. C.; Sojka, J. J.; Scherliess, L.; Zhu, L.; Gardner, L. C.

    2010-12-01

    Space weather’s effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun’s photons, particles, and fields. Of the space environment domains that are affected by space weather, the ionosphere is the key region that affects communication and navigation systems. The Utah State University (USU) Space Weather Center (SWC) is a developer and producer of commercial space weather applications. A key system-level component for providing timely information about the effects of space weather is the Global Assimilation of Ionospheric Measurements (GAIM) system. GAIM, operated by SWC, improves real-time communication and navigation systems by continuously ingesting up to 10,000 slant TEC measurements every 15-minutes from approximately 500 stations. Using a Kalman filter, the background output from the physics-based Ionosphere Forecast Model (IFM) is adjusted to more accurately represent the actual ionosphere. An improved ionosphere leads to more useful derivative products. For example, SWC runs operational code, using GAIM, to calculate and report the global radio high frequency (HF) signal strengths for 24 world cities. This product is updated every 15 minutes at http://spaceweather.usu.edu and used by amateur radio operators. SWC also developed and provides through Apple iTunes the widely used real-time space weather iPhone app called SpaceWx for public space weather education. SpaceWx displays the real-time solar, heliosphere, magnetosphere, thermosphere, and ionosphere drivers to changes in the total electron content, for example. This smart phone app is tip of the “iceberg” of automated systems that provide space weather data; it permits instant understanding of the environment surrounding Earth as it dynamically changes. SpaceWx depends upon a distributed network that connects satellite and ground-based data streams with algorithms to quickly process the measurements into geophysical data, incorporate those

  11. A Leapfrog Navigation System

    NASA Astrophysics Data System (ADS)

    Opshaug, Guttorm Ringstad

    There are times and places where conventional navigation systems, such as the Global Positioning System (GPS), are unavailable due to anything from temporary signal occultations to lack of navigation system infrastructure altogether. The goal of the Leapfrog Navigation System (LNS) is to provide localized positioning services for such cases. The concept behind leapfrog navigation is to advance a group of navigation units teamwise into an area of interest. In a practical 2-D case, leapfrogging assumes known initial positions of at least two currently stationary navigation units. Two or more mobile units can then start to advance into the area of interest. The positions of the mobiles are constantly being calculated based on cross-range distance measurements to the stationary units, as well as cross-ranges among the mobiles themselves. At some point the mobile units stop, and the stationary units are released to move. This second team of units (now mobile) can then overtake the first team (now stationary) and travel even further towards the common goal of the group. Since there always is one stationary team, the position of any unit can be referenced back to the initial positions. Thus, LNS provides absolute positioning. I developed navigation algorithms needed to solve leapfrog positions based on cross-range measurements. I used statistical tools to predict how position errors would grow as a function of navigation unit geometry, cross-range measurement accuracy and previous position errors. Using this knowledge I predicted that a 4-unit Leapfrog Navigation System using 100 m baselines and 200 m leap distances could travel almost 15 km before accumulating absolute position errors of 10 m (1sigma). Finally, I built a prototype leapfrog navigation system using 4 GPS transceiver ranging units. I placed the 4 units in the vertices a 10m x 10m square, and leapfrogged the group 20 meters forwards, and then back again (40 m total travel). Average horizontal RMS position

  12. Analysis of key technologies in geomagnetic navigation

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoming; Zhao, Yan

    2008-10-01

    Because of the costly price and the error accumulation of high precise Inertial Navigation Systems (INS) and the vulnerability of Global Navigation Satellite Systems (GNSS), the geomagnetic navigation technology, a passive autonomous navigation method, is paid attention again. Geomagnetic field is a natural spatial physical field, and is a function of position and time in near earth space. The navigation technology based on geomagnetic field is researched in a wide range of commercial and military applications. This paper presents the main features and the state-of-the-art of Geomagnetic Navigation System (GMNS). Geomagnetic field models and reference maps are described. Obtaining, modeling and updating accurate Anomaly Magnetic Field information is an important step for high precision geomagnetic navigation. In addition, the errors of geomagnetic measurement using strapdown magnetometers are analyzed. The precise geomagnetic data is obtained by means of magnetometer calibration and vehicle magnetic field compensation. According to the measurement data and reference map or model of geomagnetic field, the vehicle's position and attitude can be obtained using matching algorithm or state-estimating method. The tendency of geomagnetic navigation in near future is introduced at the end of this paper.

  13. Integrating Communication and Navigation: Next Generation Broadcast Service (NGBS)

    NASA Technical Reports Server (NTRS)

    Donaldson, Jennifer

    2017-01-01

    NASA Goddard has been investing in technology demonstrations of a beacon service, now called Next Generation Broadcast Services (NGBS). NGBS is a global, space-based, communications and navigation service for users of Global Navigation Satellite Systems (GNSS) and the Tracking and Data Relay Satellite System (TDRSS). NGBS will provide an S-band beacon messaging source and radio navigation available to users at orbital altitudes 1400 km and below, increasing the autonomy and resiliency of onboard communication and navigation. NGBS will deliver both one-way radiometric (Doppler and pseudorange) and fast forward data transport services to users. Portions of the overall forward data volume will be allocated for fixed message types while the remaining data volume will be left for user forward command data. The NGBS signal will reside within the 2106.43 MHz spectrum currently allocated for the Space Networks multiple access forward (MAF) service and a live service demonstration is currently being planned via the 2nd and 3rd generation TDRS satellites.

  14. Results from Navigator GPS Flight Testing for the Magnetospheric MultiScale Mission

    NASA Technical Reports Server (NTRS)

    Lulich, Tyler D.; Bamford, William A.; Wintermitz, Luke M. B.; Price, Samuel R.

    2012-01-01

    The recent delivery of the first Goddard Space Flight Center (GSFC) Navigator Global Positioning System (GPS) receivers to the Magnetospheric MultiScale (MMS) mission spacecraft is a high water mark crowning a decade of research and development in high-altitude space-based GPS. Preceding MMS delivery, the engineering team had developed receivers to support multiple missions and mission studies, such as Low Earth Orbit (LEO) navigation for the Global Precipitation Mission (GPM), above the constellation navigation for the Geostationary Operational Environmental Satellite (GOES) proof-of-concept studies, cis-Lunar navigation with rapid re-acquisition during re-entry for the Orion Project and an orbital demonstration on the Space Shuttle during the Hubble Servicing Mission (HSM-4).

  15. Reimagining Japanese Education: Borders, Transfers, Circulations, and the Comparative

    ERIC Educational Resources Information Center

    Willis, David Blake, Ed.; Rappleye, Jeremy, Ed.

    2011-01-01

    Sparked by the confluence of accelerating domestic transformation and increasingly explicit impacts from "globalization", the Japanese education system has undergone tremendous changes during the turbulence of the past decade. This volume, which brings together some of the foremost scholars in the field of Japanese education, analyzes…

  16. Sentinel lymph node navigation surgery for gastric cancer: Does it really benefit the patient?

    PubMed

    Tani, Tohru; Sonoda, Hiromichi; Tani, Masaji

    2016-03-14

    Sentinel lymph node (SLN) navigation surgery is accepted as a standard treatment procedure for malignant melanoma and breast cancer. However, the benefit of reduced lymphadenectomy based on SLN examination remains unclear in cases of gastric cancer. Here, we review previous studies to determine whether SLN navigation surgery is beneficial for gastric cancer patients. Recently, a large-scale prospective study from the Japanese Society of Sentinel Node Navigation Surgery reported that the endoscopic dual tracer method, using a dye and radioisotope for SLN biopsy, was safe and effective when applied to cases of superficial and relatively small gastric cancers. SLN mapping with SLN basin dissection was preferred for early gastric cancer since it is minimally invasive. However, previous studies reported that limited gastrectomy and lymphadenectomy may not improve the patient's postoperative quality of life (QOL). As a result, the benefit of SLN navigation surgery for gastric cancer patients, in terms of their QOL, is limited. Thus, endoscopic and laparoscopic limited gastrectomy combined with SLN navigation surgery has the potential to become the standard minimally invasive surgery in early gastric cancer.

  17. Evaluation of Hardware and Software for a Small Autonomous Underwater Vehicle Navigation System (SANS)

    DTIC Science & Technology

    1994-09-01

    Hyslop , G.L., Schieber, G.E., Schwartz, M.K., "Automated Mission Planning for the Standoff Land Attack Missile (SLAM)", Proceedings of the...1993, pp. 277-290. [PARK80] Parkinson, B.W., "Overview", Global Positioning System, Vol. 1, The Institute of Navigation, Washington, D.C., 1980 , pp...Navigation Message", Global Positioning System, Vol. 1, The Institute of Navigation, Washington, D.C., 1980 , pp. 55-73. 139 [WOOD851 Wooden, W. H

  18. Signal Strength-Based Global Navigation Satellite System Performance Assessment in the Space Service Volume

    NASA Technical Reports Server (NTRS)

    Welch, Bryan W.

    2016-01-01

    NASA is participating in the International Committee on Global Navigation Satellite Systems (GNSS) (ICG)'s efforts towards demonstrating the benefits to the space user in the Space Service Volume (SSV) when a multi-GNSS solution space approach is utilized. The ICG Working Group: Enhancement of GNSS Performance, New Services and Capabilities has started a three phase analysis initiative as an outcome of recommendations at the ICG-10 meeting, in preparation for the ICG-11 meeting. The second phase of that increasing complexity and fidelity analysis initiative is based on augmenting the Phase 1 pure geometrical approach with signal strength-based limitations to determine if access is valid. The second phase of analysis has been completed, and the results are documented in this paper.

  19. Autonomous Relative Navigation for Formation-Flying Satellites Using GPS

    NASA Technical Reports Server (NTRS)

    Gramling, Cheryl; Carpenter, J. Russell; Long, Anne; Kelbel, David; Lee, Taesul

    2000-01-01

    The Goddard Space Flight Center is currently developing advanced spacecraft systems to provide autonomous navigation and control of formation flyers. This paper discusses autonomous relative navigation performance for a formation of four eccentric, medium-altitude Earth-orbiting satellites using Global Positioning System (GPS) Standard Positioning Service (SPS) and "GPS-like " intersatellite measurements. The performance of several candidate relative navigation approaches is evaluated. These analyses indicate that an autonomous relative navigation position accuracy of 1meter root-mean-square can be achieved by differencing high-accuracy filtered solutions if only measurements from common GPS space vehicles are used in the independently estimated solutions.

  20. Method for Assessing Impacts of Global Sea Level Rise on Navigation Gate Operations

    NASA Astrophysics Data System (ADS)

    Obrien, P. S.; White, K. D.; Friedman, D.

    2015-12-01

    Coastal navigation infrastructure may be highly vulnerable to changing climate, including increasing sea levels and altered frequency and intensity of coastal storms. Future gate operations impacted by global sea level rise will pose unique challenges, especially for structures 50 years and older. Our approach is to estimate future changes in gate operational frequency based on a bootstrapping method to forecast future water levels. A case study will be presented to determine future changes in frequency of operations over the next 100 years. A statistical model in the R programming language was developed to apply future sea level rise projections using the three sea level rise scenarios prescribed by USACE Engineer Regulation ER 1100-2-8162. Information derived from the case study will help forecast changes in operational costs caused by increased gate operations and inform timing of decisions on adaptation measures.

  1. Global-minded Human Resources and Expectations for Universities

    NASA Astrophysics Data System (ADS)

    Inoue, Hiroshi

    Under the globalized economy, Japanese corporations compete with rivals of the western countries and emerging economies. And domestically, they face with deflation, falling birth-rate, an aging society, and shrinking market. So they need to foster and retain global-minded human resources who can play an active role in global business, and who can drive innovation. What Japanese corporations expect for global-minded human resources are ability to meet challenges, ability to think independently free from conventional wisdom, communication skills in foreign languages, interests in foreign cultures and different values, and so on. In order to foster global-minded human resources, Keidanren work with the 13 universities selected under the Japanese Government‧s “Global 30” projects to undertake “Global-minded Human Resources Development Projects” .

  2. Global Navigation Satellite Systems and Space Weather: Building upon the International Space Weather Initiative

    NASA Astrophysics Data System (ADS)

    Gadimova, S. H.; Haubold, H. J.

    2014-01-01

    Globally there is growing interest in better unders tanding solar-terrestrial interactions, particularly patterns and trends in space weather. This is not only for scientific reasons, but also because the reliable operation of ground-based and space-based assets and infrastructures is increasingly dependent on their robustness against the detrimental effects of space weather. Consequently, in 2009, the United Nations Committee on the Peaceful Uses of Outer Space (COPUOS) proposed the International Space Weather Initiative (ISWI), as a follow-up activity to the International Heliophysical Year 2007 (IHY2007), to be implemented under a three-year workplan from 2010 to 2012 (UNGA Document, A/64/20). All achievements of international cooperation and coordination for ISWI, including instrumentation, data analysis, modelling, education, training and public outreach, are made a vailable through the ISWI Newsletter and the ISWI Website (http://www.iswi-secretariat.org/). Since the last solar maximum in 2000, societal dependence on global navigation satellite system (GNSS) has increased substantially. This situation has brought increasing attention to the subject of space weather and its effects on GNSS systems and users. Results concerning the impact of space weather on GNSS are made available at the Information Portal (www.unoosa.org) of the International Committee on Global Navigati on Satellite Systems (ICG). This paper briefly reviews the curre nt status of ISWI with regard to GNSS.

  3. A Self-Tuning Kalman Filter for Autonomous Navigation using the Global Positioning System (GPS)

    NASA Technical Reports Server (NTRS)

    Truong, S. H.

    1999-01-01

    Most navigation systems currently operated by NASA are ground-based, and require extensive support to produce accurate results. Recently developed systems that use Kalman filter and GPS data for orbit determination greatly reduce dependency on ground support, and have potential to provide significant economies for NASA spacecraft navigation. These systems, however, still rely on manual tuning from analysts. A sophisticated neuro-fuzzy component fully integrated with the flight navigation system can perform the self-tuning capability for the Kalman filter and help the navigation system recover from estimation errors in real time.

  4. Japanese encephalitis in a French traveler to Nepal.

    PubMed

    Lagarde, S; Lagier, J-C; Charrel, R; Quérat, G; Vanhomwegen, J; Desprès, P; Pelletier, J; Kaphan, E

    2014-02-01

    Japanese encephalitis is frequent in Asia, with a severe prognosis, but rare in travelers. Culex mosquitoes transmit Japanese encephalitis virus. Risk factors are destination, duration of stay, summer and fall seasons, outdoor activities, and type of accommodation. We report the case of a French traveler to Nepal with neutralization-based serological confirmed Japanese encephalitis. He presented classical clinical (viral syndrome before an encephalitis status with behavioral disorder, global hypotonia, mutism, movement disorders, seizure, and coma), radiological (lesions of thalami, cortico-spinal tracts, and brainstem) and biological features (lymphocytic meningitis). Nowadays, the presence of Japanese encephalitis virus in Nepal, including mountain areas, is established but Japanese encephalitis remains rare in travelers returning from this area and neurologist physicians need to become familiar with this. We recommend vaccination for travelers spending a long period of time in Nepal and having at-risk outdoor activities.

  5. Evaluation of Relative Navigation Algorithms for Formation-Flying Satellites

    NASA Technical Reports Server (NTRS)

    Kelbel, David; Lee, Taesul; Long, Anne; Carpenter, J. Russell; Gramling, Cheryl

    2001-01-01

    Goddard Space Flight Center is currently developing advanced spacecraft systems to provide autonomous navigation and control of formation flyers. This paper discusses autonomous relative navigation performance for formations in eccentric, medium, and high-altitude Earth orbits using Global Positioning System (GPS) Standard Positioning Service (SPS) and intersatellite range measurements. The performance of several candidate relative navigation approaches is evaluated. These analyses indicate that the relative navigation accuracy is primarily a function of the frequency of acquisition and tracking of the GPS signals. A relative navigation position accuracy of 0.5 meters root-mean-square (RMS) can be achieved for formations in medium-attitude eccentric orbits that can continuously track at least one GPS signal. A relative navigation position accuracy of better than 75 meters RMS can be achieved for formations in high-altitude eccentric orbits that have sparse tracking of the GPS signals. The addition of round-trip intersatellite range measurements can significantly improve relative navigation accuracy for formations with sparse tracking of the GPS signals.

  6. Optimal multiguidance integration in insect navigation.

    PubMed

    Hoinville, Thierry; Wehner, Rüdiger

    2018-03-13

    In the last decades, desert ants have become model organisms for the study of insect navigation. In finding their way, they use two major navigational routines: path integration using a celestial compass and landmark guidance based on sets of panoramic views of the terrestrial environment. It has been claimed that this information would enable the insect to acquire and use a centralized cognitive map of its foraging terrain. Here, we present a decentralized architecture, in which the concurrently operating path integration and landmark guidance routines contribute optimally to the directions to be steered, with "optimal" meaning maximizing the certainty (reliability) of the combined information. At any one time during its journey, the animal computes a path integration (global) vector and landmark guidance (local) vector, in which the length of each vector is proportional to the certainty of the individual estimates. Hence, these vectors represent the limited knowledge that the navigator has at any one place about the direction of the goal. The sum of the global and local vectors indicates the navigator's optimal directional estimate. Wherever applied, this decentralized model architecture is sufficient to simulate the results of quite a number of diverse cue-conflict experiments, which have recently been performed in various behavioral contexts by different authors in both desert ants and honeybees. They include even those experiments that have deliberately been designed by former authors to strengthen the evidence for a metric cognitive map in bees.

  7. Navigation Architecture for a Space Mobile Network

    NASA Technical Reports Server (NTRS)

    Valdez, Jennifer E.; Ashman, Benjamin; Gramling, Cheryl; Heckler, Gregory W.; Carpenter, Russell

    2016-01-01

    The Tracking and Data Relay Satellite System (TDRSS) Augmentation Service for Satellites (TASS) is a proposed beacon service to provide a global, space based GPS augmentation service based on the NASA Global Differential GPS (GDGPS) System. The TASS signal will be tied to the GPS time system and usable as an additional ranging and Doppler radiometric source. Additionally, it will provide data vital to autonomous navigation in the near Earth regime, including space weather information, TDRS ephemerides, Earth Orientation Parameters (EOP), and forward commanding capability. TASS benefits include enhancing situational awareness, enabling increased autonomy, and providing near real-time command access for user platforms. As NASA Headquarters' Space Communication and Navigation Office (SCaN) begins to move away from a centralized network architecture and towards a Space Mobile Network (SMN) that allows for user initiated services, autonomous navigation will be a key part of such a system. This paper explores how a TASS beacon service enables the Space Mobile Networking paradigm, what a typical user platform would require, and provides an in-depth analysis of several navigation scenarios and operations concepts. This paper provides an overview of the TASS beacon and its role within the SMN and user community. Supporting navigation analysis is presented for two user mission scenarios: an Earth observing spacecraft in low earth orbit (LEO), and a highly elliptical spacecraft in a lunar resonance orbit. These diverse flight scenarios indicate the breadth of applicability of the TASS beacon for upcoming users within the current network architecture and in the SMN.

  8. 76 FR 50808 - Airborne Supplemental Navigation Equipment Using the Global Positioning System (GPS)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-16

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Airborne Supplemental Navigation.... ACTION: Notice of intent to cancel Technical Standard Order (TSO)- C129a, Airborne Supplemental... notice announces the FAA's intent to cancel TSO-C129a, Airborne Supplemental Navigation Equipment Using...

  9. Tightly Coupled Inertial Navigation System/Global Positioning System (TCMIG)

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.; Jackson, Kurt (Technical Monitor)

    2002-01-01

    Many NASA applications planned for execution later this decade are seeking high performance, miniaturized, low power Inertial Management Units (IMU). Much research has gone into Micro-Electro-Mechanical System (MEMS) over the past decade as a solution to these needs. While MEMS devices have proven to provide high accuracy acceleration measurements, they have not yet proven to have the accuracy required by many NASA missions in rotational measurements. Therefore, a new solution has been formulated integrating the best of all IMU technologies to address these mid-term needs in the form of a Tightly Coupled Micro Inertial Navigation System (INS)/Global Positioning System (GPS) (TCMIG). The TCMIG consists of an INS and a GPS tightly coupled by a Kalman filter executing on an embedded Field Programmable Gate Array (FPGA) processor. The INS consists of a highly integrated Interferometric Fiber Optic Gyroscope (IFOG) and a MEMS accelerometer. The IFOG utilizes a tightly wound fiber coil to reduce volume and the high level of integration and advanced optical components to reduce power. The MEMS accelerometer utilizes a newly developed deep etch process to increase the proof mass and yield a highly accurate accelerometer. The GPS receiver consists of a low power miniaturized version of the Blackjack receiver. Such an IMU configuration is ideal to meet the mid-term needs of the NASA Science Enterprises and the new launch vehicles being developed for the Space Launch Initiative (SLI).

  10. Navigation systems. [for interplanetary flight

    NASA Technical Reports Server (NTRS)

    Jordan, J. F.

    1985-01-01

    The elements of the measurement and communications network comprising the global deep space navigation system (DSN) for NASA missions are described. Among the measurement systems discussed are: VLBI, two-way Doppler and range measurements, and optical measurements carried out on board the spacecraft. Processing of navigation measurement is carried out using two modules: an N-body numerical integration of the trajectory (and state transition partial derivatives) based on pre-guessed initial conditions; and partial derivatives of simulated observables corresponding to each actual observation. Calculations of velocity correction parameters is performed by precise modelling of all physical phenomena influencing the observational measurements, including: planetary motions; tracking station locations, gravity field structure, and transmission media effects. Some of the contributions to earth-relative orbit estimate errors for the Doppler/range system on board Voyager are discussed in detail. A line drawing of the DSN navigation system is provided.

  11. Next Generation Global Navigation Satellite Systems (GNSS) Processing at NASA CDDIS

    NASA Astrophysics Data System (ADS)

    Michael, B. P.; Noll, C. E.

    2016-12-01

    The Crustal Dynamics Data Information System (CDDIS) has been providing access to space geodesy and related data sets since 1982, and in particular, Global Navigation Satellite Systems (GNSS) data and derived products since 1992. The CDDIS became one of the Earth Observing System Data and Information System (EOSDIS) archive centers in 2007. As such, CDDIS has evolved to offer a broad range of data ingest services, from data upload, quality control, documentation, metadata extraction, and ancillary information. With a growing understanding of the needs and goals of its science users CDDIS continues to improve these services. Due to the importance of GNSS data and derived products in scientific studies over the last decade, CDDIS has seen its ingest volume explode to over 30 million files per year or more than one file per second from over hundreds of simultaneous data providers. In order to accommodate this increase and to streamline operations and fully automate the workflow, CDDIS has recently updated the data submission process and GNSS processing. This poster will cover this new ingest infrastructure, workflow, and the agile techniques applied in its development and current operations.

  12. Autonomous GPS/INS navigation experiment for Space Transfer Vehicle

    NASA Technical Reports Server (NTRS)

    Upadhyay, Triveni N.; Cotterill, Stephen; Deaton, A. W.

    1993-01-01

    An experiment to validate the concept of developing an autonomous integrated spacecraft navigation system using on board Global Positioning System (GPS) and Inertial Navigation System (INS) measurements is described. The feasibility of integrating GPS measurements with INS measurements to provide a total improvement in spacecraft navigation performance, i.e. improvement in position, velocity and attitude information, was previously demonstrated. An important aspect of this research is the automatic real time reconfiguration capability of the system designed to respond to changes in a spacecraft mission under the control of an expert system.

  13. Autonomous GPS/INS navigation experiment for Space Transfer Vehicle

    NASA Astrophysics Data System (ADS)

    Upadhyay, Triveni N.; Cotterill, Stephen; Deaton, A. W.

    1993-07-01

    An experiment to validate the concept of developing an autonomous integrated spacecraft navigation system using on board Global Positioning System (GPS) and Inertial Navigation System (INS) measurements is described. The feasibility of integrating GPS measurements with INS measurements to provide a total improvement in spacecraft navigation performance, i.e. improvement in position, velocity and attitude information, was previously demonstrated. An important aspect of this research is the automatic real time reconfiguration capability of the system designed to respond to changes in a spacecraft mission under the control of an expert system.

  14. Autonomous Navigation Using Celestial Objects

    NASA Technical Reports Server (NTRS)

    Folta, David; Gramling, Cheryl; Leung, Dominic; Belur, Sheela; Long, Anne

    1999-01-01

    In the twenty-first century, National Aeronautics and Space Administration (NASA) Enterprises envision frequent low-cost missions to explore the solar system, observe the universe, and study our planet. Satellite autonomy is a key technology required to reduce satellite operating costs. The Guidance, Navigation, and Control Center (GNCC) at the Goddard Space Flight Center (GSFC) currently sponsors several initiatives associated with the development of advanced spacecraft systems to provide autonomous navigation and control. Autonomous navigation has the potential both to increase spacecraft navigation system performance and to reduce total mission cost. By eliminating the need for routine ground-based orbit determination and special tracking services, autonomous navigation can streamline spacecraft ground systems. Autonomous navigation products can be included in the science telemetry and forwarded directly to the scientific investigators. In addition, autonomous navigation products are available onboard to enable other autonomous capabilities, such as attitude control, maneuver planning and orbit control, and communications signal acquisition. Autonomous navigation is required to support advanced mission concepts such as satellite formation flying. GNCC has successfully developed high-accuracy autonomous navigation systems for near-Earth spacecraft using NASA's space and ground communications systems and the Global Positioning System (GPS). Recently, GNCC has expanded its autonomous navigation initiative to include satellite orbits that are beyond the regime in which use of GPS is possible. Currently, GNCC is assessing the feasibility of using standard spacecraft attitude sensors and communication components to provide autonomous navigation for missions including: libration point, gravity assist, high-Earth, and interplanetary orbits. The concept being evaluated uses a combination of star, Sun, and Earth sensor measurements along with forward-link Doppler

  15. Cloud Absorption Radiometer Autonomous Navigation System - CANS

    NASA Technical Reports Server (NTRS)

    Kahle, Duncan; Gatebe, Charles; McCune, Bill; Hellwig, Dustan

    2013-01-01

    CAR (cloud absorption radiometer) acquires spatial reference data from host aircraft navigation systems. This poses various problems during CAR data reduction, including navigation data format, accuracy of position data, accuracy of airframe inertial data, and navigation data rate. Incorporating its own navigation system, which included GPS (Global Positioning System), roll axis inertia and rates, and three axis acceleration, CANS expedites data reduction and increases the accuracy of the CAR end data product. CANS provides a self-contained navigation system for the CAR, using inertial reference and GPS positional information. The intent of the software application was to correct the sensor with respect to aircraft roll in real time based upon inputs from a precision navigation sensor. In addition, the navigation information (including GPS position), attitude data, and sensor position details are all streamed to a remote system for recording and later analysis. CANS comprises a commercially available inertial navigation system with integral GPS capability (Attitude Heading Reference System AHRS) integrated into the CAR support structure and data system. The unit is attached to the bottom of the tripod support structure. The related GPS antenna is located on the P-3 radome immediately above the CAR. The AHRS unit provides a RS-232 data stream containing global position and inertial attitude and velocity data to the CAR, which is recorded concurrently with the CAR data. This independence from aircraft navigation input provides for position and inertial state data that accounts for very small changes in aircraft attitude and position, sensed at the CAR location as opposed to aircraft state sensors typically installed close to the aircraft center of gravity. More accurate positional data enables quicker CAR data reduction with better resolution. The CANS software operates in two modes: initialization/calibration and operational. In the initialization/calibration mode

  16. Japanese encephalitis

    PubMed Central

    Yun, Sang-Im; Lee, Young-Min

    2014-01-01

    Japanese encephalitis (JE) is an infectious disease of the central nervous system caused by Japanese encephalitis virus (JEV), a zoonotic mosquito-borne flavivirus. JEV is prevalent in much of Asia and the Western Pacific, with over 4 billion people living at risk of infection. In the absence of antiviral intervention, vaccination is the only strategy to develop long-term sustainable protection against JEV infection. Over the past half-century, a mouse brain-derived inactivated vaccine has been used internationally for active immunization. To date, however, JEV is still a clinically important, emerging, and re-emerging human pathogen of global significance. In recent years, production of the mouse brain-derived vaccine has been discontinued, but 3 new cell culture-derived vaccines are available in various parts of the world. Here we review current aspects of JEV biology, summarize the 4 types of JEV vaccine, and discuss the potential of an infectious JEV cDNA technology for future vaccine development. PMID:24161909

  17. Study on UKF based federal integrated navigation for high dynamic aviation

    NASA Astrophysics Data System (ADS)

    Zhao, Gang; Shao, Wei; Chen, Kai; Yan, Jie

    2011-08-01

    High dynamic aircraft is a very attractive new generation vehicles, in which provides near space aviation with large flight envelope both speed and altitude, for example the hypersonic vehicles. The complex flight environments for high dynamic vehicles require high accuracy and stability navigation scheme. Since the conventional Strapdown Inertial Navigation System (SINS) and Global Position System (GPS) federal integrated scheme based on EKF (Extended Kalman Filter) is invalidation in GPS single blackout situation because of high speed flight, a new high precision and stability integrated navigation approach is presented in this paper, in which the SINS, GPS and Celestial Navigation System (CNS) is combined as a federal information fusion configuration based on nonlinear Unscented Kalman Filter (UKF) algorithm. Firstly, the new integrated system state error is modeled. According to this error model, the SINS system is used as the navigation solution mathematic platform. The SINS combine with GPS constitute one error estimation filter subsystem based on UKF to obtain local optimal estimation, and the SINS combine with CNS constitute another error estimation subsystem. A non-reset federated configuration filter based on partial information is proposed to fuse two local optimal estimations to get global optimal error estimation, and the global optimal estimation is used to correct the SINS navigation solution. The χ 2 fault detection method is used to detect the subsystem fault, and the fault subsystem is isolation through fault interval to protect system away from the divergence. The integrated system takes advantages of SINS, GPS and CNS to an immense improvement for high accuracy and reliably high dynamic navigation application. Simulation result shows that federated fusion of using GPS and CNS to revise SINS solution is reasonable and availably with good estimation performance, which are satisfied with the demands of high dynamic flight navigation. The UKF is

  18. Autonomous Navigation Improvements for High-Earth Orbiters Using GPS

    NASA Technical Reports Server (NTRS)

    Long, Anne; Kelbel, David; Lee, Taesul; Garrison, James; Carpenter, J. Russell; Bauer, F. (Technical Monitor)

    2000-01-01

    The Goddard Space Flight Center is currently developing autonomous navigation systems for satellites in high-Earth orbits where acquisition of the GPS signals is severely limited This paper discusses autonomous navigation improvements for high-Earth orbiters and assesses projected navigation performance for these satellites using Global Positioning System (GPS) Standard Positioning Service (SPS) measurements. Navigation performance is evaluated as a function of signal acquisition threshold, measurement errors, and dynamic modeling errors using realistic GPS signal strength and user antenna models. These analyses indicate that an autonomous navigation position accuracy of better than 30 meters root-mean-square (RMS) can be achieved for high-Earth orbiting satellites using a GPS receiver with a very stable oscillator. This accuracy improves to better than 15 meters RMS if the GPS receiver's signal acquisition threshold can be reduced by 5 dB-Hertz to track weaker signals.

  19. Local Spirit, Global Knowledge: A Japanese Approach to Knowledge Development in International Cooperation.

    ERIC Educational Resources Information Center

    Sawamura, Nobuhide

    2002-01-01

    Examines the contribution Japan can make to major debates about development and aid. Discusses Japan's history of development and aid receipt. Argues that it is important to understand the crucial role played by Japanese cultural values. Emphasizes that the Japanese tradition of understanding knowledge is different from other aid providing…

  20. Libration Point Navigation Concepts Supporting the Vision for Space Exploration

    NASA Technical Reports Server (NTRS)

    Carpenter, J. Russell; Folta, David C.; Moreau, Michael C.; Quinn, David A.

    2004-01-01

    This work examines the autonomous navigation accuracy achievable for a lunar exploration trajectory from a translunar libration point lunar navigation relay satellite, augmented by signals from the Global Positioning System (GPS). We also provide a brief analysis comparing the libration point relay to lunar orbit relay architectures, and discuss some issues of GPS usage for cis-lunar trajectories.

  1. Evaluation of Design Assurance Regulations for Safety of Space Navigation Services

    NASA Astrophysics Data System (ADS)

    Ratti, B.; Sarno, M.; De Andreis, C.

    2005-12-01

    The European Space Agency (ESA), the European Community (EC), and the European Organisation for the Safety of Air Navigation (Eurocontrol) are contributing to the development of a Global positioning and Navigation Satellite System, known as GNSS. The development programme is carried out in two main steps:• GNSS-1: the first-generation system, based on signals received from the GPS (USA) and GLONASS (Russia) constellations, and augmentation systems like EGNOS (European Geostationary Navigation Overlay Service)• GNSS-2: the second-generation system, that will achieve the ultimate objective of European sovereignty for position determination, navigation and time dissemination. This system, named Galileo, comprises a global space and ground control infrastructure.The Galileo navigation signal will be used in the frame of safety-critical transport applications, thus it is necessary to assess the space safety assurance activity against the civil safety regulations and safety management system.. RTCA DO-254 and IEC 61508 standards, considered as part of best practice engineering references, for the development of safety- related systems in most applications, were selected during phases B2 and C0 of the Galileo project for this purpose.

  2. Private Graphs - Access Rights on Graphs for Seamless Navigation

    NASA Astrophysics Data System (ADS)

    Dorner, W.; Hau, F.; Pagany, R.

    2016-06-01

    After the success of GNSS (Global Navigational Satellite Systems) and navigation services for public streets, indoor seems to be the next big development in navigational services, relying on RTLS - Real Time Locating Services (e.g. WIFI) and allowing seamless navigation. In contrast to navigation and routing services on public streets, seamless navigation will cause an additional challenge: how to make routing data accessible to defined users or restrict access rights for defined areas or only to parts of the graph to a defined user group? The paper will present case studies and data from literature, where seamless and especially indoor navigation solutions are presented (hospitals, industrial complexes, building sites), but the problem of restricted access rights was only touched from a real world, but not a technical perspective. The analysis of case studies will show, that the objective of navigation and the different target groups for navigation solutions will demand well defined access rights and require solutions, how to make only parts of a graph to a user or application available to solve a navigational task. The paper will therefore introduce the concept of private graphs, which is defined as a graph for navigational purposes covering the street, road or floor network of an area behind a public street and suggest different approaches how to make graph data for navigational purposes available considering access rights and data protection, privacy and security issues as well.

  3. Positional Accuracy of Airborne Integrated Global Positioning and Inertial Navigation Systems for Mapping in Glen Canyon, Arizona

    USGS Publications Warehouse

    Sanchez, Richard D.; Hothem, Larry D.

    2002-01-01

    High-resolution airborne and satellite image sensor systems integrated with onboard data collection based on the Global Positioning System (GPS) and inertial navigation systems (INS) may offer a quick and cost-effective way to gather accurate topographic map information without ground control or aerial triangulation. The Applanix Corporation?s Position and Orientation Solutions for Direct Georeferencing of aerial photography was used in this project to examine the positional accuracy of integrated GPS/INS for terrain mapping in Glen Canyon, Arizona. The research application in this study yielded important information on the usefulness and limits of airborne integrated GPS/INS data-capture systems for mapping.

  4. Autonomous navigation system based on GPS and magnetometer data

    NASA Technical Reports Server (NTRS)

    Julie, Thienel K. (Inventor); Richard, Harman R. (Inventor); Bar-Itzhack, Itzhack Y. (Inventor)

    2004-01-01

    This invention is drawn to an autonomous navigation system using Global Positioning System (GPS) and magnetometers for low Earth orbit satellites. As a magnetometer is reliable and always provides information on spacecraft attitude, rate, and orbit, the magnetometer-GPS configuration solves GPS initialization problem, decreasing the convergence time for navigation estimate and improving the overall accuracy. Eventually the magnetometer-GPS configuration enables the system to avoid costly and inherently less reliable gyro for rate estimation. Being autonomous, this invention would provide for black-box spacecraft navigation, producing attitude, orbit, and rate estimates without any ground input with high accuracy and reliability.

  5. Cultural variations in global versus local processing: a developmental perspective.

    PubMed

    Oishi, Shigehiro; Jaswal, Vikram K; Lillard, Angeline S; Mizokawa, Ai; Hitokoto, Hidefumi; Tsutsui, Yoshiro

    2014-12-01

    We conducted 3 studies to explore cultural differences in global versus local processing and their developmental trajectories. In Study 1 (N = 363), we found that Japanese college students were less globally oriented in their processing than American or Argentine participants. We replicated this effect in Study 2 (N = 1,843) using a nationally representative sample of Japanese and American adults ages 20 to 69, and found further that adults in both cultures became more globally oriented with age. In Study 3 (N = 133), we investigated the developmental course of the cultural difference using Japanese and American children, and found it was evident by 4 years of age. Cultural variations in global versus local processing emerge by early childhood, and remain throughout adulthood. At the same time, both Japanese and Americans become increasingly global processors with age. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  6. Analysis of navigation performance for the Earth Observing System (EOS) using the TDRSS Onboard Navigation System (TONS)

    NASA Technical Reports Server (NTRS)

    Elrod, B.; Kapoor, A.; Folta, David C.; Liu, K.

    1991-01-01

    Use of the Tracking and Data Relay Satellite System (TDRSS) Onboard Navigation System (TONS) was proposed as an alternative to the Global Positioning System (GPS) for supporting the Earth Observing System (EOS) mission. The results are presented of EOS navigation performance evaluation with respect to TONS based orbit, time, and frequency determination (OD/TD/FD). Two TONS modes are considered: one uses scheduled TDRSS forward link service to derive one way Doppler tracking data for OD/FD support (TONS-I); the other uses an unscheduled navigation beacon service (proposed for Advanced TDRSS) to obtain pseudorange and Doppler data for OD/TD/FD support (TONS-II). Key objectives of the analysis were to evaluate nominal performance and potential sensitivities, such as suboptimal tracking geometry, tracking contact scheduling, and modeling parameter selection. OD/TD/FD performance predictions are presented based on covariance and simulation analyses. EOS navigation scenarios and the contributions of principal error sources impacting performance are also described. The results indicate that a TONS mode can be configured to meet current and proposed EOS position accuracy requirements of 100 and 50 m, respectively.

  7. Integrating Terrain Maps Into a Reactive Navigation Strategy

    NASA Technical Reports Server (NTRS)

    Howard, Ayanna; Werger, Barry; Seraji, Homayoun

    2006-01-01

    An improved method of processing information for autonomous navigation of a robotic vehicle across rough terrain involves the integration of terrain maps into a reactive navigation strategy. Somewhat more precisely, the method involves the incorporation, into navigation logic, of data equivalent to regional traversability maps. The terrain characteristic is mapped using a fuzzy-logic representation of the difficulty of traversing the terrain. The method is robust in that it integrates a global path-planning strategy with sensor-based regional and local navigation strategies to ensure a high probability of success in reaching a destination and avoiding obstacles along the way. The sensor-based strategies use cameras aboard the vehicle to observe the regional terrain, defined as the area of the terrain that covers the immediate vicinity near the vehicle to a specified distance a few meters away.

  8. Autonomous GPS/INS navigation experiment for Space Transfer Vehicle (STV)

    NASA Technical Reports Server (NTRS)

    Upadhyay, Triveni N.; Cotterill, Stephen; Deaton, A. Wayne

    1991-01-01

    An experiment to validate the concept of developing an autonomous integrated spacecraft navigation system using on board Global Positioning System (GPS) and Inertial Navigation System (INS) measurements is described. The feasibility of integrating GPS measurements with INS measurements to provide a total improvement in spacecraft navigation performance, i.e. improvement in position, velocity and attitude information, was previously demonstrated. An important aspect of this research is the automatic real time reconfiguration capability of the system designed to respond to changes in a spacecraft mission under the control of an expert system.

  9. Japanese Competitiveness and Japanese Management.

    ERIC Educational Resources Information Center

    Minabe, Shigeo

    1986-01-01

    Analyzes and compares Japanese and American industrial policy and labor practices. Proposes that certain aspects of the Japanese system be adapted by American businesses for purpose of increasing international competitiveness. Proposes specific actions and plans for both the Japanese and American systems. (ML)

  10. Avionics of the Cyclone Global Navigation Satellite System (CYGNSS) microsat constellation

    NASA Astrophysics Data System (ADS)

    Dickinson, John R.; Alvarez, Jennifer L.; Rose, Randall J.; Ruf, Christopher S.; Walls, Buddy J.

    The Cyclone Global Navigation Satellite System (CYGNSS), which was recently selected as the Earth Venture-2 investigation by NASA's Earth Science System Pathfinder (ESSP) Program, measures the ocean surface wind field with unprecedented temporal resolution and spatial coverage, under all precipitating conditions, and over the full dynamic range of wind speeds experienced in a tropical cyclone (TC). The CYGNSS flight segment consists of 8 microsatellite-class observatories, which represent SwRI's first spacecraft bus design, installed on a Deployment Module for launch. They are identical in design but provide their own individual contribution to the CYGNSS science data set. Subsystems include the Attitude Determination and Control System (ADCS), the Communication and Data Subsystem (CDS), the Electrical Power Supply (EPS), and the Structure, Mechanisms, and Thermal Subsystem (SMT). This paper will present an overview of the mission and the avionics, including the ADCS, CDS, and EPS, in detail. Specifically, we will detail how off-the-shelf components can be utilized to do ADCS and will highlight how SwRI's existing avionics solutions will be adapted to meet the requirements and cost constraints of microsat applications. Avionics electronics provided by SwRI include a command and data handling computer, a transceiver radio, a low voltage power supply (LVPS), and a peak power tracker (PPT).

  11. Integrated INS/GPS Navigation from a Popular Perspective

    NASA Technical Reports Server (NTRS)

    Omerbashich, Mensur

    2002-01-01

    Inertial navigation, blended with other navigation aids, Global Positioning System (GPS) in particular, has gained significance due to enhanced navigation and inertial reference performance and dissimilarity for fault tolerance and anti-jamming. Relatively new concepts based upon using Differential GPS (DGPS) blended with Inertial (and visual) Navigation Sensors (INS) offer the possibility of low cost, autonomous aircraft landing. The FAA has decided to implement the system in a sophisticated form as a new standard navigation tool during this decade. There have been a number of new inertial sensor concepts in the recent past that emphasize increased accuracy of INS/GPS versus INS and reliability of navigation, as well as lower size and weight, and higher power, fault tolerance, and long life. The principles of GPS are not discussed; rather the attention is directed towards general concepts and comparative advantages. A short introduction to the problems faced in kinematics is presented. The intention is to relate the basic principles of kinematics to probably the most used navigation method in the future-INS/GPS. An example of the airborne INS is presented, with emphasis on how it works. The discussion of the error types and sources in navigation, and of the role of filters in optimal estimation of the errors then follows. The main question this paper is trying to answer is 'What are the benefits of the integration of INS and GPS and how is this, navigation concept of the future achieved in reality?' The main goal is to communicate the idea about what stands behind a modern navigation method.

  12. Design and testing of a multi-sensor pedestrian location and navigation platform.

    PubMed

    Morrison, Aiden; Renaudin, Valérie; Bancroft, Jared B; Lachapelle, Gérard

    2012-01-01

    Navigation and location technologies are continually advancing, allowing ever higher accuracies and operation under ever more challenging conditions. The development of such technologies requires the rapid evaluation of a large number of sensors and related utilization strategies. The integration of Global Navigation Satellite Systems (GNSSs) such as the Global Positioning System (GPS) with accelerometers, gyros, barometers, magnetometers and other sensors is allowing for novel applications, but is hindered by the difficulties to test and compare integrated solutions using multiple sensor sets. In order to achieve compatibility and flexibility in terms of multiple sensors, an advanced adaptable platform is required. This paper describes the design and testing of the NavCube, a multi-sensor navigation, location and timing platform. The system provides a research tool for pedestrian navigation, location and body motion analysis in an unobtrusive form factor that enables in situ data collections with minimal gait and posture impact. Testing and examples of applications of the NavCube are provided.

  13. Proceedings of the Sixth Integrated Communications, Navigation and Surveillance (ICNS) Conference & Workshop 2006

    NASA Technical Reports Server (NTRS)

    Ponchak, Denise (Compiler)

    2006-01-01

    The Integrated Communications, Navigation and Surveillance (ICNS) Technologies Conference and Workshop provides a forum for government, industry, and academic communities performing research and technology development for advanced digital communications, navigation, and surveillance security systems and associated applications supporting the national and global air transportation systems. The event s goals are to understand current efforts and recent results in near- and far-term research and technology demonstration; identify integrated digital communications, navigation and surveillance research requirements necessary for a safe, high-capacity, advanced air transportation system; foster collaboration and coordination among all stakeholders; and discuss critical issues and develop recommendations to achieve the future integrated CNS vision for the national and global air transportation system.

  14. Proceedings of the Fourth Integrated Communications, Navigation, and Surveillance (ICNS) Conference and Workshop

    NASA Technical Reports Server (NTRS)

    Fujikawa, Gene (Compiler)

    2004-01-01

    The Integrated Communications, Navigational and Surveillance (ICNS) Technologies Conference and Workshop provides a forum for Government, industry, and academic communities performing research and technology development for advanced digital communications, navigation, and surveillance security systems and associated applications supporting the national and global air transportation systems. The event's goals are to understand current efforts and recent results in near-and far-term research and technology demonstration; identify integrated digital communications, navigation and surveillance research requirements necessary for a safe, high-capacity, advanced air transportation system; foster collaboration and coordination among all stakeholders; and discuss critical issues and develop recommendations to achieve the future integrated CNS vision for the national and global air transportation system.

  15. Precise visual navigation using multi-stereo vision and landmark matching

    NASA Astrophysics Data System (ADS)

    Zhu, Zhiwei; Oskiper, Taragay; Samarasekera, Supun; Kumar, Rakesh

    2007-04-01

    Traditional vision-based navigation system often drifts over time during navigation. In this paper, we propose a set of techniques which greatly reduce the long term drift and also improve its robustness to many failure conditions. In our approach, two pairs of stereo cameras are integrated to form a forward/backward multi-stereo camera system. As a result, the Field-Of-View of the system is extended significantly to capture more natural landmarks from the scene. This helps to increase the pose estimation accuracy as well as reduce the failure situations. Secondly, a global landmark matching technique is used to recognize the previously visited locations during navigation. Using the matched landmarks, a pose correction technique is used to eliminate the accumulated navigation drift. Finally, in order to further improve the robustness of the system, measurements from low-cost Inertial Measurement Unit (IMU) and Global Positioning System (GPS) sensors are integrated with the visual odometry in an extended Kalman Filtering framework. Our system is significantly more accurate and robust than previously published techniques (1~5% localization error) over long-distance navigation both indoors and outdoors. Real world experiments on a human worn system show that the location can be estimated within 1 meter over 500 meters (around 0.1% localization error averagely) without the use of GPS information.

  16. Precision Time Protocol-Based Trilateration for Planetary Navigation

    NASA Technical Reports Server (NTRS)

    Murdock, Ron

    2015-01-01

    Progeny Systems Corporation has developed a high-fidelity, field-scalable, non-Global Positioning System (GPS) navigation system that offers precision localization over communications channels. The system is bidirectional, providing position information to both base and mobile units. It is the first-ever wireless use of the Institute of Electrical and Electronics Engineers (IEEE) Precision Time Protocol (PTP) in a bidirectional trilateration navigation system. The innovation provides a precise and reliable navigation capability to support traverse-path planning systems and other mapping applications, and it establishes a core infrastructure for long-term lunar and planetary occupation. Mature technologies are integrated to provide navigation capability and to support data and voice communications on the same network. On Earth, the innovation is particularly well suited for use in unmanned aerial vehicles (UAVs), as it offers a non-GPS precision navigation and location service for use in GPS-denied environments. Its bidirectional capability provides real-time location data to the UAV operator and to the UAV. This approach optimizes assisted GPS techniques and can be used to determine the presence of GPS degradation, spoofing, or jamming.

  17. Public road infrastructure inventory in degraded global navigation satellite system signal environments

    NASA Astrophysics Data System (ADS)

    Sokolova, N.; Morrison, A.; Haakonsen, T. A.

    2015-04-01

    Recent advancement of land-based mobile mapping enables rapid and cost-effective collection of highquality road related spatial information. Mobile Mapping Systems (MMS) can provide spatial information with subdecimeter accuracy in nominal operation environments. However, performance in challenging environments such as tunnels is not well characterized. The Norwegian Public Roads Administration (NPRA) manages the country's public road network and its infrastructure, a large segment of which is represented by road tunnels (there are about 1 000 road tunnels in Norway with a combined length of 800 km). In order to adopt mobile mapping technology for streamlining road network and infrastructure management and maintenance tasks, it is important to ensure that the technology is mature enough to meet existing requirements for object positioning accuracy in all types of environments, and provide homogeneous accuracy over the mapping perimeter. This paper presents results of a testing campaign performed within a project funded by the NPRA as a part of SMarter road traffic with Intelligent Transport Systems (ITS) (SMITS) program. The testing campaign objective was performance evaluation of high end commercial MMSs for inventory of public areas, focusing on Global Navigation Satellite System (GNSS) signal degraded environments.

  18. Two-dimensional measures of accuracy in navigational systems

    DOT National Transportation Integrated Search

    1987-03-31

    Two-dimensional measures generally used to depict the accuracy of radiolocation and navigation systems are described in the report. Application to the NAVSTAR Global Positioning System (GPS) is considered, with a number of geometric illustrations.

  19. High-Precision Image Aided Inertial Navigation with Known Features: Observability Analysis and Performance Evaluation

    PubMed Central

    Jiang, Weiping; Wang, Li; Niu, Xiaoji; Zhang, Quan; Zhang, Hui; Tang, Min; Hu, Xiangyun

    2014-01-01

    A high-precision image-aided inertial navigation system (INS) is proposed as an alternative to the carrier-phase-based differential Global Navigation Satellite Systems (CDGNSSs) when satellite-based navigation systems are unavailable. In this paper, the image/INS integrated algorithm is modeled by a tightly-coupled iterative extended Kalman filter (IEKF). Tightly-coupled integration ensures that the integrated system is reliable, even if few known feature points (i.e., less than three) are observed in the images. A new global observability analysis of this tightly-coupled integration is presented to guarantee that the system is observable under the necessary conditions. The analysis conclusions were verified by simulations and field tests. The field tests also indicate that high-precision position (centimeter-level) and attitude (half-degree-level)-integrated solutions can be achieved in a global reference. PMID:25330046

  20. A Recommendation on SLR Ranging to Future Global Navigation Satellite Systems

    NASA Astrophysics Data System (ADS)

    Labrecque, J. L.; Miller, J. J.; Pearlman, M.

    2008-12-01

    The multi-agency US Geodetic Requirements Working Group has recommended that Satellite Laser Retro- reflectors be installed on GPS III satellites as a principal component of the Positioning, Navigation, and Timing mandate of the Global Positioning System. The Working Group, which includes NASA, NGA, NOAA, NRL, USGS, and the USNO, echoes the Global Geodetic Observing System recommendation that SLR retro- reflectors be installed on all GNSS satellites. It is further recommended that the retro-reflectors conform to and hopefully exceed the minimum standard of the International Laser Ranging Service for retro-reflector cross sections of 100 million square meters for the HEO GNSS satellites to insure sufficiently accurate ranging by the global network of satellite laser ranging systems. The objective of this recommendation is to contribute to the improvement in the International Terrestrial Reference Frame, and its derivative the WGS84 reference frame, through continuing improvements in the characterization of the GPS orbits and clocks. Another objective is to provide an independent means of assessing the interoperability and accuracy of the GNSS systems and regional augmentation systems. The ranging to GNSS-mounted retro-reflectors will constitute a significant new means of space-based collocation to constrain the tie between the GPS and SLR networks that constitute over 50% of the data from which the ITRF is derived. The recommendation for the installation of SLR retro-reflectors aboard future GPS satellites is one of a number of efforts aimed at improving the accuracy and stability of ITRF. These steps are being coordinated with and supportive of the efforts of the GGOS and its services such at the VLBI2010 initiative, developing a next generation geodetic network, near real-time GPS positioning and EOP determination, and numerous efforts in the improvement of geodetic algorithms for GPS, SLR, VLBI, DORIS, and the determination of the ITRF. If past is prologue, the

  1. Global Tuberculosis Report 2016

    MedlinePlus

    ... Alt+0 Navigation Alt+1 Content Alt+2 Tuberculosis (TB) Menu Tuberculosis Data and statistics Regional Framework Resources Meetings and events Global tuberculosis report 2017 WHO has published a global TB ...

  2. Magnetospheric Multiscale Mission Navigation Performance During Apogee-Raising and Beyond

    NASA Technical Reports Server (NTRS)

    Farahmand, Mitra; Long, Anne; Hollister, Jacob; Rose, Julie; Godine, Dominic

    2017-01-01

    The primary objective of the Magnetospheric Multiscale (MMS) Mission is to study the magnetic reconnection phenomena in the Earths magnetosphere. The MMS mission consists of four identical spinning spacecraft with the science objectives requiring a tetrahedral formation in highly elliptical orbits. The MMS spacecraft are equipped with onboard orbit and time determination software, provided by a weak-signal Global Positioning System (GPS) Navigator receiver hosting the Goddard Enhanced Onboard Navigation System (GEONS). This paper presents the results of MMS navigation performance analysis during the Phase 2a apogee-raising campaign and Phase 2b science segment of the mission.

  3. Performance Characteristic Mems-Based IMUs for UAVs Navigation

    NASA Astrophysics Data System (ADS)

    Mohamed, H. A.; Hansen, J. M.; Elhabiby, M. M.; El-Sheimy, N.; Sesay, A. B.

    2015-08-01

    Accurate 3D reconstruction has become essential for non-traditional mapping applications such as urban planning, mining industry, environmental monitoring, navigation, surveillance, pipeline inspection, infrastructure monitoring, landslide hazard analysis, indoor localization, and military simulation. The needs of these applications cannot be satisfied by traditional mapping, which is based on dedicated data acquisition systems designed for mapping purposes. Recent advances in hardware and software development have made it possible to conduct accurate 3D mapping without using costly and high-end data acquisition systems. Low-cost digital cameras, laser scanners, and navigation systems can provide accurate mapping if they are properly integrated at the hardware and software levels. Unmanned Aerial Vehicles (UAVs) are emerging as a mobile mapping platform that can provide additional economical and practical advantages. However, such economical and practical requirements need navigation systems that can provide uninterrupted navigation solution. Hence, testing the performance characteristics of Micro-Electro-Mechanical Systems (MEMS) or low cost navigation sensors for various UAV applications is important research. This work focuses on studying the performance characteristics under different manoeuvres using inertial measurements integrated with single point positioning, Real-Time-Kinematic (RTK), and additional navigational aiding sensors. Furthermore, the performance of the inertial sensors is tested during Global Positioning System (GPS) signal outage.

  4. AstroNavigation: Freely-available Online Instruction for Performing a Sight Reduction

    NASA Astrophysics Data System (ADS)

    Gessner Stewart, Susan; Grundstrom, Erika; Caudel, Dave

    2015-08-01

    A reliable method of obtaining your geographic location from observations of celestial bodies is globally available. This online learning module, developed through a collaboration between Vanderbilt University and the U.S. Naval Observatory, serves to address the need for freely-available comprehensive instruction in celestial navigation online. Specifically targeted are the steps of preforming a sight reduction to obtain a terrestrial position using this technique. Difficult concepts such as plotting on a navigational chart and the complexities of using navigation publications are facilitated through this online content delivery, rooted in effective course design principles. There is good potential in using celestial navigation as a tool for stimulating interest in astronomy given its resourcefulness and accessibility.

  5. Global cognition and 8-year survival among Japanese community-dwelling older adults.

    PubMed

    Iwasa, Hajime; Kai, Ichiro; Yoshida, Yuko; Suzuki, Takao; Kim, Hunkyung; Yoshida, Hideyo

    2013-08-01

    We sought to examine the longitudinal relationship between cognitive function and all-cause mortality among Japanese community-dwelling older adults, using an 8-year prospective cohort study design with mortality surveillance. A total of 454 men and 386 women, aged 70 years and older, participated in the study. The Mini Mental State Examination (MMSE) was administered to assess global cognition. The total MMSE score and subscale scores were used as independent variables, and age, gender, education level, chronic disease, sensory deficit, depressive symptoms, and instrumental activities of daily living were used as covariates. During the follow-up period, 191 subjects (139 men and 52 women) died, and 64 subjects (31 men and 33 women) moved to a different region of Japan and were lost to follow-up. Use of the multivariate Cox proportional hazards model, adjusted for potential confounders, showed that global cognition was significantly and independently associated with mortality (hazard ratio [HR] = 1.59, 95% confidence interval [CI]: 1.14-2.23 and HR = 2.81, 95% CI: 1.77-4.36 for the middle [24-27 points] and lowest [0-23 points] categories, respectively). Among the MMSE subscales, place orientation (HR = 1.57, 95% CI: 1.09-2.25), calculation (HR = 1.67, 95% CI: 1.18-2.35), and delayed recall (HR = 1.42, 95% CI: 1.03-1.96), were also significantly and independently associated with mortality. Our study suggests that among older individuals, those with lower levels of cognitive function are more likely to have a shorter lifespan compared with those with higher cognitive functioning. Copyright © 2012 John Wiley & Sons, Ltd.

  6. Marine Biodiversity in Japanese Waters

    PubMed Central

    Fujikura, Katsunori; Lindsay, Dhugal; Kitazato, Hiroshi; Nishida, Shuhei; Shirayama, Yoshihisa

    2010-01-01

    To understand marine biodiversity in Japanese waters, we have compiled information on the marine biota in Japanese waters, including the number of described species (species richness), the history of marine biology research in Japan, the state of knowledge, the number of endemic species, the number of identified but undescribed species, the number of known introduced species, and the number of taxonomic experts and identification guides, with consideration of the general ocean environmental background, such as the physical and geological settings. A total of 33,629 species have been reported to occur in Japanese waters. The state of knowledge was extremely variable, with taxa containing many inconspicuous, smaller species tending to be less well known. The total number of identified but undescribed species was at least 121,913. The total number of described species combined with the number of identified but undescribed species reached 155,542. This is the best estimate of the total number of species in Japanese waters and indicates that more than 70% of Japan's marine biodiversity remains un-described. The number of species reported as introduced into Japanese waters was 39. This is the first attempt to estimate species richness for all marine species in Japanese waters. Although its marine biota can be considered relatively well known, at least within the Asian-Pacific region, considering the vast number of different marine environments such as coral reefs, ocean trenches, ice-bound waters, methane seeps, and hydrothermal vents, much work remains to be done. We expect global change to have a tremendous impact on marine biodiversity and ecosystems. Japan is in a particularly suitable geographic situation and has a lot of facilities for conducting marine science research. Japan has an important responsibility to contribute to our understanding of life in the oceans. PMID:20689840

  7. The Search for a New Role of Liberal Education in an Age of Globalization: The Challenge of Transferable Skills to Liberal Knowledge at Japanese Colleges and Universities

    ERIC Educational Resources Information Center

    Hayakawa, Misao

    2014-01-01

    One of the tasks facing Japanese colleges and universities is to implement a continuum of effective educational programs in order to properly respond to the impact of globalization. Effective university educational programs are needed to construct a new higher education system for nurturing transferable learning skills and cultivating hope for the…

  8. Investigation on navigation patterns of inertial/celestial integrated systems

    NASA Astrophysics Data System (ADS)

    Luo, Dacheng; Liu, Yan; Liu, Zhiguo; Jiao, Wei; Wang, Qiuyan

    2014-11-01

    It is known that Strapdown Inertial Navigation System (SINS), Global Navigation Satellite System (GNSS) and Celestial Navigation System (CNS) can complement each other's advantages. The SINS/CNS integrated system, which has the characteristics of strong autonomy, high accuracy and good anti-jamming, is widely used in military and civilian applications. Similar to SINS/GNSS integrated system, the SINS/CNS integrated system can also be divided into three kinds according to the difference of integrating depth, i.e., loosely coupled pattern, tightly coupled pattern and deeply coupled pattern. In this paper, the principle and characteristics of each pattern of SINS/CNS system are analyzed. Based on the comparison of these patterns, a novel deeply coupled SINS/CNS integrated navigation scheme is proposed. The innovation of this scheme is that a new star pattern matching method aided by SINS information is put forward. Thus the complementary features of these two subsystems are reflected.

  9. Navigation.

    PubMed

    Wiltschko, Roswitha

    2017-07-01

    Experiments with migrating birds displaced during autumn migration outside their normal migration corridor reveal two different navigational strategies: adult migrants compensate for the displacement, and head towards their traditional wintering areas, whereas young first-time migrants continue in their migratory direction. Young birds are guided to their still unknown goal by a genetically coded migration program that indicates duration and direction(s) of the migratory flight by controlling the amount of migratory restlessness and the compass course(s) with respect to the geomagnetic field and celestial rotation. Adult migrants that have already wintered and are familiar with the goal area approach the goal by true navigation, specifically heading towards it and changing their course correspondingly after displacement. During their first journey, young birds experience the distribution of potential navigational factors en route and in their winter home, which allows them to truly navigate on their next migrations. The navigational factors used appear to include magnetic intensity as a component in their multi-modal navigational 'map'; olfactory input is also involved, even if it is not yet entirely clear in what way. The mechanisms of migratory birds for true navigation over long distances appear to be in principle similar to those discussed for by homing pigeons.

  10. Learning Intelligent Genetic Algorithms Using Japanese Nonograms

    ERIC Educational Resources Information Center

    Tsai, Jinn-Tsong; Chou, Ping-Yi; Fang, Jia-Cen

    2012-01-01

    An intelligent genetic algorithm (IGA) is proposed to solve Japanese nonograms and is used as a method in a university course to learn evolutionary algorithms. The IGA combines the global exploration capabilities of a canonical genetic algorithm (CGA) with effective condensed encoding, improved fitness function, and modified crossover and…

  11. Online service for monitoring the ionosphere based on data from the global navigation satellite system

    NASA Astrophysics Data System (ADS)

    Aleshin, I. M.; Alpatov, V. V.; Vasil'ev, A. E.; Burguchev, S. S.; Kholodkov, K. I.; Budnikov, P. A.; Molodtsov, D. A.; Koryagin, V. N.; Perederin, F. V.

    2014-07-01

    A service is described that makes possible the effective construction of a three-dimensional ionospheric model based on the data of ground receivers of signals from global navigation satellite positioning systems (GNSS). The obtained image has a high resolution, mainly because data from the IPG GNSS network of the Federal Service for Hydrometeorology and Environmental Monitoring (Rosgidromet) are used. A specially developed format and its implementation in the form of SQL structures are used to collect, transmit, and store data. The method of high-altitude radio tomography is used to construct the three-dimensional model. The operation of all system components (from registration point organization to the procedure for constructing the electron density three-dimensional distribution and publication of the total electron content map on the Internet) has been described in detail. The three-dimensional image of the ionosphere, obtained automatically, is compared with the ionosonde measurements, calculated using the two-dimensional low-altitude tomography method and averaged by the ionospheric model.

  12. Integrated communications and optical navigation system

    NASA Astrophysics Data System (ADS)

    Mueller, J.; Pajer, G.; Paluszek, M.

    2013-12-01

    The Integrated Communications and Optical Navigation System (ICONS) is a flexible navigation system for spacecraft that does not require global positioning system (GPS) measurements. The navigation solution is computed using an Unscented Kalman Filter (UKF) that can accept any combination of range, range-rate, planet chord width, landmark, and angle measurements using any celestial object. Both absolute and relative orbit determination is supported. The UKF employs a full nonlinear dynamical model of the orbit including gravity models and disturbance models. The ICONS package also includes attitude determination algorithms using the UKF algorithm with the Inertial Measurement Unit (IMU). The IMU is used as the dynamical base for the attitude determination algorithms. This makes the sensor a more capable plug-in replacement for a star tracker, thus reducing the integration and test cost of adding this sensor to a spacecraft. Recent additions include an integrated optical communications system which adds communications, and integrated range and range rate measurement and timing. The paper includes test results from trajectories based on the NASA New Horizons spacecraft.

  13. Potential Impact of Global Navigation Satellite Services on Total Power HI Intensity Mapping Surveys

    NASA Astrophysics Data System (ADS)

    Harper, Stuart E.; Dickinson, Clive

    2018-06-01

    Future total-power single-dish HI intensity mapping (HI IM) surveys have the potential to provide unprecedented insight into late time (z < 1) cosmology that are competitive with Stage IV dark energy surveys. However, redshifts between 0 < z < 0.2 lie within the transmission bands of global navigation satellite services (GNSS), and even at higher redshifts out-of-band leakage from GNSS satellites may be problematic. We estimate the impact of GNSS satellites on future single-dish HI IM surveys using realistic estimates of both the total power and spectral structure of GNSS signals convolved with a model SKA beam. Using a model of the SKA phase one array with 200 dishes we simulate a HI IM survey covering 30000 sq. deg. of sky. We compare the integrated GNSS emission on the sky with the expected HI signal. It is found that for frequencies >950 MHz the emission from GNSS satellites will exceed the expected HI signal for all angular scales to which the SKA is sensitive when operating in single-dish mode.

  14. Japanese children's family drawings and their link to attachment.

    PubMed

    Behrens, Kazuko Y; Kaplan, Nancy

    2011-09-01

    This study explored the applicability of family drawings as a tool to estimate attachment security in a sample of Japanese six-year-olds (N = 47), applying Kaplan and Main's ( 1986 ) Family Drawing system. Maternal secure/insecure attachment status judged by the Adult Attachment Interview predicted family drawings' secure/insecure distinction produced by Japanese six-year-olds. However, insecure Japanese drawings took forms not seen in the original Berkeley drawings, such as a lineup of faces alone. Further examination of the Japanese children's drawings using global rating scales (Fury, Carlson, & Sroufe, 1997 ) yielded significant gender differences, rarely reported in the attachment literature, with girls scoring higher in scales that predict attachment security and boys scoring higher in scales that predict attachment insecurity. However, attachment security, as captured in the drawings, was not related to attachment security, observed behaviorally using Main and Cassidy's ( 1988 ) sixth-year reunion system. Implications of the findings are discussed in light of measurements, gender, and culture.

  15. Impact Assessment of GNSS Spoofing Attacks on INS/GNSS Integrated Navigation System.

    PubMed

    Liu, Yang; Li, Sihai; Fu, Qiangwen; Liu, Zhenbo

    2018-05-04

    In the face of emerging Global Navigation Satellite System (GNSS) spoofing attacks, there is a need to give a comprehensive analysis on how the inertial navigation system (INS)/GNSS integrated navigation system responds to different kinds of spoofing attacks. A better understanding of the integrated navigation system’s behavior with spoofed GNSS measurements gives us valuable clues to develop effective spoofing defenses. This paper focuses on an impact assessment of GNSS spoofing attacks on the integrated navigation system Kalman filter’s error covariance, innovation sequence and inertial sensor bias estimation. A simple and straightforward measurement-level trajectory spoofing simulation framework is presented, serving as the basis for an impact assessment of both unsynchronized and synchronized spoofing attacks. Recommendations are given for spoofing detection and mitigation based on our findings in the impact assessment process.

  16. Helping cancer patients across the care continuum: the navigation program at the Queen's Medical Center.

    PubMed

    Allison, Amanda L; Ishihara-Wong, Debra D M; Domingo, Jermy B; Nishioka, Jocelyn; Wilburn, Andrea; Tsark, JoAnn U; Braun, Kathryn L

    2013-04-01

    Research suggests that cancer patient navigation improves care, but few reports describe the variety of patients managed by a hospital-based navigation program. Differences in navigated patients by the intensity (low, medium, or high) of navigation services they received were examined. The 835 clients seen by the navigators in a hospital-based cancer center were first stratified by quarter and by four ethnic groups. Randomized selection from each group assured there would be equal representation for analysis of Hawaiians, Filipinos, Japanese, and Whites and even numbers over all time intervals. Five professionals extracted data from these case records on demographics, type/stage of cancer, diagnosis and treatment dates, barriers, and navigator actions. Clients had breast (30.0%), lung (15.8%), esophageal (6.7%), colon (5.8%), ovarian (4.2%), prostate (3.3%), and other cancers (34.2%). The median number of actions taken on behalf of a client was 4 (range 1-83), and the median number of days a case was open was 14 (range 1-216). High intensity cases (those receiving more assistance over longer periods of time) were more likely than low-intensity cases to need help with education and reassurance, transportation, care coordination, and covering costs. Although there were no demographic differences across intensity groups, Neighbor Island patients from Hawai'i, Maui, Moloka'i, Lana'i and Kaua'i were more likely to need help with arranging travel, care coordination, and costs associated with getting treatment (all at P=.05), and patients on public insurance were more likely to have stage 4 cancer (P=.001) and to need help with costs (P=.006). Findings suggest that this hospital-based navigation program is filling a real need of patients across the cancer care continuum. A triage protocol and an integrated data capture system could help improve the targeting and documentation of cancer patient navigation services.

  17. Language Learning beyond Japanese University Classrooms: Video Interviewing for Study Abroad

    ERIC Educational Resources Information Center

    Brine, John; Kaneko, Emiko; Heo, Younghyon; Vazhenin, Alexander; Bateson, Gordon

    2015-01-01

    In 2014, the University of Aizu was accepted for participation in Japan's national TOP Global University (TGU) initiative. In this paper, we describe our use of video interviewing to prepare Japanese students for our Global Experience Gateway study abroad TGU project. Our university specializes in computer science education at undergraduate and…

  18. Conflicting evidence about long-distance animal navigation.

    PubMed

    Alerstam, Thomas

    2006-08-11

    Because of conflicting evidence about several fundamental issues, long-distance animal navigation has yet to be satisfactorily explained. Among the unsolved problems are the nature of genetic spatial control of migration and the relationships between celestial and magnetic compass mechanisms and between different map-related cues in orientation and homing, respectively. In addition, navigation is expected to differ between animal groups depending on sensory capabilities and ecological conditions. Evaluations based on modern long-term tracking techniques of the geometry of migration routes and individual migration history, combined with behavioral experiments and exploration of the sensory and genetic mechanisms, will be crucial for understanding the spatial principles that guide animals on their global journeys.

  19. Handling Japanese without a Japanese Operating System.

    ERIC Educational Resources Information Center

    Hatasa, Kazumi; And Others

    1992-01-01

    The Macintosh HyperCard environment has become a popular platform for Japanese language courseware because of its flexibility and ease of programing. This project created Japanese bitmap font files for the JIS Levels 1 and 2, and writing XFCNs for font manipulation, Japanese kana input, and answer correction. (12 references) (Author/LB)

  20. Satellite Imagery Assisted Road-Based Visual Navigation System

    NASA Astrophysics Data System (ADS)

    Volkova, A.; Gibbens, P. W.

    2016-06-01

    There is a growing demand for unmanned aerial systems as autonomous surveillance, exploration and remote sensing solutions. Among the key concerns for robust operation of these systems is the need to reliably navigate the environment without reliance on global navigation satellite system (GNSS). This is of particular concern in Defence circles, but is also a major safety issue for commercial operations. In these circumstances, the aircraft needs to navigate relying only on information from on-board passive sensors such as digital cameras. An autonomous feature-based visual system presented in this work offers a novel integral approach to the modelling and registration of visual features that responds to the specific needs of the navigation system. It detects visual features from Google Earth* build a feature database. The same algorithm then detects features in an on-board cameras video stream. On one level this serves to localise the vehicle relative to the environment using Simultaneous Localisation and Mapping (SLAM). On a second level it correlates them with the database to localise the vehicle with respect to the inertial frame. The performance of the presented visual navigation system was compared using the satellite imagery from different years. Based on comparison results, an analysis of the effects of seasonal, structural and qualitative changes of the imagery source on the performance of the navigation algorithm is presented. * The algorithm is independent of the source of satellite imagery and another provider can be used

  1. Intelligent personal navigator supported by knowledge-based systems for estimating dead reckoning navigation parameters

    NASA Astrophysics Data System (ADS)

    Moafipoor, Shahram

    Personal navigators (PN) have been studied for about a decade in different fields and applications, such as safety and rescue operations, security and emergency services, and police and military applications. The common goal of all these applications is to provide precise and reliable position, velocity, and heading information of each individual in various environments. In the PN system developed in this dissertation, the underlying assumption is that the system does not require pre-existing infrastructure to enable pedestrian navigation. To facilitate this capability, a multisensor system concept, based on the Global Positioning System (GPS), inertial navigation, barometer, magnetometer, and a human pedometry model has been developed. An important aspect of this design is to use the human body as navigation sensor to facilitate Dead Reckoning (DR) navigation in GPS-challenged environments. The system is designed predominantly for outdoor environments, where occasional loss of GPS lock may happen; however, testing and performance demonstration have been extended to indoor environments. DR navigation is based on a relative-measurement approach, with the key idea of integrating the incremental motion information in the form of step direction (SD) and step length (SL) over time. The foundation of the intelligent navigation system concept proposed here rests in exploiting the human locomotion pattern, as well as change of locomotion in varying environments. In this context, the term intelligent navigation represents the transition from the conventional point-to-point DR to dynamic navigation using the knowledge about the mechanism of the moving person. This approach increasingly relies on integrating knowledge-based systems (KBS) and artificial intelligence (AI) methodologies, including artificial neural networks (ANN) and fuzzy logic (FL). In addition, a general framework of the quality control for the real-time validation of the DR processing is proposed, based on a

  2. Blocking Spatial Navigation Across Environments That Have a Different Shape

    PubMed Central

    2015-01-01

    According to the geometric module hypothesis, organisms encode a global representation of the space in which they navigate, and this representation is not prone to interference from other cues. A number of studies, however, have shown that both human and non-human animals can navigate on the basis of local geometric cues provided by the shape of an environment. According to the model of spatial learning proposed by Miller and Shettleworth (2007, 2008), geometric cues compete for associative strength in the same manner as non-geometric cues do. The experiments reported here were designed to test if humans learn about local geometric cues in a manner consistent with the Miller-Shettleworth model. Experiment 1 replicated previous findings that humans transfer navigational behavior, based on local geometric cues, from a rectangle-shaped environment to a kite-shaped environment, and vice versa. In Experiments 2 and 3, it was observed that learning about non-geometric cues blocked, and were blocked by, learning about local geometric cues. The reciprocal blocking observed is consistent with associative theories of spatial learning; however, it is difficult to explain the observed effects with theories of global-shape encoding in their current form. PMID:26569017

  3. SURVIVORSHIP NAVIGATION OUTCOME MEASURES: A report from the ACS Patient Navigation Working Group on Survivorship Navigation

    PubMed Central

    Pratt-Chapman, Mandi; Simon, Melissa A.; Patterson, Angela; Risendal, Betsy C.; Patierno, Steven

    2013-01-01

    Survivorship navigation is a relatively new concept in the field of patient navigation, but an important one. This paper highlights the essential functions of the survivorship navigator and defines core outcomes and measures for navigation in the survivorship period. Barriers to access to care experienced by patients during active cancer treatment can continue into the post-treatment period, affecting quality follow-up care for survivors. These barriers to care can be particularly acute for non-English speakers, immigrants, the uninsured, the underinsured and other vulnerable populations. The survivorship navigator can help reduce barriers and facilitate access to survivorship care and services through communication and information exchange for patients. Survivorship navigation may improve appropriate health care utilization through education and care coordination, potentially improving health outcomes and quality of life of survivors while reducing cost to the health care system. Survivorship navigators can also educate survivors on how to improve their overall wellness, thereby directly impacting the health of a growing population of cancer survivors. PMID:21780092

  4. 14 CFR 121.389 - Flight navigator and specialized navigation equipment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight navigator and specialized navigation equipment. 121.389 Section 121.389 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF....389 Flight navigator and specialized navigation equipment. (a) No certificate holder may operate an...

  5. 14 CFR 121.389 - Flight navigator and specialized navigation equipment.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight navigator and specialized navigation equipment. 121.389 Section 121.389 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF....389 Flight navigator and specialized navigation equipment. (a) No certificate holder may operate an...

  6. PATIENT NAVIGATION

    PubMed Central

    Wells, Kristen J.; Battaglia, Tracy A.; Dudley, Donald J.; Garcia, Roland; Greene, Amanda; Calhoun, Elizabeth; Mandelblatt, Jeanne S.; Paskett, Electra D.; Raich, Peter C.

    2008-01-01

    Background First implemented in 1990, patient navigation interventions are emerging as an approach to reduce cancer disparities. However, there is lack of consensus about how patient navigation is defined, what patient navigators do, and what their qualifications should be. Little is known about the efficacy and cost effectiveness of patient navigation. Methods We conducted a qualitative synthesis of published literature on cancer patient navigation. Using the keywords “navigator” or “navigation” and “cancer,” we identified 45 articles from Pubmed and reference searches that were published or in press through October 2007. 16 provided data on efficacy of navigation in improving timeliness and receipt of cancer screening, diagnostic follow-up care, and treatment. Patient navigation services are defined and differentiated from other outreach services. Results Overall there is evidence for some degree of efficacy for patient navigation in increasing participation in cancer screening and adherence to diagnostic follow-up care following an abnormality, with increases in screening ranging from 10.8% to 17.1% and increases in adherence to diagnostic follow-up care ranging from 21% to 29.2%, when compared to control patients. There is less evidence regarding efficacy of patient navigation in reducing either late stage cancer diagnosis or delays in initiation of cancer treatment or improving outcomes during cancer survivorship. There were methodological limitations in most studies, such as lack of control groups, small sample sizes, and contamination with other interventions. Conclusions Although cancer-related patient navigation interventions are being increasingly adopted across the U.S. and Canada, further research is necessary to evaluate their efficacy and cost-effectiveness in improving cancer care. PMID:18780320

  7. Area navigation and required navigation performance procedures and depictions

    DOT National Transportation Integrated Search

    2012-09-30

    Area navigation (RNAV) and required navigation performance (RNP) procedures are fundamental to the implementation of a performance based navigation (PBN) system, which is a key enabling technology for the Next Generation Air Transportation System (Ne...

  8. Differential GNSS and Vision-Based Tracking to Improve Navigation Performance in Cooperative Multi-UAV Systems.

    PubMed

    Vetrella, Amedeo Rodi; Fasano, Giancarmine; Accardo, Domenico; Moccia, Antonio

    2016-12-17

    Autonomous navigation of micro-UAVs is typically based on the integration of low cost Global Navigation Satellite System (GNSS) receivers and Micro-Electro-Mechanical Systems (MEMS)-based inertial and magnetic sensors to stabilize and control the flight. The resulting navigation performance in terms of position and attitude accuracy may not suffice for other mission needs, such as the ones relevant to fine sensor pointing. In this framework, this paper presents a cooperative UAV navigation algorithm that allows a chief vehicle, equipped with inertial and magnetic sensors, a Global Positioning System (GPS) receiver, and a vision system, to improve its navigation performance (in real time or in the post processing phase) exploiting formation flying deputy vehicles equipped with GPS receivers. The focus is set on outdoor environments and the key concept is to exploit differential GPS among vehicles and vision-based tracking (DGPS/Vision) to build a virtual additional navigation sensor whose information is then integrated in a sensor fusion algorithm based on an Extended Kalman Filter. The developed concept and processing architecture are described, with a focus on DGPS/Vision attitude determination algorithm. Performance assessment is carried out on the basis of both numerical simulations and flight tests. In the latter ones, navigation estimates derived from the DGPS/Vision approach are compared with those provided by the onboard autopilot system of a customized quadrotor. The analysis shows the potential of the developed approach, mainly deriving from the possibility to exploit magnetic- and inertial-independent accurate attitude information.

  9. Overcoming urban GPS navigation challenges through the use of MEMS inertial sensors and proper verification of navigation system performance

    NASA Astrophysics Data System (ADS)

    Vinande, Eric T.

    This research proposes several means to overcome challenges in the urban environment to ground vehicle global positioning system (GPS) receiver navigation performance through the integration of external sensor information. The effects of narrowband radio frequency interference and signal attenuation, both common in the urban environment, are examined with respect to receiver signal tracking processes. Low-cost microelectromechanical systems (MEMS) inertial sensors, suitable for the consumer market, are the focus of receiver augmentation as they provide an independent measure of motion and are independent of vehicle systems. A method for estimating the mounting angles of an inertial sensor cluster utilizing typical urban driving maneuvers is developed and is able to provide angular measurements within two degrees of truth. The integration of GPS and MEMS inertial sensors is developed utilizing a full state navigation filter. Appropriate statistical methods are developed to evaluate the urban environment navigation improvement due to the addition of MEMS inertial sensors. A receiver evaluation metric that combines accuracy, availability, and maximum error measurements is presented and evaluated over several drive tests. Following a description of proper drive test techniques, record and playback systems are evaluated as the optimal way of testing multiple receivers and/or integrated navigation systems in the urban environment as they simplify vehicle testing requirements.

  10. GPS dependencies in the transportation sector : an inventory of Global Positioning System dependencies in the transportation sector, best practices for improved robustness of GPS devices, and potential alternative solutions for positioning, navigation and

    DOT National Transportation Integrated Search

    2016-08-01

    The John A. Volpe National Transportation Systems Center (Volpe Center) was asked by the NOAA Office of Space Commercialization to analyze dependencies on Global Positioning System (GPS) positioning, navigation, and timing (PNT) services within the U...

  11. Hybrid Transverse Polar Navigation for High-Precision and Long-Term INSs.

    PubMed

    Wu, Ruonan; Wu, Qiuping; Han, Fengtian; Zhang, Rong; Hu, Peida; Li, Haixia

    2018-05-12

    Transverse navigation has been proposed to help inertial navigation systems (INSs) fill the gap of polar navigation ability. However, as the transverse system does not have the ability of navigate globally, a complicated switch between the transverse and the traditional algorithms is necessary when the system moves across the polar circles. To maintain the inner continuity and consistency of the core algorithm, a hybrid transverse polar navigation is proposed in this research based on a combination of Earth-fixed-frame mechanization and transverse-frame outputs. Furthermore, a thorough analysis of kinematic error characteristics, proper damping technology and corresponding long-term contributions of main error sources is conducted for the high-precision INSs. According to the analytical expressions of the long-term navigation errors in polar areas, the 24-h period symmetrical oscillation with a slowly divergent amplitude dominates the transverse horizontal position errors, and the first-order drift dominates the transverse azimuth error, which results from the gyro drift coefficients that occur in corresponding directions. Simulations are conducted to validate the theoretical analysis and the deduced analytical expressions. The results show that the proposed hybrid transverse navigation can ensure the same accuracy and oscillation characteristics in polar areas as the traditional algorithm in low and mid latitude regions.

  12. Hybrid Transverse Polar Navigation for High-Precision and Long-Term INSs

    PubMed Central

    Wu, Qiuping; Zhang, Rong; Hu, Peida; Li, Haixia

    2018-01-01

    Transverse navigation has been proposed to help inertial navigation systems (INSs) fill the gap of polar navigation ability. However, as the transverse system does not have the ability of navigate globally, a complicated switch between the transverse and the traditional algorithms is necessary when the system moves across the polar circles. To maintain the inner continuity and consistency of the core algorithm, a hybrid transverse polar navigation is proposed in this research based on a combination of Earth-fixed-frame mechanization and transverse-frame outputs. Furthermore, a thorough analysis of kinematic error characteristics, proper damping technology and corresponding long-term contributions of main error sources is conducted for the high-precision INSs. According to the analytical expressions of the long-term navigation errors in polar areas, the 24-h period symmetrical oscillation with a slowly divergent amplitude dominates the transverse horizontal position errors, and the first-order drift dominates the transverse azimuth error, which results from the g0 gyro drift coefficients that occur in corresponding directions. Simulations are conducted to validate the theoretical analysis and the deduced analytical expressions. The results show that the proposed hybrid transverse navigation can ensure the same accuracy and oscillation characteristics in polar areas as the traditional algorithm in low and mid latitude regions. PMID:29757242

  13. A Neurocomputational Model of Goal-Directed Navigation in Insect-Inspired Artificial Agents

    PubMed Central

    Goldschmidt, Dennis; Manoonpong, Poramate; Dasgupta, Sakyasingha

    2017-01-01

    Despite their small size, insect brains are able to produce robust and efficient navigation in complex environments. Specifically in social insects, such as ants and bees, these navigational capabilities are guided by orientation directing vectors generated by a process called path integration. During this process, they integrate compass and odometric cues to estimate their current location as a vector, called the home vector for guiding them back home on a straight path. They further acquire and retrieve path integration-based vector memories globally to the nest or based on visual landmarks. Although existing computational models reproduced similar behaviors, a neurocomputational model of vector navigation including the acquisition of vector representations has not been described before. Here we present a model of neural mechanisms in a modular closed-loop control—enabling vector navigation in artificial agents. The model consists of a path integration mechanism, reward-modulated global learning, random search, and action selection. The path integration mechanism integrates compass and odometric cues to compute a vectorial representation of the agent's current location as neural activity patterns in circular arrays. A reward-modulated learning rule enables the acquisition of vector memories by associating the local food reward with the path integration state. A motor output is computed based on the combination of vector memories and random exploration. In simulation, we show that the neural mechanisms enable robust homing and localization, even in the presence of external sensory noise. The proposed learning rules lead to goal-directed navigation and route formation performed under realistic conditions. Consequently, we provide a novel approach for vector learning and navigation in a simulated, situated agent linking behavioral observations to their possible underlying neural substrates. PMID:28446872

  14. A Neurocomputational Model of Goal-Directed Navigation in Insect-Inspired Artificial Agents.

    PubMed

    Goldschmidt, Dennis; Manoonpong, Poramate; Dasgupta, Sakyasingha

    2017-01-01

    Despite their small size, insect brains are able to produce robust and efficient navigation in complex environments. Specifically in social insects, such as ants and bees, these navigational capabilities are guided by orientation directing vectors generated by a process called path integration. During this process, they integrate compass and odometric cues to estimate their current location as a vector, called the home vector for guiding them back home on a straight path. They further acquire and retrieve path integration-based vector memories globally to the nest or based on visual landmarks. Although existing computational models reproduced similar behaviors, a neurocomputational model of vector navigation including the acquisition of vector representations has not been described before. Here we present a model of neural mechanisms in a modular closed-loop control-enabling vector navigation in artificial agents. The model consists of a path integration mechanism, reward-modulated global learning, random search, and action selection. The path integration mechanism integrates compass and odometric cues to compute a vectorial representation of the agent's current location as neural activity patterns in circular arrays. A reward-modulated learning rule enables the acquisition of vector memories by associating the local food reward with the path integration state. A motor output is computed based on the combination of vector memories and random exploration. In simulation, we show that the neural mechanisms enable robust homing and localization, even in the presence of external sensory noise. The proposed learning rules lead to goal-directed navigation and route formation performed under realistic conditions. Consequently, we provide a novel approach for vector learning and navigation in a simulated, situated agent linking behavioral observations to their possible underlying neural substrates.

  15. Navigation studies based on the ubiquitous positioning technologies

    NASA Astrophysics Data System (ADS)

    Ye, Lei; Mi, Weijie; Wang, Defeng

    2007-11-01

    This paper summarized the nowadays positioning technologies, such as absolute positioning methods and relative positioning methods, indoor positioning and outdoor positioning, active positioning and passive positioning. Global Navigation Satellite System (GNSS) technologies were introduced as the omnipresent out-door positioning technologies, including GPS, GLONASS, Galileo and BD-1/2. After analysis of the shortcomings of GNSS, indoor positioning technologies were discussed and compared, including A-GPS, Cellular network, Infrared, Electromagnetism, Computer Vision Cognition, Embedded Pressure Sensor, Ultrasonic, RFID (Radio Frequency IDentification), Bluetooth, WLAN etc.. Then the concept and characteristics of Ubiquitous Positioning was proposed. After the ubiquitous positioning technologies contrast and selection followed by system engineering methodology, a navigation system model based on Incorporate Indoor-Outdoor Positioning Solution was proposed. And this model was simulated in the Galileo Demonstration for World Expo Shanghai project. In the conclusion, the prospects of ubiquitous positioning based navigation were shown, especially to satisfy the public location information acquiring requirement.

  16. Sex differences in virtual navigation influenced by scale and navigation experience.

    PubMed

    Padilla, Lace M; Creem-Regehr, Sarah H; Stefanucci, Jeanine K; Cashdan, Elizabeth A

    2017-04-01

    The Morris water maze is a spatial abilities test adapted from the animal spatial cognition literature and has been studied in the context of sex differences in humans. This is because its standard design, which manipulates proximal (close) and distal (far) cues, applies to human navigation. However, virtual Morris water mazes test navigation skills on a scale that is vastly smaller than natural human navigation. Many researchers have argued that navigating in large and small scales is fundamentally different, and small-scale navigation might not simulate natural human navigation. Other work has suggested that navigation experience could influence spatial skills. To address the question of how individual differences influence navigational abilities in differently scaled environments, we employed both a large- (146.4 m in diameter) and a traditional- (36.6 m in diameter) scaled virtual Morris water maze along with a novel measure of navigation experience (lifetime mobility). We found sex differences on the small maze in the distal cue condition only, but in both cue-conditions on the large maze. Also, individual differences in navigation experience modulated navigation performance on the virtual water maze, showing that higher mobility was related to better performance with proximal cues for only females on the small maze, but for both males and females on the large maze.

  17. Robust analysis of an underwater navigational strategy in electrically heterogeneous corridors.

    PubMed

    Dimble, Kedar D; Ranganathan, Badri N; Keshavan, Jishnu; Humbert, J Sean

    2016-08-01

    Obstacles and other global stimuli provide relevant navigational cues to a weakly electric fish. In this work, robust analysis of a control strategy based on electrolocation for performing obstacle avoidance in electrically heterogeneous corridors is presented and validated. Static output feedback control is shown to achieve the desired goal of reflexive obstacle avoidance in such environments in simulation and experimentation. The proposed approach is computationally inexpensive and readily implementable on a small scale underwater vehicle, making underwater autonomous navigation feasible in real-time.

  18. Vision Based Navigation for Autonomous Cooperative Docking of CubeSats

    NASA Astrophysics Data System (ADS)

    Pirat, Camille; Ankersen, Finn; Walker, Roger; Gass, Volker

    2018-05-01

    A realistic rendezvous and docking navigation solution applicable to CubeSats is investigated. The scalability analysis of the ESA Autonomous Transfer Vehicle Guidance, Navigation & Control (GNC) performances and the Russian docking system, shows that the docking of two CubeSats would require a lateral control performance of the order of 1 cm. Line of sight constraints and multipath effects affecting Global Navigation Satellite System (GNSS) measurements in close proximity prevent the use of this sensor for the final approach. This consideration and the high control accuracy requirement led to the use of vision sensors for the final 10 m of the rendezvous and docking sequence. A single monocular camera on the chaser satellite and various sets of Light-Emitting Diodes (LEDs) on the target vehicle ensure the observability of the system throughout the approach trajectory. The simple and novel formulation of the measurement equations allows differentiating unambiguously rotations from translations between the target and chaser docking port and allows a navigation performance better than 1 mm at docking. Furthermore, the non-linear measurement equations can be solved in order to provide an analytic navigation solution. This solution can be used to monitor the navigation filter solution and ensure its stability, adding an extra layer of robustness for autonomous rendezvous and docking. The navigation filter initialization is addressed in detail. The proposed method is able to differentiate LEDs signals from Sun reflections as demonstrated by experimental data. The navigation filter uses a comprehensive linearised coupled rotation/translation dynamics, describing the chaser to target docking port motion. The handover, between GNSS and vision sensor measurements, is assessed. The performances of the navigation function along the approach trajectory is discussed.

  19. The ESA contribution to the European Satellite Navigation Programme

    NASA Astrophysics Data System (ADS)

    Lucas, R.; Lo Galbo, P.; de Mateo, M. L.; Steciw, A.; Ashford, E.

    1996-02-01

    This paper describes the ESA ARTES-9 programme on Global Navigation Satellite Systems (GNSS). This programme will be the ESA contribution to the wider European Satellite Navigation Programme which is to be implemented as a joint effort of the European Union, Eurocontrol and ESA with the support of other European bodies such as telecommunication operators, national civil aviation authorities, national space agencies, industry, universities and R&D institutes in general. In fact, in view of the geographical area concerned, the large number of parties interested, the experience required and the global nature of GNSS, the proposed initiative can only be successful if based on a strong cooperation at a European and international scale. The ESA ARTES-9 programme will consist on one side, of the design, development and validation of the European complement to the GPS and GLONASS systems (GNSS1), and on the other side of the study, design and pre-development of the European contribution to follow-on systems: GNSS2.

  20. Interplanetary navigation

    NASA Technical Reports Server (NTRS)

    Stuart, J. R.

    1984-01-01

    The evolution of NASA's planetary navigation techniques is traced, and radiometric and optical data types are described. Doppler navigation; the Deep Space Network; differenced two-way range techniques; differential very long base interferometry; and optical navigation are treated. The Doppler system enables a spacecraft in cruise at high absolute declination to be located within a total angular uncertainty of 1/4 microrad. The two-station range measurement provides a 1 microrad backup at low declinations. Optical data locate the spacecraft relative to the target to an angular accuracy of 5 microrad. Earth-based radio navigation and its less accurate but target-relative counterpart, optical navigation, thus form complementary measurement sources, which provide a powerful sensory system to produce high-precision orbit estimates.

  1. Navigation strategies for multiple autonomous mobile robots moving in formation

    NASA Technical Reports Server (NTRS)

    Wang, P. K. C.

    1991-01-01

    The problem of deriving navigation strategies for a fleet of autonomous mobile robots moving in formation is considered. Here, each robot is represented by a particle with a spherical effective spatial domain and a specified cone of visibility. The global motion of each robot in the world space is described by the equations of motion of the robot's center of mass. First, methods for formation generation are discussed. Then, simple navigation strategies for robots moving in formation are derived. A sufficient condition for the stability of a desired formation pattern for a fleet of robots each equipped with the navigation strategy based on nearest neighbor tracking is developed. The dynamic behavior of robot fleets consisting of three or more robots moving in formation in a plane is studied by means of computer simulation.

  2. GPS Navigation for the Magnetospheric Multi-Scale Mission

    NASA Technical Reports Server (NTRS)

    Bamford, William; Mitchell, Jason; Southward, Michael; Baldwin, Philip; Winternitz, Luke; Heckler, Gregory; Kurichh, Rishi; Sirotzky, Steve

    2009-01-01

    In 2014. NASA is scheduled to launch the Magnetospheric Multiscale Mission (MMS), a four-satellite formation designed to monitor fluctuations in the Earth's magnetosphere. This mission has two planned phases with different orbits (1? x 12Re and 1.2 x 25Re) to allow for varying science regions of interest. To minimize ground resources and to mitigate the probability of collisions between formation members, an on-board orbit determination system consisting of a Global Positioning System (GPS) receiver and crosslink transceiver was desired. Candidate sensors would be required to acquire GPS signals both below and above the constellation while spinning at three revolutions-per-minute (RPM) and exchanging state and science information among the constellation. The Intersatellite Ranging and Alarm System (IRAS), developed by Goddard Space Flight Center (GSFC) was selected to meet this challenge. IRAS leverages the eight years of development GSFC has invested in the Navigator GPS receiver and its spacecraft communication expertise, culminating in a sensor capable of absolute and relative navigation as well as intersatellite communication. The Navigator is a state-of-the-art receiver designed to acquire and track weak GPS signals down to -147dBm. This innovation allows the receiver to track both the main lobe and the much weaker side lobe signals. The Navigator's four antenna inputs and 24 tracking channels, together with customized hardware and software, allow it to seamlessly maintain visibility while rotating. Additionally, an extended Kalman filter provides autonomous, near real-time, absolute state and time estimates. The Navigator made its maiden voyage on the Space Shuttle during the Hubble Servicing Mission, and is scheduled to fly on MMS as well as the Global Precipitation Measurement Mission (GPM). Additionally, Navigator's acquisition engine will be featured in the receiver being developed for the Orion vehicle. The crosslink transceiver is a 1/4 Watt transmitter

  3. High accuracy GNSS based navigation in GEO

    NASA Astrophysics Data System (ADS)

    Capuano, Vincenzo; Shehaj, Endrit; Blunt, Paul; Botteron, Cyril; Farine, Pierre-André

    2017-07-01

    Although significant improvements in efficiency and performance of communication satellites have been achieved in the past decades, it is expected that the demand for new platforms in Geostationary Orbit (GEO) and for the On-Orbit Servicing (OOS) on the existing ones will continue to rise. Indeed, the GEO orbit is used for many applications including direct broadcast as well as communications. At the same time, Global Navigation Satellites System (GNSS), originally designed for land, maritime and air applications, has been successfully used as navigation system in Low Earth Orbit (LEO) and its further utilization for navigation of geosynchronous satellites becomes a viable alternative offering many advantages over present ground based methods. Following our previous studies of GNSS signal characteristics in Medium Earth Orbit (MEO), GEO and beyond, in this research we specifically investigate the processing of different GNSS signals, with the goal to determine the best navigation performance they can provide in a GEO mission. Firstly, a detailed selection among different GNSS signals and different combinations of them is discussed, taking into consideration the L1 and L5 frequency bands, and the GPS and Galileo constellations. Then, the implementation of an Orbital Filter is summarized, which adaptively fuses the GN1SS observations with an accurate orbital forces model. Finally, simulation tests of the navigation performance achievable by processing the selected combination of GNSS signals are carried out. The results obtained show an achievable positioning accuracy of less than one meter. In addition, hardware-in-the-loop tests are presented using a COTS receiver connected to our GNSS Spirent simulator, in order to collect real-time hardware-in-the-loop observations and process them by the proposed navigation module.

  4. Relative Navigation Strategies for the Magnetopheric Multiscale Mission

    NASA Technical Reports Server (NTRS)

    Gramling, Cheryl; Carpenter, Russell; Lee, Taesul; Long, Anne

    2004-01-01

    This paper evaluates several navigation approaches for the Magnetospheric Multiscale (MMS) mission, which consists of a tetrahedral formation of satellites flying in highly eccentric Earth orbits. For this investigation, inter-satellite separations of approximately 10 kilometers near apogee are used for the first two phases of the MMS mission. Navigation approaches were studied using ground station two-way Doppler measurements, Global Positioning System (GPS) pseudorange measurements, and cross-link range measurements between the members of the formation. An absolute position accuracy of 15 kilometers or better can be achieved with most of the approaches studied, and a relative position accuracy of 100 meters or better can be achieved at apogee in several cases.

  5. 33 CFR 164.72 - Navigational-safety equipment, charts or maps, and publications required on towing vessels.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., either a LORAN-C receiver or a satellite navigational system such as the Global Positioning System (GPS... the following navigational-safety equipment: (1) Marine radar. By August 2, 1997, a marine radar that meets the following applicable requirements: (i) For a vessel of less than 300 tons gross tonnage that...

  6. Virtual local target method for avoiding local minimum in potential field based robot navigation.

    PubMed

    Zou, Xi-Yong; Zhu, Jing

    2003-01-01

    A novel robot navigation algorithm with global path generation capability is presented. Local minimum is a most intractable but is an encountered frequently problem in potential field based robot navigation. Through appointing appropriately some virtual local targets on the journey, it can be solved effectively. The key concept employed in this algorithm are the rules that govern when and how to appoint these virtual local targets. When the robot finds itself in danger of local minimum, a virtual local target is appointed to replace the global goal temporarily according to the rules. After the virtual target is reached, the robot continues on its journey by heading towards the global goal. The algorithm prevents the robot from running into local minima anymore. Simulation results showed that it is very effective in complex obstacle environments.

  7. Differential GNSS and Vision-Based Tracking to Improve Navigation Performance in Cooperative Multi-UAV Systems

    PubMed Central

    Vetrella, Amedeo Rodi; Fasano, Giancarmine; Accardo, Domenico; Moccia, Antonio

    2016-01-01

    Autonomous navigation of micro-UAVs is typically based on the integration of low cost Global Navigation Satellite System (GNSS) receivers and Micro-Electro-Mechanical Systems (MEMS)-based inertial and magnetic sensors to stabilize and control the flight. The resulting navigation performance in terms of position and attitude accuracy may not suffice for other mission needs, such as the ones relevant to fine sensor pointing. In this framework, this paper presents a cooperative UAV navigation algorithm that allows a chief vehicle, equipped with inertial and magnetic sensors, a Global Positioning System (GPS) receiver, and a vision system, to improve its navigation performance (in real time or in the post processing phase) exploiting formation flying deputy vehicles equipped with GPS receivers. The focus is set on outdoor environments and the key concept is to exploit differential GPS among vehicles and vision-based tracking (DGPS/Vision) to build a virtual additional navigation sensor whose information is then integrated in a sensor fusion algorithm based on an Extended Kalman Filter. The developed concept and processing architecture are described, with a focus on DGPS/Vision attitude determination algorithm. Performance assessment is carried out on the basis of both numerical simulations and flight tests. In the latter ones, navigation estimates derived from the DGPS/Vision approach are compared with those provided by the onboard autopilot system of a customized quadrotor. The analysis shows the potential of the developed approach, mainly deriving from the possibility to exploit magnetic- and inertial-independent accurate attitude information. PMID:27999318

  8. Ionosphere-related products for communication and navigation

    NASA Astrophysics Data System (ADS)

    Tobiska, W.; Schunk, R. W.; Sojka, J. J.; Carlson, H. C.; Gardner, L. C.; Scherliess, L.; Zhu, L.

    2011-12-01

    Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. Of the space environment domains that are affected by space weather, the ionosphere is the key region that affects communication and navigation systems. The Utah State University (USU) Space Weather Center (SWC) is developing and producing commercial space weather applications. A key system-level component for providing timely information about the effects of space weather is the Global Assimilation of Ionospheric Measurements (GAIM) system. GAIM, operated by SWC, improves real-time communication and navigation systems by continuously ingesting up to 10,000 slant TEC measurements every 15-minutes from approximately 500 stations. Ionosonde data from several dozen global stations is ingested every 15 minutes to improve the vertical profiles within GAIM. The global, CONUS, Europe, Asia, South America, and other regional sectors are run with a 15-minute cadence. These operational runs enable SWC to calculate and report the global radio high frequency (HF) signal strengths and near vertical incidence skywave (NVIS) maps used by amateur radio operators and emergency responders, especially during the Japan Great Earthquake and tsunami recovery period. SWC has established its first fully commercial enterprise called Q-up as a result of this activity. GPS uncertainty maps are produced by SWC to improve single-frequency GPS applications. SWC also provides the space weather smartphone app called SpaceWx for iPhone, iPad, iPod, and Android for professional users and public space weather education. SpaceWx displays the real-time solar, heliosphere, magnetosphere, thermosphere, and ionosphere drivers to changes in the total electron content, for example, as well as global NVIS maps. We describe upcoming improvements for moving space weather information through automated systems into final derivative products.

  9. Japanese guidelines for childhood asthma 2017.

    PubMed

    Arakawa, Hirokazu; Hamasaki, Yuhei; Kohno, Yoichi; Ebisawa, Motohiro; Kondo, Naomi; Nishima, Sankei; Nishimuta, Toshiyuki; Morikawa, Akihiro

    2017-04-01

    The Japanese Guideline for the Diagnosis and Treatment of Allergic Diseases 2017 (JAGL 2017) includes a minor revision of the Japanese Pediatric Guideline for the Treatment and Management of Asthma 2012 (JPGL 2012) by the Japanese Society of Pediatric Allergy and Clinical Immunology. The section on child asthma in JAGL 2017 provides information on how to diagnose asthma between infancy and adolescence (0-15 years of age). It makes recommendations for best practices in the management of childhood asthma, including management of acute exacerbations and non-pharmacological and pharmacological management. This guideline will be of interest to non-specialist physicians involved in the care of children with asthma. JAGL differs from the Global Initiative for Asthma Guideline in that JAGL emphasizes diagnosis and early intervention of children with asthma at <2 years or 2-5 years of age. The first choice of treatment depends on the severity and frequency of symptoms. Pharmacological management, including step-up or step-down of drugs used for long-term management based on the status of asthma control levels, is easy to understand; thus, this guideline is suitable for the routine medical care of children with asthma. JAGL also recommends using a control test in children, so that the physician aims for complete control by avoiding exacerbating factors and appropriately using anti-inflammatory drugs (for example, inhaled corticosteroids and leukotriene receptor antagonists). Copyright © 2016 Japanese Society of Allergology. Production and hosting by Elsevier B.V. All rights reserved.

  10. Systems and Methods for Determining Inertial Navigation System Faults

    NASA Technical Reports Server (NTRS)

    Bharadwaj, Raj Mohan (Inventor); Bageshwar, Vibhor L. (Inventor); Kim, Kyusung (Inventor)

    2017-01-01

    An inertial navigation system (INS) includes a primary inertial navigation system (INS) unit configured to receive accelerometer measurements from an accelerometer and angular velocity measurements from a gyroscope. The primary INS unit is further configured to receive global navigation satellite system (GNSS) signals from a GNSS sensor and to determine a first set of kinematic state vectors based on the accelerometer measurements, the angular velocity measurements, and the GNSS signals. The INS further includes a secondary INS unit configured to receive the accelerometer measurements and the angular velocity measurements and to determine a second set of kinematic state vectors of the vehicle based on the accelerometer measurements and the angular velocity measurements. A health management system is configured to compare the first set of kinematic state vectors and the second set of kinematic state vectors to determine faults associated with the accelerometer or the gyroscope based on the comparison.

  11. 6TH Saint Petersburg International Conference on Integrated Navigation Systems. (6eme Conference Internationale de Saint Petersbourg sur les Systemes de Navigation Integree)

    DTIC Science & Technology

    1999-10-01

    Kharisov V.N., Perov A.I., Boldin V.A. (editors). 1977. The global satelllite radio-navigational system 20. Wu W.-R. Target tracking with glint...the coordinates of the OP techniques for their searching and extracting in deep seas. These techniques. have yielded Researches have shown that, an OP

  12. Geometrically constrained kinematic global navigation satellite systems positioning: Implementation and performance

    NASA Astrophysics Data System (ADS)

    Asgari, Jamal; Mohammadloo, Tannaz H.; Amiri-Simkooei, Ali Reza

    2015-09-01

    GNSS kinematic techniques are capable of providing precise coordinates in extremely short observation time-span. These methods usually determine the coordinates of an unknown station with respect to a reference one. To enhance the precision, accuracy, reliability and integrity of the estimated unknown parameters, GNSS kinematic equations are to be augmented by possible constraints. Such constraints could be derived from the geometric relation of the receiver positions in motion. This contribution presents the formulation of the constrained kinematic global navigation satellite systems positioning. Constraints effectively restrict the definition domain of the unknown parameters from the three-dimensional space to a subspace defined by the equation of motion. To test the concept of the constrained kinematic positioning method, the equation of a circle is employed as a constraint. A device capable of moving on a circle was made and the observations from 11 positions on the circle were analyzed. Relative positioning was conducted by considering the center of the circle as the reference station. The equation of the receiver's motion was rewritten in the ECEF coordinates system. A special attention is drawn onto how a constraint is applied to kinematic positioning. Implementing the constraint in the positioning process provides much more precise results compared to the unconstrained case. This has been verified based on the results obtained from the covariance matrix of the estimated parameters and the empirical results using kinematic positioning samples as well. The theoretical standard deviations of the horizontal components are reduced by a factor ranging from 1.24 to 2.64. The improvement on the empirical standard deviation of the horizontal components ranges from 1.08 to 2.2.

  13. [Chapter 5. The internationalization of the Japanese pharmaceutical industry (1980-2010)].

    PubMed

    Yongue, Julia S

    2014-01-01

    The Japanese pharmaceutical industry experienced a period of rapid and economic growth following the introduction of the national healthcare system in 1961. Triggered by a major revision in Japanese legislation from process to substance patents, leading Japanese pharmaceutical companies began to invest in research and development (R&D). By the mid-1980s, some had managed to develop their first internationally marketable drugs, many of which were antibiotics. The emergence of novel drugs gave companies the impetus to engage in progressively more appreciable investments in Asia, Europe and the United States. In the 1980s, internationalization was mainly inwardly focused so as to limit firms' exposure to risk. However, as profits increased in the 1990s from the sale of new drugs, Japanese pharmaceutical companies were able to engage in even more sizeable, outwardly focused investments. By 2010, Japan's leading pharmaceutical enterprises had succeeded in putting place three types of global operations: manufacturing, marketing and R&D.

  14. Space shuttle navigation analysis. Volume 2: Baseline system navigation

    NASA Technical Reports Server (NTRS)

    Jones, H. L.; Luders, G.; Matchett, G. A.; Rains, R. G.

    1980-01-01

    Studies related to the baseline navigation system for the orbiter are presented. The baseline navigation system studies include a covariance analysis of the Inertial Measurement Unit calibration and alignment procedures, postflight IMU error recovery for the approach and landing phases, on-orbit calibration of IMU instrument biases, and a covariance analysis of entry and prelaunch navigation system performance.

  15. Modified Navigation Instructions for Spatial Navigation Assistance Systems Lead to Incidental Spatial Learning

    PubMed Central

    Gramann, Klaus; Hoepner, Paul; Karrer-Gauss, Katja

    2017-01-01

    Spatial cognitive skills deteriorate with the increasing use of automated GPS navigation and a general decrease in the ability to orient in space might have further impact on independence, autonomy, and quality of life. In the present study we investigate whether modified navigation instructions support incidental spatial knowledge acquisition. A virtual driving environment was used to examine the impact of modified navigation instructions on spatial learning while using a GPS navigation assistance system. Participants navigated through a simulated urban and suburban environment, using navigation support to reach their destination. Driving performance as well as spatial learning was thereby assessed. Three navigation instruction conditions were tested: (i) a control group that was provided with classical navigation instructions at decision points, and two other groups that received navigation instructions at decision points including either (ii) additional irrelevant information about landmarks or (iii) additional personally relevant information (i.e., individual preferences regarding food, hobbies, etc.), associated with landmarks. Driving performance revealed no differences between navigation instructions. Significant improvements were observed in both modified navigation instruction conditions on three different measures of spatial learning and memory: subsequent navigation of the initial route without navigation assistance, landmark recognition, and sketch map drawing. Future navigation assistance systems could incorporate modified instructions to promote incidental spatial learning and to foster more general spatial cognitive abilities. Such systems might extend mobility across the lifespan. PMID:28243219

  16. An Imaging Sensor-Aided Vision Navigation Approach that Uses a Geo-Referenced Image Database.

    PubMed

    Li, Yan; Hu, Qingwu; Wu, Meng; Gao, Yang

    2016-01-28

    In determining position and attitude, vision navigation via real-time image processing of data collected from imaging sensors is advanced without a high-performance global positioning system (GPS) and an inertial measurement unit (IMU). Vision navigation is widely used in indoor navigation, far space navigation, and multiple sensor-integrated mobile mapping. This paper proposes a novel vision navigation approach aided by imaging sensors and that uses a high-accuracy geo-referenced image database (GRID) for high-precision navigation of multiple sensor platforms in environments with poor GPS. First, the framework of GRID-aided vision navigation is developed with sequence images from land-based mobile mapping systems that integrate multiple sensors. Second, a highly efficient GRID storage management model is established based on the linear index of a road segment for fast image searches and retrieval. Third, a robust image matching algorithm is presented to search and match a real-time image with the GRID. Subsequently, the image matched with the real-time scene is considered to calculate the 3D navigation parameter of multiple sensor platforms. Experimental results show that the proposed approach retrieves images efficiently and has navigation accuracies of 1.2 m in a plane and 1.8 m in height under GPS loss in 5 min and within 1500 m.

  17. An Imaging Sensor-Aided Vision Navigation Approach that Uses a Geo-Referenced Image Database

    PubMed Central

    Li, Yan; Hu, Qingwu; Wu, Meng; Gao, Yang

    2016-01-01

    In determining position and attitude, vision navigation via real-time image processing of data collected from imaging sensors is advanced without a high-performance global positioning system (GPS) and an inertial measurement unit (IMU). Vision navigation is widely used in indoor navigation, far space navigation, and multiple sensor-integrated mobile mapping. This paper proposes a novel vision navigation approach aided by imaging sensors and that uses a high-accuracy geo-referenced image database (GRID) for high-precision navigation of multiple sensor platforms in environments with poor GPS. First, the framework of GRID-aided vision navigation is developed with sequence images from land-based mobile mapping systems that integrate multiple sensors. Second, a highly efficient GRID storage management model is established based on the linear index of a road segment for fast image searches and retrieval. Third, a robust image matching algorithm is presented to search and match a real-time image with the GRID. Subsequently, the image matched with the real-time scene is considered to calculate the 3D navigation parameter of multiple sensor platforms. Experimental results show that the proposed approach retrieves images efficiently and has navigation accuracies of 1.2 m in a plane and 1.8 m in height under GPS loss in 5 min and within 1500 m. PMID:26828496

  18. Aeronautic Instruments. Section VI : Aerial Navigation and Navigating Instruments

    NASA Technical Reports Server (NTRS)

    Eaton, H N

    1923-01-01

    This report outlines briefly the methods of aerial navigation which have been developed during the past few years, with a description of the different instruments used. Dead reckoning, the most universal method of aerial navigation, is first discussed. Then follows an outline of the principles of navigation by astronomical observation; a discussion of the practical use of natural horizons, such as sea, land, and cloud, in making extant observations; the use of artificial horizons, including the bubble, pendulum, and gyroscopic types. A description is given of the recent development of the radio direction finder and its application to navigation.

  19. The Japanese Histologic Classification and T-score in the Oxford Classification system could predict renal outcome in Japanese IgA nephropathy patients.

    PubMed

    Kaihan, Ahmad Baseer; Yasuda, Yoshinari; Katsuno, Takayuki; Kato, Sawako; Imaizumi, Takahiro; Ozeki, Takaya; Hishida, Manabu; Nagata, Takanobu; Ando, Masahiko; Tsuboi, Naotake; Maruyama, Shoichi

    2017-12-01

    The Oxford Classification is utilized globally, but has not been fully validated. In this study, we conducted a comparative analysis between the Oxford Classification and Japanese Histologic Classification (JHC) to predict renal outcome in Japanese patients with IgA nephropathy (IgAN). A retrospective cohort study including 86 adult IgAN patients was conducted. The Oxford Classification and the JHC were evaluated by 7 independent specialists. The JHC, MEST score in the Oxford Classification, and crescents were analyzed in association with renal outcome, defined as a 50% increase in serum creatinine. In multivariate analysis without the JHC, only the T score was significantly associated with renal outcome. While, a significant association was revealed only in the JHC on multivariate analysis with JHC. The JHC and T score in the Oxford Classification were associated with renal outcome among Japanese patients with IgAN. Superiority of the JHC as a predictive index should be validated with larger study population and cohort studies in different ethnicities.

  20. Light Detection and Ranging-Based Terrain Navigation: A Concept Exploration

    NASA Technical Reports Server (NTRS)

    Campbell, Jacob; UijtdeHaag, Maarten; vanGraas, Frank; Young, Steve

    2003-01-01

    This paper discusses the use of Airborne Light Detection And Ranging (LiDAR) equipment for terrain navigation. Airborne LiDAR is a relatively new technology used primarily by the geo-spatial mapping community to produce highly accurate and dense terrain elevation maps. In this paper, the term LiDAR refers to a scanning laser ranger rigidly mounted to an aircraft, as opposed to an integrated sensor system that consists of a scanning laser ranger integrated with Global Positioning System (GPS) and Inertial Measurement Unit (IMU) data. Data from the laser range scanner and IMU will be integrated with a terrain database to estimate the aircraft position and data from the laser range scanner will be integrated with GPS to estimate the aircraft attitude. LiDAR data was collected using NASA Dryden's DC-8 flying laboratory in Reno, NV and was used to test the proposed terrain navigation system. The results of LiDAR-based terrain navigation shown in this paper indicate that airborne LiDAR is a viable technology enabler for fully autonomous aircraft navigation. The navigation performance is highly dependent on the quality of the terrain databases used for positioning and therefore high-resolution (2 m post-spacing) data was used as the terrain reference.

  1. Japanese H-IIA rocket

    NASA Image and Video Library

    2013-11-14

    The Japanese H-IIA rocket will be launching the GPM Core Observatory into orbit in 2014. Credit: JAXA The Global Precipitation Measurement (GPM) mission is an international partnership co-led by NASA and the Japan Aerospace Exploration Agency (JAXA) that will provide next-generation global observations of precipitation from space. GPM will study global rain, snow and ice to better understand our climate, weather, and hydrometeorological processes. As of Novermber 2013 the GPM Core Observatory is in the final stages of testing at NASA Goddard Space Flight Center. The satellite will be flown to Japan in the fall of 2013 and launched into orbit on an HII-A rocket in early 2014. For more on the GPM mission, visit gpm.gsfc.nasa.gov/. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  2. Implementation of a Global Navigation Satellite System (GNSS) Augmentation to Tsunami Early Warning Systems

    NASA Astrophysics Data System (ADS)

    LaBrecque, John

    2016-04-01

    The Global Geodetic Observing System has issued a Call for Participation to research scientists, geodetic research groups and national agencies in support of the implementation of the IUGG recommendation for a Global Navigation Satellite System (GNSS) Augmentation to Tsunami Early Warning Systems. The call seeks to establish a working group to be a catalyst and motivating force for the definition of requirements, identification of resources, and for the encouragement of international cooperation in the establishment, advancement, and utilization of GNSS for Tsunami Early Warning. During the past fifteen years the populations of the Indo-Pacific region experienced a series of mega-thrust earthquakes followed by devastating tsunamis that claimed nearly 300,000 lives. The future resiliency of the region will depend upon improvements to infrastructure and emergency response that will require very significant investments from the Indo-Pacific economies. The estimation of earthquake moment magnitude, source mechanism and the distribution of crustal deformation are critical to rapid tsunami warning. Geodetic research groups have demonstrated the use of GNSS data to estimate earthquake moment magnitude, source mechanism and the distribution of crustal deformation sufficient for the accurate and timely prediction of tsunamis generated by mega-thrust earthquakes. GNSS data have also been used to measure the formation and propagation of tsunamis via ionospheric disturbances acoustically coupled to the propagating surface waves; thereby providing a new technique to track tsunami propagation across ocean basins, opening the way for improving tsunami propagation models, and providing accurate warning to communities in the far field. These two new advancements can deliver timely and accurate tsunami warnings to coastal communities in the near and far field of mega-thrust earthquakes. This presentation will present the justification for and the details of the GGOS Call for

  3. GPS/MEMS IMU/Microprocessor Board for Navigation

    NASA Technical Reports Server (NTRS)

    Gender, Thomas K.; Chow, James; Ott, William E.

    2009-01-01

    A miniaturized instrumentation package comprising a (1) Global Positioning System (GPS) receiver, (2) an inertial measurement unit (IMU) consisting largely of surface-micromachined sensors of the microelectromechanical systems (MEMS) type, and (3) a microprocessor, all residing on a single circuit board, is part of the navigation system of a compact robotic spacecraft intended to be released from a larger spacecraft [e.g., the International Space Station (ISS)] for exterior visual inspection of the larger spacecraft. Variants of the package may also be useful in terrestrial collision-detection and -avoidance applications. The navigation solution obtained by integrating the IMU outputs is fed back to a correlator in the GPS receiver to aid in tracking GPS signals. The raw GPS and IMU data are blended in a Kalman filter to obtain an optimal navigation solution, which can be supplemented by range and velocity data obtained by use of (l) a stereoscopic pair of electronic cameras aboard the robotic spacecraft and/or (2) a laser dynamic range imager aboard the ISS. The novelty of the package lies mostly in those aspects of the design of the MEMS IMU that pertain to controlling mechanical resonances and stabilizing scale factors and biases.

  4. Edmodo as a Tool for the Global Connection between Japanese and American College Students in Language Learning

    ERIC Educational Resources Information Center

    Okumura, Shinji

    2017-01-01

    This study investigated how English learners at a university in Japan perceive connections with students in the US through an educational social network platform, called Edmodo. The instructor of English at the Japanese university cooperated with a Japanese language instructor at an American university and they incorporated Edmodo into their…

  5. The distribution of blood eosinophil levels in a Japanese COPD clinical trial database and in the rest of the world

    PubMed Central

    Ishii, Takeo; Hizawa, Nobuyuki; Midwinter, Dawn; James, Mark; Hilton, Emma; Jones, Paul W

    2018-01-01

    Background Blood eosinophil measurements may help to guide physicians on the use of inhaled corticosteroids (ICS) for patients with chronic obstructive pulmonary disease (COPD). Emerging data suggest that COPD patients with higher blood eosinophil counts may be at higher risk of exacerbations and more likely to benefit from combined ICS/long-acting beta2-agonist (LABA) treatment than therapy with a LABA alone. This analysis describes the distribution of blood eosinophil count at baseline in Japanese COPD patients in comparison with non-Japanese COPD patients. Methods A post hoc analysis of eosinophil distribution by percentage and absolute cell count was performed across 12 Phase II–IV COPD clinical studies (seven Japanese studies [N=848 available absolute eosinophil counts] and five global studies [N=5,397 available eosinophil counts] that included 246 Japanese patients resident in Japan with available counts). Blood eosinophil distributions were assessed at baseline, before blinded treatment assignment. Findings Among Japanese patients, the median (interquartile range) absolute eosinophil count was 170 cells/mm3 (100–280 cells/mm3). Overall, 612/1,094 Japanese patients (56%) had an absolute eosinophil count ≥150 cells/mm3 and 902/1,304 Japanese patients (69%) had a percentage eosinophil ≥2%. Among non-Japanese patients, these values were 160 (100–250) cells/mm3, 2,842/5,151 patients (55%), and 2,937/5,155 patients (57%), respectively. The eosinophil distribution among Japanese patients was similar to that among non-Japanese patients. Within multi-country studies with similar inclusion criteria, the eosinophil count was numerically lower in Japanese compared with non-Japanese patients (median 120 vs 160 cells/mm3). Interpretation The eosinophil distribution in Japanese patients seems comparable to that of non-Japanese patients; although within multi-country studies, there was a slightly lower median eosinophil count for Japanese patients compared with

  6. The distribution of blood eosinophil levels in a Japanese COPD clinical trial database and in the rest of the world.

    PubMed

    Barnes, Neil; Ishii, Takeo; Hizawa, Nobuyuki; Midwinter, Dawn; James, Mark; Hilton, Emma; Jones, Paul W

    2018-01-01

    Blood eosinophil measurements may help to guide physicians on the use of inhaled corticosteroids (ICS) for patients with chronic obstructive pulmonary disease (COPD). Emerging data suggest that COPD patients with higher blood eosinophil counts may be at higher risk of exacerbations and more likely to benefit from combined ICS/long-acting beta 2 -agonist (LABA) treatment than therapy with a LABA alone. This analysis describes the distribution of blood eosinophil count at baseline in Japanese COPD patients in comparison with non-Japanese COPD patients. A post hoc analysis of eosinophil distribution by percentage and absolute cell count was performed across 12 Phase II-IV COPD clinical studies (seven Japanese studies [N=848 available absolute eosinophil counts] and five global studies [N=5,397 available eosinophil counts] that included 246 Japanese patients resident in Japan with available counts). Blood eosinophil distributions were assessed at baseline, before blinded treatment assignment. Among Japanese patients, the median (interquartile range) absolute eosinophil count was 170 cells/mm 3 (100-280 cells/mm 3 ). Overall, 612/1,094 Japanese patients (56%) had an absolute eosinophil count ≥150 cells/mm 3 and 902/1,304 Japanese patients (69%) had a percentage eosinophil ≥2%. Among non-Japanese patients, these values were 160 (100-250) cells/mm 3 , 2,842/5,151 patients (55%), and 2,937/5,155 patients (57%), respectively. The eosinophil distribution among Japanese patients was similar to that among non-Japanese patients. Within multi-country studies with similar inclusion criteria, the eosinophil count was numerically lower in Japanese compared with non-Japanese patients (median 120 vs 160 cells/mm 3 ). The eosinophil distribution in Japanese patients seems comparable to that of non-Japanese patients; although within multi-country studies, there was a slightly lower median eosinophil count for Japanese patients compared with non-Japanese patients. These findings

  7. Do American born Japanese children still grow faster than native Japanese?

    PubMed

    Kano, K; Chung, C S

    1975-09-01

    Growth patterns of Japanese schoolchildren in Hawaii, composed of 2,954 boys and 3,213 girls aged between 11 and 17, were compared with those comparable groups of Japanese schoolchildren in Japan based on the data published by the Japanese Ministry of Education. Growth characteristics studied were height, weight, and relative weight index, weight/(height). The Hawaii-Japanese boys were taller at early ages but the difference disappeared by age 16. Native Japanese girls were shorter than Hawaii-Japanese until age 13, but they overtook the latter by age 14, exceeding them in height after age 15. A similar pattern was found in weights of girls but the Hawaii-Japanese boys remained consistently heavier by 5.0 to 9.0 kg than native Japanese. The relative weight measure indicated that the Hawaii boys were more "obese" than native Japanese boys for the growth period studied; whereas the same tendency was maintained until age 15 in girls. These observations indicate a marked degree of convergence of the patterns of physical growth of the two populations, whose differences were unmistakably in favor of American born children in earlier studies. It is concluded that the convergence is due largely to the improved environmental conditions in Japan in recent years.

  8. INL Autonomous Navigation System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2005-03-30

    The INL Autonomous Navigation System provides instructions for autonomously navigating a robot. The system permits high-speed autonomous navigation including obstacle avoidance, waypoing navigation and path planning in both indoor and outdoor environments.

  9. What are the Perspectives of Indonesian Students to Japanese Ritual during Solar Eclipse?

    NASA Astrophysics Data System (ADS)

    Haristiani, N.; Rusli, A.; Wiryani, A. S.; Nandiyanto, A. B. D.; Purnamasari, A.; Sucahya, T. N.; Permatasari, N.

    2018-02-01

    In this globalization era, many people still believe the myths about solar eclipse. The myths about solar eclipse are different between one country or are to another. In this context, the aim of this study was to investigate the perspective of Indonesian students in viewing how the Japanese people face their believing myths in solar eclipse. This research also investigated the student belief on several mythical stories in Indonesia, their understanding of the Islamic view, and their knowledge based on science concept relating to the solar eclipse phenomenon. To understand the Indonesian students’ perspective about the solar eclipse myths in Japanese, we took a survey to Indonesian students which are studying Japanese culture and language. Based on the results, the Indonesian student think that there is no significant difference between Indonesian and Japanese people in facing the solar eclipse.

  10. A novel angle computation and calibration algorithm of bio-inspired sky-light polarization navigation sensor.

    PubMed

    Xian, Zhiwen; Hu, Xiaoping; Lian, Junxiang; Zhang, Lilian; Cao, Juliang; Wang, Yujie; Ma, Tao

    2014-09-15

    Navigation plays a vital role in our daily life. As traditional and commonly used navigation technologies, Inertial Navigation System (INS) and Global Navigation Satellite System (GNSS) can provide accurate location information, but suffer from the accumulative error of inertial sensors and cannot be used in a satellite denied environment. The remarkable navigation ability of animals shows that the pattern of the polarization sky can be used for navigation. A bio-inspired POLarization Navigation Sensor (POLNS) is constructed to detect the polarization of skylight. Contrary to the previous approach, we utilize all the outputs of POLNS to compute input polarization angle, based on Least Squares, which provides optimal angle estimation. In addition, a new sensor calibration algorithm is presented, in which the installation angle errors and sensor biases are taken into consideration. Derivation and implementation of our calibration algorithm are discussed in detail. To evaluate the performance of our algorithms, simulation and real data test are done to compare our algorithms with several exiting algorithms. Comparison results indicate that our algorithms are superior to the others and are more feasible and effective in practice.

  11. 33 CFR 207.185 - Taylors Bayou, Tex., Beaumont Navigation District Lock; use, administration, and navigation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Taylors Bayou, Tex., Beaumont Navigation District Lock; use, administration, and navigation. 207.185 Section 207.185 Navigation and... § 207.185 Taylors Bayou, Tex., Beaumont Navigation District Lock; use, administration, and navigation...

  12. 33 CFR 207.185 - Taylors Bayou, Tex., Beaumont Navigation District Lock; use, administration, and navigation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Taylors Bayou, Tex., Beaumont Navigation District Lock; use, administration, and navigation. 207.185 Section 207.185 Navigation and... § 207.185 Taylors Bayou, Tex., Beaumont Navigation District Lock; use, administration, and navigation...

  13. Triply redundant integrated navigation and asset visibility system

    DOEpatents

    Smith, Stephen F [Loudon, TN; Moore, James A [Powell, TN

    2011-11-29

    Methods and apparatus are described for a navigation system. A method includes providing a global positioning system fix having a plurality of tracking parameters; providing a theater positioning system fix; monitoring the plurality of tracking parameters for predetermined conditions; and, when the predetermined conditions are met, sending a notifying signal and switching to the theater positioning system fix as a primary fix. An apparatus includes a system controller; a global positioning system receiver coupled to the system controller; a radio frequency locating receiver coupled to the system controller; and an operator interface coupled to the system controller.

  14. Triply redundant integrated navigation and asset visibility system

    DOEpatents

    Smith, Stephen F.; Moore, James A.

    2013-01-22

    Methods and apparatus are described for a navigation system. A method includes providing a global positioning system fix having a plurality of tracking parameters; providing a theater positioning system fix; monitoring the plurality of tracking parameters for predetermined conditions; and, when the predetermined conditions are met, sending a notifying signal and switching to the theater positioning system fix as a primary fix. An apparatus includes a system controller; a global positioning system receiver coupled to the system controller; a radio frequency locating receiver coupled to the system controller; and an operator interface coupled to the system controller.

  15. Navigable networks as Nash equilibria of navigation games.

    PubMed

    Gulyás, András; Bíró, József J; Kőrösi, Attila; Rétvári, Gábor; Krioukov, Dmitri

    2015-07-03

    Common sense suggests that networks are not random mazes of purposeless connections, but that these connections are organized so that networks can perform their functions well. One function common to many networks is targeted transport or navigation. Here, using game theory, we show that minimalistic networks designed to maximize the navigation efficiency at minimal cost share basic structural properties with real networks. These idealistic networks are Nash equilibria of a network construction game whose purpose is to find an optimal trade-off between the network cost and navigability. We show that these skeletons are present in the Internet, metabolic, English word, US airport, Hungarian road networks, and in a structural network of the human brain. The knowledge of these skeletons allows one to identify the minimal number of edges, by altering which one can efficiently improve or paralyse navigation in the network.

  16. Navigation of the space VLBI mission-HALCA

    NASA Technical Reports Server (NTRS)

    You, Tung Han; Ellis, Jordan; Mottinger, Neil

    1998-01-01

    In February 1997, the Japanese Space Agency ISAS launched the first space VLBI satellite, HALCA, with an 8 meter diameter wire mesh antenna and radio astronomy receivers capable of observing at 1.6, 4.8, and 22 Ghz. In a 560 by 21000 km orbit with a 6 hour period and 31 degree inclination, it observes celestial radio sources in conjunction with a world wide network of ground radio telescopes as part of an international collaborative effort which includes facilities in Japan, the U.S., Canada, Australia, and Europe. JPL is providing tracking and navigation support using a dedicated subnet of 11 meter antennas as well as co-observations using the DSN 70 meter antennas. This paper describes the spacecraft dynamics model and orbit determination strategies developed to meet the stringent trajectory accuracy requirements for generating predictions for the transfer of a stable uplink frequency to the spacecraft and for determining reconstructed orbits for delivery to the NRAO VLBI correlator and the international VLBI science community.

  17. Japaneseplex: A forensic SNP assay for identification of Japanese people using Japanese-specific alleles.

    PubMed

    Yuasa, Isao; Akane, Atsushi; Yamamoto, Toshimichi; Matsusue, Aya; Endoh, Minoru; Nakagawa, Mayumi; Umetsu, Kazuo; Ishikawa, Takaki; Iino, Morio

    2018-04-24

    It is sometimes necessary to determine whether a forensic biological sample came from a Japanese person. In this study, we developed a 60-locus SNP assay designed for the differentiation of Japanese people from other East Asians using entirely and nearly Japanese-specific alleles. This multiplex assay consisted of 6 independent PCR reactions followed by single nucleotide extension. The average number and standard deviation of Japanese-specific alleles possessed by an individual were 0.81 ± 0.93 in 108 Koreans from Seoul, 8.87 ± 2.89 in 103 Japanese from Tottori, 17.20 ± 3.80 in 88 Japanese from Okinawa, and 0 in 220 Han Chinese from Wuxi and Changsha. The Koreans had 0-4 Japanese-specific alleles per individual, whereas the Japanese had 4-26 Japanese-specific alleles. Almost all Japanese were distinguished from the Koreans and other people by the factorial correspondence and principal component analyses. The Snipper program was also useful to estimate the degree of Japaneseness. The method described here was successfully applied to the differentiation of Japanese from non-Japanese people in forensic cases. This Japanese-specific SNP assay was named Japaneseplex. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Autonomous Robot Navigation in Human-Centered Environments Based on 3D Data Fusion

    NASA Astrophysics Data System (ADS)

    Steinhaus, Peter; Strand, Marcus; Dillmann, Rüdiger

    2007-12-01

    Efficient navigation of mobile platforms in dynamic human-centered environments is still an open research topic. We have already proposed an architecture (MEPHISTO) for a navigation system that is able to fulfill the main requirements of efficient navigation: fast and reliable sensor processing, extensive global world modeling, and distributed path planning. Our architecture uses a distributed system of sensor processing, world modeling, and path planning units. In this arcticle, we present implemented methods in the context of data fusion algorithms for 3D world modeling and real-time path planning. We also show results of the prototypic application of the system at the museum ZKM (center for art and media) in Karlsruhe.

  19. Impacts of projected sea ice changes on trans-Arctic navigation

    NASA Astrophysics Data System (ADS)

    Stephenson, S. R.; Smith, L. C.

    2012-12-01

    Reduced Arctic sea ice continues to be a palpable signal of global change. Record lows in September sea ice extent from 2007 - 2011 have fueled speculation that trans-Arctic navigation routes may become physically viable in the 21st century. General Circulation Models project a nearly ice-free Arctic Ocean in summer by mid-century; however, how reduced sea ice will realistically impact navigation is not well understood. Using the ATAM (Arctic Transportation Accessibility Model) we present simulations of 21st-century trans-Arctic voyages as a function of climatic (ice) conditions and vessel class. Simulations are based on sea ice projections for three climatic forcing scenarios (RCP 4.5, 6.0, and 8.5 W/m^2) representing present-day and mid-century conditions, assuming Polar Class 6 (PC6) and open-water vessels (OW) with medium and no ice-breaking capability, respectively. Optimal least-cost routes (minimizing travel time while avoiding ice impassible to a given vessel class) between the North Atlantic and the Bering Strait were calculated for summer months of each time window. While Arctic navigation depends on other factors besides sea ice including economics, infrastructure, bathymetry, current, and weather, these projections should be useful for strategic planning by governments, regulatory and environmental agencies, and the global maritime industry to assess potential changes in the spatial and temporal ranges of Arctic marine operations.

  20. Apollo Onboard Navigation Techniques

    NASA Technical Reports Server (NTRS)

    Interbartolo, Michael

    2009-01-01

    This viewgraph presentation reviews basic navigation concepts, describes coordinate systems and identifies attitude determination techniques including Primary Guidance, Navigation and Control System (PGNCS) IMU management and Command and Service Module Stabilization and Control System/Lunar Module (LM) Abort Guidance System (AGS) attitude management. The presentation also identifies state vector determination techniques, including PGNCS coasting flight navigation, PGNCS powered flight navigation and LM AGS navigation.

  1. H2LIFT: global navigation simulation ship tracking and WMD detection in the maritime domain

    NASA Astrophysics Data System (ADS)

    Wyffels, Kevin

    2007-04-01

    This paper presents initial results for a tracking simulation of multiple maritime vehicles for use in a data fusion program detecting Weapons of Mass Destruction (WMD). This simulation supports a fusion algorithm (H2LIFT) for collecting and analyzing data providing a heuristic analysis tool for detecting weapons of mass destruction in the maritime domain. Tools required to develop a navigational simulation fitting a set of project objectives are introduced for integration into the H2LIFT algorithm. Emphasis is placed on the specific requirements of the H2LIFT project, however the basic equations, algorithms, and methodologies can be used as tools in a variety of scenario simulations. Discussion will be focused on track modeling (e.g. position tracking of ships), navigational techniques, WMD detection, and simulation of these models using Matlab and Simulink. Initial results provide absolute ship position data for a given multi-ship maritime scenario with random generation of a given ship containing a WMD. Required coordinate systems, conversions between coordinate systems, Earth modeling techniques, and navigational conventions and techniques are introduced for development of the simulations.

  2. 78 FR 68861 - Certain Navigation Products, Including GPS Devices, Navigation and Display Systems, Radar Systems...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-15

    ... Devices, Navigation and Display Systems, Radar Systems, Navigational Aids, Mapping Systems and Related... navigation products, including GPS devices, navigation and display systems, radar systems, navigational aids..., radar systems, navigational aids, mapping systems and related software by reason of infringement of one...

  3. Navigational Guidance and Ablation Planning Tools for Interventional Radiology.

    PubMed

    Sánchez, Yadiel; Anvari, Arash; Samir, Anthony E; Arellano, Ronald S; Prabhakar, Anand M; Uppot, Raul N

    Image-guided biopsy and ablation relies on successful identification and targeting of lesions. Currently, image-guided procedures are routinely performed under ultrasound, fluoroscopy, magnetic resonance imaging, or computed tomography (CT) guidance. However, these modalities have their limitations including inadequate visibility of the lesion, lesion or organ or patient motion, compatibility of instruments in an magnetic resonance imaging field, and, for CT and fluoroscopy cases, radiation exposure. Recent advances in technology have resulted in the development of a new generation of navigational guidance tools that can aid in targeting lesions for biopsy or ablations. These navigational guidance tools have evolved from simple hand-held trajectory guidance tools, to electronic needle visualization, to image fusion, to the development of a body global positioning system, to growth in cone-beam CT, and to ablation volume planning. These navigational systems are promising technologies that not only have the potential to improve lesion targeting (thereby increasing diagnostic yield of a biopsy or increasing success of tumor ablation) but also have the potential to decrease radiation exposure to the patient and staff, decrease procedure time, decrease the sedation requirements, and improve patient safety. The purpose of this article is to describe the challenges in current standard image-guided techniques, provide a definition and overview for these next-generation navigational devices, and describe the current limitations of these, still evolving, next-generation navigational guidance tools. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. A LEO Satellite Navigation Algorithm Based on GPS and Magnetometer Data

    NASA Technical Reports Server (NTRS)

    Deutschmann, Julie; Bar-Itzhack, Itzhack; Harman, Rick; Bauer, Frank H. (Technical Monitor)

    2000-01-01

    The Global Positioning System (GPS) has become a standard method for low cost onboard satellite orbit determination. The use of a GPS receiver as an attitude and rate sensor has also been developed in the recent past. Additionally, focus has been given to attitude and orbit estimation using the magnetometer, a low cost, reliable sensor. Combining measurements from both GPS and a magnetometer can provide a robust navigation system that takes advantage of the estimation qualities of both measurements. Ultimately a low cost, accurate navigation system can result, potentially eliminating the need for more costly sensors, including gyroscopes.

  5. Navigating catastrophes: Local but not global optimisation allows for macro-economic navigation of crises

    NASA Astrophysics Data System (ADS)

    Harré, Michael S.

    2013-02-01

    Two aspects of modern economic theory have dominated the recent discussion on the state of the global economy: Crashes in financial markets and whether or not traditional notions of economic equilibrium have any validity. We have all seen the consequences of market crashes: plummeting share prices, businesses collapsing and considerable uncertainty throughout the global economy. This seems contrary to what might be expected of a system in equilibrium where growth dominates the relatively minor fluctuations in prices. Recent work from within economics as well as by physicists, psychologists and computational scientists has significantly improved our understanding of the more complex aspects of these systems. With this interdisciplinary approach in mind, a behavioural economics model of local optimisation is introduced and three general properties are proven. The first is that under very specific conditions local optimisation leads to a conventional macro-economic notion of a global equilibrium. The second is that if both global optimisation and economic growth are required then under very mild assumptions market catastrophes are an unavoidable consequence. Third, if only local optimisation and economic growth are required then there is sufficient parametric freedom for macro-economic policy makers to steer an economy around catastrophes without overtly disrupting local optimisation.

  6. Laser-based Relative Navigation Using GPS Measurements for Spacecraft Formation Flying

    NASA Astrophysics Data System (ADS)

    Lee, Kwangwon; Oh, Hyungjik; Park, Han-Earl; Park, Sang-Young; Park, Chandeok

    2015-12-01

    This study presents a precise relative navigation algorithm using both laser and Global Positioning System (GPS) measurements in real time. The measurement model of the navigation algorithm between two spacecraft is comprised of relative distances measured by laser instruments and single differences of GPS pseudo-range measurements in spherical coordinates. Based on the measurement model, the Extended Kalman Filter (EKF) is applied to smooth the pseudo-range measurements and to obtain the relative navigation solution. While the navigation algorithm using only laser measurements might become inaccurate because of the limited accuracy of spacecraft attitude estimation when the distance between spacecraft is rather large, the proposed approach is able to provide an accurate solution even in such cases by employing the smoothed GPS pseudo-range measurements. Numerical simulations demonstrate that the errors of the proposed algorithm are reduced by more than about 12% compared to those of an algorithm using only laser measurements, as the accuracy of angular measurements is greater than 0.001° at relative distances greater than 30 km.

  7. Horizon Based Orientation Estimation for Planetary Surface Navigation

    NASA Technical Reports Server (NTRS)

    Bouyssounouse, X.; Nefian, A. V.; Deans, M.; Thomas, A.; Edwards, L.; Fong, T.

    2016-01-01

    Planetary rovers navigate in extreme environments for which a Global Positioning System (GPS) is unavailable, maps are restricted to relatively low resolution provided by orbital imagery, and compass information is often lacking due to weak or not existent magnetic fields. However, an accurate rover localization is particularly important to achieve the mission success by reaching the science targets, avoiding negative obstacles visible only in orbital maps, and maintaining good communication connections with ground. This paper describes a horizon solution for precise rover orientation estimation. The detected horizon in imagery provided by the on board navigation cameras is matched with the horizon rendered over the existing terrain model. The set of rotation parameters (roll, pitch yaw) that minimize the cost function between the two horizon curves corresponds to the rover estimated pose.

  8. Enabling Communication and Navigation Technologies for Future Near Earth Science Missions

    NASA Technical Reports Server (NTRS)

    Israel, David J.; Heckler, Gregory; Menrad, Robert; Hudiburg, John; Boroson, Don; Robinson, Bryan; Cornwell, Donald

    2016-01-01

    In 2015, the Earth Regimes Network Evolution Study (ERNESt) proposed an architectural concept and technologies that evolve to enable space science and exploration missions out to the 2040 timeframe. The architectural concept evolves the current instantiations of the Near Earth Network and Space Network with new technologies to provide a global communication and navigation network that provides communication and navigation services to a wide range of space users in the near Earth domain. The technologies included High Rate Optical Communications, Optical Multiple Access (OMA), Delay Tolerant Networking (DTN), User Initiated Services (UIS), and advanced Position, Navigation, and Timing technology. This paper describes the key technologies and their current technology readiness levels. Examples of science missions that could be enabled by the technologies and the projected operational benefits of the architecture concept to missions are also described.

  9. Navigable networks as Nash equilibria of navigation games

    PubMed Central

    Gulyás, András; Bíró, József J.; Kőrösi, Attila; Rétvári, Gábor; Krioukov, Dmitri

    2015-01-01

    Common sense suggests that networks are not random mazes of purposeless connections, but that these connections are organized so that networks can perform their functions well. One function common to many networks is targeted transport or navigation. Here, using game theory, we show that minimalistic networks designed to maximize the navigation efficiency at minimal cost share basic structural properties with real networks. These idealistic networks are Nash equilibria of a network construction game whose purpose is to find an optimal trade-off between the network cost and navigability. We show that these skeletons are present in the Internet, metabolic, English word, US airport, Hungarian road networks, and in a structural network of the human brain. The knowledge of these skeletons allows one to identify the minimal number of edges, by altering which one can efficiently improve or paralyse navigation in the network. PMID:26138277

  10. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-23

    Minamitane elementary school girls pose for a photo in front of a sign featuring the town's mascot "Chuta-kun", Sunday, Feb. 23, 2014, Tanegashima Island, Japan. The Chuta-kun mascot rides a rocket and has guns on the side of his helmet to show the areas history as the site of the first known contact of Europe and the Japanese, in 1543 and the introduction of the gun. A Japanese H-IIA rocket carrying the NASA-Japan Aerospace Exploration Agency (JAXA), Global Precipitation Measurement (GPM) Core Observatory is planned for launch from the space center on Feb. 28, 2014. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  11. An adaptive deep-coupled GNSS/INS navigation system with hybrid pre-filter processing

    NASA Astrophysics Data System (ADS)

    Wu, Mouyan; Ding, Jicheng; Zhao, Lin; Kang, Yingyao; Luo, Zhibin

    2018-02-01

    The deep-coupling of a global navigation satellite system (GNSS) with an inertial navigation system (INS) can provide accurate and reliable navigation information. There are several kinds of deeply-coupled structures. These can be divided mainly into coherent and non-coherent pre-filter based structures, which have their own strong advantages and disadvantages, especially in accuracy and robustness. In this paper, the existing pre-filters of the deeply-coupled structures are analyzed and modified to improve them firstly. Then, an adaptive GNSS/INS deeply-coupled algorithm with hybrid pre-filters processing is proposed to combine the advantages of coherent and non-coherent structures. An adaptive hysteresis controller is designed to implement the hybrid pre-filters processing strategy. The simulation and vehicle test results show that the adaptive deeply-coupled algorithm with hybrid pre-filters processing can effectively improve navigation accuracy and robustness, especially in a GNSS-challenged environment.

  12. [Understanding the symbolic values of Japanese onomatopoeia: comparison of Japanese and Chinese speakers].

    PubMed

    Haryu, Etsuko; Zhao, Lihua

    2007-10-01

    Do non-native speakers of the Japanese language understand the symbolic values of Japanese onomatopoeia matching a voiced/unvoiced consonant with a big/small sound made by a big/small object? In three experiments, participants who were native speakers of Japanese, Japanese-learning Chinese, or Chinese without knowledge of the Japanese language were shown two pictures. One picture was of a small object making a small sound, such as a small vase being broken, and the other was of a big object making a big sound, such as a big vase being broken. Participants were presented with two novel onomatopoetic words with voicing contrasts, e.g.,/dachan/vs./tachan/, and were told that each word corresponded to one of the two pictures. They were then asked to match the words to the corresponding pictures. Chinese without knowledge of Japanese performed only at chance level, whereas Japanese and Japanese-learning Chinese successfully matched a voiced/unvoiced consonant with a big/small object respectively. The results suggest that the key to understanding the symbolic values of voicing contrasts in Japanese onomatopoeia is some basic knowledge that is intrinsic to the Japanese language.

  13. Robot navigation research at CESAR (Center for Engineering Systems Advanced Research)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnett, D.L.; de Saussure, G.; Pin, F.G.

    1989-01-01

    A considerable amount of work has been reported on the problem of robot navigation in known static terrains. Algorithms have been proposed and implemented to search for an optimum path to the goal, taking into account the finite size and shape of the robot. Not as much work has been reported on robot navigation in unknown, unstructured, or dynamic environments. A robot navigating in an unknown environment must explore with its sensors, construct an abstract representation of its global environment to plan a path to the goal, and update or revise its plan based on accumulated data obtained and processedmore » in real-time. The core of the navigation program for the CESAR robots is a production system developed on the expert-system-shell CLIPS which runs on an NCUBE hypercube on board the robot. The production system can call on C-compiled navigation procedures. The production rules can read the sensor data and address the robot's effectors. This architecture was found efficient and flexible for the development and testing of the navigation algorithms; however, in order to process intelligently unexpected emergencies, it was found necessary to be able to control the production system through externally generated asynchronous data. This led to the design of a new asynchronous production system, APS, which is now being developed on the robot. This paper will review some of the navigation algorithms developed and tested at CESAR and will discuss the need for the new APS and how it is being integrated into the robot architecture. 18 refs., 3 figs., 1 tab.« less

  14. Ego consciousness in the Japanese psyche: culture, myth and disaster.

    PubMed

    Yama, Megumi

    2013-02-01

    With globalization, modern Western consciousness has spread across the world. This influx has affected the Japanese culture but ego consciousness has emerged through a long history and different course from that of the West. At a personal level, I have been interested in the establishment of a subject in a culture that values homogeneity and to understand this, I reflect on my own history of living in both the East and the West and on my experience practising psychotherapy. To show Japanese collective functioning at its best, I describe the human inter-connectedness and collaboration during the 2011 disaster. I explore the 'Nothing' at the centre of the Japanese psyche, through a reading of Japanese myth, especially the most originary and almost pre-human stories that come before the anthropomorphized 'First Parents'. A retelling of this founding story, reveals the multiple iterations over time that manifest in embodied being; this gradual emergence of consciousness is contrasted with Western myths of origin that are more clear and specific. This study attempts to bring awareness of the value and meaning of Eastern consciousness and its centre in the 'Nothing'. © 2013, The Society of Analytical Psychology.

  15. Space Segment (SS) and the Navigation User Segment (US) Interface Control Document (ICD)

    DOT National Transportation Integrated Search

    1993-10-10

    This Interface Control Document (ICD) defines the requirements related to the interface between the Space Segment (SS) of the Global Positioning System (GPS) and the Navigation Users Segment of the GPS. 2880k, 154p.

  16. Patient Navigation from the Paired Perspectives of Cancer Patients and Navigators: A Qualitative Analysis

    PubMed Central

    Yosha, Amanat M.; Carroll, Jennifer K.; Hendren, Samantha; Salamone, Charcy M.; Sanders, Mechelle; Fiscella, Kevin; Epstein, Ronald M.

    2011-01-01

    Objective Patient navigation for cancer care assesses and alleviates barriers to health care services. We examined paired perspectives of cancer patients and their navigators to examine the process of patient navigation. We explored the strengths, limitations, and our own lessons learned about adopting the novel methodology of multiperspective analysis. Methods As part of a larger RCT, patients and navigators were interviewed separately. We reviewed interviews with 18 patient-navigator dyads. Dyad summaries were created that explicitly incorporated both patient and navigator perspectives. Emerging themes and verbatim quotations were reflected in the summaries. Results Paired perspectives were valuable in identifying struggles that arose during navigation. These were represented as imbalanced investment and relational amelioration. Patients and navigators had general consensus about important patient needs for cancer care, but characterized these needs differently. Conclusion Our experience with multiperspective analysis revealed a methodology that delivers novel relational findings, but is best conducted de novo rather than as part of a larger study. Practice Implications Multiperspective analysis should be more widely adopted with clear aims and analytic strategy that strengthen the ability to reveal relational dynamics. Navigation training programs should anticipate navigator struggles and provide navigators with tools to manage them. PMID:21255958

  17. English-Medium Instruction in Japanese Universities: Policy Implementation and Constraints

    ERIC Educational Resources Information Center

    Chin Leong, Patrick N. G.

    2017-01-01

    English-medium instruction (EMI) is gaining momentum in Japan as politicians constantly highlight the need for Japanese universities to cultivate students with English skills to participate in the global market. Adopting a framework on the failure of policy implementation [Schiffman, H. (2007). Tamil language policy in Singapore. The role of…

  18. Autonomous integrated GPS/INS navigation experiment for OMV. Phase 1: Feasibility study

    NASA Technical Reports Server (NTRS)

    Upadhyay, Triveni N.; Priovolos, George J.; Rhodehamel, Harley

    1990-01-01

    The phase 1 research focused on the experiment definition. A tightly integrated Global Positioning System/Inertial Navigation System (GPS/INS) navigation filter design was analyzed and was shown, via detailed computer simulation, to provide precise position, velocity, and attitude (alignment) data to support navigation and attitude control requirements of future NASA missions. The application of the integrated filter was also shown to provide the opportunity to calibrate inertial instrument errors which is particularly useful in reducing INS error growth during times of GPS outages. While the Orbital Maneuvering Vehicle (OMV) provides a good target platform for demonstration and for possible flight implementation to provide improved capability, a successful proof-of-concept ground demonstration can be obtained using any simulated mission scenario data, such as Space Transfer Vehicle, Shuttle-C, Space Station.

  19. Relative Navigation Algorithms for Phase 1 of the MMS Formation

    NASA Technical Reports Server (NTRS)

    Kelbel, David; Lee, Taesul; Long, Anne; Carpenter, Russell; Gramling, Cheryl

    2003-01-01

    This paper evaluates several navigation approaches for the first phase of the Magnetospheric Multiscale (MMS) mission, which consists of a tetrahedral formation of four satellites in highly eccentric Earth orbits of approximately 1.2 by 12 Earth radii at an inclination of 10 degrees. The inter-satellite separation is approximately 10 kilometers near apogees. Navigation approaches were studied using ground station m g e =d two-way Doppler measurements, Global Positioning System (GPS) pseudorange measurements, crosslink range measurements among the members flying in formation, and various combinations of these measurement types. An absolute position accuracy of 10 kilometers or better can be achieved with most of the approaches studied and a relative position accuracy of 100 meters or better can be achieved at apogee in some cases. Among the various approaches studied, the approaches that use a combination of GPS and crosslink measurements were found to be more reliable in terms of absolute and relative navigation accuracies and operational flexibility.

  20. The Japanese Mind: Understanding Contemporary Japanese Culture.

    ERIC Educational Resources Information Center

    Davies, Roger J., Ed.; Ikeno, Osamu, Ed.

    This collection of essays offers an overview of contemporary Japanese culture, and can serve as a resource for classes studying Japan. The 28 essays offer an informative, accessible look at the values, attitudes, behavior patterns, and communication styles of modern Japan from the unique perspective of the Japanese people. Filled with examples…

  1. A Novel Angle Computation and Calibration Algorithm of Bio-Inspired Sky-Light Polarization Navigation Sensor

    PubMed Central

    Xian, Zhiwen; Hu, Xiaoping; Lian, Junxiang; Zhang, Lilian; Cao, Juliang; Wang, Yujie; Ma, Tao

    2014-01-01

    Navigation plays a vital role in our daily life. As traditional and commonly used navigation technologies, Inertial Navigation System (INS) and Global Navigation Satellite System (GNSS) can provide accurate location information, but suffer from the accumulative error of inertial sensors and cannot be used in a satellite denied environment. The remarkable navigation ability of animals shows that the pattern of the polarization sky can be used for navigation. A bio-inspired POLarization Navigation Sensor (POLNS) is constructed to detect the polarization of skylight. Contrary to the previous approach, we utilize all the outputs of POLNS to compute input polarization angle, based on Least Squares, which provides optimal angle estimation. In addition, a new sensor calibration algorithm is presented, in which the installation angle errors and sensor biases are taken into consideration. Derivation and implementation of our calibration algorithm are discussed in detail. To evaluate the performance of our algorithms, simulation and real data test are done to compare our algorithms with several exiting algorithms. Comparison results indicate that our algorithms are superior to the others and are more feasible and effective in practice. PMID:25225872

  2. Relative receiver autonomous integrity monitoring for future GNSS-based aircraft navigation

    NASA Astrophysics Data System (ADS)

    Gratton, Livio Rafael

    The Global Positioning System (GPS) has enabled reliable, safe, and practical aircraft positioning for en-route and non-precision phases of flight for more than a decade. Intense research is currently devoted to extending the use of Global Navigation Satellite Systems (GNSS), including GPS, to precision approach and landing operations. In this context, this work is focused on the development, analysis, and verification of the concept of Relative Receiver Autonomous Integrity Monitoring (RRAIM) and its potential applications to precision approach navigation. RRAIM fault detection algorithms are developed, and associated mathematical bounds on position error are derived. These are investigated as possible solutions to some current key challenges in precision approach navigation, discussed below. Augmentation systems serving continent-size areas (like the Wide Area Augmentation System or WAAS) allow certain precision approach operations within the covered region. More and better satellites, with dual frequency capabilities, are expected to be in orbit in the mid-term future, which will potentially allow WAAS-like capabilities worldwide with a sparse ground station network. Two main challenges in achieving this goal are (1) ensuring that navigation fault detection functions are fast enough to alert worldwide users of hazardously misleading information, and (2) minimizing situations in which navigation is unavailable because the user's local satellite geometry is insufficient for safe position estimation. Local augmentation systems (implemented at individual airports, like the Local Area Augmentation System or LAAS) have the potential to allow precision approach and landing operations by providing precise corrections to user-satellite range measurements. An exception to these capabilities arises during ionospheric storms (caused by solar activity), when hazardous situations can exist with residual range errors several orders of magnitudes higher than nominal. Until dual

  3. GPS Navigation Results from the Low Power Transceiver CANDOS Experiment on STS-107

    NASA Technical Reports Server (NTRS)

    Haas, Lin; Massey, Chris; Baraban, Dmitri; Kelbel, David; Lee, Taesul; Long, Anne; Carpenter, J. Russell

    2003-01-01

    This paper presents the Global Positioning System (GPS) navigation results from the Communications and Savigation Demonstration on Shuttle (CANDOS) experiment flown on STS- 107. The CAkDOS experiment consisted of the Low Power Transceiver (LPT) that hosted the GPS Enhanced Orbit Determination Experiment (GEODE) orbit determination software. All CANDOS test data were recovered during the mission using the LPT's Tracking and Data Relay Satellite System (TDRSS) uplinh'downlink communications capabilit! . An overview of the LPT's navigation software and the GPS experiment timeline is presented. In addition. this paper discusses GEODE performance results. including comparisons ibith the Best Estimate of Trajectory (BET). N.ASA Johnson Space Center (JSC) real-time ground navigation vectors. and post-processed solutions using the Goddard Trajectory Determination System (GTDS).

  4. Shape Shifting: Local Landmarks Interfere with Navigation By, and Recognition Of, Global Shape

    ERIC Educational Resources Information Center

    Buckley, Matthew G.; Smith, Alastair D.; Haselgrove, Mark

    2014-01-01

    An influential theory of spatial navigation states that the boundary shape of an environment is preferentially encoded over and above other spatial cues, such that it is impervious to interference from alternative sources of information. We explored this claim with 3 intradimensional--extradimensional shift experiments, designed to examine the…

  5. Interaction dynamics of multiple mobile robots with simple navigation strategies

    NASA Technical Reports Server (NTRS)

    Wang, P. K. C.

    1989-01-01

    The global dynamic behavior of multiple interacting autonomous mobile robots with simple navigation strategies is studied. Here, the effective spatial domain of each robot is taken to be a closed ball about its mass center. It is assumed that each robot has a specified cone of visibility such that interaction with other robots takes place only when they enter its visibility cone. Based on a particle model for the robots, various simple homing and collision-avoidance navigation strategies are derived. Then, an analysis of the dynamical behavior of the interacting robots in unbounded spatial domains is made. The article concludes with the results of computer simulations studies of two or more interacting robots.

  6. Single-Frequency GPS Relative Navigation in a High Ionosphere Orbital Environment

    NASA Technical Reports Server (NTRS)

    Conrad, Patrick R.; Naasz, Bo J.

    2007-01-01

    The Global Positioning System (GPS) provides a convenient source for space vehicle relative navigation measurements, especially for low Earth orbit formation flying and autonomous rendezvous mission concepts. For single-frequency GPS receivers, ionospheric path delay can be a significant error source if not properly mitigated. In particular, ionospheric effects are known to cause significant radial position error bias and add dramatically to relative state estimation error if the onboard navigation software does not force the use of measurements from common or shared GPS space vehicles. Results from GPS navigation simulations are presented for a pair of space vehicles flying in formation and using GPS pseudorange measurements to perform absolute and relative orbit determination. With careful measurement selection techniques relative state estimation accuracy to less than 20 cm with standard GPS pseudorange processing and less than 10 cm with single-differenced pseudorange processing is shown.

  7. Tropospheric and ionospheric media calibrations based on global navigation satellite system observation data

    NASA Astrophysics Data System (ADS)

    Feltens, Joachim; Bellei, Gabriele; Springer, Tim; Kints, Mark V.; Zandbergen, René; Budnik, Frank; Schönemann, Erik

    2018-06-01

    Context: Calibration of radiometric tracking data for effects in the Earth atmosphere is a crucial element in the field of deep-space orbit determination (OD). The troposphere can induce propagation delays in the order of several meters, the ionosphere up to the meter level for X-band signals and up to tens of meters, in extreme cases, for L-band ones. The use of media calibrations based on Global Navigation Satellite Systems (GNSS) measurement data can improve the accuracy of the radiometric observations modelling and, as a consequence, the quality of orbit determination solutions. Aims: ESOC Flight Dynamics employs ranging, Doppler and delta-DOR (Delta-Differential One-Way Ranging) data for the orbit determination of interplanetary spacecraft. Currently, the media calibrations for troposphere and ionosphere are either computed based on empirical models or, under mission specific agreements, provided by external parties such as the Jet Propulsion Laboratory (JPL) in Pasadena, California. In order to become independent from external models and sources, decision fell to establish a new in-house internal service to create these media calibrations based on GNSS measurements recorded at the ESA tracking sites and processed in-house by the ESOC Navigation Support Office with comparable accuracy and quality. Methods: For its concept, the new service was designed to be as much as possible depending on own data and resources and as less as possible depending on external models and data. Dedicated robust and simple algorithms, well suited for operational use, were worked out for that task. This paper describes the approach built up to realize this new in-house internal media calibration service. Results: Test results collected during three months of running the new media calibrations in quasi-operational mode indicate that GNSS-based tropospheric corrections can remove systematic signatures from the Doppler observations and biases from the range ones. For the ionosphere, a

  8. What Is Business Japanese? Designing a Japanese Course for Business Communication.

    ERIC Educational Resources Information Center

    Koike, Shohei

    Experiences in developing "Business Japanese" courses for the undergraduate major in Language and International Trade at Eastern Michigan University are described. In 1987, six new courses in Japanese were proposed so that Japanese could be offered as a language specialty in the program. Issues considered in defining business Japanese…

  9. A Confirmatory Model for Substance Use Among Japanese American and Part-Japanese American Adolescents

    PubMed Central

    Williams, John Kino Yamaguchi; Else, 'Iwalani R. N.; Goebert, Deborah A.; Nishimura, Stephanie T.; Hishinuma, Earl S.; Andrade, Naleen N.

    2013-01-01

    Few studies have examined the effect of ethnicity and cultural identity on substance use among Asian and Pacific Islander adolescents. A cross-sequential study conducted in Hawai'i with 144 Japanese American and part-Japanese American adolescents assessed a model integrating Japanese ethnicity, cultural identity, substance use, major life events, and social support. Japanese American adolescents scored higher on the Japanese Culture Scale and on the Peers’ Social Support than the part-Japanese American adolescents. Significant associations for substance use and impairment included culturally intensified events and Japanese cultural identity- behavior subset. Models had good overall fits and suggested that conflict surrounding cultural identity may contribute to substance use. PMID:23480213

  10. GPS/Optical/Inertial Integration for 3D Navigation Using Multi-Copter Platforms

    NASA Technical Reports Server (NTRS)

    Dill, Evan T.; Young, Steven D.; Uijt De Haag, Maarten

    2017-01-01

    In concert with the continued advancement of a UAS traffic management system (UTM), the proposed uses of autonomous unmanned aerial systems (UAS) have become more prevalent in both the public and private sectors. To facilitate this anticipated growth, a reliable three-dimensional (3D) positioning, navigation, and mapping (PNM) capability will be required to enable operation of these platforms in challenging environments where global navigation satellite systems (GNSS) may not be available continuously. Especially, when the platform's mission requires maneuvering through different and difficult environments like outdoor opensky, outdoor under foliage, outdoor-urban and indoor, and may include transitions between these environments. There may not be a single method to solve the PNM problem for all environments. The research presented in this paper is a subset of a broader research effort, described in [1]. The research is focused on combining data from dissimilar sensor technologies to create an integrated navigation and mapping method that can enable reliable operation in both an outdoor and structured indoor environment. The integrated navigation and mapping design is utilizes a Global Positioning System (GPS) receiver, an Inertial Measurement Unit (IMU), a monocular digital camera, and three short to medium range laser scanners. This paper describes specifically the techniques necessary to effectively integrate the monocular camera data within the established mechanization. To evaluate the developed algorithms a hexacopter was built, equipped with the discussed sensors, and both hand-carried and flown through representative environments. This paper highlights the effect that the monocular camera has on the aforementioned sensor integration scheme's reliability, accuracy and availability.

  11. Recent advances in 3D computed tomography techniques for simulation and navigation in hepatobiliary pancreatic surgery.

    PubMed

    Uchida, Masafumi

    2014-04-01

    A few years ago it could take several hours to complete a 3D image using a 3D workstation. Thanks to advances in computer science, obtaining results of interest now requires only a few minutes. Many recent 3D workstations or multimedia computers are equipped with onboard 3D virtual patient modeling software, which enables patient-specific preoperative assessment and virtual planning, navigation, and tool positioning. Although medical 3D imaging can now be conducted using various modalities, including computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), and ultrasonography (US) among others, the highest quality images are obtained using CT data, and CT images are now the most commonly used source of data for 3D simulation and navigation image. If the 2D source image is bad, no amount of 3D image manipulation in software will provide a quality 3D image. In this exhibition, the recent advances in CT imaging technique and 3D visualization of the hepatobiliary and pancreatic abnormalities are featured, including scan and image reconstruction technique, contrast-enhanced techniques, new application of advanced CT scan techniques, and new virtual reality simulation and navigation imaging. © 2014 Japanese Society of Hepato-Biliary-Pancreatic Surgery.

  12. 76 FR 5068 - Establishment of Low Altitude Area Navigation Routes (T-281, T-283, T-285, T-286, and T-288...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-28

    ... (IFR) approved Global Positioning System (GPS)/Global Navigation Satellite System (GNSS) equipment... only be available for use by GPS/GNSS equipped aircraft. This action enhances safety and facilitates...

  13. Electromagnetic navigational bronchoscopy and robotic-assisted thoracic surgery.

    PubMed

    Christie, Sara

    2014-06-01

    With the use of electromagnetic navigational bronchoscopy and robotics, lung lesions can be diagnosed and resected during one surgical procedure. Global positioning system technology allows surgeons to identify and mark a thoracic tumor, and then robotics technology allows them to perform minimally invasive resection and cancer staging procedures. Nurses on the perioperative robotics team must consider the logistics of providing safe and competent care when performing combined procedures during one surgical encounter. Instrumentation, OR organization and room setup, and patient positioning are important factors to consider to complete the procedure systematically and efficiently. This revolutionary concept of combining navigational bronchoscopy with robotics requires a team of dedicated nurses to facilitate the sequence of events essential for providing optimal patient outcomes in highly advanced surgical procedures. Copyright © 2014 AORN, Inc. Published by Elsevier Inc. All rights reserved.

  14. The Aging Navigational System.

    PubMed

    Lester, Adam W; Moffat, Scott D; Wiener, Jan M; Barnes, Carol A; Wolbers, Thomas

    2017-08-30

    The discovery of neuronal systems dedicated to computing spatial information, composed of functionally distinct cell types such as place and grid cells, combined with an extensive body of human-based behavioral and neuroimaging research has provided us with a detailed understanding of the brain's navigation circuit. In this review, we discuss emerging evidence from rodents, non-human primates, and humans that demonstrates how cognitive aging affects the navigational computations supported by these systems. Critically, we show 1) that navigational deficits cannot solely be explained by general deficits in learning and memory, 2) that there is no uniform decline across different navigational computations, and 3) that navigational deficits might be sensitive markers for impending pathological decline. Following an introduction to the mechanisms underlying spatial navigation and how they relate to general processes of learning and memory, the review discusses how aging affects the perception and integration of spatial information, the creation and storage of memory traces for spatial information, and the use of spatial information during navigational behavior. The closing section highlights the clinical potential of behavioral and neural markers of spatial navigation, with a particular emphasis on neurodegenerative disorders. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. The Global Positioning System: Theory and operation

    NASA Astrophysics Data System (ADS)

    Tucker, Lester Plunkett

    Scope and method of study. The purpose of this study is to document the theory, development, and training needs of the United States Global Positioning System for the United States Air Force. This subject area had very little information and to assess the United States Air Force training needs required an investigation into existing training accomplished on the Global Positioning System. The United States Air Force has only one place to obtain the data at Headquarters Air Education and Training Command. Findings and conclusion. The United States Air Force, at the time of this study, does not have a theory and operations course dealing with the newest technology advancement in world navigation. Although this new technology is being provided on aircraft in the form of new navigation hardware, no official course of study is provided by the United States Air Force to it's pilots and navigators dealing with theory and operation. Based on the latest reports dealing with the Global Positioning System, a course on the Global Positioning System was developed in the Instructional Systems Design format to provide background information and understanding of this new technology. Readers of this study must be aware that the information contained in this study is very dynamic. Technology is advancing so fast in this area that it might make this information obsolete in a short amount of time.

  16. Improved Navigational Technology and Air Traffic Control: A Description of Controller Coordination and Workload

    DOT National Transportation Integrated Search

    1995-04-01

    Improved navigational technology, such as microwave landing systems (MLS) or : global positioning systems (GPS), installed in today's commercial aircraft : enable the air traffic control (ATC) system to better utilize its airspace. : This increased e...

  17. A greedy-navigator approach to navigable city plans

    NASA Astrophysics Data System (ADS)

    Lee, Sang Hoon; Holme, Petter

    2013-01-01

    We use a set of four theoretical navigability indices for street maps to investigate the shape of the resulting street networks, if they are grown by optimizing these indices. The indices compare the performance of simulated navigators (having a partial information about the surroundings, like humans in many real situations) to the performance of optimally navigating individuals. We show that our simple greedy shortcut construction strategy generates the emerging structures that are different from real road network, but not inconceivable. The resulting city plans, for all navigation indices, share common qualitative properties such as the tendency for triangular blocks to appear, while the more quantitative features, such as degree distributions and clustering, are characteristically different depending on the type of metrics and routing strategies. We show that it is the type of metrics used which determines the overall shapes characterized by structural heterogeneity, but the routing schemes contribute to more subtle details of locality, which is more emphasized in case of unrestricted connections when the edge crossing is allowed.

  18. Validation of High Wind Retrievals from the Cyclone Global Navigation Satellite System (CYGNSS) Mission

    NASA Astrophysics Data System (ADS)

    McKague, D. S.; Ruf, C. S.; Balasubramaniam, R.; Clarizia, M. P.

    2017-12-01

    The Cyclone Global Navigation Satellite System (CYGNSS) mission, launched in December of 2016, provides all-weather observations of sea surface winds. Using GPS-based bistatic reflectometry, the CYGNSS satellites can estimate sea surface winds even through a hurricane eye wall. This, combined with the high temporal resolution of the CYGNSS constellation (median revisit time of 2.8 hours), yields unprecedented ability to estimate hurricane strength winds. While there are a number of other sources of sea surface wind estimates, such as buoys, dropsondes, passive and active microwave from aircraft and satellite, and models, the combination of all-weather, high accuracy, short revisit time, high spatial coverage, and continuous operation of the CYGNSS mission enables significant advances in the understanding, monitoring, and prediction of cyclones. Validating CYGNSS wind retrievals over the bulk of the global wind speed distribution, which peaks at around 7 meters per second, is relatively straight-forward, requiring spatial-temporal matching of observations with independent sources (such as those mentioned above). Validating CYGNSS wind retrievals for "high" winds (> 20 meters per second), though, is problematic. Such winds occur only in intense storms. While infrequent, making validation opportunities also infrequent and problematic due to their intense nature, such storms are important to study because of the high potential for damage and loss of life. This presentation will describe the efforts of the CYGNSS Calibration/Validation team to gather measurements of high sea surface winds for development and validation of the CYGNSS geophysical model function (GMF), which forms the basis of retrieving winds from CYGNSS observations. The bulk of these observations come from buoy measurements as well as aircraft ("hurricane hunter") measurements from passive microwave and dropsondes. These data are matched in space and time to CYGNSS observations for training of the

  19. Autonomous vehicle navigation utilizing fuzzy controls concepts for a next generation wheelchair.

    PubMed

    Hansen, J D; Barrett, S F; Wright, C H G; Wilcox, M

    2008-01-01

    Three different positioning techniques were investigated to create an autonomous vehicle that could accurately navigate towards a goal: Global Positioning System (GPS), compass dead reckoning, and Ackerman steering. Each technique utilized a fuzzy logic controller that maneuvered a four-wheel car towards a target. The reliability and the accuracy of the navigation methods were investigated by modeling the algorithms in software and implementing them in hardware. To implement the techniques in hardware, positioning sensors were interfaced to a remote control car and a microprocessor. The microprocessor utilized the sensor measurements to orient the car with respect to the target. Next, a fuzzy logic control algorithm adjusted the front wheel steering angle to minimize the difference between the heading and bearing. After minimizing the heading error, the car maintained a straight steering angle along its path to the final destination. The results of this research can be used to develop applications that require precise navigation. The design techniques can also be implemented on alternate platforms such as a wheelchair to assist with autonomous navigation.

  20. a New Survey on Self-Tuning Integrated Low-Cost Gps/ins Vehicle Navigation System in Harsh Environment

    NASA Astrophysics Data System (ADS)

    Navidi, N.; Landry, R., Jr.

    2015-08-01

    Nowadays, Global Positioning System (GPS) receivers are aided by some complementary radio navigation systems and Inertial Navigation Systems (INS) to obtain more accuracy and robustness in land vehicular navigation. Extended Kalman Filter (EKF) is an acceptable conventional method to estimate the position, the velocity, and the attitude of the navigation system when INS measurements are fused with GPS data. However, the usage of the low-cost Inertial Measurement Units (IMUs) based on the Micro-Electro-Mechanical Systems (MEMS), for the land navigation systems, reduces the precision and stability of the navigation system due to their inherent errors. The main goal of this paper is to provide a new model for fusing low-cost IMU and GPS measurements. The proposed model is based on EKF aided by Fuzzy Inference Systems (FIS) as a promising method to solve the mentioned problems. This model considers the parameters of the measurement noise to adjust the measurement and noise process covariance. The simulation results show the efficiency of the proposed method to reduce the navigation system errors compared with EKF.

  1. Building resilience of the Global Positioning System to space weather

    NASA Astrophysics Data System (ADS)

    Fisher, Genene; Kunches, Joseph

    2011-12-01

    Almost every aspect of the global economy now depends on GPS. Worldwide, nations are working to create a robust Global Navigation Satellite System (GNSS), which will provide global positioning, navigation, and timing (PNT) services for applications such as aviation, electric power distribution, financial exchange, maritime navigation, and emergency management. The U.S. government is examining the vulnerabilities of GPS, and it is well known that space weather events, such as geomagnetic storms, contribute to errors in single-frequency GPS and are a significant factor for differential GPS. The GPS industry has lately begun to recognize that total electron content (TEC) signal delays, ionospheric scintillation, and solar radio bursts can also interfere with daily operations and that these threats grow with the approach of the next solar maximum, expected to occur in 2013. The key challenges raised by these circumstances are, first, to better understand the vulnerability of GPS technologies and services to space weather and, second, to develop policies that will build resilience and mitigate risk.

  2. Reinforcement learning algorithms for robotic navigation in dynamic environments.

    PubMed

    Yen, Gary G; Hickey, Travis W

    2004-04-01

    The purpose of this study was to examine improvements to reinforcement learning (RL) algorithms in order to successfully interact within dynamic environments. The scope of the research was that of RL algorithms as applied to robotic navigation. Proposed improvements include: addition of a forgetting mechanism, use of feature based state inputs, and hierarchical structuring of an RL agent. Simulations were performed to evaluate the individual merits and flaws of each proposal, to compare proposed methods to prior established methods, and to compare proposed methods to theoretically optimal solutions. Incorporation of a forgetting mechanism did considerably improve the learning times of RL agents in a dynamic environment. However, direct implementation of a feature-based RL agent did not result in any performance enhancements, as pure feature-based navigation results in a lack of positional awareness, and the inability of the agent to determine the location of the goal state. Inclusion of a hierarchical structure in an RL agent resulted in significantly improved performance, specifically when one layer of the hierarchy included a feature-based agent for obstacle avoidance, and a standard RL agent for global navigation. In summary, the inclusion of a forgetting mechanism, and the use of a hierarchically structured RL agent offer substantially increased performance when compared to traditional RL agents navigating in a dynamic environment.

  3. Conveying misinformation: Top-ranked Japanese books on tobacco

    PubMed Central

    2011-01-01

    Background Tobacco control efforts in Japan have lagged other high income countries, possibly because the Japanese government partially owns Japan Tobacco, Inc. In Japan, tobacco use is still often regarded as an issue of manners rather than an issue of health. Information about tobacco is available, but may not always be accurate. We explored what information Japanese consumers might access by reading popular Japanese books about tobacco. Methods We searched Amazon.com Japan using the term "Tobacco", identifying the top 12 books by "relevance" and "bestselling." We eliminated duplicates and books not concerned with tobacco use and classified the remaining books as pro-smoking, anti-smoking, or neutral. We reviewed the pro-smoking books, published 2004-2009, and analyzed examples of misinformation by theme. Results Pro-smoking popular books conveyed five types of misinformation: doubt about science; suggestions that smoking increased health, longevity, virility, etc.; trivializing tobacco's effects; attacking public health advocates/authorities; and linking tobacco use with authenticity, history, or civil rights. At least one book was authored by a former Japan Tobacco employee; another used a popular Japan Tobacco advertising phrase. Conclusions Creating doubt and confusion about tobacco serves tobacco industry interests and re-creates a strategy developed by US tobacco interests more than 40 years ago. Japanese readers may be misled by texts such as those reviewed. Tobacco control and public health advocates in Japan and globally should expose and counter such misinformation. "Naming and shaming" may be effective. PMID:21261991

  4. Conveying misinformation: Top-ranked Japanese books on tobacco.

    PubMed

    Kanamori, Yuko; Malone, Ruth E

    2011-01-24

    Tobacco control efforts in Japan have lagged other high income countries, possibly because the Japanese government partially owns Japan Tobacco, Inc. In Japan, tobacco use is still often regarded as an issue of manners rather than an issue of health. Information about tobacco is available, but may not always be accurate. We explored what information Japanese consumers might access by reading popular Japanese books about tobacco. We searched Amazon.com Japan using the term "Tobacco", identifying the top 12 books by "relevance" and "bestselling." We eliminated duplicates and books not concerned with tobacco use and classified the remaining books as pro-smoking, anti-smoking, or neutral. We reviewed the pro-smoking books, published 2004-2009, and analyzed examples of misinformation by theme. Pro-smoking popular books conveyed five types of misinformation: doubt about science; suggestions that smoking increased health, longevity, virility, etc.; trivializing tobacco's effects; attacking public health advocates/authorities; and linking tobacco use with authenticity, history, or civil rights. At least one book was authored by a former Japan Tobacco employee; another used a popular Japan Tobacco advertising phrase. Creating doubt and confusion about tobacco serves tobacco industry interests and re-creates a strategy developed by US tobacco interests more than 40 years ago. Japanese readers may be misled by texts such as those reviewed. Tobacco control and public health advocates in Japan and globally should expose and counter such misinformation. "Naming and shaming" may be effective.

  5. Spoofing Detection Using GNSS/INS/Odometer Coupling for Vehicular Navigation

    PubMed Central

    Broumandan, Ali; Lachapelle, Gérard

    2018-01-01

    Location information is one of the most vital information required to achieve intelligent and context-aware capability for various applications such as driverless cars. However, related security and privacy threats are a major holdback. With increasing focus on using Global Navigation Satellite Systems (GNSS) for autonomous navigation and related applications, it is important to provide robust navigation solutions, yet signal spoofing for illegal or covert transportation and misleading receiver timing is increasing and now frequent. Hence, detection and mitigation of spoofing attacks has become an important topic. Several contributions on spoofing detection have been made, focusing on different layers of a GNSS receiver. This paper focuses on spoofing detection utilizing self-contained sensors, namely inertial measurement units (IMUs) and vehicle odometer outputs. A spoofing detection approach based on a consistency check between GNSS and IMU/odometer mechanization is proposed. To detect a spoofing attack, the method analyses GNSS and IMU/odometer measurements independently during a pre-selected observation window and cross checks the solutions provided by GNSS and inertial navigation solution (INS)/odometer mechanization. The performance of the proposed method is verified in real vehicular environments. Mean spoofing detection time and detection performance in terms of receiver operation characteristics (ROC) in sub-urban and dense urban environments are evaluated. PMID:29695064

  6. Spoofing Detection Using GNSS/INS/Odometer Coupling for Vehicular Navigation.

    PubMed

    Broumandan, Ali; Lachapelle, Gérard

    2018-04-24

    Location information is one of the most vital information required to achieve intelligent and context-aware capability for various applications such as driverless cars. However, related security and privacy threats are a major holdback. With increasing focus on using Global Navigation Satellite Systems (GNSS) for autonomous navigation and related applications, it is important to provide robust navigation solutions, yet signal spoofing for illegal or covert transportation and misleading receiver timing is increasing and now frequent. Hence, detection and mitigation of spoofing attacks has become an important topic. Several contributions on spoofing detection have been made, focusing on different layers of a GNSS receiver. This paper focuses on spoofing detection utilizing self-contained sensors, namely inertial measurement units (IMUs) and vehicle odometer outputs. A spoofing detection approach based on a consistency check between GNSS and IMU/odometer mechanization is proposed. To detect a spoofing attack, the method analyses GNSS and IMU/odometer measurements independently during a pre-selected observation window and cross checks the solutions provided by GNSS and inertial navigation solution (INS)/odometer mechanization. The performance of the proposed method is verified in real vehicular environments. Mean spoofing detection time and detection performance in terms of receiver operation characteristics (ROC) in sub-urban and dense urban environments are evaluated.

  7. Preface: BeiDou Navigation Satellite System (BDS)/GNSS+: New developments and emerging applications

    NASA Astrophysics Data System (ADS)

    Jin, Shuanggen

    2017-12-01

    The China's BeiDou Navigation Satellite System (BDS) has been developed and operated well with over 25 launched satellites in 2017, including fifteen Medium Earth orbit (MEO) satellites, five geostationary Earth orbit (GEO) satellites and five inclined geosynchronous orbit (IGSO) satellites. Together with the United States' GPS, European Union's Galileo and Russia's GLONASS as well as other regional augmentation systems, e.g., Indian Regional Navigation Satellite System (IRNSS) and Japan Quasi-Zenith Satellite System (QZSS), more emerging applications of multi-Global Navigation Satellite Systems (GNSS) will be exploited and realized in the coming years. The papers in this issue of Advances in Space Research present new advances in the system, techniques and emerging applications of BDS/GNSS+. These papers were from an open call and a special call for participants at the 8th China Satellite Navigation Conference (CSNC 2017) held on May 23-25, 2017, Shanghai, China. This conference series provides a good platform for academic and technique exchanges as well as collaboration in satellite navigation. CSNC 2017 was well attend with more than 3000 participants and over 800 papers in 12 sessions.

  8. Fusion of Imaging and Inertial Sensors for Navigation

    DTIC Science & Technology

    2006-09-01

    combat operations. The Global Positioning System (GPS) was fielded in the 1980’s and first used for precision navigation and targeting in combat...equations [37]. Consider the homogeneous nonlinear differential equation ẋ(t) = f [x(t),u(t), t] ; x(t0) = x0 (2.4) For a given input function , u0(t...differential equation is a time-varying probability density function . The Kalman filter derivation assumes Gaussian distributions for all random

  9. Multi-Gnss Receiver for Aerospace Navigation and Positioning Applications

    NASA Astrophysics Data System (ADS)

    Peres, T. R.; Silva, J. S.; Silva, P. F.; Carona, D.; Serrador, A.; Palhinha, F.; Pereira, R.; Véstias, M.

    2014-03-01

    The upcoming Galileo system opens a wide range of new opportunities in the Global Navigation Satellite System (GNSS) market. However, the characteristics of the future GNSS signals require the development of new GNSS receivers. In the frame of the REAGE project, DEIMOS and ISEL have developed a GNSS receiver targeted for aerospace applications, supporting current and future GPS L1 and Galileo E1 signals, based on commercial (or, in the furthest extent, industrial) grade components. Although the REAGE project aimed at space applications, the REAGE receiver is also applicable to many terrestrial applications (ground or airborne), such as Georeferencing and Unmanned Aerial Vehicle (UAV) navigation. This paper presents the architecture and features of the REAGE receiver, as well as some results of the validation campaign with GPS L1 and Galileo E1 signals.

  10. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-27

    A Japanese H-IIA rocket with the NASA-Japan Aerospace Exploration Agency (JAXA), Global Precipitation Measurement (GPM) Core Observatory onboard, is seen on launch pad 1 of the Tanegashima Space Center, Friday, Feb. 28, 2014, Tanegashima, Japan. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  11. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-28

    A Japanese H-IIA rocket with the NASA-Japan Aerospace Exploration Agency (JAXA), Global Precipitation Measurement (GPM) Core Observatory onboard, is seen on launch pad 1 of the Tanegashima Space Center, Friday, Feb. 28, 2014, Tanegashima, Japan. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  12. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-27

    A Japanese H-IIA rocket with the NASA-Japan Aerospace Exploration Agency (JAXA), Global Precipitation Measurement (GPM) Core Observatory onboard is seen on launch pad 1 of the Tanegashima Space Center, Thursday, Feb. 27, 2014, Tanegashima, Japan. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  13. The Development of a Simulator System and Hardware Test Bed for Deep Space X-Ray Navigation

    NASA Astrophysics Data System (ADS)

    Doyle, Patrick T.

    2013-03-01

    Currently, there is a considerable interest in developing technologies that will allow using photon measurements from celestial x-ray sources for deep space navigation. The impetus for this is that many envisioned future space missions will require spacecraft to have autonomous navigation capabilities. For missions close to Earth, Global Navigation Satellite Systems (GNSS) such as GPS are readily available for use, but for missions far from Earth, other alternatives must be provided. While existing systems such as the Deep Space Network (DSN) can be used, latencies associated with servicing a fleet of vehicles may not be compatible with some autonomous operations requiring timely updates of their navigation solution. Because of their somewhat predictable emissions, pulsars are the ideal candidates for x-ray sources that can be used to provide key parameters for navigation. Algorithms and simulation tools that will enable designing and analyzing x-ray navigation concepts are presented. The development of a compact x-ray detector system is pivotal to the eventual deployment of such navigation systems. Therefore, results of a high altitude balloon test to evaluate the design of a compact x-ray detector system are described as well.

  14. Reconstruction of the boundary between climate science and politics: the IPCC in the Japanese mass media, 1988-2007.

    PubMed

    Asayama, Shinichiro; Ishii, Atsushi

    2014-02-01

    The Intergovernmental Panel on Climate Change (IPCC) plays a significant role in bridging the boundary between climate science and politics. Media coverage is crucial for understanding how climate science is communicated and embedded in society. This study analyzes the discursive construction of the IPCC in three Japanese newspapers from 1988 to 2007 in terms of the science-politics boundary. The results show media discourses engaged in boundary-work which rhetorically separated science and politics, and constructed the iconic image of the IPCC as a pure scientific authority. In the linkages between the global and national arenas of climate change, the media "domesticate" the issue, translating the global nature of climate change into a discourse that suits the national context. We argue that the Japanese media's boundary-work is part of the media domestication that reconstructed the boundary between climate science and politics reflecting the Japanese context.

  15. Brain connectivity during encoding and retrieval of spatial information: individual differences in navigation skills.

    PubMed

    Sharma, Greeshma; Gramann, Klaus; Chandra, Sushil; Singh, Vijander; Mittal, Alok Prakash

    2017-09-01

    Emerging evidence suggests that the variations in the ability to navigate through any real or virtual environment are accompanied by distinct underlying cortical activations in multiple regions of the brain. These activations may appear due to the use of different frame of reference (FOR) for representing an environment. The present study investigated the brain dynamics in the good and bad navigators using Graph Theoretical analysis applied to low-density electroencephalography (EEG) data. Individual navigation skills were rated according to the performance in a virtual reality (VR)-based navigation task and the effect of navigator's proclivity towards a particular FOR on the navigation performance was explored. Participants were introduced to a novel virtual environment that they learned from a first-person or an aerial perspective and were subsequently assessed on the basis of efficiency with which they learnt and recalled. The graph theoretical parameters, path length (PL), global efficiency (GE), and clustering coefficient (CC) were computed for the functional connectivity network in the theta and alpha frequency bands. During acquisition of the spatial information, good navigators were distinguished by a lower degree of dispersion in the functional connectivity compared to the bad navigators. Within the groups of good and bad navigators, better performers were characterised by the formation of multiple hubs at various sites and the percentage of connectivity or small world index. The proclivity towards a specific FOR during exploration of a new environment was not found to have any bearing on the spatial learning. These findings may have wider implications for how the functional connectivity in the good and bad navigators differs during spatial information acquisition and retrieval in the domains of rescue operations and defence systems.

  16. Positioning performance improvements with European multiple-frequency satellite navigation - Galileo

    NASA Astrophysics Data System (ADS)

    Ji, Shengyue

    2008-10-01

    The rapid development of Global Positioning System has demonstrated the advantages of satellite based navigation systems. In near future, there will be a number of Global Navigation Satellite System (GNSS) available, i.e. modernized GPS, Galileo, restored GLONASS, BeiDou and many other regional GNSS augmentation systems. Undoubtedly, the new GNSS systems will significantly improve navigation performance over current GPS, with a better satellite coverage and multiple satellite signal bands. In this dissertation, the positioning performance improvement of new GNSS has been investigated based on both theoretical analysis and numerical study. First of all, the navigation performance of new GNSS systems has been analyzed, particularly for urban applications. The study has demonstrated that Receiver Autonomous Integrity Monitoring (RAIM) performance can be significantly improved with multiple satellite constellations, although the position accuracy improvement is limited. Based on a three-dimensional urban building model in Hong Kong streets, it is found that positioning availability is still very low in high-rising urban areas, even with three GNSS systems. On the other hand, the discontinuity of navigation solutions is significantly reduced with the combined constellations. Therefore, it is possible to use cheap DR systems to bridge the gaps of GNSS positioning, with high accuracy. Secondly, the ambiguity resolution performance has been investigated with Galileo multiple frequency band signals. The ambiguity resolution performance of three different algorithms is compared, including CAR, ILS and improved CAR methods (a new method proposed in this study). For short baselines, with four frequency Galileo data, it is highly possible to achieve reliable single epoch ambiguity resolution, when the carrier phase noise level is reasonably low (i.e. less than 6mm). For long baselines (up to 800 km), the integer ambiguity can be determined within 1 min on average. Ambiguity

  17. Extended investigation into continuous laser scanning of underground mine workings by means of Landis inertial navigation system

    NASA Astrophysics Data System (ADS)

    Belyaev, E. N.

    2017-10-01

    The paper investigates the method of applying mobile scanning systems (MSSs) with inertial navigators in the underground conditions for carrying out the surveying tasks. The available mobile laser scanning systems cannot be used in the underground environment since Global Positioning System (GPS) signals cannot be received in mines. This signal not only is necessary for space positioning, but also operates as the main corrective signal for the primary navigation system - the inertial navigation system. The idea of the method described in this paper consists in using MSSs with a different correction of the inertial system than GPS is.

  18. Homogamy and Intermarriage of Japanese and Japanese Americans with Whites Surrounding World War II

    ERIC Educational Resources Information Center

    Ono, Hiromi; Berg, Justin

    2010-01-01

    Although some sociologists have suggested that Japanese Americans quickly assimilated into mainstream America, scholars of Japanese America have highlighted the heightened exclusion that the group experienced. This study tracked historical shifts in the exclusion level of Japanese and Japanese Americans in the United States surrounding World War…

  19. Use of an intraoperative navigation system for retrieving a broken dental instrument in the mandible: a case report.

    PubMed

    Sukegawa, Shintaro; Kanno, Takahiro; Shibata, Akane; Matsumoto, Kenichi; Sukegawa-Takahashi, Yuka; Sakaida, Kyosuke; Furuki, Yoshihiko

    2017-01-15

    A fracture of root canal instruments, with a fractured piece protruding beyond the apex, is a troublesome incident during an endodontic treatment. Locating and retrieving them represents a challenge to maxillofacial surgeons because it is difficult to access due to the proximity between the foreign body and vital structures. Although safe and accurate for surgery, radiographs and electromagnetic devices do not provide a precise three-dimensional position. In contrast, computer-aided navigation provides a correlation between preoperatively collected data and intraoperatively encountered anatomy. However, using a navigation system for mandible treatment is difficult as the mobile nature of the mandible complicates its synchronization with the preoperative imaging data during surgery. This report describes a case of a dental instrument breakage in the mandible during an endodontic treatment for a restorative dental procedure in a 65-year-old Japanese woman. The broken dental instrument was removed using a minimally invasive approach with a surgical navigation system and an interocclusal splint for a stable, identically repeatable positioning of the mandible. Using the three-dimensional position of the navigation probe, a location that best approximated the most anterior extent of the fragment was selected. A minimally invasive vestibular incision was made at this location, a subperiosteal reflection was performed, and the foreign body location was confirmed using a careful navigation system. The instrument was carefully visualized and extruded from the apical to the tooth crown side and was then removed using mosquito forceps through the medullary cavity of the crown side of the tooth. Follow-up was uneventful; her clinical course was good. The use of a surgical navigation system together with an interocclusal splint enabled the retrieval of a broken dental instrument in a safe and minimally invasive manner without damaging the surrounding vital structures.

  20. Ionospheric error contribution to GNSS single-frequency navigation at the 2014 solar maximum

    NASA Astrophysics Data System (ADS)

    Orus Perez, Raul

    2017-04-01

    For single-frequency users of the global satellite navigation system (GNSS), one of the main error contributors is the ionospheric delay, which impacts the received signals. As is well-known, GPS and Galileo transmit global models to correct the ionospheric delay, while the international GNSS service (IGS) computes precise post-process global ionospheric maps (GIM) that are considered reference ionospheres. Moreover, accurate ionospheric maps have been recently introduced, which allow for the fast convergence of the real-time precise point position (PPP) globally. Therefore, testing of the ionospheric models is a key issue for code-based single-frequency users, which constitute the main user segment. Therefore, the testing proposed in this paper is straightforward and uses the PPP modeling applied to single- and dual-frequency code observations worldwide for 2014. The usage of PPP modeling allows us to quantify—for dual-frequency users—the degradation of the navigation solutions caused by noise and multipath with respect to the different ionospheric modeling solutions, and allows us, in turn, to obtain an independent assessment of the ionospheric models. Compared to the dual-frequency solutions, the GPS and Galileo ionospheric models present worse global performance, with horizontal root mean square (RMS) differences of 1.04 and 0.49 m and vertical RMS differences of 0.83 and 0.40 m, respectively. While very precise global ionospheric models can improve the dual-frequency solution globally, resulting in a horizontal RMS difference of 0.60 m and a vertical RMS difference of 0.74 m, they exhibit a strong dependence on the geographical location and ionospheric activity.

  1. GPS navigation algorithms for Autonomous Airborne Refueling of Unmanned Air Vehicles

    NASA Astrophysics Data System (ADS)

    Khanafseh, Samer Mahmoud

    Unmanned Air Vehicles (UAVs) have recently generated great interest because of their potential to perform hazardous missions without risking loss of life. If autonomous airborne refueling is possible for UAVs, mission range and endurance will be greatly enhanced. However, concerns about UAV-tanker proximity, dynamic mobility and safety demand that the relative navigation system meets stringent requirements on accuracy, integrity, and continuity. In response, this research focuses on developing high-performance GPS-based navigation architectures for Autonomous Airborne Refueling (AAR) of UAVs. The AAR mission is unique because of the potentially severe sky blockage introduced by the tanker. To address this issue, a high-fidelity dynamic sky blockage model was developed and experimentally validated. In addition, robust carrier phase differential GPS navigation algorithms were derived, including a new method for high-integrity reacquisition of carrier cycle ambiguities for recently-blocked satellites. In order to evaluate navigation performance, world-wide global availability and sensitivity covariance analyses were conducted. The new navigation algorithms were shown to be sufficient for turn-free scenarios, but improvement in performance was necessary to meet the difficult requirements for a general refueling mission with banked turns. Therefore, several innovative methods were pursued to enhance navigation performance. First, a new theoretical approach was developed to quantify the position-domain integrity risk in cycle ambiguity resolution problems. A mechanism to implement this method with partially-fixed cycle ambiguity vectors was derived, and it was used to define tight upper bounds on AAR navigation integrity risk. A second method, where a new algorithm for optimal fusion of measurements from multiple antennas was developed, was used to improve satellite coverage in poor visibility environments such as in AAR. Finally, methods for using data-link extracted

  2. Flight evaluation of differential GPS aided inertial navigation systems

    NASA Technical Reports Server (NTRS)

    Mcnally, B. David; Paielli, Russell A.; Bach, Ralph E., Jr.; Warner, David N., Jr.

    1992-01-01

    Algorithms are described for integration of Differential Global Positioning System (DGPS) data with Inertial Navigation System (INS) data to provide an integrated DGPS/INS navigation system. The objective is to establish the benefits that can be achieved through various levels of integration of DGPS with INS for precision navigation. An eight state Kalman filter integration was implemented in real-time on a twin turbo-prop transport aircraft to evaluate system performance during terminal approach and landing operations. A fully integrated DGPS/INS system is also presented which models accelerometer and rate-gyro measurement errors plus position, velocity, and attitude errors. The fully integrated system was implemented off-line using range-domain (seventeen-state) and position domain (fifteen-state) Kalman filters. Both filter integration approaches were evaluated using data collected during the flight test. Flight-test data consisted of measurements from a 5 channel Precision Code GPS receiver, a strap-down Inertial Navigation Unit (INU), and GPS satellite differential range corrections from a ground reference station. The aircraft was laser tracked to determine its true position. Results indicate that there is no significant improvement in positioning accuracy with the higher levels of DGPS/INS integration. All three systems provided high-frequency (e.g., 20 Hz) estimates of position and velocity. The fully integrated system provided estimates of inertial sensor errors which may be used to improve INS navigation accuracy should GPS become unavailable, and improved estimates of acceleration, attitude, and body rates which can be used for guidance and control. Precision Code DGPS/INS positioning accuracy (root-mean-square) was 1.0 m cross-track and 3.0 m vertical. (This AGARDograph was sponsored by the Guidance and Control Panel.)

  3. The Anglo-Japanese Alliance and Japanese Expansionism 1902-1923.

    DTIC Science & Technology

    1992-06-05

    Alienation 1919-1952. London: Cambridge University Press. 1982. • The Oriains of the Russo-Japanese War. London: Longman Group Limited. 1985. Nitobe ... Inazo . Bushido - The Soul of Japan. Tokyo: Tuttle. 1981. Okamoto, Shumpei. The Japan Oliaarchv and the Russo-Japanese War. New York: Columbia

  4. Fuzzy Adaptive Cubature Kalman Filter for Integrated Navigation Systems.

    PubMed

    Tseng, Chien-Hao; Lin, Sheng-Fuu; Jwo, Dah-Jing

    2016-07-26

    This paper presents a sensor fusion method based on the combination of cubature Kalman filter (CKF) and fuzzy logic adaptive system (FLAS) for the integrated navigation systems, such as the GPS/INS (Global Positioning System/inertial navigation system) integration. The third-degree spherical-radial cubature rule applied in the CKF has been employed to avoid the numerically instability in the system model. In processing navigation integration, the performance of nonlinear filter based estimation of the position and velocity states may severely degrade caused by modeling errors due to dynamics uncertainties of the vehicle. In order to resolve the shortcoming for selecting the process noise covariance through personal experience or numerical simulation, a scheme called the fuzzy adaptive cubature Kalman filter (FACKF) is presented by introducing the FLAS to adjust the weighting factor of the process noise covariance matrix. The FLAS is incorporated into the CKF framework as a mechanism for timely implementing the tuning of process noise covariance matrix based on the information of degree of divergence (DOD) parameter. The proposed FACKF algorithm shows promising accuracy improvement as compared to the extended Kalman filter (EKF), unscented Kalman filter (UKF), and CKF approaches.

  5. Fuzzy Adaptive Cubature Kalman Filter for Integrated Navigation Systems

    PubMed Central

    Tseng, Chien-Hao; Lin, Sheng-Fuu; Jwo, Dah-Jing

    2016-01-01

    This paper presents a sensor fusion method based on the combination of cubature Kalman filter (CKF) and fuzzy logic adaptive system (FLAS) for the integrated navigation systems, such as the GPS/INS (Global Positioning System/inertial navigation system) integration. The third-degree spherical-radial cubature rule applied in the CKF has been employed to avoid the numerically instability in the system model. In processing navigation integration, the performance of nonlinear filter based estimation of the position and velocity states may severely degrade caused by modeling errors due to dynamics uncertainties of the vehicle. In order to resolve the shortcoming for selecting the process noise covariance through personal experience or numerical simulation, a scheme called the fuzzy adaptive cubature Kalman filter (FACKF) is presented by introducing the FLAS to adjust the weighting factor of the process noise covariance matrix. The FLAS is incorporated into the CKF framework as a mechanism for timely implementing the tuning of process noise covariance matrix based on the information of degree of divergence (DOD) parameter. The proposed FACKF algorithm shows promising accuracy improvement as compared to the extended Kalman filter (EKF), unscented Kalman filter (UKF), and CKF approaches. PMID:27472336

  6. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-27

    A Japanese H-IIA rocket carrying the NASA-Japan Aerospace Exploration Agency (JAXA), Global Precipitation Measurement (GPM) Core Observatory is seen as it rolls out to launch pad 1 of the Tanegashima Space Center, Thursday, Feb. 27, 2014, Tanegashima, Japan. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  7. Integrating GPS, GYRO, vehicle speed sensor, and digital map to provide accurate and real-time position in an intelligent navigation system

    NASA Astrophysics Data System (ADS)

    Li, Qingquan; Fang, Zhixiang; Li, Hanwu; Xiao, Hui

    2005-10-01

    The global positioning system (GPS) has become the most extensively used positioning and navigation tool in the world. Applications of GPS abound in surveying, mapping, transportation, agriculture, military planning, GIS, and the geosciences. However, the positional and elevation accuracy of any given GPS location is prone to error, due to a number of factors. The applications of Global Positioning System (GPS) positioning is more and more popular, especially the intelligent navigation system which relies on GPS and Dead Reckoning technology is developing quickly for future huge market in China. In this paper a practical combined positioning model of GPS/DR/MM is put forward, which integrates GPS, Gyro, Vehicle Speed Sensor (VSS) and digital navigation maps to provide accurate and real-time position for intelligent navigation system. This model is designed for automotive navigation system making use of Kalman filter to improve position and map matching veracity by means of filtering raw GPS and DR signals, and then map-matching technology is used to provide map coordinates for map displaying. In practical examples, for illustrating the validity of the model, several experiments and their results of integrated GPS/DR positioning in intelligent navigation system will be shown for the conclusion that Kalman Filter based GPS/DR integrating position approach is necessary, feasible and efficient for intelligent navigation application. Certainly, this combined positioning model, similar to other model, can not resolve all situation issues. Finally, some suggestions are given for further improving integrated GPS/DR/MM application.

  8. A comparison of human performance in figural and navigational versions of the traveling salesman problem.

    PubMed

    Blaser, R E; Wilber, Julie

    2013-11-01

    Performance on a typical pen-and-paper (figural) version of the Traveling Salesman Problem was compared to performance on a room-sized navigational version of the same task. Nine configurations were designed to examine the use of the nearest-neighbor (NN), cluster approach, and convex-hull strategies. Performance decreased with an increasing number of nodes internal to the hull, and improved when the NN strategy produced the optimal path. There was no overall difference in performance between figural and navigational task modalities. However, there was an interaction between modality and configuration, with evidence that participants relied more heavily on the NN strategy in the figural condition. Our results suggest that participants employed similar, but not identical, strategies when solving figural and navigational versions of the problem. Surprisingly, there was no evidence that participants favored global strategies in the figural version and local strategies in the navigational version.

  9. A Conceptual Model of Cultural Predictors of Anxiety among Japanese American and Part-Japanese American Adolescents.

    ERIC Educational Resources Information Center

    Williams, John Kino Yamaguchi; Goebert, Deborah; Hishinuma, Earl; Miyamoto, Robin; Anzai, Neal; Izutsu, Satoru; Yanagida, Evelyn; Nishimura, Stephanie; Andrade, Naleen; Baker, F. M.

    2002-01-01

    Develops and assesses a model integrating Japanese ethnicity, cultural identity, and anxiety in Japanese American and part-Japanese American high school seniors. Japanese American adolescents scored higher on the scale and reported fewer anxiety symptoms than part-Japanese American adolescents. The model had a good overall fit, suggesting that…

  10. Coordinating sensing and local navigation

    NASA Technical Reports Server (NTRS)

    Slack, Marc G.

    1991-01-01

    Based on Navigation Templates (or NaTs), this work presents a new paradigm for local navigation which addresses the noisy and uncertain nature of sensor data. Rather than creating a new navigation plan each time the robot's perception of the world changes, the technique incorporates perceptual changes directly into the existing navigation plan. In this way, the robot's navigation plan is quickly and continuously modified, resulting in actions that remain coordinated with its changing perception of the world.

  11. Vision-based navigation in a dynamic environment for virtual human

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Sun, Ji-Zhou; Zhang, Jia-Wan; Li, Ming-Chu

    2004-06-01

    Intelligent virtual human is widely required in computer games, ergonomics software, virtual environment and so on. We present a vision-based behavior modeling method to realize smart navigation in a dynamic environment. This behavior model can be divided into three modules: vision, global planning and local planning. Vision is the only channel for smart virtual actor to get information from the outside world. Then, the global and local planning module use A* and D* algorithm to find a way for virtual human in a dynamic environment. Finally, the experiments on our test platform (Smart Human System) verify the feasibility of this behavior model.

  12. 33 CFR 209.325 - Navigation lights, aids to navigation, navigation charts, and related data policy, practices and...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE...), will report the channel conditions promptly, using standard tabular forms, to: Director, Defense... operations in important channels in tidal waters—either in progress and not already reported, or soon to be...

  13. Navigation Aiding by a Hybrid Laser-Camera Motion Estimator for Micro Aerial Vehicles.

    PubMed

    Atman, Jamal; Popp, Manuel; Ruppelt, Jan; Trommer, Gert F

    2016-09-16

    Micro Air Vehicles (MAVs) equipped with various sensors are able to carry out autonomous flights. However, the self-localization of autonomous agents is mostly dependent on Global Navigation Satellite Systems (GNSS). In order to provide an accurate navigation solution in absence of GNSS signals, this article presents a hybrid sensor. The hybrid sensor is a deep integration of a monocular camera and a 2D laser rangefinder so that the motion of the MAV is estimated. This realization is expected to be more flexible in terms of environments compared to laser-scan-matching approaches. The estimated ego-motion is then integrated in the MAV's navigation system. However, first, the knowledge about the pose between both sensors is obtained by proposing an improved calibration method. For both calibration and ego-motion estimation, 3D-to-2D correspondences are used and the Perspective-3-Point (P3P) problem is solved. Moreover, the covariance estimation of the relative motion is presented. The experiments show very accurate calibration and navigation results.

  14. Navigation Aiding by a Hybrid Laser-Camera Motion Estimator for Micro Aerial Vehicles

    PubMed Central

    Atman, Jamal; Popp, Manuel; Ruppelt, Jan; Trommer, Gert F.

    2016-01-01

    Micro Air Vehicles (MAVs) equipped with various sensors are able to carry out autonomous flights. However, the self-localization of autonomous agents is mostly dependent on Global Navigation Satellite Systems (GNSS). In order to provide an accurate navigation solution in absence of GNSS signals, this article presents a hybrid sensor. The hybrid sensor is a deep integration of a monocular camera and a 2D laser rangefinder so that the motion of the MAV is estimated. This realization is expected to be more flexible in terms of environments compared to laser-scan-matching approaches. The estimated ego-motion is then integrated in the MAV’s navigation system. However, first, the knowledge about the pose between both sensors is obtained by proposing an improved calibration method. For both calibration and ego-motion estimation, 3D-to-2D correspondences are used and the Perspective-3-Point (P3P) problem is solved. Moreover, the covariance estimation of the relative motion is presented. The experiments show very accurate calibration and navigation results. PMID:27649203

  15. Preliminary navigation accuracy analysis for the TDRSS Onboard Navigation System (TONS) experiment on EP/EUVE

    NASA Technical Reports Server (NTRS)

    Gramling, C. J.; Long, A. C.; Lee, T.; Ottenstein, N. A.; Samii, M. V.

    1991-01-01

    A Tracking and Data Relay Satellite System (TDRSS) Onboard Navigation System (TONS) is currently being developed by NASA to provide a high accuracy autonomous navigation capability for users of TDRSS and its successor, the Advanced TDRSS (ATDRSS). The fully autonomous user onboard navigation system will support orbit determination, time determination, and frequency determination, based on observation of a continuously available, unscheduled navigation beacon signal. A TONS experiment will be performed in conjunction with the Explorer Platform (EP) Extreme Ultraviolet Explorer (EUVE) mission to flight quality TONS Block 1. An overview is presented of TONS and a preliminary analysis of the navigation accuracy anticipated for the TONS experiment. Descriptions of the TONS experiment and the associated navigation objectives, as well as a description of the onboard navigation algorithms, are provided. The accuracy of the selected algorithms is evaluated based on the processing of realistic simulated TDRSS one way forward link Doppler measurements. The analysis process is discussed and the associated navigation accuracy results are presented.

  16. SFOL Pulse: A High Accuracy DME Pulse for Alternative Aircraft Position and Navigation.

    PubMed

    Kim, Euiho; Seo, Jiwon

    2017-09-22

    In the Federal Aviation Administration's (FAA) performance based navigation strategy announced in 2016, the FAA stated that it would retain and expand the Distance Measuring Equipment (DME) infrastructure to ensure resilient aircraft navigation capability during the event of a Global Navigation Satellite System (GNSS) outage. However, the main drawback of the DME as a GNSS back up system is that it requires a significant expansion of the current DME ground infrastructure due to its poor distance measuring accuracy over 100 m. The paper introduces a method to improve DME distance measuring accuracy by using a new DME pulse shape. The proposed pulse shape was developed by using Genetic Algorithms and is less susceptible to multipath effects so that the ranging error reduces by 36.0-77.3% when compared to the Gaussian and Smoothed Concave Polygon DME pulses, depending on noise environment.

  17. Real-time artificial intelligence issues in the development of the adaptive tactical navigator

    NASA Technical Reports Server (NTRS)

    Green, Peter E.; Glasson, Douglas P.; Pomarede, Jean-Michel L.; Acharya, Narayan A.

    1987-01-01

    Adaptive Tactical Navigation (ATN) is a laboratory prototype of a knowledge based system to provide navigation system management and decision aiding in the next generation of tactical aircraft. ATN's purpose is to manage a set of multimode navigation equipment, dynamically selecting the best equipment to use in accordance with mission goals and phase, threat environment, equipment malfunction status, and battle damage. ATN encompasses functions as diverse as sensor data interpretation, diagnosis, and planning. Real time issues that were identified in ATN and the approaches used to address them are addressed. Functional requirements and a global architecture for the ATN system are described. Decision making with time constraints are discussed. Two subproblems are identified; making decisions with incomplete information and with limited resources. Approaches used in ATN to address real time performance are described and simulation results are discussed.

  18. Use of Assisted Photogrammetry for Indoor and Outdoor Navigation Purposes

    NASA Astrophysics Data System (ADS)

    Pagliari, D.; Cazzaniga, N. E.; Pinto, L.

    2015-05-01

    Nowadays, devices and applications that require navigation solutions are continuously growing. For instance, consider the increasing demand of mapping information or the development of applications based on users' location. In some case it could be sufficient an approximate solution (e.g. at room level), but in the large amount of cases a better solution is required. The navigation problem has been solved from a long time using Global Navigation Satellite System (GNSS). However, it can be unless in obstructed areas, such as in urban areas or inside buildings. An interesting low cost solution is photogrammetry, assisted using additional information to scale the photogrammetric problem and recovering a solution also in critical situation for image-based methods (e.g. poor textured surfaces). In this paper, the use of assisted photogrammetry has been tested for both outdoor and indoor scenarios. Outdoor navigation problem has been faced developing a positioning system with Ground Control Points extracted from urban maps as constrain and tie points automatically extracted from the images acquired during the survey. The proposed approach has been tested under different scenarios, recovering the followed trajectory with an accuracy of 0.20 m. For indoor navigation a solution has been thought to integrate the data delivered by Microsoft Kinect, by identifying interesting features on the RGB images and re-projecting them on the point clouds generated from the delivered depth maps. Then, these points have been used to estimate the rotation matrix between subsequent point clouds and, consequently, to recover the trajectory with few centimeters of error.

  19. Variation trend of snowfall in the Kamikochi region of the Japanese Alps

    NASA Astrophysics Data System (ADS)

    Suzuki, K.

    2017-12-01

    The Japanese Alps experience exceptionally heavy snowfall, extreme even by global standards, and in spring and summer the melting snow becomes a valuable water resource. The snow effectively acts as a natural dam when it accumulates in watersheds during winter. However, there have been no observations of the amount of snow in high-altitude regions of Japan. Therefore, we cannot discuss the effect of global warming on the change in the amount of snow in these regions based on direct observation data. We were, however, able to obtain climatic and hydrologic data for high-altitude sites in the Japanese Alps, and discuss the variations in these conditions in the Kamikochi region (altitude 1490 m-3190 m) of the Japanese Alps over a 68-year period using these observed data. No long-term trends are observed in the annual mean, maximum, or minimum temperatures at Taisho-ike from 1945 to 2012; the total annual precipitation shows a statistically significant decreasing trend. The annual total snowfall at Taisho-ike from 1969 to 2012 shows a statistically significant increasing trend. The annual total runoff of the Azusa River from 1945 to 2012 shows a statistically significant increasing trend, as does the snowmelt runoff to the river (which occurs from May to July). We can thus conclude that the annual snowfall in the Azusa River catchment has increased in recent years.

  20. Statistical Machine Translation of Japanese

    DTIC Science & Technology

    2007-03-01

    hiragana and katakana) syllabaries…………………….. 20 3.2 Sample Japanese sentence showing kanji and kana……………………... 21 3.5 Japanese formality example...syllabary. 19 Figure 3.1. Japanese kana syllabaries, hiragana for native Japanese words, word endings, and particles, and katakana for foreign...Figure 3.2. Simple Japanese sentence showing the use of kanji, hiragana , and katakana. Kanji is used for nouns and verb, adjective, and

  1. Key Issues for Navigation and Time Dissemination in NASA's Space Exploration Program

    NASA Technical Reports Server (NTRS)

    Nelson, R. A.; Brodsky, B.; Oria, A. J.; Connolly, J. W.; Sands, O. S.; Welch, B. W.; Ely T.; Orr, R.; Schuchman, L.

    2006-01-01

    The renewed emphasis on robotic and human missions within NASA's space exploration program warrants a detailed consideration of how the positions of objects in space will be determined and tracked, whether they be spacecraft, human explorers, robots, surface vehicles, or science instrumentation. The Navigation Team within the NASA Space Communications Architecture Working Group (SCAWG) has addressed several key technical issues in this area and the principle findings are reported here. For navigation in the vicinity of the Moon, a variety of satellite constellations have been investigated that provide global or regional surface position determination and timely services analogous to those offered by GPS at Earth. In the vicinity of Mars, there are options for satellite constellations not available at the Moon due to the gravitational perturbations from Earth, such as two satellites in an aerostationary orbit. Alternate methods of radiometric navigation as considered, including one- and two-way signals, as well as autonomous navigation. The use of a software radio capable of receiving all available signal sources, such as GPS, pseudolites, and communication channels, is discussed. Methods of time transfer and dissemination are also considered in this paper.

  2. Adaptive Estimation of Multiple Fading Factors for GPS/INS Integrated Navigation Systems.

    PubMed

    Jiang, Chen; Zhang, Shu-Bi; Zhang, Qiu-Zhao

    2017-06-01

    The Kalman filter has been widely applied in the field of dynamic navigation and positioning. However, its performance will be degraded in the presence of significant model errors and uncertain interferences. In the literature, the fading filter was proposed to control the influences of the model errors, and the H-infinity filter can be adopted to address the uncertainties by minimizing the estimation error in the worst case. In this paper, a new multiple fading factor, suitable for the Global Positioning System (GPS) and the Inertial Navigation System (INS) integrated navigation system, is proposed based on the optimization of the filter, and a comprehensive filtering algorithm is constructed by integrating the advantages of the H-infinity filter and the proposed multiple fading filter. Measurement data of the GPS/INS integrated navigation system are collected under actual conditions. Stability and robustness of the proposed filtering algorithm are tested with various experiments and contrastive analysis are performed with the measurement data. Results demonstrate that both the filter divergence and the influences of outliers are restrained effectively with the proposed filtering algorithm, and precision of the filtering results are improved simultaneously.

  3. Impact of Patient Navigation on Timely Cancer Care: The Patient Navigation Research Program

    PubMed Central

    Battaglia, Tracy A.; Calhoun, Elizabeth; Darnell, Julie S.; Dudley, Donald J.; Fiscella, Kevin; Hare, Martha L.; LaVerda, Nancy; Lee, Ji-Hyun; Levine, Paul; Murray, David M.; Patierno, Steven R.; Raich, Peter C.; Roetzheim, Richard G.; Simon, Melissa; Snyder, Frederick R.; Warren-Mears, Victoria; Whitley, Elizabeth M.; Winters, Paul; Young, Gregory S.; Paskett, Electra D.

    2014-01-01

    Background Patient navigation is a promising intervention to address cancer disparities but requires a multisite controlled trial to assess its effectiveness. Methods The Patient Navigation Research Program compared patient navigation with usual care on time to diagnosis or treatment for participants with breast, cervical, colorectal, or prostate screening abnormalities and/or cancers between 2007 and 2010. Patient navigators developed individualized strategies to address barriers to care, with the focus on preventing delays in care. To assess timeliness of diagnostic resolution, we conducted a meta-analysis of center- and cancer-specific adjusted hazard ratios (aHRs) comparing patient navigation vs usual care. To assess initiation of cancer therapy, we calculated a single aHR, pooling data across all centers and cancer types. We conducted a metaregression to evaluate variability across centers. All statistical tests were two-sided. Results The 10521 participants with abnormal screening tests and 2105 with a cancer or precancer diagnosis were predominantly from racial/ethnic minority groups (73%) and publically insured (40%) or uninsured (31%). There was no benefit during the first 90 days of care, but a benefit of navigation was seen from 91 to 365 days for both diagnostic resolution (aHR = 1.51; 95% confidence interval [CI] = 1.23 to 1.84; P < .001)) and treatment initiation (aHR = 1.43; 95% CI = 1.10 to 1.86; P < .007). Metaregression revealed that navigation had its greatest benefits within centers with the greatest delays in follow-up under usual care. Conclusions Patient navigation demonstrated a moderate benefit in improving timely cancer care. These results support adoption of patient navigation in settings that serve populations at risk of being lost to follow-up. PMID:24938303

  4. Dual RF Astrodynamic GPS Orbital Navigator Satellite

    NASA Technical Reports Server (NTRS)

    Kanipe, David B.; Provence, Robert Steve; Straube, Timothy M.; Reed, Helen; Bishop, Robert; Lightsey, Glenn

    2009-01-01

    Dual RF Astrodynamic GPS Orbital Navigator Satellite (DRAGONSat) will demonstrate autonomous rendezvous and docking (ARD) in low Earth orbit (LEO) and gather flight data with a global positioning system (GPS) receiver strictly designed for space applications. ARD is the capability of two independent spacecraft to rendezvous in orbit and dock without crew intervention. DRAGONSat consists of two picosatellites (one built by the University of Texas and one built by Texas A and M University) and the Space Shuttle Payload Launcher (SSPL); this project will ultimately demonstrate ARD in LEO.

  5. Acculturation of Personality: A Three-Culture Study of Japanese, Japanese Americans, and European Americans.

    PubMed

    Güngör, Derya; Bornstein, Marc H; De Leersnyder, Jozefien; Cote, Linda; Ceulemans, Eva; Mesquita, Batja

    2013-07-01

    The present study tests the hypothesis that involvement with a new culture instigates changes in personality of immigrants that result in (a) better fit with the norms of the culture of destination and (b) reduced fit with the norms of the culture of origin. Participants were 40 Japanese first-generation immigrants to the United States, 57 Japanese monoculturals, and 60 U.S. monoculturals. All participants completed the Jackson Personality Inventory (JPI) as a measure of the Big Five; immigrants completed the Japanese American Acculturation Scale. Immigrants' fits with the cultures of destination and origin were calculated by correlating Japanese American mothers' patterns of ratings on the Big Five with the average patterns of ratings of European Americans and Japanese on the same personality dimensions. Japanese Americans became more "American" and less "Japanese" in their personality as they reported higher participation in the U.S. culture. The results support the view that personality can be subject to cultural influence.

  6. The navigation of homing pigeons: Do they use sun Navigation?

    NASA Technical Reports Server (NTRS)

    Walcott, C.

    1972-01-01

    Experiments to determine the dependence of homing pigeons on the sun as a navigational cue are discussed. Various methods were employed to interrupt the circadian rhythms of the pigeons prior to release. It was determined that the sun may serve as a compass, but that topographic features are more important for navigation. The effects of a magnetic field produced by electric equipment carried by the bird were also investigated. It was concluded that magnetic fields may have a small effect on the homing ability. The exact nature of the homing pigeon's navigational ability is still unknown after years of elaborate experimentation.

  7. Use of Omega radio navigation system in geophysical work in Antarctica

    NASA Astrophysics Data System (ADS)

    Kalinskiy, S. I.

    1985-07-01

    Antarctic flights are hampered by a complete absence of navigational support in that region. It is necessary to use global radio navigation systems, such as the Omega microwave radio navigation system, whose eight stations are in Norway (A), Liberia (B), South Dakota (D), Reunion (E), Hawaii (C), Argentina (F), Australia (G) and Japan (H). The matter of propagation of microwave waves over the Antarctic continent has been poorly studied and therefore no use should be made of those stations whose paths intersect the continent. Accordingly, in selecting the optimum combinations of pairs of stations an effort must be made to ensure that the position angles are in the range 50 deg ,W sub 1,2 , 150 deg. The author recommends the best combinations of pairs of Omega stations for latitude 70 deg S in six longitude zones (No. 19, 20, 21, 22, 23, 24). In each of the six considered zones it is recommended that three Omega stations be used, thus ensuring a minimum of two position lines. During navigation in Antarctic seas it is possible to receive signals from stations more than 10,000 km distant and this ensures a possibility of increasing accuracy in position determination by obtaining extra position lines.

  8. Global food terror in Japan: media shaping risk perception, the nation, and women.

    PubMed

    Rosenberger, Nancy

    2009-01-01

    This article traces the Japanese media's response to Chinese poison pot-stickers (gyoza) in Japan's food system as they debate and guide consumer-citizens' feelings of increasing vulnerability as individuals in the global market, the nation, and families. Global food becomes a key metaphor for threats to national borders and the need for national food, yet simultaneously for inevitable risk to globally attuned stomachs that can be controlled only by alert housewives and education of the young. Food terror effectively signals citizens' lack of protection in risk society, but leaves unsaid important differences among consumer-citizens to save themselves with scarce Japanese-made food.

  9. Optimal motion planning using navigation measure

    NASA Astrophysics Data System (ADS)

    Vaidya, Umesh

    2018-05-01

    We introduce navigation measure as a new tool to solve the motion planning problem in the presence of static obstacles. Existence of navigation measure guarantees collision-free convergence at the final destination set beginning with almost every initial condition with respect to the Lebesgue measure. Navigation measure can be viewed as a dual to the navigation function. While the navigation function has its minimum at the final destination set and peaks at the obstacle set, navigation measure takes the maximum value at the destination set and is zero at the obstacle set. A linear programming formalism is proposed for the construction of navigation measure. Set-oriented numerical methods are utilised to obtain finite dimensional approximation of this navigation measure. Application of the proposed navigation measure-based theoretical and computational framework is demonstrated for a motion planning problem in a complex fluid flow.

  10. A navigation system for the visually impaired using colored navigation lines and RFID tags.

    PubMed

    Seto, First Tatsuya

    2009-01-01

    In this paper, we describe about a developed navigation system that supports the independent walking of the visually impaired in the indoor space. Our developed instrument consists of a navigation system and a map information system. These systems are installed on a white cane. Our navigation system can follow a colored navigation line that is set on the floor. In this system, a color sensor installed on the tip of a white cane senses the colored navigation line, and the system informs the visually impaired that he/she is walking along the navigation line by vibration. The color recognition system is controlled by a one-chip microprocessor and this system can discriminate 6 colored navigation lines. RFID tags and a receiver for these tags are used in the map information system. The RFID tags and the RFID tag receiver are also installed on a white cane. The receiver receives tag information and notifies map information to the user by mp3 formatted pre-recorded voice. Three normal subjects who were blindfolded with an eye mask were tested with this system. All of them were able to walk along the navigation line. The performance of the map information system was good. Therefore, our system will be extremely valuable in supporting the activities of the visually impaired.

  11. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-27

    A Japanese H-IIA rocket carrying the NASA-Japan Aerospace Exploration Agency (JAXA), Global Precipitation Measurement (GPM) Core Observatory is seen in this 10 second exposure as it rolls out to launch pad 1 of the Tanegashima Space Center, Thursday, Feb. 27, 2014, Tanegashima, Japan. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  12. Global Learning as General Education for the Twenty-First Century

    ERIC Educational Resources Information Center

    Reich, Jacqueline C.

    2012-01-01

    Global awareness has emerged as a valued learning outcome in higher education. Students need repeated and on-going learning opportunities to develop the global competencies and habits of mind that are necessary to navigate our increasingly interconnected and complex world. This paper argues that situating an introductory global studies course into…

  13. Americans and Japanese Nonverbal Communication. Linguistic Communications 15 (Papers in Japanese Linguistics 3).

    ERIC Educational Resources Information Center

    Taylor, Harvey M.

    Each culture has its own nonverbal as well as its verbal language. Movements, gestures and sounds have distinct and often conflicting interpretations in different countries. For Americans communicating with Japanese, misunderstandings are of two types: Japanese behavior which is completely new to the American, and Japanese behavior which is…

  14. 33 CFR 207.169 - Oklawaha River, navigation lock and dam at Moss Bluff, Fla.; use, administration, and navigation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Oklawaha River, navigation lock and dam at Moss Bluff, Fla.; use, administration, and navigation. 207.169 Section 207.169 Navigation... REGULATIONS § 207.169 Oklawaha River, navigation lock and dam at Moss Bluff, Fla.; use, administration, and...

  15. 33 CFR 207.169 - Oklawaha River, navigation lock and dam at Moss Bluff, Fla.; use, administration, and navigation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Oklawaha River, navigation lock and dam at Moss Bluff, Fla.; use, administration, and navigation. 207.169 Section 207.169 Navigation... REGULATIONS § 207.169 Oklawaha River, navigation lock and dam at Moss Bluff, Fla.; use, administration, and...

  16. Impact of patient navigation on timely cancer care: the Patient Navigation Research Program.

    PubMed

    Freund, Karen M; Battaglia, Tracy A; Calhoun, Elizabeth; Darnell, Julie S; Dudley, Donald J; Fiscella, Kevin; Hare, Martha L; LaVerda, Nancy; Lee, Ji-Hyun; Levine, Paul; Murray, David M; Patierno, Steven R; Raich, Peter C; Roetzheim, Richard G; Simon, Melissa; Snyder, Frederick R; Warren-Mears, Victoria; Whitley, Elizabeth M; Winters, Paul; Young, Gregory S; Paskett, Electra D

    2014-06-01

    Patient navigation is a promising intervention to address cancer disparities but requires a multisite controlled trial to assess its effectiveness. The Patient Navigation Research Program compared patient navigation with usual care on time to diagnosis or treatment for participants with breast, cervical, colorectal, or prostate screening abnormalities and/or cancers between 2007 and 2010. Patient navigators developed individualized strategies to address barriers to care, with the focus on preventing delays in care. To assess timeliness of diagnostic resolution, we conducted a meta-analysis of center- and cancer-specific adjusted hazard ratios (aHRs) comparing patient navigation vs usual care. To assess initiation of cancer therapy, we calculated a single aHR, pooling data across all centers and cancer types. We conducted a metaregression to evaluate variability across centers. All statistical tests were two-sided. The 10521 participants with abnormal screening tests and 2105 with a cancer or precancer diagnosis were predominantly from racial/ethnic minority groups (73%) and publically insured (40%) or uninsured (31%). There was no benefit during the first 90 days of care, but a benefit of navigation was seen from 91 to 365 days for both diagnostic resolution (aHR = 1.51; 95% confidence interval [CI] = 1.23 to 1.84; P < .001)) and treatment initiation (aHR = 1.43; 95% CI = 1.10 to 1.86; P < .007). Metaregression revealed that navigation had its greatest benefits within centers with the greatest delays in follow-up under usual care. Patient navigation demonstrated a moderate benefit in improving timely cancer care. These results support adoption of patient navigation in settings that serve populations at risk of being lost to follow-up. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Detraditionalisation: Japanese Students in the USA.

    ERIC Educational Resources Information Center

    Ueno, Junko

    2001-01-01

    Focuses on the identity formation of Japanese students temporarily living in the United States. The students were enrolled in Japanese Saturday school and in American public schools. Student interviews reveal a mixture of Japanese and American characteristics. Suggests Japanese students do not reject either culture--Japanese or American--but that…

  18. Japanese-English language equivalence of the Cognitive Abilities Screening Instrument among Japanese-Americans.

    PubMed

    Gibbons, Laura E; McCurry, Susan; Rhoads, Kristoffer; Masaki, Kamal; White, Lon; Borenstein, Amy R; Larson, Eric B; Crane, Paul K

    2009-02-01

    The Cognitive Abilities Screening Instrument (CASI) was designed for use in cross-cultural studies of Japanese and Japanese-American elderly in Japan and the U.S.A. The measurement equivalence in Japanese and English had not been confirmed in prior studies. We analyzed the 40 CASI items for differential item functioning (DIF) related to test language, as well as self-reported proficiency with written Japanese, age, and educational attainment in two large epidemiologic studies of Japanese-American elderly: the Kame Project (n=1708) and the Honolulu-Asia Aging Study (HAAS; n = 3148). DIF was present if the demographic groups differed in the probability of success on an item, after controlling for their underlying cognitive functioning ability. While seven CASI items had DIF related to language of testing in Kame (registration of one item; recall of one item; similes; judgment; repeating a phrase; reading and performing a command; and following a three-step instruction), the impact of DIF on participants' scores was minimal. Mean scores for Japanese and English speakers in Kame changed by <0.1 SD after accounting for DIF related to test language. In HAAS, insufficient numbers of participants were tested in Japanese to assess DIF related to test language. In both studies, DIF related to written Japanese proficiency, age, and educational attainment had minimal impact. To the extent that DIF could be assessed, the CASI appeared to meet the goal of measuring cognitive function equivalently in Japanese and English. Stratified data collection would be needed to confirm this conclusion. DIF assessment should be used in other studies with multiple language groups to confirm that measures function equivalently or, if not, form scores that account for DIF.

  19. The real-world navigator

    NASA Technical Reports Server (NTRS)

    Balabanovic, Marko; Becker, Craig; Morse, Sarah K.; Nourbakhsh, Illah R.

    1994-01-01

    The success of every mobile robot application hinges on the ability to navigate robustly in the real world. The problem of robust navigation is separable from the challenges faced by any particular robot application. We offer the Real-World Navigator as a solution architecture that includes a path planner, a map-based localizer, and a motion control loop that combines reactive avoidance modules with deliberate goal-based motion. Our architecture achieves a high degree of reliability by maintaining and reasoning about an explicit description of positional uncertainty. We provide two implementations of real-world robot systems that incorporate the Real-World Navigator. The Vagabond Project culminated in a robot that successfully navigated a portion of the Stanford University campus. The Scimmer project developed successful entries for the AIAA 1993 Robotics Competition, placing first in one of the two contests entered.

  20. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-23

    A NASA Global Precipitation Measurement (GPM) mission shirt is seen drying in the mid-day sun outside the Sun Pearl Hotel where many of the NASA GPM team are staying, Sunday, Feb. 23, 2014, Tanegashima Island, Japan. A Japanese H-IIA rocket carrying the NASA-Japan Aerospace Exploration Agency (JAXA), Global Precipitation Measurement (GPM) Core Observatory is planned for launch from the space center on Feb. 28, 2014. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  1. A Leo Satellite Navigation Algorithm Based on GPS and Magnetometer Data

    NASA Technical Reports Server (NTRS)

    Deutschmann, Julie; Harman, Rick; Bar-Itzhack, Itzhack

    2001-01-01

    The Global Positioning System (GPS) has become a standard method for low cost onboard satellite orbit determination. The use of a GPS receiver as an attitude and rate sensor has also been developed in the recent past. Additionally, focus has been given to attitude and orbit estimation using the magnetometer, a low cost, reliable sensor. Combining measurements from both GPS and a magnetometer can provide a robust navigation system that takes advantage of the estimation qualities of both measurements. Ultimately, a low cost, accurate navigation system can result, potentially eliminating the need for more costly sensors, including gyroscopes. This work presents the development of a technique to eliminate numerical differentiation of the GPS phase measurements and also compares the use of one versus two GPS satellites.

  2. SFOL Pulse: A High Accuracy DME Pulse for Alternative Aircraft Position and Navigation

    PubMed Central

    Kim, Euiho

    2017-01-01

    In the Federal Aviation Administration’s (FAA) performance based navigation strategy announced in 2016, the FAA stated that it would retain and expand the Distance Measuring Equipment (DME) infrastructure to ensure resilient aircraft navigation capability during the event of a Global Navigation Satellite System (GNSS) outage. However, the main drawback of the DME as a GNSS back up system is that it requires a significant expansion of the current DME ground infrastructure due to its poor distance measuring accuracy over 100 m. The paper introduces a method to improve DME distance measuring accuracy by using a new DME pulse shape. The proposed pulse shape was developed by using Genetic Algorithms and is less susceptible to multipath effects so that the ranging error reduces by 36.0–77.3% when compared to the Gaussian and Smoothed Concave Polygon DME pulses, depending on noise environment. PMID:28937615

  3. Network global navigation satellite system survey to harmonize water-surface elevation data for the Rainy River Basin

    USGS Publications Warehouse

    Ziegeweid, Jeffrey R.; Silliker, R. Jason; Densmore, Brenda K.; Krahulik, Justin

    2016-08-15

    Continuously recording water-level streamgages in Rainy Lake and Namakan Reservoir are used to regulate water levels according to rule curves established in 2000 by the International Joint Commission; however, water levels at streamgages were referenced to a variety of vertical datums, confounding efforts to model the flow of water through the system, regulate water levels during periods of high inflow, and evaluate the effectiveness of the rule curves. In October 2014, the U.S. Geological Survey, Natural Resources Canada, International Joint Commission, and National Park Service began a joint field study with the goal of obtaining precise elevations referenced to a uniform vertical datum for all reference marks used to set water levels at streamgages throughout Rainy Lake and Namakan Reservoir. This report was prepared by the U.S. Geological Survey in cooperation with Natural Resources Canada, International Joint Commission, and National Park Service.Three field crews deployed Global Navigation Satellite System receivers statically over 16 reference marks colocated with active and discontinued water-level streamgages throughout Rainy River, Rainy Lake, Namakan Reservoir, and select tributaries of Rainy Lake and Namakan Reservoir. A Global Navigation Satellite System receiver also was deployed statically over a National Geodetic Survey cooperative base network control station for use as a quality-control reference mark. Satellite data were collected simultaneously during a 5-day period and processed independently by the U.S. Geological Survey and Natural Resources Canada to obtain accurate positioning and elevations for the 17 surveyed reference marks. Processed satellite data were used to convert published water levels to elevations above sea level referenced to the Canadian Geodetic Vertical Datum of 2013 in order to compare water-surface elevations referenced to a uniform vertical datum throughout the study area. In this report, an “offset” refers to the

  4. Racial and Ethnic Differences in Patient Navigation: Results from the Patient Navigation Research Program

    PubMed Central

    Ko, Naomi Y; Snyder, Frederick R; Raich, Peter C; Paskett, Electra D.; Dudley, Donald; Lee, Ji-Hyun; Levine, Paul H.; Freund, Karen M

    2016-01-01

    Purpose Patient navigation was developed to address barriers to timely care and reduce cancer disparities. This study explores navigation and racial and ethnic differences in time to diagnostic resolution of a cancer screening abnormality. Patients and Methods We conducted an analysis of the multi-site Patient Navigation Research Program. Participants with an abnormal cancer screening test were allocated to either navigation or control. Unadjusted median time to resolution was calculated for each racial and ethnic group by navigation and control. Multivariable Cox proportional hazards models were fit, adjusting for sex, age, cancer abnormality type, and health insurance, stratifying by center of care. Results Among a sample of 7,514 participants, 29% were Non-Hispanic White, 43% Hispanic, and 28% Black. In the control group Blacks had a longer median time to diagnostic resolution (108 days) than Non-Hispanic Whites (65 days) or Hispanics (68 days) (p< .0001). In the navigated groups, Blacks had a reduction in median time to diagnostic resolution (97 days) (p <.0001). In the multivariable models, among controls, Black race was associated with increased delay to diagnostic resolution (HR=0.77; 95% CI: 0.69, 0.84) compared to the Non-Hispanic Whites, which was reduced in the navigated arm (HR=0.85; 95% CI: 0.77, 0.94). Conclusion Patient navigation had its greatest impact for Black patients who had the greatest delays in care. PMID:27227342

  5. Reducing cancer screening disparities in medicare beneficiaries through cancer patient navigation.

    PubMed

    Braun, Kathryn L; Thomas, William L; Domingo, Jermy-Leigh B; Allison, Amanda L; Ponce, Avette; Haunani Kamakana, P; Brazzel, Sandra S; Emmett Aluli, N; Tsark, JoAnn U

    2015-02-01

    Significant racial disparities in cancer mortality are seen between Medicare beneficiaries. A randomized controlled trial tested the use of lay navigators (care managers) to increase cancer screening of Asian and Pacific Islander Medicare beneficiaries. The study setting was Moloka'i General Hospital on the island of Moloka'i, Hawai'i, which was one of six sites participating in the Cancer Prevention and Treatment Demonstration sponsored by the Centers for Medicare and Medicaid Services. Between 2006 and 2009, 488 Medicare beneficiaries (45% Hawaiian, 35% Filipino, 11% Japanese, 8% other) were randomized to have a navigator help them access cancer screening services (experimental condition, n = 242) or cancer education (control condition, n = 246). Self-reported data on screening participation were collected at baseline and exit from the study, and differences were tested using chi-square. Groups were similar in demographic characteristics and baseline screening prevalence of breast, cervical, prostate, and colorectal cancers. At study exit, 57.0% of women in the experimental arm and 36.4% of controls had had a Papanicolaou test in the past 24 months (P = .001), 61.7% of women in the experimental arm and 42.4% of controls had had a mammogram in the past 12 months (P = .003), 54.4% of men in the experimental arm and 36.0% of controls had had a prostate-specific antigen test in the past 12 months (P = .008), and 43.0% of both sexes in the experimental arm and 27.2% of controls had had a flexible sigmoidoscopy or colonoscopy in the past 5 years (P < .001). Findings suggest that navigation services can increase cancer screening in Medicare beneficiaries in groups with significant disparities. © 2015, Copyright the Authors Journal compilation © 2015, The American Geriatrics Society.

  6. Enabling Communication and Navigation Technologies for Future Near Earth Science Missions

    NASA Technical Reports Server (NTRS)

    Israel, David J.; Heckler, Greg; Menrad, Robert J.; Hudiburg, John J.; Boroson, Don M.; Robinson, Bryan S.; Cornwell, Donald M.

    2016-01-01

    In 2015, the Earth Regimes Network Evolution Study (ERNESt) Team proposed a fundamentally new architectural concept, with enabling technologies, that defines an evolutionary pathway out to the 2040 timeframe in which an increasing user community comprised of more diverse space science and exploration missions can be supported. The architectural concept evolves the current instantiations of the Near Earth Network and Space Network through implementation of select technologies resulting in a global communication and navigation network that provides communication and navigation services to a wide range of space users in the Near Earth regime, defined as an Earth-centered sphere with radius of 2M Km. The enabling technologies include: High Rate Optical Communications, Optical Multiple Access (OMA), Delay Tolerant Networking (DTN), User Initiated Services (UIS), and advanced Position, Navigation, and Timing technology (PNT). This paper describes this new architecture, the key technologies that enable it and their current technology readiness levels. Examples of science missions that could be enabled by the technologies and the projected operational benefits of the architecture concept to missions are also described.

  7. Search Problems in Mission Planning and Navigation of Autonomous Aircraft. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Krozel, James A.

    1988-01-01

    An architecture for the control of an autonomous aircraft is presented. The architecture is a hierarchical system representing an anthropomorphic breakdown of the control problem into planner, navigator, and pilot systems. The planner system determines high level global plans from overall mission objectives. This abstract mission planning is investigated by focusing on the Traveling Salesman Problem with variations on local and global constraints. Tree search techniques are applied including the breadth first, depth first, and best first algorithms. The minimum-column and row entries for the Traveling Salesman Problem cost matrix provides a powerful heuristic to guide these search techniques. Mission planning subgoals are directed from the planner to the navigator for planning routes in mountainous terrain with threats. Terrain/threat information is abstracted into a graph of possible paths for which graph searches are performed. It is shown that paths can be well represented by a search graph based on the Voronoi diagram of points representing the vertices of mountain boundaries. A comparison of Dijkstra's dynamic programming algorithm and the A* graph search algorithm from artificial intelligence/operations research is performed for several navigation path planning examples. These examples illustrate paths that minimize a combination of distance and exposure to threats. Finally, the pilot system synthesizes the flight trajectory by creating the control commands to fly the aircraft.

  8. Texas ports and navigation districts : overview.

    DOT National Transportation Integrated Search

    2017-01-01

    The first Navigation District was established in 1909, and there are now 24 Navigation Districts statewide.1 Navigation districts generally provide for the construction and improvement of waterways in Texas for the purpose of navigation. The creation...

  9. Switching from reaching to navigation: differential cognitive strategies for spatial memory in children and adults.

    PubMed

    Belmonti, Vittorio; Cioni, Giovanni; Berthoz, Alain

    2015-07-01

    Navigational and reaching spaces are known to involve different cognitive strategies and brain networks, whose development in humans is still debated. In fact, high-level spatial processing, including allocentric location encoding, is already available to very young children, but navigational strategies are not mature until late childhood. The Magic Carpet (MC) is a new electronic device translating the traditional Corsi Block-tapping Test (CBT) to navigational space. In this study, the MC and the CBT were used to assess spatial memory for navigation and for reaching, respectively. Our hypothesis was that school-age children would not treat MC stimuli as navigational paths, assimilating them to reaching sequences. Ninety-one healthy children aged 6 to 11 years and 18 adults were enrolled. Overall short-term memory performance (span) on both tests, effects of sequence geometry, and error patterns according to a new classification were studied. Span increased with age on both tests, but relatively more in navigational than in reaching space, particularly in males. Sequence geometry specifically influenced navigation, not reaching. The number of body rotations along the path affected MC performance in children more than in adults, and in women more than in men. Error patterns indicated that navigational sequences were increasingly retained as global paths across development, in contrast to separately stored reaching locations. A sequence of spatial locations can be coded as a navigational path only if a cognitive switch from a reaching mode to a navigation mode occurs. This implies the integration of egocentric and allocentric reference frames, of visual and idiothetic cues, and access to long-term memory. This switch is not yet fulfilled at school age due to immature executive functions. © 2014 John Wiley & Sons Ltd.

  10. Shuttle unified navigation filter, revision 1

    NASA Technical Reports Server (NTRS)

    Muller, E. S., Jr.

    1973-01-01

    Equations designed to meet the navigation requirements of the separate shuttle mission phases are presented in a series of reports entitled, Space Shuttle GN and C Equation Document. The development of these equations is based on performance studies carried out for each particular mission phase. Although navigation equations have been documented separately for each mission phase, a single unified navigation filter design is embodied in these separate designs. The purpose of this document is to present the shuttle navigation equations in a form in which they would most likely be coded-as the single unified navigation filter used in each mission phase. This document will then serve as a single general reference for the navigation equations replacing each of the individual mission phase navigation documents (which may still be used as a description of a particular navigation phase).

  11. Model-based dose selection for phase III rivaroxaban study in Japanese patients with non-valvular atrial fibrillation.

    PubMed

    Tanigawa, Takahiko; Kaneko, Masato; Hashizume, Kensei; Kajikawa, Mariko; Ueda, Hitoshi; Tajiri, Masahiro; Paolini, John F; Mueck, Wolfgang

    2013-01-01

    The global ROCKET AF phase III trial evaluated rivaroxaban 20 mg once daily (o.d.) for stroke prevention in atrial fibrillation (AF). Based on rivaroxaban pharmacokinetics in Japanese subjects and lower anticoagulation preferences in Japan, particularly in elderly patients, the optimal dose regimen for Japanese AF patients was considered. The aim of this analysis was dose selection for Japanese patients from a pharmacokinetic aspect by comparison of simulated exposure in Japanese patients with those in Caucasian patients. As a result of population pharmacokinetics-pharmacodynamics analyses, a one-compartment pharmacokinetic model with first-order absorption and direct link pharmacokinetic-pharmacodynamic models optimally described the plasma concentration and pharmacodynamic models (Factor Xa activity, prothrombin time, activated partial thromboplastin time, and HepTest), which were also consistent with previous works. Steady-state simulations indicated 15 mg rivaroxaban o.d. doses in Japanese patients with AF would yield exposures comparable to the 20 mg o.d. dose in Caucasian patients with AF. In conclusion, in the context of the lower anticoagulation targets in Japanese practice, the population pharmacokinetic and pharmacodynamic modeling supports 15 mg o.d. as the principal rivaroxaban dose in J-ROCKET AF.

  12. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-23

    The Tanegashima Space Center (TNSC) lighthouse is seen on Sunday, Feb. 23, 2014, Tanegashima Island, Japan. A Japanese H-IIA rocket carrying the NASA-Japan Aerospace Exploration Agency (JAXA), Global Precipitation Measurement (GPM) Core Observatory is planned for launch from the space center on Feb. 28, 2014. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  13. Japanese Encephalitis: Frequently Asked Questions

    MedlinePlus

    ... the vaccine, what should I do? What is Japanese encephalitis? Japanese encephalitis (JE) is a potentially severe ... cause inflammation of the brain (encephalitis). Where does Japanese encephalitis occur? JE occurs in Asia and parts ...

  14. Lunar Navigation Architecture Design Considerations

    NASA Technical Reports Server (NTRS)

    D'Souza, Christopher; Getchius, Joel; Holt, Greg; Moreau, Michael

    2009-01-01

    The NASA Constellation Program is aiming to establish a long-term presence on the lunar surface. The Constellation elements (Orion, Altair, Earth Departure Stage, and Ares launch vehicles) will require a lunar navigation architecture for navigation state updates during lunar-class missions. Orion in particular has baselined earth-based ground direct tracking as the primary source for much of its absolute navigation needs. However, due to the uncertainty in the lunar navigation architecture, the Orion program has had to make certain assumptions on the capabilities of such architectures in order to adequately scale the vehicle design trade space. The following paper outlines lunar navigation requirements, the Orion program assumptions, and the impacts of these assumptions to the lunar navigation architecture design. The selection of potential sites was based upon geometric baselines, logistical feasibility, redundancy, and abort support capability. Simulated navigation covariances mapped to entry interface flightpath- angle uncertainties were used to evaluate knowledge errors. A minimum ground station architecture was identified consisting of Goldstone, Madrid, Canberra, Santiago, Hartebeeshoek, Dongora, Hawaii, Guam, and Ascension Island (or the geometric equivalent).

  15. YaQ: an architecture for real-time navigation and rendering of varied crowds.

    PubMed

    Maïm, Jonathan; Yersin, Barbara; Thalmann, Daniel

    2009-01-01

    The YaQ software platform is a complete system dedicated to real-time crowd simulation and rendering. Fitting multiple application domains, such as video games and VR, YaQ aims to provide efficient algorithms to generate crowds comprising up to thousands of varied virtual humans navigating in large-scale, global environments.

  16. Meta-image navigation augmenters for unmanned aircraft systems (MINA for UAS)

    NASA Astrophysics Data System (ADS)

    Òªelik, Koray; Somani, Arun K.; Schnaufer, Bernard; Hwang, Patrick Y.; McGraw, Gary A.; Nadke, Jeremy

    2013-05-01

    GPS is a critical sensor for Unmanned Aircraft Systems (UASs) due to its accuracy, global coverage and small hardware footprint, but is subject to denial due to signal blockage or RF interference. When GPS is unavailable, position, velocity and attitude (PVA) performance from other inertial and air data sensors is not sufficient, especially for small UASs. Recently, image-based navigation algorithms have been developed to address GPS outages for UASs, since most of these platforms already include a camera as standard equipage. Performing absolute navigation with real-time aerial images requires georeferenced data, either images or landmarks, as a reference. Georeferenced imagery is readily available today, but requires a large amount of storage, whereas collections of discrete landmarks are compact but must be generated by pre-processing. An alternative, compact source of georeferenced data having large coverage area is open source vector maps from which meta-objects can be extracted for matching against real-time acquired imagery. We have developed a novel, automated approach called MINA (Meta Image Navigation Augmenters), which is a synergy of machine-vision and machine-learning algorithms for map aided navigation. As opposed to existing image map matching algorithms, MINA utilizes publicly available open-source geo-referenced vector map data, such as OpenStreetMap, in conjunction with real-time optical imagery from an on-board, monocular camera to augment the UAS navigation computer when GPS is not available. The MINA approach has been experimentally validated with both actual flight data and flight simulation data and results are presented in the paper.

  17. Cultural Variations in Global versus Local Processing: A Developmental Perspective

    ERIC Educational Resources Information Center

    Oishi, Shigehiro; Jaswal, Vikram K.; Lillard, Angeline S.; Mizokawa, Ai; Hitokoto, Hidefumi; Tsutsui, Yoshiro

    2014-01-01

    We conducted 3 studies to explore cultural differences in global versus local processing and their developmental trajectories. In Study 1 ("N" = 363), we found that Japanese college students were less globally oriented in their processing than American or Argentine participants. We replicated this effect in Study 2 ("N" =…

  18. Acculturation of Personality: A Three-Culture Study of Japanese, Japanese Americans, and European Americans

    PubMed Central

    Güngör, Derya; Bornstein, Marc H.; De Leersnyder, Jozefien; Cote, Linda; Ceulemans, Eva; Mesquita, Batja

    2013-01-01

    The present study tests the hypothesis that involvement with a new culture instigates changes in personality of immigrants that result in (a) better fit with the norms of the culture of destination and (b) reduced fit with the norms of the culture of origin. Participants were 40 Japanese first-generation immigrants to the United States, 57 Japanese monoculturals, and 60 U.S. monoculturals. All participants completed the Jackson Personality Inventory (JPI) as a measure of the Big Five; immigrants completed the Japanese American Acculturation Scale. Immigrants’ fits with the cultures of destination and origin were calculated by correlating Japanese American mothers’ patterns of ratings on the Big Five with the average patterns of ratings of European Americans and Japanese on the same personality dimensions. Japanese Americans became more “American” and less “Japanese” in their personality as they reported higher participation in the U.S. culture. The results support the view that personality can be subject to cultural influence. PMID:23935211

  19. [Navigated retinal laser therapy].

    PubMed

    Kernt, M; Ulbig, M; Kampik, A; Neubauer, A S

    2013-08-01

    Navigated laser therapy introduces for the first time computerized assistance systems for retinal laser therapy. The Navilas system offers high precision and safety and provides additional benefits regarding standardization of planning, execution, documentation and quality assurance. The current focus of clinical application for navigated laser therapy besides laser treatment after retinal vein occlusion and panretinal laser photocoagulation in proliferative diabetic retinopathy (PDR) is diabetic macular edema. Recent data indicate that combined initial anti-vascular endothelial growth factor (anti-VEGF) and navigated macular laser therapy allows achievement and maintenance of treatment success with a minimum number of interventions. Despite very promising results the current assessment of navigated laser therapy is still limited by the evidence available worldwide.

  20. Firms navigating through innovation spaces: a conceptualization of how firms search and perceive technological, market and productive opportunities globally.

    PubMed

    McKelvey, Maureen

    2016-01-01

    The main contribution of this paper is a theory-based conceptual framework of innovation spaces, and how firms must navigate through them to innovate. The concept of innovation systems - at the regional, sectoral and national levels - have been highly influential. Previous literature developing the concept of innovation systems has stressed the importance of institutions, networks and knowledge bases at the regional, sectoral and national levels. This paper primarily draws upon an evolutionary and Schumpeterian economics perspective, in the following three senses. The conceptualization of 'innnovation spaces' focuses upon how and why firm search for innovations is influenced the opportunities within certain geographical contexts. This means that the firm create opportunities and can span different context, but they are influence by the context in term of the access, flow and co-evolution of ideas, resources, technology, people and knowledge, which help stimulate business innovation in terms of products, process and services. The paper concludes with an agenda for future research and especially the need to focus on globalization as a process of intensifying linkages across the globe.

  1. 33 CFR 66.10-35 - Navigation lights.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Navigation lights. 66.10-35... NAVIGATION PRIVATE AIDS TO NAVIGATION Uniform State Waterway Marking System § 66.10-35 Navigation lights. A red light shall only be used on a solid colored red buoy. A green light shall only be used on a solid...

  2. 33 CFR 66.10-35 - Navigation lights.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Navigation lights. 66.10-35... NAVIGATION PRIVATE AIDS TO NAVIGATION Uniform State Waterway Marking System § 66.10-35 Navigation lights. A red light shall only be used on a solid colored red buoy. A green light shall only be used on a solid...

  3. 33 CFR 66.10-35 - Navigation lights.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Navigation lights. 66.10-35... NAVIGATION PRIVATE AIDS TO NAVIGATION Uniform State Waterway Marking System § 66.10-35 Navigation lights. A red light shall only be used on a solid colored red buoy. A green light shall only be used on a solid...

  4. 33 CFR 66.10-35 - Navigation lights.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Navigation lights. 66.10-35... NAVIGATION PRIVATE AIDS TO NAVIGATION Uniform State Waterway Marking System § 66.10-35 Navigation lights. A red light shall only be used on a solid colored red buoy. A green light shall only be used on a solid...

  5. 33 CFR 66.10-35 - Navigation lights.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Navigation lights. 66.10-35... NAVIGATION PRIVATE AIDS TO NAVIGATION Uniform State Waterway Marking System § 66.10-35 Navigation lights. A red light shall only be used on a solid colored red buoy. A green light shall only be used on a solid...

  6. Indoor navigation by image recognition

    NASA Astrophysics Data System (ADS)

    Choi, Io Teng; Leong, Chi Chong; Hong, Ka Wo; Pun, Chi-Man

    2017-07-01

    With the progress of smartphones hardware, it is simple on smartphone using image recognition technique such as face detection. In addition, indoor navigation system development is much slower than outdoor navigation system. Hence, this research proves a usage of image recognition technique for navigation in indoor environment. In this paper, we introduced an indoor navigation application that uses the indoor environment features to locate user's location and a route calculating algorithm to generate an appropriate path for user. The application is implemented on Android smartphone rather than iPhone. Yet, the application design can also be applied on iOS because the design is implemented without using special features only for Android. We found that digital navigation system provides better and clearer location information than paper map. Also, the indoor environment is ideal for Image recognition processing. Hence, the results motivate us to design an indoor navigation system using image recognition.

  7. Disposal strategy for the geosynchronous orbits of the Beidou Navigation Satellite System

    NASA Astrophysics Data System (ADS)

    Tang, Jingshi; Liu, Lin

    Beidou Navigation Satellite System (BDS) is China's navigation satelite system. It is now operational for navigation service in China and Asia-Pacific region and is due to be fully operational as a global navigation system by 2020. Unlike other navigation satellite systems, BDS consists of both 12-hour medium Earth orbit and 24-hour geosynchronous orbit. To sustain a safe environment for the navigation satellites, the end-of-life satellites must be disposed appropriately so they do not pose potential dangers to the operational satellites. There are currently two strategies for the disposal orbit. One is to put the disposed satellite in a graveyard orbit that has a safe distance from the operational satellites. It is often applied in geosynchronous orbits and such graveyard orbit can always maintain a safe distance even for a few centuries. This strategy is also currently adopted by GPS, yet recent researches show a re-entry orbit can sometimes be a better alternative. The interaction of Earth oblateness and lunisolar gravitation can lead to a rapid increase in the orbit eccentricity such that by proper design the disposed GPS satellite can be cleared out by re-entry into the atmosphere. In this work we focus on the disposal strategy for BDS geosynchronous orbit, which consists of the equatorial stationary orbit (GEO) and the inclined orbit (IGSO). We show that these two orbits are essentially in two different dynamical environments and evolve quite distinctly over a long period of time. Taking advantage of the dynamic nature, we apply the graveyard orbit and the re-entry orbit to GEO and IGSO respectively and propose appropriate disposal strategies accordingly.

  8. Analysis of safety reports involving area navigation and required navigation performance procedures.

    DOT National Transportation Integrated Search

    2010-11-03

    In order to achieve potential operational and safety benefits enabled by Area Navigation (RNAV) and Required Navigation Performance (RNP) procedures it is important to monitor emerging issues in their initial implementation. Reports from the Aviation...

  9. Rivaroxaban vs. warfarin in Japanese patients with atrial fibrillation – the J-ROCKET AF study –.

    PubMed

    Hori, Masatsugu; Matsumoto, Masayasu; Tanahashi, Norio; Momomura, Shin-ichi; Uchiyama, Shinichiro; Goto, Shinya; Izumi, Tohru; Koretsune, Yukihiro; Kajikawa, Mariko; Kato, Masaharu; Ueda, Hitoshi; Iwamoto, Kazuya; Tajiri, Masahiro

    2012-01-01

    The global ROCKET AF study evaluated once-daily rivaroxaban vs. warfarin for stroke and systemic embolism prevention in patients with atrial fibrillation (AF). A separate trial, J-ROCKET AF, compared the safety of a Japan-specific rivaroxaban dose with warfarin administered according to Japanese guidelines in Japanese patients with AF. J-ROCKET AF was a prospective, randomized, double-blind, phase III trial. Patients (n=1,280) with non-valvular AF at increased risk for stroke were randomized to receive 15 mg once-daily rivaroxaban or warfarin dose-adjusted according to Japanese guidelines. The primary objective was to determine non-inferiority of rivaroxaban against warfarin for the principal safety outcome of major and non-major clinically relevant bleeding, in the on-treatment safety population. The primary efficacy endpoint was the composite of stroke and systemic embolism. Non-inferiority of rivaroxaban to warfarin was confirmed; the rate of the principal safety outcome was 18.04% per year in rivaroxaban-treated patients and 16.42% per year in warfarin-treated patients (hazard ratio [HR] 1.11; 95% confidence interval 0.87-1.42; P<0.001 [non-inferiority]). Intracranial hemorrhage rates were 0.8% with rivaroxaban and 1.6% with warfarin. There was a strong trend for a reduction in the rate of stroke/systemic embolism with rivaroxaban vs. warfarin (HR, 0.49; P=0.050). J-ROCKET AF demonstrated the safety of a Japan-specific rivaroxaban dose and supports bridging the global ROCKET AF results into Japanese clinical practice.

  10. Homogamy and Intermarriage of Japanese and Japanese Americans With Whites Surrounding World War II.

    PubMed

    Ono, Hiromi; Berg, Justin

    2010-10-01

    Although some sociologists have suggested that Japanese Americans quickly assimilated into mainstream America, scholars of Japanese America have highlighted the heightened exclusion that the group experienced. This study tracked historical shifts in the exclusion level of Japanese and Japanese Americans in the United States surrounding World War II with homogamy and intermarriage with Whites for the prewar (1930-1940) and resettlement (1946-1966) marriage cohorts. The authors applied log-linear models to census microsamples (N = 1,590,416) to estimate the odds ratios of homogamy versus intermarriage. The unadjusted odds ratios of Japanese Americans declined between cohorts and appeared to be consistent with the assimilation hypothesis. Once compositional influences and educational pairing patterns were adjusted, however, the odds ratios increased and supported the heightened exclusion hypothesis.

  11. Surface navigation on Mars with a Navigation Satellite

    NASA Technical Reports Server (NTRS)

    Vijayaraghavan, A.; Thurman, Sam W.; Kahn, Robert D.; Hastrup, Rolf C.

    1992-01-01

    Radiometric navigation data from the Deep Space Network (DSN) stations on the earth to transponders and other surface elements such as rovers and landers on Mars, can determine their positions to only within a kilometer in inertial space. The positional error is mostly in the z-component of the surface element parallel to the Martian spin-axis. However, with Doppler and differenced-Doppler data from a Navigation Satellite in orbit around Mars to two or more of such transponders on the planetary surface, their positions can be determined to within 15 meters (or 20 meters for one-way Doppler beacons on Mars) in inertial space. In this case, the transponders (or other vehicles) on Mars need not even be capable of directly communicating to the earth. When the Navigation Satellite data is complemented by radiometric observations from the DSN stations also, directly to the surface elements on Mars, their positions can be determined to within 3 meters in inertial space. The relative positions of such surface elements on Mars (relative to one another) in Mars-fixed coordinates, however, can be determined to within 5 meters from simply range and Doppler data from the DSN stations to the surface elements. These results are obtained from covariance studies assuming X-band data noise levels and data-arcs not exceeding 10 days. They are significant in the planning and deployment of a Mars-based navigation network necessary to support real-time operations during critical phases of manned exploration of Mars.

  12. Surface navigation on Mars with a Navigation Satellite

    NASA Astrophysics Data System (ADS)

    Vijayaraghavan, A.; Thurman, Sam W.; Kahn, Robert D.; Hastrup, Rolf C.

    Radiometric navigation data from the Deep Space Network (DSN) stations on the earth to transponders and other surface elements such as rovers and landers on Mars, can determine their positions to only within a kilometer in inertial space. The positional error is mostly in the z-component of the surface element parallel to the Martian spin-axis. However, with Doppler and differenced-Doppler data from a Navigation Satellite in orbit around Mars to two or more of such transponders on the planetary surface, their positions can be determined to within 15 meters (or 20 meters for one-way Doppler beacons on Mars) in inertial space. In this case, the transponders (or other vehicles) on Mars need not even be capable of directly communicating to the earth. When the Navigation Satellite data is complemented by radiometric observations from the DSN stations also, directly to the surface elements on Mars, their positions can be determined to within 3 meters in inertial space. The relative positions of such surface elements on Mars (relative to one another) in Mars-fixed coordinates, however, can be determined to within 5 meters from simply range and Doppler data from the DSN stations to the surface elements. These results are obtained from covariance studies assuming X-band data noise levels and data-arcs not exceeding 10 days. They are significant in the planning and deployment of a Mars-based navigation network necessary to support real-time operations during critical phases of manned exploration of Mars.

  13. Computer-assisted navigation in orthopedic surgery.

    PubMed

    Mavrogenis, Andreas F; Savvidou, Olga D; Mimidis, George; Papanastasiou, John; Koulalis, Dimitrios; Demertzis, Nikolaos; Papagelopoulos, Panayiotis J

    2013-08-01

    Computer-assisted navigation has a role in some orthopedic procedures. It allows the surgeons to obtain real-time feedback and offers the potential to decrease intra-operative errors and optimize the surgical result. Computer-assisted navigation systems can be active or passive. Active navigation systems can either perform surgical tasks or prohibit the surgeon from moving past a predefined zone. Passive navigation systems provide intraoperative information, which is displayed on a monitor, but the surgeon is free to make any decisions he or she deems necessary. This article reviews the available types of computer-assisted navigation, summarizes the clinical applications and reviews the results of related series using navigation, and informs surgeons of the disadvantages and pitfalls of computer-assisted navigation in orthopedic surgery. Copyright 2013, SLACK Incorporated.

  14. Bio-inspired polarized skylight navigation: a review

    NASA Astrophysics Data System (ADS)

    Zhang, Xi; Wan, Yongqin; Li, Lijing

    2015-12-01

    The idea of using skylight polarization in navigation is learned from animals such as desert ants and honeybees. Various research groups have been working on the development of novel navigation systems inspired by polarized skylight. The research of background in polarized skylight navigation is introduced, and basic principle of the insects navigation is expatiated. Then, the research progress status at home and abroad in skylight polarization pattern, three bio-inspired polarized skylight navigation sensors and polarized skylight navigation are reviewed. Finally, the research focuses in the field of polarized skylight navigation are analyzed. At the same time, the trend of development and prospect in the future are predicted. It is believed that the review is helpful to people understand polarized skylight navigation and polarized skylight navigation sensors.

  15. Drift-Free Indoor Navigation Using Simultaneous Localization and Mapping of the Ambient Heterogeneous Magnetic Field

    NASA Astrophysics Data System (ADS)

    Chow, J. C. K.

    2017-09-01

    In the absence of external reference position information (e.g. surveyed targets or Global Navigation Satellite Systems) Simultaneous Localization and Mapping (SLAM) has proven to be an effective method for indoor navigation. The positioning drift can be reduced with regular loop-closures and global relaxation as the backend, thus achieving a good balance between exploration and exploitation. Although vision-based systems like laser scanners are typically deployed for SLAM, these sensors are heavy, energy inefficient, and expensive, making them unattractive for wearables or smartphone applications. However, the concept of SLAM can be extended to non-optical systems such as magnetometers. Instead of matching features such as walls and furniture using some variation of the Iterative Closest Point algorithm, the local magnetic field can be matched to provide loop-closure and global trajectory updates in a Gaussian Process (GP) SLAM framework. With a MEMS-based inertial measurement unit providing a continuous trajectory, and the matching of locally distinct magnetic field maps, experimental results in this paper show that a drift-free navigation solution in an indoor environment with millimetre-level accuracy can be achieved. The GP-SLAM approach presented can be formulated as a maximum a posteriori estimation problem and it can naturally perform loop-detection, feature-to-feature distance minimization, global trajectory optimization, and magnetic field map estimation simultaneously. Spatially continuous features (i.e. smooth magnetic field signatures) are used instead of discrete feature correspondences (e.g. point-to-point) as in conventional vision-based SLAM. These position updates from the ambient magnetic field also provide enough information for calibrating the accelerometer bias and gyroscope bias in-use. The only restriction for this method is the need for magnetic disturbances (which is typically not an issue for indoor environments); however, no assumptions

  16. Determination of the centre of mass kinematics in alpine skiing using differential global navigation satellite systems.

    PubMed

    Gilgien, Matthias; Spörri, Jörg; Chardonnens, Julien; Kröll, Josef; Limpach, Philippe; Müller, Erich

    2015-01-01

    In the sport of alpine skiing, knowledge about the centre of mass (CoM) kinematics (i.e. position, velocity and acceleration) is essential to better understand both performance and injury. This study proposes a global navigation satellite system (GNSS)-based method to measure CoM kinematics without restriction of capture volume and with reasonable set-up and processing requirements. It combines the GNSS antenna position, terrain data and the accelerations acting on the skier in order to approximate the CoM location, velocity and acceleration. The validity of the method was assessed against a reference system (video-based 3D kinematics) over 12 turn cycles on a giant slalom skiing course. The mean (± s) position, velocity and acceleration differences between the CoM obtained from the GNSS and the reference system were 9 ± 12 cm, 0.08 ± 0.19 m · s(-1) and 0.22 ± 1.28 m · s(-2), respectively. The velocity and acceleration differences obtained were smaller than typical differences between the measures of several skiers on the same course observed in the literature, while the position differences were slightly larger than its discriminative meaningful change. The proposed method can therefore be interpreted to be technically valid and adequate for a variety of biomechanical research questions in the field of alpine skiing with certain limitations regarding position.

  17. Trust in One’s Physician: The Role of Ethnic Match, Autonomy, Acculturation, and Religiosity Among Japanese and Japanese Americans

    PubMed Central

    Tarn, Derjung M.; Meredith, Lisa S.; Kagawa-Singer, Marjorie; Matsumura, Shinji; Bito, Seiji; Oye, Robert K.; Liu, Honghu; Kahn, Katherine L.; Fukuhara, Shunichi; Wenger, Neil S.

    2005-01-01

    PURPOSE Trust is a cornerstone of the physician-patient relationship. We investigated the relation of patient characteristics, religiosity, acculturation, physician ethnicity, and insurance-mandated physician change to levels of trust in Japanese American and Japanese patients. METHODS A self-administered, cross-sectional questionnaire in English and Japanese (completed in the language of their choice) was given to community-based samples of 539 English-speaking Japanese Americans, 340 Japanese-speaking Japanese Americans, and 304 Japanese living in Japan. RESULTS Eighty-seven percent of English-speaking Japanese Americans, 93% of Japanese-speaking Japanese Americans, and 58% of Japanese living in Japan responded to trust items and reported mean trust scores of 83, 80, and 68, respectively, on a scale ranging from 0 to 100. In multivariate analyses, English-speaking and Japanese-speaking Japanese American respondents reported more trust than Japanese respondents living in Japan (P values <.001). Greater religiosity (P <.001), less desire for autonomy (P <.001), and physician-patient relationships of longer duration (P <.001) were related to increased trust. Among Japanese Americans, more acculturated respondents reported more trust (P <.001), and Japanese physicians were trusted more than physicians of another ethnicity. Among respondents prompted to change physicians because of insurance coverage, the 48% who did not want to switch reported less trust in their current physician than in their former physician (mean score of 82 vs 89, P <.001). CONCLUSIONS Religiosity, autonomy preference, and acculturation were strongly related to trust in one’s physician among the Japanese American and Japanese samples studied and may provide avenues to enhance the physician-patient relationship. The strong relationship of trust with patient-physician ethnic match and the loss of trust when patients, in retrospect, report leaving a preferred physician suggest unintended

  18. The Global Positioning System

    USGS Publications Warehouse

    ,

    1999-01-01

    The Global Positioning System (GPS) is a constellation of navigation satellites called Navigation Satellite Timing And Ranging (NAVSTAR), maintained by the U.S. Department of Defense. Many outdoor enthusiasts recognize that a handheld GPS receiver can be an accurate tool for determining their location on the terrain. The GPS receiver helps determine locations on the Earth's surface by collecting signals from three or more satellites through a process called triangulation. Identifying a location on the Earth is more useful if you also know about the surrounding topographic conditions. Using a topographic map with the GPS receiver provides important information about features of the surrounding terrain and can help you plot an effective route from one location to another.

  19. Autonomous navigation system. [gyroscopic pendulum for air navigation

    NASA Technical Reports Server (NTRS)

    Merhav, S. J. (Inventor)

    1981-01-01

    An inertial navigation system utilizing a servo-controlled two degree of freedom pendulum to obtain specific force components in the locally level coordinate system is described. The pendulum includes a leveling gyroscope and an azimuth gyroscope supported on a two gimbal system. The specific force components in the locally level coordinate system are converted to components in the geographical coordinate system by means of a single Euler transformation. The standard navigation equations are solved to determine longitudinal and lateral velocities. Finally, vehicle position is determined by a further integration.

  20. Navigating Space by the Stars

    NASA Image and Video Library

    2018-06-19

    A tool that has helped guide sailors across oceans for centuries is now being tested aboard the International Space Station as a potential emergency navigation tool for guiding future spacecraft across the cosmos. The Sextant Navigation investigation tests use of a hand-held sextant aboard the space station. Sextants have a telescope-like optical sight to take precise angle measurements between pairs of stars from land or sea, enabling navigation without computer assistance. NASA’s Gemini missions conducted the first sextant sightings from a spacecraft, and designers built a sextant into Apollo vehicles as a navigation backup in the event the crew lost communications from their spacecraft. Jim Lovell demonstrated on Apollo 8 that sextant navigation could return a space vehicle home. Astronauts conducted additional sextant experiments on Skylab. Read more about the Sextant experiment happening aboard the space station: https://www.nasa.gov/mission_pages/station/research/news/Sextant_ISS HD Download: https://archive.org/details/jsc2018m000418_Navigating_Space_by_the_Stars

  1. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-23

    A jogger runs past a sign welcoming NASA and other visitors to Minamitane Town on Sunday, Feb. 23, 2014, Tanegashima Island, Japan. A Japanese H-IIA rocket carrying the NASA-Japan Aerospace Exploration Agency (JAXA), Global Precipitation Measurement (GPM) Core Observatory is planned for launch from the space center on Feb. 28, 2014. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  2. Spatial cognition and navigation

    NASA Technical Reports Server (NTRS)

    Aretz, Anthony J.

    1989-01-01

    An experiment that provides data for the development of a cognitive model of pilot flight navigation is described. The experiment characterizes navigational awareness as the mental alignment of two frames of reference: (1) the ego centered reference frame that is established by the forward view out of the cockpit and (2) the world centered reference frame that is established by the aircraft's location on a map. The data support a model involving at least two components: (1) the perceptual encoding of the navigational landmarks and (2) the mental rotation of the map's world reference frame into alignment with the ego centered reference frame. The quantitative relationships of these two factors are provided as possible inputs for a computational model of spatial cognition during flight navigation.

  3. Tracking the global spread of vaccine sentiments: the global response to Japan's suspension of its HPV vaccine recommendation.

    PubMed

    Larson, Heidi J; Wilson, Rose; Hanley, Sharon; Parys, Astrid; Paterson, Pauline

    2014-01-01

    In June 2013 the Japanese Ministry of Health, Labor, and Welfare (MHLW) suspended its HPV vaccination recommendation after a series of highly publicized alleged adverse events following immunization stoked public doubts about the vaccine's safety. This paper examines the global spread of the news of Japan's HPV vaccine suspension through online media, and takes a retrospective look at non-Japanese media sources that were used to support those claiming HPV vaccine injury in Japan. Two searches were conducted. One searched relevant content in an archive of Google Alerts on vaccines and vaccine preventable diseases. The second search was conducted using Google Search on January 6th 2014 and on July 18th 2014, using the keywords, "HPV vaccine Japan" and "cervical cancer vaccine Japan." Both searches were used as Google Searches render more (and some different) results than Google Alerts. Online media collected and analyzed totalled 57. Sixty 3 percent were published in the USA, 23% in Japan, 5% in the UK, 2% in France, 2% in Switzerland, 2% in the Philippines, 2% in Kenya and 2% in Denmark. The majority took a negative view of the HPV vaccine, the primary concern being vaccine safety. The news of Japan's suspension of the HPV vaccine recommendation has traveled globally through online media and social media networks, being applauded by anti-vaccination groups but not by the global scientific community. The longer the uncertainty around the Japanese HPV vaccine recommendation persists, the further the public concerns are likely to travel.

  4. Tracking the global spread of vaccine sentiments: The global response to Japan's suspension of its HPV vaccine recommendation

    PubMed Central

    Larson, Heidi J; Wilson, Rose; Hanley, Sharon; Parys, Astrid; Paterson, Pauline

    2014-01-01

    In June 2013 the Japanese Ministry of Health, Labor, and Welfare (MHLW) suspended its HPV vaccination recommendation after a series of highly publicized alleged adverse events following immunization stoked public doubts about the vaccine's safety. This paper examines the global spread of the news of Japan's HPV vaccine suspension through online media, and takes a retrospective look at non-Japanese media sources that were used to support those claiming HPV vaccine injury in Japan. Methods: Two searches were conducted. One searched relevant content in an archive of Google Alerts on vaccines and vaccine preventable diseases. The second search was conducted using Google Search on January 6th 2014 and on July 18th 2014, using the keywords, “HPV vaccine Japan” and “cervical cancer vaccine Japan.” Both searches were used as Google Searches render more (and some different) results than Google Alerts. Results: Online media collected and analyzed totalled 57. Sixty 3 percent were published in the USA, 23% in Japan, 5% in the UK, 2% in France, 2% in Switzerland, 2% in the Philippines, 2% in Kenya and 2% in Denmark. The majority took a negative view of the HPV vaccine, the primary concern being vaccine safety. Discussion: The news of Japan's suspension of the HPV vaccine recommendation has traveled globally through online media and social media networks, being applauded by anti-vaccination groups but not by the global scientific community. The longer the uncertainty around the Japanese HPV vaccine recommendation persists, the further the public concerns are likely to travel. PMID:25483472

  5. 46 CFR 183.420 - Navigation lights.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Navigation lights. 183.420 Section 183.420 Shipping...) ELECTRICAL INSTALLATION Lighting Systems § 183.420 Navigation lights. All vessels must have navigation lights..., except that a vessel of more than 19.8 meters (65 feet) in length must also have navigation lights that...

  6. 46 CFR 183.420 - Navigation lights.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Navigation lights. 183.420 Section 183.420 Shipping...) ELECTRICAL INSTALLATION Lighting Systems § 183.420 Navigation lights. All vessels must have navigation lights..., except that a vessel of more than 19.8 meters (65 feet) in length must also have navigation lights that...

  7. 46 CFR 183.420 - Navigation lights.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Navigation lights. 183.420 Section 183.420 Shipping...) ELECTRICAL INSTALLATION Lighting Systems § 183.420 Navigation lights. All vessels must have navigation lights..., except that a vessel of more than 19.8 meters (65 feet) in length must also have navigation lights that...

  8. 46 CFR 183.420 - Navigation lights.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Navigation lights. 183.420 Section 183.420 Shipping...) ELECTRICAL INSTALLATION Lighting Systems § 183.420 Navigation lights. All vessels must have navigation lights..., except that a vessel of more than 19.8 meters (65 feet) in length must also have navigation lights that...

  9. 46 CFR 183.420 - Navigation lights.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Navigation lights. 183.420 Section 183.420 Shipping...) ELECTRICAL INSTALLATION Lighting Systems § 183.420 Navigation lights. All vessels must have navigation lights..., except that a vessel of more than 19.8 meters (65 feet) in length must also have navigation lights that...

  10. Mission Operations and Navigation Toolkit Environment

    NASA Technical Reports Server (NTRS)

    Sunseri, Richard F.; Wu, Hsi-Cheng; Hanna, Robert A.; Mossey, Michael P.; Duncan, Courtney B.; Evans, Scott E.; Evans, James R.; Drain, Theodore R.; Guevara, Michelle M.; Martin Mur, Tomas J.; hide

    2009-01-01

    MONTE (Mission Operations and Navigation Toolkit Environment) Release 7.3 is an extensible software system designed to support trajectory and navigation analysis/design for space missions. MONTE is intended to replace the current navigation and trajectory analysis software systems, which, at the time of this reporting, are used by JPL's Navigation and Mission Design section. The software provides an integrated, simplified, and flexible system that can be easily maintained to serve the needs of future missions in need of navigation services.

  11. Operational Use of GPS Navigation for Space Shuttle Entry

    NASA Technical Reports Server (NTRS)

    Goodman, John L.; Propst, Carolyn A.

    2008-01-01

    The STS-118 flight of the Space Shuttle Endeavour was the first shuttle mission flown with three Global Positioning System (GPS) receivers in place of the three legacy Tactical Air Navigation (TACAN) units. This marked the conclusion of a 15 year effort involving procurement, missionization, integration, and flight testing of a GPS receiver and a parallel effort to formulate and implement shuttle computer software changes to support GPS. The use of GPS data from a single receiver in parallel with TACAN during entry was successfully demonstrated by the orbiters Discovery and Atlantis during four shuttle missions in 2006 and 2007. This provided the confidence needed before flying the first all GPS, no TACAN flight with Endeavour. A significant number of lessons were learned concerning the integration of a software intensive navigation unit into a legacy avionics system. These lessons have been taken into consideration during vehicle design by other flight programs, including the vehicle that will replace the Space Shuttle, Orion.

  12. The modern Japanese color lexicon.

    PubMed

    Kuriki, Ichiro; Lange, Ryan; Muto, Yumiko; Brown, Angela M; Fukuda, Kazuho; Tokunaga, Rumi; Lindsey, Delwin T; Uchikawa, Keiji; Shioiri, Satoshi

    2017-03-01

    Despite numerous prior studies, important questions about the Japanese color lexicon persist, particularly about the number of Japanese basic color terms and their deployment across color space. Here, 57 native Japanese speakers provided monolexemic terms for 320 chromatic and 10 achromatic Munsell color samples. Through k-means cluster analysis we revealed 16 statistically distinct Japanese chromatic categories. These included eight chromatic basic color terms (aka/red, ki/yellow, midori/green, ao/blue, pink, orange, cha/brown, and murasaki/purple) plus eight additional terms: mizu ("water")/light blue, hada ("skin tone")/peach, kon ("indigo")/dark blue, matcha ("green tea")/yellow-green, enji/maroon, oudo ("sand or mud")/mustard, yamabuki ("globeflower")/gold, and cream. Of these additional terms, mizu was used by 98% of informants, and emerged as a strong candidate for a 12th Japanese basic color term. Japanese and American English color-naming systems were broadly similar, except for color categories in one language (mizu, kon, teal, lavender, magenta, lime) that had no equivalent in the other. Our analysis revealed two statistically distinct Japanese motifs (or color-naming systems), which differed mainly in the extension of mizu across our color palette. Comparison of the present data with an earlier study by Uchikawa & Boynton (1987) suggests that some changes in the Japanese color lexicon have occurred over the last 30 years.

  13. Homogamy and Intermarriage of Japanese and Japanese Americans With Whites Surrounding World War II

    PubMed Central

    Ono, Hiromi; Berg, Justin

    2010-01-01

    Although some sociologists have suggested that Japanese Americans quickly assimilated into mainstream America, scholars of Japanese America have highlighted the heightened exclusion that the group experienced. This study tracked historical shifts in the exclusion level of Japanese and Japanese Americans in the United States surrounding World War II with homogamy and intermarriage with Whites for the prewar (1930–1940) and resettlement (1946–1966) marriage cohorts. The authors applied log-linear models to census microsamples (N = 1,590,416) to estimate the odds ratios of homogamy versus intermarriage. The unadjusted odds ratios of Japanese Americans declined between cohorts and appeared to be consistent with the assimilation hypothesis. Once compositional influences and educational pairing patterns were adjusted, however, the odds ratios increased and supported the heightened exclusion hypothesis. PMID:21116449

  14. 33 CFR 164.11 - Navigation under way: General.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Navigation under way: General. 164.11 Section 164.11 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY NAVIGATION SAFETY REGULATIONS § 164.11 Navigation under way: General...

  15. 33 CFR 164.11 - Navigation under way: General.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Navigation under way: General. 164.11 Section 164.11 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY NAVIGATION SAFETY REGULATIONS § 164.11 Navigation under way: General...

  16. 33 CFR 164.11 - Navigation under way: General.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Navigation under way: General. 164.11 Section 164.11 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY NAVIGATION SAFETY REGULATIONS § 164.11 Navigation under way: General...

  17. An excellent navigation system and experience in craniomaxillofacial navigation surgery: a double-center study

    PubMed Central

    Dai, Jiewen; Wu, Jinyang; Wang, Xudong; Yang, Xudong; Wu, Yunong; Xu, Bing; Shi, Jun; Yu, Hongbo; Cai, Min; Zhang, Wenbin; Zhang, Lei; Sun, Hao; Shen, Guofang; Zhang, Shilei

    2016-01-01

    Numerous problems regarding craniomaxillofacial navigation surgery are not well understood. In this study, we performed a double-center clinical study to quantitatively evaluate the characteristics of our navigation system and experience in craniomaxillofacial navigation surgery. Fifty-six patients with craniomaxillofacial disease were included and randomly divided into experimental (using our AccuNavi-A system) and control (using Strker system) groups to compare the surgical effects. The results revealed that the average pre-operative planning time was 32.32 mins vs 29.74 mins between the experimental and control group, respectively (p > 0.05). The average operative time was 295.61 mins vs 233.56 mins (p > 0.05). The point registration orientation accuracy was 0.83 mm vs 0.92 mm. The maximal average preoperative navigation orientation accuracy was 1.03 mm vs 1.17 mm. The maximal average persistent navigation orientation accuracy was 1.15 mm vs 0.09 mm. The maximal average navigation orientation accuracy after registration recovery was 1.15 mm vs 1.39 mm between the experimental and control group. All patients healed, and their function and profile improved. These findings demonstrate that although surgeons should consider the patients’ time and monetary costs, our qualified navigation surgery system and experience could offer an accurate guide during a variety of craniomaxillofacial surgeries. PMID:27305855

  18. 46 CFR 120.420 - Navigation lights.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Navigation lights. 120.420 Section 120.420 Shipping... Systems § 120.420 Navigation lights. All vessels must have navigation lights that are in compliance with... than 19.8 meters (65 feet) in length must also have navigation lights that meet UL 1104, “Marine...

  19. 46 CFR 120.420 - Navigation lights.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Navigation lights. 120.420 Section 120.420 Shipping... Systems § 120.420 Navigation lights. All vessels must have navigation lights that are in compliance with... than 19.8 meters (65 feet) in length must also have navigation lights that meet UL 1104, “Marine...

  20. 46 CFR 120.420 - Navigation lights.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Navigation lights. 120.420 Section 120.420 Shipping... Systems § 120.420 Navigation lights. All vessels must have navigation lights that are in compliance with... than 19.8 meters (65 feet) in length must also have navigation lights that meet UL 1104, “Marine...

  1. 46 CFR 120.420 - Navigation lights.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Navigation lights. 120.420 Section 120.420 Shipping... Systems § 120.420 Navigation lights. All vessels must have navigation lights that are in compliance with... than 19.8 meters (65 feet) in length must also have navigation lights that meet UL 1104, “Marine...

  2. 46 CFR 120.420 - Navigation lights.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Navigation lights. 120.420 Section 120.420 Shipping... Systems § 120.420 Navigation lights. All vessels must have navigation lights that are in compliance with... than 19.8 meters (65 feet) in length must also have navigation lights that meet UL 1104, “Marine...

  3. 33 CFR 401.54 - Interference with navigation aids.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Interference with navigation aids. 401.54 Section 401.54 Navigation and Navigable Waters SAINT LAWRENCE SEAWAY DEVELOPMENT CORPORATION... with navigation aids. (a) Aids to navigation shall not be interfered with or used as moorings. (b) No...

  4. 33 CFR 401.54 - Interference with navigation aids.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Interference with navigation aids. 401.54 Section 401.54 Navigation and Navigable Waters SAINT LAWRENCE SEAWAY DEVELOPMENT CORPORATION... with navigation aids. (a) Aids to navigation shall not be interfered with or used as moorings. (b) No...

  5. 33 CFR 401.54 - Interference with navigation aids.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Interference with navigation aids. 401.54 Section 401.54 Navigation and Navigable Waters SAINT LAWRENCE SEAWAY DEVELOPMENT CORPORATION... with navigation aids. (a) Aids to navigation shall not be interfered with or used as moorings. (b) No...

  6. 33 CFR 401.54 - Interference with navigation aids.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Interference with navigation aids. 401.54 Section 401.54 Navigation and Navigable Waters SAINT LAWRENCE SEAWAY DEVELOPMENT CORPORATION... with navigation aids. (a) Aids to navigation shall not be interfered with or used as moorings. (b) No...

  7. 33 CFR 401.54 - Interference with navigation aids.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Interference with navigation aids. 401.54 Section 401.54 Navigation and Navigable Waters SAINT LAWRENCE SEAWAY DEVELOPMENT CORPORATION... with navigation aids. (a) Aids to navigation shall not be interfered with or used as moorings. (b) No...

  8. The effects of age, spatial ability, and navigational information on navigational performance

    DOT National Transportation Integrated Search

    1995-12-01

    The purpose of the study reported here was to examine whether age and spatial ability are factors that influence a driver?s ability to navigate and to use navigational displays. These factors were examined because previous research suggests that spat...

  9. Basic Navigator Battery: An Experimental Selection Composite for Undergraduate Navigator Training.

    ERIC Educational Resources Information Center

    Shanahan, Frank M.; Kantor, Jeffrey E.

    High rates of attrition among students in Undergraduate Navigator Training (UNT) is a major concern for Air Training Command. The main objective of this research was to evaluate the Basic Navigator Battery (BNB), a multi-test experimental selection instrument, for its potential to increase the validity of the Air Force Officer Qualifying Test…

  10. Geometrical-Based Navigation System Performance Assessment in the Space Service Volume Using a Multiglobal Navigation Satellite System Methodology

    NASA Technical Reports Server (NTRS)

    Welch, Bryan W.

    2016-01-01

    NASA is participating in the International Committee on Global Navigation Satellite Systems (GNSS) (ICG)'s efforts towards demonstrating the benefits to the space user in the Space Service Volume (SSV) when a multi-GNSS solution space approach is utilized. The ICG Working Group: Enhancement of GNSS Performance, New Services and Capabilities has started a three phase analysis initiative as an outcome of recommendations at the ICG-10 meeting, in preparation for the ICG-11 meeting. The first phase of that increasing complexity and fidelity analysis initiative is based on a pure geometrically-derived access technique. The first phase of analysis has been completed, and the results are documented in this paper.

  11. Memristive device based learning for navigation in robots.

    PubMed

    Sarim, Mohammad; Kumar, Manish; Jha, Rashmi; Minai, Ali A

    2017-11-08

    Biomimetic robots have gained attention recently for various applications ranging from resource hunting to search and rescue operations during disasters. Biological species are known to intuitively learn from the environment, gather and process data, and make appropriate decisions. Such sophisticated computing capabilities in robots are difficult to achieve, especially if done in real-time with ultra-low energy consumption. Here, we present a novel memristive device based learning architecture for robots. Two terminal memristive devices with resistive switching of oxide layer are modeled in a crossbar array to develop a neuromorphic platform that can impart active real-time learning capabilities in a robot. This approach is validated by navigating a robot vehicle in an unknown environment with randomly placed obstacles. Further, the proposed scheme is compared with reinforcement learning based algorithms using local and global knowledge of the environment. The simulation as well as experimental results corroborate the validity and potential of the proposed learning scheme for robots. The results also show that our learning scheme approaches an optimal solution for some environment layouts in robot navigation.

  12. Ship navigation using Navstar GPS - An application study

    NASA Technical Reports Server (NTRS)

    Mohan, S. N.

    1982-01-01

    Ocean current measurement applications in physical oceanography require knowledge of inertial ship velocity to a precision of 1-2 cm/sec over a typical five minute averaging interval. The navigation accuracy must be commensurate with data precision obtainable from ship borne acoustic profilers used in sensing ocean currents. The Navstar Global Positioning System is viewed as a step in user technological simplification, extension in coverage availability, and enhancement in performance accuracy as well as reliability over the existing systems, namely, Loran-C, Transit, and Omega. Error analyses have shown the possibility of attaining the 1-2 cm/sec accuracy during active GPS coverage at a data rate of four position fixes per minute under varying sea-states. This paper is intended to present results of data validation exercises leading to design of an experiment at sea for deployment of both a GPS y-set and a direct Doppler measurement system as the autonomous navigation system used in conjunction with an acoustic Doppler as the sensor for ocean current measurement.

  13. Navigation/Prop Software Suite

    NASA Technical Reports Server (NTRS)

    Bruchmiller, Tomas; Tran, Sanh; Lee, Mathew; Bucker, Scott; Bupane, Catherine; Bennett, Charles; Cantu, Sergio; Kwong, Ping; Propst, Carolyn

    2012-01-01

    Navigation (Nav)/Prop software is used to support shuttle mission analysis, production, and some operations tasks. The Nav/Prop suite containing configuration items (CIs) resides on IPS/Linux workstations. It features lifecycle documents, and data files used for shuttle navigation and propellant analysis for all flight segments. This suite also includes trajectory server, archive server, and RAT software residing on MCC/Linux workstations. Navigation/Prop represents tool versions established during or after IPS Equipment Rehost-3 or after the MCC Rehost.

  14. Racial and ethnic differences in patient navigation: Results from the Patient Navigation Research Program.

    PubMed

    Ko, Naomi Y; Snyder, Frederick R; Raich, Peter C; Paskett, Electra D; Dudley, Donald J; Lee, Ji-Hyun; Levine, Paul H; Freund, Karen M

    2016-09-01

    Patient navigation was developed to address barriers to timely care and reduce cancer disparities. The current study explored navigation and racial and ethnic differences in time to the diagnostic resolution of a cancer screening abnormality. The authors conducted an analysis of the multisite Patient Navigation Research Program. Participants with an abnormal cancer screening test were allocated to either navigation or control. The unadjusted median time to resolution was calculated for each racial and ethnic group by navigation and control. Multivariable Cox proportional hazards models were fit, adjusting for sex, age, cancer abnormality type, and health insurance and stratifying by center of care. Among a sample of 7514 participants, 29% were non-Hispanic white, 43% were Hispanic, and 28% were black. In the control group, black individuals were found to have a longer median time to diagnostic resolution (108 days) compared with non-Hispanic white individuals (65 days) or Hispanic individuals (68 days) (P<.0001). In the navigated groups, black individuals had a reduction in the median time to diagnostic resolution (97 days) (P<.0001). In the multivariable models, among controls, black race was found to be associated with an increased delay to diagnostic resolution (hazard ratio, 0.77; 95% confidence interval, 0.69-0.84) compared with non-Hispanic white individuals, which was reduced in the navigated arm (hazard ratio, 0.85; 95% confidence interval, 0.77-0.94). Patient navigation appears to have the greatest impact among black patients, who had the greatest delays in care. Cancer 2016. © 2016 American Cancer Society. Cancer 2016;122:2715-2722. © 2016 American Cancer Society. © 2016 American Cancer Society.

  15. Navigational Challenges for a Europa Flyby Mission

    NASA Technical Reports Server (NTRS)

    Martin-Mur, Tomas J.; Ionasescu, Rodica; Valerino, Powtawche; Criddle, Kevin; Roncoli, Ralph

    2014-01-01

    Jupiter's moon Europa is a prime candidate in the search for present-day habitable environments outside of the Earth. A number of missions have provided increasingly detailed images of the complex surface of Europa, including the Galileo mission, which also carried instruments that allowed for a limited investigation of the environment of Europa. A new mission to Europa is needed to pursue these exciting discoveries using close-up observations with modern instrumentation designed to address the habitability of Europa. In all likelihood the most cost effective way of doing this would be with a spacecraft carrying a comprehensive suite of instruments and performing multiple flybys of Europa. A number of notional trajectory designs have been investigated, utilizing gravity assists from other Galilean moons to decrease the period of the orbit and shape it in order to provide a globally distributed coverage of different regions of Europa. Navigation analyses are being performed on these candidate trajectories to assess the total Delta V that would be needed to complete the mission, to study how accurately the flybys could be executed, and to determine which assumptions most significantly affect the performance of the navigation system.

  16. Design studies for a technology assessment receiver for global positioning system

    NASA Technical Reports Server (NTRS)

    Painter, J. H.

    1981-01-01

    The operational conditions of a radio receiver - microprocessor for the global positioning system are studied. Navigation fundamentals and orbit characterization are reviewed. The global positioning system is described with emphasis upon signal structure and satellite positioning. Ranging and receiver processing techniques are discussed.

  17. Can patient navigation improve receipt of recommended breast cancer care? Evidence from the National Patient Navigation Research Program.

    PubMed

    Ko, Naomi Y; Darnell, Julie S; Calhoun, Elizabeth; Freund, Karen M; Wells, Kristin J; Shapiro, Charles L; Dudley, Donald J; Patierno, Steven R; Fiscella, Kevin; Raich, Peter; Battaglia, Tracy A

    2014-09-01

    Poor and underserved women face barriers in receiving timely and appropriate breast cancer care. Patient navigators help individuals overcome these barriers, but little is known about whether patient navigation improves quality of care. The purpose of this study is to examine whether navigated women with breast cancer are more likely to receive recommended standard breast cancer care. Women with breast cancer who participated in the national Patient Navigation Research Program were examined to determine whether the care they received included the following: initiation of antiestrogen therapy in patients with hormone receptor-positive breast cancer; initiation of postlumpectomy radiation therapy; and initiation of chemotherapy in women younger than age 70 years with triple-negative tumors more than 1 cm. This is a secondary analysis of a multicenter quasi-experimental study funded by the National Cancer Institute to evaluate patient navigation. Multiple logistic regression was performed to compare differences in receipt of care between navigated and non-navigated participants. Among participants eligible for antiestrogen therapy, navigated participants (n = 380) had a statistically significant higher likelihood of receiving antiestrogen therapy compared with non-navigated controls (n = 381; odds ratio [OR], 1.73; P = .004) in a multivariable analysis. Among the participants eligible for radiation therapy after lumpectomy, navigated participants (n = 255) were no more likely to receive radiation (OR, 1.42; P = .22) than control participants (n = 297). We demonstrate that navigated participants were more likely than non-navigated participants to receive antiestrogen therapy. Future studies are required to determine the full impact patient navigation may have on ensuring that vulnerable populations receive quality care. © 2014 by American Society of Clinical Oncology.

  18. Can Patient Navigation Improve Receipt of Recommended Breast Cancer Care? Evidence From the National Patient Navigation Research Program

    PubMed Central

    Ko, Naomi Y.; Darnell, Julie S.; Calhoun, Elizabeth; Freund, Karen M.; Wells, Kristin J.; Shapiro, Charles L.; Dudley, Donald J.; Patierno, Steven R.; Fiscella, Kevin; Raich, Peter; Battaglia, Tracy A.

    2014-01-01

    Purpose Poor and underserved women face barriers in receiving timely and appropriate breast cancer care. Patient navigators help individuals overcome these barriers, but little is known about whether patient navigation improves quality of care. The purpose of this study is to examine whether navigated women with breast cancer are more likely to receive recommended standard breast cancer care. Patients and Methods Women with breast cancer who participated in the national Patient Navigation Research Program were examined to determine whether the care they received included the following: initiation of antiestrogen therapy in patients with hormone receptor–positive breast cancer; initiation of postlumpectomy radiation therapy; and initiation of chemotherapy in women younger than age 70 years with triple-negative tumors more than 1 cm. This is a secondary analysis of a multicenter quasi-experimental study funded by the National Cancer Institute to evaluate patient navigation. Multiple logistic regression was performed to compare differences in receipt of care between navigated and non-navigated participants. Results Among participants eligible for antiestrogen therapy, navigated participants (n = 380) had a statistically significant higher likelihood of receiving antiestrogen therapy compared with non-navigated controls (n = 381; odds ratio [OR], 1.73; P = .004) in a multivariable analysis. Among the participants eligible for radiation therapy after lumpectomy, navigated participants (n = 255) were no more likely to receive radiation (OR, 1.42; P = .22) than control participants (n = 297). Conclusion We demonstrate that navigated participants were more likely than non-navigated participants to receive antiestrogen therapy. Future studies are required to determine the full impact patient navigation may have on ensuring that vulnerable populations receive quality care. PMID:25071111

  19. Use and Protection of GPS Sidelobe Signals for Enhanced Navigation Performance in High Earth Orbit

    NASA Technical Reports Server (NTRS)

    Parker, Joel J. K.; Valdez, Jennifer E.; Bauer, Frank H.; Moreau, Michael C.

    2016-01-01

    The application of the Global Positioning System (GPS) for navigation of spacecraft in High and Geosynchronous Earth Orbit (HEO/GEO) has crossed a threshold and is now being employed in operational missions. Utilizing advanced GPS receivers optimized for these missions, space users have made extensive use of the sidelobe transmissions from the GPS satellites to realize navigation performance that far exceeds that predicted by pre-launch simulations. Unfortunately, the official specification for the GPS Space Service Volume (SSV), developed in 2006, assumes that only signals emanating from the main beam of the GPS transmit antenna are useful for navigation, which greatly under-estimates the number of signals available for navigation purposes. As a result, future high-altitude space users may be vulnerable to any GPS design changes that suppress the sidelobe transmissions, beginning with Block III space vehicles (SVs) 11-32. This paper presents proposed changes to the GPS system SSV requirements, as informed by data from recent experiments in the SSV and new mission applications that are enabled by GPS navigation in HEO/GEO regimes. The NASA/NOAA GOES-R series satellites are highlighted as an example of a mission that relies on this currently-unspecified GPS system performance to meet mission requirements.

  20. Investigation of new techniques for aircraft navigation using the omega navigation

    NASA Technical Reports Server (NTRS)

    Baxa, E. G., Jr.

    1978-01-01

    An OMEGA navigation receiver with a microprocessor as the computational component was investigated. A version of the INTEL 4004 microprocessor macroassembler suitable for use on the CDC-6600 system and development of a FORTRAN IV simulator program for the microprocessor was developed. Supporting studies included development and evaluation of navigation algorithms to generate relative position information from OMEGA VLF phase measurements. Simulation studies were used to evaluate assumptions made in developing a navigation equation in OMEGA Line of Position (LOP) coordinates. Included in the navigation algorithms was a procedure for calculating a position in latitude/longitude given an OMEGA LOP fix. Implementation of a digital phase locked loop (DPLL) was evaluated on the basic of phase response characteristics over a range of input phase variations. Included also is an analytical evaluation on the basis of error probability of an algorithm for automatic time synchronization of the receiver to the OMEGA broadcast format. The use of actual OMEGA phase data and published propagation prediction corrections to determine phase velocity estimates was discussed.

  1. Navigation Operations for the Magnetospheric Multiscale Mission

    NASA Technical Reports Server (NTRS)

    Long, Anne; Farahmand, Mitra; Carpenter, Russell

    2015-01-01

    The Magnetospheric Multiscale (MMS) mission employs four identical spinning spacecraft flying in highly elliptical Earth orbits. These spacecraft will fly in a series of tetrahedral formations with separations of less than 10 km. MMS navigation operations use onboard navigation to satisfy the mission definitive orbit and time determination requirements and in addition to minimize operations cost and complexity. The onboard navigation subsystem consists of the Navigator GPS receiver with Goddard Enhanced Onboard Navigation System (GEONS) software, and an Ultra-Stable Oscillator. The four MMS spacecraft are operated from a single Mission Operations Center, which includes a Flight Dynamics Operations Area (FDOA) that supports MMS navigation operations, as well as maneuver planning, conjunction assessment and attitude ground operations. The System Manager component of the FDOA automates routine operations processes. The GEONS Ground Support System component of the FDOA provides the tools needed to support MMS navigation operations. This paper provides an overview of the MMS mission and associated navigation requirements and constraints and discusses MMS navigation operations and the associated MMS ground system components built to support navigation-related operations.

  2. An assessment of patient navigator activities in breast cancer patient navigation programs using a nine-principle framework.

    PubMed

    Gunn, Christine M; Clark, Jack A; Battaglia, Tracy A; Freund, Karen M; Parker, Victoria A

    2014-10-01

    To determine how closely a published model of navigation reflects the practice of navigation in breast cancer patient navigation programs. Observational field notes describing patient navigator activities collected from 10 purposefully sampled, foundation-funded breast cancer navigation programs in 2008-2009. An exploratory study evaluated a model framework for patient navigation published by Harold Freeman by using an a priori coding scheme based on model domains. Field notes were compiled and coded. Inductive codes were added during analysis to characterize activities not included in the original model. Programs were consistent with individual-level principles representing tasks focused on individual patients. There was variation with respect to program-level principles that related to program organization and structure. Program characteristics such as the use of volunteer or clinical navigators were identified as contributors to patterns of model concordance. This research provides a framework for defining the navigator role as focused on eliminating barriers through the provision of individual-level interventions. The diversity observed at the program level in these programs was a reflection of implementation according to target population. Further guidance may be required to assist patient navigation programs to define and tailor goals and measurement to community needs. © Health Research and Educational Trust.

  3. An Assessment of Patient Navigator Activities in Breast Cancer Patient Navigation Programs Using a Nine-Principle Framework

    PubMed Central

    Gunn, Christine M; Clark, Jack A; Battaglia, Tracy A; Freund, Karen M; Parker, Victoria A

    2014-01-01

    Objective To determine how closely a published model of navigation reflects the practice of navigation in breast cancer patient navigation programs. Data Source Observational field notes describing patient navigator activities collected from 10 purposefully sampled, foundation-funded breast cancer navigation programs in 2008–2009. Study Design An exploratory study evaluated a model framework for patient navigation published by Harold Freeman by using an a priori coding scheme based on model domains. Data Collection Field notes were compiled and coded. Inductive codes were added during analysis to characterize activities not included in the original model. Principal Findings Programs were consistent with individual-level principles representing tasks focused on individual patients. There was variation with respect to program-level principles that related to program organization and structure. Program characteristics such as the use of volunteer or clinical navigators were identified as contributors to patterns of model concordance. Conclusions This research provides a framework for defining the navigator role as focused on eliminating barriers through the provision of individual-level interventions. The diversity observed at the program level in these programs was a reflection of implementation according to target population. Further guidance may be required to assist patient navigation programs to define and tailor goals and measurement to community needs. PMID:24820445

  4. Cultural Competence in Business Japanese.

    ERIC Educational Resources Information Center

    Koike, Shohei

    Cultural competence in business Japanese requires more than superficial knowledge of business etiquette. One must truly understand why Japanese people think and act differently from their American counterparts. For example, instruction in the use of Japanese taxis must be accompanied by instruction in the concept and implications of seating order…

  5. CPM Signals for Satellite Navigation in the S and C Bands.

    PubMed

    Xue, Rui; Sun, Yanbo; Zhao, Danfeng

    2015-06-05

    Frequency allocations in the L band suitable for global navigation satellite system (GNSS) services are getting crowded and system providers face an ever tougher job when they try to bring in new signals and services while maintaining radio frequency compatibility. With the successive opening of the S and C bands to GNSS service, the multi-band combined navigation is predicted to become a key technology for future high-precision positioning navigation systems, and a single modulation scheme satisfying the requirements in each band is a promising solution for reducing user terminal complexity. A universal modulation scheme based on the continuous phase modulation (CPM) family suitable for the above bands' demands is proposed. Moreover, this paper has put forward two specific CPM signals for the S and C bands, respectively. Then the proposed modulation schemes, together with existing candidates, are comprehensively evaluated. Simulation results show that the proposed CPM signals can not only satisfy the constraint condition of compatibility in different bands well and reduce user terminal complexity, but also provide superior performance in terms of tracking accuracy, multi-path mitigation and anti-jamming compared to other candidate modulation schemes.

  6. Fuzzy adaptive integration scheme for low-cost SINS/GPS navigation system

    NASA Astrophysics Data System (ADS)

    Nourmohammadi, Hossein; Keighobadi, Jafar

    2018-01-01

    Due to weak stand-alone accuracy as well as poor run-to-run stability of micro-electro mechanical system (MEMS)-based inertial sensors, special approaches are required to integrate low-cost strap-down inertial navigation system (SINS) with global positioning system (GPS), particularly in long-term applications. This paper aims to enhance long-term performance of conventional SINS/GPS navigation systems using a fuzzy adaptive integration scheme. The main concept behind the proposed adaptive integration is the good performance of attitude-heading reference system (AHRS) in low-accelerated motions and its degradation in maneuvered or accelerated motions. Depending on vehicle maneuvers, gravity-based attitude angles can be intelligently utilized to improve orientation estimation in the SINS. Knowledge-based fuzzy inference system is developed for decision-making between the AHRS and the SINS according to vehicle maneuvering conditions. Inertial measurements are the main input data of the fuzzy system to determine the maneuvering level during the vehicle motions. Accordingly, appropriate weighting coefficients are produced to combine the SINS/GPS and the AHRS, efficiently. The assessment of the proposed integrated navigation system is conducted via real data in airborne tests.

  7. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-23

    A rocket is seen at the entrance to the visitor's center of the Tanegashima Space Center (TNSC), Sunday, Feb. 23, 2014, Tanegashima Island, Japan. A Japanese H-IIA rocket carrying the NASA-Japan Aerospace Exploration Agency (JAXA), Global Precipitation Measurement (GPM) Core Observatory is planned for launch from the space center on Feb. 28, 2014. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  8. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-23

    A car drives on the twisty roads that hug the coast line of the Tanegashima Space Center (TNSC) on Sunday, Feb. 23, 2014, Tanegashima Island, Japan. A Japanese H-IIA rocket carrying the NASA-Japan Aerospace Exploration Agency (JAXA), Global Precipitation Measurement (GPM) Core Observatory is planned for launch from the space center on Feb. 28, 2014. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  9. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-23

    Envelopes with stamps depicting various space missions are shown at the visitor's center of the Tanegashima Space Center (TNSC), Sunday, Feb. 23, 2014, Tanegashima Island, Japan. A Japanese H-IIA rocket carrying the NASA-Japan Aerospace Exploration Agency (JAXA), Global Precipitation Measurement (GPM) Core Observatory is planned for launch from the space center on Feb. 28, 2014. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  10. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-23

    A building designed to look like a space shuttle is seen a few kilometers outside of the Tanegashima Space Center (TNSC), Sunday, Feb. 23, 2014, Tanegashima Island, Japan. A Japanese H-IIA rocket carrying the NASA-Japan Aerospace Exploration Agency (JAXA), Global Precipitation Measurement (GPM) Core Observatory is planned for launch from the space center on Feb. 28, 2014. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  11. Statistics in Japanese universities.

    PubMed Central

    Ito, P K

    1979-01-01

    The teaching of statistics in the U.S. and Japanese universities is briefly reviewed. It is found that H. Hotelling's articles and subsequent relevant publications on the teaching of statistics have contributed to a considerable extent to the establishment of excellent departments of statistics in U.S. universities and colleges. Today the U.S. may be proud of many well-staffed and well-organized departments of theoretical and applied statistics with excellent undergraduate and graduate programs. On the contrary, no Japanese universities have an independent department of statistics at present, and the teaching of statistics has been spread among a heterogeneous group of departments of application. This was mainly due to the Japanese government regulation concerning the establishment of a university. However, it has recently been revised so that an independent department of statistics may be started in a Japanese university with undergraduate and graduate programs. It is hoped that discussions will be started among those concerned on the question of organization of the teaching of statistics in Japanese universities as soon as possible. PMID:396154

  12. Coastal Piloting & Charting: Navigation 101.

    ERIC Educational Resources Information Center

    Osinski, Alison

    This curriculum guide for a beginning course on marine navigation describes marine navigation (the art of and science of determining position of a ship and its movement from one position to another in order to keep track of where the ship is and where it is going) and defines dead reckoning, piloting, electronic navigation, and celestial…

  13. The truth lies somewhere in the middle: Swinging between globalization and regionalization of medical education in Japan.

    PubMed

    Saiki, Takuya; Imafuku, Rintaro; Suzuki, Yasuyuki; Ban, Nobutaro

    2017-10-01

    Japan is well known as a super-aging society, with a low birth rate, and has been ranked as one of the countries having the highest quality of healthcare system. Japan's society is currently approaching a major turning point with regard to societal and healthcare reforms, which are influenced by international trends and regional needs. Development of Japanese healthcare human resources, including medical students, is now expected to ride the wave of globalization, while resolving regional problems in the training and delivery of healthcare. Terms and global trends in medical education, such as outcome-based education, community-based education, reflective learning, international accreditation of medical education, and professionalization of educators are well translated into the Japanese language and embraced positively among the Japanese medical educators. However, these trends occasionally sit uncomfortably with cultural variations that are often a common approach in Japan; notably, "hansei" (introspection) and "kaizen" (change for the better). In the world facing a new era where people are unsettled between globalism and regionalism, Japan's future mission is to steer a balanced route that recognizes both global and regional influences and produce global health professionals educators.

  14. A Self-Tuning Kalman Filter for Autonomous Spacecraft Navigation

    NASA Technical Reports Server (NTRS)

    Truong, Son H.

    1998-01-01

    Most navigation systems currently operated by NASA are ground-based, and require extensive support to produce accurate results. Recently developed systems that use Kalman Filter and Global Positioning System (GPS) data for orbit determination greatly reduce dependency on ground support, and have potential to provide significant economies for NASA spacecraft navigation. Current techniques of Kalman filtering, however, still rely on manual tuning from analysts, and cannot help in optimizing autonomy without compromising accuracy and performance. This paper presents an approach to produce a high accuracy autonomous navigation system fully integrated with the flight system. The resulting system performs real-time state estimation by using an Extended Kalman Filter (EKF) implemented with high-fidelity state dynamics model, as does the GPS Enhanced Orbit Determination Experiment (GEODE) system developed by the NASA Goddard Space Flight Center. Augmented to the EKF is a sophisticated neural-fuzzy system, which combines the explicit knowledge representation of fuzzy logic with the learning power of neural networks. The fuzzy-neural system performs most of the self-tuning capability and helps the navigation system recover from estimation errors. The core requirement is a method of state estimation that handles uncertainties robustly, capable of identifying estimation problems, flexible enough to make decisions and adjustments to recover from these problems, and compact enough to run on flight hardware. The resulting system can be extended to support geosynchronous spacecraft and high-eccentricity orbits. Mathematical methodology, systems and operations concepts, and implementation of a system prototype are presented in this paper. Results from the use of the prototype to evaluate optimal control algorithms implemented are discussed. Test data and major control issues (e.g., how to define specific roles for fuzzy logic to support the self-learning capability) are also

  15. An interactive videogame designed to improve respiratory navigator efficiency in children undergoing cardiovascular magnetic resonance.

    PubMed

    Hamlet, Sean M; Haggerty, Christopher M; Suever, Jonathan D; Wehner, Gregory J; Grabau, Jonathan D; Andres, Kristin N; Vandsburger, Moriel H; Powell, David K; Sorrell, Vincent L; Fornwalt, Brandon K

    2016-09-06

    Advanced cardiovascular magnetic resonance (CMR) acquisitions often require long scan durations that necessitate respiratory navigator gating. The tradeoff of navigator gating is reduced scan efficiency, particularly when the patient's breathing patterns are inconsistent, as is commonly seen in children. We hypothesized that engaging pediatric participants with a navigator-controlled videogame to help control breathing patterns would improve navigator efficiency and maintain image quality. We developed custom software that processed the Siemens respiratory navigator image in real-time during CMR and represented diaphragm position using a cartoon avatar, which was projected to the participant in the scanner as visual feedback. The game incentivized children to breathe such that the avatar was positioned within the navigator acceptance window (±3 mm) throughout image acquisition. Using a 3T Siemens Tim Trio, 50 children (Age: 14 ± 3 years, 48 % female) with no significant past medical history underwent a respiratory navigator-gated 2D spiral cine displacement encoding with stimulated echoes (DENSE) CMR acquisition first with no feedback (NF) and then with the feedback game (FG). Thirty of the 50 children were randomized to undergo extensive off-scanner training with the FG using a MRI simulator, or no off-scanner training. Navigator efficiency, signal-to-noise ratio (SNR), and global left-ventricular strains were determined for each participant and compared. Using the FG improved average navigator efficiency from 33 ± 15 to 58 ± 13 % (p < 0.001) and improved SNR by 5 % (p = 0.01) compared to acquisitions with NF. There was no difference in navigator efficiency (p = 0.90) or SNR (p = 0.77) between untrained and trained participants for FG acquisitions. Circumferential and radial strains derived from FG acquisitions were slightly reduced compared to NF acquisitions (-16 ± 2 % vs -17 ± 2 %, p < 0.001; 40 ± 10

  16. Patients' experiences with navigation for cancer care.

    PubMed

    Carroll, Jennifer K; Humiston, Sharon G; Meldrum, Sean C; Salamone, Charcy M; Jean-Pierre, Pascal; Epstein, Ronald M; Fiscella, Kevin

    2010-08-01

    We examined how navigation, defined as the assessment and alleviation of barriers to adequate health care, influences patients' perspectives on the quality of their cancer care. We conducted post-study patient interviews from a randomized controlled trial (usual care vs. patient navigation services) from cancer diagnosis through treatment completion. Patients were recruited from 11 primary care, hospital and community oncology practices in New York. We interviewed patients about their expectations and experience of patient navigation or, for non-navigated patients, other sources of assistance. Thirty-five patients newly diagnosed with breast or colorectal cancer. Valued aspects of navigation included emotional support, assistance with information needs and problem-solving, and logistical coordination of cancer care. Unmet cancer care needs expressed by patients randomized to usual care consisted of lack of assistance or support with childcare, household responsibilities, coordination of care, and emotional support. Cancer patients value navigation. Instrumental benefits were the most important expectations for navigation from navigated and non-navigated patients. Navigated patients received emotional support and assistance with information needs, problem-solving, and logistical aspects of cancer care coordination. Navigation services may help improve cancer care outcomes important to patients by addressing fragmented, confusing, uncoordinated, or inefficient care. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  17. Patients' Experiences with Navigation for Cancer Care

    PubMed Central

    Carroll, Jennifer K.; Humiston, Sharon G.; Meldrum, Sean C.; Salamone, Charcy M.; Jean-Pierre, Pascal; Epstein, Ronald M.; Fiscella, Kevin

    2010-01-01

    Objective We examined how navigation, defined as the assessment and alleviation of barriers to adequate health care, influences patients' perspectives on the quality of their cancer care. Methods We conducted post-study patient interviews from a randomized controlled trial (usual care vs. patient navigation services) from cancer diagnosis through treatment completion. Patients were recruited from 11 primary care, hospital and community oncology practices in New York. We interviewed patients about their expectations and experience of patient navigation or, for non-navigated patients, other sources of assistance. Results Thirty-five patients newly diagnosed with breast or colorectal cancer. Valued aspects of navigation included emotional support, assistance with information needs and problem-solving, and logistical coordination of cancer care. Unmet cancer care needs expressed by patients randomized to usual care consisted of lack of assistance or support with childcare, household responsibilities, coordination of care, and emotional support. Conclusion Cancer patients value navigation. Instrumental benefits were the most important expectations for navigation from navigated and non-navigated patients. Navigated patients received emotional support and assistance with information needs, problem-solving, and logistical aspects of cancer care coordination. Practice Implications Navigation services may help improve cancer care outcomes important to patients by addressing fragmented, confusing, uncoordinated, or inefficient care. PMID:20006459

  18. Basic English Writers' Japanese-English Wordbook.

    ERIC Educational Resources Information Center

    Daniels, F. J.

    The author of this Japanese-English wordbook suggests that it may be used by Japanese writers of English, by those translating from Japanese into English, and by learners of Japanese, in addition to its main intended uses as an aid to the preparation of teaching material and as a work of reference for teachers. A translator will need to supplement…

  19. Linked Autonomous Interplanetary Satellite Orbit Navigation

    NASA Technical Reports Server (NTRS)

    Parker, Jeffrey S.; Anderson, Rodney L.; Born, George H.; Leonard, Jason M.; McGranaghan, Ryan M.; Fujimoto, Kohei

    2013-01-01

    A navigation technology known as LiAISON (Linked Autonomous Interplanetary Satellite Orbit Navigation) has been known to produce very impressive navigation results for scenarios involving two or more cooperative satellites near the Moon, such that at least one satellite must be in an orbit significantly perturbed by the Earth, such as a lunar halo orbit. The two (or more) satellites track each other using satellite-to-satellite range and/or range-rate measurements. These relative measurements yield absolute orbit navigation when one of the satellites is in a lunar halo orbit, or the like. The geometry between a lunar halo orbiter and a GEO satellite continuously changes, which dramatically improves the information content of a satellite-to-satellite tracking signal. The geometrical variations include significant out-of-plane shifts, as well as inplane shifts. Further, the GEO satellite is almost continuously in view of a lunar halo orbiter. High-fidelity simulations demonstrate that LiAISON technology improves the navigation of GEO orbiters by an order of magnitude, relative to standard ground tracking. If a GEO satellite is navigated using LiAISON- only tracking measurements, its position is typically known to better than 10 meters. If LiAISON measurements are combined with simple radiometric ground observations, then the satellite s position is typically known to better than 3 meters, which is substantially better than the current state of GEO navigation. There are two features of LiAISON that are novel and advantageous compared with conventional satellite navigation. First, ordinary satellite-to-satellite tracking data only provides relative navigation of each satellite. The novelty is the placement of one navigation satellite in an orbit that is significantly perturbed by both the Earth and the Moon. A navigation satellite can track other satellites elsewhere in the Earth-Moon system and acquire knowledge about both satellites absolute positions and velocities

  20. Trends in Global Nutrition Policy and Implications for Japanese Development Policy.

    PubMed

    Nomura, Marika; Takahashi, Kenzo; Reich, Michael R

    2015-12-01

    Although the issue of nutrition was long underrepresented in the global health agenda, it regained international attention with the introduction of the Scaling Up Nutrition (SUN) framework. A historical review of global nutrition policies over 4 decades illustrates the evolution of nutrition policy themes and the challenges confronted by SUN. This study reviews major events in global nutrition policy from the 1970s to the SUN movement around 2010 to illustrate the dynamics of global agenda setting for nutrition policy along with implications for the government of Japan. The events are categorized according to each decade's nutrition paradigm: nutrition and its socioeconomic features in the 1970s, nutrition and community programs in the 1980s, nutrition as a political issue in the 1990s, and nutrition and evidence in the 2000s. This study identified 2 findings: First, the arguments that led to a global consensus on nutrition policy generated paradigm shifts in core ideas, and second, in response to these paradigm shifts, global nutrition policies have changed significantly over time. With regard to Japan, this analysis concludes that the government of Japan can take a greater initiative in the global health community as supporter of SUN by strategically developing a combination of financial, political, and practical approaches to improve global nutrition policy through the concepts of Universal Health Coverage and Human Security. © The Author(s) 2015.

  1. Space shuttle navigation analysis

    NASA Technical Reports Server (NTRS)

    Jones, H. L.; Luders, G.; Matchett, G. A.; Sciabarrasi, J. E.

    1976-01-01

    A detailed analysis of space shuttle navigation for each of the major mission phases is presented. A covariance analysis program for prelaunch IMU calibration and alignment for the orbital flight tests (OFT) is described, and a partial error budget is presented. The ascent, orbital operations and deorbit maneuver study considered GPS-aided inertial navigation in the Phase III GPS (1984+) time frame. The entry and landing study evaluated navigation performance for the OFT baseline system. Detailed error budgets and sensitivity analyses are provided for both the ascent and entry studies.

  2. The Mathematics of the Global Positioning System.

    ERIC Educational Resources Information Center

    Nord, Gail D.; Jabon, David; Nord, John

    1997-01-01

    Presents an activity that illustrates the application of mathematics to modern navigation and utilizes the Global Positioning System (GPS). GPS is a constellation of 24 satellites that enables receivers to compute their position anywhere on the earth with great accuracy. (DDR)

  3. Japanese Nationalism

    DTIC Science & Technology

    1989-06-01

    United States. The chief function of this principle is to cut--it separates all things. It classifies everything into black and white, good and bad . The...content included articles on masturbation , petting, and 99 intercourse. One of Japan’s all time best selling books in recent years, Totto-chan, is a...to the th: every Japanese will be judged by whether he celebrates this or not. That is how people will be determined to be good Japanese or bad 112

  4. Are breast cancer navigation programs cost-effective? Evidence from the Chicago Cancer Navigation Project.

    PubMed

    Markossian, Talar W; Calhoun, Elizabeth A

    2011-01-01

    One of the aims of the Chicago Cancer Navigation Project (CCNP) is to reduce the interval of time between abnormal breast cancer screening and definitive diagnosis in patients who are navigated as compared to usual care. In this article, we investigate the extent to which total costs of breast cancer navigation can be offset by survival benefits and savings in lifetime breast cancer-attributable costs. Data sources for the cost-effectiveness analysis include data from published literature, secondary data from the NCI's Surveillance Epidemiology and End Results (SEER) program, and primary data from the CCNP. If women enrolled in CCNP receive breast cancer diagnosis earlier by 6 months as compared to usual care, then navigation is borderline cost-effective for $95,625 per life-year saved. Results from sensitivity analyses suggest that the cost-effectiveness of navigation is sensitive to: the interval of time between screening and diagnosis, percent increase in number of women who receive cancer diagnosis and treatment, women's age, and the positive predictive value of a mammogram. In planning cost-effective navigation programs, special considerations should be made regarding the characteristics of the disease, program participants, and the initial screening test that determines program eligibility. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  5. Navigating oceans and cultures: Polynesian and European navigation systems in the late eighteenth century

    NASA Astrophysics Data System (ADS)

    Walker, M.

    2012-05-01

    Significant differences in the rotation of the celestial dome between the tropical and temperate zones did not stop the peoples of either the tropical Pacific or temperate Europe from using geocentric astronomy to guide exploration of the oceans. Although the differences in the night sky contributed to differences between the Pacific Island and European systems for navigation at sea, the two navigation systems exhibit substantial similarities. Both systems define positions on the surface of the Earth using two coordinates that vary at right angles to each other and use stars, and to a lesser extent the sun, to determine directions. This essay explores similarities and differences in the use of geocentric astronomy for navigation at sea by the peoples of Polynesia and Europe in the late eighteenth century. Captain Cook's orders to discover the unknown southern continent after observing the transit of Venus combined with differences in language and culture to obscure the deeper similarities between the navigation systems used by Cook and the Polynesians. Although it was a further 200 years before anthropologists studied Pacific navigation, collaborations in voyaging with communities in Oceania demonstrated the effectiveness of Pacific navigation systems, revived interest in traditional voyaging in island communities around the Pacific, and potentially open the way for further collaborations in other areas.

  6. [The alteration of Japanese anatomical terminology in the early Showa period and the Japanese language reform campaign].

    PubMed

    Sawai, Tadashi; Sakai, Tatsuo

    2010-03-01

    In the second decade of the Showa period, great changes were made in the Japanese anatomical terms. It has been proposed that the presentation of JNA (Jenaer nomina anatomica) was one of the factors leading to the change. The Japanese language reform campaign, however, played an important role. The party kokugoaigo doumei and its successor kokugo kyokai required concise and unified technical terms. The anatomical nomenclature committee of the Japanese Association of Anatomists worked to satisfy this requirement. The committee consulted with nomenclature committees of other medical associations and took account of their opinions. The anatomical nomenclature committee abandoned the literal translation from Latin to Japanese and shaped a succinct Japanese terminology. Modern Japanese anatomical terms are based on this terminology.

  7. Education for Self-Crafting: Globalization, Discourses, and English in the Lives of Three Japanese Women

    ERIC Educational Resources Information Center

    Sabatini, Yoko

    2013-01-01

    This research explores issues involving gender, education, and learning/using English as a second/foreign language (ESL/EFL) by investigating three Japanese women's experiences of fashioning their lives in ways that made them feel satisfied and happy. In order to develop an "emic" point of view--one derived from grounding myself as…

  8. Multi-Flight-Phase GPS Navigation Filter Applications to Terrestrial Vehicle Navigation and Positioning

    NASA Technical Reports Server (NTRS)

    Park, Young W.; Montez, Moises N.

    1994-01-01

    A candidate onboard space navigation filter demonstrated excellent performance (less than 8 meter level RMS semi-major axis accuracy) in performing orbit determination of a low-Earth orbit Explorer satellite using single-frequency real GPS data. This performance is significantly better than predicted by other simulation studies using dual-frequency GPS data. The study results revealed the significance of two new modeling approaches evaluated in the work. One approach introduces a single-frequency ionospheric correction through pseudo-range and phase range averaging implementation. The other approach demonstrates a precise axis-dependent characterization of dynamic sample space uncertainty to compute a more accurate Kalman filter gain. Additionally, this navigation filter demonstrates a flexibility to accommodate both perturbational dynamic and observational biases required for multi-flight phase and inhomogeneous application environments. This paper reviews the potential application of these methods and the filter structure to terrestrial vehicle and positioning applications. Both the single-frequency ionospheric correction method and the axis-dependent state noise modeling approach offer valuable contributions in cost and accuracy improvements for terrestrial GPS receivers. With a modular design approach to either 'plug-in' or 'unplug' various force models, this multi-flight phase navigation filter design structure also provides a versatile GPS navigation software engine for both atmospheric and exo-atmospheric navigation or positioning use, thereby streamlining the flight phase or application-dependent software requirements. Thus, a standardized GPS navigation software engine that can reduce the development and maintenance cost of commercial GPS receivers is now possible.

  9. Usability Testing of Two Ambulatory EHR Navigators.

    PubMed

    Hultman, Gretchen; Marquard, Jenna; Arsoniadis, Elliot; Mink, Pamela; Rizvi, Rubina; Ramer, Tim; Khairat, Saif; Fickau, Keri; Melton, Genevieve B

    2016-01-01

    Despite widespread electronic health record (EHR) adoption, poor EHR system usability continues to be a significant barrier to effective system use for end users. One key to addressing usability problems is to employ user testing and user-centered design. To understand if redesigning an EHR-based navigation tool with clinician input improved user performance and satisfaction. A usability evaluation was conducted to compare two versions of a redesigned ambulatory navigator. Participants completed tasks for five patient cases using the navigators, while employing a think-aloud protocol. The tasks were based on Meaningful Use (MU) requirements. The version of navigator did not affect perceived workload, and time to complete tasks was longer in the redesigned navigator. A relatively small portion of navigator content was used to complete the MU-related tasks, though navigation patterns were highly variable across participants for both navigators. Preferences for EHR navigation structures appeared to be individualized. This study demonstrates the importance of EHR usability assessments to evaluate group and individual performance of different interfaces and preferences for each design.

  10. The sensory ecology of ocean navigation.

    PubMed

    Lohmann, Kenneth J; Lohmann, Catherine M F; Endres, Courtney S

    2008-06-01

    How animals guide themselves across vast expanses of open ocean, sometimes to specific geographic areas, has remained an enduring mystery of behavioral biology. In this review we briefly contrast underwater oceanic navigation with terrestrial navigation and summarize the advantages and constraints of different approaches used to analyze animal navigation in the sea. In addition, we highlight studies and techniques that have begun to unravel the sensory cues that underlie navigation in sea turtles, salmon and other ocean migrants. Environmental signals of importance include geomagnetic, chemical and hydrodynamic cues, perhaps supplemented in some cases by celestial cues or other sources of information that remain to be discovered. An interesting similarity between sea turtles and salmon is that both have been hypothesized to complete long-distance reproductive migrations using navigational systems composed of two different suites of mechanisms that function sequentially over different spatial scales. The basic organization of navigation in these two groups of animals may be functionally similar, and perhaps also representative of other long-distance ocean navigators.

  11. Global Positioning System Standard Positioning Service Performance Standard

    DOT National Transportation Integrated Search

    2008-09-01

    The U.S. Global Positioning System (GPS) Standard Positioning Service (SPS) consists of space-based positioning, navigation, and timing (PNT) signals delivered free of direct user fees for peaceful civil, commercial, and scientific uses worldwide. Th...

  12. Do infant Japanese macaques ( Macaca fuscata) categorize objects without specific training?

    PubMed

    Murai, Chizuko; Tomonaga, Masaki; Kamegai, Kimi; Terazawa, Naoko; Yamaguchi, Masami K

    2004-01-01

    In the present study, we examined whether infant Japanese macaques categorize objects without any training, using a similar technique also used with human infants (the paired-preference method). During the familiarization phase, subjects were presented twice with two pairs of different objects from one global-level category. During the test phase, they were presented twice with a pair consisting of a novel familiar-category object and a novel global-level category object. The subjects were tested with three global-level categories (animal, furniture, and vehicle). It was found that they showed significant novelty preferences as a whole, indicating that they processed similarities between familiarization objects and novel familiar-category objects. These results suggest that subjects responded distinctively to objects without training, indicating the possibility that infant macaques possess the capacity for categorization.

  13. Navigator program risk management

    NASA Technical Reports Server (NTRS)

    Wessen, Randii R.; Padilla, Deborah A.

    2004-01-01

    In this paper, program risk management as applied to the Navigator Program: In Search of New Worlds will be discussed. The Navigator Program's goals are to learn how planetary systems form and to search for those worlds that could or do harbor life.

  14. Development of a breast navigation program.

    PubMed

    Shockney, Lillie D; Haylock, Pamela J; Cantril, Cynthia

    2013-05-01

    To review the development of a navigation program in a major US academic health care institution, and provide guidance for navigation programmatic development in other settings. The Johns Hopkins Breast Center Steering Committee minutes, Hospital Cancer Registry; administrative data, and literature. Incorporating navigation services throughout the cancer continuum, from diagnosis to survivorship, provides guidance for patients with cancer. Navigation processes and programs must remain dynamic, reflecting patient and community needs. Oncology nurses have traditionally performed many tasks associated with navigation, including patient education, psychosocial support, and addressing barriers to care. This article provides an exemplar for nurses developing or enhancing comprehensive breast programs. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Ranging Consistency Based on Ranging-Compensated Temperature-Sensing Sensor for Inter-Satellite Link of Navigation Constellation

    PubMed Central

    Meng, Zhijun; Yang, Jun; Guo, Xiye; Zhou, Yongbin

    2017-01-01

    Global Navigation Satellite System performance can be significantly enhanced by introducing inter-satellite links (ISLs) in navigation constellation. The improvement in position, velocity, and time accuracy as well as the realization of autonomous functions requires ISL distance measurement data as the original input. To build a high-performance ISL, the ranging consistency among navigation satellites is an urgent problem to be solved. In this study, we focus on the variation in the ranging delay caused by the sensitivity of the ISL payload equipment to the ambient temperature in space and propose a simple and low-power temperature-sensing ranging compensation sensor suitable for onboard equipment. The experimental results show that, after the temperature-sensing ranging compensation of the ISL payload equipment, the ranging consistency becomes less than 0.2 ns when the temperature change is 90 °C. PMID:28608809

  16. 33 CFR 165.838 - Regulated Navigation Area; Gulf Intracoastal Waterway, Inner Harbor Navigation Canal, New Orleans...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... before closure of the navigational structures, all floating vessels must depart the RNA except as follows... Harbor Navigation Canal, New Orleans, LA. (a) Location. The following is a regulated navigation area (RNA... West of Harvey Locks (WHL) (b) Definitions. As used in this section: (1) Breakaway means a floating...

  17. A real-time algorithm for integrating differential satellite and inertial navigation information during helicopter approach. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Hoang, TY

    1994-01-01

    A real-time, high-rate precision navigation Kalman filter algorithm is developed and analyzed. This Navigation algorithm blends various navigation data collected during terminal area approach of an instrumented helicopter. Navigation data collected include helicopter position and velocity from a global position system in differential mode (DGPS) as well as helicopter velocity and attitude from an inertial navigation system (INS). The goal of the Navigation algorithm is to increase the DGPS accuracy while producing navigational data at the 64 Hertz INS update rate. It is important to note that while the data was post flight processed, the Navigation algorithm was designed for real-time analysis. The design of the Navigation algorithm resulted in a nine-state Kalman filter. The Kalman filter's state matrix contains position, velocity, and velocity bias components. The filter updates positional readings with DGPS position, INS velocity, and velocity bias information. In addition, the filter incorporates a sporadic data rejection scheme. This relatively simple model met and exceeded the ten meter absolute positional requirement. The Navigation algorithm results were compared with truth data derived from a laser tracker. The helicopter flight profile included terminal glideslope angles of 3, 6, and 9 degrees. Two flight segments extracted during each terminal approach were used to evaluate the Navigation algorithm. The first segment recorded small dynamic maneuver in the lateral plane while motion in the vertical plane was recorded by the second segment. The longitudinal, lateral, and vertical averaged positional accuracies for all three glideslope approaches are as follows (mean plus or minus two standard deviations in meters): longitudinal (-0.03 plus or minus 1.41), lateral (-1.29 plus or minus 2.36), and vertical (-0.76 plus or minus 2.05).

  18. Implementation of evidence-based patient navigation programs.

    PubMed

    Freund, Karen M

    2017-02-01

    Patient navigation refers to a direct patient care role that links patients with clinical providers and their support system and provides individualized support during cancer care, ensuring that patients have access to the knowledge and resources necessary to complete recommended treatment. While most reports have studied the role of patient navigators during the cancer screening or diagnostic process, emerging evidence indicates the benefits of patient navigation during active cancer treatment. Reports in the literature are conflicting on the impact of patient navigation during cancer care and on the benefits to timely or quality care in all populations. Recent sub-analyses of the Patient Navigation Research Program data demonstrated specifically the benefits of targeting patient navigation to the most vulnerable populations, including those with low educational attainment, low income and unstable housing, less social support, multiple comorbidities, and minority race/ethnicity. The implications of the Patient Navigation Research Program are that this resource is best utilized when directed to support the care of patients at locations with known challenges to timely care and for specific patients with risk factors for delays in care, including comorbidities, low educational attainment and low income. Implementation of patient navigation programs requires the following processes: needs assessment, selection of a navigator to meet the community and care needs, supervision and integration of the navigator into clinical processes, and systems support to facilitate the identification and tracking of those patients requiring patient navigation. There is a need for ongoing research on methods to fund and sustain patient navigation programs.

  19. Compliment Responses: Comparing American Learners of Japanese, Native Japanese Speakers, and American Native English Speakers

    ERIC Educational Resources Information Center

    Tatsumi, Naofumi

    2012-01-01

    Previous research shows that American learners of Japanese (AJs) tend to differ from native Japanese speakers in their compliment responses (CRs). Yokota (1986) and Shimizu (2009) have reported that AJs tend to respond more negatively than native Japanese speakers. It has also been reported that AJs' CRs tend to lack the use of avoidance or…

  20. 75 FR 50884 - Navigation and Navigable Waters; Technical, Organizational, and Conforming Amendments, Sector...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-18

    ... 3 and 165 to reflect changes in Coast Guard internal organizational structure. Sector Portland and... 1625-ZA25 Navigation and Navigable Waters; Technical, Organizational, and Conforming Amendments, Sector... Waters; Technical, Organizational, and Conforming Amendments, Sector Columbia River.'' 2. On page 48564...

  1. Autonomous navigation and control of a Mars rover

    NASA Technical Reports Server (NTRS)

    Miller, D. P.; Atkinson, D. J.; Wilcox, B. H.; Mishkin, A. H.

    1990-01-01

    A Mars rover will need to be able to navigate autonomously kilometers at a time. This paper outlines the sensing, perception, planning, and execution monitoring systems that are currently being designed for the rover. The sensing is based around stereo vision. The interpretation of the images use a registration of the depth map with a global height map provided by an orbiting spacecraft. Safe, low energy paths are then planned through the map, and expectations of what the rover's articulation sensors should sense are generated. These expectations are then used to ensure that the planned path is correctly being executed.

  2. Flight Mechanics/Estimation Theory Symposium. [with application to autonomous navigation and attitude/orbit determination

    NASA Technical Reports Server (NTRS)

    Fuchs, A. J. (Editor)

    1979-01-01

    Onboard and real time image processing to enhance geometric correction of the data is discussed with application to autonomous navigation and attitude and orbit determination. Specific topics covered include: (1) LANDSAT landmark data; (2) star sensing and pattern recognition; (3) filtering algorithms for Global Positioning System; and (4) determining orbital elements for geostationary satellites.

  3. Rapid Globalization of Medical Device Clinical Development Programs in Japan - The Case of Drug-Eluting Stents.

    PubMed

    Murakami, Madoka; Suzuki, Yuka; Tominaga, Toshiyoshi

    2018-02-23

    Delays in the introduction to the Japanese market of drug-eluting stents (DES) developed overseas (i.e., "device lag") decreased sharply between 2004 and 2012. The reduction accompanied a shift in clinical development from a succession pattern (initial product development and approval overseas followed by eventual entrance into the Japanese market) to parallel development (employing multiregional clinical trials (MRCTs)). Although resource-intensive in the short-term, MRCTs are proving to be an effective tool in simultaneous global product development. Creative study designs and the absence of significant ethnic differences in Japanese subjects regarding DES safety and efficacy and the pharmacokinetic behavior of their coating drugs propel this process. More general factors such as medical need and industry incentivization also encourage this shift. Physicians' preference for DES over other percutaneous coronary interventions, the expanding global DES market, and streamlined development and approval prospects each motivate industry to continue investing in DES product development. The efforts of various stakeholders were also integral to overcoming practical obstacles, and contributions by 'Harmonization by Doing' and a premarket collaboration initiative between the USA and Japan were particularly effective. Today, USA/Japan regulatory cooperation is routine, and Japan is now integrated into global medical device development. MRCTs including Japanese subjects, sites, and investigators are now commonplace.

  4. Navigation d'un vehicule autonome autour d'un asteroide

    NASA Astrophysics Data System (ADS)

    Dionne, Karine

    resultats de simulation montrent que l'ajout d'une mesure de distance par cycle de mise a jour entraine une amelioration significative des performances de navigation. Ce procede reduit l'erreur d'estimation ainsi que les periodes de non-observabilite en plus de contrer la dilution de precision des mesures. Les analyses de sensibilite confirment quant a elles la contribution des mesures de distance a la diminution globale de l'erreur d'estimation et ce pour une large gamme de parametres de conception. Elles indiquent egalement que l'erreur de cartographie est un parametre critique pour les performances du systeme de navigation developpe. Mots cles : Estimation d'etat, filtre de Kalman adaptatif, navigation optique, lidar, asteroide, simulations numeriques

  5. The Global Framework for Providing Information about Volcanic-Ash Hazards to International Air Navigation

    NASA Astrophysics Data System (ADS)

    Romero, R. W.; Guffanti, M.

    2009-12-01

    The International Civil Aviation Organization (ICAO) created the International Airways Volcano Watch (IAVW) in 1987 to establish a requirement for international dissemination of information about airborne ash hazards to safe air navigation. The IAVW is a set of operational protocols and guidelines that member countries agree to follow in order to implement a global, multi-faceted program to support the strategy of ash-cloud avoidance. Under the IAVW, the elements of eruption reporting, ash-cloud detecting, and forecasting expected cloud dispersion are coordinated to culminate in warnings sent to air traffic controllers, dispatchers, and pilots about the whereabouts of ash clouds. Nine worldwide Volcanic Ash Advisory Centers (VAAC) established under the IAVW have the responsibility for detecting the presence of ash in the atmosphere, primarily by looking at imagery from civilian meteorological satellites, and providing advisories about the location and movement of ash clouds to aviation meteorological offices and other aviation users. Volcano Observatories also are a vital part of the IAVW, as evidenced by the recent introduction of a universal message format for reporting the status of volcanic activity, including precursory unrest, to aviation users. Since 2003, the IAVW has been overseen by a standing group of scientific, technical, and regulatory experts that assists ICAO in the development of standards and other regulatory material related to volcanic ash. Some specific problems related to the implementation of the IAVW include: the lack of implementation of SIGMET (warning to aircraft in flight) provisions and delayed notifications of volcanic eruptions. Expected future challenges and developments involve the improvement in early notifications of volcanic eruptions, the consolidation of the issuance of SIGMETs, and the possibility of determining a “safe” concentration of volcanic ash.

  6. Breast cancer navigation and patient satisfaction: exploring a community-based patient navigation model in a rural setting.

    PubMed

    Hook, Ann; Ware, Laurie; Siler, Bobbie; Packard, Abbot

    2012-07-01

    To explore patient satisfaction among newly diagnosed patients with breast cancer in a rural community setting using a nurse navigation model. Nonexperimental, descriptive study. Large, multispecialty physician outpatient clinic serving about 150 newly diagnosed patients with breast cancer annually at the time of the study. 103 patients using nurse navigation services during a two-year period. A researcher-developed 14-item survey tool using a Likert-type scale was mailed to about 300 navigated patients. Nurse navigation and patient satisfaction. The majority of participants (n = 73, 72%) selected "strongly agree" in each survey statement when questioned about the benefits of nurse navigation. Patients receiving nurse navigation for breast cancer are highly satisfied with the services offered in this setting. Findings from this study offer insight regarding the effectiveness of an individualized supportive care approach to nurses and providers of oncology care. That information can be used to guide the implementation of future nurse navigation programs, determine effective methods of guiding patients through the cancer experience, and aid in promoting the highest standard of oncology care.

  7. Monitoring of GPS(Global Positioning System) System Performance

    DOT National Transportation Integrated Search

    1985-06-01

    The Global Positioning System (GPS), a worldwide satellite-based navigation system developed by the Department of Defense, is scheduled to become operational in late 1988. The system has the potential to become the primary radionaviagation system for...

  8. Maps and navigation methods

    NASA Technical Reports Server (NTRS)

    Duval, A

    1922-01-01

    Different maps and scales are discussed with particular emphasis on their use in aviation. The author makes the observation that current navigation methods are slow and dangerous and should be replaced by scientific methods of navigation based on loxodromy and the use of the compass.

  9. Inertial navigation without accelerometers

    NASA Astrophysics Data System (ADS)

    Boehm, M.

    The Kennedy-Thorndike (1932) experiment points to the feasibility of fiber-optic inertial velocimeters, to which state-of-the-art technology could furnish substantial sensitivity and accuracy improvements. Velocimeters of this type would obviate the use of both gyros and accelerometers, and allow inertial navigation to be conducted together with vehicle attitude control, through the derivation of rotation rates from the ratios of the three possible velocimeter pairs. An inertial navigator and reference system based on this approach would probably have both fewer components and simpler algorithms, due to the obviation of the first level of integration in classic inertial navigators.

  10. Spatial navigation in young versus older adults

    PubMed Central

    Gazova, Ivana; Laczó, Jan; Rubinova, Eva; Mokrisova, Ivana; Hyncicova, Eva; Andel, Ross; Vyhnalek, Martin; Sheardova, Katerina; Coulson, Elizabeth J.; Hort, Jakub

    2013-01-01

    Older age is associated with changes in the brain, including the medial temporal lobe, which may result in mild spatial navigation deficits, especially in allocentric navigation. The aim of the study was to characterize the profile of real-space allocentric (world-centered, hippocampus-dependent) and egocentric (body-centered, parietal lobe dependent) navigation and learning in young vs. older adults, and to assess a possible influence of gender. We recruited healthy participants without cognitive deficits on standard neuropsychological testing, white matter lesions or pronounced hippocampal atrophy: 24 young participants (18–26 years old) and 44 older participants stratified as participants 60–70 years old (n = 24) and participants 71–84 years old (n = 20). All underwent spatial navigation testing in the real-space human analog of the Morris Water Maze, which has the advantage of assessing separately allocentric and egocentric navigation and learning. Of the eight consecutive trials, trials 2–8 were used to reduce bias by a rebound effect (more dramatic changes in performance between trials 1 and 2 relative to subsequent trials). The participants who were 71–84 years old (p < 0.001), but not those 60–70 years old, showed deficits in allocentric navigation compared to the young participants. There were no differences in egocentric navigation. All three groups showed spatial learning effect (p’ s ≤ 0.01). There were no gender differences in spatial navigation and learning. Linear regression limited to older participants showed linear (β = 0.30, p = 0.045) and quadratic (β = 0.30, p = 0.046) effect of age on allocentric navigation. There was no effect of age on egocentric navigation. These results demonstrate that navigation deficits in older age may be limited to allocentric navigation, whereas egocentric navigation and learning may remain preserved. This specific pattern of spatial navigation impairment may help differentiate normal aging from

  11. The Role of Geomagnetic Cues in Green Turtle Open Sea Navigation

    PubMed Central

    Benhamou, Simon; Sudre, Joël; Bourjea, Jérome; Ciccione, Stéphane; De Santis, Angelo; Luschi, Paolo

    2011-01-01

    Background Laboratory and field experiments have provided evidence that sea turtles use geomagnetic cues to navigate in the open sea. For instance, green turtles (Chelonia mydas) displaced 100 km away from their nesting site were impaired in returning home when carrying a strong magnet glued on the head. However, the actual role of geomagnetic cues remains unclear, since magnetically treated green turtles can perform large scale (>2000 km) post-nesting migrations no differently from controls. Methodology/Principal Findings In the present homing experiment, 24 green turtles were displaced 200 km away from their nesting site on an oceanic island, and tracked, for the first time in this type of experiment, with Global Positioning System (GPS), which is able to provide much more frequent and accurate locations than previously used tracking methods. Eight turtles were magnetically treated for 24–48 h on the nesting beach prior to displacement, and another eight turtles had a magnet glued on the head at the release site. The last eight turtles were used as controls. Detailed analyses of water masses-related (i.e., current-corrected) homing paths showed that magnetically treated turtles were able to navigate toward their nesting site as efficiently as controls, but those carrying magnets were significantly impaired once they arrived within 50 km of home. Conclusions/Significance While green turtles do not seem to need geomagnetic cues to navigate far from the goal, these cues become necessary when turtles get closer to home. As the very last part of the homing trip (within a few kilometers of home) likely depends on non-magnetic cues, our results suggest that magnetic cues play a key role in sea turtle navigation at an intermediate scale by bridging the gap between large and small scale navigational processes, which both appear to depend on non-magnetic cues. PMID:22046329

  12. The role of geomagnetic cues in green turtle open sea navigation.

    PubMed

    Benhamou, Simon; Sudre, Joël; Bourjea, Jérome; Ciccione, Stéphane; De Santis, Angelo; Luschi, Paolo

    2011-01-01

    Laboratory and field experiments have provided evidence that sea turtles use geomagnetic cues to navigate in the open sea. For instance, green turtles (Chelonia mydas) displaced 100 km away from their nesting site were impaired in returning home when carrying a strong magnet glued on the head. However, the actual role of geomagnetic cues remains unclear, since magnetically treated green turtles can perform large scale (>2000 km) post-nesting migrations no differently from controls. In the present homing experiment, 24 green turtles were displaced 200 km away from their nesting site on an oceanic island, and tracked, for the first time in this type of experiment, with Global Positioning System (GPS), which is able to provide much more frequent and accurate locations than previously used tracking methods. Eight turtles were magnetically treated for 24-48 h on the nesting beach prior to displacement, and another eight turtles had a magnet glued on the head at the release site. The last eight turtles were used as controls. Detailed analyses of water masses-related (i.e., current-corrected) homing paths showed that magnetically treated turtles were able to navigate toward their nesting site as efficiently as controls, but those carrying magnets were significantly impaired once they arrived within 50 km of home. While green turtles do not seem to need geomagnetic cues to navigate far from the goal, these cues become necessary when turtles get closer to home. As the very last part of the homing trip (within a few kilometers of home) likely depends on non-magnetic cues, our results suggest that magnetic cues play a key role in sea turtle navigation at an intermediate scale by bridging the gap between large and small scale navigational processes, which both appear to depend on non-magnetic cues.

  13. 33 CFR 165.122 - Regulated Navigation Area: Navigable waters within Narragansett Bay and the Providence River...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... navigation area (RNA). The Regulated Navigation Area (RNA) encompasses all of the navigable waters of...) Regulations. (1) All commercial vessels must: (i) Maintain a minimum 10% of the vessel's draft as an under... commercial vessel traffic in all locations within this RNA shall keep out of the way of the oncoming deep...

  14. 33 CFR 165.122 - Regulated Navigation Area: Navigable waters within Narragansett Bay and the Providence River...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... navigation area (RNA). The Regulated Navigation Area (RNA) encompasses all of the navigable waters of...) Regulations. (1) All commercial vessels must: (i) Maintain a minimum 10% of the vessel's draft as an under... commercial vessel traffic in all locations within this RNA shall keep out of the way of the oncoming deep...

  15. 33 CFR 165.122 - Regulated Navigation Area: Navigable waters within Narragansett Bay and the Providence River...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... navigation area (RNA). The Regulated Navigation Area (RNA) encompasses all of the navigable waters of...) Regulations. (1) All commercial vessels must: (i) Maintain a minimum 10% of the vessel's draft as an under... commercial vessel traffic in all locations within this RNA shall keep out of the way of the oncoming deep...

  16. 33 CFR 165.122 - Regulated Navigation Area: Navigable waters within Narragansett Bay and the Providence River...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... navigation area (RNA). The Regulated Navigation Area (RNA) encompasses all of the navigable waters of...) Regulations. (1) All commercial vessels must: (i) Maintain a minimum 10% of the vessel's draft as an under... commercial vessel traffic in all locations within this RNA shall keep out of the way of the oncoming deep...

  17. 33 CFR 165.122 - Regulated Navigation Area: Navigable waters within Narragansett Bay and the Providence River...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... navigation area (RNA). The Regulated Navigation Area (RNA) encompasses all of the navigable waters of...) Regulations. (1) All commercial vessels must: (i) Maintain a minimum 10% of the vessel's draft as an under... commercial vessel traffic in all locations within this RNA shall keep out of the way of the oncoming deep...

  18. 33 CFR 183.810 - Navigation light certification requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Navigation light certification... SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Navigation Lights § 183.810 Navigation light certification requirements. (a) Except as provided by paragraph (b) of this section, each...

  19. 33 CFR 183.810 - Navigation light certification requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Navigation light certification... SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Navigation Lights § 183.810 Navigation light certification requirements. (a) Except as provided by paragraph (b) of this section, each...

  20. 33 CFR 183.810 - Navigation light certification requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Navigation light certification... SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Navigation Lights § 183.810 Navigation light certification requirements. (a) Except as provided by paragraph (b) of this section, each...

  1. 33 CFR 183.810 - Navigation light certification requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Navigation light certification... SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Navigation Lights § 183.810 Navigation light certification requirements. (a) Except as provided by paragraph (b) of this section, each...

  2. 33 CFR 164.78 - Navigation under way: Towing vessels.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Navigation under way: Towing vessels. 164.78 Section 164.78 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY NAVIGATION SAFETY REGULATIONS § 164.78 Navigation under way...

  3. 33 CFR 164.78 - Navigation under way: Towing vessels.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Navigation under way: Towing vessels. 164.78 Section 164.78 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY NAVIGATION SAFETY REGULATIONS § 164.78 Navigation under way...

  4. 33 CFR 164.78 - Navigation under way: Towing vessels.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Navigation under way: Towing vessels. 164.78 Section 164.78 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY NAVIGATION SAFETY REGULATIONS § 164.78 Navigation under way...

  5. 14 CFR 63.61 - Flight navigator courses.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Flight navigator courses. 63.61 Section 63...) AIRMEN CERTIFICATION: FLIGHT CREWMEMBERS OTHER THAN PILOTS Flight Navigators § 63.61 Flight navigator courses. An applicant for approval of a flight navigator course must submit a letter to the Administrator...

  6. 14 CFR 63.61 - Flight navigator courses.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Flight navigator courses. 63.61 Section 63...) AIRMEN CERTIFICATION: FLIGHT CREWMEMBERS OTHER THAN PILOTS Flight Navigators § 63.61 Flight navigator courses. An applicant for approval of a flight navigator course must submit a letter to the Administrator...

  7. 14 CFR 63.61 - Flight navigator courses.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Flight navigator courses. 63.61 Section 63...) AIRMEN CERTIFICATION: FLIGHT CREWMEMBERS OTHER THAN PILOTS Flight Navigators § 63.61 Flight navigator courses. An applicant for approval of a flight navigator course must submit a letter to the Administrator...

  8. Volumetrically-Derived Global Navigation Satellite System Performance Assessment from the Earths Surface through the Terrestrial Service Volume and the Space Service Volume

    NASA Technical Reports Server (NTRS)

    Welch, Bryan W.

    2016-01-01

    NASA is participating in the International Committee on Global Navigation Satellite Systems (GNSS) (ICG)'s efforts towards demonstrating the benefits to the space user from the Earth's surface through the Terrestrial Service Volume (TSV) to the edge of the Space Service Volume (SSV), when a multi-GNSS solution space approach is utilized. The ICG Working Group: Enhancement of GNSS Performance, New Services and Capabilities has started a three phase analysis initiative as an outcome of recommendations at the ICG-10 meeting, in preparation for the ICG-11 meeting. The first phase of that increasing complexity and fidelity analysis initiative was recently expanded to compare nadir-facing and zenith-facing user hemispherical antenna coverage with omnidirectional antenna coverage at different distances of 8,000 km altitude and 36,000 km altitude. This report summarizes the performance using these antenna coverage techniques at distances ranging from 100 km altitude to 36,000 km to be all encompassing, as well as the volumetrically-derived system availability metrics.

  9. 33 CFR 100.45 - Establishment of aids to navigation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... navigation incidental to the holding of a regatta or marine parade are private aids to navigation as... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Establishment of aids to navigation. 100.45 Section 100.45 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND...

  10. Japanese American Identity Dilemma.

    ERIC Educational Resources Information Center

    Maykovich, Minako K.

    The major theme of this book is the label "Quiet American" for the Japanese American. In order to locate Japanese Americans sociologically and psychologically in the structure of American society, various concepts such as "marginal man,""alienation," and "inauthenticity" are examined, specifying these…

  11. Virtual phosphorus ore requirement of Japanese economy.

    PubMed

    Matsubae, Kazuyo; Kajiyama, Jun; Hiraki, Takehito; Nagasaka, Tetsuya

    2011-08-01

    Phosphorus is indispensable for agricultural production. Hence, the consumption of imported food indirectly implies the import of phosphorus resources. The global consumption of agricultural products depends on a small number of ore-producing countries. For sustainable management of phosphorus resources, the global supply and demand network should be clarified. In this study, we propose the virtual phosphorus ore requirement as a new indicator of the direct and indirect phosphorus requirements for our society. The virtual phosphorus ore requirement indicates the direct and indirect demands for phosphorus ore transformed into agricultural products and fertilizer. In this study, the virtual phosphorus ore requirement was evaluated for the Japanese economy in 2005. Importantly, the results show that our society requires twice as much phosphorus ore as the domestic demand for fertilizer production. The phosphorus contained in "eaten" agricultural products was only 12% of virtual phosphorus ore requirement. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Host-Specific Adaptation of HIV-1 Subtype B in the Japanese Population

    PubMed Central

    Chikata, Takayuki; Carlson, Jonathan M.; Tamura, Yoshiko; Borghan, Mohamed Ali; Naruto, Takuya; Hashimoto, Masao; Murakoshi, Hayato; Le, Anh Q.; Mallal, Simon; John, Mina; Gatanaga, Hiroyuki; Oka, Shinichi; Brumme, Zabrina L.

    2014-01-01

    ABSTRACT The extent to which HIV-1 clade B strains exhibit population-specific adaptations to host HLA alleles remains incompletely known, in part due to incomplete characterization of HLA-associated HIV-1 polymorphisms (HLA-APs) in different global populations. Moreover, it remains unknown to what extent the same HLA alleles may drive significantly different escape pathways across populations. As the Japanese population exhibits distinctive HLA class I allele distributions, comparative analysis of HLA-APs between HIV-1 clade B-infected Japanese and non-Asian cohorts could shed light on these questions. However, HLA-APs remain incompletely mapped in Japan. In a cohort of 430 treatment-naive Japanese with chronic HIV-1 clade B infection, we identified 284 HLA-APs in Gag, Pol, and Nef using phylogenetically corrected methods. The number of HLA-associated substitutions in Pol, notably those restricted by HLA-B*52:01, was weakly inversely correlated with the plasma viral load (pVL), suggesting that the transmission and persistence of B*52:01-driven Pol mutations could modulate the pVL. Differential selection of HLA-APs between HLA subtype members, including those differing only with respect to substitutions outside the peptide-binding groove, was observed, meriting further investigation as to their mechanisms of selection. Notably, two-thirds of HLA-APs identified in Japan had not been reported in previous studies of predominantly Caucasian cohorts and were attributable to HLA alleles unique to, or enriched in, Japan. We also identified 71 cases where the same HLA allele drove significantly different escape pathways in Japan versus predominantly Caucasian cohorts. Our results underscore the distinct global evolution of HIV-1 clade B as a result of host population-specific cellular immune pressures. IMPORTANCE Cytotoxic T lymphocyte (CTL) escape mutations in HIV-1 are broadly predictable based on the HLA class I alleles expressed by the host. Because HLA allele

  13. Host-specific adaptation of HIV-1 subtype B in the Japanese population.

    PubMed

    Chikata, Takayuki; Carlson, Jonathan M; Tamura, Yoshiko; Borghan, Mohamed Ali; Naruto, Takuya; Hashimoto, Masao; Murakoshi, Hayato; Le, Anh Q; Mallal, Simon; John, Mina; Gatanaga, Hiroyuki; Oka, Shinichi; Brumme, Zabrina L; Takiguchi, Masafumi

    2014-05-01

    The extent to which HIV-1 clade B strains exhibit population-specific adaptations to host HLA alleles remains incompletely known, in part due to incomplete characterization of HLA-associated HIV-1 polymorphisms (HLA-APs) in different global populations. Moreover, it remains unknown to what extent the same HLA alleles may drive significantly different escape pathways across populations. As the Japanese population exhibits distinctive HLA class I allele distributions, comparative analysis of HLA-APs between HIV-1 clade B-infected Japanese and non-Asian cohorts could shed light on these questions. However, HLA-APs remain incompletely mapped in Japan. In a cohort of 430 treatment-naive Japanese with chronic HIV-1 clade B infection, we identified 284 HLA-APs in Gag, Pol, and Nef using phylogenetically corrected methods. The number of HLA-associated substitutions in Pol, notably those restricted by HLA-B*52:01, was weakly inversely correlated with the plasma viral load (pVL), suggesting that the transmission and persistence of B*52:01-driven Pol mutations could modulate the pVL. Differential selection of HLA-APs between HLA subtype members, including those differing only with respect to substitutions outside the peptide-binding groove, was observed, meriting further investigation as to their mechanisms of selection. Notably, two-thirds of HLA-APs identified in Japan had not been reported in previous studies of predominantly Caucasian cohorts and were attributable to HLA alleles unique to, or enriched in, Japan. We also identified 71 cases where the same HLA allele drove significantly different escape pathways in Japan versus predominantly Caucasian cohorts. Our results underscore the distinct global evolution of HIV-1 clade B as a result of host population-specific cellular immune pressures. Cytotoxic T lymphocyte (CTL) escape mutations in HIV-1 are broadly predictable based on the HLA class I alleles expressed by the host. Because HLA allele distributions differ among

  14. 33 CFR 67.35-10 - Private aids to navigation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Private aids to navigation. 67.35-10 Section 67.35-10 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION AIDS TO NAVIGATION ON ARTIFICIAL ISLANDS AND FIXED STRUCTURES Applications § 67.35-10...

  15. 33 CFR 67.35-10 - Private aids to navigation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Private aids to navigation. 67.35-10 Section 67.35-10 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION AIDS TO NAVIGATION ON ARTIFICIAL ISLANDS AND FIXED STRUCTURES Applications § 67.35-10...

  16. 33 CFR 67.35-10 - Private aids to navigation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Private aids to navigation. 67.35-10 Section 67.35-10 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION AIDS TO NAVIGATION ON ARTIFICIAL ISLANDS AND FIXED STRUCTURES Applications § 67.35-10...

  17. 33 CFR 67.35-10 - Private aids to navigation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Private aids to navigation. 67.35-10 Section 67.35-10 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION AIDS TO NAVIGATION ON ARTIFICIAL ISLANDS AND FIXED STRUCTURES Applications § 67.35-10...

  18. 33 CFR 67.35-10 - Private aids to navigation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Private aids to navigation. 67.35-10 Section 67.35-10 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION AIDS TO NAVIGATION ON ARTIFICIAL ISLANDS AND FIXED STRUCTURES Applications § 67.35-10...

  19. Innovative use of global navigation satellite systems for flight inspection

    NASA Astrophysics Data System (ADS)

    Kim, Eui-Ho

    The International Civil Aviation Organization (ICAO) mandates flight inspection in every country to provide safety during flight operations. Among many criteria of flight inspection, airborne inspection of Instrument Landing Systems (ILS) is very important because the ILS is the primary landing guidance system worldwide. During flight inspection of the ILS, accuracy in ILS landing guidance is checked by using a Flight Inspection System (FIS). Therefore, a flight inspection system must have high accuracy in its positioning capability to detect any deviation so that accurate guidance of the ILS can be maintained. Currently, there are two Automated Flight Inspection Systems (AFIS). One is called Inertial-based AFIS, and the other one is called Differential GPS-based (DGPS-based) AFIS. The Inertial-based AFIS enables efficient flight inspection procedures, but its drawback is high cost because it requires a navigation-grade Inertial Navigation System (INS). On the other hand, the DGPS-based AFIS has relatively low cost, but flight inspection procedures require landing and setting up a reference receiver. Most countries use either one of the systems based on their own preferences. There are around 1200 ILS in the U.S., and each ILS must be inspected every 6 to 9 months. Therefore, it is important to manage the airborne inspection of the ILS in a very efficient manner. For this reason, the Federal Aviation Administration (FAA) mainly uses the Inertial-based AFIS, which has better efficiency than the DGPS-based AFIS in spite of its high cost. Obviously, the FAA spends tremendous resources on flight inspection. This thesis investigates the value of GPS and the FAA's augmentation to GPS for civil aviation called the Wide Area Augmentation System (or WAAS) for flight inspection. Because standard GPS or WAAS position outputs cannot meet the required accuracy for flight inspection, in this thesis, various algorithms are developed to improve the positioning ability of Flight

  20. NFC Internal: An Indoor Navigation System

    PubMed Central

    Ozdenizci, Busra; Coskun, Vedat; Ok, Kerem

    2015-01-01

    Indoor navigation systems have recently become a popular research field due to the lack of GPS signals indoors. Several indoors navigation systems have already been proposed in order to eliminate deficiencies; however each of them has several technical and usability limitations. In this study, we propose NFC Internal, a Near Field Communication (NFC)-based indoor navigation system, which enables users to navigate through a building or a complex by enabling a simple location update, simply by touching NFC tags those are spread around and orient users to the destination. In this paper, we initially present the system requirements, give the design details and study the viability of NFC Internal with a prototype application and a case study. Moreover, we evaluate the performance of the system and compare it with existing indoor navigation systems. It is seen that NFC Internal has considerable advantages and significant contributions to existing indoor navigation systems in terms of security and privacy, cost, performance, robustness, complexity, user preference and commercial availability. PMID:25825976

  1. [Navigated implantation of total knee endoprostheses--a comparative study with conventional instrumentation].

    PubMed

    Jenny, J Y; Boeri, C

    2001-01-01

    A navigation system should improve the quality of a total knee prosthesis implantation in comparison to the classical, surgeon-controlled operative technique. The authors have implanted 40 knee total prostheses with an optical infrared navigation system (Orthopilot AESCULAP, Tuttlingen--group A). The quality of implantation was studied on postoperative long leg AP and lateral X-rays, and compared to a control group of 40 computer-paired total knee prostheses o the same model (Search Prosthesis, AESCULAP, Tuttlingen) implanted with a classical, surgeon-controlled technique (group B). An optimal mechanical femorotibial angle (3 degrees valgus to 3 degrees varus) was obtained by 33 cases in group A and 31 cases in group B (p > 0.05). Better results were seen for the coronal and sagittal orientation of both tibial and femoral components in group A. Globally, 26 cases of the group A and 12 cases of the group B were implanted in an optimal manner for all studied criteria (p < 0.01). The used navigation system allows a significant improvement of the quality of implantation of a knee total prosthesis in comparison to a classical, surgeon-controlled instrumentation. Long-term outcome could be consequently improved.

  2. On Navigation Sensor Error Correction

    NASA Astrophysics Data System (ADS)

    Larin, V. B.

    2016-01-01

    The navigation problem for the simplest wheeled robotic vehicle is solved by just measuring kinematical parameters, doing without accelerometers and angular-rate sensors. It is supposed that the steerable-wheel angle sensor has a bias that must be corrected. The navigation parameters are corrected using the GPS. The approach proposed regards the wheeled robot as a system with nonholonomic constraints. The performance of such a navigation system is demonstrated by way of an example

  3. Global Connections to Global Partnerships: Navigating the Changing Landscape of Internationalism and Cross-Border Higher Education

    ERIC Educational Resources Information Center

    Olcott, Don, Jr.

    2009-01-01

    The purpose of this article is to provide continuing higher education leaders with a comprehensive overview of the major considerations for doing business in the global market. Included is an analysis of the driving forces in global higher education and current trends in cross-border programs and a brief review of activities that may be part of a…

  4. Feasibility of precise navigation in high and low latitude regions under scintillation conditions

    NASA Astrophysics Data System (ADS)

    Juan, José Miguel; Sanz, Jaume; González-Casado, Guillermo; Rovira-Garcia, Adrià; Camps, Adriano; Riba, Jaume; Barbosa, José; Blanch, Estefania; Altadill, David; Orus, Raul

    2018-02-01

    Scintillation is one of the most challenging problems in Global Navigation Satellite Systems (GNSS) navigation. This phenomenon appears when the radio signal passes through ionospheric irregularities. These irregularities represent rapid changes on the refraction index and, depending on their size, they can produce also diffractive effects affecting the signal amplitude and, eventually producing cycle slips. In this work, we show that the scintillation effects on the GNSS signal are quite different in low and high latitudes. For low latitude receivers, the main effects, from the point of view of precise navigation, are the increase of the carrier phase noise (measured by σϕ) and the fade on the signal intensity (measured by S4) that can produce cycle slips in the GNSS signal. With several examples, we show that the detection of these cycle slips is the most challenging problem for precise navigation, in such a way that, if these cycle slips are detected, precise navigation can be achieved in these regions under scintillation conditions. For high-latitude receivers the situation differs. In this region the size of the irregularities is typically larger than the Fresnel length, so the main effects are related with the fast change on the refractive index associated to the fast movement of the irregularities (which can reach velocities up to several km/s). Consequently, the main effect on the GNSS signals is a fast fluctuation of the carrier phase (large σϕ), but with a moderate fade in the amplitude (moderate S4). Therefore, as shown through several examples, fluctuations at high-latitude usually do not produce cycle slips, being the effect quite limited on the ionosphere-free combination and, in general, precise navigation can be achieved also during strong scintillation conditions.

  5. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-27

    Caroline Bouvier Kennedy, U.S. Ambassador Extraordinary and Plenipotentiary to Japan, right, is welcomed by Japan Aerospace Exploration Agency (JAXA), President, Naoki Okumura, at the Tanegashima Space Center Visitors Center on Thursday, Feb. 27, 2014, Tanegashima, Japan. The Ambassador is visiting the space center and hopes to witness the planned launch of a Japanese H-IIA rocket carrying the NASA-JAXA, Global Precipitation Measurement (GPM) Core Observatory. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  6. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-23

    Shrubs and flowers in the shape of a space shuttle, star and planet are seen just outside the visitor's center of the Tanegashima Space Center (TNSC), Sunday, Feb. 23, 2014, Tanegashima Island, Japan. A Japanese H-IIA rocket carrying the NASA-Japan Aerospace Exploration Agency (JAXA), Global Precipitation Measurement (GPM) Core Observatory is planned for launch from the space center on Feb. 28, 2014. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  7. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-23

    Tourist photograph themselves in astronaut space suites next to a cardboard cutout of Japan Aerospace Exploration Agency (JAXA) Astronaut Akihiko Hoshide at the visitor's center of the Tanegashima Space Center (TNSC), Sunday, Feb. 23, 2014, Tanegashima Island, Japan. A Japanese H-IIA rocket carrying the NASA-Japan Aerospace Exploration Agency (JAXA), Global Precipitation Measurement (GPM) Core Observatory is planned for launch from the space center on Feb. 28, 2014. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  8. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-27

    Caroline Bouvier Kennedy, U.S. Ambassador Extraordinary and Plenipotentiary to Japan, center, tours the Tanegashima Space Center, Visitors Center with Japan Aerospace Exploration Agency (JAXA), President, Naoki Okumura, right, on Thursday, Feb. 27, 2014, Tanegashima, Japan. The Ambassador visiting the space center and hopes to witness the planned launch of a Japanese H-IIA rocket carrying the NASA-JAXA, Global Precipitation Measurement (GPM) Core Observatory. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  9. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-27

    Caroline Kennedy, U.S. Ambassador Extraordinary and Plenipotentiary to Japan, right, is welcomed by Japan Aerospace Exploration Agency (JAXA), President, Naoki Okumura, at the Tanegashima Space Center Visitors Center on Thursday, Feb. 27, 2014, Tanegashima, Japan. The Ambassador is visiting the space center and hopes to witness the planned launch of a Japanese H-IIA rocket carrying the NASA-JAXA, Global Precipitation Measurement (GPM) Core Observatory. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  10. Electromagnetic Navigation Diagnostic Bronchoscopy

    PubMed Central

    Gildea, Thomas R.; Mazzone, Peter J.; Karnak, Demet; Meziane, Moulay; Mehta, Atul C.

    2006-01-01

    Rationale: Electromagnetic navigation bronchoscopy using superDimension/Bronchus System is a novel method to increase diagnostic yield of peripheral and mediastinal lung lesions. Objectives: A prospective, open label, single-center, pilot study was conducted to determine the ability of electromagnetic navigation bronchoscopy to sample peripheral lung lesions and mediastinal lymph nodes with standard bronchoscopic instruments and demonstrate safety. Methods: Electromagnetic navigation bronchoscopy was performed using the superDimension/Bronchus system consisting of electromagnetic board, position sensor encapsulated in the tip of a steerable probe, extended working channel, and real-time reconstruction of previously acquired multiplanar computed tomography images. The final distance of the steerable probe to lesion, expected error based on the actual and virtual markers, and procedure yield was gathered. Measurements: 60 subjects were enrolled between December 2004 and September 2005. Mean navigation times were 7 ± 6 min and 2 ± 2 min for peripheral lesions and lymph nodes, respectively. The steerable probe tip was navigated to the target lung area in all cases. The mean peripheral lesions and lymph nodes size was 22.8 ± 12.6 mm and 28.1 ± 12.8 mm. Yield was determined by results obtained during the bronchoscopy per patient. Results: The yield/procedure was 74% and 100% for peripheral lesions and lymph nodes, respectively. A diagnosis was obtained in 80.3% of bronchoscopic procedures. A definitive diagnosis of lung malignancy was made in 74.4% of subjects. Pneumothorax occurred in two subjects. Conclusion: Electromagnetic navigation bronchoscopy is a safe method for sampling peripheral and mediastinal lesions with high diagnostic yield independent of lesion size and location. PMID:16873767

  11. 46 CFR 111.75-17 - Navigation lights.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Navigation lights. 111.75-17 Section 111.75-17 Shipping... REQUIREMENTS Lighting Circuits and Protection § 111.75-17 Navigation lights. Each navigation light system must...-5(a) of this chapter, each navigation light panel must be supplied by a feeder from the emergency...

  12. 46 CFR 111.75-17 - Navigation lights.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Navigation lights. 111.75-17 Section 111.75-17 Shipping... REQUIREMENTS Lighting Circuits and Protection § 111.75-17 Navigation lights. Each navigation light system must...-5(a) of this chapter, each navigation light panel must be supplied by a feeder from the emergency...

  13. 46 CFR 111.75-17 - Navigation lights.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Navigation lights. 111.75-17 Section 111.75-17 Shipping... REQUIREMENTS Lighting Circuits and Protection § 111.75-17 Navigation lights. Each navigation light system must...-5(a) of this chapter, each navigation light panel must be supplied by a feeder from the emergency...

  14. 46 CFR 111.75-17 - Navigation lights.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Navigation lights. 111.75-17 Section 111.75-17 Shipping... REQUIREMENTS Lighting Circuits and Protection § 111.75-17 Navigation lights. Each navigation light system must...-5(a) of this chapter, each navigation light panel must be supplied by a feeder from the emergency...

  15. 46 CFR 111.75-17 - Navigation lights.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Navigation lights. 111.75-17 Section 111.75-17 Shipping... REQUIREMENTS Lighting Circuits and Protection § 111.75-17 Navigation lights. Each navigation light system must...-5(a) of this chapter, each navigation light panel must be supplied by a feeder from the emergency...

  16. Sex differences in navigation strategy and efficiency.

    PubMed

    Boone, Alexander P; Gong, Xinyi; Hegarty, Mary

    2018-05-22

    Research on human navigation has indicated that males and females differ in self-reported navigation strategy as well as objective measures of navigation efficiency. In two experiments, we investigated sex differences in navigation strategy and efficiency using an objective measure of strategy, the dual-solution paradigm (DSP; Marchette, Bakker, & Shelton, 2011). Although navigation by shortcuts and learned routes were the primary strategies used in both experiments, as in previous research on the DSP, individuals also utilized route reversals and sometimes found the goal location as a result of wandering. Importantly, sex differences were found in measures of both route selection and navigation efficiency. In particular, males were more likely to take shortcuts and reached their goal location faster than females, while females were more likely to follow learned routes and wander. Self-report measures of strategy were only weakly correlated with objective measures of strategy, casting doubt on their usefulness. This research indicates that the sex difference in navigation efficiency is large, and only partially related to an individual's navigation strategy as measured by the dual-solution paradigm.

  17. Celestial Navigation in the USA, Fiji, and Tunisia

    NASA Astrophysics Data System (ADS)

    Holbrook, Jarita C.

    2015-05-01

    Today there are many coastal communities that are home to navigators who use stars for position finding at night; I was, however, unaware of this fact when I began researching celestial navigation practices in 1997. My project focused on three communities: the Moce Islanders of Fiji, the Kerkennah Islanders in Tunisia, and the U.S. Navy officers and students at the United States Naval Academy, Annapolis, Maryland. My goal was to answer the question of why people continue to navigate by the stars, but also to understand the role of technology in their navigation practices. Using anthropology techniques of ethnography including participant observation, formal and informal interviews, audio and videotaping, I gathered data over five years at the three communities. I began by learning the details of how they use the stars for navigation. Next, I learned about who did the navigation and where they learned to navigate. I gathered opinions on various navigation aids and instruments, and opinions about the future of using the stars for navigation. I listened to the stories that they told about navigating. In the United States I worked in English, in Fiji, in Fijian and English, and in Tunisia, French and English. For the formal interviews I worked with translators. The navigators use stars for navigating today but the future of their techniques is not certain. Though practiced today, these celestial navigation traditions have undergone and continue to undergo changes. New navigational technologies are part of the stimulation for change, thus 'a meeting of different worlds' is symbolized by peoples encounters with these technologies.

  18. Navigational Strategies and Their Neural Correlates

    PubMed Central

    Deshmukh, Sachin S.

    2018-01-01

    Animals depend on navigation to find food, water, mate(s), shelter, etc. Different species use diverse strategies that utilise forms of motion- and location-related information derived from the environment to navigate to their goals and back. We start by describing behavioural studies undertaken to unearth different strategies used in navigation. Then we move on to outline what we know about the brain area most associated with spatial navigation, namely the hippocampal formation. While doing so, we first briefly explain the anatomical connections in the area and then proceed to describe the neural correlates that are considered to play a role in navigation. We conclude by looking at how the strategies might interact and complement each other in certain contexts. PMID:29657367

  19. Population structure in Japanese rice population

    PubMed Central

    Yamasaki, Masanori; Ideta, Osamu

    2013-01-01

    It is essential to elucidate genetic diversity and relationships among even related individuals and populations for plant breeding and genetic analysis. Since Japanese rice breeding has improved agronomic traits such as yield and eating quality, modern Japanese rice cultivars originated from narrow genetic resource and closely related. To resolve the population structure and genetic diversity in Japanese rice population, we used a total of 706 alleles detected by 134 simple sequence repeat markers in a total of 114 cultivars composed of 94 improved varieties and 20 landraces, which are representative and important for Japanese rice breeding. The landraces exhibit greater gene diversity than improved lines, suggesting that landraces can provide additional genetic diversity for future breeding. Model-based Bayesian clustering analysis revealed six subgroups and admixture situation in the cultivars, showing good agreement with pedigree information. This method could be superior to phylogenetic method in classifying a related population. The leading Japanese rice cultivar, Koshihikari is unique due to the specific genome constitution. We defined Japanese rice diverse sets that capture the maximum number of alleles for given sample sizes. These sets are useful for a variety of genetic application in Japanese rice cultivars. PMID:23641181

  20. Globalization and Educational Reform in Contemporary Japan

    ERIC Educational Resources Information Center

    Qi, Jie; Zhang, Sheng Ping

    2008-01-01

    This study explores the notions of globalization as embodied in Japanese educational reforms. Modern institutional discourses of educational reform in Japan have shifted over time and all of these reform movements have been constructed by particular social and historical trajectories. Generally speaking, it has been taken for granted that the…

  1. The Impact of the Global Financial Crisis on Japan's Higher Education

    ERIC Educational Resources Information Center

    Huang, Futao

    2011-01-01

    This paper deals with the impact of the global financial crisis on Japan's economy, especially on its higher education. The first section provides an overview of Japan's national economy with a focus on the impact of the global financial crisis on the national economy, then the author touches on the impact on the Japanese government's finances,…

  2. Non-Native Japanese Listeners' Perception of Vowel Length Contrasts in Japanese and Modern Standard Arabic (MSA)

    ERIC Educational Resources Information Center

    Tsukada, Kimiko

    2012-01-01

    This study aimed to compare the perception of short vs. long vowel contrasts in Japanese and Modern Standard Arabic (MSA) by four groups of listeners differing in their linguistic backgrounds: native Arabic (NA), native Japanese (NJ), non-native Japanese (NNJ) and Australian English (OZ) speakers. The NNJ and OZ groups shared the first language…

  3. Navigation for the new millennium: Autonomous navigation for Deep Space 1

    NASA Technical Reports Server (NTRS)

    Reidel, J. E.; Bhaskaran, S.; Synnott, S. P.; Desai, S. D.; Bollman, W. E.; Dumont, P. J.; Halsell, C. A.; Han, D.; Kennedy, B. M.; Null, G. W.; hide

    1997-01-01

    The autonomous optical navigation system technology for the Deep Space 1 (DS1) mission is reported on. The DS1 navigation system will be the first to use autonomous navigation in deep space. The systems tasks are to: perform interplanetary cruise orbit determination using images of distant asteroids; control and maintain the orbit of the spacecraft with an ion propulsion system and conventional thrusters, and perform late knowledge updates of target position during close flybys in order to facilitate high quality data return from asteroid MaAuliffe and comet West-Kohoutek-Ikemura. To accomplish these tasks, the following functions are required: picture planning; image processing; dynamical modeling and integration; planetary ephemeris and star catalog handling; orbit determination; data filtering and estimation; maneuver estimation, and spacecraft ephemeris updating. These systems and functions are described and preliminary performance data are presented.

  4. 32 CFR 644.3 - Navigation projects.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 4 2013-07-01 2013-07-01 false Navigation projects. 644.3 Section 644.3... ESTATE HANDBOOK Project Planning Civil Works § 644.3 Navigation projects. (a) Land to be acquired in fee..., and temporary construction and borrow areas. (3) In navigation-only projects, the right to permanently...

  5. Design of all-weather celestial navigation system

    NASA Astrophysics Data System (ADS)

    Sun, Hongchi; Mu, Rongjun; Du, Huajun; Wu, Peng

    2018-03-01

    In order to realize autonomous navigation in the atmosphere, an all-weather celestial navigation system is designed. The research of celestial navigation system include discrimination method of comentropy and the adaptive navigation algorithm based on the P value. The discrimination method of comentropy is studied to realize the independent switching of two celestial navigation modes, starlight and radio. Finally, an adaptive filtering algorithm based on P value is proposed, which can greatly improve the disturbance rejection capability of the system. The experimental results show that the accuracy of the three axis attitude is better than 10″, and it can work all weather. In perturbation environment, the position accuracy of the integrated navigation system can be increased 20% comparing with the traditional method. It basically meets the requirements of the all-weather celestial navigation system, and it has the ability of stability, reliability, high accuracy and strong anti-interference.

  6. Navigation Algorithms for the SeaWiFS Mission

    NASA Technical Reports Server (NTRS)

    Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Patt, Frederick S.; McClain, Charles R. (Technical Monitor)

    2002-01-01

    The navigation algorithms for the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) were designed to meet the requirement of 1-pixel accuracy-a standard deviation (sigma) of 2. The objective has been to extract the best possible accuracy from the spacecraft telemetry and avoid the need for costly manual renavigation or geometric rectification. The requirement is addressed by postprocessing of both the Global Positioning System (GPS) receiver and Attitude Control System (ACS) data in the spacecraft telemetry stream. The navigation algorithms described are separated into four areas: orbit processing, attitude sensor processing, attitude determination, and final navigation processing. There has been substantial modification during the mission of the attitude determination and attitude sensor processing algorithms. For the former, the basic approach was completely changed during the first year of the mission, from a single-frame deterministic method to a Kalman smoother. This was done for several reasons: a) to improve the overall accuracy of the attitude determination, particularly near the sub-solar point; b) to reduce discontinuities; c) to support the single-ACS-string spacecraft operation that was started after the first mission year, which causes gaps in attitude sensor coverage; and d) to handle data quality problems (which became evident after launch) in the direct-broadcast data. The changes to the attitude sensor processing algorithms primarily involved the development of a model for the Earth horizon height, also needed for single-string operation; the incorporation of improved sensor calibration data; and improved data quality checking and smoothing to handle the data quality issues. The attitude sensor alignments have also been revised multiple times, generally in conjunction with the other changes. The orbit and final navigation processing algorithms have remained largely unchanged during the mission, aside from refinements to data quality checking

  7. Simulation of a navigator algorithm for a low-cost GPS receiver

    NASA Technical Reports Server (NTRS)

    Hodge, W. F.

    1980-01-01

    The analytical structure of an existing navigator algorithm for a low cost global positioning system receiver is described in detail to facilitate its implementation on in-house digital computers and real-time simulators. The material presented includes a simulation of GPS pseudorange measurements, based on a two-body representation of the NAVSTAR spacecraft orbits, and a four component model of the receiver bias errors. A simpler test for loss of pseudorange measurements due to spacecraft shielding is also noted.

  8. Guidewire navigation in coronary artery stenoses using a novel magnetic navigation system: first clinical experience.

    PubMed

    Tsuchida, Keiichi; García-García, Héctor M; van der Giessen, Willem J; McFadden, Eugène P; van der Ent, Martin; Sianos, Georgios; Meulenbrug, Hans; Ong, Andrew T L; Serruys, Patrick W

    2006-03-01

    The objective of this study was to investigate the efficacy of guidewire navigation across coronary artery stenoses using magnetic navigation system (MNS) versus conventional navigation. The MNS is a novel option to facilitate access to target lesions, particularly in tortuous vessels. In an experimental study using a challenging vessel phantom, magnetic-navigated guidewire passage has been reported to reduce fluoroscopy and procedure time significantly. Both magnetic and manual guidewire navigation were attempted in 21 consecutive diseased coronary arteries. The study endpoint was defined as an intraluminal wire position distal to the stenosis. Procedural success was defined as successful guidewire passage without procedural events. Procedure time, amount of contrast, fluoroscopy time, and radiation dose/area product (DAP) were evaluated. There were no procedural events related to either guidewire. Although the lesions attempted had relatively simple and straightforward characteristics, significantly shorter procedure and fluoroscopy time were observed for manual guidewire navigation compared to MNS (median, 40 vs. 120 sec, P=0.001; 38 vs. 105 sec, P=0.001, respectively). Contrast amount and DAP were higher in MNS than in conventional method (median, 13 vs. 9 ml, P=0.018; 215 vs. 73 Gym2, P=0.002, respectively). The magnetic wire did not cross in two vessels. Guidewire navigation using MNS presented a novel, safe, and feasible approach to address coronary artery lesions. Clinical studies are needed to evaluate the potential benefit of the MNS in more complex coronary lesions and tortuous anatomy. Copyright (c) 2006 Wiley-Liss, Inc.

  9. An on-line monitoring system for navigation equipment

    NASA Astrophysics Data System (ADS)

    Wang, Bo; Yang, Ping; Liu, Jing; Yang, Zhengbo; Liang, Fei

    2017-10-01

    Civil air navigation equipment is the most important infrastructure of Civil Aviation, which is closely related to flight safety. In addition to regular flight inspection, navigation equipment's patrol measuring, maintenance measuring, running measuring under special weather conditions are the important means of ensuring aviation flight safety. According to the safety maintenance requirements of Civil Aviation Air Traffic Control navigation equipment, this paper developed one on-line monitoring system with independent intellectual property rights for navigation equipment, the system breakthroughs the key technologies of measuring navigation equipment on-line including Instrument Landing System (ILS) and VHF Omni-directional Range (VOR), which also meets the requirements of navigation equipment ground measurement set by the ICAO DOC 8071, it provides technical means of the ground on-line measurement for navigation equipment, improves the safety of navigation equipment operation, and reduces the impact of measuring navigation equipment on airport operation.

  10. Body composition and anthropometry in Japanese and Australian Caucasian males and Japanese females.

    PubMed

    Kagawa, Masaharu; Binns, Colin B; Hills, Andrew P

    2007-01-01

    The total amount and location of fat deposition are important factors in the development of obesity and the metabolic syndrome. To date there have been no reported studies of ethnic and gender differences in body composition and fat distribution patterns in Japanese and Australian young adults. The aim of this study was to assess body composition of young Japanese and Australian Caucasian adults using whole-body dual energy x-ray absorptiometry (DXA) and anthropometry to examine body fat deposition patterns. Body composition of 45 Japanese males and 42 Australian Caucasian males living in Australia (aged 18-40 years) and 139 Japanese females living in Japan (aged 18-27 years) were measured using whole-body DXA scanning and anthropometry. Differences in relationships between BMI and waist circumference (WC), sum of skinfolds (SigmaSF) and %BF obtained from DXA were assessed using multivariate analyses. Distinct gender and ethnic differences (p<0.05) in bone density and waist circumference were observed but no gender differences in BMI and bone mineral content and no ethnic differences in sum of skinfolds and %BF. Both Japanese males and females showed a greater %BF at given BMI, WC and SigmaSF values (p<0.05). The results indicate differences in relationships between %BF and anthropometric measures in young Japanese compared to Caucasians and the importance of population-specific cut-off points for these indices. These findings also have implications for the development of chronic disease and further research, including studies in other Asian countries, is recommended.

  11. The Japanese containerless experiments

    NASA Technical Reports Server (NTRS)

    Azuma, Hisao

    1990-01-01

    There are three sets of Japanese containerless experiments. The first is Drop dynamics research. It consists of acoustic levitation and large amplitude drop oscillation. The second is Optical materials processing in an acoustic levitation furnace. And the third is Electrostatic levitator development by two different Japanese companies.

  12. How Philip Morris unlocked the Japanese cigarette market: lessons for global tobacco control

    PubMed Central

    Lambert, A; Sargent, J; Glantz, S; Ling, P

    2004-01-01

    Background: The Framework Convention on Tobacco Control includes tobacco advertising restrictions that are strongly opposed by the tobacco industry. Marketing strategies used by transnational tobacco companies to open the Japanese market in the absence of such restrictions are described. Methods: Analysis of internal company documents. Findings: Between 1982 and 1987 transnational tobacco companies influenced the Japanese government through the US Trade Representative to open distribution networks and eliminate advertising restrictions. US cigarette exports to Japan increased 10-fold between 1985 and 1996. Television advertising was central to opening the market by projecting a popular image (despite a small actual market share) to attract existing smokers, combined with hero-centred advertisements to attract new smokers. Philip Morris's campaigns featured Hollywood movie personalities popular with young men, including James Coburn, Pierce Brosnan, Roger Moore, and Charlie Sheen. Event sponsorships allowed television access despite restrictions. When reinstatement of television restrictions was threatened in the late 1980s, Philip Morris more than doubled its television advertising budget and increased sponsorship of televised events. By adopting voluntary advertising standards, transnational companies delayed a television advertising ban for over a decade. Conclusions: Television image advertising was important to establish a market, and it has been enhanced using Hollywood personalities. Television advertising bans are essential measures to prevent industry penetration of new markets, and are less effective without concurrent limits on sponsorship and promotion. Comprehensive advertising restrictions, as included in the Framework Convention for Tobacco Control, are vital for countries where transnational tobacco companies have yet to penetrate the market. PMID:15564622

  13. How Philip Morris unlocked the Japanese cigarette market: lessons for global tobacco control.

    PubMed

    Lambert, A; Sargent, J D; Glantz, S A; Ling, P M

    2004-12-01

    The Framework Convention on Tobacco Control includes tobacco advertising restrictions that are strongly opposed by the tobacco industry. Marketing strategies used by transnational tobacco companies to open the Japanese market in the absence of such restrictions are described. Analysis of internal company documents. Between 1982 and 1987 transnational tobacco companies influenced the Japanese government through the US Trade Representative to open distribution networks and eliminate advertising restrictions. US cigarette exports to Japan increased 10-fold between 1985 and 1996. Television advertising was central to opening the market by projecting a popular image (despite a small actual market share) to attract existing smokers, combined with hero-centred advertisements to attract new smokers. Philip Morris's campaigns featured Hollywood movie personalities popular with young men, including James Coburn, Pierce Brosnan, Roger Moore, and Charlie Sheen. Event sponsorships allowed television access despite restrictions. When reinstatement of television restrictions was threatened in the late 1980s, Philip Morris more than doubled its television advertising budget and increased sponsorship of televised events. By adopting voluntary advertising standards, transnational companies delayed a television advertising ban for over a decade. Television image advertising was important to establish a market, and it has been enhanced using Hollywood personalities. Television advertising bans are essential measures to prevent industry penetration of new markets, and are less effective without concurrent limits on sponsorship and promotion. Comprehensive advertising restrictions, as included in the Framework Convention for Tobacco Control, are vital for countries where transnational tobacco companies have yet to penetrate the market.

  14. Patient Navigation Improves Subsequent Breast Cancer Screening After a Noncancerous Result: Evidence from the Patient Navigation in Medically Underserved Areas Study.

    PubMed

    Molina, Yamile; Kim, Sage J; Berrios, Nerida; Glassgow, Anne Elizabeth; San Miguel, Yazmin; Darnell, Julie S; Pauls, Heather; Vijayasiri, Ganga; Warnecke, Richard B; Calhoun, Elizabeth A

    2018-03-01

    Past efforts to assess patient navigation on cancer screening utilization have focused on one-time uptake, which may not be sufficient in the long term. This is partially due to limited resources for in-person, longitudinal patient navigation. We examine the effectiveness of a low-intensity phone- and mail-based navigation on multiple screening episodes with a focus on screening uptake after receiving noncancerous results during a previous screening episode. The is a secondary analysis of patients who participated in a randomized controlled patient navigation trial in Chicago. Participants include women referred for a screening mammogram, aged 50-74 years, and with a history of benign/normal screening results. Navigation services focused on identification of barriers and intervention via shared decision-making processes. A multivariable logistic regression intent-to-treat model was used to examine differences in odds of obtaining a screening mammogram within 2 years of the initial mammogram (yes/no) between navigated and non-navigated women. Sensitivity analyses were conducted to explore patterns across subsets of participants (e.g., navigated women successfully contacted before the initial appointment; women receiving care at Hospital C). The final sample included 2,536 women (741 navigated, 1,795 non-navigated). Navigated women exhibited greater odds of obtaining subsequent screenings relative to women in the standard care group in adjusted models and analyses including women who received navigation before the initial appointment. Our findings suggest that low-intensity navigation services can improve follow-up screening among women who receive a noncancerous result. Further investigation is needed to confirm navigation's impacts on longitudinal screening.

  15. Intercultural Communication Problems in Japanese Multinationals.

    ERIC Educational Resources Information Center

    Nishiyama, Kazuo

    Many large Japanese-owned multinational corporations have established successful subsidiaries in the United States, but distinct ethnic and cultural differences have caused communication problems between Japanese managers and American laborers and business people. Many top executives of the Japanese subsidiaries are sent to the United States on a…

  16. Shattering Myths: Japanese American Educational Issues.

    ERIC Educational Resources Information Center

    Yoshiwara, Florence M.

    An historical review of the immigration and resettlement patterns, and a demographic profile of Japanese Americans reveals a myth of the "successful minority." Since the founding of the Japanese American Citizens League in 1928, Japanese Americans have defeated alien land laws, discriminatory immigration quotas, anti-miscengenation laws,…

  17. [History of Japanese Committee for Anatomical Nomenclature].

    PubMed

    Kimura, Kunihiko

    2008-12-01

    This paper records a history of the Japanese Committee of Anatomical Nomenclature since 1990, as a supplement to the previous report (1991), explains a progressing of the edition of Japanese medical terms by the Japanese Association of Medical Sciences and the Ministry of Education, Sciences and Culture, and points out of some problems on terms in Japanese.

  18. Honeybees consolidate navigation memory during sleep.

    PubMed

    Beyaert, Lisa; Greggers, Uwe; Menzel, Randolf

    2012-11-15

    Sleep is known to support memory consolidation in animals, including humans. Here we ask whether consolidation of novel navigation memory in honeybees depends on sleep. Foragers were exposed to a forced navigation task in which they learned to home more efficiently from an unexpected release site by acquiring navigational memory during the successful homing flight. This task was quantified using harmonic radar tracking and applied to bees that were equipped with a radio frequency identification device (RFID). The RFID was used to record their outbound and inbound flights and continuously monitor their behavior inside the colony, including their rest during the day and sleep at night. Bees marked with the RFID behaved normally inside and outside the hive. Bees slept longer during the night following forced navigation tasks, but foraging flights of different lengths did not lead to different rest times during the day or total sleep time during the night. Sleep deprivation before the forced navigation task did not alter learning and memory acquired during the task. However, sleep deprivation during the night after forced navigation learning reduced the probability of returning successfully to the hive from the same release site. It is concluded that consolidation of novel navigation memory is facilitated by night sleep in bees.

  19. 32 CFR 644.3 - Navigation Projects.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Navigation Projects. 644.3 Section 644.3 National... HANDBOOK Project Planning Civil Works § 644.3 Navigation Projects. (a) Land to be acquired in fee. All... construction and borrow areas. (3) In navigation-only projects, the right to permanently flood should be...

  20. 32 CFR 644.3 - Navigation projects.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 4 2014-07-01 2013-07-01 true Navigation projects. 644.3 Section 644.3 National... HANDBOOK Project Planning Civil Works § 644.3 Navigation projects. (a) Land to be acquired in fee. All... construction and borrow areas. (3) In navigation-only projects, the right to permanently flood should be...