Sample records for japanese lunar polar

  1. Computer simulating observations of the Lunar physical libration for the Japanese Lunar project ILOM

    NASA Astrophysics Data System (ADS)

    Petrova, Natalia; Hanada, Hideo

    2010-05-01

    In the frame of the second stage of the Japanese space mission SELENE-2 (Hanada et al. 2009) the project ILOM (In-situ Lunar Orientation Measurement) planned after 2017years is a kind of instrument for positioning on the Moon. It will be set near the lunar pole and will determine parameters of lunar physical libration by positioning of several tens of stars in the field of view regularly for longer than one year. Presented work is dedicated to analyses of computer simulating future observations. It's proposed that for every star crossing lunar prime meridian its polar distance will be to measure. The methods of optimal star observation are being developed for the future experiment. The equations are constructed to determine libration angles ? (t),ρ(t),σ(t)- on the basis of observed polar distances pobs: (| f1(?,ρ,Iσ,pobs) = 0 |{ f2(?,ρ,Iσ,pobs) = 0 | f3(?,ρ,Iσ,pobs) = 0 |( or f(X) = 0, where ; f = ? f1 ? | f2 | |? f3 |? X = ? ? ? | ρ | |? Iσ |? (1) At the present stage we have developed the software for selection of stars for these future polar observations. Stars were taken from various stellar catalogues, such as the UCAC2-BSS, Hipparcos, Tycho and FK6. The software reduces ICRS coordinates of star to selenographical system at the epoch of observation (Petrova et al., 2009). For example, to the epochs 2017 - 2018 more than 50 stars brighter than m = 12 were selected for the northern pole. In total, these stars give about 600 crossings of the prime meridian during one year. Nevertheless, only a few stars (2-5) may be observed in a vicinity of the one moment. This is not enough to have sufficient sample to exclude various kind of errors. The software includes programmes which can determine the moment of transition of star across the meridian and theoretical values of libration angles at this moments. A serious problem arises when we try to solve equations (1) with the purpose to determine libration angles on the basis of simulated pobs.. Polar distances

  2. Lunar Polar Coring Lander

    NASA Technical Reports Server (NTRS)

    Angell, David; Bealmear, David; Benarroche, Patrice; Henry, Alan; Hudson, Raymond; Rivellini, Tommaso; Tolmachoff, Alex

    1990-01-01

    Plans to build a lunar base are presently being studied with a number of considerations. One of the most important considerations is qualifying the presence of water on the Moon. The existence of water on the Moon implies that future lunar settlements may be able to use this resource to produce things such as drinking water and rocket fuel. Due to the very high cost of transporting these materials to the Moon, in situ production could save billions of dollars in operating costs of the lunar base. Scientists have suggested that the polar regions of the Moon may contain some amounts of water ice in the regolith. Six possible mission scenarios are suggested which would allow lunar polar soil samples to be collected for analysis. The options presented are: remote sensing satellite, two unmanned robotic lunar coring missions (one is a sample return and one is a data return only), two combined manned and robotic polar coring missions, and one fully manned core retrieval mission. One of the combined manned and robotic missions has been singled out for detailed analysis. This mission proposes sending at least three unmanned robotic landers to the lunar pole to take core samples as deep as 15 meters. Upon successful completion of the coring operations, a manned mission would be sent to retrieve the samples and perform extensive experiments of the polar region. Man's first step in returning to the Moon is recommended to investigate the issue of lunar polar water. The potential benefits of lunar water more than warrant sending either astronauts, robots or both to the Moon before any permanent facility is constructed.

  3. A lunar polar expedition

    NASA Technical Reports Server (NTRS)

    Dowling, Richard; Staehle, Robert L.; Svitek, Tomas

    1992-01-01

    Advanced exploration and development in harsh environments require mastery of basic human survival skill. Expeditions into the lethal climates of Earth's polar regions offer useful lessons for tommorrow's lunar pioneers. In Arctic and Antarctic exploration, 'wintering over' was a crucial milestone. The ability to establish a supply base and survive months of polar cold and darkness made extensive travel and exploration possible. Because of the possibility of near-constant solar illumination, the lunar polar regions, unlike Earth's may offer the most hospitable site for habitation. The World Space Foundation is examining a scenario for establishing a five-person expeditionary team on the lunar north pole for one year. This paper is a status report on a point design addressing site selection, transportation, power, and life support requirements.

  4. Possibilities of lunar polar orbiter

    NASA Astrophysics Data System (ADS)

    Iwata, T.; Nagatomo, M.

    This paper describes the concept of a lunar polar orbiter (LPO), which will map the surface of the moon, especially its polar region and the far side, and send precise images of various wave lengths to earth. The primary purpose of the LPO is to identify global and local structures of lunar resources and topography and to search for a suitable site for the manned lunar base projected for next century. The concept of the LPO is based on the H-II rocket (which has a launch capability to send a rover/lander of one metric ton to the lunar surface) and earth observation technology of Japan.

  5. Lunar true polar wander inferred from polar hydrogen.

    PubMed

    Siegler, M A; Miller, R S; Keane, J T; Laneuville, M; Paige, D A; Matsuyama, I; Lawrence, D J; Crotts, A; Poston, M J

    2016-03-24

    The earliest dynamic and thermal history of the Moon is not well understood. The hydrogen content of deposits near the lunar poles may yield insight into this history, because these deposits (which are probably composed of water ice) survive only if they remain in permanent shadow. If the orientation of the Moon has changed, then the locations of the shadowed regions will also have changed. The polar hydrogen deposits have been mapped by orbiting neutron spectrometers, and their observed spatial distribution does not match the expected distribution of water ice inferred from present-day lunar temperatures. This finding is in contrast to the distribution of volatiles observed in similar thermal environments at Mercury's poles. Here we show that polar hydrogen preserves evidence that the spin axis of the Moon has shifted: the hydrogen deposits are antipodal and displaced equally from each pole along opposite longitudes. From the direction and magnitude of the inferred reorientation, and from analysis of the moments of inertia of the Moon, we hypothesize that this change in the spin axis, known as true polar wander, was caused by a low-density thermal anomaly beneath the Procellarum region. Radiogenic heating within this region resulted in the bulk of lunar mare volcanism and altered the density structure of the Moon, changing its moments of inertia. This resulted in true polar wander consistent with the observed remnant polar hydrogen. This thermal anomaly still exists and, in part, controls the current orientation of the Moon. The Procellarum region was most geologically active early in lunar history, which implies that polar wander initiated billions of years ago and that a large portion of the measured polar hydrogen is ancient, recording early delivery of water to the inner Solar System. Our hypothesis provides an explanation for the antipodal distribution of lunar polar hydrogen, and connects polar volatiles to the geologic and geophysical evolution of the Moon

  6. Development of Precise Lunar Orbit Propagator and Lunar Polar Orbiter's Lifetime Analysis

    NASA Astrophysics Data System (ADS)

    Song, Young-Joo; Park, Sang-Young; Kim, Hae-Dong; Sim, Eun-Sup

    2010-06-01

    To prepare for a Korean lunar orbiter mission, a precise lunar orbit propagator; Yonsei precise lunar orbit propagator (YSPLOP) is developed. In the propagator, accelerations due to the Moon's non-spherical gravity, the point masses of the Earth, Moon, Sun, Mars, Jupiter and also, solar radiation pressures can be included. The developed propagator's performance is validated and propagation errors between YSPOLP and STK/Astrogator are found to have about maximum 4-m, in along-track direction during 30 days (Earth's time) of propagation. Also, it is found that the lifetime of a lunar polar orbiter is strongly affected by the different degrees and orders of the lunar gravity model, by a third body's gravitational attractions (especially the Earth), and by the different orbital inclinations. The reliable lifetime of circular lunar polar orbiter at about 100 km altitude is estimated to have about 160 days (Earth's time). However, to estimate the reasonable lifetime of circular lunar polar orbiter at about 100 km altitude, it is strongly recommended to consider at least 50 × 50 degrees and orders of the lunar gravity field. The results provided in this paper are expected to make further progress in the design fields of Korea's lunar orbiter missions.

  7. Moonraker and Tetris: Japanese Microrovers for Lunar Cave Exploration

    NASA Astrophysics Data System (ADS)

    Yoshida, K.; Britton, N.; Walker, J.; Shimizu, T.; Tanaka, T.; Hakamada, T.

    2015-10-01

    A Japanese team HAKUTO is developing a robotic system for exploration of Lunar lava tubes. Motivated by Google Lunar XPRIZE that requires 500 m travel on any surface of Moon, but the team plans to go down into a skylight in Lacus Mortis.

  8. Hydrogen Distribution in the Lunar Polar Regions

    NASA Technical Reports Server (NTRS)

    Sanin, A. B.; Mitrofanov, I. G.; Litvak, M. L.; Bakhtin, B. N.; Bodnarik, J. G.; Boynton, W. V.; Chin, G.; Evans, L. G.; Harshmann, K.; Fedosov, F.; hide

    2016-01-01

    We present a method of conversion of the lunar neutron counting rate measured by the Lunar Reconnaissance Orbiter (LRO) Lunar Exploration Neutron Detector (LEND) instrument collimated neutron detectors, to water equivalent hydrogen (WEH) in the top approximately 1 m layer of lunar regolith. Polar maps of the Moon’s inferred hydrogen abundance are presented and discussed.

  9. Rover Traverse Planning to Support a Lunar Polar Volatiles Mission

    NASA Technical Reports Server (NTRS)

    Heldmann, J.L.; Colaprete, A.C.; Elphic, R. C.; Bussey, B.; McGovern, A.; Beyer, R.; Lees, D.; Deans, M. C.; Otten, N.; Jones, H.; hide

    2015-01-01

    Studies of lunar polar volatile depositsare of interest for scientific purposes to understandthe nature and evolution of the volatiles, and alsofor exploration reasons as a possible in situ resource toenable long term exploration and settlement of theMoon. Both theoretical and observational studies havesuggested that significant quantities of volatiles exist inthe polar regions, although the lateral and horizontaldistribution remains unknown at the km scale and finerresolution. A lunar polar rover mission is required tofurther characterize the distribution, quantity, andcharacter of lunar polar volatile deposits at thesehigher spatial resolutions. Here we present two casestudies for NASA’s Resource Prospector (RP) missionconcept for a lunar polar rover and utilize this missionarchitecture and associated constraints to evaluatewhether a suitable landing site exists to support an RPflight mission.

  10. Lunar polar ice deposits: scientific and utilization objectives of the Lunar Ice Discovery Mission proposal.

    PubMed

    Duke, Michael B

    2002-03-01

    The Clementine mission has revived interest in the possibility that ice exists in shadowed craters near the lunar poles. Theoretically, the problem is complex, with several possible sources of water (meteoroid, asteroid, comet impact), several possible loss mechanisms (impact vaporization, sputtering, photoionization), and burial by meteorite impact. Opinions of modelers have ranged from no ice to several times 10(16) g of ice in the cold traps. Clementine bistatic radar data have been interpreted in favor of the presence of ice, while Arecibo radar data do not confirm its presence. The Lunar Prospector mission, planned to be flown in the fall of 1997, could gather new evidence for the existence of ice. If ice is present, both scientific and utilitarian objectives would be addressed by a lunar polar rover, such as that proposed to the NASA Discovery program, but not selected. The lunar polar rover remains the best way to understand the distribution and characteristics of lunar polar ice. c2002 International Astronautical Federation. Published by Elsevier Science Ltd. All rights reserved.

  11. Lunar Polar Cold Traps: Spatial Distribution and Temperatures

    NASA Astrophysics Data System (ADS)

    Paige, David A.; Siegler, M.; Lawrence, D. J.

    2006-09-01

    We have developed a ray-tracing and radiosity model that can accurately calculate lunar surface and subsurface temperatures for arbitrary topography. Using available digital elevation models for the lunar north and south polar regions derived from Clementine laser altimeter and image data, as well as ground-based radar data, we have calculated lunar surface and subsurface temperatures at 2 km resolution that include full effects of indirect solar and infrared radiation due to topography. We compare our thermal model results with maps of epithermal neutron flux measured by Lunar Prospector. When we use the ray tracing and thermal model to account for the effects of temperature and topography on the neutron measurements, our results show that the majority of the moon's polar cold traps are not filled with water ice.

  12. Hidden in the Neutrons: Physical Evidence for Lunar True Polar Wander

    NASA Astrophysics Data System (ADS)

    Keane, J. T.; Siegler, M. A.; Miller, R. S.; Laneuville, M.; Paige, D. A.; Matsuyama, I.; Lawrence, D. J.; Crotts, A.; Poston, M.

    2015-12-01

    Airless bodies like the Moon are time capsules of planetary and solar system evolution. Lunar polar ices, in particular, record a history of volatile delivery, orbital dynamics, and solar system chemistry. However, despite two decades of orbital geochemistry measurements, the observed abundances and spatial distribution of lunar polar volatiles (likely water ice, as inferred by epithermal neutron deficits) remain unexplained. The observed deposits do not correlate with measured surface temperatures or thermal models of ice stability and are notably asymmetric about the lunar poles, with the peak abundance offset from the present-day pole by 5°. Here we show, for the first time, that polar volatile deposits at the North and South pole are antipodal, displaced equally from each each pole along opposite longitudes. These off-polar volatiles likely represent fossilized cold-traps, formed when the moon had a different spin pole. Reorientation of the Moon from this paleopole to the present pole (i.e. true polar wander) altered the locations of cold-traps and resulted in the asymmetric, but antipodal, polar hydrogen distribution. Since true polar wander results from changes in the distribution of mass within a planet, the direction and magnitude of this wander can be used to constrain the evolution of the lunar interior. We find a causal link between this paleopole and the unique thermal evolution of the nearside Procellarum KREEP Terrane (PKT). Radiogenic heating within this province not only resulted major mare volcanism, but also altered the Moon's moments of inertia. We use a combination of analytical, and numerical 3-D thermochemical convection models to show that the evolution of the PKT naturally produces the correct direction and magnitude of polar wander (albeit early in lunar history, when the PKT was most active). This work provides a self-consistent explanation for the spatial distribution of lunar polar volatiles and opens a deeper connection to the

  13. Constraints on Lunar Heat Flow Rates from Diviner Lunar Radiometer Polar Observations

    NASA Astrophysics Data System (ADS)

    Paige, D. A.; Siegler, M. A.; Vasavada, A. R.

    2010-12-01

    The heat flow rate from the lunar interior is a fundamental property of the moon that is related to its composition, interior structure and history. Lunar heat flow rates have been measured at the Apollo 15 and 17 landing sites [1], but it is widely believed that the measured values of 0.021 Wm-2 and 0.016 Wm-2 respectively may not be representative of the moon as a whole due to the presence of enhanced radiogenic elements at these landing sites [2]. The Diviner Lunar Radiometer Experiment on the Lunar Reconnaissance Orbiter [3] has acquired an extensive set of thermal emission from the lunar surface at infrared wavelengths, including the first radiometric measurements of surface temperatures at the lunar poles [4]. Due to its low obliquity and rough topography, the moon has extensive cryogenic regions at high latitudes that never receive direct sunlight. The temperatures of the coldest of these regions can be used to place upper limits on the heat flow rate from the lunar interior because if other heat sources are neglected, then surface thermal emission is balanced by heat flow from warmer lunar interior [5]. Diviner has mapped the north and south polar regions over a complete annual cycle and we have identified a 4 km2 area within Hermite Crater in the north polar region that has a winter season nighttime Channel 9 (100-400 micron) brightness temperatures in of less than 20K. These low temperatures would imply a lunar heat flow rate of less than 0.010 Wm-2, which may be consistent with expectations for regions of the moon that do not contain enhanced concentrations of radiogenic elements [2,6], as is the case for the north polar region of the moon [7]. [1] Langseth, M. G. et al, Proc. Lunar Sci. Conf, 7th, 3143-3171, 1976. [2] Warren, P. H. and K. K. L. Rasmussen, JGR 92, 3453-3465, 1987. [3] Paige, D. A. et al, Space Sci. Rev, 150:125-160, 2010. [4] Paige, D. A. et al., Science, in press, 2010. [5] Watson, K. JGR 72, 3301-3302, 1967. [6] Wieczorek, M. A. and R

  14. How Cold are the Floors of Lunar Polar Shadowed Craters?

    NASA Technical Reports Server (NTRS)

    Mendell, Wendell W.

    2010-01-01

    Almost five decades ago Watson, et al, [1] speculated that molecules of volatile species might accumulate within the cryogenic environments of permanently shadowed polar craters. The subject was largely a scientific curiosity until recently. In the mid-1980's, people began to seriously discuss the feasibility of long-term or permanent human settlement of the Moon. Given that the Moon was known be missing the compounds need to support life and that importing volatiles from Earth is prohibitively expensive, lunar colonists were pictured as processing the putative polar volatiles. A bistatic radar experiment performed with the Clementine spacecraft was interpreted to suggest the presence of large quantities of ice at some polar locations. [2] The neutron spectrometer aboard the Lunar Prospector spacecraft reported high concentrations of hydrogen in the polar regolith, [3] and some interpretations of the data set pointed to very high concentrations in permanently shadowed craters. The reformulation of civilian space policy in 2004, known as the Vision for Space Exploration, emphasized lunar exploration with eye toward development of economic returns from cislunar space and long-tern human presence on the Moon. The theme of finding lunar resources was an impetus for the inclusion of the Diviner Lunar Radiometer Experiment on the Lunar Reconnaissance Orbiter. Preliminary results from Diviner report an unexpectedly low temperature down to 35K in the depths of some craters. [4

  15. Development of the Lunar Polar Hydrogen Mapper Mission

    NASA Astrophysics Data System (ADS)

    Hardgrove, C.; Bell, J. F.; Starr, R.; Colaprete, A.; Drake, D.; Lazbin, I.; West, S.; Johnson, E. B.; Christian, J.; Heffern, L.; Genova, A.; Dunham, D.; Williams, B.; Nelson, D.; Puckett, S.; Babuscia, A.; Scowen, P.; Kerner, H.; Amzler, R. J.

    2018-04-01

    The Lunar Polar Hydrogen Mapper is a 6U CubeSat mission launching on SLS EM-1. The spacecraft will orbit at a low altitude perlune over the lunar south pole and carries a miniature neutron spectrometer to map small scale hydrogen enrichments in PSRs.

  16. Space Solar Power Technology for Lunar Polar Applications

    NASA Technical Reports Server (NTRS)

    Henley, Mark W.; Howell, Joe T.

    2004-01-01

    The technology for Laser-Photo-Voltaic Wireless Power Transistor (Laser-PV WPT) is being developed for lunar polar applications by Boeing and NASA Marshall Space Center. A lunar polar mission could demonstrate and validate Laser-PV WPT and other SSP technologies, while enabling access to cold, permanently shadowed craters that are believed to contain ice. Crater may hold frozen water and other volatiles deposited over billion of years, recording prior impact event on the moon (and Earth). A photo-voltaic-powered rover could use sunlight, when available, and laser light, when required, to explore a wide range of lunar terrain. The National Research Council recently found that a mission to the moon's south pole-Aitkir basin has priority for space science

  17. Integration of Lunar Polar Remote-Sensing Data Sets: Evidence for Ice at the Lunar South Pole

    NASA Technical Reports Server (NTRS)

    Nozette, Stewart; Spudis, Paul D.; Robinson, Mark S.; Bussey, D. B. J.; Lichtenberg, Chris; Bonner, Robert

    2001-01-01

    In order to investigate the feasibility of ice deposits at the lunar south pole, we have integrated all relevant lunar polar data sets. These include illumination data, Arecibo ground-based monostatic radar data, newly processed Clementine bistatic radar data, and Lunar Prospector neutron spectrometer measurements. The possibility that the lunar poles harbor ice deposits has important implications not only as a natural resource for future human lunar activity but also as a record of inner solar system volatiles (e.g., comets and asteroids) over the past billion years or more. We find that the epithermal neutron flux anomalies, measured by Lunar Prospector, are coincident with permanently shadowed regions at the lunar south pole, particularly those associated with Shackleton crater. Furthermore, these areas also correlate with the beta=0 circular polarization ratio (CPR) enhancements revealed by new processing of Clementine bistatic radar echoes, which in turn are colocated with areas of anomalous high CPR observed by Arecibo Observatory on the lower, Sun-shadowed wall of Shackleton crater. Estimates of the extent of high CPR from Arecibo Observatory and Clementine bistatic radar data independently suggest that approximately 10 square kilometers of ice may be present on the inner Earth-facing wall of Shackleton crater. None of the experiments that obtained the data presented here were ideally suited for definitively identifying ice in lunar polar regions. By assessing the relative merits of all available data, we find that it is plausible that ice does occur in cold traps at the lunar south pole and that future missions with instruments specifically designed to investigate these anomalies are worthy.

  18. Polarized Transmission Spectrum of Earth as Observed during a Lunar Eclipse

    NASA Astrophysics Data System (ADS)

    Takahashi, Jun; Itoh, Yoichi; Hosoya, Kensuke; Yanamandra-Fisher, Padma A.; Hattori, Takashi

    2017-12-01

    Polarization during a lunar eclipse is a forgotten mystery. Coyne & Pellicori reported the detection of significant polarization during the lunar eclipse on 1968 April 13. Multiple scattering during the first transmission through Earth’s atmosphere was suggested as a possible cause of the polarization, but no conclusive determination was made. No further investigations on polarization during a lunar eclipse are known. We revisit this mystery with an interest in possible application to extrasolar planets; if planetary transmitted light is indeed polarized, it may be possible to investigate an exoplanet atmosphere using “transit polarimetry.” Here we report results of the first spectropolarimetry for the Moon during a lunar eclipse on 2015 April 4. We observed polarization degrees of 2%-3% at wavelengths of 500-600 nm; in addition, an enhanced feature was detected at the O2 A band near 760 nm. The observed time variation and wavelength dependence are consistent with an explanation of polarization caused by double scattering during the first transmission through Earth’s atmosphere, accompanied by latitudinal atmospheric inhomogeneity. Transit polarimetry for exoplanets may be useful to detect O2 gas and to probe the latitudinal atmospheric inhomogeneity, and it is thus worthy of serious consideration.

  19. Correlation of Lunar South Polar Epithermal Neutron Maps: Lunar Exploration Neutron Detector and Lunar Prospector Neutron Detector

    NASA Technical Reports Server (NTRS)

    McClanahan, Timothy P.; Mitrofanov, I. G.; Boynton, W. V.; Sagdeev, R.; Trombka, J. I.; Starr, R. D.; Evans, L. G.; Litvak, M. L.; Chin, G.; Garvin, J.; hide

    2010-01-01

    The Lunar Reconnaissance Orbiter's (LRO), Lunar Exploration Neutron Detector (LEND) was developed to refine the lunar surface hydrogen (H) measurements generated by the Lunar Prospector Neutron Spectrometer. LPNS measurements indicated a approx.4,6% decrease in polar epithermal fluxes equivalent to (1.5+/-0,8)% H concentration and are direct geochemical evidence indicating water /high H at the poles. Given the similar operational and instrumental objectives of the LEND and LPNS systems, an important science analysis step for LEND is to test correlation with existing research including LPNS measurements. In this analysis, we compare corrected low altitude epithermal rate data from LPNS available via NASA's Planetary Data System (PDS) with calibrated LEND epithermal maps using a cross-correlation technique

  20. Polar lunar power ring: Propulsion energy resource

    NASA Technical Reports Server (NTRS)

    Galloway, Graham Scott

    1990-01-01

    A ring shaped grid of photovoltaic solar collectors encircling a lunar pole at 80 to 85 degrees latitude is proposed as the primary research, development, and construction goal for an initial lunar base. The polar Lunar Power Ring (LPR) is designed to provide continuous electrical power in ever increasing amounts as collectors are added to the ring grid. The LPR can provide electricity for any purpose indefinitely, barring a meteor strike. The associated rail infrastructure and inherently expandable power levels place the LPR as an ideal tool to power an innovative propulsion research facility or a trans-Jovian fleet. The proposed initial output range is 90 Mw to 90 Gw.

  1. International Coordination of Lunar Polar Volatiles Exploration

    NASA Astrophysics Data System (ADS)

    Gruener, J. E.; Suzuki, N. H.; Carpenter, J. D.

    2015-10-01

    The International Space Exploration Coordination Group (ISECG) has established a study team to coordinate the worldwide interest in lunar polar volatiles, and in particular water ice, in an effort to stimulate cooperation and collaboration.

  2. Space Solar Power Technology Demonstration for Lunar Polar Applications

    NASA Technical Reports Server (NTRS)

    Henley, M. W.; Fikes, J. C.; Howell, J.; Mankins, J. C.; Howell, J.

    2002-01-01

    A solar power generation station on a mountaintop near the moon's North or South pole can receive sunlight 708 hours per lunar day, for continuous power generation. Power can be beamed from this station over long distances using a laser-based wireless power transmission system and a photo-voltaic receiver. This beamed energy can provide warmth, electricity, and illumination for a robotic rover to perform scientific experiments in cold, dark craters where no other power source is practical. Radio-frequency power transmission may also be demonstrated in lunar polar applications to locate and recover sub-surface deposits of volatile material, such as water ice. High circular polarization ratios observed in data from Clementine spacecraft and Arecibo radar reflections from the moon's South pole suggest that water ice is indeed present in certain lunar polar craters. Data from the Lunar Prospector spacecraft's epi-thermal neutron spectrometer also indicate that hydrogen is present at the moon's poles. Space Solar Power technology enables investigation of these craters, which may contain a billion-year-old stratigraphic record of tremendous scientific value. Layers of ice, preserved at the moon's poles, could help us determine the sequence and composition of comet impacts on the moon. Such ice deposits may even include distinct strata deposited by secondary ejecta following significant Earth (ocean) impacts, linked to major extinctions of life on Earth. Ice resources at the moon's poles could provide water and air for human exploration and development of space as well as rocket propellant for future space transportation. Technologies demonstrated and matured via lunar polar applications can also be used in other NASA science missions (Valles Marineris. Phobos, Deimos, Mercury's poles, asteroids, etc.) and in future large-scale SSP systems to beam energy from space to Earth. Ground-based technology demonstrations are proceeding to mature the technology for such a near

  3. Trajectory Design for the Lunar Polar Hydrogen Mapper Mission

    NASA Technical Reports Server (NTRS)

    Genova, Anthony L.; Dunham, David W.

    2017-01-01

    The presented trajectory was designed for the Lunar Polar Hydrogen Mapper (LunaH-Map) 6U CubeSat, which was awarded a ride on NASAs Space Launch System (SLS) with Exploration Mission 1 (EM-1) via NASAs 2015 SIMPLEX proposal call. After deployment from EM-1s upper stage (which is planned to enter heliocentric space via a lunar flyby), the LunaH-Map CubeSat will alter its trajectory via its low-thrust ion engine to target a lunar flyby that yields a Sun-Earth-Moon weak stability boundary transfer to set up a ballistic lunar capture. Finally, the orbit energy is lowered to reach the required quasi-frozen science orbit with periselene above the lunar south pole.

  4. Lunar Polar Illumination for Power Analysis

    NASA Technical Reports Server (NTRS)

    Fincannon, James

    2008-01-01

    This paper presents illumination analyses using the latest Earth-based radar digital elevation model (DEM) of the lunar south pole and an independently developed analytical tool. These results enable the optimum sizing of solar/energy storage lunar surface power systems since they quantify the timing and durations of illuminated and shadowed periods. Filtering and manual editing of the DEM based on comparisons with independent imagery were performed and a reduced resolution version of the DEM was produced to reduce the analysis time. A comparison of the DEM with lunar limb imagery was performed in order to validate the absolute heights over the polar latitude range, the accuracy of which affects the impact of long range, shadow-casting terrain. Average illumination and energy storage duration maps of the south pole region are provided for the worst and best case lunar day using the reduced resolution DEM. Average illumination fractions and energy storage durations are presented for candidate low energy storage duration south pole sites. The best site identified using the reduced resolution DEM required a 62 hr energy storage duration using a fast recharge power system. Solar and horizon terrain elevations as well as illumination fraction profiles are presented for the best identified site and the data for both the reduced resolution and high resolution DEMs compared. High resolution maps for three low energy storage duration areas are presented showing energy storage duration for the worst case lunar day, surface height, and maximum absolute surface slope.

  5. Real-time science operations to support a lunar polar volatiles rover mission

    NASA Astrophysics Data System (ADS)

    Heldmann, Jennifer L.; Colaprete, Anthony; Elphic, Richard C.; Mattes, Greg; Ennico, Kimberly; Fritzler, Erin; Marinova, Margarita M.; McMurray, Robert; Morse, Stephanie; Roush, Ted L.; Stoker, Carol R.

    2015-05-01

    Future human exploration of the Moon will likely rely on in situ resource utilization (ISRU) to enable long duration lunar missions. Prior to utilizing ISRU on the Moon, the natural resources (in this case lunar volatiles) must be identified and characterized, and ISRU demonstrated on the lunar surface. To enable future uses of ISRU, NASA and the CSA are developing a lunar rover payload that can (1) locate near subsurface volatiles, (2) excavate and analyze samples of the volatile-bearing regolith, and (3) demonstrate the form, extractability and usefulness of the materials. Such investigations are important both for ISRU purposes and for understanding the scientific nature of these intriguing lunar volatile deposits. Temperature models and orbital data suggest near surface volatile concentrations may exist at briefly lit lunar polar locations outside persistently shadowed regions. A lunar rover could be remotely operated at some of these locations for the ∼ 2-14 days of expected sunlight at relatively low cost. Due to the limited operational time available, both science and rover operations decisions must be made in real time, requiring immediate situational awareness, data analysis, and decision support tools. Given these constraints, such a mission requires a new concept of operations. In this paper we outline the results and lessons learned from an analog field campaign in July 2012 which tested operations for a lunar polar rover concept. A rover was operated in the analog environment of Hawaii by an off-site Flight Control Center, a rover navigation center in Canada, a Science Backroom at NASA Ames Research Center in California, and support teams at NASA Johnson Space Center in Texas and NASA Kennedy Space Center in Florida. We find that this type of mission requires highly efficient, real time, remotely operated rover operations to enable low cost, scientifically relevant exploration of the distribution and nature of lunar polar volatiles. The field

  6. Real-Time Science Operations to Support a Lunar Polar Volatiles Rover Mission

    NASA Technical Reports Server (NTRS)

    Heldmann, Jennifer L.; Colaprete, Anthony; Elphic, Richard C.; Mattes, Greg; Ennico, Kimberly; Fritzler, Erin; Marinova, Margarita M.; McMurray, Robert; Morse, Stephanie; Roush, Ted L.; hide

    2014-01-01

    Future human exploration of the Moon will likely rely on in situ resource utilization (ISRU) to enable long duration lunar missions. Prior to utilizing ISRU on the Moon, the natural resources (in this case lunar volatiles) must be identified and characterized, and ISRU demonstrated on the lunar surface. To enable future uses of ISRU, NASA and the CSA are developing a lunar rover payload that can (1) locate near subsurface volatiles, (2) excavate and analyze samples of the volatile-bearing regolith, and (3) demonstrate the form, extractability and usefulness of the materials. Such investigations are important both for ISRU purposes and for understanding the scientific nature of these intriguing lunar volatile deposits. Temperature models and orbital data suggest near surface volatile concentrations may exist at briefly lit lunar polar locations outside persistently shadowed regions. A lunar rover could be remotely operated at some of these locations for the approx. 2-14 days of expected sunlight at relatively low cost. Due to the limited operational time available, both science and rover operations decisions must be made in real time, requiring immediate situational awareness, data analysis, and decision support tools. Given these constraints, such a mission requires a new concept of operations. In this paper we outline the results and lessons learned from an analog field campaign in July 2012 which tested operations for a lunar polar rover concept. A rover was operated in the analog environment of Hawaii by an off-site Flight Control Center, a rover navigation center in Canada, a Science Backroom at NASA Ames Research Center in California, and support teams at NASA Johnson Space Center in Texas and NASA Kennedy Space Center in Florida. We find that this type of mission requires highly efficient, real time, remotely operated rover operations to enable low cost, scientifically relevant exploration of the distribution and nature of lunar polar volatiles. The field

  7. Conceptual Research of Lunar-based Earth Observation for Polar Glacier Motion

    NASA Astrophysics Data System (ADS)

    Ruan, Zhixing; Liu, Guang; Ding, Yixing

    2016-07-01

    The ice flow velocity of glaciers is important for estimating the polar ice sheet mass balance, and it is of great significance for studies into rising sea level under the background of global warming. However so far the long-term and global measurements of these macro-scale motion processes of the polar glaciers have hardly been achieved by Earth Observation (EO) technique from the ground, aircraft or satellites in space. This paper, facing the demand for space technology for large-scale global environmental change observation,especially the changes of polar glaciers, and proposes a new concept involving setting up sensors on the lunar surface and using the Moon as a platform for Earth observation, transmitting the data back to Earth. Lunar-based Earth observation, which enables the Earth's large-scale, continuous, long-term dynamic motions to be measured, is expected to provide a new solution to the problems mentioned above. According to the pattern and characteristics of polar glaciers motion, we will propose a comprehensive investigation of Lunar-based Earth observation with synthetic aperture radar (SAR). Via theoretical modeling and experimental simulation inversion, intensive studies of Lunar-based Earth observation for the glacier motions in the polar regions will be implemented, including the InSAR basics theory, observation modes of InSAR and optimization methods of their key parameters. It will be of a great help to creatively expand the EO technique system from space. In addition, they will contribute to establishing the theoretical foundation for the realization of the global, long-term and continuous observation for the glacier motion phenomena in the Antarctic and the Arctic.

  8. High resolution measures of polarization and color of selected lunar areas

    NASA Technical Reports Server (NTRS)

    Riley, L. A.; Hall, J. S.

    1972-01-01

    High resolution observations of intensity, color (UBV) and polarization were obtained with scanning techniques for a number of lunar areas of special interest, including boundaries of some of the brightest and darkest lunar regions, certain Apollo landing sites and prominent craters. Two dimensional raster scans of colors were obtained for Alphonsus, Aristarchus, and Herodotus. The degree of polarization for any given phase angle appears to be roughly indicative of age. The darker younger mare surface are more highly polarized than the lighter and older mare surfaces, which appear to be more contaminated by lighter material from the highlands or by ray material thrown out from fresh craters. All mare surfaces are more highly polarized than the still older and lighter terra regions surrounding the maria. The very oldest craters are either dark-floored and show polarization characteristics similar to those of the mare surfaces, or if located in the highlands, they are less and less distinguishable from the highland background with greater age, and show the general highland polarization characteristics.

  9. Feasibility and Definition of a Lunar Polar Volatiles Prospecting Mission

    NASA Technical Reports Server (NTRS)

    Heldmann, Jennifer; Elphic, Richard; Colaprete, Anthony; Fong, Terry; Pedersen, Liam; Beyer, Ross; Cockrell, James

    2012-01-01

    The recent Lunar Crater Observing and Sensing Satellite (LCROSS) mission has provided evidence for significant amounts of cold trapped volatiles in Cabeus crater near the Moon's south pole. Moreover, LRO/Diviner measurements of extremely cold lunar polar surface temperatures imply that volatiles can be stable outside or areas of strict permanent shadows. These discoveries suggest that orbital neutron spectrometer data point to extensive deposits at both lunar poles. The physical state, composition and distribution of these volatiles are key scientific issues that relate to source and emplacement mechanisms. These issues are also important for enabling lunar in situ resource utilization (ISRU). An assessment of the feasibility of cold-trapped volatile ISRU requires a priori information regarding the location, form, quantity, and potential for extraction of available resources. A robotic mission to a mostly shadowed but briefly .unlit location with suitable environmental conditions (e.g. short periods of oblique sunlight and subsurface cryogenic temperatures which permit volatile trapping) can help answer these scientific and exploration questions. Key parameters must be defined in order to identify suitable landing sites, plan surface operations, and achieve mission success. To address this need, we have conducted an initial study for a lunar polar volatile prospecting mission, assuming the use of a solar-powered robotic lander and rover. Here we present the mission concept, goals and objectives, and landing site selection analysis for a short-duration, landed, solar-powered mission to a potential hydrogen volatile-rich site.

  10. Polar Lunar Regions: Exploiting Natural and Augmented Thermal Environments

    NASA Technical Reports Server (NTRS)

    Ryan, Robert E.; McKellip, Rodney; Brannon, David P.; Underwood, Lauren; Russell, Kristen J.

    2007-01-01

    In polar regions of the Moon, some areas within craters are permanently shadowed from solar illumination and can reach temperatures of 100 K or less. These regions could serve as cold traps, capturing ice and other volatile compounds. These potential ice stores have many applications for lunar exploration. Within double-shaded craters, even colder regions exist, with temperatures never exceeding 50 K in many cases. Observed temperatures suggest that these regions could enable equivalent liquid nitrogen cryogenic functions. These permanently shaded polar craters also offer unprecedented high-vacuum cryogenic environments, which in their current state could support cryogenic applications. Besides ice stores, the unique conditions at the lunar poles harbor an environment that provides an opportunity to reduce the power, weight, and total mass that needs to be carried from the Earth to the Moon for lunar exploration and research. Reducing the heat flux of geothermal, black body radiation can have significant impacts on the achievable temperature. With a few manmade augmentations, permanently shaded craters located near the lunar poles achieve temperatures even lower than those that naturally exist. Our analysis reveals that lightweight thermal shielding within shaded craters could create an environment several Kelvin above absolute zero. The temperature ranges of both naturally shaded and thermally augmented craters could enable the long-term storage of most gases, low-temperature superconductors for large magnetic fields, devices and advanced high-speed computing instruments. Augmenting thermal conditions in these craters could then be used as a basis for the development of an advanced thermal management architecture that would support a wide variety of cryogenically based applications. Lunar exploration and habitation capabilities would significantly benefit if permanently shaded craters, augmented with thermal shielding, were used to facilitate the operation of near

  11. Polar Lunar Regions: Exploiting Natural and Augmented Thermal Environments

    NASA Astrophysics Data System (ADS)

    Ryan, R. E.; McKellip, R. C.; Brannon, D. P.; Underwood, L. W.; Russell, K. J.

    2007-12-01

    In polar regions of the Moon, there are areas within craters that are permanently shadowed from solar illumination, which can reach temperatures of 100K or less. These regions could serve as cold traps, capturing ice and other volatile compounds. These potential ice stores have many applications for lunar exploration. Within double-shaded craters, even colder regions exist, with temperatures never exceeding 50K in many cases. Temperatures observed in theses regions suggest that they could enable equivalent liquid nitrogen cryogenic functions. These permanently shaded polar craters also offer unprecedented high vacuum cryogenic environments, which in their current state could support cryogenic applications. The unique conditions at the lunar poles, besides ice stores, harbor an environment that provides an opportunity to reduce the power, weight and total mass that needs to be carried from the Earth to the moon for lunar exploration and research. Reducing the heat flux of geothermal, black body radiation can have significant impacts on the achievable temperature. With a few man-made augmentations, permanently shaded craters located near the lunar poles achieve temperatures even lower than those that naturally exist there. Our analysis reveals that lightweight thermal shielding, within shaded craters, could create an environment several Kelvin above absolute zero. The temperature ranges of naturally shaded craters and thermally augmented ones could enable the long-term storage of most gases, low temperature superconductors for large magnetic fields, devices and advanced high speed computing instruments. Augmenting thermal conditions in these craters could then be used as a basis for the development of an advanced thermal management architecture that would support a wide variety of cryogenically based applications. Lunar exploration and habitation capabilities would significantly benefit if permanently shaded craters, augmented with thermal shielding, were to be used

  12. Illumination Conditions of the Lunar Polar Regions Using LOLA Topography

    NASA Technical Reports Server (NTRS)

    Mazarico, E.; Neumann, G. A.; Smith, D. E.; Zuber, M. T.; Torrence, M. H.

    2011-01-01

    We use high-resolution altimetry data obtained by the Lunar Orbiter Laser Altimeter instrument onboard the Lunar Reconnaissance Orbiter to characterize present illumination conditions in the polar regions of the Moon. Compared to previous studies, both the spatial and temporal extent of the simulations are increased significantly, as well as the coverage (fill ratio) of the topographic maps used, thanks to the 28 Hz firing rate of the five-beam instrument. We determine the horizon elevation in a number of directions based on 240 m-resolution polar digital elevation models reaching down to 75 latitude. The illumination of both polar regions extending to 80 can be calculated for any geometry from those horizon longitudinal profiles. We validated our modeling with recent Lunar Reconnaissance Orbiter Wide-Angle Camera images. We assessed the extent of permanently shadowed regions (PSRs, defined as areas that never receive direct solar illumination), and obtained total areas generally larger than previous studies (12,866 and 16,055 km2, in the north and south respectively). We extended our direct illumination model to account for singly-scattered light, and found that every PSR does receive some amount of scattered light during the year. We conducted simulations over long periods (several 18.6-years lunar precession cycles) with a high temporal resolution (6 h), and identified the most illuminated locations in the vicinity of both poles. Because of the importance of those sites for exploration and engineering considerations, we characterized their illumination more precisely over the near future. Every year, a location near the Shackleton crater rim in the south polar region is sunlit continuously for 240 days, and its longest continuous period in total darkness is about 1.5 days. For some locations small height gains ( 10 m) can dramatically improve their average illumination and reduce the night duration, rendering some of those particularly attractive energy-wise as

  13. The Discharging of Roving Objects in the Lunar Polar Regions

    NASA Technical Reports Server (NTRS)

    Jackson, T. L.; Farrell, W. M.; Killen, R. M.; Delory, G. T.; Halekas, J. S.; Stubbs, T. B.

    2012-01-01

    In 2007, the National Academy of Sciences identified the lunar polar regions as special environments: very cold locations where resources can be trapped and accumulated. These accumulated resources not only provide a natural reservoir for human explorers, but their very presence may provide a history of lunar impact events and possibly an indication of ongoing surface reactive chemistry. The recent LCROSS impacts confirm that polar crater floors are rich in material including approx 5%wt of water. An integral part of the special lunar polar environment is the solar wind plasma. Solar wind protons and electrons propagate outward from the Sun, and at the Moon's position have a nominal density of 5 el/cubic cm, flow speed of 400 km/sec, and temperature of 10 eV (approx. equal 116000K). At the sub-solar point, the flow of this plasma is effectively vertically incident at the surface. However, at the poles and along the lunar terminator region, the flow is effectively horizontal over the surface. As recently described, in these regions, local topography has a significant effect on the solar wind flow. Specifically, as the solar wind passes over topographic features like polar mountains and craters, the plasma flow is obstructed and creates a distinct plasma void in the downstream region behind the obstacle. An ion sonic wake structure forms behind the obstacle, not unlike that which forms behind a space shuttle. In the downstream region where flow is obstructed, the faster moving solar wind electrons move into the void region ahead of the more massive ions, thereby creating an ambipolar electric field pointing into the void region. This electric field then deflects ion trajectories into the void region by acting as a vertical inward force that draws ions to the surface. This solar wind 'orographic' effect is somewhat analogous to that occurring with terrestrial mountains. However, in the solar wind, the ambipolar E-field operating in the collision less plasma replaces

  14. Extraction of Water from Polar Lunar Permafrost with Microwaves - Dielectric Property Measurements

    NASA Technical Reports Server (NTRS)

    Ethridge, Edwin C.; Kaukler, William

    2009-01-01

    Remote sensing indicates the presence of hydrogen rich regions associated with the lunar poles. The logical hypothesis is that there is cryogenically trapped water ice located in craters at the lunar poles. Some of the craters have been in permanent darkness for a billion years. The presence of water at the poles as well as other scientific advantages of a polar base, have influenced NASA plans for the lunar outpost. The lunar outpost has water and oxygen requirements on the order of 1 ton per year scaling up to as much as 10 tons per year. Microwave heating of the frozen permafrost has unique advantages for water extraction. Proof of principle experiments have successfully demonstrated that microwaves will couple to the cryogenic soil in a vacuum and the sublimed water vapor can be successfully captured on a cold trap. The dielectric properties of lunar soil will determine the hardware requirements for extraction processes. Microwave frequency dielectric property measurements of lunar soil simulant have been measured.

  15. Site selection and traverse planning to support a lunar polar rover mission: A case study at Haworth Crater

    NASA Astrophysics Data System (ADS)

    Heldmann, Jennifer L.; Colaprete, Anthony; Elphic, Richard C.; Bussey, Ben; McGovern, Andrew; Beyer, Ross; Lees, David; Deans, Matt

    2016-10-01

    Studies of lunar polar volatile deposits are of interest for scientific purposes to understand the nature and evolution of the volatiles, and also for exploration reasons as a possible in situ resource to enable long term human exploration and settlement of the Moon. Both theoretical and observational studies have suggested that significant quantities of volatiles exist in the polar regions, although the lateral and horizontal distribution remains unknown at the km scale and finer resolution. A lunar polar rover mission is required to further characterize the distribution, quantity, and character of lunar polar volatile deposits at these higher spatial resolutions. Here we present a case study for NASA's Resource Prospector (RP) mission concept for a lunar polar rover and utilize this mission architecture and associated constraints to evaluate whether a suitable landing site exists to support an RP flight mission. We evaluate the landing site criteria to characterize the Haworth Crater region in terms of expected hydrogen abundance, surface topography, and prevalence of shadowed regions, as well as solar illumination and direct to Earth communications as a function of time to develop a notional rover traverse plan that addresses both science and engineering requirements. We also present lessons-learned regarding lunar traverse path planning focusing on the critical nature of landing site selection, the influence of illumination patterns on traverse planning, the effects of performing shadowed rover operations, the influence of communications coverage on traverse plan development, and strategic planning to maximize rover lifetime and science at end of mission. Here we present a detailed traverse path scenario for a lunar polar volatiles rover mission and find that the particular site north of Haworth Crater studied here is suitable for further characterization of polar volatile deposits.

  16. High-priority lunar landing sites for in situ and sample return studies of polar volatiles

    NASA Astrophysics Data System (ADS)

    Lemelin, Myriam; Blair, David M.; Roberts, Carolyn E.; Runyon, Kirby D.; Nowka, Daniela; Kring, David A.

    2014-10-01

    Our understanding of the Moon has advanced greatly over the last several decades thanks to analyses of Apollo samples and lunar meteorites, and recent lunar orbital missions. Notably, it is now thought that the lunar poles may be much more enriched in H2O and other volatile chemical species than the equatorial regions sampled during the Apollo missions. The equatorial regions sampled, themselves, contain more H2O than previously thought. A new lunar mission to a polar region is therefore of great interest; it could provide a measure of the sources and processes that deliver volatiles while also evaluating the potential in situ resource utilization value they may have for human exploration. In this study, we determine the optimal sites for studying lunar volatiles by conducting a quantitative GIS-based spatial analysis of multiple relevant datasets. The datasets include the locations of permanently shadowed regions, thermal analyses of the lunar surface, and hydrogen abundances. We provide maps of the lunar surface showing areas of high scientific interest, including five regions near the lunar north pole and seven regions near the lunar south pole that have the highest scientific potential according to rational search criteria. At two of these sites-a region we call the “Intercrater Polar Highlands” (IPH) near the north pole, and Amundsen crater near the south pole-we provide a more detailed assessment of landing sites, sample locations, and exploration strategies best suited for future human or robotic exploration missions.

  17. Feasibility and Definition of a Limited-Scale Lunar Polar Volatiles Prospecting Mission

    NASA Astrophysics Data System (ADS)

    Heldmann, J. L.; Elphic, R. C.; Colaprete, A.; Beyer, R. A.; Fong, T.; Cockrell, J.; Pedersen, L.

    2011-12-01

    The recent Lunar Crater Observing and Sensing Satellite (LCROSS) mission has provided evidence for significant amounts of cold-trapped volatiles in Cabeus crater near the Moon's south pole. Moreover, LRO/Diviner measurements of extremely cold lunar polar surface temperatures imply that volatiles can be stable outside of areas of strict permanent shadow. These discoveries hint at potentially extensive near-surface deposits at both lunar poles. The physical state, composition and distribution of these volatiles are key scientific issues that relate to source and emplacement mechanisms. These issues are also important for enabling lunar in situ resource utilization (ISRU). An assessment of the feasibility of cold-trapped volatile ISRU requires a priori information regarding the location, form, quantity, and potential for extraction of available resources. A small robotic mission to a persistently shadowed but briefly sunlit location with suitable environmental conditions (e.g., short periods of oblique sunlight and subsurface cryogenic temperatures which permit volatile trapping) can help answer these scientific and exploration questions. Key parameters must be defined in order to identify suitable landing sites, plan surface operations, and achieve mission success. To address this need, we have conducted an initial study for a lunar polar volatile prospecting mission, assuming the use of a solar-powered robotic lander and rover. Here we present the mission concept, goals and objectives, and landing site selection analysis for a short-duration, landed, solar-powered mission to a volatile-rich site.

  18. Lunar Dust Monitor for the orbiter of the next Japanese lunar mission SELENE2

    NASA Astrophysics Data System (ADS)

    Hirai, Takayuki; Sasaki, Sho; Ohashi, Hideo; Kobayashi, Masanori; Fujii, Masayuki; Shibata, Hiromi; Iwai, Takeo; Nogami, Ken-Ichi; Kimura, Hiroshi; Nakamura, Maki

    2010-05-01

    The next Japanese lunar mission SELENE2, after a successful mission Kaguya (a project named SELENE), is planned to launch in mid 2010 and to consists of a lander, a rover, and an orbiter, as a transmitting satellite to the earth [1]. A dust particle detector is proposed to be onboard the orbiter that is planned to be in operation for one year or more. Dust particles around the Moon include interplanetary dust, beta-meteoroids, interstellar dust, and possibly lunar dust that originate from the subsurface materials of the Moon. It is considered that several tens of thousands of tons of dust particles per year fall onto the Moon and supply materials to its surface layer. "Inflow" and "outflow" dust particles are very important for understanding material compositions of lunar surface. In past missions, dust detectors onboard the Hiten and Nozomi (Hiten-MDC and Nozomi-MDC) measured the flues of dust particles in the lunar orbit [2, 3]. These observations by Hiten- and Nozomi-MDCs created a small dataset of statistics of dust particles excluding earth-orbiting dust once in a week, because the dust detectors had small sensitive areas, 0.01 m2 and 0.014 m^2, respectively. The Lunar Dust EXperiment (LDEX) is designed to map a spatial and temporal variability of the dust size and density distributions in the lunar environment and will be onboard LADEE, which will be launched in 2012 [4]. LDEX will observe the lunar environment for 90 days in a nominal case or for a maximum of 9 months. It has a sensor area of 0.01 m2 at 50 km altitude. For a quantitative study of circumlunar dust, we propose a dust monitoring device with a large aperture size and a large sensor area, called the lunar dust monitor (LDM). The LDM is an impact ionization detector with dimensions 25 cm × 25 cm × 30 cm, and it has a large target (gold-plated Al) of 400 cm^2, to which a high voltage of +500 V is applied. The LDM also has two meshed grids parallel to the target. The grids are 90% transparent: the

  19. Characterization of Lunar Polar Illumination from a Power System Perspective

    NASA Technical Reports Server (NTRS)

    Fincannon, James

    2008-01-01

    This paper presents the results of illumination analyses for the lunar south and north pole regions obtained using an independently developed analytical tool and two types of digital elevation models (DEM). One DEM was based on radar height data from Earth observations of the lunar surface and the other was a combination of the radar data with a separate dataset generated using Clementine spacecraft stereo imagery. The analysis tool enables the assessment of illumination at most locations in the lunar polar regions for any time and any year. Maps are presented for both lunar poles for the worst case winter period (the critical power system design and planning bottleneck) and for the more favorable best case summer period. Average illumination maps are presented to help understand general topographic trends over the regions. Energy storage duration maps are presented to assist in power system design. Average illumination fraction, energy storage duration, solar/horizon terrain elevation profiles and illumination fraction profiles are presented for favorable lunar north and south pole sites which have the potential for manned or unmanned spacecraft operations. The format of the data is oriented for use by power system designers to develop mass optimized solar and energy storage systems.

  20. The Current Status of the Japanese Penetrator Mission: LUNAR-A

    NASA Astrophysics Data System (ADS)

    Tanaka, S.; Shiraishi, H.; Fujimura, A.; Hayakawa, H.

    The scientific objective of the LUNAR-A, Japanese Penetrator Mission, is to explore the lunar interior by seismic and heat-flow experiments. Two penetrators containing two seismometers (horizontal and vertical components) and heat-flow probes will be deployed from a spacecraft onto the lunar surface, one on the nearside and the other on the farside of the moon. The final impact velocity of the penetrator will be about 300m/sec; it will encounter a shock of about 8000 G at impact on the lunar surface. According to numerous experimental impact tests using model penetrators and a lunar regolith analog target, each penetrator is predicted to penetrate to a depth of 1 to 3 m. The data obtained by the penetrators will be transmitted to the earth station via the LUNAR-A mother spacecraft orbiting at an altitude of about 200 km. The penetrator is a missile-shaped instrument carrier, which is about 14cm in diameter, 75cm in length, and about 14kg in weight without attitude control system. It contains a two-component seismometer and heat flow probes together with other supporting instruments such as a tilt meter and an accelerometer. The seismic observations are expected to provide key data on the size of the lunar core, as well as data on deep lunar mantle structure. The heat flow measurements at two penetrator deployment sites will also provide important data on the thermal structure and bulk concentrations of heat-generating elements in the Moon. These data will provide much stronger geophysical constraints on the origin and evolution of the Moon than has been obtained so far. The LUNAR-A spacecraft was supposed to be launched in the summer of 2004, but it was postponed due to the necessity of a replacement of the valves used in the RCS propulsion system of the spacecraft, following a recall issued by the manufacturer who found a malfunction of similar valves. Then, the technological review boards by ISAS and JAXA recommended that both the more robustness of the

  1. Dependence of Lunar Tide of the Equatorial Electrojet on the Wintertime Polar Vortex, Solar Flux, and QBO

    NASA Astrophysics Data System (ADS)

    Siddiqui, T. A.; Yamazaki, Y.; Stolle, C.; Lühr, H.; Matzka, J.; Maute, A.; Pedatella, N.

    2018-05-01

    The lower atmospheric forcing effects on the ionosphere are particularly evident during extreme meteorological events known as sudden stratospheric warmings (SSWs). During SSWs, the polar stratosphere and ionosphere, two distant atmospheric regions, are coupled through the SSW-induced modulation of atmospheric migrating and nonmigrating tides. The changes in the migrating semidiurnal solar and lunar tides are the major source of ionospheric variabilities during SSWs. In this study, we use 55 years of ground-magnetometer observations to investigate the composite characteristics of the lunar tide of the equatorial electrojet (EEJ) during SSWs. These long-term observations allow us to capture the EEJ lunar tidal response to the SSWs in a statistical sense. Further, we examine the influence of solar flux conditions and the phases of quasi-biennial oscillation (QBO) on the lunar tide and find that the QBO phases and solar flux conditions modulate the EEJ lunar tidal response during SSWs in a similar way as they modulate the wintertime Arctic polar vortex. This work provides first evidence of modulation of the EEJ lunar tide due to QBO.

  2. Diviner lunar radiometer observations of cold traps in the moon's south polar region

    USGS Publications Warehouse

    Paige, D.A.; Siegler, M.A.; Zhang, J.A.; Hayne, P.O.; Foote, E.J.; Bennett, K.A.; Vasavada, A.R.; Greenhagen, B.T.; Schofield, J.T.; McCleese, D.J.; Foote, M.C.; DeJong, E.; Bills, B.G.; Hartford, W.; Murray, B.C.; Allen, C.C.; Snook, K.; Soderblom, L.A.; Calcutt, S.; Taylor, F.W.; Bowles, N.E.; Bandfield, J.L.; Elphic, R.; Ghent, R.; Glotch, T.D.; Wyatt, M.B.; Lucey, P.G.

    2010-01-01

    Diviner Lunar Radiometer Experiment surface-temperature maps reveal the existence of widespread surface and near-surface cryogenic regions that extend beyond the boundaries of persistent shadow. The Lunar Crater Observation and Sensing Satellite (LCROSS) struck one of the coldest of these regions, where subsurface temperatures are estimated to be 38 kelvin. Large areas of the lunar polar regions are currently cold enough to cold-trap water ice as well as a range of both more volatile and less volatile species. The diverse mixture of water and high-volatility compounds detected in the LCROSS ejecta plume is strong evidence for the impact delivery and cold-trapping of volatiles derived from primitive outer solar system bodies.

  3. Full Moon Exploration: valuable (non-polar) lunar science facilitated by a return to the Moon

    NASA Astrophysics Data System (ADS)

    Crawford, I. A.; Fagents, S. A.; Joy, K. H.

    2007-06-01

    The Moon is a promising science target, made a priority in recent space exploration plans. So far, polar landing sites have been preferred, but many promising scientific objectives lie elsewhere. Here we summarize the potential value of one such scientific target, northern Oceanus Procellarum, which includes basalts of a wide range of ages. Studying these would allow refinement of the lunar stratigraphy and chronology, and a better understanding of lunar mantle evolution. We consider how exploration of such areas might be achieved in the context of lunar exploration plans.

  4. Earth orientation from lunar laser ranging and an error analysis of polar motion services

    NASA Technical Reports Server (NTRS)

    Dickey, J. O.; Newhall, X. X.; Williams, J. G.

    1985-01-01

    Lunar laser ranging (LLR) data are obtained on the basis of the timing of laser pulses travelling from observatories on earth to retroreflectors placed on the moon's surface during the Apollo program. The modeling and analysis of the LLR data can provide valuable insights into earth's dynamics. The feasibility to model accurately the lunar orbit over the full 13-year observation span makes it possible to conduct relatively long-term studies of variations in the earth's rotation. A description is provided of general analysis techniques, and the calculation of universal time (UT1) from LLR is discussed. Attention is also given to a summary of intercomparisons with different techniques, polar motion results and intercomparisons, and a polar motion error analysis.

  5. Lunar Polar Environmental Testing: Regolith Simulant Conditioning

    NASA Technical Reports Server (NTRS)

    Kleinhenz, Julie

    2014-01-01

    As ISRU system development approaches flight fidelity, there is a need to test hardware in relevant environments. Extensive laboratory and field testing have involved relevant soil (lunar regolith simulants), but the current design iterations necessitate relevant pressure and temperature conditions. Including significant quantities of lunar regolith simulant in a thermal vacuum chamber poses unique challenges. These include facility operational challenges (dust tolerant hardware) and difficulty maintaining a pre-prepared soil state during pump down (consolidation state, moisture retention).For ISRU purposes, the regolith at the lunar poles will be of most interest due to the elevated water content. To test at polar conditions, the regolith simulant must be doped with water to an appropriate percentage and then chilled to cryogenic temperatures while exposed to vacuum conditions. A 1m tall, 28cm diameter bin of simulant was developed for testing these simulant preparation and drilling operations. The bin itself was wrapped with liquid nitrogen cooling loops (100K) so that the simulant bed reached an average temperature of 140K at vacuum. Post-test sampling was used to determine desiccation of the bed due to vacuum exposure. Depth dependent moisture data is presented from frozen and thawed soil samples.Following simulant only evacuation tests, drill hardware was incorporated into the vacuum chamber to test auguring techniques in the frozen soil at thermal vacuum conditions. The focus of this testing was to produce cuttings piles for a newly developed spectrometer to evaluate. This instrument, which is part of the RESOLVE program science hardware, detects water signatures from surface regolith. The drill performance, behavior of simulant during drilling, and characteristics of the cuttings piles will be offered.

  6. First results from the Mojave Volatiles Prospector (MVP) Field Campaign, a Lunar Polar Rover Mission Analog

    NASA Astrophysics Data System (ADS)

    Heldmann, J. L.; Colaprete, A.; Cook, A.; Deans, M. C.; Elphic, R. C.; Lim, D. S. S.; Skok, J. R.

    2014-12-01

    The Mojave Volatiles Prospector (MVP) project is a science-driven field program with the goal to produce critical knowledge for conducting robotic exploration of the Moon. MVP will feed science, payload, and operational lessons learned to the development of a real-time, short-duration lunar polar volatiles prospecting mission. MVP achieves these goals through a simulated lunar rover mission to investigate the composition and distribution of surface and subsurface volatiles in a natural and a priori unknown environment within the Mojave Desert, improving our understanding of how to find, characterize, and access volatiles on the Moon. The MVP field site is the Mojave Desert, selected for its low, naturally occurring water abundance. The Mojave typically has on the order of 2-6% water, making it a suitable lunar analog for this field test. MVP uses the Near Infrared and Visible Spectrometer Subsystem (NIRVSS), Neutron Spectrometer Subsystem (NSS), and a downward facing GroundCam camera on the KREX-2 rover to investigate the relationship between the distribution of volatiles and soil crust variation. Through this investigation, we mature robotic in situ instruments and concepts of instrument operations, improve ground software tools for real time science, and carry out publishable research on the water cycle and its connection to geomorphology and mineralogy in desert environments. A lunar polar rover mission is unlike prior space missions and requires a new concept of operations. The rover must navigate 3-5 km of terrain and examine multiple sites in in just ~6 days. Operational decisions must be made in real time, requiring constant situational awareness, data analysis and rapid turnaround decision support tools. This presentation will focus on the first science results and operational architecture findings from the MVP field deployment relevant to a lunar polar rover mission.

  7. The lunar semidiurnal tide at the polar summer mesopause observed by SOFIE

    NASA Astrophysics Data System (ADS)

    Hoffmann, C. G.; von Savigny, C.; Hervig, M. E.; Oberbremer, E.

    2018-01-01

    The polar summer mesopause, particularly the presence of noctilucent clouds (NLCs), exhibits pronounced temporal variability. Parts of this variability are thought to be caused by lunar tidal influences. We extract the semidiurnal lunar tide in various NLC related parameters by applying the superposed epoch analysis method to the dataset of the SOFIE satellite instrument. Analyzing the NLC seasons from 2007 to 2015 in the northern and southern hemisphere we, first, confirm the influence of the lunar tide on ice water content (IWC) and temperature. For both parameters the lunar influence had already recently been demonstrated in satellite measurements. Second, we apply the analysis to the variety of parameters observed by SOFIE including trace gases (H2O , O3 , CH4 , and NO), NLC properties (e.g., NLC altitudes and ice mass density), microphysical properties (e.g., particle concentration and mean radius), and mesopause properties. In all of these parameters we find signatures of the semidiurnal lunar tide, which is the first demonstration of this effect for all of these parameters. We quantify the lunar influence in terms of amplitudes and phases. Whereas the focus of the present study is providing observational evidence for the existence of lunar tidal signatures in various parameters, we do not aim at investigating the underlying mechanisms in detail, which is only possible with the utilization of comprehensive modeling approaches. Nevertheless, we briefly discuss the relations to known processes of the NLC evolution where appropriate, e.g., the relevance of the freeze-drying effect for the signature in H2O and the relation of IWC and NLC altitudes.

  8. Limits on the Abundance and Burial Depth of Lunar Polar Ice

    NASA Technical Reports Server (NTRS)

    Elphic, Richard C.; Paige, David A.; Siegler, Matthew A.; Vasavada, Ashwin R.; Teodoro, Luis A.; Eke, Vincent R.

    2012-01-01

    The Diviner imaging radiometer experiment aboard the Lunar Reconnaissance Orbiter has revealed that surface temperatures in parts of the lunar polar regions are among the lowest in the solar system. Moreover, modeling of these Diviner data using realistic thermal conductivity profiles for lunar regolith and topography-based illumination has been done, with surprising results. Large expanses of circum-polar terrain appear to have near-subsurface temperatures well below 110K, despite receiving episodic low-angle solar illumination [Paige et al., 2010]. These subsurface cold traps could provide areally extensive reservoirs of volatiles. Here we examine the limits to abundance and burial depth of putative volatiles, based on the signature they would create for orbital thermal and epithermal neutrons. Epithermals alone are not sufficient to break the abundance-depth ambiguity, while thermal neutrons provide an independent constraint on the problem. The subsurface cold traps are so large that even modest abundances, well below that inferred from LCROSS observations, would produce readily detectable signatures in the Lunar Prospector neutron spectrometer data [Colaprete et al., 2010]. Specifically, we forward-model the thermal and epithermal neutron leakage flux that would be observed for various ice concentrations, given the depth at which ice stability begins. The LCROSS results point to a water-equivalent hydrogen abundance (WEH) in excess of 10 wt%, when all hydrogenous species are added together (except for H2, detected by LAMP on LRO [Gladstone et al., 2010]). When such an ice abundance is placed in a layer below the stability depth of Paige et al., the epithermal and thermal neutron leakage fluxes are vastly reduced and very much at odds with orbital observations. So clearly an environment that is conducive to cold trapping is necessary but not sufficient for the presence of volatiles such as water. We present the limits on the abundances that are indeed consistent

  9. Report of the Terrestrial Bodies Science Working Group. Volume 4: The moon. [lunar polar orbiter mission

    NASA Technical Reports Server (NTRS)

    Haskin, L. A.; Duke, M. B.; Hubbard, N.; Johnson, T. V.; Malin, M. C.; Minear, J.

    1977-01-01

    A rationale for furture exploration of the moon is given. Topics discussed include the objectives of the lunar polar orbiter mission, the mission profile, and general characteristics of the spacraft to be used.

  10. Lower-Cost, Relocatable Lunar Polar Lander and Lunar Surface Sample Return Probes

    NASA Technical Reports Server (NTRS)

    Amato, G. Michael; Garvin, James B.; Burt, I. Joseph; Karpati, Gabe

    2011-01-01

    Key science and exploration objectives of lunar robotic precursor missions can be achieved with the Lunar Explorer (LEx) low-cost, robotic surface mission concept described herein. Selected elements of the LEx concept can also be used to create a lunar surface sample return mission that we have called Boomerang

  11. Progress Report on Landing Site Evaluation for the Next Japanese Lunar Exploration Project: SELENE-2

    NASA Astrophysics Data System (ADS)

    Saiki, K.; Arai, T.; Araki, H.; Ishihara, Y.; Ohtake, M.; Karouji, Y.; Kobayashi, N.; Sugihara, T.; Haruyama, J.; Honda, C.

    2010-12-01

    SELENE-2 is the next Japanese lunar exploration project that is planned to be launched by the end of fiscal year 2015. In order to select the landing site candidates which maximize the scientific return from the project, "SELENE-2 Landing Site Research Board" was organized in March, 2010. The board called for scientific proposals with landing site candidates from domestic researchers who are interested in lunar science and members of the Japanese Society for Planetary Sciences, Japan Association of Mineralogical Sciences, the Geochemical Society of Japan, Seismological society of Japan, or the Geodetic society of Japan. At present, we have 35 scientific proposals with over 70 landing site candidates submitted from 21 groups. The proposals were categorized into nine research subjects as follows: 1) Identification of mantle materials, 2) Temporal variation of igneous activity and thermal history of the moon, 3) Lava morphology, 4) Origin of swirl, 5) Crater formation mechanism, 6) Core size, 7) Internal structure (crust - mantle), 8) Origin of the region enriched in heat source elements, and 9) Origin of highland crust. We are evaluating the proposals with the landing sites, and discussing the scientific target of SELENE-2. Within 6 months, we will propose several model missions which execute the scientific exploration with the highest priority today. In our presentation, the present landing site candidates, the policy of the selection, and a plan of a further landing site selection process would be shown.

  12. Lunar Flashlight: Mapping Lunar Surface Volatiles Using a Cubesat

    NASA Technical Reports Server (NTRS)

    Cohen, B. A.; Hayne, P. O.; Banazadeh, P.; Baker, J. D.; Staehle, R. L.; Paine, C..; Paige, D. A.

    2014-01-01

    Water ice and other volatiles may be located in the Moon's polar regions, with sufficient quantities for in situ extraction and utilization by future human and robotic missions. Evidence from orbiting spacecraft and the LCROSS impactor suggests the presence of surface and/or nearsurface volatiles, including water ice. These deposits are of interest to human exploration to understand their potential for use by astronauts. Understanding the composition, quantity, distribution, and form of water/H species and other volatiles associated with lunar cold traps is identified as a NASA Strategic Knowledge Gap (SKG) for Human Exploration. These polar volatile deposits could also reveal important information about the delivery of water to the Earth- Moon system, so are of scientific interest. The scientific exploration of the lunar polar regions was one of the key recommendations of the Planetary Science Decadal Survey. In order to address NASA's SKGs, the Advanced Exploration Systems (AES) program selected three lowcost 6-U CubeSat missions for launch as secondary payloads on the first test flight (EM1) of the Space Launch System (SLS) scheduled for 2017. The Lunar Flashlight mission was selected as one of these missions, specifically to address the SKG associated with lunar volatiles. Development of the Lunar Flashlight CubeSat concept leverages JPL's Interplanetary Nano- Spacecraft Pathfinder In Relevant Environment (INSPIRE) mission, MSFC's intimate knowledge of the Space Launch System and EM-1 mission, small business development of solar sail and electric propulsion hardware, and JPL experience with specialized miniature sensors. The goal of Lunar Flashlight is to determine the presence or absence of exposed water ice and its physical state, and map its concentration at the kilometer scale within the permanently shadowed regions of the lunar south pole. After being ejected in cislunar space by SLS, Lunar Flashlight deploys its solar panels and solar sail and maneuvers

  13. Lunar Reconnaissance Orbiter

    NASA Astrophysics Data System (ADS)

    Morgan, T.; Chin, G.

    2007-08-01

    NASA's Lunar Reconnaissance Orbiter (LRO) plans to launch in October 2008 with a companion secondary impactor mission, LCROSS, as the inaugural missions for the Exploration System Mission Directorate. LRO is a pathfinder whose objective is to obtain the needed information to prepare for eventual human return to the Moon. LRO will undertake at least one baseline year of operation with additional extended mission phase sponsored by NASA's Science Mission Directorate. LRO will employ six individual instruments to produce accurate maps and high-resolution images of future landing sites, to assess potential lunar resources, and to characterize the radiation environment. LRO will also test the feasibility of one advanced technology demonstration package. The LRO payload includes: Lunar Orbiter Laser Altimeter (LOLA) which will determine the global topography of the lunar surface at high resolution, measure landing site slopes, surface roughness, and search for possible polar surface ice in shadowed regions; Lunar Reconnaissance Orbiter Camera (LROC) which will acquire targeted narrow angle images of the lunar surface capable of resolving meter-scale features to support landing site selection, as well as wide-angle images to characterize polar illumination conditions and to identify potential resources; Lunar Exploration Neutron Detector (LEND) which will map the flux of neutrons from the lunar surface to search for evidence of water ice, and will provide space radiation environment measurements that may be useful for future human exploration; Diviner Lunar Radiometer Experiment (DLRE) which will chart the temperature of the entire lunar surface at approximately 300 meter horizontal resolution to identify cold-traps and potential ice deposits; Lyman-Alpha Mapping Project (LAMP) which will map the entire lunar surface in the far ultraviolet. LAMP will search for surface ice and frost in the polar regions and provide images of permanently shadowed regions illuminated only

  14. a Permanent Magnet Hall Thruster for Orbit Control of Lunar Polar Satellites

    NASA Astrophysics Data System (ADS)

    Ferreira, Jose Leonardo; Silva Moraes, Bruno; Soares Ferreira, Ivan; Cardozo Mour, Decio; Winter, Othon

    Future moon missions devoted to lunar surface remote sensing and to many others scientific exploration topics will require more fine and higher precision orbit control. It is well known that, lunar satellites in polar orbits will suffer a high increase on the eccentricity due to the gravitational perturbation of the Earth. Without proper orbit correction the satellite life time will decrease and end up in a collision with the moon surface. It is pointed out by many authors that this effect is a natural consequence of the Lidov-Kozai resonance. In the present work, we propose a precise method of orbit eccentricity control based on the use of a low thrust Hall plasma thruster. The proposed method is based on an approach intended to keep the orbital eccentricity of the satellite at low values. A previous work on this subject was made using numerical integration considering two systems: the 3-body problem, Moon-Earth-satellite and the 4-body problem, Moon-Earth-Sun-satellite (??). In such simulation it is possible to follow the evolution of the satellite's eccentricity and find empirical expressions for the length of time needed to occur the collision with the moon. In this work, a satellite orbit eccentricity control maneuvering is proposed. It is based on working parameters of a low thrust propulsion permanent magnet Hall plasma thruster (PMHT), which is been developed at University of Brasilia, Brazil. We studied different arcs of active lunar satellite propulsion in order to be able to introduce a correction of the eccentricity at each cycle. The calculations were made considering a set of different thrust values, from 0.1N up to 0.4N which can be obtained by using the PMHT. In each calculation procedure we measured the length of eccentricity correction provided by active propulsion. From these results we obtained empirical expressions of the time needed for the corrections as a function of the initial altitude and as a function of the thrust value. 1. Winter, O. C

  15. Lunar Topography: Results from the Lunar Orbiter Laser Altimeter

    NASA Technical Reports Server (NTRS)

    Neumann, Gregory; Smith, David E.; Zuber, Maria T.; Mazarico, Erwan

    2012-01-01

    The Lunar Orbiter Laser Altimeter (LOLA) onboard the Lunar Reconnaissance Orbiter (LRO) has been operating nearly continuously since July 2009, accumulating over 6 billion measurements from more than 2 billion in-orbit laser shots. LRO's near-polar orbit results in very high data density in the immediate vicinity of the lunar poles, with full coverage at the equator from more than 12000 orbital tracks averaging less than 1 km in spacing at the equator. LRO has obtained a global geodetic model of the lunar topography with 50-meter horizontal and 1-m radial accuracy in a lunar center-of-mass coordinate system, with profiles of topography at 20-m horizontal resolution, and 0.1-m vertical precision. LOLA also provides measurements of reflectivity and surface roughness down to its 5-m laser spot size. With these data LOLA has measured the shape of all lunar craters 20 km and larger. In the proposed extended mission commencing late in 2012, LOLA will concentrate observations in the Southern Hemisphere, improving the density of the polar coverage to nearly 10-m pixel resolution and accuracy to better than 20 m total position error. Uses for these data include mission planning and targeting, illumination studies, geodetic control of images, as well as lunar geology and geophysics. Further improvements in geodetic accuracy are anticipated from the use of re ned gravity fields after the successful completion of the Gravity Recovery and Interior Laboratory (GRAIL) mission in 2012.

  16. Lunar Prospector: overview.

    PubMed

    Binder, A B

    1998-09-04

    Lunar Prospector is providing a global map of the composition of the moon and analyzing the moon's gravity and magnetic fields. It has been in a polar orbit around the moon since 16 January 1998. Neutron flux data show that there is abundant H, and hence probably abundant water ice, in the lunar polar regions. Gamma-ray and neutron data reveal the distribution of Fe, Ti, and other major and trace elements on the moon. The data delineate the global distributions of a key trace element-rich component of lunar materials called KREEP and of the major rock types. Magnetic mapping shows that the lunar magnetic fields are strong antipodal to Mare Imbrium and Mare Serenitatis and has discovered the smallest known magnetosphere, magnetosheath, and bow shock complex in the solar system. Gravity mapping has delineated seven new gravity anomalies and shown that the moon has a small Fe-rich core of about 300 km radius.

  17. Influence of Solar and Lunar Tides on the Mesopause Region as Observed in Polar Mesosphere Summer Echoes Characteristics

    NASA Astrophysics Data System (ADS)

    Dalin, P.; Kirkwood, S.; Pertsev, N.; Perminov, V.

    2017-10-01

    Long-term observations of polar mesosphere summer echoes (PMSE) from 2002 to 2012 are investigated with the aim to statistically study the effects of solar thermal migrating and lunar gravitational tides on aerosol layers and their environment at altitudes 80-90 km. The solar and lunar tidal periodicities are clearly present in PMSE data. For the first time, both amplitudes and phases of solar and lunar tides are estimated using PMSE data from the ESRAD radar located at Esrange (Sweden). The diurnal, semidiurnal, and terdiurnal solar migrating tides show pronounced periodicities in the PMSE strength and wind velocity components. Lunar tides demonstrate clear oscillations in the PMSE strength and wind velocities as well. "canonical" lunar gravitational tides, corresponding to the lunar gravitational potential, produce rather large amplitudes and are comparable to the solar thermal tides, whereas "noncanonical" lunar oscillations have minor effects on PMSE layers, but are still statistically significant. The influence of diurnal/semidiurnal tides and monthly/semimonthly tidal components is studied separately. Our estimations of solar thermal and lunar tidal amplitudes are in good agreement with those of previous model and experimental studies. A new mechanism of quadratic demodulation of the solar semidiurnal and lunar semidiurnal tides is shown to be valid at the summer mesopause and can explain periodical PMSE oscillations due to the lunar synodic semimonthly tide with period of 14.77 days. Two harmonics with periods of 27.0 and 13.5 days supposedly representing the solar rotation cycle are also clearly present in PMSE data.

  18. Volatile Analyzer for Lunar Polar Missions

    NASA Technical Reports Server (NTRS)

    Gibons, Everett K.; Pillinger, Colin T.; McKay, David S.; Waugh, Lester J.

    2011-01-01

    One of the major questions remaining for the future exploration of the Moon by humans concerns the presence of volatiles on our nearest neighbor in space. Observational studies, and investigations involving returned lunar samples and using robotic spacecraft infer the existence of volatile compounds particularly water [1]. It seems very likely that a volatile component will be concentrated at the poles in circumstances where low-temperatures exist to provide cryogenic traps. However, the full inventory of species, their concentration and their origin and sources are unknown. Of particular importance is whether abundances are sufficient to act as a resource of consumables for future lunar expeditions especially if a long-term base involving humans is to be established. To address some of these issues requires a lander designed specifically for operation at a high-lunar latitude. A vital part of the payload needs to be a volatile analyzer such as the Gas Analysis Package specifically designed for identification quantification of volatile substances and collecting information which will allow the origin of these volatiles to be identified [1]. The equipment included, particularly the gas analyzer, must be capable of operation in the extreme environmental conditions to be encountered. No accurate information yet exists regarding volatile concentration even for sites closer to the lunar equator (because of contamination). In this respect it will be important to understand (and thus limit) contamination of the lunar surface by extraneous material contributed from a variety of sources. The only data for the concentrations of volatiles at the poles comes from orbiting spacecraft and whilst the levels at high latitudes may be greater than at the equator, the volatile analyzer package under consideration will be designed to operate at the highest specifications possible and in a way that does not compromise the data.

  19. The science of the lunar poles

    NASA Astrophysics Data System (ADS)

    Lucey, P. G.

    2011-12-01

    It was the great geochemist Harold Urey who first called attention to peculiar conditions at the poles of the Moon where the very small inclination of the lunar spin axis with respect to the sun causes craters and other depressions to be permanently shaded from sunlight allowing very low temperatures. Urey suggested that the expected low temperature surfaces could cold trap and collect any vapors that might transiently pass through the lunar environment. Urey's notion has led to studies of the poles as a new research area in lunar science. The conditions and science of the poles are utterly unlike those of the familiar Moon of Neil Armstrong, and the study of the poles is similar to our understanding of the Moon itself at the dawn of the space age, with possibilities outweighing current understanding. Broadly, we can treat the poles as a dynamic system of input, transport, trapping, and loss. Volatile sources range from continuous, including solar wind, the Earth's polar fountain and micrometeorites, to episodic, including comets and wet asteroids, to nearly unique events including late lunar outgassing and passage through giant molecular clouds. The lunar exosphere transports volatiles to the poles, complicated by major perturbances to the atmosphere by volatile-rich sources. Trapping includes cold trapping, but also in situ creation of more refractory species such as organics, clathrates and water-bearing minerals, as well as sequester by regolith overturn or burial by larger impacts. Finally, volatiles are lost to space by ionization and sweeping. Spacecraft results have greatly added to the understanding of the polar system. Temperatures have been precisely measured by LRO, and thermal models now allow determination of temperature over the long evolution of the lunar orbit, and show very significant changes in temperature and temperature distribution with time and depth. Polar topography is revealed in detail by Selene and LRO laser altimeters while direct

  20. Lunar base siting

    NASA Technical Reports Server (NTRS)

    Staehle, Robert L.; Dowling, Richard

    1991-01-01

    As with any planetary body, the lunar surface is quite heterogeneous. There are widely dispersed sites of particular interest for known and potential resource availability, selenology, and lunar observatories. Discriminating characteristics include solar illumination, view of earth, local topography, engineering properties of the regolith and certain geological features, and local mineralogy and petrology. Space vehicle arrival and departure trajectories constitute a minor consideration. Over time, a variety of base sites will be developed serving different purposes. Resource-driven sites may see the fastest growth during the first decades of lunar development, but selection of the most favorable sites is likely to be driven by suitability for a combination of activities. As on earth, later development may be driven by geographical advantages of surface transportation routes. With the availability of near-constant sunlight for power generation, as well as permanently shadowed areas at cryogenic temperatures, polar sites are attractive because they require substantially less earth-launched mass and lower equipment complexity for an initial permanent base. Discovery of accessible volatiles reservoirs, either in the form of polar permafrost or gas reservoirs at other locations, would dramatically increase the attractiveness of any site from a logistical support and selenological point of view. Amid such speculation, no reliable evidence of such volatiles exist. More reliable evidence exists for areas of certain mineral concentrations, such as ilmenite, which could form a feedstock for some proposed resource extraction schemes. While tentative selections of advantageous base sites are made, new data from lunar polar orbiters and the Galileo polar flybys would be very helpful.

  1. Lunar and Planetary Science XXXV: Moon and Mercury

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session" Moon and Mercury" included the following reports:Helium Production of Prompt Neutrinos on the Moon; Vapor Deposition and Solar Wind Implantation on Lunar Soil-Grain Surfaces as Comparable Processes; A New Lunar Geologic Mapping Program; Physical Backgrounds to Measure Instantaneous Spin Components of Terrestrial Planets from Earth with Arcsecond Accuracy; Preliminary Findings of a Study of the Lunar Global Megaregolith; Maps Characterizing the Lunar Regolith Maturity; Probable Model of Anomalies in the Polar Regions of Mercury; Parameters of the Maximum of Positive Polarization of the Moon; Database Structure Development for Space Surveying Results by Moon -Zond Program; CM2-type Micrometeoritic Lunar Winds During the Late Heavy Bombardment; A Comparison of Textural and Chemical Features of Spinel Within Lunar Mare Basalts; The Reiner Gamma Formation as Characterized by Earth-based Photometry at Large Phase Angles; The Significance of the Geometries of Linear Graben for the Widths of Shallow Dike Intrusions on the Moon; Lunar Prospector Data, Surface Roughness and IR Thermal Emission of the Moon; The Influence of a Magma Ocean on the Lunar Global Stress Field Due to Tidal Interaction Between the Earth and Moon; Variations of the Mercurian Photometric Relief; A Model of Positive Polarization of Regolith; Ground Truth and Lunar Global Thorium Map Calibration: Are We There Yet?;and Space Weathering of Apollo 16 Sample 62255: Lunar Rocks as Witness Plates for Deciphering Regolith Formation Processes.

  2. LSPECS: A Proposed Robotic Astronomy Mission to the Lunar South Polar Regions

    NASA Technical Reports Server (NTRS)

    Lowman, Paul D., Jr.

    2003-01-01

    This paper outlines a possible mission to emplace a robotic infrared/submillimeter wave interferometer array near the lunar south pole. This region has now been investigated by the Clementine and Lunar Prospector missions, and by Earth-based radar, and its topography and thermal environment are fairly well-known. The area would be exceptionally suitable for infrared/submillimeter astronomy because of the continually low temperatures, approaching that of liquid nitrogen (77K) in some places. The presence of ice has been inferred independently from Clementine and Lunar Prospector, providing another incentive for a south polar mission. A submillimeter spaceborne interferometer mission, Submillimeter Probe of the Evolution of the Cosmic Structure (SPECS) has been proposed by John Mather and others, covering the 40 - 500 micron region with 3 formation flying telescopes. The present paper proposes a lunar adaptation of the SPECS concept, LSPECS. This adaptation would involve landing 4 telescopes on the area north of Shackleton crater at zero degrees longitude. This is in nearly year round darkness but is continually radar visible from Earth. The landed payload of LSPECS would include a telerobotic rover, 4 three meter submm telescopes, a solar power array to be emplaced on the continually sunlit north rim of Shackleton crater, and an S-band antenna for data relay to Earth. Operation without the use of expendable cryogenics for cooling might be possible, trading long exposure time for instrument temperatures above that of liquid helium. The LSPECS would permit long-term study of an extremely wide range of cosmic and solar system phenomena in the southern celestial hemisphere. For complete sky coverage, a similar installation near the north pole would be required. The LSPECS site would also be suitable other types of observation, such as optical interferometry or centimeter wavelength radio astronomy. The lunar south pole is also of great interest because of its extensive

  3. NASA's International Lunar Network Anchor Nodes and Robotic Lunar Lander Project Update

    NASA Technical Reports Server (NTRS)

    Morse, Brian J.; Reed, Cheryl L. B.; Kirby, Karen W.; Cohen, Barbara A.; Bassler, Julie A.; Harris, Danny W.; Chavers, D. Gregory

    2010-01-01

    In early 2008, NASA established the Lunar Quest Program, a new lunar science research program within NASA s Science Mission Directorate. The program included the establishment of the anchor nodes of the International Lunar Network (ILN), a network of lunar science stations envisioned to be emplaced by multiple nations. This paper describes the current status of the ILN Anchor Nodes mission development and the lander risk-reduction design and test activities implemented jointly by NASA s Marshall Space Flight Center and The Johns Hopkins University Applied Physics Laboratory. The lunar lander concepts developed by this team are applicable to multiple science missions, and this paper will describe a mission combining the functionality of an ILN node with an investigation of lunar polar volatiles.

  4. Lunar Obliquity History Revisited

    NASA Astrophysics Data System (ADS)

    Siegler, M.; Bills, B.; Paige, D.

    2007-12-01

    In preparation for a LRO (Lunar Reconnaissance Orbiter) related study of possible lunar polar volatiles, we re- examined the lunar orbital and rotational history, with primary focus on the obliquity history of the Moon. Though broad models have been made of lunar obliquity, a cohesive obliquity history was not found. We report on a new model of lunar obliquity including secular changes in inclination of the lunar orbit, tidal dissipation, lunar moments of inertia, and details for periods outside of the stable configurations known as Cassini states. For planets, the obliquity, or angle between the spin and orbit poles, is the dominant control on incident solar radiation. For planetary satellites, the radiation pattern can be more complex, as it depends on the mutual inclinations of three poles; the satellite spin and orbit poles, and the planetary heliocentric orbit pole. Presently, the lunar spin pole and orbit pole co-precess about the ecliptic pole, in a stable situation known as a Cassini state. As a result, permanently shadowed regions near the poles are expected to exist and act as cold traps, retaining water or other volatiles delivered to the surface by comets, solar wind, or via outgassing of the lunar interior. However, tidally driven secular changes in the lunar semimajor axis cause changes in precession rates of the spin and orbit poles, and thereby alter or destabilize the Cassini states. Only one prograde Cassini state exists at present (state 2). In the standard Cassini state model of Ward [1975], two other such states would have existed in the past (states 1 and 4) with the Moon starting in the low obliquity state 1, and remaining there until states 1 and 4 merged and disappear, at roughly half the present Earth-Moon distance. At that point, the Moon transitioned into the currently occupied state 2, and briefly attained very high obliquity values during the transition, and then stayed in state 2 until the present. If correct, this model implies that

  5. Beagle to the Moon: An Experiment Package to Measure Polar Ice and Volatiles in Permanently Shadowed Areas or Beneath the Lunar Surface

    NASA Technical Reports Server (NTRS)

    Gibson, E. K.; McKay, D. S.; Pillinger, C. T.; Wright, I. P.; Sims, M. R.; Richter, L.

    2007-01-01

    Near the beginning of the next decade we will see the launch of scientific payloads to the lunar surface to begin laying the foundations for the return to the moon in the Vision for Space Exploration. Shortly thereafter, astronauts will return to the lunar surface and have the ability to place scientific packages on the surface that will provide information about lunar resources and compositions of materials in permanently shadowed regions of the moon (1). One of the important questions which must be answered early in the program is whether there are lunar resources which would facilitate "living off the land" and not require the transport of resources and consumables from Earth (2). The Beagle science package is the ideal payload (3) to use on the lunar surface for determining the nature of hydrogen, water and lunar volatiles found in the polar regions which could support the Vision for Space Exploration

  6. Global Lunar Gravity Field Recovery from SELENE

    NASA Technical Reports Server (NTRS)

    Matsumoto, Koji; Heki, Kosuke; Hanada, Hideo

    2002-01-01

    Results of numerical simulation are presented to examine the global gravity field recovery capability of the Japanese lunar exploration project SELENE (Selenological and Engineering Explorer) which will be launched in 2005. New characteristics of the SELENE lunar gravimetry include four-way satellite-to-satellite Doppler tracking of main orbiter and differential VLBI tracking of two small free-flier satellites. It is shown that planned satellites configuration will improve lunar gravity field in wide range of wavelength as well as far-side selenoid.

  7. Fundamental Problems of Lunar Research, Technical Solutions, and Priority Lunar Regions for Research

    NASA Astrophysics Data System (ADS)

    Ivanov, M. A.; Basilevsky, A. T.; Bricheva, S. S.; Guseva, E. N.; Demidov, N. E.; Zakharova, M.; Krasil'nikov, S. S.

    2017-11-01

    In this article, we discuss four fundamental scientific problems of lunar research: (1) lunar chronology, (2) the internal structure of the Moon, (3) the lunar polar regions, and (4) lunar volcanism. After formulating the scientific problems and their components, we proceed to outlining a list of technical solutions and priority lunar regions for research. Solving the listed problems requires investigations on the lunar surface using lunar rovers, which can deliver a set of analytical equipment to places where geological conditions are known from a detailed analysis of orbital information. The most critical research methods, which can answer some of the key questions, are analysis of local geological conditions from panoramic photographs, determination of the chemical, isotopic, and mineral composition of the soil, and deep seismic sounding. A preliminary list is given of lunar regions with high scientific priority.

  8. Lunar Dust Monitor to BE Onboard the Next Japanese Lunar Mission SELENE-2

    NASA Astrophysics Data System (ADS)

    Ohashi, Hideo

    The next Japanese lunar mission SELENE-2, after a successful mission Kaguya (a project named SELENE), is planned to be launched in mid 2010s and is consisted of a lander, a rover, and an orbiter, as a transmitting satellite to the earth. A dust particle detector LDM (Lunar Dust Monitor) is proposed to be onboard the orbiter. The LDM is an impact ionization detector with dimensions 25 cm × 25 cm × 30 cm, and it has a sensor part (LDM-S, upper module) and an electronics part (LDM-E, lower module). The LDM-S has a large target (gold-plated Al) of 400 cm2 , to which a high voltage of +500 V is applied. The LDM-S also has two meshed grids parallel to the target. The grids are etched stainless steel with 90% transparency: the inner grid is 2 cm apart from the target and the outer grid is 15 cm from the target. When a charged dust particle passes through the outer and inner grids, it induces an electric signal on the grids separated by a certain time interval, determined by the velocity of the incident particle and the distance between the outer and inner grids. By measuring the time interval, we can calculate the velocity of the particle, with the ambiguity of its trajectory to the target. When the incident particle impacts on the target, plasma gas of electrons and ions is generated. The electrons of the plasma are collected by the target and the ions are accelerated toward the inner grids as a result of the electric field. Some of the ions drift through the inner grid and reach the outer grid. The outer and inner grids and the target are connected to charge-sensitive amplifiers, which convert charge signals induced by the electrons and ions to voltage signals that are fed to a following flash ADC driven with 10 MHz. The waveforms from two grids and the target can be stored and be sent back to ground for data analysis. We can deduce the mass and velocity information of the incident dust particle from the recorded waveforms. The orbiter of SELENE-2 is planned to be in

  9. Lunar Flashlight: Illuminating the Lunar South Pole

    NASA Technical Reports Server (NTRS)

    Hayne, P. O.; Greenhagen,, B. T.; Paige, D. A.; Camacho, J. M.; Cohen, B. A.; Sellar, G.; Reiter, J.

    2016-01-01

    Recent reflectance data from LRO instruments suggest water ice and other volatiles may be present on the surface in lunar permanentlyshadowed regions, though the detection is not yet definitive. Understanding the composition, quantity, distribution, and form of water and other volatiles associated with lunar permanently shadowed regions (PSRs) is identified as a NASA Strategic Knowledge Gap (SKG) for Human Exploration. These polar volatile deposits are also scientifically interesting, having the potential to reveal important information about the delivery of water to the Earth- Moon system.

  10. Summary of the Results from the Lunar Orbiter Laser Altimeter after Seven Years in Lunar Orbit

    NASA Technical Reports Server (NTRS)

    Smith, David E.; Zuber, Maria T.; Neumann, Gregory A.; Mazarico, Erwan; Lemoine, Frank G.; Head, James W., III; Lucey, Paul G.; Aharonson, Oded; Robinson, Mark S.; Sun, Xiaoli; hide

    2016-01-01

    In June 2009 the Lunar Reconnaissance Orbiter (LRO) spacecraft was launched to the Moon. The payload consists of 7 science instruments selected to characterize sites for future robotic and human missions. Among them, the Lunar Orbiter Laser Altimeter (LOLA) was designed to obtain altimetry, surface roughness, and reflectance measurements. The primary phase of lunar exploration lasted one year, following a 3-month commissioning phase. On completion of its exploration objectives, the LRO mission transitioned to a science mission. After 7 years in lunar orbit, the LOLA instrument continues to map the lunar surface. The LOLA dataset is one of the foundational datasets acquired by the various LRO instruments. LOLA provided a high-accuracy global geodetic reference frame to which past, present and future lunar observations can be referenced. It also obtained high-resolution and accurate global topography that were used to determine regions in permanent shadow at the lunar poles. LOLA further contributed to the study of polar volatiles through its unique measurement of surface brightness at zero phase, which revealed anomalies in several polar craters that may indicate the presence of water ice. In this paper, we describe the many LOLA accomplishments to date and its contribution to lunar and planetary science.

  11. Ice in the lunar polar regions

    NASA Technical Reports Server (NTRS)

    Arnold, J. R.

    1979-01-01

    The idea that ice and other trapped volatiles exist in permanently shadowed regions near the lunar poles was proposed by Watson, Murray, and Brown (1961). It is reexamined in the present paper, in the light of the vast increase of lunar knowledge. The stability of the traps and the trapping mechanism are verified. Four potential sources of lunar H2O, namely (1) solar wind reduction of Fe in the regolith, (2) H2O-containing meteoroids, (3) cometary impact, and (4) (the least certain) degassing of the interior, can supply amounts of trapped H2O estimated in the range of 10 to the 16th to 10 to the 17th g. Two important destructive mechanisms have been identified: photodissociation of H2O molecules adsorbed on the sunlit surface and sputtering or decomposition of trapped H2O by solar wind particles. The effect of impact gardening is mainly protective. The question of the presence of H2O in the traps remains open; it can be settled by experiment.

  12. Regolith Volatile Recovery at Simulated Lunar Environments

    NASA Technical Reports Server (NTRS)

    Kleinhenz, Julie; Paulsen, Gale; Zacny, Kris; Schmidt, Sherry; Boucher, Dale

    2016-01-01

    Lunar Polar Volatiles: Permanently shadowed craters at the lunar poles contain water, 5 wt according to LCROSS. Interest in water for ISRU applications. Desire to ground truth water using surface prospecting e.g. Resource Prospector and RESOLVE. How to access subsurface water resources and accurately measure quantity. Excavation operations and exposure to lunar environment may affect the results. Volatile capture tests: A series a ground based dirty thermal vacuum tests are being conducted to better understand the subsurface sampling operations. Sample removal and transfer. Volatiles loss during sampling operations. Concept of operations, Instrumentation. This presentation is a progress report on volatiles capture results from these tests with lunar polar drill prototype hardware.

  13. The Lunar Orbiter Laser Altimeter (LOLA) on NASA's Lunar Reconnaissance Orbiter (LRO) mission

    NASA Astrophysics Data System (ADS)

    Riris, H.; Cavanaugh, J.; Sun, X.; Liiva, P.; Rodriguez, M.; Neuman, G.

    2017-11-01

    The Lunar Orbiter Laser Altimeter (LOLA) instrument [1-3] on NASA's Lunar Reconnaissance Orbiter (LRO) mission, launched on June 18th, 2009, from Kennedy Space Center, Florida, will provide a precise global lunar topographic map using laser altimetry. LOLA will assist in the selection of landing sites on the Moon for future robotic and human exploration missions and will attempt to detect the presence of water ice on or near the surface, which is one of the objectives of NASA's Exploration Program. Our present knowledge of the topography of the Moon is inadequate for determining safe landing areas for NASA's future lunar exploration missions. Only those locations, surveyed by the Apollo missions, are known with enough detail. Knowledge of the position and characteristics of the topographic features on the scale of a lunar lander are crucial for selecting safe landing sites. Our present knowledge of the rest of the lunar surface is at approximately 1 km kilometer level and in many areas, such as the lunar far side, is on the order of many kilometers. LOLA aims to rectify that and provide a precise map of the lunar surface on both the far and near side of the moon. LOLA uses short (6 ns) pulses from a single laser through a Diffractive Optical Element (DOE) to produce a five-beam pattern that illuminates the lunar surface. For each beam, LOLA measures the time of flight (range), pulse spreading (surface roughness), and transmit/return energy (surface reflectance). LOLA will produce a high-resolution global topographic model and global geodetic framework that enables precise targeting, safe landing, and surface mobility to carry out exploratory activities. In addition, it will characterize the polar illumination environment, and image permanently shadowed regions of the lunar surface to identify possible locations of surface ice crystals in shadowed polar craters.

  14. Beagle 2 the Moon: An Experimental Package to Measure Polar Ice and Volatiles in Permanently Shadowed Areas or Beneath the Lunar Surface

    NASA Technical Reports Server (NTRS)

    Gibson, E. K.; McKay, D. S.; Pillinger, C. T.; Wright, I. P.; Sims, M. R.; Richter, L.

    2008-01-01

    NASA has announced the selection of several Lunar Science Sortie Concept Studies for potential scientific payloads with future Lunar Missions. The Beagle 2 scientific package was one of those chosen for study. Near the beginning of the next decade will see the launch of scientific payloads to the lunar surface to begin laying the foundations for the return to the moon in the Vision for Space Exploration. Shortly thereafter, astronauts will return to the lunar surface with the ability to place scientific packages on the surface that will provide information about lunar resources and compositions of materials in permanently shadowed regions of the moon (1). One of the important questions which must be answered early in the program is whether there are lunar resources which would facilitate "living off the land" and not require the transport of resources and consumables from Earth (2). The Beagle science package developed to seek the signatures of life on Mars is the ideal payload (3) to use on the lunar surface for determining the nature of hydrogen, water and lunar volatiles found in the polar regions which could support the Vision for Space Exploration.

  15. Visible and near-infrared spectral survey of lunar meteorites recovered by the National Institute of Polar Research

    NASA Astrophysics Data System (ADS)

    Hiroi, T.; Kaiden, H.; Yamaguchi, A.; Kojima, H.; Uemoto, K.; Ohtake, M.; Arai, T.; Sasaki, S.

    2016-12-01

    Lunar meteorite chip samples recovered by the National Institute of Polar Research (NIPR) have been studied by a UV-visible-near-infrared spectrometer, targeting small areas of about 3 × 2 mm in size. Rock types and approximate mineral compositions of studied meteorites have been identified or obtained through this spectral survey with no sample preparation required. A linear deconvolution method was used to derive end-member mineral spectra from spectra of multiple clasts whenever possible. In addition, the modified Gaussian model was used in an attempt of deriving their major pyroxene compositions. This study demonstrates that a visible-near-infrared spectrometer on a lunar rover would be useful for identifying these kinds of unaltered (non-space-weathered) lunar rocks. In order to prepare for such a future mission, further studies which utilize a smaller spot size are desired for improving the accuracy of identifying the clasts and mineral phases of the rocks.

  16. Estimating Background and Lunar Contribution to Neutrons Detected by the Lunar Reconnaissance Orbiter (LRO) Lunar Exploration Neutron Detector (LEND) Instrument

    NASA Astrophysics Data System (ADS)

    Livengood, T. A.; Mitrofanov, I. G.; Chin, G.; Boynton, W. V.; Evans, L. G.; Litvak, M. L.; McClanahan, T. P.; Sagdeev, R.; Sanin, A. B.; Starr, R. D.; Su, J. J.

    2014-12-01

    The fraction of hydrogen-bearing species embedded in planetary regolith can be determined from the ratio between measured epithermal neutron leakage flux and the flux measured from similar dry regolith. The Lunar Reconnaissance Orbiter (LRO) spacecraft is equipped with the Lunar Exploration Neutron Detector (LEND) instrument to measure embedded hydrogen in the Moon's polar regions and elsewhere. We have investigated the relative contribution of lunar and non-lunar (spacecraft-sourced) neutrons by modeling maps of the measured count rate from three of the LEND detector systems using linear combinations of maps compiled from the Lunar Prospector Neutron Spectrometer (LPNS) and the LEND detectors, demonstrating that the two systems are compatible and enabling reference signal to be inferred to enable detecting hydrogen and hydrogen-bearing volatiles. The pole-to-equator contrast ratio in epithermal neutrons indicates that the average concentration of hydrogen in the Moon's polar regolith above 80° north or south latitude is ~110 ppmw, or 0.10±0.01 wt% water-equivalent hydrogen. Above 88° north or south, the concentration increases to ~140 ppmw, or 0.13±0.02 wt% water-equivalent hydrogen. Nearly identical suppression of neutron flux at both the north and south poles, despite differences in topography and distribution of permanently-shadowed regions, supports the contention that hydrogen is broadly distributed in the polar regions and increasingly concentrated approaching the poles. Similarity in the degree of neutron suppression in low-energy and high-energy epithermal neutrons suggests that the hydrogen fraction is relatively uniform with depth down to ~1 m; the neutron leakage flux is insensitive to greater depth.

  17. Lunar Polar In Situ Resource Utilization (ISRU) as a Stepping Stone for Human Exploration

    NASA Technical Reports Server (NTRS)

    Sanders, Gerald B.

    2013-01-01

    A major emphasis of NASA is to extend and expand human exploration across the solar system. While specific destinations are still being discussed as to what comes first, it is imperative that NASA create new technologies and approaches that make space exploration affordable and sustainable. Critical to achieving affordable and sustainable exploration beyond low Earth orbit (LEO) are the development of technologies and approaches for advanced robotics, power, propulsion, habitats, life support, and especially, space resource utilization systems. Space resources and how to use them, often called In-Situ Resource Utilization (ISRU), can have a tremendous beneficial impact on robotic and human exploration of the Moon, Mars, Phobos, and Near Earth Objects (NEOs), while at the same time helping to solve terrestrial challenges and enabling commercial space activities. The search for lunar resources, demonstration of extraterrestrial mining, and the utilization of resource-derived products, especially from polar volatiles, can be a stepping stone for subsequent human exploration missions to other destinations of interest due to the proximity of the Moon, complimentary environments and resources, and the demonstration of critical technologies, processes, and operations. ISRU and the Moon: There are four main areas of development interest with respect to finding, obtaining, extracting, and using space resources: Prospecting for resources, Production of mission critical consumables like propellants and life support gases, Civil engineering and construction, and Energy production, storage, and transfer. The search for potential resources and the production of mission critical consumables are the primary focus of current NASA technology and system development activities since they provide the greatest initial reduction in mission mass, cost, and risk. Because of the proximity of the Moon, understanding lunar resources and developing, demonstrating, and implementing lunar ISRU

  18. Space Solar Power Technology Demonstration for Lunar Polar Applications: Laser-Photovoltaic Wireless Power Transmission

    NASA Technical Reports Server (NTRS)

    Henley, M. W.; Fikes, J. C.; Howell, J.; Mankins, J. C.; Howell, Joe T. (Technical Monitor)

    2002-01-01

    Space Solar Power technology offers unique benefits for near-term NASA space science missions, which can mature this technology for other future applications. "Laser-Photo-Voltaic Wireless Power Transmission" (Laser-PV WPT) is a technology that uses a laser to beam power to a photovoltaic receiver, which converts the laser's light into electricity. Future Laser-PV WPT systems may beam power from Earth to satellites or large Space Solar Power satellites may beam power to Earth, perhaps supplementing terrestrial solar photo-voltaic receivers. In a near-term scientific mission to the moon, Laser-PV WPT can enable robotic operations in permanently shadowed lunar polar craters, which may contain ice. Ground-based technology demonstrations are proceeding, to mature the technology for this initial application, in the moon's polar regions.

  19. Lunar plasma measurement by MAP-PACE onboard KAGUYA (SELENE)

    NASA Astrophysics Data System (ADS)

    Saito, Yoshifumi

    Low energy charged particles around the Moon were vigorously observed by Moon orbiting satellites and plasma instrumentation placed on the lunar surface in 1960s and 1970s. Though there were some satellites that explored the Moon afterwards, most of them were dedicated to the global mapping of the lunar surface. KAGUYA(SELENE) is a Japanese lunar orbiter that studies the origin and evolution of the Moon by means of global mapping of element abundances, mineralogical composition, and surface geographical mapping from 100km altitude. KAGUYA was successfully launched on 14 September 2007 by HIIA launch vehicle from Tanegashima Space Center in Japan. KAGUYA was inserted into a circular lunar polar orbit of 100km altitude and started continuous observation in mid-December 2007. One of the fourteen science instruments MAP-PACE (MAgnetic field and Plasma experiment - Plasma energy Angle and Composition Experiment) was developed for the comprehensive three-dimensional plasma measurement around the Moon. MAP-PACE consists of 4 sensors: ESA (Electron Spectrum Analyzer)-S1, ESA-S2, IMA (Ion Mass Analyzer), and IEA (Ion Energy Analyzer). ESA-S1 and S2 measure the distribution function of low energy electrons below 15keV. IMA and IEA measure the distribution function of low energy ions below 28keV/q. IMA has an ability to discriminate the ion mass with high mass resolution. PACE sensors have been measuring solar wind, plasmas in the wake region of the Moon and plasmas in the Earth's magnetosphere. ESA sensors have discovered electron heating over magnetic anomalies on the lunar surface. ESA sensors have also observed electrons accelerated from the lunar surface in the wake region. PACE ion sensors have discovered new features of low energy ions around the Moon. IMA has discovered the existence of alkali ions that are originated from the lunar surface or lunar atmosphere and are picked up by the solar wind. IEA and IMA sensors discovered solar wind reflection by the Moon. PACE

  20. Lunar Science from Lunar Laser Ranging

    NASA Technical Reports Server (NTRS)

    Williams, J. G.; Boggs, D. H.; Ratcliff, J. T.

    2013-01-01

    Variations in rotation and orientation of the Moon are sensitive to solid-body tidal dissipation, dissipation due to relative motion at the fluid-core/solid-mantle boundary, tidal Love number k2, and moment of inertia differences. There is weaker sensitivity to flattening of the core/mantle boundary (CMB) and fluid core moment of inertia. Accurate Lunar Laser Ranging (LLR) measurements of the distance from observatories on the Earth to four retroreflector arrays on the Moon are sensitive to variations in lunar rotation, orientation and tidal displacements. Past solutions using the LLR data have given results for Love numbers plus dissipation due to solid-body tides and fluid core. Detection of the fluid core polar minus equatorial moment of inertia difference due to CMB flattening is weakly significant. This strengthens the case for a fluid lunar core. Future approaches are considered to detect a solid inner core.

  1. Lunar Flashlight

    NASA Technical Reports Server (NTRS)

    Baker, John; Cohen, Barbara; Walden, Amy

    2015-01-01

    The Lunar Flashlight is a Jet Propulsion Laboratory project, with NASA Marshall Space Flight Center (MSFC) serving as the principal investigator and providing the solar sail propulsion system. The goal of Lunar Flashlight is to determine the presence and abundance of exposed lunar water ice within permanently shadowed regions (PSRs) at the lunar south pole, and to map its concentration at the 1-2 kilometer scale to support future exploration and use. After being ejected in cis-lunar space by the launch vehicle, Lunar Flashlight deploys solar panels and an 85-square-meter solar sail and maneuvers into a low-energy transfer to lunar orbit. The solar sail and attitude control system work to bring the satellite into an elliptical polar orbit, spiraling down over a period of 18 months to a perilune of 30-10 kilometers above the south pole for data collection. Lunar Flashlight uses its solar sail to shine reflected sunlight onto the lunar surface, measuring surface reflectance with a four-filter point spectrometer. The spectrometer measures water ice absorption features (1.5, 1.95 microns) and the continuum between them (1.1, 1.9 microns). The ratios of water ice bands to the continuum will provide a measure of the abundance of surface frost and its variability across PSRs. Water ice abundance will be correlated with other data from previous missions, such as the Lunar Reconnaissance Orbiter and Lunar Crater Observation and Sensing Satellite, to provide future human and robotic explorers with a map of potential resources. The mission is enabled by the use of an 85-square-meter solar sail being developed by MSFC.

  2. Evidence of Lunar Phase Influence on Global Surface Air Temperatures

    NASA Technical Reports Server (NTRS)

    Anyamba, Ebby; Susskind, Joel

    2000-01-01

    Intraseasonal oscillations appearing in a newly available 20-year record of satellite-derived surface air temperature are composited with respect to the lunar phase. Polar regions exhibit strong lunar phase modulation with higher temperatures occurs near full moon and lower temperatures at new moon, in agreement with previous studies. The polar response to the apparent lunar forcing is shown to be most robust in the winter months when solar influence is minimum. In addition, the response appears to be influenced by ENSO events. The highest mean temperature range between full moon and new moon in the polar region between 60 deg and 90 deg latitude was recorded in 1983, 1986/87, and 1990/91. Although the largest lunar phase signal is in the polar regions, there is a tendency for meridional equatorward progression of anomalies in both hemispheres so that the warning in the tropics occurs at the time of the new moon.

  3. Lunar Geoscience: Key Questions for Future Lunar Exploration

    NASA Astrophysics Data System (ADS)

    Head, James

    2014-05-01

    Lunar Geoscience: Key Questions for Future Lunar Exploration James W. Head, Department of Geological Sciences, Brown University, Providence, RI 02912 USA. (Invited paper/solicited talk for EGU 2014 PS2.3 Lunar session, Bernard H. Foing, Convener EGU PS2.3) The last several decades of intensive robotic exploration of the Moon has built on early Apollo and Luna exploration to provide fundamental knowledge of Earth's satellite and an excellent perspective on the most well-documented planetary body other than Earth. This new planetological perspective has raised substantial new questions about the nature of the origin of the Moon, its early differentiation and bombardment history, its internal thermal evolution, the production of its secondary crust as exemplified by the lunar maria, and tertiary crust as potentially seen in steep-sided domes and impact melt differentiates, the abundance of interior volatiles and their role in volcanic eruptions, and the abundance of surface volatiles and their concentration in polar regions. On the basis of this new information, a series of specific outstanding geoscience questions can be identified that can serve as guides for future human and robotic exploration. These include: 1) What is the nature and abundance of impact melt seas and what rock types do they produce upon differentiation and solidification? 2) Where are lunar mantle samples located on the lunar surface and what processes are responsible for placing them there? 3) What processes are responsible for producing the silica-rich viscous domes, such as those seen at Gruithuisen? 4) What are the volatile species involved in the emplacement of lunar pyroclastic deposits and what clues do they provide about deep magmatic volatiles and shallow volatile formation processes? 5) How do we account for the differing characteristics of regional dark mantling pyroclastic deposits? 6) When did mare basalt volcanism begin (earliest cryptmaria) and how and where is it manifested? 7

  4. Self-unloading, reusable, lunar lander project

    NASA Technical Reports Server (NTRS)

    Arseculeratne, Ruwan; Cavazos, Melissa; Euker, John; Ghavidel, Fred; Hinkel, Todd J.; Hitzfelder, John; Leitner, Jesse; Nevik, James; Paynter, Scott; Zolondek, Allen

    1990-01-01

    In the early 21st century, NASA will return to the Moon and establish a permanent base. To achieve this goal safely and economically, B&T Engineering has designed an unmanned, reusable, self-unloading lunar lander. The lander is designed to deliver 15,000 kg payloads from an orbit transfer vehicle (OTV) in a low lunar polar orbit and an altitude of 200 km to any location on the lunar surface.

  5. Lunar surface exploration using mobile robots

    NASA Astrophysics Data System (ADS)

    Nishida, Shin-Ichiro; Wakabayashi, Sachiko

    2012-06-01

    A lunar exploration architecture study is being carried out by space agencies. JAXA is carrying out research and development of a mobile robot (rover) to be deployed on the lunar surface for exploration and outpost construction. The main target areas for outpost construction and lunar exploration are mountainous zones. The moon's surface is covered by regolith. Achieving a steady traversal of such irregular terrain constitutes the major technical problem for rovers. A newly developed lightweight crawler mechanism can effectively traverse such irregular terrain because of its low contact force with the ground. This fact was determined on the basis of the mass and expected payload of the rover. This paper describes a plan for Japanese lunar surface exploration using mobile robots, and presents the results of testing and analysis needed in their development. This paper also gives an overview of the lunar exploration robot to be deployed in the SELENE follow-on mission, and the composition of its mobility, navigation, and control systems.

  6. Relationships among basaltic lunar meteorites

    NASA Technical Reports Server (NTRS)

    Lindstrom, Marilyn M.

    1991-01-01

    During the past two years four meteorites of dominantly mare basalt composition were identified in the Japanese and US Antarctic collections. Basalts represent a much higher proportion of the lunar meteorites than is expected from photogeologic mapping of mare and highland regions. Also, the basaltic lunar meteorites are all described as VLT mare basalt, which is a relatively uncommon type among returned lunar samples. The significance of the basaltic meteorites to the understanding of the lunar crust depends on the evaluation of possible relationships among the individual meteorites. None of the specimens are paired meteorites. They differ from each other in petrography and composition. It is important to determine whether they might be paired ejecta which were ejected from the same mare region by the same impact. The question of paired ejecta must be addressed using a combination of exposure histories and petrographic/compositional characteristics. It is possible that the basaltic lunar meteorites are paired ejecta from the same region of the Moon. However, the relationships among them are more complicated than the basaltic breccias being simply brecciated mare gabbros.

  7. Russian plans for lunar investiagtions. Stage 1

    NASA Astrophysics Data System (ADS)

    Zelenyi, L.; Mitrofanov, I.; Petrukovich, A.; Khartov, V.; Martynov, M.; Lukianchikov, A.

    2014-04-01

    Lunar Race of 60-ies and 70-ies between US and Soviet Union produced outstanding results for lunar science. For many technical reasons mostly near equatorial and mid-latitude Lunar regions were investigated at this glorious time. New epoch of Lunar investigations began at the late 90-ies. It gradually shaped the image of a new wet moon at least at the vicinity of its polar regions. Strong interest to the mechanisms of the formation of a near polar volatiles deposits, their migration and their composition (including the bisotope one) became the central theme of the Russian program of lunar investigations for next 10 years. Certainly the number of other outstanding scientific topics like the properties of Lunar dust, peculiarities of regolith interaction with the supersonic solar wind flow, characteristics of the Lunar magnetic and gravitational anomalies, etc., are planned to be studied both from the orbit and from the surface. First stage of the Russian Lunar Program consists of a four missions: Lunas 25, 26, 27, 28. (The numeration follows Lunar missions of a Soviet Epoch - last successful regolith sample delivery have been accomplished by Luna 24 in 1976). Luna 25 will land to the southern polar site, which would be the most suitable for engineering reasons and also interesting for the science. Second lander Luna 27 will have more sophisticated payload with the additional instruments in comparison with Luna 25. Luna 27 should be landed to the selected landing site at the vicinity of the South Pole, which could be the most promising for installation of the future Lunar Base. It is very important that Luna 27 will be equipped by the subsurface drill to get samples from the permafrost shallow subsurface (one attractive option now is that this drill will be provided by our ESA colleagues having the experience of designing and manufacturing of a similar drill for the Exomars project). The principal difference of the drilling at Luna 27 in comparison with the early

  8. Lunar Reconnaissance Orbiter Camera (LROC) instrument overview

    USGS Publications Warehouse

    Robinson, M.S.; Brylow, S.M.; Tschimmel, M.; Humm, D.; Lawrence, S.J.; Thomas, P.C.; Denevi, B.W.; Bowman-Cisneros, E.; Zerr, J.; Ravine, M.A.; Caplinger, M.A.; Ghaemi, F.T.; Schaffner, J.A.; Malin, M.C.; Mahanti, P.; Bartels, A.; Anderson, J.; Tran, T.N.; Eliason, E.M.; McEwen, A.S.; Turtle, E.; Jolliff, B.L.; Hiesinger, H.

    2010-01-01

    The Lunar Reconnaissance Orbiter Camera (LROC) Wide Angle Camera (WAC) and Narrow Angle Cameras (NACs) are on the NASA Lunar Reconnaissance Orbiter (LRO). The WAC is a 7-color push-frame camera (100 and 400 m/pixel visible and UV, respectively), while the two NACs are monochrome narrow-angle linescan imagers (0.5 m/pixel). The primary mission of LRO is to obtain measurements of the Moon that will enable future lunar human exploration. The overarching goals of the LROC investigation include landing site identification and certification, mapping of permanently polar shadowed and sunlit regions, meter-scale mapping of polar regions, global multispectral imaging, a global morphology base map, characterization of regolith properties, and determination of current impact hazards.

  9. A Reusable Design for Precision Lunar Landing Systems

    NASA Technical Reports Server (NTRS)

    Fuhrman, Linda; Brand, Timothy; Fill, Tom; Norris, Lee; Paschall, Steve

    2005-01-01

    The top-level architecture to accomplish NASA's Vision for Space Exploration is to use Lunar missions and systems not just as an end in themselves, but also as testbeds for the more ambitious goals of Human Mars Exploration (HME). This approach means that Lunar missions and systems are most likely going to be targeted for (Lunar) polar missions, and also for long-duration (months) surface stays. This overacting theme creates basic top-level requirements for any next-generation lander system: 1) Long duration stays: a) Multiple landers in close proximity; b) Pinpoint landings for "surface rendezvous"; c) Autonomous landing of pre-positioned assets; and d) Autonomous Hazard Detection and Avoidance. 2) Polar and deep-crater landings (dark); 3) Common/extensible systems for Moon and Mars, crew and cargo. These requirements pose challenging technology and capability needs. Compare and contrast: 4) Apollo: a) 1 km landing accuracy; b) Lunar near-side (well imaged and direct-to-Earth com. possible); c) Lunar equatorial (landing trajectories offer best navigation support from Earth); d) Limited lighting conditions; e) Significant ground-in-the-loop operations; 5) Lunar Access: a) 10-100m landing precision; b) "Anywhere" access includes polar (potentially poor nav. support from Earth) and far side (poor gravity and imaging; no direct-to-Earth com); c) "Anytime" access includes any lighting condition (including dark); d) Full autonomous landing capability; e) Extensible design for tele-operation or operator-in-the-loop; and f) Minimal ground support to reduce operations costs. The Lunar Access program objectives, therefore, are to: a) Develop a baseline Lunar Precision Landing System (PLS) design to enable pinpoint "anywhere, anytime" landings; b) landing precision 10m-100m; c) Any LAT, LON; and d) Any lighting condition; This paper will characterize basic features of the next generation Lunar landing system, including trajectory types, sensor suite options and a reference

  10. Using Microwaves to Heat Lunar Soil

    NASA Technical Reports Server (NTRS)

    Ethridge, Edwin C.

    2011-01-01

    This slide presentation reviews the use of microwaves to heat lunar soil in order to obtain water. There appears to be large amounts of water in the lunar poles, in Martian areas in lower latitudes and some of the Moons of Jupiter. The presence of water in the south lunar polar region was demonstrated by the Lunar CRater Observation and Sensing Satellite (LCROSS) mission. Microwaves can be used to extract water from lunar soil without excavation. Using microwaves on a lunar soil simulant at least 95% of the water from the regolith permafrost simulant was extracted (2 minutes). The process is modeled using COMSOL Multiphysics Finite Element analysis microwave physics module and demonstrated usingan experiment of an microwave apparatus on a rover.

  11. LRO-LAMP Observations of the Lunar Exosphere Coordinated with LADEE

    NASA Astrophysics Data System (ADS)

    Grava, C.; Retherford, K. D.; Greathouse, T. K.; Gladstone, R.; Hurley, D.; Cook, J. C.; Stern, S. A.; Feldman, P. D.; Kaufmann, D. E.; Miles, P. F.; Pryor, W. R.; Halekas, J. S.

    2014-12-01

    The polar orbiting Lunar Reconnaissance Orbiter's (LRO) Lyman Alpha Mapping Project (LAMP) carried out an atmospheric campaign during the month of December 2013, at the same time the Lunar Atmospheric and Dust Environment Explorer (LADEE) mission was sampling the lunar exosphere in a retrograde equatorial orbit. Observations of the lunar exosphere were performed by LAMP during a solar "beta-90" geometry, i.e. riding along the lunar terminator. During this geometry, the LAMP nadir-pointed line of sight to the nightside surface also includes illuminated columns of foreground emissions from exospheric species, which is invaluable in the study of the tenuous lunar exosphere. Other types of maneuvers to probe the lunar exosphere were also performed by LAMP/LRO during this campaign. During backward pitch slews, the LRO spacecraft was pitched to look opposite its direction of motion to a point just inside the limb in the nightside region around the polar terminator. Forward pitch slews were also obtained, and the angles of 63 deg or 77 deg from nadir were set depending on the polar region observed. Finally, during lateral roll slews, LRO rotated by ~60 deg towards the nightside limb, maximizing the amount of illuminated atmosphere in the foreground probed by the LAMP field of view. We extract day to day density variations on helium and/or upper limits for numerous other species that were accessible to both LAMP and LADEE (e.g., Ar, Ne, O, and H2). Moreover, constraints on helium density will complement measurements of solar wind alpha particles (He++) from the ARTEMIS (Acceleration, Reconnection, Turbulence, & Electrodynamics of Moon's Interaction with the Sun) mission. This comparison will provide a comprehensive picture of composition, abundance, and spatial and temporal variations of volatiles of the lunar exosphere, combining equatorial (LADEE) and polar (LAMP) measurements for the first time. Volatiles in the lunar exosphere, especially water, are of paramount

  12. Lunar Exploration and Science in ESA

    NASA Astrophysics Data System (ADS)

    Carpenter, James; Foing, Bernard H.; Fisackerly, Richard; Houdou, Berengere; De Rosa, Diego; Patti, Bernado; Schiemann, Jens

    ESA seeks to provide Europe with access to the lunar surface, and allow Europeans to benefit from the opening up of this new frontier, as part of a global endeavor. This will be best achieved through an exploration programme which combines the strengths and capabilities of both robotic and human explorers. ESA is preparing for future participation in lunar exploration through a combination of human and robotic activities, in cooperation with international partners. Future planned activities include the contribution of key technological capabilities to the Russian led robotic missions, Luna-Glob, Luna-Resurs orbiter and Luna-Resurs lander. For the Luna-Resurs lander ESA will provide analytical capabilities to compliment the already selected Russian led payload, focusing on the abundance, composition and isotopes of lunar volatiles in polar regions, and their associated chemistry. This should be followed by the contributions at the level of mission elements to a Lunar Polar Sample Return mission. This partnership will provide access for European investigators to the opportunities offered by the Russian led instruments on the missions, as well as providing Europe with a unique opportunity to characterise and utilise polar volatile populations. Ultimately samples of high scientific value, from as of yet unexplored and unsampled locations shall be made available to the scientific community. These robotic activities are being performed with a view to enabling a future more comprehensive programme in which robotic and human activities are integrated to provide the maximum benefits from lunar surface access. Activities on the ISS and ESA participation to the US Multi-Purpose Crew Vehicle, which is planned for a first unmanned lunar flight in 2017, are also important steps towards achieving this. All of these activities are performed with a view to generating the technologies, capabilities, knowledge and heritage that will make Europe an indispensable partner in the

  13. Lunar Exploration and Science in ESA

    NASA Astrophysics Data System (ADS)

    Carpenter, James; Houdou, Bérengère; Fisackerly, Richard; De Rosa, Diego; Patti, Bernardo; Schiemann, Jens; Hufenbach, Bernhard; Foing, Bernard

    2014-05-01

    ESA seeks to provide Europe with access to the lunar surface, and allow Europeans to benefit from the opening up of this new frontier, as part of a global endeavor. This will be best achieved through an exploration programme which combines the strengths and capabilities of both robotic and human explorers. ESA is preparing for future participation in lunar exploration through a combination of human and robotic activities, in cooperation with international partners. Future planned activities include the contribution of key technological capabilities to the Russian led robotic missions, Luna-Glob, Luna-Resurs orbiter and Luna-Resurs lander. For the Luna-Resurs lander ESA will provide analytical capabilities to compliment the already selected Russian led payload, focusing on the composition and isotopic abundances of lunar volatiles in polar regions. This should be followed by the contributions at the level of mission elements to a Lunar Polar Sample Return mission. This partnership will provide access for European investigators to the opportunities offered by the Russian led instruments on the missions, as well as providing Europe with a unique opportunity to characterize and utilize polar volatile populations. Ultimately samples of high scientific value, from as of yet unexplored and unsampled locations shall be made available to the scientific community. These robotic activities are being performed with a view to enabling a future more comprehensive programme in which robotic and human activities are integrated to provide the maximum benefits from lunar surface access. Activities on the ISS and ESA participation to the US led Multi-Purpose Crew Vehicle, which is planned for a first unmanned lunar flight in 2017, are also important steps towards achieving this. All of these activities are performed with a view to generating the technologies, capabilities, knowledge and heritage that will make Europe an indispensable partner in the exploration missions of the future.

  14. Polarized iridescence of the multilayered elytra of the Japanese jewel beetle, Chrysochroa fulgidissima

    PubMed Central

    Stavenga, Doekele G.; Wilts, Bodo D.; Leertouwer, Hein L.; Hariyama, Takahiko

    2011-01-01

    The elytra of the Japanese jewel beetle Chrysochroa fulgidissima are metallic green with purple stripes. Scanning electron microscopy and atomic force microscopy demonstrated that the elytral surface is approximately flat. The accordingly specular green and purple areas have, with normal illumination, 100–150 nm broad reflectance bands, peaking at about 530 and 700 nm. The bands shift progressively towards shorter wavelengths with increasing oblique illumination, and the reflection then becomes highly polarized. Transmission electron microscopy revealed that the epicuticle of the green and purple areas consists of stacks of 16 and 12 layers, respectively. Assuming gradient refractive index values of the layers between 1.6 and 1.7 and applying the classical multilayer theory allowed modelling of the measured polarization- and angle-dependent reflectance spectra. The extreme polarized iridescence exhibited by the elytra of the jewel beetle may have a function in intraspecific recognition. PMID:21282175

  15. Robust Exploration and Commercial Missions to the Moon Using LANTR Propulsion and In-Situ Propellants Derived From Lunar Polar Ice (LPI) Deposits

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.; Ryan, Stephen W.; Burke, Laura M.; McCurdy, David R.; Fittje, James E.; Joyner, Claude R.

    2017-01-01

    Since the 1960s, scientists have conjectured that water icecould survive in the cold, permanently shadowed craters located at the Moons poles Clementine (1994), Lunar Prospector (1998),Chandrayaan-1 (2008), and Lunar Reconnaissance Orbiter (LRO) and Lunar CRater Observation and Sensing Satellite(LCROSS) (2009) lunar probes have provided data indicating the existence of large quantities of water ice at the lunar poles The Mini-SAR onboard Chandrayaan-1discovered more than 40 permanently shadowed craters near the lunar north pole that are thought to contain 600 million metric tons of water ice. Using neutron spectrometer data, the Lunar Prospector science team estimated a water ice content (1.5 +-0.8 wt in the regolith) found in the Moons polar cold trap sand estimated the total amount of water at both poles at 2 billion metric tons Using Mini-RF and spectrometry data, the LRO LCROSS science team estimated the water ice content in the regolith in the south polar region to be 5.6 +-2.9 wt. On the basis of the above scientific data, it appears that the water ice content can vary from 1-10 wt and the total quantity of LPI at both poles can range from 600 million to 2 billion metric tons NTP offers significant benefits for lunar missions and can take advantage of the leverage provided from using LDPs when they become available by transitioning to LANTR propulsion. LANTR provides a variablethrust and Isp capability, shortens burn times and extends engine life, and allows bipropellant operation The combination of LANTR and LDP has performance capability equivalent to that of a hypothetical gaseousfuel core NTR (effective Isp 1575 s) and can lead to a robust LTS with unique mission capabilities that include short transit time crewed cargo transports and routine commuter flights to the Moon The biggest challenge to making this vision a reality will be the production of increasing amounts of LDP andthe development of propellant depots in LEO, LLO and LPO. An industry

  16. Academic aspects of lunar water resources and their relevance to lunar protolife.

    PubMed

    Green, Jack

    2011-01-01

    Water ice has been discovered on the moon by radar backscatter at the North Pole and by spectrometry at the South Pole in the Cabeus crater with an extrapolated volume for both poles of conservatively 10(9) metric tons. Various exogenic and endogenic sources of this water have been proposed. This paper focuses on endogenic water sources by fumaroles and hot springs in shadowed polar craters. A survey of theoretical and morphological details supports a volcanic model. Release of water and other constituents by defluidization over geological time was intensified in the Hadean Eon (c.a. 4600 to 4000 My). Intensification factors include higher heat flow by now-extinct radionuclides, tidal flexing and higher core temperatures. Lesser gravity would promote deeper bubble nucleation in lunar magmas, slower rise rates of gases and enhanced subsidence of lunar caldera floors. Hadean volcanism would likely have been more intense and regional in nature as opposed to suture-controlled location of calderas in Phanerozoic Benioff-style subduction environments. Seventy-seven morphological, remote sensing and return sample features were categorized into five categories ranging from a volcano-tectonic origin only to impact origin only. Scores for the most logical scenario were 69 to eight in favor of lunar volcanism. Ingredients in the Cabeus plume analysis showed many volcanic fluids and their derivatives plus a large amount of mercury. Mercury-rich fumaroles are well documented on Earth and are virtually absent in cometary gases and solids. There are no mercury anomalies in terrestrial impact craters. Volcanic fluids and their derivatives in lunar shadow can theoretically evolve into protolife. Energy for this evolution can be provided by vent flow charging intensified in the lunar Hadean and by charge separation on freezing fumarolic fluids in shadow. Fischer-Tropsch reactions on hydrothermal clays can yield lipids, polycyclic aromatic hydrocarbons and amino acids. Soluble

  17. Analysis of landing site attributes for future missions targeting the rim of the lunar South Pole Aitken basin

    NASA Astrophysics Data System (ADS)

    Koebel, David; Bonerba, Michele; Behrenwaldt, Daniel; Wieser, Matthias; Borowy, Carsten

    2012-11-01

    For the South polar lunar region between -85 and -90° Latitude an updated analyses of the solar illumination and ground station visibility conditions has been performed in the frame of a feasibility study for an ESA Lunar Lander mission. The analyses are based on the refined lunar digital elevation model provided by the Japanese Kaguya/Selene mission, originating from its LASER altimeter instrument. For the South polar region maps of integral solar illumination are presented for a mission epoch in 2016. The analysis modelling was validated with the help of a Kaguya High Definition video. The solar illumination is driving for the power subsystems of any robotic lander craft or manned lunar outpost, in case they rely on conventional photovoltaic power generation with battery buffering of shadowed periods. In addition the visibility of the terrain from a terrestrial ESA ground station was analysed. The results are presented as an integral ground contact duration map, being crucial for the operations of any lunar outpost. Considering these two quality criteria, several possible landing sites for a future lunar mission have been pre-selected. For these sites a detailed analysis of quasi-continuous illumination conditions is presented. This includes magnified maps of the pre-selected areas, showing any location's longest illumination intervals that are allowed to be interrupted by shadows with limited duration only. As a final quality criterion, the terrain topology has been analysed for its impact on the landing trajectory. From a trade-off between the three quality criteria the connecting ridge between the Shackleton and the de Gerlache was determined to provide the most favourable landing site quality. This site is located at 89°28' South, 136°40' West, and 1947 m altitude, and features and integral illumination of 85.7%. With battery energy to sustain shadows of 120 h, total mission duration of 9.37 sidereal months can be guaranteed.

  18. The first stage of Lunar Prospector's LMLV is erected at Pad 46, CCAS

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Workers erect the first stage of a Lockheed Martin Launch Vehicle-2 (LMLV-2) at Launch Complex 46 at Cape Canaveral Air Station, Fla. The Lunar Prospector spacecraft is scheduled to launch aboard the LMLV-2 in October for an 18-month mission that will orbit the Earth's Moon to collect data from the lunar surface. Designed for a low polar orbit investigation of the Moon, the Lunar Prospector will map the Moon's surface composition and possible polar ice deposits, measure magnetic and gravity fields, and study lunar outgassing events.

  19. Development of a lunar infrastructure

    NASA Technical Reports Server (NTRS)

    Burke, J. D.

    1988-01-01

    The problem of building an infrastructure on the moon is discussed, assuming that earth-to-moon and moon-to-earth transport will be available. The sequence of events which would occur in the process of building an infrastructure is examined. The human needs which must be met on a lunar base are discussed, including minimal life support, quality of life, and growth stages. The technology available to meet these needs is reviewed and further research in fields related to a lunar base, such as the study of the moon's polar regions and the limits of lunar agriculture, is recommended.

  20. CEV Trajectory Design Considerations for Lunar Missions

    NASA Technical Reports Server (NTRS)

    Condon, Gerald L.; Dawn, Timothy; Merriam, Robert S.; Sostaric, Ronald; Westhelle, Carlos H.

    2007-01-01

    The Crew Exploration Vehicle (CEV) translational maneuver Delta-V budget must support both the successful completion of a nominal lunar mission and an "anytime" emergency crew return with the potential for much more demanding orbital maneuvers. This translational Delta-V budget accounts for Earth-based LEO rendezvous with the lunar surface access module (LSAM)/Earth departure stage (EDS) stack, orbit maintenance during the lunar surface stay, an on-orbit plane change to align the CEV orbit for an in-plane LSAM ascent, and the Moon-to-Earth trans-Earth injection (TEI) maneuver sequence as well as post-TEI TCMs. Additionally, the CEV will have to execute TEI maneuver sequences while observing Earth atmospheric entry interface objectives for lunar high-latitude to equatorial sortie missions as well as near-polar sortie and long duration missions. The combination of these objectives places a premium on appropriately designed trajectories both to and from the Moon to accurately size the translational V and associated propellant mass in the CEV reference configuration and to demonstrate the feasibility of anytime Earth return for all lunar missions. This report examines the design of the primary CEV translational maneuvers (or maneuver sequences) including associated mission design philosophy, associated assumptions, and methodology for lunar sortie missions with up to a 7-day surface stay and with global lunar landing site access as well as for long duration (outpost) missions with up to a 210-day surface stay at or near the polar regions. The analyses presented in this report supports the Constellation Program and CEV project requirement for nominal and anytime abort (early return) by providing for minimum wedge angles, lunar orbit maintenance maneuvers, phasing orbit inclination changes, and lunar departure maneuvers for a CEV supporting an LSAM launch and subsequent CEV TEI to Earth return, anytime during the lunar surface stay.

  1. Direct Solar Wind Proton Access into Permanently Shadowed Lunar Polar Craters

    NASA Technical Reports Server (NTRS)

    Zimmerman, M. I.; Farrell, W. M.; Stubbs, T. J.; Halekas, J. S.

    2011-01-01

    Recent analyses of Lunar Prospector neutron spectrometer (LPNS) data have suggested that high abundances of hydrogen exist within cold traps at the lunar poles, and it has often been assumed that hydrogen-bearing volatiles sequestered in permanent shadow are topographically shielded from sputtering by solar wind protons. However, recent simulation results are presented showing that solar wind protons clearly access the floor of an idealized, shadowed lunar crater through a combination of thermal and ambipolar processes, in effect creating a plasma "miniwake". These simulations are the first to model the mini-wake environment in two spatial dimensions with a self-consistent lunar surface-plasma interaction. Progress is reported on constraining the nonzero particle fluxes and energies incident on kilometer-scale shadowed topography, such as a small crater embedded within a larger one. The importance of direct solar wind proton bombardment is discussed within the context of understanding the stability and inventory of hydrogen-bearing volatiles in shadow at the lunar poles. The support of the National Lunar Science institute, the DREAM institute, LPROPS, and the NASA Postdoctoral Program at NASA Goddard Space Flight Center administered by ORAU are gratefully acknowledged.

  2. Lunar Prospector Extended Mission

    NASA Technical Reports Server (NTRS)

    Folta, David; Beckman, Mark; Lozier, David; Galal, Ken

    1999-01-01

    The National Aeronautics and Space Administration (NASA) selected Lunar Prospector (LP) as one of the discovery missions to conduct solar system exploration science investigations. The mission is NASA's first lunar voyage to investigate key science objectives since Apollo and was launched in January 1998. In keeping with discovery program requirements to reduce total mission cost and utilize new technology, Lunar Prospector's mission design and control focused on the use of innovative and proven trajectory analysis programs. As part of this effort, the Ames Research Center and the Goddard Space Flight Center have become partners in the Lunar Prospector trajectory team to provide the trajectory analysis, maneuver planning, orbit determination support, and product generation. At the end of 1998, Lunar Prospector completed its one-year primary mission at 100 km altitude above the lunar surface. On December 19, 1998, Lunar Prospector entered the extended mission phase. Initially the mission orbit was lowered from 100 km to a mean altitude of 40 km. The altitude of Lunar Prospector varied between 25 and 55 km above the mean lunar geode due to lunar potential effects. After one month, the lunar potential model was updated based upon the new tracking data at 40 km. On January 29, 1999, the altitude was lowered again to a mean altitude of 30 km. This altitude varies between 12 and 48 km above the mean lunar geode. Since the minimum altitude is very close to the mean geode, various approaches were employed to get accurate lunar surface elevation including Clementine altimetry and line of sight analysis. Based upon the best available terrain maps, Lunar Prospector will reach altitudes of 8 km above lunar mountains in the southern polar and far side regions. This extended mission phase of six months will enable LP to obtain science data up to 3 orders of magnitude better than at the mission orbit. This paper details the trajectory design and orbit determination planning and

  3. Lunar Prospector Extended Mission

    NASA Technical Reports Server (NTRS)

    Folta, David; Beckman, Mark; Lozier, David; Galal, Ken

    1999-01-01

    The National Aeronautics and Space Administration (NASA) selected Lunar Prospector as one of the discovery missions to conduct solar system exploration science investigations. The mission is NASA's first lunar voyage to investigate key science objectives since Apollo and was launched in January 1998. In keeping with discovery program requirements to reduce total mission cost and utilize new technology, Lunar Prospector's mission design and control focused on the use of innovative and proven trajectory analysis programs. As part of this effort, the Ames Research Center and the Goddard Space Flight Center have become partners in the Lunar Prospector trajectory team to provide the trajectory analysis, maneuver planning, orbit determination support, and product generation. At the end of 1998, Lunar Prospector completed its one-year primary mission at 100 km altitude above the lunar surface. On December 19, 1998, Lunar Prospector entered the extended mission phase. Initially the mission orbit was lowered from 100 km to a mean altitude of 40 km. The altitude of Lunar Prospector varied between 25 and 55 km above the mean lunar geode due to lunar potential effects. After one month, the lunar potential model was updated based upon the new tracking data at 40 km. On January 29, 1999, the altitude was lowered again to a mean altitude of 30 km. This altitude varies between 12 and 48 km above the mean lunar geode. Since the minimum altitude is very close to the mean geode, various approaches were employed to get accurate lunar surface elevation including Clementine altimetry and line of sight analysis. Based upon the best available terrain maps, Lunar Prospector will reach altitudes of 8 km above lunar mountains in the southern polar and far side regions. This extended mission phase of six months will enable LP to obtain science data up to 3 orders of magnitude better than at the mission orbit. This paper details the trajectory design and orbit determination planning, and

  4. Lunar Prospector Extended Mission

    NASA Astrophysics Data System (ADS)

    Folta, David; Beckman, Mark; Lozier, David; Galal, Ken

    1999-05-01

    The National Aeronautics and Space Administration (NASA) selected Lunar Prospector (LP) as one of the discovery missions to conduct solar system exploration science investigations. The mission is NASA's first lunar voyage to investigate key science objectives since Apollo and was launched in January 1998. In keeping with discovery program requirements to reduce total mission cost and utilize new technology, Lunar Prospector's mission design and control focused on the use of innovative and proven trajectory analysis programs. As part of this effort, the Ames Research Center and the Goddard Space Flight Center have become partners in the Lunar Prospector trajectory team to provide the trajectory analysis, maneuver planning, orbit determination support, and product generation. At the end of 1998, Lunar Prospector completed its one-year primary mission at 100 km altitude above the lunar surface. On December 19, 1998, Lunar Prospector entered the extended mission phase. Initially the mission orbit was lowered from 100 km to a mean altitude of 40 km. The altitude of Lunar Prospector varied between 25 and 55 km above the mean lunar geode due to lunar potential effects. After one month, the lunar potential model was updated based upon the new tracking data at 40 km. On January 29, 1999, the altitude was lowered again to a mean altitude of 30 km. This altitude varies between 12 and 48 km above the mean lunar geode. Since the minimum altitude is very close to the mean geode, various approaches were employed to get accurate lunar surface elevation including Clementine altimetry and line of sight analysis. Based upon the best available terrain maps, Lunar Prospector will reach altitudes of 8 km above lunar mountains in the southern polar and far side regions. This extended mission phase of six months will enable LP to obtain science data up to 3 orders of magnitude better than at the mission orbit. This paper details the trajectory design and orbit determination planning and

  5. Redistribution of Lunar Polar Water to Mid-latitudes and its Role in Forming an OH veneer - Revisited

    NASA Technical Reports Server (NTRS)

    Farrell, W. M.; Killen, R. M.; Hurley, D. M.; Hodges, R. R.; Halekas, J. S.; Delory, G. T.

    2012-01-01

    We suggest that energization processes like ion sputtering and impact vaporization can eject/release polar water molecules residing within lunar cold trapped regions with sufficient velocity to allow their redistribution to mid-latitudes. We consider the possibility that these polar-ejected molecules can be an additional (but not dominant) contribution to the water/OH veneer observed as a 3 micron absorption feature at mid-latitudes by Chandrayaan-I, Cassini, and EPOXI. Taking the conservative case that polar water is ejected only from the floor of polar craters with an 0.1 % icy regolith then overall source rates are near 10(exp 18) H20s/s. This outflow amounts to approx 10(exp -7) kg/s of water to be ejected from each pole and is a water source rate that is 10(exp .5 lower than the overall exospheric source rate for all species. Hence, the out-flowing polar water is a perturbation in the overall exosphere composition & dynamics. This polar water 'fountain' model may not fully account for the relatively high concentrations in the mid-latitude water veneer observed in the IR (approx 10-1000 ppm). However, it may account for some part of the veneer. We note that the polar water fountain source rates scale linearly with ice concentration, and larger mass fractions of polar crater water should provide correspondingly larger fractions of water emission out of the poles which then 'spills' on to mid-latitude surfaces.

  6. Lunar Prospector: a Preliminary Surface Remote Sensing Resource Assessment for the Moon

    NASA Technical Reports Server (NTRS)

    Mardon, A. A.

    1992-01-01

    The potential existence of lunar volatiles is a scientific discovery that could distinctly change the direction of pathways of inner solar system human expansion. With a dedicated germanium gamma ray spectrometer launched in the early 1990's, surface water concentrations of 0.7 percent could be detected immediately upon full lunar polar orbit operations. The expense of lunar base construction and operation would be dramatically reduced over a scenario with no lunar volatile resources. Global surface mineral distribution could be mapped out and integrated into a GIS database for lunar base site selection. Extensive surface lunar mapping would also result in the utilization of archived Apollo images. A variety of remote sensing systems and their parameters have been proposed for use in the detection of these lunar ice masses. The detection or nondetection of subsurface and surface ice masses in lunar polar crater floors could dramatically direct the development pathways that the human race might follow in its radiation from the Earth to habitable locales in the inner terran solar system. Potential sources of lunar volatiles are described. The use of remote sensing to detect lunar volatiles is addressed.

  7. Lunar prospector mission design and trajectory support

    NASA Technical Reports Server (NTRS)

    Lozier, David; Galal, Ken; Folta, David; Beckman, Mark

    1998-01-01

    The Lunar Prospector mission is the first dedicated NASA lunar mapping mission since the Apollo Orbiter program which was flown over 25 years ago. Competitively selected under the NASA Discovery Program, Lunar Prospector was launched on January 7, 1998 on the new Lockheed Martin Athena 2 launch vehicle. The mission design of Lunar Prospector is characterized by a direct minimum energy transfer trajectory to the moon with three scheduled orbit correction maneuvers to remove launch and cislunar injection errors prior to lunar insertion. At lunar encounter, a series of three lunar orbit insertion maneuvers and a small circularization burn were executed to achieve a 100 km altitude polar mapping orbit. This paper will present the design of the Lunar Prospector transfer, lunar insertion and mapping orbits, including maneuver and orbit determination strategies in the context of mission goals and constraints. Contingency plans for handling transfer orbit injection and lunar orbit insertion anomalies are also summarized. Actual flight operations results are discussed and compared to pre-launch support analysis.

  8. Route Planning Software for Lunar Polar Missions

    NASA Astrophysics Data System (ADS)

    Cunningham, C.; Jones, H.; Amato, J.; Holst, I.; Otten, N.; Kitchell, F.; Whittaker, W.; Horchler, A.

    2016-11-01

    Rover mission planning on the lunar poles is challenging due to the long, time-varying shadows. This abstract presents software for efficiently planning traverses while balancing competing demands of science goals, rover energy constraints, and risk.

  9. Evidence for Surface Water Ice in the Lunar Polar Regions Using Reflectance Measurements from the Lunar Orbiter Laser Altimeter and Temperature Measurements from the Diviner Lunar Radiometer Experiment

    NASA Technical Reports Server (NTRS)

    Fisher, Elizabeth A.; Lucey, Paul G.; Lemelin, Myriam; Greenhagen, Benjamin T.; Siegler, Matthew A.; Mazarico, Erwan; Aharonson, Oded; Williams, Jean-Pierre; Hayne, Paul O.; Neumann, Gregory A.; hide

    2017-01-01

    We find that the reflectance of the lunar surface within 5 deg of latitude of theSouth Pole increases rapidly with decreasing temperature, near approximately 110K, behavior consistent with the presence of surface water ice. The North polar region does not show this behavior, nor do South polar surfaces at latitudes more than 5 deg from the pole. This South pole reflectance anomaly persists when analysis is limited to surfaces with slopes less than 10 deg to eliminate false detection due to the brightening effect of mass wasting, and also when the very bright south polar crater Shackleton is excluded from the analysis. We also find that south polar regions of permanent shadow that have been reported to be generally brighter at 1064 nm do not show anomalous reflectance when their annual maximum surface temperatures are too high to preserve water ice. This distinction is not observed at the North Pole. The reflectance excursion on surfaces with maximum temperatures below 110K is superimposed on a general trend of increasing reflectance with decreasing maximum temperature that is present throughout the polar regions in the north and south; we attribute this trend to a temperature or illumination-dependent space weathering effect (e.g. Hemingway et al. 2015). We also find a sudden increase in reflectance with decreasing temperature superimposed on the general trend at 200K and possibly at 300K. This may indicate the presence of other volatiles such as sulfur or organics. We identified and mapped surfaces with reflectances so high as to be unlikely to be part of an ice-free population. In this south we find a similar distribution found by Hayne et al. 2015 based on UV properties. In the north a cluster of pixels near that pole may represent a limited frost exposure.

  10. Evidence for surface water ice in the lunar polar regions using reflectance measurements from the Lunar Orbiter Laser Altimeter and temperature measurements from the Diviner Lunar Radiometer Experiment

    NASA Astrophysics Data System (ADS)

    Fisher, Elizabeth A.; Lucey, Paul G.; Lemelin, Myriam; Greenhagen, Benjamin T.; Siegler, Matthew A.; Mazarico, Erwan; Aharonson, Oded; Williams, Jean-Pierre; Hayne, Paul O.; Neumann, Gregory A.; Paige, David A.; Smith, David E.; Zuber, Maria T.

    2017-08-01

    We find that the reflectance of the lunar surface within 5° of latitude of the South Pole increases rapidly with decreasing temperature, near ∼110 K, behavior consistent with the presence of surface water ice. The North polar region does not show this behavior, nor do South polar surfaces at latitudes more than 5° from the pole. This South pole reflectance anomaly persists when analysis is limited to surfaces with slopes less than 10° to eliminate false detection due to the brightening effect of mass wasting, and also when the very bright south polar crater Shackleton is excluded from the analysis. We also find that south polar regions of permanent shadow that have been reported to be generally brighter at 1064 nm do not show anomalous reflectance when their annual maximum surface temperatures are too high to preserve water ice. This distinction is not observed at the North Pole. The reflectance excursion on surfaces with maximum temperatures below 110 K is superimposed on a general trend of increasing reflectance with decreasing maximum temperature that is present throughout the polar regions in the north and south; we attribute this trend to a temperature or illumination-dependent space weathering effect (e.g. Hemingway et al., 2015). We also find a sudden increase in reflectance with decreasing temperature superimposed on the general trend at 200 K and possibly at 300 K. This may indicate the presence of other volatiles such as sulfur or organics. We identified and mapped surfaces with reflectances so high as to be unlikely to be part of an ice-free population. In this south we find a similar distribution found by Hayne et al. (2015) based on UV properties. In the north a cluster of pixels near that pole may represent a limited frost exposure.

  11. Concentrations of Volatiles in the Lunar Regolith

    NASA Technical Reports Server (NTRS)

    Taylor, Jeff; Taylor, Larry; Duke, Mike

    2007-01-01

    To set lower and upper limits on the overall amounts and types of volatiles released during heating of polar regolith, we examined the data for equatorial lunar regolith and for the compositions of comets. The purpose, specifically, was to answer these questions: 1. Upper/Lower limits and 'best guess' for total amount of volatiles (by weight %) released from lunar regolith up to 150C 2. Upper/Lower limit and 'best guess' for composition of the volatiles released from the lunar regolith by weight %

  12. Robust Exploration and Commercial Missions to the Moon Using NTR LANTR Propulsion and Lunar-Derived Propellants

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.; Ryan, Stephen W.; Burke, Laura M.; McCurdy, David R.; Fittje, James E.; Joyner, Claude R.

    2017-01-01

    NASAs current focus is on the Journey to Mars sometime around the mid-to-late 2030s. However, it is also supporting the development of commercial cargo and crew delivery to the ISS (e.g., SpaceX, Orbital Sciences, SNC, Boeing) where inflatable habitation technology (e.g., Bigelow Aerospaces BEAM) is currently being tested Significant private sector interest in commercial lunar activities has also been expressed by Bigelow Aerospace, Golden Spike Company, Shackleton Energy Company (SEC), and most recently by United Launch Alliance (ULA) in their Cislunar-1000 plan Lunar-derived propellant (LDP) production specifically LLO2 and LLH2 offers significant mission leverage and are central themes of both SECs and ULAs plans for commercial lunar development. An efficient, proven propulsion technology with reuse capability like NTP offers the potential for affordable access through space essential to realizing commercial lunar missions.This presentation examines the performance potential of an evolutionary lunar transportation system (LTS) architecture using NTR initially, then transitioning to LANTR as LDPs(e.g., LLO2 from regolith or volcanic glass, LLO2 and LLH2 from lunar polar ice deposits) become available in lunar orbit (LO) Mission applications range from cargo delivery, to crewed landing, to routine commuter flights to and from transportation system nodes located in both lunar equatorial and lunar polar orbits. This presentation examines the performance potential of an evolutionary lunar transportation system (LTS) architecture using NTR initially, then transitioning to LANTR as LDPs (e.g., LLO2 from regolith or volcanic glass, LLO2 and LLH2 from lunar polar ice deposits) become available in lunar orbit (LO) Mission applications range from cargo delivery, to crewed landing, to routine commuter flights to and from transportation system nodes located in both lunar equatorial and lunar polar orbits.

  13. To the moon from a B-52 - Robotic lunar exploration using the Pegasus winged rocket and ballistic lunar capture

    NASA Astrophysics Data System (ADS)

    Belbruno, Edward A.; Ridenoure, Rex W.; Fernandez, Jaime

    A new concept for robotic lunar missions is presented which combines Pegasus-launched small satellites with Belbruno's concept of Weak-Stability-Boundary trajectories. The demonstration of the WSB trajectory by the Japanese Hiten spacecraft is addressed. Desirable spacecraft attributes for this type of mission are listed.

  14. Lunar Exploration and Science in ESA

    NASA Astrophysics Data System (ADS)

    Carpenter, J.; Houdou, B.; Fisackerly, R.; De Rosa, D.; Patti, B.; Schiemann, J.; Hufenbach, B.; Foing, B.

    2014-04-01

    ESA seeks to provide Europe with access to the lunar surface, and allow Europeans to benefit from the opening up of this new frontier, as part of a global endeavor. This will be best achieved through an exploration programme which combines the strengths and capabilities of both robotic and human explorers. ESA is preparing for future participation in lunar exploration through a combination of human and robotic activities, in cooperation with international partners. Future planned activities include the contribution of key technological capabilities to the Russian led robotic missions, Luna-Glob, Luna-Resurs orbiter and Luna-Resurs lander. For the Luna-Resurs lander ESA will provide analytical capabilities to compliment the already selected Russian led payload, focusing on the composition and isotopic abundances of lunar volatiles in polar regions. This should be followed by the contributions at the level of mission elements to a Lunar Polar Sample Return mission. This partnership will provide access for European investigators to the opportunities offered by the Russian led instruments on the missions, as well as providing Europe with a unique opportunity to characterize and utilize polar volatile populations. Ultimately samples of high scientific value, from as of yet unexplored and unsampled locations shall be made available to the scientific community. These robotic activities are being performed with a view to enabling a future more comprehensive programme in which robotic and human activities are integrated to provide the maximum benefits from lunar surface access. Activities on the ISS and ESA participation to the US led Multi-Purpose Crew Vehicle, which is planned for a first unmanned lunar flight in 2017, are also important steps towards achieving this. All of these activities are performed with a view to generating the technologies, capabilities, knowledge and heritage that will make Europe an indispensible partner in the exploration missions of the future

  15. Identification of lunar rock types and search for polar ice by gamma ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Metzger, A. E.; Drake, D. M.

    1990-01-01

    This paper examines the possibility of mapping the surface composition of the moon from an orbiting spin-stabilized spacecraft, using gamma ray spectroscopy and a cooled germanium solid-state device as a detector. A design for accommodating the germanium detector gamma ray spectrometer was devised, and the detection sensitivity was applied to typical lunar-rock compositions. For sets comprising nine highland and 16 mare types, the most useful elements were found to be Mg, Al, K, Ti, Fe, U, and Th. An analysis of the expected instrument response to the gamma ray and neutron fluxes of water ice indicated that a neutron mode added to the spectrometer will be more sensitive than the gamma ray mode to the possible presence of polar ice. It was calculated that, with a pair of selected neutron absorbers and a model which provides that 2.5 percent of the area above 75-deg latitude is occupied by trapping sites, the instrument will provide a 1-yr mission detection limit of 0.056 percent H2O by weight for each polar region.

  16. Polar Resources: The Key To Development of Cis-Lunar Space

    NASA Technical Reports Server (NTRS)

    Larson, William E.

    2017-01-01

    There are plenty of unanswered science questions regarding the Moon that justify surface missions: (1) However the rate of science missions launched remains painfully slow: (a) Google X-Prize Landers may offer more opportunities, but the jury is still out: (2) Science alone will not be enough to sustain long term interest in the Moon by the Congress (or the Public) nor will it generate a frequent mission rate. We need something that drives a frequent and continual reason to go to the Moon: (1) Lunar tourism not practical in the near term; (2) Lunar Resources can be the economic driver that enables regular access to the lunar surface.

  17. Academic Aspects of Lunar Water Resources and Their Relevance to Lunar Protolife

    PubMed Central

    Green, Jack

    2011-01-01

    Water ice has been discovered on the moon by radar backscatter at the North Pole and by spectrometry at the South Pole in the Cabeus crater with an extrapolated volume for both poles of conservatively 109 metric tons. Various exogenic and endogenic sources of this water have been proposed. This paper focuses on endogenic water sources by fumaroles and hot springs in shadowed polar craters. A survey of theoretical and morphological details supports a volcanic model. Release of water and other constituents by defluidization over geological time was intensified in the Hadean Eon (c.a. 4600 to 4000 My). Intensification factors include higher heat flow by now-extinct radionuclides, tidal flexing and higher core temperatures. Lesser gravity would promote deeper bubble nucleation in lunar magmas, slower rise rates of gases and enhanced subsidence of lunar caldera floors. Hadean volcanism would likely have been more intense and regional in nature as opposed to suture-controlled location of calderas in Phanerozoic Benioff-style subduction environments. Seventy-seven morphological, remote sensing and return sample features were categorized into five categories ranging from a volcano-tectonic origin only to impact origin only. Scores for the most logical scenario were 69 to eight in favor of lunar volcanism. Ingredients in the Cabeus plume analysis showed many volcanic fluids and their derivatives plus a large amount of mercury. Mercury-rich fumaroles are well documented on Earth and are virtually absent in cometary gases and solids. There are no mercury anomalies in terrestrial impact craters. Volcanic fluids and their derivatives in lunar shadow can theoretically evolve into protolife. Energy for this evolution can be provided by vent flow charging intensified in the lunar Hadean and by charge separation on freezing fumarolic fluids in shadow. Fischer-Tropsch reactions on hydrothermal clays can yield lipids, polycyclic aromatic hydrocarbons and amino acids. Soluble

  18. Payload Design for the Lunar Flashlight Mission

    NASA Technical Reports Server (NTRS)

    Cohen, B. A.; Hayne, P. O.; Greenhagen, B. T.; Paige, D. A.; Camacho, J. M.; Crabtree, K.; Paine, C.; Sellar, G.

    2017-01-01

    Recent reflectance data from LRO (Lunar Reconnaissance Orbiter) instruments suggest water ice and other volatiles may be present on the surface in lunar permanently shadowed regions, though the detection is not yet definitive. Understanding the composition, quantity, distribution, and form of water and other volatiles associated with lunar permanently shadowed regions (PSRs) is identified as a NASA Strategic Knowledge Gap (SKG). These polar volatile deposits are also scientifically interesting, having the potential to reveal important information about the delivery of water to the Earth-Moon system.

  19. Global lunar-surface mapping experiment using the Lunar Imager/Spectrometer on SELENE

    NASA Astrophysics Data System (ADS)

    Haruyama, Junichi; Matsunaga, Tsuneo; Ohtake, Makiko; Morota, Tomokatsu; Honda, Chikatoshi; Yokota, Yasuhiro; Torii, Masaya; Ogawa, Yoshiko

    2008-04-01

    The Moon is the nearest celestial body to the Earth. Understanding the Moon is the most important issue confronting geosciences and planetary sciences. Japan will launch the lunar polar orbiter SELENE (Kaguya) (Kato et al., 2007) in 2007 as the first mission of the Japanese long-term lunar exploration program and acquire data for scientific knowledge and possible utilization of the Moon. An optical sensing instrument called the Lunar Imager/Spectrometer (LISM) is loaded on SELENE. The LISM requirements for the SELENE project are intended to provide high-resolution digital imagery and spectroscopic data for the entire lunar surface, acquiring these data for scientific knowledge and possible utilization of the Moon. Actually, LISM was designed to include three specialized sub-instruments: a terrain camera (TC), a multi-band imager (MI), and a spectral profiler (SP). The TC is a high-resolution stereo camera with 10-m spatial resolution from a SELENE nominal altitude of 100 km and a stereo angle of 30° to provide stereo pairs from which digital terrain models (DTMs) with a height resolution of 20 m or better will be produced. The MI is a multi-spectral imager with four and five color bands with 20 m and 60 m spatial resolution in visible and near-infrared ranges, which will provide data to be used to distinguish the geological units in detail. The SP is a line spectral profiler with a 400-m-wide footprint and 300 spectral bands with 6-8 nm spectral resolution in the visible to near-infrared ranges. The SP data will be sufficiently powerful to identify the lunar surface's mineral composition. Moreover, LISM will provide data with a spatial resolution, signal-to-noise ratio, and covered spectral range superior to that of past Earth-based and spacecraft-based observations. In addition to the hardware instrumentation, we have studied operation plans for global data acquisition within the limited total data volume allotment per day. Results show that the TC and MI can

  20. Detection of the lunar body tide by the Lunar Orbiter Laser Altimeter.

    PubMed

    Mazarico, Erwan; Barker, Michael K; Neumann, Gregory A; Zuber, Maria T; Smith, David E

    2014-04-16

    The Lunar Orbiter Laser Altimeter instrument onboard the Lunar Reconnaissance Orbiter spacecraft collected more than 5 billion measurements in the nominal 50 km orbit over ∼10,000 orbits. The data precision, geodetic accuracy, and spatial distribution enable two-dimensional crossovers to be used to infer relative radial position corrections between tracks to better than ∼1 m. We use nearly 500,000 altimetric crossovers to separate remaining high-frequency spacecraft trajectory errors from the periodic radial surface tidal deformation. The unusual sampling of the lunar body tide from polar lunar orbit limits the size of the typical differential signal expected at ground track intersections to ∼10 cm. Nevertheless, we reliably detect the topographic tidal signal and estimate the associated Love number h 2 to be 0.0371 ± 0.0033, which is consistent with but lower than recent results from lunar laser ranging. Altimetric data are used to create radial constraints on the tidal deformationThe body tide amplitude is estimated from the crossover dataThe estimated Love number is consistent with previous estimates but more precise.

  1. Detection of the lunar body tide by the Lunar Orbiter Laser Altimeter

    PubMed Central

    Mazarico, Erwan; Barker, Michael K; Neumann, Gregory A; Zuber, Maria T; Smith, David E

    2014-01-01

    The Lunar Orbiter Laser Altimeter instrument onboard the Lunar Reconnaissance Orbiter spacecraft collected more than 5 billion measurements in the nominal 50 km orbit over ∼10,000 orbits. The data precision, geodetic accuracy, and spatial distribution enable two-dimensional crossovers to be used to infer relative radial position corrections between tracks to better than ∼1 m. We use nearly 500,000 altimetric crossovers to separate remaining high-frequency spacecraft trajectory errors from the periodic radial surface tidal deformation. The unusual sampling of the lunar body tide from polar lunar orbit limits the size of the typical differential signal expected at ground track intersections to ∼10 cm. Nevertheless, we reliably detect the topographic tidal signal and estimate the associated Love number h2 to be 0.0371 ± 0.0033, which is consistent with but lower than recent results from lunar laser ranging. Key Points Altimetric data are used to create radial constraints on the tidal deformationThe body tide amplitude is estimated from the crossover dataThe estimated Love number is consistent with previous estimates but more precise PMID:26074646

  2. The second stage of Lunar Prospector's LMLV is erected at Pad 46, CCAS

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The second stage of the Lockheed Martin Launch Vehicle-2 (LMLV-2) is hoisted into position at Launch Pad 46 at Cape Canaveral Air Station for mating to the rocket's first stage, which is out of camera view. The LMLV-2 will carry the Lunar Prospector spacecraft, scheduled to launch in October for an 18-month mission that will orbit the Earth's moon to collect data from the lunar surface. Designed for a low polar orbit investigation of the moon, the Lunar Prospector will map the moon's surface composition and possible polar ice deposits, measure magnetic and gravity fields, and study lunar outgassing events.

  3. Copernicus: Lunar surface mapper

    NASA Technical Reports Server (NTRS)

    Redd, Frank J.; Anderson, Shaun D.

    1992-01-01

    The Utah State University (USU) 1991-92 Space Systems Design Team has designed a Lunar Surface Mapper (LSM) to parallel the development of the NASA Office of Exploration lunar initiatives. USU students named the LSM 'Copernicus' after the 16th century Polish astronomer, for whom the large lunar crater on the face of the moon was also named. The top level requirements for the Copernicus LSM are to produce a digital map of the lunar surface with an overall resolution of 12 meters (39.4 ft). It will also identify specified local surface features/areas to be mapped at higher resolutions by follow-on missions. The mapping operation will be conducted from a 300 km (186 mi) lunar-polar orbit. Although the entire surface should be mapped within six months, the spacecraft design lifetime will exceed one year with sufficient propellant planned for orbit maintenance in the anomalous lunar gravity field. The Copernicus LSM is a small satellite capable of reaching lunar orbit following launch on a Conestoga launch vehicle which is capable of placing 410 kg (900 lb) into translunar orbit. Upon orbital insertion, the spacecraft will weigh approximately 233 kg (513 lb). This rather severe mass constraint has insured attention to component/subsystem size and mass, and prevented 'requirements creep.' Transmission of data will be via line-of-sight to an earth-based receiving system.

  4. Lunar gravitational field estimation and the effects of mismodeling upon lunar satellite orbit prediction. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Davis, John H.

    1993-01-01

    Lunar spherical harmonic gravity coefficients are estimated from simulated observations of a near-circular low altitude polar orbiter disturbed by lunar mascons. Lunar gravity sensing missions using earth-based nearside observations with and without satellite-based far-side observations are simulated and least squares maximum likelihood estimates are developed for spherical harmonic expansion fit models. Simulations and parameter estimations are performed by a modified version of the Smithsonian Astrophysical Observatory's Planetary Ephemeris Program. Two different lunar spacecraft mission phases are simulated to evaluate the estimated fit models. Results for predicting state covariances one orbit ahead are presented along with the state errors resulting from the mismodeled gravity field. The position errors from planning a lunar landing maneuver with a mismodeled gravity field are also presented. These simulations clearly demonstrate the need to include observations of satellite motion over the far side in estimating the lunar gravity field. The simulations also illustrate that the eighth degree and order expansions used in the simulated fits were unable to adequately model lunar mascons.

  5. Toward an International Lunar Polar Volatiles Strategy

    NASA Technical Reports Server (NTRS)

    Gruener, J. E.; Suzuki, N. H.; Carpenter, J. D.

    2015-01-01

    Fourteen international space agencies are participating in the International Space Exploration Coordination Group (ISECG), working together to advance a long-range human space exploration strategy. The ISECG is a voluntary, non-binding international coordination mechanism through which individual agencies may exchange information regarding interests, objectives, and plans in space exploration with the goal of strengthening both individual exploration programs as well as the collective effort. The ISECG has developed a Global Exploration Roadmap (GER) that reflects the coordinated international dialog and continued preparation for exploration beyond low-Earth orbit - beginning with the Moon and cis-lunar space, and continuing to near-Earth asteroids, and Mars. Space agencies agree that human space exploration will be most successful as an international endeavor, given the challenges of these missions. The roadmap demonstrates how initial capabilities can enable a variety of missions in the lunar vicinity, responding to individual and common goals and objectives, while contributing to building partnerships required for sustainable human space exploration that delivers value to the public.

  6. Scattering Properties of Lunar Dust Analogs

    NASA Technical Reports Server (NTRS)

    Davis, S.; Marshall, J.; Richard, D.; Adler, D.; Adler, B.

    2013-01-01

    A number of space missions are planned to explore the lunar exosphere which may contain a small population of dust particles. The objective of this paper is to present preliminary results from scattering experiments on a suspension of lunar simulants to support one such mission. The intensity of the light scattered from a lunar simulant is measured with a commercial version of the spectrometer used in the forthcoming LADEE mission. Physical properties of the lunar simulant are described along with two similarly-sized reference microspheres. We confirm that micron-sized particles tend to form agglomerates rather than remaining isolated entities and that certain general characteristic of the target particles can be predicted from intensity measurements alone. These results can be used directly to assess general features of the lunar exosphere from LADEE instrument data. Further analysis of particle properties from such remote sensing data will require measurements of polarization signatures.

  7. Lunar Exploration and Science Opportunities in ESA

    NASA Astrophysics Data System (ADS)

    Carpenter, J.; Houdou, B.; Fisackerly, R.; De Rosa, D.; Schiemann, J.; Patti, B.; Foing, B.

    2014-04-01

    ESA seeks to provide Europe with access to the lunar surface, and allow Europeans to benefit from the opening up of this new frontier, as part of a global endeavour. This will be best achieved through an exploration programme which combines the strengths and capabilities of both robotic and human explorers. ESA is preparing for future participation in lunar exploration through a combination of human and robotic activities, in cooperation with international partners. Future planned activities include the contribution of key technological capabilities to the Russian led robotic missions, Luna-Glob, Luna-Resurs orbiter and Luna-Resurs lander. For the Luna-Resurs lander ESA will provide analytical capabilities to compliment the already selected Russian led payload, focusing on the composition and isotopic abundances of lunar volatiles in polar regions. This should be followed by the contributions at the level of mission elements to a Lunar Polar Sample Return mission. This partnership will provide access for European investigators to the opportunities offered by the Russian led instruments on the missions, as well as providing Europe with a unique opportunity to characterize and utilize polar volatile populations. Ultimately samples of high scientific value, from as of yet unexplored and unsampled locations shall be made available to the scientific community. These robotic activities are being performed with a view to enabling a future more comprehensive programme in which robotic and human activities are integrated to provide the maximum benefits from lunar surface access. Activities on the ISS and ESA participation to the US led Multi-Purpose Crew Vehicle, which is planned for a first unmanned lunar flight in 2017, are also important steps towards achieving this. All of these activities are performed with a view to generating the technologies, capabilities, knowledge and heritage that will make Europe an indispensible partner in the exploration missions of the future

  8. Introduction of JAXA Lunar and Planetary Exploration Data Analysis Group: Landing Site Analysis for Future Lunar Polar Exploration Missions

    NASA Astrophysics Data System (ADS)

    Otake, H.; Ohtake, M.; Ishihara, Y.; Masuda, K.; Sato, H.; Inoue, H.; Yamamoto, M.; Hoshino, T.; Wakabayashi, S.; Hashimoto, T.

    2018-04-01

    JAXA established JAXA Lunar and Planetary Exploration Data Analysis Group (JLPEDA) at 2016. Our group has been analyzing lunar and planetary data for various missions. Here, we introduce one of our activities.

  9. Extraction of Water from Lunar Permafrost

    NASA Technical Reports Server (NTRS)

    Ethridge, Edwin C.; Kaukler, William

    2009-01-01

    Remote sensing indicates the presence of hydrogen rich regions associated with the lunar poles. The logical hypothesis is that there is cryogenically trapped water ice located in craters at the lunar poles. Some of the craters have been in permanent darkness for a billion years. The presence of water at the poles as well as other scientific advantages of a polar base, have influenced NASA plans for the lunar outpost. The lunar outpost has water and oxygen requirements on the order of 1 ton per year scaling up to as much as 5 tons per year. Microwave heating of the frozen permafrost has unique advantages for water extraction. Proof of principle experiments have successfully demonstrated that microwaves will couple to the cryogenic soil in a vacuum and the sublimed water vapor can be successfully captured on a cold trap. Dielectric property measurements of lunar soil simulant have been measured. Microwave absorption and attenuation in lunar soil simulant has been correlated with measured dielectric properties. Future work will be discussed.

  10. Mission Design for the Lunar Reconnaissance Orbiter

    NASA Technical Reports Server (NTRS)

    Beckman, Mark

    2007-01-01

    The Lunar Reconnaissance Orbiter (LRO) will be the first mission under NASA's Vision for Space Exploration. LRO will fly in a low 50 km mean altitude lunar polar orbit. LRO will utilize a direct minimum energy lunar transfer and have a launch window of three days every two weeks. The launch window is defined by lunar orbit beta angle at times of extreme lighting conditions. This paper will define the LRO launch window and the science and engineering constraints that drive it. After lunar orbit insertion, LRO will be placed into a commissioning orbit for up to 60 days. This commissioning orbit will be a low altitude quasi-frozen orbit that minimizes stationkeeping costs during commissioning phase. LRO will use a repeating stationkeeping cycle with a pair of maneuvers every lunar sidereal period. The stationkeeping algorithm will bound LRO altitude, maintain ground station contact during maneuvers, and equally distribute periselene between northern and southern hemispheres. Orbit determination for LRO will be at the 50 m level with updated lunar gravity models. This paper will address the quasi-frozen orbit design, stationkeeping algorithms and low lunar orbit determination.

  11. Lunar Water Resource Demonstration

    NASA Technical Reports Server (NTRS)

    Muscatello, Anthony C.

    2008-01-01

    In cooperation with the Canadian Space Agency, the Northern Centre for Advanced Technology, Inc., the Carnegie-Mellon University, JPL, and NEPTEC, NASA has undertaken the In-Situ Resource Utilization (ISRU) project called RESOLVE. This project is a ground demonstration of a system that would be sent to explore permanently shadowed polar lunar craters, drill into the regolith, determine what volatiles are present, and quantify them in addition to recovering oxygen by hydrogen reduction. The Lunar Prospector has determined these craters contain enhanced hydrogen concentrations averaging about 0.1%. If the hydrogen is in the form of water, the water concentration would be around 1%, which would translate into billions of tons of water on the Moon, a tremendous resource. The Lunar Water Resource Demonstration (LWRD) is a part of RESOLVE designed to capture lunar water and hydrogen and quantify them as a backup to gas chromatography analysis. This presentation will briefly review the design of LWRD and some of the results of testing the subsystem. RESOLVE is to be integrated with the Scarab rover from CMIJ and the whole system demonstrated on Mauna Kea on Hawaii in November 2008. The implications of lunar water for Mars exploration are two-fold: 1) RESOLVE and LWRD could be used in a similar fashion on Mars to locate and quantify water resources, and 2) electrolysis of lunar water could provide large amounts of liquid oxygen in LEO, leading to lower costs for travel to Mars, in addition to being very useful at lunar outposts.

  12. Lunar Exploration Manned and Unmanned

    NASA Astrophysics Data System (ADS)

    Spudis, P. D.; Asmar, S. W.; Bussey, D. B. J.; Duxbury, N.; Friesen, L. J.; Gillis, J. J.; Hawke, B. R.; Heiken, G.; Lawrence, D.; Manifold, J.; Slade, M. A.; Smith, A.; Taylor, G. J.; Yingst, R. A.

    2002-08-01

    The past decade has seen two global reconnaissance missions to the Moon, Clementine and Lunar Prospector, which have mapped the surface in multiple wavelengths, determined the Moon's topography and gravity fields, and discovered the presence of water ice in the permanently dark regions near the poles. Although we have learned much about the Moon, many key aspects of its history and evolution remain obscure. The three highest priority questions in lunar science are: 1) the Moon's global composition, particularly the abundance of aluminum and magnesium; 2) the extent, composition, and physical state of polar deposits, including the extent, purity, and thickness of ice, the elemental, isotopic, and molecular composition of polar volatiles, the environment of the polar regions; and 3) the cratering chronology of the Moon and the implications of a possibly unique history, such as a cataclysm, for our understanding of other Solar System objects. Answering and addressing these questions require a series of new missions, including an orbiter (carrying XRF, imaging radar, and other instruments), the deployment of surface network stations equipped with seismometers and heat flow probes, selected robotic sample return missions from geologically simple areas (e.g., youngest lava flow or crater melt sheet), and complex geological field work, conducted by human explorers. Because the Moon is a touchstone for the history and evolution of other rocky bodies in the solar system, we believe that these questions are of very high scientific priority and that lunar missions should receive much more serious attention and detailed study than they have in the past by the NASA Office of Space Science.

  13. Light scattering by lunar-like particle size distributions

    NASA Technical Reports Server (NTRS)

    Goguen, Jay D.

    1991-01-01

    A fundamental input to models of light scattering from planetary regoliths is the mean phase function of the regolith particles. Using the known size distribution for typical lunar soils, the mean phase function and mean linear polarization for a regolith volume element of spherical particles of any composition were calculated from Mie theory. The two contour plots given here summarize the changes in the mean phase function and linear polarization with changes in the real part of the complex index of refraction, n - ik, for k equals 0.01, the visible wavelength 0.55 micrometers, and the particle size distribution of the typical mature lunar soil 72141. A second figure is a similar index-phase surface, except with k equals 0.1. The index-phase surfaces from this survey are a first order description of scattering by lunar-like regoliths of spherical particles of arbitrary composition. They form the basis of functions that span a large range of parameter-space.

  14. Special report, diffuse reflectivity of the lunar surface

    NASA Technical Reports Server (NTRS)

    Fastie, W. G.

    1972-01-01

    The far ultraviolet diffuse reflectivity of samples of lunar dust material is determined. Equipment for measuring the diffuse reflectivity of materials (e.g. paint samples) is already in existence and requires only minor modification for the proposed experiment which will include the measurement of the polarizing properties of the lunar samples. Measurements can be made as a function of both illumination angle and angle of observation.

  15. The simulation of lunar gravity field recovery from D-VLBI of Chang’E-1 and SELENE lunar orbiters

    NASA Astrophysics Data System (ADS)

    Yan, Jianguo; Ping, Jingsong; Matsumoto, K.; Li, Fei

    2008-07-01

    The lunar gravity field is a foundation to study the lunar interior structure, and to recover the evolution history of the Moon. It is still an open and key topic for lunar science. For above mentioned reasons, it becomes one of the important scientific objectives of recent lunar missions, such as KAGUYA (SELENE) the Japanese lunar mission and Chang’E-1, the Chinese lunar mission. The Chang’E-1 and the SELENE were successfully launched in 2007. It is estimated that these two missions can fly around the Moon longer than 6 months simultaneously. In these two missions, the Chinese new VLBI (Very Long Baseline Interferometry) network will be applied for precise orbit determination (POD) by using a differential VLBI (D-VLBI) method during the mission period. The same-beam D-VLBI technique will contribute to recover the lunar gravity field together with other conventional observables, i.e. R&RR (Range and Range Rate) and multi-way Doppler. Taking VLBI tracking conditions into consideration and using the GEODYNII/SOVLE software of GSFC/NASA/USA [Rowlands, D.D., Marshall, J.A., Mccarthy, J., et al. GEODYN II System Description, vols. 1 5. Contractor Report, Hughes STX Corp. Greenbelt, MD, 1997; Ullman, R.E. SOLVE program: mathematical formulation and guide to user input, Hughes/STX Contractor Report, Contract NAS5-31760. NASA Goddard Space Flight Center, Greenbelt, Maryland, 1994], we simulated the lunar gravity field recovering ability with and without D-VLBI between the Chang’E-1 and SELENE main satellite. The cases of overlapped flying and tracking period of 30 days, 60 days and 90 days have been analyzed, respectively. The results show that D-VLBI tracking between two lunar satellites can improve the gravity field recovery remarkably. The results and methods introduced in this paper will benefit the actual missions.

  16. Toward a Unified View of the Moon's Polar Volatiles from the Lunar Reconnaissance Orbiter

    NASA Astrophysics Data System (ADS)

    Hayne, Paul

    2016-04-01

    Although the scientific basis for the possibility of water and other volatiles in the cold traps of the lunar polar regions was developed in the 1960's and '70's [1,2], only recently have the data become available to test the theories in detail. Furthermore, comparisons with other planetary bodies, particularly Mercury, have revealed surprising differences that may point to inconsistencies or holes in our understanding of the basic processes involving volatiles on airless bodies [3]. Addressing these gaps in understanding is critical to the future exploration of the Moon, for which water is an important scientific and engineering resource [4]. Launched in 2009, NASA's Lunar Reconnaissance Orbiter (LRO) has been acquiring data from lunar orbit for more than six years. All seven of the remote sensing instruments on the payload have now contributed significantly to advancing understanding of volatiles on the Moon. Here we present results from these investigations, and discuss attempts to synthesize the disparate information to create a self-consistent model for lunar volatiles. In addition to the LRO data, we must take into account results from earlier missions [5,6], ground-based telescopes [7], and sample analyses [8]. The results from these inter-comparisons show that water is likely available in useful quantities, but key additional measurements may be required to resolve remaining uncertainties. [1] Watson, K., Murray, B. C., & Brown, H. (1961), J. Geophys. Res., 66(9), 3033-3045. [2] Arnold, J. R. (1979), J. Geophys. Res. (1978-2012), 84(B10), 5659-5668. [3] Paige, D. A., Siegler, M. A., Harmon, J. K., Neumann, G. A., Mazarico, E. M., Smith, D. E., ... & Solomon, S. C. (2013), Science, 339(6117), 300-303. [4] Hayne, P. O., et al. (2014), Keck Inst. Space Studies Report. [5] Nozette, S., Lichtenberg, C. L., Spudis, P., Bonner, R., Ort, W., Malaret, E., ... & Shoemaker, E. M. (1996), Science, 274(5292), 1495-1498. [6] Pieters, C. M., Goswami, J. N., Clark, R. N

  17. RESOLVE Projects: Lunar Water Resource Demonstration and Regolith Volatile Characterization

    NASA Technical Reports Server (NTRS)

    2008-01-01

    To sustain affordable human and robotic space exploration, the ability to live off the land at the exploration site will be essential. NASA calls this ability in situ resource utilization (ISRU) and is focusing on finding ways to sustain missions first on the Moon and then on Mars. The ISRU project aims to develop capabilities to technology readiness level 6 for the Robotic Lunar Exploration Program and early human missions returning to the Moon. NASA is concentrating on three primary areas of ISRU: (1) excavating, handling, and moving lunar regolith, (2) extracting oxygen from lunar regolith, and (3) finding, characterizing, extracting, separating, and storing volatile lunar resources, especially in the permanently shadowed polar craters. To meet the challenges related to technology development for these three primary focus areas, the Regolith and Environment Science and Oxygen and Lunar Volatile Extraction (RESOLVE) project was initiated in February 2005, through funding by the Exploration Systems Mission Directorate. RESOLVE's objectives are to develop requirements and conceptual designs and to perform breadboard concept verification testing of each experiment module. The final goal is to deliver a flight prototype unit that has been tested in a relevant lunar polar environment. Here we report progress toward the third primary area creating ways to find, characterize, extract, separate, and store volatile lunar resources. The tasks include studying thermal, chemical, and electrical ways to collect such volatile resources as hydrogen, water, nitrogen, methane, and ammonia. We approached this effort through two subtasks: lunar water resource demonstration (LWRD) and regolith volatile characterization (RVC).

  18. Effects of Orbital Evolution on Lunar Ice Stability

    NASA Astrophysics Data System (ADS)

    Siegler, M. A.; Bills, B. G.; Paige, D. A.

    2010-12-01

    Permanently shadowed regions of the Moon have complex thermal histories that influence their ability to act as traps for water ice. Though many areas are now cold enough that surface water ice would be stable from sublimation losses for billions of years, this has not always been the case. Here we examine the effects of the long term orbital and rotational evolution of the Moon on polar thermal history, volatile stability and mobility. Using data from the Diviner Lunar Radiometer, aboard the Lunar Reconnaissance Orbiter, we validate models of the current temperature in the lunar polar region. This model includes the effects of topography, scattering, re-radiation, and regolith thermal properties. Then, integrating the effects of tidal torques backward from the present, we reconstruct past orbital and rotational states and use them as input to the thermal model to estimate the thermal environment of the distant lunar past. The rate of tidal evolution of the lunar orbit is quite uncertain, thus use orbital semimajor axis as independent variable, rather than time, in the reconstruction. The orbital integration results in a high obliquity period which occurred when the Moon was at about half its present distance from the Earth. This period, which caused half a year of direct sunlight on the polar region, is due to a transition between two Cassini States, spin-orbit configurations resulting from internal dissipation within the Moon. Since this event, the tilt of the Moon (with respect to the ecliptic) has slowly decreased to the current 1.54 degree. Prior to this transition, due to the relatively small Earth-Moon distance, large amplitude variations in the inclination of the orbital plain were also important. We examine the stability of polar volatiles in response to the evolving lunar orbit, and apply simple models to describe when in the Moon’s history supplied volatiles would have been most likely to be buried by thermal diffusion. When temperatures are much below

  19. Mission Architecture Comparison for Human Lunar Exploration

    NASA Technical Reports Server (NTRS)

    Geffre, Jim; Robertson, Ed; Lenius, Jon

    2006-01-01

    The Vision for Space Exploration outlines a bold new national space exploration policy that holds as one of its primary objectives the extension of human presence outward into the Solar System, starting with a return to the Moon in preparation for the future exploration of Mars and beyond. The National Aeronautics and Space Administration is currently engaged in several preliminary analysis efforts in order to develop the requirements necessary for implementing this objective in a manner that is both sustainable and affordable. Such analyses investigate various operational concepts, or mission architectures , by which humans can best travel to the lunar surface, live and work there for increasing lengths of time, and then return to Earth. This paper reports on a trade study conducted in support of NASA s Exploration Systems Mission Directorate investigating the relative merits of three alternative lunar mission architecture strategies. The three architectures use for reference a lunar exploration campaign consisting of multiple 90-day expeditions to the Moon s polar regions, a strategy which was selected for its high perceived scientific and operational value. The first architecture discussed incorporates the lunar orbit rendezvous approach employed by the Apollo lunar exploration program. This concept has been adapted from Apollo to meet the particular demands of a long-stay polar exploration campaign while assuring the safe return of crew to Earth. Lunar orbit rendezvous is also used as the baseline against which the other alternate concepts are measured. The first such alternative, libration point rendezvous, utilizes the unique characteristics of the cislunar libration point instead of a low altitude lunar parking orbit as a rendezvous and staging node. Finally, a mission strategy which does not incorporate rendezvous after the crew ascends from the Moon is also studied. In this mission strategy, the crew returns directly to Earth from the lunar surface, and is

  20. Wide-Angle Polarimetric Camera for Korea Pathfinder Lunar Orbiter

    NASA Astrophysics Data System (ADS)

    Choi, Y. J.; Kim, S.; Kang, K. I.

    2016-12-01

    A polarimetry data contains valuable information about the lunar surface such as the grain size and porosity of the regolith. However, a polarimetry toward the Moon in its orbit has not been performed. We plan to perform the polarimetry in lunar orbit through Korea Pathfinder Lunar Orbiter (KPLO), which will be launched around 2018/2019 as the first Korean lunar mission. Wide-Angle Polarimetric Camera (PolCam) is selected as one of the onboard instrument for KPLO. The science objectives are ; (1) To obtain the polarization data of the whole lunar surface at wavelengths of 430nm and 650nm for phase angle range from 0° to 120° with a spatial resolution of 80 m. (2) To obtain the reflectance ratios at 320 nm and 430 nm for the whole lunar surface with a spatial resolution of 80m. We will summarize recent results of lunar surface from ground-based polarimetric observations and will briefly introduce the science rationals and operation concept of PolCam.

  1. Design of a lunar propellant processing facility. NASA/USRA advanced program

    NASA Technical Reports Server (NTRS)

    Batra, Rajesh; Bell, Jason; Campbell, J. Matt; Cash, Tom; Collins, John; Dailey, Brian; France, Angelique; Gareau, Will; Gleckler, Mark; Hamilton, Charles

    1993-01-01

    Mankind's exploration of space will eventually lead to the establishment of a permanent human presence on the Moon. Essential to the economic viability of such an undertaking will be prudent utilization of indigenous lunar resources. The design of a lunar propellant processing system is presented. The system elements include facilities for ore processing, ice transportation, water splitting, propellant storage, personnel and materials transportation, human habitation, power generation, and communications. The design scenario postulates that ice is present in the lunar polar regions, and that an initial lunar outpost was established. Mining, ore processing, and water transportation operations are located in the polar regions. Water processing and propellant storage facilities are positioned near the equator. A general description of design operations is outlined below. Regolith containing the ice is mined from permanently-shaded polar craters. Water is separated from the ore using a microwave processing technique, and refrozen into projectiles for launch to the equatorial site via railgun. A mass-catching device retrieves the ice. This ice is processed using fractional distillation to remove impurities, and the purified liquid water is fed to an electrolytic cell that splits the water into vaporous hydrogen and oxygen. The hydrogen and oxygen are condensed and stored separately in a tank farm. Electric power for all operations is supplied by SP-100 nuclear reactors. Transportation of materials and personnel is accomplished primarily using chemical rockets. Modular living habitats are used which provide flexibility for the placement and number of personnel. A communications system consisting of lunar surface terminals, a lunar relay satellite, and terrestrial surface stations provides capabilities for continuous Moon-Moon and Moon-Earth transmissions of voice, picture, and data.

  2. Goals and Strategies for the Human Lunar Reference Architecture

    NASA Technical Reports Server (NTRS)

    Seaman, Calvin H.

    2010-01-01

    The presentation examines common goals for human lunar exploration and strategic guidance. Three major sections include illustrative example goals, introduction to the GPoD campaign, and GPoD overview. The first section includes slides about strategic view of partnerships, the moon as a stepping stone and a uniquely preserved record, human-robotic partnership, innovative engagement, strategic considerations, and evaluation of campaigns against common goals. The second section examines campaigns considered, the philosophy of GPoD, GPoD campaign phase definitions, and GPoD design decision points. The third section examines lunar exploration capabilities, extended stay-relocation exploration mode, notional campaign destinations for GPoD, early robotics phase, development of the GPoD early robotics phase, polar exploration/system validation phase, polar relocatability phase, non-polar relocatability phase, long duration phase, and return to evaluation of campaigns.

  3. Use of a Lunar Outpost for Developing Space Settlement Technologies

    NASA Technical Reports Server (NTRS)

    Purves, Lloyd R.

    2008-01-01

    The type of polar lunar outpost being considered in the NASA Vision for Space Exploration (VSE) can effectively support the development of technologies that will not only significantly enhance lunar exploration, but also enable long term crewed space missions, including space settlement. The critical technologies are: artificial gravity, radiation protection, Closed Ecological Life Support Systems (CELSS) and In-Situ Resource Utilization (ISRU). These enhance lunar exploration by extending the time an astronaut can remain on the moon and reducing the need for supplies from Earth, and they seem required for space settlement. A polar lunar outpost provides a location to perform the research and testing required to develop these technologies, as well as to determine if there are viable countermeasures that can reduce the need for Earth-surface-equivalent gravity and radiation protection on long human space missions. The types of spinning space vehicles or stations envisioned to provide artificial gravity can be implemented and tested on the lunar surface, where they can create any level of effective gravity above the 1/6 Earth gravity that naturally exists on the lunar surface. Likewise, varying degrees of radiation protection can provide a natural radiation environment on the lunar surface less than or equal to 1/2 that of open space at 1 AU. Lunar ISRU has the potential of providing most of the material needed for radiation protection, the centrifuge that provides artificial gravity; and the atmosphere, water and soil for a CELSS. Lunar ISRU both saves the cost of transporting these materials from Earth and helps define the requirements for ISRU on other planetary bodies. Biosphere II provides a reference point for estimating what is required for an initial habitat with a CELSS. Previous studies provide initial estimates of what would be required to provide such a lunar habitat with the gravity and radiation environment of the Earth s surface. While much preparatory

  4. Prospecting Rovers for Lunar Exploration

    NASA Technical Reports Server (NTRS)

    Graham, Jerry B.; Vaughn, Jason A.; Farmer, Jeffery T.

    2007-01-01

    A study of lunar rover options for exploring the permanently shadowed regions of the lunar environment is presented. The potential for nearly continuous solar illumination coupled with the potential for water ice, focus exploration planner's attention on the polar regions of the moon. These regions feature craters that scientists have reason to believe may contain water ice. Water ice can be easily converted to fuel cell reactants, breathing oxygen, potable water, and rocket propellant. For these reasons, the NASA Robotic Lunar Exploration Program (RLEP) sponsored a study of potential prospecting rover concepts as one part of the RLEP-2 Pre-Phase A. Numerous vehicle configurations and power, thermal, and communication options are investigated. Rover options in the 400kg to 530kg class are developed which are capable of either confirming the presence of water ice at the poles, or conclusively demonstrating its absence.

  5. Lunar Flashlight: Illuminating the Moon's South Pole

    NASA Technical Reports Server (NTRS)

    Hayne, P. O.; Cohen, B. A.; Greenhagen, B. T.; Paige, D. A.; Camacho, J. M.; Sellar, R. G.; Reiter, J.

    2016-01-01

    Recent reflectance data from LRO instruments suggest water ice and other volatiles may be present on the surface in lunar permanently shadowed regions, though the detection is not yet definitive. Understanding the composition, quantity, distribution, and form of water and other volatiles associated with lunar permanently shadowed regions (PSRs) is identified as a NASA Strategic Knowledge Gap (SKG) for Human Exploration. These polar volatile deposits are also scientifically interesting, having the potential to reveal important information about the delivery of water to the Earth-Moon system.

  6. The indirect electrochemical refining of lunar ores

    NASA Technical Reports Server (NTRS)

    Semkow, Krystyna W.; Sammells, Anthony F.

    1987-01-01

    Recent work performed on an electrolytic cell is reported which addresses the implicit limitations in various approaches to refining lunar ores. The cell uses an oxygen vacancy conducting stabilized zirconia solid electrolyte to effect separation between a molten salt catholyte compartment where alkali metals are deposited, and an oxygen-evolving anode of composition La(0.89)Sr(0.1)MnO3. The cell configuration is shown and discussed along with a polarization curve and a steady-state current-voltage curve. In a practical cell, cathodically deposited liquid lithium would be continuously removed from the electrolytic cell and used as a valuable reducing agent for ore refining under lunar conditions. Oxygen would be indirectly electrochemically extracted from lunar ores for breathing purposes.

  7. Lunar Laser Ranging: Glorious Past And A Bright Future

    NASA Astrophysics Data System (ADS)

    Shelus, Peter J.

    Lunar Laser Ranging (LLR), a part of the NASA Apollo program, has beenon-going for more than 30 years. It provides the grist for a multi-disciplinarydata analysis mill. Results exist for solid Earth sciences, geodesy and geodynamics,solar system ephemerides, terrestrial and celestial reference frames, lunar physics,general relativity and gravitational theory. Combined with other data, it treatsprecession of the Earth''s spin axis, lunar induced nutation, polar motion/Earthrotation, Earth orbit obliquity to the ecliptic, intersection of the celestial equatorwith the ecliptic, luni-solar solid body tides, lunar tidal deceleration, lunar physicaland free librations, structure of the moon and energy dissipation in the lunar interior.LLR provides input to lunar surface cartography and surveying, Earth station and lunar retroreflector location and motion, mass of the Earth-moon system, lunar and terrestrial gravity harmonics and Love numbers, relativistic geodesic precession, and the equivalence principle of general relativity. With the passive nature of the reflectors and steady improvement in observing equipment and data analysis, LLR continues to provide state-of-the-art results. Gains are steady as the data-base expands. After more than 30 years, LLR remains the only active Apollo experiment. It is important to recognize examples of efficient and cost effective progress of research. LLR is just such an example.

  8. Global Lunar Gravity Field Determination Using Historical and Recent Tracking Data in Preparation for SELENE

    NASA Astrophysics Data System (ADS)

    Goossens, S.; Matsumoto, K.; Namiki, N.; Hanada, H.; Iwata, T.; Tsuruta, S.; Kawano, N.; Sasaki, S.

    2006-12-01

    In the near future, a number of satellite missions are planned to be launched to the Moon. These missions include initiatives by China, India, the USA, as well as the Japanese SELENE mission. These missions will gather a wealth of lunar data which will improve the knowledge of the Moon. One of the main topics to be addressed will be the lunar gravity field. Especially SELENE will contribute to improving the knowledge of the gravity field, by applying 4-way Doppler tracking between the main satellite and a relay satellite, and by applying a separate differential VLBI experiment. These will improve the determination of the global gravity field, especially over the far side and at the lower degrees (mostly for degrees lower than 30), as is shown by extensive simulations of the SELENE mission. This work focuses on the determination of the global lunar gravity field from all available tracking data to this date. In preparation for the SELENE mission, analysis using Lunar Prospector tracking data, as well as Clementine data and historical data from the Apollo and Lunar Orbiter projects is being conducted at NAOJ. Some SMART-1 tracking data are also included. The goal is to combine the good-quality data from the existing lunar missions up to this date with the tracking data from SELENE in order to derive a new lunar gravity field model. The focus therefore currently lies on processing the available data and extracting lunar gravity field information from them. It is shown that the historical tracking data contribute especially to the lower degrees of the global lunar gravity field model. Due to the large gap in tracking data coverage over the far side for the historical data, the higher degrees are almost fully determined by the a priori information in the form of a Kaula rule. The combination with SELENE data is thus expected to improve the estimate for the lower degrees even further, including coverage of the far side. Since historical tracking data are from orbits with

  9. Stationkeeping for the Lunar Reconnaissance Orbiter (LRO)

    NASA Technical Reports Server (NTRS)

    Beckman, Mark; Lamb, Rivers

    2007-01-01

    The Lunar Reconnaissance Orbiter (LRO) is scheduled to launch in 2008 as the first mission under NASA's Vision for Space Exploration. Following several weeks in a quasi-frozen commissioning orbit, LRO will fly in a 50 km mean altitude lunar polar orbit. During the one year mission duration, the orbital dynamics of a low lunar orbit force LRO to perform periodic sets of stationkeeping maneuvers. This paper explores the characteristics of low lunar orbits and explains how the LRO stationkeeping plan is designed to accommodate the dynamics in such an orbit. The stationkeeping algorithm used for LRO must meet five mission constraints. These five constraints are to maintain ground station contact during maneuvers, to control the altitude variation of the orbit, to distribute periselene equally between northern and southern hemispheres, to match eccentricity at the beginning and the end of the sidereal period, and to minimize stationkeeping deltaV. This paper addresses how the maneuver plan for LRO is designed to meet all of the above constraints.

  10. Introduction to Japanese exploration study to the moon

    NASA Astrophysics Data System (ADS)

    Hashimoto, T.; Hoshino, T.; Tanaka, S.; Otake, H.; Otsuki, M.; Wakabayashi, S.; Morimoto, H.; Masuda, K.

    2014-11-01

    The Japan Aerospace Exploration Agency (JAXA) views the lunar lander SELENE-2 as the successor to the SELENE mission. In this presentation, the mission objectives of SELENE-2 are shown together with the present design status of the spacecraft. JAXA launched the Kaguya (SELENE) lunar orbiter in September 2007, and the spacecraft observed the Moon and a couple of small satellites using 15 instruments. As the next step in lunar exploration, the lunar lander SELENE-2 is being considered. SELENE-2 will land on the lunar surface and perform in-situ scientific observations, environmental investigations, and research for future lunar utilization including human activity. At the same time, it will demonstrate key technologies for lunar and planetary exploration such as precise and safe landing, surface mobility, and overnight survival. The lander will carry laser altimeters, image sensors, and landing radars for precise and safe landing. Landing legs and a precisely controlled propulsion system will also be developed. A rover is being designed to be able to travel over a wide area and observe featured terrain using scientific instruments. Since some of the instruments require long-term observation on the lunar surface, technology for night survival over more than 2 weeks needs to be considered. The SELENE-2 technologies are expected to be one of the stepping stones towards future Japanese human activities on the moon and to expand the possibilities for deep space science.

  11. Martian polar geological studies

    NASA Technical Reports Server (NTRS)

    Cutts, J. A. J.

    1977-01-01

    Multiple arcs of rugged mountains and adjacent plains on the surface of Mars were examined. These features, located in the southern polar region were photographed by Mariner 9. Comparisons are made with characteristics of a lunar basin and mare; Mare imbrium in particular. The martian feature is interpreted to have originated in the same way as its lunar analog- by volcanic flooding of a large impact basin. Key data and methodology leading to this conclusion are cited.

  12. Lunar Exploration and Science in ESA

    NASA Astrophysics Data System (ADS)

    Carpenter, James; Houdou, Bérengère; Fisackerly, Richard; De Rosa, Diego; Patti, Bernardo; Schiemann, Jens; Hufenbach, Bernhard; Foing, Bernard

    2015-04-01

    ESA seeks to provide Europe with access to the lunar surface, and allow Europeans to benefit from the opening up of this new frontier, as part of a global endeavor. This will be best achieved through an exploration programme which combines the strengths and capabilities of both robotic and human explorers. ESA is preparing for future participation in lunar exploration through a combination of human and robotic activities, in cooperation with international partners. Future planned activities include the contribution of key technological capabilities to the Russian led robotic missions, Luna-Glob, Luna-Resurs orbiter and Luna-Resurs lander. For the Luna-Resurs lander ESA will provide analytical capabilities to compliment the Russian led science payload, focusing on developing an characterising the resource opportunities offered at the lunar surface. This should be followed by the contributions at the level of mission elements to a Lunar Polar Sample Return mission. These robotic activities are being performed with a view to enabling a future more comprehensive programme in which robotic and human activities are integrated to provide the maximum benefits from lunar surface access. Activities on the ISS and ESA participation to the US led Multi-Purpose Crew Vehicle, which is planned for a first unmanned lunar flight in 2017, are also important steps towards achieving this. In the frame of a broader future international programme under discussion through the International Space Exploration Coordination Group (ISECG) future missions are under investigation that would provide access to the lunar surface through international cooperation and human-robotic partnerships.

  13. COMPASS Final Report: Lunar Relay Satellite (LRS)

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.; McGuire, Melissa L.

    2012-01-01

    The Lunar Relay Satellite (LRS) COllaborative Modeling and Parametric Assessment of Space Systems (COMPASS) session was tasked to design a satellite to orbit in an elliptical lunar polar orbit to provide relay communications between lunar South Pole assets and the Earth. The design included a complete master equipment list, power requirement list, configuration design, and brief risk assessment and cost analysis. The LRS is a half-TDRSS sized box spacecraft, which provides communications and navigation relay between lunar outposts (via Lunar Communications Terminals (LCT)) or Sortie parties (with user radios) and large ground antennas on Earth. The LRS consists of a spacecraft containing all the communications and avionics equipment designed by NASA Jet Propulsion Laboratory s (JPL) Team X to perform the relay between lunar-based assets and the Earth. The satellite design is a standard box truss spacecraft design with a thermal control system, 1.7 m solar arrays for 1 kWe power, a 1 m diameter Ka/S band dish which provides relay communications with the LCT, and a Q-band dish for communications to/from the Earth based assets. While JPL's Team X and Goddard Space Flight Center s (GSFC) I M Design Center (IMDC) have completed two other LRS designs, this NASA Glenn Research Center (GRC) COMPASS LRS design sits between them in terms of physical size and capabilities.

  14. Line Profile Measurements of the Lunar Exospheric Sodium

    NASA Technical Reports Server (NTRS)

    Oliversen, Ronald J.; Mierkiewicz, Edwin J.; Line, Michael R.; Roesler, Fred L.; Lupie, Olivia L.

    2012-01-01

    We report ongoing results of a program to measure the lunar sodium exospheric line profile from near the lunar limb out to two lunar radii (approx 3500 km). These observations are conducted from the National Solar Observatory McMath-Pierce telescope using a dual-etalon Fabry-Perot spectrometer with a resolving power of 180,600 (1.7 km/s) to measure line widths and velocity shifts of the Na D2 (5889 950 A) emission line in equatorial and polar regions at different lunar phases. The typical field of view (FOV) is 3 arcmin (approx 360 km) with an occasional smaller 1 arcmin FOV used right at the limb edge. The first data were obtained from full Moon to 3 days following full Moon (waning phase) in March 2009 as part of a demonstration run aimed at establishing techniques for a thorough study of temperatures and velocity variations in the lunar sodium exosphere. These data indicate velocity displacements from different locations off the lunar limb range between 150 and 600 m/s from the lunar rest velocity with a precision of +/- 20 to +/- 50 m/s depending on brightness. The measured Doppler line widths for observations within 10.5 arcmin of the east and south lunar limbs for observations between 5 deg and 40 deg lunar phase imply temperatures ranging decreasing from 3250 +/- 260K to 1175 +/- 150K. Additional data is now being collected on a quarterly basis since March 2011 and preliminary results will be reported.

  15. Stationkeeping for the Lunar Reconnaissance Orbiter (LRO)

    NASA Technical Reports Server (NTRS)

    Beckman, Mark; Lamb, Rivers

    2007-01-01

    The Lunar Reconnaissance Orbiter (LRO) is scheduled to launch in 2008 as the first mission under NASA's Vision for Space Exploration. Follo wing several weeks in a quasi-frozen commissioning orbit, LRO will fl y in a 50 km mean altitude lunar polar orbit. During the one year mis sion duration, the orbital dynamics of a low lunar orbit force LRO to perform periodic sets of stationkeeping maneuvers. This paper explor es the characteristics of low lunar orbits and explains how the LRO s tationkeeping plan is designed to accommodate the dynamics in such an orbit. The stationkeeping algorithm used for LRO must meet five miss ion constraints. These five constraints are to maintain ground statio n contact during maneuvers, to control the altitude variation of the orbit, to distribute periselene equally between northern and southern hemispheres, to match eccentricity at the beginning and the end of the sidereal period, and to minimize stationkeeping (Delta)V. This pape r addresses how the maneuver plan for LRO is designed to meet all of the above constraints.

  16. Elemental Mercury Diffusion Processes and Concentration at the Lunar Poles

    NASA Technical Reports Server (NTRS)

    Moxley, Frederick; Killen, Rosemary M.; Hurley, Dana M.

    2011-01-01

    In 2009, the Lyman Alpha Mapping Project (LAMP) spectrograph onboard the Lunar Reconnaissance Orbiter (LRO) spacecraft made the first detection of element mercury (Hg) vapor in the lunar exosphere after the Lunar Crater Observing and Sensing Satellite (LCROSS) Centaur rocket impacted into the Cabeus crater in the southern polar region of the Moon. The lunar regolith core samples from the Apollo missions determined that Hg had a devolatilized pattern with a concentration gradient increasing with depth, in addition to a layered pattern suggesting multiple episodes of burial and volatile loss. Hg migration on the lunar surface resulted in cold trapping at the poles. We have modeled the rate at which indigenous Hg is lost from the regolith through diffusion out of lunar grains. We secondly modeled the migration of Hg vapor in the exosphere and estimated the rate of cold-trapping at the poles using a Monte Carlo technique. The Hg vapor may be lost from the exosphere via ionization, Jeans escape, or re-impact into the surface causing reabsorption.

  17. High-Resolution Spectroscopy of the Lunar Sodium Exosphere

    NASA Technical Reports Server (NTRS)

    Mierkiewicz, E. J.; Oliversen, R. J.; Roesler, F. L.; Lupie, O. L.

    2014-01-01

    We have applied high-resolution Fabry-Perot spectroscopy to the study of the lunar sodium exosphere for the study of exospheric effective temperature and velocity variations. Observing from the National Solar Observatory McMath-Pierce Telescope, we used a dual-etalon Fabry-Perot spectrometer with a resolving power of 180,000 to measure line widths and Doppler shifts of the sodium D2 (5889.95 Å) emission line. Our field of view was 360 km, and measurements were made in equatorial and polar regions from 500 km to 3500 km off the limb. Data were obtained from full moon to 3 days following full moon (waning phase) in March 2009. Measured Doppler line widths within 1100 km of the sunlit east and south lunar limbs for observations between 5 and 40 deg lunar phase imply effective temperatures ranging between 3260 +/- 190 and 1000 +/- 135 K. Preliminary line center analysis indicates velocity displacements between different locations off the lunar limb ranging between 100 and 600 m/s from the lunar rest velocity with a precision of +/-20 to +/-50 m/s depending on brightness. Based on the success of these exploratory observations, an extensive program has been initiated that is expected to constrain lunar atmospheric and surface-process modeling and help quantify source and escape mechanisms.

  18. Trajectory Design of the Lunar Impactor Mission Concept

    NASA Technical Reports Server (NTRS)

    Chung, Min-Kun J.; McElrath, Timothy P.; Roncoli, Ralph B.

    2006-01-01

    The National Aeronautics and Space Administration (NASA) solicited proposals in 2006 for an opportunity to include a small secondary payload with the launch of the Lunar Reconnaissance Orbiter (LRO) scheduled for October 2008. The cost cap of the proposal was between $50 and $80M, and the mass cap was 1,000 kilograms. JPL proposed a Lunar Impactor (LI) concept for this solicitation. The mission objective of LI was to impact the permanently shadowed region of a South polar crater ultimately to detect the presence of water. The detection of water ice would prove to be an important factor on future lunar exploration. NASA Ames Research Center also proposed a similar concept, the Lunar Crater observation and Sensing Satellite (LCROSS), which was selected by NASA for the mission. However, in this paper, the trajectory design of the LI proposed by JPL is considered. Since the LI spacecraft was to be launched on the LRO launch vehicle as a secondary payload, its initial trajectory must be diverted at some later time from the LRO trans-lunar trajectory for the subsequent impact. Several such trajectories have been considered, where each trajectory option fields some specific values for the mission parameters. The mission parameters include the availability of LRO instruments at the time of impact for the observation by LRO, the mission duration, the impact velocity, the impact angle, etc. It is possible for the LI to be deflected with a relatively low delta-V to impact a South polar crater at a reasonable impact velocity and impact angle directly with no delay. However, the instruments on-board LRO may not be ready for observation. Thus, several delayed trajectory options have been considered further. The lunar phase at the time of impact may also play an important factor for observation, especially from Earth. Several lunar flyby trajectory maneuvers have been identified to arrive at the Moon for impact at the desired lunar phase. By using a combination of these

  19. Robust Exploration and Commercial Missions to the Moon Using LANTR Propulsion and In-Situ Propellants Derived from Lunar Polar Ice (LPI) Deposits

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.; Ryan, Stephen W.; Burke, Laura M.; McCurdy, David R.; Fittje, James E.; Joyner, Claude R.

    2017-01-01

    The nuclear thermal rocket (NTR) has frequently been identified as a key space asset required for the human exploration of Mars. This proven technology can also provide the affordable access through cislunar space necessary for commercial development and sustained human presence on the Moon. It is a demonstrated technology capable of generating both high thrust and high specific impulse (Isp 900 s) twice that of todays best chemical rockets. Nuclear lunar transfer vehicles consisting of a propulsion stage using three approx.16.5 klbf "Small Nuclear Rocket Engines (SNREs)", an in-line propellant tank, plus the payload can enable a variety of reusable lunar missions. These include cargo delivery and crewed lunar landing missions. Even weeklong "tourism" missions carrying passengers into lunar orbit for a day of sightseeing and picture taking are possible. The NTR can play an important role in the next phase of lunar exploration and development by providing a robust in-space lunar transportation system (LTS) that can allow initial outposts to evolve into settlements supported by a variety of commercial activities such as in-situ propellant production used to supply strategically located propellant depots and transportation nodes. The processing of LPI deposits (estimated to be approx. 2 billion metric tons) for propellant production - specifically liquid oxygen (LO2) and hydrogen (LH2) can significantly reduce the launch mass requirements from Earth and can enable reusable, surface-based lunar landing vehicles (LLVs) using LO2/LH2 chemical rocket engines. Afterwards, LO2/LH2 propellant depots can be established in lunar polar and equatorial orbits to supply the LTS. At this point a modified version of the conventional NTR called the LO2-augmented NTR, or LANTR would be introduced into the LTS allowing bipropellant operation and leveraging the mission benefits of refueling with lunar-derived propellants (LDPs) for Earth return. The bipropellant LANTR engine utilizes

  20. Transient Thermal Model and Analysis of the Lunar Surface and Regolith for Cryogenic Fluid Storage

    NASA Technical Reports Server (NTRS)

    Christie, Robert J.; Plachta, David W.; Yasan, Mohammad M.

    2008-01-01

    A transient thermal model of the lunar surface and regolith was developed along with analytical techniques which will be used to evaluate the storage of cryogenic fluids at equatorial and polar landing sites. The model can provide lunar surface and subsurface temperatures as a function of latitude and time throughout the lunar cycle and season. It also accounts for the presence of or lack of the undisturbed fluff layer on the lunar surface. The model was validated with Apollo 15 and Clementine data and shows good agreement with other analytical models.

  1. Data analysis and interpretation of lunar dust exosphere

    NASA Technical Reports Server (NTRS)

    Andrews, George A., Jr.

    1992-01-01

    The lunar horizon glow observed by Apollo astronauts and captured on film during the Surveyor mission is believed to result from the scattering of sunlight off lunar fines suspended in a dust layer over the lunar surface. For scale heights on the order of tens of kilometers, it is anticipated that the size of the dust particles will be small enough to admit Rayleigh scattering. Such events would result in scattered light which is polarized to a degree which is a function of observation angle and produce spectra containing large high frequency components ('bluing'). Believing these signatures to be observable from ground based telescopes, observational data has been collected from McDonald Observatory and the task of reduction and analysis of this data is the focus of the present report.

  2. A Proposed Robotic Astronomy Mission to the Lunar South Polar Regions

    NASA Technical Reports Server (NTRS)

    Lowman, Paul D., Jr.

    2003-01-01

    This paper outlines a possible mission to emplace a robotic infrared / submillimeter wave interferometer array near the lunar south pole. This region has now been investigated by the Clementine and Lunar Prospector missions, and by Earth-based radar, and its topography and thermal environment are fairly well-known. The area would be exceptionally suitable for infrared / submillimeter astronomy because of the continually low temperatures, approaching that of liquid nitrogen (77K) in some places. A submillimeter spaceborne interferometer mission, Submillimeter Probe of the Evolution of the Cosmic Structure (SPECS) has been proposed by John Mather and others, covering the 40 - 500 micron region with 3 formation flying telescopes. The present paper proposes a lunar adaptation of the SPECS concept, LSPECS. This adaptation would involve landing 4 telescopes on the area north of Shackleton crater at zero degrees longitude. This is in nearly year round darkness but is continually radar visible from Earth. The landed payload of LSPECS would include a telerobotic rover, 4 three meter submm telescopes, a solar power array to be emplaced on the continually sunlit north rim of Shackleton crater, and an S-band antenna for data relay to Earth. Passive cooling without the use of expendable cryogenics. might be possible, trading long exposure time for instrument temperatures above that of liquid helium. The LSPECS would permit long-term study of an extremely wide range of cosmic and solar system phenomena in the southern celestial hemisphere. For complete sky coverage, a similar installation near the north pole would be required. The LSPECS site would also be suitable other types of observation, such as optical interferometry or centimeter wavelength radio astronomy. The lunar south pole is also of great interest because of its extensive ice deposits, which may represent cometary infall with pre-biotic compounds.

  3. NASA's Lunar Polar Ice Prospector, RESOLVE: Mission Rehearsal in Apollo Valley

    NASA Technical Reports Server (NTRS)

    Larson, William E.; Picard, Martin; Quinn, Jacqueline; Sanders, Gerald B.; Colaprete, Anthony; Elphic, Richard C.

    2012-01-01

    After the completion of the Apollo Program, space agencies didn't visit the moon for many years. But then in the 90's, the Clementine and Lunar Prospector missions returned and showed evidence of water ice at the poles. Then in 2009 the Lunar Crater Observation and Sensing Satellite indisputably showed that the Cabeus crater contained water ice and other useful volatiles. Furthermore, instruments aboard the Lunar Reconnaissance Orbiter (LRO) show evidence that the water ice may also be present in areas that receive several days of continuous sunlight each month. However, before we can factor this resource into our mission designs, we must understand the distribution and quantity of ice or other volatiles at the poles and whether it can be reasonably harvested for use as propellant or mission consumables. NASA, in partnership with the Canadian Space Agency (CSA), has been developing a payload to answer these questions. The payload is named RESOLVE. RESOLVE is on a development path that will deliver a tested flight design by the end of 2014. The team has developed a Design Reference Mission using LRO data that has RESOLVE landing near Cabeus Crater in May of2016. One of the toughest obstacles for RESOLVE's solar powered mission is its tight timeline. RESOLVE must be able to complete its objectives in the 5-7 days of available sunlight. The RESOLVE team must be able to work around obstacles to the mission timeline in real time. They can't afford to take a day off to replan as other planetary missions have done. To insure that this mission can be executed as planned, a prototype version of RESOLVE was developed this year and tested at a lunar analog site on Hawaii, known as Apollo Valley, which was once used to train the Apollo astronauts. The RESOLVE team planned the mission with the same type of orbital imagery that would be available from LRO. The simulation team prepositioned a Lander in Apollo Valley with RESOLVE on top mounted on its CSA rover. Then the mission

  4. Lunar pyroclastic deposits as seen by the Mini-SAR on Chandrayaan-1

    NASA Astrophysics Data System (ADS)

    Thomson, B. J.; Spudis, P.; Bussey, B.; Neisch, C.

    2009-12-01

    The principal objective of the Mini-SAR (synthetic aperture radar) instrument on the Chandrayaan-1 spacecraft is the investigation of permanently shadowed regions in the lunar polar regions. But additional radar observations have been made of selected non-polar targets for comparison with observations of polar targets, as well as for their own intrinsic scientific merit. These non-polar targets include former Apollo and other landing sites, lunar pyroclastic deposits, and select fresh and degraded impact craters. Here we focus on observations of a maar-type volcanic feature on the floor of Schrödinger Basin, which has been previously interpreted as a pyroclastic deposit [1]. Lunar pyroclastic deposits have a unique physical texture - glass spheres - resulting from their origin in fire fountains associated with basaltic eruptions. Schrödinger Basin is a 320 km diameter peak ring basin centered at 75°S, 138°E. Based on crater counts and superposition relationships, it appears to be only slightly older than the Orientale Basin, making it among the youngest and freshest lunar basins of its size [2]. Mini-SAR observations cover half of the basin closest to the south pole, including a portion of the central smooth plains material. Circular polarization ratio (CPR) values for the dark mantle deposits on the floor of Schrödinger are 0.2 to 0.3, which are lower than the median value of about 0.5 for the surrounding terrain. High CPR values can result from rough, rocky surfaces or from the presence of ice. Since the floor of Schrödinger is not in shadow, low CPR values here are likely indicative of a low abundance of scattering elements (e.g., rocks), consistent with the known properties of pyroclastic deposits. Comparisons of the radar return of the Schrödinger floor deposits with other dark mantle deposits are ongoing. [1] Shoemaker, E.M. et al. (1994) Science, 266, 1851-1854. [2] Wilhelms, D.E. (1987) USGS Prof Paper 1348, 302 pp.

  5. A thermal control system for long-term survival of scientific instruments on lunar surface.

    PubMed

    Ogawa, K; Iijima, Y; Sakatani, N; Otake, H; Tanaka, S

    2014-03-01

    A thermal control system is being developed for scientific instruments placed on the lunar surface. This thermal control system, Lunar Mission Survival Module (MSM), was designed for scientific instruments that are planned to be operated for over a year in the future Japanese lunar landing mission SELENE-2. For the long-term operations, the lunar surface is a severe environment because the soil (regolith) temperature varies widely from nighttime -200 degC to daytime 100 degC approximately in which space electronics can hardly survive. The MSM has a tent of multi-layered insulators and performs a "regolith mound". Temperature of internal devices is less variable just like in the lunar underground layers. The insulators retain heat in the regolith soil in the daylight, and it can keep the device warm in the night. We conducted the concept design of the lunar survival module, and estimated its potential by a thermal mathematical model on the assumption of using a lunar seismometer designed for SELENE-2. Thermal vacuum tests were also conducted by using a thermal evaluation model in order to estimate the validity of some thermal parameters assumed in the computed thermal model. The numerical and experimental results indicated a sufficient survivability potential of the concept of our thermal control system.

  6. MTF analysis using lunar observations for Himawari-8/AHI

    NASA Astrophysics Data System (ADS)

    Keller, Graziela R.; Chang, Tiejun; Xiong, Xiaoxiong

    2017-09-01

    The modulation transfer function, or MTF, is a common measure of image fidelity, which has been historically characterized on-orbit using high contrast images of the lunar limb obtained by remote sensing instruments onboard both low-orbit and geostationary satellites. Himawari-8, launched in 2014, is a Japanese geostationary satellite that carries the Advanced Himawari Imager (AHI), a near-identical copy of the Advanced Baseline Imager (ABI) instrument onboard the GOES-16 satellite. In this paper, we apply a variation of the slantededge method for deriving the MTF from lunar images, first verified by us on simulated test images, to the Himawari-8/AHI L1A and L1B data. The MTF is derived along the North/South and East/West directions separately. The AHI L1A images used in the characterization of the MTF are obtained from lunar observations routinely acquired for validating the radiometric calibration. The L1B data, which is spatially re-sampled, come from serendipitous lunar observations where the Moon appears close to the Earth's disk. We developed and implemented an algorithm to identify such occurrences using the SPICE/Icy package to predict the times where the Moon is visible in the L1B imagery and demonstrate their use for MTF derivation.

  7. ispace's Polar Ice Explorer: Commerically Exploring the Poles of the Moon

    NASA Astrophysics Data System (ADS)

    Calzada-Diaz, A.; Acierno, K.; Rasera, J. N.; Lamamy, J.-A.

    2018-04-01

    This work provides the background, rationales, and scientific objectives for the ispace Polar Ice Explorer Project, an ISRU exploratory mission that aims to provide data about the lunar polar environment.

  8. Evidence for Phyllosilicates near the Lunar South Pole

    NASA Technical Reports Server (NTRS)

    Vilas, Faith; Jensen, E.; Domingue, Deborah; McFadden, L.; Coombs, Cassandraa; Mendell, Wendell

    1998-01-01

    While theoretically water ice could be stable in permanently shadowed areas near the lunar poles, there is conflicting observational evidence for the existence of water ice at either pole. Clementine's bistatic radar resumed a weak signal commensurate with water ice in the South Pole Aitken Basin; however, groundbased radar searches have not detected such a signal at either pole. Lunar Prospector measured large amounts of H (attributed to water) at both poles; however, Galileo near-infrared spectral measurements of the north polar region did not detect the prominent 3.0 micron absorption feature due to interlayer and adsorbed water in phyllosilicates. Evidence for the existence of water at the lunar poles is still ambiguous and controversial. We present evidence, based on the analysis of Galileo SSI images, for the presence of phyllosilicates near the lunar south pole. Using the color image sequence (560 nm, 670 nm, 756 nm, and 889 nm) of Lunmap 14 taken during the Galileo Earth-Moon pass I, we have identified areas that show evidence for a 0.7 microns absorption feature present in Fe-bearing phyllosilicates.

  9. Lunar Prospector Data Archives

    NASA Astrophysics Data System (ADS)

    Guinness, Edward A.; Binder, Alan B.

    1998-01-01

    The Lunar Prospector (LP) is operating in a 100-km circular polar orbit around the Moon. The LP project's one-year primary mission began in January 1998. A six-month extended mission in a lower orbit is also possible. LP has five science instruments, housed on three booms: a gamma-ray spectrometer, a neutron spectrometer, an alpha-particle spectrometer, a magnetometer, and an electron reflectometer. In addition, a gravity experiment uses Doppler tracking data to derive gravity measurements. The major science objectives of LP are to determine the Moon's surface abundance of selected elements, to map the gravity and magnetic fields, to search for surface ice deposits, and to determine the locations of gas release events. The Geosciences Node of the NASA's Planetary Data System (PDS) is providing a lead role in working with the Lunar Prospector project to produce and distribute a series of archives of LP data. The Geosciences Node is developing a Web-based system to provide services for searching and browsing through the LP data archives, and for distributing the data electronically or on CDs. This system will also provide links to other relevant lunar datasets, such as Clementine image mosaics and telescopic and laboratory spectral reflectance data.

  10. A Common Lunar Lander (CLL) for the Space Exploration Initiative

    NASA Technical Reports Server (NTRS)

    Bailey, Stephen

    1991-01-01

    Information is given in viewgraph form on the Artemis project, a plan to establish a permanent base on the Moon. Information includes a summary of past and future events, the program rationale, a summary of potential payloads, the physical characteristics of experiments, sketches of equipment, design study objectives, and details of such payloads as the Geophysical Station Network, teleoperated rovers, astronomical telescopes, a Moon-Earth radio interferometer, very low frequency radio antennas, the Lunar Polar Crater Telescope, Lunar Resource Utilization Experiments, and biological experiments.

  11. Surface Buildup Scenarios and Outpost Architectures for Lunar Exploration

    NASA Technical Reports Server (NTRS)

    Mazanek, Daniel D.; Troutman, Patrick A.; Culbert, Christopher J.; Leonard, Matthew J.; Spexarth, Gary R.

    2009-01-01

    The Constellation Program Architecture Team and the Lunar Surface Systems Project Office have developed an initial set of lunar surface buildup scenarios and associated polar outpost architectures, along with preliminary supporting element and system designs in support of NASA's Exploration Strategy. The surface scenarios are structured in such a way that outpost assembly can be suspended at any time to accommodate delivery contingencies or changes in mission emphasis. The modular nature of the architectures mitigates the impact of the loss of any one element and enhances the ability of international and commercial partners to contribute elements and systems. Additionally, the core lunar surface system technologies and outpost operations concepts are applicable to future Mars exploration. These buildup scenarios provide a point of departure for future trades and assessments of alternative architectures and surface elements.

  12. The Kaguya Mission: Present Status and its Lunar Science.

    NASA Astrophysics Data System (ADS)

    Kato, M.; Takizawa, Y.; Sasaki, S.; Kaguya Team

    2009-04-01

    Lunar orbiter Kaguya(SELENE) has been successfully launched on September 14, 2007. After insertion into lunar orbit on October 4 , release of two subsatellites into the elliptical orbits of 100 km perilune, and 2400 km and 800 km apolune, reach the nominal observation orbit with 100 km circular and polar on October 18, and the extension of four sounder antennas with 15 m length and the 12 m mast for magnetometer, and deployment of plasma imager, Kaguya has started nominal observation for ten months on December 21. Most of science instruments show excellent performance for ten months, and continue to acquire their data in extention mission term using saved fuel. New information and insights have been brought to lunar sciences in topography, gravimetry, geology, mineralogy, lithology, plasma physics.

  13. Development of Standardized Lunar Regolith Simulant Materials

    NASA Technical Reports Server (NTRS)

    Carpenter, P.; Sibille, L.; Meeker, G.; Wilson, S.

    2006-01-01

    Lunar exploration requires scientific and engineering studies using standardized testing procedures that ultimately support flight certification of technologies and hardware. It is necessary to anticipate the range of source materials and environmental constraints that are expected on the Moon and Mars, and to evaluate in-situ resource utilization (ISRU) coupled with testing and development. We describe here the development of standardized lunar regolith simulant (SLRS) materials that are traceable inter-laboratory standards for testing and technology development. These SLRS materials must simulate the lunar regolith in terms of physical, chemical, and mineralogical properties. A summary of these issues is contained in the 2005 Workshop on Lunar Regolith Simulant Materials [l]. Lunar mare basalt simulants MLS-1 and JSC-1 were developed in the late 1980s. MLS-1 approximates an Apollo 11 high-Ti basalt, and was produced by milling of a holocrystalline, coarse-grained intrusive gabbro (Fig. 1). JSC-1 approximates an Apollo 14 basalt with a relatively low-Ti content, and was obtained from a glassy volcanic ash (Fig. 2). Supplies of MLS-1 and JSC-1 have been exhausted and these materials are no longer available. No highland anorthosite simulant was previously developed. Upcoming lunar polar missions thus require the identification, assessment, and development of both mare and highland simulants. A lunar regolith simulant is manufactured from terrestrial components for the purpose of simulating the physical and chemical properties of the lunar regolith. Significant challenges exist in the identification of appropriate terrestrial source materials. Lunar materials formed under comparatively reducing conditions in the absence of water, and were modified by meteorite impact events. Terrestrial materials formed under more oxidizing conditions with significantly greater access to water, and were modified by a wide range of weathering processes. The composition space of lunar

  14. Correlated Observations of Epithermal Neutrons and Polar Illumination for Orbital Neutron Detectors

    NASA Technical Reports Server (NTRS)

    McClanahan, T. P.; Mitrofanov, I. G.; Boynton, W. V.; Chin, G.; Droege, G.; Evans, L. G.; Garvin, J.; Harshman, K.; Malakhov, A.; Livengood, T.; hide

    2012-01-01

    We correlate Lunar Reconnaisance Orbiter's (LRO) Lunar Exploration Neutron Detector (LEND) and the Lunar Prospector Neutron Spectrometer's (LPNS) orbital epithermal neutron maps of the Lunar high-latitudes with co-registered illumination maps derived from the Lunar Orbiter Laser Altimeter (LOLA) topography. Epithermal neutron count rate maps were derived from the LEND: 1) Collimated Sensor for Epithermal Neutrons, CSETNI-4 2) Uncollimated Sensor for Epithermal Neutrons, SETN and the Uncollimated Lunar Prospector: 3) Low-altitude and 4) High-altitude mapping phases. In this abstract we illustrate 1) and 3) and include 2) and 4) in our presentation. The correlative study provides unique perspectives on the regional epithermal neutron fluences from the Lunar polar regions under different detector and altitude configurations.

  15. Lunar Flashlight: Exploration and Science at the Moon with a 6U Cubesat

    NASA Astrophysics Data System (ADS)

    Cohen, B. A.; Hayne, P. O.; Greenhagen, B. T.; Paige, D. A.

    2015-12-01

    Understanding the composition, quantity, distribution, and form of water and other volatiles associated with lunar permanently shadowed regions (PSRs) is identified as a NASA Strategic Knowledge Gap (SKG) for Human Exploration. These polar volatile deposits are also scientifically interesting, having the potential to reveal important information about the delivery of water to the Earth-Moon system. In order to address NASA's SKGs, the Lunar Flashlight mission was selected as a secondary payload on the first test flight (EM1) of the Space Launch System (SLS), currently scheduled for 2018. Recent reflectance data from LRO instruments suggest volatiles may be present on the surface, though the detection is not yet definitive. The goal of Lunar Flashlight is to determine the presence or absence of exposed water ice and map its concentration at the 1-2 kilometer scale within the PSRs. After being ejected in cislunar space by SLS, Lunar Flashlight maneuvers into a low-energy transfer to lunar orbit and then an elliptical polar orbit, spiraling down to a perilune of 10-30 km above the south pole for data collection. Lunar Flashlight will illuminate permanently shadowed regions, measuring surface albedo with point spectrometer at 1.1, 1.5 1.9, and 2.0 mm. Water ice will be distinguished from dry regolith in two ways: 1) spatial variations in absolute reflectance (water ice is much brighter in the continuum channels), and 2) reflectance ratios between absorption and continuum channels. Derived reflectance and water ice band depths will be mapped onto the lunar surface in order to distinguish the composition of the PSRs from that of the sunlit terrain, and to compare with lunar datasets such as LRO and Moon Mineralogy Mapper. Lunar Flashlight enables a low-cost path to science and in-situ resource utilization (ISRU) by identifying ice deposits (if there are any), which would be a game-changing result for expanded human exploration.

  16. Lunar resources: Toward living off the lunar land

    NASA Technical Reports Server (NTRS)

    Haskin, Larry A.; Colson, Russell O.

    1990-01-01

    The following topics are addressed: (1) lunar resources and surface conditions; (2) guidelines for early lunar technologies; (3) the lunar farm; (4) the lunar filling station; (5) lunar construction materials; (6) the lunar power company; (7) the electrolysis of molten silicate as a means of producing oxygen and metals for use on the Moon and in near-Earth space.

  17. Two-Phase Thermal Switching System for a Small, Extended Duration Lunar Science Platform

    NASA Technical Reports Server (NTRS)

    Bugby, D.; Farmer, J.; OConnor, B.; Wirzburger, M.; Abel, E.; Stouffer, C.

    2010-01-01

    Issue: extended duration lunar science platforms, using solar/battery or radioisotope power, require thermal switching systems that: a) Provide efficient cooling during the 15-earth-day 390 K lunar day; b) Consume minimal power during the 15-earth-day 100 K lunar night. Objective: carry out an analytical study of thermal switching systems that can meet the thermal requirements of: a) International Lunar Network (ILN) anchor node mission - primary focus; b) Other missions such as polar crater landers. ILN Anchor Nodes: network of geophysical science platforms to better understand the interior structure/composition of the moon: a) Rationale: no data since Apollo seismic stations ceased operation in 1977; b) Anchor Nodes: small, low-power, long-life (6-yr) landers with seismographic and a few other science instruments (see next chart); c) WEB: warm electronics box houses ILN anchor node electronics/batteries. Technology Need: thermal switching system that will keep the WEB cool during the lunar day and warm during the lunar night.

  18. A thermal control system for long-term survival of scientific instruments on lunar surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogawa, K., E-mail: ogawa@astrobio.k.u-tokyo.ac.jp; Iijima, Y.; Tanaka, S.

    2014-03-15

    A thermal control system is being developed for scientific instruments placed on the lunar surface. This thermal control system, Lunar Mission Survival Module (MSM), was designed for scientific instruments that are planned to be operated for over a year in the future Japanese lunar landing mission SELENE-2. For the long-term operations, the lunar surface is a severe environment because the soil (regolith) temperature varies widely from nighttime −200 degC to daytime 100 degC approximately in which space electronics can hardly survive. The MSM has a tent of multi-layered insulators and performs a “regolith mound”. Temperature of internal devices is lessmore » variable just like in the lunar underground layers. The insulators retain heat in the regolith soil in the daylight, and it can keep the device warm in the night. We conducted the concept design of the lunar survival module, and estimated its potential by a thermal mathematical model on the assumption of using a lunar seismometer designed for SELENE-2. Thermal vacuum tests were also conducted by using a thermal evaluation model in order to estimate the validity of some thermal parameters assumed in the computed thermal model. The numerical and experimental results indicated a sufficient survivability potential of the concept of our thermal control system.« less

  19. Regarding the Possible Generation of a Lunar Nightside Exo-Ionosphere

    NASA Technical Reports Server (NTRS)

    Farrell, W. M.; Halekas, J. S.; Stubbs, T. J.; Delory, G. T.; Killen, R. M.; Hartle, R. E.; Collier, M. R.

    2011-01-01

    The non-condensing neutral helium exosphere is at its most concentrated levels on the cold lunar nightside. We show herein that these He atoms are susceptible to impact ionization from primary and secondary electrons flowing in the vicinity of the negatively-charged nightside lunar surface. The secondary electron beams are a relatively recent discovery and are found to be emitted from the nightside surface at energies consistent with the negative surface potential. The effect is to create an electron impact-created ionosphere in nightside regions. possibly especially potent within polar craters.

  20. Hydrogen at the Lunar Terminator

    NASA Astrophysics Data System (ADS)

    Livengood, T. A.; Chin, G.; Sagdeev, R. Z.; Mitrofanov, I. G.; Boynton, W. V.; Evans, L. G.; Litvak, M. L.; McClanahan, T. P.; Sanin, A. B.; Starr, R. D.; Su, J. J.

    2015-10-01

    Suppression of the Moon's naturally occurring epithermal neutron leakage flux near the equatorial dawn terminator is consistent with the presence of diurnally varying quantities of hydrogen in the regolith with maximum concentration on the day side of the dawn terminator. This flux suppression has been observed using the Lunar Exploration Neutron Detector (LEND) on the polar-orbiting Lunar Reconnaissance Orbiter (LRO). The chemical form of hydrogen is not determined, but other remote sensing methods and elemental availability suggest water. The observed variability is interpreted as frost collecting in or on the cold nightside surface, thermally desorbing in sunlight during the lunar morning,and migrating away from the warm subsolar region across the nearby terminator to return to the lunar surface. The maximum concentration, averaged over the upper ~1m of regolith to which neutron detection is sensitive,is estimated to be 0.0125±0.0022 weight-percent water-equivalent hydrogen (wt% WEH), yielding an accumulation of 190±30 ml recoverable water per square meter of regolith at each dawn. The source of hydrogen (water) must be in equilibrium with losses due to solar photolysis and escape. A chemical recycling process or self-shielding from solar UV must be assumed in order to bring the loss rate down to compatibility with possible sources, including solar wind or micrometeoroid delivery of hydrogen, which require near-complete retention of hydrogen,or outgassing of primordial volatiles, for which a plausible supply rate requires significantly less retention efficiency.

  1. Simulations of Water Migration in the Lunar Exosphere

    NASA Astrophysics Data System (ADS)

    Hurley, D.; Benna, M.; Mahaffy, P. R.; Elphic, R. C.; Goldstein, D. B.

    2014-12-01

    We perform modeling and analysis of water in the lunar exosphere. There were two controlled experiments of water interactions with the surface of the Moon observed by the Lunar Atmosphere and Dust Environment Explorer (LADEE) Neutral Mass Spectrometer (NMS). The Chang'e 3 landing on the Moon on 14 Dec 2013 putatively sprayed ~120 kg of water on the surface on the Moon at a mid-morning local time. Observations by LADEE near the noon meridian on six of the orbits in the 24 hours following the landing constrain the propagation of water vapor. Further, on 4 Apr 2014, LADEE's Orbital Maintenance Manuever (OMM) #21 sprayed the surface of the Moon with an estimated 0.73 kg of water in the pre-dawn sector. Observations of this maneuver and later in the day constrain the adsorption and release at dawn of adsorbed materials. Using the Chang'e 3 exhaust plume and LADEE's OMM-21 as control experiments, we set limits to the adsorption and thermalization of water with lunar regolith. This enables us to predict the efficiency of the migration of water as a delivery mechanism to the lunar poles. Then we simulate the migration of water through the lunar exosphere using the rate of sporadic inputs from meteoritic sources (Benna et al., this session). Simulations predict the amount of water adsorbed to the surface of the Moon and the effective delivery rate to the lunar polar cold traps.

  2. Conceptual Design of a Communications Relay Satellite for a Lunar Sample Return Mission

    NASA Technical Reports Server (NTRS)

    Brunner, Christopher W.

    2005-01-01

    In 2003, NASA solicited proposals for a robotic exploration of the lunar surface. Submissions were requested for a lunar sample return mission from the South Pole-Aitken Basin. The basin is of interest because it is thought to contain some of the oldest accessible rocks on the lunar surface. A mission is under study that will land a spacecraft in the basin, collect a sample of rock fragments, and return the sample to Earth. Because the Aitken Basin is on the far side of the Moon, the lander will require a communications relay satellite (CRS) to maintain contact with the Earth during its surface operation. Design of the CRS's orbit is therefore critical. This paper describes a mission design which includes potential transfer and mission orbits, required changes in velocity, orbital parameters, and mission dates. Several different low lunar polar orbits are examined to compare their availability to the lander versus the distance over which they must communicate. In addition, polar orbits are compared to a halo orbit about the Earth-Moon L2 point, which would permit continuous communication at a cost of increased fuel requirements and longer transmission distances. This thesis also examines some general parameters of the spacecraft systems for the mission under study. Mission requirements for the lander dictate the eventual choice of mission orbit. This mission could be the first step in a period of renewed lunar exploration and eventual human landings.

  3. A critical analysis of the numerical and analytical methods used in the construction of the lunar gravity potential model.

    NASA Astrophysics Data System (ADS)

    Tuckness, D. G.; Jost, B.

    1995-08-01

    Current knowledge of the lunar gravity field is presented. The various methods used in determining these gravity fields are investigated and analyzed. It will be shown that weaknesses exist in the current models of the lunar gravity field. The dominant part of this weakness is caused by the lack of lunar tracking data information (farside, polar areas), which makes modeling the total lunar potential difficult. Comparisons of the various lunar models reveal an agreement in the low-order coefficients of the Legendre polynomials expansions. However, substantial differences in the models can exist in the higher-order harmonics. The main purpose of this study is to assess today's lunar gravity field models for use in tomorrow's lunar mission designs and operations.

  4. Flight Operations for the LCROSS Lunar Impactor Mission

    NASA Technical Reports Server (NTRS)

    Tompkins, Paul D.; Hunt, Rusty; D'Ortenzio, Matt D.; Strong, James; Galal, Ken; Bresina, John L.; Foreman, Darin; Barber, Robert; Shirley, Mark; Munger, James; hide

    2010-01-01

    The LCROSS (Lunar CRater Observation and Sensing Satellite) mission was conceived as a low-cost means of determining the nature of hydrogen concentrated at the polar regions of the moon. Co-manifested for launch with LRO (Lunar Reconnaissance Orbiter), LCROSS guided its spent Centaur upper stage into the Cabeus crater as a kinetic impactor, and observed the impact flash and resulting debris plume for signs of water and other compounds from a Shepherding Spacecraft. Led by NASA Ames Research Center, LCROSS flight operations spanned 112 days, from June 18 through October 9, 2009. This paper summarizes the experiences from the LCROSS flight, highlights the challenges faced during the mission, and examines the reasons for its ultimate success.

  5. Implications for the origins of pure anorthosites found in the feldspathic lunar meteorites, Dhofar 489 group

    NASA Astrophysics Data System (ADS)

    Nagaoka, Hiroshi; Takeda, Hiroshi; Karouji, Yuzuru; Ohtake, Makiko; Yamaguchi, Akira; Yoneda, Shigekazu; Hasebe, Nobuyuki

    2014-12-01

    Remote observation by the reflectance spectrometers onboard the Japanese lunar explorer Kaguya (SELENE) showed the purest anorthosite (PAN) spots (>98% plagioclase) at some large craters. Mineralogical and petrologic investigations on the feldspathic lunar meteorites, Dhofar 489 and Dhofar 911, revealed the presence of several pure anorthosite clasts. A comparison with Apollo nearside samples of ferroan anorthosite (FAN) indicated that of the FAN samples returned by the Apollo missions, sample 60015 is the largest anorthosite with the highest plagioclase abundance and homogeneous mafic mineral compositions. These pure anorthosites (>98% plagioclase) have large chemical variations in Mg number (Mg# = molar 100 × Mg/(Mg + Fe)) of each coexisting mafic mineral. The variations imply that these pure anorthosites underwent complex formation processes and were not formed by simple flotation of plagioclase. The lunar highland samples with pure anorthosite and the PAN observed by Kaguya suggest that pure anorthosite is widely distributed as lunar crust lithology over the entire Moon.

  6. Solar Wind Access to Lunar Polar Craters: Feedback Between Surface Charging and Plasma Expansion

    NASA Technical Reports Server (NTRS)

    Zimmerman, M. I.; Farrell, W. M.; Stubbs, T. J.; Halekas, J. S.; Jackson, T. L.

    2011-01-01

    Determining the plasma environment within permanently shadowed lunar craters is critical to understanding local processes such as surface charging, electrostatic dust transport, volatile sequestration, and space weathering. In order to investigate the nature of this plasma environment, the first two-dimensional kinetic simulations of solar wind expansion into a lunar crater with a self-consistent plasma-surface interaction have been undertaken. The present results reveal how the plasma expansion into a crater couples with the electrically-charged lunar surface to produce a quasi-steady wake structure. In particular, there is a negative feedback between surface charging and ambipolar wake potential that allows an equilibrium to be achieved, with secondary electron emission strongly moderating the process. A range of secondary electron yields is explored, and two distinct limits are highlighted in which either surface charging or ambipoiar expansion is responsible for determining the overall wake structure.

  7. A Radar Survey of Lunar Dome Fields

    NASA Technical Reports Server (NTRS)

    Carter, Lynn M.; Campbell, Bruce A.; Hawke, B. Ray; Bussey, Ben

    2011-01-01

    The near side of the Moon has several areas with a high concentration of volcanic domes. These low relief structures are considerably different in morphology from terrestrial cinder cones, and some of the domes may be similar to some terrestrial shields formed through Hawaiian or Strombolian eruptions from a central pipe vent or small fissure [1]. The domes are evidence that some volcanic lavas were more viscous than the mare flood basalts that make up most of the lunar volcanic flows. It is still not known what types of volcanism lead to the creation of specific domes, or how much dome formation may have varied across the Moon. Prior work has shown that some domes have unusual radar polarization characteristics that may indicate a surface or subsurface structure that is different from that of other domes. Such differences might result from different styles of late-stage volcanism for some of the domes, or possibly from differences in how the erupted materials were altered over time (e.g. by subsequent volcanism or nearby cratering events). For example, many of the domes in the Marius Hills region have high circular polarization ratios (CPRs) in S-band (12.6 cm wavelength) and/or P-band (70 cm wavelength) radar data [2]. The high CPRs are indicative of rough surfaces, and suggest that these domes may have been built from overlapping blocky flows that in some cases have been covered by meters of regolith [2, 3]. In other cases, domes have low circular polarization ratios indicative of smooth, rock-poor surfaces or possibly pyroclastics. The 12 km diameter dome Manilius 1 in Mare Vaporum [1], has a CPR value of 0.20, which is significantly below values for the surrounding basalts [4]. To better understand the range of surface properties and styles of volcanism associated with the lunar domes, we are currently surveying lunar dome fields including the Marius Hills, Cauchy/Jansen dome field, the Gruithuisen domes, and domes near Hortensius and Vitruvius.

  8. Insolation Effects on Lunar Hydrogen: Observation from the LRO LEND and LOLA Instruments

    NASA Technical Reports Server (NTRS)

    McClanahan, T. P.; Mitrofanov, I. G.; Boynton, W. V.; Chin, G.; Droege, G.; Evans, L. G.; Garvin, J.; Harshman, K.; Livak, M. M.; Malakhov, A.; hide

    2011-01-01

    The Moon's polar permanent shadow regions (PSR) have long been considered the unique repository for volatile Hydrogen (H) Largely, this was due to the extreme and persistently cold environment that has been maintained over eons of lunar history. However, recent discoveries indicate that the H picture may be more complex than thc PSR hypothesis suggests. Observations by the Lunar Exploration Neutron Detect (LEND) onboard the Lunar Reconnaissance Orbiter (LRO) indicate some H concentrations lie outside PSR. Similarly, observations from Chandraayan-l's M3 and Deep Impact's EPOXI near infra-red observations indicate diurnal cycling of volatile H in lower latitudes. These results suggest other geophysical phenomena may also play a role in the Lunar Hydrogen budget. In this presentation we review the techniques and results from the recent high latitude analysis and apply similar techniques to equatorial regions. Results from our low latitude analysis will be reported. We discuss interpretations and implications for Lunar Hydrogen studies

  9. Proceedings of the 40th Lunar and Planetary Science Conference

    NASA Technical Reports Server (NTRS)

    2009-01-01

    The 40th Lunar and Planetary Science Conference included sessions on: Phoenix: Exploration of the Martian Arctic; Origin and Early Evolution of the Moon; Comet Wild 2: Mineralogy and More; Astrobiology: Meteorites, Microbes, Hydrous Habitats, and Irradiated Ices; Phoenix: Soil, Chemistry, and Habitability; Planetary Differentiation; Presolar Grains: Structures and Origins; SPECIAL SESSION: Venus Atmosphere: Venus Express and Future Missions; Mars Polar Caps: Past and Present; SPECIAL SESSION: Lunar Missions: Results from Kaguya, Chang'e-1, and Chandrayaan-1, Part I; 5 Early Nebula Processes and Models; SPECIAL SESSION: Icy Satellites of Jupiter and Saturn: Cosmic Gymnasts; Mars: Ground Ice and Climate Change; SPECIAL SESSION: Lunar Missions: Results from Kaguya, Chang'e-1, and Chandrayaan-1, Part II; Chondrite Parent-Body Processes; SPECIAL SESSION: Icy Satellites of Jupiter and Saturn: Salubrious Surfaces; SNC Meteorites; Ancient Martian Crust: Primary Mineralogy and Aqueous Alteration; SPECIAL SESSION: Messenger at Mercury: A Global Perspective on the Innermost Planet; CAIs and Chondrules: Records of Early Solar System Processes; Small Bodies: Shapes of Things to Come; Sulfur on Mars: Rocks, Soils, and Cycling Processes; Mercury: Evolution and Tectonics; Venus Geology, Volcanism, Tectonics, and Resurfacing; Asteroid-Meteorite Connections; Impacts I: Models and Experiments; Solar Wind and Genesis: Measurements and Interpretation; Mars: Aqueous Processes; Magmatic Volatiles and Eruptive Conditions of Lunar Basalts; Comparative Planetology; Interstellar Matter: Origins and Relationships; Impacts II: Craters and Ejecta Mars: Tectonics and Dynamics; Mars Analogs I: Geological; Exploring the Diversity of Lunar Lithologies with Sample Analyses and Remote Sensing; Chondrite Accretion and Early History; Science Instruments for the Mars Science Lander; . Martian Gullies: Morphology and Origins; Mars: Dunes, Dust, and Wind; Mars: Volcanism; Early Solar System Chronology

  10. Resource Prospector Instrumentation for Lunar Volatiles Prospecting, Sample Acquisition and Processing

    NASA Technical Reports Server (NTRS)

    Colaprete, A.; Elphic, R.; Paz, A.; Smith, J.; Captain, J.; Zacny, K.

    2016-01-01

    Data gathered from lunar missions within the last two decades have significantly enhanced our understanding of the volatile resources available on the lunar surface, specifically focusing on the polar regions. Several orbiting missions such as Clementine and Lunar Prospector have suggested the presence of volatile ices and enhanced hydrogen concentrations in the permanently shadowed regions of the moon. The Lunar Crater Observation and Sensing Satellite (LCROSS) mission was the first to provide direct measurement of water ice in a permanently shadowed region. These missions with other orbiting assets have laid the groundwork for the next step in the exploration of the lunar surface; providing ground truth data of the volatiles by mapping the distribution and processing lunar regolith for resource extraction. This next step is the robotic mission Resource Prospector (RP).Resource Prospector is a lunar mission to investigate strategic knowledge gaps (SKGs) for in-situ resource utilization (ISRU). The mission is proposed to land in the lunar south pole near a permanently shadowed crater. The landing site will be determined by the science team with input from broader international community as being near traversable landscape that has a high potential of containing elevated concentrations of volatiles such as water while maximizing mission duration. A rover will host the Regolith Environment Science and Oxygen Lunar Volatile Extraction (RESOLVE) payload for resource mapping and processing. The science instruments on the payload include a 1-meter drill, neutron spectrometer, a near infrared spectrometer, an operations camera, and a reactor with a gas chromatograph-mass spectrometer for volatile analysis.

  11. Apollo 9 Lunar Module in lunar landing configuration

    NASA Technical Reports Server (NTRS)

    1969-01-01

    View of the Apollo 9 Lunar Module, in a lunar landing configuration, as photographed form the Command/Service Module on the fifth day of the Apollo 9 earth-orbital mission. The landing gear on the Lunar Module 'Spider' has been deployed. Note Lunar Module's upper hatch and docking tunnel.

  12. Use of particle beams for lunar prospecting

    NASA Technical Reports Server (NTRS)

    Toepfer, A. J.; Eppler, D.; Friedlander, A.; Weitz, R.

    1993-01-01

    spot irradiated by the beam is less than 1 km wide along the ground track of the satellite, resulting in the potential for high resolution. The fact that the probe could be placed in polar orbit would result in global coverage of the lunar surface. The orbital particle beam probe could provide the basis for selection of sites for more detailed prospecting by surface rovers.

  13. How well do we know the polar hydrogen distribution on the Moon?

    NASA Astrophysics Data System (ADS)

    Teodoro, L. F. A.; Eke, V. R.; Elphic, R. C.; Feldman, W. C.; Lawrence, D. J.

    2014-03-01

    A detailed comparison is made of results from the Lunar Prospector Neutron Spectrometer (LPNS) and the Lunar Exploration Neutron Detector Collimated Sensors for Epithermal Neutrons (LEND CSETN). Using the autocorrelation function and power spectrum of the polar count rate maps produced by these experiments, it is shown that the LEND CSETN has a footprint that is at least as big as would be expected for an omnidirectional detector at an orbital altitude of 50 km. The collimated flux into the field of view of the collimator is negligible. A dip in the count rate in Shoemaker crater is found to be consistent with being a statistical fluctuation superimposed on a significant, larger-scale decrease in the count rate, providing no evidence for high spatial resolution of the LEND CSETN. The maps of lunar polar hydrogen with the highest contrast, i.e., spatial resolution, are those resulting from pixon image reconstructions of the LPNS data. These typically provide weight percentages of water-equivalent hydrogen that are accurate to 30% within the polar craters.

  14. New Lunar Paleointensity Measurements, Ancient Lunar Dynamo or Lunar Dud?

    NASA Astrophysics Data System (ADS)

    Lawrence, K. P.; Johnson, C. L.; Tauxe, L.; Gee, J. S.

    2007-12-01

    We analyze published and new paleointensity data from Apollo samples to reexamine the hypothesis of an early (3.9 to 3.6 Ga) lunar dynamo. Our new paleointensity experiments on four Apollo samples use modern absolute and relative measurement techniques. Our samples (60015, 76535, 72215, 62235) have ages ranging from 3.3 to 4.2 Ga, bracketing the putative period of a lunar dynamo. Samples 60015 (anorthosite) and 76535 (troctolite) failed during absolute paleointensity experiments, using the IZZI-modified Thellier-Thellier method. Samples 72215 and 62235 recorded a complicated, multi-component magnetic history that includes a low temperature (< 500°C) component with a high intensity (~90 μT), and a high temperature (> 500°C) component with a low intensity (~2 μT). These two samples were also subjected to a relative paleointensity experiment (sIRM), from which neither provided unambiguous evidence for a thermal origin of the recorded remanent magnetization. We found similar multi-component behavior in several published experiments on lunar samples. We test and present several magnetization scenarios in an attempt to explain the complex magnetization recorded in lunar samples. Specifically, an overprint from exposure to a small magnetic field (i.e. IRM) results in multi-component behavior (similar to lunar sample results), from which we could not recover the correct magnitude of the original TRM. The non-unique interpretation of these multi-component results combined with IRM (isothermal remanent magnetization) contamination during Apollo sample return ( Strangway et al., 1973), indicates that techniques incapable of distinguishing between single- and multi-component records (e.g., sIRM), cannot be reliably used to infer magnetic conditions of the early Moon. In light of these new experiments and a thorough reevaluation of existing paleointensity measurements, we conclude that there is a paucity of lunar samples that demonstrate a primary thermal remanent

  15. Study on JAXA elements for international lunar vicinity mission

    NASA Astrophysics Data System (ADS)

    Imada, Takane; Sato, Naoki

    2014-11-01

    JAXA has commenced technical research for contributing as a part of international partnership for the space exploration in Lunar vicinity. One of the candidates is the cargo transport mission with the combination of Cryogenic Propulsion Stage(s) (CPS) and a transfer vehicle derived from Japanese un-manned vehicle used for ISS. The CPS needs advanced technologies to keep the propellant for long mission duration and they will be useful in further missions beyond moon. This paper reports the profile of the mission, vehicle configurations, and the transport capabilities.

  16. Experiment LEND of the NASA Lunar Reconnaissance Orbiter for high-resolution mapping of neutron emission of the Moon.

    PubMed

    Mitrofanov, I G; Sanin, A B; Golovin, D V; Litvak, M L; Konovalov, A A; Kozyrev, A S; Malakhov, A V; Mokrousov, M I; Tretyakov, V I; Troshin, V S; Uvarov, V N; Varenikov, A B; Vostrukhin, A A; Shevchenko, V V; Shvetsov, V N; Krylov, A R; Timoshenko, G N; Bobrovnitsky, Y I; Tomilina, T M; Grebennikov, A S; Kazakov, L L; Sagdeev, R Z; Milikh, G N; Bartels, A; Chin, G; Floyd, S; Garvin, J; Keller, J; McClanahan, T; Trombka, J; Boynton, W; Harshman, K; Starr, R; Evans, L

    2008-08-01

    The scientific objectives of neutron mapping of the Moon are presented as 3 investigation tasks of NASA's Lunar Reconnaissance Orbiter mission. Two tasks focus on mapping hydrogen content over the entire Moon and on testing the presence of water-ice deposits at the bottom of permanently shadowed craters at the lunar poles. The third task corresponds to the determination of neutron contribution to the total radiation dose at an altitude of 50 km above the Moon. We show that the Lunar Exploration Neutron Detector (LEND) will be capable of carrying out all 3 investigations. The design concept of LEND is presented together with results of numerical simulations of the instrument's sensitivity for hydrogen detection. The sensitivity of LEND is shown to be characterized by a hydrogen detection limit of about 100 ppm for a polar reference area with a radius of 5 km. If the presence of ice deposits in polar "cold traps" is confirmed, a unique record of many millions of years of lunar history would be obtained, by which the history of lunar impacts could be discerned from the layers of water ice and dust. Future applications of a LEND-type instrument for Mars orbital observations are also discussed.

  17. Low-energy Lunar Trajectories with Lunar Flybys

    NASA Astrophysics Data System (ADS)

    Wei, B. W.; Li, Y. S.

    2017-09-01

    The low-energy lunar trajectories with lunar flybys are investigated in the Sun-Earth-Moon bicircular problem (BCP). Accordingly, the characteristics of the distribution of trajectories in the phase space are summarized. To begin with, by using invariant manifolds of the BCP system, the low-energy lunar trajectories with lunar flybys are sought based on the BCP model. Secondly, through the treating time as an augmented dimension in the phase space of nonautonomous system, the state space map that reveals the distribution of these lunar trajectories in the phase space is given. As a result, it is become clear that low-energy lunar trajectories exist in families, and every moment of a Sun-Earth-Moon synodic period can be the departure date. Finally, the changing rule of departure impulse, midcourse impulse at Poincaré section, transfer duration, and system energy of different families are analyzed. Consequently, the impulse optimal family and transfer duration optimal family are obtained respectively.

  18. A cislunar transportation system fuelled by lunar resources

    NASA Astrophysics Data System (ADS)

    Sowers, G. F.

    2016-11-01

    A transportation system for a self sustaining economy in cislunar space is discussed. The system is based on liquid oxygen (LO2), liquid hydrogen (LH2) propulsion whose fuels are derived from ice mined at the polar regions of the Moon. The elements of the transportation system consist of the Advanced Cryogenic Evolved Stage (ACES) and the XEUS lander, both being developed by United Launch Alliance (ULA). The main propulsion elements and structures are common between ACES and XEUS. Both stages are fully reusable with refueling of their LO2/LH2 propellants. Utilization of lunar sourced propellants has the potential to dramatically lower the cost of transportation within the cislunar environs. These lower costs dramatically lower the barriers to entry of a number of promising cislunar based activities including space solar power. One early application of the architecture is providing lunar sourced propellant to refuel ACES for traditional spacecraft deployment missions. The business case for this application provides an economic framework for a potential lunar water mining operation.

  19. Apollo 9 Lunar Module in lunar landing configuration

    NASA Technical Reports Server (NTRS)

    1969-01-01

    View of the Apollo 9 Lunar Module, in a lunar landing configuration, as photographed form the Command/Service Module on the fifth day of the Apollo 9 earth-orbital mission. The Lunar Module 'Spider' is flying upside down in relation to the earth below. The landing gear on the 'Spider' had been deployed. Lunar surface probes (sensors) extend out from the landing gear foot pads.

  20. Proceedings of the 38th Lunar and Planetary Science Conference

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The sessions in the conference include: Titan, Mars Volcanism, Mars Polar Layered Deposits, Early Solar System Isotopes, SPECIAL SESSION: Mars Reconnaissance Orbiter: New Ways of Studying the Red Planet, Achondrites: Exploring Oxygen Isotopes and Parent-Body Processes, Solar System Formation and Evolution, SPECIAL SESSION: SMART-1, . Impact Cratering: Observations and Experiments, SPECIAL SESSION: Volcanism and Tectonism on Saturnian Satellites, Solar Nebula Composition, Mars Fluvial Geomorphology, Asteroid Observations: Spectra, Mostly, Mars Sediments and Geochemistry: View from the Surface, Mars Tectonics and Crustal Dichotomy, Stardust: Wild-2 Revealed, Impact Cratering from Observations and Interpretations, Mars Sediments and Geochemistry: The Map View, Chondrules and Their Formation, Enceladus, Asteroids and Deep Impact: Structure, Dynamics, and Experiments, Mars Surface Process and Evolution, Martian Meteorites: Nakhlites, Experiments, and the Great Shergottite Age Debate, Stardust: Mainly Mineralogy, Astrobiology, Wind-Surface Interactions on Mars and Earth, Icy Satellite Surfaces, Venus, Lunar Remote Sensing, Space Weathering, and Impact Effects, Interplanetary Dust/Genesis, Mars Cratering: Counts and Catastrophes?, Chondrites: Secondary Processes, Mars Sediments and Geochemistry: Atmosphere, Soils, Brines, and Minerals, Lunar Interior and Differentiation, Mars Magnetics and Atmosphere: Core to Ionosphere, Metal-rich Chondrites, Organics in Chondrites, Lunar Impacts and Meteorites, Presolar/Solar Grains, Topics for Print Only papers are: Outer Planets/Satellites, Early Solar System, Interplanetary Dust, Comets and Kuiper Belt Objects, Asteroids and Meteoroids, Chondrites, Achondrites, Meteorite Related, Mars Reconnaissance Orbiter, Mars, Astrobiology, Planetary Differentiation, Impacts, Mercury, Lunar Samples and Modeling, Venus, Missions and Instruments, Global Warming, Education and Public Outreach, Poster sessions are: Asteroids/Kuiper Belt Objects

  1. Lunar Roving Vehicle photographed against lunar background during EVA

    NASA Image and Video Library

    1971-08-01

    AS15-88-11901 (31 July-2 Aug. 1971) --- The Lunar Roving Vehicle (LRV) is photographed alone against the desolate lunar background during the third Apollo 15 lunar surface extravehicular activity (EVA) at the Hadley-Apennine landing site. This view is looking north. The west edge of Mount Hadley is at the upper right edge of the picture. Mount Hadley rises approximately 4,500 meters (about 4,765 feet) above the plain. The most distant lunar feature visible is approximately 25 kilometers (about 15.5 statute miles) away. While astronauts David R. Scott, commander; and James B. Irwin, lunar module pilot, descended in the Lunar Module (LM) "Falcon" to explore the moon, astronaut Alfred M. Worden, command module pilot, remained with the Command and Service Modules (CSM) in lunar orbit.

  2. Lunar and Planetary Science XXXV: Lunar Rocks from Outer Space

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The following topics were discussed: Mineralogy and Petrology of Unbrecciated Lunar Basaltic Meteorite LAP 02205; LAP02205 Lunar Meteorite: Lunar Mare Basalt with Similarities to the Apollo 12 Ilmenite Basalt; Mineral Chemistry of LaPaz Ice Field 02205 - A New Lunar Basalt; Petrography of Lunar Meteorite LAP 02205, a New Low-Ti Basalt Possibly Launch Paired with NWA 032; KREEP-rich Basaltic Magmatism: Diversity of Composition and Consistency of Age; Mineralogy of Yamato 983885 Lunar Polymict Breccia with Alkali-rich and Mg-rich Rocks; Ar-Ar Studies of Dhofar Clast-rich Feldspathic Highland Meteorites: 025, 026, 280, 303; Can Granulite Metamorphic Conditions Reset 40Ar-39Ar Ages in Lunar Rocks? [#1009] A Ferroan Gabbronorite Clast in Lunar Meteorite ALHA81005: Major and Trace Element Composition, and Origin; Petrography of Lunar Meteorite PCA02007, a New Feldspathic Regolith Breccia; and Troilite Formed by Sulfurization: A Crystal Structure of Synthetic Analogue

  3. Lunar Flashlight and Other Lunar Cubesats

    NASA Technical Reports Server (NTRS)

    Cohen, Barbara

    2017-01-01

    Water is a human-exploitable resource. Lunar Flashlight is a Cubesat mission to detect and map lunar surface ice in permanently-shadowed regions of the lunar south pole. EM-1 will carry 13 Cubesat-class missions to further smallsat science and exploration capabilities; much room to infuse LEO cubesat methodology, models, and technology. Exploring the value of concurrent measurements to measure dynamical processes of water sources and sinks.

  4. Apollo 9 Lunar Module in lunar landing configuration

    NASA Technical Reports Server (NTRS)

    1969-01-01

    View of the Apollo 9 Lunar Module, in a lunar landing configuration, as photographed form the Command/Service Module on the fifth day of the Apollo 9 earth-orbital mission. The landing gear on the 'Spider' has been deployed. Lunar surface probes (sensors) extend out from the landing gear foot pads. Inside the 'Spider' were Astronauts James A. McDivitt, Apollo 9 commander; and Russell L. Schweickart, lunar module pilot.

  5. Our Lunar Destiny: Creating a Lunar Economy

    NASA Astrophysics Data System (ADS)

    Rohwer, Christopher J.

    2000-01-01

    "Our Lunar Destiny: Creating a Lunar Economy" supports a vision of people moving freely and economically between the earth and the Moon in an expansive space and lunar economy. It makes the economic case for the creation of a lunar space economy and projects the business plan that will make the venture an economic success. In addition, this paper argues that this vision can be created and sustained only by private enterprise and the legal right of private property in space and on the Moon. Finally, this paper advocates the use of lunar land grants as the key to unleashing the needed capital and the economic power of private enterprise in the creation of a 21st century lunar space economy. It is clear that the history of our United States economic system proves the value of private property rights in the creation of any new economy. It also teaches us that the successful development of new frontiers-those that provide economic opportunity for freedom-loving people-are frontiers that encourage, respect and protect the possession of private property and the fruits of labor and industry. Any new 21st century space and lunar economy should therefore be founded on this same principle.

  6. Lunar Resources

    NASA Technical Reports Server (NTRS)

    Edmunson, Jennifer

    2010-01-01

    This slide presentation reviews the lunar resources that we know are available for human use while exploration of the moon. Some of the lunar resources that are available for use are minerals, sunlight, solar wind, water and water ice, rocks and regolith. The locations for some of the lunar resouces and temperatures are reviewed. The Lunar CRater Observation and Sensing Satellite (LCROSS) mission, and its findings are reviewed. There is also discussion about water retention in Permament Shadowed Regions of the Moon. There is also discussion about the Rock types on the lunar surface. There is also discussion of the lunar regolith, the type and the usages that we can have from it.

  7. Lunar Analog

    NASA Technical Reports Server (NTRS)

    Cromwell, Ronita L.

    2009-01-01

    In this viewgraph presentation, a ground-based lunar analog is developed for the return of manned space flight to the Moon. The contents include: 1) Digital Astronaut; 2) Bed Design; 3) Lunar Analog Feasibility Study; 4) Preliminary Data; 5) Pre-pilot Study; 6) Selection of Stockings; 7) Lunar Analog Pilot Study; 8) Bed Design for Lunar Analog Pilot.

  8. Apollo 9 Lunar Module in lunar landing configuration

    NASA Image and Video Library

    1969-03-07

    AS09-21-3199 (7 March 1969) --- Excellent view of the Apollo 9 Lunar Module, "Spider," in a lunar landing configuration, as photographed from the Command and Service Modules on the fifth day of the Apollo 9 Earth-orbital mission. The landing gear on the "Spider" has been deployed. Lunar surface probes (sensors) extend out from the landing gear foot pads. Inside the "Spider" were astronauts James A. McDivitt, Apollo 9 commander; and Russell L. Schweickart, lunar module pilot. Astronaut David R. Scott, command module pilot, remained at the controls in the Command Module, "Gumdrop," while the other two astronauts checked out the Lunar Module.

  9. Apollo 9 Lunar Module in lunar landing configuration

    NASA Image and Video Library

    1969-03-07

    AS09-21-3212 (7 March 1969) --- A view of the Apollo 9 Lunar Module (LM), "Spider", in a lunar landing configuration, as photographed from the Command and Service Modules (CSM) on the fifth day of the Apollo 9 Earth-orbital mission. The landing gear on the "Spider" has been deployed. Lunar surface probes (sensors) extend out from landing gear foot pads. Inside the "Spider" were astronauts James A. McDivitt, Apollo 9 commander, and Russell L. Schweickart, lunar module pilot. Astronaut David R. Scott, command module pilot, remained at the controls in the Command Module (CM), "Gumdrop", while the other two astronauts checked out the Lunar Module.

  10. Preliminary Mapping of Permanently Shadowed and Sunlit Regions Using the Lunar Reconnaissance Orbiter Camera (LROC)

    NASA Astrophysics Data System (ADS)

    Speyerer, E.; Koeber, S.; Robinson, M. S.

    2010-12-01

    The spin axis of the Moon is tilted by only 1.5° (compared with the Earth's 23.5°), leaving some areas near the poles in permanent shadow while other nearby regions remain sunlit for a majority of the year. Theory, radar data, neutron measurements, and Lunar CRater Observation and Sensing Satellite (LCROSS) observations suggest that volatiles may be present in the cold traps created inside these permanently shadowed regions. While areas of near permanent illumination are prime locations for future lunar outposts due to benign thermal conditions and near constant solar power. The Lunar Reconnaissance Orbiter (LRO) has two imaging systems that provide medium and high resolution views of the poles. During almost every orbit the LROC Wide Angle Camera (WAC) acquires images at 100 m/pixel of the polar region (80° to 90° north and south latitude). In addition, the LROC Narrow Angle Camera (NAC) targets selected regions of interest at 0.7 to 1.5 m/pixel [Robinson et al., 2010]. During the first 11 months of the nominal mission, LROC acquired almost 6,000 WAC images and over 7,300 NAC images of the polar region (i.e., within 2° of pole). By analyzing this time series of WAC and NAC images, regions of permanent shadow and permanent, or near-permanent illumination can be quantified. The LROC Team is producing several reduced data products that graphically illustrate the illumination conditions of the polar regions. Illumination movie sequences are being produced that show how the lighting conditions change over a calendar year. Each frame of the movie sequence is a polar stereographic projected WAC image showing the lighting conditions at that moment. With the WAC’s wide field of view (~100 km at an altitude of 50 km), each frame has repeat coverage between 88° and 90° at each pole. The same WAC images are also being used to develop multi-temporal illumination maps that show the percent each 100 m × 100 m area is illuminated over a period of time. These maps are

  11. Particle Simulations on Plasma and Dust Environment near Lunar Vertical Holes

    NASA Astrophysics Data System (ADS)

    Miyake, Y.; Funaki, Y.; Nishino, M. N.

    2016-12-01

    The Japanese lunar orbiter KAGUYA has revealed the existence of vertical holes on the Moon, which have spatial scales of tens of meters and are possible lava tube skylights. The hole structure has recently received particular attention, because the structure is regarded as evidence for past existence of underground lava flows. Furthermore, the holes have high potential as locations for constructing future lunar bases, because of fewer extra-lunar rays/particles and micrometeorites reaching the hole bottoms. In this sense, these holes are not only of significance in selenology, but are also interesting from the viewpoint of plasma environments. The dayside electrostatic environment near the lunar surface is governed by interactions among the solar wind plasma, photoelectrons, and the charged lunar surface, providing topologically complex boundaries to the plasma. Thus we applied three-dimensional, massively-parallelized, particle-in-cell simulations to the near-hole environment on the Moon. This year we have introduced a horizontal cavern opened at the vertical wall of the hole, assuming the presence of a subsurface lave tube. We will show some preliminary results on the surface potential and its nearly plasma environments. We also started to study the dynamics of submicron-sized charged dust grains around the distinctive landscape. We particularly focus on an effect of a stochastic charging process of such small dust grains. Because of their small surface areas, the dusts will get/lose one elementary charge infrequently, and thus charge amount owned by each dust should be a stochastic variable unlike a widely-known spacecraft charging process. We develop a numerical model of such a charging process, which will be embedded into the test particle analysis of the dust dynamics. We report some results from our simulations on the dust charging process and dynamics around the lunar hole.

  12. Astronaut Charles Conrad uses lunar equipment conveyer at Lunar Module

    NASA Image and Video Library

    1969-11-19

    Astronaut Charles Conrad Jr., commander, uses the lunar equipment conveyer (LEC) at the Lunar Module during the Apollo 12 extravehicular activity on the lunar surface. This photograph was taken by Astronaut Alan L. Bean, lunar module pilot.

  13. Demandite, lunar materials and space industrialization

    NASA Technical Reports Server (NTRS)

    Criswell, D. R.

    1977-01-01

    Terrestrial industry consumes a wide range of elements in producing the outputs which support and make industrial societies possible. 'Demandite' is a conceptual or synthetic molecule which is composed of the weight fractions of the major elements consumed by industry. Demandite needed for mature industrial activities in space will differ from the terrestrial composition because solar energy must replace hydrocarbon-energy, lunar and asteroidal bulk compositions are different from mineral deposits on the earth, and the major bulk processing in space will be the creation of radiation shielding for human habitats to provide real estate in space complete with water, atmosphere and life-stock elements. Demandite cost may be dominated by earth to deep space transport cost of minor elemental constituents depleted in the lunar soils unless careful attention is given to substitution of materials, searches of the moon (polar regions) and asteroids for the depleted elements, and continuing lowering of earth to deep space transport costs.

  14. Lunar studies

    NASA Technical Reports Server (NTRS)

    Gold, T.

    1979-01-01

    Experimental and theoretical research, concerning lunar surface processes and the nature, origin and derivation of the lunar surface cover, conducted during the period of February 1, 1971 through January 31, 1976 is presented. The principle research involved were: (1) electrostatic dust motion and transport process; (2) seismology properties of fine rock powders in lunar conditions; (3) surface processes that darken the lunar soil and affect the surface chemical properties of the soil grains; (4) laser simulation of micrometeorite impacts (estimation of the erosion rate caused by the microemeteorite flux); (5) the exposure history of the lunar regolith; and (6) destruction of amino acids by exposure to a simulation of the solar wind at the lunar surface. Research papers are presented which cover these general topics.

  15. Thermal control unit for long-time survival of scientific instruments on lunar surface

    NASA Astrophysics Data System (ADS)

    Ogawa, Kazunori; Iijima, Yuichi; Tanaka, Satoshi

    A thermal control unit (lunar survival module) is being developed for scientific instruments placed on the lunar surface. This unit is designed to be used on the future Japanese lunar landing mission SELENE-2. The lunar surface is a severe environment for scientific instruments. The absence of convective cooling by an atmosphere makes the ground surface temperature variable in the wide range of -200 to 100 degC, an environment in which space electronics can hardly survive. The surface elements must have a thermal control structure to maintain the inner temperature within the operable ranges of the instruments for long-time measurements, such as 1 month or longer beyond the lunar nights. The objectives of this study are to develop a thermal control unit for the SELENE-2 mission. So far, we conducted the concept design of the lunar survival module, and estimated its potential by a thermal mathematical model on the assumption of using a lunar seismometer designed for SELENE-2. The basic structure of the thermal module is rather simple in that a heat insulating shell covers the scientific instruments. The concept is that the conical insulator retains heat in the regolith soil in the daylight, and it can keep the device warm in the night. Results of the model calculations indicated the high potential of long-time survival. A bread board model (BBM) was manufactured, and its thermal-vacuum tests were conducted in order to estimate the validity of some thermal parameters assumed in the computed thermal model. The thermal condition of the lunar surface was simulated by glass beads paved in a vacuum chamber, and a temperature-controlled container. Temperature variations of the BBM in thermal cycling tests were compared to a thermal mathematical model, and the thermal parameters were finally assessed. Feeding the test results back into the thermal model for the lunar surface, some thermal parameters were updated but there was no critical effect on the survivability. The

  16. Lunar rover navigation concepts

    NASA Astrophysics Data System (ADS)

    Burke, James D.

    1993-01-01

    With regard to the navigation of mobile lunar vehicles on the surface, candidate techniques are reviewed and progress of simulations and experiments made up to now are described. Progress that can be made through precursor investigations on Earth is considered. In the early seventies the problem was examined in a series of relevant tests made in the California desert. Meanwhile, Apollo rovers made short exploratory sorties and robotic Lunokhods traveled over modest distances on the Moon. In these early missions some of the required methods were demonstrated. The navigation problem for a lunar traverse can be viewed in three parts: to determine the starting point with enough accuracy to enable the desired mission; to determine the event sequence required to reach the site of each traverse objective; and to redetermine actual positions enroute. The navigator's first tool is a map made from overhead imagery. The Moon was almost completely photographed at moderate resolution by spacecraft launched in the sixties, but that data set provides imprecise topographic and selenodetic information. Therefore, more advanced orbital missions are now proposed as part of a resumed lunar exploration program. With the mapping coverage expected from such orbiters, it will be possible to use a combination of visual landmark navigation and external radio and optical references (Earth and Sun) to achieve accurate surface navigation almost everywhere on the near side of the Moon. On the far side and in permanently dark polar areas, there are interesting exploration targets where additional techniques will have to be used.

  17. Numerical Simulation of Illumination and Thermal Conditions at the Lunar Poles Using LOLA DTMs

    NASA Technical Reports Server (NTRS)

    Glaser, P.; Glaser, D.; Oberst, J.; Neumann, G. A.; Mazarico, E.; Siegler, M. A.

    2017-01-01

    We are interested in illumination conditions and the temperature distribution within the upper two meters of regolith near the lunar poles. Here, areas exist receiving almost constant illumination near areas in permanent shadow, which were identified as potential exploration sites for future missions. For our study a numerical simulation of the illumination and thermal environment for lunar near-polar regions is needed. Our study is based on high-resolution, twenty meters per pixel and 400 x 400 km large polar Digital Terrain Models (DTMs), which were derived from Lunar Orbiter Laser Altimeter (LOLA) data. Illumination conditions were simulated by synthetically illuminating the LOLA DTMs using the horizon method considering the Sun as an extended source. We model polar illumination for the central 50 x 50 km subset and use it as an input at each time-step (2 h) to evaluate the heating of the lunar surface and subsequent conduction in the sub-surface. At surface level we balance the incoming insolation with the subsurface conduction and radiation into space, whereas in the sub-surface we consider conduction with an additional constant radiogenic heat source at the bottom of our two-meter layer. Density is modeled as depth-dependent, the specific heat parameter as temperature-dependent and the thermal conductivity as depth- and temperature-dependent. We implemented a fully implicit finite-volume method in space and backward Euler scheme in time to solve the one-dimensional heat equation at each pixel in our 50 x 50 km DTM. Due to the non-linear dependencies of the parameters mentioned above, Newton's method is employed as the non-linear solver together with the Gauss-Seidel method as the iterative linear solver in each Newton iteration. The software is written in OpenCL and runs in parallel on the GPU cores, which allows for fast computation of large areas and long time scales.

  18. Lunar orbiting prospector

    NASA Technical Reports Server (NTRS)

    1988-01-01

    One of the prime reasons for establishing a manned lunar presence is the possibility of using the potential lunar resources. The Lunar Orbital Prospector (LOP) is a lunar orbiting platform whose mission is to prospect and explore the Moon from orbit in support of early lunar colonization and exploitation efforts. The LOP mission is divided into three primary phases: transport from Earth to low lunar orbit (LLO), operation in lunar orbit, and platform servicing in lunar orbit. The platform alters its orbit to obtain the desired surface viewing, and the orbit can be changed periodically as needed. After completion of the inital remote sensing mission, more ambitious and/or complicated prospecting and exploration missions can be contemplated. A refueled propulsion module, updated instruments, or additional remote sensing packages can be flown up from the lunar base to the platform.

  19. Observing Solar Radio Bursts from the Lunar Surface

    NASA Technical Reports Server (NTRS)

    MacDowall, R. J.; Lazio, T. J.; Bale, S. D.; Burns, J.; Gopalswamy, N.; Jones, D. L.; Kaiser, M. L.; Kasper, J.; Weiler, K. W.

    2010-01-01

    Locating low frequency radio observatories on the lunar surface has a number of advantages. Here, we describe the Radio Observatory for Lunar Sortie Science (ROLSS), a concept for a low frequency, radio imaging interferometric array designed to study particle acceleration in the corona and inner heliosphere. ROLSS would be deployed during an early lunar sortie or by a robotic rover as part of an unmanned landing. The prime science mission is to image type II and type III solar radio bursts with the aim of determining the sites at and mechanisms by which the radiating particles are accelerated. Secondary science goals include constraining the density of the lunar ionosphere by searching for a low radio frequency cutoff of the solar radio emissions and constraining the low energy electron population in astrophysical sources. Furthermore, ROLSS serves a pathfinder function for larger lunar radio arrays. Key design requirements on ROLES include the operational frequency and angular resolution. The electron densities in the solar corona and inner heliosphere are such that the relevant emission occurs below 10 MHz, essentially unobservable from Earth's surface due to the terrestrial ionospheric cutoff. Resolving the potential sites of particle acceleration requires an instrument with an angular resolution of at least 2 deg, equivalent to a linear array size of approximately 500 meters. Operations would consist of data acquisition during the lunar day, with regular data downlinks. The major components of the ROLSS array are 3 antenna arms arranged in a Y shape, with a central electronics package (CEP). Each antenna arm is a linear strip of polyimide film (e.g., Kapton (TM)) on which 16 single polarization dipole antennas are located by depositing a conductor (e.g., silver). The arms also contain transmission lines for carrying the radio signals from the science antennas to the CEP.

  20. Lunar Observer Laser Altimeter observations for lunar base site selection

    NASA Technical Reports Server (NTRS)

    Garvin, James B.; Bufton, Jack L.

    1992-01-01

    One of the critical datasets for optimal selection of future lunar landing sites is local- to regional-scale topography. Lunar base site selection will require such data for both engineering and scientific operations purposes. The Lunar Geoscience Orbiter or Lunar Observer is the ideal precursory science mission from which to obtain this required information. We suggest that a simple laser altimeter instrument could be employed to measure local-scale slopes, heights, and depths of lunar surface features important to lunar base planning and design. For this reason, we have designed and are currently constructing a breadboard of a Lunar Observer Laser Altimeter (LOLA) instrument capable of acquiring contiguous-footprint topographic profiles with both 30-m and 300-m along-track resolution. This instrument meets all the severe weight, power, size, and data rate limitations imposed by Observer-class spacecraft. In addition, LOLA would be capable of measuring the within-footprint vertical roughness of the lunar surface, and the 1.06-micron relative surface reflectivity at normal incidence. We have used airborne laser altimeter data for a few representative lunar analog landforms to simulate and analyze LOLA performance in a 100-km lunar orbit. We demonstrate that this system in its highest resolution mode (30-m diameter footprints) would quantify the topography of all but the very smallest lunar landforms. At its global mapping resolution (300-m diameter footprints), LOLA would establish the topographic context for lunar landing site selection by providing the basis for constructing a 1-2 km spatial resolution global, geodetic topographic grid that would contain a high density of observations (e.g., approximately 1000 observations per each 1 deg by 1 deg cell at the lunar equator). The high spatial and vertical resolution measurements made with a LOLA-class instrument on a precursory Lunar Observer would be highly synergistic with high-resolution imaging datasets, and

  1. Exploration of Volatile Resources on the Moon with the Lunar Reconnaissance Orbiter (LRO) Lunar Exploration Neutron Detector (LEND)

    NASA Astrophysics Data System (ADS)

    Livengood, T. A.; Boynton, W. V.; Sanin, A.; Chin, G.; Litvak, M.; McClanahan, T. P.; Mitrofanov, I. G.; Sagdeev, R.

    2013-12-01

    The Lunar Exploration Neutron Detector (LEND) on the Lunar Reconnaissance Orbiter (LRO) is tasked with evaluating the quantity of hydrogen-bearing species within the upper meter of lunar regolith; investigating the presence and distribution of possible water-ice deposits in permanently shadowed regions (PSRs) near the poles; and determining the neutron contribution to total radiation dose at 50 km altitude above the Moon. To fulfill these goals, LEND has been mapping the distribution of thermal and epithermal neutron leakage flux since LRO entered its mapping orbit in September 2009. LRO moved to an elliptical orbit in December 2011, with 30 km periselene over the south pole and aposelene above the north pole. During the commissioning phase of the mission, July-September 2009, LEND obtained preliminary mapping of hydrogen/water deposits near the south pole that contributed to site-selection for the LCROSS impact. Global maps of neutron leakage flux measured with LEND show regional variation in thermal (energy < 0.015 eV) and fast (>0.5 MeV) neutrons, and map epithermal neutron flux globally. Spatial resolution of the collimated detector is consistent with the design value of 5 km radius for half the detected lunar epithermal neutrons, with the remainder spatially diffuse. Statistically significant neutron-suppressed regions (NSRs) are not closely related to polar PSRs. Outside of the NSRs, hydrogen content increases directly with latitude at both poles. Thermal volatilization of water deposits may be responsible for increasing H concentrations nearer the poles because it is minimized at the low surface temperature of the poles. Significant neutron suppression regions (NSRs) relative to neighboring regions have been found in three large PSRs, Shoemaker and Cabeus in the south and Rozhdestvensky U in the north. Some small PSRs display excess neutron emission compared to the sunlit vicinity. On average, PSRs other than these three do not contain significantly more

  2. Bulk hydrogen abundances in the lunar highlands: Measurements from orbital neutron data

    NASA Astrophysics Data System (ADS)

    Lawrence, David J.; Peplowski, Patrick N.; Plescia, Jeffrey B.; Greenhagen, Benjamin T.; Maurice, Sylvestre; Prettyman, Thomas H.

    2015-07-01

    The first map of bulk hydrogen concentrations in the lunar highlands region is reported. This map is derived using data from the Lunar Prospector Neutron Spectrometer (LP-NS). We resolve prior ambiguities in the interpretation of LP-NS data with respect to non-polar hydrogen concentrations by comparing the LP-NS data with maps of the 750 nm albedo reflectance, optical maturity, and the wavelength position of the thermal infrared Christiansen Feature. The best explanation for the variations of LP-NS epithermal neutron data in the lunar highlands is variable amounts of solar-wind-implanted hydrogen. The average hydrogen concentration across the lunar highlands and away from the lunar poles is 65 ppm. The highest hydrogen values range from 120 ppm to just over 150 ppm. These values are consistent with the range of hydrogen concentrations from soils and regolith breccias at the Apollo 16 highlands landing site. Based on a moderate-to-strong correlation of epithermal neutrons and orbit-based measures of surface maturity, the map of highlands hydrogen concentration represents a new global maturity index that can be used for studies of the lunar soil maturation process. We interpret these hydrogen concentrations to represent a bulk soil property related to the long-term impact of the space environment on the lunar surface. Consequently, the derived hydrogen concentrations are not likely related to the surficial enhancements (top tens to hundreds of microns) or local time variations of OH/H2O measured with spectral reflectance data.

  3. Lunar Crustal History Recorded in Lunar Anorthosites

    NASA Technical Reports Server (NTRS)

    Nyquist, Laurence E.; Shih, C.-Y.; Reese, D.; Park, J.; Bogard. D.; Garrison, D.; Yamaguchi, A.

    2010-01-01

    Anorthosites occur ubiquitously within the lunar crust at depths of 3-30 km in apparent confirmation of the Lunar Magma Ocean (LMO) hypothesis. We have dated lunar anorthosite 67075, a Feldspathic Fragmental Breccia (FFB) collected near the rim of North Ray Crater by the Sm-Nd and Rb-Sr techniques. We also have dated an anorthositic white clast (WC) in lunar meteorite Dhofar 908 by the Ar-39-Ar-40 technique and measured whole rock (WR) Sm-Nd data for a companion sample. We discuss the significance of the ages determined for these and other anorthosites for the early magmatic and bombardment history of the moon.

  4. Astronaut Alan Bean deploys Lunar Surface Magnetometer on lunar surface

    NASA Image and Video Library

    1969-11-19

    Astronaut Alan L. Bean, lunar module pilot, deploys the Lunar Surface Magnetometer (LSM) during the first Apollo 12 extravehicular activity on the Moon. The LSM is a component of the Apollo Lunar Surface Experiments Package (ALSEP). The Lunar Module can be seen in the left background.

  5. Astronaut Alan Bean deploys Lunar Surface Magnetometer on lunar surface

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Alan L. Bean, lunar module pilot, deploys the Lunar Surface Magnetometer (LSM) during the first Apollo 12 extravehicular activity on the Moon. The LSM is a component of the Apollo Lunar Surface Experiments Package (ALSEP). The Lunar Module can be seen in the left background.

  6. Supercharging of the Lunar Surface by Solar Wind Halo Electrons

    NASA Astrophysics Data System (ADS)

    Stubbs, T. J.; Farrell, W. M.; Collier, M. R.; Halekas, J. S.; Delory, G. T.; Holland, M. P.; Vondrak, R. R.

    2007-12-01

    Lunar surface potentials can reach several kilovolts negative during Solar Energetic Particle (SEPs) events, as indicated by recent analysis of data from the Lunar Prospector Electron Reflectometer (LP/ER). The lunar surface- plasma interactions that result in such extreme surface potentials are poorly characterized and understood. Extreme lunar surface charging, and the associated electrostatic discharges and transport of charged dust, will likely present significant hazards to future human explorers. This is of particular concern near the terminator and polar regions, such as the South Pole/Aiken Basin site planned for NASA's manned outpost. It is the flux of electrons from the ambient plasma that charges the surface of the Moon to negative potentials. In the solar wind, the electron temperature is typically ~10 eV which tends to charge the lunar surface to ~100 V negative in shadow. However, during space weather events the solar wind electrons are often better described by the sum of two Maxwellian distributions, referred to as the "core" and "halo" components. The core electrons are relatively cool and dense (e.g., ~10 eV and ~10/cc), whereas the halo electrons are hot and tenuous (e.g., ~100 eV and ~0.1/cc). Despite, the tenuous nature of the halo electrons, our surface charging model - using core and halo electron data derived from the Solar Wind Experiment (SWE) aboard the Wind spacrcraft - predicts that they are capable of "supercharging" the lunar surface to kilovolt potentials during space weather events, which could explain the LP/ER observations.

  7. Lunar Ice Cube: Searching for Lunar Volatiles with a lunar cubesat orbiter

    NASA Astrophysics Data System (ADS)

    Clark, Pamela E.; Malphrus, Ben; Brown, Kevin; Hurford, Terry; Brambora, Cliff; MacDowall, Robert; Folta, David; Tsay, Michael; Brandon, Carl; Lunar Ice Cube Team

    2016-10-01

    Lunar Ice Cube, a NASA HEOMD NextSTEP science requirements-driven deep space exploration 6U cubesat, will be deployed, with 12 others, by NASA's EM1 mission. The mission's high priority science application is understanding volatile origin, distribution, and ongoing processes in the inner solar system. JPL's Lunar Flashlight, and Arizona State University's LunaH-Map, also lunar orbiters to be deployed by EM1, will provide complementary observations. Lunar Ice Cube utilizes a versatile GSFC-developed payload: BIRCHES, Broadband InfraRed Compact, High-resolution Exploration Spectrometer, a miniaturized version of OVIRS on OSIRIS-REx. BIRCHES is a compact (1.5U, 2 kg, 20 W including cryocooler) point spectrometer with a compact cryocooled HgCdTe focal plane array for broadband (1 to 4 micron) measurements and Linear Variable Filter enabling 10 nm spectral resolution. The instrument will achieve sufficient SNR to identify water in various forms, mineral bands, and potentially other volatiles seen by LCROSS (e.g., CH4) as well. GSFC is developing compact instrument electronics easily configurable for H1RG family of focal plane arrays. The Lunar Ice Cube team is led by Morehead State University, who will provide build, integrate and test the spacecraft and provide mission operations. Onboard communication will be provided by the X-band JPL Iris Radio and dual X-band patch antennas. Ground communication will be provided by the DSN X-band network, particularly the Morehead State University 21-meter substation. Flight Dynamics support is provided by GSFC. The Busek micropropulsion system in a low energy trajectory will allow the spacecraft to achieve the science orbit less than a year. The high inclination, equatorial periapsis orbit will allow coverage of overlapping swaths once every lunar cycle at up to six different times of day (from dawn to dusk) as the mission progresses during its nominal six month science mapping period. Led by the JPL Science PI, the Lunar Ice Cube

  8. Lunar History

    NASA Technical Reports Server (NTRS)

    Edmunson, Jennifer E.

    2009-01-01

    This section of the workshop describes the history of the moon, and offers explanations for the importance of understanding lunar history for engineers and users of lunar simulants. Included are summaries of the initial impact that is currently in favor as explaining the moon's formation, the crust generation, the creation of craters by impactors, the era of the lunar cataclysm, which some believe effected the evolution of life on earth, the nature of lunar impacts, crater morphology, which includes pictures of lunar craters that show the different types of craters, more recent events include effect of micrometeorites, solar wind, radiation and generation of agglutinates. Also included is a glossary of terms.

  9. International Coordination of Exploring and Using Lunar Polar Volatiles

    NASA Technical Reports Server (NTRS)

    Gruener, J. E.; Suzuki, N. H.; Carpenter, J. D.

    2016-01-01

    Fourteen international space agencies are participating in the International Space Exploration Coordination Group (ISECG), working together to advance a long-range strategy for human and robotic space exploration beyond low earth orbit. The ISECG is a voluntary, non-binding international coordination mechanism through which individual agencies may exchange information regarding interests, objectives, and plans in space exploration with the goal of strengthening both individual exploration programs as well as the collective effort. The ISECG has developed a Global Exploration Roadmap (GER) that reflects the coordinated international dialog and continued preparation for exploration beyond low-Earth orbit, beginning with the Moon and cis-lunar space, and continuing to near-Earth asteroids, and Mars.

  10. Robust Exploration and Commercial Missions to the Moon Using NTR LANTR Propulsion and Lunar-Derived Propellants

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.; Ryan, Stephen W.; Burke, Laura M.; McCurdy, David R.; Fittje, James E.; Joyner, Claude R.

    2017-01-01

    The nuclear thermal rocket (NTR) has frequently been identified as a key space asset required for the human exploration of Mars. This proven technology can also provide the affordable access through cislunar space necessary for commercial development and sustained human presence on the Moon. In his post-Apollo Integrated Space Program Plan (1970-1990), Wernher von Braun, proposed a reusable nuclear thermal propulsion stage (NTPS) to deliver cargo and crew to the Moon to establish a lunar base before undertaking human missions to Mars. The NTR option was selected by von Braun because it was a demonstrated technology capable of generating both high thrust and high specific impulse (Isp 900 s) twice that of todays best chemical rockets. In NASAs Mars Design Reference Architecture (DRA) 5.0 study, the crewed Mars transfer vehicle used three 25 klbf Pewee engines the smallest and highest performing engine tested in the Rover program along with graphite composite fuel. Smaller, lunar transfer vehicles consisting of a NTPS using three approximately 16.5 klbf Small Nuclear Rocket Engines (SNREs), an in-line propellant tank, plus the payload can enable a variety of reusable lunar missions. These include cargo delivery and crewed lunar landing missions. Even weeklong tourism missions carrying passengers into lunar orbit for a day of sightseeing and picture taking are possible. The NTR can play an important role in the next phase of lunar exploration and development by providing an affordable in-space lunar transportation system (LTS) that can allow initial outposts to evolve into settlements supported by a variety of commercial activities such as in-situ propellant production used to supply strategically located propellant depots and transportation nodes. The utilization of iron-rich volcanic glass or lunar polar ice (LPI) deposits (each estimated at billions of metric tons) for propellant production can significantly reduce the launch mass requirements from Earth and can

  11. Lunar Simulation in the Lunar Dust Adhesion Bell Jar

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Sechkar, Edward A.

    2007-01-01

    The Lunar Dust Adhesion Bell Jar has been assembled at the NASA Glenn Research Center to provide a high fidelity lunar simulation facility to test the interactions of lunar dust and lunar dust simulant with candidate aerospace materials and coatings. It has a sophisticated design which enables it to treat dust in a way that will remove adsorbed gases and create a chemically reactive surface. It can simulate the vacuum, thermal, and radiation environments of the Moon, including proximate areas of illuminated heat and extremely cold shadow. It is expected to be a valuable tool in the development of dust repellant and cleaning technologies for lunar surface systems.

  12. Lunar and Planetary Science XXXVI, Part 5

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Topics discussed include: Automation Recognition oF Crater-Like Structures in Terrestrial and Plantary Images; Condensation from Cluster-IDP Enriched Vapor Inside the Snow Line: Implications for Mercury, Asteroids, and Enstatite Chondrites; Tomographic Location of Potential Melt-Bearing Phenocrysts in Lunar Glass Spherules; Source and Evolution of Vapor Due to Impacts into Layered Carbonates and Silicates; Noble Gases and I-Xe Ages of the Zag Meteorite; The MArs Hand Lens Imager (MAHLI) for the 209 Mars Science Laboratory; The Sedimentary Rocks of Meridiani Planum, in Context; Three-System Isotopic of Lunar Norite 78238: Rb-Sr Results; Constraints on the Role of Curium-247 as a Source of Fission Xenon in the Early Solar System; New Features in the ADS Abstract Service; Cassini RADAR's First Look at Titan; Volcanism and Volatile Recycling on Venus from Lithospheric Delamination; The Fate of Water in the Martian Magma Ocean and the Formation of an Early Atmosphere; Mars Odyssey Neutron Spectrometer Water-Equivalent Hydrogen: Comparison with Glacial; Landforms on Tharsis; Using Models of Permanent Shadow to Constrain Lunar Polar Water Ice Abundances; Martian Radiative Transfer Modeling Using the Optimal Spectral Sampling Method; Petrological and Geochemical Consideration on the Tuserkanite Meteorite; and Mineralogy of Asteroids from Observations with the Spitzer Space Telescope.

  13. Lunar map showing traverse plans for Apollo 14 lunar landing mission

    NASA Image and Video Library

    1970-09-01

    This lunar map shows the traverse plans for the Apollo 14 lunar landing mission. Areas marked include Lunar module landing site, areas for the Apollo Lunar Surface Experiment Package (ALSEP) and areas for gathering of core samples.

  14. Apollo 17 Lunar Surface Experiment: Lunar Ejecta and Meteorites Experiment

    NASA Image and Video Library

    1972-11-30

    S72-37257 (November 1972) --- The Lunar Ejecta and Meteorites Experiment (S-202), one of the experiments of the Apollo Lunar Surface Experiments Package which will be carried on the Apollo 17 lunar landing mission. The purpose of this experiment is to measure the physical parameters of primary and secondary particles impacting the lunar surface.

  15. Lunar Gene Bank for Endangered Species

    NASA Astrophysics Data System (ADS)

    Swain, Ramakrushna

    2016-07-01

    Introduction: Before the dawn of the 22nd century, we face the huge risk of losing our genetic heritage accumulated during aeons of evolution. The losses include hundreds of vertebrates, human gene pools, hundreds of thousands of plants and over a million insect species. As we have observed, adequate conservation of habitat is unfeasible and active breeding programs cover only a handful of the many thousand species threatened. We propose cryopreservation of germplasms by constructing a cDNA library based gene bank for endangered species in the permanently shadowed polar lunar craters that would provide immunity from both natural disadvantages and humanitarian intrusions. Rationale: Under such alarming circumstances, we turned to cryopreservation as an option but over thousands of years economic depression, sabotage, conflicts, warfare or even a brief disruption to the precise cryopreservation can hamper the storage of genetic samples.When we are considering conservation it is always preferable to go for a more secure and permanent solution. It was found out that the climatic and strategic location of the lunar polar craters are adequately hospitable, remote and free of maintenance and human observation as they provide naturally cryogenic temperature, reduced gravity and vacuum environment, non-reactive surface, safety from celestial intrusion and permanent shadow which doesn't allow the temperature to fluctuate thus providing most suitable storage facilities for the germplasms. PSRs provide steady temperature of 40- 60K and immunity to earthquakes due to low seismic activity. At these sites, burial in one meter or more of the regolith will provide protection against the solar wind, solar and galactic cosmic rays and micrometeorite impact. It provides the minimum necessary barrier from human intervention and at the same time enables easy retrieval for future usage. Genetic samples of endangered species can enable restoration even after its extinction. Preserved

  16. Lunar and Planetary Science XXXVI, Part II

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Some topics covered: Implications of internal fragmentation on the structure of comets; Atmospheric excitation of mars polar motion; Dunite viscosity dependence on oxygen fugacity; Cross profile and volume analysis of bahram valles on mars; Calculations of the fluxes of 10-250 kV lunar leakage gamma rays; Alluvian fans on mars; Investigating the sources of the apollo 14 high-Al mare basalts; Relationship of coronae, regional plains and rift zones on venus; and Chemical differentiation and internal structure of europa and callisto.

  17. Lunar Module 4 moved for mating with Lunar Module Adapter at KSC

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Lunar Module 4 in the Kennedy Space Center's Manned Spacecraft Operations Bldg being moved into position for mating with Spacecraft Lunar Module Adapter (SLA) 13 (17809);Lunar Module 4 being moved for mating with the Spacecraft Lunar Module Adapter in the Kennedy Space Center's (KSC) Manned Spacecraft Operations Building. Lunar module 4 will be flown on the Apollo 10 (Spacecraft 106/Saturn 505) lunar orbit mission (17810).

  18. Lunar Riometry

    NASA Astrophysics Data System (ADS)

    Lazio, J.; Jones, D. L.; MacDowall, R. J.; Burns, J. O.; Kasper, J. C.

    2011-12-01

    The lunar exosphere is the exemplar of a plasma near the surface of an airless body. Exposed to both the solar and interstellar radiation fields, the lunar exosphere is mostly ionized, and enduring questions regarding its properties include its density and vertical extent and its behavior over time, including modification by landers. Relative ionospheric measurements (riometry) are based on the simple physical principle that electromagnetic waves cannot propagate through a partially or fully ionized medium below the plasma frequency, and riometers have been deployed on the Earth in numerous remote and hostile environments. A multi-frequency riometer on the lunar surface would be able to monitor, in situ, the peak plasma density of the lunar exosphere over time. We describe a concept for a riometer implemented as a secondary science payload on future lunar landers, such as those recommended in the recent Planetary Sciences Decadal Survey report. While the prime mission of such a riometer would be probing the lunar exosphere, our concept would also be capable to measuring the properties of nanometer- to micron-scale dust. The LUNAR consortium is funded by the NASA Lunar Science Institute to investigate concepts for astrophysical observatories on the Moon. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA.

  19. Near-Infrared Monitoring of Volatiles in Frozen Lunar Simulants While Drilling

    NASA Technical Reports Server (NTRS)

    Roush, Ted L.; Colaprete, Anthony; Elphic, Richard C.; Forgione, Joshua; White, Bruce; McMurray, Robert; Cook, Amanda M.; Bielawski, Richard; Fritzler, Erin L.; Thompson, Sarah J.; hide

    2016-01-01

    In Situ Resource Utilization (ISRU) focuses on using local resources for mission consumables. The approach can reduce mission cost and risk. Lunar polar volatiles, e.g. water ice, have been detected via remote sensing measurements and represent a potential resource for both humans and propellant. The exact nature of the horizontal and depth distribution of the ice remains to be documented in situ. NASA's Resource Prospector mission (RP) is intended to investigate the polar volatiles using a rover, drill, and the RESOLVE science package. RP component level hardware is undergoing testing in relevant lunar conditions (cryovacuum). In March 2015 a series of drilling tests were undertaken using the Honeybee Robotics RP Drill, Near-Infrared Volatile Spectrometer System (NIRVSS), and sample capture mechanisms (SCM) inside a 'dirty' thermal vacuum chamber at the NASA Glenn Research Center. The goal of these tests was to investigate the ability of NIRVSS to monitor volatiles during drilling activities and assess delivery of soil sample transfer to the SCMs in order to elucidate the concept of operations associated with this regolith sampling method.

  20. Lunar surface vehicle model competition

    NASA Technical Reports Server (NTRS)

    1990-01-01

    During Fall and Winter quarters, Georgia Tech's School of Mechanical Engineering students designed machines and devices related to Lunar Base construction tasks. These include joint projects with Textile Engineering students. Topics studied included lunar environment simulator via drop tower technology, lunar rated fasteners, lunar habitat shelter, design of a lunar surface trenching machine, lunar support system, lunar worksite illumination (daytime), lunar regolith bagging system, sunlight diffusing tent for lunar worksite, service apparatus for lunar launch vehicles, lunar communication/power cables and teleoperated deployment machine, lunar regolith bag collection and emplacement device, soil stabilization mat for lunar launch/landing site, lunar rated fastening systems for robotic implementation, lunar surface cable/conduit and automated deployment system, lunar regolith bagging system, and lunar rated fasteners and fastening systems. A special topics team of five Spring quarter students designed and constructed a remotely controlled crane implement for the SKITTER model.

  1. Lunar Water Resource Demonstration (LWRD) Test Results

    NASA Technical Reports Server (NTRS)

    Muscatello, Anthony C.; Captain, Janine E.; Quinn, Jacqueline W.; Gibson, Tracy L.; Perusich, Stephen A.; Weis, Kyle H.

    2009-01-01

    NASA has undertaken the In-Situ Resource Utilization (lSRU) project called RESOLVE (Regolith and Environment Science & Oxygen and Lunar Volatile Extraction). This project is an Earth-based lunar precursor demonstration of a system that could be sent to explore permanently shadowed polar lunar craters, where it would drill into regolith, quantify the volatiles that are present, and extract oxygen by hydrogen reduction of iron oxides. The RESOLVE chemical processing system was mounted within the CMU rover "Scarab" and successfully demonstrated on Hawaii's Mauna Kea volcano in November 2008. This technology could be used on Mars as well. As described at the 2008 Mars Society Convention, the Lunar Water Resource Demonstration (LWRD) supports the objectives of the RESOLVE project by capturing and quantifying water and hydrogen released by regolith upon heating. Field test results for the quantification of water using LWRD showed that the volcanic ash (tephra) samples contained 0.15-0.41% water, in agreement with GC water measurements. Reduction of the RH in the surge tank to near zero during recirculation show that the water is captured by the water beds as desired. The water can be recovered by heating the Water Beds to 230 C or higher. Test results for the capture and quantification of pure hydrogen have shown that over 90% of the hydrogen can be captured and 98% of the absorbed hydrogen can be recovered upon heating the hydride to 400 C and desorbing the hydrogen several times into the evacuated surge tank. Thus, the essential requirement of capturing hydrogen and recovering it has been demonstrated. ,

  2. Lunar feldspathic meteorites: Constraints on the geology of the lunar highlands, and the origin of the lunar crust

    NASA Astrophysics Data System (ADS)

    Gross, Juliane; Treiman, Allan H.; Mercer, Celestine N.

    2014-02-01

    The composition of the lunar crust provides clues about the processes that formed it and hence contains information on the origin and evolution of the Moon. Current understanding of lunar evolution is built on the Lunar Magma Ocean hypothesis that early in its history, the Moon was wholly or mostly molten. This hypothesis is based on analyses of Apollo samples of ferroan anorthosites (>90% plagioclase; molar Mg/(Mg+Fe)=Mg#<75) and the assumption that they are globally distributed. However, new results from lunar meteorites, which are random samples of the Moon's surface, and remote sensing data, show that ferroan anorthosites are not globally distributed and that the Apollo highland samples, used as a basis for the model, are influenced by ejecta from the Imbrium basin. In this study we evaluate anorthosites from all currently available adequately described lunar highland meteorites, representing a more widespread sampling of the lunar highlands than Apollo samples alone, and find that ∼80% of them are significantly more magnesian than Apollo ferroan anorthosites. Interestingly, Luna mission anorthosites, collected outside the continuous Imbrium ejecta, are also highly magnesian. If the lunar highland crust consists dominantly of magnesian anorthosites, as suggested by their abundance in samples sourced outside Imbrium ejecta, a reevaluation of the Lunar Magma Ocean model is a sensible step forward in the endeavor to understand lunar evolution. Our results demonstrate that lunar anorthosites are more similar in their chemical trends and mineral abundance to terrestrial massif anorthosites than to anorthosites predicted in a Lunar Magma Ocean. This analysis does not invalidate the idea of a Lunar Magma Ocean, which seems a necessity under the giant impact hypothesis for the origin of the moon. However, it does indicate that most rocks now seen at the Moon's surface are not primary products of a magma ocean alone, but are products of more complex crustal processes.

  3. Lunar Missions and Datasets

    NASA Technical Reports Server (NTRS)

    Cohen, Barbara A.

    2009-01-01

    There are two slide presentations contained in this document. The first reviews the lunar missions from Surveyor, Galileo, Clementine, the Lunar Prospector, to upcoming lunar missions, Lunar Reconnaissance Orbiter (LRO), Lunar Crater Observation & Sensing Satellite (LCROSS), Acceleration, Reconnection, Turbulence and Electrodynamics of Moon's Interaction with the Sun (ARTEMIS), Gravity Recovery and Interior Laboratory (GRAIL), Lunar Atmosphere, Dust and Environment Explorer (LADEE), ILN and a possible Robotic sample return mission. The information that the missions about the moon is reviewed. The second set of slides reviews the lunar meteorites, and the importance of lunar meteorites to adding to our understanding of the moon.

  4. Rover wheel charging on the lunar surface

    NASA Astrophysics Data System (ADS)

    Jackson, Telana L.; Farrell, William M.; Zimmerman, Michael I.

    2015-03-01

    The environment at the Moon is dynamic, with highly variable solar wind plasma conditions at the lunar dayside, terminator, and night side regions. Moving objects such as rover wheels will charge due to contact electrification with the surface, but the degree of charging is controlled by the local plasma environment. Using a dynamic charging model of a wheel, it is demonstrated herein that moving tires will tribocharge substantially when venturing into plasma-current starved regions such as polar craters or the lunar nightside. The surface regolith distribution and the overall effect on charge accumulation of grains cohesively sticking to the rover tire has been incorporated into the model. It is shown that dust sticking can limit the overall charge accumulated on the system. However charge dissipation times are greatly increased in shadowed regions and can present a potential hazard to astronauts and electrical systems performing extra-vehicular activities. We show that dissipation times change with wheel composition and overall system tribocharging is dependent upon wheel velocity.

  5. Observing Mode Attitude Controller for the Lunar Reconnaissance Orbiter

    NASA Technical Reports Server (NTRS)

    Calhourn, Philip C.; Garrick, Joseph C.

    2007-01-01

    The Lunar Reconnaissance Orbiter (LRO) mission is the first of a series of lunar robotic spacecraft scheduled for launch in Fall 2008. LRO will spend at least one year in a low altitude polar orbit around the Moon, collecting lunar environment science and mapping data to enable future human exploration. The LRO employs a 3-axis stabilized attitude control system (ACS) whose primary control mode, the "Observing mode", provides Lunar Nadir, off-Nadir, and Inertial fine pointing for the science data collection and instrument calibration. The controller combines the capability of fine pointing with that of on-demand large angle full-sky attitude reorientation into a single ACS mode, providing simplicity of spacecraft operation as well as maximum flexibility for science data collection. A conventional suite of ACS components is employed in this mode to meet the pointing and control objectives. This paper describes the design and analysis of the primary LRO fine pointing and attitude re-orientation controller function, known as the "Observing mode" of the ACS subsystem. The control design utilizes quaternion feedback, augmented with a unique algorithm that ensures accurate Nadir tracking during large angle yaw maneuvers in the presence of high system momentum and/or maneuver rates. Results of system stability analysis and Monte Carlo simulations demonstrate that the observing mode controller can meet fine pointing and maneuver performance requirements.

  6. Reduction of lunar landing fuel requirements by utilizing lunar ballistic capture.

    PubMed

    Johnson, Michael D; Belbruno, Edward A

    2005-12-01

    Ballistic lunar capture trajectories have been successfully utilized for lunar orbital missions since 1991. Recent interest in lunar landing trajectories has occurred due to a directive from President Bush to return humans to the Moon by 2015. NASA requirements for humans to return to the lunar surface include separation of crew and cargo missions, all lunar surface access, and anytime-abort to return to Earth. Such requirements are very demanding from a propellant standpoint. The subject of this paper is the application of lunar ballistic capture for the reduction of lunar landing propellant requirements. Preliminary studies of the application of weak stability boundary (WSB) trajectories and ballistic capture have shown that considerable savings in low Earth orbit (LEO) mission mass may be realized, on the order of 36% less than conventional Hohmann transfer orbit missions. Other advantages, such as reduction in launch window constraints and reduction of lunar orbit maintenance propellant requirements, have also surfaced from this study.

  7. CIS-lunar space infrastructure lunar technologies: Executive summary

    NASA Technical Reports Server (NTRS)

    Faller, W.; Hoehn, A.; Johnson, S.; Moos, P.; Wiltberger, N.

    1989-01-01

    Technologies necessary for the creation of a cis-Lunar infrastructure, namely: (1) automation and robotics; (2) life support systems; (3) fluid management; (4) propulsion; and (5) rotating technologies, are explored. The technological focal point is on the development of automated and robotic systems for the implementation of a Lunar Oasis produced by Automation and Robotics (LOAR). Under direction from the NASA Office of Exploration, automation and robotics were extensively utilized as an initiating stage in the return to the Moon. A pair of autonomous rovers, modular in design and built from interchangeable and specialized components, is proposed. Utilizing a buddy system, these rovers will be able to support each other and to enhance their individual capabilities. One rover primarily explores and maps while the second rover tests the feasibility of various materials-processing techniques. The automated missions emphasize availability and potential uses of Lunar resources, and the deployment and operations of the LOAR program. An experimental bio-volume is put into place as the precursor to a Lunar environmentally controlled life support system. The bio-volume will determine the reproduction, growth and production characteristics of various life forms housed on the Lunar surface. Physicochemical regenerative technologies and stored resources will be used to buffer biological disturbances of the bio-volume environment. The in situ Lunar resources will be both tested and used within this bio-volume. Second phase development on the Lunar surface calls for manned operations. Repairs and re-configuration of the initial framework will ensue. An autonomously-initiated manned Lunar oasis can become an essential component of the United States space program.

  8. Genesis lunar outpost: An evolutionary lunar habitat

    NASA Technical Reports Server (NTRS)

    Moore, Gary T. (Compiler); Baschiera, Dino; Fieber, Joe; Moths, Janis

    1990-01-01

    Students at the University of Wisconsin-Milwaukee Department of Agriculture undertook a series of studies of lunar habitats during the 1989 to 1990 academic year. Undergraduate students from architecture and mechanical and structural engineering with backgrounds in interior design, biology and construction technology were involved in a seminar in the fall semester followed by a design studio in the spring. The studies resulted in three design alternatives for lunar habitation and an integrated design for an early stage lunar outpost.

  9. Lunar Reconnaissance Orbiter Lunar Workshops for Educators

    NASA Astrophysics Data System (ADS)

    Jones, A. P.; Hsu, B. C.; Hessen, K.; Bleacher, L.

    2012-12-01

    The Lunar Workshops for Educators (LWEs) are a series of weeklong professional development workshops, accompanied by quarterly follow-up sessions, designed to educate and inspire grade 6-12 science teachers, sponsored by the Lunar Reconnaissance Orbiter (LRO). Participants learn about lunar science and exploration, gain tools to help address common student misconceptions about the Moon, find out about the latest research results from LRO scientists, work with data from LRO and other lunar missions, and learn how to bring these data to their students using hands-on activities aligned with grade 6-12 National Science Education Standards and Benchmarks and through authentic research experiences. LWEs are held around the country, primarily in locations underserved with respect to NASA workshops. Where possible, workshops also include tours of science facilities or field trips intended to help participants better understand mission operations or geologic processes relevant to the Moon. Scientist and engineer involvement is a central tenant of the LWEs. LRO scientists and engineers, as well as scientists working on other lunar missions, present their research or activities to the workshop participants and answer questions about lunar science and exploration. This interaction with the scientists and engineers is consistently ranked by the LWE participants as one of the most interesting and inspiring components of the workshops. Evaluation results from the 2010 and 2011 workshops, as well as preliminary analysis of survey responses from 2012 participants, demonstrated an improved understanding of lunar science concepts among LWE participants in post-workshop assessments (as compared to identical pre-assessments) and a greater understanding of how to access and effectively share LRO data with students. Teachers reported increased confidence in helping students conduct research using lunar data, and learned about programs that would allow their students to make authentic

  10. Lunar cement

    NASA Technical Reports Server (NTRS)

    Agosto, William N.

    1992-01-01

    With the exception of water, the major oxide constituents of terrestrial cements are present at all nine lunar sites from which samples have been returned. However, with the exception of relatively rare cristobalite, the lunar oxides are not present as individual phases but are combined in silicates and in mixed oxides. Lime (CaO) is most abundant on the Moon in the plagioclase (CaAl2Si2O8) of highland anorthosites. It may be possible to enrich the lime content of anorthite to levels like those of Portland cement by pyrolyzing it with lunar-derived phosphate. The phosphate consumed in such a reaction can be regenerated by reacting the phosphorus product with lunar augite pyroxenes at elevated temperatures. Other possible sources of lunar phosphate and other oxides are discussed.

  11. Lunar Crustal History from Isotopic Studies of Lunar Anorthosites

    NASA Technical Reports Server (NTRS)

    Nyquist, Laurence E.; Shih, C.-Y.; Bogard, D. D.; Yamaguchi, A.

    2010-01-01

    Anorthosites occur ubiquitously within the lunar crust at depths of approx.3-30 km in apparent confirmation of the Lunar Magma Ocean (LMO) hypothesis. [1]. We will present recent chronological studies of anorthosites [2] that are relevant both to the LMO hypothesis and also to the lunar cataclysm hypothesis. Old (approx.4.4 Ga) Sm-Nd ages have been determined for some Apollo 16 anorthosites, and primitive initial Sr-87/Sr-86 ratios have been measured for several, but well-defined Rb-Sr ages concordant with the Sm-Nd ages have not been determined until now. Lunar anorthosite 67075, a Feldspathic Fragmental Breccia (FFB) collected near the rim of North Ray Crater, has concordant Sm-Nd and Rb-Sr ages of 4.47+/-0.07 Ga and 4.49+/-0.07 Ga, respectively. Initial Nd-143/Nd-144 determined from the Sm-Nd isochron corresponds to E(sub Nd,CHUR) = 0.3+/-0.5 compared to a Chondritic Uniform Reservoir, or E(sub Nd,HEDPB) = -0.6+/-0.5 compared to the initial Nd-143/Nd-144 of the HED Parent Body [3]. Lunar anorthosites tend to have E(sub Nd) > 0 when compared to CHUR, apparently inconsistent with derivation from a single lunar magma ocean. Although E(sub Nd) < 0 for some anorthosites, if lunar initial Nd-143/Nd-144 is taken equal to HEDR for the HED parent body [3], enough variability remains among the anorthosite data alone to suggest that lunar anorthosites do not derive from a single source, i.e., they are not all products of the LMO. An anorthositic clast from desert meteorite Dhofar 908 has an Ar-39-Ar-40 age of 4.42+/-0.04 Ga, the same as the 4.36-4.41+/-0.035 Ga Ar-39-Ar-40 age of anorthositic clast Y-86032,116 in Antarctic meteorite Yamato- 86032 [3,4]. Conclusions: (i) Lunar anorthosites come from diverse sources. Orbital geochemical studies confirm variability in lunar crustal composition [1, 5]. We suggest that the variability extends to anorthosites alone as shown by the Sm-Nd data (Fig. 2) and the existence of magnesian anorthosites (MAN, [6]) and "An93 anorthosites

  12. Lunar cement and lunar concrete

    NASA Technical Reports Server (NTRS)

    Lin, T. D.

    1991-01-01

    Results of a study to investigate methods of producing cements from lunar materials are presented. A chemical process and a differential volatilization process to enrich lime content in selected lunar materials were identified. One new cement made from lime and anorthite developed compressive strengths of 39 Mpa (5500 psi) for 1 inch paste cubes. The second, a hypothetical composition based on differential volatilization of basalt, formed a mineral glass which was activated with an alkaline additive. The 1 inch paste cubes, cured at 100C and 100 percent humidity, developed compressive strengths in excess of 49 Mpa (7100 psi). Also discussed are tests made with Apollo 16 lunar soil and an ongoing investigation of a proposed dry mix/steam injection procedure for casting concrete on the Moon.

  13. Lunar lander conceptual design

    NASA Technical Reports Server (NTRS)

    Lee, Joo Ahn; Carini, John; Choi, Andrew; Dillman, Robert; Griffin, Sean J.; Hanneman, Susan; Mamplata, Caesar; Stanton, Edward

    1989-01-01

    A conceptual design is presented of a Lunar Lander, which can be the primary vehicle to transport the equipment necessary to establish a surface lunar base, the crew that will man the base, and the raw materials which the Lunar Station will process. A Lunar Lander will be needed to operate in the regime between the lunar surface and low lunar orbit (LLO), up to 200 km. This lander is intended for the establishment and operation of a manned surface base on the moon and for the support of the Lunar Space Station. The lander will be able to fulfill the requirements of 3 basic missions: A mission dedicated to delivering maximum payload for setting up the initial lunar base; Multiple missions between LLO and lunar surface dedicated to crew rotation; and Multiple missions dedicated to cargo shipments within the regime of lunar surface and LLO. A complete set of structural specifications is given.

  14. NASA's Lunar Atmosphere and Dust Environment Explorer (LADEE)

    NASA Technical Reports Server (NTRS)

    Elphic, Richard; Delory, Gregory; Colaprete, Anthony; Horanyi, Mihaly; Mahaffy, Paul; Hine, Butler; McClard, Steven; Grayzeck, Edwin; Boroson, Don

    2011-01-01

    Nearly 40 years have passed since the last Apollo missions investigated the mysteries of the lunar atmosphere and the question of levitated lunar dust. The most important questions remain: what is the composition, structure and variability of the tenuous lunar exosphere? What are its origins, transport mechanisms, and loss processes? Is lofted lunar dust the cause of the horizon glow observed by the Surveyor missions and Apollo astronauts? How does such levitated dust arise and move, what is its density, and what is its ultimate fate? The US National Academy of Sciences/National Research Council decadal surveys and the recent "Scientific Context for Exploration of the Moon" (SCEM) reports have identified studies of the pristine state of the lunar atmosphere and dust environment as among the leading priorities for future lunar science missions. These measurements have become particularly important since recent observations by the Lunar Crater Observation and Sensing Satellite (LCROSS) mission point to significant amounts of water and other volatiles sequestered within polar lunar cold traps. Moreover Chandrayaan/M3, EPOXI and Cassini/VIMS have identified molecular water and hydroxyl on lunar surface regolith grains. Variability in concentration suggests these species are likely to be present in the exosphere, and thus constitute a source for the cold traps. NASA s Lunar Atmosphere and Dust Environment Explorer (LADEE) is currently under development to address these goals. LADEE will determine the composition of the lunar atmosphere and investigate the processes that control its distribution and variability, including sources, sinks, and surface interactions. LADEE will also determine whether dust is present in the lunar exosphere, and reveal its sources and variability. LADEE s results are relevant to surface boundary exospheres and dust processes throughout the solar system, will address questions regarding the origin and evolution of lunar volatiles, and will have

  15. Lunar Skylights and Their Chemical Compositions

    NASA Astrophysics Data System (ADS)

    Wong, J.; Torres, J.; FitzHoward, S.; Luu, E.; Hua, J.; Irby, R.

    2013-12-01

    In 2009, the Japanese orbiter, SELenological and Engineering Explorer (SELENE) discovered a skylight on the near side of the moon. Skylights are collapsed ceilings of rilles, thought to be caused by moonquakes, meteoroids, or incomplete formation of these lava tube ceilings. Since then, NASA's Lunar Reconnaissance Orbiter has discovered two more skylights, also located on the near side of the moon. Previous research has shown that the physical characteristics of known rilles, can be used as indicators of the presence of yet undiscovered rille and lava dome locations across the lunar surface. We hypothesize that skylights have a signature chemical composition that is unique, and can be used to predict the location of additional skylights on the surface of the moon. For this study, we compared chemical composition data of the three mare sites containing skylights with the 21 mare sites without skylights. Using the software JMARS for the Moon, we compiled multiple datasets to measure the concentrations of 13 different chemical compounds including calcium, iron oxide, titanium dioxide, and thorium. We then conducted a two-tailed T-test of the data, which generated probability values for the mean differences across all 13 chemical compounds of the maria sites with skylights and the maria sites without skylights. Our results show that there is no statistical difference in chemical composition across all of the maria sites examined. Therefore, we conclude that chemical composition does not predict or indicate potential skylight locations on the moon. Further research on other skylight characteristics, for example depth and surrounding underground lava channels, may shed light on the relationships between mare and skylights locations. Three Skylight Locations Found on Lunar Surface 100m View of Mare Tranquilitatis Skylight

  16. Two Approaches in the Lunar Libration Theory: Analytical vs. Numerical Methods

    NASA Astrophysics Data System (ADS)

    Petrova, Natalia; Zagidullin, Arthur; Nefediev, Yurii; Kosulin, Valerii

    2016-10-01

    Observation of the physical libration of the Moon and the celestial bodies is one of the astronomical methods to remotely evaluate the internal structure of a celestial body without using expensive space experiments. Review of the results obtained due to the physical libration study, is presented in the report.The main emphasis is placed on the description of successful lunar laser ranging for libration determination and on the methods of simulating the physical libration. As a result, estimation of the viscoelastic and dissipative properties of the lunar body, of the lunar core parameters were done. The core's existence was confirmed by the recent reprocessing of seismic data Apollo missions. Attention is paid to the physical interpretation of the phenomenon of free libration and methods of its determination.A significant part of the report is devoted to describing the practical application of the most accurate to date the analytical tables of lunar libration built by comprehensive analytical processing of residual differences obtained when comparing the long-term series of laser observations with numerical ephemeris DE421 [1].In general, the basic outline of the report reflects the effectiveness of two approaches in the libration theory - numerical and analytical solution. It is shown that the two approaches complement each other for the study of the Moon in different aspects: numerical approach provides high accuracy of the theory necessary for adequate treatment of modern high-accurate observations and the analytic approach allows you to see the essence of the various kind manifestations in the lunar rotation, predict and interpret the new effects in observations of physical libration [2].[1] Rambaux, N., J. G. Williams, 2011, The Moon's physical librations and determination of their free modes, Celest. Mech. Dyn. Astron., 109, 85-100.[2] Petrova N., A. Zagidullin, Yu. Nefediev. Analysis of long-periodic variations of lunar libration parameters on the basis of

  17. Apollo 12 Lunar Module, in landing configuration, photographed in lunar orbit

    NASA Image and Video Library

    1969-11-19

    AS12-51-7507 (19 Nov. 1969) --- The Apollo 12 Lunar Module (LM), in a lunar landing configuration, is photographed in lunar orbit from the Command and Service Modules (CSM). The coordinates of the center of the lunar surface shown in picture are 4.5 degrees west longitude and 7 degrees south latitude. The largest crater in the foreground is Ptolemaeus; and the second largest is Herschel. Aboard the LM were astronauts Charles Conrad Jr., commander; and Alan L. Bean, lunar module pilot. Astronaut Richard R. Gordon Jr., command module pilot, remained with the CSM in lunar orbit while Conrad and Bean descended in the LM to explore the surface of the moon. Photo credit: NASA

  18. Simulation of the Chang'E-5 mission contribution in lunar long wavelength gravity field improvement

    NASA Astrophysics Data System (ADS)

    Yan, Jianguo; Yang, Xuan; Ping, Jinsong; Ye, Mao; Liu, Shanhong; Jin, Weitong; Li, Fei; Barriot, Jean-Pierre

    2018-06-01

    The precision of lunar gravity field estimation has improved by means of three to five orders of magnitude since the successful GRAIL lunar mission. There are still discrepancies however, in the low degree coefficients and long wavelength components of the solutions developed by two space research centers (JPL and GSFC). These discrepancies hint at the possibilities for improving the accuracy in the long wavelength part of the lunar gravity field. In the near future, China will launch the Chang'E-5 lunar mission. In this sample-return mission, there will be a chance to do KBRR measurements between an ascending module and an orbiting module. These two modules will fly around lunar at an inclination of ˜49 degrees, with an orbital height of 100 km and an inter-satellite distance of 200 km. In our research, we simulated the contribution of the KBRR tracking mode for different GRAIL orbital geometries. This analysis indicated possible deficiencies in the low degree coefficient solutions for the polar satellite-to-satellite tracking mode at various orbital heights. We also investigated the potential contributions of the KBRR to the Chang'E-5 mission goal of lunar gravity field recovery, especially in the long wavelength component. Potential improvements were assessed using various power spectrums of the lunar gravity field models. In addition, we also investigated possible improvements in solving lunar tidal Love number K2. These results may assist the implementation of the Chang'E-5 mission.

  19. Scientific Research in the Lunar Orbiting Mission

    NASA Astrophysics Data System (ADS)

    Sasaki, S.; Iijima, Y.; Tanaka, K.; Kato, M.; Hashimoto, M.; Mizutani, H.; Takizawa, Y.

    2002-01-01

    and technology development. The launch was rescheduled last summer in the rearrangement of HII-A launch schedule. The main objective of the mission is to study the origin and evolution of the Moon. The spacecraft consists of a main orbiter at about 100 km altitude in the polar circular orbit and two subsatellites in the elliptical orbits with the apolune at 2400 km and 800 km. The main orbiter will carry instruments for scientific investigation including mapping of lunar topography and surface composition, measurement of the magnetic fields, and observation of lunar and solar terrestrial plasma environment. The mission period will be one year. If extra fuel is available, the mission will be extended. The elemental abundances are measured by the x-ray and gamma-ray spectrometers. Alpha particles from the radon gas and polonium are detected by an alpha particle spectrometer. The mineralogical characterization is performed by a multi-band imager. The mineralogical composition is identified by a spectral profiler, a continuous spectral analyzer. The surface topographic data are obtained by a high resolution terrain camera and a laser altimeter. The inside structure up to 5 km below the lunar surface is observed by the radar sounder experiment using a 5 MHz radio wave. The magnetometer provides data on the lunar surface magnetic field which will be used to understand the origin of lunar paleomagnetism and paleomagnetism. Doppler tracking of the orbiter via the relay satellite when the orbiter is in the far side is used to determine the gravity field of the far side. Radio sources on the two subsatellites are used to conduct the differential VLBI observation from ground stations. The lunar environment of high energy particles, electromagnetic fields, and plasma, is also measured by the main orbiter. The radio science using coherent x and s band carriers from the orbiter will be conducted to detect the tenuous lunar ionosphere. For the solar-terrestrial plasma observation

  20. Lunar Module 4 moved for mating with Lunar Module Adapter at KSC

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Lunar Module 4 being moved for mating with the Spacecraft Lunar Module Adapter in the Kennedy Space Center's (KSC) Manned Spacecraft Operations Building. Lunar module 4 will be flown on the Apollo 10 (Spacecraft 106/Saturn 505) lunar orbit mission.

  1. Photometric Lunar Surface Reconstruction

    NASA Technical Reports Server (NTRS)

    Nefian, Ara V.; Alexandrov, Oleg; Morattlo, Zachary; Kim, Taemin; Beyer, Ross A.

    2013-01-01

    Accurate photometric reconstruction of the Lunar surface is important in the context of upcoming NASA robotic missions to the Moon and in giving a more accurate understanding of the Lunar soil composition. This paper describes a novel approach for joint estimation of Lunar albedo, camera exposure time, and photometric parameters that utilizes an accurate Lunar-Lambertian reflectance model and previously derived Lunar topography of the area visualized during the Apollo missions. The method introduced here is used in creating the largest Lunar albedo map (16% of the Lunar surface) at the resolution of 10 meters/pixel.

  2. Building an Economical and Sustainable Lunar Infrastructure to Enable Lunar Industrialization

    NASA Technical Reports Server (NTRS)

    Zuniga, Allison F.; Turner, Mark; Rasky, Daniel; Loucks, Mike; Carrico, John; Policastri, Daniel

    2017-01-01

    A new concept study was initiated to examine the architecture needed to gradually develop an economical, evolvable and sustainable lunar infrastructure using a public/private partnerships approach. This approach would establish partnership agreements between NASA and industry teams to develop a lunar infrastructure system that would be mutually beneficial. This approach would also require NASA and its industry partners to share costs in the development phase and then transfer operation of these infrastructure services back to its industry owners in the execution phase. These infrastructure services may include but are not limited to the following: lunar cargo transportation, power stations, communication towers and satellites, autonomous rover operations, landing pads and resource extraction operations. The public/private partnerships approach used in this study leveraged best practices from NASA's Commercial Orbital Transportation Services (COTS) program which introduced an innovative and economical approach for partnering with industry to develop commercial cargo services to the International Space Station. This program was planned together with the ISS Commercial Resupply Services (CRS) contracts which was responsible for initiating commercial cargo delivery services to the ISS for the first time. The public/private partnerships approach undertaken in the COTS program proved to be very successful in dramatically reducing development costs for these ISS cargo delivery services as well as substantially reducing operational costs. To continue on this successful path towards installing economical infrastructure services for LEO and beyond, this new study, named Lunar COTS (Commercial Operations and Transport Services), was conducted to examine extending the NASA COTS model to cis-lunar space and the lunar surface. The goals of the Lunar COTS concept are to: 1) develop and demonstrate affordable and commercial cis-lunar and surface capabilities, such as lunar cargo

  3. South Pole Hydrogen Distribution for Present Lunar Conditions: Implications for Past Impacts

    NASA Technical Reports Server (NTRS)

    Elphic, R. C.; Paige, D. A.; Siegler, M. A.; Vasavada, A. R.; Eke, V. R.; Teodoro, L. F. A.; Lawrence, D. J.

    2010-01-01

    It has been known since the Lunar Prospector mission that the poles of the Moon evidently harbor enhanced concentrations of hydrogen [1,2]. The physical and chemical form of the hydrogen has been much debated. Using imagery from Clementine it was possible to roughly estimate permanently-shadowed regions (PSRs), and to perform image reconstructions of the Lunar Prospector epithermal neutron flux maps [3,4]. The hydrogen concentrations resulting from these reconstructions were consistent with a few weight percent water ice in selected locations. With the LCROSS impact, we now know that hydrogen in the form of ice does exist in lunar polar cold traps [5]. Armed with this information, and new data from LRO/Diviner, we can examine whether the pre-sent-day distribution of hydrogen in the form of water ice is consistent with a past large impact that delivered a large mass of volatiles to the lunar surface. These volatiles, mixed with solid impact ejecta, would then be lost from locations having high mean temperatures but would otherwise remain trapped in locations with sufficiently low mean annual temperatures [6]. The time scales for loss would depend on the location-dependent temperatures as well as impact history.

  4. Modern studies of the Lunar Physical libration at the Kazan University

    NASA Astrophysics Data System (ADS)

    Petrova, Natalia; Hanada, Hideo; Nefedyev, Yuri; Gusev, Alexander

    Main results in investigation of the lunar physical libration in the Kazan University are presented in the report. Modern problems in the lunar spin-dynamics are considered. The accent is done on the fine phenomena of the lunar libration caused by complicated interior structure. Parameters of a free libration are discussed; geometrical interpretation of the chandler-like and free core nutation is given. Over the past 10 years a creative cooperation has been formed between scientists of the Kazan University and the National Astronomical Observatory of Japan (Mizusava). The project ILOM (In situ Lunar Orientation Measurement), planned in the frame of SELENE-2 or -3 missions is aimed at monitoring the physical libration of the Moon. The Russian side has taken over some of the theoretical tasks to ensure the planned observations. One of the important elements of the project is placing of a small optical telescope on the lunar surface with the purpose to detect the lunar physical libration with millisecond accuracy. Computer simulation of the future observations is being done with the purpose of their optimization: effective placement of measuring system on the lunar surface, testing of sensitivity of new observations to various features of the lunar interior structure. The results of the first stage of the simulation are presented in the paper. At this stage the software for the selection of stars and reduction of their coordinates onto the period of observations is developed, the tracks for the selected stars are constructed and analyzed, their sensitivity to the internal characteristics of the lunar body, in the first place, to the selenopotential coefficients, is tested. Inverse problem of lunar physical libration is formulated and solved. It is shown that selenographic coordinates of polar stars are insensitive to longitudinal librations tau(t). Comparing coordinates calculated for two models of a rigid and deformable Moon is carried out and components sensitive to

  5. Lunar and Planetary Science XXXV: Lunar Geophysics: Rockin' and a-Reelin'

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This document contained the following topics: The Influence of Tidal, Despinning, and Magma Ocean Cooling Stresses on the Magnitude and Orientation of the Moon#s Early Global Stress Field; New Approach to Development of Moon Rotation Theory; Lunar Core and Tides; Lunar Interior Studies Using Lunar Prospector Line-of-Sight Acceleration Data; A First Crustal Thickness Map of the Moon with Apollo Seismic Data; New Events Discovered in the Apollo Lunar Seismic Data; More Far-Side Deep Moonquake Nests Discovered; and Manifestation of Gas-Dust Streams from Double Stars on Lunar Seismicity.

  6. The Lunar Scout Program: An international program to survey the Moon from orbit for geochemistry, mineralogy, imagery, geodesy, and gravity

    NASA Technical Reports Server (NTRS)

    Morrison, Donald A. (Editor)

    1994-01-01

    The Lunar Scout Program was one of a series of attempts by NASA to develop and fly an orbiting mission to the moon to collect geochemical, geological, and gravity data. Predecessors included the Lunar Observer, the Lunar Geochemical Orbiter, and the Lunar Polar Orbiter - missions studied under the auspices of the Office of Space Science. The Lunar Scout Program, however, was an initiative of the Office of Exploration. It was begun in late 1991 and was transferred to the Office of Space Science after the Office of Exploration was disbanded in 1993. Most of the work was done by a small group of civil servants at the Johnson Space Center; other groups also responsible for mission planning included personnel from the Charles Stark Draper Laboratories, the Lawrence Livermore National Laboratory, Boeing, and Martin Marietta. The Lunar Scout Program failed to achieve new start funding in FY 93 and FY 94 as a result of budget downturns, the de-emphasis of the Space Exploration Initiative, and the fact that lunar science did not rate as high a priority as other planned planetary missions, and was cancelled. The work done on the Lunar Scout Program and other lunar orbiter studies, however, represents assets that will be useful in developing new approaches to lunar orbit science.

  7. Investigation of the daytime lunar atmosphere for lunar synthesis program

    NASA Technical Reports Server (NTRS)

    Hodges, R. R., Jr.

    1976-01-01

    Synthesis studies of the daytime lunar atmoshere were directed toward improved understanding of fundamental lunar atmospheric dynamics and the relationship of the detectable atmosphere to physical processes of the lunar surface and interior. The primary source of data is the Apollo 17 lunar surface mass spectrometer. The Ar40 is radiogenic and its escape rate from the lunar atmosphere requires release of a significant fraction (about 8%) of the argon produced from the decay of K40 within the moon. Furthermore the process of argon release from the solid moon is time varying and related to seismic activity. Most of the helium on the moon is due to release of implanted solar wind alpha particles from the regolith.

  8. Radioactivities in returned lunar materials and in meteorites

    NASA Technical Reports Server (NTRS)

    Fireman, E. L.

    1986-01-01

    A preliminary C-14 study on lunar soil was carried out with the University of Toronto Iso Trace accelerator mass spectrometer. This accelerator was recommended for C-14 work by Dr. R. Schneider of A.S. and E., who was the field engineer during the assemblage and start-up operation of the accelerator. After the preliminary study using CO2 from 10084,937 soil, which had previously been counted with low-level mini-proportional counters, it became clear that the Toronto accelerator could carry out C-14/C-13/C-12 ratio measurements on 1 gram meteorite and lunar samples and that the C-14 measurements are done with higher precision and better reliability than elsewhere. A collaborative program with the University of Toronto Iso Trace accelerator group, which is expected to be scientifically fruitful. Arrangements have been made for Dr. R.P. Beukens of the Toronto Accelerator Group to extract the carbon compounds from Antarctic meteorite and lunar samples and to convert the compounds to CO2. During the past two years, a uranium-series dating method was developed for polar ice, which method is being applied to ice from the Allan Hills site, Byrd core, and the Beardsmore glacier.

  9. Lunar and Planetary Science XXXVI, Part 15

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Contents include the following: Impact Metamorphism of Subsurface Organic Matter on Mars: A Potential Source for Methane and Surface Alteration. Preliminary Study of Polygonal Impact Craters in Argyre Region, Mars. Geochemistry of the Dark Veinlets in the Granitoids from the Souderfjarden Impact Structure, Finland: Preliminary Results. An Experimental Method to Estimate the Chemical Reaction Rate in Vapor Clouds: An Application to the K/T Impact. Study of the Apollo 16 Landing Site: Re-Visit as a Standard Site for the SELENE Multiband Imager. First X-Ray Observation of Lunar Farside from Hayabusa X-Ray Spectrometer. Lunar X-Ray Fluorescence Spectrometry from SELENE Lunar Polar Orbiter. Origin and Thermal History of Lithic Materials in the Begaa LL3 Chondrite. Evidence of Normal Faulting and Dike Intrusion at Valles Marineris from Pit Crater Topography. Evidence of Tharsis-Radial Dike Intrusion in Southeast Alba Patera from MOLA-based Topography of Pit Crater Chains. Are They Really Intact? Evaluation of Captured Micrometeoroid Analogs by Aerogel at the Flyby Speed of Stardust. Numerical Simulations of Impactor Penetration into Ice-Over-Water Targets. A Probable Fluid Lava Flow in the Hebes Mensa (Mars) Studied by HRSC Images. New Drill-Core Data from the Lockne Crater, Sweden: The Marine Excavation and Ejection Processes, and Post-Impact Environment. Cross-Sectional Profile of Baltis Vallis Channel on Venus: Reconstruction from Magellan SAR Brightness Data.

  10. Lunar Dust and Lunar Simulant Activation, Monitoring, Solution and Cellular Toxicity Properties

    NASA Technical Reports Server (NTRS)

    Wallace, William; Jeevarajan, A. S.

    2009-01-01

    During the Apollo missions, many undesirable situations were encountered that must be mitigated prior to returning humans to the moon. Lunar dust (that part of the lunar regolith less than 20 microns in diameter) was found to produce several problems with mechanical equipment and could have conceivably produced harmful physiological effects for the astronauts. For instance, the abrasive nature of the dust was found to cause malfunctions of various joints and seals of the spacecraft and suits. Additionally, though efforts were made to exclude lunar dust from the cabin of the lunar module, a significant amount of material nonetheless found its way inside. With the loss of gravity correlated with ascent from the lunar surface, much of the finer fraction of this dust began to float and was inhaled by the astronauts. The short visits tothe Moon during Apollo lessened exposure to the dust, but the plan for future lunar stays of up to six months demands that methods be developed to minimize the risk of dust inhalation. The guidelines for what constitutes "safe" exposure will guide the development of engineering controls aimed at preventing the presence of dust in the lunar habitat. This work has shown the effects of grinding on the activation level of lunar dust, the changes in dissolution properties of lunar simulant, and the production of cytokines by cellular systems. Grinding of lunar dust leads to the production of radicals in solution and increased dissolution of lunar simulant in buffers of different pH. Additionally, ground lunar simulant has been shown to promote the production of IL-6 and IL-8, pro-inflammatory cytokines, by alveolar epithelial cells. These results provide evidence of the need for further studies on these materials prior to returning to the lunar surface.

  11. Topography of the Lunar Poles and Application to Geodesy with the Lunar Reconnaissance Orbiter

    NASA Technical Reports Server (NTRS)

    Mazarico, Erwan; Neumann, Gregory A.; Rowlands, David D.; Smith, David E.; Zuber, Maria T.

    2012-01-01

    The Lunar Orbiter Laser Altimeter (LOLA) [1] onboard the Lunar Reconnaissance Orbiter (LRO) [2] has been operating continuously since July 2009 [3], accumulating approx.5.4 billion measurements from 2 billion on-orbit laser shots. LRO s near-polar orbit results in very high data density in the immediate vicinity of the lunar poles, which are each sampled every 2h. With more than 10,000 orbits, high-resolution maps can be constructed [4] and studied [5]. However, this requires careful processing of the raw data, as subtle errors in the spacecraft position and pointing can lead to visible artifacts in the final map. In other locations on the Moon, ground tracks are subparallel and longitudinal separations are typically a few hundred meters. Near the poles, the track intersection angles can be large and the inter-track spacing is small (above 80 latitude, the effective resolution is better than 50m). Precision Orbit Determination (POD) of the LRO spacecraft [6] was performed to satisfy the LOLA and LRO mission requirements, which lead to a significant improvement in the orbit position knowledge over the short-release navigation products. However, with pixel resolutions of 10 to 25 meters, artifacts due to orbit reconstruction still exist. Here, we show how the complete LOLA dataset at both poles can be adjusted geometrically to produce a high-accuracy, high-resolution maps with minimal track artifacts. We also describe how those maps can then feedback to the POD work, by providing topographic base maps with which individual LOLA altimetric measurements can be contributing to orbit changes. These direct altimetry constraints improve accuracy and can be used more simply than the altimetric crossovers [6].

  12. Lunar horticulture.

    NASA Technical Reports Server (NTRS)

    Walkinshaw, C. H.

    1971-01-01

    Discussion of the role that lunar horticulture may fulfill in helping establish the life support system of an earth-independent lunar colony. Such a system is expected to be a hybrid between systems which depend on lunar horticulture and those which depend upon the chemical reclamation of metabolic waste and its resynthesis into nutrients and water. The feasibility of this approach has been established at several laboratories. Plants grow well under reduced pressures and with oxygen concentrations of less than 1% of the total pressure. The carbon dioxide collected from the lunar base personnel should provide sufficient gas pressure (approx. 100 mm Hg) for growing the plants.

  13. Lunar surface operations. Volume 4: Lunar rover trailer

    NASA Technical Reports Server (NTRS)

    Shields, William; Feteih, Salah; Hollis, Patrick

    1993-01-01

    The purpose of the project was to design a lunar rover trailer for exploration missions. The trailer was designed to carry cargo such as lunar geological samples, mining equipment and personnel. It is designed to operate in both day and night lunar environments. It is also designed to operate with a maximum load of 7000 kilograms. The trailer has a ground clearance of 1.0 meters and can travel over obstacles 0.75 meters high at an incline of 45 degrees. It can be transported to the moon fully assembled using any heavy lift vehicle with a storage compartment diameter of 5.0 meters. The trailer has been designed to meet or exceed the performance of any perceivable lunar vehicle.

  14. Apollo 12 Lunar Module exhaust plume impingement on Lunar Surveyor III

    NASA Astrophysics Data System (ADS)

    Immer, Christopher; Metzger, Philip; Hintze, Paul E.; Nick, Andrew; Horan, Ryan

    2011-02-01

    Understanding plume impingement by retrorockets on the surface of the Moon is paramount for safe lunar outpost design in NASA's planned return to the Moon for the Constellation Program. Visual inspection, Scanning Electron Microscopy, and surface scanned topology have been used to investigate the damage to the Lunar Surveyor III spacecraft that was caused by the Apollo 12 Lunar Module's close proximity landing. Two parts of the Surveyor III craft returned by the Apollo 12 astronauts, Coupons 2050 and 2051, which faced the Apollo 12 landing site, show that a fine layer of lunar regolith coated the materials and was subsequently removed by the Apollo 12 Lunar Module landing rocket. The coupons were also pitted by the impact of larger soil particles with an average of 103 pits/cm 2. The average entry size of the pits was 83.7 μm (major diameter) × 74.5 μm (minor diameter) and the average estimated penetration depth was 88.4 μm. Pitting in the surface of the coupons correlates to removal of lunar fines and is likely a signature of lunar material imparting localized momentum/energy sufficient to cause cracking of the paint. Comparison with the lunar soil particle size distribution and the optical density of blowing soil during lunar landings indicates that the Surveyor III spacecraft was not exposed to the direct spray of the landing Lunar Module, but instead experienced only the fringes of the spray of soil. Had Surveyor III been exposed to the direct spray, the damage would have been orders of magnitude higher.

  15. The Lunar Quest Program and the International Lunar Network (ILN)

    NASA Technical Reports Server (NTRS)

    Cohen, Barbara A.

    2009-01-01

    The Lunar and Planetary Science group at Marshall provides core capabilities to support the Agency's lunar exploration goals. ILN Anchor Nodes are currently in development by MSFC and APL under the Lunar Quest Program at MSFC. The Science objectives of the network are to understand the interior structure and composition of the moon. Pre-phase A engineering assessments are complete, showing a design that can achieve the science requirements, either on their own (if 4 launched) or in concert with international partners. Risk reduction activities are ongoing. The Lunar Quest Program is a Science-based program with the following goals: a) Fly small/medium science missions to accomplish key science goals; b) Build a strong lunar science community; c) Provide opportunities to demonstrate new technologies; and d) Where possible, help ESMD and SOMG goals and enhance presence of science in the implementation of the VSE. The Lunar Quest Program will be guided by recommendations from community reports.

  16. Lunar Surface Operations. Part 1; Post-Touchdown Lunar Surface and System Checkouts

    NASA Technical Reports Server (NTRS)

    Interbartolo, Michael

    2009-01-01

    This slide presentation reviews the first part of the post-touchdown lunar surface and system checkout tasks. A stay/no stay decision for the lunar lander was made based on the questions: "Is the Lunar Module (LM) stable on the lunar surface?"; "Are there any time critical systems failures or trends indicating impending loss of capability to ascent and achieve a safe lunar orbit?"; and "Is there loss of capability in critical LM systems?" The sequence of these decisions is given as a time after touchdown on the surface of the moon. After the decision to stay is made the next task is to checkout status of the lunar module. While the status of the lunar module is checking out certain conditions, the Command Service Module was also engaged in certain checkout activities.

  17. Lunar Dust and Lunar Simulant Activation and Monitoring

    NASA Technical Reports Server (NTRS)

    Wallace, W. T.; Hammond, D. K.; Jeevarajan, A. S.

    2008-01-01

    Prior to returning to the moon, understanding the effects of lunar dust on both human physiology and mechanical equipment is a pressing concern, as problems related to lunar dust during the Apollo missions have been well documented (J.R. Gaier, The Effects of Lunar Dust on EVA Systems During the Apollo Missions. 2005, NASA-Glenn Research Center. p. 65). While efforts were made to remove the dust before reentering the lunar module, via brushing of the suits or vacuuming, a significant amount of dust was returned to the spacecraft, causing various problems. For instance, astronaut Harrison Schmitt complained of hay fever effects caused by the dust, and the abrasive nature of the material was found to cause problems with various joints and seals of the spacecraft and suits. It is clear that, in order to avoid potential health and performance problems while on the lunar surface, the reactive properties of lunar dust must be quenched. It is likely that soil on the lunar surface is in an activated form, i.e. capable of producing oxygen-based radicals in a humidified air environment, due to constant exposure to meteorite impacts, UV radiation, and elements of the solar wind. An activated silica surface serves as a good example. An oxygen-based radical species arises from the breaking of Si-OSi bonds. This system is comparable to that expected for the lunar dust system due to the large amounts of agglutinic glass and silicate vapor deposits present in lunar soil. Unfortunately, exposure to the Earth s atmosphere has passivated the active species on lunar dust, leading to efforts to reactivate the dust in order to understand the true effects that will be experienced by astronauts and equipment on the moon. Electron spin resonance (ESR) spectroscopy is commonly used for the study of radical species, and has been used previously to study silicon- and oxygen-based radicals, as well as the hydroxyl radicals produced by these species in solution (V. Vallyathan, et al., Am. Rev

  18. Lunar transportation system

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The University Space Research Association (USRA) requested the University of Minnesota Spacecraft Design Team to design a lunar transportation infrastructure. This task was a year long design effort culminating in a complete conceptual design and presentation at Johnson Space Center. The mission objective of the design group was to design a system of vehicles to bring a habitation module, cargo, and crew to the lunar surface from LEO and return either or both crew and cargo safely to LEO while emphasizing component commonality, reusability, and cost effectiveness. During the course of the design, the lunar transportation system (LTS) has taken on many forms. The final design of the system is composed of two vehicles, a lunar transfer vehicle (LTV) and a lunar excursion vehicle (LEV). The LTV serves as an efficient orbital transfer vehicle between the earth and the moon while the LEV carries crew and cargo to the lunar surface. Presented in the report are the mission analysis, systems layout, orbital mechanics, propulsion systems, structural and thermal analysis, and crew systems, avionics, and power systems for this lunar transportation concept.

  19. Lunar transportation system

    NASA Astrophysics Data System (ADS)

    1993-07-01

    The University Space Research Association (USRA) requested the University of Minnesota Spacecraft Design Team to design a lunar transportation infrastructure. This task was a year long design effort culminating in a complete conceptual design and presentation at Johnson Space Center. The mission objective of the design group was to design a system of vehicles to bring a habitation module, cargo, and crew to the lunar surface from LEO and return either or both crew and cargo safely to LEO while emphasizing component commonality, reusability, and cost effectiveness. During the course of the design, the lunar transportation system (LTS) has taken on many forms. The final design of the system is composed of two vehicles, a lunar transfer vehicle (LTV) and a lunar excursion vehicle (LEV). The LTV serves as an efficient orbital transfer vehicle between the earth and the moon while the LEV carries crew and cargo to the lunar surface. Presented in the report are the mission analysis, systems layout, orbital mechanics, propulsion systems, structural and thermal analysis, and crew systems, avionics, and power systems for this lunar transportation concept.

  20. NASA Lunar and Planetary Mapping and Modeling

    NASA Astrophysics Data System (ADS)

    Day, B. H.; Law, E.

    2016-12-01

    NASA's Lunar and Planetary Mapping and Modeling Portals provide web-based suites of interactive visualization and analysis tools to enable mission planners, planetary scientists, students, and the general public to access mapped lunar data products from past and current missions for the Moon, Mars, and Vesta. New portals for additional planetary bodies are being planned. This presentation will recap significant enhancements to these toolsets during the past year and look forward to the results of the exciting work currently being undertaken. Additional data products and tools continue to be added to the Lunar Mapping and Modeling Portal (LMMP). These include both generalized products as well as polar data products specifically targeting potential sites for the Resource Prospector mission. Current development work on LMMP also includes facilitating mission planning and data management for lunar CubeSat missions, and working with the NASA Astromaterials Acquisition and Curation Office's Lunar Apollo Sample database in order to help better visualize the geographic contexts from which samples were retrieved. A new user interface provides, among other improvements, significantly enhanced 3D visualizations and navigation. Mars Trek, the project's Mars portal, has now been assigned by NASA's Planetary Science Division to support site selection and analysis for the Mars 2020 Rover mission as well as for the Mars Human Landing Exploration Zone Sites. This effort is concentrating on enhancing Mars Trek with data products and analysis tools specifically requested by the proposing teams for the various sites. Also being given very high priority by NASA Headquarters is Mars Trek's use as a means to directly involve the public in these upcoming missions, letting them explore the areas the agency is focusing upon, understand what makes these sites so fascinating, follow the selection process, and get caught up in the excitement of exploring Mars. The portals also serve as

  1. NASA Lunar and Planetary Mapping and Modeling

    NASA Astrophysics Data System (ADS)

    Day, Brian; Law, Emily

    2016-10-01

    NASA's Lunar and Planetary Mapping and Modeling Portals provide web-based suites of interactive visualization and analysis tools to enable mission planners, planetary scientists, students, and the general public to access mapped lunar data products from past and current missions for the Moon, Mars, and Vesta. New portals for additional planetary bodies are being planned. This presentation will recap some of the enhancements to these products during the past year and preview work currently being undertaken.New data products added to the Lunar Mapping and Modeling Portal (LMMP) include both generalized products as well as polar data products specifically targeting potential sites for the Resource Prospector mission. New tools being developed include traverse planning and surface potential analysis. Current development work on LMMP also includes facilitating mission planning and data management for lunar CubeSat missions. Looking ahead, LMMP is working with the NASA Astromaterials Office to integrate with their Lunar Apollo Sample database to help better visualize the geographic contexts of retrieved samples. All of this will be done within the framework of a new user interface which, among other improvements, will provide significantly enhanced 3D visualizations and navigation.Mars Trek, the project's Mars portal, has now been assigned by NASA's Planetary Science Division to support site selection and analysis for the Mars 2020 Rover mission as well as for the Mars Human Landing Exploration Zone Sites, and is being enhanced with data products and analysis tools specifically requested by the proposing teams for the various sites. NASA Headquarters is giving high priority to Mars Trek's use as a means to directly involve the public in these upcoming missions, letting them explore the areas the agency is focusing upon, understand what makes these sites so fascinating, follow the selection process, and get caught up in the excitement of exploring Mars.The portals also

  2. Lunar volcanism produced a transient atmosphere around the ancient Moon

    NASA Astrophysics Data System (ADS)

    Needham, Debra H.; Kring, David A.

    2017-11-01

    Studies of the lunar atmosphere have shown it to be a stable, low-density surface boundary exosphere for the last 3 billion years. However, substantial volcanic activity on the Moon prior to 3 Ga may have released sufficient volatiles to form a transient, more prominent atmosphere. Here, we calculate the volume of mare basalt emplaced as a function of time, then estimate the corresponding production of volatiles released during the mare basalt-forming eruptions. Results indicate that during peak mare emplacement and volatile release ∼3.5 Ga, the maximum atmospheric pressure at the lunar surface could have reached ∼1 kPa, or ∼1.5 times higher than Mars' current atmospheric surface pressure. This lunar atmosphere may have taken ∼70 million years to fully dissipate. Most of the volatiles released by mare basalts would have been lost to space, but some may have been sequestered in permanently shadowed regions on the lunar surface. If only 0.1% of the mare water vented during these eruptions remains in the polar regions of the Moon, volcanically-derived volatiles could account for all hydrogen deposits - suspected to be water - currently observed in the Moon's permanently shadowed regions. Future missions to such locations may encounter evidence of not only asteroidal, cometary, and solar wind-derived volatiles, but also volatiles vented from the interior of the Moon.

  3. Petrology of lunar rocks and implication to lunar evolution

    NASA Technical Reports Server (NTRS)

    Ridley, W. I.

    1976-01-01

    Recent advances in lunar petrology, based on studies of lunar rock samples available through the Apollo program, are reviewed. Samples of bedrock from both maria and terra have been collected where micrometeorite impact penetrated the regolith and brought bedrock to the surface, but no in situ cores have been taken. Lunar petrogenesis and lunar thermal history supported by studies of the rock sample are discussed and a tentative evolutionary scenario is constructed. Mare basalts, terra assemblages of breccias, soils, rocks, and regolith are subjected to elemental analysis, mineralogical analysis, trace content analysis, with studies of texture, ages and isotopic composition. Probable sources of mare basalts are indicated.

  4. A superconducting quenchgun for delivering lunar derived oxygen to lunar orbit

    NASA Technical Reports Server (NTRS)

    Nottke, Nathan; Bilby, Curt R.

    1990-01-01

    The development of a parametric model for a superconducting quenchgun for launching lunar derived liquid oxygen to lunar orbit is detailed. An overview is presented of the quenchgun geometry and operating principles, a definition of the required support systems, and the methods used to size the quenchgun launcher and support systems. An analysis assessing the impact of a lunar quenchgun on the OEXP Lunar Evolution Case Study is included.

  5. Understanding the Reactivity of Lunar Dust for Future Lunar Missions

    NASA Technical Reports Server (NTRS)

    Wallace, William; Taylor, L. A.; Jeevarajan, Antony

    2009-01-01

    During the Apollo missions, dust was found to cause numerous problems for various instruments and systems. Additionally, the dust may have caused momentary health issues for some of the astronauts. Therefore, the plan to resume robotic and manned missions to the Moon in the next decade has led to a renewed interest in the properties of lunar dust, ranging from geological to chemical to toxicological. An important property to understand is the reactivity of the dust particles. Due to the lack of an atmosphere on the Moon, there is nothing to protect the lunar soil from ultraviolet radiation, solar wind, and meteorite impacts. These processes could all serve to activate the soil, or produce reactive surface species. On the Moon, these species can be maintained for millennia without oxygen or water vapor present to satisfy the broken bonds. Unfortunately, the Apollo dust samples that were returned to Earth were inadvertently exposed to the atmosphere, causing them to lose their reactive characteristics. In order to aid in the preparation of mitigation techniques prior to returning to the Moon, we measured the ability of lunar dust, lunar dust simulant, and quartz samples to produce hydroxyl radicals in solution[1]. As a first approximation of meteorite impacts on the lunar surface, we ground samples using a mortar and pestle. Our initial studies showed that all three test materials (lunar dust (62241), lunar dust simulant (JSC-1Avf), and quartz) produced hydroxyl radicals after grinding and mixing with water. However, the radical production of the ground lunar dust was approximately 10-fold and 3-fold greater than quartz and JSC-1 Avf, respectively. These reactivity differences between the different samples did not correlate with differences in specific surface area. The increased reactivity produced for the quartz by grinding was attributed to the presence of silicon- or oxygen-based radicals on the surface, as had been seen previously[2]. These radicals may also

  6. Lunar e-Library: A Research Tool Focused on the Lunar Environment

    NASA Technical Reports Server (NTRS)

    McMahan, Tracy A.; Shea, Charlotte A.; Finckenor, Miria; Ferguson, Dale

    2007-01-01

    As NASA plans and implements the Vision for Space Exploration, managers, engineers, and scientists need lunar environment information that is readily available and easily accessed. For this effort, lunar environment data was compiled from a variety of missions from Apollo to more recent remote sensing missions, such as Clementine. This valuable information comes not only in the form of measurements and images but also from the observations of astronauts who have visited the Moon and people who have designed spacecraft for lunar missions. To provide a research tool that makes the voluminous lunar data more accessible, the Space Environments and Effects (SEE) Program, managed at NASA's Marshall Space Flight Center (MSFC) in Huntsville, AL, organized the data into a DVD knowledgebase: the Lunar e-Library. This searchable collection of 1100 electronic (.PDF) documents and abstracts makes it easy to find critical technical data and lessons learned from past lunar missions and exploration studies. The SEE Program began distributing the Lunar e-Library DVD in 2006. This paper describes the Lunar e-Library development process (including a description of the databases and resources used to acquire the documents) and the contents of the DVD product, demonstrates its usefulness with focused searches, and provides information on how to obtain this free resource.

  7. Nighttime Aerosol Optical Depth Measurements Using a Ground-based Lunar Photometer

    NASA Technical Reports Server (NTRS)

    Berkoff, Tim; Omar, Ali; Haggard, Charles; Pippin, Margaret; Tasaddaq, Aasam; Stone, Tom; Rodriguez, Jon; Slutsker, Ilya; Eck, Tom; Holben, Brent; hide

    2015-01-01

    In recent years it was proposed to combine AERONET network photometer capabilities with a high precision lunar model used for satellite calibration to retrieve columnar nighttime AODs. The USGS lunar model can continuously provide pre-atmosphere high precision lunar irradiance determinations for multiple wavelengths at ground sensor locations. When combined with measured irradiances from a ground-based AERONET photometer, atmospheric column transmissions can determined yielding nighttime column aerosol AOD and Angstrom coefficients. Additional demonstrations have utilized this approach to further develop calibration methods and to obtain data in polar regions where extended periods of darkness occur. This new capability enables more complete studies of the diurnal behavior of aerosols, and feedback for models and satellite retrievals for the nighttime behavior of aerosols. It is anticipated that the nighttime capability of these sensors will be useful for comparisons with satellite lidars such as CALIOP and CATS in additional to ground-based lidars in MPLNET at night, when the signal-to-noise ratio is higher than daytime and more precise AOD comparisons can be made.

  8. Lunar Roving Vehicle parked in lunar depression on slope of Stone Mountain

    NASA Image and Video Library

    1972-04-22

    AS16-107-17473 (22 April 1972) --- The Lunar Roving Vehicle (LRV) appears to be parked in a deep lunar depression, on the slope of Stone Mountain. This photograph of the lunar scene at Station No. 4 was taken during the second Apollo 16 extravehicular activity (EVA) at the Descartes landing site. A sample collection bag is in the right foreground. Note field of small boulders at upper right. While astronauts John W. Young, commander, and Charles M. Duke Jr., lunar module pilot, descended in the Lunar Module (LM) "Orion" to explore the moon, astronaut Thomas K. Mattingly II, command module pilot, remained with the Command and Service Modules (CSM) in lunar orbit.

  9. Lunar and Planetary Science XXXV: Viewing the Lunar Interior Through Titanium-Colored Glasses

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session"Viewing the Lunar Interior Through Titanium-Colored Glasses" included the following reports:Consequences of High Crystallinity for the Evolution of the Lunar Magma Ocean: Trapped Plagioclase; Low Abundances of Highly Siderophile Elements in the Lunar Mantle: Evidence for Prolonged Late Accretion; Fast Anorthite Dissolution Rates in Lunar Picritic Melts: Petrologic Implications; Searching the Moon for Aluminous Mare Basalts Using Compositional Remote-Sensing Constraints II: Detailed analysis of ROIs; Origin of Lunar High Titanium Ultramafic Glasses: A Hybridized Source?; Ilmenite Solubility in Lunar Basalts as a Function of Temperature and Pressure: Implications for Petrogenesis; Garnet in the Lunar Mantle: Further Evidence from Volcanic Glasses; Preliminary High Pressure Phase Relations of Apollo 15 Green C Glass: Assessment of the Role of Garnet; Oxygen Fugacity of Mare Basalts and the Lunar Mantle. Application of a New Microscale Oxybarometer Based on the Valence State of Vanadium; A Model for the Origin of the Dark Ring at Orientale Basin; Petrology and Geochemistry of LAP 02 205: A New Low-Ti Mare-Basalt Meteorite; Thorium and Samarium in Lunar Pyroclastic Glasses: Insights into the Composition of the Lunar Mantle and Basaltic Magmatism on the Moon; and Eu2+ and REE3+ Diffusion in Enstatite, Diopside, Anorthite, and a Silicate Melt: A Database for Understanding Kinetic Fractionation of REE in the Lunar Mantle and Crust.

  10. Altair Lunar Lander Development Status: Enabling Lunar Exploration

    NASA Technical Reports Server (NTRS)

    Laurini, Kathleen C.; Connolly, John F.

    2009-01-01

    As a critical part of the NASA Constellation Program lunar transportation architecture, the Altair lunar lander will return humans to the moon and enable a sustained program of lunar exploration. The Altair is to deliver up to four crew to the surface of the moon and return them to low lunar orbit at the completion of their mission. Altair will also be used to deliver large cargo elements to the lunar surface, enabling the buildup of an outpost. The Altair Project initialized its design using a "minimum functionality" approach that identified critical functionality required to meet a minimum set of Altair requirements. The Altair team then performed several analysis cycles using risk-informed design to selectively add back components and functionality to increase the vehicle's safety and reliability. The analysis cycle results were captured in a reference Altair design. This design was reviewed at the Constellation Lunar Capabilities Concept Review, a Mission Concept Review, where key driving requirements were confirmed and the Altair Project was given authorization to began Phase A project formulation. A key objective of Phase A is to revisit the Altair vehicle configuration, to better optimize it to complete its broad range of crew and cargo delivery missions. Industry was invited to partner with NASA early in the design to provide their insights regarding Altair configuration and key engineering challenges. NASA intends to continue to seek industry involvement in project formulation activities. This paper will update the international coimmunity on the status of the Altair Project as it addresses the challenges of project formulation, including optinuzing a vehicle configuration based on the work of the NASA Altair Project team, industry inputs and the plans going forward in designing the Altair lunar lander.

  11. Polarization measurements through space-to-ground atmospheric propagation paths by using a highly polarized laser source in space.

    PubMed

    Toyoshima, Morio; Takenaka, Hideki; Shoji, Yozo; Takayama, Yoshihisa; Koyama, Yoshisada; Kunimori, Hiroo

    2009-12-07

    The polarization characteristics of an artificial laser source in space were measured through space-to-ground atmospheric transmission paths. An existing Japanese laser communication satellite and optical ground station were used to measure Stokes parameters and the degree of polarization of the laser beam transmitted from the satellite. As a result, the polarization was preserved within an rms error of 1.6 degrees, and the degree of polarization was 99.4+/-4.4% through the space-to-ground atmosphere. These results contribute to the link estimation for quantum key distribution via space and provide the potential for enhancements in quantum cryptography worldwide in the future.

  12. The Lunar Regolith

    NASA Technical Reports Server (NTRS)

    Noble, Sarah

    2009-01-01

    A thick layer of regolith, fragmental and unconsolidated rock material, covers the entire lunar surface. This layer is the result of the continuous impact of meteoroids large and small and the steady bombardment of charged particles from the sun and stars. The regolith is generally about 4-5 m thick in mare regions and 10-15 m in highland areas (McKay et al., 1991) and contains all sizes of material from large boulders to sub-micron dust particles. Below the regolith is a region of large blocks of material, large-scale ejecta and brecciated bedrock, often referred to as the "megaregolith". Lunar soil is a term often used interchangeably with regolith, however, soil is defined as the subcentimeter fraction of the regolith (in practice though, soil generally refers to the submillimeter fraction of the regolith). Lunar dust has been defined in many ways by different researchers, but generally refers to only the very finest fractions of the soil, less than approx.10 or 20 microns. Lunar soil can be a misleading term, as lunar "soil" bears little in common with terrestrial soils. Lunar soil contains no organic matter and is not formed through biologic or chemical means as terrestrial soils are, but strictly through mechanical comminution from meteoroids and interaction with the solar wind and other energetic particles. Lunar soils are also not exposed to the wind and water that shapes the Earth. As a consequence, in contrast to terrestrial soils, lunar soils are not sorted in any way, by size, shape, or chemistry. Finally, without wind and water to wear down the edges, lunar soil grains tend to be sharp with fresh fractured surfaces.

  13. Lunar sample analysis

    NASA Technical Reports Server (NTRS)

    Housley, R. M.

    1978-01-01

    Flameless atomic abosrption, X-ray photoemission spectroscopy, ferromagnetic resonance, scanning electron microscopy, and Moessbauer spectroscopy were used to investigate the evolution of the lunar regolith, the transport of volatile trace metals, and the surface composition of lunar samples. The development of a model for lunar volcanic eruptions is also discussed.

  14. SELMA mission: revealing the origin of lunar water

    NASA Astrophysics Data System (ADS)

    Barabash, Stas; Selma Team

    2013-04-01

    We propose a very low cost lunar mission to cover a poorly investigated inter-disciplinary area in the lunar science. The mission SELMA (Surface, Environment, and Lunar Magnetic Anomalies) investigates the interaction of the neutral and plasma environment with the lunar surface and the impact of this interaction on the surface composition, in the first hand, on the presence of water. The mission focuses on the fundamental question: What is the origin of the water in the lunar soil? The mission also addresses the questions: What are the lunar exosphere content and composition and how does the exosphere interact with the surface? How do the lunar magnetic anomalies interact with the solar wind and affect the surface? SELMA investigates the origin of the water in the lunar soil via simultaneous measurements of the OH/H2O abundance in the soil, the proton flux deposited to the surface, and transient changes in the exospheric gas content and composition. The water content in the surface is mapped via measurements of the 2700 - 3300 nm OH/H2O/ice absorption lines. The proton flux at the surface is measured remotely via backscattered hydrogen flux (energetic neutral atoms, ENAs). The exospheric gas content and composition and possible transient changes due to micrometeoroid influx or outgassing are monitored by a neutral gas mass spectrometer. Little is known about the tenuous lunar exosphere, its composition, structure, and relation to the plasma environment. The reasons for the present poor knowledge of the lunar exosphere is the difficulty of observations due to the low number densities, and the complexity of models due to the multiplicity of the mechanisms responsible for the input and loss of exospheric species. To investigate the lunar exosphere SELMA is equipped with state-of-the-art time-of-flight neutral gas mass spectrometer with unprecedented sensitivity and mass resolution. The Moon does not have a global magnetic field but possesses local magnetizations. The

  15. Lunar Orbit Insertion Targeting and Associated Outbound Mission Design for Lunar Sortie Missions

    NASA Technical Reports Server (NTRS)

    Condon, Gerald L.

    2007-01-01

    This report details the Lunar Orbit Insertion (LOI) arrival targeting and associated mission design philosophy for Lunar sortie missions with up to a 7-day surface stay and with global Lunar landing site access. It also documents the assumptions, methodology, and requirements validated by TDS-04-013, Integrated Transit Nominal and Abort Characterization and Sensitivity Study. This report examines the generation of the Lunar arrival parking orbit inclination and Longitude of the Ascending Node (LAN) targets supporting surface missions with global Lunar landing site access. These targets support the Constellation Program requirement for anytime abort (early return) by providing for a minimized worst-case wedge angle [and an associated minimum plane change delta-velocity (V) cost] between the Crew Exploration Vehicle (CEV) and the Lunar Surface Access Module (LSAM) for an LSAM launch anytime during the Lunar surface stay.

  16. Apollo 9 Lunar Module in lunar landing configuration

    NASA Image and Video Library

    1969-03-07

    AS09-21-3181 (7 March 1969) --- A View of the Apollo 9 Lunar Module (LM), "Spider," in a lunar lading configuration, as photographed from the Command and Service Modules (CSM) on the fifth day of the Apollo 9 Earth-orbital mission. The landing gear on the "Spider" has been deployed. Inside the "Spider" were astronauts James A. McDivitt, Apollo 9 commander; and Russell L. Schweickart, lunar module pilot. Astronaut David R. Scott, command module pilot, remained at the controls in the Command Module (CM), "Gumdrop," while the other two astronauts checked out the LM.

  17. The lunar quarantine program

    NASA Technical Reports Server (NTRS)

    Johnston, R. S.; Mason, J. A.; Wooley, B. C.; Mccollum, G. W.; Mieszkuc, B. J.

    1974-01-01

    The lunar quarantine program was designed to ensure that return of lunar material represented no threat to the public health, to agriculture, or to other living resources. It established definitely that no life exists on the moon. The crews of the three lunar quarantine missions, Apollo 11, 12, and 14, experienced no health problems as a result of their exposure to lunar samples. Plants and animals also showed no adverse effects. Stringent quarantine was terminated after Apollo 14, but lunar samples continued to be protected to guarantee that scientists would receive uncontaminated materials for study.

  18. The Lunar Transit Telescope (LTT) - An early lunar-based science and engineering mission

    NASA Technical Reports Server (NTRS)

    Mcgraw, John T.

    1992-01-01

    The Sentinel, the soft-landed lunar telescope of the LTT project, is described. The Sentinel is a two-meter telescope with virtually no moving parts which accomplishes an imaging survey of the sky over almost five octaves of the electromagnetic spectrum from the ultraviolet into the infrared, with an angular resolution better than 0.1 arsec/pixel. The Sentinel will incorporate innovative techniques of interest for future lunar-based telescopes and will return significant engineering data which can be incorporated into future lunar missions. The discussion covers thermal mapping of the Sentinel, measurement of the cosmic ray flux, lunar dust, micrometeoroid flux, the lunar atmosphere, and lunar regolith stability and seismic activity.

  19. Lunar and Planetary Science XXXV: Lunar Remote Sensing: Seeing the Big Picture

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session "Lunar Remote Sensing: Seeing the Big Picture" contained the following reports:Approaches for Approximating Topography in High Resolution, Multispectral Data; Verification of Quality and Compatibility for the Newly Calibrated Clementine NIR Data Set; Near Infrared Spectral Properties of Selected Nearside and Farside Sites ; Global Comparisons of Mare Volcanism from Clementine Near-Infrared Data; Testing the Relation Between UVVIS Color and TiO2 Composition in the Lunar Maria; Color Reflectance Trends in the Mare: Implications for Mapping Iron with Multispectral Images ; The Composition of the Lunar Megaregolith: Some Initial Results from Global Mapping; Global Images of Mg-Number Derived from Clementine Data; The Origin of Lunar Crater Rays; Properties of Lunar Crater Ejecta from New 70-cm Radar Observations ; Permanent Sunlight at the Lunar North Pole; and ESA s SMART-1 Mission to the Moon: Goals, Status and First Results.

  20. Constellation Architecture Team-Lunar: Lunar Habitat Concepts

    NASA Technical Reports Server (NTRS)

    Toups, Larry; Kennedy, Kriss J.

    2008-01-01

    This paper will describe lunar habitat concepts that were defined as part of the Constellation Architecture Team-Lunar (CxAT-Lunar) in support of the Vision for Space Exploration. There are many challenges to designing lunar habitats such as mission objectives, launch packaging, lander capability, and risks. Surface habitats are required in support of sustaining human life to meet the mission objectives of lunar exploration, operations, and sustainability. Lunar surface operations consist of crew operations, mission operations, EVA operations, science operations, and logistics operations. Habitats are crewed pressurized vessels that include surface mission operations, science laboratories, living support capabilities, EVA support, logistics, and maintenance facilities. The challenge is to deliver, unload, and deploy self-contained habitats and laboratories to the lunar surface. The CxAT-Lunar surface campaign analysis focused on three primary trade sets of analysis. Trade set one (TS1) investigated sustaining a crew of four for six months with full outpost capability and the ability to perform long surface mission excursions using large mobility systems. Two basic habitat concepts of a hard metallic horizontal cylinder and a larger inflatable torus concept were investigated as options in response to the surface exploration architecture campaign analysis. Figure 1 and 2 depicts the notional outpost configurations for this trade set. Trade set two (TS2) investigated a mobile architecture approach with the campaign focused on early exploration using two small pressurized rovers and a mobile logistics support capability. This exploration concept will not be described in this paper. Trade set three (TS3) investigated delivery of a "core' habitation capability in support of an early outpost that would mature into the TS1 full outpost capability. Three core habitat concepts were defined for this campaign analysis. One with a four port core habitat, another with a 2 port

  1. The capture of lunar materials in low lunar orbit

    NASA Technical Reports Server (NTRS)

    Floyd, M. A.

    1981-01-01

    A scenario is presented for the retrieval of lunar materials sent into lunar orbit to be used as raw materials in space manufacturing operations. The proposal is based on the launch of material from the lunar surface by an electromagnetic mass driver and the capture of this material in low lunar orbit by a fleet of mass catchers which ferry the material to processing facilities when full. Material trajectories are analyzed using the two-body equations of motion, and intercept requirements and the sensitivity of the system to launch errors are determined. The present scenario is shown to be superior to scenarios that place a single mass catcher at the L2 libration point due to increased operations flexibility, decreased mass driver performance requirements and centralized catcher servicing.

  2. Design and Demonstration of Minimal Lunar Base

    NASA Astrophysics Data System (ADS)

    Boche-Sauvan, L.; Foing, B. H.; Exohab Team

    2009-04-01

    (Integrated Exploration Study, ESA ESTEC [1,2]). We will focus on the easiest and the soonest way in settling a minimal base immediately operational in scientific experimentation, but not immediately autonomous. It will prepare the next permanent lunar base by assessing its technologies, and give scientific results about the environment. The autonomy will be gained in the evolution of the base, and added equipment. A lunar outpost in a polar region would allow missions longer than 14 days, and a frequent addition of equipments. Moreover, a polar outpost will get both advantages of far-side for simulating direct or indirect communications to Earth and dark-side for observations. The low solar rays incidence may permit having ice in deep craters, which will be beneficial for the evolution of the outpost into a autonomous base. The South Pole, by its position on the edge of the South Pole Aitken (SPA) Basin, will allow different fast new data in analysis mantle samples, easily reachable due to the crater morphology. These samples will constrain the putative Late Heavy Bombarment (LHB). After a robotic sample return mission, a human presence will allow deeper research through well chosen geological samples [6]. In this modular concept, we consider various infrastructure elements: core habitat, EVA, crew mobility, energy supply, recycling module, communication, green house and food production, operations. Many of these elements have already been studied in space agencies' architecture proposals, with the tech-nological possibilities of industrial partners (lunar landers, lunar orbiter, rovers …). A deeper reflection will be therefore done about the core habitat and the laboratory equipment, proposing scientific priority experiments. Each element will be added in a range considering their priority to life support in duration [7]. Considering surface operations, protocols will be specified in the use of certain elements. After a reflexion on the different dependancies and

  3. Burn Delay Analysis of the Lunar Orbit Insertion for Korea Pathfinder Lunar Orbiter

    NASA Astrophysics Data System (ADS)

    Bae, Jonghee; Song, Young-Joo; Kim, Young-Rok; Kim, Bangyeop

    2017-12-01

    The first Korea lunar orbiter, Korea Pathfinder Lunar Orbiter (KPLO), has been in development since 2016. After launch, the KPLO will execute several maneuvers to enter into the lunar mission orbit, and will then perform lunar science missions for one year. Among these maneuvers, the lunar orbit insertion (LOI) is the most critical maneuver because the KPLO will experience an extreme velocity change in the presence of the Moon’s gravitational pull. However, the lunar orbiter may have a delayed LOI burn during operation due to hardware limitations and telemetry delays. This delayed burn could occur in different captured lunar orbits; in the worst case, the KPLO could fly away from the Moon. Therefore, in this study, the burn delay for the first LOI maneuver is analyzed to successfully enter the desired lunar orbit. Numerical simulations are performed to evaluate the difference between the desired and delayed lunar orbits due to a burn delay in the LOI maneuver. Based on this analysis, critical factors in the LOI maneuver, the periselene altitude and orbit period, are significantly changed and an additional delta-V in the second LOI maneuver is required as the delay burn interval increases to 10 min from the planned maneuver epoch.

  4. Solar lunar power

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Landis, Geoffrey A.

    1994-01-01

    Current and projected technology is assessed for photovoltaic power for a lunar base. The following topics are discussed: requirements for power during the lunar day and night; solar cell efficiencies, specific power, temperature sensitivity, and availability; storage options for the lunar night; array and system integration; the potential for in situ production of photovoltaic arrays and storage medium.

  5. Possible Sources of Polar Volatiles

    NASA Astrophysics Data System (ADS)

    Schultz, P. H.

    2011-12-01

    Extensive analyses of returned Apollo samples demonstrated that the Moon is extremely volatile poor. While this conclusion remains true, various measurements since the late 90's implicated the presence of water: e.g., enhanced reflection of circularly polarized radar signals and suppression of epithermal neutrons near the poles. More recently, traces of H2O have been discovered inside volcanic glass, along with more significant amounts residing in hydrous minerals (apatite) returned from both highland and mare landing sites. Three recent lunar missions (DIXI, M3, Cassini) identified hydrous phases on/near the lunar surface, whereas the LCROSS probe detected significant quantities of volatiles (OH, H2O and other volatiles) excavated by the Centaur impact. These new mission results and sample studies, however, now allow testing different hypotheses for the generation, trapping, and replenishment of these volatiles. Solar-proton implantation must contribute to the hydrous phases in the lunar regolith in order to account for the observed time-varying abundances and occurrence near the lunar equator. This also cannot be the entire story. The relatively low speed LCROSS-Centaur impact (2.5km/s) could not vaporize such hydrous minerals, yet emissions lines of OH (from the thermal disassociation of H2O), along with other compounds (CO2, NH2) were detected within the first second, before ejecta could reach sunlight. Telescopic observations by Potter and Morgan (1985) discovered a tenuous lunar atmosphere of Na, but the LCROSS UV/Vis spectrometer did not detect the Na-D line until after the ejecta reached sunlight (along with a line pair attributed to Ag). With time, other volatile species emerged (OH, CO). The LAMP instrument on the Lunar Reconnaissance Orbiter had a different viewpoint from the side (rather than from above) and detected many other atomic species release by the LCROSS-Centaur impact. Consequently, it appears that there is a stratigraphy for trapped species

  6. Proceedings of the 39th Lunar and Planetary Science Conference

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Chondrites, Chondrules and Chondrule Formation, Chondrites, Refractory Inclusions, Organics in Chondrites, Meteorites: Techniques, Experiments, and Physical Properties, MESSENGER and Mercury, Lunar Science Present: Kaguya (SELENE) Results, Lunar Remote Sensing: Basins and Mapping of Geology and Geochemistry, Lunar Science: Dust and Ice, Lunar Science: Missions and Planning, Mars: Layered, Icy, and Polygonal, Mars Stratigraphy and Sedimentology, Mars (Peri)Glacial, Mars Polar (and Vast), Mars, You are Here: Landing Sites and Imagery, Mars Volcanics and Magmas, Mars Atmosphere, Impact Events: Modeling, Experiments, and Observation, Ice is Nice: Mostly Outer Planet Satellites, Galilean Satellites, The Big Giant Planets, Astrobiology, In Situ Instrumentation, Rocket Scientist's Toolbox: Mission Science and Operations, Spacecraft Missions, Presolar Grains, Micrometeorites, Condensation-Evaporation: Stardust Ties, Comet Dust, Comparative Planetology, Planetary Differentiation, Lunar Meteorites, Nonchondritic Meteorites, Martian Meteorites, Apollo Samples and Lunar Interior, Lunar Geophysics, Lunar Science: Geophysics, Surface Science, and Extralunar Components, Mars, Remotely, Mars Orbital Data - Methods and Interpretation, Mars Tectonics and Dynamics, Mars Craters: Tiny to Humongous, Mars Sedimentary Mineralogy, Martian Gullies and Slope Streaks, Mars Fluvial Geomorphology, Mars Aeolian Processes, Mars Data and Mission,s Venus Mapping, Modeling, and Data Analysis, Titan, Icy Dwarf Satellites, Rocket Scientist's Toolbox: In Situ Analysis, Remote Sensing Approaches, Advances, and Applications, Analogs: Sulfates - Earth and Lab to Mars, Analogs: Remote Sensing and Spectroscopy, Analogs: Methods and Instruments, Analogs: Weird Places!. Print Only Early Solar System, Solar Wind, IDPs, Presolar/Solar Grains, Stardust, Comets, Asteroids, and Phobos, Venus, Mercury, Moon, Meteorites, Mars, Astrobiology, Impacts, Outer Planets, Satellites, and Rings, Support for Mission Operations, Analog

  7. Open source software integrated into data services of Japanese planetary explorations

    NASA Astrophysics Data System (ADS)

    Yamamoto, Y.; Ishihara, Y.; Otake, H.; Imai, K.; Masuda, K.

    2015-12-01

    Scientific data obtained by Japanese scientific satellites and lunar and planetary explorations are archived in DARTS (Data ARchives and Transmission System). DARTS provides the data with a simple method such as HTTP directory listing for long-term preservation while DARTS tries to provide rich web applications for ease of access with modern web technologies based on open source software. This presentation showcases availability of open source software through our services. KADIAS is a web-based application to search, analyze, and obtain scientific data measured by SELENE(Kaguya), a Japanese lunar orbiter. KADIAS uses OpenLayers to display maps distributed from Web Map Service (WMS). As a WMS server, open source software MapServer is adopted. KAGUYA 3D GIS (KAGUYA 3D Moon NAVI) provides a virtual globe for the SELENE's data. The main purpose of this application is public outreach. NASA World Wind Java SDK is used to develop. C3 (Cross-Cutting Comparisons) is a tool to compare data from various observations and simulations. It uses Highcharts to draw graphs on web browsers. Flow is a tool to simulate a Field-Of-View of an instrument onboard a spacecraft. This tool itself is open source software developed by JAXA/ISAS, and the license is BSD 3-Caluse License. SPICE Toolkit is essential to compile FLOW. SPICE Toolkit is also open source software developed by NASA/JPL, and the website distributes many spacecrafts' data. Nowadays, open source software is an indispensable tool to integrate DARTS services.

  8. Lunar Dust 101

    NASA Technical Reports Server (NTRS)

    Gaier, James R.

    2008-01-01

    Largely due to rock and soil samples returned during the Apollo program, much has been learned about the composition and properties of lunar regolith. Although, for the most part, the mineral composition resembles terrestrial minerals, the characteristics of the lunar environment have led to very different weathering processes. These result in substantial differences in the particle shapes, particle size distributions, and surface chemistry. These differences lead to non-intuitive adhesion, abrasion, and possible health properties that will pose challenges to future lunar missions. An overview of lunar dust composition and properties will be given with a particular emphasis on possible health effects.

  9. Understanding the Reactivity of Lunar Dust for Future Lunar Missions

    NASA Technical Reports Server (NTRS)

    Wallace, W. T.; Jeevarajan, A. S.; Taylor, L. A.

    2010-01-01

    Fluorescence and EPR can be used to measure the reactivity of lunar soil. Lunar soil is highly activated by grinding. Reactivity is dependent upon soil maturity and locale. Maturity is based on the amount of nanophase iron (np-Fe) in a soil relative to the total iron (FeO). Lunar soil activity ia a direct function of the amount of np-Fe present. Reactive soil can be "deactivated" by humid atmosphere.

  10. A baseline lunar mine

    NASA Technical Reports Server (NTRS)

    Gertsch, Richard E.

    1992-01-01

    A models lunar mining method is proposed that illustrates the problems to be expected in lunar mining and how they might be solved. While the method is quite feasible, it is, more importantly, a useful baseline system against which to test other, possible better, methods. Our study group proposed the slusher to stimulate discussion of how a lunar mining operation might be successfully accomplished. Critics of the slusher system were invited to propose better methods. The group noted that while nonterrestrial mining has been a vital part of past space manufacturing proposals, no one has proposed a lunar mining system in any real detail. The group considered it essential that the design of actual, workable, and specific lunar mining methods begin immediately. Based on an earlier proposal, the method is a three-drum slusher, also known as a cable-operated drag scraper. Its terrestrial application is quite limited, as it is relatively inefficient and inflexible. The method usually finds use in underwater mining from the shore and in moving small amounts of ore underground. When lunar mining scales up, the lunarized slusher will be replaced by more efficient, high-volume methods. Other aspects of lunar mining are discussed.

  11. Resource Prospector Instrumentation for Lunar Volatiles Prospecting, Sample Acquisition and Processing

    NASA Technical Reports Server (NTRS)

    Captain, J.; Elphic, R.; Colaprete, A.; Zacny, Kris; Paz, A.

    2016-01-01

    Data gathered from lunar missions within the last two decades have significantly enhanced our understanding of the volatile resources available on the lunar surface, specifically focusing on the polar regions. Several orbiting missions such as Clementine and Lunar Prospector have suggested the presence of volatile ices and enhanced hydrogen concentrations in the permanently shadowed regions of the moon. The Lunar Crater Observation and Sensing Satellite (LCROSS) mission was the first to provide direct measurement of water ice in a permanently shadowed region. These missions with other orbiting assets have laid the groundwork for the next step in the exploration of the lunar surface; providing ground truth data of the volatiles by mapping the distribution and processing lunar regolith for resource extraction. This next step is the robotic mission Resource Prospector (RP). Resource Prospector is a lunar mission to investigate 'strategic knowledge gaps' (SKGs) for in-situ resource utilization (ISRU). The mission is proposed to land in the lunar south pole near a permanently shadowed crater. The landing site will be determined by the science team with input from broader international community as being near traversable landscape that has a high potential of containing elevated concentrations of volatiles such as water while maximizing mission duration. A rover will host the Regolith & Environment Science and Oxygen & Lunar Volatile Extraction (RESOLVE) payload for resource mapping and processing. The science instruments on the payload include a 1-meter drill, neutron spectrometer, a near infrared spectrometer, an operations camera, and a reactor with a gas chromatograph-mass spectrometer for volatile analysis. After the RP lander safely delivers the rover to the lunar surface, the science team will guide the rover team on the first traverse plan. The neutron spectrometer (NS) and near infrared (NIR) spectrometer instruments will be used as prospecting tools to guide

  12. The production of oxygen and metal from lunar regolith

    NASA Astrophysics Data System (ADS)

    Schwandt, Carsten; Hamilton, James A.; Fray, Derek J.; Crawford, Ian A.

    2012-12-01

    The present article summarises the various methods that have been, and still are, explored for the production of oxygen from lunar materials. These include the classical concepts based on chemical reduction with hydrogen or methane, vapour phase pyrolysis, sulphuric acid treatment, and molten oxide electrolysis. Our main focus in this paper is on a novel approach developed at the University of Cambridge that employs molten salt electrochemistry to achieve the combined winning of oxygen and metal from solid lunar materials of varying composition. This makes the Cambridge process attractive because it will work equally well in mare as in highland regions. We also discuss the implications of the recent apparent discovery of water ice at the poles of the Moon and conclude that, even if this discovery is confirmed, it will nevertheless be desirable to provide oxygen at non-polar localities, and the Cambridge process is a strong candidate for achieving this.

  13. LUNAR SAMPLES - APOLLO 11

    NASA Image and Video Library

    1969-08-03

    S69-40749 (July 1969) --- Dr. Grant Heikan, MSC and a Lunar Sample Preliminary Examination Team member, examines lunar material in a sieve from the bulk sample container which was opened in the Biopreparation Laboratory of the Lunar Receiving Laboratory. The samples were collected by astronauts Neil A. Armstrong and Edwin E. Aldrin Jr. during their lunar surface extravehicular activity on July 20, 1969.

  14. View of the Lunar Module 'Orion' and Lunar Roving Vehicle during first EVA

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A view of the Lunar Module (LM) 'Orion' and Lunar Roving Vehicle (LRV), as photographed by Astronaut Charles M. Duke Jr., lunar module pilot, during the first Apollo 16 extravehicular activity (EVA-1) at the Descates landing site. Astronaut John W. Young, commander, can be seen directly behind the LRV. The lunar surface feature in the left background is Stone Mountain.

  15. Chandrayaan-2 dual-frequency SAR: Further investigation into lunar water and regolith

    NASA Astrophysics Data System (ADS)

    Putrevu, Deepak; Das, Anup; Vachhani, J. G.; Trivedi, Sanjay; Misra, Tapan

    2016-01-01

    The Space Applications Centre (SAC), one of the major centers of the Indian Space Research Organization (ISRO), is developing a high resolution, dual-frequency Synthetic Aperture Radar as a science payload on Chandrayaan-2, ISRO's second moon mission. With this instrument, ISRO aims to further the ongoing studies of the data from S-band MiniSAR onboard Chandrayaan-1 (India) and the MiniRF of Lunar Reconnaissance Orbiter (USA). The SAR instrument has been configured to operate with both L- and S-bands, sharing a common antenna. The S-band SAR will provide continuity to the MiniSAR data, whereas L-band is expected to provide deeper penetration of the lunar regolith. The system will have a selectable slant-range resolution from 2 m to 75 m, along with standalone (L or S) and simultaneous (L and S) modes of imaging. Various features of the instrument like hybrid and full-polarimetry, a wide range of imaging incidence angles (∼10° to ∼35°) and the high spatial resolution will greatly enhance our understanding of surface properties especially in the polar regions of the Moon. The system will also help in resolving some of the ambiguities in interpreting high values of Circular Polarization Ratio (CPR) observed in MiniSAR data. The added information from full-polarimetric data will allow greater confidence in the results derived particularly in detecting the presence (and estimating the quantity) of water-ice in the polar craters. Being a planetary mission, the L&S-band SAR for Chandrayaan-2 faced stringent limits on mass, power and data rate (15 kg, 100 W and 160 Mbps respectively), irrespective of any of the planned modes of operation. This necessitated large-scale miniaturization, extensive use of on-board processing, and devices and techniques to conserve power. This paper discusses the scientific objectives which drive the requirement of a lunar SAR mission and presents the configuration of the instrument, along with a description of a number of features of the

  16. Improved calibration of reflectance data from the LRO Lunar Orbiter Laser Altimeter (LOLA) and implications for space weathering

    NASA Astrophysics Data System (ADS)

    Lemelin, M.; Lucey, P. G.; Neumann, G. A.; Mazarico, E. M.; Barker, M. K.; Kakazu, A.; Trang, D.; Smith, D. E.; Zuber, M. T.

    2016-07-01

    The Lunar Orbiter Laser Altimeter (LOLA) experiment on Lunar Reconnaissance Orbiter (LRO) is a laser altimeter that also measures the strength of the return pulse from the lunar surface. These data have been used to estimate the reflectance of the lunar surface, including regions lacking direct solar illumination. A new calibration of these data is presented that features lower uncertainties overall and more consistent results in the polar regions. We use these data, along with newly available maps of the distribution of lunar maria, also derived from LRO instrument data, to investigate a newly discovered dependence of the albedo of the lunar maria on latitude (Hemingway et al., [2015]). We confirm that there is an increase in albedo with latitude in the lunar maria, and confirm that this variation is not an artifact arising from the distribution of compositions within the lunar maria, using data from the Lunar Prospector Neutron Spectrometer. Radiative transfer modeling of the albedo dependence within the lunar maria is consistent with the very weak to absent dependence of albedo on latitude in the lunar highlands; the lower abundance of the iron source for space weathering products in the lunar highlands weakens the latitude dependence to the extent that it is only weakly detectable in current data. In addition, photometric models and normalization may take into account the fact that the lunar albedo is latitude dependent, but this dependence can cause errors in normalized reflectance of at most 2% for the majority of near-nadir geometries. We also investigate whether the latitude dependent albedo may have obscured detection of small mare deposits at high latitudes. We find that small regions at high latitudes with low roughness similar to the lunar maria are not mare deposits that may have been misclassified owing to high albedos imposed by the latitude dependence. Finally, we suggest that the only modest correlations among space weathering indicators defined

  17. Improved Calibration of Reflectance Data from the LRO Lunar Orbiter Laser Altimeter (LOLA) and Implications for Space Weathering

    NASA Technical Reports Server (NTRS)

    Lemelin, M.; Lucey, P. G.; Neumann, G. A.; Mazarico, E. M.; Barker, M. K.; Kakazu, A.; Trang, D.; Smith, D. E.; Zuber, M. T.

    2016-01-01

    The Lunar Orbiter Laser Altimeter (LOLA) experiment on Lunar Reconnaissance Orbiter (LRO) is a laser altimeter that also measures the strength of the return pulse from the lunar surface. These data have been used to estimate the reflectance of the lunar surface, including regions lacking direct solar illumination. A new calibration of these data is presented that features lower uncertainties overall and more consistent results in the polar regions. We use these data, along with newly available maps of the distribution of lunar maria, also derived from LRO instrument data, to investigate a newly discovered dependence of the albedo of the lunar maria on latitude (Hemingway et al., [2015]). We confirm that there is an increase in albedo with latitude in the lunar maria, and confirm that this variation is not an artifact arising from the distribution of compositions within the lunar maria, using data from the Lunar Prospector Neutron Spectrometer. Radiative transfer modeling of the albedo dependence within the lunar maria is consistent with the very weak to absent dependence of albedo on latitude in the lunar highlands; the lower abundance of the iron source for space weathering products in the lunar highlands weakens the latitude dependence to the extent that it is only weakly detectable in current data. In addition, photometric mod- els and normalization may take into account the fact that the lunar albedo is latitude dependent, but this dependence can cause errors in normalized reflectance of at most 2% for the majority of near-nadir geometries. We also investigate whether the latitude dependent albedo may have obscured detection of small mare deposits at high latitudes. We find that small regions at high latitudes with low roughness similar to the lunar maria are not mare deposits that may have been misclassified owing to high albedos imposed by the latitude dependence. Finally, we suggest that the only modest correlations among space weathering indicators defined

  18. Lunar Reconnaissance Orbiter Lunar Workshops for Educators, Year 1 Report

    NASA Astrophysics Data System (ADS)

    Jones, A. P.; Hsu, B. C.; Bleacher, L.; Shaner, A. J.; Dalton, H.

    2011-12-01

    This past summer, the Lunar Reconnaissance Orbiter (LRO) sponsored a series of weeklong professional development workshops designed to educate and inspire grade 6-12 science teachers: the Lunar Workshops for Educators. Participants learned about lunar science and exploration, gained tools to help address common student misconceptions about the Moon, heard some of the latest research results from LRO scientists, worked with LRO data, and learned how to bring these data to their students using hands-on activities aligned with grade 6-12 National Science Education Standards and Benchmarks. Where possible, the workshops also included tours of science facilities or field trips intended to help the teachers better understand mission operations or geologic processes relevant to the Moon. The workshops were very successful. Participants demonstrated an improved understanding of lunar science concepts in post-workshop assessments (as compared to identical pre-assessments) and a greater understanding of how to access and productively share data from LRO with their students and provide them with authentic research experiences. Participant feedback on workshop surveys was also enthusiastically positive. 5 additional Lunar Workshops for Educators will be held around the country in the summer of 2012. For more information and to register, visit http://lunar.gsfc.nasa.gov/lwe/index.html.

  19. Lunar Module Communications

    NASA Technical Reports Server (NTRS)

    Interbartolo, Michael A.

    2009-01-01

    This slide presentation reviews the Apollo lunar module communications. It describes several changes in terminology from the Apollo era to more recent terms. It reviews: (1) Lunar Module Antennas and Functions (2). Earth Line of Sight Communications Links (3) No Earth Line of Sight Communications Links (4) Lunar Surface Communications Links (5) Signal-Processing Assembly (6) Instrumentation System (7) Some Communications Problems Encountered

  20. Altair Lunar Lander Development Status: Enabling Human Lunar Exploration

    NASA Technical Reports Server (NTRS)

    Laurini, Kathleen C.; Connolly, John F.

    2009-01-01

    As a critical part of the NASA Constellation Program lunar transportation architecture, the Altair lunar lander will return humans to the moon and enable a sustained program of lunar exploration. The Altair is to deliver up to four crew to the surface of the moon and return them to low lunar orbit at the completion of their mission. Altair will also be used to deliver large cargo elements to the lunar surface, enabling the buildup of an outpost. The Altair Project initialized its design using a minimum functionality approach that identified critical functionality required to meet a minimum set of Altair requirements. The Altair team then performed several analysis cycles using risk-informed design to selectively add back components and functionality to increase the vehicles safety and reliability. The analysis cycle results were captured in a reference Altair design. This design was reviewed at the Constellation Lunar Capabilities Concept Review, a Mission Concept Review, where key driving requirements were confirmed and the Altair Project was given authorization to begin Phase A project formulation. A key objective of Phase A is to revisit the Altair vehicle configuration, to better optimize it to complete its broad range of crew and cargo delivery missions. Industry was invited to partner with NASA early in the design to provide their insights regarding Altair configuration and key engineering challenges. A blended NASA-industry team will continue to refine the lander configuration and mature the vehicle design over the next few years. This paper will update the international community on the status of the Altair Project as it addresses the challenges of project formulation, including optimizing a vehicle configuration based on the work of the NASA Altair Project team, industry inputs and the plans going forward in designing the Altair lunar lander.

  1. Radar Scattering and Block Size Properties of Lunar Crater Ejecta From Mini-RF and LROC NAC Data

    NASA Technical Reports Server (NTRS)

    Spudis, P. D.; Baloga, S. M.; Glaze, L. S.; Dixit, V.; Pantone, S. M.; Juvanescu, I.

    2012-01-01

    A major objective of the Mini-RF experiment is to distinguish lunar surfaces that may contain water/ice deposits [1,2]. Better understanding of the backscattering properties of craters of varying age and size is crucial for interpreting data received from the Mini-RF. The Mini-RF transmits a circularly polarized RF electromagnetic energy and coherently receives orthogonal linear polarization echoes [1]. The Mini- RF maps in two separate bands ( =12.6 and 4.5 cm) at a high resolution mode of 30 m/pixel [1]. Given the variables mentioned, the four stokes parameters are reconstructed. The Circular Polarization Ratio (CPR) is calculated for the purposes of understanding subsurface and surface roughness. The CPR is determined from reflections acquired from the ratio of power of the transmitted radio wave in same sense to the reflected radio wave in the opposite sense [1]. Ice in the permanently shadowed regions (PSRs) would be transparent to radar, but the inclusions of materials and imperfections would cause the radio wave to reflect multiple times [3], enhancing the number of same sense reflections and increasing the CPR. In addition, ice also displays the coherent backscatter opposition effect (CBOE), an interferrometric addition of same sense backscatter that further increases the CPR of ice targets [7]. High CPR values also correlate to multiple reflections and are typically associated with very rough surfaces [3]. The average dry lunar surface has a CPR in the range of 0.2-0.4 at 48deg incidence [3]. The purpose of this study is to begin to quantify degrees of surface wavelength-scale roughness with CPR and to understand how such surface roughness is created and gradually destroyed by erosion on the lunar surface. Another goal is to identify and isolate the possible causes of high CPR within the shadowed areas of anomalous polar craters [3]. All the studied craters are non-polar, so that we can see into their interiors in NAC images. The idea is to understand what

  2. Lunar Mapping and Modeling Project

    NASA Technical Reports Server (NTRS)

    Noble, Sarah K.; French, Raymond; Nall,Mark; Muery, Kimberly

    2009-01-01

    The Lunar Mapping and Modeling Project (LMMP) has been created to manage the development of a suite of lunar mapping and modeling products that support the Constellation Program (CxP) and other lunar exploration activities, including the planning, design, development, test and operations associated with lunar sortie missions, crewed and robotic operations on the surface, and the establishment of a lunar outpost. The project draws on expertise from several NASA and non-NASA organizations (MSFC, ARC, GSFC, JPL, CRREL and USGS). LMMP will utilize data predominately from the Lunar Reconnaissance Orbiter, but also historical and international lunar mission data (e.g. Apollo, Lunar Orbiter, Kaguya, Chandrayaan-1), as available and appropriate, to meet Constellation s data needs. LMMP will provide access to this data through a single, common, intuitive and easy to use NASA portal that transparently accesses appropriately sanctioned portions of the widely dispersed and distributed collections of lunar data, products and tools. LMMP will provide such products as DEMs, hazard assessment maps, lighting maps and models, gravity models, and resource maps. We are working closely with the LRO team to prevent duplication of efforts and ensure the highest quality data products. While Constellation is our primary customer, LMMP is striving to be as useful as possible to the lunar science community, the lunar education and public outreach (E/PO) community, and anyone else interested in accessing or utilizing lunar data.

  3. Potential of a New Lunar Surface Radiator Concept for Hot Lunar Thermal Environments

    NASA Technical Reports Server (NTRS)

    Ochoa, Dustin A.; Vogel, Matthew R.; Trevino, Luis A.; Stephan, Ryan A.

    2008-01-01

    The optimum radiator configuration in hot lunar thermal environments is one in which the radiator is parallel to the ground and has no view to the hot lunar surface. However, typical spacecraft configurations have limited real estate available for top-mounted radiators, resulting in a desire to use the spacecraft s vertically oriented sides. Vertically oriented, flat panel radiators will have a large view factor to the lunar surface, and thus will be subjected to significant incident lunar infrared heat. Consequently, radiator fluid temperatures will need to exceed approx.325 K (assuming standard spacecraft radiator optical properties) in order to provide positive heat rejection at lunar noon. Such temperatures are too high for crewed spacecraft applications in which a heat pump is to be avoided. A recent study of vertically oriented radiator configurations subjected to lunar noon thermal environments led to the discovery of a novel radiator concept that yielded positive heat rejection at lower fluid temperatures. This radiator configuration, called the Upright Lunar Terrain Radiator Assembly (ULTRA), has exhibited superior performance to all previously analyzed concepts in terms of heat rejection in the lunar noon thermal environment. A key benefit of the ULTRA is the absence of louvers or other moving parts and its simple geometry. Analysis of the ULTRA for a lunar extravehicular activity (EVA) portable life support system (PLSS) is shown to provide moderate heat rejection, on average, at all solar incident angles assuming an average radiator temperature of 294 K, whereas prior concepts exhibited insignificant heat rejection or heat absorption at higher incident angles. The performance of the ULTRA for a lunar lander is also discussed and compared to the performance of a vertically oriented, flat panel radiator at various lunar latitudes.

  4. Enhancing Lunar Exploration with a Radioisotope Powered Dual Mode Lunar Rover

    NASA Astrophysics Data System (ADS)

    Elliott, J. O.; Coste, K.; Schriener, T. M.

    2005-12-01

    The emerging plans for lunar exploration and establishment of a permanent human presence on the moon will require development of numerous infrastructure elements to facilitate their implementation. One such element, which manifestly demonstrated its worth in the Apollo missions, is the lunar roving vehicle. While the original Apollo lunar rovers were designed for single mission use, the intention of proceeding with a long-term sustained lunar exploration campaign gives new impetus to consideration of a lunar roving vehicle with extended capabilities, including the ability to support multiple sequential human missions as well as teleoperated exploration activities between human visits. This paper presents a preliminary design concept for such a vehicle, powered by radioisotope power systems which would give the rover greatly extended capabilities and the versatility to operate at any latitude over the entire lunar day/night cycle. The rover would be used for human transportation during astronaut sorties, and be reconfigured for teleoperation by earth-based controllers during the times between crewed landings. In teleoperated mode the rover could be equipped with a range of scientific instrument suites for exploration and detailed assessment of the lunar environment on a regional scale. With modular payload attachments, the rover could be modified between missions to carry out a variety of scientific and utilitarian tasks, including regolith reconfiguration in support of establishment of a permanent human base.

  5. Lunar Sample Compendium

    NASA Technical Reports Server (NTRS)

    Meyer, Charles

    2005-01-01

    The purpose of the Lunar Sample Compendium will be to inform scientists, astronauts and the public about the various lunar samples that have been returned from the Moon. This Compendium will be organized rock by rock in the manor of a catalog, but will not be as comprehensive, nor as complete, as the various lunar sample catalogs that are available. Likewise, this Compendium will not duplicate the various excellent books and reviews on the subject of lunar samples (Cadogen 1981, Heiken et al. 1991, Papike et al. 1998, Warren 2003, Eugster 2003). However, it is thought that an online Compendium, such as this, will prove useful to scientists proposing to study individual lunar samples and should help provide backup information for lunar sample displays. This Compendium will allow easy access to the scientific literature by briefly summarizing the significant findings of each rock along with the documentation of where the detailed scientific data are to be found. In general, discussion and interpretation of the results is left to the formal reviews found in the scientific literature. An advantage of this Compendium will be that it can be updated, expanded and corrected as need be.

  6. Lunar Circular Structure Classification from Chang 'e 2 High Resolution Lunar Images with Convolutional Neural Network

    NASA Astrophysics Data System (ADS)

    Zeng, X. G.; Liu, J. J.; Zuo, W.; Chen, W. L.; Liu, Y. X.

    2018-04-01

    Circular structures are widely distributed around the lunar surface. The most typical of them could be lunar impact crater, lunar dome, et.al. In this approach, we are trying to use the Convolutional Neural Network to classify the lunar circular structures from the lunar images.

  7. Future Exploration of the South Pole as Enabled by the Lunar Reconnaissance Orbiter

    NASA Astrophysics Data System (ADS)

    Speyerer, E. J.; Lawrence, S. J.; Stopar, J.

    2016-12-01

    The Lunar Reconnaissance Orbiter (LRO) launched in 2009 to collect the dataset required for future surface missions and to answer key questions about the lunar surface environment. In the first seven years of operations, the Lunar Reconnaissance Orbiter Camera (LROC) acquired over a million images of the lunar surface and collected key stereo observations for the production of meter-scale digital terrain models. Due to the configuration of the LRO orbit, LROC and the other onboard instruments have the opportunity to acquire observations at or near the poles every two hours. The lunar south polar region is an area of interest for future surface missions due to the benign thermal environment and areas of near-continuous illumination. These persistently illuminated regions are also adjacent to permanently shadowed areas (e.g. floors of craters and local depressions) that are of interest to both scientists and engineers prospecting for cold-trapped volatiles on or near the surface for future in situ resource utilization. Using a terramechanics model based on surface properties derived during the Apollo and Luna missions, we evaluated the accessibility of different science targets and the optimal traverse paths for a given set of waypoints. Assuming a rover that relies primarily on solar power, we identified a traverse that would keep the rover illuminated for 94.43% of the year between 1 January 2021 and 31 December 2021. Throughout this year-long period, the longest eclipse endured by the rover would last only 101 hours and the rover would move a total of 22.11 km with an average speed of 2.5 m/hr (max speed=30 m/hr). During this time the rover would be able to explore a variety of targets along the connecting ridge between Shackleton and de Gerlache craters. In addition to the southern polar regions, we are also examining traverses around other key exploration sites such as Marius Hills, Ina-D, Rima Parry, and the Mairan Domes in efforts to aid future mission

  8. Future Exploration of the South Pole as Enabled by the Lunar Reconnaissance Orbiter

    NASA Technical Reports Server (NTRS)

    Speyerer, Emerson J.; Lawrence, Samuel J.; Stopar, Julie

    2016-01-01

    The Lunar Reconnaissance Orbiter (LRO) launched in 2009 to collect the dataset required for future surface missions and to answer key questions about the lunar surface environment. In the first seven years of operations, the Lunar Reconnaissance Orbiter Camera (LROC) acquired over a million images of the lunar surface and collected key stereo observations for the production of meter-scale digital terrain models. Due to the configuration of the LRO orbit, LROC and the other onboard instruments have the opportunity to acquire observations at or near the poles every two hours. The lunar south polar region is an area of interest for future surface missions due to the benign thermal environment and areas of near-continuous illumination. These persistently illuminated regions are also adjacent to permanently shadowed areas (e.g. floors of craters and local depressions) that are of interest to both scientists and engineers prospecting for cold-trapped volatiles on or near the surface for future in situ resource utilization. Using a terramechanics model based on surface properties derived during the Apollo and Luna missions, we evaluated the accessibility of different science targets and the optimal traverse paths for a given set of waypoints. Assuming a rover that relies primarily on solar power, we identified a traverse that would keep the rover illuminated for 94.43% of the year between 1 January 2021 and 31 December 2021. Throughout this year-long period, the longest eclipse endured by the rover would last only 101 hours and the rover would move a total of 22.11 km with an average speed of 2.5 m/hr (max speed=30 m/hr). During this time the rover would be able to explore a variety of targets along the connecting ridge between Shackleton and de Gerlache craters. In addition to the southern polar regions, we are also examining traverses around other key exploration sites such as Marius Hills, Ina-D, Rima Parry, and the Mairan Domes in efforts to aid future mission

  9. Microcraters on lunar samples

    NASA Technical Reports Server (NTRS)

    Fechtig, H.; Gentner, W.; Hartung, J. B.; Nagel, K.; Neukum, G.; Schneider, E.; Storzer, D.

    1977-01-01

    The lunar microcrater phenomenology is described. The morphology of the lunar craters is in almost all aspects simulated in laboratory experiments in the diameter range from less than 1 nu to several millimeters and up to 60 km/s impact velocity. An empirically derived formula is given for the conversion of crater diameters into projectile diameters and masses for given impact velocities and projectile and target densities. The production size frequency distribution for lunar craters in the crater size range from approximately 1 nu to several millimeters in diameter is derived from various microcrater measurements within a factor of up to 5. Particle track exposure age measurements for a variety of lunar samples have been performed. They allow the conversion of the lunar crater size frequency production distributions into particle fluxes. The development of crater populations on lunar rocks under self-destruction by subsequent meteoroid impacts and crater overlap is discussed and theoretically described. Erosion rates on lunar rocks on the order of several millimeters per 10 yr are calculated. Chemical investigations of the glass linings of lunar craters yield clear evidence of admixture of projectile material only in one case, where the remnants of an iron-nickel micrometeorite have been identified.

  10. Lunar Rotation and the Lunar Interior

    NASA Technical Reports Server (NTRS)

    Williams, J. G.; Boggs, D. H.; Ratcliff, J. T.; Dickey, J. O.

    2003-01-01

    Variations in rotation and orientation of the Moon are sensitive to solid-body tidal dissipation, dissipation due to relative motion at the fluid-core/ solid-mantle boundary, and tidal Love number k2. There is weaker sensitivity to flattening of the core-mantle boundary (CMB) and fluid core moment of inertia. Accurate Lunar Laser Ranging (LLR) measurements of the distance from observatories on the Earth to four retroreflector arrays on the Moon are sensitive to lunar rotation and orientation variations and tidal displacements. Past solutions using the LLR data have given results for dissipation due to solid-body tides and fluid core plus Love number. Past detection of CMB flattening has been marginal but is improving, while direct detection of the core moment has not yet been achieved. Three decades of Lunar Laser Ranging (LLR) data are analyzed using a weighted least-squares approach. The lunar solution parameters include dissipation at the fluid-core/solid-mantle boundary, tidal dissipation, dissipation-related coefficients for rotation and orientation terms, potential Love number k2, a correction to the constant term in the tilt of the equator to the ecliptic which is meant to approximate the influence of core-mantle boundary flattening, and displacement Love numbers h2 and l2. Several solutions, with different combinations of solution parameters and constraints, are considered.

  11. Lunar Quest in Second Life, Lunar Exploration Island, Phase II

    NASA Astrophysics Data System (ADS)

    Ireton, F. M.; Day, B. H.; Mitchell, B.; Hsu, B. C.

    2010-12-01

    Linden Lab’s Second Life is a virtual 3D metaverse created by users. At any one time there may be 40,000-50,000 users on line. Users develop a persona and are seen on screen as a human figure or avatar. Avatars move through Second Life by walking, flying, or teleporting. Users form communities or groups of mutual interest such as music, computer graphics, and education. These groups communicate via e-mail, voice, and text within Second Life. Information on downloading the Second Life browser and joining can be found on the Second Life website: www.secondlife.com. This poster details Phase II in the development of Lunar Exploration Island (LEI) located in Second Life. Phase I LEI highlighted NASA’s LRO/LCROSS mission. Avatars enter LEI via teleportation arriving at a hall of flight housing interactive exhibits on the LRO/ LCROSS missions including full size models of the two spacecraft and launch vehicle. Storyboards with information about the missions interpret the exhibits while links to external websites provide further information on the mission, both spacecraft’s instrument suites, and related EPO. Other lunar related activities such as My Moon and NLSI EPO programs. A special exhibit was designed for International Observe the Moon Night activities with links to websites for further information. The sim includes several sites for meetings, a conference stage to host talks, and a screen for viewing NASATV coverage of mission and other televised events. In Phase II exhibits are updated to reflect on-going lunar exploration highlights, discoveries, and future missions. A new section of LEI has been developed to showcase NASA’s Lunar Quest program. A new exhibit hall with Lunar Quest information has been designed and is being populated with Lunar Quest information, spacecraft models (LADEE is in place) and kiosks. A two stage interactive demonstration illustrates lunar phases with static and 3-D stations. As NASA’s Lunar Quest program matures further

  12. Lunar Meteorites: A Global Geochemical Dataset

    NASA Technical Reports Server (NTRS)

    Zeigler, R. A.; Joy, K. H.; Arai, T.; Gross, J.; Korotev, R. L.; McCubbin, F. M.

    2017-01-01

    To date, the world's meteorite collections contain over 260 lunar meteorite stones representing at least 120 different lunar meteorites. Additionally, there are 20-30 as yet unnamed stones currently in the process of being classified. Collectively these lunar meteorites likely represent 40-50 distinct sampling locations from random locations on the Moon. Although the exact provenance of each individual lunar meteorite is unknown, collectively the lunar meteorites represent the best global average of the lunar crust. The Apollo sites are all within or near the Procellarum KREEP Terrane (PKT), thus lithologies from the PKT are overrepresented in the Apollo sample suite. Nearly all of the lithologies present in the Apollo sample suite are found within the lunar meteorites (high-Ti basalts are a notable exception), and the lunar meteorites contain several lithologies not present in the Apollo sample suite (e.g., magnesian anorthosite). This chapter will not be a sample-by-sample summary of each individual lunar meteorite. Rather, the chapter will summarize the different types of lunar meteorites and their relative abundances, comparing and contrasting the lunar meteorite sample suite with the Apollo sample suite. This chapter will act as one of the introductory chapters to the volume, introducing lunar samples in general and setting the stage for more detailed discussions in later more specialized chapters. The chapter will begin with a description of how lunar meteorites are ejected from the Moon, how deep samples are being excavated from, what the likely pairing relationships are among the lunar meteorite samples, and how the lunar meteorites can help to constrain the impactor flux in the inner solar system. There will be a discussion of the biases inherent to the lunar meteorite sample suite in terms of underrepresented lithologies or regions of the Moon, and an examination of the contamination and limitations of lunar meteorites due to terrestrial weathering. The

  13. A small scale lunar launcher for early lunar material utilization

    NASA Technical Reports Server (NTRS)

    Snow, W. R.; Kubby, J. A.; Dunbar, R. S.

    1981-01-01

    A system for the launching of lunar derived oxygen or raw materials into low lunar orbit or to L2 for transfer to low earth orbit is presented. The system described is a greatly simplified version of the conventional and sophisticated approach suggested by O'Neill using mass drivers with recirculating buckets. An electromagnetic accelerator is located on the lunar surface which launches 125 kg 'smart' containers of liquid oxygen or raw materials into a transfer orbit. Upon reaching apolune a kick motor is fired to circularize the orbit at 100 km altitude or L2. These containers are collected and their payloads transferred to a tanker OTV. The empty containers then have their kick motors refurbished and then are returned to the launcher site on the lunar surface for reuse. Initial launch capability is designed for about 500T of liquid oxygen delivered to low earth orbit per year with upgrading to higher levels, delivery of lunar soil for shielding, or raw materials for processing given the demand.

  14. Chemical processing of lunar materials

    NASA Technical Reports Server (NTRS)

    Criswell, D. R.; Waldron, R. D.

    1979-01-01

    The paper highlights recent work on the general problem of processing lunar materials. The discussion covers lunar source materials, refined products, motivations for using lunar materials, and general considerations for a lunar or space processing plant. Attention is given to chemical processing through various techniques, including electrolysis of molten silicates, carbothermic/silicothermic reduction, carbo-chlorination process, NaOH basic-leach process, and HF acid-leach process. Several options for chemical processing of lunar materials are well within the state of the art of applied chemistry and chemical engineering to begin development based on the extensive knowledge of lunar materials.

  15. Searching for water at the south pole of the Moon with a lunar impactor

    NASA Astrophysics Data System (ADS)

    Banerdt, B.; Alkalai, L.

    The idea that water on the Moon s surface would eventually migrate to the lunar poles and be cold-trapped there indefinitely was first proposed in the 1960 s and subsequent modeling has generally confirmed this possibility The existence of such polar water deposits is critical for planning future lunar exploration and it has important implications for lunar science as well However observations from the Earth and orbiting spacecraft have not been able to categorically confirm or deny the existence of ice in permanently shadowed depressions at the lunar poles The next generation of orbiters such as LRO Chandrayaan and SELENE while making important observations will be capable only of providing circumstantial evidence of water and its concentration and the challenges of landing and operating a spacecraft in the extreme conditions of permanent night are considerable We have studied a low-cost alternative approach similar to NASA s Deep Impact mission for enabling a direct detection of the existence of water in the upper few meters of the lunar subsurface Our mission uses a 1000-kg spacecraft to impact the lunar surface at 2 5-3 km sec from a geocentric trajectory This impact will excavate a crater 20 meters in diameter ejecting over 50 cubic meters of regolith Assuming a few volume percent water this ejecta would include several metric tons of ice Spectral evidence for water may be found across the electromagnetic spectrum from microwave and infrared to ultraviolet This could be derived from the immediate impact flash vapor produced through secondary

  16. Selecting landing sites for lunar lander missions using spatial analysis

    NASA Astrophysics Data System (ADS)

    Djachkova, Maia; Lazarev, Evgeniy

    Russian Federal Space Agency (Roscosmos) is planning to launch two spacecrafts to the Moon with lander missions in 2015 and 2017. [1] Here, we present an approach to create a method of landing sites selection. We researched the physical features of the Moon using spatial analysis techniques presented in ArcGIS Desktop Software in accordance with its suitability for automatic landing. Hence we analyzed Russian lunar program and received the technical characteristics of the spacecrafts and scientific goals that they should meet [1]. Thus we identified the criteria of surface suitability for landing. We divided them into two groups: scientific criteria (the hydrogen content of the regolith [2] and day and night sur-face temperature [3]) and safety criteria (surface slopes and roughness, sky view factor, the Earth altitude, presence of polar permanently shadowed regions). In conformity with some investigations it is believed that the south polar region of the Moon is the most promising territory where water ice can be found (finding water ice is the main goal for Russian lunar missions [1]). According to the selected criteria and selected area of research we used remote sensing data from LRO (Lunar Reconnaissance Orbiter) [4] as basic data, because it is the most actual and easily available. The data was processed and analyzed using spatial analysis techniques of ArcGIS Desktop Software, so we created a number of maps depicting the criteria and then combined and overlaid them. As a result of overlay process we received five territories where the landing will be safe and the scientific goals will have being met. It should be noted that our analysis is only the first order assessment and the results cannot be used as actual landing sites for the lunar missions in 2015 and 2017, since a number of factors, which can only be analyzed in a very large scale, was not taken into account. However, an area of researching is narrowed to five territories, what can make the future

  17. Part-Task Simulation of Synthetic and Enhanced Vision Concepts for Lunar Landing

    NASA Technical Reports Server (NTRS)

    Arthur, Jarvis J., III; Bailey, Randall E.; Jackson, E. Bruce; Williams, Steven P.; Kramer, Lynda J.; Barnes, James R.

    2010-01-01

    During Apollo, the constraints placed by the design of the Lunar Module (LM) window for crew visibility and landing trajectory were a major problem. Lunar landing trajectories were tailored to provide crew visibility using nearly 70 degrees look-down angle from the canted LM windows. Apollo landings were scheduled only at specific times and locations to provide optimal sunlight on the landing site. The complications of trajectory design and crew visibility are still a problem today. Practical vehicle designs for lunar lander missions using optimal or near-optimal fuel trajectories render the natural vision of the crew from windows inadequate for the approach and landing task. Further, the sun angles for the desirable landing areas in the lunar polar regions create visually powerful, season-long shadow effects. Fortunately, Synthetic and Enhanced Vision (S/EV) technologies, conceived and developed in the aviation domain, may provide solutions to this visibility problem and enable additional benefits for safer, more efficient lunar operations. Piloted simulation evaluations have been conducted to assess the handling qualities of the various lunar landing concepts, including the influence of cockpit displays and the informational data and formats. Evaluation pilots flew various landing scenarios with S/EV displays. For some of the evaluation trials, an eye glasses-mounted, monochrome monocular display, coupled with head tracking, was worn. The head-worn display scene consisted of S/EV fusion concepts. The results of this experiment showed that a head-worn system did not increase the pilot s workload when compared to using just the head-down displays. As expected, the head-worn system did not provide an increase in performance measures. Some pilots commented that the head-worn system provided greater situational awareness compared to just head-down displays.

  18. Part-task simulation of synthetic and enhanced vision concepts for lunar landing

    NASA Astrophysics Data System (ADS)

    Arthur, Jarvis J., III; Bailey, Randall E.; Jackson, E. Bruce; Barnes, James R.; Williams, Steven P.; Kramer, Lynda J.

    2010-04-01

    During Apollo, the constraints placed by the design of the Lunar Module (LM) window for crew visibility and landing trajectory were "a major problem." Lunar landing trajectories were tailored to provide crew visibility using nearly 70 degrees look-down angle from the canted LM windows. Apollo landings were scheduled only at specific times and locations to provide optimal sunlight on the landing site. The complications of trajectory design and crew visibility are still a problem today. Practical vehicle designs for lunar lander missions using optimal or near-optimal fuel trajectories render the natural vision of the crew from windows inadequate for the approach and landing task. Further, the sun angles for the desirable landing areas in the lunar polar regions create visually powerful, season-long shadow effects. Fortunately, Synthetic and Enhanced Vision (S/EV) technologies, conceived and developed in the aviation domain, may provide solutions to this visibility problem and enable additional benefits for safer, more efficient lunar operations. Piloted simulation evaluations have been conducted to assess the handling qualities of the various lunar landing concepts, including the influence of cockpit displays and the informational data and formats. Evaluation pilots flew various landing scenarios with S/EV displays. For some of the evaluation trials, an eye glasses-mounted, monochrome monocular display, coupled with head tracking, was worn. The head-worn display scene consisted of S/EV fusion concepts. The results of this experiment showed that a head-worn system did not increase the pilot's workload when compared to using just the head-down displays. As expected, the head-worn system did not provide an increase in performance measures. Some pilots commented that the head-worn system provided greater situational awareness compared to just head-down displays.

  19. View of the Lunar Module "Orion" and Lunar Roving Vehicle during first EVA

    NASA Image and Video Library

    1972-04-21

    AS16-107-17436 (21 April 1972) --- An excellent view of the Lunar Module (LM) "Orion" and Lunar Roving Vehicle (LRV), as photographed by astronaut Charles M. Duke Jr., lunar module pilot, during the first Apollo 16 extravehicular activity (EVA) at the Descartes landing site. Astronaut John W. Young, commander, can be seen directly behind the LRV. The lunar surface feature in the left background is Stone Mountain. While astronauts Young and Duke descended in the LM to explore the Descartes highlands landing site on the moon, astronaut Thomas K. Mattingly II, command module pilot, remained with the Command and Service Modules (CSM) "Casper" in lunar orbit.

  20. Precision Lunar Laser Ranging For Lunar and Gravitational Science

    NASA Technical Reports Server (NTRS)

    Merkowitz, S. M.; Arnold, D.; Dabney, P. W.; Livas, J. C.; McGarry, J. F.; Neumann, G. A.; Zagwodzki, T. W.

    2008-01-01

    Laser ranging to retroreflector arrays placed on the lunar surface by the Apollo astronauts and the Soviet Lunar missions over the past 39 years have dramatically increased our understanding of gravitational physics along with Earth and Moon geophysics, geodesy, and dynamics. Significant advances in these areas will require placing modern retroreflectors and/or active laser ranging systems at new locations on the lunar surface. Ranging to new locations will enable better measurements of the lunar librations, aiding in our understanding of the interior structure of the moon. More precise range measurements will allow us to study effects that are too small to be observed by the current capabilities as well as enabling more stringent tests of Einstein's theory of General Relativity. Setting up retroreflectors was a key part of the Apollo missions so it is natural to ask if future lunar missions should include them as well. The Apollo retroreflectors are still being used today, and nearly 40 years of ranging data has been invaluable for scientific as well as other studies such as orbital dynamics. However, the available retroreflectors all lie within 26 degrees latitude of the equator, and the most useful ones within 24 degrees longitude of the sub-earth meridian. This clustering weakens their geometrical strength.

  1. Inferred Lunar Boulder Distributions at Decimeter Scales

    NASA Technical Reports Server (NTRS)

    Baloga, S. M.; Glaze, L. S.; Spudis, P. D.

    2012-01-01

    Block size distributions of impact deposits on the Moon are diagnostic of the impact process and environmental effects, such as target lithology and weathering. Block size distributions are also important factors in trafficability, habitability, and possibly the identification of indigenous resources. Lunar block sizes have been investigated for many years for many purposes [e.g., 1-3]. An unresolved issue is the extent to which lunar block size distributions can be extrapolated to scales smaller than limits of resolution of direct measurement. This would seem to be a straightforward statistical application, but it is complicated by two issues. First, the cumulative size frequency distribution of observable boulders rolls over due to resolution limitations at the small end. Second, statistical regression provides the best fit only around the centroid of the data [4]. Confidence and prediction limits splay away from the best fit at the endpoints resulting in inferences in the boulder density at the CPR scale that can differ by many orders of magnitude [4]. These issues were originally investigated by Cintala and McBride [2] using Surveyor data. The objective of this study was to determine whether the measured block size distributions from Lunar Reconnaissance Orbiter Camera - Narrow Angle Camera (LROC-NAC) images (m-scale resolution) can be used to infer the block size distribution at length scales comparable to Mini-RF Circular Polarization Ratio (CPR) scales, nominally taken as 10 cm. This would set the stage for assessing correlations of inferred block size distributions with CPR returns [6].

  2. Indigenous lunar construction materials

    NASA Technical Reports Server (NTRS)

    Rogers, Wayne; Sture, Stein

    1991-01-01

    The objectives are the following: to investigate the feasibility of the use of local lunar resources for construction of a lunar base structure; to develop a material processing method and integrate the method with design and construction of a pressurized habitation structure; to estimate specifications of the support equipment necessary for material processing and construction; and to provide parameters for systems models of lunar base constructions, supply, and operations. The topics are presented in viewgraph form and include the following: comparison of various lunar structures; guidelines for material processing methods; cast lunar regolith; examples of cast basalt components; cast regolith process; processing equipment; mechanical properties of cast basalt; material properties and structural design; and future work.

  3. Lunar preform manufacturing

    NASA Technical Reports Server (NTRS)

    Leong, Gregory N.; Nease, Sandra; Lager, Vicky; Yaghjian, Raffy; Waller, Chris

    1992-01-01

    A design for a machine to produce hollow, continuous fiber-reinforced composite rods of lunar glass and a liquid crystalline matrix using the pultrusion process is presented. The glass fiber will be produced from the lunar surface, with the machine and matrix being transported to the moon. The process is adaptable to the low gravity and near-vacuum environment of the moon through the use of a thermoplastic matrix in fiber form as it enters the pultrusion process. With a power consumption of 5 kW, the proposed machine will run unmanned continuously in fourteen-day cycles, matching the length of lunar days. A number of dies could be included that would allow the machine to produce rods of varying diameter, I-beams, angles, and other structural members. These members could then be used for construction on the lunar surface or transported for use in orbit. The benefits of this proposal are in the savings in weight of the cargo each lunar mission would carry. The supply of glass on the moon is effectively endless, so enough rods would have to be produced to justify its transportation, operation, and capital cost. This should not be difficult as weight on lunar mission is at a premium.

  4. Lunar Magnetism.

    NASA Astrophysics Data System (ADS)

    Fuller, M.

    2008-05-01

    Models of lunar magnetism need to explain (1) strong Natural Remanent Magnetization (NRM), as indicated by IRMs normalization in some of the returned Apollo samples with ages from about 3.9Ae to 3.65Ae, (2) magnetic anomalies antipodal to the young basins of a similar age, (3) the absence of major magnetic anomalies over these same basins, (4) the presence of central anomalies over some Nectarian and PreNectarian basins, and finally (5) strong fields with scale lengths of homogeneity of the order of kms, or less, found over the Cayley Formations and similar material. Observations (1), (2) and (4) have frequently been taken to require the presence of a lunar dynamo. However, if there had been a lunar dynamo at this time, why are there so few samples that carry an unequivocal strong NRM appropriate for TRM in the proposed dynamo fields. It is also an uncomfortable coincidence that the dynamo appears to cease to give strong fields close to the end of the time of heavy bombardment. Given these difficulties with the lunar dynamo model, it is worth reexamining other possible explanations of lunar magnetism. The obvious candidate is impact related shock magnetization, which already appears to provide an explanation for the magnetization of 62235, a key sample with strong magnetization. Hood's model accounts for the antipodal anomalies, while the observations at Vredefort may account for the anomalies over central peaks and uplifted ring structures in major basins. The question that remains is whether all of the observed lunar magnetization can be explained by impact related magnetization, or whether a dynamo is still required.

  5. Mobile Lunar Base Concepts

    NASA Astrophysics Data System (ADS)

    Cohen, Marc M.

    2004-02-01

    This paper describes three innovative concepts for a mobile lunar base. These concept combine design research for habitat architecture, mobility systems, habitability, radiation protection, human factors, and living and working environments on the lunar surface. The mobile lunar base presents several key advantages over conventional static base notions. These advantages concern landing zone safety, the requirement to move modules over the lunar surface, and the ability to stage mobile reconnaissance with effective systemic redundancy. All of these concerns lead to the consideration of a mobile walking habitat module and base design. The key issues involve landing zone safety, the ability to transport habitat modules across the surface, and providing reliability and redundancy to exploration traverses in pressurized vehicles. With self-ambulating lunar base modules, it will be feasible to have each module separate itself from its retro-rocket thruster unit, and walk five to ten km away from the LZ to a pre-selected site. These mobile modules can operate in an autonomous or teleoperated mode to navigate the lunar surface. At the site of the base, the mobile modules can combine together; make pressure port connections among themselves, to create a multi-module pressurized lunar base.

  6. Lunar seismicity and tectonics

    NASA Technical Reports Server (NTRS)

    Lammlein, D. R.

    1977-01-01

    Results are presented for an analysis of all moonquake data obtained by the Apollo seismic stations during the period from November 1969 to May 1974 and a preliminary analysis of critical data obtained in the interval from May 1974 to May 1975. More accurate locations are found for previously located moonquakes, and additional sources are located. Consideration is given to the sources of natural seismic signals, lunar seismic activity, moonquake periodicities, tidal periodicities in moonquake activity, hypocentral locations and occurrence characteristics of deep and shallow moonquakes, lunar tidal control over moonquakes, lunar tectonism, the locations of moonquake belts, and the dynamics of the lunar interior. It is concluded that: (1) moonquakes are distributed in several major belts of global extent that coincide with regions of the youngest and most intense volcanic and tectonic activity; (2) lunar tides control both the small quakes occurring at great depth and the larger quakes occurring near the surface; (3) the moon has a much thicker lithosphere than earth; (4) a single tectonic mechanism may account for all lunar seismic activity; and (5) lunar tidal stresses are an efficient triggering mechanism for moonquakes.

  7. Lunar Influences on Human Aggression.

    ERIC Educational Resources Information Center

    Russell, Gordon W.; Dua, Manjula

    1983-01-01

    Used league records of all Canadian hockey games (N=426) played during a season to test a lunar-aggression hypothesis. Despite the use of multiple measures of lunar phase and interpersonal aggression, support for lunar influence was not forthcoming. Supplemental data revealed that beliefs in lunar influence are fairly common. (JAC)

  8. Apollo 12 Mission image - Lunar surface near lunar module

    NASA Image and Video Library

    1969-11-19

    AS12-47-6949 (19-20 Nov. 1969) --- A photograph of the Apollo 12 lunar landing site taken during the extravehicular activity (EVA) of astronauts Charles Conrad Jr., commander; and Alan L. Bean, lunar module pilot. The Apollo 12 Lunar Module (LM) is on the left. Barely visible in the center of the picture, in the shadows on the farside of the crater, is the Surveyor 3 spacecraft. The two spacecraft are about 600 feet apart. Conrad and Bean walked over to Surveyor 3 during their second EVA. The television camera and several other pieces were taken from Surveyor 3 and brought back to Earth for scientific examination. Astronaut Richard F. Gordon Jr., command module pilot, remained with the Command and Service Modules (CSM) in lunar orbit, while astronauts Conrad and Bean descended in the LM to explore the moon. The considerable glare in the picture is caused by the position of the sun. The Apollo tool carrier is the object next to the LM footpad.

  9. Lunar Dust: Characterization and Mitigation

    NASA Technical Reports Server (NTRS)

    Hyatt. Mark J.; Feighery, John

    2007-01-01

    Lunar dust is a ubiquitous phenomenon which must be explicitly addressed during upcoming human lunar exploration missions. Near term plans to revisit the moon as a stepping stone for further exploration of Mars, and beyond, places a primary emphasis on characterization and mitigation of lunar dust. Comprised of regolith particles ranging in size from tens of nanometers to microns, lunar dust is a manifestation of the complex interaction of the lunar soil with multiple mechanical, electrical, and gravitational effects. The environmental and anthropogenic factors effecting the perturbation, transport, and deposition of lunar dust must be studied in order to mitigate it's potentially harmful effects on exploration systems. The same hold true for assessing the risk it may pose for toxicological health problems if inhaled. This paper presents the current perspective and implementation of dust knowledge management and integration, and mitigation technology development activities within NASA's Exploration Technology Development Program. This work is presented within the context of the Constellation Program's Integrated Lunar Dust Management Strategy. This work further outlines the scientific basis for lunar dust behavior, it's characteristics and potential effects, and surveys several potential strategies for its control and mitigation both for lunar surface operations and within the working volumes of a lunar outpost. The paper also presents a perspective on lessons learned from Apollo and forensics engineering studies of Apollo hardware.

  10. Lunar based massdriver applications

    NASA Astrophysics Data System (ADS)

    Ehresmann, Manfred; Gabrielli, Roland Atonius; Herdrich, Georg; Laufer, René

    2017-05-01

    The results of a lunar massdriver mission and system analysis are discussed and show a strong case for a permanent lunar settlement with a site near the lunar equator. A modular massdriver concept is introduced, which uses multiple acceleration modules to be able to launch large masses into a trajectory that is able to reach Earth. An orbital mechanics analysis concludes that the launch site will be in the Oceanus Procellarum a flat, Titanium rich lunar mare area. It is further shown that the bulk of massdriver components can be manufactured by collecting lunar minerals, which are broken down into its constituting elements. The mass to orbit transfer rates of massdriver case study are significant and can vary between 1.8 kt and 3.3 megatons per year depending on the available power. Thus a lunar massdriver would act as a catalyst for any space based activities and a game changer for the scale of feasible space projects.

  11. Heterogeneity in lunar anorthosite meteorites: implications for the lunar magma ocean model.

    PubMed

    Russell, Sara S; Joy, Katherine H; Jeffries, Teresa E; Consolmagno, Guy J; Kearsley, Anton

    2014-09-13

    The lunar magma ocean model is a well-established theory of the early evolution of the Moon. By this model, the Moon was initially largely molten and the anorthositic crust that now covers much of the lunar surface directly crystallized from this enormous magma source. We are undertaking a study of the geochemical characteristics of anorthosites from lunar meteorites to test this model. Rare earth and other element abundances have been measured in situ in relict anorthosite clasts from two feldspathic lunar meteorites: Dhofar 908 and Dhofar 081. The rare earth elements were present in abundances of approximately 0.1 to approximately 10× chondritic (CI) abundance. Every plagioclase exhibited a positive Eu-anomaly, with Eu abundances of up to approximately 20×CI. Calculations of the melt in equilibrium with anorthite show that it apparently crystallized from a magma that was unfractionated with respect to rare earth elements and ranged in abundance from 8 to 80×CI. Comparisons of our data with other lunar meteorites and Apollo samples suggest that there is notable heterogeneity in the trace element abundances of lunar anorthosites, suggesting these samples did not all crystallize from a common magma source. Compositional and isotopic data from other authors also suggest that lunar anorthosites are chemically heterogeneous and have a wide range of ages. These observations may support other models of crust formation on the Moon or suggest that there are complexities in the lunar magma ocean scenario to allow for multiple generations of anorthosite formation. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  12. Heterogeneity in lunar anorthosite meteorites: implications for the lunar magma ocean model

    PubMed Central

    Russell, Sara S.; Joy, Katherine H.; Jeffries, Teresa E.; Consolmagno, Guy J.; Kearsley, Anton

    2014-01-01

    The lunar magma ocean model is a well-established theory of the early evolution of the Moon. By this model, the Moon was initially largely molten and the anorthositic crust that now covers much of the lunar surface directly crystallized from this enormous magma source. We are undertaking a study of the geochemical characteristics of anorthosites from lunar meteorites to test this model. Rare earth and other element abundances have been measured in situ in relict anorthosite clasts from two feldspathic lunar meteorites: Dhofar 908 and Dhofar 081. The rare earth elements were present in abundances of approximately 0.1 to approximately 10× chondritic (CI) abundance. Every plagioclase exhibited a positive Eu-anomaly, with Eu abundances of up to approximately 20×CI. Calculations of the melt in equilibrium with anorthite show that it apparently crystallized from a magma that was unfractionated with respect to rare earth elements and ranged in abundance from 8 to 80×CI. Comparisons of our data with other lunar meteorites and Apollo samples suggest that there is notable heterogeneity in the trace element abundances of lunar anorthosites, suggesting these samples did not all crystallize from a common magma source. Compositional and isotopic data from other authors also suggest that lunar anorthosites are chemically heterogeneous and have a wide range of ages. These observations may support other models of crust formation on the Moon or suggest that there are complexities in the lunar magma ocean scenario to allow for multiple generations of anorthosite formation. PMID:25114312

  13. Lunar Paleomagnetism: The Case for an Ancient Lunar Dynamo. (Invited)

    NASA Astrophysics Data System (ADS)

    Fuller, M.; Weiss, B. P.; Gattacceca, J.

    2010-12-01

    The failure of lunar samples to satisfy minimal criteria for classical paleointensity determinations has led to skepticism of the case for an ancient lunar dynamo. There are however practical and fundamental reasons why such experiments are doomed to failure in most lunar samples. In such methods, NRMs in successive blocking temperatures ranges are thermally demagnetized and replaced with partial thermoremanent magnetization (pTRMs) given in a known field (Thellier, 1938). A practical difficulty is that it is hard to heat lunar samples without altering them. A fundamental problem is that whereas pottery, for which these methods were designed, carries a primary (TRM) from its initial cooling and little secondary magnetization, lunar samples are likely to carry weak field isothermal remanent magnetization (IRM) and shock remanent magnetization (SRM) as secondary overprints. Thermal demagnetization does not isolate weak field IRM well. For example, on thermal demagnetization of the Apollo sample 14053.48 carrying a 2000nT TRM with a superposed 5mT IRM, the IRM persists to the Curie point obscuring the TRM. Fortunately, weak field IRM is removed by AF demagnetization to fields comparable to that in which it is acquired. Furthermore, Gattacceca et al. (2008) demonstrated that experimentally generated SRM from several GPa, like weak field IRM, is demagnetized by AF fields of between ~20 and 30 mT, leaving the pre-shock remanent magnetization essentially untouched. This agrees with our theoretical understanding of SRM, which at pressures below approximately the Hugoniot elastic limit (several GPa for most rocks) should essentially be a pressure remanent magnetization (e.g., Dunlop and Ozdemir, 1997). Unlike IRM, SRM in the range of a few GPa may carry recoverable lunar field records (Gattacceca et al., 2008). NRM in samples shocked to less than ~5 GPa, which is stable against AF demagnetization beyond the fields necessary to eliminate weak SRM (~20-30 mT), requires some

  14. Near Real Time Prospecting for Lunar Volatiles: Demonstrating RESOLVE Science in the Field

    NASA Technical Reports Server (NTRS)

    Elphic, Richard; Colaprete, Anthony; Heldmann, Jennifer; Mattes, Gregory W.; Ennico, Kimberly; Sanders, Gerald; Quinn, Jacqueline; Tegnerud, Erin Leigh; Marinova, Margarita; Larson, William E.; hide

    2012-01-01

    The Regolith and Environment Science and Oxygen & Lunar Volatile Extraction (RESOLVE) project aims to demonstrate the utility of "in situ resource utilization". In situ resource utilization (ISRU) is a way to rebalance the economics of spaceflight by reducing or eliminating materials that must be brought up from Earth and placed on the surface of the Moon for human use. RESOLVE is developing a rover-borne payload that (1) can locate near subsurface volatiles, (2) excavate and analyze samples of the volatile-bearing regolith, and (3) demonstrate the form, extractability and usefulness of the materials. Such investigations are important not only for ISRU but are also critically important for understanding the scientific nature of these intriguing lunar polar volatile deposits. Temperature models and orbital data suggest near surface volatile concentrations may exist at briefly lit lunar polar locations outside persistently shadowed regions. A lunar rover could be remotely operated at some of these locations for the 4-7 days of expected sunlight at relatively low cost. In July 2012 the RESOLVE project conducted a full-scale field demonstration. In particular, the ability to perform the real-time measurement analysis necessary to search for volatiles and the ability to combine the various measurement techniques to meet the mission measurement and science goals. With help from the Pacific International Space Center for Exploration Systems (PISCES), a lunar rover prototype (provided by the Canadian Space Agency) was equipped with prospecting instruments (neutron spectrometer and near-infrared spectrometer), subsurface access and sampling tools, including both an auger and coring drill (provided by CSA) and subsurface sample analysis instrumentation, including a sample oven system, the Oxygen and Volatile Extraction Node (OVEN), and Gas Chromatograph / Mass Spectrometer system, the Lunar Advanced Volatile Analysis (LAVA) system. Given the relatively short time period this

  15. Near Real-Time Prospecting for Lunar Volatiles: Demonstrating RESOLVE Science in the Field

    NASA Astrophysics Data System (ADS)

    Elphic, R. C.; Colaprete, A.; Heldmann, J. L.; Mattes, G.; Ennico, K.; Sanders, G. B.; Quinn, J.; Fritzler, E.; Marinova, M.; Roush, T. L.; Stoker, C.; Larson, W.; Picard, M.; McMurray, R.; Morse, S.

    2012-12-01

    The Regolith and Environment Science and Oxygen & Lunar Volatile Extraction (RESOLVE) project aims to demonstrate the utility of "in situ resource utilization". In situ resource utilization (ISRU) is a way to rebalance the economics of spaceflight by reducing or eliminating materials that must be brought up from Earth and placed on the surface of the Moon for human use. RESOLVE is developing a rover-borne payload that (1) can locate near subsurface volatiles, (2) excavate and analyze samples of the volatile-bearing regolith, and (3) demonstrate the form, extractability and usefulness of the materials. Such investigations are important not only for ISRU but are also critically important for understanding the scientific nature of these intriguing lunar polar volatile deposits. Temperature models and orbital data suggest near surface volatile concentrations may exist at briefly lit lunar polar locations outside persistently shadowed regions. A lunar rover could be remotely operated at some of these locations for the 4-7 days of expected sunlight at relatively low cost. In July 2012 the RESOLVE project conducted a full-scale field demonstration. In particular, the ability to perform the real-time measurement analysis necessary to search for volatiles and the ability to combine the various measurement techniques to meet the mission measurement and science goals. With help from the Pacific International Space Center for Exploration Systems (PISCES), a lunar rover prototype (provided by the Canadian Space Agency) was equipped with prospecting instruments (neutron spectrometer and near-infrared spectrometer), subsurface access and sampling tools, including both an auger and coring drill (provided by CSA) and subsurface sample analysis instrumentation, including a sample oven system, the Oxygen and Volatile Extraction Node (OVEN), and Gas Chromatograph / Mass Spectrometer system, the Lunar Advanced Volatile Analysis (LAVA) system. Given the relatively short time period this

  16. The Lunar Mapping and Modeling Portal: Capabilities and Lunar Data Products to support Return to the Moon

    NASA Astrophysics Data System (ADS)

    Law, E.; Bui, B.; Chang, G.; Goodale, C. E.; Kim, R.; Malhotra, S.; Ramirez, P.; Rodriguez, L.; Sadaqathulla, S.; Nall, M.; Muery, K.

    2012-12-01

    The Lunar Mapping and Modeling Portal (LMMP), is a multi-center project led by NASA's Marshall Space Flight Center. The LMMP is a web-based Portal and a suite of interactive visualization and analysis tools to enable lunar scientists, engineers, and mission planners to access mapped lunar data products from past and current lunar missions, e.g., Lunar Reconnaissance Orbiter, Apollo, Lunar Orbiter, Lunar Prospector, and Clementine. The Portal allows users to search, view and download a vast number of the most recent lunar digital products including image mosaics, digital elevation models, and in situ lunar resource maps such as iron and hydrogen abundance. The Portal also provides a number of visualization and analysis tools that perform lighting analysis and local hazard assessments, such as, slope, surface roughness and crater/boulder distribution. In this talk, we will give a brief overview of the project. After that, we will highlight various key features and Lunar data products. We will further demonstrate image viewing and layering of lunar map images via our web portal as well as mobile devices.

  17. Evidence for Water Ie on the Moon: Results for Anomalous Polar Craters from the LRO Mini-RF Imaging Radar

    NASA Technical Reports Server (NTRS)

    Spudis, P.D.; Bussey, D. B. J.; Baloga, S. M.; Cahill, J. T. S.; Glaze, L. S.; Patterson, G. W.; Raney, R. K.; Thompson, T. W.; Thomson, B. J.; Ustinov, E. A.

    2013-01-01

    The Mini-RF radar instrument on the Lunar Reconnaissance Orbiter spacecraft mapped both lunar poles in two different RF wavelengths (complete mapping at 12.6 cm S-band and partial mapping at 4.2 cm X-band) in two look directions, removing much of the ambiguity of previous Earth- and spacecraft-based radar mapping of the Moon's polar regions. The poles are typical highland terrain, showing expected values of radar cross section (albedo) and circular polarization ratio (CPR). Most fresh craters display high values of CPR in and outside the crater rim; the pattern of these CPR distributions is consistent with high levels of wavelength-scale surface roughness associated with the presence of block fields, impact melt flows, and fallback breccia. A different class of polar crater exhibits high CPR only in their interiors, interiors that are both permanently dark and very cold (less than 100 K). Application of scattering models developed previously suggests that these anomalously high-CPR deposits exhibit behavior consistent with the presence of water ice. If this interpretation is correct, then both poles may contain several hundred million tons of water in the form of relatively "clean" ice, all within the upper couple of meters of the lunar surface. The existence of significant water ice deposits enables both long-term human habitation of the Moon and the creation of a permanent cislunar space transportation system based upon the harvest and use of lunar propellant.

  18. Evidence for Water Ice on the Moon: Results for Anomalous Polar Craters from the LRO Mini-RF Imaging Radar

    NASA Technical Reports Server (NTRS)

    Spudis, P. D.; Bussey, D. B. J.; Baloga, S. M.; Cahill, J. T. S.; Glaze, L. S.; Patterson, G. W.; Raney, R. K.; Thompson, T. W.; Thomson, B. J.; Ustinov, E. A.

    2013-01-01

    The Mini-RF radar instrument on the Lunar Reconnaissance Orbiter spacecraft mapped both lunar poles in two different RF wavelengths (complete mapping at 12.6 cm S-band and partial mapping at 4.2 cm X-band) in two look directions, removing much of the ambiguity of previous Earth- and spacecraft-based radar mapping of the Moon's polar regions. The poles are typical highland terrain, showing expected values of radar cross section (albedo) and circular polarization ratio (CPR). Most fresh craters display high values of CPR in and outside the crater rim; the pattern of these CPR distributions is consistent with high levels of wavelength-scale surface roughness associated with the presence of block fields, impact melt flows, and fallback breccia. A different class of polar crater exhibits high CPR only in their interiors, interiors that are both permanently dark and very cold (less than 100 K). Application of scattering models developed previously suggests that these anomalously high-CPR deposits exhibit behavior consistent with the presence of water ice. If this interpretation is correct, then both poles may contain several hundred million tons of water in the form of relatively "clean" ice, all within the upper couple of meters of the lunar surface. The existence of significant water ice deposits enables both long-term human habitation of the Moon and the creation of a permanent cislunar space transportation system based upon the harvest and use of lunar propellant.

  19. High-Grading Lunar Samples

    NASA Technical Reports Server (NTRS)

    Allen, Carlton; Sellar, Glenn; Nunez, Jorge; Mosie, Andrea; Schwarz, Carol; Parker, Terry; Winterhalter, Daniel; Farmer, Jack

    2009-01-01

    Astronauts on long-duration lunar missions will need the capability to high-grade their samples to select the highest value samples for transport to Earth and to leave others on the Moon. We are supporting studies to define the necessary and sufficient measurements and techniques for high-grading samples at a lunar outpost. A glovebox, dedicated to testing instruments and techniques for high-grading samples, is in operation at the JSC Lunar Experiment Laboratory. A reference suite of lunar rocks and soils, spanning the full compositional range found in the Apollo collection, is available for testing in this laboratory. Thin sections of these samples are available for direct comparison. The Lunar Sample Compendium, on-line at http://www-curator.jsc.nasa.gov/lunar/compendium.cfm, summarizes previous analyses of these samples. The laboratory, sample suite, and Compendium are available to the lunar research and exploration community. In the first test of possible instruments for lunar sample high-grading, we imaged 18 lunar rocks and four soils from the reference suite using the Multispectral Microscopic Imager (MMI) developed by Arizona State University and JPL (see Farmer et. al. abstract). The MMI is a fixed-focus digital imaging system with a resolution of 62.5 microns/pixel, a field size of 40 x 32 mm, and a depth-of-field of approximately 5 mm. Samples are illuminated sequentially by 21 light emitting diodes in discrete wavelengths spanning the visible to shortwave infrared. Measurements of reflectance standards and background allow calibration to absolute reflectance. ENVI-based software is used to produce spectra for specific minerals as well as multi-spectral images of rock textures.

  20. Infrared Spectral Observations While Drilling into a Frozen Lunar Simulant

    NASA Technical Reports Server (NTRS)

    Roush, Ted L.; Colaprete, Anthony; Thompson, Sarah; Cook, Amanda; Kleinhenz, Julie

    2014-01-01

    Past and continuing observations indicate an enrichment of volatile materials in lunar polar regions. While these volatiles may be located near the surface, access to them will likely require subsurface sampling, during which it is desirable to monitor the volatile content. In a simulation of such activities, a multilayer lunar simulant was prepared with differing water content, and placed inside a thermal vacuum chamber at Glenn Research Center (GRC). The soil profile was cooled using liquid nitrogen. In addition to the soil, a drill and infrared (IR) spectrometer (1600-3400 nm) were also located in the GRC chamber. We report the spectral observations obtained during a sequence where the drill was repeatedly inserted and extracted, to different depths, at the same location. We observe an overall increase in the spectral signature of water ice over the duration of the test. Additionally, we observe variations in the water ice spectral signature as the drill encounters different layers.

  1. REE Partitioning in Lunar Minerals

    NASA Technical Reports Server (NTRS)

    Rapp, J. F.; Lapen, T. J.; Draper, D. S.

    2015-01-01

    Rare earth elements (REE) are an extremely useful tool in modeling lunar magmatic processes. Here we present the first experimentally derived plagioclase/melt partition coefficients in lunar compositions covering the entire suite of REE. Positive europium anomalies are ubiquitous in the plagioclase-rich rocks of the lunar highlands, and complementary negative Eu anomalies are found in most lunar basalts. These features are taken as evidence of a large-scale differentiation event, with crystallization of a global-scale lunar magma ocean (LMO) resulting in a plagioclase flotation crust and a mafic lunar interior from which mare basalts were subsequently derived. However, the extent of the Eu anomaly in lunar rocks is variable. Fagan and Neal [1] reported highly anorthitic plagioclase grains in lunar impact melt rock 60635,19 that displayed negative Eu anomalies as well as the more usual positive anomalies. Indeed some grains in the sample are reported to display both positive and negative anomalies. Judging from cathodoluminescence images, these anomalies do not appear to be associated with crystal overgrowths or zones.

  2. SELMA: a mission to study lunar environment and surface interaction

    NASA Astrophysics Data System (ADS)

    Barabash, Stas; Futaana, Yoshifumi

    2017-04-01

    SELMA (Surface, Environment, and Lunar Magnetic Anomalies) proposed for the ESA M5 mission opportunity is a mission to study how the Moon environment and surface interact. SELMA addresses four overarching science questions: (1) What is the origin of water on the Moon? (2) How do the "volatile cycles" on the Moon work? (3) How do the lunar mini-magnetospheres work? (4) What is the influence of dust on the lunar environment and surface? SELMA uses a unique combination of remote sensing via UV, IR, and energetic neutral atoms and local measurements of plasma, fields, waves, exospheric gasses, and dust. It will also conduct an impact experiment to investigate volatile content in the soil of the permanently shadowed area of the Shakleton crater. SELMA carries an impact probe to sound the Reiner-Gamma mini-magnetosphere and its interaction with the lunar regolith from the SELMA orbit down to the surface. The SELMA science objectives include: - Establish the role of the solar wind and exosphere in the formation of the water bearing materials; - Determine the water content in the regolith of the permanently shadowed region and its isotope composition; - Establish variability, sources and sinks of the lunar exosphere and its relations to impact events; - Investigate a mini-magnetosphere interaction with the solar wind; - Investigate the long-term effects of mini-magnetospheres on the local surface; - Investigate how the impact events affect the lunar dust environments; - Investigate how the plasma effects result in lofting the lunar dust; SELMA is a flexible and short (15 months) mission including the following elements SELMA orbiter, SELMA Impact Probe for Magnetic Anomalies (SIP-MA), passive Impactor, and Relaying CubeSat (RCS). SELMA is placed on quasi-frozen polar orbit 30 km x 200 km with the pericenter over the South Pole. Approximately 9 months after the launch SELMA releases SIP-MA to sound the Reiner-Gamma magnetic anomaly with very high time resolution <0.5 s to

  3. Lunar igneous rocks and the nature of the lunar interior

    NASA Technical Reports Server (NTRS)

    Hays, J. F.; Walker, D.

    1974-01-01

    Lunar igneous rocks are interpreted, which can give useful information about mineral assemblages and mineral chemistry as a function of depth in the lunar interior. Terra rocks, though intensely brecciated, reveal, in their chemistry, evidence for a magmatic history. Partial melting of feldspathic lunar crustal material occurred in the interval 4.6 to 3.9 gy. Melting of ilmenite-bearing cumulates at depths near 100 km produced parent magmas for Apollo 11 and 17 titaniferous mare basalts in the interval 3.8 to 3.6 gy. Melting of ilmenite-free olivine pyroxenites at depths greater than 200 km produced low-titanium mare basalts in the interval 3.4 to 3.1 gy. No younger igneous rocks have yet been recognized among the lunar samples and present-day melting seems to be limited to depths greater than 1000 km.

  4. Lunar igneous rocks and the nature of the lunar interior

    NASA Technical Reports Server (NTRS)

    Hays, J. F.; Walker, D.

    1977-01-01

    Lunar igneous rocks, properly interpreted, can give useful information about mineral assemblages and mineral chemistry as a function of depth in the lunar interior. Though intensely brecciated, terra rocks reveal, in their chemistry, evidence for a magmatic history. Partial melting of feldspathic lunar crustal material occurred in the interval 4.6 to 3.9 Gy. Melting of ilmenite-bearing cumulates at depths near 100 km produced parent magmas for Apollo 11 and 17 titaniferous mare basalts in the interval 3.8 to 3.6 Gy. Melting of ilmenite-free olivine pyroxenites (also cumulates?) at depths greater than 200 km produced low-titanium mare basalts in the interval 3.4 to 3.1 Gy. No younger igneous rocks have yet been recognized among the lunar samples and present-day melting seems to be limited to depths greater than 1000 km.

  5. Lunar Dust and Lunar Simulant Activation, Monitoring, Solution and Cellular Toxicity Properties

    NASA Technical Reports Server (NTRS)

    Jeevarajan, A.S.; Wallace, W.T.

    2009-01-01

    During the Apollo missions, many undesirable situations were encountered that must be mitigated prior to returning humans to the moon. Lunar dust (that part of the lunar regolith less than 20 m in diameter) was found to produce several problems with astronaut s suits and helmets, mechanical seals and equipment, and could have conceivably produced harmful physiological effects for the astronauts. For instance, the abrasive nature of the dust was found to cause malfunctions of various joints and seals of the spacecraft and suits. Additionally, though efforts were made to exclude lunar dust from the cabin of the lunar module, a significant amount of material nonetheless found its way inside. With the loss of gravity correlated with ascent of the lunar module from the lunar surface to rendezvous with the command module, much of the major portions of the contaminating soil and dust began to float, irritating the astronaut s eyes and being inhaled into their lungs. Our goal has been to understand some of the properties of lunar dust that could lead to possible hazards for humans. Due to the lack of an atmosphere, there is nothing to protect the lunar soil from ultraviolet radiation, solar wind, and meteorite impacts. These processes could all serve to activate the soil, or produce reactive surface species. In order to understand the possible toxic effects of the reactive dust, it is necessary to reactivate the dust, as samples returned during the Apollo missions were exposed to the atmosphere of the Earth. We have used grinding and UV exposure to mimic some of the processes occurring on the Moon. The level of activation has been monitored using two methods: fluorescence spectroscopy and electron paramagnetic resonance spectroscopy (EPR). These techniques allow the monitoring of hydroxyl radical production in solution. We have found that grinding of lunar dust produces 2-3 times the concentration of hydroxyl radicals as lunar simulant and 10 times that of quartz. Exposure

  6. The International Lunar Decade Declaration

    NASA Astrophysics Data System (ADS)

    Beldavs, V.; Foing, B.; Bland, D.; Crisafulli, J.

    2015-10-01

    The International Lunar Decade Declaration was discussed at the conference held November 9-13, 2014 in Hawaii "The Next Giant Leap: Leveraging Lunar Assets for Sustainable Pathways to Space" - http://2014giantleap.aerospacehawaii.info/ and accepted by a core group that forms the International Lunar Decade Working Group (ILDWG) that is seeking to make the proposed global event and decade long process a reality. The Declaration will be updated from time to time by members of the ILDWreflecting new knowledge and fresh perspectives that bear on building a global consortium with a mission to progress from lunar exploration to the transformation of the Moon into a wealth gene rating platform for the expansion of humankind into the solar system. When key organizations have endorsed the idea and joined the effort the text of the Declaration will be considered final. An earlier International Lunar Decade proposal was issued at the 8th ICEUM Conference in 2006 in Beijing together with 13 specific initiatives for lunar exploration[1,2,3]. These initiatives have been largely implemented with coordination among the different space agencies involved provided by the International Lunar Exploration Working Group[2,3]. The Second International Lunar Decade from 2015 reflects current trends towards increasing involvement of commercial firms in space, particularly seeking opportunities beyond low Earth orbit. The central vision of the International Lunar Decade is to build the foundations for a sustainable space economy through international collaboration concurrently addressing Lunar exploration and building a shared knowledge base;Policy development that enables collabo rative research and development leading to lunar mining and industrial and commercial development;Infrastructure on the Moon and in cislunar space (communications, transport, energy systems, way-stations, other) that reduces costs, lowers risks and speeds up the time to profitable operations;Enabling technologies

  7. Searching for Lunar Water: The Lunar Volatile Resources Analysis Package

    NASA Technical Reports Server (NTRS)

    Morse, A. D.; Barber, S. J.; Dewar, K. R.; Pillinger, J. M.; Sheridan, S.; Wright, I, P.; Gibson, E. K.; Merrifield, J. A.; Howe, C. J.; Waugh, L. J.; hide

    2012-01-01

    The ESA Lunar Lander has been conceived to demonstrate an autonomous landing capability. Once safely on the Moon the scientific payload will conduct investigations aimed at preparing the way for human exploration. As part of the provisional payload an instrument known as The Lunar Volatile Resources Analysis Package (L-VRAP) will analyse surface and exospheric volatiles. The presence and abundance of lunar water is an important consideration for ISRU (In Situ Resource Utilisation) since this is likely to be part of a strategy for supporting long-term human exploration of the Moon.

  8. Lunar power systems

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The findings of a study on the feasibility of several methods of providing electrical power for a permanently manned lunar base are provided. Two fundamentally different methods for lunar electrical power generation are considered. One is the use of a small nuclear reactor and the other is the conversion of solar energy to electricity. The baseline goal was to initially provide 300 kW of power with growth capability to one megawatt and eventually to 10 megawatts. A detailed, day by day scenario for the establishment, build-up, and operational activity of the lunar base is presented. Also presented is a conceptual approach to a supporting transportation system which identifies the number, type, and deployment of transportation vehicles required to support the base. An approach to the use of solar cells in the lunar environment was developed. There are a number of heat engines which are applicable to solar/electric conversions, and these are examined. Several approaches to energy storage which were used by the electric power utilities were examined and those which could be used at a lunar base were identified.

  9. Lunar Roving Vehicle parked in lunar depression on slope of Stone Mountain

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The Lunar Roving Vehicle appears to be parked in a deep lunar depression on the slope of Stone Mountain in this photograph of the lunar scene at Station no. 4, taken during the second Apollo 16 extravehicular activity (EVA-2) at the Descartes landing site. A sample collection bag is in the right foreground. Note field of small boulders at upper right.

  10. Lunar Orbit Anomaly

    NASA Astrophysics Data System (ADS)

    Riofrio, L.

    2012-12-01

    Independent experiments show a large anomaly in measurements of lunar orbital evolution, with applications to cosmology and the speed of light. The Moon has long been known to be slowly drifting farther from Earth due to tidal forces. The Lunar Laser Ranging Experiment (LLRE) indicates the Moon's semimajor axis increasing at 3.82 ± .07 cm/yr, anomalously high. If the Moon were today gaining angular momentum at this rate, it would have coincided with Earth less than 2 Gyr ago. Study of tidal rhythmites indicates a rate of 2.9 ± 0.6 cm/yr. Historical eclipse observations independently measure a recession rate of 2.82 ± .08 cm/yr. Detailed numerical simulation of lunar orbital evolution predicts 2.91 cm/yr. LLRE differs from three independent experiments by over12 sigma. A cosmology where speed of light c is related to time t by GM=tc^3 has been suggested to predict the redshifts of Type Ia supernovae, and a 4.507034% proportion of baryonic matter. If c were changing in the amount predicted, lunar orbital distance would appear to increase by an additional 0.935 cm/yr. An anomaly in the lunar orbit may be precisely calculated, shedding light on puzzles of 'dark energy'. In Planck units this cosmology may be summarized as M=R=t.Lunar Recession Rate;

  11. Lunar Landing Walking Simulator

    NASA Image and Video Library

    1965-09-03

    Lunar Landing Walking Simulator: Researchers at Langley study the ability of astronauts to walk, run and perform other tasks required during lunar exploration. The Reduced Gravity Simulator gave researchers the opportunity to look at the effects of one-sixth normal gravity on self-locomotion. Several Apollo astronauts practiced lunar waling at the facility.

  12. Lunar Dust Mitigation Technology Development

    NASA Technical Reports Server (NTRS)

    Hyatt, Mark J.; Deluane, Paul B.

    2008-01-01

    NASA s plans for implementing the Vision for Space Exploration include returning to the moon as a stepping stone for further exploration of Mars, and beyond. Dust on the lunar surface has a ubiquitous presence which must be explicitly addressed during upcoming human lunar exploration missions. While the operational challenges attributable to dust during the Apollo missions did not prove critical, the comparatively long duration of impending missions presents a different challenge. Near term plans to revisit the moon places a primary emphasis on characterization and mitigation of lunar dust. Comprised of regolith particles ranging in size from tens of nanometers to microns, lunar dust is a manifestation of the complex interaction of the lunar soil with multiple mechanical, electrical, and gravitational effects. The environmental and anthropogenic factors effecting the perturbation, transport, and deposition of lunar dust must be studied in order to mitigate it s potentially harmful effects on exploration systems. This paper presents the current perspective and implementation of dust knowledge management and integration, and mitigation technology development activities within NASA s Exploration Technology Development Program. This work is presented within the context of the Constellation Program s Integrated Lunar Dust Management Strategy. The Lunar Dust Mitigation Technology Development project has been implemented within the ETDP. Project scope and plans will be presented, along with a a perspective on lessons learned from Apollo and forensics engineering studies of Apollo hardware. This paper further outlines the scientific basis for lunar dust behavior, it s characteristics and potential effects, and surveys several potential strategies for its control and mitigation both for lunar surface operations and within the working volumes of a lunar outpost.

  13. Depth and Horizontal Distribution of Volatiles in Lunar Permanently Shadowed Regions

    NASA Astrophysics Data System (ADS)

    Hurley, D. M.; Bussey, B.; Lawrence, D. J.; Gladstone, R.; Elphic, R. C.; Vondrak, R. R.

    2011-12-01

    Neutron spectroscopy from Lunar Prospector returned data consistent with the presence of water ice in the near-subsurface of the Moon in permanently shadowed regions (PSRs) at low spatial resolution. Clementine and ground-based radar returned tantalizing, but inconclusive evidence of ice in lunar PSRs. Later, Mini-RF on Chandrayaan-1 and LRO detected a signature consistent with water ice in some polar craters on the Moon, but not all PSRs. Similarly, LEND on LRO detected a heterogeneous distribution of hydrogen among lunar PSRs. In addition, LAMP on LRO detected FUV spectra consistent with a heterogeneous distribution of frost on the surface of permanently shadowed regions. Yet the weakest spectral feature from LAMP was associated with the crater with the strongest hydrogen feature from LEND. The impact of LCROSS into Cabeus released water and other volatiles, but abundances were higher than the background amounts detected by neutron spectroscopy implying heterogeneity within that PSR. Data from any one instrument taken alone would lead one to a different conclusion about the distribution of volatiles than data taken from any other single instrument. Although the data from different instrumentation can seem to be disparate, the apparent discrepancy results from the different fields of view and sensitivities of the detection techniques. The complementary nature of these data can be exploited to provide a multi-dimensional view of volatiles in lunar PSRs. We apply a Monte Carlo model to describe the retention and redistribution of volatiles within lunar cold traps. The model runs constrain the coherence of volatile deposits with depth, area, and time, which allows us to examine how a given volatile distribution would appear to remote sensing experiments. This provides a big picture framework for integrating the observations of volatiles on the surface and at depth at the poles of the Moon with the goal of finding a distribution of volatiles in lunar PSRs consistent

  14. Bringing You the Moon: Lunar Education Efforts of the Center for Lunar Science and Education

    NASA Technical Reports Server (NTRS)

    Shaner, A. J.; Shupla, C.; Shipp, S.; Allen, J.; Kring, D. A.; Halligan, E.; LaConte, K.

    2012-01-01

    The Center for Lunar Science and Exploration (CLSE), a collaboration between the Lunar and Planetary Institute and NASA's Johnson Space Center, is one of seven member teams of the NASA Lunar Science Institute. In addition to research and exploration activities, the CLSE team is deeply invested in education and public outreach. Overarching goals of CLSE education are to strengthen the future science workforce, attract and retain students in STEM disciplines, and develop advocates for lunar exploration. The team's efforts have resulted in a variety of programs and products, including the creation of a variety of Lunar Traveling Exhibits and the High School Lunar Research Project, featured at http://www.lpi.usra.edu/nlsi/education/.

  15. Lunar Prospector Orbit Determination Uncertainties Using the High Resolution Lunar Gravity Models

    NASA Technical Reports Server (NTRS)

    Carranza, Eric; Konopliv, Alex; Ryne, Mark

    1999-01-01

    The Lunar Prospector (LP) mission began on January 6, 1998, when the LP spacecraft was launched from Cape Canaveral, Florida. The objectives of the mission were to determine whether water ice exists at the lunar poles, generate a global compositional map of the lunar surface, detect lunar outgassing, and improve knowledge of the lunar magnetic and gravity fields. Orbit determination of LP performed at the Jet Propulsion Laboratory (JPL) is conducted as part of the principal science investigation of the lunar gravity field. This paper will describe the JPL effort in support of the LP Gravity Investigation. This support includes high precision orbit determination, gravity model validation, and data editing. A description of the mission and its trajectory will be provided first, followed by a discussion of the orbit determination estimation procedure and models. Accuracies will be examined in terms of orbit-to-orbit solution differences, as a function of oblateness model truncation, and inclination in the plane-of-sky. Long term predictions for several gravity fields will be compared to the reconstructed orbits to demonstrate the accuracy of the orbit determination and oblateness fields developed by the Principal Gravity Investigator.

  16. Solar cells for lunar applications by vacuum evaporation of lunar regolith materials

    NASA Technical Reports Server (NTRS)

    Ignatiev, Alex

    1991-01-01

    The National Space Exploration Initiative, specifically the Lunar component, has major requirements for technology development of critical systems, one of which is electrical power. The availability of significant electrical power on the surface of the Moon is a principal driver defining the complexity of the lunar base. Proposals to generate power on the Moon include both nuclear and solar (photovoltaic) systems. A more efficient approach is to attempt utilization of the existing lunar resources to generate the power systems. Synergism may occur from the fact that there have already been lunar materials processing techniques proposed for the extraction of oxygen that would have, as by-products, materials that could be specifically used to generate solar cells. The lunar environment is a vacuum with pressures generally in the 1 x 10(exp -10) torr range. Such conditions provide an ideal environment for direct vacuum deposition of thin film solar cells using the waste silicon, iron, and TiO2 available from the lunar regolith processing meant to extract oxygen. It is proposed, therefore, to grow by vacuum deposition, thin film silicon solar cells from the improved regolith processing by-products.

  17. Lunar Balance and Locomotion

    NASA Technical Reports Server (NTRS)

    Paloski, William H.

    2008-01-01

    Balance control and locomotor patterns were altered in Apollo crewmembers on the lunar surface, owing, presumably, to a combination of sensory-motor adaptation during transit and lunar surface operations, decreased environmental affordances associated with the reduced gravity, and restricted joint mobility as well as altered center-of-gravity caused by the EVA pressure suits. Dr. Paloski will discuss these factors, as well as the potential human and mission impacts of falls and malcoordination during planned lunar sortie and outpost missions. Learning objectives: What are the potential impacts of postural instabilities on the lunar surface? CME question: What factors affect balance control and gait stability on the moon? Answer: Sensory-motor adaptation to the lunar environment, reduced mechanical and visual affordances, and altered biomechanics caused by the EVA suit.

  18. A primer in lunar geology

    NASA Technical Reports Server (NTRS)

    Greeley, R. (Editor); Schultz, P. H. (Editor)

    1974-01-01

    Primary topics in lunar geology range from the evolution of the solar system to lunar photointerpretation, impact crater formation, and sampling to analyses on various Apollo lunar landing site geomorphologies.

  19. Lunar soil properties and soil mechanics

    NASA Technical Reports Server (NTRS)

    Mitchell, J. K.; Houston, W. N.; Hovland, H. J.

    1972-01-01

    The study to identify and define recognizable fabrics in lunar soil in order to determine the history of the lunar regolith in different locations is reported. The fabric of simulated lunar soil, and lunar soil samples are discussed along with the behavior of simulated lunar soil under dynamic and static loading. The planned research is also included.

  20. Research on lunar and planet development and utilization

    NASA Astrophysics Data System (ADS)

    Iwata, Tsutomu; Etou, Takao; Imai, Ryouichi; Oota, Kazuo; Kaneko, Yutaka; Maeda, Toshihide; Takano, Yutaka

    1992-08-01

    Status of the study on unmanned and manned lunar missions, unmanned Mars missions, lunar resource development and utilization missions, remote sensing exploration missions, survey and review to elucidate the problems of research and development for lunar resource development and utilization, and the techniques and equipment for lunar and planet exploration are presented. Following items were studied respectively: (1) spacecraft systems for unmanned lunar missions, such as lunar observation satellites, lunar landing vehicles, lunar surface rovers, lunar surface hoppers, and lunar sample retrieval; (2) spacecraft systems for manned lunar missions, such as manned lunar bases, lunar surface operation robots, lunar surface experiment systems, manned lunar take-off and landing vehicles, and lunar freight transportation ships; (3) spacecraft systems for Mars missions, such as Mars satellites, Phobos and Deimos sample retrieval vehicles, Mars landing explorers, Mars rovers, Mars sample retrieval; (4) lunar resource development and utilization; and (5) remote sensing exploration technologies.

  1. Lunar atmospheric composition experiment

    NASA Technical Reports Server (NTRS)

    Hoffman, J. H.

    1975-01-01

    Apollo 17 carried a miniature mass spectrometer, called the Lunar Atmospheric Composition Experiment (LACE), to the moon as part of the Apollo Lunar Surface Experiments Package (ALSEP) to study the composition and variations in the lunar atmosphere. The instrument was successfully deployed in the Taurus-Littrow Valley with its entrance aperture oriented upward to intercept and measure the downward flux of gases at the lunar surface. During the ten lunations that the LACE operated, it produced a large base of data on the lunar atmosphere, mainly collected at night time. It was found that thermal escape is the most rapid loss mechanism for hydrogen and helium. For heavier gases, photoionization followed by acceleration through the solar wind electric field accounted for most of the loss. The dominant gases on the moosn were argon and helium, and models formed for their distribution are described in detail. It is concluded that most of the helium in the lunar atmosphere is of solar wind origin, and that there also exist very small amounts of methane, ammonia, and carbon dioxide.

  2. Observations of Lunar Swirls by the Diviner Lunar Radiometer Experiment

    NASA Technical Reports Server (NTRS)

    Glotch, T. D.; Greenhagen, B. T.; Lucey, P. G.; Bandfield, J. L.; Hayne, Paul O.; Allen, Carlton C.; Elphic, Richard C.; Paige, D. A.

    2012-01-01

    The presence of anomalous, high albedo markings on the lunar surface has been known since the Apollo era. These features, collectively known as lunar swirls, occur on both the mare and highlands. Some swirls are associated with the antipodes of major impact basins, while all are associated with magnetic field anomalies of varying strength. Three mechanisms have been proposed for the formation of the swirls: (1) solar wind standoff due to the presence of magnetic fields, (2) micrometeoroid or comet swarms impacting and disturbing the lunar surface, revealing unweathered regolith, and (3) transport and deposition of fine-grained feldspathic material. Diviner s unique capabilities to determine silicate composition and degree of space weathering of the lunar surface, in addition to its capabilities to determine thermophysical properties from night-time temperature measurements, make it an ideal instrument to examine the swirls and help differentiate among the three proposed formation mechanisms.

  3. Low-cost unmanned lunar lander

    NASA Technical Reports Server (NTRS)

    Daniel, Walter K.

    1992-01-01

    Two student groups designed unmanned landers to deliver 200 kilogram payloads to the lunar surface. Payloads could include astronomical telescopes, small lunar rovers, and experiments related to future human exploration. Requirements include the use of existing hardware where possible, use of a medium-class launch vehicle, an unobstructed view of the sky for the payload, and access to the lunar surface for the payload. The projects were modeled after Artemis, a project that the NASA Office of Exploration is pursuing with a planned first launch in 1996. The Lunar Scout design uses a Delta 2 launch vehicle with a Star 48 motor for insertion into the trans-lunar trajectory. During the transfer, the solar panels will be folded inward and the spacecraft will be powered by rechargeable nickel-cadmium batteries. The lander will use a combination of a solid rocket motor and hydrazine thrusters for the descent to the lunar surface. The solar arrays will be deployed after landing. The lander will provide power for operations to the payload during the lunar day; batteries will provide 'stay-alive' power during the lunar night. A horn antenna on the lander will provide communications between the payload and the earth.

  4. Electric propulsion for lunar exploration and lunar base development

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan

    1992-01-01

    Using electric propulsion to deliver materials to lunar orbit for the development and construction of a lunar base was investigated. Because the mass of the base and its life-cycle resupply mass are large, high specific impulse propulsion systems may significantly reduce the transportation system mass and cost. Three electric propulsion technologies (arcjet, ion, and magnetoplasmadynamic (MPD) propulsion) were compared with oxygen/hydrogen propulsion for a lunar base development scenario. Detailed estimates of the orbital transfer vehicles' (OTV's) masses and their propellant masses are presented. The fleet sizes for the chemical and electric propulsion systems are estimated. Ion and MPD propulsion systems enable significant launch mass savings over O2/H2 propulsion. Because of the longer trip time required for the low-thrust OTV's, more of them are required to perform the mission model. By offloading the lunar cargo from the manned O2/H2 OTV missions onto the electric propulsion OTV's, a significant reduction of the low Earth orbit (LEO) launch mass is possible over the 19-year base development period.

  5. Mapping Lunar Highlands

    NASA Image and Video Library

    2012-12-05

    This graphic depicting the bulk density of the lunar highlands on the near and far sides of the moon was generated using gravity data from NASA GRAIL mission and topography data from NASA Lunar Reconnaissance Orbiter.

  6. Endogenous Lunar Volatiles

    NASA Astrophysics Data System (ADS)

    McCubbin, F. M.; Liu, Y.; Barnes, J. J.; Anand, M.; Boyce, J. W.; Burney, D.; Day, J. M. D.; Elardo, S. M.; Hui, H.; Klima, R. L.; Magna, T.; Ni, P.; Steenstra, E.; Tartèse, R.; Vander Kaaden, K. E.

    2018-04-01

    This abstract discusses numerous outstanding questions on the topic of endogenous lunar volatiles that will need to be addressed in the coming years. Although substantial insights into endogenous lunar volatiles have been gained, more work remains.

  7. Lunar Gene Bank For Endangered Species

    NASA Astrophysics Data System (ADS)

    Swain, R.; Behera, D.; Sahoo, P. K.; Swain, S. K.; Sasmal, A.

    2012-09-01

    Before the dawn of the 22nd century, we face the huge risk of losing our genetic heritage accumulated during aeons of evolution. The losses include hundreds of vertebrates, hundreds of thousands of plants and over a million insect species. The gene pools of many human ethnic groups are also threatened. As we have observed, adequate conservation of habitat is unfeasible and active breeding programs cover only a handful of the many thousand species threatened. Against such indispensable losses scientists are starting cryopreservation of germplasms by creation of gene banks. I propose to construct a cDNA library based gene bank for endangered species in the permanently shadowed polar lunar craters that would provide immunity from both natural disadvantages and humanitarian intrusions [4].

  8. NEA Scout and Lunar Flashlight: Two NearTerm Interplanetary CubeSat Missions

    NASA Technical Reports Server (NTRS)

    Johnson, Les

    2015-01-01

    NASA is developing two small satellite missions as part of the Advanced Exploration Systems (AES) Program, both of which will use a solar sail to enable their scientific objectives. Solar sails reflect sunlight from a large, mirror-like sail made of a lightweight, highly reflective material to provide thrust. This continuous photon pressure provides propellantless thrust, allowing for very high delta V maneuvers in space. Lunar Flashlight, managed by the NASA Jet Propulsion Laboratory, will search for and map volatiles in permanently shadowed lunar craters using a solar sail as a gigantic mirror to steer sunlight into them, then examine the reflected light with a spectrometer. The Lunar Flashlight spacecraft will also use the solar sail to maneuver into a lunar polar orbit. The mission will demonstrate a low-cost capability to explore, locate and estimate the size and composition of ice deposits on the Moon. The Near Earth Asteroid (NEA) Scout mission, managed by the NASA Marshall Space Flight Center will survey and image a Near Earth Asteroid for possible future human exploration using a smallsat propelled by a solar sail. Detections of NEAs are expected to grow in the near future, offering increasing target opportunities. Obtaining and analyzing relevant data about these bodies via robotic precursors before committing a crew to visit them is essential. The NEA Scout spacecraft is nearly identical to the one being developed for Lunar Flashlight, with the science instrument package being the primary difference. The NEA Scout solar sail will provide the primary propulsion taking the 6U cubesat from near the Earth to its final asteroid destination and the Lunar Flashlight sail will provide the propulsion necessary for its spacecraft to enter lunar orbit. Both projects will use an 85 m2 solar sail developed by NASA MSFC. The NEA Scout and Lunar Flashlight flight systems are based on a 6U cubesat form factor, with a stowed envelope of 10 x 20 x 30 cm and a mass of less

  9. Lunar surface magnetometer experiment

    NASA Technical Reports Server (NTRS)

    Dyal, P.; Parkin, C. W.; Colburn, D. S.; Schubert, G.

    1972-01-01

    The Apollo 16 lunar surface magnetometer (LSM) activation completed the network installation of magnetic observatories on the lunar surface and initiated simultaneous measurements of the global response of the moon to large-scale solar and terrestrial magnetic fields. Fossil remanent magnetic fields have been measured at nine locations on the lunar surface, including the Apollo 16 LSM site in the Descartes highlands area. This fossil record indicates the possible existence of an ancient lunar dynamo or a solar or terrestrial field much stronger than exists at present. The experimental technique and operation of the LSM are described and the results obtained are discussed.

  10. Kickstarting a New Era of Lunar Industrialization via Campaign of Lunar COTS Missions

    NASA Technical Reports Server (NTRS)

    Zuniga, Allison F.; Turner, Mark; Rasky, Daniel; Pittman, Robert B.; Zapata, Edgar

    2016-01-01

    To support the goals of expanding our human presence and current economic sphere beyond LEO, a new plan was constructed for NASA to enter into partnerships with industry to foster and incentivize a new era of lunar industrialization. For NASA to finally be successful in achieving sustainable human exploration missions beyond LEO, lessons learned from our space history have shown that it is essential for current program planning to include affordable and economic development goals as well as address top national priorities to obtain much needed public support. In the last 58 years of NASA's existence, only Apollo's human exploration missions beyond LEO were successful since it was proclaimed to be a top national priority during the 1960's. However, the missions were not sustainable and ended abruptly in 1972 due to lack of funding and insufficient economic gain. Ever since Apollo, there have not been any human missions beyond LEO because none of the proposed program plans were economical or proclaimed a top national priority. The proposed plan outlines a new campaign of low-cost, commercial-enabled lunar COTS (Commercial Orbital Transfer Services) missions which is an update to the Lunar COTS plan previously described. The objectives of this new campaign of missions are to prospect for resources, determine the economic viability of extracting those resources and assess the value proposition of using these resources in future exploration architectures such as Mars. These missions would be accomplished in partnership with commercial industry using the wellproven COTS Program acquisition model. This model proved to be very beneficial to both NASA and its industry partners as NASA saved significantly in development and operational costs, as much as tenfold, while industry partners successfully expanded their market share and demonstrated substantial economic gain. Similar to COTS, the goals for this new initiative are 1) to develop and demonstrate cost-effective, cis-lunar

  11. Advantages of a Lunar Cryogenic Astronomical Observatory

    NASA Astrophysics Data System (ADS)

    Burke, James; Kaltenegger, Lisa

    2017-04-01

    ESA and collaborating agencies are preparing to establish a Moon Village at a south polar site. Robotic precursor missions will include resource prospecting in permanently shadowed cold traps. The environment there is favorable for infrared and millimeter-wave astronomy. In this paper we examine the evolutionary development of a cryogenic observatory, beginning with small telescopes robotically installed and operated in conjunction with prospecting precursor missions, and continuing into later phases supported from the Moon Village. Relay communications into and out of the cold traps may be shared or else provided by dedicated links. Candidate locations can be selected with the help of data from the Lunar Reconnaissance Orbiter. The first telescope will be primarily a proof-of-concept demonstrator but it can have scientific and applications uses too, supplementing other space-based survey instruments observing astrophysical objects and potentially hazardous asteroids and comets. A south polar site sees only half or the sky but that half includes the galactic center and many other interesting targets. The telescopes can stare at any object for as long as desired, providing monitoring capabilities for transiting or radial velocity planet searches, like NASA's TESS mission. In addition such telescopes are opening the prospect of gathering spectroscopic data on exoplanet atmospheres and cool stars - from UV information to assess the activity of a star to VIS to IR spectral data of the atmosphere and even atmospheric biosignatures. Preliminary design of the first telescope might be funded under a NASA call for lunar science payload concepts. An important additional product can be educational and outreach uses of the observatory, especially for the benefit of people in the developing world who can do southern hemisphere follow-up observations.

  12. Orbital studies of lunar magnetism

    NASA Technical Reports Server (NTRS)

    Mcleod, M. G.; Coleman, P. J., Jr.

    1982-01-01

    Limitations of present lunar magnetic maps are considered. Optimal processing of satellite derived magnetic anomaly data is also considered. Studies of coastal and core geomagnetism are discussed. Lunar remanent and induced lunar magnetization are included.

  13. Lunar outpost agriculture

    NASA Technical Reports Server (NTRS)

    Hossner, Lloyd R.; Ming, Douglas W.; Henninger, Donald L.; Allen, Earl R.

    1991-01-01

    The development of a CELSS for a lunar outpost is discussed. It is estimated that a lunar outpost life support system with a crew of four that produces food would break even in terms of mass and cost to deliver the system to the lunar surface after 2.5 years when compared to the cost of resupply from earth. A brief review is made of research on life support systems and NASA projects for evaluating CELSS components. The use of on-site materials for propellants, construction materials, and agriculture is evaluated, and the use of microbes for waste decomposition and stabilization of ecological balance is touched upon. Areas for further investigation include the behavior of organisms in microgravity, genetic alteration, gas exchange capabilities of organisms, integration of biological and physicochemical components, and automation. The development stages leading to lunar deployment are outlined.

  14. Lunar Sulfur Capture System

    NASA Technical Reports Server (NTRS)

    Berggren, Mark; Zubrin, Robert; Bostwick-White, Emily

    2013-01-01

    The Lunar Sulfur Capture System (LSCS) protects in situ resource utilization (ISRU) hardware from corrosion, and reduces contaminant levels in water condensed for electrolysis. The LSCS uses a lunar soil sorbent to trap over 98 percent of sulfur gases and about two-thirds of halide gases evolved during hydrogen reduction of lunar soils. LSCS soil sorbent is based on lunar minerals containing iron and calcium compounds that trap sulfur and halide gas contaminants in a fixed-bed reactor held at temperatures between 250 and 400 C, allowing moisture produced during reduction to pass through in vapor phase. Small amounts of Earth-based polishing sorbents consisting of zinc oxide and sodium aluminate are used to reduce contaminant concentrations to one ppm or less. The preferred LSCS configuration employs lunar soil beneficiation to boost concentrations of reactive sorbent minerals. Lunar soils contain sulfur in concentrations of about 0.1 percent, and halogen compounds including chlorine and fluorine in concentrations of about 0.01 percent. These contaminants are released as gases such as H2S, COS, CS2,HCl, and HF during thermal ISRU processing with hydrogen or other reducing gases. Removal of contaminant gases is required during ISRU processing to prevent hardware corrosion, electrolyzer damage, and catalyst poisoning. The use of Earth-supplied, single-use consumables to entirely remove contaminants at the levels existing in lunar soils would make many ISRU processes unattractive due to the large mass of consumables relative to the mass of oxygen produced. The LSCS concept of using a primary sorbent prepared from lunar soil was identified as a method by which the majority of contaminants could be removed from process gas streams, thereby substantially reducing the required mass of Earth-supplied consumables. The LSCS takes advantage of minerals containing iron and calcium compounds that are present in lunar soil to trap sulfur and halide gases in a fixedbed reactor

  15. Coronagraphic Observations of the Lunar Sodium Exosphere

    NASA Astrophysics Data System (ADS)

    Killen, R. M.; Johnson, J. D.; Morgan, T. H.; Potter, A. E.

    2017-12-01

    We have designed, built and installed a small robotic coronagraph at the Winer Observatory in Sonoita, Arizona, in order to observe the sodium exosphere out to one-half degree around the Moon. Observations are obtained remotely every available clear night from our home base at Goddard Space Flight Center. Our data encompass lunations in 2015, 2016, and 2017, thus we have a long baseline of sodium exospheric calibrated images. We employ an Andover temperature-controlled 1.5 Å wide narrow-band filter centered on the sodium D2 line, and a similar 1.5 Å filter centered blueward of the D2 line by 5 Å. Exposures of 10 minutes are required to image the sodium corona at good signal to noise. Autoguiding is performed locking onto a small bright crater each night. Following each onband-offband exposure pair, on- and off-band images of the lunar surface are collected by taking a 0.1- 0.5 second exposures with the open filter. The sodium is calibrated using the counts in the open Moon images and the Hapke function. We use both dark and bright Hapke parameters for comparison check using Mare and highlands, respectively. In order to obtain the sodium profile around the entire limb, the images are transformed using a polar transform and the profiles are extracted automatically. We have derived zenith column abundances and surface abundances around the lunar limb for each observation and we fit these observations with a 3-dimensional model. We compare our lunar model derived from these observations with the data from the spectrograph onboard the LADEE spacecraft.

  16. Lunar Net—a proposal in response to an ESA M3 call in 2010 for a medium sized mission

    NASA Astrophysics Data System (ADS)

    Smith, Alan; Crawford, I. A.; Gowen, Robert Anthony; Ambrosi, R.; Anand, M.; Banerdt, B.; Bannister, N.; Bowles, N.; Braithwaite, C.; Brown, P.; Chela-Flores, J.; Cholinser, T.; Church, P.; Coates, A. J.; Colaprete, T.; Collins, G.; Collinson, G.; Cook, T.; Elphic, R.; Fraser, G.; Gao, Y.; Gibson, E.; Glotch, T.; Grande, M.; Griffiths, A.; Grygorczuk, J.; Gudipati, M.; Hagermann, A.; Heldmann, J.; Hood, L. L.; Jones, A. P.; Joy, K. H.; Khavroshkin, O. B.; Klingelhoefer, G.; Knapmeyer, M.; Kramer, G.; Lawrence, D.; Marczewski, W.; McKenna-Lawlor, S.; Miljkovic, K.; Narendranath, S.; Palomba, E.; Phipps, A.; Pike, W. T.; Pullan, D.; Rask, J.; Richard, D. T.; Seweryn, K.; Sheridan, S.; Sims, M.; Sweeting, M.; Swindle, T.; Talboys, D.; Taylor, L.; Teanby, N.; Tong, V.; Ulamec, S.; Wawrzaszek, R.; Wieczorek, M.; Wilson, L.; Wright, I.

    2012-04-01

    Emplacement of four or more kinetic penetrators geographically distributed over the lunar surface can enable a broad range of scientific exploration objectives of high priority and provide significant synergy with planned orbital missions. Whilst past landed missions achieved a great deal, they have not included a far-side lander, or investigation of the lunar interior apart from a very small area on the near side. Though the LCROSS mission detected water from a permanently shadowed polar crater, there remains in-situ confirmation, knowledge of concentration levels, and detailed identification of potential organic chemistry of astrobiology interest. The planned investigations will also address issues relating to the origin and evolution of the Earth-Moon system and other Solar System planetary bodies. Manned missions would be enhanced with use of water as a potential in-situ resource; knowledge of potential risks from damaging surface Moonquakes, and exploitation of lunar regolith for radiation shielding. LunarNet is an evolution of the 2007 LunarEX proposal to ESA (European Space Agency) which draws on recent significant advances in mission definition and feasibility. In particular, the successful Pendine full-scale impact trials have proved impact survivability for many of the key technology items, and a penetrator system study has greatly improved the definition of descent systems, detailed penetrator designs, and required resources. LunarNet is hereby proposed as an exciting stand-alone mission, though is also well suited in whole or in-part to contribute to the jigsaw of upcoming lunar missions, including that of a significant element to the ILN (International Lunar Network).

  17. Interaction between Solar Wind and Lunar Magnetic Anomalies observed by Kaguya MAP-PACE

    NASA Astrophysics Data System (ADS)

    Saito, Yoshifumi; Yokota, Shoichiro; Tanaka, Takaaki; Asamura, Kazushi; Nishino, Masaki; Yamamoto, Tadateru; Uemura, Kota; Tsunakawa, Hideo

    2010-05-01

    It is known that Moon has neither global intrinsic magnetic field nor thick atmosphere. Different from the Earth's case where the intrinsic global magnetic field prevents the solar wind from penetrating into the magnetosphere, solar wind directly impacts the lunar surface. Since the discovery of the lunar crustal magnetic field in 1960s, several papers have been published concerning the interaction between the solar wind and the lunar magnetic anomalies. MAG/ER on Lunar Prospector found heating of the solar wind electrons presumably due to the interaction between the solar wind and the lunar magnetic anomalies and the existence of the mini-magnetosphere was suggested. However, the detailed mechanism of the interaction has been unclear mainly due to the lack of the in-situ observed data of low energy ions. MAgnetic field and Plasma experiment - Plasma energy Angle and Composition Experiment (MAP-PACE) on Kaguya (SELENE) completed its ˜1.5-year observation of the low energy charged particles around the Moon on 10 June, 2009. Kaguya was launched on 14 September 2007 by H2A launch vehicle from Tanegashima Space Center in Japan. Kaguya was inserted into a circular lunar polar orbit of 100km altitude and continued observation for nearly 1.5 years till it impacted the Moon on 10 June 2009. During the last 5 months, the orbit was lowered to ˜50km-altitude between January 2009 and April 2009, and some orbits had further lower perilune altitude of ˜10km after April 2009. MAP-PACE consisted of 4 sensors: ESA (Electron Spectrum Analyzer)-S1, ESA-S2, IMA (Ion Mass Analyzer), and IEA (Ion Energy Analyzer). All the sensors performed quite well as expected from the laboratory experiment carried out before launch. Since each sensor had hemispherical field of view, two electron sensors and two ion sensors that were installed on the spacecraft panels opposite to each other could cover full 3-dimensional phase space of low energy electrons and ions. One of the ion sensors IMA was

  18. Thermophysical properties of lunar media. II - Heat transfer within the lunar surface layer

    NASA Technical Reports Server (NTRS)

    Cremers, C. J.

    1974-01-01

    Heat transfer within the lunar surface layer depends on several thermophysical properties of the lunar regolith, including the thermal conductivity, the specific heat, the thermal diffusivity, and the thermal parameter. Results of property measurements on simulated lunar materials are presented where appropriate as well as measurements made on the actual samples themselves. The variation of temperature on the moon with depth is considered, taking into account various times of the lunar day. The daily variation in temperature drops to about 1 deg at a depth of only 0.172 meters. The steady temperature on the moon below this depth is 225 K.

  19. Can Fractional Crystallization of a Lunar Magma Ocean Produce the Lunar Crust?

    NASA Technical Reports Server (NTRS)

    Rapp, Jennifer F.; Draper, David S.

    2013-01-01

    New techniques enable the study of Apollo samples and lunar meteorites in unprecedented detail, and recent orbital spectral data reveal more about the lunar farside than ever before, raising new questions about the supposed simplicity of lunar geology. Nevertheless, crystallization of a global-scale magma ocean remains the best model to account for known lunar lithologies. Crystallization of a lunar magma ocean (LMO) is modeled to proceed by two end-member processes - fractional crystallization from (mostly) the bottom up, or initial equilibrium crystallization as the magma is vigorously convecting and crystals remain entrained, followed by crystal settling and a final period of fractional crystallization [1]. Physical models of magma viscosity and convection at this scale suggest that both processes are possible. We have been carrying out high-fidelity experimental simulations of LMO crystallization using two bulk compositions that can be regarded as end-members in the likely relevant range: Taylor Whole Moon (TWM) [2] and Lunar Primitive Upper Mantle (LPUM) [3]. TWM is enriched in refractory elements by 1.5 times relative to Earth, whereas LPUM is similar to the terrestrial primitive upper mantle, with adjustments made for the depletion of volatile alkalis observed on the Moon. Here we extend our earlier equilibrium-crystallization experiments [4] with runs simulating full fractional crystallization

  20. Apollo program soil mechanics experiment. [interaction of the lunar module with the lunar surface

    NASA Technical Reports Server (NTRS)

    Scott, R. F.

    1975-01-01

    The soil mechanics investigation was conducted to obtain information relating to the landing interaction of the lunar module (LM) with the lunar surface, and lunar soil erosion caused by the spacecraft engine exhaust. Results obtained by study of LM landing performance on each Apollo mission are summarized.

  1. A Miniature Mineralogical Instrument for In-Situ Characterization of Ices and Hydrous Minerals at the Lunar Poles

    NASA Technical Reports Server (NTRS)

    Sarrazin, P.; Blake, D.; Vaniman, D.; Bish, D.; Chipera, S.; Collins, S. A.

    2002-01-01

    Lunar missions over the past few years have provided new evidence that water may be present at the lunar poles in the form of cold-trapped ice deposits, thereby rekindling interest in sampling the polar regions. Robotic landers fitted with mineralogical instrumentation for in-situ analyses could provide unequivocal answers on the presence of crystalline water ice and/or hydrous minerals at the lunar poles. Data from Lunar Prospector suggest that any surface exploration of the lunar poles should include the capability to drill to depths of more than 40 cm. Limited data on the lunar geotherm indicate temperatures of approximately 245-255 K at regolith depths of 40 cm, within a range where water may exist in the liquid state as brine. A relevant terrestrial analog occurs in Antarctica, where the zeolite mineral chabazite has been found at the boundary between ice-free and ice-cemented regolith horizons, and precipitation from a regolith brine is indicated. Soluble halogens and sulfur in the lunar regolith could provide comparable brine chemistry in an analogous setting. Regolith samples collected by a drilling device could be readily analyzed by CheMin, a mineralogical instrument that combines X-ray diffraction (XRD) and X-ray fluorescence (XRF) techniques to simultaneously characterize the chemical and mineralogical compositions of granular or powdered samples. CheMin can unambiguously determine not only the presence of hydrous alteration phases such as clays or zeolites, but it can also identify the structural variants or types of clay or zeolite present (e.g., well-ordered versus poorly ordered smectite; chabazite versus phillipsite). In addition, CheMin can readily measure the abundances of key elements that may occur in lunar minerals (Na, Mg, Al, Si, K, Ca, Fe) as well as the likely constituents of lunar brines (F, Cl, S). Finally, if coring and analysis are done during the lunar night or in permanent shadow, CheMin can provide information on the chemistry and

  2. Lunar lander ground support system

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The design of the Lunar Lander Ground Support System (LLGSS) is examined. The basic design time line is around 2010 to 2030 and is referred to as a second generation system, as lunar bases and equipment would have been present. Present plans for lunar colonization call for a phased return of personnel and materials to the moons's surface. During settlement of lunar bases, the lunar lander is stationary in a very hostile environment and would have to be in a state of readiness for use in case of an emergency. Cargo and personnel would have to be removed from the lander and transported to a safe environment at the lunar base. An integrated system is required to perform these functions. These needs are addressed which center around the design of a lunar lander servicing system. The servicing system could perform several servicing functions to the lander in addition to cargo servicing. The following were considered: (1) reliquify hydrogen boiloff; (2) supply power; and (3) remove or add heat as necessary. The final design incorporates both original designs and existing vehicles and equipment on the surface of the moon at the time considered. The importance of commonality is foremost in the design of any lunar machinery.

  3. Lunar cartographic dossier, volume 1

    NASA Technical Reports Server (NTRS)

    Schimerman, L. A. (Editor)

    1975-01-01

    The dossier is designed to provide an up to date summary of the extent and quality of cartographic information as well as describing materials available to support lunar scientific investigation and study. It covers the specific photographic, selenodetic and cartographic data considered to be of continuing significance to users of lunar cartographic information. Historical background data is included. Descriptive and evaluative information is presented concerning lunar maps, photomaps and photo mosaics. Discussion comprises identification of series or individual sheet characteristics, control basis, source materials and compilation methodology used. The global, regional and local selenodetic control are described which were produced for lunar feature location in support of lunar mapping or positional study. Further discussion covers the fundamental basis for each control system, number of points produced, techniques employed and evaluated accuracy. Although lunar photography is an informational source rather than a cartographic product, a photography section was included to facilitate correlation to the mapping and control works described. Description of lunar photographic systems, photography and photo support data are presented from a cartographic-photogrammetric viewpoint with commentary on cartographic applications.

  4. COMPASS Final Report: Lunar Network Satellite-High Rate (LNS-HR)

    NASA Technical Reports Server (NTRS)

    oleson, Steven R.; McGuire, Melissa L.

    2012-01-01

    Two design options were explored to address the requirement to provide lunar piloted missions with continuous communications for outpost and sortie missions. Two unique orbits were assessed, along with the appropriate spacecraft (S/C) to address these requirements. Both constellations (with only two S/C each) provide full time coverage (24 hr/7 d) for a south polar base and also provide continuous 7 day coverage for sorties for specified sites and periodic windows. Thus a two-satellite system can provide full coverage for sorties for selected windows of opportunity without reconfiguring the constellation.

  5. Lunar oasis

    NASA Technical Reports Server (NTRS)

    Duke, Michael B.; Niehoff, John

    1989-01-01

    The 'lunar oasis' emphasizes development toward self-sufficiency in order to reduce dependence on the earth for resupply, and to enable expansion utilizing indigeneous resources. The oasis phase includes: (1) habitation and work facilities for 10 people, (2) capability for extraction of volatile consumables (H2O, O2, N2, etc.) from indigenous resources for resupply of losses and filling of reservoirs, and (3) a highly closed life support system, including food production. In the consolidation phase, the base grows from 10 to 30 crewmembers. Lunar resources are used for expanding the lunar foothold, including construction of habitats, extraction of metals for the fabrication of products for maintenance and repair, and expansion of the power system. The strategy does not produce propellants for space transportation. A 10-year scenario is laid out, which contains all elements needed to allow the base to enter a self-expanding utilization phase. Three lunar missions yer year, two cargo missions and one crew flight, are required. At the end of a decade, the base is producing more than it requires for its continued support, although it is unlikely to be completely self-sufficient.

  6. Conceptual design of a lunar colony

    NASA Technical Reports Server (NTRS)

    Dalton, C. (Editor); Hohmann, E. (Editor)

    1972-01-01

    A systems engineering study is presented for a proposed lunar colony. The lunar colony was to grow from an existent, 12-man, earth-dependent lunar surface base and was to utilize lunar resources, becoming as earth-independent as possible. An in-depth treatment of some of the aspects of the lunar colony was given. We have found that the use of lunar resources is feasible for oxygen production (both for breathing and for space tug fuel), food production, and building materials. A program is outlined for recycling waste materials developed at the colony as well as a full program for growth and research activity of the colony to a level of 180 colonists. Recommendations for the lunar colony are given.

  7. Lunar ash flows - Isothermal approximation.

    NASA Technical Reports Server (NTRS)

    Pai, S. I.; Hsieh, T.; O'Keefe, J. A.

    1972-01-01

    Suggestion of the ash flow mechanism as one of the major processes required to account for some features of lunar soil. First the observational background and the gardening hypothesis are reviewed, and the shortcomings of the gardening hypothesis are shown. Then a general description of the lunar ash flow is given, and a simple mathematical model of the isothermal lunar ash flow is worked out with numerical examples to show the differences between the lunar and the terrestrial ash flow. The important parameters of the ash flow process are isolated and analyzed. It appears that the lunar surface layer in the maria is not a residual mantle rock (regolith) but a series of ash flows due, at least in part, to great meteorite impacts. The possibility of a volcanic contribution is not excluded. Some further analytic research on lunar ash flows is recommended.

  8. Absolute, SI-traceable lunar irradiance tie-points for the USGS Lunar Model

    NASA Astrophysics Data System (ADS)

    Brown, Steven W.; Eplee, Robert E.; Xiong, Xiaoxiong J.

    2017-10-01

    The United States Geological Survey (USGS) has developed an empirical model, known as the Robotic Lunar Observatory (ROLO) Model, that predicts the reflectance of the Moon for any Sun-sensor-Moon configuration over the spectral range from 350 nm to 2500 nm. The lunar irradiance can be predicted from the modeled lunar reflectance using a spectrum of the incident solar irradiance. While extremely successful as a relative exo-atmospheric calibration target, the ROLO Model is not SI-traceable and has estimated uncertainties too large for the Moon to be used as an absolute celestial calibration target. In this work, two recent absolute, low uncertainty, SI-traceable top-of-the-atmosphere (TOA) lunar irradiances, measured over the spectral range from 380 nm to 1040 nm, at lunar phase angles of 6.6° and 16.9° , are used as tie-points to the output of the ROLO Model. Combined with empirically derived phase and libration corrections to the output of the ROLO Model and uncertainty estimates in those corrections, the measurements enable development of a corrected TOA lunar irradiance model and its uncertainty budget for phase angles between +/-80° and libration angles from 7° to 51° . The uncertainties in the empirically corrected output from the ROLO model are approximately 1 % from 440 nm to 865 nm and increase to almost 3 % at 412 nm. The dominant components in the uncertainty budget are the uncertainty in the absolute TOA lunar irradiance and the uncertainty in the fit to the phase correction from the output of the ROLO model.

  9. LUNAR SAMPLES - APOLLO XI

    NASA Image and Video Library

    1969-07-27

    S69-45002 (26 July 1969) --- A close-up view of the lunar rocks contained in the first Apollo 11 sample return container. The rock box was opened for the first time in the Vacuum Laboratory of the Manned Spacecraft Center’s Lunar Receiving Laboratory, Building 37, at 3:55 p.m. (CDT), Saturday, July 26, 1969. The gloved hand gives an indication of size. This box also contained the Solar Wind Composition experiment (not shown) and two core tubes for subsurface samples (not shown). These lunar samples were collected by astronauts Neil A. Armstrong and Edwin E. Aldrin Jr. during their lunar surface extravehicular activity on July 20, 1969.

  10. The Evolution of Remnant Ice at the Lunar South Pole from Diviner Surface Temperature Results

    NASA Technical Reports Server (NTRS)

    Elphic, Richard C.; Siegler, Mathew; Paige, David; Teodoro, Luis Filipe; Vasavada, Ashwin R.

    2010-01-01

    The Diviner lunar radiometer instrument aboard the Lunar Reconnaissance Orbiter mission has revealed large areas of lunar polar terrain with surface temperatures well below 100K. At these temperatures, the sublimation rate of water ice is well below 1 mm per billion years. In contrast, the loss rate at 120K is more than 1 meter of ice in that time consequently volatiles delivered to the coldest locations can be trapped for over 1 Ga, but will be quickly lost from warmer locales. Here we investigate the loss or retention of a layer of ice-bearing regolith at the lunar south poe, assuming contemporary surface temperature conditions and no other loss processes. We use an analytic solution for the one-dimensional diffusion equation of water ice, assuming an isothermal regolith with pore space comparable to mean grain size, 75 micrometers. Only the top meter of soil is assumed to be ice-bearing. We can then calculate the history of ice content with time based on local temperature, and predict what the epithermal neutron output would be in the presence of such a concentration of hydrogen. We compare the present, observed distribution of hydrogen with what one would expect from the temperature-dependent loss or retention of ice for various times since emplacement.

  11. Conceptual design of a lunar oxygen pilot plant Lunar Base Systems Study (LBSS) task 4.2

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The primary objective was to develop conceptual designs of two pilot plants to produce oxygen from lunar materials. A lunar pilot plant will be used to generate engineering data necessary to support an optimum design of a larger scale production plant. Lunar oxygen would be of primary value as spacecraft propellant oxidizer. In addition, lunar oxygen would be useful for servicing nonregenerative fuel cell power systems, providing requirements for life support, and to make up oxygen losses from leakage and airlock cycling. Thirteen different lunar oxygen production methods are described. Hydrogen reduction of ilmenite and extraction of solar-wind hydrogen from bulk lunar soil were selected for conceptual design studies. Trades and sensitivity analyses were performed with these models.

  12. Lunar flyby transfers between libration point orbits

    NASA Astrophysics Data System (ADS)

    Qi, Yi; Xu, Shijie; Qi, Rui

    2017-06-01

    Lunar flyby or lunar gravity assist is a classical technique to change the energy and trajectory of space vehicle in space mission. In this paper, lunar flyby transfers between Sun-Earth/Moon libration point orbits with different energies are investigated in the Sun-Earth-Moon restricted four-body problem. Distinguished by behaviours before and after lunar flyby, classification of lunar flyby orbits is defined and studied. Research indicates that junction point of special regions of four types of lunar flyby orbits denotes the perilune of lunar flyby transfer between libration point orbits. Based on those special perilunes, retrograde and prograde lunar flyby transfers are discussed in detail, respectively. The mean energy level transition distribution is proposed and applied to analyse the influence of phase angle and eccentricity on lunar flyby transfers. The phase space is divided into normal and chaotic intervals based on the topology pattern of transfers. A continuation strategy of lunar flyby transfer in the bicircular model is presented. Numerical examples show that compared with the single-impulse transfers based on patched invariant manifolds, lunar flyby transfers are more energy efficient. Finally, lunar flyby transfers are further extended to the realistic models.

  13. The Lunar Polesitter

    NASA Technical Reports Server (NTRS)

    West, John L.

    2008-01-01

    Here-to-fore, sailcraft mission and system studies have focused on sailcraft applications in support of NASA's science missions and, in a few studies, on the needs of other federal agencies such as the National Oceanic and Atmospheric Administration (NOAA) and Department of Defense (DoD). These studies have identified numerous promising applications for solar sails, leading NASA to support proposal efforts for three NASA New Millennium Program (NMP) flight demonstration opportunities (the Space Technology-5, -7, and -9 opportunities) as well as an extensive three-year ground development program in FY 2003-2005 sponsored by the NASA In-Space Propulsion Technology (ISPT) Program. What has not been done to date, however, is to investigate how the technology might also benefit the nation's (and NASA's) emerging interest in the Human Exploration Initiative (HEI). This paper reports on the first effort to address this shortfall in mission applications studies in support of HEI: the use of solar-sail-propelled Lunar Polesitter spacecraft which make use of the natural properties of the Earth-Moon L2 point and solar sail propulsion to enable their positioning near the Lunar poles to serve as communications relay stations. Suitably positioned, such spacecraft enable continuous communications to and from the Earth from any point on the lunar far side. The paper shows that a viable sailcraft system design exists permitting station-keeping of a Lunar Polesitter relay station at 40 Lunar radii from the Moon in the anti-Earth direction, displaced 6-8 Lunar radii below the Earth- Moon plane.

  14. Lunar and Vesta Web Portals

    NASA Astrophysics Data System (ADS)

    Law, E.; JPL Luna Mapping; Modeling Project Team

    2015-06-01

    The Lunar Mapping and Modeling Project offers Lunar Mapping and Modeling Portal (http://lmmp.nasa.gov) and Vesta Trek Portal (http://vestatrek.jpl.nasa.gov) providing interactive visualization and analysis tools to enable users to access mapped Lunar and Vesta data products.

  15. Polarimetric Observations of the Lunar Surface

    NASA Astrophysics Data System (ADS)

    Kim, S.

    2017-12-01

    Polarimetric images contain valuable information on the lunar surface such as grain size and porosity of the regolith, from which one can estimate the space weathering environment on the lunar surface. Surprisingly, polarimetric observation has never been conducted from the lunar orbit before. A Wide-Angle Polarimetric Camera (PolCam) has been recently selected as one of three Korean science instruments onboard the Korea Pathfinder Lunar Orbiter (KPLO), which is aimed to be launched in 2019/2020 as the first Korean lunar mission. PolCam will obtain 80 m-resolution polarimetric images of the whole lunar surface between -70º and +70º latitudes at 320, 430 and 750 nm bands for phase angles up to 115º. I will also discuss previous polarimetric studies on the lunar surface based on our ground-based observations.

  16. Lunar Lava Tube Sensing

    NASA Technical Reports Server (NTRS)

    York, Cheryl Lynn; Walden, Bryce; Billings, Thomas L.; Reeder, P. Douglas

    1992-01-01

    Large (greater than 300 m diameter) lava tube caverns appear to exist on the Moon and could provide substantial safety and cost benefits for lunar bases. Over 40 m of basalt and regolith constitute the lava tube roof and would protect both construction and operations. Constant temperatures of -20 C reduce thermal stress on structures and machines. Base designs need not incorporate heavy shielding, so lightweight materials can be used and construction can be expedited. Identification and characterization of lava tube caverns can be incorporated into current precursor lunar mission plans. Some searches can even be done from Earth. Specific recommendations for lunar lava tube search and exploration are (1) an Earth-based radar interferometer, (2) an Earth-penetrating radar (EPR) orbiter, (3) kinetic penetrators for lunar lava tube confirmation, (4) a 'Moon Bat' hovering rocket vehicle, and (5) the use of other proposed landers and orbiters to help find lunar lava tubes.

  17. High Angular Resolution Imaging of Solar Radio Bursts from the Lunar Surface

    NASA Technical Reports Server (NTRS)

    MacDowall, Robert J.; Lazio, Joseph; Bale, Stuart; Burns, Jack O.; Farrell, William M.; Gopalswamy, Nat; Jones, Dayton L.; Kasper, Justin Christophe; Weiler, Kurt

    2012-01-01

    polarization dipole antennas are located by depositing a conductor (e.g., silver). The arms also contain transmission lines for carrying the radio signals from the science antennas to the CEP. Operations would consist of data acquisition during the lunar day, with data downlinks to Earth one or more times every 24 hours.

  18. The Lunar Magma Ocean (LMO) Paradigm Versus the Realities of Lunar Anorthosites

    NASA Astrophysics Data System (ADS)

    Treiman, A. H.; Gross, J.

    2018-05-01

    The paradigm of the Lunar Magma Ocean (LMO) is inconsistent with much chemical and compositional data on lunar anorthosites. The paradigm of serial anorthosite diapirism is more consistent, though not a panacea.

  19. Lunar rated fasteners

    NASA Technical Reports Server (NTRS)

    Gupton, Lindsey; Hyde, Steve; Mckillip, Dan; Player, Bryan; Smith, Greg

    1988-01-01

    A catalog of fasteners is presented for a variety of applications to be used in a lunar environment. The fastening applications targeted include: covers, panels, hatches, bearings, wheels, gears, pulleys, anchors for the lunar surface and structural fasteners (general duty preloadable). The robotic installation and removal of each fastener is presented along with a discussion of failure modes. Structural performance data is tabulated for various configurations. Potential materials for the space environment are presented along with recommendations of appropriate solid film lubricants. Three original fastener designs were found suitable for the lunar environment. A structural analysis is presented for each original design.

  20. Lunar preform manufacturing

    NASA Technical Reports Server (NTRS)

    Leong, Gregory N.; Nease, Sandra; Lager, Vicky; Yaghjian, Raffy; Waller, Chris; Dorrity, J. Lewis

    1992-01-01

    A design for a machine to produce hollow, continuous fiber reinforced composite rods of lunar glass and a liquid crystalline matrix using the pultrusion process is presented. The glass fiber will be produced from the lunar surface, with the machine and matrix being transported to the moon. The process is adaptable to the low gravity and near-vacuum environment of the moon through the use of a thermoplastic matrix in fiber form as it enters the pultrusion process. With a power consumption of 5k W, the proposed machine will run continuously, unmanned in fourteen day cycles, matching the length of moon days. A number of dies could be included that would allow the machine to produce rods of varying diameter, I-beams, angles, and other structural members. These members could then be used for construction on the lunar surface or transported for use in orbit. The benefits of this proposal are in the savings in weight of the cargo each lunar mission would carry. The supply of glass on the moon is effectively endless, so enough rods would have to be produced to justify its transportation, operation, and capital cost. This should not be difficult as weight on lunar mission is at a premium.

  1. The Lunar Dust Environment

    NASA Astrophysics Data System (ADS)

    Szalay, Jamey Robert

    Planetary bodies throughout the solar system are continually bombarded by dust particles, largely originating from cometary activities and asteroidal collisions. Surfaces of bodies with thick atmospheres, such as Venus, Earth, Mars and Titan are mostly protected from incoming dust impacts as these particles ablate in their atmospheres as 'shooting stars'. However, the majority of bodies in the solar system have no appreciable atmosphere and their surfaces are directly exposed to the flux of high speed dust grains. Impacts onto solid surfaces in space generate charged and neutral gas clouds, as well as solid secondary ejecta dust particles. Gravitationally bound ejecta clouds forming dust exospheres were recognized by in situ dust instruments around the icy moons of Jupiter and Saturn, and had not yet been observed near bodies with refractory regolith surfaces before NASA's Lunar Dust and Environment Explorer (LADEE) mission. In this thesis, we first present the measurements taken by the Lunar Dust Explorer (LDEX), aboard LADEE, which discovered a permanently present, asymmetric dust cloud surrounding the Moon. The global characteristics of the lunar dust cloud are discussed as a function of a variety of variables such as altitude, solar longitude, local time, and lunar phase. These results are compared with models for lunar dust cloud generation. Second, we present an analysis of the groupings of impacts measured by LDEX, which represent detections of dense ejecta plumes above the lunar surface. These measurements are put in the context of understanding the response of the lunar surface to meteoroid bombardment and how to use other airless bodies in the solar system as detectors for their local meteoroid environment. Third, we present the first in-situ dust measurements taken over the lunar sunrise terminator. Having found no excess of small grains in this region, we discuss its implications for the putative population of electrostatically lofted dust.

  2. Electromagnetic launch of lunar material

    NASA Technical Reports Server (NTRS)

    Snow, William R.; Kolm, Henry H.

    1992-01-01

    Lunar soil can become a source of relatively inexpensive oxygen propellant for vehicles going from low Earth orbit (LEO) to geosynchronous Earth orbit (GEO) and beyond. This lunar oxygen could replace the oxygen propellant that, in current plans for these missions, is launched from the Earth's surface and amounts to approximately 75 percent of the total mass. The reason for considering the use of oxygen produced on the Moon is that the cost for the energy needed to transport things from the lunar surface to LEO is approximately 5 percent the cost from the surface of the Earth to LEO. Electromagnetic launchers, in particular the superconducting quenchgun, provide a method of getting this lunar oxygen off the lunar surface at minimal cost. This cost savings comes from the fact that the superconducting quenchgun gets its launch energy from locally supplied, solar- or nuclear-generated electrical power. We present a preliminary design to show the main features and components of a lunar-based superconducting quenchgun for use in launching 1-ton containers of liquid oxygen, one every 2 hours. At this rate, nearly 4400 tons of liquid oxygen would be launched into low lunar orbit in a year.

  3. Lunar Atmosphere Probe Station: A Proof-of-Concept Instrument Package for Monitoring the Lunar Atmosphere

    NASA Astrophysics Data System (ADS)

    Lazio, J.; Jones, D. L.; MacDowall, R. J.; Stewart, K. P.; Burns, J. O.; Farrell, W. M.; Giersch, L.; O'Dwyer, I. J.; Hicks, B. C.; Polisensky, E. J.; Hartman, J. M.; Nesnas, I.; Weiler, K.; Kasper, J. C.

    2013-12-01

    The lunar exosphere is the exemplar of a plasma near the surface of an airless body. Exposed to both the solar and interstellar radiation fields, the lunar exosphere is mostly ionized, and enduring questions regarding its properties include its density and vertical extent, the extent of contributions from volatile outgassing from the Moon, and its behavior over time, including response to the solar wind and modification by landers. Relative ionospheric measurements (riometry) are based on the simple physical principle that electromagnetic waves cannot propagate through a partially or fully ionized medium below the plasma frequency, and riometers have been deployed on the Earth in numerous remote and hostile environments. A multi-frequency riometer on the lunar surface would be able to monitor, *in situ*, the vertical extent of the lunar exosphere over time. We provide an update on a concept for a riometer implemented as a secondary science payload on future lunar landers, such as those recommended in the recent Planetary Sciences Decadal Survey report or commercial ventures. The instrument concept is simple, consisting of an antenna implemented as a metal deposited on polyimide film and receiver. We illustrate various deployment mechanisms and performance of a prototype in increasing lunar analog conditions. While the prime mission of such a riometer would be probing the lunar exosphere, our concept would also be capable to measuring the properties of dust impactors. The Lunar University Network for Astrophysical Research consortium is funded by the NASA Lunar Science Institute to investigate concepts for astrophysical observatories on the Moon. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. Artist's impression of the Lunar Atmosphere Probe Station.

  4. Instrument study of the Lunar Dust eXplorer (LDX) for a lunar lander mission

    NASA Astrophysics Data System (ADS)

    Li, Yanwei; Srama, Ralf; Henkel, Hartmut; Sternovsky, Zoltan; Kempf, Sascha; Wu, Yiyong; Grün, Eberhard

    2014-11-01

    One of the highest-priority issues for a future human or robotic lunar exploration is the lunar dust. This problem should be studied in depth in order to develop an environment model for a future lunar exploration. A future ESA lunar lander mission requires the measurement of dust transport phenomena above the lunar surface. Here, we describe an instrument design concept to measure slow and fast moving charged lunar dust which is based on the principle of charge induction. LDX has a low mass and measures the speed and trajectory of individual dust particles with sizes below one micrometer. Furthermore, LDX has an impact ionization target to monitor the interplanetary dust background. The sensor consists of three planes of segmented grid electrodes and each electrode is connected to an individual charge sensitive amplifier. Numerical signals were computed using the Coulomb software package. The LDX sensitive area is approximately 400 cm2. Our simulations reveal trajectory uncertainties of better than 2° with an absolute position accuracy of better than 2 mm.

  5. Mini-RF Bistatic Observations of Lunar Crater Ejecta

    NASA Astrophysics Data System (ADS)

    Stickle, A. M.; Patterson, G. W.; Cahill, J. T.

    2017-12-01

    The Mini-RF radar onboard the Lunar Reconnaissance Orbiter (LRO) is currently operating in a bistatic configuration using the Goldstone DSS-13 and Arecibo Observatory as transmitters in X-band (4.2-cm) and S-band (12.6 cm), respectively. The Circular Polarization Ratio (CPR) is a typical product derived from backscattered microwave radiation that examines the scattering properties of the lunar surface, particularly the roughness of the surface on the order of the radar wavelength. Throughout the LRO extended mission, Mini-RF has targeted young craters on the lunar surface to examine the scattering properties of their ejecta blankets in both S- and X-band. Several observed craters and their ejecta blankets exhibit a clear coherent backscatter opposition effect at low bistatic (phase) angles. This opposition effect is consistent with optical studies of lunar soils done in the laboratory, but these observations are the first time this effect has been measured on the Moon at radar wavelengths. The style of the observed opposition effect differs between craters, which may indicate differences in ejecta fragment formation or emplacement. Differences in the CPR behavior as a function of bistatic angle may also provide opportunities for relative age dating between Copernican craters. Here, we examine the ejecta of nine Copernican and Eratosthenian aged craters in both S-band and X-band and document CPR characteristics as a function bistatic angle in order to test that hypothesis. The youngest craters observed by Mini-RF (e.g., Byrgius A (48 My), Kepler (635-1250 My)) exhibit a clear opposition effect, while older craters such as Hercules have a fairly flat response in CPR as a function of phase angle. Craters with ages between these two ends, e.g., Aristarchus, exhibit a weaker opposition response. Observing the scattering behavior of continuous ejecta blankets in multiple wavelengths may provide further information about the rate of breakdown of rocks of varying size to

  6. Beneficiation of lunar ilmenite

    NASA Technical Reports Server (NTRS)

    Ruiz, Joaquin

    1991-01-01

    One of the most important commodities lacking in the moon is free oxygen which is required for life and used extensively for propellent. Free oxygen, however, can be obtained by liberating it from the oxides and silicates that form the lunar rocks and regolith. Ilmenite (FeTiO3) is considered one of the leading candidates for production of oxygen because it can be reduced with a reasonable amount of energy and it is an abundant mineral in the lunar regolith and many mare basalts. In order to obtain oxygen from ilmenite, a method must be developed to beneficiate ilmenite from lunar material. Two possible techniques are electrostatic or magnetic methods. Both methods have complications because lunar ilmenite completely lacks Fe(3+). Magnetic methods were tested on eucrite meteorites, which are a good chemical simulant for low Ti mare basalts. The ilmenite yields in the experiments were always very low and the eucrite had to be crushed to xxxx. These data suggest that magnetic separation of ilmenite from fine grain lunar basalts would not be cost effective. Presently, experiments are being performed with electrostatic separators, and lunar regolith is being waited for so that simulants do not have to be employed.

  7. The Lunar Orbital Prospector

    NASA Technical Reports Server (NTRS)

    Redd, Frank J.; Cantrell, James N.; Mccurdy, Greg

    1992-01-01

    The establishment of lunar bases will not end the need for remote sensing of the lunar surface by orbiting platforms. Human and robotic surface exploration will necessarily be limited to some proximate distance from the support base. Near real-time, high-resolution, global characterization of the lunar surface by orbiting sensing systems will continue to be essential to the understanding of the Moon's geophysical structure and the location of exploitable minerals and deposits of raw materials. The Lunar Orbital Prospector (LOP) is an orbiting sensing platform capable of supporting a variety of modular sensing packages. Serviced by a lunar-based shuttle, the LOP will permit the exchange of instrument packages to meet evolving mission needs. The ability to recover, modify, and rotate sensing packages allows their reuse in varying combinations. Combining this flexibility with robust orbit modification capabilities and near real-time telemetry links provides considerable system responsiveness. Maintenance and modification of the LOP orbit are accomplished through use of an onboard propulsion system that burns lunar-supplied oxygen and aluminum. The relatively low performance of such a system is more than compensated for by the elimination of the need for Earth-supplied propellants. The LOP concept envisions a continuous expansion of capability through the incorporation of new instrument technologies and the addition of platforms.

  8. Lunar base scenario cost estimates: Lunar base systems study task 6.1

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The projected development and production costs of each of the Lunar Base's systems are described and unit costs are estimated for transporting the systems to the lunar surface and for setting up the system.

  9. Toward a Suite of Standard Lunar Regolith Simulants for NASA's Lunar Missions: Recommendations of the 2005 Workshop of Lunar Regolith Simulant Materials

    NASA Technical Reports Server (NTRS)

    Schlagheck, R. A.; Sibille, L.; Carpenter, P.

    2005-01-01

    As NASA turns its exploration ambitions towards the Moon once again, the research and development of new technologies for lunar operations face the challenge of meeting the milestones of a fast-pace schedule, reminiscent of the 1960's Apollo program. While the lunar samples returned by the Apollo and Luna missions have revealed much about the Moon, these priceless materials exist in too scarce quantities to be used for technology development and testing. The need for mineral materials chosen to simulate the characteristics of lunar regoliths is a pressing issue that is being addressed today through the collaboration of scientists, engineers and NASA program managers. The issue of reproducing the properties of lunar regolith for research and technology development purposes was addressed by the recently held Workshop on Lunar Regolith Simulant Materials at Marshall Space Flight Center. The conclusions from the workshop and considerations concerning the feasibility (both technical and programmatic) of producing such materials will be presented here.

  10. Relationship between lunar tidal enhancements in the equatorial electrojet and tropospheric eddy heat flux during stratospheric sudden warmings

    NASA Astrophysics Data System (ADS)

    Siddiqui, T. A.; Yamazaki, Y.; Stolle, C.; Lühr, H.; Matzka, J.

    2017-12-01

    A number of studies in recent years have reported about the lunar tidal enhancements in the equatorial electrojet (EEJ) from ground- and space-based magnetometer measurements during stratospheric sudden warming (SSW) events. In this study, we make use of the ground magnetometer recordings at Huancayo observatory in Peru for the years 1978 - 2013 to derive a relationship between the lunar tidal enhancements in the EEJ and tropospheric eddy heat fluxes at 100 hPa during the SSW events. Tropospheric eddy heat fluxes are used to quantify the amount of wave activity entering the stratosphere. Anomalously large upward wave activity is known to precede the polar vortex breakdown during SSWs. We make use of the superposed epoch analysis method to determine the temporal relations between lunar tidal enhancements and eddy heat flux anomalies during SSWs, in order to demonstrate the causal relationship between these two phenomena. We also compare the lunar tidal enhancements and eddy heat flux anomalies for vortex split and for vortex displaced SSWs. It is found that larger lunar tidal enhancements are recorded for vortex split events, as compared to vortex displaced events. This confirms earlier observation; larger heat flux anomalies are recorded during vortex split SSW events than the heat flux anomalies during vortex displaced SSW events. Further, the temporal relations of lunar tidal enhancements in the EEJ have been compared separately for both the QBO phases and with the phases of the moon with respect to the central epoch of SSWs by means of the superposed epoch analysis approach. The EEJ lunar tidal enhancements in the east phase of QBO are found to be larger than the lunar tidal enhancements in the west phase of QBO. The phase of moon relative to the central SSW epoch also affects the lunar tidal enhancement in the EEJ. It is found that the lunar tidal enhancements are significantly larger when the day of new or full moon lies near the central SSW epoch, as compared

  11. LUNAR MODULE TEST ARTICLE [LTA] [2R] IS MOVED FOR MATING TO LUNAR MODULE ADAPTER

    NASA Technical Reports Server (NTRS)

    1967-01-01

    The Lunar Module Test Article [LTA] 2R, for the second Saturn V mission, is being moved from the low bay of the Manned Spacecraft Operations Building for mating with the spacecraft Lunar Module Adapter. The second Saturn V [502], except for a different lunar return trajectory, will be a repeat of the Apollo 4 unmanned Earth orbital flight of a high apogee for systems testing using several propulsion system burns and a heat shield test at lunar re-entry speed.

  12. Russia sets sights on lunar base

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-06-01

    Vladimir Popovkin, director of Roscomos, the Russian Federal Space Agency, said the agency is setting its sights on the Moon. “We strongly feel that it is time for us to start working toward being able to establish a permanent base on the Moon,” Popovkin said at a 22 May panel discussion and news briefing held in conjunction with the Global Space Exploration Conference in Washington, D. C. Establishing a goal of lunar exploration does not mean that Roscomos is giving up on other priorities such as exploration of Mars, asteroids, or the moons of Jupiter, Popovkin said. “We have much better chances to come up with very productive and tangible results while concentrating on Moon exploration,” he said, noting the findings of water in polar areas.

  13. Conceptual second-generation lunar equipment

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The spring 1990 Introduction to Design class was asked to conceptually design second-generation lunar vehicles and equipment as a semester design project. The basic assumption made in designing second-generation lunar vehicles and equipment was that a network of permanent lunar bases already existed. The designs were to facilitate the transportation of personnel and materials. The eight topics to choose from included flying vehicles, ground-based vehicles, robotic arms, and life support systems. Two teams of two or three members competed on each topic and results were exhibited at a formal presentation. A clean-propellant powered lunar flying transport vehicle, an extra-vehicular activity life support system, a pressurized lunar rover for greater distances, and a robotic arm design project are discussed.

  14. Lunar lander ground support system

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This year's project, like the previous Aerospace Group's project, involves a lunar transportation system. The basic time line will be the years 2010-2030 and will be referred to as a second generation system, as lunar bases would be present. The project design completed this year is referred to as the Lunar Lander Ground Support System (LLGSS). The area chosen for analysis encompasses a great number of vehicles and personnel. The design of certain elements of the overall lunar mission are complete projects in themselves. For this reason the project chosen for the Senior Aerospace Design is the design of specific servicing vehicles and additions or modifications to existing vehicles for the area of concern involving servicing and maintenance of the lunar lander while on the surface.

  15. Lunar Regolith Particle Shape Analysis

    NASA Technical Reports Server (NTRS)

    Kiekhaefer, Rebecca; Hardy, Sandra; Rickman, Douglas; Edmunson, Jennifer

    2013-01-01

    Future engineering of structures and equipment on the lunar surface requires significant understanding of particle characteristics of the lunar regolith. Nearly all sediment characteristics are influenced by particle shape; therefore a method of quantifying particle shape is useful both in lunar and terrestrial applications. We have created a method to quantify particle shape, specifically for lunar regolith, using image processing. Photomicrographs of thin sections of lunar core material were obtained under reflected light. Three photomicrographs were analyzed using ImageJ and MATLAB. From the image analysis measurements for area, perimeter, Feret diameter, orthogonal Feret diameter, Heywood factor, aspect ratio, sieve diameter, and sieve number were recorded. Probability distribution functions were created from the measurements of Heywood factor and aspect ratio.

  16. Different Polar Metabolites and Protein Profiles between High- and Low-Quality Japanese Ginjo Sake

    PubMed Central

    Takahashi, Kei; Kohno, Hiromi

    2016-01-01

    Japanese ginjo sake is a premium refined sake characterized by a pleasant fruity apple-like flavor and a sophisticated taste. Because of technical difficulties inherent in brewing ginjo sake, off-flavors sometimes occur. However, the metabolites responsible for off-flavors as well as those present or absent in higher quality ginjo sake remain uncertain. Here, the relationship between 202 polar chemical compounds in sake identified using capillary electrophoresis coupled with time-of-flight mass spectrometry and its organoleptic properties, such as quality and off-flavor, was examined. First, we found that some off-flavored sakes contained higher total amounts of metabolites than other sake samples. The results also identified that levels of 2-oxoglutaric acid and fumaric acid, metabolites in the tricarboxylic acid cycle, were highly but oppositely correlated with ginjo sake quality. Similarly, pyridoxine and pyridoxamine, co-enzymes for amino transferase, were also highly but oppositely correlated with ginjo sake quality. Additionally, pyruvic acid levels were associated with good quality as well. Compounds involved in the methionine salvage cycle, oxidative glutathione derivatives, and amino acid catabolites were correlated with low quality. Among off-flavors, an inharmonious bitter taste appeared attributable to polyamines. Furthermore, protein analysis displayed that a diversity of protein components and yeast protein (triosephosphate isomerase, TPI) leakage was linked to the overall metabolite intensity in ginjo sake. This research provides insight into the relationship between sake components and organoleptic properties. PMID:26939054

  17. The Lunar Mapping and Modeling Project

    NASA Astrophysics Data System (ADS)

    Noble, S. K.; Nall, M. E.; French, R. A.; Muery, K. G.

    2009-12-01

    The Lunar Mapping and Modeling Project (LMMP) has been created to manage the development of a suite of lunar mapping and modeling products that support the Constellation Program (CxP) and other lunar exploration activities, including the planning, design, development, test and operations associated with lunar sortie missions, crewed and robotic operations on the surface, and the establishment of a lunar outpost. The information provided through LMMP will assist CxP in: planning tasks in the areas of landing site evaluation and selection, design and placement of landers and other stationary assets, design of rovers and other mobile assets, developing terrain-relative navigation (TRN) capabilities, and assessment and planning of science traverses. The project draws on expertise from several NASA and non-NASA organizations (MSFC, ARC, GSFC, JPL, CRREL - US Army Cold Regions Research and Engineering Laboratory, and the USGS). LMMP will utilize data predominately from the Lunar Reconnaissance Orbiter, but also historical and international lunar mission data (e.g. Apollo, Lunar Orbiter, Kaguya, Chandrayaan-1), as available and appropriate, to meet Constellation’s data needs. LMMP will provide access to this data through a single intuitive and easy to use NASA portal that transparently accesses appropriately sanctioned portions of the widely dispersed and distributed collections of lunar data, products and tools. Two visualization systems are being developed, a web-based system called Lunar Mapper, and a desktop client, ILIADS, which will be downloadable from the LMMP portal. LMMP will provide such products as local and regional imagery and DEMs, hazard assessment maps, lighting and gravity models, and resource maps. We are working closely with the LRO team to prevent duplication of efforts and to ensure the highest quality data products. While Constellation is our primary customer, LMMP is striving to be as useful as possible to the lunar science community, the lunar

  18. Re-Os in Lunar Soils and Meteoritic Siderophiles on the Lunar Surface

    NASA Technical Reports Server (NTRS)

    Chen, J. H.; Papanastassiou, D. A.; Wasserburg, G. J.

    2001-01-01

    Re-Os isotopes in lunar soils indicate approximately chondritic Re, Os, and Os isotopic compositions and substantial Re/Os fractionation, possibly due to the terminal lunar cataclysm. Additional information is contained in the original extended abstract.

  19. Design and Construction of Manned Lunar Base

    NASA Astrophysics Data System (ADS)

    Li, Zhijie

    2016-07-01

    Building manned lunar base is one of the core aims of human lunar exploration project, which is also an important way to carry out the exploitation and utilization of lunar in situ resources. The most important part of manned lunar base is the design and construction of living habitation and many factors should be considered including science objective and site selection. Through investigating and research, the scientific goals of manned lunar base should be status and characteristics ascertainment of lunar available in situ resources, then developing necessary scientific experiments and utilization of lunar in situ resources by using special environment conditions of lunar surface. The site selection strategy of manned lunar base should rely on scientific goals according to special lunar surface environment and engineering capacity constraints, meanwhile, consulting the landing sites of foreign unmanned and manned lunar exploration, and choosing different typical regions of lunar surface and analyzing the landform and physiognomy, reachability, thermal environment, sunlight condition, micro meteoroids protection and utilization of in situ resources, after these steps, a logical lunar living habitation site should be confirmed. This paper brings out and compares three kinds of configurations with fabricating processes of manned lunar base, including rigid module, flexible and construction module manned lunar base. 1.The rigid habitation module is usually made by metal materials. The design and fabrication may consult the experience of space station, hence with mature technique. Because this configuration cannot be folded or deployed, which not only afford limit working and living room for astronauts, but also needs repetitious cargo transit between earth and moon for lunar base extending. 2. The flexible module habitation can be folded in fairing while launching. When deploying on moon, the configuration can be inflatable or mechanically-deployed, which means under

  20. The Lunar Source Disk: Old Lunar Datasets on a New CD-ROM

    NASA Astrophysics Data System (ADS)

    Hiesinger, H.

    1998-01-01

    A compilation of previously published datasets on CD-ROM is presented. This Lunar Source Disk is intended to be a first step in the improvement/expansion of the Lunar Consortium Disk, in order to create an "image-cube"-like data pool that can be easily accessed and might be useful for a variety of future lunar investigations. All datasets were transformed to a standard map projection that allows direct comparison of different types of information on a pixel-by pixel basis. Lunar observations have a long history and have been important to mankind for centuries, notably since the work of Plutarch and Galileo. As a consequence of centuries of lunar investigations, knowledge of the characteristics and properties of the Moon has accumulated over time. However, a side effect of this accumulation is that it has become more and more complicated for scientists to review all the datasets obtained through different techniques, to interpret them properly, to recognize their weaknesses and strengths in detail, and to combine them synoptically in geologic interpretations. Such synoptic geologic interpretations are crucial for the study of planetary bodies through remote-sensing data in order to avoid misinterpretation. In addition, many of the modem datasets, derived from Earth-based telescopes as well as from spacecraft missions, are acquired at different geometric and radiometric conditions. These differences make it challenging to compare or combine datasets directly or to extract information from different datasets on a pixel-by-pixel basis. Also, as there is no convention for the presentation of lunar datasets, different authors choose different map projections, depending on the location of the investigated areas and their personal interests. Insufficient or incomplete information on the map parameters used by different authors further complicates the reprojection of these datasets to a standard geometry. The goal of our efforts was to transfer previously published lunar

  1. Advances in Lunar Science and Observational Opportunities

    NASA Technical Reports Server (NTRS)

    Heldmann, Jennifer

    2012-01-01

    Lunar science is currently undergoing a renaissance as our understanding of our Moon continues to evolve given new data from multiple lunar mission and new analyses. This talk will overview NASA's recent and future lunar missions to explain the scientific questions addressed by missions such as the Lunar Reconnaissance Orbiter (LRO), Lunar Crater Observation and Sensing Satellite (LCROSS), Gravity Recovery and Interior Laboratory (Grail), Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon's Interaction with the Sun (ARTEMIS), and the Lunar Atmosphere and Dust Environment Explorer (LADEE). The talk will also overview opportunities for participatory exploration whereby professional and amateur astronomers are encouraged to participate in lunar exploration in conjunction with NASA.

  2. First Lunar Flashes Observed from Morocco (ILIAD Network): Implications for Lunar Seismology

    NASA Astrophysics Data System (ADS)

    Ait Moulay Larbi, Mamoun; Daassou, Ahmed; Baratoux, David; Bouley, Sylvain; Benkhaldoun, Zouhair; Lazrek, Mohamed; Garcia, Raphael; Colas, Francois

    2015-07-01

    We report the detection of two transient luminous events recorded on the lunar surface on February 6, 2013, at 06:29:56.7 UT and April 14, 2013, 20:00:45.4 from the Atlas Golf Marrakech observatory in Morocco. Estimated visual magnitudes are 9.4 ± 0.2 and 7.7 ± 0.2. We show that these events have the typical characteristics of impact flashes generated by meteoroids impacting the lunar surface, despite proof using two different telescopes is not available. Assuming these events were lunar impact flashes, meteoroid masses are 0.3 ± 0.05 and 1.8 ± 0.3 kg, corresponding to diameters of 7-8 and 14-15 cm for a density of 1500 kg m-3. The meteoroids would have produced craters of about 2.6 ± 0.3 and 4.4 ± 0.3 m in diameter. We then present a method based on the identification of lunar features illuminated by the Earthshine to determine the position of the flash. The method does not require any information about the observation geometry or lunar configuration. The coordinates are respectively 08.15° ± 0.15°S 59.1° ± 0.15°E and 26.81° ± 0.15°N 09.10° ± 0.15°W. Further improvement on the determination of the flash position is necessary for seismological applications. This studies demonstrates that permanent lunar impact flashes observation programs may be run in different parts of the globe using mid-sized telescopes. We call for the development of an international lunar impact astronomical detection networks that would represent an opportunity for scientific and cultural developments in countries where astronomy is under-represented.

  3. Simulated Lunar Environment Spectra of Silicic Volcanic Rocks: Application to Lunar Domes

    NASA Astrophysics Data System (ADS)

    Glotch, T. D.; Shirley, K.; Greenhagen, B. T.

    2016-12-01

    Lunar volcanism was dominated by flood-style basaltic volcanism associated with the lunar mare. However, since the Apollo era it has been suggested that some regions, termed "red spots," are the result of non-basaltic volcanic activity. These early suggestions of non-mare volcanism were based on interpretations of rugged geomorphology resulting from viscous lava flows and relatively featureless, red-sloped VNIR spectra. Mid-infrared data from the Diviner Lunar Radiometer Experiment on the Lunar Reconnaissance Orbiter have confirmed that many of the red spot features, including Hansteen Alpha, the Gruithuisen Domes, the Mairan Domes, Lassell Massif, and Compton Belkovich are silicic volcanic domes. Additional detections of silicic material in the Aristarchus central peak and ejecta suggest excavation of a subsurface silicic pluton. Other red spots, including the Helmet and Copernicus have relatively low Diviner Christiansen feature positions, but they are not as felsic as the features listed above. To date, the SiO2 content of the silicic dome features has been difficult to quantitatively determine due to the limited spectral resolution of Diviner and lack of terrestrial analog spectra acquired in an appropriate environment. Based on spectra of pure mineral and glass separates, preliminary estimates suggest that the rocks comprising the lunar silicic domes are > 65 wt.% SiO2. In an effort to better constrain this value, we have acquired spectra of andesite, dacite, rhyolite, pumice, and obsidian rock samples under a simulated lunar environment in the Planetary and Asteroid Regolith Spectroscopy Environmental Chamber (PARSEC) at the Center for Planetary Exploration at Stony Brook University. This presentation will discuss the spectra of these materials and how they relate to the Diviner measurements of the lunar silicic dome features.

  4. Mechanical properties of lunar regolith and lunar soil simulant

    NASA Technical Reports Server (NTRS)

    Perkins, Steven W.

    1989-01-01

    Through the Surveyor 3 and 7, and Apollo 11-17 missions a knowledge of the mechanical properties of Lunar regolith were gained. These properties, including material cohesion, friction, in-situ density, grain-size distribution and shape, and porosity, were determined by indirect means of trenching, penetration, and vane shear testing. Several of these properties were shown to be significantly different from those of terrestrial soils, such as an interlocking cohesion and tensile strength formed in the absence of moisture and particle cementation. To characterize the strength and deformation properties of Lunar regolith experiments have been conducted on a lunar soil simulant at various initial densities, fabric arrangements, and composition. These experiments included conventional triaxial compression and extension, direct tension, and combined tension-shear. Experiments have been conducted at low levels of effective confining stress. External conditions such as membrane induced confining stresses, end platten friction and material self weight have been shown to have a dramatic effect on the strength properties at low levels of confining stress. The solution has been to treat these external conditions and the specimen as a full-fledged boundary value problem rather than the idealized elemental cube of mechanics. Centrifuge modeling allows for the study of Lunar soil-structure interaction problems. In recent years centrifuge modeling has become an important tool for modeling processes that are dominated by gravity and for verifying analysis procedures and studying deformation and failure modes. Centrifuge modeling is well established for terrestrial enginering and applies equally as well to Lunar engineering. A brief review of the experiments is presented in graphic and outline form.

  5. Lunar Prospector observations of the electrostatic potential of the lunar surface and its response to incident currents

    NASA Astrophysics Data System (ADS)

    Halekas, J. S.; Delory, G. T.; Lin, R. P.; Stubbs, T. J.; Farrell, W. M.

    2008-09-01

    We present an analysis of Lunar Prospector Electron Reflectometer data from selected time periods using newly developed methods to correct for spacecraft potential and self-consistently utilizing the entire measured electron distribution to remotely sense the lunar surface electrostatic potential with respect to the ambient plasma. These new techniques enable the first quantitative measurements of lunar surface potentials from orbit. Knowledge of the spacecraft potential also allows accurate characterization of the downward-going electron fluxes that contribute to lunar surface charging, allowing us to determine how the lunar surface potential reacts to changing ambient plasma conditions. On the lunar night side, in shadow, we observe lunar surface potentials of ˜-100 V in the terrestrial magnetotail lobes and potentials of ˜-200 V to ˜-1 kV in the plasma sheet. In the lunar wake, we find potentials of ˜-200 V near the edges but smaller potentials in the central wake, where electron temperatures increase and secondary emission may reduce the magnitude of the negative surface potential. During solar energetic particle events, we see nightside lunar surface potentials as large as ˜-4 kV. On the other hand, on the lunar day side, in sunlight, we generally find potentials smaller than our measurement threshold of ˜20 V, except in the plasma sheet, where we still observe negative potentials of several hundred volts at times, even in sunlight. The presence of significant negative charging in sunlight at these times, given the measured incident electron currents, implies either photocurrents from lunar regolith in situ two orders of magnitude lower than those measured in the laboratory or nonmonotonic near-surface potential variation with altitude. The functional dependence of the lunar surface potential on electron temperature in shadow implies somewhat smaller secondary emission yields from lunar regolith in situ than previously measured in the laboratory. These

  6. Mineralogical and chemical properties of the lunar regolith

    NASA Astrophysics Data System (ADS)

    McKay, D. S.; Ming, D. W.

    The composition of lunar regolith and its attendant properties are discussed. Tables are provided listing lunar minerals, the abundance of plagioclase feldspar, pyroxene, olivine, and ilmenite in lunar materials, typical compositions of common lunar minerals, and cumulative grain-size distribution for a large number of lunar soils. Also provided are charts on the chemistry of breccias, the chemistry of lunar glass, and the comparative chemistry of surface soils for the Apollo sites. Lunar agglutinates, constructional particles made of lithic, mineral, and glass fragments welded together by a glassy matrix containing extremely fine-grained metallic iron and formed by micrometeoric impacts at the lunar surface, are discussed. Crystalline, igneous rock fragments, breccias, and lunar glass are examined. Volatiles implanted in lunar materials and regolith maturity are also addressed.

  7. Mineralogical and chemical properties of the lunar regolith

    NASA Technical Reports Server (NTRS)

    Mckay, David S.; Ming, Douglas W.

    1989-01-01

    The composition of lunar regolith and its attendant properties are discussed. Tables are provided listing lunar minerals, the abundance of plagioclase feldspar, pyroxene, olivine, and ilmenite in lunar materials, typical compositions of common lunar minerals, and cumulative grain-size distribution for a large number of lunar soils. Also provided are charts on the chemistry of breccias, the chemistry of lunar glass, and the comparative chemistry of surface soils for the Apollo sites. Lunar agglutinates, constructional particles made of lithic, mineral, and glass fragments welded together by a glassy matrix containing extremely fine-grained metallic iron and formed by micrometeoric impacts at the lunar surface, are discussed. Crystalline, igneous rock fragments, breccias, and lunar glass are examined. Volatiles implanted in lunar materials and regolith maturity are also addressed.

  8. Lunar surface operations. Volume 1: Lunar surface emergency shelter

    NASA Technical Reports Server (NTRS)

    Shields, William; Feteih, Salah; Hollis, Patrick

    1993-01-01

    The lunar surface emergency shelter (LSES) is designed to provide survival-level accommodations for up to four astronauts for a maximum of five days. It would be used by astronauts who were caught out in the open during a large solar event. The habitable section consists of an aluminum pressure shell with an inner diameter of 6 ft. and a length of 12.2 ft. Access is through a 4 in. thick aluminum airlock door mounted at the rear of the shelter. Shielding is provided by a 14.9 in. thick layer of lunar regolith contained within a second, outer aluminum shell. This provides protection against a 200 MeV event, based on a 15 REM maximum dose. The shelter is self-contained with a maximum range of 1000 km. Power is supplied by a primary fuel cell which occupies 70.7 cu ft. of the interior volume. Mobility is achieved by towing the shelter behind existing lunar vehicles. It was assumed that a fully operational, independent lunar base was available to provide communication support and tools for set-up and maintenance. Transportation to the moon would be provided by the proposed heavy lift launch vehicle. Major design considerations for the LSES were safety, reliability, and minimal use of earth materials.

  9. Impact of Infrared Lunar Laser Ranging on Lunar Dynamics

    NASA Astrophysics Data System (ADS)

    Viswanathan, Vishnu; Fienga, Agnès; Manche, Hervé; Gastineau, Mickael; Courde, Clément; Torre, Jean-Marie; Exertier, Pierre; Laskar, Jacques; LLR Observers : Astrogeo-OCA, Apache Point, McDonald Laser Ranging Station, Haleakala Observatory, Matera Laser Ranging Observatory

    2016-10-01

    Since 2015, in addition to the traditional green (532nm), infrared (1064nm) has been the preferred wavelength for lunar laser ranging at the Calern lunar laser ranging (LLR) site in France. Due to the better atmospheric transmission of IR with respect to Green, nearly 3 times the number of normal points have been obtained in IR than in Green [ C.Courde et al 2016 ]. In our study, in addition to the historical data obtained from various other LLR sites, we include the recent IR normal points obtained from Calern over the 1 year time span (2015-2016), constituting about 4.2% of data spread over 46 years of LLR. Near even distribution of data provided by IR on both the spatial and temporal domain, helps us to improve constraints on the internal structure of the Moon modeled within the planetary ephemeris : INPOP [ Fienga et al 2015 ]. IERS recommended models have been used in the data reduction software GINS (GRGS,CNES) [ V.Viswanathan et al 2015 ]. Constraints provided by GRAIL, on the Lunar gravitational potential and Love numbers have been taken into account in the least-square fit procedure. New estimates on the dynamical parameters of the lunar core will be presented.

  10. Design of equipment for lunar dust removal

    NASA Technical Reports Server (NTRS)

    Belden, Lacy; Cowan, Kevin; Kleespies, Hank; Ratliff, Ryan; Shah, Oniell; Shelburne, Kevin

    1991-01-01

    NASA has a long range goal of constructing a fully equipped, manned lunar base on the near side of the moon by the year 2015. During the Apollo Missions, lunar dust coated and fouled equipment surfaces and mechanisms exposed to the lunar environment. In addition, the atmosphere and internal surfaces of the lunar excursion module were contaminated by lunar dust which was brought in on articles passed through the airlock. Consequently, the need exists for device or appliance to remove lunar dust from surfaces of material objects used outside of the proposed lunar habitat. Additionally, several concepts were investigated for preventing the accumulation of lunar dust on mechanisms and finished surfaces. The character of the dust and the lunar environment present unique challenges for the removal of contamination from exposed surfaces. In addition to a study of lunar dust adhesion properties, the project examines the use of various energy domains for removing the dust from exposed surfaces. Also, prevention alternatives are examined for systems exposed to lunar dust. A concept utilizing a pressurized gas is presented for dust removal outside of an atmospherically controlled environment. The concept consists of a small astronaut/robotic compatible device which removes dust from contaminated surfaces by a small burst of gas.

  11. Apollo lunar surface experiments package

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Developments in the ALSEP program are reported. A summary of the status for the total ALSEP program is included. Other areas discussed include: (1) status of Apollo 16 (array D) and Apollo 17 (array E), (2) lunar seismic profiling experiment, (3) lunar ejecta and meteorites experiment, and (4) lunar mass spectrometer experiments.

  12. Man-Made Debris In and From Lunar Orbit

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas L.; McKay, Gordon A. (Technical Monitor)

    1999-01-01

    During 1966-1976, as part of the first phase of lunar exploration, 29 manned and robotic missions placed more than 40 objects into lunar orbit. Whereas several vehicles later successfully landed on the Moon and/or returned to Earth, others were either abandoned in orbit or intentionally sent to their destruction on the lunar surface. The former now constitute a small population of lunar orbital debris; the latter, including four Lunar Orbiters and four Lunar Module ascent stages, have contributed to nearly 50 lunar sites of man's refuse. Other lunar satellites are known or suspected of having fallen from orbit. Unlike Earth satellite orbital decays and deorbits, lunar satellites impact the lunar surface unscathed by atmospheric burning or melting. Fragmentations of lunar satellites, which would produce clouds of numerous orbital debris, have not yet been detected. The return to lunar orbit in the 1990's by the Hagoromo, Hiten, Clementine, and Lunar Prospector spacecraft and plans for increased lunar exploration early in the 21st century, raise questions of how best to minimize and to dispose of lunar orbital debris. Some of the lessons learned from more than 40 years of Earth orbit exploitation can be applied to the lunar orbital environment. For the near-term, perhaps the most important of these is postmission passivation. Unique solutions, e.g., lunar equatorial dumps, may also prove attractive. However, as with Earth satellites, debris mitigation measures are most effectively adopted early in the concept and design phase, and prevention is less costly than remediation.

  13. Lunar science. [geophysics, mineralogy and evolution of moon

    NASA Technical Reports Server (NTRS)

    Brett, R.

    1973-01-01

    A review of the recent developments in lunar science summarizing the most important lunar findings and the known restraints on the theories of lunar evolution is presented. Lunar geophysics is discussed in sections dealing with the figure of the moon, mascons, and the lunar thermal regime; recent seismic studies and magnetic results are reported. The chemical data on materials taken from lunar orbit are analyzed, and the lunar geology is discussed. Special attention is accorded the subject of minerology, reflecting the information obtained from lunar samples of both mare and nonmare origin. A tentative timetable of lunar events is proposed, and the problem of the moon's origin is briefly treated.

  14. Japanese Competitiveness and Japanese Management.

    ERIC Educational Resources Information Center

    Minabe, Shigeo

    1986-01-01

    Analyzes and compares Japanese and American industrial policy and labor practices. Proposes that certain aspects of the Japanese system be adapted by American businesses for purpose of increasing international competitiveness. Proposes specific actions and plans for both the Japanese and American systems. (ML)

  15. Building Strategic Capabilities for Sustained Lunar Exploration

    NASA Astrophysics Data System (ADS)

    Landgraf, M.; Hufenbach, B.; Houdou, B.

    2016-11-01

    We discuss a lunar exploration architecture that addresses the strategic objective of providing access to the lunar surface. This access enables the most exciting part of the lunar exploration: building a sustained infrastructure on the lunar surface.

  16. Sensitivity of Lunar Resource Economic Model to Lunar Ice Concentration

    NASA Technical Reports Server (NTRS)

    Blair, Brad; Diaz, Javier

    2002-01-01

    Lunar Prospector mission data indicates sufficient concentration of hydrogen (presumed to be in the form of water ice) to form the basis for lunar in-situ mining activities to provide a source of propellant for near-Earth and solar system transport missions. A model being developed by JPL, Colorado School of Mines, and CSP, Inc. generates the necessary conditions under which a commercial enterprise could earn a sufficient rate of return to develop and operate a LEO propellant service for government and commercial customers. A combination of Lunar-derived propellants, L-1 staging, and orbital fuel depots could make commercial LEO/GEO development, inter-planetary missions and the human exploration and development of space more energy, cost, and mass efficient.

  17. Chlorine in Lunar Basalts

    NASA Technical Reports Server (NTRS)

    Barnes, J. J.; Anand, M.; Franchi, I. A.

    2017-01-01

    In the context of the lunar magma ocean (LMO) model, it is anticipated that chlorine (and other volatiles) should have been concentrated in the late-stage LMO residual melts (i.e., the dregs enriched in incompatible elements such as K, REEs, and P, collectively called KREEP, and in its primitive form - urKREEP, [1]), given its incompatibility in mafic minerals like olivine and pyroxene, which were the dominant phases that crystallized early in the cumulate pile of the LMO (e.g., [2]). When compared to chondritic meteorites and terrestrial rocks (e.g., [3-4]), lunar samples often display heavy chlorine isotope compositions [5-9]. Boyce et al. [8] found a correlation between delta Cl-37 (sub Ap) and bulk-rock incompatible trace elements (ITEs) in lunar basalts, and used this to propose that early degassing of Cl (likely as metal chlorides) from the LMO led to progressive enrichment in remaining LMO melt in Cl-37over Cl-35- the early degassing model. Barnes et al. [9] suggested that relatively late degassing of chlorine from urKREEP (to yield delta Cl-37 (sub urKREEP greater than +25 per mille) followed by variable mixing between KREEPy melts and mantle cumulates (characterized by delta Cl-370 per mille) could explain the majority of Cl isotope data from igneous lunar samples. In order to better understand the processes involved in giving rise to the heavy chlorine isotope compositions of lunar samples, we have performed an in situ study of chlorine isotopes and abundances of volatiles in lunar apatite from a diverse suite of lunar basalts spanning a range of geochemical types.

  18. Lunar surface mine feasibility study

    NASA Astrophysics Data System (ADS)

    Blair, Brad R.

    This paper describes a lunar surface mine, and demonstrates the economic feasibility of mining oxygen from the moon. The mine will be at the Apollo 16 landing site. Mine design issues include pit size and shape, excavation equipment, muck transport, and processing requirements. The final mine design will be driven by production requirements, and constrained by the lunar environment. This mining scenario assumes the presence of an operating lunar base. Lunar base personnel will set-up a and run the mine. The goal of producing lunar oxygen is to reduce dependence on fuel shipped from Earth. Thus, the lunar base is the customer for the finished product. The perspective of this paper is that of a mining contractor who must produce a specific product at a remote location, pay local labor, and sell the product to an onsite captive market. To make a profit, it must be less costly to build and ship specialized equipment to the site, and pay high labor and operating costs, than to export the product directly to the site.

  19. Lunar Navigation Architecture Design Considerations

    NASA Technical Reports Server (NTRS)

    D'Souza, Christopher; Getchius, Joel; Holt, Greg; Moreau, Michael

    2009-01-01

    The NASA Constellation Program is aiming to establish a long-term presence on the lunar surface. The Constellation elements (Orion, Altair, Earth Departure Stage, and Ares launch vehicles) will require a lunar navigation architecture for navigation state updates during lunar-class missions. Orion in particular has baselined earth-based ground direct tracking as the primary source for much of its absolute navigation needs. However, due to the uncertainty in the lunar navigation architecture, the Orion program has had to make certain assumptions on the capabilities of such architectures in order to adequately scale the vehicle design trade space. The following paper outlines lunar navigation requirements, the Orion program assumptions, and the impacts of these assumptions to the lunar navigation architecture design. The selection of potential sites was based upon geometric baselines, logistical feasibility, redundancy, and abort support capability. Simulated navigation covariances mapped to entry interface flightpath- angle uncertainties were used to evaluate knowledge errors. A minimum ground station architecture was identified consisting of Goldstone, Madrid, Canberra, Santiago, Hartebeeshoek, Dongora, Hawaii, Guam, and Ascension Island (or the geometric equivalent).

  20. Understanding the Potential Toxic Properties of Lunar Dust

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Lunar dust causes a variety of problems for spacecraft. It can obscure vision, clog equipment, cause seal failures and abrade surfaces. Additionally, lunar dust is potentially toxic and therefore hazardous to astronauts. Lunar dust can be activated by meteorites, UV radiation and elements of solar wind and, if inhaled, could produce reactive species in the lungs (freshly fractured quartz). Methods of lunar dust deactivation must be determined before new lunar missions. This requires knowledge of how to reactivate lunar dust on Earth - thus far crushing/grinding, UV activation and heating have been tested as activation methods. Grinding of lunar dust leads to the production of hydroxyl radicals in solution and increased dissolution of lunar simulant in buffers of different pH. Decreases in pH lead to increased lunar simulant leaching. Additionally, both ground and unground lunar simulant and unground quartz have been shown to promote the production of IL-6 and IL-8, pro-inflammatory cytokines, by alveolar epithelial cells. The results suggest the need for further studies on lunar dust and simulants prior to returning to the lunar surface.

  1. Strategies for a permanent lunar base

    NASA Technical Reports Server (NTRS)

    Duke, M. B.; Mendell, W. W.; Roberts, B. B.

    1985-01-01

    One or more of three possible objectives, encompassing scientific research, lunar resource exploitation for space infrastructure construction, and lunar environment self-sufficiency refinement with a view to future planetary habitation, may be the purpose of manned lunar base activities. Attention is presently given to the possibility that the early phases of all three lunar base orientations may be developed in such a way as to share the greatest number of common elements. An evaluation is made of the cost and complexity of the lunar base, and the Space Transportation System used in conjunction with it, as functions of long term base use strategy.

  2. Expandable Lunar Habitat (X-Hab)

    NASA Image and Video Library

    2010-09-23

    Expandable Lunar Habitat (X-Hab).ILC Dover, under contract by NASA Langley Research Center, and in cooperation with NASA Johnson Space Center has designed and manufactured an expandable lunar habitat. This cylindrical habitat, or Expandable Lunar Habitat (X-Hab) is a hybrid system with two hard end caps and a deployable softgoods section in the center.

  3. RESOLVE: Bridge between early lunar ISRU and science objectives

    NASA Astrophysics Data System (ADS)

    Taylor, G.; Sanders, G.; Larson, W.; Johnson, K.

    2007-08-01

    THE NEED FOR RESOURCES: When mankind returns to the moon, there will be an aspect of the architecture that will totally change how we explore the solar system. We will take the first steps towards breaking our reliance on Earth supplied consumables by extracting resources from planetary bodies. Our first efforts in this area, known as In-Situ Resource Utilization (ISRU), will be to extract the abundant oxygen found in the lunar regolith. But the "holy grail" of lunar ISRU will be finding an exploitable source of lunar hydrogen. If we can find a source of extractable hydrogen, it would provide a foundation for true independence from Earth. With in-situ hydrogen (or water) and oxygen we can produce many of the major consumables needed to operate a lunar outpost. We would have water to drink, oxygen to breath, as well as rocket propellants and fuel cell reagents to enable extended access and operations on the moon. These items make up a huge percentage of the mass launched from the Earth. Producing them in-situ would significantly reduce the cost of operating a lunar outpost while increasing payload availability for science. PROSPECTING: The Lunar Prospector found evidence of elevated hydrogen at the lunar poles, and measurements made at these locations from the Clementine mission bistatic radar have been interpreted as correlating to water/ice concentrations. At the South Pole, there is reasonably strong correlation between the elevated areas of hydrogen and permanently shadowed craters. However, there is considerable debate on the form and concentration of this hydrogen since the orbiting satellites had limited resolution and their data can be interpreted in different ways. The varying interpretations are based on differing opinions and theories of lunar environment, evolution, and cometary bombardment within the lunar Science community. The only way to truly answer this question from both a Science and resource availability perspective is to go to the lunar poles

  4. Lunar regolith stratigraphy analysis based on the simulation of lunar penetrating radar signals

    NASA Astrophysics Data System (ADS)

    Lai, Jialong; Xu, Yi; Zhang, Xiaoping; Tang, Zesheng

    2017-11-01

    The thickness of lunar regolith is an important index of evaluating the quantity of lunar resources such as 3He and relative geologic ages. Lunar penetrating radar (LPR) experiment of Chang'E-3 mission provided an opportunity of in situ lunar subsurface structure measurement in the northern mare imbrium area. However, prior work on analyzing LPR data obtained quite different conclusions of lunar regolith structure mainly because of the missing of clear interface reflectors in radar image. In this paper, we utilized finite-difference time-domain (FDTD) method and three models of regolith structures with different rock density, number of layers, shapes of interfaces, and etc. to simulate the LPR signals for the interpretation of radar image. The simulation results demonstrate that the scattering signals caused by numerous buried rocks in the regolith can mask the horizontal reflectors, and the die-out of radar echo does not indicate the bottom of lunar regolith layer and data processing such as migration method could recover some of the subsurface information but also result in fake signals. Based on analysis of simulation results, we conclude that LPR results uncover the subsurface layered structure containing the rework zone with multiple ejecta blankets of small crater, the ejecta blanket of Chang'E-3 crater, and the transition zone and estimate the thickness of the detected layer is about 3.25 m.

  5. Critical Robotic Lunar Missions

    NASA Astrophysics Data System (ADS)

    Plescia, J. B.

    2018-04-01

    Perhaps the most critical missions to understanding lunar history are in situ dating and network missions. These would constrain the volcanic and thermal history and interior structure. These data would better constrain lunar evolution models.

  6. PHOTO MICROGRAPH - LUNAR SAMPE 10022

    NASA Image and Video Library

    1969-08-28

    S69-47900 (September 1969) --- This is a photo micrograph of lunar sample 10022. Magnification one inch equals one-tenth millimeter. The light blue and white mineral is plagioclase. The black is ilmenite, and the blue and/or green and/or orange and/or yellow and/or red mineral is pyroxene. The large pyroxene is a phenocryst that had been partially resorbed. The lunar samples collected by astronauts Neil A. Armstrong and Edwin E. Aldrin Jr. during the Apollo 11 lunar landing mission have been subjected to extensive tests and examinations at the Manned Spacecraft Center’s Lunar Receiving Laboratory.

  7. Density of the lunar interior.

    NASA Technical Reports Server (NTRS)

    Gast, P. W.; Giuli, R. T.

    1972-01-01

    It is attempted to derive the constraints that can be placed on the density of the lunar interior. The moment of inertia of the moon and its mean density are being considered in the investigation together with the mass and density of the lunar crust that have been inferred from the seismic refraction data recorded by the passive seismometer. The calculations presented show that the density of the lunar interior can easily approach values as high as 3.5 for a fraction of the lunar mass which lies in the range from 1/2 to 2/3.

  8. Electrostatic Characterization of Lunar Dust

    NASA Technical Reports Server (NTRS)

    2008-01-01

    To ensure the safety and success of future lunar exploration missions, it is important to measure the toxicity of the lunar dust and its electrostatic properties. The electrostatic properties of lunar dust govern its behavior, from how the dust is deposited in an astronaut s lungs to how it contaminates equipment surfaces. NASA has identified the threat caused by lunar dust as one of the top two problems that need to be solved before returning to the Moon. To understand the electrostatic nature of lunar dust, NASA must answer the following questions: (1) how much charge can accumulate on the dust? (2) how long will the charge remain? and (3) can the dust be removed? These questions can be answered by measuring the electrostatic properties of the dust: its volume resistivity, charge decay, charge-to-mass ratio or chargeability, and dielectric properties.

  9. Organics in APOLLO Lunar Samples

    NASA Technical Reports Server (NTRS)

    Allen, C. C.; Allton, J. H.

    2007-01-01

    One of many unknowns prior to the Apollo landings concerned the possibility of life, its remains, or its organic precursors on the surface of the Moon. While the existence of lunar organisms was considered highly unlikely, a program of biological quarantine and testing for the astronauts, the Apollo Command Modules, and the lunar rock and soil samples, was instituted in the Lunar Receiving Laboratory (LRL). No conclusive evidence of lunar organisms, was detected and the quarantine program was ended after Apollo 14. Analyses for organic compounds were also con-ducted. Considerable effort was expended, during lunar surface operations and in the LRL, to minimize and quantify organic contamination. Post-Apollo curatorial operations and cleaning minimize contamination from particulates, oxygen, and water but no longer specifically address organic contamination. The organic compounds measured in Apollo samples are generally consistent with known sources of contamination.

  10. Lunar base agriculture: Soils for plant growth

    NASA Technical Reports Server (NTRS)

    Ming, Douglas W. (Editor); Henninger, Donald L. (Editor)

    1989-01-01

    This work provides information on research and experimentation concerning various aspects of food production in space and particularly on the moon. Options for human settlement of the moon and Mars and strategies for a lunar base are discussed. The lunar environment, including the mineralogical and chemical properties of lunar regolith are investigated and chemical and physical considerations for a lunar-derived soil are considered. It is noted that biological considerations for such a soil include controlled-environment crop production, both hydroponic and lunar regolith-based; microorganisms and the growth of higher plants in lunar-derived soils; and the role of microbes to condition lunar regolith for plant cultivation. Current research in the controlled ecological life support system (CELSS) project is presented in detail and future research areas, such as the growth of higher research plants in CELSS are considered. Optimum plant and microbiological considerations for lunar derived soils are examined.

  11. Apollo Missions to the Lunar Surface

    NASA Technical Reports Server (NTRS)

    Graff, Paige V.

    2018-01-01

    Six Apollo missions to the Moon, from 1969-1972, enabled astronauts to collect and bring lunar rocks and materials from the lunar surface to Earth. Apollo lunar samples are curated by NASA Astromaterials at the NASA Johnson Space Center in Houston, TX. Samples continue to be studied and provide clues about our early Solar System. Learn more and view collected samples at: https://curator.jsc.nasa.gov/lunar.

  12. Lunar volatiles: a clue for understanding the evolution of the Moon and a resource to its exploration

    NASA Astrophysics Data System (ADS)

    Gerasimov, Mikhail

    Introduction: The discovery of noticeable hydrogen concentration (believed to be in the form of water) in the polar regions was among the most exciting recent events in the exploration of the Moon. Concentration of water in polar regolith was estimated at a level of 4-6 wt.% [1,2]. Such high concentration of water in polar regolith on volatiles depleted Moon is probably a result of migration of water molecules from its hot equatorial latitudes to cold traps of the northern and southern polar regions. These depositions of volatiles on one hand contain important information on the evolution of the Moon and on the other hand their utilization can be a bases for the future human exploration. The question about diversity and source of the volatiles is still open. Sources of lunar volatiles: Three main possible sources of the Lunar polar volatiles are: Degassing of the interior. Endogenous source of volatiles is provided by degassing of heated interior of planetary bodies. In this case chemical composition of released gases reflects thermodynamic equilibrium of gases over typical magmas at temperatures around 1000°C. The composition of such gas mixtures is characterized by domination of H2O, CO2, and SO2 over other H, C, and S containing components. CO/CO2 ratio here is typically far below 0.1 level. Hydrocarbons are mainly aromatic hydrocarbons, alkanes, and cycloalkanes. Sulfur containing gases are mainly SO2, H2S, and Sx. Isotopic ratios of volatile elements should be the same as for the bulk Moon. Interaction of solar wind protons with surface rocks. Energetic solar wind protons with the absence of an atmospheric shield can react with oxygen of surface rocks and produce water molecules as end product. Such a mechanism provides a source of mainly water on the Moon with solar hydrogen isotopes and Moon rocks oxygen isotopes. Degassing of impacting meteorites and comets. Volatiles of impacting meteorites and comets are released into transient atmosphere. It was shown

  13. Apollo Experiment Report: Lunar-Sample Processing in the Lunar Receiving Laboratory High-Vacuum Complex

    NASA Technical Reports Server (NTRS)

    White, D. R.

    1976-01-01

    A high-vacuum complex composed of an atmospheric decontamination system, sample-processing chambers, storage chambers, and a transfer system was built to process and examine lunar material while maintaining quarantine status. Problems identified, equipment modifications, and procedure changes made for Apollo 11 and 12 sample processing are presented. The sample processing experiences indicate that only a few operating personnel are required to process the sample efficiently, safely, and rapidly in the high-vacuum complex. The high-vacuum complex was designed to handle the many contingencies, both quarantine and scientific, associated with handling an unknown entity such as the lunar sample. Lunar sample handling necessitated a complex system that could not respond rapidly to changing scientific requirements as the characteristics of the lunar sample were better defined. Although the complex successfully handled the processing of Apollo 11 and 12 lunar samples, the scientific requirement for vacuum samples was deleted after the Apollo 12 mission just as the vacuum system was reaching its full potential.

  14. Lunar Exploration Missions Since 2006

    NASA Technical Reports Server (NTRS)

    Lawrence, S. J. (Editor); Gaddis, L. R.; Joy, K. H.; Petro, N. E.

    2017-01-01

    The announcement of the Vision for Space Exploration in 2004 sparked a resurgence in lunar missions worldwide. Since the publication of the first "New Views of the Moon" volume, as of 2017 there have been 11 science-focused missions to the Moon. Each of these missions explored different aspects of the Moon's geology, environment, and resource potential. The results from this flotilla of missions have revolutionized lunar science, and resulted in a profoundly new emerging understanding of the Moon. The New Views of the Moon II initiative itself, which is designed to engage the large and vibrant lunar science community to integrate the results of these missions into new consensus viewpoints, is a direct outcome of this impressive array of missions. The "Lunar Exploration Missions Since 2006" chapter will "set the stage" for the rest of the volume, introducing the planetary community at large to the diverse array of missions that have explored the Moon in the last decade. Content: This chapter will encompass the following missions: Kaguya; ARTEMIS (Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon’s Interaction with the Sun); Chang’e-1; Chandrayaan-1; Moon Impact Probe; Lunar Reconnaissance Orbiter (LRO); Lunar Crater Observation Sensing Satellite (LCROSS); Chang’e-2; Gravity Recovery and Interior Laboratory (GRAIL); Lunar Atmosphere and Dust Environment Explorer (LADEE); Chang’e-3.

  15. Lunar bases and space activities of the 21st century

    NASA Technical Reports Server (NTRS)

    Mendell, W. W. (Editor)

    1985-01-01

    The present conference gives attention to such major aspects of lunar colonization as lunar base concepts, lunar transportation, lunar science research activities, moon-based astronomical researches, lunar architectural construction, lunar materials and processes, lunar oxygen production, life support and health maintenance in lunar bases, societal aspects of lunar colonization, and the prospects for Mars colonization. Specific discussions are presented concerning the role of nuclear energy in lunar development, achromatic trajectories and the industrial scale transport of lunar resources, advanced geologic exploration from a lunar base, geophysical investigations of the moon, moon-based astronomical interferometry, the irradiation of the moon by particles, cement-based composites for lunar base construction, electrostatic concentration of lunar soil minerals, microwave processing of lunar materials, a parametric analysis of lunar oxygen production, hydrogen from lunar regolith fines, metabolic support for a lunar base, past and future Soviet lunar exploration, and the use of the moons of Mars as sources of water for lunar bases.

  16. TOPLEX: Teleoperated Lunar Explorer. Instruments and Operational Concepts for an Unmanned Lunar Rover

    NASA Technical Reports Server (NTRS)

    Blacic, James D.

    1992-01-01

    A Teleoperated Lunar Explorer, or TOPLEX, consisting of a lunar lander payload in which a small, instrument-carrying lunar surface rover is robotically landed and teleoperated from Earth to perform extended lunar geoscience and resource evaluation traverses is proposed. The rover vehicle would mass about 100 kg and carry approximately 100 kg of analytic instruments. Four instruments are envisioned: (1) a Laser-Induced Breakdown Spectrometer (LIBS) for geochemical analysis at ranges up to 100 m, capable of operating in three different modes; (2) a combined x-ray fluorescence and x-ray diffraction (XRF/XRD) instrument for elemental and mineralogic analysis of acquired samples; (3) a mass spectrometer system for stepwise heating analysis of gases released from acquired samples; and (4) a geophysical instrument package for subsurface mapping of structures such as lava tubes.

  17. Fast track lunar NTR systems assessment for the First Lunar Outpost and its evolvability to Mars

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.; Alexander, Stephen W.

    1992-01-01

    The objectives of the 'fast track' lunar Nuclear Thermal Rocket (NTR) analysis are to quantify necessary engine/stage characteristics to perform NASA's 'First Lunar Outpost' scenario and to assess the potential for evolution to Mars mission applications. By developing NTR/stage technologies for use in NASA's 'First Lunar Outpost' scenario, NASA will make a major down payment on the key components needed for the follow-on Mars Space Transportation System. A faster, cheaper approach to overall lunar/Mars exploration is expected.

  18. Lunar Dust: Properties and Investigation Techniques

    NASA Astrophysics Data System (ADS)

    Kuznetsov, I. A.; Zakharov, A. V.; Dolnikov, G. G.; Lyash, A. N.; Afonin, V. V.; Popel, S. I.; Shashkova, I. A.; Borisov, N. D.

    2017-12-01

    Physical conditions in the near-surface layer of the Moon are overviewed. This medium is formed in the course of the permanent micrometeoroid bombardment of the lunar regolith and due to the exposure of the regolith to solar radiation and high-energy charged particles of solar and galactic origin. During a considerable part of a lunar day (more than 20%), the Moon is passing through the Earth's magnetosphere, where the conditions strongly differ from those in the interplanetary space. The external effects on the lunar regolith form the plasma-dusty medium above the lunar surface, the so-called lunar exosphere, whose characteristic altitude may reach several tens of kilometers. Observations of the near-surface dusty exosphere were carried out with the TV cameras onboard the landers Surveyor 5, 6, and 7 (1967-1968) and with the astrophotometer of Lunokhod-2 (1973). Their results showed that the near-surface layer glows above the sunlit surface of the Moon. This was interpreted as the scattering of solar light by dust particles. Direct detection of particles on the lunar surface was made by the Lunar Ejects and Meteorite (LEAM) instrument deployed by the Apollo 17 astronauts. Recently, the investigations of dust particles were performed by the Lunar Atmosphere and Dust Environment Explorer (LADEE) instrument at an altitude of several tens of kilometers. These observations urged forward the development of theoretical models for the lunar exosphere formation, and these models are being continuously improved. However, to date, many issues related to the dynamics of dust and the near-surface electric fields remain unresolved. Further investigations of the lunar exosphere are planned to be performed onboard the Russian landers Luna-Glob and Luna-Resurs.

  19. Electrical power integration for lunar operations

    NASA Technical Reports Server (NTRS)

    Woodcock, Gordon

    1992-01-01

    Electrical power for future lunar operations is expected to range from a few kilowatts for an early human outpost to many megawatts for industrial operations in the 21st century. All electrical power must be imported as chemical, solar, nuclear, or directed energy. The slow rotation of the Moon and consequent long lunar night impose severe mass penalties on solar systems needing night delivery from storage. The cost of power depends on the cost of the power systems the cost of its transportation to the Moon, operating cost, and, of course, the life of the power system. The economic feasibility of some proposed lunar ventures depends in part on the cost of power. This paper explores power integration issues, costs, and affordability in the context of the following representative lunar ventures: (1) early human outpost (10 kWe); (2) early permanent lunar base, including experimental ISMU activities (100 kWe); (3) lunar oxygen production serving an evolved lunar base (500 kWe); (4) lunar base production of specialized high-value products for use on Earth (5 kWe); and (5) lunar mining and production of helium-3 (500 kWe). The schema of the paper is to project likely costs of power alternatives (including integration factors) in these power ranges, to select the most economic, to determine power cost contribution to the product or activities, to estimate whether the power cost is economically acceptable, and, finally, to offer suggestions for reaching acceptability where cost problems exist.

  20. Tribocharging Lunar Soil for Electrostatic Beneficiation

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Future human lunar habitation requires using in situ materials for both structural components and oxygen production. Lunar bases must be constructed from thermal-and radiation-shielding materials that will provide significant protection from the harmful cosmic energy which normally bombards the lunar surface. In addition, shipping oxygen from Earth is weight-prohibitive, and therefore investigating the production of breathable oxygen from oxidized mineral components is a major ongoing NASA research initiative. Lunar regolith may meet the needs for both structural protection and oxygen production. Already a number of oxygen production technologies are being tested, and full-scale bricks made of lunar simulant have been sintered. The beneficiation, or separation, of lunar minerals into a refined industrial feedstock could make production processes more efficient, requiring less energy to operate and maintain and producing higher-performance end products. The method of electrostatic beneficiation used in this research charges mineral powders (lunar simulant) by contact with materials of a different composition. The simulant acquires either a positive or negative charge depending upon its composition relative to the charging material.

  1. Geoscience and a Lunar Base: A Comprehensive Plan for Lunar Exploration

    NASA Technical Reports Server (NTRS)

    Taylor, G. Jeffrey (Editor); Spudis, Paul D. (Editor)

    1990-01-01

    This document represents the proceedings of the Workshop on Geoscience from a Lunar Base. It describes a comprehensive plan for the geologic exploration of the Moon. The document begins by explaining the scientific importance of studying the Moon and outlines the many unsolved problems in lunar science. Subsequent chapters detail different, complementary approaches to geologic studies: global surveys, including orbiting spacecraft such as Lunar Observer and installation of a global geophysical network; reconnaissance sample return mission, by either automated rovers or landers, or by piloted forays; detailed field studies, which involve astronauts and teleoperated robotic field geologists. The document then develops a flexible scenario for exploration and sketches the technological developments needed to carry out the exploration scenario.

  2. Economic geology of lunar Helium-3

    NASA Technical Reports Server (NTRS)

    Schmitt, Harrison H.

    1988-01-01

    Economic geology evaluation of lunar He-3 should answer the question: Can lunar He-3 be sold on Earth with sufficient profit margins and low enough risk to attract capital investment in the enterprise. Concepts that relate to economic geology of recovering He-3 from the lunar maria are not new to human experience. A parametric cost and technology evaluation scheme, based on existing and future data, is required to qualitatively and quantitatively assess the comprehensive economic feasibility and return on investment of He-3 recovery from the lunar maria. There are also many political issues which must be considered as a result of nuclear fusion and lunar mining.

  3. Astronaut John Young photographed collecting lunar samples

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Astronaut John W. Young, commander of the Apollo 16 lunar landing mission, is photographed collecting lunar samples near North Ray crater during the third Apollo 16 extravehicular activity (EVA-3) at the Descartes landing site. This picture was taken by Astronaut Charles M. Duke Jr., lunar module pilot. Young is using the lunar surface rake and a set of tongs. The Lunar Roving Vehicle is parked in the field of large boulders in the background.

  4. Lunar Extravehicular Activity Program

    NASA Technical Reports Server (NTRS)

    Heartsill, Amy Ellison

    2006-01-01

    Extravehicular Activity (EVA) has proven an invaluable tool for space exploration since the inception of the space program. There are situations in which the best means to evaluate, observe, explore and potentially troubleshoot space systems are accomplished by direct human intervention. EVA provides this unique capability. There are many aspects of the technology required to enable a "miniature spaceship" to support individuals in a hostile environment in order to accomplish these tasks. This includes not only the space suit assembly itself, but the tools, design interfaces of equipment on which EVA must work and the specific vehicles required to support transfer of humans between habitation areas and the external world. This lunar mission program will require EVA support in three primary areas. The first of these areas include Orbital stage EVA or micro-gravity EVA which includes both Low Earth Orbit (LEO), transfer and Lunar Orbit EVA. The second area is Lunar Lander EVA capability, which is lunar surface EVA and carries slightly different requirements from micro-gravity EVA. The third and final area is Lunar Habitat based surface EVA, which is the final system supporting a long-term presence on the moon.

  5. Robotic Lunar Landers For Science And Exploration

    NASA Technical Reports Server (NTRS)

    Cohen, B. A.; Bassler, J. A.; Morse, B. J.; Reed, C. L. B.

    2010-01-01

    NASA Marshall Space Flight Center and The Johns Hopkins University Applied Physics Laboratory have been conducting mission studies and performing risk reduction activities for NASA s robotic lunar lander flight projects. In 2005, the Robotic Lunar Exploration Program Mission #2 (RLEP-2) was selected as an ESMD precursor robotic lander mission to demonstrate precision landing and determine if there was water ice at the lunar poles; however, this project was canceled. Since 2008, the team has been supporting SMD designing small lunar robotic landers for science missions, primarily to establish anchor nodes of the International Lunar Network (ILN), a network of lunar geophysical nodes. Additional mission studies have been conducted to support other objectives of the lunar science community. This paper describes the current status of the MSFC/APL robotic lunar mission studies and risk reduction efforts including high pressure propulsion system testing, structure and mechanism development and testing, long cycle time battery testing, combined GN&C and avionics testing, and two autonomous lander test articles.

  6. NASA Lunar Base Wireless System Propagation Analysis

    NASA Technical Reports Server (NTRS)

    Hwu, Shian U.; Upanavage, Matthew; Sham, Catherine C.

    2007-01-01

    There have been many radio wave propagation studies using both experimental and theoretical techniques over the recent years. However, most of studies have been in support of commercial cellular phone wireless applications. The signal frequencies are mostly at the commercial cellular and Personal Communications Service bands. The antenna configurations are mostly one on a high tower and one near the ground to simulate communications between a cellular base station and a mobile unit. There are great interests in wireless communication and sensor systems for NASA lunar missions because of the emerging importance of establishing permanent lunar human exploration bases. Because of the specific lunar terrain geometries and RF frequencies of interest to the NASA missions, much of the published literature for the commercial cellular and PCS bands of 900 and 1800 MHz may not be directly applicable to the lunar base wireless system and environment. There are various communication and sensor configurations required to support all elements of a lunar base. For example, the communications between astronauts, between astronauts and the lunar vehicles, between lunar vehicles and satellites on the lunar orbits. There are also various wireless sensor systems among scientific, experimental sensors and data collection ground stations. This presentation illustrates the propagation analysis of the lunar wireless communication and sensor systems taking into account the three dimensional terrain multipath effects. It is observed that the propagation characteristics are significantly affected by the presence of the lunar terrain. The obtained results indicate the lunar surface material, terrain geometry and antenna location are the important factors affecting the propagation characteristics of the lunar wireless systems. The path loss can be much more severe than the free space propagation and is greatly affected by the antenna height, surface material and operating frequency. The

  7. Lunar Laser Ranging trial at Koganei SLR station

    NASA Astrophysics Data System (ADS)

    Noda, Hirotomo; Kunimori, Hiroo; Araki, Hiroshi

    Introduction: The Lunar Laser Ranging (LLR) is a technique to measure the distance between laser stations on the Earth and retroreflectors on the Moon, by detecting the time of flight of high-powered laser emitted from the ground station. Since the Earth-Moon distance contains information of lunar orbit, lunar solid tides, and lunar orientation and rotation, observation data of LLR have contributed to the lunar science, especially for the estimation of the inner structure of the Moon through orientation, rotation and tide. There are five refroreflectors on the Moon, Apollo 11, 14, 15 (U. S. A.), Lunokhod 1 and 2 (french-made, carried by former U. S. S. R.). The Apollo 15 has largest aperture among them, and almost 75 % of the total LLR data are from Apollo 15 site. System Description: Since there is no Japanese station which can range the Moon so far, a precursor ranging experiment by using the Satellite Laser Ranging (SLR) facility in the NICT Koganei campus in Tokyo is ongoing. The SLR station has a 1.5 m Cassegrain telescope with Coude focus. Normally it is equipped with a laser with 20mJ, 20Hz repetition rate, and 35 picoseconds pulse width for satellite ranging. In addition to it, a wide-pulse width laser (3 nanoseconds, which corresponds to 45 cm in 2-way range) with energy of about 350 mJ per shot, repetition rate of 10Hz, wavelength of 532 nm is introduced to detect photons from the lunar retroreflectors for demonstration. As the pulse width is broad, the high accuracy ranging is not expected, therefore it is solely used for the confirmation of the optical link budget between the ground station and retroreflectors on the Moon. As the photon detector, we use a SPAD (Single Photon Avalanche Diode) and also an MCP (Micro Channel Plate) photo multiplier whose quantum efficiency is twice as much as that of the SPAD in use. For the pointing, a CCD imager is also available in the same detector box. They can be switched by reflecting mirrors. To suppress the

  8. Lunar Samples - Apollo 12

    NASA Image and Video Library

    1969-11-26

    S69-60294 (26 Nov. 1969) --- One of the first views of the Apollo 12 lunar rocks is this photograph of the open sample return container. The large rock is approximately 7 1/2 inches across and is larger than any rock brought back to Earth by the crew of the Apollo 11 lunar landing mission. Two of the rocks in the first container are crystalline and generally lighter in color than those returned on the first lunar landing. The rocks in this box are medium charcoal brown/gray in color.

  9. Lunar surface structural concepts and construction studies

    NASA Technical Reports Server (NTRS)

    Mikulas, Martin

    1991-01-01

    The topics are presented in viewgraph form and include the following: lunar surface structures construction research areas; lunar crane related disciplines; shortcomings of typical mobile crane in lunar base applications; candidate crane cable suspension systems; NIST six-cable suspension crane; numerical example of natural frequency; the incorporation of two new features for improved performance of the counter-balanced actively-controlled lunar crane; lunar crane pendulum mechanics; simulation results; 1/6 scale lunar crane testbed using GE robot for global manipulation; basic deployable truss approaches; bi-pantograph elevator platform; comparison of elevator platforms; perspective of bi-pantograph beam; bi-pantograph synchronously deployable tower/beam; lunar module off-loading concept; module off-loader concept packaged; starburst deployable precision reflector; 3-ring reflector deployment scheme; cross-section of packaged starburst reflector; and focal point and thickness packaging considerations.

  10. Apollo 14 visibility tests: Visibility of lunar surface features and lunar landing

    NASA Technical Reports Server (NTRS)

    Ziedman, K.

    1972-01-01

    An in-flight visibility test conducted on the Apollo 14 mission is discussed. The need for obtaining experimental data on lunar feature visibility arose from visibility problems associated with various aspects of the Apollo missions; and especially from anticipated difficulties of recognizing lunar surface features at the time of descent and landing under certain illumination conditions. Although visibility problems have influenced many other aspects of the Apollo mission, they have been particularly important for descent operations, due to the criticality of this mission phase and the crew's guidance and control role for landing site recognition and touchdown point selection. A series of analytical and photographic studies were conducted during the Apollo program (prior to as well as after the initial manned lunar operations) to delineate constraints imposed on landing operations by visibility limitations. The purpose of the visibility test conducted on Apollo 14 was to obtain data to reduce uncertainties and to extend the analytical models of visibility in the lunar environment.

  11. LUNAR SAMPLES - APOLLO 17 - #7605500

    NASA Image and Video Library

    1973-01-01

    S73-15713 (January 1973) --- A close-up view of Apollo 17 lunar rock sample No. 76055 being studied and analyzed in the Lunar Receiving Laboratory at the Manned Spacecraft Center. This tan-gray irregular, rounded breccia was among many lunar samples brought back from the Taurus-Littrow landing site by the Apollo 17 crew. The rock measures 18 x 20 x 25 centimeters (7.09 x 7.87 x 9.84 inches) and weighs 6,389 grams (14.2554 pounds). The rock was collected from the south side of the lunar roving vehicle while the Apollo 17 astronauts were at Station 7 (base of North Massif).

  12. Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) with Raman Imaging Applied to Lunar Meteorites.

    PubMed

    Smith, Joseph P; Smith, Frank C; Booksh, Karl S

    2018-03-01

    Lunar meteorites provide a more random sampling of the surface of the Moon than do the returned lunar samples, and they provide valuable information to help estimate the chemical composition of the lunar crust, the lunar mantle, and the bulk Moon. As of July 2014, ∼96 lunar meteorites had been documented and ten of these are unbrecciated mare basalts. Using Raman imaging with multivariate curve resolution-alternating least squares (MCR-ALS), we investigated portions of polished thin sections of paired, unbrecciated, mare-basalt lunar meteorites that had been collected from the LaPaz Icefield (LAP) of Antarctica-LAP 02205 and LAP 04841. Polarized light microscopy displays that both meteorites are heterogeneous and consist of polydispersed sized and shaped particles of varying chemical composition. For two distinct probed areas within each meteorite, the individual chemical species and associated chemical maps were elucidated using MCR-ALS applied to Raman hyperspectral images. For LAP 02205, spatially and spectrally resolved clinopyroxene, ilmenite, substrate-adhesive epoxy, and diamond polish were observed within the probed areas. Similarly, for LAP 04841, spatially resolved chemical images with corresponding resolved Raman spectra of clinopyroxene, troilite, a high-temperature polymorph of anorthite, substrate-adhesive epoxy, and diamond polish were generated. In both LAP 02205 and LAP 04841, substrate-adhesive epoxy and diamond polish were more readily observed within fractures/veinlet features. Spectrally diverse clinopyroxenes were resolved in LAP 04841. Factors that allow these resolved clinopyroxenes to be differentiated include crystal orientation, spatially distinct chemical zoning of pyroxene crystals, and/or chemical and molecular composition. The minerals identified using this analytical methodology-clinopyroxene, anorthite, ilmenite, and troilite-are consistent with the results of previous studies of the two meteorites using electron microprobe

  13. Lunar & Planetary Science Conference.

    ERIC Educational Resources Information Center

    Warner, Jeffrey L.; And Others

    1982-01-01

    Summaries of different topics discussed at the Lunar and Planetary Science Conference are presented to provide updated information to nonplanetologists. Some topics include Venus, isotopes, chondrites, creation science, cosmic dust, cratering, moons and rings, igneous rocks, and lunar soil. (DC)

  14. Lunar sample analysis

    NASA Technical Reports Server (NTRS)

    Tittmann, B. R.

    1975-01-01

    Previous studies have shown that very small amounts of absorbed volatiles only removed by outgassing in high vacuum and elevated temperatures-drastically increase the internal friction in terrestrial analogs of lunar basalt. Recently room temperature Q values as high as 2000 were achieved by thorough outgassing procedures in 10 to the 8th power torr. Results are presented on Q measurements for lunar rock 70215.85, along with some data on the effect on Q of a variety of gases. Data show that substantially greater increases in Q are obtainable in a lunar rock sample than in the terrestrial analog samples studied, and that in addition to H2O other gases also can make non-negligible contributions to the internal friction.

  15. An Experiment to Detect Lunar Horizon Glow with the Lunar Orbit Laser Altimeter Laser Ranging Telescope

    NASA Astrophysics Data System (ADS)

    Smith, David E.; Zuber, Maria T.; Barker, Michael; Mazarico, Erwan; Neumann, Gregory A.; McClanahan, Timothy P.; Sun, Xiaoli

    2016-04-01

    Lunar horizon glow (LHG) was an observation by the Apollo astronauts of a brightening of the horizon around the time of sunrise. The effect has yet to be fully explained or confirmed by instruments on lunar orbiting spacecraft despite several attempts. The Lunar Reconnaissance Orbiter (LRO) spacecraft carries the laser altimeter (LOLA) instrument which has a 2.5 cm aperture telescope for Earth-based laser ranging (LR) mounted and bore-sighted with the high gain antenna (HGA). The LR telescope is connected to LOLA by a fiber-glass cable to one of its 5 detectors. For the LGH experiments the LR telescope is pointed toward the horizon shortly before lunar sunrise with the intent of observing any forward scattering of sunlight due to the presence of dust or particles in the field of view. Initially, the LR telescope is pointed at the dark lunar surface, which provides a measure of the dark count, and moves toward the lunar limb so as to measure the brightness of the sky just above the lunar limb immediately prior to lunar sunrise. At no time does the sun shine directly into the LR telescope, although the LR telescope is pointed as close to the sun as the 1.75-degree field of view permits. Experiments show that the LHG signal seen by the astronauts can be detected with a four-second integration of the noise counts.

  16. Electrostatic Characterization of Lunar Dust Simulants

    NASA Technical Reports Server (NTRS)

    Calle, C. I.; Buhler, C. R.; Ritz, M. L.

    2008-01-01

    Lunar dust can jeopardize exploration activities due to its ability to cling to most surfaces. In this paper, we report on our measurements of the electrostatic properties of the lunar soil simulants. Methods have been developed to measure the volume resistivity, dielectric constant, chargeability, and charge decay of lunar soil. While the first two parameters have been measured in the past [Olhoeft 1974], the last two have never been measured directly on the lunar regolith or on any of the Apollo samples. Measurements of the electrical properties of the lunar samples are being performed in an attempt to answer important problems that must be solved for the development of an effective dust mitigation technology, namely, how much charge can accumulate on the dust and how long does the charge remain on surfaces. The measurements will help develop coatings that are compatible with the intrinsic electrostatic properties of the lunar regolith.

  17. Various problems in lunar habitat construction scenarios

    NASA Astrophysics Data System (ADS)

    Nitta, Keiji; Ohtsubo, Koji; Oguchi, Mitsuo; Ohya, Haruhiko; Kanbe, Seiichiro; Ashida, Akira; Sano, Kenichi

    1991-10-01

    Many papers describing the lunar base construction have been published previously. Lunar base has been considered to be a useful facility to conduct future scientific programs and to get new nuclear energy resource, namely 3He, for defending the environmental collapse on Earth and also to develop lunar resources such as oxygen and nitrogen for extending human activities in space more economically. The scale of the lunar base and the construction methods adopted are determined by the scenario of a lunar utilization program but constrained by the availability of the established space transportation technologies. As indicated in the scenarios described in papers regarding lunar base construction, the first steps of lunar missions are the investigation of lunar itself for conducting scientific research and for surveying the lunar base construction sites, the second steps are the outpost construction for conducting man-tended missions, for more precise scientific research and studying the lunar base construction methods, and third steps are the construction of a permanent base and the expansion of this lunar base for exploiting lunar resources. The missions within the first and second steps are all possible using the ferry (OTV) similar to the service and command modules of Apollo Spacecraft because all necessary weights to be landed on the lunar surface for these missions seem to be under the equivalent weight of the Apollo Lunar Lander. On the other hand, the permanent facilities constructed on the lunar surface in the third step requires larger quantities of construction materials to be transported from Earth, and a new ferry (advanced OTV) having higher transportation ability, at least above 6 times, compared with Apollo Service and Command Modules, are to be developed. The largest problems in the permament lunar base construction are related to the food production facilities, 30-40 m 2 plant cultivation area per person are required for providing the nutrition

  18. Lunar Seismology: the Internal Structure of the Moon. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Goins, N. R.

    1978-01-01

    The direct P and S wave arrival times are the primary data set that can be measured on the seismograms of natural lunar seismic events. Polarization filtering techniques allow the enhancement of secondary body wave arrivals and record curves to identify the secondary phases and deduce structural information. Finally, shear wave amplitude vs. distance curves yield information on the location and magnitude of seismic velocity gradients in the interior. The results of these analyses show that the moon appears to have a two-layer crust at all four seismic stations: a 20 km upper crust that seems to be constant at all sites and a lower crust that is 40 km thick at stations 12 and 14 (mare), 55 + or - 10 km at station 16 (highland), and tentatively either 40 km or 70 km at station 15. The lower mantle extends from 480 km to at least 1100 km depth which is the maximum depth of penetration of all but a few seismic waves used as data. No definitive evidence for or against a lunar core exists.

  19. The Lunar Mapping and Modeling Project

    NASA Technical Reports Server (NTRS)

    Noble, Sarah K.; French, R. A.; Nall, M. E.; Muery, K. G.

    2009-01-01

    The Lunar Mapping and Modeling Project (LMMP) has been created to manage the development of a suite of lunar mapping and modeling products that support the Constellation Program (CxP) and other lunar exploration activities, including the planning, design, development, test and operations associated with lunar sortie missions, crewed and robotic operations on the surface, and the establishment of a lunar outpost. The information provided through LMMP will assist CxP in: planning tasks in the areas of landing site evaluation and selection, design and placement of landers and other stationary assets, design of rovers and other mobile assets, developing terrain-relative navigation (TRN) capabilities, and assessment and planning of science traverses.

  20. A long-lived lunar core dynamo.

    PubMed

    Shea, Erin K; Weiss, Benjamin P; Cassata, William S; Shuster, David L; Tikoo, Sonia M; Gattacceca, Jérôme; Grove, Timothy L; Fuller, Michael D

    2012-01-27

    Paleomagnetic measurements indicate that a core dynamo probably existed on the Moon 4.2 billion years ago. However, the subsequent history of the lunar core dynamo is unknown. Here we report paleomagnetic, petrologic, and (40)Ar/(39)Ar thermochronometry measurements on the 3.7-billion-year-old mare basalt sample 10020. This sample contains a high-coercivity magnetization acquired in a stable field of at least ~12 microteslas. These data extend the known lifetime of the lunar dynamo by 500 million years. Such a long-lived lunar dynamo probably required a power source other than thermochemical convection from secular cooling of the lunar interior. The inferred strong intensity of the lunar paleofield presents a challenge to current dynamo theory.