Science.gov

Sample records for jasmonate-mediated plant defense

  1. Priming of jasmonate-mediated antiherbivore defense responses in rice by silicon.

    PubMed

    Ye, Mao; Song, Yuanyuan; Long, Jun; Wang, Ruilong; Baerson, Scott R; Pan, Zhiqiang; Zhu-Salzman, Keyan; Xie, Jiefen; Cai, Kunzheng; Luo, Shiming; Zeng, Rensen

    2013-09-17

    Although the function of silicon (Si) in plant physiology has long been debated, its beneficial effects on plant resistance against abiotic and biotic stresses, including insect herbivory, have been well documented. In addition, the jasmonate (JA) signaling pathway plays a crucial role in mediating antiherbivore defense responses in plants. However, potential interactions between JA and Si in response to insect attack have not been examined directly. To explore the role JA may play in Si-enhanced resistance, we silenced the expression of allene oxide synthase (OsAOS; active in JA biosynthesis) and CORONATINE INSENSITIVE1 (OsCOI1; active in JA perception) genes in transgenic rice plants via RNAi and examined resulting changes in Si accumulation and defense responses against caterpillar Cnaphalocrocis medinalis (rice leaffolder, LF) infestation. Si pretreatment increased rice resistance against LF larvae in wild-type plants but not in OsAOS and OsCOI1 RNAi lines. Upon LF attack, wild-type plants subjected to Si pretreatment exhibited enhanced defense responses relative to untreated controls, including higher levels of JA accumulation; increased levels of transcripts encoding defense marker genes; and elevated activities of peroxidase, polyphenol oxidase, and trypsin protease inhibitor. Additionally, reduced Si deposition and Si cell expansion were observed in leaves of OsAOS and OsCOI1 RNAi plants in comparison with wild-type plants, and reduced steady-state transcript levels of the Si transporters OsLsi1, OsLsi2, and OsLsi6 were observed in Si-pretreated plants after LF attack. These results suggest a strong interaction between Si and JA in defense against insect herbivores involving priming of JA-mediated defense responses by Si and the promotion of Si accumulation by JA.

  2. Priming of jasmonate-mediated anti-herbivore defense responses in rice by silicon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    While the function of silicon (Si) in plant physiology has long been debated, its beneficial effects on plant resistance against abiotic and biotic stresses, ¬including insect herbivory, have been well-documented. In addition, the jasmonate (JA) signaling pathway plays a crucial role in mediating an...

  3. The novel monocot-specific 9-lipoxygenase, ZmLOX12 is required to mount an effective jasmonate-mediated defense against Fusarium verticillioides in maize

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium verticillioides is a major limiting factor for maize production due to ear and stalk rot and the contamination of seed with the carcinogenic mycotoxin, fumonisin. While lipoxygenase (LOX)-derived oxylipins have been implicated in defense against diverse pathogens, their function in maize re...

  4. Recognizing Plant Defense Priming.

    PubMed

    Martinez-Medina, Ainhoa; Flors, Victor; Heil, Martin; Mauch-Mani, Brigitte; Pieterse, Corné M J; Pozo, Maria J; Ton, Jurriaan; van Dam, Nicole M; Conrath, Uwe

    2016-10-01

    Defense priming conditions diverse plant species for the superinduction of defense, often resulting in enhanced pest and disease resistance and abiotic stress tolerance. Here, we propose a guideline that might assist the plant research community in a consistent assessment of defense priming in plants.

  5. Synthetic plant defense elicitors

    PubMed Central

    Bektas, Yasemin; Eulgem, Thomas

    2015-01-01

    To defend themselves against invading pathogens plants utilize a complex regulatory network that coordinates extensive transcriptional and metabolic reprogramming. Although many of the key players of this immunity-associated network are known, the details of its topology and dynamics are still poorly understood. As an alternative to forward and reverse genetic studies, chemical genetics-related approaches based on bioactive small molecules have gained substantial popularity in the analysis of biological pathways and networks. Use of such molecular probes can allow researchers to access biological space that was previously inaccessible to genetic analyses due to gene redundancy or lethality of mutations. Synthetic elicitors are small drug-like molecules that induce plant defense responses, but are distinct from known natural elicitors of plant immunity. While the discovery of some synthetic elicitors had already been reported in the 1970s, recent breakthroughs in combinatorial chemical synthesis now allow for inexpensive high-throughput screens for bioactive plant defense-inducing compounds. Along with powerful reverse genetics tools and resources available for model plants and crop systems, comprehensive collections of new synthetic elicitors will likely allow plant scientists to study the intricacies of plant defense signaling pathways and networks in an unparalleled fashion. As synthetic elicitors can protect crops from diseases, without the need to be directly toxic for pathogenic organisms, they may also serve as promising alternatives to conventional biocidal pesticides, which often are harmful for the environment, farmers and consumers. Here we are discussing various types of synthetic elicitors that have been used for studies on the plant immune system, their modes-of-action as well as their application in crop protection. PMID:25674095

  6. Synthetic plant defense elicitors.

    PubMed

    Bektas, Yasemin; Eulgem, Thomas

    2014-01-01

    To defend themselves against invading pathogens plants utilize a complex regulatory network that coordinates extensive transcriptional and metabolic reprogramming. Although many of the key players of this immunity-associated network are known, the details of its topology and dynamics are still poorly understood. As an alternative to forward and reverse genetic studies, chemical genetics-related approaches based on bioactive small molecules have gained substantial popularity in the analysis of biological pathways and networks. Use of such molecular probes can allow researchers to access biological space that was previously inaccessible to genetic analyses due to gene redundancy or lethality of mutations. Synthetic elicitors are small drug-like molecules that induce plant defense responses, but are distinct from known natural elicitors of plant immunity. While the discovery of some synthetic elicitors had already been reported in the 1970s, recent breakthroughs in combinatorial chemical synthesis now allow for inexpensive high-throughput screens for bioactive plant defense-inducing compounds. Along with powerful reverse genetics tools and resources available for model plants and crop systems, comprehensive collections of new synthetic elicitors will likely allow plant scientists to study the intricacies of plant defense signaling pathways and networks in an unparalleled fashion. As synthetic elicitors can protect crops from diseases, without the need to be directly toxic for pathogenic organisms, they may also serve as promising alternatives to conventional biocidal pesticides, which often are harmful for the environment, farmers and consumers. Here we are discussing various types of synthetic elicitors that have been used for studies on the plant immune system, their modes-of-action as well as their application in crop protection.

  7. Plant Defense against Insect Herbivores

    PubMed Central

    Fürstenberg-Hägg, Joel; Zagrobelny, Mika; Bak, Søren

    2013-01-01

    Plants have been interacting with insects for several hundred million years, leading to complex defense approaches against various insect feeding strategies. Some defenses are constitutive while others are induced, although the insecticidal defense compound or protein classes are often similar. Insect herbivory induce several internal signals from the wounded tissues, including calcium ion fluxes, phosphorylation cascades and systemic- and jasmonate signaling. These are perceived in undamaged tissues, which thereafter reinforce their defense by producing different, mostly low molecular weight, defense compounds. These bioactive specialized plant defense compounds may repel or intoxicate insects, while defense proteins often interfere with their digestion. Volatiles are released upon herbivory to repel herbivores, attract predators or for communication between leaves or plants, and to induce defense responses. Plants also apply morphological features like waxes, trichomes and latices to make the feeding more difficult for the insects. Extrafloral nectar, food bodies and nesting or refuge sites are produced to accommodate and feed the predators of the herbivores. Meanwhile, herbivorous insects have adapted to resist plant defenses, and in some cases even sequester the compounds and reuse them in their own defense. Both plant defense and insect adaptation involve metabolic costs, so most plant-insect interactions reach a stand-off, where both host and herbivore survive although their development is suboptimal. PMID:23681010

  8. Chemical defense lowers plant competitiveness.

    PubMed

    Ballhorn, Daniel J; Godschalx, Adrienne L; Smart, Savannah M; Kautz, Stefanie; Schädler, Martin

    2014-11-01

    Both plant competition and plant defense affect biodiversity and food web dynamics and are central themes in ecology research. The evolutionary pressures determining plant allocation toward defense or competition are not well understood. According to the growth-differentiation balance hypothesis (GDB), the relative importance of herbivory and competition have led to the evolution of plant allocation patterns, with herbivore pressure leading to increased differentiated tissues (defensive traits), and competition pressure leading to resource investment towards cellular division and elongation (growth-related traits). Here, we tested the GDB hypothesis by assessing the competitive response of lima bean (Phaseolus lunatus) plants with quantitatively different levels of cyanogenesis-a constitutive direct, nitrogen-based defense against herbivores. We used high (HC) and low cyanogenic (LC) genotypes in different competition treatments (intra-genotypic, inter-genotypic, interspecific), and in the presence or absence of insect herbivores (Mexican bean beetle, Epilachna varivestis) to quantify vegetative and generative plant parameters (above and belowground biomass as well as seed production). Highly defended HC-plants had significantly lower aboveground biomass and seed production than LC-plants when grown in the absence of herbivores implying significant intrinsic costs of plant cyanogenesis. However, the reduced performance of HC- compared to LC-plants was mitigated in the presence of herbivores. The two plant genotypes exhibited fundamentally different responses to various stresses (competition, herbivory). Our study supports the GDB hypothesis by demonstrating that competition and herbivory affect different plant genotypes differentially and contributes to understanding the causes of variation in defense within a single plant species.

  9. Plant defense after flooding

    PubMed Central

    Hsu, Fu-Chiun; Shih, Ming-Che

    2013-01-01

    Since the first study of hypoxic response in plants with cDNA microarray in 2002, the number of hypoxia-responsive genes has grown to more than 2000. However, to date, only small numbers of hypoxia-responsive genes are known to confer hypoxic resistance. Most investigations in this area have focused on identifying which genes are responsive and then characterized how these genes are induced during hypoxia, but the roles of numerous genes in hypoxic response are still unknown. In our recent study, we demonstrated that a group of genes are induced by submergence to trigger plant immunity, which is a response to protect plants against a higher probability of pathogen infection during or after flooding. This work offered a brand new perspective, i.e., that hypoxia-responsive genes can be induced for reasons other than conferring hypoxic resistance. Possible reasons why these responses were triggered are discussed herein. PMID:24300693

  10. Auxin crosstalk to plant immune networks: a plant-pathogen interaction perspective.

    PubMed

    Naseem, Muhammad; Srivastava, Mugdha; Tehseen, Muhammad; Ahmed, Nazeer

    2015-01-01

    The plant hormone auxin regulates a whole repertoire of plant growth and development. Many plant-associated microorganisms, by virtue of their auxin production capability, mediate phytostimulation effects on plants. Recent studies, however, demonstrate diverse mechanisms whereby plant pathogens manipulate auxin biosynthesis, signaling and transport pathways to promote host susceptibility. Auxin responses have been coupled to their antagonistic and synergistic interactions with salicylic acid and jasmonate mediated defenses, respectively. Here, we discuss that a better understanding of auxin crosstalk to plant immune networks would enable us to engineer crop plants with higher protection and low unintended yield losses.

  11. Defense mutualisms enhance plant diversification

    PubMed Central

    Weber, Marjorie G.; Agrawal, Anurag A.

    2014-01-01

    The ability of plants to form mutualistic relationships with animal defenders has long been suspected to influence their evolutionary success, both by decreasing extinction risk and by increasing opportunity for speciation through an expanded realized niche. Nonetheless, the hypothesis that defense mutualisms consistently enhance plant diversification across lineages has not been well tested due to a lack of phenotypic and phylogenetic information. Using a global analysis, we show that the >100 vascular plant families in which species have evolved extrafloral nectaries (EFNs), sugar-secreting organs that recruit arthropod mutualists, have twofold higher diversification rates than families that lack species with EFNs. Zooming in on six distantly related plant clades, trait-dependent diversification models confirmed the tendency for lineages with EFNs to display increased rates of diversification. These results were consistent across methodological approaches. Inference using reversible-jump Markov chain Monte Carlo (MCMC) to model the placement and number of rate shifts revealed that high net diversification rates in EFN clades were driven by an increased number of positive rate shifts following EFN evolution compared with sister clades, suggesting that EFNs may be indirect facilitators of diversification. Our replicated analysis indicates that defense mutualisms put lineages on a path toward increased diversification rates within and between clades, and is concordant with the hypothesis that mutualistic interactions with animals can have an impact on deep macroevolutionary patterns and enhance plant diversity. PMID:25349406

  12. Mechanisms of plant defense against insect herbivores

    PubMed Central

    War, Abdul Rashid; Paulraj, Michael Gabriel; Ahmad, Tariq; Buhroo, Abdul Ahad; Hussain, Barkat; Ignacimuthu, Savarimuthu; Sharma, Hari Chand

    2012-01-01

    Plants respond to herbivory through various morphological, biochemicals, and molecular mechanisms to counter/offset the effects of herbivore attack. The biochemical mechanisms of defense against the herbivores are wide-ranging, highly dynamic, and are mediated both by direct and indirect defenses. The defensive compounds are either produced constitutively or in response to plant damage, and affect feeding, growth, and survival of herbivores. In addition, plants also release volatile organic compounds that attract the natural enemies of the herbivores. These strategies either act independently or in conjunction with each other. However, our understanding of these defensive mechanisms is still limited. Induced resistance could be exploited as an important tool for the pest management to minimize the amounts of insecticides used for pest control. Host plant resistance to insects, particularly, induced resistance, can also be manipulated with the use of chemical elicitors of secondary metabolites, which confer resistance to insects. By understanding the mechanisms of induced resistance, we can predict the herbivores that are likely to be affected by induced responses. The elicitors of induced responses can be sprayed on crop plants to build up the natural defense system against damage caused by herbivores. The induced responses can also be engineered genetically, so that the defensive compounds are constitutively produced in plants against are challenged by the herbivory. Induced resistance can be exploited for developing crop cultivars, which readily produce the inducible response upon mild infestation, and can act as one of components of integrated pest management for sustainable crop production. PMID:22895106

  13. Insect response to plant defensive protease inhibitors.

    PubMed

    Zhu-Salzman, Keyan; Zeng, Rensen

    2015-01-07

    Plant protease inhibitors (PIs) are natural plant defense proteins that inhibit proteases of invading insect herbivores. However, their anti-insect efficacy is determined not only by their potency toward a vulnerable insect system but also by the response of the insect to such a challenge. Through the long history of coevolution with their host plants, insects have developed sophisticated mechanisms to circumvent antinutritional effects of dietary challenges. Their response takes the form of changes in gene expression and the protein repertoire in cells lining the alimentary tract, the first line of defense. Research in insect digestive proteases has revealed the crucial roles they play in insect adaptation to plant PIs and has brought about a new appreciation of how phytophagous insects employ this group of molecules in both protein digestion and counterdefense. This review provides researchers in related fields an up-to-date summary of recent advances.

  14. Plant sex and the evolution of plant defenses against herbivores

    PubMed Central

    Johnson, Marc T. J.; Smith, Stacey D.; Rausher, Mark D.

    2009-01-01

    Despite the importance of plant–herbivore interactions to the ecology and evolution of terrestrial ecosystems, the evolutionary factors contributing to variation in plant defenses against herbivores remain unresolved. We used a comparative phylogenetic approach to examine a previously untested hypothesis (Recombination-Mating System Hypothesis) that posits that reduced sexual reproduction limits adaptive evolution of plant defenses against arthropod herbivores. To test this hypothesis we focused on the evening primrose family (Onagraceae), which includes both sexual and functionally asexual species. Ancestral state reconstructions on a 5-gene phylogeny of the family revealed between 18 and 21 independent transitions between sexual and asexual reproduction. Based on these analyses, we examined susceptibility to herbivores on 32 plant species representing 15 independent transitions. Generalist caterpillars consumed 32% more leaf tissue, gained 13% greater mass, and experienced 21% higher survival on functionally asexual than on sexual plant species. Survival of a generalist feeding mite was 19% higher on asexual species. In a field experiment, generalist herbivores consumed 64% more leaf tissue on asexual species. By contrast, a specialist beetle fed more on sexual than asexual species, suggesting that a tradeoff exists between the evolution of defense to generalist and specialist herbivores. Measures of putative plant defense traits indicate that both secondary compounds and physical leaf characteristics may mediate this tradeoff. These results support the Recombination-Mating System Hypothesis and suggest that variation in sexual reproduction among plant species may play an important, yet overlooked, role in shaping the macroevolution of plant defenses against arthropod herbivores. PMID:19617572

  15. Antiviral Defenses in Plants through Genome Editing

    PubMed Central

    Romay, Gustavo; Bragard, Claude

    2017-01-01

    Plant–virus interactions based-studies have contributed to increase our understanding on plant resistance mechanisms, providing new tools for crop improvement. In the last two decades, RNA interference, a post-transcriptional gene silencing approach, has been used to induce antiviral defenses in plants with the help of genetic engineering technologies. More recently, the new genome editing systems (GES) are revolutionizing the scope of tools available to confer virus resistance in plants. The most explored GES are zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats/Cas9 endonuclease. GES are engineered to target and introduce mutations, which can be deleterious, via double-strand breaks at specific DNA sequences by the error-prone non-homologous recombination end-joining pathway. Although GES have been engineered to target DNA, recent discoveries of GES targeting ssRNA molecules, including virus genomes, pave the way for further studies programming plant defense against RNA viruses. Most of plant virus species have an RNA genome and at least 784 species have positive ssRNA. Here, we provide a summary of the latest progress in plant antiviral defenses mediated by GES. In addition, we also discuss briefly the GES perspectives in light of the rebooted debate on genetic modified organisms (GMOs) and the current regulatory frame for agricultural products involving the use of such engineering technologies. PMID:28167937

  16. Plant defense genes are regulated by ethylene

    SciTech Connect

    Ecker, J.R.; Davis, R.W.

    1987-08-01

    One of the earliest detectable events during plant-pathogen interaction is a rapid increase in ethylene biosynthesis. This gaseous plant stress hormone may be a signal for plants to activate defense mechanisms against invading pathogens such as bacteria, fungi, and viruses. The effect of ethylene on four plant genes involved in three separate plant defense response pathways was examined; these included (i and ii) genes that encode L-phenylalanine ammonia-lyase (EC 4.3.1.5) and 4-coumarate:CoA ligase (4-coumarate:CoA ligase (AMP-forming), EC 6.2.1.12), enzymes of the phenylpropanoid pathway, (iii) the gene encoding chalcone synthase, an enzyme of the flavonoid glycoside pathway, and (iv) the genes encoding hydroxyproline-rich glycoprotein, a major protein component(s) of plant cell walls. Blot hybridization analysis of mRNA from ethylene-treated carrot roots reveals marked increases in the levels of phenylalanine ammonia-lyase mRNA, 4-coumarate CoA ligase mRNA, chalcone synthase mRNA, and certain hydroxyproline-rich glycoprotein transcripts. The effect of ethylene on hydroxyproline-rich glycoprotein mRNA accumulation was different from that of wounding. Ethylene induces two hydroxyproline-rich glycoprotein mRNAs (1.8 and 4.0 kilobases), whereas wounding of carrot root leads to accumulation of an additional hydroxyproline-rich mRNA (1.5 kilobases). These results indicate that at least two distinct signals, ethylene and a wound signal, can affect the expression of plant defense-response genes.

  17. Flexible resource allocation during plant defense responses

    PubMed Central

    Schultz, Jack C.; Appel, Heidi M.; Ferrieri, Abigail P.; Arnold, Thomas M.

    2013-01-01

    Plants are organisms composed of modules connected by xylem and phloem transport streams. Attack by both insects and pathogens elicits sometimes rapid defense responses in the attacked module. We have also known for some time that proteins are often reallocated away from pathogen-infected tissues, while the same infection sites may draw carbohydrates to them. This has been interpreted as a tug of war in which the plant withdraws critical resources to block microbial growth while the microbes attempt to acquire more resources. Sink-source regulated transport among modules of critical resources, particularly carbon and nitrogen, is also altered in response to attack. Insects and jasmonate can increase local sink strength, drawing carbohydrates that support defense production. Shortly after attack, carbohydrates may also be drawn to the root. The rate and direction of movement of photosynthate or signals in phloem in response to attack is subject to constraints that include branching, degree of connection among tissues, distance between sources and sinks, proximity, strength, and number of competing sinks, and phloem loading/unloading regulators. Movement of materials (e.g., amino acids, signals) to or from attack sites in xylem is less well understood but is partly driven by transpiration. The root is an influential sink and may regulate sink-source interactions and transport above and below ground as well as between the plant and the rhizosphere and nearby, connected plants. Research on resource translocation in response to pathogens or herbivores has focused on biochemical mechanisms; whole-plant research is needed to determine which, if any, of these plant behaviors actually influence plant fitness. PMID:23986767

  18. Cross-Talk in Viral Defense Signaling in Plants

    PubMed Central

    Moon, Ju Y.; Park, Jeong M.

    2016-01-01

    Viruses are obligate intracellular parasites that have small genomes with limited coding capacity; therefore, they extensively use host intracellular machinery for their replication and infection in host cells. In recent years, it was elucidated that plants have evolved intricate defense mechanisms to prevent or limit damage from such pathogens. Plants employ two major strategies to counteract virus infections: resistance (R) gene-mediated and RNA silencing-based defenses. In this review, plant defenses and viral counter defenses are described, as are recent studies examining the cross-talk between different plant defense mechanisms. PMID:28066385

  19. Landscape Variation in Plant Defense Syndromes across a Tropical Rainforest

    NASA Astrophysics Data System (ADS)

    McManus, K. M.; Asner, G. P.; Martin, R.; Field, C. B.

    2014-12-01

    Plant defenses against herbivores shape tropical rainforest biodiversity, yet community- and landscape-scale patterns of plant defense and the phylogenetic and environmental factors that may shape them are poorly known. We measured foliar defense, growth, and longevity traits for 345 canopy trees across 84 species in a tropical rainforest and examined whether patterns of trait co-variation indicated the existence of plant defense syndromes. Using a DNA-barcode phylogeny and remote sensing and land-use data, we investigated how phylogeny and topo-edaphic properties influenced the distribution of syndromes. We found evidence for three distinct defense syndromes, characterized by rapid growth, growth compensated by defense, or limited palatability/low nutrition. Phylogenetic signal was generally lower for defense traits than traits related to growth or longevity. Individual defense syndromes were organized at different taxonomic levels and responded to different spatial-environmental gradients. The results suggest that a diverse set of tropical canopy trees converge on a limited number of strategies to secure resources and mitigate fitness losses due to herbivory, with patterns of distribution mediated by evolutionary histories and local habitat associations. Plant defense syndromes are multidimensional plant strategies, and thus are a useful means of discerning ecologically-relevant variation in highly diverse tropical rainforest communities. Scaling this approach to the landscape level, if plant defense syndromes can be distinguished in remotely-sensed data, they may yield new insights into the role of plant defense in structuring diverse tropical rainforest communities.

  20. Herbivore exploits orally secreted bacteria to suppress plant defenses

    PubMed Central

    Chung, Seung Ho; Rosa, Cristina; Scully, Erin D.; Peiffer, Michelle; Tooker, John F.; Hoover, Kelli; Luthe, Dawn S.; Felton, Gary W.

    2013-01-01

    Induced plant defenses in response to herbivore attack are modulated by cross-talk between jasmonic acid (JA)- and salicylic acid (SA)-signaling pathways. Oral secretions from some insect herbivores contain effectors that overcome these antiherbivore defenses. Herbivores possess diverse microbes in their digestive systems and these microbial symbionts can modify plant–insect interactions; however, the specific role of herbivore-associated microbes in manipulating plant defenses remains unclear. Here, we demonstrate that Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum). We found that antibiotic-untreated larvae decreased production of JA and JA-responsive antiherbivore defenses, but increased SA accumulation and SA-responsive gene expression. Beetles benefit from down-regulating plant defenses by exhibiting enhanced larval growth. In SA-deficient plants, suppression was not observed, indicating that suppression of JA-regulated defenses depends on the SA-signaling pathway. Applying bacteria isolated from larval oral secretions to wounded plants confirmed that three microbial symbionts belonging to the genera Stenotrophomonas, Pseudomonas, and Enterobacter are responsible for defense suppression. Additionally, reinoculation of these bacteria to antibiotic-treated larvae restored their ability to suppress defenses. Flagellin isolated from Pseudomonas sp. was associated with defense suppression. Our findings show that the herbivore exploits symbiotic bacteria as a decoy to deceive plants into incorrectly perceiving the threat as microbial. By interfering with the normal perception of herbivory, beetles can evade antiherbivore defenses of its host. PMID:24019469

  1. Peptide promiscuity: an evolutionary concept for plant defense.

    PubMed

    Franco, Octavio Luiz

    2011-04-06

    The phenomenon of protein promiscuity, in which multiple functions are associated with a single peptide structure, has gained attention in several research fields, including the plant defense field. With this in mind, this report intends to link various plant defense peptides with common scaffolds (defensins, cyclotides and 2S albumins), and multiple activities with the processes of promiscuity generation and protein evolvability. This link seems to create an efficient system of plant defense against insect pests and pathogens, and is thus essential to plant survival and evolution. This review also identifies future possibilities for the use of peptide promiscuity in designing novel drugs and synthetic biotechnological products.

  2. Indirect plant defense against insect herbivores: A review.

    PubMed

    Aljbory, Zainab; Chen, Ming-Shun

    2016-12-30

    Plants respond to herbivore attack by launching two types of defenses: direct defense and indirect defense. Direct defense includes all plant traits that increase the resistance of host plants to insect herbivores by affecting the physiology and/or behavior of the attackers. Indirect defense includes all traits that by themselves do not have significant direct impact on the attacking herbivores, but can attract natural enemies of the herbivores and thus reduce plant loss. When plants recognize herbivore-associated elicitors, they produce and release a blend of volatiles that can attract predators, parasites, and other natural enemies. Known herbivore-associated elicitors include fatty acid-amino acid conjugates, sulfur-containing fatty acids, fragments of cell walls, peptides, esters, and enzymes. Identified plant volatiles include terpenes, nitrogenous compounds, and indoles. In addition, constitive traits including extrafloral nectars, food bodies, and domatia can be further induced to higher levels and attract natural enemies as well as provide food and shelter to carnivores. A better understanding of indirect plant defense at global and componential levels via advanced high throughput technologies may lead to utilization of indirect defense in suppression of herbivore damage to plants. This article is protected by copyright. All rights reserved.

  3. Mycorrhiza-induced resistance and priming of plant defenses.

    PubMed

    Jung, Sabine C; Martinez-Medina, Ainhoa; Lopez-Raez, Juan A; Pozo, Maria J

    2012-06-01

    Symbioses between plants and beneficial soil microorganisms like arbuscular-mycorrhizal fungi (AMF) are known to promote plant growth and help plants to cope with biotic and abiotic stresses. Profound physiological changes take place in the host plant upon root colonization by AMF affecting the interactions with a wide range of organisms below- and above-ground. Protective effects of the symbiosis against pathogens, pests, and parasitic plants have been described for many plant species, including agriculturally important crop varieties. Besides mechanisms such as improved plant nutrition and competition, experimental evidence supports a major role of plant defenses in the observed protection. During mycorrhiza establishment, modulation of plant defense responses occurs thus achieving a functional symbiosis. As a consequence of this modulation, a mild, but effective activation of the plant immune responses seems to occur, not only locally but also systemically. This activation leads to a primed state of the plant that allows a more efficient activation of defense mechanisms in response to attack by potential enemies. Here, we give an overview of the impact on interactions between mycorrhizal plants and pathogens, herbivores, and parasitic plants, and we summarize the current knowledge of the underlying mechanisms. We focus on the priming of jasmonate-regulated plant defense mechanisms that play a central role in the induction of resistance by arbuscular mycorrhizas.

  4. A Framework for Predicting Intraspecific Variation in Plant Defense.

    PubMed

    Hahn, Philip G; Maron, John L

    2016-08-01

    One of the most well-supported theories regarding the evolution of plant defenses is the resource availability hypothesis (RAH). RAH posits that species from high-resource environments grow fast and allocate little to herbivore-resistance traits, whereas those species in low-resource environments grow slow and are highly resistant to herbivores. However, within species, how resources influence defense is unclear and existing theories make opposing predictions. Here, we review studies documenting intraspecific variation in plant defense across resource gradients and find little support for RAH. We outline why RAH does not apply intraspecifically and present a predictive framework for understanding how resources influence intraspecific variation in plant defense. Our framework provides an important step towards reconciling inter- versus intraspecific strategies of defense.

  5. Transcriptional regulation of ethylene and jasmonate mediated defense response in apple (Malus domestica) root during Pythium ultimum infection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Apple Replant Disease (ARD) causes a serious economic loss for the apple industry. Although it has been known that a complex of necrotrophic fungi and oomycetes are the primary causal agent of ARD, the genetic response in apple to infection by these pathogens has not previously been examined. In t...

  6. Plant defense activators: applications and prospects in cereal crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This review addresses the current understanding of the plant immune response and the molecular mechanisms responsible for systemic acquired resistance as well as the phenomenon of "priming" in plant defense. A detailed discussion of the role of salicylic acid in activating the plant transcription c...

  7. Tricking the guard: Exploiting Plant Defense for Disease Susceptibility

    PubMed Central

    Lorang, J.; Kidarsa, T.; Bradford, C. S.; Gilbert, B.; Curtis, M.; Tzeng, S-C.; Maier, C.S.; Wolpert, T. J.

    2014-01-01

    Typically pathogens deploy virulence effectors to disable defense. Plants defeat effectors with resistance proteins that guard effector targets. Here we show that a pathogen exploits a resistance protein by activating it to confer susceptibility. Interactions of victorin, an effector produced by the necrotrophic fungus Cochliobolus victoriae, TRX-h5, a defense-associated thioredoxin, and LOV1, an Arabidopsis susceptibility protein, recapitulate the guard mechanism of plant defense. In LOV1’s absence, victorin inhibits TRX-h5 resulting in compromised defense but not disease by C. victoriae. In LOV1’s presence, victorin binding to TRX-h5 activates LOV1 and elicits a resistance-like response that confers disease susceptibility. We propose victorin is or mimics a conventional pathogen virulence effector that was defeated by LOV1 and confers virulence to C. victoriae solely because it incites defense. PMID:23087001

  8. Host plant species determines symbiotic bacterial community mediating suppression of plant defenses.

    PubMed

    Chung, Seung Ho; Scully, Erin D; Peiffer, Michelle; Geib, Scott M; Rosa, Cristina; Hoover, Kelli; Felton, Gary W

    2017-01-03

    Herbivore associated bacteria are vital mediators of plant and insect interactions. Host plants play an important role in shaping the gut bacterial community of insects. Colorado potato beetles (CPB; Leptinotarsa decemlineata) use several Solanum plants as hosts in their natural environment. We previously showed that symbiotic gut bacteria from CPB larvae suppressed jasmonate (JA)-induced defenses in tomato. However, little is known about how changes in the bacterial community may be involved in the manipulation of induced defenses in wild and cultivated Solanum plants of CPB. Here, we examined suppression of JA-mediated defense in wild and cultivated hosts of CPB by chemical elicitors and their symbiotic bacteria. Furthermore, we investigated associations between the gut bacterial community and suppression of plant defenses using 16 S rRNA amplicon sequencing. Symbiotic bacteria decreased plant defenses in all Solanum hosts and there were different gut bacterial communities in CPB fed on different host plants. When larvae were reared on different hosts, defense suppression differed among host plants. These results demonstrate that host plants influence herbivore gut bacterial communities and consequently affect the herbivore's ability to manipulate JA-mediated plant defenses. Thus, the presence of symbiotic bacteria that suppress plant defenses might help CPB adapt to host plants.

  9. Host plant species determines symbiotic bacterial community mediating suppression of plant defenses

    PubMed Central

    Chung, Seung Ho; Scully, Erin D.; Peiffer, Michelle; Geib, Scott M.; Rosa, Cristina; Hoover, Kelli; Felton, Gary W.

    2017-01-01

    Herbivore associated bacteria are vital mediators of plant and insect interactions. Host plants play an important role in shaping the gut bacterial community of insects. Colorado potato beetles (CPB; Leptinotarsa decemlineata) use several Solanum plants as hosts in their natural environment. We previously showed that symbiotic gut bacteria from CPB larvae suppressed jasmonate (JA)-induced defenses in tomato. However, little is known about how changes in the bacterial community may be involved in the manipulation of induced defenses in wild and cultivated Solanum plants of CPB. Here, we examined suppression of JA-mediated defense in wild and cultivated hosts of CPB by chemical elicitors and their symbiotic bacteria. Furthermore, we investigated associations between the gut bacterial community and suppression of plant defenses using 16 S rRNA amplicon sequencing. Symbiotic bacteria decreased plant defenses in all Solanum hosts and there were different gut bacterial communities in CPB fed on different host plants. When larvae were reared on different hosts, defense suppression differed among host plants. These results demonstrate that host plants influence herbivore gut bacterial communities and consequently affect the herbivore’s ability to manipulate JA-mediated plant defenses. Thus, the presence of symbiotic bacteria that suppress plant defenses might help CPB adapt to host plants. PMID:28045052

  10. Jasmonate-Mediated Induced Volatiles in the American Cranberry, Vaccinium macrocarpon: From Gene Expression to Organismal Interactions.

    PubMed

    Rodriguez-Saona, Cesar R; Polashock, James; Malo, Edi A

    2013-01-01

    Jasmonates, i.e., jasmonic acid (JA) and methyl jasmonate (MeJA), are signaling hormones that regulate a large number of defense responses in plants which in turn affect the plants' interactions with herbivores and their natural enemies. Here, we investigated the effect of jasmonates on the emission of volatiles in the American cranberry, Vaccinium macrocarpon, at different levels of biological organization from gene expression to organismal interactions. At the molecular level, four genes (BCS, LLS, NER1, and TPS21) responded significantly to gypsy moth larval feeding, MeJA, and mechanical wounding, but to different degrees. The most dramatic changes in expression of BCS and TPS21 (genes in the sesquiterpenoid pathway) were when treated with MeJA. Gypsy moth-damaged and MeJA-treated plants also had significantly elevated expression of LLS and NER1 (genes in the monoterpene and homoterpene biosynthesis pathways, respectively). At the biochemical level, MeJA induced a complex blend of monoterpene and sesquiterpene compounds that differed from gypsy moth and mechanical damage, and followed a diurnal pattern of emission. At the organismal level, numbers of Sparganothis sulfureana moths were lower while numbers of parasitic wasps were higher on sticky traps near MeJA-treated cranberry plants than those near untreated plants. Out of 11 leaf volatiles tested, (Z)-3-hexenyl acetate, linalool, and linalool oxide elicited strong antennal (EAG) responses from S. sulfureana, whereas sesquiterpenes elicited weak EAG responses. In addition, mortality of S. sulfureana larvae increased by about 43% in JA treated cranberry plants as compared with untreated plants, indicating a relationship among adult preference, antennal sensitivity to plant odors, and offspring performance. This study highlights the role of the jasmonate-dependent defensive pathway in the emissions of herbivore-induced volatiles in cranberries and its importance in multi-trophic level interactions.

  11. Jasmonate-mediated stomatal closure under elevated CO2 revealed by time-resolved metabolomics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Foliar stomatal movements are critical for regulating plant water status and gas exchange. Elevated carbon dioxide (CO2) concentrations are known to induce stomatal closure. However, current knowledge on CO2 signal transduction in stomatal guard cells is limited. Here we report the metabolomic respo...

  12. Jasmonate-Mediated Induced Volatiles in the American Cranberry, Vaccinium macrocarpon: From Gene Expression to Organismal Interactions

    PubMed Central

    Rodriguez-Saona, Cesar R.; Polashock, James; Malo, Edi A.

    2013-01-01

    Jasmonates, i.e., jasmonic acid (JA) and methyl jasmonate (MeJA), are signaling hormones that regulate a large number of defense responses in plants which in turn affect the plants’ interactions with herbivores and their natural enemies. Here, we investigated the effect of jasmonates on the emission of volatiles in the American cranberry, Vaccinium macrocarpon, at different levels of biological organization from gene expression to organismal interactions. At the molecular level, four genes (BCS, LLS, NER1, and TPS21) responded significantly to gypsy moth larval feeding, MeJA, and mechanical wounding, but to different degrees. The most dramatic changes in expression of BCS and TPS21 (genes in the sesquiterpenoid pathway) were when treated with MeJA. Gypsy moth-damaged and MeJA-treated plants also had significantly elevated expression of LLS and NER1 (genes in the monoterpene and homoterpene biosynthesis pathways, respectively). At the biochemical level, MeJA induced a complex blend of monoterpene and sesquiterpene compounds that differed from gypsy moth and mechanical damage, and followed a diurnal pattern of emission. At the organismal level, numbers of Sparganothis sulfureana moths were lower while numbers of parasitic wasps were higher on sticky traps near MeJA-treated cranberry plants than those near untreated plants. Out of 11 leaf volatiles tested, (Z)-3-hexenyl acetate, linalool, and linalool oxide elicited strong antennal (EAG) responses from S. sulfureana, whereas sesquiterpenes elicited weak EAG responses. In addition, mortality of S. sulfureana larvae increased by about 43% in JA treated cranberry plants as compared with untreated plants, indicating a relationship among adult preference, antennal sensitivity to plant odors, and offspring performance. This study highlights the role of the jasmonate-dependent defensive pathway in the emissions of herbivore-induced volatiles in cranberries and its importance in multi-trophic level interactions. PMID

  13. Exploring plant defense theory in tall goldenrod, Solidago altissima.

    PubMed

    Heath, Jeremy J; Kessler, André; Woebbe, Eric; Cipollini, Don; Stireman, John O

    2014-06-01

    Understanding the evolutionary reasons for patterns of chemical defense in plants is an ongoing theoretical and empirical challenge. The goal is to develop a model that can reliably predict how defenses are distributed within the plant over space and time. This is difficult given that evolutionary, ecological, and physiological processes and tradeoffs can operate over different spatial and temporal scales. We evaluated the major predictions of two leading defense theories, the growth-differentiation balance hypothesis (GDBH) and optimal defense theory (ODT). To achieve this, enemies, fitness components, terpenoids, and protease inhibitors were measured in Solidago altissima and used to construct conventional univariate and structural equation models (SEMs). Leaf-tissue value indices extracted from an SEM revealed a strong correlation between tissue value and terpenoid defense that supports ODT. A tradeoff between serine protease inhibition and growth as well as an indirect tradeoff between growth and terpenoids manifested through galling insects supported the GDBH. Interestingly, there was a strong direct effect of terpenoids on rhizome mass, suggesting service to both storage and defense. The results support established theories but unknown genotypic traits explained much of the variation in defense, confirming the need to integrate emerging theories such as pollination constraints, defense syndromes, tolerance, mutualisms, and facilitation.

  14. Methyl jasmonate mediates upregulation of bacoside A production in shoot cultures of Bacopa monnieri.

    PubMed

    Sharma, Poojadevi; Yadav, Sheetal; Srivastava, Anshu; Shrivastava, Neeta

    2013-07-01

    Methyl jasmonate (MJ) enhances the production of a range of secondary metabolites including triterpenoid saponins in a variety of plant species. Here, it enhanced production of bacoside A, a valuable triterpenoid saponin having nootropic therapeutic activity in in vitro shoot cultures of Bacopa monnieri, the only known source of bacoside A. The highest yield was with 50 μM MJ giving 4.4 mg bacoside A/g dry wt; an 1.8-fold increase (compared to control) after 1 week.

  15. Next Generation Nuclear Plant Defense-in-Depth Approach

    SciTech Connect

    Edward G. Wallace; Karl N. Fleming; Edward M. Burns

    2009-12-01

    The purpose of this paper is to (1) document the definition of defense-in-depth and the pproach that will be used to assure that its principles are satisfied for the NGNP project and (2) identify the specific questions proposed for preapplication discussions with the NRC. Defense-in-depth is a safety philosophy in which multiple lines of defense and conservative design and evaluation methods are applied to assure the safety of the public. The philosophy is also intended to deliver a design that is tolerant to uncertainties in knowledge of plant behavior, component reliability or operator performance that might compromise safety. This paper includes a review of the regulatory foundation for defense-in-depth, a definition of defense-in-depth that is appropriate for advanced reactor designs based on High Temperature Gas-cooled Reactor (HTGR) technology, and an explanation of how this safety philosophy is achieved in the NGNP.

  16. Plant defensins: Defense, development and application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant defensins are small, highly stable, cysteine-rich peptides that constitute a part of the innate immune system primarily directed against fungal pathogens. Biological activities reported for plant defensins include antifungal activity, antibacterial activity, proteinase inhibitory activity, an...

  17. The cuticle and plant defense to pathogens.

    PubMed

    Serrano, Mario; Coluccia, Fania; Torres, Martha; L'Haridon, Floriane; Métraux, Jean-Pierre

    2014-01-01

    The cuticle provides a physical barrier against water loss and protects against irradiation, xenobiotics, and pathogens. Components of the cuticle are perceived by invading fungi and activate developmental processes during pathogenesis. In addition, cuticle alterations of various types induce a syndrome of reactions that often results in resistance to necrotrophs. This article reviews the current knowledge on the role of the cuticle in relation to the perception of pathogens and activation of defenses.

  18. Mechanical defenses of plant extrafloral nectaries against herbivory

    PubMed Central

    Gish, Moshe; Mescher, Mark C.; De Moraes, Consuelo M.

    2016-01-01

    ABSTRACT Extrafloral nectaries play an important role in plant defense against herbivores by providing nectar rewards that attract ants and other carnivorous insects. However, extrafloral nectaries can themselves be targets of herbivory, in addition to being exploited by nectar-robbing insects that do not provide defensive services. We recently found that the extrafloral nectaries of Vicia faba plants, as well as immediately adjacent tissues, exhibit high concentrations of chemical toxins, apparently as a defense against herbivory. Here we report that the nectary tissues of this plant also exhibit high levels of structural stiffness compared to surrounding tissues, likely due to cell wall lignification and the concentration of calcium oxalate crystals in nectary tissues, which may provide an additional deterrent to herbivore feeding on nectary tissues. PMID:27489584

  19. Epigenetic Control of Defense Signaling and Priming in Plants.

    PubMed

    Espinas, Nino A; Saze, Hidetoshi; Saijo, Yusuke

    2016-01-01

    Immune recognition of pathogen-associated molecular patterns or effectors leads to defense activation at the pathogen challenged sites. This is followed by systemic defense activation at distant non-challenged sites, termed systemic acquired resistance (SAR). These inducible defenses are accompanied by extensive transcriptional reprogramming of defense-related genes. SAR is associated with priming, in which a subset of these genes is kept at a poised state to facilitate subsequent transcriptional regulation. Transgenerational inheritance of defense-related priming in plants indicates the stability of such primed states. Recent studies have revealed the importance and dynamic engagement of epigenetic mechanisms, such as DNA methylation and histone modifications that are closely linked to chromatin reconfiguration, in plant adaptation to different biotic stresses. Herein we review current knowledge regarding the biological significance and underlying mechanisms of epigenetic control for immune responses in plants. We also argue for the importance of host transposable elements as critical regulators of interactions in the evolutionary "arms race" between plants and pathogens.

  20. Epigenetic Control of Defense Signaling and Priming in Plants

    PubMed Central

    Espinas, Nino A.; Saze, Hidetoshi; Saijo, Yusuke

    2016-01-01

    Immune recognition of pathogen-associated molecular patterns or effectors leads to defense activation at the pathogen challenged sites. This is followed by systemic defense activation at distant non-challenged sites, termed systemic acquired resistance (SAR). These inducible defenses are accompanied by extensive transcriptional reprogramming of defense-related genes. SAR is associated with priming, in which a subset of these genes is kept at a poised state to facilitate subsequent transcriptional regulation. Transgenerational inheritance of defense-related priming in plants indicates the stability of such primed states. Recent studies have revealed the importance and dynamic engagement of epigenetic mechanisms, such as DNA methylation and histone modifications that are closely linked to chromatin reconfiguration, in plant adaptation to different biotic stresses. Herein we review current knowledge regarding the biological significance and underlying mechanisms of epigenetic control for immune responses in plants. We also argue for the importance of host transposable elements as critical regulators of interactions in the evolutionary “arms race” between plants and pathogens. PMID:27563304

  1. Antiherbivore defenses alter natural selection on plant reproductive traits.

    PubMed

    Thompson, Ken A; Johnson, Marc T J

    2016-04-01

    While many studies demonstrate that herbivores alter selection on plant reproductive traits, little is known about whether antiherbivore defenses affect selection on these traits. We hypothesized that antiherbivore defenses could alter selection on reproductive traits by altering trait expression through allocation trade-offs, or by altering interactions with mutualists and/or antagonists. To test our hypothesis, we used white clover, Trifolium repens, which has a Mendelian polymorphism for the production of hydrogen cyanide-a potent antiherbivore defense. We conducted a common garden experiment with 185 clonal families of T. repens that included cyanogenic and acyanogenic genotypes. We quantified resistance to herbivores, and selection on six floral traits and phenology via male and female fitness. Cyanogenesis reduced herbivory but did not alter the expression of reproductive traits through allocation trade-offs. However, the presence of cyanogenic defenses altered natural selection on petal morphology and the number of flowers within inflorescences via female fitness. Herbivory influenced selection on flowers and phenology via female fitness independently of cyanogenesis. Our results demonstrate that both herbivory and antiherbivore defenses alter natural selection on plant reproductive traits. We discuss the significance of these results for understanding how antiherbivore defenses interact with herbivores and pollinators to shape floral evolution.

  2. Herbivores can select for mixed defensive strategies in plants.

    PubMed

    Carmona, Diego; Fornoni, Juan

    2013-01-01

    Resistance and tolerance are the most important defense mechanisms against herbivores. Initial theoretical studies considered both mechanisms functionally redundant, but more recent empirical studies suggest that these mechanisms may complement each other, favoring the presence of mixed defense patterns. However, the expectation of redundancy between tolerance and resistance remains unsupported. In this study, we tested this assumption following an ecological genetics field experiment in which the presence/absence of two herbivores (Lema daturaphila and Epitrix parvula) of Datura stramonium were manipulated. In each of three treatments, genotypic selection analyses were performed and selection patterns compared. Our results indicated that selection on resistance and tolerance was significantly different between the two folivores. Tolerance and resistance are not redundant defense strategies in D. stramonium but instead functioned as complementary defenses against both beetle species, favoring the evolution of a mixed defense strategy. Although each herbivore was selected for different defense strategies, the observed average tolerance and resistance were closer to the adaptive peak predicted against E. parvula and both beetles together. In our experimental population, natural selection imposed by herbivores can favor the evolution of mixed defense strategies in plants, accounting for the presence of intermediate levels of tolerance and resistance.

  3. Conserved nematode signalling molecules elicit plant defenses and pathogen resistance.

    PubMed

    Manosalva, Patricia; Manohar, Murli; von Reuss, Stephan H; Chen, Shiyan; Koch, Aline; Kaplan, Fatma; Choe, Andrea; Micikas, Robert J; Wang, Xiaohong; Kogel, Karl-Heinz; Sternberg, Paul W; Williamson, Valerie M; Schroeder, Frank C; Klessig, Daniel F

    2015-07-23

    Plant-defense responses are triggered by perception of conserved microbe-associated molecular patterns (MAMPs), for example, flagellin or peptidoglycan. However, it remained unknown whether plants can detect conserved molecular patterns derived from plant-parasitic animals, including nematodes. Here we show that several genera of plant-parasitic nematodes produce small molecules called ascarosides, an evolutionarily conserved family of nematode pheromones. Picomolar to micromolar concentrations of ascr#18, the major ascaroside in plant-parasitic nematodes, induce hallmark defense responses including the expression of genes associated with MAMP-triggered immunity, activation of mitogen-activated protein kinases, as well as salicylic acid- and jasmonic acid-mediated defense signalling pathways. Ascr#18 perception increases resistance in Arabidopsis, tomato, potato and barley to viral, bacterial, oomycete, fungal and nematode infections. These results indicate that plants recognize ascarosides as a conserved molecular signature of nematodes. Using small-molecule signals such as ascarosides to activate plant immune responses has potential utility to improve economic and environmental sustainability of agriculture.

  4. Conserved nematode signalling molecules elicit plant defenses and pathogen resistance

    PubMed Central

    Manosalva, Patricia; Manohar, Murli; von Reuss, Stephan H.; Chen, Shiyan; Koch, Aline; Kaplan, Fatma; Choe, Andrea; Micikas, Robert J.; Wang, Xiaohong; Kogel, Karl-Heinz; Sternberg, Paul W.; Williamson, Valerie M.; Schroeder, Frank C.; Klessig, Daniel F.

    2015-01-01

    Plant-defense responses are triggered by perception of conserved microbe-associated molecular patterns (MAMPs), for example, flagellin or peptidoglycan. However, it remained unknown whether plants can detect conserved molecular patterns derived from plant-parasitic animals, including nematodes. Here we show that several genera of plant-parasitic nematodes produce small molecules called ascarosides, an evolutionarily conserved family of nematode pheromones. Picomolar to micromolar concentrations of ascr#18, the major ascaroside in plant-parasitic nematodes, induce hallmark defense responses including the expression of genes associated with MAMP-triggered immunity, activation of mitogen-activated protein kinases, as well as salicylic acid- and jasmonic acid-mediated defense signalling pathways. Ascr#18 perception increases resistance in Arabidopsis, tomato, potato and barley to viral, bacterial, oomycete, fungal and nematode infections. These results indicate that plants recognize ascarosides as a conserved molecular signature of nematodes. Using small-molecule signals such as ascarosides to activate plant immune responses has potential utility to improve economic and environmental sustainability of agriculture. PMID:26203561

  5. Is crypsis a common defensive strategy in plants?

    PubMed Central

    2010-01-01

    Color is a common feature of animal defense. Herbivorous insects are often colored in shades of green similar to their preferred food plants, making them difficult for predators to locate. Other insects advertise their presence with bright colors after they sequester enough toxins from their food plants to make them unpalatable. Some insects even switch between cryptic and aposomatic coloration during development.1 Although common in animals, quantitative evidence for color-based defense in plants is rare. After all, the primary function of plant leaves is to absorb light for photosynthesis, rather than reflect light in ways that alter their appearance to herbivores. However, recent research is beginning to challenge the notion that color-based defence is restricted to animals. PMID:20592801

  6. Photoperiod-induced geographic variation in plant defense chemistry.

    PubMed

    Reudler, J H; Elzinga, Jelmer A

    2015-02-01

    Spatial variation in chemical defense of plants can be caused by genetic, biotic, and abiotic factors. For example, many plants exhibit a latitudinal cline in chemical defense, potentially due to latitudinal variation in abiotic environmental factors such as the light regime during the growing season. In the worldwide distributed Plantago lanceolata, the levels of deterrent iridoid glycosides (IGs), aucubin and catalpol, vary geographically, including latitudinally. To examine whether latitudinal variation in photoperiod can explain part of this geographic variation, plants from the Netherlands and Finland were exposed to two different photoperiods, simulating the Dutch (middle European) and Finnish (northern European) light period during the growing season. The experiment showed that although most variation in IG content was genetic, plants from both Dutch and Finnish origin produce relatively more catalpol under a northern European than under a middle European photoperiod. Our results confirm that latitudinal effects on photoperiod can contribute to geographic variation in plant defense chemistry, which should be considered when studying latitudinal clines in plant-enemy interactions.

  7. [Genetic screening and analysis of suppressors of asa1-1 (soa) defective in jasmonate-mediated lateral root formation in Arabidopsis].

    PubMed

    Li, Yan-An; Qi, Lin-Lin; Sun, Jia-Qiang; Liu, Hong-Yu; Li, Chuan-You

    2011-09-01

    It has been shown that jasmonate modulates the lateral root development through crosstalk with auxin in Arabidopsis thaliana. Exogenous application of jasmonate stimulates lateral root formation in wild type but inhibits lateral root formation in asa1-1. Our previous work has demonstrated that the lateral root formation defect of asa1-1 is co-related with jasmonte effect on PIN2 protein levels. To further elucidate the molecular mechanisms underlying jasmonate-mediated reduction of plasma membrane (PM)-resident PIN2 abundance, we have conducted a genetic screen to identify suppressors of asa1-1 (soa), which showed lateral root formation in the presence of jasmonate. Here, we described the basic characterization of soa563 and soa856. We showed that both soa563 and soa856 displayed restored lateral root formation in response to exogenous jasmonate. In addition, jasmonate-induced PIN2:GFP reduction was blocked in these two mutants. Our on-going effort to identify genes defined by these mutants promise to shed new light on the understanding of the molecular mechanisms controlling jasmonate-mediated regulation of PIN2 protein trafficking and turnover.

  8. Coevolution can explain defensive secondary metabolite diversity in plants.

    PubMed

    Speed, Michael P; Fenton, Andy; Jones, Meriel G; Ruxton, Graeme D; Brockhurst, Michael A

    2015-12-01

    Many plant species produce defensive compounds that are often highly diverse within and between populations. The genetic and cellular mechanisms by which metabolite diversity is produced are increasingly understood, but the evolutionary explanations for persistent diversification in plant secondary metabolites have received less attention. Here we consider the role of plant-herbivore coevolution in the maintenance and characteristics of diversity in plant secondary metabolites. We present a simple model in which plants can evolve to invest in a range of defensive toxins, and herbivores can evolve resistance to these toxins. We allow either single-species evolution or reciprocal coevolution. Our model shows that coevolution maintains toxin diversity within populations. Furthermore, there is a fundamental coevolutionary asymmetry between plants and their herbivores, because herbivores must resist all plant toxins, whereas plants need to challenge and nullify only one resistance trait. As a consequence, average plant fitness increases and insect fitness decreases as number of toxins increases. When costs apply, the model showed both arms race escalation and strong coevolutionary fluctuation in toxin concentrations across time. We discuss the results in the context of other evolutionary explanations for secondary metabolite diversification.

  9. Climate Change and Defense against Pathogens in Plants.

    PubMed

    Newton, Adrian C; Torrance, Lesley; Holden, Nicola; Toth, Ian K; Cooke, David E L; Blok, Vivian; Gilroy, Eleanor M

    2012-01-01

    Most reviews of climate change are epidemiological, focusing on impact assessment and risk mapping. However, there are many reports of the effects of environmental stress factors on defense mechanisms in plants against pathogens. We review those representative of key climate change-related stresses to determine whether there are any patterns or trends in adaptation responses. We recognize the complexity of climate change itself and the multitrophic nature of the complex biological interactions of plants, microbes, soil, and the environment and, therefore, the difficulty of reductionist dissection approaches to resolving the problems. We review host defense genes, germplasm, and environmental interactions in different types of organisms but find no significant group-specific trends. Similarly, we review by host defense mechanism type and by host-pathogen trophic relationship but identify no dominating mechanism for stress response. However, we do identify core stress response mechanisms playing key roles in multiple response pathways whether to biotic or abiotic stress. We suggest that these should be central to mechanistic climate change plant defense research. We also recognize biodiversity, heterogeneity, and the need for understanding stress in a true systems biology approach as being essential components of progressing our understanding of and response to climate change.

  10. Plants versus Fungi and Oomycetes: Pathogenesis, Defense and Counter-Defense in the Proteomics Era

    PubMed Central

    El Hadrami, Abdelbasset; El-Bebany, Ahmed F.; Yao, Zhen; Adam, Lorne R.; El Hadrami, Ismailx; Daayf, Fouad

    2012-01-01

    Plant-fungi and plant-oomycete interactions have been studied at the proteomic level for many decades. However, it is only in the last few years, with the development of new approaches, combined with bioinformatics data mining tools, gel staining, and analytical instruments, such as 2D-PAGE/nanoflow-LC-MS/MS, that proteomic approaches thrived. They allow screening and analysis, at the sub-cellular level, of peptides and proteins resulting from plants, pathogens, and their interactions. They also highlight post-translational modifications to proteins, e.g., glycosylation, phosphorylation or cleavage. However, many challenges are encountered during in planta studies aimed at stressing details of host defenses and fungal and oomycete pathogenicity determinants during interactions. Dissecting the mechanisms of such host-pathogen systems, including pathogen counter-defenses, will ensure a step ahead towards understanding current outcomes of interactions from a co-evolutionary point of view, and eventually move a step forward in building more durable strategies for management of diseases caused by fungi and oomycetes. Unraveling intricacies of more complex proteomic interactions that involve additional microbes, i.e., PGPRs and symbiotic fungi, which strengthen plant defenses will generate valuable information on how pathosystems actually function in nature, and thereby provide clues to solving disease problems that engender major losses in crops every year. PMID:22837691

  11. Plants versus fungi and oomycetes: pathogenesis, defense and counter-defense in the proteomics era.

    PubMed

    El Hadrami, Abdelbasset; El-Bebany, Ahmed F; Yao, Zhen; Adam, Lorne R; El Hadrami, Ismailx; Daayf, Fouad

    2012-01-01

    Plant-fungi and plant-oomycete interactions have been studied at the proteomic level for many decades. However, it is only in the last few years, with the development of new approaches, combined with bioinformatics data mining tools, gel staining, and analytical instruments, such as 2D-PAGE/nanoflow-LC-MS/MS, that proteomic approaches thrived. They allow screening and analysis, at the sub-cellular level, of peptides and proteins resulting from plants, pathogens, and their interactions. They also highlight post-translational modifications to proteins, e.g., glycosylation, phosphorylation or cleavage. However, many challenges are encountered during in planta studies aimed at stressing details of host defenses and fungal and oomycete pathogenicity determinants during interactions. Dissecting the mechanisms of such host-pathogen systems, including pathogen counter-defenses, will ensure a step ahead towards understanding current outcomes of interactions from a co-evolutionary point of view, and eventually move a step forward in building more durable strategies for management of diseases caused by fungi and oomycetes. Unraveling intricacies of more complex proteomic interactions that involve additional microbes, i.e., PGPRs and symbiotic fungi, which strengthen plant defenses will generate valuable information on how pathosystems actually function in nature, and thereby provide clues to solving disease problems that engender major losses in crops every year.

  12. Mapping methyl jasmonate-mediated transcriptional reprogramming of metabolism and cell cycle progression in cultured Arabidopsis cells

    PubMed Central

    Pauwels, Laurens; Morreel, Kris; De Witte, Emilie; Lammertyn, Freya; Van Montagu, Marc; Boerjan, Wout; Inzé, Dirk; Goossens, Alain

    2008-01-01

    Jasmonates (JAs) are plant-specific signaling molecules that steer a diverse set of physiological and developmental processes. Pathogen attack and wounding inflicted by herbivores induce the biosynthesis of these hormones, triggering defense responses both locally and systemically. We report on alterations in the transcriptome of a fast-dividing cell culture of the model plant Arabidopsis thaliana after exogenous application of methyl JA (MeJA). Early MeJA response genes encoded the JA biosynthesis pathway proteins and key regulators of MeJA responses, including most JA ZIM domain proteins and MYC2, together with transcriptional regulators with potential, but yet unknown, functions in MeJA signaling. In a second transcriptional wave, MeJA reprogrammed cellular metabolism and cell cycle progression. Up-regulation of the monolignol biosynthesis gene set resulted in an increased production of monolignols and oligolignols, the building blocks of lignin. Simultaneously, MeJA repressed activation of M-phase genes, arresting the cell cycle in G2. MeJA-responsive transcription factors were screened for their involvement in early signaling events, in particular the regulation of JA biosynthesis. Parallel screens based on yeast one-hybrid and transient transactivation assays identified both positive (MYC2 and the AP2/ERF factor ORA47) and negative (the C2H2 Zn finger proteins STZ/ZAT10 and AZF2) regulators, revealing a complex control of the JA autoregulatory loop and possibly other MeJA-mediated downstream processes. PMID:18216250

  13. Lectin domains at the frontiers of plant defense

    PubMed Central

    Lannoo, Nausicaä; Van Damme, Els J. M.

    2014-01-01

    Plants are under constant attack from pathogens and herbivorous insects. To protect and defend themselves, plants evolved a multi-layered surveillance system, known as the innate immune system. Plants sense their encounters upon perception of conserved microbial structures and damage-associated patterns using cell-surface and intracellular immune receptors. Plant lectins and proteins with one or more lectin domains represent a major part of these receptors. The whole group of plant lectins comprises an elaborate collection of proteins capable of recognizing and interacting with specific carbohydrate structures, either originating from the invading organisms or from damaged plant cell wall structures. Due to the vast diversity in protein structures, carbohydrate recognition domains and glycan binding specificities, plant lectins constitute a very diverse protein superfamily. In the last decade, new types of nucleocytoplasmic plant lectins have been identified and characterized, in particular lectins expressed inside the nucleus and the cytoplasm of plant cells often as part of a specific plant response upon exposure to different stress factors or changing environmental conditions. In this review, we provide an overview on plant lectin motifs used in the constant battle against pathogens and predators during plant defenses. PMID:25165467

  14. Lectin domains at the frontiers of plant defense.

    PubMed

    Lannoo, Nausicaä; Van Damme, Els J M

    2014-01-01

    Plants are under constant attack from pathogens and herbivorous insects. To protect and defend themselves, plants evolved a multi-layered surveillance system, known as the innate immune system. Plants sense their encounters upon perception of conserved microbial structures and damage-associated patterns using cell-surface and intracellular immune receptors. Plant lectins and proteins with one or more lectin domains represent a major part of these receptors. The whole group of plant lectins comprises an elaborate collection of proteins capable of recognizing and interacting with specific carbohydrate structures, either originating from the invading organisms or from damaged plant cell wall structures. Due to the vast diversity in protein structures, carbohydrate recognition domains and glycan binding specificities, plant lectins constitute a very diverse protein superfamily. In the last decade, new types of nucleocytoplasmic plant lectins have been identified and characterized, in particular lectins expressed inside the nucleus and the cytoplasm of plant cells often as part of a specific plant response upon exposure to different stress factors or changing environmental conditions. In this review, we provide an overview on plant lectin motifs used in the constant battle against pathogens and predators during plant defenses.

  15. Mechanisms and strategies of plant defense against Botrytis cinerea.

    PubMed

    AbuQamar, Synan; Moustafa, Khaled; Tran, Lam Son

    2017-03-01

    Biotic factors affect plant immune responses and plant resistance to pathogen infections. Despite the considerable progress made over the past two decades in manipulating genes, proteins and their levels from diverse sources, no complete genetic tolerance to environmental stresses has been developed so far in any crops. Plant defense response to pathogens, including Botrytis cinerea, is a complex biological process involving various changes at the biochemical, molecular (i.e. transcriptional) and physiological levels. Once a pathogen is detected, effective plant resistance activates signaling networks through the generation of small signaling molecules and the balance of hormonal signaling pathways to initiate defense mechanisms to the particular pathogen. Recently, studies using Arabidopsis thaliana and crop plants have shown that many genes are involved in plant responses to B. cinerea infection. In this article, we will review our current understanding of mechanisms regulating plant responses to B. cinerea with a particular interest on hormonal regulatory networks involving phytohormones salicylic acid (SA), jasmonic acid (JA), ethylene (ET) and abscisic acid (ABA). We will also highlight some potential gene targets that are promising for improving crop resistance to B. cinerea through genetic engineering and breeding programs. Finally, the role of biological control as a complementary and alternative disease management will be overviewed.

  16. Evolution of plant growth and defense in a continental introduction.

    PubMed

    Agrawal, Anurag A; Hastings, Amy P; Bradburd, Gideon S; Woods, Ellen C; Züst, Tobias; Harvey, Jeffrey A; Bukovinszky, Tibor

    2015-07-01

    Substantial research has addressed adaptation of nonnative biota to novel environments, yet surprisingly little work has integrated population genetic structure and the mechanisms underlying phenotypic differentiation in ecologically important traits. We report on studies of the common milkweed Asclepias syriaca, which was introduced from North America to Europe over the past 400 years and which lacks most of its specialized herbivores in the introduced range. Using 10 populations from each continent grown in a common environment, we identified several growth and defense traits that have diverged, despite low neutral genetic differentiation between continents. We next developed a Bayesian modeling approach to account for relationships between molecular and phenotypic differences, confirming that continental trait differentiation was greater than expected from neutral genetic differentiation. We found evidence that growth-related traits adaptively diverged within and between continents. Inducible defenses triggered by monarch butterfly herbivory were substantially reduced in European populations, and this reduction in inducibility was concordant with altered phytohormonal dynamics, reduced plant growth, and a trade-off with constitutive investment. Freedom from the community of native and specialized herbivores may have favored constitutive over induced defense. Our replicated analysis of plant growth and defense, including phenotypically plastic traits, suggests adaptive evolution following a continental introduction.

  17. An Antiviral Defense Role of AGO2 in Plants

    PubMed Central

    Harvey, Jagger J. W.; Lewsey, Mathew G.; Patel, Kanu; Westwood, Jack; Heimstädt, Susanne; Carr, John P.; Baulcombe, David C.

    2011-01-01

    Background Argonaute (AGO) proteins bind to small-interfering (si)RNAs and micro (mi)RNAs to target RNA silencing against viruses, transgenes and in regulation of mRNAs. Plants encode multiple AGO proteins but, in Arabidopsis, only AGO1 is known to have an antiviral role. Methodology/Principal Findings To uncover the roles of specific AGOs in limiting virus accumulation we inoculated turnip crinkle virus (TCV) to Arabidopsis plants that were mutant for each of the ten AGO genes. The viral symptoms on most of the plants were the same as on wild type plants although the ago2 mutants were markedly hyper-susceptible to this virus. ago2 plants were also hyper-susceptible to cucumber mosaic virus (CMV), confirming that the antiviral role of AGO2 is not specific to a single virus. For both viruses, this phenotype was associated with transient increase in virus accumulation. In wild type plants the AGO2 protein was induced by TCV and CMV infection. Conclusions/Significance Based on these results we propose that there are multiple layers to RNA-mediated defense and counter-defense in the interactions between plants and their viruses. AGO1 represents a first layer. With some viruses, including TCV and CMV, this layer is overcome by viral suppressors of silencing that can target AGO1 and a second layer involving AGO2 limits virus accumulation. The second layer is activated when the first layer is suppressed because AGO2 is repressed by AGO1 via miR403. The activation of the second layer is therefore a direct consequence of the loss of the first layer of defense. PMID:21305057

  18. Heavy Metal Stress and Some Mechanisms of Plant Defense Response

    PubMed Central

    Emamverdian, Abolghassem; Ding, Yulong; Mokhberdoran, Farzad; Xie, Yinfeng

    2015-01-01

    Unprecedented bioaccumulation and biomagnification of heavy metals (HMs) in the environment have become a dilemma for all living organisms including plants. HMs at toxic levels have the capability to interact with several vital cellular biomolecules such as nuclear proteins and DNA, leading to excessive augmentation of reactive oxygen species (ROS). This would inflict serious morphological, metabolic, and physiological anomalies in plants ranging from chlorosis of shoot to lipid peroxidation and protein degradation. In response, plants are equipped with a repertoire of mechanisms to counteract heavy metal (HM) toxicity. The key elements of these are chelating metals by forming phytochelatins (PCs) or metallothioneins (MTs) metal complex at the intra- and intercellular level, which is followed by the removal of HM ions from sensitive sites or vacuolar sequestration of ligand-metal complex. Nonenzymatically synthesized compounds such as proline (Pro) are able to strengthen metal-detoxification capacity of intracellular antioxidant enzymes. Another important additive component of plant defense system is symbiotic association with arbuscular mycorrhizal (AM) fungi. AM can effectively immobilize HMs and reduce their uptake by host plants via binding metal ions to hyphal cell wall and excreting several extracellular biomolecules. Additionally, AM fungi can enhance activities of antioxidant defense machinery of plants. PMID:25688377

  19. Global change effects on plant chemical defenses against insect herbivores.

    PubMed

    Bidart-Bouzat, M Gabriela; Imeh-Nathaniel, Adebobola

    2008-11-01

    This review focuses on individual effects of major global change factors, such as elevated CO2, O3, UV light and temperature, on plant secondary chemistry. These secondary metabolites are well-known for their role in plant defense against insect herbivory. Global change effects on secondary chemicals appear to be plant species-specific and dependent on the chemical type. Even though plant chemical responses induced by these factors are highly variable, there seems to be some specificity in the response to different environmental stressors. For example, even though the production of phenolic compounds is enhanced by both elevated CO2 and UV light levels, the latter appears to primarily increase the concentrations of flavonoids. Likewise, specific phenolic metabolites seem to be induced by O3 but not by other factors, and an increase in volatile organic compounds has been particularly detected under elevated temperature. More information is needed regarding how global change factors influence inducibility of plant chemical defenses as well as how their indirect and direct effects impact insect performance and behavior, herbivory rates and pathogen attack. This knowledge is crucial to better understand how plants and their associated natural enemies will be affected in future changing environments.

  20. Heavy metal stress and some mechanisms of plant defense response.

    PubMed

    Emamverdian, Abolghassem; Ding, Yulong; Mokhberdoran, Farzad; Xie, Yinfeng

    2015-01-01

    Unprecedented bioaccumulation and biomagnification of heavy metals (HMs) in the environment have become a dilemma for all living organisms including plants. HMs at toxic levels have the capability to interact with several vital cellular biomolecules such as nuclear proteins and DNA, leading to excessive augmentation of reactive oxygen species (ROS). This would inflict serious morphological, metabolic, and physiological anomalies in plants ranging from chlorosis of shoot to lipid peroxidation and protein degradation. In response, plants are equipped with a repertoire of mechanisms to counteract heavy metal (HM) toxicity. The key elements of these are chelating metals by forming phytochelatins (PCs) or metallothioneins (MTs) metal complex at the intra- and intercellular level, which is followed by the removal of HM ions from sensitive sites or vacuolar sequestration of ligand-metal complex. Nonenzymatically synthesized compounds such as proline (Pro) are able to strengthen metal-detoxification capacity of intracellular antioxidant enzymes. Another important additive component of plant defense system is symbiotic association with arbuscular mycorrhizal (AM) fungi. AM can effectively immobilize HMs and reduce their uptake by host plants via binding metal ions to hyphal cell wall and excreting several extracellular biomolecules. Additionally, AM fungi can enhance activities of antioxidant defense machinery of plants.

  1. The Venturia Apple Pathosystem: Pathogenicity Mechanisms and Plant Defense Responses

    PubMed Central

    Jha, Gopaljee; Thakur, Karnika; Thakur, Priyanka

    2009-01-01

    Venturia inaequalis is the causal agent of apple scab, a devastating disease of apple. We outline several unique features of this pathogen which are useful for molecular genetics studies intended to understand plant-pathogen interactions. The pathogenicity mechanisms of the pathogen and overview of apple defense responses, monogenic and polygenic resistance, and their utilization in scab resistance breeding programs are also reviewed. PMID:20150969

  2. Activation of Phospholipase A by Plant Defense Elicitors.

    PubMed Central

    Chandra, S.; Heinstein, P. F.; Low, P. S.

    1996-01-01

    Participation of phospholipase A (PLase A) in plant signal transduction has been documented for auxin stimulation of growth but not for elicitation of any plant defense response. In this paper, we report two independent assays for monitoring PLase A induction in plant cells and have used these assays to evaluate whether transduction of defense-related signals might require PLase A activation. Oligogalacturonic acid, a potent elicitor of the soybean (Glycine max) H2O2 burst, was unable to stimulate endogenous PLase A, suggesting that PLase A activation is not an obligate intermediate in the oligogalacturonic acid-induced burst pathway. In contrast, harpin and an extract from the pathogenic fungus Verticillium dahliae both stimulated the oxidative burst and promoted a rapid increase in PLase A activity. To evaluate the possible role of this inducible PLase A activity in transducing the oxidative burst, we tested the effect of chlorpromazine-HCl, a PLase A inhibitor on elicitor-stimulated burst activity. Pretreatment with chloropromazine was found to inhibit the H2O2 burst triggered by V. dahliae extract at the same concentration at which it blocked PLase A activation. In contrast, neither the harpin- nor oligogalacturonic acid-induced burst was altered by addition of chlorpromazine. These data suggest that PLase A stimulation may be important in certain elicitor-induced oxidative bursts (e.g. V. dahliae) and that other elicitors such as oligogalacturonic acid and harpin must operate through independent signaling intermediates to activate the same defense response. PMID:12226235

  3. Ants on plants: a meta-analysis of the role of ants as plant biotic defenses.

    PubMed

    Rosumek, Felix B; Silveira, Fernando A O; de S Neves, Frederico; de U Barbosa, Newton P; Diniz, Livia; Oki, Yumi; Pezzini, Flavia; Fernandes, G Wilson; Cornelissen, Tatiana

    2009-06-01

    We reviewed the evidence on the role of ants as plant biotic defenses, by conducting meta-analyses for the effects of experimental removal of ants on plant herbivory and fitness with data pooled from 81 studies. Effects reviewed were plant herbivory, herbivore abundance, hemipteran abundance, predator abundance, plant biomass and reproduction in studies where ants were experimentally removed (n = 273 independent comparisons). Ant removal exhibited strong effects on herbivory rates, as plants without ants suffered almost twice as much damage and exhibited 50% more herbivores than plants with ants. Ants also influenced several parameters of plant fitness, as plants without ants suffered a reduction in biomass (-23.7%), leaf production (-51.8%), and reproduction (-24.3%). Effects were much stronger in tropical regions compared to temperate ones. Tropical plants suffered almost threefold higher herbivore damage than plants from temperate regions and exhibited three times more herbivores. Ant removal in tropical plants resulted in a decrease in plant fitness of about 59%, whereas in temperate plants this reduction was not statistically significant. Ant removal effects were also more important in obligate ant-plants (=myrmecophytes) compared to plants exhibiting facultative relationships with hemiptera or those plants with extrafloral nectaries and food bodies. When only tropical plants were considered and the strength of the association between ants and plants taken into account, plants with obligate association with ants exhibited almost four times higher herbivory compared to plants with facultative associations with ants, but similar reductions in plant reproduction. The removal of a single ant species increased plant herbivory by almost three times compared to the removal of several ant species. Altogether, these results suggest that ants do act as plant biotic defenses, but the effects of their presence are more pronounced in tropical systems, especially in

  4. Plant neighbor identity influences plant biochemistry and physiology related to defense

    PubMed Central

    2010-01-01

    Background Chemical and biological processes dictate an individual organism's ability to recognize and respond to other organisms. A small but growing body of evidence suggests that plants may be capable of recognizing and responding to neighboring plants in a species specific fashion. Here we tested whether or not individuals of the invasive exotic weed, Centaurea maculosa, would modulate their defensive strategy in response to different plant neighbors. Results In the greenhouse, C. maculosa individuals were paired with either conspecific (C. maculosa) or heterospecific (Festuca idahoensis) plant neighbors and elicited with the plant defense signaling molecule methyl jasmonate to mimic insect herbivory. We found that elicited C. maculosa plants grown with conspecific neighbors exhibited increased levels of total phenolics, whereas those grown with heterospecific neighbors allocated more resources towards growth. To further investigate these results in the field, we conducted a metabolomics analysis to explore chemical differences between individuals of C. maculosa growing in naturally occurring conspecific and heterospecific field stands. Similar to the greenhouse results, C. maculosa individuals accumulated higher levels of defense-related secondary metabolites and lower levels of primary metabolites when growing in conspecific versus heterospecific field stands. Leaf herbivory was similar in both stand types; however, a separate field study positively correlated specialist herbivore load with higher densities of C. maculosa conspecifics. Conclusions Our results suggest that an individual C. maculosa plant can change its defensive strategy based on the identity of its plant neighbors. This is likely to have important consequences for individual and community success. PMID:20565801

  5. Plant mating system transitions drive the macroevolution of defense strategies.

    PubMed

    Campbell, Stuart A; Kessler, André

    2013-03-05

    Understanding the factors that shape macroevolutionary patterns in functional traits is a central goal of evolutionary biology. Alternative strategies of sexual reproduction (inbreeding vs. outcrossing) have divergent effects on population genetic structure and could thereby broadly influence trait evolution. However, the broader evolutionary consequences of mating system transitions remain poorly understood, with the exception of traits related to reproduction itself (e.g., pollination). Across a phylogeny of 56 wild species of Solanaceae (nightshades), we show here that the repeated, unidirectional transition from ancestral self-incompatibility (obligate outcrossing) to self-compatibility (increased inbreeding) leads to the evolution of an inducible (vs. constitutive) strategy of plant resistance to herbivores. We demonstrate that inducible and constitutive defense strategies represent evolutionary alternatives and that the magnitude of the resulting macroevolutionary tradeoff is dependent on the mating system. Loss of self-incompatibility is also associated with the evolution of increased specificity in induced plant resistance. We conclude that the evolution of sexual reproductive variation may have profound effects on plant-herbivore interactions, suggesting a new hypothesis for the evolution of two primary strategies of plant defense.

  6. beta-Glucosidases as detonators of plant chemical defense.

    PubMed

    Morant, Anne Vinther; Jørgensen, Kirsten; Jørgensen, Charlotte; Paquette, Suzanne Michelle; Sánchez-Pérez, Raquel; Møller, Birger Lindberg; Bak, Søren

    2008-06-01

    Some plant secondary metabolites are classified as phytoanticipins. When plant tissue in which they are present is disrupted, the phytoanticipins are bio-activated by the action of beta-glucosidases. These binary systems--two sets of components that when separated are relatively inert--provide plants with an immediate chemical defense against protruding herbivores and pathogens. This review provides an update on our knowledge of the beta-glucosidases involved in activation of the four major classes of phytoanticipins: cyanogenic glucosides, benzoxazinoid glucosides, avenacosides and glucosinolates. New aspects of the role of specific proteins that either control oligomerization of the beta-glucosidases or modulate their product specificity are discussed in an evolutionary perspective.

  7. Plant Defense against Herbivorous Pests: Exploiting Resistance and Tolerance Traits for Sustainable Crop Protection

    PubMed Central

    Mitchell, Carolyn; Brennan, Rex M.; Graham, Julie; Karley, Alison J.

    2016-01-01

    Interactions between plants and insect herbivores are important determinants of plant productivity in managed and natural vegetation. In response to attack, plants have evolved a range of defenses to reduce the threat of injury and loss of productivity. Crop losses from damage caused by arthropod pests can exceed 15% annually. Crop domestication and selection for improved yield and quality can alter the defensive capability of the crop, increasing reliance on artificial crop protection. Sustainable agriculture, however, depends on reduced chemical inputs. There is an urgent need, therefore, to identify plant defensive traits for crop improvement. Plant defense can be divided into resistance and tolerance strategies. Plant traits that confer herbivore resistance typically prevent or reduce herbivore damage through expression of traits that deter pests from settling, attaching to surfaces, feeding and reproducing, or that reduce palatability. Plant tolerance of herbivory involves expression of traits that limit the negative impact of herbivore damage on productivity and yield. Identifying the defensive traits expressed by plants to deter herbivores or limit herbivore damage, and understanding the underlying defense mechanisms, is crucial for crop scientists to exploit plant defensive traits in crop breeding. In this review, we assess the traits and mechanisms underpinning herbivore resistance and tolerance, and conclude that physical defense traits, plant vigor and herbivore-induced plant volatiles show considerable utility in pest control, along with mixed species crops. We highlight emerging approaches for accelerating the identification of plant defensive traits and facilitating their deployment to improve the future sustainability of crop protection. PMID:27524994

  8. Plant mating system transitions drive the macroevolution of defense strategies

    PubMed Central

    Campbell, Stuart A.; Kessler, André

    2013-01-01

    Understanding the factors that shape macroevolutionary patterns in functional traits is a central goal of evolutionary biology. Alternative strategies of sexual reproduction (inbreeding vs. outcrossing) have divergent effects on population genetic structure and could thereby broadly influence trait evolution. However, the broader evolutionary consequences of mating system transitions remain poorly understood, with the exception of traits related to reproduction itself (e.g., pollination). Across a phylogeny of 56 wild species of Solanaceae (nightshades), we show here that the repeated, unidirectional transition from ancestral self-incompatibility (obligate outcrossing) to self-compatibility (increased inbreeding) leads to the evolution of an inducible (vs. constitutive) strategy of plant resistance to herbivores. We demonstrate that inducible and constitutive defense strategies represent evolutionary alternatives and that the magnitude of the resulting macroevolutionary tradeoff is dependent on the mating system. Loss of self-incompatibility is also associated with the evolution of increased specificity in induced plant resistance. We conclude that the evolution of sexual reproductive variation may have profound effects on plant–herbivore interactions, suggesting a new hypothesis for the evolution of two primary strategies of plant defense. PMID:23431190

  9. Chewing sandpaper: grit, plant apparency, and plant defense in sand-entrapping plants.

    PubMed

    LoPresti, Eric F; Karban, Richard

    2016-04-01

    Sand entrapment on plant surfaces, termed psammophory or sand armor, is a phylogenetically and geographically widespread trait. The functional significance of this phenomenon has been poorly investigated. Sand and soil are nonnutritive and difficult for herbivores to process, as well as visually identical to the background. We experimentally investigated whether this sand coating physically protected the plant from herbivores or increased crypsis (e.g., decreased apparency to herbivores). We tested the former hypothesis by removing entrapped sand from stems, petioles, and leaves of the sand verbena Abronia latifolia and by supplementing natural sand levels in the honeyscented pincushion plant Navarretia mellita. Consistent with a physical defensive function, leaves with sand present or supplemented suffered less chewing herbivory than those with sand removed or left as is. To test a possible crypsis effect, we coated some sand verbena stems with green sand, matching the stem color, as well as others with brown sand to match the background color. Both suffered less chewing herbivory than controls with no sand and herbivory did not significantly differ between the colors, suggesting crypsis was not the driving resistance mechanism. Strong tests of plant apparency are rare; this experimental approach may be possible in other systems and represents one of few manipulative tests of this long-standing hypothesis.

  10. Plant defenses against parasitic plants show similarities to those induced by herbivores and pathogens.

    PubMed

    Runyon, Justin B; Mescher, Mark C; De Moraes, Consuelo M

    2010-08-01

    Herbivores and pathogens come quickly to mind when one thinks of the biotic challenges faced by plants. Important but less appreciated enemies are parasitic plants, which can have important consequences for the fitness and survival of their hosts. Our knowledge of plant perception, signaling, and response to herbivores and pathogens has expanded rapidly in recent years, but information is generally lacking for parasitic species. In a recent paper we reported that some of the same defense responses induced by herbivores and pathogens--notably increases in jasmonic acid (JA), salicylic acid (SA), and a hypersensitive-like response (HLR)--also occur in tomato plants upon attack by the parasitic plant Cuscuta pentagona (field dodder). Parasitism induced a distinct pattern of JA and SA accumulation, and growth trials using genetically-altered tomato hosts suggested that both JA and SA govern effective defenses against the parasite, though the extent of the response varied with host plant age. Here we discuss similarities between the induced responses we observed in response to Cuscuta parasitism to those previously described for herbivores and pathogens and present new data showing that trichomes should be added to the list of plant defenses that act against multiple enemies and across Kingdoms.

  11. Plant elicitor peptides are conserved signals regulating direct and indirect anti-herbivore defense

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insect-induced defenses occur in nearly all plants and are regulated by conserved signaling pathways. As the first described plant peptide signal, systemin regulates anti-herbivore defenses in the Solanaceae, but in other plant families peptides with analogous activity have remained elusive. In the ...

  12. Plant elicitor peptides are conserved signals regulating direct and indirect anti-herbivore defense

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insect-induced defenses occur in nearly all plants and are regulated by conserved signaling pathways. As the first described plant peptide signal, systemin regulates anti-herbivore defenses in the Solanaceae, but in other plant families peptides with analogous activity have remained elusive. In th...

  13. 7 CFR 330.206 - Permits for plant pest movement associated with National Defense projects.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... National Defense projects. 330.206 Section 330.206 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE FEDERAL PLANT PEST... Permits for plant pest movement associated with National Defense projects. The Deputy Administrator...

  14. Effectors from Wheat Rust Fungi Suppress Multiple Plant Defense Responses.

    PubMed

    Ramachandran, Sowmya R; Yin, Chuntao; Kud, Joanna; Tanaka, Kiwamu; Mahoney, Aaron K; Xiao, Fangming; Hulbert, Scot H

    2017-01-01

    Fungi that cause cereal rust diseases (genus Puccinia) are important pathogens of wheat globally. Upon infection, the fungus secretes a number of effector proteins. Although a large repository of putative effectors has been predicted using bioinformatic pipelines, the lack of available high-throughput effector screening systems has limited functional studies on these proteins. In this study, we mined the available transcriptomes of Puccinia graminis and P. striiformis to look for potential effectors that suppress host hypersensitive response (HR). Twenty small (<300 amino acids), secreted proteins, with no predicted functions were selected for the HR suppression assay using Nicotiana benthamiana, in which each of the proteins were transiently expressed and evaluated for their ability to suppress HR caused by four cytotoxic effector-R gene combinations (Cp/Rx, ATR13/RPP13, Rpt2/RPS-2, and GPA/RBP-1) and one mutated R gene-Pto(Y207D). Nine out of twenty proteins, designated Shr1 to Shr9 (suppressors of hypersensitive response), were found to suppress HR in N. benthamiana. These effectors varied in the effector-R gene defenses they suppressed, indicating these pathogens can interfere with a variety of host defense pathways. In addition to HR suppression, effector Shr7 also suppressed PAMP-triggered immune response triggered by flg22. Finally, delivery of Shr7 through Pseudomonas fluorescens EtHAn suppressed nonspecific HR induced by Pseudomonas syringae DC3000 in wheat, confirming its activity in a homologous system. Overall, this study provides the first evidence for the presence of effectors in Puccinia species suppressing multiple plant defense responses.

  15. A whole-plant perspective reveals unexpected impacts of above- and belowground herbivores on plant growth and defense

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tradeoffs between plant growth and defense are central to theoretical frameworks used to study the ecology and evolution of plant defense against herbivores. However, these frameworks, as well as the experiments designed to test them, rarely include the remarkable diversity of belowground herbivores...

  16. Spatial and phylogenetic variation in plant defense in a tropical moist forest canopy community

    NASA Astrophysics Data System (ADS)

    McManus, K. M.; Asner, G. P.; Martin, R.

    2013-12-01

    Plants employ physical and chemical defenses to mitigate damage caused by herbivory. Spatial patterns of plant defense may provide insight into the role of plant-herbivore interactions in the assembly of plant communities. Within plant communities, the spatial overdispersion of anti-herbivore defenses by individuals may reflect a strategy to avoid host shifts from herbivore assemblages of neighboring plants. However, variation in plant defense may also result from trade-offs between foliar investment into defense and growth, mediated by variations in abiotic nutrient availability, or constrained by phylogeny. We measured four defensive traits (leaf toughness, total phenols, condensed tannins, and hydrolysable tannins) and three growth traits (LMA, C:N, total protein) of outer canopy foliage for 345 canopy trees representing 78 species, 65 genera, and 34 families in a moist tropical rainforest on Barro Colorado Island, Panama. The outer canopy provides an important, but rarely evaluated, cross-sectional image of the tropical forest ecosystem, and observations at this scale may provide an important link between field and remote sensing based studies. We used existing data on edaphic and geological properties to investigate the relationships of abiotic nutrient variation on variation in defense. Using regression and nested random-effects variance modeling, we found strong phylogenetic association with defensive traits at the family and species level, and little evidence for a trade-off between defensive traits. Greater understanding of phylogenetic structure in trait variation may yield improved characterizations of tropical biodiversity, from functional traits to risk assessments.

  17. Emerging Roles of Agrobacterial Plant-Transforming Oncogenes in Plant Defense Reactions

    NASA Astrophysics Data System (ADS)

    Bulgakov, Victor P.; Inyushkina, Yuliya V.; Gorpenchenko, Tatiana Y.; Koren, Olga G.; Shkryl, Yuri N.; Zhuravlev, Yuri N.

    2009-01-01

    For recent years, engineering plant metabolic pathways by using rol genes looks promising in several aspects. New directions of rol-gene studies are highlighted in this work underlying the unique regulatory properties of the genes. It is known that following agrobacterial infection, the Agrobacterium rhizogenes rolA, rolB and rolC genes are transferred to plant genome, causing tumor formation and hairy root disease. In this report, we show mat these oncogenes are also involved in regulation of plant defense reactions, including the production of secondary metabolites. Situations occur where the rol genes perform their own critical function to regulate secondary metabolism by bypassing upstream plant control mechanisms and directing defense reactions via a "short cut." The rolC gene expressed in transformed plant cells is efficient in establishing an enhanced resistance of host cells to salt and temperature stresses. The emerging complexity of the rol-gene triggered effects and the involvement of signals generated by these genes in basic processes of cell biology such as calcium and ROS signaling indicate that the plant oncogenes, like some animal protooncogenes, use sophisticated strategies to affect cell growth and differentiation. The data raise the intriguing possibility that some components of plant and animal oncogene signaling pathways share common features.

  18. Plant dependence on rhizobia for nitrogen influences induced plant defenses and herbivore performance.

    PubMed

    Dean, Jennifer M; Mescher, Mark C; De Moraes, Consuelo M

    2014-01-21

    Symbiotic rhizobia induce many changes in legumes that could affect aboveground interactions with herbivores. We explored how changing the intensity of Bradyrhizobium japonicum, as modulated by soil nitrogen (N) levels, influenced the interaction between soybean (Glycine max) and herbivores of different feeding guilds. When we employed a range of fertilizer applications to manipulate soil N, plants primarily dependent on rhizobia for N exhibited increased root nodulation and higher levels of foliar ureides than plants given N fertilizer; yet all treatments maintained similar total N levels. Soybean podworm (Helicoverpa zea) larvae grew best on plants with the highest levels of rhizobia but, somewhat surprisingly, preferred to feed on high-N-fertilized plants when given a choice. Induction of the defense signaling compound jasmonic acid (JA) by H. zea feeding damage was highest in plants primarily dependent on rhizobia. Differences in rhizobial dependency on soybean did not appear to affect interactions with the phloem-feeding soybean aphid (Aphis glycines). Overall, our results suggest that rhizobia association can affect plant nutritional quality and the induction of defense signaling pathways and that these effects may influence herbivore feeding preferences and performance-though such effects may vary considerably for different classes of herbivores.

  19. Neonicotinoid insecticides induce salicylate-associated plant defense responses

    PubMed Central

    Ford, Kevin A.; Casida, John E.; Chandran, Divya; Gulevich, Alexander G.; Okrent, Rachel A.; Durkin, Kathleen A.; Sarpong, Richmond; Bunnelle, Eric M.; Wildermuth, Mary C.

    2010-01-01

    Neonicotinoid insecticides control crop pests based on their action as agonists at the insect nicotinic acetylcholine receptor, which accepts chloropyridinyl- and chlorothiazolyl-analogs almost equally well. In some cases, these compounds have also been reported to enhance plant vigor and (a)biotic stress tolerance, independent of their insecticidal function. However, this mode of action has not been defined. Using Arabidopsis thaliana, we show that the neonicotinoid compounds, imidacloprid (IMI) and clothianidin (CLO), via their 6-chloropyridinyl-3-carboxylic acid and 2-chlorothiazolyl-5-carboxylic acid metabolites, respectively, induce salicylic acid (SA)-associated plant responses. SA is a phytohormone best known for its role in plant defense against pathogens and as an inducer of systemic acquired resistance; however, it can also modulate abiotic stress responses. These neonicotinoids effect a similar global transcriptional response to that of SA, including genes involved in (a)biotic stress response. Furthermore, similar to SA, IMI and CLO induce systemic acquired resistance, resulting in reduced growth of a powdery mildew pathogen. The action of CLO induces the endogenous synthesis of SA via the SA biosynthetic enzyme ICS1, with ICS1 required for CLO-induced accumulation of SA, expression of the SA marker PR1, and fully enhanced resistance to powdery mildew. In contrast, the action of IMI does not induce endogenous synthesis of SA. Instead, IMI is further bioactivated to 6-chloro-2-hydroxypyridinyl-3-carboxylic acid, which is shown here to be a potent inducer of PR1 and inhibitor of SA-sensitive enzymes. Thus, via different mechanisms, these chloropyridinyl- and chlorothiazolyl-neonicotinoids induce SA responses associated with enhanced stress tolerance. PMID:20876120

  20. Sucrose and invertases, a part of the plant defense response to the biotic stresses

    PubMed Central

    Tauzin, Alexandra S.; Giardina, Thierry

    2014-01-01

    Sucrose is the main form of assimilated carbon which is produced during photosynthesis and then transported from source to sink tissues via the phloem. This disaccharide is known to have important roles as signaling molecule and it is involved in many metabolic processes in plants. Essential for plant growth and development, sucrose is engaged in plant defense by activating plant immune responses against pathogens. During infection, pathogens reallocate the plant sugars for their own needs forcing the plants to modify their sugar content and triggering their defense responses. Among enzymes that hydrolyze sucrose and alter carbohydrate partitioning, invertases have been reported to be affected during plant-pathogen interactions. Recent highlights on the role of invertases in the establishment of plant defense responses suggest a more complex regulation of sugar signaling in plant-pathogen interaction. PMID:25002866

  1. Activation of Defense Mechanisms against Pathogens in Mosses and Flowering Plants

    PubMed Central

    de León, Inés Ponce; Montesano, Marcos

    2013-01-01

    During evolution, plants have developed mechanisms to cope with and adapt to different types of stress, including microbial infection. Once the stress is sensed, signaling pathways are activated, leading to the induced expression of genes with different roles in defense. Mosses (Bryophytes) are non-vascular plants that diverged from flowering plants more than 450 million years ago, allowing comparative studies of the evolution of defense-related genes and defensive metabolites produced after microbial infection. The ancestral position among land plants, the sequenced genome and the feasibility of generating targeted knock-out mutants by homologous recombination has made the moss Physcomitrella patens an attractive model to perform functional studies of plant genes involved in stress responses. This paper reviews the current knowledge of inducible defense mechanisms in P. patens and compares them to those activated in flowering plants after pathogen assault, including the reinforcement of the cell wall, ROS production, programmed cell death, activation of defense genes and synthesis of secondary metabolites and defense hormones. The knowledge generated in P. patens together with comparative studies in flowering plants will help to identify key components in plant defense responses and to design novel strategies to enhance resistance to biotic stress. PMID:23380962

  2. Activation of Defense Mechanisms against Pathogens in Mosses and Flowering Plants.

    PubMed

    Ponce de León, Inés; Montesano, Marcos

    2013-02-04

    During evolution, plants have developed mechanisms to cope with and adapt to different types of stress, including microbial infection. Once the stress is sensed, signaling pathways are activated, leading to the induced expression of genes with different roles in defense. Mosses (Bryophytes) are non-vascular plants that diverged from flowering plants more than 450 million years ago, allowing comparative studies of the evolution of defense-related genes and defensive metabolites produced after microbial infection. The ancestral position among land plants, the sequenced genome and the feasibility of generating targeted knock-out mutants by homologous recombination has made the moss Physcomitrella patens an attractive model to perform functional studies of plant genes involved in stress responses. This paper reviews the current knowledge of inducible defense mechanisms in P. patens and compares them to those activated in flowering plants after pathogen assault, including the reinforcement of the cell wall, ROS production, programmed cell death, activation of defense genes and synthesis of secondary metabolites and defense hormones. The knowledge generated in P. patens together with comparative studies in flowering plants will help to identify key components in plant defense responses and to design novel strategies to enhance resistance to biotic stress.

  3. Host plant defense signaling in response to a coevolved herbivore combats introduced herbivore attack

    PubMed Central

    Woodard, Anastasia M; Ervin, Gary N; Marsico, Travis D

    2012-01-01

    Defense-free space resulting from coevolutionarily naïve host plants recently has been implicated as a factor facilitating invasion success of some insect species. Host plants, however, may not be entirely defenseless against novel herbivore threats. Volatile chemical-mediated defense signaling, which allows plants to mount specific, rapid, and intense responses, may play a role in systems experiencing novel threats. Here we investigate defense responses of host plants to a native and exotic herbivore and show that (1) host plants defend more effectively against the coevolved herbivore, (2) plants can be induced to defend against a newly-associated herbivore when in proximity to plants actively defending against the coevolved species, and (3) these defenses affect larval performance. These findings highlight the importance of coevolved herbivore-specific defenses and suggest that naïveté or defense limitations can be overcome via defense signaling. Determining how these findings apply across various host–herbivore systems is critical to understand mechanisms of successful herbivore invasion. PMID:22837849

  4. A whole-plant perspective reveals unexpected impacts of above- and belowground herbivores on plant growth and defense.

    PubMed

    Mundim, Fabiane M; Alborn, Hans T; Vieira-Neto, Ernane H M; Bruna, Emilio M

    2017-01-01

    Trade-offs between plant growth and defense are central to theoretical frameworks used to study the ecology and evolution of plant defense against herbivores. However, these frameworks, as well as the experiments designed to test them, rarely include belowground herbivores. We experimentally challenged seedlings of the tropical shrub Solanum lycocarpum (Solanaceae) with either aboveground foliar herbivores (Spodoptera caterpillars) or belowground root herbivores (the nematode Meloidogyne incognita) and measured the resulting changes in plant growth rates, biomass allocation, and the concentration of defensive terpenoids in roots and leaves. We found that plants that suffered aboveground herbivory responded with aboveground growth but belowground defense. Similarly, belowground herbivory resulted in root growth but elevated defenses of leaves. These results underscore the importance of belowground plant-herbivore interactions, and suggest that, in contrast to theoretical predictions, plants can simultaneously invest in both growth and defense. Finally, they emphasize the need for a "whole-plant" perspective in theoretical and empirical evaluations of plant-herbivore interactions.

  5. The mealybug Phenacoccus solenopsis suppresses plant defense responses by manipulating JA-SA crosstalk

    PubMed Central

    Zhang, Peng-Jun; Huang, Fang; Zhang, Jin-Ming; Wei, Jia-Ning; Lu, Yao-Bin

    2015-01-01

    Induced plant defenses against herbivores are modulated by jasmonic acid-, salicylic acid-, and ethylene-signaling pathways. Although there is evidence that some pathogens suppress plant defenses by interfering with the crosstalk between different signaling pathways, such evidence is scarce for herbivores. Here, we demonstrate that the mealybug Phenacoccus solenopsis suppresses the induced defenses in tomato. We found that exogenous JA, but not SA, significantly decreased mealybug feeding time and reduced nymphal performance. In addition, constitutive activation of JA signaling in 35s::prosys plants reduced mealybug survival. These data indicate that the JA signaling pathway plays a key role in mediating the defense responses against P. solenopsis. We also found that mealybug feeding decreased JA production and JA-dependent defense gene expression, but increased SA accumulation and SA-dependent gene expression. In SA-deficient plants, mealybug feeding did not suppress but activated JA accumulation, indicating that the suppression of JA-regulated defenses depends on the SA signaling pathway. Mealybugs benefit from suppression of JA-regulated defenses by exhibiting enhanced nymphal performance. These findings confirm that P. solenopsis manipulates plants for its own benefits by modulating the JA-SA crosstalk and thereby suppressing induced defenses. PMID:25790868

  6. The ontogeny of plant defense and herbivory: characterizing general patterns using meta-analysis.

    PubMed

    Barton, Kasey E; Koricheva, Julia

    2010-04-01

    Defense against herbivores often changes dramatically as plants develop. Hypotheses based on allocation theory and herbivore selection patterns predict that defense should increase or decrease, respectively, across ontogeny, and previous research partly supports both predictions. Thus, it remains unclear which pattern is more common and what factors contribute to variability among studies. We conducted a meta-analysis of 116 published studies reporting ontogenetic patterns in plant defense traits and herbivory. Patterns varied depending on plant life form (woody, herbaceous, grass), type of herbivore (insect, mollusk, mammal), and type of defense trait (secondary chemistry, physical defense, tolerance). In woody plants, chemical defense increased during the seedling stage, followed by an increase in physical defenses during the vegetative juvenile stage. Mammalian herbivores showed a strong preference for mature compared to juvenile tissues in woody plants. Herbs experienced a significant increase in secondary chemistry across the entire ontogenetic trajectory, although the magnitude of increase was greatest during the seedling stage. Correspondingly, mollusks preferred young compared to older herbs. Future research investigating growth/defense trade-offs, allometry, herbivore selection patterns, and ecological costs would shed light on the mechanisms driving the ontogenetic patterns observed.

  7. Organ-specific regulation of growth-defense tradeoffs by plants.

    PubMed

    Smakowska, Elwira; Kong, Jixiang; Busch, Wolfgang; Belkhadir, Youssef

    2016-02-01

    Plants grow while also defending themselves against phylogenetically unrelated pathogens. Because defense and growth are both costly programs, a plant's success in colonizing resource-scarce environments requires tradeoffs between the two. Here, we summarize efforts aimed at understanding how plants use iterative tradeoffs to modulate differential organ growth when defenses are elicited. First, we focus on shoots to illustrate how light, in conjunction with the growth hormone gibberellin (GA) and the defense hormone jasmonic acid (JA), act to finely regulate defense and growth programs in this organ. Second, we expand on the regulation of growth-defense trade-offs in the root, a less well-studied topic despite the critical role of this organ in acquiring resources in an environment deeply entrenched with disparate populations of microbes.

  8. Pythium infection activates conserved plant defense responses in mosses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The moss Physcomitrella patens (P. patens) is a useful model to study abiotic stress responses since it is highly tolerant to drought, salt and osmotic stress. However, little is known about the defense mechanisms activated in this moss after pathogen assault. Here the induction of defense responses...

  9. Constitutive plant toxins and their role in defense against herbivores and pathogens.

    PubMed

    Wittstock, Ute; Gershenzon, Jonathan

    2002-08-01

    Most recent investigations have focused on induced, rather than constitutive, plant defenses. Yet significant research has helped to illuminate some of the principal characteristics of constitutive defenses, including mechanisms of action and synergistic effects, as well as strategies used by herbivores and pathogens to circumvent them.

  10. Multitasking antimicrobial peptides, plant development, and host defense against biotic/abiotic stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop losses due to pathogens are a major threat to global food security. Plants employ a multilayer defense system against pathogens including use of physical barriers (cell wall), induction of hypersensitive defense response (HR), resistance (R) proteins, and synthesis of antimicrobial peptides (AM...

  11. Different Narrow-Band Light Ranges Alter Plant Secondary Metabolism and Plant Defense Response to Aphids.

    PubMed

    Rechner, Ole; Neugart, Susanne; Schreiner, Monika; Wu, Sasa; Poehling, Hans-Michael

    2016-10-01

    Light of different wavelengths affects various physiological processes in plants. Short-wavelength radiation (like UV) can activate defense pathways in plants and enhance the biosynthesis of secondary metabolites (such as flavonoids and glucosinolates) responsible for resistance against certain herbivorous insects. The intensity of light-induced, metabolite-based resistance is plant- and insect species-specific and depends on herbivore feeding guild and specialization. In this study, broccoli (Brassica oleracea var. italica) plants were grown for 4 weeks in a climate chamber under conventional fluorescent tubes and were additionally treated with UV-B (310 nm), UV-A (365 or 385 nm), or violet (420 nm) light generated with UV-B tubes or light-emitting diodes (LEDs). The objective was to determine the influence of narrow bandwidths of light (from UV-B to violet) on plant secondary metabolism and on the performance of the cabbage aphid Brevicoryne brassicae (a specialist) and the green peach aphid Myzus persicae (a generalist). Among flavonol glycosides, specific quercetin and kaempferol glycosides increased markedly under UV-B, while among glucosinolates only 4-methoxy-3-indolylmethyl showed a 2-fold increase in plants exposed to UV-B and UV-A. The concentration of 3-indolylmethyl glucosinolate in broccoli plants increased with UV-B treatment. Brevicoryne brassicae adult weights and fecundity were lower on UV-B treated plants compared to UV-A or violet light-treated plants. Adult weights and fecundity of M. persicae were increased under UV-B and UV-A treatments. When specific light wavelengths are used to induce metabolic changes in plants, the specificity of the induced effects on herbivores should be considered.

  12. NBS-LRR-Encoding genes in sorghum and their role in plant defense

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nucleotide-binding site leucine-rich repeats (NBS-LRR) proteins are encoded by a large class of plant genes and many of them play an important role in plant defense against pest attack. Identification and characterization of the whole set of NBS-LRR genes in a plant genome will provide insights int...

  13. Plant storage proteins with antimicrobial activity: novel insights into plant defense mechanisms.

    PubMed

    Cândido, Elizabete de Souza; Pinto, Michelle Flaviane Soares; Pelegrini, Patrícia Barbosa; Lima, Thais Bergamin; Silva, Osmar Nascimento; Pogue, Robert; Grossi-de-Sá, Maria Fátima; Franco, Octávio Luiz

    2011-10-01

    Storage proteins perform essential roles in plant survival, acting as molecular reserves important for plant growth and maintenance, as well as being involved in defense mechanisms by virtue of their properties as insecticidal and antimicrobial proteins. These proteins accumulate in storage vacuoles inside plant cells, and, in response to determined signals, they may be used by the different plant tissues in response to pathogen attack. To shed some light on these remarkable proteins with dual functions, storage proteins found in germinative tissues, such as seeds and kernels, and in vegetative tissues, such as tubercles and leaves, are extensively discussed here, along with the related mechanisms of protein expression. Among these proteins, we focus on 2S albumins, Kunitz proteinase inhibitors, plant lectins, glycine-rich proteins, vicilins, patatins, tarins, and ocatins. Finally, the potential use of these molecules in development of drugs to combat human and plant pathogens, contributing to the development of new biotechnology-based medications and products for agribusiness, is also presented.

  14. Growth-defense tradeoffs in plants: a balancing act to optimize fitness.

    PubMed

    Huot, Bethany; Yao, Jian; Montgomery, Beronda L; He, Sheng Yang

    2014-08-01

    Growth-defense tradeoffs are thought to occur in plants due to resource restrictions, which demand prioritization towards either growth or defense, depending on external and internal factors. These tradeoffs have profound implications in agriculture and natural ecosystems, as both processes are vital for plant survival, reproduction, and, ultimately, plant fitness. While many of the molecular mechanisms underlying growth and defense tradeoffs remain to be elucidated, hormone crosstalk has emerged as a major player in regulating tradeoffs needed to achieve a balance. In this review, we cover recent advances in understanding growth-defense tradeoffs in plants as well as what is known regarding the underlying molecular mechanisms. Specifically, we address evidence supporting the growth-defense tradeoff concept, as well as known interactions between defense signaling and growth signaling. Understanding the molecular basis of these tradeoffs in plants should provide a foundation for the development of breeding strategies that optimize the growth-defense balance to maximize crop yield to meet rising global food and biofuel demands.

  15. Growth–Defense Tradeoffs in Plants: A Balancing Act to Optimize Fitness

    PubMed Central

    Huot, Bethany; Yao, Jian; Montgomery, Beronda L.; He, Sheng Yang

    2014-01-01

    Growth–defense tradeoffs are thought to occur in plants due to resource restrictions, which demand prioritization towards either growth or defense, depending on external and internal factors. These tradeoffs have profound implications in agriculture and natural ecosystems, as both processes are vital for plant survival, reproduction, and, ultimately, plant fitness. While many of the molecular mechanisms underlying growth and defense tradeoffs remain to be elucidated, hormone crosstalk has emerged as a major player in regulating tradeoffs needed to achieve a balance. In this review, we cover recent advances in understanding growth–defense tradeoffs in plants as well as what is known regarding the underlying molecular mechanisms. Specifically, we address evidence supporting the growth–defense tradeoff concept, as well as known interactions between defense signaling and growth signaling. Understanding the molecular basis of these tradeoffs in plants should provide a foundation for the development of breeding strategies that optimize the growth–defense balance to maximize crop yield to meet rising global food and biofuel demands. PMID:24777989

  16. Disarming the jasmonate-dependent plant defense makes nonhost Arabidopsis plants accessible to the American serpentine leafminer.

    PubMed

    Abe, Hiroshi; Tateishi, Ken; Seo, Shigemi; Kugimiya, Soichi; Hirai, Masami Yokota; Sawada, Yuji; Murata, Yoshiyuki; Yara, Kaori; Shimoda, Takeshi; Kobayashi, Masatomo

    2013-11-01

    Here, we analyzed the interaction between Arabidopsis (Arabidopsis thaliana) and the American serpentine leafminer (Liriomyza trifolii), an important and intractable herbivore of many cultivated plants. We examined the role of the immunity-related plant hormone jasmonate (JA) in the plant response and resistance to leafminer feeding to determine whether JA affects host suitability for leafminers. The expression of marker genes for the JA-dependent plant defense was induced by leafminer feeding on Arabidopsis wild-type plants. Analyses of JA-insensitive coi1-1 mutants suggested the importance of JA in the plant response to leafminer feeding. The JA content of wild-type plants significantly increased after leafminer feeding. Moreover, coi1-1 mutants showed lower feeding resistance against leafminer attack than did wild-type plants. The number of feeding scars caused by inoculated adult leafminers in JA-insensitive coi1-1 mutants was higher than that in wild-type plants. In addition, adults of the following generation appeared only from coi1-1 mutants and not from wild-type plants, suggesting that the loss of the JA-dependent plant defense converted nonhost plants to accessible host plants. Interestingly, the glucosinolate-myrosinase defense system may play at most a minor role in this conversion, indicating that this major antiherbivore defense of Brassica species plants probably does not have a major function in plant resistance to leafminer. Application of JA to wild-type plants before leafminer feeding enhanced feeding resistance in Chinese cabbage (Brassica rapa), tomato (Solanum lycopersicum), and garland chrysanthemum (Chrysanthemum coronarium). Our results indicate that JA plays an important role in the plant response and resistance to leafminers and, in so doing, affects host plant suitability for leafminers.

  17. Disarming the Jasmonate-Dependent Plant Defense Makes Nonhost Arabidopsis Plants Accessible to the American Serpentine Leafminer1

    PubMed Central

    Abe, Hiroshi; Tateishi, Ken; Seo, Shigemi; Kugimiya, Soichi; Hirai, Masami Yokota; Sawada, Yuji; Murata, Yoshiyuki; Yara, Kaori; Shimoda, Takeshi; Kobayashi, Masatomo

    2013-01-01

    Here, we analyzed the interaction between Arabidopsis (Arabidopsis thaliana) and the American serpentine leafminer (Liriomyza trifolii), an important and intractable herbivore of many cultivated plants. We examined the role of the immunity-related plant hormone jasmonate (JA) in the plant response and resistance to leafminer feeding to determine whether JA affects host suitability for leafminers. The expression of marker genes for the JA-dependent plant defense was induced by leafminer feeding on Arabidopsis wild-type plants. Analyses of JA-insensitive coi1-1 mutants suggested the importance of JA in the plant response to leafminer feeding. The JA content of wild-type plants significantly increased after leafminer feeding. Moreover, coi1-1 mutants showed lower feeding resistance against leafminer attack than did wild-type plants. The number of feeding scars caused by inoculated adult leafminers in JA-insensitive coi1-1 mutants was higher than that in wild-type plants. In addition, adults of the following generation appeared only from coi1-1 mutants and not from wild-type plants, suggesting that the loss of the JA-dependent plant defense converted nonhost plants to accessible host plants. Interestingly, the glucosinolate-myrosinase defense system may play at most a minor role in this conversion, indicating that this major antiherbivore defense of Brassica species plants probably does not have a major function in plant resistance to leafminer. Application of JA to wild-type plants before leafminer feeding enhanced feeding resistance in Chinese cabbage (Brassica rapa), tomato (Solanum lycopersicum), and garland chrysanthemum (Chrysanthemum coronarium). Our results indicate that JA plays an important role in the plant response and resistance to leafminers and, in so doing, affects host plant suitability for leafminers. PMID:24022267

  18. Herbivore Diet Breadth and Host Plant Defense Mediate the Tri-Trophic Effects of Plant Toxins on Multiple Coccinellid Predators.

    PubMed

    Katsanis, Angelos; Rasmann, Sergio; Mooney, Kailen A

    2016-01-01

    Host plant defenses are known to cascade up food chains to influence herbivores and their natural enemies, but how herbivore and predator traits and identity mediate such tri-trophic dynamics is largely unknown. We assessed the influence of plant defense on aphid and coccinellid performance in laboratory trials with low- vs. high-glucosinolate varieties of Brassica napus, a dietary specialist (Brevicoryne brassicae) and generalist (Myzus persicae) aphid, and five species of aphidophagous coccinellids. The performance of the specialist and generalist aphids was similar and unaffected by variation in plant defense. Aphid glucosinolate concentration and resistance to predators differed by aphid species and host plant defense, and these effects acted independently. With respect to aphid species, the dietary generalist aphid (vs. specialist) had 14% lower glucosinolate concentration and coccinellid predators ate three-fold more aphids. With respect to host plant variety, the high-glucosinolate plants (vs. low) increased aphid glucosinolate concentration by 21%, but had relatively weak effects on predation by coccinellids and these effects varied among coccinellid species. In turn, coccinellid performance was influenced by the interactive effects of plant defense and aphid species, as the cascading, indirect effect of plant defense was greater when feeding upon the specialist than generalist aphid. When feeding upon specialist aphids, low- (vs. high-) glucosinolate plants increased coccinellid mass gain by 78% and accelerated development by 14%. In contrast, when feeding upon generalist aphids, low- (vs. high-) glucosinolate plants increased coccinellid mass gain by only 11% and had no detectable effect on development time. These interactive effects of plant defense and aphid diet breadth on predator performance also varied among coccinellid species; the indirect negative effects of plant defenses on predator performance was consistent among the five predators when

  19. Herbivore Diet Breadth and Host Plant Defense Mediate the Tri-Trophic Effects of Plant Toxins on Multiple Coccinellid Predators

    PubMed Central

    Katsanis, Angelos; Rasmann, Sergio; Mooney, Kailen A.

    2016-01-01

    Host plant defenses are known to cascade up food chains to influence herbivores and their natural enemies, but how herbivore and predator traits and identity mediate such tri-trophic dynamics is largely unknown. We assessed the influence of plant defense on aphid and coccinellid performance in laboratory trials with low- vs. high-glucosinolate varieties of Brassica napus, a dietary specialist (Brevicoryne brassicae) and generalist (Myzus persicae) aphid, and five species of aphidophagous coccinellids. The performance of the specialist and generalist aphids was similar and unaffected by variation in plant defense. Aphid glucosinolate concentration and resistance to predators differed by aphid species and host plant defense, and these effects acted independently. With respect to aphid species, the dietary generalist aphid (vs. specialist) had 14% lower glucosinolate concentration and coccinellid predators ate three-fold more aphids. With respect to host plant variety, the high-glucosinolate plants (vs. low) increased aphid glucosinolate concentration by 21%, but had relatively weak effects on predation by coccinellids and these effects varied among coccinellid species. In turn, coccinellid performance was influenced by the interactive effects of plant defense and aphid species, as the cascading, indirect effect of plant defense was greater when feeding upon the specialist than generalist aphid. When feeding upon specialist aphids, low- (vs. high-) glucosinolate plants increased coccinellid mass gain by 78% and accelerated development by 14%. In contrast, when feeding upon generalist aphids, low- (vs. high-) glucosinolate plants increased coccinellid mass gain by only 11% and had no detectable effect on development time. These interactive effects of plant defense and aphid diet breadth on predator performance also varied among coccinellid species; the indirect negative effects of plant defenses on predator performance was consistent among the five predators when

  20. Host plant invests in growth rather than chemical defense when attacked by a specialist herbivore.

    PubMed

    Arab, Alberto; Trigo, José Roberto

    2011-05-01

    Plant defensive compounds may be a cost rather than a benefit when plants are attacked by specialist insects that may overcome chemical barriers by strategies such as sequestering plant compounds. Plants may respond to specialist herbivores by compensatory growth rather than chemical defense. To explore the use of defensive chemistry vs. compensatory growth we studied Brugmansia suaveolens (Solanaceae) and the specialist larvae of the ithomiine butterfly Placidina euryanassa, which sequester defensive tropane alkaloids (TAs) from this host plant. We investigated whether the concentration of TAs in B. suaveolens was changed by P. euryanassa damage, and whether plants invest in growth, when damaged by the specialist. Larvae feeding during 24 hr significantly decreased TAs in damaged plants, but they returned to control levels after 15 days without damage. Damaged and undamaged plants did not differ significantly in leaf area after 15 days, indicating compensatory growth. Our results suggest that B. suaveolens responds to herbivory by the specialist P. euryanassa by investing in growth rather than chemical defense.

  1. Elicitors of Host Plant Defenses Partially Suppress Pear Psylla (Cacopsylla pyricola, Hemiptera: Psyllidae) Populations under Field Conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Defense elicitors are products that activate acquired defense responses in plants, thus rendering the plants less susceptible to attack by a broad range of pests. We previously demonstrated under laboratory conditions that foliar applications of the defense elicitors Actigard (acibenzolar-S-methyl)...

  2. Biogeography of Alaska paper birch (Betula neoalaskana): latitudinal patterns in chemical defense and plant architecture.

    PubMed

    Stevens, Michael T; Brown, Sarah C; Bothwell, Helen M; Bryant, John P

    2016-02-01

    The latitudinal herbivory-defense hypothesis (LHDH) predicts that plants near the equator will be more heavily defended against herbivores than are plants at higher latitudes. Although this idea is widely found in the literature, recent studies have called this biogeographic pattern into question. We sought to evaluate the LHDH in a high-latitude terrestrial ecosystem where fire and mammalian herbivores may contribute to selection for higher levels of defensive chemistry. To address this objective, we collected seeds of Alaska paper birch (Betula neoalaskana) from nine locations along two north-south transects between 55 degrees N and 62 degrees N latitudes in western, interior Canada. The birch seeds were planted in pots in a common garden in Madison, Wisconsin, USA. From the resulting seedlings, we determined levels of chemical defense by assessing the density of resin glands, which have been shown to be negatively correlated with browsing. To assess plant architectural traits such as height, mean individual leaf area, and root-to-shoot ratio, we harvested a subset of the birch seedlings. Further, we used these traits to examine growth-defense trade-offs. Contrary to the LHDH, we found a positive correlation between chemical defense and latitude. Investigating relationships with fire, we found a strong positive correlation between resin gland density and percentage of area annually burned (PAAB) around each collection location and also between PAAB and latitude. Additionally, birch seedlings originating from higher latitudes were shorter, smaller-leaved, and rootier than their lower-latitude counterparts. Growth-defense trade-offs were observed in negative correlations between resin gland density and height and leaf size. Seedlings with higher resin gland densities also allocated less biomass to shoots and more to roots. These results further call into question the LHDH and provide specific information about latitudinal trends in plant defense at high, northern

  3. Probing plant-pathogen interactions and downstream defense signaling using DNA microarrays.

    PubMed

    Wan, Jinrong; Dunning, F Mark; Bent, Andrew F

    2002-11-01

    The interaction between a plant and a pathogen activates a wide variety of defense responses. The recent development of microarray-based expression profiling methods, together with the availability of genomic and/or EST (expressed sequence tag) sequence data for some plant species, has allowed significant progress in the characterization of plant pathogenesis-related responses. The small number of expression profiling studies completed to date have already identified an amazing number of genes that had not previously been implicated in plant defense. Some of these genes can be associated with defense signal transduction or antimicrobial action, but the functional contribution of many others remains uncertain. Initial expression profiling work has also revealed similarities and distinctions between different defense signaling pathways, and cross-talk (both overlap and interference) between pathogenesis-related responses and plant responses to other stresses. Potential transcriptional cis-regulatory elements upstream of co-regulated genes can also be identified. Whole-genome arrays are only now becoming available, and many interactions remain to be studied (e.g. different pathogen species, plant genotypes, mutants, time-points after infection). Expression profiling technologies, in combination with other genomic tools, will have a substantial impact on our understanding of plant-pathogen interactions and defense signaling pathways.

  4. Strategies to increase vitamin C in plants: from plant defense perspective to food biofortification

    PubMed Central

    Locato, Vittoria; Cimini, Sara; Gara, Laura De

    2013-01-01

    Vitamin C participates in several physiological processes, among others, immune stimulation, synthesis of collagen, hormones, neurotransmitters, and iron absorption. Severe deficiency leads to scurvy, whereas a limited vitamin C intake causes general symptoms, such as increased susceptibility to infections, fatigue, insomnia, and weight loss. Surprisingly vitamin C deficiencies are spread in both developing and developed countries, with the latter actually trying to overcome this lack through dietary supplements and food fortification. Therefore new strategies aimed to increase vitamin C in food plants would be of interest to improve human health. Interestingly, plants are not only living bioreactors for vitamin C production in optimal growing conditions, but also they can increase their vitamin C content as consequence of stress conditions. An overview of the different approaches aimed at increasing vitamin C level in plant food is given. They include genotype selection by “classical” breeding, bio-engineering and changes of the agronomic conditions, on the basis of the emerging concepts that plant can enhance vitamin C synthesis as part of defense responses. PMID:23734160

  5. Multitasking antimicrobial peptides in plant development and host defense against biotic/abiotic stress.

    PubMed

    Goyal, Ravinder K; Mattoo, Autar K

    2014-11-01

    Crop losses due to pathogens are a major threat to global food security. Plants employ a multilayer defense against a pathogen including the use of physical barriers (cell wall), induction of hypersensitive defense response (HR), resistance (R) proteins, and synthesis of antimicrobial peptides (AMPs). Unlike a complex R gene-mediated immunity, AMPs directly target diverse microbial pathogens. Many a times, R-mediated immunity breaks down and plant defense is compromised. Although R-gene dependent pathogen resistance has been well studied, comparatively little is known about the interactions of AMPs with host defense and physiology. AMPs are ubiquitous, low molecular weight peptides that display broad spectrum resistance against bacteria, fungi and viruses. In plants, AMPs are mainly classified into cyclotides, defensins, thionins, lipid transfer proteins, snakins, and hevein-like vicilin-like and knottins. Genetic distance lineages suggest their conservation with minimal effect of speciation events during evolution. AMPs provide durable resistance in plants through a combination of membrane lysis and cellular toxicity of the pathogen. Plant hormones - gibberellins, ethylene, jasmonates, and salicylic acid, are among the physiological regulators that regulate the expression of AMPs. Transgenically produced AMP-plants have become a means showing that AMPs are able to mitigate host defense responses while providing durable resistance against pathogens.

  6. Plant allocation of carbon to defense as a function of herbivory, light and nutrient availability

    USGS Publications Warehouse

    DeAngelis, Donald L.; Ju, Shu; Liu, Rongsong; Bryant, John P.; Gourley, Stephen A.

    2012-01-01

    We use modeling to determine the optimal relative plant carbon allocations between foliage, fine roots, anti-herbivore defense, and reproduction to maximize reproductive output. The model treats these plant components and the herbivore compartment as variables. Herbivory is assumed to be purely folivory. Key external factors include nutrient availability, degree of shading, and intensity of herbivory. Three alternative functional responses are used for herbivory, two of which are variations on donor-dependent herbivore (models 1a and 1b) and one of which is a Lotka–Volterra type of interaction (model 2). All three were modified to include the negative effect of chemical defenses on the herbivore. Analysis showed that, for all three models, two stable equilibria could occur, which differs from most common functional responses when no plant defense component is included. Optimal strategies of carbon allocation were defined as the maximum biomass of reproductive propagules produced per unit time, and found to vary with changes in external factors. Increased intensity of herbivory always led to an increase in the fractional allocation of carbon to defense. Decreases in available limiting nutrient generally led to increasing importance of defense. Decreases in available light had little effect on defense but led to increased allocation to foliage. Decreases in limiting nutrient and available light led to decreases in allocation to reproduction in models 1a and 1b but not model 2. Increases in allocation to plant defense were usually accompanied by shifts in carbon allocation away from fine roots, possibly because higher plant defense reduced the loss of nutrients to herbivory.

  7. Plant defense, herbivory, and the growth of Cordia alliodora trees and their symbiotic Azteca ant colonies.

    PubMed

    Pringle, Elizabeth G; Dirzo, Rodolfo; Gordon, Deborah M

    2012-11-01

    The effects of herbivory on plant fitness are integrated over a plant's lifetime, mediated by ontogenetic changes in plant defense, tolerance, and herbivore pressure. In symbiotic ant-plant mutualisms, plants provide nesting space and food for ants, and ants defend plants against herbivores. The benefit to the plant of sustaining the growth of symbiotic ant colonies depends on whether defense by the growing ant colony outpaces the plant's growth in defendable area and associated herbivore pressure. These relationships were investigated in the symbiotic mutualism between Cordia alliodora trees and Azteca pittieri ants in a Mexican tropical dry forest. As ant colonies grew, worker production remained constant relative to ant-colony size. As trees grew, leaf production increased relative to tree size. Moreover, larger trees hosted lower densities of ants, suggesting that ant-colony growth did not keep pace with tree growth. On leaves with ants experimentally excluded, herbivory per unit leaf area increased exponentially with tree size, indicating that larger trees experienced higher herbivore pressure per leaf area than smaller trees. Even with ant defense, herbivory increased with tree size. Therefore, although larger trees had larger ant colonies, ant density was lower in larger trees, and the ant colonies did not provide sufficient defense to compensate for the higher herbivore pressure in larger trees. These results suggest that in this system the tree can decrease herbivory by promoting ant-colony growth, i.e., sustaining space and food investment in ants, as long as the tree continues to grow.

  8. Activation of Host Defense Mechanisms by Elevated Production of H2O2 in Transgenic Plants.

    PubMed Central

    Wu, G.; Shortt, B. J.; Lawrence, E. B.; Leon, J.; Fitzsimmons, K. C.; Levine, E. B.; Raskin, I.; Shah, D. M.

    1997-01-01

    Active oxygen species have been postulated to perform multiple functions in plant defense, but their exact role in plant resistance to diseases is not fully understood. We have recently demonstrated H2O2-mediated disease resistance in transgenic potato (Solanum tuberosum) plants expressing a foreign gene encoding glucose oxidase. In this study we provide further evidence that the H2O2-mediated disease resistance in potato is effective against a broad range of plant pathogens. We have investigated mechanisms underlying the H2O2-mediated disease resistance in transgenic potato plants. The constitutively elevated levels of H2O2 induced the accumulation of total salicylic acid severalfold in the leaf tissue of transgenic plants, although no significant change was detected in the level of free salicylic acid. The mRNAs of two defense-related genes encoding the anionic peroxidase and acidic chitinase were also induced. In addition, an increased accumulation of several isoforms of extracellular peroxidase, including a newly induced one, was observed. This was accompanied by a significant increase in the lignin content of stem and root tissues of the transgenic plants. The results suggest that constitutively elevated sublethal levels of H2O2 are sufficient to activate an array of host defense mechanisms, and these defense mechanisms may be a major contributing factor to the H2O2-mediated disease resistance in transgenic plants. PMID:12223817

  9. An Overview of Proteomics Tools for Understanding Plant Defense Against Pathogens.

    PubMed

    Grandellis, Carolina; Vranych, Cecilia V; Piazza, Ainelén; Garavaglia, Betiana S; Gottig, Natalia; Ottado, Jorgelina

    2016-01-01

    Plant diseases are responsible for important losses in crops and cause serious impacts in agricultural production. In the last years, proteomics has been used to examine plant defense responses against pathogens. Such studies may be pioneer in the generation of crops with enhanced resistance. In this review, we focus on proteomics advances in the understanding of host and non-host resistance against pathogens.

  10. Arthropod-associated plant effectors (AAPEs):elicitors and suppressors of crop defense

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In response to insect attack, many plants undergo a suite of rapid biochemical changes that serve to directly reduce subsequent feeding damage and also promote the attraction of predators and parasitoids, the natural enemies of crop pests. In many cases, these insect-induced plant defense responses ...

  11. Jasmonate and ethylene signaling mediate whitefly-induced interference with indirect plant defense in Arabidopsis thaliana.

    PubMed

    Zhang, Peng-Jun; Broekgaarden, Colette; Zheng, Si-Jun; Snoeren, Tjeerd A L; van Loon, Joop J A; Gols, Rieta; Dicke, Marcel

    2013-03-01

    Upon herbivore attack, plants activate an indirect defense, that is, the release of a complex mixture of volatiles that attract natural enemies of the herbivore. When plants are simultaneously exposed to two herbivore species belonging to different feeding guilds, one herbivore may interfere with the indirect plant defense induced by the other herbivore. However, little is understood about the mechanisms underlying such interference. Here, we address the effect of herbivory by the phloem-feeding whitefly Bemisia tabaci on the induced indirect defense of Arabidopsis thaliana plants to Plutella xylostella caterpillars, that is, the attraction of the parasitoid wasp Diadegma semiclausum. Assays with various Arabidopsis mutants reveal that B. tabaci infestation interferes with indirect plant defense induced by P. xylostella, and that intact jasmonic acid and ethylene signaling are required for such interference caused by B. tabaci. Chemical analysis of plant volatiles showed that the composition of the blend emitted in response to the caterpillars was significantly altered by co-infestation with whiteflies. Moreover, whitefly infestation also had a considerable effect on the transcriptomic response of the plant to the caterpillars. Understanding the mechanisms underlying a plant's responses to multiple attackers will be important for the development of crop protection strategies in a multi-attacker context.

  12. Ants provide nutritional and defensive benefits to the carnivorous plant Sarracenia minor.

    PubMed

    Moon, Daniel C; Rossi, Anthony M; Depaz, Jacqueline; McKelvey, Lindsey; Elias, Sheryl; Wheeler, Emily; Moon, Jamie

    2010-09-01

    Ants can have important, but sometimes unexpected, effects on the plants they associate with. For carnivorous plants, associating with ants may provide defensive benefits in addition to nutritional ones. We examined the effects of increased ant visitation and exclusion of insect prey from pitchers of the hooded pitcher plant Sarracenia minor, which has been hypothesized to be an ant specialist. Visitation by ants was increased by placing PVC pipes in the ground immediately adjacent to 16 of 32 pitcher plants, which created nesting/refuge sites. Insects were excluded from all pitchers of 16 of the plants by occluding the pitchers with cotton. Treatments were applied in a 2 x 2 factorial design in order to isolate the hypothesized defensive benefits from nutritional ones. We recorded visitation by ants, the mean number of ants captured, foliar nitrogen content, plant growth and size, and levels of herbivory by the pitcher plant mining moth Exyra semicrocea. Changes in ant visitation and prey capture significantly affected nitrogen content, plant height, and the number of pitchers per plant. Increased ant visitation independent of prey capture reduced herbivory and pitcher mortality, and increased the number of pitchers per plant. Results from this study show that the hooded pitcher plant derives a double benefit from attracting potential prey that are also capable of providing defense against herbivory.

  13. Lysozyme- and chitinase activity in latex bearing plants of genus Euphorbia--A contribution to plant defense mechanism.

    PubMed

    Sytwala, Sonja; Günther, Florian; Melzig, Matthias F

    2015-10-01

    Occurrence of latices in plants is widespread, there are 40 families of plants characterized to establish lactiferous structures. Latices exhibit a constitutive part of plant defense due to the stickiness. The appearance of proteins incorporated in latices is well characterized, and hydrolytic active proteins are considerable. A lot of plants constitute so-called pathogenesis-related (PR) proteins, to overcome stressful conditions. In our investigation we are focused on latex bearing plants of Euphorbiaceae Juss., and investigated the appearance of chitinase- and lysozyme activity in particular. The present outcomes represent a comprehensive study, relating to the occurrence of lysozyme and chitinase activity of genus Euphorbia at the first time. 110 different species of genus Euphorbia L. were tested, and the appearance of chitinase and lysozyme were determined in different quantities. The appearance itself, and the physicochemical properties of latices indicate an efficient interaction for plant defense against pathogen attack.

  14. Herbivore Oral Secreted Bacteria Trigger Distinct Defense Responses in Preferred and Non-Preferred Host Plants.

    PubMed

    Wang, Jie; Chung, Seung Ho; Peiffer, Michelle; Rosa, Cristina; Hoover, Kelli; Zeng, Rensen; Felton, Gary W

    2016-06-01

    Insect symbiotic bacteria affect host physiology and mediate plant-insect interactions, yet there are few clear examples of symbiotic bacteria regulating defense responses in different host plants. We hypothesized that plants would induce distinct defense responses to herbivore- associated bacteria. We evaluated whether preferred hosts (horsenettle) or non-preferred hosts (tomato) respond similarly to oral secretions (OS) from the false potato beetle (FPB, Leptinotarsa juncta), and whether the induced defense triggered by OS was due to the presence of symbiotic bacteria in OS. Both horsenettle and tomato damaged by antibiotic (AB) treated larvae showed higher polyphenol oxidase (PPO) activity than those damaged by non-AB treated larvae. In addition, application of OS from AB treated larvae induced higher PPO activity compared with OS from non-AB treated larvae or water treatment. False potato beetles harbor bacteria that may provide abundant cues that can be recognized by plants and thus mediate corresponding defense responses. Among all tested bacterial isolates, the genera Pantoea, Acinetobacter, Enterobacter, and Serratia were found to suppress PPO activity in tomato, while only Pantoea sp. among these four isolates was observed to suppress PPO activity in horsenettle. The distinct PPO suppression caused by symbiotic bacteria in different plants was similar to the pattern of induced defense-related gene expression. Pantoea inoculated FPB suppressed JA-responsive genes and triggered a SA-responsive gene in both tomato and horsenettle. However, Enterobacter inoculated FPB eliminated JA-regulated gene expression and elevated SA-regulated gene expression in tomato, but did not show evident effects on the expression levels of horsenettle defense-related genes. These results indicate that suppression of plant defenses by the bacteria found in the oral secretions of herbivores may be a more widespread phenomenon than previously indicated.

  15. Stage-Related Defense Response Induction in Tomato Plants by Nesidiocoris tenuis.

    PubMed

    Naselli, Mario; Urbaneja, Alberto; Siscaro, Gaetano; Jaques, Josep A; Zappalà, Lucia; Flors, Víctor; Pérez-Hedo, Meritxell

    2016-07-27

    The beneficial effects of direct predation by zoophytophagous biological control agents (BCAs), such as the mirid bug Nesidiocoris tenuis, are well-known. However, the benefits of zoophytophagous BCAs' relation with host plants, via induction of plant defensive responses, have not been investigated until recently. To date, only the females of certain zoophytophagous BCAs have been demonstrated to induce defensive plant responses in tomato plants. The aim of this work was to determine whether nymphs, adult females, and adult males of N. tenuis are able to induce defense responses in tomato plants. Compared to undamaged tomato plants (i.e., not exposed to the mirid), plants on which young or mature nymphs, or adult males or females of N. tenuis fed and developed were less attractive to the whitefly Bemisia tabaci, but were more attractive to the parasitoid Encarsia formosa. Female-exposed plants were more repellent to B. tabaci and more attractive to E. formosa than were male-exposed plants. When comparing young- and mature-nymph-exposed plants, the same level of repellence was obtained for B. tabaci, but mature-nymph-exposed plants were more attractive to E. formosa. The repellent effect is attributed to the signaling pathway of abscisic acid, which is upregulated in N. tenuis-exposed plants, whereas the parasitoid attraction was attributed to the activation of the jasmonic acid signaling pathway. Our results demonstrate that all motile stages of N. tenuis can trigger defensive responses in tomato plants, although these responses may be slightly different depending on the stage considered.

  16. Stage-Related Defense Response Induction in Tomato Plants by Nesidiocoris tenuis

    PubMed Central

    Naselli, Mario; Urbaneja, Alberto; Siscaro, Gaetano; Jaques, Josep A.; Zappalà, Lucia; Flors, Víctor; Pérez-Hedo, Meritxell

    2016-01-01

    The beneficial effects of direct predation by zoophytophagous biological control agents (BCAs), such as the mirid bug Nesidiocoris tenuis, are well-known. However, the benefits of zoophytophagous BCAs’ relation with host plants, via induction of plant defensive responses, have not been investigated until recently. To date, only the females of certain zoophytophagous BCAs have been demonstrated to induce defensive plant responses in tomato plants. The aim of this work was to determine whether nymphs, adult females, and adult males of N. tenuis are able to induce defense responses in tomato plants. Compared to undamaged tomato plants (i.e., not exposed to the mirid), plants on which young or mature nymphs, or adult males or females of N. tenuis fed and developed were less attractive to the whitefly Bemisia tabaci, but were more attractive to the parasitoid Encarsia formosa. Female-exposed plants were more repellent to B. tabaci and more attractive to E. formosa than were male-exposed plants. When comparing young- and mature-nymph-exposed plants, the same level of repellence was obtained for B. tabaci, but mature-nymph-exposed plants were more attractive to E. formosa. The repellent effect is attributed to the signaling pathway of abscisic acid, which is upregulated in N. tenuis-exposed plants, whereas the parasitoid attraction was attributed to the activation of the jasmonic acid signaling pathway. Our results demonstrate that all motile stages of N. tenuis can trigger defensive responses in tomato plants, although these responses may be slightly different depending on the stage considered. PMID:27472328

  17. Novel mode of action of plant defense peptides: hevein-like antimicrobial peptides from wheat inhibit fungal metalloproteases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The multilayered plant immune system relies on rapid recognition of pathogen-associated molecular patterns followed by activation of defense-related genes that results in the reinforcement of plant cell walls and production of antimicrobial compounds. To suppress plant defense, fungi secrete effecto...

  18. Positive Effects of Plant Genotypic and Species Diversity on Anti-Herbivore Defenses in a Tropical Tree Species

    PubMed Central

    Moreira, Xoaquín; Abdala-Roberts, Luis; Parra-Tabla, Víctor; Mooney, Kailen A.

    2014-01-01

    Despite increasing evidence that plant intra- and inter-specific diversity increases primary productivity, and that such effect may in turn cascade up to influence herbivores, there is little information about plant diversity effects on plant anti-herbivore defenses, the relative importance of different sources of plant diversity, and the mechanisms for such effects. For example, increased plant growth at high diversity may lead to reduced investment in defenses via growth-defense trade-offs. Alternatively, positive effects of plant diversity on plant growth may lead to increased herbivore abundance which in turn leads to a greater investment in plant defenses. The magnitude of trait variation underlying diversity effects is usually greater among species than among genotypes within a given species, so plant species diversity effects on resource use by producers as well as on higher trophic levels should be stronger than genotypic diversity effects. Here we compared the relative importance of plant genotypic and species diversity on anti-herbivore defenses and whether such effects are mediated indirectly via diversity effects on plant growth and/or herbivore damage. To this end, we performed a large-scale field experiment where we manipulated genotypic diversity of big-leaf mahogany (Swietenia macrophylla) and tree species diversity, and measured effects on mahogany growth, damage by the stem-boring specialist caterpillar Hypsipyla grandella, and defensive traits (polyphenolics and condensed tannins in stem and leaves). We found that both forms of plant diversity had positive effects on stem (but not leaf) defenses. However, neither source of diversity influenced mahogany growth, and diversity effects on defenses were not mediated by either growth-defense trade-offs or changes in stem-borer damage. Although the mechanism(s) of diversity effects on plant defenses are yet to be determined, our study is one of the few to test for and show producer diversity effects on

  19. Positive effects of plant genotypic and species diversity on anti-herbivore defenses in a tropical tree species.

    PubMed

    Moreira, Xoaquín; Abdala-Roberts, Luis; Parra-Tabla, Víctor; Mooney, Kailen A

    2014-01-01

    Despite increasing evidence that plant intra- and inter-specific diversity increases primary productivity, and that such effect may in turn cascade up to influence herbivores, there is little information about plant diversity effects on plant anti-herbivore defenses, the relative importance of different sources of plant diversity, and the mechanisms for such effects. For example, increased plant growth at high diversity may lead to reduced investment in defenses via growth-defense trade-offs. Alternatively, positive effects of plant diversity on plant growth may lead to increased herbivore abundance which in turn leads to a greater investment in plant defenses. The magnitude of trait variation underlying diversity effects is usually greater among species than among genotypes within a given species, so plant species diversity effects on resource use by producers as well as on higher trophic levels should be stronger than genotypic diversity effects. Here we compared the relative importance of plant genotypic and species diversity on anti-herbivore defenses and whether such effects are mediated indirectly via diversity effects on plant growth and/or herbivore damage. To this end, we performed a large-scale field experiment where we manipulated genotypic diversity of big-leaf mahogany (Swietenia macrophylla) and tree species diversity, and measured effects on mahogany growth, damage by the stem-boring specialist caterpillar Hypsipyla grandella, and defensive traits (polyphenolics and condensed tannins in stem and leaves). We found that both forms of plant diversity had positive effects on stem (but not leaf) defenses. However, neither source of diversity influenced mahogany growth, and diversity effects on defenses were not mediated by either growth-defense trade-offs or changes in stem-borer damage. Although the mechanism(s) of diversity effects on plant defenses are yet to be determined, our study is one of the few to test for and show producer diversity effects on

  20. Tracing Plant Defense Responses in Roots upon MAMP/DAMP Treatment.

    PubMed

    Hiruma, Kei; Saijo, Yusuke

    2016-01-01

    This chapter describes how to apply microbe-associated molecular pattern (MAMP) or damage-associated molecular pattern (DAMP) solutions to Arabidopsis roots to trace defense responses in the root. Plants sense the presence of microbes via the perception of MAMPs or DAMPs by surface-localized pattern recognition receptors. The mechanisms governing plant root immunity are poorly characterized compared with those underlying plant immunity in the leaf, despite the fact that plant roots constantly interact with countless microbes living in soils that carry potential MAMPs and could stimulate the production of plant-derived DAMPs during colonization. To understand how a plant root immune system detects and reacts to the potential sources of a stimulus, we describe a simple method to monitor activation of root immunity upon MAMP/DAMP treatment by measuring relative expression of defense-related genes by RT-qPCR.

  1. Phylogenetic correlations among chemical and physical plant defenses change with ontogeny.

    PubMed

    Kariñho-Betancourt, Eunice; Agrawal, Anurag A; Halitschke, Rayko; Núñez-Farfán, Juan

    2015-04-01

    Theory predicts patterns of defense across taxa based on notions of tradeoffs and synergism among defensive traits when plants and herbivores coevolve. Because the expression of characters changes ontogenetically, the evolution of plant strategies may be best understood by considering multiple traits along a trajectory of plant development. Here we addressed the ontogenetic expression of chemical and physical defenses in 12 Datura species, and tested for macroevolutionary correlations between defensive traits using phylogenetic analyses. We used liquid chromatography coupled to mass spectrometry to identify the toxic tropane alkaloids of Datura, and also estimated leaf trichome density. We report three major patterns. First, we found different ontogenetic trajectories of alkaloids and leaf trichomes, with alkaloids increasing in concentration at the reproductive stage, whereas trichomes were much more variable across species. Second, the dominant alkaloids and leaf trichomes showed correlated evolution, with positive and negative associations. Third, the correlations between defensive traits changed across ontogeny, with significant relationships only occurring during the juvenile phase. The patterns in expression of defensive traits in the genus Datura are suggestive of adaptation to complex selective environments varying in space and time.

  2. A Role for the GCC-Box in Jasmonate-Mediated Activation of the PDF1.2 Gene of Arabidopsis1

    PubMed Central

    Brown, Rebecca L.; Kazan, Kemal; McGrath, Ken C.; Maclean, Don J.; Manners, John M.

    2003-01-01

    The PDF1.2 gene of Arabidopsis encoding a plant defensin is commonly used as a marker for characterization of the jasmonate-dependent defense responses. Here, using PDF1.2 promoter-deletion lines linked to the β-glucoronidase-reporter gene, we examined putative promoter elements associated with jasmonate-responsive expression of this gene. Using stably transformed plants, we first characterized the extended promoter region that positively regulates basal expression from the PDF1.2 promoter. Second, using promoter deletion constructs including one from which the GCC-box region was deleted, we observed a substantially lower response to jasmonate than lines carrying this motif. In addition, point mutations introduced into the core GCC-box sequence substantially reduced jasmonate responsiveness, whereas addition of a 20-nucleotide-long promoter element carrying the core GCC-box and flanking nucleotides provided jasmonate responsiveness to a 35S minimal promoter. Taken together, these results indicated that the GCC-box plays a key role in conferring jasmonate responsiveness to the PDF1.2 promoter. However, deletion or specific mutations introduced into the core GCC-box did not completely abolish the jasmonate responsiveness of the promoter, suggesting that the other promoter elements lying downstream from the GCC-box region may also contribute to jasmonate responsiveness. In other experiments, we identified a jasmonate- and pathogen-responsive ethylene response factor transcription factor, AtERF2, which when overexpressed in transgenic Arabidopsis plants activated transcription from the PDF1.2, Thi2.1, and PR4 (basic chitinase) genes, all of which contain a GCC-box sequence in their promoters. Our results suggest that in addition to their roles in regulating ethylene-mediated gene expression, ethylene response factors also appear to play important roles in regulating jasmonate-responsive gene expression, possibly via interaction with the GCC-box. PMID:12805630

  3. Insect Outbreaks, Host-Pathogen Interactions, and Induced Plant Defenses

    DTIC Science & Technology

    2009-09-30

    often induced by defoliation15, and because defoliation and thus induced-defense concentrations increase with insect densities8, the laboratory data...study relied on experimental defoliation , without successfully causing induction18. It therefore appears that defoliation must be quite severe for...induction to occur, yet se- vere defoliation would remove so much leaf material that it would be impossible to measure virus transmission in the field

  4. Antifungal defensins and their role in plant defense.

    PubMed

    Lacerda, Ariane F; Vasconcelos, Erico A R; Pelegrini, Patrícia Barbosa; Grossi de Sa, Maria F

    2014-01-01

    Since the beginning of the 90s lots of cationic plant, cysteine-rich antimicrobial peptides (AMP) have been studied. However, Broekaert et al. (1995) only coined the term "plant defensin," after comparison of a new class of plant antifungal peptides with known insect defensins. From there, many plant defensins have been reported and studies on this class of peptides encompass its activity toward microorganisms and molecular features of the mechanism of action against bacteria and fungi. Plant defensins also have been tested as biotechnological tools to improve crop production through fungi resistance generation in organisms genetically modified (OGM). Its low effective concentration towards fungi, ranging from 0.1 to 10 μM and its safety to mammals and birds makes them a better choice, in place of chemicals, to control fungi infection on crop fields. Herein, is a review of the history of plant defensins since their discovery at the beginning of 90s, following the advances on its structure conformation and mechanism of action towards microorganisms is reported. This review also points out some important topics, including: (i) the most studied plant defensins and their fungal targets; (ii) the molecular features of plant defensins and their relation with antifungal activity; (iii) the possibility of using plant defensin(s) genes to generate fungi resistant GM crops and biofungicides; and (iv) a brief discussion about the absence of products in the market containing plant antifungal defensins.

  5. Antifungal defensins and their role in plant defense

    PubMed Central

    Lacerda, Ariane F.; Vasconcelos, Érico A. R.; Pelegrini, Patrícia Barbosa; Grossi de Sa, Maria F.

    2014-01-01

    Since the beginning of the 90s lots of cationic plant, cysteine-rich antimicrobial peptides (AMP) have been studied. However, Broekaert et al. (1995) only coined the term “plant defensin,” after comparison of a new class of plant antifungal peptides with known insect defensins. From there, many plant defensins have been reported and studies on this class of peptides encompass its activity toward microorganisms and molecular features of the mechanism of action against bacteria and fungi. Plant defensins also have been tested as biotechnological tools to improve crop production through fungi resistance generation in organisms genetically modified (OGM). Its low effective concentration towards fungi, ranging from 0.1 to 10 μM and its safety to mammals and birds makes them a better choice, in place of chemicals, to control fungi infection on crop fields. Herein, is a review of the history of plant defensins since their discovery at the beginning of 90s, following the advances on its structure conformation and mechanism of action towards microorganisms is reported. This review also points out some important topics, including: (i) the most studied plant defensins and their fungal targets; (ii) the molecular features of plant defensins and their relation with antifungal activity; (iii) the possibility of using plant defensin(s) genes to generate fungi resistant GM crops and biofungicides; and (iv) a brief discussion about the absence of products in the market containing plant antifungal defensins. PMID:24765086

  6. Small RNAs in plant defense responses during viral and bacterial interactions: similarities and differences.

    PubMed

    Peláez, Pablo; Sanchez, Federico

    2013-09-05

    Small non-coding RNAs constitute an important class of gene expression regulators that control different biological processes in most eukaryotes. In plants, several small RNA (sRNA) silencing pathways have evolved to produce a wide range of small RNAs with specialized functions. Evidence for the diverse mode of action of the small RNA pathways has been highlighted during plant-microbe interactions. Host sRNAs and small RNA silencing pathways have been recognized as essential components of plant immunity. One way plants respond and defend against pathogen infections is through the small RNA silencing immune system. To deal with plant defense responses, pathogens have evolved sophisticated mechanisms to avoid and counterattack this defense strategy. The relevance of the small RNA-mediated plant defense responses during viral infections has been well-established. Recent evidence points out its importance also during plant-bacteria interactions. Herein, this review discusses recent findings, similarities and differences about the small RNA-mediated arms race between plants and these two groups of microbes, including the small RNA silencing pathway components that contribute to plant immune responses, the pathogen-responsive endogenous sRNAs and the pathogen-delivered effector proteins.

  7. Agrobacteria Enhance Plant Defense Against Root-Knot Nematodes on Tomato.

    PubMed

    Lamovšek, Janja; Gerič Stare, Barbara; Mavrič Pleško, Irena; Širca, Saša; Urek, Gregor

    2017-01-30

    The increased incidence of the crown gall disease caused by Agrobacterium tumefaciens has long been associated with activities of root-knot nematodes, Meloidogyne spp. Pot experiments on tomato were designed to assess plant vitality, nematode reproduction and crown gall incidence in combined infection with Agrobacterium and Meloidogyne on tomato roots. Results suggest that tomato plants infected with pathogenic A. tumefaciens two days before the nematodes show enhanced plant defense against M. ethiopica resulting in lower egg and gall counts on roots 45 and 90 days post inoculation (dpi); no significantly enhanced defense was observed when the plant was inoculated with bacteria and nematodes at the same time. Split-root experiments also showed that the observed interaction was systemic. RT-qPCR analysis that targeted several genes under plant hormonal control suggests that the suppression was mediated via systemic acquired resistance by the pathogenesis-related protein 1 (PR1) and that M. ethiopica did not enhance the defense reaction of tomato against Agrobacterium. Nematodes completely inhibited tumor growth in a 45-day experiment if inoculated onto the roots before the pathogenic bacteria. We conclude that the observed antagonism in the tested pathosystem was the result of initially strong plant defense that was later suppressed by the invading pathogen and pest.

  8. The Unfolded Protein Response Supports Plant Development and Defense as well as Responses to Abiotic Stress

    PubMed Central

    Bao, Yan; Howell, Stephen H.

    2017-01-01

    The unfolded protein response (UPR) is a stress response conserved in eukaryotic organisms and activated by the accumulation of misfolded proteins in the endoplasmic reticulum (ER). Adverse environmental conditions disrupt protein folding in the ER and trigger the UPR. Recently, it was found that the UPR can be elicited in the course of plant development and defense. During vegetative plant development, the UPR is involved in normal root growth and development, the effect of which can be largely attributed to the influence of the UPR on plant hormone biology. The UPR also functions in plant reproductive development by protecting male gametophyte development from heat stress. In terms of defense, the UPR has been implicated in virus and microbial defense. Viral defense represents a double edge sword in that various virus infections activate the UPR, however, in a number of cases, the UPR actually supports viral infections. The UPR also plays a role in plant immunity to bacterial infections, again through the action of plant hormones in regulating basal immunity responses. PMID:28360918

  9. Chemical defenses (glucosinolates) of native and invasive populations of the range expanding invasive plant Rorippa austriaca.

    PubMed

    Huberty, Martine; Tielbörger, Katja; Harvey, Jeffrey A; Müller, Caroline; Macel, Mirka

    2014-04-01

    Due to global warming, species are expanding their range to higher latitudes. Some range expanding plants have become invasive in their new range. The Evolution of Increased Competitive Ability (EICA) hypothesis and the Shifting Defense Hypothesis (SDH) predict altered selection on plant defenses in the introduced range of invasive plants due to changes in herbivore pressures and communities. Here, we investigated chemical defenses (glucosinolates) of five native and seven invasive populations of the Eurasian invasive range expanding plant, Rorippa austriaca. Further, we studied feeding preferences of a generalist and a specialist herbivore among the populations. We detected eight glucosinolates in the leaves of R. austriaca. 8-Methylsulfinyloctyl glucosinolate was the most abundant glucosinolate in all plants. There were no overall differences between native and invasive plants in concentrations of glucosinolates. However, concentrations among populations within each range differed significantly. Feeding preference between the populations by a generalist herbivore was negatively correlated with glucosinolate concentrations. Feeding by a specialist did not differ between the populations and was not correlated with glucosinolates. Possibly, local differences in herbivore communities within each range may explain the differences in concentrations of glucosinolates among populations. Little support for the predictions of the EICA hypothesis or the SDH was found for the glucosinolate defenses of the studied native and invasive R. austriaca populations.

  10. Callose-mediated resistance to pathogenic intruders in plant defense-related papillae

    PubMed Central

    Voigt, Christian A.

    2014-01-01

    Plants are exposed to a wide range of potential pathogens, which derive from diverse phyla. Therefore, plants have developed successful defense mechanisms during co-evolution with different pathogens. Besides many specialized defense mechanisms, the plant cell wall represents a first line of defense. It is actively reinforced through the deposition of cell wall appositions, so-called papillae, at sites of interaction with intruding microbial pathogens. The papilla is a complex structure that is formed between the plasma membrane and the inside of the plant cell wall. Even though the specific biochemical composition of papillae can vary between different plant species, some classes of compounds are commonly found which include phenolics, reactive oxygen species, cell wall proteins, and cell wall polymers. Among these polymers, the (1,3)-β-glucan callose is one of the most abundant and ubiquitous components. Whereas the function of most compounds could be directly linked with cell wall reinforcement or an anti-microbial effect, the role of callose has remained unclear. An evaluation of recent studies revealed that the timing of the different papilla-forming transport processes is a key factor for successful plant defense. PMID:24808903

  11. Induced plant-defenses suppress herbivore reproduction but also constrain predation of their offspring.

    PubMed

    Ataide, Livia M S; Pappas, Maria L; Schimmel, Bernardus C J; Lopez-Orenes, Antonio; Alba, Juan M; Duarte, Marcus V A; Pallini, Angelo; Schuurink, Robert C; Kant, Merijn R

    2016-11-01

    Inducible anti-herbivore defenses in plants are predominantly regulated by jasmonic acid (JA). On tomato plants, most genotypes of the herbivorous generalist spider mite Tetranychus urticae induce JA defenses and perform poorly on it, whereas the Solanaceae specialist Tetranychus evansi, who suppresses JA defenses, performs well on it. We asked to which extent these spider mites and the predatory mite Phytoseiulus longipes preying on these spider mites eggs are affected by induced JA-defenses. By artificially inducing the JA-response of the tomato JA-biosynthesis mutant def-1 using exogenous JA and isoleucine (Ile), we first established the relationship between endogenous JA-Ile-levels and the reproductive performance of spider mites. For both mite species we observed that they produced more eggs when levels of JA-Ile were low. Subsequently, we allowed predatory mites to prey on spider mite-eggs derived from wild-type tomato plants, def-1 and JA-Ile-treated def-1 and observed that they preferred, and consumed more, eggs produced on tomato plants with weak JA defenses. However, predatory mite oviposition was similar across treatments. Our results show that induced JA-responses negatively affect spider mite performance, but positively affect the survival of their offspring by constraining egg-predation.

  12. Neonicotinoid Insecticides Alter Induced Defenses and Increase Susceptibility to Spider Mites in Distantly Related Crop Plants

    PubMed Central

    Szczepaniec, Adrianna; Raupp, Michael J.; Parker, Roy D.; Kerns, David; Eubanks, Micky D.

    2013-01-01

    Background Chemical suppression of arthropod herbivores is the most common approach to plant protection. Insecticides, however, can cause unintended, adverse consequences for non-target organisms. Previous studies focused on the effects of pesticides on target and non-target pests, predatory arthropods, and concomitant ecological disruptions. Little research, however, has focused on the direct effects of insecticides on plants. Here we demonstrate that applications of neonicotinoid insecticides, one of the most important insecticide classes worldwide, suppress expression of important plant defense genes, alter levels of phytohormones involved in plant defense, and decrease plant resistance to unsusceptible herbivores, spider mites Tetranychus urticae (Acari: Tetranychidae), in multiple, distantly related crop plants. Methodology/Principal Findings Using cotton (Gossypium hirsutum), corn (Zea mays) and tomato (Solanum lycopersicum) plants, we show that transcription of phenylalanine amonia lyase, coenzyme A ligase, trypsin protease inhibitor and chitinase are suppressed and concentrations of the phytohormone OPDA and salicylic acid were altered by neonicotinoid insecticides. Consequently, the population growth of spider mites increased from 30% to over 100% on neonicotinoid-treated plants in the greenhouse and by nearly 200% in the field experiment. Conclusions/Significance Our findings are important because applications of neonicotinoid insecticides have been associated with outbreaks of spider mites in several unrelated plant species. More importantly, this is the first study to document insecticide-mediated disruption of plant defenses and link it to increased population growth of a non-target herbivore. This study adds to growing evidence that bioactive agrochemicals can have unanticipated ecological effects and suggests that the direct effects of insecticides on plant defenses should be considered when the ecological costs of insecticides are evaluated. PMID

  13. The evolutionary strategies of plant defenses have a dynamic impact on the adaptations and interactions of vectors and pathogens.

    PubMed

    Huot, Ordom Brian; Nachappa, Punya; Tamborindeguy, Cecilia

    2013-06-01

    Plants have evolved and diversified to reduce the damages imposed by infectious pathogens and herbivorous insects. Living in a sedentary lifestyle, plants are constantly adapting to their environment. They employ various strategies to increase performance and fitness. Thus, plants developed cost-effective strategies to defend against specific insects and pathogens. Plant defense, however, imposes selective pressure on insects and pathogens. This selective pressure provides incentives for pathogens and insects to diversify and develop strategies to counter plant defense. This results in an evolutionary arms race among plants, pathogens and insects. The ever-changing adaptations and physiological alterations among these organisms make studying plant-vector-pathogen interactions a challenging and fascinating field. Studying plant defense and plant protection requires knowledge of the relationship among organisms and the adaptive strategies each organism utilize. Therefore, this review focuses on the integral parts of plant-vector-pathogen interactions in order to understand the factors that affect plant defense and disease development. The review addresses plant-vector-pathogen co-evolution, plant defense strategies, specificity of plant defenses and plant-vector-pathogen interactions. Improving the comprehension of these factors will provide a multi-dimensional perspective for the future research in pest and disease management.

  14. Plant defense phenotypes determine the consequences of volatile emission for individuals and neighbors.

    PubMed

    Schuman, Meredith C; Allmann, Silke; Baldwin, Ian T

    2015-04-15

    Plants are at the trophic base of terrestrial ecosystems, and the diversity of plant species in an ecosystem is a principle determinant of community structure. This may arise from diverse functional traits among species. In fact, genetic diversity within species can have similarly large effects. However, studies of intraspecific genetic diversity have used genotypes varying in several complex traits, obscuring the specific phenotypic variation responsible for community-level effects. Using lines of the wild tobacco Nicotiana attenuata genetically altered in specific well-characterized defense traits and planted into experimental populations in their native habitat, we investigated community-level effects of trait diversity in populations of otherwise isogenic plants. We conclude that the frequency of defense traits in a population can determine the outcomes of these traits for individuals. Furthermore, our results suggest that some ecosystem-level services afforded by genetically diverse plant populations could be recaptured in intensive monocultures engineered to be functionally diverse.

  15. Male-derived butterfly anti-aphrodisiac mediates induced indirect plant defense.

    PubMed

    Fatouros, Nina E; Broekgaarden, Colette; Bukovinszkine'Kiss, Gabriella; van Loon, Joop J A; Mumm, Roland; Huigens, Martinus E; Dicke, Marcel; Hilker, Monika

    2008-07-22

    Plants can recruit parasitic wasps in response to egg deposition by herbivorous insects-a sophisticated indirect plant defense mechanism. Oviposition by the Large Cabbage White butterfly Pieris brassicae on Brussels sprout plants induces phytochemical changes that arrest the egg parasitoid Trichogramma brassicae. Here, we report the identification of an elicitor of such an oviposition-induced plant response. Eliciting activity was present in accessory gland secretions released by mated female butterflies during egg deposition. In contrast, gland secretions from virgin female butterflies were inactive. In the male ejaculate, P. brassicae females receive the anti-aphrodisiac benzyl cyanide (BC) that reduces the females' attractiveness for subsequent mating. We detected this pheromone in the accessory gland secretion released by mated female butterflies. When applied onto leaves, BC alone induced phytochemical changes that arrested females of the egg parasitoid. Microarray analyses revealed a similarity in induced plant responses that may explain the arrest of T. brassicae to egg-laden and BC-treated plants. Thus, a male-derived compound endangers the offspring of the butterfly by inducing plant defense. Recently, BC was shown to play a role in foraging behavior of T. brassicae, by acting as a cue to facilitate phoretic transport by mated female butterflies to oviposition sites. Our results suggest that the anti-aphrodisiac pheromone incurs fitness costs for the butterfly by both mediating phoretic behavior and inducing plant defense.

  16. Ecological modulation of plant defense via phytochrome control of jasmonate sensitivity

    PubMed Central

    Moreno, Javier E.; Tao, Yi; Chory, Joanne; Ballaré, Carlos L.

    2009-01-01

    For plants, the tradeoff between resource investment in defense and increased growth to out-compete neighbors creates an allocation dilemma. How plants resolve this dilemma, at the mechanistic level, is unclear. We found that Arabidopsis plants produced an attenuated defense phenotype under conditions of crowding and when exposed to far-red (FR) radiation, a light signal that plants use to detect the proximity of neighbors via the photoreceptor phytochrome. This phenotype was detectable through standard bioassays that measured the growth of Spodoptera frugiperda caterpillars. Two possible explanations for the effect of FR are: (i) a simple by-product of the diversion of resources to competition, and (ii) a specific effect of phytochrome on defense signaling. The first possibility was ruled out by the fact that the auxin-deficient sav3 mutant, which fails to induce growth responses to FR, still responded to FR with an attenuated defense phenotype. In support of the second hypothesis, we found that phytochrome inactivation by FR caused a strong reduction of plant sensitivity to jasmonates, which are key regulators of plant immunity. The effects of FR on jasmonate sensitivity were restricted to certain elements of the pathway. Supporting the idea that the FR effects on jasmonate signaling are functionally significant, we found that FR failed to increase tissue quality in jar1, a mutant impaired in jasmonate response. We conclude that the plant modulates its investment in defense as a function of the perceived risk of competition, and that this modulation is effected by phytochrome via selective desensitization to jasmonates. PMID:19251652

  17. The importance of ecological costs for the evolution of plant defense against herbivory.

    PubMed

    van Velzen, Ellen; Etienne, Rampal S

    2015-05-07

    Plant defense against herbivory comes at a cost, which can be either direct (reducing resources available for growth and reproduction) or indirect (through reducing ecological performance, for example intraspecific competitiveness). While direct costs have been well studied in theoretical models, ecological costs have received almost no attention. In this study we compare models with a direct trade-off (reduced growth rate) to models with an ecological trade-off (reduced competitive ability), using a combination of adaptive dynamics and simulations. In addition, we study the dependence of the level of defense that can evolve on the type of defense (directly by reducing consumption, or indirectly by inducing herbivore mortality (toxicity)), and on the type of herbivore against which the plant is defending itself (generalists or specialists). We find three major results: First, for both direct and ecological costs, defense only evolves if the benefit to the plant is direct (through reducing consumption). Second, the type of cost has a major effect on the evolutionary dynamics: direct costs always lead to a single optimal strategy against herbivores, but ecological costs can lead to branching and the coexistence of non-defending and defending plants; however, coexistence is only possible when defending against generalist herbivores. Finally, we find that fast-growing plants invest less than slow-growing plants when defending against generalist herbivores, as predicted by the Resource Availability Hypothesis, but invest more than slow-growing plants when defending against specialists. Our results clearly show that assumptions about ecological interactions are crucial for understanding the evolution of defense against herbivores.

  18. Characterization of Peanut Germin-Like Proteins, AhGLPs in Plant Development and Defense

    PubMed Central

    Wang, Tong; Chen, Xiaoping; Zhu, Fanghe; Li, Haifen; Li, Ling; Yang, Qingli; Chi, Xiaoyuan; Yu, Shanlin; Liang, Xuanqiang

    2013-01-01

    Background Germin-like superfamily members are ubiquitously expressed in various plant species and play important roles in plant development and defense. Although several GLPs have been identified in peanut (Arachis hypogaea L.), their roles in development and defense remain unknown. In this research, we study the spatiotemporal expression of AhGLPs in peanut and their functions in plant defense. Results We have identified three new AhGLP members (AhGLP3b, AhGLP5b and AhGLP7b) that have distinct but very closely related DNA sequences. The spatial and temporal expression profiles revealed that each peanut GLP gene has its distinct expression pattern in various tissues and developmental stages. This suggests that these genes all have their distinct roles in peanut development. Subcellular location analysis demonstrated that AhGLP2 and 5 undergo a protein transport process after synthesis. The expression of all AhGLPs increased in responding to Aspergillus flavus infection, suggesting AhGLPs' ubiquitous roles in defense to A. flavus. Each AhGLP gene had its unique response to various abiotic stresses (including salt, H2O2 stress and wound), biotic stresses (including leaf spot, mosaic and rust) and plant hormone stimulations (including SA and ABA treatments). These results indicate that AhGLPs have their distinct roles in plant defense. Moreover, in vivo study of AhGLP transgenic Arabidopsis showed that both AhGLP2 and 3 had salt tolerance, which made transgenic Arabidopsis grow well under 100 mM NaCl stress. Conclusions For the first time, our study analyzes the AhGLP gene expression profiles in peanut and reveals their roles under various stresses. These results provide an insight into the developmental and defensive roles of GLP gene family in peanut. PMID:23626720

  19. Effect of nighttime temperature on tomato plant defensive chemistry.

    PubMed

    Bradfield, M; Stamp, N

    2004-09-01

    Given that the amplitude of diurnal temperature fluctuations has been decreasing, mainly via warmer night temperatures, we examined the effects of nighttime temperature on concentration of the catecholic phenolics chlorogenic acid and rutin in tomato plants. A two-factor design, with carbon dioxide (350 ppm and 700 ppm) and nighttime temperature (14, 15, 16, 17, and 18 degrees C, with a 26 degrees C daytime temperature) was used. Compared to the lower carbon dioxide level, for whole plants the concentration of phenolics was lower at the higher carbon dioxide level, but patterns for plant parts differed. Nighttime temperature did not affect concentration of phenolics for whole plants, but it did influence concentration of the phenolics for plant parts, although not in predictable ways. Furthermore, the pattern of concentration of chlorogenic acid was somewhat different from that of rutin. The amount of change in concentration of these allelochemicals is likely sufficient to have substantial effects on insect herbivores. We conclude that nighttime temperature affects concentration of allelochemicals in tomato plants in significant ways.

  20. Infection of Arabidopsis with a necrotrophic pathogen, Botrytis cinerea, elicits various defense responses but does not induce systemic acquired resistance (SAR).

    PubMed

    Govrin, Eri M; Levine, Alex

    2002-02-01

    Botrytis cinerea is a non-specific necrotrophic pathogen that attacks more than 200 plant species. In contrast to biotrophs, the necrotrophs obtain their nutrients by first killing the host cells. Many studies have shown that infection of plants by necrosis-causing pathogens induces a systemic acquired resistance (SAR), which provides protection against successive infections by a range of pathogenic organisms. We analyzed the role of SAR in B. cinerea infection of Arabidopsis. We show that although B. cinerea induced necrotic lesions and camalexin biosynthesis, it did not induce SAR-mediated protection against virulent strains of Pseudomonas syringae, or against subsequent B. cinerea infections. Induction of SAR with avirulent P. syringae or by chemical treatment with salicylic acid (SA) or benzothiadiazole also failed to inhibit B. cinerea growth, although removal of basal SA accumulation by expression of a bacterial salicylate hydroxylase (NahG) gene or by infiltration of 2-aminoindan-2-phosphonic acid, an inhibitor of phenylpropanoid pathway, increased B. cinerea disease symptoms. In addition, we show that B. cinerea induced expression of genes associated with SAR, general stress and ethylene/jasmonate-mediated defense pathways. Thus, B. cinerea does not induce SAR nor is it affected by SAR, making it a rare example of a necrogenic pathogen that does not cause SAR.

  1. Small RNAs in plant defense responses during viral and bacterial interactions: similarities and differences

    PubMed Central

    Peláez, Pablo; Sanchez, Federico

    2013-01-01

    Small non-coding RNAs constitute an important class of gene expression regulators that control different biological processes in most eukaryotes. In plants, several small RNA (sRNA) silencing pathways have evolved to produce a wide range of small RNAs with specialized functions. Evidence for the diverse mode of action of the small RNA pathways has been highlighted during plant–microbe interactions. Host sRNAs and small RNA silencing pathways have been recognized as essential components of plant immunity. One way plants respond and defend against pathogen infections is through the small RNA silencing immune system. To deal with plant defense responses, pathogens have evolved sophisticated mechanisms to avoid and counterattack this defense strategy. The relevance of the small RNA-mediated plant defense responses during viral infections has been well-established. Recent evidence points out its importance also during plant–bacteria interactions. Herein, this review discusses recent findings, similarities and differences about the small RNA-mediated arms race between plants and these two groups of microbes, including the small RNA silencing pathway components that contribute to plant immune responses, the pathogen-responsive endogenous sRNAs and the pathogen-delivered effector proteins. PMID:24046772

  2. Airborne induction and priming of plant defenses against a bacterial pathogen.

    PubMed

    Yi, Hwe-Su; Heil, Martin; Adame-Alvarez, Rosa M; Ballhorn, Daniel J; Ryu, Choong-Min

    2009-12-01

    Herbivore-induced plant volatiles affect the systemic response of plants to local damage and hence represent potential plant hormones. These signals can also lead to "plant-plant communication," a defense induction in yet undamaged plants growing close to damaged neighbors. We observed this phenomenon in the context of disease resistance. Lima bean (Phaseolus lunatus) plants in a natural population became more resistant against a bacterial pathogen, Pseudomonas syringae pv syringae, when located close to conspecific neighbors in which systemic acquired resistance to pathogens had been chemically induced with benzothiadiazole (BTH). Airborne disease resistance induction could also be triggered biologically by infection with avirulent P. syringae. Challenge inoculation after exposure to induced and noninduced plants revealed that the air coming from induced plants mainly primed resistance, since expression of PATHOGENESIS-RELATED PROTEIN2 (PR-2) was significantly stronger in exposed than in nonexposed individuals when the plants were subsequently challenged by P. syringae. Among others, the plant-derived volatile nonanal was present in the headspace of BTH-treated plants and significantly enhanced PR-2 expression in the exposed plants, resulting in reduced symptom appearance. Negative effects on growth of BTH-treated plants, which usually occur as a consequence of the high costs of direct resistance induction, were not observed in volatile organic compound-exposed plants. Volatile-mediated priming appears to be a highly attractive means for the tailoring of systemic acquired resistance against plant pathogens.

  3. Plant hormone jasmonate prioritizes defense over growth by interfering with gibberellin signaling cascade.

    PubMed

    Yang, Dong-Lei; Yao, Jian; Mei, Chuan-Sheng; Tong, Xiao-Hong; Zeng, Long-Jun; Li, Qun; Xiao, Lang-Tao; Sun, Tai-ping; Li, Jigang; Deng, Xing-Wang; Lee, Chin Mei; Thomashow, Michael F; Yang, Yinong; He, Zuhua; He, Sheng Yang

    2012-05-08

    Plants must effectively defend against biotic and abiotic stresses to survive in nature. However, this defense is costly and is often accompanied by significant growth inhibition. How plants coordinate the fluctuating growth-defense dynamics is not well understood and remains a fundamental question. Jasmonate (JA) and gibberellic acid (GA) are important plant hormones that mediate defense and growth, respectively. Binding of bioactive JA or GA ligands to cognate receptors leads to proteasome-dependent degradation of specific transcriptional repressors (the JAZ or DELLA family of proteins), which, at the resting state, represses cognate transcription factors involved in defense (e.g., MYCs) or growth [e.g. phytochrome interacting factors (PIFs)]. In this study, we found that the coi1 JA receptor mutants of rice (a domesticated monocot crop) and Arabidopsis (a model dicot plant) both exhibit hallmark phenotypes of GA-hypersensitive mutants. JA delays GA-mediated DELLA protein degradation, and the della mutant is less sensitive to JA for growth inhibition. Overexpression of a selected group of JAZ repressors in Arabidopsis plants partially phenocopies GA-associated phenotypes of the coi1 mutant, and JAZ9 inhibits RGA (a DELLA protein) interaction with transcription factor PIF3. Importantly, the pif quadruple (pifq) mutant no longer responds to JA-induced growth inhibition, and overexpression of PIF3 could partially overcome JA-induced growth inhibition. Thus, a molecular cascade involving the COI1-JAZ-DELLA-PIF signaling module, by which angiosperm plants prioritize JA-mediated defense over growth, has been elucidated.

  4. Plant methyl salicylate induces defense responses in the rhizobacterium Bacillus subtilis.

    PubMed

    Kobayashi, Kazuo

    2015-04-01

    Bacillus subtilis is a rhizobacterium that promotes plant growth and health. Cultivation of B. subtilis with an uprooted weed on solid medium produced pleat-like architectures on colonies near the plant. To test whether plants emit signals that affect B. subtilis colony morphology, we examined the effect of plant-related compounds on colony morphology. Bacillus subtilis formed mucoid colonies specifically in response to methyl salicylate, which is a plant-defense signal released in response to pathogen infection. Methyl salicylate induced mucoid colony formation by stimulating poly-γ-glutamic acid biosynthesis, which formed enclosing capsules that protected the cells from exposure to antimicrobial compounds. Poly-γ-glutamic acid synthesis depended on the DegS-DegU two-component regulatory system, which activated DegSU-dependent gene transcription in response to methyl salicylate. Bacillus subtilis did not induce plant methyl salicylate production, indicating that the most probable source of methyl salicylate in the rhizosphere is pathogen-infected plants. Methyl salicylate induced B. subtilis biosynthesis of the antibiotics bacilysin and fengycin, the latter of which exhibited inhibitory activity against the plant pathogenic fungus Fusarium oxysporum. We propose that B. subtilis may sense plants under pathogen attack via methyl salicylate, and express defense responses that protect both B. subtilis and host plants in the rhizosphere.

  5. Plant genotype shapes ant-aphid interactions: implications for community structure and indirect plant defense.

    PubMed

    Mooney, Kailen A; Agrawal, Anurag A

    2008-06-01

    Little is known about the mechanisms by which plant genotype shapes arthropod community structure. In a field experiment, we measured the effects of milkweed (Asclepias syriaca) genotype and ants on milkweed arthropods. Populations of the ant-tended aphid Aphis asclepiadis and the untended aphid Myzocallis asclepiadis varied eight- to 18-fold among milkweed genotypes, depending on aphid species and whether ants were present. There was no milkweed effect on predatory arthropods. Ants increased Aphis abundance 59%, decreased Myzocallis abundance 52%, and decreased predator abundance 56%. Milkweed genotype indirectly influenced ants via direct effects on Aphis and Myzocallis abundance. Milkweed genotype also modified ant-aphid interactions, influencing the number of ants attracted per Aphis and Myzocallis. While ant effects on Myzocallis were consistently negative, effects on Aphis ranged from antagonistic to mutualistic among milkweed genotypes. As a consequence of milkweed effects on ant-aphid interactions, ant abundance varied 13-fold among milkweed genotypes, and monarch caterpillar survival was negatively correlated with genetic variation in ant abundance. We speculate that heritable variation in milkweed phloem sap drives these effects on aphids, ants, and caterpillars. In summary, milkweed exerts genetic control over the interactions between aphids and an ant that provides defense against foliage-feeding caterpillars.

  6. Basic Data Report -- Defense Waste Processing Facility Sludge Plant, Savannah River Plant 200-S Area

    SciTech Connect

    Amerine, D.B.

    1982-09-01

    This Basic Data Report for the Defense Waste Processing Facility (DWPF)--Sludge Plant was prepared to supplement the Technical Data Summary. Jointly, the two reports were intended to form the basis for the design and construction of the DWPF. To the extent that conflicting information may appear, the Basic Data Report takes precedence over the Technical Data Summary. It describes project objectives and design requirements. Pertinent data on the geology, hydrology, and climate of the site are included. Functions and requirements of the major structures are described to provide guidance in the design of the facilities. Revision 9 of the Basic Data Report was prepared to eliminate inconsistencies between the Technical Data Summary, Basic Data Report and Scopes of Work which were used to prepare the September, 1982 updated CAB. Concurrently, pertinent data (material balance, curie balance, etc.) have also been placed in the Basic Data Report. It is intended that these balances be used as a basis for the continuing design of the DWPF even though minor revisions may be made in these balances in future revisions to the Technical Data Summary.

  7. Changes in plant defense chemistry (pyrrolizidine alkaloids) revealed through high-resolution spectroscopy

    NASA Astrophysics Data System (ADS)

    Carvalho, Sabrina; Macel, Mirka; Schlerf, Martin; Moghaddam, Fatemeh Eghbali; Mulder, Patrick P. J.; Skidmore, Andrew K.; van der Putten, Wim H.

    2013-06-01

    Plant toxic biochemicals play an important role in defense against natural enemies and often are toxic to humans and livestock. Hyperspectral reflectance is an established method for primary chemical detection and could be further used to determine plant toxicity in the field. In order to make a first step for pyrrolizidine alkaloids detection (toxic defense compound against mammals and many insects) we studied how such spectral data can estimate plant defense chemistry under controlled conditions. In a greenhouse, we grew three related plant species that defend against generalist herbivores through pyrrolizidine alkaloids: Jacobaea vulgaris, Jacobaea erucifolia and Senecio inaequidens, and analyzed the relation between spectral measurements and chemical concentrations using multivariate statistics. Nutrient addition enhanced tertiary-amine pyrrolizidine alkaloids contents of J. vulgaris and J. erucifolia and decreased N-oxide contents in S. inaequidens and J. vulgaris. Pyrrolizidine alkaloids could be predicted with a moderate accuracy. Pyrrolizidine alkaloid forms tertiary-amines and epoxides were predicted with 63% and 56% of the variation explained, respectively. The most relevant spectral regions selected for prediction were associated with electron transitions and Csbnd H, Osbnd H, and Nsbnd H bonds in the 1530 and 2100 nm regions. Given the relatively low concentration in pyrrolizidine alkaloids concentration (in the order of mg g-1) and resultant predictions, it is promising that pyrrolizidine alkaloids interact with incident light. Further studies should be considered to determine if such a non-destructive method may predict changes in PA concentration in relation to plant natural enemies. Spectroscopy may be used to study plant defenses in intact plant tissues, and may provide managers of toxic plants, food industry and multitrophic-interaction researchers with faster and larger monitoring possibilities.

  8. The endochitinase VDECH from Verticillium dahliae inhibits spore germination and activates plant defense responses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chitinases function in the digestion of chitin molecules, which are present principally in insects and fungi. In plants, chitinase genes play important roles in defense, and their expression can be triggered in response to both biotic and abiotic stresses. In this study, we cloned and characterized ...

  9. Biosynthesis of archetypal plant self-defensive oxylipins by an endophytic fungus residing in mangrove embryos.

    PubMed

    Ding, Ling; Peschel, Gundela; Hertweck, Christian

    2012-12-21

    A tree's travel companion: a fungal endophyte (Fusarium incarnatum) isolated from a viviparous propagule (embryo) of a mangrove tree produces typical plant defense oxylipins. Stable-isotope labeling experiments revealed that the endophyte biosynthesizes coriolic acid, didehydrocoriolic acid, and an epoxy fatty acid derived from linoleic acid by a process involving Δ(15)-desaturation and 13-lipoxygenation.

  10. Expression of proteins involved in host plant defense against greenbug infestation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The greenbug, Schizaphis graminum (Rondani), has been recognized as a major pest of small grains, including sorghum and wheat. To understand the molecular mechanisms involved in host plant defense against greenbug aphids, a proteomic analysis of greenbug-induced proteins in the seedlings of sorghum...

  11. Effects of elicitors of host plant defenses on pear psylla (Cacopsylla pyricola: Psyllidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pear psylla, Cacopsylla pyricola (Foerster) (Hemiptera: Psyllidae), is a key pest of cultivated pear (Pyrus communis L.) in North America and Europe. We examined the effects of foliar applications of three commercially available chemical elicitors of host-plant defenses, Actigard, Employ, and ODC, ...

  12. Elucidating induced plant defenses: the use of targeted metabolomics as a bridge from elicitation to response

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dynamic plant defense responses to biotic attack involve the perception of specific biochemical elicitors associated with the offending agent, activation of signaling cascades, and the production of small molecules with complex protective roles. Chemical analyses are essential empirical tools for el...

  13. MAPK signaling – a key element in plant defense response to insects

    PubMed Central

    Hettenhausen, Christian; Schuman, Meredith C.; Wu, Jianqiang

    2016-01-01

    Insects have long been the most abundant herbivores, and plants have evolved sophisticated mechanisms to defend against their attack. In particular, plants can perceive specific patterns of tissue damage associated with insect herbivory. Some plant species can perceive certain elicitors in insect oral secretions (OS) that enter wounds during feeding, and rapidly activate a series of intertwined signaling pathways to orchestrate the biosynthesis of various defensive metabolites. Mitogen-activated protein kinases (MAPKs), common to all eukaryotes, are involved in the orchestration of many cellular processes, including development and stress responses. In plants, at least two MAPKs, salicylic acid-induced protein kinase (SIPK) and wound-induced protein kinase (WIPK), are rapidly activated by wounding or insect OS; importantly, genetic studies using transgenic or mutant plants impaired in MAPK signaling indicated that MAPKs play critical roles in regulating the herbivory-induced dynamics of phytohormones, such as jasmonic acid, ethylene, and salicylic acid, and MAPKs are also required for transcriptional activation of herbivore defense-related genes and accumulation of defensive metabolites. In this review, we summarize recent developments in understanding the functions of MAPKs in plant resistance to insect herbivores. PMID:24753304

  14. Conserved nematode signaling molecules elicit plant defenses and pathogen resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nematodes, which are ubiquitous in soil and are estimated to cause $100 B of agricultural damage annually, produce novel, highly conserved small sugar-based molecules call ascarosides. Ascarosides play critical roles in nematode development and behavior. We report here that plants recognize these un...

  15. The growth-defense trade-off and habitat specialization by plants in Amazonian forests.

    PubMed

    Fine, Paul V A; Miller, Zachariah J; Mesones, Italo; Irazuzta, Sebastian; Appel, Heidi M; Stevens, M Henry H; Sääksjärvi, Ilari; Schultz, Jack C; Coley, Phyllis D

    2006-07-01

    Tropical forests include a diversity of habitats, which has led to specialization in plants. Near Iquitos, in the Peruvian Amazon, nutrient-rich clay forests surround nutrient-poor white-sand forests, each harboring a unique composition of habitat specialist trees. We tested the hypothesis that the combination of impoverished soils and herbivory creates strong natural selection for plant defenses in white-sand forest, while rapid growth is favored in clay forests. Recently, we reported evidence from a reciprocal-transplant experiment that manipulated the presence of herbivores and involved 20 species from six genera, including phylogenetically independent pairs of closely related white-sand and clay specialists. When protected from herbivores, clay specialists exhibited faster growth rates than white-sand specialists in both habitats. But, when unprotected, white-sand specialists outperformed clay specialists in white-sand habitat, and clay specialists outperformed white-sand specialists in clay habitat. Here we test further the hypothesis that the growth defense trade-off contributes to habitat specialization by comparing patterns of growth, herbivory, and defensive traits in these same six genera of white-sand and clay specialists. While the probability of herbivore attack did not differ between the two habitats, an artificial defoliation experiment showed that the impact of herbivory on plant mortality was significantly greater in white-sand forests. We quantified the amount of terpenes, phenolics, leaf toughness, and available foliar protein for the plants in the experiment. Different genera invested in different defensive strategies, and we found strong evidence for phylogenetic constraint in defense type. Overall, however, we found significantly higher total defense investment for white-sand specialists, relative to their clay specialist congeners. Furthermore, herbivore resistance consistently exhibited a significant trade-off against growth rate in each of

  16. Unmasking host and microbial strategies in the Agrobacterium-plant defense tango

    PubMed Central

    Hwang, Elizabeth E.; Wang, Melinda B.; Bravo, Janis E.; Banta, Lois M.

    2015-01-01

    Coevolutionary forces drive adaptation of both plant-associated microbes and their hosts. Eloquently captured in the Red Queen Hypothesis, the complexity of each plant–pathogen relationship reflects escalating adversarial strategies, but also external biotic and abiotic pressures on both partners. Innate immune responses are triggered by highly conserved pathogen-associated molecular patterns, or PAMPs, that are harbingers of microbial presence. Upon cell surface receptor-mediated recognition of these pathogen-derived molecules, host plants mount a variety of physiological responses to limit pathogen survival and/or invasion. Successful pathogens often rely on secretion systems to translocate host-modulating effectors that subvert plant defenses, thereby increasing virulence. Host plants, in turn, have evolved to recognize these effectors, activating what has typically been characterized as a pathogen-specific form of immunity. Recent data support the notion that PAMP-triggered and effector-triggered defenses are complementary facets of a convergent, albeit differentially regulated, set of immune responses. This review highlights the key players in the plant’s recognition and signal transduction pathways, with a focus on the aspects that may limit Agrobacterium tumefaciens infection and the ways it might overcome those defenses. Recent advances in the field include a growing appreciation for the contributions of cytoskeletal dynamics and membrane trafficking to the regulation of these exquisitely tuned defenses. Pathogen counter-defenses frequently manipulate the interwoven hormonal pathways that mediate host responses. Emerging systems-level analyses include host physiological factors such as circadian cycling. The existing literature indicates that varying or even conflicting results from different labs may well be attributable to environmental factors including time of day of infection, temperature, and/or developmental stage of the host plant. PMID:25873923

  17. Does investment in leaf defenses drive changes in leaf economic strategy? A focus on whole-plant ontogeny.

    PubMed

    Mason, Chase M; Donovan, Lisa A

    2015-04-01

    Leaf defenses have long been studied in the context of plant growth rate, resource availability, and optimal investment theory. Likewise, one of the central modern paradigms of plant ecophysiology, the leaf economics spectrum (LES), has been extensively studied in the context of these factors across ecological scales ranging from global species data sets to temporal shifts within individuals. Despite strong physiological links between LES strategy and leaf defenses in structure, function, and resource investment, the relationship between these trait classes has not been well explored. This study investigates the relationship between leaf defenses and LES strategy across whole-plant ontogeny in three diverse Helianthus species known to exhibit dramatic ontogenetic shifts in LES strategy, focusing primarily on physical and quantitative chemical defenses. Plants were grown under controlled environmental conditions and sampled for LES and defense traits at four ontogenetic stages. Defenses were found to shift strongly with ontogeny, and to correlate strongly with LES strategy. More advanced ontogenetic stages with more conservative LES strategy leaves had higher tannin activity and toughness in all species, and higher leaf dry matter content in two of three species. Modeling results in two species support the conclusion that changes in defenses drive changes in LES strategy through ontogeny, and in one species that changes in defenses and LES strategy are likely independently driven by ontogeny. Results of this study support the hypothesis that leaf-level allocation to defenses might be an important determinant of leaf economic traits, where high investment in defenses drives a conservative LES strategy.

  18. Antioxidant defense during desiccation of the resurrection plant Haberlea rhodopensis.

    PubMed

    Georgieva, Katya; Dagnon, Soleya; Gesheva, Emiliya; Bojilov, Dimitar; Mihailova, Gergana; Doncheva, Snezhana

    2017-05-01

    Maintaining a strong antioxidant system is essential for preventing drought-induced oxidative stress. Thus, in the present study we investigated the role of some non-enzymic and enzymic antioxidants in desiccation tolerance of Haberlea rhodopensis. The effects of high light upon desiccation on antioxidant capacity was estimated by comparing the response of shade and sun plants. The significant enhancement of the antioxidant capacity at 8% RWC corresponded to an enormous increase in flavonoid content. The important role of ascorbate-glutathione cycle in overcoming oxidative stress during drying of H. rhodopensis was established. The antioxidant capacity increased upon dehydration of both shade and sun plants but some differences in non-enzymatic and enzymatic antioxidants were observed. Investigations on the role of polyphenols in desiccation tolerance are scarce. In the present study the polyphenol profiles (fingerprints) of the resurrection plant Haberlea rhodopensis, including all components of the complex are obtained for the first time. It was clarified that the polyphenol complex of H. rhodopensis includes only two types of glycosides - phenylethanoid glucosides and hispidulin 8-C-glucosides. Upon desiccation the polyphenol content increase and the main role of phenylethanoid glucosides in the protection of H. rhodopensis was revealed.

  19. Rewiring of jasmonate and phytochrome B signalling uncouples plant growth-defense tradeoffs

    PubMed Central

    Campos, Marcelo L.; Yoshida, Yuki; Major, Ian T.; de Oliveira Ferreira, Dalton; Weraduwage, Sarathi M.; Froehlich, John E.; Johnson, Brendan F.; Kramer, David M.; Jander, Georg; Sharkey, Thomas D.; Howe, Gregg A.

    2016-01-01

    Plants resist infection and herbivory with innate immune responses that are often associated with reduced growth. Despite the importance of growth-defense tradeoffs in shaping plant productivity in natural and agricultural ecosystems, the molecular mechanisms that link growth and immunity are poorly understood. Here, we demonstrate that growth-defense tradeoffs mediated by the hormone jasmonate are uncoupled in an Arabidopsis mutant (jazQ phyB) lacking a quintet of Jasmonate ZIM-domain transcriptional repressors and the photoreceptor phyB. Analysis of epistatic interactions between jazQ and phyB reveal that growth inhibition associated with enhanced anti-insect resistance is likely not caused by diversion of photoassimilates from growth to defense but rather by a conserved transcriptional network that is hardwired to attenuate growth upon activation of jasmonate signalling. The ability to unlock growth-defense tradeoffs through relief of transcription repression provides an approach to assemble functional plant traits in new and potentially useful ways. PMID:27573094

  20. Transcription Factor Functional Protein-Protein Interactions in Plant Defense Responses

    PubMed Central

    Alves, Murilo S.; Dadalto, Silvana P.; Gonçalves, Amanda B.; de Souza, Gilza B.; Barros, Vanessa A.; Fietto, Luciano G.

    2014-01-01

    Responses to biotic stress in plants lead to dramatic reprogramming of gene expression, favoring stress responses at the expense of normal cellular functions. Transcription factors are master regulators of gene expression at the transcriptional level, and controlling the activity of these factors alters the transcriptome of the plant, leading to metabolic and phenotypic changes in response to stress. The functional analysis of interactions between transcription factors and other proteins is very important for elucidating the role of these transcriptional regulators in different signaling cascades. In this review, we present an overview of protein-protein interactions for the six major families of transcription factors involved in plant defense: basic leucine zipper containing domain proteins (bZIP), amino-acid sequence WRKYGQK (WRKY), myelocytomatosis related proteins (MYC), myeloblastosis related proteins (MYB), APETALA2/ ETHYLENE-RESPONSIVE ELEMENT BINDING FACTORS (AP2/EREBP) and no apical meristem (NAM), Arabidopsis transcription activation factor (ATAF), and cup-shaped cotyledon (CUC) (NAC). We describe the interaction partners of these transcription factors as molecular responses during pathogen attack and the key components of signal transduction pathways that take place during plant defense responses. These interactions determine the activation or repression of response pathways and are crucial to understanding the regulatory networks that modulate plant defense responses. PMID:28250372

  1. Synthetic ultrashort cationic lipopeptides induce systemic plant defense responses against bacterial and fungal pathogens.

    PubMed

    Brotman, Yariv; Makovitzki, Arik; Shai, Yechiel; Chet, Ilan; Viterbo, Ada

    2009-08-01

    A new family of synthetic, membrane-active, ultrashort lipopeptides composed of only four amino acids linked to fatty acids was tested for the ability to induce systemic resistance and defense responses in plants. We found that two peptides wherein the third residue is a d-enantiomer (italic), C16-KKKK and C16-KLLK, can induce medium alkalinization of tobacco suspension-cultured cells and expression of defense-related genes in cucumber and Arabidopsis seedlings. Moreover, these compounds can prime systemic induction of antimicrobial compounds in cucumber leaves similarly to the plant-beneficial fungus Trichoderma asperellum T203 and provide systemic protection against the phytopathogens Botrytis cinerea B05, Pseudomonas syringae pv. lachrimans, and P. syringae pv. tomato DC3000. Thus, short cationic lipopeptides are a new category of compounds with potentially high utility in the induction of systemic resistance in plants.

  2. Plant chemical defense allocation constrains evolution of tolerance to community change across a range boundary.

    PubMed

    Siemens, David H; Haugen, Riston

    2013-11-01

    Because transplant experiments show that performance usually decreases across species range boundaries, some range limits might develop from factors and processes that prevent adaptation to stressful environments. Here, we determined whether an ecological cost of plant defense involving stress associated with changes in the local plant community may contribute to range limit development in the upland mustard species Boechera stricta. In a common garden experiment of 499 B. stricta plants, performance decreased and a multivariate axis of community structure increased across the boundary, indicating increased stress associated with the community change. There was also significant genetic variation (evolutionary potential) among marker-inferred inbred lines of B. stricta for tolerance to the stress; however, lines with high basal levels of glucosinolate toxins had lower tolerance to the change in community structure. We suggest that defense allocation, which is also needed across the range, may impede adaptation to the stress associated with the community change and thus contribute to range limit development.

  3. Integration of Plant Defense Traits with Biological Control of Arthropod Pests: Challenges and Opportunities

    PubMed Central

    Peterson, Julie A.; Ode, Paul J.; Oliveira-Hofman, Camila; Harwood, James D.

    2016-01-01

    Crop plants exhibit a wide diversity of defensive traits and strategies to protect themselves from damage by herbivorous pests and disease. These defensive traits may be naturally occurring or artificially selected through crop breeding, including introduction via genetic engineering. While these traits can have obvious and direct impacts on herbivorous pests, many have profound effects on higher trophic levels, including the natural enemies of herbivores. Multi-trophic effects of host plant resistance have the potential to influence, both positively and negatively, biological control. Plant defense traits can influence both the numerical and functional responses of natural enemies; these interactions can be semiochemically, plant toxin-, plant nutrient-, and/or physically mediated. Case studies involving predators, parasitoids, and pathogens of crop pests will be presented and discussed. These diverse groups of natural enemies may respond differently to crop plant traits based on their own unique biology and the ecological niches they fill. Genetically modified crop plants that have been engineered to express transgenic products affecting herbivorous pests are an additional consideration. For the most part, transgenic plant incorporated protectant (PIP) traits are compatible with biological control due to their selective toxicity to targeted pests and relatively low non-target impacts, although transgenic crops may have indirect effects on higher trophic levels and arthropod communities mediated by lower host or prey number and/or quality. Host plant resistance and biological control are two of the key pillars of integrated pest management; their potential interactions, whether they are synergistic, complementary, or disruptive, are key in understanding and achieving sustainable and effective pest management. PMID:27965695

  4. Defense signaling among interconnected ramets of a rhizomatous clonal plant, induced by jasmonic-acid application

    NASA Astrophysics Data System (ADS)

    Chen, Jin-Song; Lei, Ning-Fei; Liu, Qing

    2011-07-01

    Resource sharing between ramets of clonal plants is a well-known phenomenon that allows stoloniferous and rhizomatous species to internally transport water, mineral nutrients and carbohydrates from sites of high supply to sites of high demand. Moreover, vascular ramet connections are likely to provide an excellent means to share substances other than resources, such as defense signals. In a greenhouse experiment, the rhizomatous sedge Carex alrofusca, consisting of integrated ramets of different ages, was used to study the transmission of defense signals through belowground rhizome connections in response to local spray with jasmonic-acid. A feeding preference test with the caterpillar Gynaephora rnenyuanensis was employed to assess benefits of rhizome connections on defense signaling. Young ramets were more responsive to jasmonic-acid treatment than middle-aged or old ramets. Condensed tannin content in the foliage of young ramets showed a significant increase and soluble carbohydrate and nitrogen content showed marginally significant decreases in the 1 mM jasmonic-acid treatment but not in control and/or 0.0001 mM jasmonic-acid treatments. The caterpillar G. rnenyuanensis preferentially grazed young ramets. After a localized spray of 1 mM jasmonic-acid, the leaf area of young ramets consumed by herbivores was greatly reduced. We propose that defense signals may be transmitted through physical connections (stolon or rhizome) among interconnected ramets of clonal plants. Induced resistance to herbivory may selectively enhance the protection of more vulnerable and valuable plant tissues and confer a significant benefit to clonal plants by a modular risk-spreading strategy, equalizing ontogenetic differences of unevenly-aged ramets in chemical defense compounds and nutritional properties of tissue.

  5. Beta-aminobutyric acid priming of plant defense: the role of ABA and other hormones.

    PubMed

    Baccelli, Ivan; Mauch-Mani, Brigitte

    2016-08-01

    Plants are exposed to recurring biotic and abiotic stresses that can, in extreme situations, lead to substantial yield losses. With the changing environment, the stress pressure is likely to increase and sustainable measures to alleviate the effect on our crops are sought. Priming plants for better stress resistance is one of the sustainable possibilities to reach this goal. Here, we report on the effects of beta-aminobutyric acid, a priming agent with an exceptionally wide range of action and describe its way of preparing plants to defend themselves against various attacks, among others through the modulation of their hormonal defense signaling, and highlight the special role of abscisic acid in this process.

  6. LysM receptor-like kinases to improve plant defense response against fungal pathogens

    DOEpatents

    Wan, Jinrong [Columbia, MO; Stacey, Gary [Columbia, MO; Stacey, Minviluz [Columbia, MO; Zhang, Xuecheng [Columbia, MO

    2012-01-17

    Perception of chitin fragments (chitooligosaccharides) is an important first step in plant defense response against fungal pathogen. LysM receptor-like kinases (LysM RLKs) are instrumental in this perception process. LysM RLKs also play a role in activating transcription of chitin-responsive genes (CRGs) in plants. Mutations in the LysM kinase receptor genes or the downstream CRGs may affect the fungal susceptibility of a plant. Mutations in LysM RLKs or transgenes carrying the same may be beneficial in imparting resistance against fungal pathogens.

  7. LysM receptor-like kinases to improve plant defense response against fungal pathogens

    SciTech Connect

    Wan, Jinrong; Stacey, Gary; Stacey, Minviluz; Zhang, Xuecheng

    2013-10-15

    Perception of chitin fragments (chitooligosaccharides) is an important first step in plant defense response against fungal pathogen. LysM receptor-like kinases (LysM RLKs) are instrumental in this perception process. LysM RLKs also play a role in activating transcription of chitin-responsive genes (CRGs) in plants. Mutations in the LysM kinase receptor genes or the downstream CRGs may affect the fungal susceptibility of a plant. Mutations in LysM RLKs or transgenes carrying the same may be beneficial in imparting resistance against fungal pathogens.

  8. Silicon: Potential to Promote Direct and Indirect Effects on Plant Defense Against Arthropod Pests in Agriculture

    PubMed Central

    Reynolds, Olivia L.; Padula, Matthew P.; Zeng, Rensen; Gurr, Geoff M.

    2016-01-01

    Silicon has generally not been considered essential for plant growth, although it is well recognized that many plants, particularly Poaceae, have substantial plant tissue concentrations of this element. Recently, however, the International Plant Nutrition Institute [IPNI] (2015), Georgia, USA has listed it as a “beneficial substance”. This reflects that numerous studies have now established that silicon may alleviate both biotic and abiotic stress. This paper explores the existing knowledge and recent advances in elucidating the role of silicon in plant defense against biotic stress, particularly against arthropod pests in agriculture and attraction of beneficial insects. Silicon confers resistance to herbivores via two described mechanisms: physical and biochemical/molecular. Until recently, studies have mainly centered on two trophic levels; the herbivore and plant. However, several studies now describe tri-trophic effects involving silicon that operate by attracting predators or parasitoids to plants under herbivore attack. Indeed, it has been demonstrated that silicon-treated, arthropod-attacked plants display increased attractiveness to natural enemies, an effect that was reflected in elevated biological control in the field. The reported relationships between soluble silicon and the jasmonic acid (JA) defense pathway, and JA and herbivore-induced plant volatiles (HIPVs) suggest that soluble silicon may enhance the production of HIPVs. Further, it is feasible that silicon uptake may affect protein expression (or modify proteins structurally) so that they can produce additional, or modify, the HIPV profile of plants. Ultimately, understanding silicon under plant ecological, physiological, biochemical, and molecular contexts will assist in fully elucidating the mechanisms behind silicon and plant response to biotic stress at both the bi- and tri-trophic levels. PMID:27379104

  9. How does the foraging behavior of large herbivores cause different associational plant defenses?

    PubMed

    Huang, Yue; Wang, Ling; Wang, Deli; Zeng, De-Hui; Liu, Chen

    2016-02-05

    The attractant-decoy hypothesis predicts that focal plants can defend against herbivory by neighboring with preferred plant species when herbivores make decisions at the plant species scale. The repellent-plant hypothesis assumes that focal plants will gain protection by associating with nonpreferred neighbors when herbivores are selective at the patch scale. However, herbivores usually make foraging decisions at these scales simultaneously. The net outcomes of the focal plant vulnerability could depend on the spatial scale at which the magnitude of selectivity by the herbivores is stronger. We quantified and compared the within- and between-patch overall selectivity index (OSI) of sheep to examine the relationships between associational plant effects and herbivore foraging selectivity. We found that the sheep OSI was stronger at the within- than the between-patch scale, but focal plant vulnerability followed both hypotheses. Focal plants defended herbivory with preferred neighbors when the OSI difference between the two scales was large. Focal plants gained protection with nonpreferred neighbors when the OSI difference was narrowed. Therefore, the difference in selectivity by the herbivores between the relevant scales results in different associational plant defenses. Our study suggests important implications for understanding plant-herbivore interactions and grassland management.

  10. Microbial community induces a plant defense system under growing on the lunar regolith analogue

    NASA Astrophysics Data System (ADS)

    Zaetz, Irina; Mytrokhyn, Olexander; Lukashov, Dmitry; Mashkovska, Svitlana; Kozyrovska, Natalia; Foing, Bernard H.

    The lunar rock considered as a potential source of chemical elements essential for plant nutrition, however, this substrate is of a low bioavailability. The use of microorganisms for decomposition of silicate rocks and stimulation of plant growth is a key idea in precursory scenario of growing pioneer plants for a lunar base (Kozyrovska et al., 2004; 2006; Zaetz et al., 2006). In model experiments a consortium of well-defined plant-associated bacteria were used for growing of French marigold (Tagetes patula L.) in anorthosite, analogous to a lunar rock. Inoculated plants appeared better seed germination, more fast development and also increased accumulation of K, Mg, Mn, Co, Cu and lowered level of the toxic Zn, Ni, Cr, comparing to control tagetes'. Bacteria regulate metal homeostasis in plants by changing their bioavailability and by stimulating of plant defense mechanisms. Inoculated plants were being accommodated to growth under stress conditions on anorthosite used as a substrate. In contrast, control plants manifested a heavy metal-induced oxidative stress, as quantified by protein carbonyl accumulation. Depending on the plant organ sampled and developmental stage there were increases or loses in the antioxidant enzyme activities (guaiacol peroxidase and glutathione-S-transferase). These changes were most evident in inoculated plants. Production of phenolic compounds, known as antioxidants and heavy metal chelators, is rised in variants of inoculated marigolds. Guaiacol peroxidase plays the main role, finally, in a reducing toxicity of heavy metals in plant leaves, while glutathione-S-transferase and phenolics overcome stress in roots.

  11. Plant chemical defense indirectly mediates aphid performance via interactions with tending ants.

    PubMed

    Züst, Tobias; Agrawal, Anurag A

    2017-03-01

    The benefits of mutualistic interactions are often highly context dependent. We studied the interaction between the milkweed aphid Aphis asclepiadis and a tending ant, Formica podzolica. Although this interaction is generally considered beneficial, variation in plant genotype may alter it from mutualistic to antagonistic. Here we link the shift in strength and relative benefit of the ant-aphid interaction to plant genotypic variation in the production of cardenolides, a class of toxic defensive chemicals. In a field experiment with highly variable genotypes of the common milkweed (Asclepias syriaca), we show that plant cardenolides, especially polar forms, are ingested by aphids and excreted in honeydew proportionally to plant concentrations without directly affecting aphid performance. Ants consume honeydew, and aphids that excreted high amounts of cardenolides received fewer ant visits, which in turn reduced aphid survival. On at least some plant genotypes, aphid numbers per plant were reduced in the presence of ants to levels lower than in corresponding ant-exclusion treatments, suggesting antagonistic ant behavior. Although cardenolides appear ineffective as direct plant defenses against aphids, the multi-trophic context reveals an ant-mediated negative indirect effect on aphid performance and population dynamics.

  12. Enemy release and plant invasion: patterns of defensive traits and leaf damage in Hawaii.

    PubMed

    Funk, Jennifer L; Throop, Heather L

    2010-04-01

    Invasive species may be released from consumption by their native herbivores in novel habitats and thereby experience higher fitness relative to native species. However, few studies have examined release from herbivory as a mechanism of invasion in oceanic island systems, which have experienced particularly high loss of native species due to the invasion of non-native animal and plant species. We surveyed putative defensive traits and leaf damage rates in 19 pairs of taxonomically related invasive and native species in Hawaii, representing a broad taxonomic diversity. Leaf damage by insects and pathogens was monitored in both wet and dry seasons. We found that native species had higher leaf damage rates than invasive species, but only during the dry season. However, damage rates across native and invasive species averaged only 2% of leaf area. Native species generally displayed high levels of structural defense (leaf toughness and leaf thickness, but not leaf trichome density) while native and invasive species displayed similar levels of chemical defenses (total phenolics). A defense index, which integrated all putative defense traits, was significantly higher for native species, suggesting that native species may allocate fewer resources to growth and reproduction than do invasive species. Thus, our data support the idea that invasive species allocate fewer resources to defense traits, allowing them to outperform native species through increased growth and reproduction. While strong impacts of herbivores on invasion are not supported by the low damage rates we observed on mature plants, population-level studies that monitor how herbivores influence recruitment, mortality, and competitive outcomes are needed to accurately address how herbivores influence invasion in Hawaii.

  13. Plant Defense Inhibitors Affect the Structures of Midgut Cells in Drosophila melanogaster and Callosobruchus maculatus.

    PubMed

    Li-Byarlay, Hongmei; Pittendrigh, Barry R; Murdock, Larry L

    2016-01-01

    Plants produce proteins such as protease inhibitors and lectins as defenses against herbivorous insects and pathogens. However, no systematic studies have explored the structural responses in the midguts of insects when challenged with plant defensive proteins and lectins across different species. In this study, we fed two kinds of protease inhibitors and lectins to the fruit fly Drosophila melanogaster and alpha-amylase inhibitors and lectins to the cowpea bruchid Callosobruchus maculatus. We assessed the changes in midgut cell structures by comparing them with such structures in insects receiving normal diets or subjected to food deprivation. Using light and transmission electron microscopy in both species, we observed structural changes in the midgut peritrophic matrix as well as shortened microvilli on the surfaces of midgut epithelial cells in D. melanogaster. Dietary inhibitors and lectins caused similar lesions in the epithelial cells but not much change in the peritrophic matrix in both species. We also noted structural damages in the Drosophila midgut after six hours of starvation and changes were still present after 12 hours. Our study provided the first evidence of key structural changes of midguts using a comparative approach between a dipteran and a coleopteran. Our particular observation and discussion on plant-insect interaction and dietary stress are relevant for future mode of action studies of plant defensive protein in insect physiology.

  14. NPP1, a Phytophthora-associated trigger of plant defense in parsley and Arabidopsis.

    PubMed

    Fellbrich, Guido; Romanski, Annette; Varet, Anne; Blume, Beatrix; Brunner, Frédéric; Engelhardt, Stefan; Felix, Georg; Kemmerling, Birgit; Krzymowska, Magdalena; Nürnberger, Thorsten

    2002-11-01

    Activation of non-cultivar-specific plant defense against attempted microbial infection is mediated through the recognition of pathogen-derived elicitors. Previously, we have identified a peptide fragment (Pep-13) within a 42-kDa cell wall transglutaminase from various Phytophthora species that triggers a multifacetted defense response in parsley cells. Many of these oomycete species have now been shown to possess another cell wall protein (24 kDa), that evoked the same pattern of responses in parsley as Pep-13. Unlike Pep-13, necrosis-inducing Phytophthora protein 1 (NPP1) purified from P. parasitica also induced hypersensitive cell death-like lesions in parsley. NPP1 structural homologs were found in oomycetes, fungi, and bacteria, but not in plants. Structure-activity relationship studies revealed the intact protein as well as two cysteine residues to be essential for elicitor activity. NPP1-mediated activation of pathogen defense in parsley does not employ the Pep-13 receptor. However, early induced cellular responses implicated in elicitor signal transmission (increased levels of cytoplasmic calcium, production of reactive oxygen species, MAP kinase activation) were stimulated by either elicitor, suggesting the existence of converging signaling pathways in parsley. Infiltration of NPP1 into leaves of Arabidopsis thaliana Col-0 plants resulted in transcript accumulation of pathogenesis-related (PR) genes, production of ROS and ethylene, callose apposition, and HR-like cell death. NPP1-mediated induction of the PR1 gene is salicylic acid-dependent, and, unlike the P. syringae pv. tomato DC3000(avrRpm1)-induced PR1 gene expression, requires both functional NDR1 and PAD4. In summary, Arabidopsis plants infiltrated with NPP1 constitute an experimental system that is amenable to forward genetic approaches aiming at the dissection of signaling pathways implicated in the activation of non-cultivar-specific plant defense.

  15. A Specialist Herbivore Uses Chemical Camouflage to Overcome the Defenses of an Ant-Plant Mutualism

    PubMed Central

    Whitehead, Susan R.; Reid, Ellen; Sapp, Joseph; Poveda, Katja; Royer, Anne M.; Posto, Amanda L.; Kessler, André

    2014-01-01

    Many plants and ants engage in mutualisms where plants provide food and shelter to the ants in exchange for protection against herbivores and competitors. Although several species of herbivores thwart ant defenses and extract resources from the plants, the mechanisms that allow these herbivores to avoid attack are poorly understood. The specialist insect herbivore, Piezogaster reclusus (Hemiptera: Coreidae), feeds on Neotropical bull-horn acacias (Vachellia collinsii) despite the presence of Pseudomyrmex spinicola ants that nest in and aggressively defend the trees. We tested three hypotheses for how P. reclusus feeds on V. collinsii while avoiding ant attack: (1) chemical camouflage via cuticular surface compounds, (2) chemical deterrence via metathoracic defense glands, and (3) behavioral traits that reduce ant detection or attack. Our results showed that compounds from both P. reclusus cuticles and metathoracic glands reduce the number of ant attacks, but only cuticular compounds appear to be essential in allowing P. reclusus to feed on bull-horn acacia trees undisturbed. In addition, we found that ant attack rates to P. reclusus increased significantly when individuals were transferred between P. spinicola ant colonies. These results are consistent with the hypothesis that chemical mimicry of colony-specific ant or host plant odors plays a key role in allowing P. reclusus to circumvent ant defenses and gain access to important resources, including food and possibly enemy-free space. This interaction between ants, acacias, and their herbivores provides an excellent example of the ability of herbivores to adapt to ant defenses of plants and suggests that herbivores may play an important role in the evolution and maintenance of mutualisms. PMID:25047551

  16. Constitutive and induced defenses to herbivory in above- and belowground plant tissues.

    PubMed

    Kaplan, Ian; Halitschke, Rayko; Kessler, André; Sardanelli, Sandra; Denno, Robert F

    2008-02-01

    A recent surge in attention devoted to the ecology of soil biota has prompted interest in quantifying similarities and differences between interactions occurring in above- and belowground communities. Furthermore, linkages that interconnect the dynamics of these two spatially distinct ecosystems are increasingly documented. We use a similar approach in the context of understanding plant defenses to herbivory, including how they are allocated between leaves and roots (constitutive defenses), and potential cross-system linkages (induced defenses). To explore these issues we utilized three different empirical approaches. First, we manipulated foliar and root herbivory on tobacco (Nicotiana tabacum) and measured changes in the secondary chemistry of above- and belowground tissues. Second, we reviewed published studies that compared levels of secondary chemistry between leaves and roots to determine how plants distribute putative defense chemicals across the above- and belowground systems. Last, we used meta-analysis to quantify the impact of induced responses across plant tissue types. In the tobacco system, leaf-chewing insects strongly induced higher levels of secondary metabolites in leaves but had no impact on root chemistry. Nematode root herbivores, however, elicited changes in both leaves and roots. Virtually all secondary chemicals measured were elevated in nematode-induced galls, whereas the impact of root herbivory on foliar chemistry was highly variable and depended on where chemicals were produced within the plant. Importantly, nematodes interfered with aboveground metabolites that have biosynthetic sites located in roots (e.g., nicotine) but had the opposite effect (i.e., nematodes elevated foliar expression) on chemicals produced in shoots (e.g., phenolics and terpenoids). Results from our literature review suggest that, overall, constitutive defense levels are extremely similar when comparing leaves with roots, although certain chemical classes (e

  17. Effectiveness of metal-metal and metal-organic compound combinations against Plutella xylostella: implications for plant elemental defense.

    PubMed

    Jhee, Edward M; Boyd, Robert S; Eubanks, Micky D

    2006-02-01

    Plants that contain elevated foliar metal concentrations can be categorized as accumulators or, if the accumulation is extreme, hyperaccumulators. The defense hypothesis suggests that these plants may be defended against folivore attack, and recent research has indicated that metal concentrations at or below the accumulator range may be defensively effective. This experiment explored the toxicity of four metals hyper-accumulated by plants (Cd, Ni, Pb, and Zn) and asked if combinations of metals, or metals and organic chemicals, might broaden the defensive effectiveness of metals. Metals were used alone and in certain metal + metal (Zn plus Ni, Pb, or Cd) and metal + organic defensive chemical (Ni plus tannic acid, atropine, or nicotine) combinations. Artificial diet amended with these treatments was fed to larvae of the crucifer specialist herbivore Plutella xylostella. Combinations of metals and metals + organic chemicals significantly decreased survival and pupation rates, compared to single treatments, for at least some concentrations in every experiment. Effects of combinations were additive rather than synergistic or antagonistic. Because Zn enhanced the toxicity of other metals and Ni enhanced the toxicity of organic defensive chemicals, our findings suggest that the defensive effects of metals are more widespread among plants than previously believed. They also support the hypothesis that herbivore defense may have led to the evolution of metal hyper-accumulation by increasing the preexisting defensive effects of metals at accumulator levels in plants.

  18. Inbreeding compromises host plant defense gene expression and improves herbivore survival

    PubMed Central

    Portman, Scott L; Kariyat, Rupesh R; Johnston, Michelle A; Stephenson, Andrew G; Marden, James H

    2015-01-01

    Inbreeding commonly occurs in flowering plants and often results in a decline in the plant's defense response. Insects prefer to feed and oviposit on inbred plants more than outbred plants – suggesting that selecting inbred host plants offers them fitness benefits. Until recently, no studies have examined the effects of host plant inbreeding on insect fitness traits such as growth and dispersal ability. In a recent article, we documented that tobacco hornworm (Manduca sexta L.) larvae that fed on inbred horsenettle (Solanum carolinense L.) plants exhibited accelerated larval growth and increased adult flight capacity compared to larvae that fed on outbred plants. Here we report that M. sexta mortality decreased by 38.2% when larvae were reared on inbred horsenettle plants compared to larvae reared on outbreds. Additionally, inbred plants showed a notable reduction in the average relative expression levels of LIPOXYGENEASE-D (LoxD) and 12-OXOPHYTODIENOATE REDUCTASE-3 (OPR3), two genes in the jasmonic acid signaling pathway that are upregulated in response to herbivore damage. Our study presents evidence that furthers our understanding of the biochemical mechanism responsible for differences in insect performance on inbred vs. outbred host plants. PMID:26039489

  19. Defense mechanisms of Solanum tuberosum L. in response to attack by plant-pathogenic bacteria.

    PubMed

    Poiatti, Vera A D; Dalmas, Fernando R; Astarita, Leandro V

    2009-01-01

    The natural resistance of plants to disease is based not only on preformed mechanisms, but also on induced mechanisms. The defense mechanisms present in resistant plants may also be found in susceptible ones. This study attempted to analyze the metabolic alterations in plants of the potato Solanum tuberosum L. cv. Agata that were inoculated with the incompatible plant-pathogenic bacteria X. axonopodis and R. solanacearum, and the compatible bacterium E. carotovora. Levels of total phenolic compounds, including the flavonoid group, and the activities of polyphenol oxidase (PPO) and peroxidase (POX) were evaluated. Bacteria compatibility was evaluated by means of infiltration of tubers. The defense response was evaluated in the leaves of the potato plants. Leaves were inoculated depending on their number and location on the stem. Multiple-leaf inoculation was carried out on basal, intermediate, and apical leaves, and single inoculations on intermediate leaves. Leaves inoculated with X. axonopodis and with R. solanacearum showed hypersensitive responses within 24 hours post-inoculation, whereas leaves inoculated with E. carotovora showed disease symptoms. Therefore, the R. solanacearum isolate used in the experiments did not exhibit virulence to this potato cultivar. Regardless of the bacterial treatments, the basal leaves showed higher PPO and POX activities and lower levels of total phenolic compounds and flavonoids, compared to the apical leaves. However, basal and intermediate leaves inoculated with R. solanacearum and X. axonopodis showed increases in total phenolic compounds and flavonoid levels. In general, multiple-leaf inoculation showed the highest levels of total phenolics and flavonoids, whereas the single inoculations resulted in the highest increase in PPO activity. The POX activity showed no significant difference between single- and multiple-leaf inoculations. Plants inoculated with E. carotovora showed no significant increase in defense mechanisms

  20. Soybean aphid (Hemiptera: Aphididae) response to soybean plant defense: stress levels, tradeoffs, and cross-virulence.

    PubMed

    Enders, Laramy; Bickel, Ryan; Brisson, Jennifer; Heng-Moss, Tiffany; Siegfried, Blair; Zera, Anthony; Miller, Nick

    2014-02-01

    A variety of management methods to control the soybean aphid (Aphis glycines Matsumura) have been investigated since its invasion into North America in 2000, among them plant resistance has emerged as a viable option for reducing aphid damage to soybeans and preventing outbreaks. Plant resistance methods often use natural soybean plant defenses that impose stress on aphids by reducing fitness and altering behavior. Research efforts have heavily focused on identification and development of aphid resistant soybean varieties, leaving much unknown about soybean aphid response to stressful host plant defenses. In this study, we aimed to 1) evaluate lifetime fitness consequences and phenotypic variation in response to host plant-induced stress and 2) investigate whether trade-offs involving fitness costs and/or cross-virulence to multiple antibiotic soybean varieties exists. We compared aphid survival and reproduction during and after a short period of exposure to soybeans with the Rag2 resistance gene and measured aphid clonal variation in response to Rag2 soybeans. In addition, we measured the performance of Rag2 virulent and avirulent aphids on five soybean varieties with various forms of antibiotic resistance. Our results indicate that plant defenses impose high levels of stress and have long-term fitness consequences, even after aphids are removed from resistant plants. We identified one aphid clone that was able to colonize Rag2 among the seven clones tested, suggesting that virulent genotypes may be prevalent in natural populations. Finally, although we did not find evidence of cross-virulence to multiple antibiotic soybean varieties, our results suggest independent mechanisms of aphid virulence to Rag1 and Rag2 that may involve fitness costs.

  1. Role of proline and pyrroline-5-carboxylate metabolism in plant defense against invading pathogens

    PubMed Central

    Qamar, Aarzoo; Mysore, Kirankumar S.; Senthil-Kumar, Muthappa

    2015-01-01

    Pyrroline-5-carboxylate (P5C) is an intermediate product of both proline biosynthesis and catabolism. Recent evidences indicate that proline-P5C metabolism is tightly regulated in plants, especially during pathogen infection and abiotic stress. However, role of P5C and its metabolism in plants has not yet been fully understood. Studies indicate that P5C synthesized in mitochondria has a role in both resistance (R)-gene-mediated and non-host resistance against invading pathogens. Proline dehydrogenase and delta-ornithine amino transferase-encoding genes, both involved in P5C synthesis in mitochondria are implicated in defense response of Nicotiana benthamiana and Arabidopsis thaliana against bacterial pathogens. Such defense response is proposed to involve salicylic acid-dependent pathway, reactive oxygen species (ROS) and hypersensitive response (HR)-associated cell death. Recently HR, a form of programmed cell death (PCD), has been proposed to be induced by changes in mitochondrial P5C synthesis or the increase in P5C levels per se in plants inoculated with either a host pathogen carrying suitable avirulent (Avr) gene or a non-host pathogen. Consistently, A. thaliana mutant plants deficient in P5C catabolism showed HR like cell death when grown in external P5C or proline supplemented medium. Similarly, yeast and plant cells under oxidative stress were shown to increase ROS production and PCD due to increase in P5C levels. Similar mechanism has also been reported as one of the triggers for apoptosis in mammalian cells. This review critically analyzes results from various studies and enumerates the pathways for regulation of P5C levels in the plant cell, especially in mitochondria, during pathogen infection. Further, mechanisms regulating P5C- mediated defense responses, namely HR are outlined. This review also provides new insights into the differential role of proline-P5C metabolism in plants exposed to pathogen infection. PMID:26217357

  2. GroEL from the endosymbiont Buchnera aphidicola betrays the aphid by triggering plant defense

    PubMed Central

    Chaudhary, Ritu; Atamian, Hagop S.; Shen, Zhouxin; Briggs, Steven P.; Kaloshian, Isgouhi

    2014-01-01

    Aphids are sap-feeding plant pests and harbor the endosymbiont Buchnera aphidicola, which is essential for their fecundity and survival. During plant penetration and feeding, aphids secrete saliva that contains proteins predicted to alter plant defenses and metabolism. Plants recognize microbe-associated molecular patterns and induce pattern-triggered immunity (PTI). No aphid-associated molecular pattern has yet been identified. By mass spectrometry, we identified in saliva from potato aphids (Macrosiphum euphorbiae) 105 proteins, some of which originated from Buchnera, including the chaperonin GroEL. Because GroEL is a widely conserved bacterial protein with an essential function, we tested its role in PTI. Applying or infiltrating GroEL onto Arabidopsis (Arabidopsis thaliana) leaves induced oxidative burst and expression of PTI early marker genes. These GroEL-induced defense responses required the known coreceptor BRASSINOSTEROID INSENSITIVE 1-ASSOCIATED RECEPTOR KINASE 1. In addition, in transgenic Arabidopsis plants, inducible expression of groEL activated PTI marker gene expression. Moreover, Arabidopsis plants expressing groEL displayed reduced fecundity of the green peach aphid (Myzus persicae), indicating enhanced resistance against aphids. Furthermore, delivery of GroEL into tomato (Solanum lycopersicum) or Arabidopsis through Pseudomonas fluorescens, engineered to express the type III secretion system, also reduced potato aphid and green peach aphid fecundity, respectively. Collectively our data indicate that GroEL is a molecular pattern that triggers PTI. PMID:24927572

  3. Salicylic Acid, a Plant Defense Hormone, Is Specifically Secreted by a Molluscan Herbivore

    PubMed Central

    Kästner, Julia; von Knorre, Dietrich; Himanshu, Himanshu; Erb, Matthias; Baldwin, Ian T.; Meldau, Stefan

    2014-01-01

    Slugs and snails are important herbivores in many ecosystems. They differ from other herbivores by their characteristic mucus trail. As the mucus is secreted at the interface between the plants and the herbivores, its chemical composition may play an essential role in plant responses to slug and snail attack. Based on our current knowledge about host-manipulation strategies employed by pathogens and insects, we hypothesized that mollusks may excrete phytohormone-like substances into their mucus. We therefore screened locomotion mucus from thirteen molluscan herbivores for the presence of the plant defense hormones jasmonic acid (JA), salicylic acid (SA) and abscisic acid (ABA). We found that the locomotion mucus of one slug, Deroceras reticulatum, contained significant amounts of SA, a plant hormone that is known to induce resistance to pathogens and to suppress plant immunity against herbivores. None of the other slugs and snails contained SA or any other hormone in their locomotion mucus. When the mucus of D. reticulatum was applied to wounded leaves of A. thaliana, the promotor of the SA-responsive gene pathogenesis related 1 (PR1) was activated, demonstrating the potential of the mucus to regulate plant defenses. We discuss the potential ecological, agricultural and medical implications of this finding. PMID:24466122

  4. Interplays between Soil-Borne Plant Viruses and RNA Silencing-Mediated Antiviral Defense in Roots

    PubMed Central

    Andika, Ida Bagus; Kondo, Hideki; Sun, Liying

    2016-01-01

    Although the majority of plant viruses are transmitted by arthropod vectors and invade the host plants through the aerial parts, there is a considerable number of plant viruses that infect roots via soil-inhabiting vectors such as plasmodiophorids, chytrids, and nematodes. These soil-borne viruses belong to diverse families, and many of them cause serious diseases in major crop plants. Thus, roots are important organs for the life cycle of many viruses. Compared to shoots, roots have a distinct metabolism and particular physiological characteristics due to the differences in development, cell composition, gene expression patterns, and surrounding environmental conditions. RNA silencing is an important innate defense mechanism to combat virus infection in plants, but the specific information on the activities and molecular mechanism of RNA silencing-mediated viral defense in root tissue is still limited. In this review, we summarize and discuss the current knowledge regarding RNA silencing aspects of the interactions between soil-borne viruses and host plants. Overall, research evidence suggests that soil-borne viruses have evolved to adapt to the distinct mechanism of antiviral RNA silencing in roots. PMID:27695446

  5. GroEL from the endosymbiont Buchnera aphidicola betrays the aphid by triggering plant defense.

    PubMed

    Chaudhary, Ritu; Atamian, Hagop S; Shen, Zhouxin; Briggs, Steven P; Kaloshian, Isgouhi

    2014-06-17

    Aphids are sap-feeding plant pests and harbor the endosymbiont Buchnera aphidicola, which is essential for their fecundity and survival. During plant penetration and feeding, aphids secrete saliva that contains proteins predicted to alter plant defenses and metabolism. Plants recognize microbe-associated molecular patterns and induce pattern-triggered immunity (PTI). No aphid-associated molecular pattern has yet been identified. By mass spectrometry, we identified in saliva from potato aphids (Macrosiphum euphorbiae) 105 proteins, some of which originated from Buchnera, including the chaperonin GroEL. Because GroEL is a widely conserved bacterial protein with an essential function, we tested its role in PTI. Applying or infiltrating GroEL onto Arabidopsis (Arabidopsis thaliana) leaves induced oxidative burst and expression of PTI early marker genes. These GroEL-induced defense responses required the known coreceptor BRASSINOSTEROID INSENSITIVE 1-ASSOCIATED RECEPTOR KINASE 1. In addition, in transgenic Arabidopsis plants, inducible expression of groEL activated PTI marker gene expression. Moreover, Arabidopsis plants expressing groEL displayed reduced fecundity of the green peach aphid (Myzus persicae), indicating enhanced resistance against aphids. Furthermore, delivery of GroEL into tomato (Solanum lycopersicum) or Arabidopsis through Pseudomonas fluorescens, engineered to express the type III secretion system, also reduced potato aphid and green peach aphid fecundity, respectively. Collectively our data indicate that GroEL is a molecular pattern that triggers PTI.

  6. Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism.

    PubMed

    Robert-Seilaniantz, Alexandre; Grant, Murray; Jones, Jonathan D G

    2011-01-01

    Until recently, most studies on the role of hormones in plant-pathogen interactions focused on salicylic acid (SA), jasmonic acid (JA), and ethylene (ET). It is now clear that pathogen-induced modulation of signaling via other hormones contributes to virulence. A picture is emerging of complex crosstalk and induced hormonal changes that modulate disease and resistance, with outcomes dependent on pathogen lifestyles and the genetic constitution of the host. Recent progress has revealed intriguing similarities between hormone signaling mechanisms, with gene induction responses often achieved by derepression. Here, we report on recent advances, updating current knowledge on classical defense hormones SA, JA, and ET, and the roles of auxin, abscisic acid (ABA), cytokinins (CKs), and brassinosteroids in molding plant-pathogen interactions. We highlight an emerging theme that positive and negative regulators of these disparate hormone signaling pathways are crucial regulatory targets of hormonal crosstalk in disease and defense.

  7. Molecular Dynamics Simulation and Statistics Analysis Reveals the Defense Response Mechanism in Plants

    NASA Astrophysics Data System (ADS)

    Liu, Zhichao; Zhao, Yunjie; Zeng, Chen; Computational Biophysics Lab Team

    As the main protein of the bacterial flagella, flagellin plays an important role in perception and defense response. The newly discovered locus, FLS2, is ubiquitously expressed. FLS2 encodes a putative receptor kinase and shares many homologies with some plant resistance genes and even with some components of immune system of mammals and insects. In Arabidopsis, FLS2 perception is achieved by the recognition of epitope flg22, which induces FLS2 heteromerization with BAK1 and finally the plant immunity. Here we use both analytical methods such as Direct Coupling Analysis (DCA) and Molecular Dynamics (MD) Simulations to get a better understanding of the defense mechanism of FLS2. This may facilitate a redesign of flg22 or de-novo design for desired specificity and potency to extend the immune properties of FLS2 to other important crops and vegetables.

  8. The transcription factor SlSHINE3 modulates defense responses in tomato plants.

    PubMed

    Buxdorf, Kobi; Rubinsky, Gilad; Barda, Omer; Burdman, Saul; Aharoni, Asaph; Levy, Maggie

    2014-01-01

    The cuticle plays an important role in plant interactions with pathogens and with their surroundings. The cuticle acts as both a physical barrier against physical stresses and pathogens and a chemical deterrent and activator of the plant defense response. Cuticle production in tomato plants is regulated by several transcription factors, including SlSHINE3, an ortholog of the Arabidopsis WIN/SHN3. Here we used a SlSHINE3-overexpressing (SlSHN3-OE) and silenced (Slshn3-RNAi) lines and a mutant in SlCYP86A69 (Slcyp86A69)--a direct target of SlSHN3--to analyze the roles of the leaf cuticle and cutin content and composition in the tomato plant's defense response to the necrotrophic foliar pathogen Botrytis cinerea and the biotrophic bacterial pathogen Xanthomonas campestris pv. vesicatoria. We showed that SlSHN3, which is predominantly expressed in tomato fruit epidermis, also affects tomato leaf cuticle, as morphological alterations in the SlSHN3-OE leaf tissue resulted in shiny, stunted and permeable leaves. SlSHN3-OE leaves accumulated 38% more cutin monomers than wild-type leaves, while Slshn3-RNAi and Slcyp86A69 plants showed a 40 and 70% decrease in leaf cutin monomers, respectively. Overexpression of SlSHN3 resulted in resistance to B. cinerea infection and to X. campestris pv. vesicatoria, correlated with cuticle permeability and elevated expression of pathogenesis-related genes PR1a and AOS. Further analysis revealed that B. cinerea-infected Slshn3-RNAi plants are more sensitive to B. cinerea and produce more hydrogen peroxide than wild-type plants. Cutin monomer content and composition differed between SlSHN3-OE, Slcyp86A69, Slshn3-RNAi and wild-type plants, and cutin monomer extracted from SlSHN3-OE plants altered the expression of pathogenesis-related genes in wild-type plants.

  9. Sucrose-mediated priming of plant defense responses and broad-spectrum disease resistance by overexpression of the maize pathogenesis-related PRms protein in rice plants.

    PubMed

    Gómez-Ariza, Jorge; Campo, Sonia; Rufat, Mar; Estopà, Montserrat; Messeguer, Joaquima; San Segundo, Blanca; Coca, María

    2007-07-01

    Expression of pathogenesis-related (PR) genes is part of the plant's natural defense response against pathogen attack. The PRms gene encodes a fungal-inducible PR protein from maize. Here, we demonstrate that expression of PRms in transgenic rice confers broad-spectrum protection against pathogens, including fungal (Magnaporthe oryzae, Fusarium verticillioides, and Helminthosporium oryzae) and bacterial (Erwinia chrysanthemi) pathogens. The PRms-mediated disease resistance in rice plants is associated with an enhanced capacity to express and activate the natural plant defense mechanisms. Thus, PRms rice plants display a basal level of expression of endogenous defense genes in the absence of the pathogen. PRms plants also exhibit stronger and quicker defense responses during pathogen infection. We also have found that sucrose accumulates at higher levels in leaves of PRms plants. Sucrose responsiveness of rice defense genes correlates with the pathogen-responsive priming of their expression in PRms rice plants. Moreover, pretreatment of rice plants with sucrose enhances resistance to M. oryzae infection. Together, these results support a sucrose-mediated priming of defense responses in PRms rice plants which results in broad-spectrum disease resistance.

  10. Plant Defense Inhibitors Affect the Structures of Midgut Cells in Drosophila melanogaster and Callosobruchus maculatus

    PubMed Central

    Li-Byarlay, Hongmei; Pittendrigh, Barry R.; Murdock, Larry L.

    2016-01-01

    Plants produce proteins such as protease inhibitors and lectins as defenses against herbivorous insects and pathogens. However, no systematic studies have explored the structural responses in the midguts of insects when challenged with plant defensive proteins and lectins across different species. In this study, we fed two kinds of protease inhibitors and lectins to the fruit fly Drosophila melanogaster and alpha-amylase inhibitors and lectins to the cowpea bruchid Callosobruchus maculatus. We assessed the changes in midgut cell structures by comparing them with such structures in insects receiving normal diets or subjected to food deprivation. Using light and transmission electron microscopy in both species, we observed structural changes in the midgut peritrophic matrix as well as shortened microvilli on the surfaces of midgut epithelial cells in D. melanogaster. Dietary inhibitors and lectins caused similar lesions in the epithelial cells but not much change in the peritrophic matrix in both species. We also noted structural damages in the Drosophila midgut after six hours of starvation and changes were still present after 12 hours. Our study provided the first evidence of key structural changes of midguts using a comparative approach between a dipteran and a coleopteran. Our particular observation and discussion on plant–insect interaction and dietary stress are relevant for future mode of action studies of plant defensive protein in insect physiology. PMID:27594789

  11. Priming by rhizobacterium protects tomato plants from biotrophic and necrotrophic pathogen infections through multiple defense mechanisms.

    PubMed

    Ahn, Il-Pyung; Lee, Sang-Woo; Kim, Min Gab; Park, Sang-Ryeol; Hwang, Duk-Ju; Bae, Shin-Chul

    2011-07-01

    A selected strain of rhizobacterium, Pseudomonas putida strain LSW17S (LSW17S), protects tomato plants (Lycopersicon esculentum L. cv. Seokwang) from bacterial speck by biotrophic Pseudomonas syringae pv. tomato strain DC3000 (DC3000) and bacterial wilt by necrotrophic Ralstonia solanacearum KACC 10703 (Rs10703). To investigate defense mechanisms induced by LSW17S in tomato plants, transcription patterns of pathogenesis-related (PR) genes and H(2)O(2) production were analyzed in plants treated with LSW17S and subsequent pathogen inoculation. LSW17S alone did not induce transcriptions of employed PR genes in leaves and roots. DC3000 challenge following LSW17S triggered rapid transcriptions of PR genes and H(2)O(2) production in leaves and roots. Catalase infiltration with DC3000 attenuated defense-related responses and resistance against DC3000 infection. Despite depriving H(2)O(2) production and PR1b transcription by the same treatment, resistance against Rs10703 infection was not deterred significantly. H(2)O(2) is indispensable for defense signaling and/or mechanisms primed by LSW17S and inhibition of bacterial speck, however, it is not involved in resistance against bacterial wilt.

  12. Diel trends in plant sensitivity to ozone: Toward parameterization of the defense component of effective flux

    NASA Astrophysics Data System (ADS)

    Grantz, D. A.; Vu, H.; Heath, R. L.; Burkey, K.

    2011-12-01

    Ozone (O3) injury to vegetation can be conceptually divided into three stages: 1) O3 entrance into the leaf including fractionation of stomatal vs. non-stomatal deposition; 2) O3 overcoming initial metabolic defenses within individual leaves, and 3) oxidant attack by O3 or derivatives on bioreceptors to produce injury. Ozone deposition at canopy scale and uptake at leaf scale are routinely obtained by observational and modeling techniques (Massman and Grantz, 1995). Injury can be assessed experimentally. However, predictive association between ozone concentration or flux and injury is currently not well characterized. This is due to uncertainties in rates and capacities of ozone detoxification, the nature of plant defense mechanisms, and their temporal (diel and seasonal) variability (Heath et al., 2009; Massman et al., 2000). We have developed a plant sensitivity parameter (SO3) relating injury (I) to the sum of O3 flux and photon flux density (FO3 + PPFD) during exposure. By restricting leaf exposure to O3 to a brief (15 min) pulse, we assess passive defense mechanisms, assuming that the pulse duration provides insufficient time for induction of additional (active) defense capacity during exposure. Greenhouse grown Pima cotton was exposed in chambers to pulsed O3 at a range of concentrations, stomatal conductance was measured directly pre- and post-exposure, and injury was assessed 1 week later using several indicators. SO3, determined at 2 hour intervals, exhibited clear diel trends, with maximal sensitivity shortly after solar noon, and minimal sensitivity early and late in the photoperiod. This diel pattern of SO3 did not support suggestions that plant defense is correlated with instantaneous photosynthetic rate. There was only weak correlation between SO3 and whole leaf ascorbate, ascorbate redox poise, or total antioxidant capacity, though future measurements of apoplastic antioxidants may improve these relationships. The parameter, SO3, may be directly

  13. Coordinated Actions of Glyoxalase and Antioxidant Defense Systems in Conferring Abiotic Stress Tolerance in Plants

    PubMed Central

    Hasanuzzaman, Mirza; Nahar, Kamrun; Hossain, Md. Shahadat; Mahmud, Jubayer Al; Rahman, Anisur; Inafuku, Masashi; Oku, Hirosuke; Fujita, Masayuki

    2017-01-01

    Being sessile organisms, plants are frequently exposed to various environmental stresses that cause several physiological disorders and even death. Oxidative stress is one of the common consequences of abiotic stress in plants, which is caused by excess generation of reactive oxygen species (ROS). Sometimes ROS production exceeds the capacity of antioxidant defense systems, which leads to oxidative stress. In line with ROS, plants also produce a high amount of methylglyoxal (MG), which is an α-oxoaldehyde compound, highly reactive, cytotoxic, and produced via different enzymatic and non-enzymatic reactions. This MG can impair cells or cell components and can even destroy DNA or cause mutation. Under stress conditions, MG concentration in plants can be increased 2- to 6-fold compared with normal conditions depending on the plant species. However, plants have a system developed to detoxify this MG consisting of two major enzymes: glyoxalase I (Gly I) and glyoxalase II (Gly II), and hence known as the glyoxalase system. Recently, a novel glyoxalase enzyme, named glyoxalase III (Gly III), has been detected in plants, providing a shorter pathway for MG detoxification, which is also a signpost in the research of abiotic stress tolerance. Glutathione (GSH) acts as a co-factor for this system. Therefore, this system not only detoxifies MG but also plays a role in maintaining GSH homeostasis and subsequent ROS detoxification. Upregulation of both Gly I and Gly II as well as their overexpression in plant species showed enhanced tolerance to various abiotic stresses including salinity, drought, metal toxicity, and extreme temperature. In the past few decades, a considerable amount of reports have indicated that both antioxidant defense and glyoxalase systems have strong interactions in conferring abiotic stress tolerance in plants through the detoxification of ROS and MG. In this review, we will focus on the mechanisms of these interactions and the coordinated action of

  14. Plant defense phenotypes determine the consequences of volatile emission for individuals and neighbors

    PubMed Central

    Schuman, Meredith C; Allmann, Silke; Baldwin, Ian T

    2015-01-01

    Plants are at the trophic base of terrestrial ecosystems, and the diversity of plant species in an ecosystem is a principle determinant of community structure. This may arise from diverse functional traits among species. In fact, genetic diversity within species can have similarly large effects. However, studies of intraspecific genetic diversity have used genotypes varying in several complex traits, obscuring the specific phenotypic variation responsible for community-level effects. Using lines of the wild tobacco Nicotiana attenuata genetically altered in specific well-characterized defense traits and planted into experimental populations in their native habitat, we investigated community-level effects of trait diversity in populations of otherwise isogenic plants. We conclude that the frequency of defense traits in a population can determine the outcomes of these traits for individuals. Furthermore, our results suggest that some ecosystem-level services afforded by genetically diverse plant populations could be recaptured in intensive monocultures engineered to be functionally diverse. DOI: http://dx.doi.org/10.7554/eLife.04490.001 PMID:25873033

  15. Involvement of nitric oxide in the jasmonate-dependent basal defense against root-knot nematode in tomato plants.

    PubMed

    Zhou, Jie; Jia, Feifei; Shao, Shujun; Zhang, Huan; Li, Guiping; Xia, Xiaojian; Zhou, Yanhong; Yu, Jingquan; Shi, Kai

    2015-01-01

    Jasmonic acid (JA) and nitric oxide (NO) are well-characterized signaling molecules in plant defense responses. However, their roles in plant defense against root-knot nematode (RKN, Meloidogyne incognita) infection are largely unknown. In this study, we found that the transcript levels of the JA- and NO-related biosynthetic and signaling component genes were induced after RKN infection. Application of exogenous JA and sodium nitroprusside (SNP; a NO donor) significantly decreased the number of egg masses in tomato roots after RKN infection and partially alleviated RKN-induced decreases in plant fresh weight and net photosynthetic rate. These molecules also alleviated RKN-induced increases in root electrolyte leakage and membrane peroxidation. Importantly, NO scavenger partially inhibited JA-induced RKN defense. The pharmacological inhibition of JA biosynthesis significantly increased the plants' susceptibility to RKNs, which was effectively alleviated by SNP application, showing that NO may be involved in the JA-dependent RKN defense pathway. Furthermore, both JA and SNP induced increases in protease inhibitor 2 (PI2) gene expression after RKN infestation. Silencing of PI2 compromised both JA- and SNP-induced RKN defense responses, suggesting that the PI2 gene mediates JA- and NO-induced defense against RKNs. This work will be important for deepening the understanding of the mechanisms involved in basal defense against RKN attack in plants.

  16. A mixture of peptides and sugars derived from plant cell walls increases plant defense responses to stress and attenuates ageing-associated molecular changes in cultured skin cells.

    PubMed

    Apone, Fabio; Tito, Annalisa; Carola, Antonietta; Arciello, Stefania; Tortora, Assunta; Filippini, Lucio; Monoli, Irene; Cucchiara, Mirna; Gibertoni, Simone; Chrispeels, Maarten J; Colucci, Gabriella

    2010-02-15

    Small peptides and aminoacid derivatives have been extensively studied for their effect of inducing plant defense responses, and thus increasing plant tolerance to a wide range of abiotic stresses. Similarly to plants, these compounds can activate different signaling pathways in mammalian skin cells as well, leading to the up-regulation of anti-aging specific genes. This suggests the existence of analogous defense response mechanisms, well conserved both in plants and animal cells. In this article, we describe the preparation of a new mixture of peptides and sugars derived from the chemical and enzymatic digestion of plant cell wall glycoproteins. We investigate the multiple roles of this product as potential "biostimulator" to protect plants from abiotic stresses, and also as potential cosmeceutical. In particular, the molecular effects of the peptide/sugar mixture of inducing plant defense responsive genes and protecting cultured skin cells from oxidative burst damages were deeply evaluated.

  17. Photosynthesis in desiccation tolerant plants: energy metabolism and antioxidative stress defense.

    PubMed

    Dinakar, Challabathula; Djilianov, Dimitar; Bartels, Dorothea

    2012-01-01

    Resurrection plants are regarded as excellent models to study the mechanisms associated with desiccation tolerance. During the past years tremendous progress has been made in understanding the phenomenon of desiccation tolerance in resurrection plants, but many questions are open concerning the mechanisms enabling these plants to survive desiccation. The photosynthetic apparatus is very sensitive to reactive oxygen species mediated injury during desiccation and must be maintained or quickly repaired upon rehydration. The photosynthetic apparatus is a primary source of generating reactive oxygen species. The unique ability of plants to withstand the oxidative stress imposed by reactive oxygen species during desiccation depends on the production of antioxidants. The present review considers the overall strategies and the mechanisms involved in the desiccation tolerance in the first part and will focus on the effects on photosynthesis, energy metabolism and antioxidative stress defenses in the second part.

  18. Pectinous cell wall thickenings formation - A common defense strategy of plants to cope with Pb.

    PubMed

    Krzesłowska, Magdalena; Rabęda, Irena; Basińska, Aneta; Lewandowski, Michał; Mellerowicz, Ewa J; Napieralska, Anna; Samardakiewicz, Sławomir; Woźny, Adam

    2016-07-01

    Lead, one of the most abundant and hazardous trace metals affecting living organisms, has been commonly detected in plant cell walls including some tolerant plants, mining ecotypes and hyperaccumulators. We have previously shown that in tip growing Funaria sp. protonemata cell wall is remodeled in response to lead by formation of thickenings rich in low-methylesterified pectins (pectin epitope JIM5 - JIM5-P) able to bind metal ions, which accumulate large amounts of Pb. Hence, it leads to the increase of cell wall capacity for Pb compartmentalization. Here we show that diverse plant species belonging to different phyla (Arabidopsis, hybrid aspen, star duckweed), form similar cell wall thickenings in response to Pb. These thickenings are formed in tip growing cells such as the root hairs, and in diffuse growing cells such as meristematic and root cap columella cells of root apices in hybrid aspen and Arabidopsis and in mesophyll cells in star duckweed fronds. Notably, all analyzed cell wall thickenings were abundant in JIM5-P and accumulated high amounts of Pb. In addition, the co-localization of JIM5-P and Pb commonly occurred in these cells. Hence, cell wall thickenings formed the extra compartment for Pb accumulation. In this way plant cells increased cell wall capacity for compartmentalization of this toxic metal, protecting protoplast from its toxicity. As cell wall thickenings occurred in diverse plant species and cell types differing in the type of growth we may conclude that pectinous cell wall thickenings formation is a widespread defense strategy of plants to cope with Pb. Moreover, detection of natural defense strategy, increasing plant cell walls capacity for metal accumulation, reveals a promising direction for enhancing plant efficiency in phytoremediation.

  19. Herbivory-induced volatiles function as defenses increasing fitness of the native plant Nicotiana attenuata in nature.

    PubMed

    Schuman, Meredith C; Barthel, Kathleen; Baldwin, Ian T

    2012-10-15

    From an herbivore's first bite, plants release herbivory-induced plant volatiles (HIPVs) which can attract enemies of herbivores. However, other animals and competing plants can intercept HIPVs for their own use, and it remains unclear whether HIPVs serve as an indirect defense by increasing fitness for the emitting plant. In a 2-year field study, HIPV-emitting N. attenuata plants produced twice as many buds and flowers as HIPV-silenced plants, but only when native Geocoris spp. predators reduced herbivore loads (by 50%) on HIPV-emitters. In concert with HIPVs, plants also employ antidigestive trypsin protease inhibitors (TPIs), but TPI-producing plants were not fitter than TPI-silenced plants. TPIs weakened a specialist herbivore's behavioral evasive responses to simulated Geocoris spp. attack, indicating that TPIs function against specialists by enhancing indirect defense.DOI:http://dx.doi.org/10.7554/eLife.00007.001.

  20. Herbivory-induced volatiles function as defenses increasing fitness of the native plant Nicotiana attenuata in nature

    PubMed Central

    Schuman, Meredith C; Barthel, Kathleen; Baldwin, Ian T

    2012-01-01

    From an herbivore's first bite, plants release herbivory-induced plant volatiles (HIPVs) which can attract enemies of herbivores. However, other animals and competing plants can intercept HIPVs for their own use, and it remains unclear whether HIPVs serve as an indirect defense by increasing fitness for the emitting plant. In a 2-year field study, HIPV-emitting N. attenuata plants produced twice as many buds and flowers as HIPV-silenced plants, but only when native Geocoris spp. predators reduced herbivore loads (by 50%) on HIPV-emitters. In concert with HIPVs, plants also employ antidigestive trypsin protease inhibitors (TPIs), but TPI-producing plants were not fitter than TPI-silenced plants. TPIs weakened a specialist herbivore's behavioral evasive responses to simulated Geocoris spp. attack, indicating that TPIs function against specialists by enhancing indirect defense. DOI: http://dx.doi.org/10.7554/eLife.00007.001 PMID:23066503

  1. Does Aphid Infestation Interfere with Indirect Plant Defense against Lepidopteran Caterpillars in Wild Cabbage?

    PubMed

    Li, Yehua; Weldegergis, Berhane T; Chamontri, Surachet; Dicke, Marcel; Gols, Rieta

    2017-04-12

    Attraction of parasitoids to plant volatiles induced by multiple herbivory depends on the specific combinations of attacking herbivore species, especially when their feeding modes activate different defense signalling pathways as has been reported for phloem feeding aphids and tissue feeding caterpillars. We studied the effects of pre-infestation with non-host aphids (Brevicoryne brassicae) for two different time periods on the ability of two parasitoid species to discriminate between volatiles emitted by plants infested by host caterpillars alone and those emitted by plants infested with host caterpillars plus aphids. Using plants originating from three chemically distinct wild cabbage (Brassica oleracea) populations, Diadegma semiclausum switched preference for dually infested plants to preference for plants infested with Plutella xylostella hosts alone when the duration of pre-aphid infestation doubled from 7 to 14 days. Microplitis mediator, a parasitoid of Mamestra brassicae caterpillars, preferred dually-infested plants irrespective of aphid-infestation duration. Separation of the volatile blends emitted by plants infested with hosts plus aphids or with hosts only was poor, based on multivariate statistics. However, emission rates of individual compounds were often reduced in plants infested with aphids plus hosts compared to those emitted by plants infested with hosts alone. This effect depended on host caterpillar species and plant population and was little affected by aphid infestation duration. Thus, the interactive effect of aphids and hosts on plant volatile production and parasitoid attraction can be dynamic and parasitoid specific. The characteristics of the multi-component volatile blends that determine parasitoid attraction are too complex to be deduced from simple correlative statistical analyses.

  2. A novel protein elicitor (SsCut) from Sclerotinia sclerotiorum induces multiple defense responses in plants.

    PubMed

    Zhang, Huajian; Wu, Qun; Cao, Shun; Zhao, Tongyao; Chen, Ling; Zhuang, Peitong; Zhou, Xiuhong; Gao, Zhimou

    2014-11-01

    In this study, we report the cloning of the SsCut gene encoding cutinase from Sclerotinia sclerotiorum. We isolated a 609-bp cDNA encoding a polypeptide of 202 amino acids with a molecular weight of 20.4 kDa. Heterologous expression of SsCut in Escherichia coli (His-SsCut) caused the formation of lesions in tobacco that closely resembled hypersensitive response lesions. Mutational analysis identified the C-terminal-half peptide and the same amino acids indispensable for both enzyme and elicitor activity. His-SsCut was caused cell death in Arabidopsis, soybean (Glycine max), oilseed rape (Brassica napus), rice (Oryza sativa), maize (Zea mays), and wheat (Triticum aestivum), indicating that both dicot and monocot species are responsive to the elicitor. Furthermore, the elicitation of tobacco was effective in the induction of the activities of hydrogen peroxide, phenylalanine ammonia-lyase, peroxides, and polyphenol oxidase. His-SsCut-treated plants exhibited enhanced resistance as indicated by a significant reduction in the number and size of S. sclerotiorum, Phytophthora sojae, and P. nicotianae lesions on leaves relative to controls. Real-time PCR results indicated that the expression of defense-related genes and genes involved in signal transduction were induced by His-SsCut. Our results demonstrate that SsCut is an elicitor that triggers defense responses in plants and will help to clarify its relationship to downstream signaling pathways that induce defense responses.

  3. Plant defense metabolism is increased by the free radical-generating compound AAPH.

    PubMed

    Ohlsson, A B; Berglund, T; Komlos, P; Rydström, J

    1995-09-01

    Effects of the free radical-generating substance 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH) on defense systems in plant tissue cultures were investigated. Exposure of Catharanthus roseus, C. tricophyllus, and Pisum sativum cultures to AAPH caused altered levels of reduced and oxidized glutathione. An increased total glutathione content in C. roseus was prevented by the glutathione biosynthesis inhibitor buthionine-sulfoximine. The specific phenylalanine ammonia-lyase activity in a C. roseus culture was increased from 4 to 34 mukat(kg protein)-1 by 1 mM AAPH. 5 mM AAPH increased the excretion of phenolic substances into the culture medium of a Pisum sativum culture, from 18 to 67 micrograms ml-1. The level of thiobarbituric acid reactants in a C. tricophyllus culture was increased from 46 to 93 nmol(g fresh weight)-1 by 0.4 mM AAPH. The present results, which constitute the first report on effects of the radical-generator AAPH on plant tissue, were achieved with cultures of various plant species and various types of tissue differentiation and demonstrate that AAPH is a suitable agent for the stimulation of the defensive and secondary metabolism in plant tissue cultures. It is proposed that the effects caused by AAPH are mediated by the generation of free radicals and oxidative stress, and that this agent may be used as a model substance for ozone and UV-B exposure.

  4. Adaptive evolution of threonine deaminase in plant defense against insect herbivores

    SciTech Connect

    Gonzales-Vigil, Eliana; Bianchetti, Christopher M.; Phillips, Jr., George N.; Howe, Gregg A.

    2011-11-07

    Gene duplication is a major source of plant chemical diversity that mediates plant-herbivore interactions. There is little direct evidence, however, that novel chemical traits arising from gene duplication reduce herbivory. Higher plants use threonine deaminase (TD) to catalyze the dehydration of threonine (Thr) to {alpha}-ketobutyrate and ammonia as the committed step in the biosynthesis of isoleucine (Ile). Cultivated tomato and related Solanum species contain a duplicated TD paralog (TD2) that is coexpressed with a suite of genes involved in herbivore resistance. Analysis of TD2-deficient tomato lines showed that TD2 has a defensive function related to Thr catabolism in the gut of lepidopteran herbivores. During herbivory, the regulatory domain of TD2 is removed by proteolysis to generate a truncated protein (pTD2) that efficiently degrades Thr without being inhibited by Ile. We show that this proteolytic activation step occurs in the gut of lepidopteran but not coleopteran herbivores, and is catalyzed by a chymotrypsin-like protease of insect origin. Analysis of purified recombinant enzymes showed that TD2 is remarkably more resistant to proteolysis and high temperature than the ancestral TD1 isoform. The crystal structure of pTD2 provided evidence that electrostatic interactions constitute a stabilizing feature associated with adaptation of TD2 to the extreme environment of the lepidopteran gut. These findings demonstrate a role for gene duplication in the evolution of a plant defense that targets and co-opts herbivore digestive physiology.

  5. Host plant species determines symbiotic bacterial community mediating suppression of plant defenses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Herbivore associated bacteria are vital mediators of plant and insect interactions. Host plants play an important role in shaping the gut bacterial community of insects. Colorado potato beetles (CPB; Leptinotarsa decemlineata) use several Solanum plants as hosts in their natural environment. We prev...

  6. Defensive function of herbivore-induced plant volatile emissions in nature.

    PubMed

    Kessler, A; Baldwin, I T

    2001-03-16

    Herbivore attack is known to increase the emission of volatiles, which attract predators to herbivore-damaged plants in the laboratory and agricultural systems. We quantified volatile emissions from Nicotiana attenuata plants growing in natural populations during attack by three species of leaf-feeding herbivores and mimicked the release of five commonly emitted volatiles individually. Three compounds (cis-3-hexen-1-ol, linalool, and cis-alpha-bergamotene) increased egg predation rates by a generalist predator; linalool and the complete blend decreased lepidopteran oviposition rates. As a consequence, a plant could reduce the number of herbivores by more than 90% by releasing volatiles. These results confirm that indirect defenses can operate in nature.

  7. Nonsense-mediated mRNA decay modulates immune receptor levels to regulate plant antibacterial defense.

    PubMed

    Gloggnitzer, Jiradet; Akimcheva, Svetlana; Srinivasan, Arunkumar; Kusenda, Branislav; Riehs, Nina; Stampfl, Hansjörg; Bautor, Jaqueline; Dekrout, Bettina; Jonak, Claudia; Jiménez-Gómez, José M; Parker, Jane E; Riha, Karel

    2014-09-10

    Nonsense-mediated mRNA decay (NMD) is a conserved eukaryotic RNA surveillance mechanism that degrades aberrant mRNAs. NMD impairment in Arabidopsis is linked to constitutive immune response activation and enhanced antibacterial resistance, but the underlying mechanisms are unknown. Here we show that NMD contributes to innate immunity in Arabidopsis by controlling the turnover of numerous TIR domain-containing, nucleotide-binding, leucine-rich repeat (TNL) immune receptor-encoding mRNAs. Autoimmunity resulting from NMD impairment depends on TNL signaling pathway components and can be triggered through deregulation of a single TNL gene, RPS6. Bacterial infection of plants causes host-programmed inhibition of NMD, leading to stabilization of NMD-regulated TNL transcripts. Conversely, constitutive NMD activity prevents TNL stabilization and impairs plant defense, demonstrating that host-regulated NMD contributes to disease resistance. Thus, NMD shapes plant innate immunity by controlling the threshold for activation of TNL resistance pathways.

  8. Trade-Offs between Silicon and Phenolic Defenses may Explain Enhanced Performance of Root Herbivores on Phenolic-Rich Plants.

    PubMed

    Frew, Adam; Powell, Jeff R; Sallam, Nader; Allsopp, Peter G; Johnson, Scott N

    2016-08-01

    Phenolic compounds play a role in plant defense against herbivores. For some herbivorous insects, particularly root herbivores, host plants with high phenolic concentrations promote insect performance and tissue consumption. This positive relationship between some insects and phenolics, however, could reflect a negative correlation with other plant defenses acting against insects. Silicon is an important element for plant growth and defense, particularly in grasses, as many grass species take up large amounts of silicon. Negative impact of a high silicon diet on insect herbivore performance has been reported aboveground, but is unreported for belowground herbivores. It has been hypothesized that some silicon accumulating plants exhibit a trade-off between carbon-based defense compounds, such as phenolics, and silicon-based defenses. Here, we investigated the impact of silicon concentrations and total phenolic concentrations in sugarcane roots on the performance of the root-feeding greyback canegrub (Dermolepida albohirtum). Canegrub performance was positively correlated with root phenolics, but negatively correlated with root silicon. We found a negative relationship in the roots between total phenolics and silicon concentrations. This suggests the positive impact of phenolic compounds on some insects may be the effect of lower concentrations of silicon compounds in plant tissue. This is the first demonstration of plant silicon negatively affecting a belowground herbivore.

  9. Interfacing whispering gallery mode optical microresonator biosensors with the plant defense elicitor chitin.

    PubMed

    Dahmen, Jeremy L; Yang, Yongqiang; Greenlief, C Michael; Stacey, Gary; Hunt, Heather K

    2014-10-01

    The biomaterial class of chitooligosaccharides (chitin), commonly found in insects and fungi, is one of the most abundant on earth. Substantial evidence implicates chitin in mediating a diverse array of plant cellular signaling events, including the induction of plant defense mechanisms against invading pests. However, these recognition and mediation mechanisms, including the binding kinetics between chitin and their plant recognition receptors, are not fully understood. Therefore, the creation of a platform capable of both interfacing with chitin and plant cell receptors, and monitoring their interactions, would significantly advance our understanding of this plant defense elicitor. Recently, a label-free, highly sensitive biosensor platform, based on Whispering Gallery Mode optical microresonators, has been developed to study such biomolecular interactions. Here, we demonstrate how this unique platform can be interfaced with chitin using simple carbohydrate chemistry. The surface chemistry is demonstrated using X-ray photoelectron spectroscopy, fluorescence microscopy, optical profilometry, ellipsometry, and contact angle measurements. The resulting surface is uniform, with an average surface roughness of 1.25nm, and is active toward chitin recognition elements. Optical loss measurements using standard quantitative cavity analysis techniques demonstrate that the bioconjugated platforms maintain the high performance (Q>10(6)) required to track binding interactions in this system. The platform is able to detect lectin, which binds COs, at 10μg/mL concentration. This biosensor platform's unique capabilities for label-free, high sensitivity biodetection, when properly interfaced with the biomaterials of interest, could provide the basis for a robust analytical technique to probe the binding dynamics of chitin-plant cell receptors.

  10. The C2 Protein from the Geminivirus Tomato Yellow Leaf Curl Sardinia Virus Decreases Sensitivity to Jasmonates and Suppresses Jasmonate-Mediated Defences.

    PubMed

    Rosas-Díaz, Tábata; Macho, Alberto P; Beuzón, Carmen R; Lozano-Durán, Rosa; Bejarano, Eduardo R

    2016-01-15

    An increasing body of evidence points at a role of the plant hormones jasmonates (JAs) in determining the outcome of plant-virus interactions. Geminiviruses, small DNA viruses infecting a wide range of plant species worldwide, encode a multifunctional protein, C2, which is essential for full pathogenicity. The C2 protein has been shown to suppress the JA response, although the current view on the extent of this effect and the underlying molecular mechanisms is incomplete. In this work, we use a combination of exogenous hormone treatments, microarray analysis, and pathogen infections to analyze, in detail, the suppression of the JA response exerted by C2. Our results indicate that C2 specifically affects certain JA-induced responses, namely defence and secondary metabolism, and show that plants expressing C2 are more susceptible to pathogen attack. We propose a model in which C2 might interfere with the JA response at several levels.

  11. The C2 Protein from the Geminivirus Tomato Yellow Leaf Curl Sardinia Virus Decreases Sensitivity to Jasmonates and Suppresses Jasmonate-Mediated Defences

    PubMed Central

    Rosas-Díaz, Tábata; Macho, Alberto P.; Beuzón, Carmen R.; Lozano-Durán, Rosa; Bejarano, Eduardo R.

    2016-01-01

    An increasing body of evidence points at a role of the plant hormones jasmonates (JAs) in determining the outcome of plant-virus interactions. Geminiviruses, small DNA viruses infecting a wide range of plant species worldwide, encode a multifunctional protein, C2, which is essential for full pathogenicity. The C2 protein has been shown to suppress the JA response, although the current view on the extent of this effect and the underlying molecular mechanisms is incomplete. In this work, we use a combination of exogenous hormone treatments, microarray analysis, and pathogen infections to analyze, in detail, the suppression of the JA response exerted by C2. Our results indicate that C2 specifically affects certain JA-induced responses, namely defence and secondary metabolism, and show that plants expressing C2 are more susceptible to pathogen attack. We propose a model in which C2 might interfere with the JA response at several levels. PMID:27135228

  12. Future Climate CO2 Levels Mitigate Stress Impact on Plants: Increased Defense or Decreased Challenge?

    PubMed

    AbdElgawad, Hamada; Zinta, Gaurav; Beemster, Gerrit T S; Janssens, Ivan A; Asard, Han

    2016-01-01

    Elevated atmospheric CO2 can stimulate plant growth by providing additional C (fertilization effect), and is observed to mitigate abiotic stress impact. Although, the mechanisms underlying the stress mitigating effect are not yet clear, increased antioxidant defenses, have been held primarily responsible (antioxidant hypothesis). A systematic literature analysis, including "all" papers [Web of Science (WoS)-cited], addressing elevated CO2 effects on abiotic stress responses and antioxidants (105 papers), confirms the frequent occurrence of the stress mitigation effect. However, it also demonstrates that, in stress conditions, elevated CO2 is reported to increase antioxidants, only in about 22% of the observations (e.g., for polyphenols, peroxidases, superoxide dismutase, monodehydroascorbate reductase). In most observations, under stress and elevated CO2 the levels of key antioxidants and antioxidant enzymes are reported to remain unchanged (50%, e.g., ascorbate peroxidase, catalase, ascorbate), or even decreased (28%, e.g., glutathione peroxidase). Moreover, increases in antioxidants are not specific for a species group, growth facility, or stress type. It seems therefore unlikely that increased antioxidant defense is the major mechanism underlying CO2-mediated stress impact mitigation. Alternative processes, probably decreasing the oxidative challenge by reducing ROS production (e.g., photorespiration), are therefore likely to play important roles in elevated CO2 (relaxation hypothesis). Such parameters are however rarely investigated in connection with abiotic stress relief. Understanding the effect of elevated CO2 on plant growth and stress responses is imperative to understand the impact of climate changes on plant productivity.

  13. Future Climate CO2 Levels Mitigate Stress Impact on Plants: Increased Defense or Decreased Challenge?

    PubMed Central

    AbdElgawad, Hamada; Zinta, Gaurav; Beemster, Gerrit T. S.; Janssens, Ivan A.; Asard, Han

    2016-01-01

    Elevated atmospheric CO2 can stimulate plant growth by providing additional C (fertilization effect), and is observed to mitigate abiotic stress impact. Although, the mechanisms underlying the stress mitigating effect are not yet clear, increased antioxidant defenses, have been held primarily responsible (antioxidant hypothesis). A systematic literature analysis, including “all” papers [Web of Science (WoS)-cited], addressing elevated CO2 effects on abiotic stress responses and antioxidants (105 papers), confirms the frequent occurrence of the stress mitigation effect. However, it also demonstrates that, in stress conditions, elevated CO2 is reported to increase antioxidants, only in about 22% of the observations (e.g., for polyphenols, peroxidases, superoxide dismutase, monodehydroascorbate reductase). In most observations, under stress and elevated CO2 the levels of key antioxidants and antioxidant enzymes are reported to remain unchanged (50%, e.g., ascorbate peroxidase, catalase, ascorbate), or even decreased (28%, e.g., glutathione peroxidase). Moreover, increases in antioxidants are not specific for a species group, growth facility, or stress type. It seems therefore unlikely that increased antioxidant defense is the major mechanism underlying CO2-mediated stress impact mitigation. Alternative processes, probably decreasing the oxidative challenge by reducing ROS production (e.g., photorespiration), are therefore likely to play important roles in elevated CO2 (relaxation hypothesis). Such parameters are however rarely investigated in connection with abiotic stress relief. Understanding the effect of elevated CO2 on plant growth and stress responses is imperative to understand the impact of climate changes on plant productivity. PMID:27200030

  14. Field Evaluation of Plant Defense Inducers for the Control of Citrus Huanglongbing.

    PubMed

    Li, Jinyun; Trivedi, Pankaj; Wang, Nian

    2016-01-01

    Huanglongbing (HLB) is currently the most economically devastating disease of citrus worldwide and no established cure is available. Defense inducing compounds are able to induce plant resistance effective against various pathogens. In this study the effects of various chemical inducers on HLB diseased citrus were evaluated in four groves (three with sweet orange and one with mandarin) in Florida (United States) for two to four consecutive growing seasons. Results have demonstrated that plant defense inducers including β-aminobutyric acid (BABA), 2,1,3-benzothiadiazole (BTH), and 2,6-dichloroisonicotinic acid (INA), individually or in combination, were effective in suppressing progress of HLB disease. Ascorbic acid (AA) and the nonmetabolizable glucose analog 2-deoxy-D-glucose (2-DDG) also exhibited positive control effects on HLB. After three or four applications for each season, the treatments AA (60 to 600 µM), BABA (0.2 to 1.0 mM), BTH (1.0 mM), INA (0.1 mM), 2-DDG (100 µM), BABA (1.0 mM) plus BTH (1.0 mM), BTH (1.0 mM) plus AA (600 µM), and BTH (1.0 mM) plus 2-DDG (100 µM) slowed down the population growth in planta of 'Candidatus Liberibacter asiaticus', the putative pathogen of HLB and reduced HLB disease severity by approximately 15 to 30% compared with the nontreated control, depending on the age and initial HLB severity of infected trees. These treatments also conferred positive effect on fruit yield and quality. Altogether, these findings indicate that plant defense inducers may be a useful strategy for the management of citrus HLB.

  15. Quantitative Changes of Plant Defense Enzymes in Biocontrol of Pepper (Capsicium annuum L.) Late Blight by Antagonistic Bacillus subtilis HJ927

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To investigate plant protection, pathogenesis related (PR) proteins and plant defense enzymes related to cell wall lignification were studied in pepper plants inoculated with antagonistic Bacillus subtilis HJ927 and pathogenic strain Phytophthora capsici. Phytophthora blight disease was reduced by ...

  16. Trichoderma-plant root colonization: escaping early plant defense responses and activation of the antioxidant machinery for saline stress tolerance.

    PubMed

    Brotman, Yariv; Landau, Udi; Cuadros-Inostroza, Álvaro; Tohge, Takayuki; Takayuki, Tohge; Fernie, Alisdair R; Chet, Ilan; Viterbo, Ada; Willmitzer, Lothar

    2013-03-01

    Trichoderma spp. are versatile opportunistic plant symbionts which can colonize the apoplast of plant roots. Microarrays analysis of Arabidopsis thaliana roots inoculated with Trichoderma asperelloides T203, coupled with qPCR analysis of 137 stress responsive genes and transcription factors, revealed wide gene transcript reprogramming, proceeded by a transient repression of the plant immune responses supposedly to allow root colonization. Enhancement in the expression of WRKY18 and WRKY40, which stimulate JA-signaling via suppression of JAZ repressors and negatively regulate the expression of the defense genes FMO1, PAD3 and CYP71A13, was detected in Arabidopsis roots upon Trichoderma colonization. Reduced root colonization was observed in the wrky18/wrky40 double mutant line, while partial phenotypic complementation was achieved by over-expressing WRKY40 in the wrky18 wrky40 background. On the other hand increased colonization rate was found in roots of the FMO1 knockout mutant. Trichoderma spp. stimulate plant growth and resistance to a wide range of adverse environmental conditions. Arabidopsis and cucumber (Cucumis sativus L.) plants treated with Trichoderma prior to salt stress imposition show significantly improved seed germination. In addition, Trichoderma treatment affects the expression of several genes related to osmo-protection and general oxidative stress in roots of both plants. The MDAR gene coding for monodehydroascorbate reductase is significantly up-regulated and, accordingly, the pool of reduced ascorbic acid was found to be increased in Trichoderma treated plants. 1-Aminocyclopropane-1-carboxylate (ACC)-deaminase silenced Trichoderma mutants were less effective in providing tolerance to salt stress, suggesting that Trichoderma, similarly to ACC deaminase producing bacteria, can ameliorate plant growth under conditions of abiotic stress, by lowering ameliorating increases in ethylene levels as well as promoting an elevated antioxidative capacity.

  17. Promoting Students' Conceptual Understanding of Plant Defense Responses Using the Fighting Plant Learning Unit (FPLU)

    ERIC Educational Resources Information Center

    Nantawanit, Nantawan; Panijpan, Bhinyo; Ruenwongsa, Pintip

    2012-01-01

    Most students think animals are more interesting than plants as a study topic believing that plants are inferior to animals because they are passive and unable to respond to external challenges, particularly biological invaders such as microorganisms and insect herbivores. The purpose of this study was to develop an inquiry-based learning unit,…

  18. Nonuniform distribution of glucosinolates in Arabidopsis thaliana leaves has important consequences for plant defense.

    PubMed

    Shroff, Rohit; Vergara, Fredd; Muck, Alexander; Svatos, Ales; Gershenzon, Jonathan

    2008-04-22

    The spatial distribution of plant defenses within a leaf may be critical in explaining patterns of herbivory. The generalist lepidopteran larvae, Helicoverpa armigera (the cotton bollworm), avoided the midvein and periphery of Arabidopsis thaliana rosette leaves and fed almost exclusively on the inner lamina. This feeding pattern was attributed to glucosinolates because it was not evident in a myrosinase mutant that lacks the ability to activate glucosinolate defenses by hydrolysis. To measure the spatial distribution of glucosinolates in A. thaliana leaves at a fine scale, we constructed ion intensity maps from MALDI-TOF (matrix assisted laser desorption/ionization-time of flight) mass spectra. The major glucosinolates were found to be more abundant in tissues of the midvein and the periphery of the leaf than the inner lamina, patterns that were validated by HPLC analyses of dissected leaves. In addition, there were differences in the proportions of the three major glucosinolates in different leaf regions. Hence, the distribution of glucosinolates within the leaf appears to control the feeding preference of H. armigera larvae. The preferential allocation of glucosinolates to the periphery may play a key role in the defense of leaves by creating a barrier to the feeding of chewing herbivores that frequently approach leaves from the edge.

  19. Nonuniform distribution of glucosinolates in Arabidopsis thaliana leaves has important consequences for plant defense

    PubMed Central

    Shroff, Rohit; Vergara, Fredd; Muck, Alexander; Svatoš, Aleš; Gershenzon, Jonathan

    2008-01-01

    The spatial distribution of plant defenses within a leaf may be critical in explaining patterns of herbivory. The generalist lepidopteran larvae, Helicoverpa armigera (the cotton bollworm), avoided the midvein and periphery of Arabidopsis thaliana rosette leaves and fed almost exclusively on the inner lamina. This feeding pattern was attributed to glucosinolates because it was not evident in a myrosinase mutant that lacks the ability to activate glucosinolate defenses by hydrolysis. To measure the spatial distribution of glucosinolates in A. thaliana leaves at a fine scale, we constructed ion intensity maps from MALDI-TOF (matrix assisted laser desorption/ionization-time of flight) mass spectra. The major glucosinolates were found to be more abundant in tissues of the midvein and the periphery of the leaf than the inner lamina, patterns that were validated by HPLC analyses of dissected leaves. In addition, there were differences in the proportions of the three major glucosinolates in different leaf regions. Hence, the distribution of glucosinolates within the leaf appears to control the feeding preference of H. armigera larvae. The preferential allocation of glucosinolates to the periphery may play a key role in the defense of leaves by creating a barrier to the feeding of chewing herbivores that frequently approach leaves from the edge. PMID:18408160

  20. Plant-Pathogen Effectors: Cellular Probes Interfering with Plant Defenses in Spatial and Temporal Manners

    PubMed Central

    Toruño, Tania Y.; Stergiopoulos, Ioannis; Coaker, Gitta

    2017-01-01

    Plants possess large arsenals of immune receptors capable of recognizing all pathogen classes. To cause disease, pathogenic organisms must be able to overcome physical barriers, suppress or evade immune perception, and derive nutrients from host tissues. Consequently, to facilitate some of these processes, pathogens secrete effector proteins that promote colonization. This review covers recent advances in the field of effector biology, focusing on conserved cellular processes targeted by effectors from diverse pathogens. The ability of effectors to facilitate pathogen entry into the host interior, suppress plant immune perception, and alter host physiology for pathogen benefit is discussed. Pathogens also deploy effectors in a spatial and temporal manner, depending on infection stage. Recent advances have also enhanced our understanding of effectors acting in specific plant organs and tissues. Effectors are excellent cellular probes that facilitate insight into biological processes as well as key points of vulnerability in plant immune signaling networks. PMID:27359369

  1. The growth-defense pivot: crisis management in plants mediated by LRR-RK surface receptors.

    PubMed

    Belkhadir, Youssef; Yang, Li; Hetzel, Jonathan; Dangl, Jeffery L; Chory, Joanne

    2014-10-01

    Plants must adapt to their environment and require mechanisms for sensing their surroundings and responding appropriately. An expanded family of more than 200 leucine-rich repeat (LRR) receptor kinases (LRR-RKs) transduces fluctuating and often contradictory signals from the environment into changes in nuclear gene expression. Two LRR-RKs, BRASSINOSTEROID INSENSITIVE 1 (BRI1), a steroid receptor, and FLAGELLIN SENSITIVE 2 (FLS2), an innate immune receptor that recognizes bacterial flagellin, act cooperatively to partition necessary growth-defense trade-offs. BRI1 and FLS2 share common signaling components and slightly different activation mechanisms. BRI1 and FLS2 are paradigms for understanding the signaling mechanisms of LRR-containing receptors in plants.

  2. Fusicoccin, 14-3-3 Proteins, and Defense Responses in Tomato Plants1

    PubMed Central

    Roberts, Michael R.; Bowles, Dianna J.

    1999-01-01

    Fusicoccin (FC) is a fungal toxin that activates the plant plasma membrane H+-ATPase by binding with 14-3-3 proteins, causing membrane hyperpolarization. Here we report on the effect of FC on a gene-for-gene pathogen-resistance response and show that FC application induces the expression of several genes involved in plant responses to pathogens. Ten members of the FC-binding 14-3-3 protein gene family were isolated from tomato (Lycopersicon esculentum) to characterize their role in defense responses. Sequence analysis is suggestive of common biochemical functions for these tomato 14-3-3 proteins, but their genes showed different expression patterns in leaves after challenges. Different specific subsets of 14-3-3 genes were induced after treatment with FC and during a gene-for-gene resistance response. Possible roles for the H+-ATPase and 14-3-3 proteins in responses to pathogens are discussed. PMID:10198082

  3. Cranberry Resistance to Dodder Parasitism: Induced Chemical Defenses and Behavior of a Parasitic Plant.

    PubMed

    Tjiurutue, Muvari Connie; Sandler, Hilary A; Kersch-Becker, Monica F; Theis, Nina; Adler, Lynn A

    2016-02-01

    Parasitic plants are common in many ecosystems, where they can structure community interactions and cause major economic damage. For example, parasitic dodder (Cuscuta spp.) can cause up to 80-100 % yield loss in heavily infested cranberry (Vaccinium macrocarpon) patches. Despite their ecological and economic importance, remarkably little is known about how parasitic plants affect, or are affected by, host chemistry. To examine chemically-mediated interactions between dodder and its cranberry host, we conducted a greenhouse experiment asking whether: (1) dodder performance varies with cranberry cultivar; (2) cultivars differ in levels of phytohormones, volatiles, or phenolics, and whether such variation correlates with dodder parasitism; (3) dodder parasitism induced changes in phytohormones, volatiles, or phenolics, and whether the level of inducible response varied among cultivars. We used five cranberry cultivars to assess host attractiveness to dodder and dodder performance. Dodder performance did not differ across cultivars, but there were marginally significant differences in host attractiveness to dodder, with fewer dodder attaching to Early Black than to any other cultivar. Dodder parasitism induced higher levels of salicylic acid (SA) across cultivars. Cultivars differed in overall levels of flavonols and volatile profiles, but not phenolic acids or proanthocyanidins, and dodder attachment induced changes in several flavonols and volatiles. While cultivars differed slightly in resistance to dodder attachment, we did not find evidence of chemical defenses that mediate these interactions. However, induction of several defenses indicates that parasitism alters traits that could influence subsequent interactions with other species, thus shaping community dynamics.

  4. Intraspecific variation among Tetranychid mites for ability to detoxify and to induce plant defenses.

    PubMed

    Ozawa, Rika; Endo, Hiroki; Iijima, Mei; Sugimoto, Koichi; Takabayashi, Junji; Gotoh, Tetsuo; Arimura, Gen-Ichiro

    2017-02-27

    Two genotypes coexist among Kanzawa spider mites, one of which causes red scars and the other of which causes white scars on leaves, and they elicit different defense responses in host plants. Based on RNA-Seq analysis, we revealed here that the expression levels of genes involved in the detoxification system were higher in Red strains than White strains. The corresponding enzyme activities as well as performances for acaricide resistance and host adaptation toward Laminaceae were also higher in Red strains than White strains, indicating that Red strains were superior in trait(s) of the detox system. In subsequent generations of strains that had survived exposure to fenpyroximate, both strains showed similar resistance to this acaricide, as well as similar detoxification activities. The endogenous levels of salicylic acid and jasmonic acid were increased similarly in bean leaves damaged by original Red strains and their subsequent generations that inherited high detox activity. Jasmonic acid levels were increased in leaves damaged by original White strains, but not by their subsequent generations that inherited high detox activity. Together, these data suggest the existence of intraspecific variation - at least within White strains - with respect to their capacity to withstand acaricides and host plant defenses.

  5. Intraspecific variation among Tetranychid mites for ability to detoxify and to induce plant defenses

    PubMed Central

    Ozawa, Rika; Endo, Hiroki; Iijima, Mei; Sugimoto, Koichi; Takabayashi, Junji; Gotoh, Tetsuo; Arimura, Gen-ichiro

    2017-01-01

    Two genotypes coexist among Kanzawa spider mites, one of which causes red scars and the other of which causes white scars on leaves, and they elicit different defense responses in host plants. Based on RNA-Seq analysis, we revealed here that the expression levels of genes involved in the detoxification system were higher in Red strains than White strains. The corresponding enzyme activities as well as performances for acaricide resistance and host adaptation toward Laminaceae were also higher in Red strains than White strains, indicating that Red strains were superior in trait(s) of the detox system. In subsequent generations of strains that had survived exposure to fenpyroximate, both strains showed similar resistance to this acaricide, as well as similar detoxification activities. The endogenous levels of salicylic acid and jasmonic acid were increased similarly in bean leaves damaged by original Red strains and their subsequent generations that inherited high detox activity. Jasmonic acid levels were increased in leaves damaged by original White strains, but not by their subsequent generations that inherited high detox activity. Together, these data suggest the existence of intraspecific variation - at least within White strains - with respect to their capacity to withstand acaricides and host plant defenses. PMID:28240222

  6. Mitogen-activated protein kinase pathways are required for melatonin-mediated defense responses in plants.

    PubMed

    Lee, Hyoung Yool; Back, Kyoungwhan

    2016-04-01

    Melatonin enhances pathogen resistance by inducing the expression of a number of plant defense-related genes. To examine whether the melatonin-mediated pathogen resistance is associated with mitogen-activated protein kinase (MAPK) cascades, Arabidopsis and tobacco leaves were treated with melatonin and investigated for MAPK activation using an antiphospho-p44/42 MAPK (Erk1/2) monoclonal antibody. Two MAPKs, MPK3 and MPK6, were activated rapidly and transiently by 1 μm melatonin treatment in Arabidopsis. Its tobacco ortholog MAPKs were also activated. The activation of MPK3 and MPK6 by 2-hydroxymelatonin and N-acetylserotonin was also observed, albeit to a lesser degree than that by melatonin. Furthermore, MAPK activation by melatonin was uncoupled from G-protein signaling, because melatonin efficiently activated two MAPKs in a G-protein β knockout mutant (agb1). Suppression of both MPK3 and MPK6 in transgenic Arabidopsis exhibited significant decreases in the induction of defense-related gene expression and pathogen resistance relative to wild-type plants. Using an array of MAP kinase kinase (MKK) knockout mutants, we found that four MKKs, namely MKK4, MKK5, MKK7, and MKK9, are responsible for the activation of MPK3 and MPK6 by melatonin, indicating that melatonin-mediated innate immunity is triggered by MAPK signaling through MKK4/5/7/9-MPK3/6 cascades.

  7. Theroa zethus Caterpillars Use Acid Secretion of Anti-Predator Gland to Deactivate Plant Defense.

    PubMed

    Dussourd, David E

    2015-01-01

    In North America, notodontid caterpillars feed almost exclusively on hardwood trees. One notable exception, Theroa zethus feeds instead on herbaceous plants in the Euphorbiaceae protected by laticifers. These elongate canals follow leaf veins and contain latex under pressure; rupture causes the immediate release of sticky poisonous exudate. T. zethus larvae deactivate the latex defense of poinsettia and other euphorbs by applying acid from their ventral eversible gland, thereby creating furrows in the veins. The acid secretion softens the veins allowing larvae to compress even large veins with their mandibles and to disrupt laticifers internally often without contacting latex. Acid secretion collected from caterpillars and applied to the vein surface sufficed to create a furrow and to reduce latex exudation distal to the furrow where T. zethus larvae invariably feed. Larvae with their ventral eversible gland blocked were unable to create furrows and suffered reduced growth on poinsettia. The ventral eversible gland in T. zethus and other notodontids ordinarily serves to deter predators; when threatened, larvae spray acid from the gland orifice located between the mouthparts and first pair of legs. To my knowledge, T. zethus is the first caterpillar found to use an antipredator gland for disabling plant defenses. The novel combination of acid application and vein constriction allows T. zethus to exploit its unusual latex-bearing hosts.

  8. Plant defense genes associated with quantitative resistance to potato late blight in Solanum phureja x dihaploid S. tuberosum hybrids.

    PubMed

    Trognitz, Friederike; Manosalva, Patricia; Gysin, Rene; Niñio-Liu, David; Simon, Reinhard; del Herrera, Ma Rosario; Trognitz, Bodo; Ghislain, Marc; Nelson, Rebecca

    2002-06-01

    Markers corresponding to 27 plant defense genes were tested for linkage disequilibrium with quantitative resistance to late blight in a diploid potato population that had been used for mapping quantitative trait loci (QTLs) for late blight resistance. Markers were detected by using (i) hybridization probes for plant defense genes, (ii) primer pairs amplifying conserved domains of resistance (R) genes, (iii) primers for defense genes and genes encoding transcriptional regulatory factors, and (iv) primers allowing amplification of sequences flanking plant defense genes by the ligation-mediated polymerase chain reaction. Markers were initially screened by using the most resistant and susceptible individuals of the population, and those markers showing different allele frequencies between the two groups were mapped. Among the 308 segregating bands detected, 24 loci (8%) corresponding to six defense gene families were associated with resistance at chi2 > or = 13, the threshold established using the permutation test at P = 0.05. Loci corresponding to genes related to the phenylpropanoid pathway (phenylalanine ammonium lyase [PAL], chalcone isomerase [CHI], and chalcone synthase [CHS]), loci related to WRKY regulatory genes, and other -defense genes (osmotin and a Phytophthora infestans-induced cytochrome P450) were significantly associated with quantitative disease resistance. A subset of markers was tested on the mapping population of 94 individuals. Ten defense-related markers were clustered at a QTL on chromosome III, and three defense-related markers were located at a broad QTL on chromosome XII. The association of candidate genes with QTLs is a step toward understanding the molecular basis of quantitative resistance to an important plant disease.

  9. Inter-organ defense networking: Leaf whitefly sucking elicits plant immunity to crown gall disease caused by Agrobacterium tumefaciens.

    PubMed

    Park, Yong-Soon; Ryu, Choong-Min

    2015-01-01

    Plants have elaborate defensive machinery to protect against numerous pathogens and insects. Plant hormones function as modulators of defensive mechanisms to maintain plant resistance to natural enemies. Our recent study suggests that salicylic acid (SA) is the primary phytohormone regulating plant responses to Agrobacterium tumefaciens infection. Tobacco (Nicotiana benthamiana Domin.) immune responses against Agrobacterium-mediated crown gall disease were activated by exposure to the sucking insect whitefly, which stimulated SA biosynthesis in aerial tissues; in turn, SA synthesized in aboveground tissues systemically modulated SA secretion in root tissues. Further investigation revealed that endogenous SA biosynthesis negatively modulated Agrobacterium-mediated plant genetic transformation. Our study provides novel evidence that activation of the SA-signaling pathway mediated by a sucking insect infestation has a pivotal role in subsequently attenuating Agrobacterium infection. These results demonstrate new insights into interspecies cross-talking among insects, plants, and soil bacteria.

  10. Microbial signature-triggered plant defense responses and early signaling mechanisms.

    PubMed

    Wu, Shujing; Shan, Libo; He, Ping

    2014-11-01

    It has long been observed that microbial elicitors can trigger various cellular responses in plants. Microbial elicitors have recently been referred to as pathogen or microbe-associated molecular patterns (PAMPs or MAMPs) and remarkable progress has been made on research of their corresponding receptors, signaling mechanisms and critical involvement in disease resistance. Plants also generate endogenous signals due to the damage or wounds caused by microbes. These signals were originally called endogenous elicitors and subsequently renamed damage-associated molecular patterns (DAMPs) that serve as warning signals for infections. The cellular responses induced by PAMPs and DAMPs include medium alkalinization, ion fluxes across the membrane, reactive oxygen species (ROS) and ethylene production. They collectively contribute to plant pattern-triggered immunity (PTI) and play an important role in plant basal defense against a broad spectrum of microbial infections. In this review, we provide an update on multiple PTI responses and early signaling mechanisms and discuss its potential applications to improve crop disease resistance.

  11. Anthropogenic increase in carbon dioxide compromises plant defense against invasive insects

    SciTech Connect

    Zavala, J.; Casteel, C.; DeLucia, E.; Berenbaum, M.

    2008-04-01

    Elevated levels of atmospheric carbon dioxide (CO{sub 2}), a consequence of anthropogenic global change, can profoundly affect the interactions between crop plants and insect pests and may promote yet another form of global change: the rapid establishment of invasive species. Elevated CO{sub 2} increased the susceptibility of soybean plants grown under field conditions to the invasive Japanese beetle (Popillia japonica) and to a variant of western corn rootworm (Diabrotica virgifera virgifera) resistant to crop rotation by down-regulating gene expression related to defense signaling [lipoxygenase 7 (lox7), lipoxygenase 8 (lox8), and 1-aminocyclopropane-1-carboxylate synthase (acc-s)]. The down-regulation of these genes, in turn, reduced the production of cysteine proteinase inhibitors (CystPIs), which are specific deterrents to coleopteran herbivores. Beetle herbivory increased CystPI activity to a greater degree in plants grown under ambient than under elevated CO{sub 2}. Gut cysteine proteinase activity was higher in beetles consuming foliage of soybeans grown under elevated CO{sub 2} than in beetles consuming soybeans grown in ambient CO{sub 2}, consistent with enhanced growth and development of these beetles on plants grown in elevated CO{sub 2}. These findings suggest that predicted increases in soybean productivity under projected elevated CO{sub 2} levels may be reduced by increased susceptibility to invasive crop pests.

  12. Keeping Control: The Role of Senescence and Development in Plant Pathogenesis and Defense

    PubMed Central

    Häffner, Eva; Konietzki, Sandra; Diederichsen, Elke

    2015-01-01

    Many plant pathogens show interactions with host development. Pathogens may modify plant development according to their nutritional demands. Conversely, plant development influences pathogen growth. Biotrophic pathogens often delay senescence to keep host cells alive, and resistance is achieved by senescence-like processes in the host. Necrotrophic pathogens promote senescence in the host, and preventing early senescence is a resistance strategy of plants. For hemibiotrophic pathogens both patterns may apply. Most signaling pathways are involved in both developmental and defense reactions. Increasing knowledge about the molecular components allows to distinguish signaling branches, cross-talk and regulatory nodes that may influence the outcome of an infection. In this review, recent reports on major molecular players and their role in senescence and in pathogen response are reviewed. Examples of pathosystems with strong developmental implications illustrate the molecular basis of selected control strategies. A study of gene expression in the interaction between the hemibiotrophic vascular pathogen Verticillium longisporum and its cruciferous hosts shows processes that are fine-tuned to counteract early senescence and to achieve resistance. The complexity of the processes involved reflects the complex genetic control of quantitative disease resistance, and understanding the relationship between disease, development and resistance will support resistance breeding. PMID:27135337

  13. Involvement of the glutamate receptor AtGLR3.3 in plant defense signaling and resistance to Hyaloperonospora arabidopsidis.

    PubMed

    Manzoor, Hamid; Kelloniemi, Jani; Chiltz, Annick; Wendehenne, David; Pugin, Alain; Poinssot, Benoit; Garcia-Brugger, Angela

    2013-11-01

    Like their animal counterparts, plant glutamate receptor-like (GLR) homologs are intimately associated with Ca(2+) influx through plasma membrane and participate in various physiological processes. In pathogen-associated molecular patterns (PAMP)-/elicitor-mediated resistance, Ca(2+) fluxes are necessary for activating downstream signaling events related to plant defense. In this study, oligogalacturonides (OGs), which are endogenous elicitors derived from cell wall degradation, were used to investigate the role of Arabidopsis GLRs in defense signaling. Pharmacological investigations indicated that GLRs are partly involved in free cytosolic [Ca(2+)] ([Ca(2+)]cyt) variations, nitric oxide (NO) production, reactive oxygen species (ROS) production and expression of defense-related genes by OGs. In addition, wild-type Col-0 plants treated with the glutamate-receptor antagonist 6,7-dinitriquinoxaline-2,3-dione (DNQX) had a compromised resistance to Botrytis cinerea and Hyaloperonospora arabidopsidis. Moreover, we provide genetic evidence that AtGLR3.3 is a key component of resistance against H. arabidopsidis. In addition, some OGs-triggered immune events such as defense gene expression, NO and ROS production are also to different extents dependent on AtGLR3.3. Taken together, these data provide evidence for the involvement of GLRs in elicitor/pathogen-mediated plant defense signaling pathways in Arabidopsis thaliana.

  14. Phosphorylation of an ERF transcription factor by Arabidopsis MPK3/MPK6 regulates plant defense gene induction and fungal resistance.

    PubMed

    Meng, Xiangzong; Xu, Juan; He, Yunxia; Yang, Kwang-Yeol; Mordorski, Breanne; Liu, Yidong; Zhang, Shuqun

    2013-03-01

    Arabidopsis thaliana MPK3 and MPK6, two mitogen-activated protein kinases (MAPKs or MPKs), play critical roles in plant disease resistance by regulating multiple defense responses. Previously, we characterized the regulation of phytoalexin biosynthesis by Arabidopsis MPK3/MPK6 cascade and its downstream WRKY33 transcription factor. Here, we report another substrate of MPK3/MPK6, ETHYLENE RESPONSE FACTOR6 (ERF6), in regulating Arabidopsis defense gene expression and resistance to the necrotrophic fungal pathogen Botrytis cinerea. Phosphorylation of ERF6 by MPK3/MPK6 in either the gain-of-function transgenic plants or in response to B. cinerea infection increases ERF6 protein stability in vivo. Phospho-mimicking ERF6 is able to constitutively activate defense-related genes, especially those related to fungal resistance, including PDF1.1 and PDF1.2, and confers enhanced resistance to B. cinerea. By contrast, expression of ERF6-EAR, in which ERF6 was fused to the ERF-associated amphiphilic repression (EAR) motif, strongly suppresses B. cinerea-induced defense gene expression, leading to hypersusceptibility of the ERF6-EAR transgenic plants to B. cinerea. Different from ERF1, the regulation and function of ERF6 in defensin gene activation is independent of ethylene. Based on these data, we conclude that ERF6, another substrate of MPK3 and MPK6, plays important roles downstream of the MPK3/MPK6 cascade in regulating plant defense against fungal pathogens.

  15. The HERBIVORE ELICITOR-REGULATED1 gene enhances abscisic acid levels and defenses against herbivores in Nicotiana attenuata plants.

    PubMed

    Dinh, Son Truong; Baldwin, Ian T; Galis, Ivan

    2013-08-01

    Nicotiana attenuata plants can distinguish the damage caused by herbivore feeding from other types of damage by perceiving herbivore-associated elicitors, such as the fatty acid-amino acid conjugates (FACs) in oral secretions (OS) of Manduca sexta larvae, which are introduced into wounds during feeding. However, the transduction of FAC signals into downstream plant defense responses is still not well established. We identified a novel FAC-regulated protein in N. attenuata (NaHER1; for herbivore elicitor regulated) and show that it is an indispensable part of the OS signal transduction pathway. N. attenuata plants silenced in the expression of NaHER1 by RNA interference (irHER1) were unable to amplify their defenses beyond basal, wound-induced levels in response to OS elicitation. M. sexta larvae performed 2-fold better when reared on irHER1 plants, which released less volatile organic compounds (indirect defense) and had strongly reduced levels of several direct defense metabolites, including trypsin proteinase inhibitors, 17-hydroxygeranyllinallool diterpene glycosides, and caffeoylputrescine, after real and/or simulated herbivore attack. In parallel to impaired jasmonate signaling and metabolism, irHER1 plants were more drought sensitive and showed reduced levels of abscisic acid (ABA) in the leaves, suggesting that silencing of NaHER1 interfered with ABA metabolism. Because treatment of irHER1 plants with ABA results in both the accumulation of significantly more ABA catabolites and the complete restoration of normal wild-type levels of OS-induced defense metabolites, we conclude that NaHER1 acts as a natural suppressor of ABA catabolism after herbivore attack, which, in turn, activates the full defense profile and resistance against herbivores.

  16. The costs of anti-herbivore defense traits in agricultural crop plants: a case study involving leafhoppers and trichomes.

    PubMed

    Kaplan, Ian; Dively, Galen P; Denno, Robert F

    2009-06-01

    The expression of plant defenses is thought to entail costs (e.g., the allocation of resources away from growth or reproduction) that constrain the evolution of plant genotypes maximally defended against herbivores. Although central to the ecological theory underlying plant-insect interactions at large, the concept of defense costs is particularly evident in agricultural crops where plants may be under simultaneous selection for enhanced growth and/or reproduction (i.e., yield) and anti-herbivore resistance traits that deter pests. In this study we investigate the role of trichomes as a resistance mechanism against a sap-feeding insect (the leafhopper, Empoasca fabae) on potato. Natural variation in trichome density among 17 potato cultivars was used to test for the role of trichomes as a putative defense against leafhoppers, and evidence of costs in trichome expression. Two different types of costs were explored: (1) allocation costs (i.e., the relationship between trichomes and yield), and (2) costs involving trade-offs with alternative defense strategies (e.g., tolerance). Although leafhopper abundance did not decrease as trichome density increased, leafhopper injury to potato plants (foliar necrosis) was negatively correlated with trichome density. As a result, the per capita effect of leafhopper adults and nymphs on foliar damage was lower on plants with high trichome densities. We found no evidence, however, for costs of expressing this resistance trait; trichomes were not correlated with either potato yield or tolerance to herbivory. Thus, selection for multiple plant defenses to alleviate the impact of pests in agronomic crops may indeed be possible without inherent losses in plant yield.

  17. A defense in depth approach for nuclear power plant accident management

    SciTech Connect

    Chih-Yao Hsieh; Hwai-Pwu Chou

    2015-07-01

    An initiating event may lead to a severe accident if the plant safety functions have been challenged or operators do not follow the appropriate accident management procedures. Beyond design basis accidents are those corresponding to events of very low occurrence probability but such an accident may lead to significant consequences. The defense in depth approach is important to assure nuclear safety even in a severe accident. Plant Damage States (PDS) can be defined by the combination of the possible values for each of the PDS parameters which are showed on the nuclear power plant simulator. PDS is used to identify what the initiating event is, and can also give the information of safety system's status whether they are bypassed, inoperable or not. Initiating event and safety system's status are used in the construction of Containment Event Tree (CET) to determine containment failure modes by using probabilistic risk assessment (PRA) technique. Different initiating events will correspond to different CETs. With these CETs, the core melt frequency of an initiating event can be found. The use of Plant Damage States (PDS) is a symptom-oriented approach. On the other hand, the use of Containment Event Tree (CET) is an event-oriented approach. In this study, the Taiwan's fourth nuclear power plants, the Lungmen nuclear power station (LNPS), which is an advanced boiling water reactor (ABWR) with fully digitized instrumentation and control (I and C) system is chosen as the target plant. The LNPS full scope engineering simulator is used to generate the testing data for method development. The following common initiating events are considered in this study: loss of coolant accidents (LOCA), total loss of feedwater (TLOFW), loss of offsite power (LOOP), station blackout (SBO). Studies have indicated that the combination of the symptom-oriented approach and the event-oriented approach can be helpful to find mitigation strategies and is useful for the accident management

  18. Effects of the virus satellite gene βC1 on host plant defense signaling and volatile emission

    PubMed Central

    Salvaudon, Lucie; De Moraes, Consuelo M.; Yang, Jun-Yi; Chua, Nam-Hai; Mescher, Mark C.

    2013-01-01

    Tomato Yellow Leaf Curl China virus spreads together with its invasive vector, the silverleaf whitefly B biotype, which exhibits higher growth rates on infected plants. Previous studies indicate that the virus satellite gene βC1 accounts for the visible symptoms of infection and inhibits the constitutive expression of jasmonic acid (JA)—a phytohormone involved in plant defense against whiteflies—and of some JA-regulated genes. Here we present new details of the effects of on plant signaling and defense, obtained with (non-host) transgenic Arabidopsis thaliana and Nicotiana benthamiana plants. We found that JA induction in response to wounding was reduced in plants expressing βC1. This result implies that βC1 acts on conserved plant regulation mechanisms and might impair the entire JA defense pathway. Furthermore, transformed N. benthamiana plants exhibited elevated emissions of the volatile compound linalool, suggesting that βC1 also influences plant-derived olfactory cues available to vector and non-vector insects. PMID:23299332

  19. Effects of the virus satellite gene βC1 on host plant defense signaling and volatile emission.

    PubMed

    Salvaudon, Lucie; De Moraes, Consuelo M; Yang, Jun-Yi; Chua, Nam-Hai; Mescher, Mark C

    2013-03-01

    Tomato Yellow Leaf Curl China virus spreads together with its invasive vector, the silverleaf whitefly B biotype, which exhibits higher growth rates on infected plants. Previous studies indicate that the virus satellite gene βC1 accounts for the visible symptoms of infection and inhibits the constitutive expression of jasmonic acid (JA)--a phytohormone involved in plant defense against whiteflies--and of some JA-regulated genes. Here we present new details of the effects of on plant signaling and defense, obtained with (non-host) transgenic Arabidopsis thaliana and Nicotiana benthamiana plants. We found that JA induction in response to wounding was reduced in plants expressing βC1. This result implies that βC1 acts on conserved plant regulation mechanisms and might impair the entire JA defense pathway. Furthermore, transformed N. benthamiana plants exhibited elevated emissions of the volatile compound linalool, suggesting that βC1 also influences plant-derived olfactory cues available to vector and non-vector insects.

  20. Integrating nitric oxide into salicylic acid and jasmonic acid/ ethylene plant defense pathways.

    PubMed

    Mur, Luis A J; Prats, Elena; Pierre, Sandra; Hall, Michael A; Hebelstrup, Kim H

    2013-01-01

    Plant defense against pests and pathogens is known to be conferred by either salicylic acid (SA) or jasmonic acid (JA)/ethylene (ET) pathways, depending on infection or herbivore-grazing strategy. It is well attested that SA and JA/ET pathways are mutually antagonistic allowing defense responses to be tailored to particular biotic stresses. Nitric oxide (NO) has emerged as a major signal influencing resistance mediated by both signaling pathways but no attempt has been made to integrate NO into established SA/JA/ET interactions. NO has been shown to act as an inducer or suppressor of signaling along each pathway. NO will initiate SA biosynthesis and nitrosylate key cysteines on TGA-class transcription factors to aid in the initiation of SA-dependent gene expression. Against this, S-nitrosylation of NONEXPRESSOR OF PATHOGENESIS-RELATED PROTEINS1 (NPR1) will promote the NPR1 oligomerization within the cytoplasm to reduce TGA activation. In JA biosynthesis, NO will initiate the expression of JA biosynthetic enzymes, presumably to over-come any antagonistic effects of SA on JA-mediated transcription. NO will also initiate the expression of ET biosynthetic genes but a suppressive role is also observed in the S-nitrosylation and inhibition of S-adenosylmethionine transferases which provides methyl groups for ET production. Based on these data a model for NO action is proposed but we have also highlighted the need to understand when and how inductive and suppressive steps are used.

  1. Integrating nitric oxide into salicylic acid and jasmonic acid/ ethylene plant defense pathways

    PubMed Central

    Mur, Luis A. J.; Prats, Elena; Pierre, Sandra; Hall, Michael A.; Hebelstrup, Kim H.

    2013-01-01

    Plant defense against pests and pathogens is known to be conferred by either salicylic acid (SA) or jasmonic acid (JA)/ethylene (ET) pathways, depending on infection or herbivore-grazing strategy. It is well attested that SA and JA/ET pathways are mutually antagonistic allowing defense responses to be tailored to particular biotic stresses. Nitric oxide (NO) has emerged as a major signal influencing resistance mediated by both signaling pathways but no attempt has been made to integrate NO into established SA/JA/ET interactions. NO has been shown to act as an inducer or suppressor of signaling along each pathway. NO will initiate SA biosynthesis and nitrosylate key cysteines on TGA-class transcription factors to aid in the initiation of SA-dependent gene expression. Against this, S-nitrosylation of NONEXPRESSOR OF PATHOGENESIS-RELATED PROTEINS1 (NPR1) will promote the NPR1 oligomerization within the cytoplasm to reduce TGA activation. In JA biosynthesis, NO will initiate the expression of JA biosynthetic enzymes, presumably to over-come any antagonistic effects of SA on JA-mediated transcription. NO will also initiate the expression of ET biosynthetic genes but a suppressive role is also observed in the S-nitrosylation and inhibition of S-adenosylmethionine transferases which provides methyl groups for ET production. Based on these data a model for NO action is proposed but we have also highlighted the need to understand when and how inductive and suppressive steps are used. PMID:23818890

  2. Antioxidant Defenses in Plants with Attention to Prunus and Citrus spp.

    PubMed Central

    Racchi, Milvia Luisa

    2013-01-01

    This short review briefly introduces the formation of reactive oxygen species (ROS) as by-products of oxidation/reduction (redox) reactions, and the ways in which the antioxidant defense machinery is involved directly or indirectly in ROS scavenging. Major antioxidants, both enzymatic and non enzymatic, that protect higher plant cells from oxidative stress damage are described. Biochemical and molecular features of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) are discussed because they play crucial roles in scavenging ROS in the different cell compartments and in response to stress conditions. Among the non enzymatic defenses, particular attention is paid to ascorbic acid, glutathione, flavonoids, carotenoids, and tocopherols. The operation of ROS scavenging systems during the seasonal cycle and specific developmental events, such as fruit ripening and senescence, are discussed in relation to the intense ROS formation during these processes that impact fruit quality. Particular attention is paid to Prunus and Citrus species because of the nutritional and antioxidant properties contained in these commonly consumed fruits. PMID:26784469

  3. Interaction between two rice mitogen activated protein kinases and its possible role in plant defense

    PubMed Central

    2013-01-01

    Background The canonical mitogen activated protein kinase (MAPK) signaling pathway plays a vital role in carrying out the normal growth and development of the plant. The pathway, connecting the upstreams signal with the downstream target is considered to be linear, mostly starting with a MAPKKK and ending in a MAPK. Results Here we report a novel interaction between two rice MAPKs, OsMPK20-4 and OsMPK3 suggesting the complex nature of the pathway rather than a linear one at individual steps. The interaction between OsMPK20-4 and OsMPK3 found by yeast two-hybrid analysis was confirmed in planta by co-immunoprecipitation and fluorescence resonance energy transfer (FRET) assays. The interaction is specific and is phosphorylation independent. The results suggest a role of the interaction between OsMPK20-4 and OsMPK3 in basic plant defense. Conclusions The current novel work showing the physical interaction between two plant MAPKs, OsMPK20-4 and OsMPK3 is the diversion from the dogma of a typical MAPK cascade thereby opening a new dimension to the MAPK signal transduction. PMID:23984709

  4. Plant defense induced in in vitro propagated banana (Musa paradisiaca) plantlets by Fusarium derived elicitors.

    PubMed

    Patel, Miral; Kothari, I L; Mohan, J S S

    2004-07-01

    Perception of microbial signal molecules is part of the strategy evolved by plants to survive attacks by potential pathogens. To gain a more complete understanding of the early signaling events involved in these responses, we used fungal components of Fusarium under in vitro condition and checked the rise in signal molecule, salicylic acid (SA), and marker enzymes in defense reactions against the pathogen. SA level increased by 21 folds in elicitor treated plantlets as compared to that of control plantlets and there was marked increase in phenylalanine ammonia-lyase(PAL), peroxidase(POX), polyphenol oxidase(PPO) along with higher total phenolic content. Present results indicated that use of fungal components had successfully induced systemic resistance in in vitro cultured banana plantlets.

  5. New roles for cis-jasmone as an insect semiochemical and in plant defense

    PubMed Central

    Birkett, Michael A.; Campbell, Colin A. M.; Chamberlain, Keith; Guerrieri, Emilio; Hick, Alastair J.; Martin, Janet L.; Matthes, Michaela; Napier, Johnathan A.; Pettersson, Jan; Pickett, John A.; Poppy, Guy M.; Pow, Eleanor M.; Pye, Barry J.; Smart, Lesley E.; Wadhams, George H.; Wadhams, Lester J.; Woodcock, Christine M.

    2000-01-01

    cis-Jasmone, or (Z)-jasmone, is well known as a component of plant volatiles, and its release can be induced by damage, for example during insect herbivory. Using the olfactory system of the lettuce aphid to investigate volatiles from plants avoided by this insect, (Z)-jasmone was found to be electrophysiologically active and also to be repellent in laboratory choice tests. In field studies, repellency from traps was demonstrated for the damson-hop aphid, and with cereal aphids numbers were reduced in plots of winter wheat treated with (Z)-jasmone. In contrast, attractant activity was found in laboratory and wind tunnel tests for insects acting antagonistically to aphids, namely the seven-spot ladybird and an aphid parasitoid. When applied in the vapor phase to intact bean plants, (Z)-jasmone induced the production of volatile compounds, including the monoterpene (E)-β-ocimene, which affect plant defense, for example by stimulating the activity of parasitic insects. These plants were more attractive to the aphid parasitoid in the wind tunnel when tested 48 h after exposure to (Z)-jasmone had ceased. This possible signaling role of (Z)-jasmone is qualitatively different from that of the biosynthetically related methyl jasmonate and gives a long-lasting effect after removal of the stimulus. Differential display was used to compare mRNA populations in bean leaves exposed to the vapor of (Z)-jasmone and methyl jasmonate. One differentially displayed fragment was cloned and shown by Northern blotting to be up-regulated in leaf tissue by (Z)-jasmone. This sequence was identified by homology as being derived from a gene encoding an α-tubulin isoform. PMID:10900270

  6. Extrafloral nectaries alter arthropod community structure and mediate peach (Prunus persica) plant defense.

    PubMed

    Mathews, Clarissa R; Bottrell, Dale G; Brown, Mark W

    2009-04-01

    We investigated the role of extrafloral nectaries (EFNs) in mediating plant defense for newly established peach (Prunus persica) trees. We used peaches of a single cultivar ("Lovell") that varied with respect to EFN leaf phenotype (with or without EFNs) to determine if the EFNs affected the structure of the arthropod community colonizing newly planted seedlings. We also tested if the plants producing EFNs benefited from reduced herbivory or enhanced productivity. In the first year following planting, the young peach trees with EFNs were dominated by ants, and arthropod community diversity was lower than for trees without EFNs. The young trees with EFNs harbored fewer herbivores and experienced a twofold reduction in folivory compared to trees without EFNs. Productivity was also enhanced for the trees with EFNs, which attained significantly higher rates of trunk growth, greater terminal carbon composition, and a threefold increase in buds produced in subsequent years. In the second year of the field study, ants remained numerically dominant on trees with EFNs, but arthropod community diversity was higher than for trees without EFNs. An additional study revealed that folivory rates in May increased dramatically for trees with EFNs if ants were excluded from their canopies, indicating that ants have a protective function when the perennial trees produce new leaves. However, in later months, regardless of ants' presence, the trees with EFNs suffered less folivory than trees lacking EFNs. The diversity and richness of the predator trophic group increased when ants were excluded from trees with EFNs, but overall community diversity (i.e., herbivores and predators combined) was not affected by the ants' presence. Our research indicates that the EFNs play an important role in attracting predators that protect the trees from herbivores, and the EFN host-plant characteristic should be retained in future peach cultivar selections. Furthermore, peach production programs aimed

  7. Evaluating ascorbate oxidase as a plant defense against leaf-chewing insects using transgenic poplar.

    PubMed

    Barbehenn, Raymond V; Jaros, Adam; Yip, Lynn; Tran, Lan; Kanellis, Angelos K; Constabel, C Peter

    2008-10-01

    Ascorbate is the major water-soluble antioxidant in plants and animals, and it is an essential nutrient for most insect herbivores. Therefore, ascorbate oxidase (AO) has been proposed to function as a plant defense that decreases the availability of ascorbate to insects. This hypothesis was tested by producing transgenic poplar (Populus tremula x Populus alba; Salicaceae) with 14- to 37-fold higher foliar AO activities than control (wild type) leaves and feeding these leaves to Lymantria dispar L. (Lepidoptera: Lymantriidae) caterpillars and Melanoplus sanguinipes (Fabricius) (Orthoptera: Acrididae) grasshoppers. To examine potential mechanisms of activity of AO in these insects, ascorbyl radical and/or ascorbate levels were measured in gut contents. No significant changes in ascorbyl radical or ascorbate levels were found in the midgut contents of L. dispar larvae that ingested the leaves of the AO-overexpressing genotypes compared to the control genotype, and no significant decreases in ascorbate levels were found in the foregut or midgut contents of M. sanguinipes. Treatment of control leaves with commercial AO also produced no changes in the midgut biochemistry of L. dispar larvae, as measured by levels of ascorbyl radicals. Likewise, no increase in oxidative stress was observed in L. dispar that consumed tannin-treated AO-overexpressing leaves compared with tannin-treated control genotype leaves. Performance experiments were carried out on first- and fourth-instar L. dispar larvae on leaf disks and on third instars feeding on intact leaves on trees. In no case was a significant difference found in the contrast between the control and three AO-overexpressing genotypes for relative consumption rate, relative growth rate, or nutritional indices. We conclude that elevated levels of AO in poplar are unlikely to serve as a defense against herbivores such as L. dispar or M. sanguinipes and that the low oxygen levels commonly found in the guts of caterpillars and

  8. Is crypsis a common defensive strategy in plants? Speculation on signal deception in the New Zealand flora.

    PubMed

    Burns, Kevin C

    2010-01-01

    Color is a common feature of animal defense. Herbivorous insects are often colored in shades of green similar to their preferred food plants, making them difficult for predators to locate. Other insects advertise their presence with bright colors after they sequester enough toxins from their food plants to make them unpalatable. Some insects even switch between cryptic and aposomatic coloration during development. Although common in animals, quantitative evidence for color-based defense in plants is rare. After all, the primary function of plant leaves is to absorb light for photosynthesis, rather than reflect light in ways that alter their appearance to herbivores. However, recent research is beginning to challenge the notion that color-based defence is restricted to animals.

  9. NIK1, a host factor specialized in antiviral defense or a novel general regulator of plant immunity?

    PubMed

    Machado, Joao P B; Brustolini, Otavio J B; Mendes, Giselle C; Santos, Anésia A; Fontes, Elizabeth P B

    2015-11-01

    NIK1 is a receptor-like kinase involved in plant antiviral immunity. Although NIK1 is structurally similar to the plant immune factor BAK1, which is a key regulator in plant immunity to bacterial pathogens, the NIK1-mediated defenses do not resemble BAK1 signaling cascades. The underlying mechanism for NIK1 antiviral immunity has recently been uncovered. NIK1 activation mediates the translocation of RPL10 to the nucleus, where it interacts with LIMYB to fully down-regulate translational machinery genes, resulting in translation inhibition of host and viral mRNAs and enhanced tolerance to begomovirus. Therefore, the NIK1 antiviral immunity response culminates in global translation suppression, which represents a new paradigm for plant antiviral defenses. Interestingly, transcriptomic analyses in nik1 mutant suggest that NIK1 may suppress antibacterial immune responses, indicating a possible opposite effect of NIK1 in bacterial and viral infections.

  10. Grape Marc Extract-Induced Defense Reactions and Protection against Phytophthora parasitica Are Impaired in NahG Tobacco Plants.

    PubMed

    Benouaret, Razik; Goupil, Pascale

    2015-08-05

    Grape marc extract (GME) acts as an elicitor of plant defense responses. This study analyzed GME-induced plant defense reactions in NahG transgenic tobacco. Leaf infiltration of NahG leaves revealed HR-like reactions with reduced lesions and weak deployment of autofluorescent compounds in the surrounding infiltrated tissues. The β-1,3-glucanase PR2-, endochitinase PR3-, and osmotin PR5-target transcript levels were strongly lowered in NahG leaves, and the mutant failed to accumulate the antimicrobial PR1 transcripts. GME-induced protection against Phytophthora parasitica var. nicotianae (Ppn) was evaluated on tobacco leaves. The antimicrobial properties of GME against Ppn were evidenced using a range of in vitro tests. GME-sprayed wild-type leaves showed reduced infection areas, whereas GME failed to induce a protective effect against Ppn in NahG leaves. The results suggest that GME-induced plant defense reactions in tobacco plants was mediated by salicylic acid (SA) and that GME-induced protection against Ppn could be the combined result of antimicrobial and defense actions.

  11. Temporal and Spatial Resolution of Activated Plant Defense Responses in Leaves of Nicotiana benthamiana Infected with Dickeya dadantii

    PubMed Central

    Pérez-Bueno, María L.; Granum, Espen; Pineda, Mónica; Flors, Víctor; Rodriguez-Palenzuela, Pablo; López-Solanilla, Emilia; Barón, Matilde

    2016-01-01

    The necrotrophic bacteria Dickeya dadantii is the causal agent of soft-rot disease in a broad range of hosts. The model plant Nicotiana benthamiana, commonly used as experimental host for a very broad range of plant pathogens, is susceptible to infection by D. dadantii. The inoculation with D. dadantii at high dose seems to overcome the plant defense capacity, inducing maceration and death of the tissue, although restricted to the infiltrated area. By contrast, the output of the defense response to low dose inoculation is inhibition of maceration and limitation in the growth, or even eradication, of bacteria. Responses of tissue invaded by bacteria (neighboring the infiltrated areas after 2–3 days post-inoculation) included: (i) inhibition of photosynthesis in terms of photosystem II efficiency; (ii) activation of energy dissipation as non-photochemical quenching in photosystem II, which is related to the activation of plant defense mechanisms; and (iii) accumulation of secondary metabolites in cell walls of the epidermis (lignins) and the apoplast of the mesophyll (phytoalexins). Infiltrated tissues showed an increase in the content of the main hormones regulating stress responses, including abscisic acid, jasmonic acid, and salicylic acid. We propose a mechanism involving the three hormones by which N. benthamiana could activate an efficient defense response against D. dadantii. PMID:26779238

  12. Pipecolic Acid Orchestrates Plant Systemic Acquired Resistance and Defense Priming via Salicylic Acid-Dependent and -Independent Pathways

    PubMed Central

    Bernsdorff, Friederike; Döring, Anne-Christin; Gruner, Katrin; Schuck, Stefan; Bräutigam, Andrea; Zeier, Jürgen

    2016-01-01

    We investigated the relationships of the two immune-regulatory plant metabolites, salicylic acid (SA) and pipecolic acid (Pip), in the establishment of plant systemic acquired resistance (SAR), SAR-associated defense priming, and basal immunity. Using SA-deficient sid2, Pip-deficient ald1, and sid2 ald1 plants deficient in both SA and Pip, we show that SA and Pip act both independently from each other and synergistically in Arabidopsis thaliana basal immunity to Pseudomonas syringae. Transcriptome analyses reveal that SAR establishment in Arabidopsis is characterized by a strong transcriptional response systemically induced in the foliage that prepares plants for future pathogen attack by preactivating multiple stages of defense signaling and that SA accumulation upon SAR activation leads to the downregulation of photosynthesis and attenuated jasmonate responses systemically within the plant. Whereas systemic Pip elevations are indispensable for SAR and necessary for virtually the whole transcriptional SAR response, a moderate but significant SA-independent component of SAR activation and SAR gene expression is revealed. During SAR, Pip orchestrates SA-dependent and SA-independent priming of pathogen responses in a FLAVIN-DEPENDENT-MONOOXYGENASE1 (FMO1)-dependent manner. We conclude that a Pip/FMO1 signaling module acts as an indispensable switch for the activation of SAR and associated defense priming events and that SA amplifies Pip-triggered responses to different degrees in the distal tissue of SAR-activated plants. PMID:26672068

  13. A Continent of Plant Defense Peptide Diversity: Cyclotides in Australian Hybanthus (Violaceae)W⃞

    PubMed Central

    Simonsen, Shane M.; Sando, Lillian; Ireland, David C.; Colgrave, Michelle L.; Bharathi, Rekha; Göransson, Ulf; Craik, David J.

    2005-01-01

    Cyclotides are plant-derived miniproteins that have the unusual features of a head-to-tail cyclized peptide backbone and a knotted arrangement of disulfide bonds. It had been postulated that they might be an especially large family of host defense agents, but this had not yet been tested by field data on cyclotide variation in wild plant populations. In this study, we sampled Australian Hybanthus (Violaceae) to gain an insight into the level of variation within populations, within species, and between species. A wealth of cyclotide diversity was discovered: at least 246 new cyclotides are present in the 11 species sampled, and 26 novel sequences were characterized. A new approach to the discovery of cyclotide sequences was developed based on the identification of a conserved sequence within a signal sequence in cyclotide precursors. The number of cyclotides in the Violaceae is now estimated to be >9000. Cyclotide physicochemical profiles were shown to be a useful taxonomic feature that reflected species and their morphological relationships. The novel sequences provided substantial insight into the tolerance of the cystine knot framework in cyclotides to amino acid substitutions and will facilitate protein engineering applications of this framework. PMID:16199617

  14. Involvement of Trichoderma Trichothecenes in the Biocontrol Activity and Induction of Plant Defense-Related Genes

    PubMed Central

    Malmierca, M. G.; Cardoza, R. E.; Alexander, N. J.; McCormick, S. P.; Hermosa, R.; Monte, E.

    2012-01-01

    Trichoderma species produce trichothecenes, most notably trichodermin and harzianum A (HA), by a biosynthetic pathway in which several of the involved proteins have significant differences in functionality compared to their Fusarium orthologues. In addition, the genes encoding these proteins show a genomic organization differing from that of the Fusarium tri clusters. Here we describe the isolation of Trichoderma arundinaceum IBT 40837 transformants which have a disrupted or silenced tri4 gene, a gene encoding a cytochrome P450 monooxygenase that oxygenates trichodiene to give rise to isotrichodiol, and the effect of tri4 gene disruption and silencing on the expression of other tri genes. Our results indicate that the tri4 gene disruption resulted in a reduced antifungal activity against Botrytis cinerea and Rhizoctonia solani and also in a reduced ability to induce the expression of tomato plant defense-related genes belonging to the salicylic acid (SA) and jasmonate (JA) pathways against B. cinerea, in comparison to the wild-type strain, indicating that HA plays an important function in the sensitization of Trichoderma-pretreated plants against this fungal pathogen. Additionally, the effect of the interaction of T. arundinaceum with B. cinerea or R. solani and with tomato seedlings on the expressions of the tri genes was studied. PMID:22562989

  15. Regulation of a chemical defense against herbivory produced by symbiotic fungi in grass plants.

    PubMed

    Zhang, Dong-Xiu; Nagabhyru, Padmaja; Schardl, Christopher L

    2009-06-01

    Neotyphodium uncinatum and Neotyphodium siegelii are fungal symbionts (endophytes) of meadow fescue (MF; Lolium pratense), which they protect from insects by producing loline alkaloids. High levels of lolines are produced following insect damage or mock herbivory (clipping). Although loline alkaloid levels were greatly elevated in regrowth after clipping, loline-alkaloid biosynthesis (LOL) gene expression in regrowth and basal tissues was similar to unclipped controls. The dramatic increase of lolines in regrowth reflected the much higher concentrations in young (center) versus older (outer) leaf blades, so LOL gene expression was compared in these tissues. In MF-N. siegelii, LOL gene expression was similar in younger and older leaf blades, whereas expression of N. uncinatum LOL genes and some associated biosynthesis genes was higher in younger than older leaf blades. Because lolines are derived from amino acids that are mobilized to new growth, we tested the amino acid levels in center and outer leaf blades. Younger leaf blades of aposymbiotic plants (no endophyte present) had significantly higher levels of asparagine and sometimes glutamine compared to older leaf blades. The amino acid levels were much lower in MF-N. siegelii and MF-N. uncinatum compared to aposymbiotic plants and MF with Epichloë festucae (a closely related symbiont), which lacked lolines. We conclude that loline alkaloid production in young tissue depleted these amino acid pools and was apparently regulated by availability of the amino acid substrates. As a result, lolines maximally protect young host tissues in a fashion similar to endogenous plant metabolites that conform to optimal defense theory.

  16. Effects of time delay and space on herbivore dynamics: linking inducible defenses of plants to herbivore outbreak

    NASA Astrophysics Data System (ADS)

    Sun, Gui-Quan; Wang, Su-Lan; Ren, Qian; Jin, Zhen; Wu, Yong-Ping

    2015-06-01

    Empirical results indicate that inducible defenses of plants have effects on herbivore populations. However, little is known about how inducible defenses of plants have influences on herbivore outbreak when space effect is considered. To reveal the relationship between inducible defenses and herbivore outbreak, we present a mathematical model to describe the interaction of them. It was found that time delay plays dual effects in the persistence of herbivore populations: (i) large value of time delay may be associated with small density of herbivore populations, and thus causes the populations to run a higher risk of extinction; (ii) moderate value of time delay is beneficial for maintaining herbivore density in a determined range which may promote the persistence of herbivore populations. Additionally, we revealed that interaction of time delay and space promotes the growth of average density of herbivore populations during their outbreak period which implied that time delay may drive the resilience of herbivore populations. Our findings highlight the close relationship between inducible defenses of plants and herbivore outbreak.

  17. Relaxation of herbivore-mediated selection drives the evolution of genetic covariances between plant competitive and defense traits.

    PubMed

    Uesugi, Akane; Connallon, Tim; Kessler, André; Monro, Keyne

    2017-04-10

    Insect herbivores are important mediators of selection on traits that impact plant defense against herbivory and competitive ability. Although recent experiments demonstrate a central role for herbivory in driving rapid evolution of defense and competition-mediating traits, whether and how herbivory shapes heritable variation in these traits remains poorly understood. Here, we evaluate the structure and evolutionary stability of the G matrix for plant metabolites that are involved in defense and allelopathy in the tall goldenrod, Solidago altissima. We show that G has evolutionarily diverged between experimentally-replicated populations that evolved in the presence versus the absence of ambient herbivory, providing direct evidence for the evolution of G by natural selection. Specifically, evolution in an herbivore-free habitat altered the orientation of G, revealing a negative genetic covariation between defense- and competition-related metabolites that is typically masked in herbivore-exposed populations. Our results may be explained by predictions of classical quantitative genetic theory, as well as the theory of acquisition-allocation trade-offs. The study provides compelling evidence that herbivory drives the evolution of plant genetic architecture. This article is protected by copyright. All rights reserved.

  18. Effects of time delay and space on herbivore dynamics: linking inducible defenses of plants to herbivore outbreak.

    PubMed

    Sun, Gui-Quan; Wang, Su-Lan; Ren, Qian; Jin, Zhen; Wu, Yong-Ping

    2015-06-18

    Empirical results indicate that inducible defenses of plants have effects on herbivore populations. However, little is known about how inducible defenses of plants have influences on herbivore outbreak when space effect is considered. To reveal the relationship between inducible defenses and herbivore outbreak, we present a mathematical model to describe the interaction of them. It was found that time delay plays dual effects in the persistence of herbivore populations: (i) large value of time delay may be associated with small density of herbivore populations, and thus causes the populations to run a higher risk of extinction; (ii) moderate value of time delay is beneficial for maintaining herbivore density in a determined range which may promote the persistence of herbivore populations. Additionally, we revealed that interaction of time delay and space promotes the growth of average density of herbivore populations during their outbreak period which implied that time delay may drive the resilience of herbivore populations. Our findings highlight the close relationship between inducible defenses of plants and herbivore outbreak.

  19. Plant structural complexity and mechanical defenses mediate predator-prey interactions in an odonate-bird system.

    PubMed

    Grof-Tisza, Patrick; LoPresti, Eric; Heath, Sacha K; Karban, Richard

    2017-03-01

    Habitat-forming species provide refuges for a variety of associating species; these refuges may mediate interactions between species differently depending on the functional traits of the habitat-forming species. We investigated refuge provisioning by plants with different functional traits for dragonfly and damselfly (Odonata: Anisoptera and Zygoptera) nymphs emerging from water bodies to molt into their adult stage. During this period, nymphs experience high levels of predation by birds. On the shores of a small pond, plants with mechanical defenses (e.g., thorns and prickles) and high structural complexity had higher abundances of odonate exuviae than nearby plants which lacked mechanical defenses and exhibited low structural complexity. To disentangle the relative effects of these two potentially important functional traits on nymph emergence-site preference and survival, we conducted two fully crossed factorial field experiments using artificial plants. Nymphs showed a strong preference for artificial plants with high structural complexity and to a lesser extent, mechanical defenses. Both functional traits increased nymph survival but through different mechanisms. We suggest that future investigations attempt to experimentally separate the elements contributing to structural complexity to elucidate the mechanistic underpinnings of refuge provisioning.

  20. Arabidopsis Sigma Factor Binding Proteins Are Activators of the WRKY33 Transcription Factor in Plant Defense[W

    PubMed Central

    Lai, Zhibing; Li, Ying; Wang, Fei; Cheng, Yuan; Fan, Baofang; Yu, Jing-Quan; Chen, Zhixiang

    2011-01-01

    Necrotrophic pathogens are important plant pathogens that cause many devastating plant diseases. Despite their impact, our understanding of the plant defense response to necrotrophic pathogens is limited. The WRKY33 transcription factor is important for plant resistance to necrotrophic pathogens; therefore, elucidation of its functions will enhance our understanding of plant immunity to necrotrophic pathogens. Here, we report the identification of two WRKY33-interacting proteins, nuclear-encoded SIGMA FACTOR BINDING PROTEIN1 (SIB1) and SIB2, which also interact with plastid-encoded plastid RNA polymerase SIGMA FACTOR1. Both SIB1 and SIB2 contain an N-terminal chloroplast targeting signal and a putative nuclear localization signal, suggesting that they are dual targeted. Bimolecular fluorescence complementation indicates that WRKY33 interacts with SIBs in the nucleus of plant cells. Both SIB1 and SIB2 contain a short VQ motif that is important for interaction with WRKY33. The two VQ motif–containing proteins recognize the C-terminal WRKY domain and stimulate the DNA binding activity of WRKY33. Like WRKY33, both SIB1 and SIB2 are rapidly and strongly induced by the necrotrophic pathogen Botrytis cinerea. Resistance to B. cinerea is compromised in the sib1 and sib2 mutants but enhanced in SIB1-overexpressing transgenic plants. These results suggest that dual-targeted SIB1 and SIB2 function as activators of WRKY33 in plant defense against necrotrophic pathogens. PMID:21990940

  1. A mixed diet of toxic plants enables increased feeding and anti-predator defense by an insect herbivore.

    PubMed

    Mason, P A; Bernardo, M A; Singer, M S

    2014-10-01

    Some insect herbivores sequester plant secondary metabolites (PSMs) for their own defense, raising the interesting possibility that grazing herbivores are defended by combinations of PSMs from different plant species. In this study, we tested the hypothesis that the grazing caterpillar, Grammia incorrupta, deters the ant, Aphaenogaster cockerelli, by eating a mixture of plants containing iridoid glycosides (IGs) and those containing pyrrolizidine alkaloids (PAs), and that this deterrence is greater than that attained by eating either plant alone. This hypothesis was tested against the non-mutually exclusive hypothesis that mixing plants containing PAs with those containing IGs improves growth performance. Caterpillar survival and growth were measured on three experimental diets: a PA plant, an IG plant, and a mixture of the two. We measured the degree of deterrence associated with these, and an additional experimental diet devoid of PSMs at naturally occurring A. cockerelli nests. Caterpillars fed both plants gained more mass than those fed either plant alone, but took longer to develop. These differences were not caused by diet-based variation in growth efficiency, but by eating more food when offered the mixed-plant diet relative to single-plant diets. The mixed diet was shown to provide deterrence to ants, whereas caterpillars fed single-plant diets were not significantly more deterrent than caterpillars that had eaten the PSM-free diet. We hypothesize that enhanced defense results from increased food consumption in response to multiple plant species, perhaps leading to greater PSM sequestration. Through this mechanism, bottom-up and top-down effects may mutually reinforce the grazing dietary strategy.

  2. Induction of defense responses in cucumber plants by using the cell-free filtrate of the plant growth-promoting fungus Penicillium simplicissimum GP17-2.

    PubMed

    Shimizu, Kaori; Hossain, Mohamed Motaher; Kato, Kimihiko; Kubota, Mashaharu; Hyakumachi, Mitsuro

    2013-01-01

    Penicillium simplicissimum GP17-2 is a plant growth-promoting fungus (PGPF) and an inducer of systemic defense responses. The mechanisms underlying the effect of GP17-2 on the reduction of cucumber leaf damage caused by the anthracnose pathogen Colletotrichum orbiculare were investigated. Cucumber leaves treated with the culture filtrate (CF) of GP17-2 exhibited a clear systemic resistance against subsequent infection with C. orbiculare. The number and size of lesions caused by the disease were reduced in CF-treated plants, in comparison with that in the control plants. The results showed that CF treatment could trigger a set of defense responses, including the production of hydrogen peroxide, formation of lignin, emission of ultra-weak photons, accumulation of salicylic acid, and increase in the transcription of the genes for the defense-related enzymes chitinase and peroxidase. Furthermore, subsequent inoculation of CF-pretreated plants with C. orbiculare resulted in higher systemic expression of the genes for chitinase, β-1,3-glucanase, and peroxidase relative to nontreated, inoculated plants; this indicated that CF mediates a potentiation state in the plant, enabling it to mount a rapid and effective response on infection by C. orbiculare. Our results indicate that the ability of CF of GP17-2 to stimulate active oxygen species, lignification, SA accumulation, and defense gene activation and potentiation in the host is the possible mode of action of the GP17-2 elicitor and inducer of induced systemic resistance against C. orbiculare infection in cucumber plants.

  3. Dysfunctionality of the xylem in Olea europaea L. Plants associated with the infection process by Verticillium dahliae Kleb. Role of phenolic compounds in plant defense mechanism.

    PubMed

    Báidez, Ana G; Gómez, Pedro; Del Río, José A; Ortuño, Ana

    2007-05-02

    Xylem ultrastructural modification and the possible participation of phenolic compounds in the natural defense or resistance mechanisms of olive plants infected with Verticillium dahliae Kleb. were studied. Microscopic study showed that the mycelium propagated and passed from one element to another through the pit. The formation of tyloses and aggregates contributed to obstruction of the xylem lumen. In vivo changes in the levels of these phenolic compounds in infected olive plants and their antifungal activity against Verticillium dahliae Kleb., as revealed by in vitro study, strongly suggest that they are involved in natural defense or resistance mechanisms in this plant material, the most active being quercetin and luteolin aglycons, followed by rutin, oleuropein, luteolin-7-glucoside, tyrosol, p-coumaric acid, and catechin. .

  4. Manipulation of plant defense responses by the tomato psyllid (Bactericerca cockerelli) and its associated endosymbiont Candidatus Liberibacter psyllaurous.

    PubMed

    Casteel, Clare L; Hansen, Allison K; Walling, Linda L; Paine, Timothy D

    2012-01-01

    Some plant pathogens form obligate relationships with their insect vector and are vertically transmitted via eggs analogous to insect endosymbionts. Whether insect endosymbionts manipulate plant defenses to benefit their insect host remains unclear. The tomato psyllid, Bactericerca cockerelli (Sulc), vectors the endosymbiont "Candidatus Liberibacter psyllaurous" (Lps) during feeding on tomato (Solanum lycopersicum L.). Lps titer in psyllids varied relative to the psyllid developmental stage with younger psyllids harboring smaller Lps populations compared to older psyllids. In the present study, feeding by different life stages of B. cockerelli infected with Lps, resulted in distinct tomato transcript profiles. Feeding by young psyllid nymphs, with lower Lps levels, induced tomato genes regulated by jasmonic acid (JA) and salicylic acid (SA) (Allene oxide synthase, Proteinase inhibitor 2, Phenylalanine ammonia-lyase 5, Pathogenesis-related protein 1) compared to feeding by older nymphs and adults, where higher Lps titers were found. In addition, inoculation of Lps without insect hosts suppressed accumulation of these defense transcripts. Collectively, these data suggest that the endosymbiont-like pathogen Lps manipulates plant signaling and defensive responses to benefit themselves and the success of their obligate insect vector on their host plant.

  5. A Novel Meloidogyne incognita Effector Misp12 Suppresses Plant Defense Response at Latter Stages of Nematode Parasitism

    PubMed Central

    Xie, Jialian; Li, Shaojun; Mo, Chenmi; Wang, Gaofeng; Xiao, Xueqiong; Xiao, Yannong

    2016-01-01

    Secreted effectors in plant root-knot nematodes (RKNs, or Meloidogyne spp.) play key roles in their parasite processes. Currently identified effectors mainly focus on the early stage of the nematode parasitism. There are only a few reports describing effectors that function in the latter stage. In this study, we identified a potential RKN effector gene, Misp12, that functioned during the latter stage of parasitism. Misp12 was unique in the Meloidogyne spp., and highly conserved in Meloidogyne incognita. It encoded a secretory protein that specifically expressed in the dorsal esophageal gland, and highly up-regulated during the female stages. Transient expression of Misp12-GUS-GFP in onion epidermal cell showed that Misp12 was localized in cytoplast. In addition, in planta RNA interference targeting Misp12 suppressed the expression of Misp12 in nematodes and attenuated parasitic ability of M. incognita. Furthermore, up-regulation of jasmonic acid (JA) and salicylic acid (SA) pathway defense-related genes in the virus-induced silencing of Misp12 plants, and down-regulation of SA pathway defense-related genes in Misp12-expressing plants indicated the gene might be associated with the suppression of the plant defense response. These results demonstrated that the novel nematode effector Misp12 played a critical role at latter parasitism of M. incognita. PMID:27446188

  6. Transmission of plant-pathogenic bacteria by nonhost seeds without induction of an associated defense reaction at emergence.

    PubMed

    Darrasse, Armelle; Darsonval, Arnaud; Boureau, Tristan; Brisset, Marie-Noëlle; Durand, Karine; Jacques, Marie-Agnès

    2010-10-01

    An understanding of the mechanisms involved in the different steps of bacterial disease epidemiology is essential to develop new control strategies. Seeds are the passive carriers of a diversified microbial cohort likely to affect seedling physiology. Among seed-borne plant-pathogenic bacteria, seed carriage in compatible situations is well evidenced. The aims of our work are to determine the efficiency of pathogen transmission to seeds of a nonhost plant and to evaluate bacterial and plant behaviors at emergence. Bacterial transmission from flowers to seeds and from seeds to seedlings was measured for Xanthomonas campestris pv. campestris in incompatible interactions with bean. Transmissions from seeds to seedlings were compared for X. campestris pv. campestris, for Xanthomonas citri pv. phaseoli var. fuscans in compatible interactions with bean, and for Escherichia coli, a human pathogen, in null interactions with bean. The induction of defense responses was monitored by using reverse transcription and quantitative PCR (RT-qPCR) of genes representing the main signaling pathways and assaying defense-related enzymatic activities. Flower inoculations resulted in a high level of bean seed contamination by X. campestris pv. campestris, which transmitted efficiently to seedlings. Whatever the type of interaction tested, dynamics of bacterial population sizes were similar on seedlings, and no defense responses were induced evidencing bacterial colonization of seedlings without any associated defense response induction. Bacteria associated with the spermosphere multiply in this rich environment, suggesting that the colonization of seedlings relies mostly on commensalism. The transmission of plant-pathogenic bacteria to and by nonhost seeds suggests a probable role of seeds of nonhost plants as an inoculum source.

  7. Calcium signatures and signaling in cytosol and organelles of tobacco cells induced by plant defense elicitors.

    PubMed

    Manzoor, Hamid; Chiltz, Annick; Madani, Siham; Vatsa, Parul; Schoefs, Benoît; Pugin, Alain; Garcia-Brugger, Angela

    2012-06-01

    Calcium signatures induced by two elicitors of plant defense reactions, namely cryptogein and oligogalacturonides, were monitored at the subcellular level, using apoaequorin-transformed Nicotiana tabacum var Xanthi cells, in which the apoaequorin calcium sensor was targeted either to cytosol, mitochondria or chloroplasts. Our study showed that both elicitors induced specific Ca(2+) signatures in each compartment, with the most striking difference relying on duration. Common properties also emerged from the analysis of Ca(2+) signatures: both elicitors induced a biphasic cytosolic [Ca(2+)] elevation together with a single mitochondrial [Ca(2+)] elevation concomitant with the first cytosolic [Ca(2+)] peak. In addition, both elicitors induced a chloroplastic [Ca(2+)] elevation peaking later in comparison to cytosolic [Ca(2+)] elevation. In cryptogein-treated cells, pharmacological studies indicated that IP(3) should play an important role in Ca(2+) signaling contrarily to cADPR or nitric oxide, which have limited or no effect on [Ca(2+)] variations. Our data also showed that, depending on [Ca(2+)] fluxes at the plasma membrane, cryptogein triggered a mitochondrial respiration increase and affected excess energy dissipation mechanisms in chloroplasts. Altogether the results indicate that cryptogein profoundly impacted cell functions at many levels, including organelles.

  8. The lipopolysaccharide of Sinorhizobium meliloti suppresses defense-associated gene expression in cell cultures of the host plant Medicago truncatula.

    PubMed

    Tellström, Verena; Usadel, Björn; Thimm, Oliver; Stitt, Mark; Küster, Helge; Niehaus, Karsten

    2007-02-01

    In the establishment of symbiosis between Medicago truncatula and the nitrogen-fixing bacterium Sinorhizobium meliloti, the lipopolysaccharide (LPS) of the microsymbiont plays an important role as a signal molecule. It has been shown in cell cultures that the LPS is able to suppress an elicitor-induced oxidative burst. To investigate the effect of S. meliloti LPS on defense-associated gene expression, a microarray experiment was performed. For evaluation of the M. truncatula microarray datasets, the software tool MapMan, which was initially developed for the visualization of Arabidopsis (Arabidopsis thaliana) datasets, was adapted by assigning Medicago genes to the ontology originally created for Arabidopsis. This allowed functional visualization of gene expression of M. truncatula suspension-cultured cells treated with invertase as an elicitor. A gene expression pattern characteristic of a defense response was observed. Concomitant treatment of M. truncatula suspension-cultured cells with invertase and S. meliloti LPS leads to a lower level of induction of defense-associated genes compared to induction rates in cells treated with invertase alone. This suppression of defense-associated transcriptional rearrangement affects genes induced as well as repressed by elicitation and acts on transcripts connected to virtually all kinds of cellular processes. This indicates that LPS of the symbiont not only suppresses fast defense responses as the oxidative burst, but also exerts long-term influences, including transcriptional adjustment to pathogen attack. These data indicate a role for LPS during infection of the plant by its symbiotic partner.

  9. Variation in plant defense against invasive herbivores: evidence for a hypersensitive response in eastern hemlocks (Tsuga canadensis).

    PubMed

    Radville, Laura; Chaves, Arielle; Preisser, Evan L

    2011-06-01

    Herbivores can trigger a wide array of morphological and chemical changes in their host plants. Feeding by some insects induces a defensive hypersensitive response, a defense mechanism consisting of elevated H(2)O(2) levels and tissue death at the site of herbivore feeding. The invasive hemlock woolly adelgid Adelges tsugae ('HWA') and elongate hemlock scale Fiorinia externa ('EHS') feed on eastern hemlocks; although both are sessile sap feeders, HWA causes more damage than EHS. The rapid rate of tree death following HWA infestation has led to the suggestion that feeding induces a hypersensitive response in hemlock trees. We assessed the potential for an herbivore-induced hypersensitive response in eastern hemlocks by measuring H(2)O(2) levels in foliage from HWA-infested, EHS-infested, and uninfested trees. Needles with settled HWA or EHS had higher H(2)O(2) levels than control needles, suggesting a localized hypersensitive plant response. Needles with no direct contact to settled HWA also had high H(2)O(2) levels, suggesting that HWA infestation may induce a systemic defense response in eastern hemlocks. There was no similar systemic defensive response in the EHS treatment. Our results showed that two herbivores in the same feeding guild had dramatically different outcomes on the health of their shared host.

  10. Modulation of plant defense responses to herbivores by simultaneous recognition of different herbivore-associated elicitors in rice

    PubMed Central

    Shinya, Tomonori; Hojo, Yuko; Desaki, Yoshitake; Christeller, John T.; Okada, Kazunori; Shibuya, Naoto; Galis, Ivan

    2016-01-01

    Induced plant defense responses against insect herbivores are triggered by wounding and/or perception of herbivore elicitors from their oral secretions (OS) and/or saliva. In this study, we analyzed OS isolated from two rice chewing herbivores, Mythimna loreyi and Parnara guttata. Both types of crude OS had substantial elicitor activity in rice cell system that allowed rapid detection of early and late defense responses, i.e. accumulation of reactive oxygen species (ROS) and defense secondary metabolites, respectively. While the OS from M. loreyi contained large amounts of previously reported insect elicitors, fatty acid-amino acid conjugates (FACs), the elicitor-active P. guttata’s OS contained no detectable FACs. Subsequently, elicitor activity associated with the high molecular mass fraction in OS of both herbivores was identified, and shown to promote ROS and metabolite accumulations in rice cells. Notably, the application of N-linolenoyl-Gln (FAC) alone had only negligible elicitor activity in rice cells; however, the activity of isolated elicitor fraction was substantially promoted by this FAC. Our results reveal that plants integrate various independent signals associated with their insect attackers to modulate their defense responses and reach maximal fitness in nature. PMID:27581373

  11. Exposure of Escherichia coli O157:H7 to soil, manure, or water influences its survival on plants and initiation of plant defense response.

    PubMed

    Seo, Seungwook; Matthews, Karl R

    2014-04-01

    This study evaluated whether growth medium or exposure conditions influence the production of capsular polysaccharides (CPS) by Escherichia coli O157:H7, and whether changes in CPS impact plant defense responses, consequently affecting survival on plants. E. coli O157:H7 grown in Luria-Bertani (LB) broth supplemented with manure extracts showed an approximately 58% increase in CPS production compared to cells grown in LB medium alone. Levels of CPS were significantly higher for E. coli O157:H7 cells exposed to soil or manure extracts as compared to the non-exposed LB cultured control. Arabidopsis thaliana plants expressing β-glucuronidase (GUS) under the control of the β-1,3-glucanase (BGL2) promoter were used to investigate whether E. coli O157:H7 induces defense-related gene expression. Plants inoculated with E. coli O157:H7 grown in LB containing manure extracts or cells exposed to manure extracts exhibited 3-fold and 2-fold lower GUS activity, respectively, suggesting a limited plant defense response compared to plants inoculated with cells grown in LB. On day 5 post inoculation the population of E. coli O157:H7 grown in LB supplemented with manure on plants was significantly greater than the population of E. coli O157:H7 grown in LB medium alone. E. coli O157:H7 cells exposed to soil or manure exhibited greater survival on plants compared to LB-grown E. coli O157:H7. The results of this study underscore the need to consider medium composition and cultural conditions when conducting crop challenge studies.

  12. Sm1, a proteinaceous elicitor secreted by the biocontrol fungus Trichoderma virens induces plant defense responses and systemic resistance.

    PubMed

    Djonović, Slavica; Pozo, Maria J; Dangott, Lawrence J; Howell, Charles R; Kenerley, Charles M

    2006-08-01

    The soilborne filamentous fungus Trichoderma virens is a biocontrol agent with a well-known ability to produce antibiotics, parasitize pathogenic fungi, and induce systemic resistance in plants. Even though a plant-mediated response has been confirmed as a component of bioprotection by Trichoderma spp., the molecular mechanisms involved remain largely unknown. Here, we report the identification, purification, and characterization of an elicitor secreted by T. virens, a small protein designated Sm1 (small protein 1). Sm1 lacks toxic activity against plants and microbes. Instead, native, purified Sm1 triggers production of reactive oxygen species in monocot and dicot seedlings, rice, and cotton, and induces the expression of defense-related genes both locally and systemically in cotton. Gene expression analysis revealed that SM1 is expressed throughout fungal development under different nutrient conditions and in the presence of a host plant. Using an axenic hydroponic system, we show that SM1 expression and secretion of the protein is significantly higher in the presence of the plant. Pretreatment of cotton cotyledons with Sm1 provided high levels of protection to the foliar pathogen Colletotrichum sp. These results indicate that Sm1 is involved in the induction of resistance by Trichoderma spp. through the activation of plant defense mechanisms.

  13. Hydrogen peroxide induced phenylpropanoids pathway eliciting a defensive response in plants micropropagated in Temporary Immersion Bioreactors (TIBs).

    PubMed

    Arencibia, Ariel D; Bernal, Aydiloide; Zayas, Carlos; Carmona, Elva; Cordero, Cecilia; González, Gloria; García, Rolando; Santana, Ignacio

    2012-10-01

    The relation between the oxidative burst and phenylpropanoid pathways has been studied using the sugarcane cultivar C86-56, which does not release phenolics in agar-base micropropagation systems. In stationary liquid culture, a significant production of phenolic compounds and plant survival were determined in sugarcane plants treated with 5mM H(2)O(2). The spectrophotometer determinations and the gene expression analysis corroborated that releasing of phenolics and soluble θ-quinones was induced during the first 24h of treatment. In comparison with the control treatments, sugarcane plants treated with H(2)O(2) demonstrated differences in the micropropagation-related variables when multiplied in Temporary Immersion Bioreactors (TIBs) supplemented with polyethyleneglycol (PEG 20%). Expression of selected genes related to photosynthesis, ethylene, auxins, oxidative burst, and defense pathways were confirmed during the entire PEG 20% stress in the plants coming from the 5mM H(2)O(2) treatment; whereas, much more heterogeneous expression patterns were evidenced in plants stressed with PEG but not previously treated with H(2)O(2). RT-PCR expression analysis supports the hypothesis that while H(2)O(2) induces the oxidative burst, the phenylpropanoids pathways elicit and maintain the defensive response mechanism in micropropagated sugarcane plants.

  14. Role of plant β-glucosidases in the dual defense system of iridoid glycosides and their hydrolyzing enzymes in Plantago lanceolata and Plantago major.

    PubMed

    Pankoke, Helga; Buschmann, Torsten; Müller, Caroline

    2013-10-01

    The typical defense compounds of Plantaginaceae are the iridoid glycosides, which retard growth and/or enhance mortality of non-adapted herbivores. In plants, glycosidic defense compounds and hydrolytic enzymes often form a dual defense system, in which the glycosides are activated by the enzymes to exert biological effects. Yet, little is known about the activating enzymes in iridoid glycoside-containing plants. To examine the role of plant-derived β-glucosidases in the dual defense system of two common plantain species, Plantago lanceolata and Plantago major, we determined the concentration of iridoid glycosides as well as the β-glucosidase activity in leaves of different age. To investigate the presence of other leaf metabolites potentially involved in plant defense, we used a metabolic fingerprinting approach with ultra-high performance liquid chromatography coupled with time-of-flight-mass spectrometry. According to the optimal defense hypothesis, more valuable parts such as young leaves should be better protected than less valuable parts. Therefore, we expected that both, the concentrations of defense compounds as well as the β-glucosidase activity, should be highest in younger leaves and decrease with increasing leaf age. Both species possessed β-glucosidase activity, which hydrolyzed aucubin, one of the two most abundant iridoid glycosides in both plant species, with high activity. In line with the optimal defense hypothesis, the β-glucosidase activity in both Plantago species as well as the concentration of defense-related metabolites such as iridoid glycosides correlated negatively to leaf age. When leaf extracts were incubated with bovine serum albumin and aucubin, SDS-PAGE revealed a protein-denaturing effect of the leaf extracts of both plantain species, suggesting that iridoid glycosides and plant β-glucosidase interact in a dual defense system.

  15. The Diversification of Plant NBS-LRR Defense Genes Directs the Evolution of MicroRNAs That Target Them

    PubMed Central

    Zhang, Yu; Xia, Rui; Kuang, Hanhui; Meyers, Blake C.

    2016-01-01

    High expression of plant nucleotide binding site leucine-rich repeat (NBS-LRR) defense genes is often lethal to plant cells, a phenotype perhaps associated with fitness costs. Plants implement several mechanisms to control the transcript level of NBS-LRR defense genes. As negative transcriptional regulators, diverse miRNAs target NBS-LRRs in eudicots and gymnosperms. To understand the evolutionary benefits of this miRNA-NBS-LRR regulatory system, we investigated the NBS-LRRs of 70 land plants, coupling this analysis with extensive small RNA data. A tight association between the diversity of NBS-LRRs and miRNAs was found. The miRNAs typically target highly duplicated NBS-LRRs. In comparison, families of heterogeneous NBS-LRRs were rarely targeted by miRNAs in Poaceae and Brassicaceae genomes. We observed that duplicated NBS-LRRs from different gene families periodically gave birth to new miRNAs. Most of these newly emerged miRNAs target the same conserved, encoded protein motif of NBS-LRRs, consistent with a model of convergent evolution for these miRNAs. By assessing the interactions between miRNAs and NBS-LRRs, we found nucleotide diversity in the wobble position of the codons in the target site drives the diversification of miRNAs. Taken together, we propose a co-evolutionary model of plant NBS-LRRs and miRNAs hypothesizing how plants balance the benefits and costs of NBS-LRR defense genes. PMID:27512116

  16. Mixtures in the real world: The importance of plant self-defense toxicants, mycotoxins, and the human diet

    SciTech Connect

    Mattsson, Joel L.

    2007-09-01

    A perusal of research presented at the Annual Society of Toxicology Meetings, or in nearly any toxicology journal, will show that the overwhelming emphasis of toxicology research is on synthetic chemistries. Because of substantial potency and exposure to natural chemicals, the overwhelming focus on synthetic chemistries cannot lead to a realistic understanding of chemical risk to the general population. Natural chemicals, simply because of their abundance and potency, may be as likely to be a public health concern and to be involved in chemical interactions (natural:natural, natural:pharmaceutical; or natural:synthetic) as are environmental levels of synthetic chemicals. All plants have a mix of natural self-defense chemistries and mycotoxins that, when tested in a manner comparable to synthetic pesticides, cause the entire spectrum of toxic effects. As a further complication, plants also escalate much of their self-defense chemistry when attacked by insects and fungi, and damaged crops often have higher mycotoxins levels. Effective crop protection will typically reduce the plant's levels of self-defense toxicants and mycotoxins, but may add residues of synthetic pesticides or add some other risk variable. In addition, cooking may also alter the food chemistry (e.g., acrylamide). The mixtures toxicologist needs to address the real world mixture of natural and synthetic chemicals. Public policy on crop-food safety cannot be sensibly guided without these data and large voids in our understanding of risks from real-world mixtures cannot be in the public interest.

  17. Whole-plant allocation to storage and defense in juveniles of related evergreen and deciduous shrub species.

    PubMed

    Wyka, T P; Karolewski, P; Żytkowiak, R; Chmielarz, P; Oleksyn, J

    2016-05-01

    In evergreen plants, old leaves may contribute photosynthate to initiation of shoot growth in the spring. They might also function as storage sites for carbohydrates and nitrogen (N). We hence hypothesized that whole-plant allocation of carbohydrates and N to storage in stems and roots may be lower in evergreen than in deciduous species. We selected three species pairs consisting of an evergreen and a related deciduous species: Mahonia aquifolium (Pursh) Nutt. and Berberis vulgaris L. (Berberidaceae), Prunus laurocerasus L. and Prunus serotina Ehrh. (Rosaceae), and Viburnum rhytidophyllum Hemsl. and Viburnum lantana L. (Adoxaceae). Seedlings were grown outdoors in pots and harvested on two dates during the growing season for the determination of biomass, carbohydrate and N allocation ratios. Plant size-adjusted pools of nonstructural carbohydrates in stems and roots were lower in the evergreen species of Berberidaceae and Adoxaceae, and the slope of the carbohydrate pool vs plant biomass relationship was lower in the evergreen species of Rosaceae compared with the respective deciduous species, consistent with the leading hypothesis. Pools of N in stems and roots, however, did not vary with leaf habit. In all species, foliage contained more than half of the plant's nonstructural carbohydrate pool and, in late summer, also more than half of the plant's N pool, suggesting that in juvenile individuals of evergreen species, leaves may be a major storage site. Additionally, we hypothesized that concentration of defensive phenolic compounds in leaves should be higher in evergreen than in deciduous species, because the lower carbohydrate pool in stems and roots of the former restricts their capacity for regrowth following herbivory and also because of the need to protect their longer-living foliage. Our results did not support this hypothesis, suggesting that evergreen plants may rely predominantly on structural defenses. In summary, our study indicates that leaf habit has

  18. Turnabout Is Fair Play: Herbivory-Induced Plant Chitinases Excreted in Fall Armyworm Frass Suppress Herbivore Defenses in Maize1[OPEN

    PubMed Central

    Alves, Patrick C.M.S.; Gaffoor, Iffa; Acevedo, Flor E.; Peiffer, Michelle; Jin, Shan; Han, Yang; Shakeel, Samina; Felton, Gary W.

    2016-01-01

    The perception of herbivory by plants is known to be triggered by the deposition of insect-derived factors such as saliva and oral secretions, oviposition materials, and even feces. Such insect-derived materials harbor chemical cues that may elicit herbivore and/or pathogen-induced defenses in plants. Several insect-derived molecules that trigger herbivore-induced defenses in plants are known; however, insect-derived molecules suppressing them are largely unknown. In this study, we identified two plant chitinases from fall armyworm (Spodoptera frugiperda) larval frass that suppress herbivore defenses while simultaneously inducing pathogen defenses in maize (Zea mays). Fall armyworm larvae feed in enclosed whorls of maize plants, where frass accumulates over extended periods of time in close proximity to damaged leaf tissue. Our study shows that maize chitinases, Pr4 and Endochitinase A, are induced during herbivory and subsequently deposited on the host with the feces. These plant chitinases mediate the suppression of herbivore-induced defenses, thereby increasing the performance of the insect on the host. Pr4 and Endochitinase A also trigger the antagonistic pathogen defense pathway in maize and suppress fungal pathogen growth on maize leaves. Frass-induced suppression of herbivore defenses by deposition of the plant-derived chitinases Pr4 and Endochitinase A is a unique way an insect can co-opt the plant’s defense proteins for its own benefit. It is also a phenomenon unlike the induction of herbivore defenses by insect oral secretions in most host-herbivore systems. PMID:26979328

  19. Induced plant defenses in the natural environment: Nicotiana attenuata WRKY3 and WRKY6 coordinate responses to herbivory.

    PubMed

    Skibbe, Melanie; Qu, Nan; Galis, Ivan; Baldwin, Ian T

    2008-07-01

    A plant-specific family of WRKY transcription factors regulates plant responses to pathogens and abiotic stresses. Here, we identify two insect-responsive WRKY genes in the native tobacco Nicotiana attenuata: WRKY3, whose transcripts accumulate in response to wounding, and WRKY6, whose wound responses are significantly amplified when fatty acid-amino acid conjugates (FACs) in larval oral secretions are introduced into wounds during feeding. WRKY3 is required for WRKY6 elicitation, yet neither is elicited by treatment with the phytohormone wound signal jasmonic acid. Silencing either WRKY3 or WRKY6, or both, by stable transformation makes plants highly vulnerable to herbivores under glasshouse conditions and in their native habitat in the Great Basin Desert, Utah, as shown in three field seasons. This susceptibility is associated with impaired jasmonate (JA) accumulation and impairment of the direct (trypsin proteinase inhibitors) and indirect (volatiles) defenses that JA signaling mediates. The response to wounding and herbivore-specific signals (FACs) demonstrates that these WRKYs help plants to differentiate mechanical wounding from herbivore attack, mediating a plant's herbivore-specific defenses. Differences in responses to single and multiple elicitations indicate an important role of WRKY3 and WRKY6 in potentiating and/or sustaining active JA levels during continuous insect attack.

  20. Jasmonate response decay and defense metabolite accumulation contributes to age-regulated dynamics of plant insect resistance

    PubMed Central

    Mao, Ying-Bo; Liu, Yao-Qian; Chen, Dian-Yang; Chen, Fang-Yan; Fang, Xin; Hong, Gao-Jie; Wang, Ling-Jian; Wang, Jia-Wei; Chen, Xiao-Ya

    2017-01-01

    Immunity deteriorates with age in animals but comparatively little is known about the temporal regulation of plant resistance to herbivores. The phytohormone jasmonate (JA) is a key regulator of plant insect defense. Here, we show that the JA response decays progressively in Arabidopsis. We show that this decay is regulated by the miR156-targeted SQUAMOSA PROMOTER BINDING PROTEIN-LIKE9 (SPL9) group of proteins, which can interact with JA ZIM-domain (JAZ) proteins, including JAZ3. As SPL9 levels gradually increase, JAZ3 accumulates and the JA response is attenuated. We provide evidence that this pathway contributes to insect resistance in young plants. Interestingly however, despite the decay in JA response, older plants are still comparatively more resistant to both the lepidopteran generalist Helicoverpa armigera and the specialist Plutella xylostella, along with increased accumulation of glucosinolates. We propose a model whereby constitutive accumulation of defense compounds plays a role in compensating for age-related JA-response attenuation during plant maturation. PMID:28067238

  1. Jasmonate response decay and defense metabolite accumulation contributes to age-regulated dynamics of plant insect resistance.

    PubMed

    Mao, Ying-Bo; Liu, Yao-Qian; Chen, Dian-Yang; Chen, Fang-Yan; Fang, Xin; Hong, Gao-Jie; Wang, Ling-Jian; Wang, Jia-Wei; Chen, Xiao-Ya

    2017-01-09

    Immunity deteriorates with age in animals but comparatively little is known about the temporal regulation of plant resistance to herbivores. The phytohormone jasmonate (JA) is a key regulator of plant insect defense. Here, we show that the JA response decays progressively in Arabidopsis. We show that this decay is regulated by the miR156-targeted SQUAMOSA PROMOTER BINDING PROTEIN-LIKE9 (SPL9) group of proteins, which can interact with JA ZIM-domain (JAZ) proteins, including JAZ3. As SPL9 levels gradually increase, JAZ3 accumulates and the JA response is attenuated. We provide evidence that this pathway contributes to insect resistance in young plants. Interestingly however, despite the decay in JA response, older plants are still comparatively more resistant to both the lepidopteran generalist Helicoverpa armigera and the specialist Plutella xylostella, along with increased accumulation of glucosinolates. We propose a model whereby constitutive accumulation of defense compounds plays a role in compensating for age-related JA-response attenuation during plant maturation.

  2. Non-indolyl cruciferous phytoalexins: Nasturlexins and tridentatols, a striking convergent evolution of defenses in terrestrial plants and marine animals?

    PubMed

    Pedras, M Soledade C; To, Q Huy

    2015-05-01

    Highly specialized chemical defense pathways are a particularly noteworthy metabolic characteristic of sessile organisms, whether terrestrial or marine, providing protection against pests and diseases. For this reason, knowledge of the metabolites involved in these processes is crucial to producing ecologically fit crops. Toward this end, the elicited chemical defenses of the crucifer watercress (Nasturtium officinale R. Br.), i.e. phytoalexins, were investigated and are reported. Almost three decades after publication of cruciferous phytoalexins derived from (S)-Trp, phytoalexins derived from other aromatic amino acids were isolated; their chemical structures were determined by analyses of their spectroscopic data and confirmed by synthesis. Nasturlexin A, nasturlexin B, and tridentatol C are hitherto unknown phenyl containing cruciferous phytoalexins produced by watercress under abiotic stress; tridentatol C is also produced by a marine animal (Tridentata marginata), where it functions in chemical defense against predators. The biosynthesis of these metabolites in both a terrestrial plant and a marine animal suggests a convergent evolution of unique metabolic pathways recruited for defense.

  3. The relationship between the plant-encoded RNA-dependent RNA polymerase 1 and alternative oxidase in tomato basal defense against Tobacco mosaic virus.

    PubMed

    Liao, Yang-Wen-Ke; Liu, Ya-Ru; Liang, Jia-Yang; Wang, Wen-Ping; Zhou, Jie; Xia, Xiao-Jian; Zhou, Yan-Hong; Yu, Jing-Quan; Shi, Kai

    2015-03-01

    Salicylic acid (SA) plays a critical role in plant defense against pathogen attack. The SA-induced viral defense in plants is distinct from the pathways mediating bacterial and fungal defense, which is pathogenesis-related protein-independent but involves an RNA-dependent RNA polymerase 1 (RDR1)-mediated RNA silencing mechanism and/or an alternative oxidase (AOX)-associated defense pathway. However, the relationship between these two viral defense-related pathways remains unclear. In this study, Tobacco mosaic virus (TMV) inoculation onto Solanum lycopersicum (tomato) leaves induced a rapid induction of the SlAOX1a transcript level as well as the total and CN-resistant respiration at 0.5 dpi, followed by an increase in SlRDR1 gene expression at 1 dpi in the upper uninoculated leaves. Silencing SlRDR1 using virus-induced gene silencing system significantly reduced SlRDR1 expression and tomato defense against TMV but had no evident effect on SlAOX1a transcription. Conversely, silencing SlAOX1a not only effectively reduced the AOX1a transcript level, but also blocked the TMV-induced SlRDR1 expression and decreased the basal defense against TMV. Furthermore, the application of an exogenous AOX activator on empty vector-silenced control plants greatly induced the accumulation of SlRDR1 and SlAOX1a transcript and reduced TMV viral RNA accumulation, but failed to have such effects on SlRDR1-silenced plants. Moreover, RDR1-overexpressed transgenic Nicotiana benthamiana plants enhanced defense against TMV than the empty vector-transformed plants, but these effects were not affected by the exogenous AOX activator or inhibitor. These results indicate that RDR1 is involved in the AOX-mediated defense pathway against TMV infection and plays a crucial role in enhancing RNA silencing to limit virus systemic spread.

  4. Induction of Defense-Related Enzymes in Banana Plants: Effect of Live and Dead Pathogenic Strain of Fusarium oxysporum f. sp. cubense.

    PubMed

    Thakker, Janki N; Patel, Samiksha; Dhandhukia, Pinakin C

    2013-01-01

    The aim of the present study was to scrutinize the response of banana (Grand Naine variety) plants when interacting with dead or live pathogen, Fusarium oxysporum f.sp. cubense, a causative agent of Panama disease. Response of plants was evaluated in terms of induction of defense-related marker enzyme activity, namely, peroxidase (POX), polyphenol oxidase (PPO), β-1,3 glucanase, chitinase, and phenolics. Plant's interaction with live pathogen resulted in early induction of defense to restrain penetration as well as antimicrobial productions. However, pathogen overcame the defense of plant and caused disease. Interaction with dead pathogen resulted in escalating defense response in plants. Later on plants inoculated with dead pathogen showed resistance to even forced inoculation of live pathogen. Results obtained in the present study suggest that dead pathogen was able to mount defense response in plants and provide resistance to Panama disease upon subsequent exposure. Therefore, preparation from dead pathogen could be a potential candidate as a biocontrol agent or plant vaccine to combat Panama disease.

  5. Arabidopsis BRCA2 and RAD51 proteins are specifically involved in defense gene transcription during plant immune responses

    PubMed Central

    Wang, Shui; Durrant, Wendy E.; Song, Junqi; Spivey, Natalie W.; Dong, Xinnian

    2010-01-01

    Systemic acquired resistance (SAR) is a plant immune response associated with both transcriptional reprogramming and increased homologous DNA recombination (HR). SNI1 is a negative regulator of SAR and HR, as indicated by the increased basal expression of defense genes and HR in sni1. We found that the sni1 phenotypes are rescued by mutations in BREAST CANCER 2 (BRCA2). In humans, BRCA2 is a mediator of RAD51 in pairing of homologous DNA. Mutations in BRCA2 cause predisposition to breast/ovarian cancers; however, the role of the BRCA2–RAD51 complex in transcriptional regulation remains unclear. In Arabidopsis, both brca2 and rad51 were found to be hypersusceptible not only to genotoxic substances, but also to pathogen infections. A whole-genome microarray analysis showed that downstream of NPR1, BRCA2A is a major regulator of defense-related gene transcription. ChIP demonstrated that RAD51 is specifically recruited to the promoters of defense genes during SAR. This recruitment is dependent on the SAR signal salicylic acid (SA) and on the function of BRCA2. This study provides the molecular evidence showing that the BRCA2–RAD51 complex, known for its function in HR, also plays a direct and specific role in transcription regulation during plant immune responses. PMID:21149701

  6. Role of the 4-phosphopantetheinyl transferase of Trichoderma virens in secondary metabolism and induction of plant defense responses.

    PubMed

    Velazquez-Robledo, R; Contreras-Cornejo, H A; Macias-Rodriguez, L; Hernandez-Morales, A; Aguirre, J; Casas-Flores, S; Lopez-Bucio, J; Herrera-Estrella, A

    2011-12-01

    Trichoderma virens is a ubiquitous soil fungus successfully used in biological control due to its efficient colonization of plant roots. In fungi, 4-phosphopantetheinyl transferases (PPTases) activate enzymes involved in primary and secondary metabolism. Therefore, we cloned the PPTase gene ppt1 from T. virens and generated PPTase-deficient (?ppt1) and overexpressing strains to investigate the role of this enzyme in biocontrol and induction of plant defense responses. The ?ppt1 mutants were auxotrophic for lysine, produced nonpigmented conidia, and were unable to synthesize nonribosomal peptides. Although spore germination was severely compromised under both low and high iron availability, mycelial growth occurred faster than the wild type, and the mutants were able to efficiently colonize plant roots. The ?ppt1 mutants were unable of inhibiting growth of phytopathogenic fungi in vitro. Arabidopsis thaliana seedlings co-cultivated with wild-type T. virens showed increased expression of pPr1a:uidA and pLox2:uidA markers, which correlated with enhanced accumulation of salicylic acid (SA), jasmonic acid, camalexin, and resistance to Botrytis cinerea. Co-cultivation of A. thaliana seedlings with ?ppt1 mutants compromised the SA and camalexin responses, resulting in decreased protection against the pathogen. Our data reveal an important role of T. virens PPT1 in antibiosis and induction of SA and camalexin-dependent plant defense responses.

  7. Sequential effects of root and foliar herbivory on aboveground and belowground induced plant defense responses and insect performance.

    PubMed

    Wang, Minggang; Biere, Arjen; Van der Putten, Wim H; Bezemer, T Martijn

    2014-05-01

    Plants are often simultaneously or sequentially attacked by multiple herbivores and changes in host plants induced by one herbivore can influence the performance of other herbivores. We examined how sequential feeding on the plant Plantago lanceolata by the aboveground herbivore Spodoptera exigua and the belowground herbivore Agriotes lineatus influences plant defense and the performance of both insects. Belowground herbivory caused a reduction in the food consumption by the aboveground herbivore independent of whether it was initiated before, at the same time, or after that of the aboveground herbivore. By contrast, aboveground herbivory did not significantly affect belowground herbivore performance, but significantly reduced the performance of later arriving aboveground conspecifics. Interestingly, belowground herbivores negated negative effects of aboveground herbivores on consumption efficiency of their later arriving conspecifics, but only if the belowground herbivores were introduced simultaneously with the early arriving aboveground herbivores. Aboveground-belowground interactions could only partly be explained by induced changes in an important class of defense compounds, iridoid glycosides (IGs). Belowground herbivory caused a reduction in IGs in roots without affecting shoot levels, while aboveground herbivory increased IG levels in roots in the short term (4 days) but only in the shoots in the longer term (17 days). We conclude that the sequence of aboveground and belowground herbivory is important in interactions between aboveground and belowground herbivores and that knowledge on the timing of exposure is essential to predict outcomes of aboveground-belowground interactions.

  8. Pseudomonas fluorescens induces strain-dependent and strain-independent host plant responses in defense networks, primary metabolism and photosynthesis

    SciTech Connect

    Pelletier, Dale A; Morrell-Falvey, Jennifer L; Karve, Abhijit A; Lu, Tse-Yuan S; Tschaplinski, Timothy J; Tuskan, Gerald A; Chen, Jay; Martin, Madhavi Z; Jawdy, Sara; Weston, David; Doktycz, Mitchel John; Schadt, Christopher Warren

    2012-01-01

    Colonization of plants by nonpathogenic Pseudomonas fluorescens strains can confer enhanced defense capacity against a broad spectrum of pathogens. Few studies, however, have linked defense pathway regulation to primary metabolism and physiology. In this study, physiological data, metabolites, and transcript profiles are integrated to elucidate how molecular networks initiated at the root-microbe interface influence shoot metabolism and whole-plant performance. Experiments with Arabidopsis thaliana were performed using the newly identified P. fluorescens GM30 or P. fluorescens Pf-5 strains. Co-expression networks indicated that Pf-5 and GM30 induced a subnetwork specific to roots enriched for genes participating in RNA regulation, protein degradation, and hormonal metabolism. In contrast, only GM30 induced a subnetwork enriched for calcium signaling, sugar and nutrient signaling, and auxin metabolism, suggesting strain dependence in network architecture. In addition, one subnetwork present in shoots was enriched for genes in secondary metabolism, photosynthetic light reactions, and hormone metabolism. Metabolite analysis indicated that this network initiated changes in carbohydrate and amino acid metabolism. Consistent with this, we observed strain-specific responses in tryptophan and phenylalanine abundance. Both strains reduced host plant carbon gain and fitness, yet provided a clear fitness benefit when plants were challenged with the pathogen P. syringae DC3000.

  9. The use of ECAS in plant protection: a green and efficient antimicrobial approach that primes selected defense genes.

    PubMed

    Zarattini, Marco; De Bastiani, Morena; Bernacchia, Giovanni; Ferro, Sergio; De Battisti, Achille

    2015-11-01

    The use of highly polluting chemicals for plant and crop protection is one of the components of the negative environmental impact of agricultural activities. In the present paper, an environmentally friendly alternative to pesticide application has been studied, based on the so-called electrochemically activated solutions (ECAS). Experiments have been carried out, by applying ECAS having different contents of active ingredients, on tobacco plants at a laboratory scale and on apple trees at fruit garden scale. The results, accumulated during a couple of years, have shown that properly selected dilute solutions of chlorides, once activated by an electrochemical treatment, exhibit a very effective protecting action of plants, irrespective of their nature. Extension of the research has shown that the observed effect is the result of two distinct factors: the expected anti-microbial action of the electrochemically synthesized oxidants, and an unexpected priming of immune plant defenses, which is clearly due to the treatment with ECAS. Interestingly, the repetition of ECAS application triggers an even stronger activation of defense genes. No oxidative damages, due to the use of the activated solutions, could be detected.

  10. Phyllotreta striolata flea beetles use host plant defense compounds to create their own glucosinolate-myrosinase system.

    PubMed

    Beran, Franziska; Pauchet, Yannick; Kunert, Grit; Reichelt, Michael; Wielsch, Natalie; Vogel, Heiko; Reinecke, Andreas; Svatoš, Aleš; Mewis, Inga; Schmid, Daniela; Ramasamy, Srinivasan; Ulrichs, Christian; Hansson, Bill S; Gershenzon, Jonathan; Heckel, David G

    2014-05-20

    The ability of a specialized herbivore to overcome the chemical defense of a particular plant taxon not only makes it accessible as a food source but may also provide metabolites to be exploited for communication or chemical defense. Phyllotreta flea beetles are adapted to crucifer plants (Brassicales) that are defended by the glucosinolate-myrosinase system, the so-called "mustard-oil bomb." Tissue damage caused by insect feeding brings glucosinolates into contact with the plant enzyme myrosinase, which hydrolyzes them to form toxic compounds, such as isothiocyanates. However, we previously observed that Phyllotreta striolata beetles themselves produce volatile glucosinolate hydrolysis products. Here, we show that P. striolata adults selectively accumulate glucosinolates from their food plants to up to 1.75% of their body weight and express their own myrosinase. By combining proteomics and transcriptomics, a gene responsible for myrosinase activity in P. striolata was identified. The major substrates of the heterologously expressed myrosinase were aliphatic glucosinolates, which were hydrolyzed with at least fourfold higher efficiency than aromatic and indolic glucosinolates, and β-O-glucosides. The identified beetle myrosinase belongs to the glycoside hydrolase family 1 and has up to 76% sequence similarity to other β-glucosidases. Phylogenetic analyses suggest species-specific diversification of this gene family in insects and an independent evolution of the beetle myrosinase from other insect β-glucosidases.

  11. Limited impact of elevated levels of polyphenol oxidase on tree-feeding caterpillars: assessing individual plant defenses with transgenic poplar.

    PubMed

    Barbehenn, Raymond V; Jones, Christopher P; Yip, Lynn; Tran, Lan; Constabel, C Peter

    2007-11-01

    Polyphenol oxidase (PPO) is commonly believed to function as an effective antiherbivore defense in plants. PPO is induced in plants following herbivory, and insect performance is often negatively correlated with PPO levels. However, induced defenses create numerous changes in plants, and very little work has been done to test the direct effects of PPO on insect herbivores separately from other changes. This study examined the impacts of high levels of PPO on the performance of two species of tree-feeding caterpillars (Lymantria dispar and Orgyia leucostigma) on poplar. Transgenic PPO-overexpressing poplar (Populus tremula x Populus alba) was used as a source of elevated-PPO leaves, thereby controlling for the multiple effects of induction. In addition, the impacts of treating poplar foliage with high levels of purified mushroom PPO were examined on the two caterpillar species. Contrary to expectation, in several cases increased PPO levels had no significant effect on insect consumption or growth rates. Although one of the mechanisms by which PPO is believed to impact herbivores is via increased oxidative stress, the ingestion of large amounts of PPO had little or no effect on semiquinone radical and oxidized protein levels in the gut contents of lymantriid caterpillars. PPO activity in caterpillars is likely limited by the low oxygen and high ascorbate levels commonly found in their gut contents. This study questions whether induced PPO functions as an effective post-ingestive defense against tree-feeding caterpillars, and indicates that controlled, mechanistic studies are needed in other plant-herbivore systems to test for a direct effect of PPO on insect performance.

  12. Induced release of a plant-defense volatile 'deceptively' attracts insect vectors to plants infected with a bacterial pathogen

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transmission of plant pathogens by insect vectors is a complex biological process involving interactions between the plant, insect and pathogen. Pathogen-induced plant responses can include changes in volatile and nonvolatile secondary metabolites, as well as major plant nutrients. Experiments were ...

  13. Influence of Rhizoctonia solani and Trichoderma spp. in growth of bean (Phaseolus vulgaris L.) and in the induction of plant defense-related genes.

    PubMed

    Mayo, Sara; Gutiérrez, Santiago; Malmierca, Monica G; Lorenzana, Alicia; Campelo, M Piedad; Hermosa, Rosa; Casquero, Pedro A

    2015-01-01

    Many Trichoderma species are well-known for their ability to promote plant growth and defense. We study how the interaction of bean plants with R. solani and/or Trichoderma affect the plants growth and the level of expression of defense-related genes. Trichoderma isolates were evaluated in vitro for their potential to antagonize R. solani. Bioassays were performed in climatic chambers and development of the plants was evaluated. The effect of Trichoderma treatment and/or R. solani infection on the expression of bean defense-related genes was analyzed by real-time PCR and the production of ergosterol and squalene was quantified. In vitro growth inhibition of R. solani was between 86 and 58%. In in vivo assays, the bean plants treated with Trichoderma harzianum T019 always had an increased size respect to control and the plants treated with this isolate did not decrease their size in presence of R. solani. The interaction of plants with R. solani and/or Trichoderma affects the level of expression of seven defense-related genes. Squalene and ergosterol production differences were found among the Trichoderma isolates, T019 showing the highest values for both compounds. T. harzianum T019 shows a positive effect on the level of resistance of bean plants to R. solani. This strain induces the expression of plant defense-related genes and produces a higher level of ergosterol, indicating its ability to grow at a higher rate in the soil, which would explain its positive effects on plant growth and defense in the presence of the pathogen.

  14. Influence of Rhizoctonia solani and Trichoderma spp. in growth of bean (Phaseolus vulgaris L.) and in the induction of plant defense-related genes

    PubMed Central

    Mayo, Sara; Gutiérrez, Santiago; Malmierca, Monica G.; Lorenzana, Alicia; Campelo, M. Piedad; Hermosa, Rosa; Casquero, Pedro A.

    2015-01-01

    Many Trichoderma species are well-known for their ability to promote plant growth and defense. We study how the interaction of bean plants with R. solani and/or Trichoderma affect the plants growth and the level of expression of defense-related genes. Trichoderma isolates were evaluated in vitro for their potential to antagonize R. solani. Bioassays were performed in climatic chambers and development of the plants was evaluated. The effect of Trichoderma treatment and/or R. solani infection on the expression of bean defense-related genes was analyzed by real-time PCR and the production of ergosterol and squalene was quantified. In vitro growth inhibition of R. solani was between 86 and 58%. In in vivo assays, the bean plants treated with Trichoderma harzianum T019 always had an increased size respect to control and the plants treated with this isolate did not decrease their size in presence of R. solani. The interaction of plants with R. solani and/or Trichoderma affects the level of expression of seven defense-related genes. Squalene and ergosterol production differences were found among the Trichoderma isolates, T019 showing the highest values for both compounds. T. harzianum T019 shows a positive effect on the level of resistance of bean plants to R. solani. This strain induces the expression of plant defense-related genes and produces a higher level of ergosterol, indicating its ability to grow at a higher rate in the soil, which would explain its positive effects on plant growth and defense in the presence of the pathogen. PMID:26442006

  15. Phytoplasma protein effector SAP11 enhances insect vector reproduction by manipulating plant development and defense hormone biosynthesis.

    PubMed

    Sugio, Akiko; Kingdom, Heather N; MacLean, Allyson M; Grieve, Victoria M; Hogenhout, Saskia A

    2011-11-29

    Phytoplasmas are insect-transmitted phytopathogenic bacteria that can alter plant morphology and the longevity and reproduction rates and behavior of their insect vectors. There are various examples of animal and plant parasites that alter the host phenotype to attract insect vectors, but it is unclear how these parasites accomplish this. We hypothesized that phytoplasmas produce effectors that modulate specific targets in their hosts leading to the changes in plant development and insect performance. Previously, we sequenced and mined the genome of Aster Yellows phytoplasma strain Witches' Broom (AY-WB) and identified 56 candidate effectors. Here, we report that the secreted AY-WB protein 11 (SAP11) effector modulates plant defense responses to the advantage of the AY-WB insect vector Macrosteles quadrilineatus. SAP11 binds and destabilizes Arabidopsis CINCINNATA (CIN)-related TEOSINTE BRANCHED1, CYCLOIDEA, PROLIFERATING CELL FACTORS 1 and 2 (TCP) transcription factors, which control plant development and promote the expression of lipoxygenase (LOX) genes involved in jasmonate (JA) synthesis. Both the Arabidopsis SAP11 lines and AY-WB-infected plants produce less JA on wounding. Furthermore, the AY-WB insect vector produces more offspring on AY-WB-infected plants, SAP11 transgenic lines, and plants impaired in CIN-TCP and JA synthesis. Thus, SAP11-mediated destabilization of CIN-TCPs leads to the down-regulation of LOX2 expression and JA synthesis and an increase in M. quadrilineatus progeny. Phytoplasmas are obligate inhabitants of their plant host and insect vectors, in which the latter transmits AY-WB to a diverse range of plant species. This finding demonstrates that pathogen effectors can reach beyond the pathogen-host interface to modulate a third organism in the biological interaction.

  16. Arabidopsis thaliana natural variation reveals connections between UV radiation stress and plant pathogen-like defense responses.

    PubMed

    Piofczyk, Thomas; Jeena, Ganga; Pecinka, Ales

    2015-08-01

    UV radiation is a ubiquitous component of solar radiation that affects plant growth and development. Here we studied growth related traits of 345 Arabidopsis thaliana accessions in response to UV radiation stress. We analyzed the genetic basis of this natural variation by genome-wide association studies, which suggested a specific candidate genomic region. RNA-sequencing of three sensitive and three resistant accessions combined with mutant analysis revealed five large effect genes. Mutations in PHE ammonia lyase 1 (PAL1) and putative kinase At1g76360 rendered Arabidopsis hypersensitive to UV stress, while loss of function from putative methyltransferase At4g22530, novel plant snare 12 (NPSN12) and defense gene activated disease resistance 2 (ADR2) conferred higher UV stress resistance. Three sensitive accessions showed strong ADR2 transcriptional activation, accumulation of salicylic acid (SA) and dwarf growth upon UV stress, while these phenotypes were much less affected in resistant plants. The phenotype of sensitive accessions resembles autoimmune reactions due to overexpression of defense related genes, and suggests that natural variation in response to UV radiation stress is driven by pathogen-like responses in Arabidopsis.

  17. Induced release of a plant-defense volatile 'deceptively' attracts insect vectors to plants infected with a bacterial pathogen.

    PubMed

    Mann, Rajinder S; Ali, Jared G; Hermann, Sara L; Tiwari, Siddharth; Pelz-Stelinski, Kirsten S; Alborn, Hans T; Stelinski, Lukasz L

    2012-01-01

    Transmission of plant pathogens by insect vectors is a complex biological process involving interactions between the plant, insect, and pathogen. Pathogen-induced plant responses can include changes in volatile and nonvolatile secondary metabolites as well as major plant nutrients. Experiments were conducted to understand how a plant pathogenic bacterium, Candidatus Liberibacter asiaticus (Las), affects host preference behavior of its psyllid (Diaphorina citri Kuwayama) vector. D. citri were attracted to volatiles from pathogen-infected plants more than to those from non-infected counterparts. Las-infected plants were more attractive to D. citri adults than non-infected plants initially; however after feeding, psyllids subsequently dispersed to non-infected rather than infected plants as their preferred settling point. Experiments with Las-infected and non-infected plants under complete darkness yielded similar results to those recorded under light. The behavior of psyllids in response to infected versus non-infected plants was not influenced by whether or not they were carriers of the pathogen. Quantification of volatile release from non-infected and infected plants supported the hypothesis that odorants mediate psyllid preference. Significantly more methyl salicylate, yet less methyl anthranilate and D-limonene, was released by infected than non-infected plants. Methyl salicylate was attractive to psyllids, while methyl anthranilate did not affect their behavior. Feeding on citrus by D. citri adults also induced release of methyl salicylate, suggesting that it may be a cue revealing location of conspecifics on host plants. Infected plants were characterized by lower levels of nitrogen, phosphorus, sulfur, zinc, and iron, as well as, higher levels of potassium and boron than non-infected plants. Collectively, our results suggest that host selection behavior of D. citri may be modified by bacterial infection of plants, which alters release of specific headspace

  18. Disease Interactions in a Shared Host Plant: Effects of Pre-Existing Viral Infection on Cucurbit Plant Defense Responses and Resistance to Bacterial Wilt Disease

    PubMed Central

    Mauck, Kerry E.; Pulido, Hannier; De Moraes, Consuelo M.; Stephenson, Andrew G.; Mescher, Mark C.

    2013-01-01

    Both biotic and abiotic stressors can elicit broad-spectrum plant resistance against subsequent pathogen challenges. However, we currently have little understanding of how such effects influence broader aspects of disease ecology and epidemiology in natural environments where plants interact with multiple antagonists simultaneously. In previous work, we have shown that healthy wild gourd plants (Cucurbita pepo ssp. texana) contract a fatal bacterial wilt infection (caused by Erwinia tracheiphila) at significantly higher rates than plants infected with Zucchini yellow mosaic virus (ZYMV). We recently reported evidence that this pattern is explained, at least in part, by reduced visitation of ZYMV-infected plants by the cucumber beetle vectors of E. tracheiphila. Here we examine whether ZYMV-infection may also directly elicit plant resistance to subsequent E. tracheiphila infection. In laboratory studies, we assayed the induction of key phytohormones (SA and JA) in single and mixed infections of these pathogens, as well as in response to the feeding of A. vittatum cucumber beetles on healthy and infected plants. We also tracked the incidence and progression of wilt disease symptoms in plants with prior ZYMV infections. Our results indicate that ZYMV-infection slightly delays the progression of wilt symptoms, but does not significantly reduce E. tracheiphila infection success. This observation supports the hypothesis that reduced rates of wilt disease in ZYMV-infected plants reflect reduced visitation by beetle vectors. We also documented consistently strong SA responses to ZYMV infection, but limited responses to E. tracheiphila in the absence of ZYMV, suggesting that the latter pathogen may effectively evade or suppress plant defenses, although we observed no evidence of antagonistic cross-talk between SA and JA signaling pathways. We did, however, document effects of E. tracheiphila on induced responses to herbivory that may influence host-plant quality for (and

  19. Disease interactions in a shared host plant: effects of pre-existing viral infection on cucurbit plant defense responses and resistance to bacterial wilt disease.

    PubMed

    Shapiro, Lori R; Salvaudon, Lucie; Mauck, Kerry E; Pulido, Hannier; De Moraes, Consuelo M; Stephenson, Andrew G; Mescher, Mark C

    2013-01-01

    Both biotic and abiotic stressors can elicit broad-spectrum plant resistance against subsequent pathogen challenges. However, we currently have little understanding of how such effects influence broader aspects of disease ecology and epidemiology in natural environments where plants interact with multiple antagonists simultaneously. In previous work, we have shown that healthy wild gourd plants (Cucurbita pepo ssp. texana) contract a fatal bacterial wilt infection (caused by Erwinia tracheiphila) at significantly higher rates than plants infected with Zucchini yellow mosaic virus (ZYMV). We recently reported evidence that this pattern is explained, at least in part, by reduced visitation of ZYMV-infected plants by the cucumber beetle vectors of E. tracheiphila. Here we examine whether ZYMV-infection may also directly elicit plant resistance to subsequent E. tracheiphila infection. In laboratory studies, we assayed the induction of key phytohormones (SA and JA) in single and mixed infections of these pathogens, as well as in response to the feeding of A. vittatum cucumber beetles on healthy and infected plants. We also tracked the incidence and progression of wilt disease symptoms in plants with prior ZYMV infections. Our results indicate that ZYMV-infection slightly delays the progression of wilt symptoms, but does not significantly reduce E. tracheiphila infection success. This observation supports the hypothesis that reduced rates of wilt disease in ZYMV-infected plants reflect reduced visitation by beetle vectors. We also documented consistently strong SA responses to ZYMV infection, but limited responses to E. tracheiphila in the absence of ZYMV, suggesting that the latter pathogen may effectively evade or suppress plant defenses, although we observed no evidence of antagonistic cross-talk between SA and JA signaling pathways. We did, however, document effects of E. tracheiphila on induced responses to herbivory that may influence host-plant quality for (and

  20. Degradation of the Plant Defense Signal Salicylic Acid Protects Ralstonia solanacearum from Toxicity and Enhances Virulence on Tobacco

    PubMed Central

    Lowe-Power, Tiffany M.; Jacobs, Jonathan M.; Ailloud, Florent; Fochs, Brianna; Prior, Philippe

    2016-01-01

    ABSTRACT Plants use the signaling molecule salicylic acid (SA) to trigger defenses against diverse pathogens, including the bacterial wilt pathogen Ralstonia solanacearum. SA can also inhibit microbial growth. Most sequenced strains of the heterogeneous R. solanacearum species complex can degrade SA via gentisic acid to pyruvate and fumarate. R. solanacearum strain GMI1000 expresses this SA degradation pathway during tomato pathogenesis. Transcriptional analysis revealed that subinhibitory SA levels induced expression of the SA degradation pathway, toxin efflux pumps, and some general stress responses. Interestingly, SA treatment repressed expression of virulence factors, including the type III secretion system, suggesting that this pathogen may suppress virulence functions when stressed. A GMI1000 mutant lacking SA degradation activity was much more susceptible to SA toxicity but retained the wild-type colonization ability and virulence on tomato. This may be because SA is less important than gentisic acid in tomato defense signaling. However, another host, tobacco, responds strongly to SA. To test the hypothesis that SA degradation contributes to virulence on tobacco, we measured the effect of adding this pathway to the tobacco-pathogenic R. solanacearum strain K60, which lacks SA degradation genes. Ectopic addition of the GMI1000 SA degradation locus, including adjacent genes encoding two porins and a LysR-type transcriptional regulator, significantly increased the virulence of strain K60 on tobacco. Together, these results suggest that R. solanacearum degrades plant SA to protect itself from inhibitory levels of this compound and also to enhance its virulence on plant hosts like tobacco that use SA as a defense signal molecule. PMID:27329752

  1. Effects of Pseudomonas aureofaciens 63-28 on defense responses in soybean plants infected by Rhizoctonia solani.

    PubMed

    Jung, Woo-Jin; Park, Ro-Dong; Mabood, Fazli; Souleimanov, Alfred; L Smith, Donald

    2011-04-01

    The objective of this work was to investigate the ability of the plant growth-promoting rhizobacterium Pseudomonas aureofaciens 63-28 to induce plant defense systems, including defense-related enzyme levels and expression of defense-related isoenzymes, and isoflavone production, leading to improved resistance to the phytopathogen Rhizoctonia solani AG-4 in soybean seedlings. Seven-dayold soybean seedlings were inoculated with P. aureofaciens 63-28, R. solani AG-4, or P. aureofaciens 63-28 plus R. solani AG-4 (P+R), or not inoculated (control). After 7 days of incubation, roots treated with R. solani AG-4 had obvious damping-off symptoms, but P+R-treated soybean plants had less disease development, indicating suppression of R. solani AG-4 in soybean seedlings. Superoxide dismutase (SOD) and catalase (CAT) activities of R. solani AG-4-treated roots increased by 24.6% and 54.0%, respectively, compared with control roots. Ascorbate peroxidase (APX) and phenylalanine ammonia lyase (PAL) activities of R. solani AG-4-treated roots were increased by 75.1% and 23.6%, respectively. Polyphenol oxidase (PPO) activity in soybean roots challenged with P. aureofaciens 63-28 and P+R increased by 25.0% and 11.6%, respectively. Mn-SOD (S1 band on gel) and Fe-SOD (S2) were strongly induced in P+R-treated roots, whereas one CAT (C1) and one APX (A3) were strongly induced in R. solani AG-4- treated roots. The total isoflavone concentration in P+Rtreated shoots was 27.2% greater than the control treatment. The isoflavone yield of R. solani AG-4-treated shoots was 60.9% less than the control.

  2. Induced plant defenses, host–pathogen interactions, and forest insect outbreaks

    PubMed Central

    Elderd, Bret D.; Rehill, Brian J.; Haynes, Kyle J.; Dwyer, Greg

    2013-01-01

    Cyclic outbreaks of defoliating insects devastate forests, but their causes are poorly understood. Outbreak cycles are often assumed to be driven by density-dependent mortality due to natural enemies, because pathogens and predators cause high mortality and because natural-enemy models reproduce fluctuations in defoliation data. The role of induced defenses is in contrast often dismissed, because toxic effects of defenses are often weak and because induced-defense models explain defoliation data no better than natural-enemy models. Natural-enemy models, however, fail to explain gypsy moth outbreaks in North America, in which outbreaks in forests with a higher percentage of oaks have alternated between severe and mild, whereas outbreaks in forests with a lower percentage of oaks have been uniformly moderate. Here we show that this pattern can be explained by an interaction between induced defenses and a natural enemy. We experimentally induced hydrolyzable-tannin defenses in red oak, to show that induction reduces variability in a gypsy moth’s risk of baculovirus infection. Because this effect can modulate outbreak severity and because oaks are the only genus of gypsy moth host tree that can be induced, we extended a natural-enemy model to allow for spatial variability in inducibility. Our model shows alternating outbreaks in forests with a high frequency of oaks, and uniform outbreaks in forests with a low frequency of oaks, matching the data. The complexity of this effect suggests that detecting effects of induced defenses on defoliator cycles requires a combination of experiments and models. PMID:23966566

  3. Identification of genes potentially responsible for extra-oral digestion and overcoming plant defense from salivary glands of the tarnished plant bug (Lygus lineolaris) using cDNA sequencing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Saliva is known to play a crucial role in tarnished plant bug (TPB, Lygus lineolaris) feeding. TPBs secrete saliva during feeding to facilitate the piercing into plant tissues. More importantly, the enzyme-rich saliva may be used for extra-oral digestion and for overcoming plant defense before the p...

  4. 7 CFR 330.206 - Permits for plant pest movement associated with National Defense projects.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... plant pests for such research, upon receiving assurance satisfactory to him that adequate safeguards... 7 Agriculture 5 2010-01-01 2010-01-01 false Permits for plant pest movement associated with... (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE FEDERAL PLANT...

  5. 7 CFR 330.206 - Permits for plant pest movement associated with National Defense projects.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... plant pests for such research, upon receiving assurance satisfactory to him that adequate safeguards... 7 Agriculture 5 2014-01-01 2014-01-01 false Permits for plant pest movement associated with... (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE FEDERAL PLANT...

  6. 7 CFR 330.206 - Permits for plant pest movement associated with National Defense projects.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... plant pests for such research, upon receiving assurance satisfactory to him that adequate safeguards... 7 Agriculture 5 2011-01-01 2011-01-01 false Permits for plant pest movement associated with... (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE FEDERAL PLANT...

  7. 7 CFR 330.206 - Permits for plant pest movement associated with National Defense projects.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... plant pests for such research, upon receiving assurance satisfactory to him that adequate safeguards... 7 Agriculture 5 2012-01-01 2012-01-01 false Permits for plant pest movement associated with... (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE FEDERAL PLANT...

  8. NaJAZh regulates a subset of defense responses against herbivores and spontaneous leaf necrosis in Nicotiana attenuata plants.

    PubMed

    Oh, Youngjoo; Baldwin, Ian T; Gális, Ivan

    2012-06-01

    The JASMONATE ZIM DOMAIN (JAZ) proteins function as negative regulators of jasmonic acid signaling in plants. We cloned 12 JAZ genes from native tobacco (Nicotiana attenuata), including nine novel JAZs in tobacco, and examined their expression in plants that had leaves elicited by wounding or simulated herbivory. Most JAZ genes showed strong expression in the elicited leaves, but NaJAZg was mainly expressed in roots. Another novel herbivory-elicited gene, NaJAZh, was analyzed in detail. RNA interference suppression of this gene in inverted-repeat (ir)JAZh plants deregulated a specific branch of jasmonic acid-dependent direct and indirect defenses: irJAZh plants showed greater trypsin protease inhibitor activity, 17-hydroxygeranyllinalool diterpene glycosides accumulation, and emission of volatile organic compounds from leaves. Silencing of NaJAZh also revealed a novel cross talk in JAZ-regulated secondary metabolism, as irJAZh plants had significantly reduced nicotine levels. In addition, irJAZh spontaneously developed leaf necrosis during the transition to flowering. Because the lesions closely correlated with the elevated expression of programmed cell death genes and the accumulations of salicylic acid and hydrogen peroxide in the leaves, we propose a novel role of the NaJAZh protein as a repressor of necrosis and/or programmed cell death during plant development.

  9. Functional Analysis of Plant Defense Suppression and Activation by the Xanthomonas Core Type III Effector XopX.

    PubMed

    Stork, William; Kim, Jung-Gun; Mudgett, Mary Beth

    2015-02-01

    Many phytopathogenic type III secretion effector proteins (T3Es) have been shown to target and suppress plant immune signaling but perturbation of the plant immune system by T3Es can also elicit a plant response. XopX is a "core" Xanthomonas T3E that contributes to growth and symptom development during Xanthomonas euvesicatoria infection of tomato but its functional role is undefined. We tested the effect of XopX on several aspects of plant immune signaling. XopX promoted ethylene production and plant cell death (PCD) during X. euvesicatoria infection of susceptible tomato and in transient expression assays in Nicotiana benthamiana, which is consistent with its requirement for the development of X. euvesicatoria-induced disease symptoms. Additionally, although XopX suppressed flagellin-induced reactive oxygen species, it promoted the accumulation of pattern-triggered immunity (PTI) gene transcripts. Surprisingly, XopX coexpression with other PCD elicitors resulted in delayed PCD, suggesting antagonism between XopX-dependent PCD and other PCD pathways. However, we found no evidence that XopX contributed to the suppression of effector-triggered immunity during X. euvesicatoria-tomato interactions, suggesting that XopX's primary virulence role is to modulate PTI. These results highlight the dual role of a core Xanthomonas T3E in simultaneously suppressing and activating plant defense responses.

  10. Constitutive expression of clathrin hub hinders elicitor-induced clathrin-mediated endocytosis and defense gene expression in plant cells.

    PubMed

    Adam, T; Bouhidel, K; Der, C; Robert, F; Najid, A; Simon-Plas, F; Leborgne-Castel, N

    2012-09-21

    Endocytosis has been recently implicated in the signaling network associated with the recognition of microbes by plants. In a previous study, we showed that the elicitor cryptogein was able to induce clathrin-mediated endocytosis (CME) in tobacco suspension cells. Herein, we investigate further the induced CME by means of a GFP-tagged clathrin light chain and a CME inhibitor, the hub domain of clathrin heavy chain. Hub constitutive expression does affect neither cell growth nor constitutive endocytosis but abolishes cryptogein-induced CME. Such an inhibition has no impact on early events in the cryptogein signaling pathway but reduces the expression of defense-associated genes.

  11. Characterization of a Beta vulgaris PGIP defense gene promoter in transgenic plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polygalacturonase-inhibiting protein (BvPGIP) genes were cloned from a sugar beet breeding line F1016 with increased tolerance to the sugar beet root maggot. Polygalacturonase-inhibiting proteins are cell wall leucine-rich repeat (LRR) proteins with crucial roles in development, pathogen defense an...

  12. Plant-plant signaling: application of trans- or cis-methyl jasmonate equivalent to sagebrush releases does not elicit direct defenses in native tobacco.

    PubMed

    Preston, Catherine A; Laue, Grit; Baldwin, Ian T

    2004-11-01

    Nicotiana attenuata plants growing in close proximity to damaged sagebrush (Artemisia tridentata ssp. tridentata) suffer less herbivory than plants near undamaged sagebrush. Sagebrush constitutively releases methyl jasmonate (MeJA), a compound that when applied directly to N. attenuata, elicits herbivore resistance and the direct defense traits [protease inhibitors (PIs), nicotine]. Damage increases the release of volatile MeJA, primarily in the cis epimer, suggesting that cis-MeJA may mediate this apparent interplant signaling. We characterized sagebrush's MeJA plume before and after damage in nature and in the laboratory, and compared the activity of trans- and cis-MeJA in inducing PIs, nicotine, and Manduca sexta resistance in N. attenuata. We used both lanolin applications and aqueous sprays that mimic natural exposures, and we determined the amount of volatilized MeJA required to elicit a nicotine response in open-grown plants. Wounding rapidly and transiently increased cis-MeJA emissions from damaged parts (but not systemically), and the released plume did not rapidly dissipate in nature. cis-MeJA was not consistently more active than trans-MeJA, and the order of exposure (trans- then cis-) did not influence activity. We conclude that volatile MeJA, either trans- or cis-, when applied at levels consistent with those released by sagebrush does not elicit direct defenses in N. attenuata.

  13. An Assessment of Engineered Calcium Oxalate Crystal Formation on Plant Growth and Development as a Step toward Evaluating Its Use to Enhance Plant Defense.

    PubMed

    Nakata, Paul A

    2015-01-01

    The establishment of new approaches to control chewing insects has been sought not only for direct use in reducing crop loss but also in managing resistance to the pesticides already in use. Engineered formation of calcium oxalate crystals is a potential strategy that could be developed to fulfill both these needs. As a step toward this development, this study investigates the effects of transforming a non-calcium oxalate crystal accumulating plant, Arabidopsis thaliana, into a crystal accumulating plant. Calcium oxalate crystal accumulating A. thaliana lines were generated by ectopic expression of a single bacterial gene encoding an oxalic acid biosynthetic enzyme. Biochemical and cellular studies suggested that the engineered A. thaliana lines formed crystals of calcium oxalate in a manner similar to naturally occurring crystal accumulating plants. The amount of calcium oxalate accumulated in leaves also reached levels similar to those measured in the leaves of Medicago truncatula in which the crystals are known to play a defensive role. Visual inspection of the different engineered lines, however, suggested a phenotypic consequence on plant growth and development with higher calcium oxalate concentrations. The restoration of a near wild-type plant phenotype through an enzymatic reduction of tissue oxalate supported this observation. Overall, this study is a first to provide initial insight into the potential consequences of engineering calcium oxalate crystal formation in non-crystal accumulating plants.

  14. An Assessment of Engineered Calcium Oxalate Crystal Formation on Plant Growth and Development as a Step toward Evaluating Its Use to Enhance Plant Defense

    PubMed Central

    Nakata, Paul A.

    2015-01-01

    The establishment of new approaches to control chewing insects has been sought not only for direct use in reducing crop loss but also in managing resistance to the pesticides already in use. Engineered formation of calcium oxalate crystals is a potential strategy that could be developed to fulfill both these needs. As a step toward this development, this study investigates the effects of transforming a non-calcium oxalate crystal accumulating plant, Arabidopsis thaliana, into a crystal accumulating plant. Calcium oxalate crystal accumulating A. thaliana lines were generated by ectopic expression of a single bacterial gene encoding an oxalic acid biosynthetic enzyme. Biochemical and cellular studies suggested that the engineered A. thaliana lines formed crystals of calcium oxalate in a manner similar to naturally occurring crystal accumulating plants. The amount of calcium oxalate accumulated in leaves also reached levels similar to those measured in the leaves of Medicago truncatula in which the crystals are known to play a defensive role. Visual inspection of the different engineered lines, however, suggested a phenotypic consequence on plant growth and development with higher calcium oxalate concentrations. The restoration of a near wild-type plant phenotype through an enzymatic reduction of tissue oxalate supported this observation. Overall, this study is a first to provide initial insight into the potential consequences of engineering calcium oxalate crystal formation in non-crystal accumulating plants. PMID:26517544

  15. Botrytis small RNA Bc-siR37 suppresses plant defense genes by cross-kingdom RNAi.

    PubMed

    Wang, Ming; Weiberg, Arne; Dellota, Exequiel; Yamane, Daniel; Jin, Hailing

    2017-03-07

    Pathogens secrete effector proteins to suppress host immune responses. Recently, we showed that an aggressive plant fungal pathogen Botrytis cinerea can also deliver small RNA effectors into host cells to suppress host immunity. B. cinerea sRNAs (Bc-sRNAs) translocate into host plants and hijack the plant RNAi machinery to induce cross-kingdom RNAi of host immune responsive genes. Here, we functionally characterized another Bc-sRNA effector Bc-siR37 that is predicted to target at least 15 Arabidopsis genes, including WRKY transcription factors, receptor-like kinases, and cell wall-modifying enzymes. Upon B. cinerea infection, the expression level of Bc-siR37 was induced, and at least eight predicted Arabidopsis target genes were downregulated. These target genes were also suppressed in the transgenic Arabidopsis plants overexpressing Bc-siR37, which exhibited enhanced disease susceptibility to B. cinerea. Furthermore, the knockout mutants of the Bc-siR37 targets, At-WRKY7, At-PMR6, and At-FEI2, also exhibited enhanced disease susceptibility to B. cinerea, giving further support that these genes indeed play a positive role in plant defense against B. cinerea. Our study demonstrates that analysis of pathogen sRNA effectors can be a useful tool to help identify host immunity genes against the corresponding pathogen.

  16. Effects of the Timing of Herbivory on Plant Defense Induction and Insect Performance in Ribwort Plantain (Plantago lanceolata L.) Depend on Plant Mycorrhizal Status.

    PubMed

    Wang, Minggang; Bezemer, T Martijn; van der Putten, Wim H; Biere, Arjen

    2015-11-01

    Plants often are exposed to antagonistic and symbiotic organisms both aboveground and belowground. Interactions between above- and belowground organisms may occur either simultaneously or sequentially, and jointly can determine plant responses to future enemies. However, little is known about time-dependency of such aboveground-belowground interactions. We examined how the timing of a 24 h period of aboveground herbivory by Spodoptera exigua (1-8 d prior to later arriving conspecifics) influenced the response of Plantago lanceolata and the performance of later arriving conspecifics. We also examined whether these induced responses were modulated by the arbuscular mycorrhizal fungus (AMF) Funneliformis mosseae. The amount of leaf area consumed by later arriving herbivores decreased with time after induction by early herbivores. Mycorrhizal infection reduced the relative growth rate (RGR) of later arriving herbivores, associated with a reduction in efficiency of conversion of ingested food rather than a reduction in relative consumption rates. In non-mycorrhizal plants, leaf concentrations of the defense compound catalpol showed a linear two-fold increase during the eight days following early herbivory. By contrast, mycorrhizal plants already had elevated levels of leaf catalpol prior to their exposure to early herbivory and did not show any further increase following herbivory. These results indicate that AMF resulted in a systemic induction, rather than priming of these defenses. AMF infection significantly reduced shoot biomass of Plantago lanceolata. We conclude that plant responses to future herbivores are not only influenced by exposure to prior aboveground and belowground organisms, but also by when these prior organisms arrive and interact.

  17. Purification and characterization of AsES protein: a subtilisin secreted by Acremonium strictum is a novel plant defense elicitor.

    PubMed

    Chalfoun, Nadia R; Grellet-Bournonville, Carlos F; Martínez-Zamora, Martín G; Díaz-Perales, Araceli; Castagnaro, Atilio P; Díaz-Ricci, Juan C

    2013-05-17

    In this work, the purification and characterization of an extracellular elicitor protein, designated AsES, produced by an avirulent isolate of the strawberry pathogen Acremonium strictum, are reported. The defense eliciting activity present in culture filtrates was recovered and purified by ultrafiltration (cutoff, 30 kDa), anionic exchange (Q-Sepharose, pH 7.5), and hydrophobic interaction (phenyl-Sepharose) chromatographies. Two-dimensional SDS-PAGE of the purified active fraction revealed a single spot of 34 kDa and pI 8.8. HPLC (C2/C18) and MS/MS analysis confirmed purification to homogeneity. Foliar spray with AsES provided a total systemic protection against anthracnose disease in strawberry, accompanied by the expression of defense-related genes (i.e. PR1 and Chi2-1). Accumulation of reactive oxygen species (e.g. H2O2 and O2(˙)) and callose was also observed in Arabidopsis. By using degenerate primers designed from the partial amino acid sequences and rapid amplification reactions of cDNA ends, the complete AsES-coding cDNA of 1167 nucleotides was obtained. The deduced amino acid sequence showed significant identity with fungal serine proteinases of the subtilisin family, indicating that AsES is synthesized as a larger precursor containing a 15-residue secretory signal peptide and a 90-residue peptidase inhibitor I9 domain in addition to the 283-residue mature protein. AsES exhibited proteolytic activity in vitro, and its resistance eliciting activity was eliminated when inhibited with PMSF, suggesting that its proteolytic activity is required to induce the defense response. This is, to our knowledge, the first report of a fungal subtilisin that shows eliciting activity in plants. This finding could contribute to develop disease biocontrol strategies in plants by activating its innate immunity.

  18. Antimicrobial peptide inhibition of fungalysin proteases that target plant type 19 Family IV defense chitinases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cereal crops and other plants produce secreted seed chitinases that reduce pathogenic infection, most likely by targeting the fungal chitinous cell wall. We have shown that corn (Zea mays) produces three GH family 19, plant class IV chitinases, that help in protecting the plant against Fusarium and ...

  19. Evaluation of alternatives for defense waste management at the Savannah River Plant: Final report for FY-84, February 1984 to September 1984

    SciTech Connect

    Not Available

    1984-09-01

    This report is an independent evaluation of the Savannah River program for the management of high-level radioactive defense waste. Our evaluations focus on the design, construction, and operation of the Defense Waste Processing Facility (DWPF) for sludge processing and on methods for dealing with the disposal of supernates. The scope includes an evaluation of the Hanford Waste Vitrification Plant program. 10 refs., 4 tabs.

  20. Novel Animal Defenses against Predation: A Snail Egg Neurotoxin Combining Lectin and Pore-Forming Chains That Resembles Plant Defense and Bacteria Attack Toxins

    PubMed Central

    Ceolín, Marcelo; Ituarte, Santiago; Qiu, Jian-Wen; Sun, Jin; Fernández, Patricia E.; Heras, Horacio

    2013-01-01

    Although most eggs are intensely predated, the aerial egg clutches from the aquatic snail Pomacea canaliculata have only one reported predator due to unparalleled biochemical defenses. These include two storage-proteins: ovorubin that provides a conspicuous (presumably warning) coloration and has antinutritive and antidigestive properties, and PcPV2 a neurotoxin with lethal effect on rodents. We sequenced PcPV2 and studied whether it was able to withstand the gastrointestinal environment and reach circulation of a potential predator. Capacity to resist digestion was assayed using small-angle X-ray scattering (SAXS), fluorescence spectroscopy and simulated gastrointestinal proteolysis. PcPV2 oligomer is antinutritive, withstanding proteinase digestion and displaying structural stability between pH 4.0–10.0. cDNA sequencing and protein domain search showed that its two subunits share homology with membrane attack complex/perforin (MACPF)-like toxins and tachylectin-like lectins, a previously unknown structure that resembles plant Type-2 ribosome-inactivating proteins and bacterial botulinum toxins. The protomer has therefore a novel AB toxin combination of a MACPF-like chain linked by disulfide bonds to a lectin-like chain, indicating a delivery system for the former. This was further supported by observing PcPV2 binding to glycocalix of enterocytes in vivo and in culture, and by its hemaggutinating, but not hemolytic activity, which suggested an interaction with surface oligosaccharides. PcPV2 is able to get into predator’s body as evidenced in rats and mice by the presence of circulating antibodies in response to sublethal oral doses. To our knowledge, a lectin-pore-forming toxin has not been reported before, providing the first evidence of a neurotoxic lectin in animals, and a novel function for ancient and widely distributed proteins. The acquisition of this unique neurotoxic/antinutritive/storage protein may confer the eggs a survival advantage, opening new

  1. Temperature-driven range expansion of an irruptive insect heightened by weakly coevolved plant defenses

    PubMed Central

    Raffa, Kenneth F.; Powell, Erinn N.; Townsend, Philip A.

    2013-01-01

    Warming climate has increased access of native bark beetles to high-elevation pines that historically received only intermittent exposure to these tree-killing herbivores. Here we show that a dominant, relatively naïve, high-elevation species, whitebark pine, has inferior defenses against mountain pine beetle compared with its historical lower-elevation host, lodgepole pine. Lodgepole pines respond by exuding more resin and accumulating higher concentrations of toxic monoterpenes than whitebark pine, where they co-occur. Furthermore, the chemical composition of whitebark pine appears less able to inhibit the pheromonal communication beetles use to jointly overcome tree defenses. Despite whitebark pine’s inferior defenses, beetles were more likely to attack their historical host in mixed stands. This finding suggests there has been insufficient sustained contact for beetles to alter their complex behavioral mechanisms driving host preference. In no-choice assays, however, beetles readily entered and tunneled in both hosts equally, and in stands containing less lodgepole pine, attacks on whitebark pines increased. High-elevation trees in pure stands may thus be particularly vulnerable to temperature-driven range expansions. Predators and competitors were more attracted to volatiles from herbivores attacking their historical host, further increasing risk in less coevolved systems. Our results suggest cold temperatures provided a sufficient barrier against herbivores for high-elevation trees to allocate resources to other physiological processes besides defense. Changing climate may reduce the viability of that evolutionary strategy, and the life histories of high-elevation trees seem unlikely to foster rapid counter adaptation. Consequences extend from reduced food supplies for endangered grizzly bears to altered landscape and hydrological processes. PMID:23277541

  2. A Virulence Essential CRN Effector of Phytophthora capsici Suppresses Host Defense and Induces Cell Death in Plant Nucleus

    PubMed Central

    Mafurah, Joseph Juma; Ma, Huifei; Zhang, Meixiang; Xu, Jing; He, Feng; Ye, Tingyue; Shen, Danyu; Chen, Yanyu; Rajput, Nasir Ahmed; Dou, Daolong

    2015-01-01

    Phytophthora capsici is a soil-borne plant pathogen with a wide range of hosts. The pathogen secretes a large array of effectors during infection of host plants, including Crinkler (CRN) effectors. However, it remains largely unknown on the roles of these effectors in virulence especially in P. capsici. In this study, we identified a cell death-inducing CRN effector PcCRN4 using agroinfiltration approach. Transient expression of PcCRN4 gene induced cell death in N. benthamiana, N. tabacum and Solanum lycopersicum. Overexpression of the gene in N. benthamiana enhanced susceptibility to P. capsici. Subcellular localization results showed that PcCRN4 localized to the plant nucleus, and the localization was required for both of its cell death-inducing activity and virulent function. Silencing PcCRN4 gene in P. capsici significantly reduced pathogen virulence. The expression of the pathogenesis-related gene PR1b in N. benthamiana was significantly induced when plants were inoculated with PcCRN4-silenced P. capsici transformant compared to the wilt-type. Callose deposits were also abundant at sites inoculated with PcCRN4-silenced transformant, indicating that silencing of PcCRN4 in P. capsici reduced the ability of the pathogen to suppress plant defenses. Transcriptions of cell death-related genes were affected when PcCRN4-silenced line were inoculated on Arabidopsis thaliana, suggesting that PcCRN4 may induce cell death by manipulating cell death-related genes. Overall, our results demonstrate that PcCRN4 is a virulence essential effector and it needs target to the plant nucleus to suppress plant immune responses. PMID:26011314

  3. Unbalanced Activation of Glutathione Metabolic Pathways Suggests Potential Involvement in Plant Defense against the Gall Midge Mayetiola destructor in Wheat

    PubMed Central

    Liu, Xuming; Zhang, Shize; Whitworth, R. Jeff; Stuart, Jeffrey J.; Chen, Ming-Shun

    2015-01-01

    Glutathione, γ-glutamylcysteinylglycine, exists abundantly in nearly all organisms. Glutathione participates in various physiological processes involved in redox reactions by serving as an electron donor/acceptor. We found that the abundance of total glutathione increased up to 60% in resistant wheat plants within 72 hours following attack by the gall midge Mayetiola destructor, the Hessian fly. The increase in total glutathione abundance, however, is coupled with an unbalanced activation of glutathione metabolic pathways. The activity and transcript abundance of glutathione peroxidases, which convert reduced glutathione (GSH) to oxidized glutathione (GSSG), increased in infested resistant plants. However, the enzymatic activity and transcript abundance of glutathione reductases, which convert GSSG back to GSH, did not change. This unbalanced regulation of the glutathione oxidation/reduction cycle indicates the existence of an alternative pathway to regenerate GSH from GSSG to maintain a stable GSSG/GSH ratio. Our data suggest the possibility that GSSG is transported from cytosol to apoplast to serve as an oxidant for class III peroxidases to generate reactive oxygen species for plant defense against Hessian fly larvae. Our results provide a foundation for elucidating the molecular processes involved in glutathione-mediated plant resistance to Hessian fly and potentially other pests as well. PMID:25627558

  4. Inducibility of chemical defences by two chewing insect herbivores in pine trees is specific to targeted plant tissue, particular herbivore and defensive trait.

    PubMed

    Moreira, Xoaquín; Lundborg, Lina; Zas, Rafael; Carrillo-Gavilán, Amparo; Borg-Karlson, Anna-Karin; Sampedro, Luis

    2013-10-01

    There is increasing evidence that plants can react to biotic aggressions with highly specific responses. However, few studies have attempted to jointly investigate whether the induction of plant defences is specific to a targeted plant tissue, plant species, herbivore identity, and defensive trait. Here we studied those factors contributing to the specificity of induced defensive responses in two economically important pine species against two chewing insect pest herbivores. Juvenile trees of Pinus pinaster and P. radiata were exposed to herbivory by two major pest threats, the large pine weevil Hylobius abietis (a bark-feeder) and the pine processionary caterpillar Thaumetopoea pityocampa (a folivore). We quantified in two tissues (stem and needles) the constitutive (control plants) and herbivore-induced concentrations of total polyphenolics, volatile and non-volatile resin, as well as the profile of mono- and sesquiterpenes. Stem chewing by the pine weevil increased concentrations of non-volatile resin, volatile monoterpenes, and (marginally) polyphenolics in stem tissues. Weevil feeding also increased the concentration of non-volatile resin and decreased polyphenolics in the needle tissues. Folivory by the caterpillar had no major effects on needle defensive chemistry, but a strong increase in the concentration of polyphenolics in the stem. Interestingly, we found similar patterns for all these above-reported effects in both pine species. These results offer convincing evidence that induced defences are highly specific and may vary depending on the targeted plant tissue, the insect herbivore causing the damage and the considered defensive compound.

  5. The Impact of Competition and Allelopathy on the Trade-Off between Plant Defense and Growth in Two Contrasting Tree Species

    PubMed Central

    Fernandez, Catherine; Monnier, Yogan; Santonja, Mathieu; Gallet, Christiane; Weston, Leslie A.; Prévosto, Bernard; Saunier, Amélie; Baldy, Virginie; Bousquet-Mélou, Anne

    2016-01-01

    In contrast to plant-animal interactions, the conceptual framework regarding the impact of secondary metabolites in mediating plant-plant interference is currently less well defined. Here, we address hypotheses about the role of chemically-mediated plant-plant interference (i.e., allelopathy) as a driver of Mediterranean forest dynamics. Growth and defense abilities of a pioneer (Pinus halepensis) and a late-successional (Quercus pubescens) Mediterranean forest species were evaluated under three different plant interference conditions: (i) allelopathy simulated by application of aqueous needle extracts of Pinus, (ii) resource competition created by the physical presence of a neighboring species (Pinus or Quercus), and (iii) a combination of both allelopathy and competition. After 24 months of experimentation in simulated field conditions, Quercus was more affected by plant interference treatments than was Pinus, and a hierarchical response to biotic interference (allelopathy < competition < allelopathy + competition) was observed in terms of relative impact on growth and plant defense. Both species modulated their respective metabolic profiles according to plant interference treatment and thus their inherent chemical defense status, resulting in a physiological trade-off between plant growth and production of defense metabolites. For Quercus, an increase in secondary metabolite production and a decrease in plant growth were observed in all treatments. In contrast, this trade-off in Pinus was only observed in competition and allelopathy + competition treatments. Although Pinus and Quercus expressed differential responses when subjected to a single interference condition, either allelopathy or competition, species responses were similar or positively correlated when strong interference conditions (allelopathy + competition) were imposed. PMID:27200062

  6. The Impact of Competition and Allelopathy on the Trade-Off between Plant Defense and Growth in Two Contrasting Tree Species.

    PubMed

    Fernandez, Catherine; Monnier, Yogan; Santonja, Mathieu; Gallet, Christiane; Weston, Leslie A; Prévosto, Bernard; Saunier, Amélie; Baldy, Virginie; Bousquet-Mélou, Anne

    2016-01-01

    In contrast to plant-animal interactions, the conceptual framework regarding the impact of secondary metabolites in mediating plant-plant interference is currently less well defined. Here, we address hypotheses about the role of chemically-mediated plant-plant interference (i.e., allelopathy) as a driver of Mediterranean forest dynamics. Growth and defense abilities of a pioneer (Pinus halepensis) and a late-successional (Quercus pubescens) Mediterranean forest species were evaluated under three different plant interference conditions: (i) allelopathy simulated by application of aqueous needle extracts of Pinus, (ii) resource competition created by the physical presence of a neighboring species (Pinus or Quercus), and (iii) a combination of both allelopathy and competition. After 24 months of experimentation in simulated field conditions, Quercus was more affected by plant interference treatments than was Pinus, and a hierarchical response to biotic interference (allelopathy < competition < allelopathy + competition) was observed in terms of relative impact on growth and plant defense. Both species modulated their respective metabolic profiles according to plant interference treatment and thus their inherent chemical defense status, resulting in a physiological trade-off between plant growth and production of defense metabolites. For Quercus, an increase in secondary metabolite production and a decrease in plant growth were observed in all treatments. In contrast, this trade-off in Pinus was only observed in competition and allelopathy + competition treatments. Although Pinus and Quercus expressed differential responses when subjected to a single interference condition, either allelopathy or competition, species responses were similar or positively correlated when strong interference conditions (allelopathy + competition) were imposed.

  7. Plant defense responses in opium poppy cell cultures revealed by liquid chromatography-tandem mass spectrometry proteomics.

    PubMed

    Zulak, Katherine G; Khan, Morgan F; Alcantara, Joenel; Schriemer, David C; Facchini, Peter J

    2009-01-01

    Opium poppy (Papaver somniferum) produces a diverse array of bioactive benzylisoquinoline alkaloids, including the narcotic analgesic morphine and the antimicrobial agent sanguinarine. In contrast to the plant, cell cultures of opium poppy do not accumulate alkaloids constitutively but produce sanguinarine in response to treatment with certain fungal-derived elicitors. The induction of sanguinarine biosynthesis provides a model platform to characterize the regulation of benzylisoquinoline alkaloid pathways and other defense responses. Proteome analysis of elicitor-treated opium poppy cell cultures by two-dimensional denaturing-polyacrylamide gel electrophoresis coupled with liquid chromatography-tandem mass spectrometry facilitated the identification of 219 of 340 protein spots based on peptide fragment fingerprint searches of a combination of databases. Of the 219 hits, 129 were identified through pre-existing plant proteome databases, 63 were identified by matching predicted translation products in opium poppy-expressed sequence tag databases, and the remainder shared evidence from both databases. Metabolic enzymes represented the largest category of proteins and included S-adenosylmethionine synthetase, several glycolytic, and a nearly complete set of tricarboxylic acid cycle enzymes, one alkaloid, and several other secondary metabolic enzymes. The abundance of chaperones, heat shock proteins, protein degradation factors, and pathogenesis-related proteins provided a comprehensive proteomics view on the coordination of plant defense responses. Qualitative comparison of protein abundance in control and elicitor-treated cell cultures allowed the separation of induced and constitutive or suppressed proteins. DNA microarrays were used to corroborate increases in protein abundance with a corresponding induction in cognate transcript levels.

  8. nip, a symbiotic Medicago truncatula mutant that forms root nodules with aberrant infection threads and plant defense-like response.

    PubMed

    Veereshlingam, Harita; Haynes, Janine G; Penmetsa, R Varma; Cook, Douglas R; Sherrier, D Janine; Dickstein, Rebecca

    2004-11-01

    To investigate the legume-Rhizobium symbiosis, we isolated and studied a novel symbiotic mutant of the model legume Medicago truncatula, designated nip (numerous infections and polyphenolics). When grown on nitrogen-free media in the presence of the compatible bacterium Sinorhizobium meliloti, the nip mutant showed nitrogen deficiency symptoms. The mutant failed to form pink nitrogen-fixing nodules that occur in the wild-type symbiosis, but instead developed small bump-like nodules on its roots that were blocked at an early stage of development. Examination of the nip nodules by light microscopy after staining with X-Gal for S. meliloti expressing a constitutive GUS gene, by confocal microscopy following staining with SYTO-13, and by electron microscopy revealed that nip initiated symbiotic interactions and formed nodule primordia and infection threads. The infection threads in nip proliferated abnormally and very rarely deposited rhizobia into plant host cells; rhizobia failed to differentiate further in these cases. nip nodules contained autofluorescent cells and accumulated a brown pigment. Histochemical staining of nip nodules revealed this pigment to be polyphenolic accumulation. RNA blot analyses demonstrated that nip nodules expressed only a subset of genes associated with nodule organogenesis, as well as elevated expression of a host defense-associated phenylalanine ammonia lyase gene. nip plants were observed to have abnormal lateral roots. nip plant root growth and nodulation responded normally to ethylene inhibitors and precursors. Allelism tests showed that nip complements 14 other M. truncatula nodulation mutants but not latd, a mutant with a more severe nodulation phenotype as well as primary and lateral root defects. Thus, the nip mutant defines a new locus, NIP, required for appropriate infection thread development during invasion of the nascent nodule by rhizobia, normal lateral root elongation, and normal regulation of host defense-like responses

  9. Alpha-momorcharin, a RIP produced by bitter melon, enhances defense response in tobacco plants against diverse plant viruses and shows antifungal activity in vitro.

    PubMed

    Zhu, Feng; Zhang, Ping; Meng, Yan-Fa; Xu, Fei; Zhang, Da-Wei; Cheng, Jian; Lin, Hong-Hui; Xi, De-Hui

    2013-01-01

    Alpha-momorcharin (α-MMC) is type-1 ribosome inactivating proteins (RIPs) with molecular weight of 29 kDa and has lots of biological activity. Our recent study indicated that the α-MMC purified from seeds of Momordica charantia exhibited distinct antiviral and antifungal activity. Tobacco plants pre-treated with 0.5 mg/mL α-MMC 3 days before inoculation with various viruses showed less-severe symptom and less reactive oxygen species (ROS) accumulation compared to that inoculated with viruses only. Quantitative real-time PCR analysis revealed that the replication levels of viruses were lower in the plants treated with the α-MMC than control plants at 15 days post inoculation. Moreover, the coat protein expression of viruses was almost completely inhibited in plants which were treated with the α-MMC compared with control plants. Furthermore, the SA-responsive defense-related genes including non-expressor of pathogenesis-related genes 1 (NPR1), PR1, PR2 were up-regulated and activities of some antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT), peroxidase (POD) were increased after the α-MMC treatment. In addition, the α-MMC (500 μg/mL) revealed remarkable antifungal effect against phytopathogenic fungi, in the growth inhibition range 50.35-67.21 %, along with their MIC values ranging from 100 to 500 μg/mL. The α-MMC had also a strong detrimental effect on spore germination of all the tested plant pathogens along with concentration as well as time-dependent kinetic inhibition of Sclerotinia sclerotiorum. The α-MMC showed a remarkable antiviral and antifungal effect and hence could possibly be exploited in crop protection for controlling certain important plant diseases.

  10. Genomics generates new insights into host plant defense and offers novel strategies for crop protection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant diseases and insect pests are the important threats to agricultural production, and crop losses to diseases and insects can be greater than about 30% of the annual global production. Managing the health of crop plants to assure sustainable agricultural production can be very challenging. How...

  11. Jasmonate signaling in plant development and defense response to multiple (a)biotic stresses.

    PubMed

    Santino, Angelo; Taurino, Marco; De Domenico, Stefania; Bonsegna, Stefania; Poltronieri, Palmiro; Pastor, Victoria; Flors, Victor

    2013-07-01

    Plants frequently live in environments characterized by the presence of simultaneous and different stresses. The intricate and finely tuned molecular mechanisms activated by plants in response to abiotic and biotic environmental factors are not well understood, and less is known about the integrative signals and convergence points activated by plants in response to multiple (a)biotic stresses. Phytohormones play a key role in plant development and response to (a)biotic stresses. Among these, one of the most important signaling molecules is an oxylipin, the plant hormone jasmonic acid. Oxylipins are derived from oxygenation of polyunsaturated fatty acids. Jasmonic acid and its volatile derivative methyl jasmonate have been considered for a long time to be the bioactive forms due to their physiological effects and abundance in the plant. However, more recent studies showed unambiguously that they are only precursors of the active forms represented by some amino acid conjugates. Upon developmental or environmental stimuli, jasmonates are synthesized and accumulate transiently. Upon perception, jasmonate signal transduction process is finely tuned by a complex mechanism comprising specific repressor proteins which in turn control a number of transcription factors regulating the expression of jasmonate responsive genes. We discuss the latest discoveries about the role of jasmonates in plants resistance mechanism against biotic and abiotic stresses. Finally, the deep interplay of different phytohormones in stresses signaling will be also discussed.

  12. Transcriptional Analysis of The Adaptive Digestive System of The Migratory Locust in Response to Plant Defensive Protease Inhibitors.

    PubMed

    Spit, Jornt; Holtof, Michiel; Badisco, Liesbet; Vergauwen, Lucia; Vogel, Elise; Knapen, Dries; Vanden Broeck, Jozef

    2016-09-01

    Herbivorous insects evolved adaptive mechanisms to compensate for the presence of plant defensive protease inhibitors (PI) in their food. The underlying regulatory mechanisms of these compensatory responses remain largely elusive. In the current study, we investigated the initiation of this adaptive response in the migratory locust, Locusta migratoria, via microarray analysis of gut tissues. Four hours after dietary uptake of PIs, 114 and 150 transcripts were respectively found up- or downregulated. The results suggest a quick trade-off between compensating for potential loss of digestive activity on the one hand, and stress tolerance, defense, and structural integrity of the gut on the other hand. We additionally addressed the role of a group of related upregulated hexamerin-like proteins in the PI-induced response. Simultaneous knockdown of corresponding transcripts by means of RNA interference resulted in a reduced capacity of the locust nymphs to cope with the effects of PI. Moreover, since insect hexamerins have been shown to bind Juvenile Hormone (JH), we also investigated the effect of JH on the proteolytic digestion in L. migratoria. Our results indicate that JH has a stimulatory effect on the expression of three homologous chymotrypsin genes, while knocking down the JH receptor (methoprene tolerant) led to opposite effects.

  13. Transcriptional Analysis of The Adaptive Digestive System of The Migratory Locust in Response to Plant Defensive Protease Inhibitors

    NASA Astrophysics Data System (ADS)

    Spit, Jornt; Holtof, Michiel; Badisco, Liesbet; Vergauwen, Lucia; Vogel, Elise; Knapen, Dries; vanden Broeck, Jozef

    2016-09-01

    Herbivorous insects evolved adaptive mechanisms to compensate for the presence of plant defensive protease inhibitors (PI) in their food. The underlying regulatory mechanisms of these compensatory responses remain largely elusive. In the current study, we investigated the initiation of this adaptive response in the migratory locust, Locusta migratoria, via microarray analysis of gut tissues. Four hours after dietary uptake of PIs, 114 and 150 transcripts were respectively found up- or downregulated. The results suggest a quick trade-off between compensating for potential loss of digestive activity on the one hand, and stress tolerance, defense, and structural integrity of the gut on the other hand. We additionally addressed the role of a group of related upregulated hexamerin-like proteins in the PI-induced response. Simultaneous knockdown of corresponding transcripts by means of RNA interference resulted in a reduced capacity of the locust nymphs to cope with the effects of PI. Moreover, since insect hexamerins have been shown to bind Juvenile Hormone (JH), we also investigated the effect of JH on the proteolytic digestion in L. migratoria. Our results indicate that JH has a stimulatory effect on the expression of three homologous chymotrypsin genes, while knocking down the JH receptor (methoprene tolerant) led to opposite effects.

  14. Transcriptional Analysis of The Adaptive Digestive System of The Migratory Locust in Response to Plant Defensive Protease Inhibitors

    PubMed Central

    Spit, Jornt; Holtof, Michiel; Badisco, Liesbet; Vergauwen, Lucia; Vogel, Elise; Knapen, Dries; Vanden Broeck, Jozef

    2016-01-01

    Herbivorous insects evolved adaptive mechanisms to compensate for the presence of plant defensive protease inhibitors (PI) in their food. The underlying regulatory mechanisms of these compensatory responses remain largely elusive. In the current study, we investigated the initiation of this adaptive response in the migratory locust, Locusta migratoria, via microarray analysis of gut tissues. Four hours after dietary uptake of PIs, 114 and 150 transcripts were respectively found up- or downregulated. The results suggest a quick trade-off between compensating for potential loss of digestive activity on the one hand, and stress tolerance, defense, and structural integrity of the gut on the other hand. We additionally addressed the role of a group of related upregulated hexamerin-like proteins in the PI-induced response. Simultaneous knockdown of corresponding transcripts by means of RNA interference resulted in a reduced capacity of the locust nymphs to cope with the effects of PI. Moreover, since insect hexamerins have been shown to bind Juvenile Hormone (JH), we also investigated the effect of JH on the proteolytic digestion in L. migratoria. Our results indicate that JH has a stimulatory effect on the expression of three homologous chymotrypsin genes, while knocking down the JH receptor (methoprene tolerant) led to opposite effects. PMID:27581362

  15. The Genetics of Leaf Flecking in Maize and Its Relationship to Plant Defense and Disease Resistance1[OPEN

    PubMed Central

    Bian, Yang; De Vries, Brian; Tracy, William F.

    2016-01-01

    Physiological leaf spotting, or flecking, is a mild-lesion phenotype observed on the leaves of several commonly used maize (Zea mays) inbred lines and has been anecdotally linked to enhanced broad-spectrum disease resistance. Flecking was assessed in the maize nested association mapping (NAM) population, comprising 4,998 recombinant inbred lines from 25 biparental families, and in an association population, comprising 279 diverse maize inbreds. Joint family linkage analysis was conducted with 7,386 markers in the NAM population. Genome-wide association tests were performed with 26.5 million single-nucleotide polymorphisms (SNPs) in the NAM population and with 246,497 SNPs in the association population, resulting in the identification of 18 and three loci associated with variation in flecking, respectively. Many of the candidate genes colocalizing with associated SNPs are similar to genes that function in plant defense response via cell wall modification, salicylic acid- and jasmonic acid-dependent pathways, redox homeostasis, stress response, and vesicle trafficking/remodeling. Significant positive correlations were found between increased flecking, stronger defense response, increased disease resistance, and increased pest resistance. A nonlinear relationship with total kernel weight also was observed whereby lines with relatively high levels of flecking had, on average, lower total kernel weight. We present evidence suggesting that mild flecking could be used as a selection criterion for breeding programs trying to incorporate broad-spectrum disease resistance. PMID:27670817

  16. Arabidopsis histone methyltransferase SET DOMAIN GROUP8 mediates induction of the jasmonate/ethylene pathway genes in plant defense response to necrotrophic fungi.

    PubMed

    Berr, Alexandre; McCallum, Emily J; Alioua, Abdelmalek; Heintz, Dimitri; Heitz, Thierry; Shen, Wen-Hui

    2010-11-01

    As sessile organisms, plants have to endure a wide variety of biotic and abiotic stresses, and accordingly they have evolved intricate and rapidly inducible defense strategies associated with the activation of a battery of genes. Among other mechanisms, changes in chromatin structure are thought to provide a flexible, global, and stable means for the regulation of gene transcription. In support of this idea, we demonstrate here that the Arabidopsis (Arabidopsis thaliana) histone methyltransferase SET DOMAIN GROUP8 (SDG8) plays a crucial role in plant defense against fungal pathogens by regulating a subset of genes within the jasmonic acid (JA) and/or ethylene signaling pathway. We show that the loss-of-function mutant sdg8-1 displays reduced resistance to the necrotrophic fungal pathogens Alternaria brassicicola and Botrytis cinerea. While levels of JA, a primary phytohormone involved in plant defense, and camalexin, a major phytoalexin against fungal pathogens, remain unchanged or even above normal in sdg8-1, induction of several defense genes within the JA/ethylene signaling pathway is severely compromised in response to fungal infection or JA treatment in mutant plants. Both downstream genes and, remarkably, also upstream mitogen-activated protein kinase kinase genes MKK3 and MKK5 are misregulated in sdg8-1. Accordingly, chromatin immunoprecipitation analysis shows that sdg8-1 impairs dynamic changes of histone H3 lysine 36 methylation at defense marker genes as well as at MKK3 and MKK5, which normally occurs upon infection with fungal pathogens or methyl JA treatment in wild-type plants. Our data indicate that SDG8-mediated histone H3 lysine 36 methylation may serve as a memory of permissive transcription for a subset of defense genes, allowing rapid establishment of transcriptional induction.

  17. Application of an improved proteomics method for abundant protein cleanup: molecular and genomic mechanisms study in plant defense.

    PubMed

    Zhang, Yixiang; Gao, Peng; Xing, Zhuo; Jin, Shumei; Chen, Zhide; Liu, Lantao; Constantino, Nasie; Wang, Xinwang; Shi, Weibing; Yuan, Joshua S; Dai, Susie Y

    2013-11-01

    High abundance proteins like ribulose-1,5-bisphosphate carboxylase oxygenase (Rubisco) impose a consistent challenge for the whole proteome characterization using shot-gun proteomics. To address this challenge, we developed and evaluated Polyethyleneimine Assisted Rubisco Cleanup (PARC) as a new method by combining both abundant protein removal and fractionation. The new approach was applied to a plant insect interaction study to validate the platform and investigate mechanisms for plant defense against herbivorous insects. Our results indicated that PARC can effectively remove Rubisco, improve the protein identification, and discover almost three times more differentially regulated proteins. The significantly enhanced shot-gun proteomics performance was translated into in-depth proteomic and molecular mechanisms for plant insect interaction, where carbon re-distribution was used to play an essential role. Moreover, the transcriptomic validation also confirmed the reliability of PARC analysis. Finally, functional studies were carried out for two differentially regulated genes as revealed by PARC analysis. Insect resistance was induced by over-expressing either jacalin-like or cupin-like genes in rice. The results further highlighted that PARC can serve as an effective strategy for proteomics analysis and gene discovery.

  18. Virulent Diuraphis noxia Aphids Over-Express Calcium Signaling Proteins to Overcome Defenses of Aphid-Resistant Wheat Plants

    PubMed Central

    Sinha, Deepak K.; Chandran, Predeesh; Timm, Alicia E.; Aguirre-Rojas, Lina; Smith, C. Michael

    2016-01-01

    The Russian wheat aphid, Diuraphis noxia, an invasive phytotoxic pest of wheat, Triticum aestivum, and barley, Hordeum vulgare, causes huge economic losses in Africa, South America, and North America. Most acceptable and ecologically beneficial aphid management strategies include selection and breeding of D. noxia-resistant varieties, and numerous D. noxia resistance genes have been identified in T. aestivum and H. vulgare. North American D. noxia biotype 1 is avirulent to T. aestivum varieties possessing Dn4 or Dn7 genes, while biotype 2 is virulent to Dn4 and avirulent to Dn7. The current investigation utilized next-generation RNAseq technology to reveal that biotype 2 over expresses proteins involved in calcium signaling, which activates phosphoinositide (PI) metabolism. Calcium signaling proteins comprised 36% of all transcripts identified in the two D. noxia biotypes. Depending on plant resistance gene-aphid biotype interaction, additional transcript groups included those involved in tissue growth; defense and stress response; zinc ion and related cofactor binding; and apoptosis. Activation of enzymes involved in PI metabolism by D. noxia biotype 2 aphids allows depletion of plant calcium that normally blocks aphid feeding sites in phloem sieve elements and enables successful, continuous feeding on plants resistant to avirulent biotype 1. Inhibition of the key enzyme phospholipase C significantly reduced biotype 2 salivation into phloem and phloem sap ingestion. PMID:26815857

  19. Potential role of Flavobacterial gliding-motility and type IX secretion system complex in root colonization and plant defense.

    PubMed

    Kolton, Max; Frenkel, Omer; Elad, Yigal; Cytryn, Eddie

    2014-09-01

    Members of the Flavobacterium genus are often highly abundant in the rhizosphere. Nevertheless, the physiological characteristics associated with their enhanced rhizosphere competence are currently an enigma. Flavobacteria possess a unique gliding-motility complex that is tightly associated with a recently characterized Bacteroidetes-specific type IX protein secretion system, which distinguishes them from the rest of the rhizosphere microbiome. We hypothesize that proper functionality of this complex may confer a competitive advantage in the rhizosphere. To test this hypothesis, we constructed mutant and complement root-associated flavobacterial variants with dysfunctional secretion and gliding motility, and tested them in a series of in planta experiments. These mutants demonstrated significantly lower rhizosphere persistence (approximately 10-fold), plant root colonization (approximately fivefold), and seed adhesion capacity (approximately sevenfold) than the wild-type strains. Furthermore, the biocontrol capacity of the mutant strain toward foliar-applied Clavibacter michiganensis was significantly impaired relative to the wild-type strain, suggesting a role of the gliding and secretion complex in plant protection. Collectively, these results provide an initial link between the high abundance of flavobacteria in the rhizosphere and their unique physiology, indicating that the flavobacterial gliding-motility and secretion complex may play a central role in root colonization and plant defense.

  20. Structural Basis for Dual Functionality of Isoflavonoid O-Methyltransferases in the Evolution of Plant Defense Responses

    SciTech Connect

    Liu, C.; Deavours, B; Richard, S; Ferrer, J; Blount, J; Huhman, D; Dixon, R; Noel, J

    2006-01-01

    In leguminous plants such as pea (Pisum sativum), alfalfa (Medicago sativa), barrel medic (Medicago truncatula), and chickpea (Cicer arietinum), 4'-O-methylation of isoflavonoid natural products occurs early in the biosynthesis of defense chemicals known as phytoalexins. However, among these four species, only pea catalyzes 3-O-methylation that converts the pterocarpanoid isoflavonoid 6a-hydroxymaackiain to pisatin. In pea, pisatin is important for chemical resistance to the pathogenic fungus Nectria hematococca. While barrel medic does not biosynthesize 6a-hydroxymaackiain, when cell suspension cultures are fed 6a-hydroxymaackiain, they accumulate pisatin. In vitro, hydroxyisoflavanone 4'-O-methyltransferase (HI4'OMT) from barrel medic exhibits nearly identical steady state kinetic parameters for the 4'-O-methylation of the isoflavonoid intermediate 2,7,4'-trihydroxyisoflavanone and for the 3-O-methylation of the 6a-hydroxymaackiain isoflavonoid-derived pterocarpanoid intermediate found in pea. Protein x-ray crystal structures of HI4'OMT substrate complexes revealed identically bound conformations for the 2S,3R-stereoisomer of 2,7,4'-trihydroxyisoflavanone and the 6aR,11aR-stereoisomer of 6a-hydroxymaackiain. These results suggest how similar conformations intrinsic to seemingly distinct chemical substrates allowed leguminous plants to use homologous enzymes for two different biosynthetic reactions. The three-dimensional similarity of natural small molecules represents one explanation for how plants may rapidly recruit enzymes for new biosynthetic reactions in response to changing physiological and ecological pressures.

  1. Structural Basis for Dual Functionality of Isoflavonoid O-Methyltransferases in the Evolution of Plant Defense Responses

    SciTech Connect

    Liu, C.-J.; Deavours, B.E.; Richard, S.B.; Ferrer, J.-L.; Blount, J.W.; Huhman, D.; Dixon, R.A.; Noel, J.

    2007-07-10

    In leguminous plants such as pea (Pisum sativum), alfalfa (Medicago sativa), barrel medic (Medicago truncatula), and chickpea (Cicer arietinum), 4'-O-methylation of isoflavonoid natural products occurs early in the biosynthesis of defense chemicals known as phytoalexins. However, among these four species, only pea catalyzes 3-O-methylation that converts the pterocarpanoid isoflavonoid 6a-hydroxymaackiain to pisatin. In pea, pisatin is important for chemical resistance to the pathogenic fungus Nectria hematococca. While barrel medic does not biosynthesize 6a-hydroxymaackiain, when cell suspension cultures are fed 6a-hydroxymaackiain, they accumulate pisatin. In vitro, hydroxyisoflavanone 4'-O-methyltransferase (HI4'OMT) from barrel medic exhibits nearly identical steady state kinetic parameters for the 4'-O-methylation of the isoflavonoid intermediate 2,7,4'-trihydroxyisoflavanone and for the 3-O-methylation of the 6a-hydroxymaackiain isoflavonoid-derived pterocarpanoid intermediate found in pea. Protein x-ray crystal structures of HI4'OMT substrate complexes revealed identically bound conformations for the 2S,3R-stereoisomer of 2,7,4'-trihydroxyisoflavanone and the 6aR,11aR-stereoisomer of 6a-hydroxymaackiain. These results suggest how similar conformations intrinsic to seemingly distinct chemical substrates allowed leguminous plants to use homologous enzymes for two different biosynthetic reactions. The three-dimensional similarity of natural small molecules represents one explanation for how plants may rapidly recruit enzymes for new biosynthetic reactions in response to changing physiological and ecological pressures.

  2. Nuclear waste-form risk assessment for US Defense waste at Savannah River Plant. Annual report FY 1981

    SciTech Connect

    Cheung, H.; Edwards, L.L.; Harvey, T.F.; Jackson, D.D.; Revelli, M.A.

    1981-12-01

    Savannah River Plant has been supporting the Lawrence Livermore National Laboratory in its present effort to perform risk assessments of alternative waste forms for defense waste. This effort relates to choosing a suitable combination of solid form and geologic medium on the basis of risk of exposure to future generations; therefore, the focus is on post-closure considerations of deep geologic repositories. The waste forms being investigated include borosilicate glass, SYNROC, and others. Geologic media under consideration are bedded salt, basalt, and tuff. The results of our work during FY 1981 are presented in this, our second annual report. The two complementary tasks that comprise our program, analysis of waste-form dissolution and risk assessment, are described.

  3. Fast-forward generation of effective artificial small RNAs for enhanced antiviral defense in plants.

    PubMed

    Carbonell, Alberto; Carrington, James C; Daròs, José-Antonio

    Artificial small RNAs (sRNAs) are short ≈21-nt non-coding RNAs engineered to inactivate sequence complementary RNAs. In plants, they have been extensively used to silence cellular transcripts in gene function analyses and to target invading RNA viruses to induce resistance. Current artificial sRNA-based antiviral resistance in plants is mainly limited to a single virus, and is jeopardized by the emergence of mutations in the artificial sRNA target site or by the presence of co-infecting viruses. Hence, there is a need to further develop the artificial sRNA approach to generate more broad and durable antiviral resistance in plants. A recently developed toolbox allows for the time and cost-effective large-scale production of artificial sRNA constructs in plants. The toolbox includes the P-SAMS web tool for the automated design of artificial sRNAs, and a new generation of artificial microRNA and synthetic trans-acting small interfering RNA (syn-tasiRNA) vectors for direct cloning and high expression of artificial sRNAs. Here we describe how the simplicity and high-throughput capability of these new technologies should accelerate the study of artificial sRNA-based antiviral resistance in plants. In particular, we discuss the potential of the syn-tasiRNA approach as a promising strategy for developing more effective, durable and broad antiviral resistance in plants.

  4. Auto-acetylation on K289 is not essential for HopZ1a-mediated plant defense suppression

    PubMed Central

    Rufián, José S.; Lucía, Ainhoa; Macho, Alberto P.; Orozco-Navarrete, Begoña; Arroyo-Mateos, Manuel; Bejarano, Eduardo R.; Beuzón, Carmen R.; Ruiz-Albert, Javier

    2015-01-01

    The Pseudomonas syringae type III-secreted effector HopZ1a is a member of the HopZ/YopJ superfamily of effectors that triggers immunity in Arabidopsis. We have previously shown that HopZ1a suppresses both local [effector-triggered immunity (ETI)] and systemic immunity [systemic acquired resistance (SAR)] triggered by the heterologous effector AvrRpt2. HopZ1a has been shown to possess acetyltransferase activity, and this activity is essential to trigger immunity in Arabidopsis. HopZ1a acetyltransferase activity has been reported to require the auto-acetylation of the effector on a specific lysine (K289) residue. In this paper we analyze the relevance of autoacetylation of lysine residue 289 in HopZ1a ability to suppress plant defenses, and on the light of the results obtained, we also revise its relevance for HopZ1a avirulence activity. Our results indicate that, while the HopZ1aK289R mutant is impaired to some degree in its virulence and avirulence activities, is by no means phenotypically equivalent to the catalytically inactive HopZ1aC216A, since it is still able to trigger a defense response that induces detectable macroscopic HR and effectively protects Arabidopsis from infection, reducing growth of P. syringae within the plant. We also present evidence that the HopZ1aK289R mutant still displays virulence activities, partially suppressing both ETI and SAR. PMID:26217317

  5. Auto-acetylation on K289 is not essential for HopZ1a-mediated plant defense suppression.

    PubMed

    Rufián, José S; Lucía, Ainhoa; Macho, Alberto P; Orozco-Navarrete, Begoña; Arroyo-Mateos, Manuel; Bejarano, Eduardo R; Beuzón, Carmen R; Ruiz-Albert, Javier

    2015-01-01

    The Pseudomonas syringae type III-secreted effector HopZ1a is a member of the HopZ/YopJ superfamily of effectors that triggers immunity in Arabidopsis. We have previously shown that HopZ1a suppresses both local [effector-triggered immunity (ETI)] and systemic immunity [systemic acquired resistance (SAR)] triggered by the heterologous effector AvrRpt2. HopZ1a has been shown to possess acetyltransferase activity, and this activity is essential to trigger immunity in Arabidopsis. HopZ1a acetyltransferase activity has been reported to require the auto-acetylation of the effector on a specific lysine (K289) residue. In this paper we analyze the relevance of autoacetylation of lysine residue 289 in HopZ1a ability to suppress plant defenses, and on the light of the results obtained, we also revise its relevance for HopZ1a avirulence activity. Our results indicate that, while the HopZ1a(K289R) mutant is impaired to some degree in its virulence and avirulence activities, is by no means phenotypically equivalent to the catalytically inactive HopZ1a(C216A), since it is still able to trigger a defense response that induces detectable macroscopic HR and effectively protects Arabidopsis from infection, reducing growth of P. syringae within the plant. We also present evidence that the HopZ1a(K289R) mutant still displays virulence activities, partially suppressing both ETI and SAR.

  6. Natural history-driven, plant-mediated RNAi-based study reveals CYP6B46’s role in a nicotine-mediated antipredator herbivore defense

    PubMed Central

    Kumar, Pavan; Pandit, Sagar S.; Steppuhn, Anke; Baldwin, Ian T.

    2014-01-01

    Manduca sexta (Ms) larvae are known to efficiently excrete ingested nicotine when feeding on their nicotine-producing native hostplant, Nicotiana attenuata. Here we describe how ingested nicotine is co-opted for larval defense by a unique mechanism. Plant-mediated RNAi was used to silence a midgut-expressed, nicotine-induced cytochrome P450 6B46 (CYP6B46) in larvae consuming transgenic N. attenuata plants producing MsCYP6B46 dsRNA. These and transgenic nicotine-deficient plants were planted into native habitats to study the phenotypes of larvae feeding on these plants and the behavior of their predators. The attack-behavior of a native wolf spider (Camptocosa parallela), a major nocturnal predator, provided the key to understanding MsCYP6B46’s function: spiders clearly preferred CYP6B46-silenced larvae, just as they had preferred larvae fed nicotine-deficient plants. MsCYP6B46 redirects a small amount (0.65%) of ingested nicotine from the midgut into hemolymph, from which nicotine is exhaled through the spiracles as an antispider signal. CYP6B46-silenced larvae were more susceptible to spider-attack because they exhaled less nicotine because of lower hemolymph nicotine concentrations. CYP6B46-silenced larvae were impaired in distributing ingested nicotine from midgut to hemolymph, but not in the clearing of hemolymph nicotine or in the exhalation of nicotine from hemolymph. MsCYP6B46 could be a component of a previously hypothesized pump that converts nicotine to a short-lived, transportable, metabolite. Other predators, big-eyed bugs, and antlion larvae were insensitive to this defense. Thus, chemical defenses, too toxic to sequester, can be repurposed for defensive functions through respiration as a form of defensive halitosis, and predators can assist the functional elucidation of herbivore genes. PMID:24379363

  7. Natural history-driven, plant-mediated RNAi-based study reveals CYP6B46's role in a nicotine-mediated antipredator herbivore defense.

    PubMed

    Kumar, Pavan; Pandit, Sagar S; Steppuhn, Anke; Baldwin, Ian T

    2014-01-28

    Manduca sexta (Ms) larvae are known to efficiently excrete ingested nicotine when feeding on their nicotine-producing native hostplant, Nicotiana attenuata. Here we describe how ingested nicotine is co-opted for larval defense by a unique mechanism. Plant-mediated RNAi was used to silence a midgut-expressed, nicotine-induced cytochrome P450 6B46 (CYP6B46) in larvae consuming transgenic N. attenuata plants producing MsCYP6B46 dsRNA. These and transgenic nicotine-deficient plants were planted into native habitats to study the phenotypes of larvae feeding on these plants and the behavior of their predators. The attack-behavior of a native wolf spider (Camptocosa parallela), a major nocturnal predator, provided the key to understanding MsCYP6B46's function: spiders clearly preferred CYP6B46-silenced larvae, just as they had preferred larvae fed nicotine-deficient plants. MsCYP6B46 redirects a small amount (0.65%) of ingested nicotine from the midgut into hemolymph, from which nicotine is exhaled through the spiracles as an antispider signal. CYP6B46-silenced larvae were more susceptible to spider-attack because they exhaled less nicotine because of lower hemolymph nicotine concentrations. CYP6B46-silenced larvae were impaired in distributing ingested nicotine from midgut to hemolymph, but not in the clearing of hemolymph nicotine or in the exhalation of nicotine from hemolymph. MsCYP6B46 could be a component of a previously hypothesized pump that converts nicotine to a short-lived, transportable, metabolite. Other predators, big-eyed bugs, and antlion larvae were insensitive to this defense. Thus, chemical defenses, too toxic to sequester, can be repurposed for defensive functions through respiration as a form of defensive halitosis, and predators can assist the functional elucidation of herbivore genes.

  8. Increased SA in NPR1-silenced plants antagonizes JA and JA-dependent direct and indirect defenses in herbivore-attacked Nicotiana attenuata in nature.

    PubMed

    Rayapuram, Cbgowda; Baldwin, Ian T

    2007-11-01

    The phytohormone jasmonic acid (JA) is known to mediate herbivore resistance, while salicylic acid (SA) and non-expressor of PR-1 (NPR1) mediate pathogen resistance in many plants. Herbivore attack on Nicotiana attenuata elicits increases in JA and JA-mediated defenses, but also increases SA levels and Na-NPR1 transcripts from the plant's single genomic copy. SA treatment of wild-type plants increases Na-NPR1 and Na-PR1 transcripts. Plants silenced in NPR1 accumulation by RNAi (ir-npr1) are highly susceptible to herbivore and pathogen attack when planted in their native habitat in Utah. They are also impaired in their ability to attract Geocorus pallens predators, due to their decreased ability to release cis-alpha-bergamotene, a JA-elicited volatile 'alarm call'. In the glasshouse, Spodoptera exigua larvae grew better on ir-npr1 plants, which had low levels of JA, JA-isoleucine/leucine, lipoxygenase-3 (LOX3) transcripts and JA-elicited direct defense metabolites (nicotine, caffeoyl putrescine and rutin), but high levels of SA and isochorismate synthase (ICS) transcripts, suggesting de novo biosynthesis of SA. A microarray analysis revealed downregulation of many JA-elicited genes and upregulation of SA biosynthetic genes. JA treatment restored nicotine levels and resistance to S. exigua in ir-npr1 plants. We conclude that, during herbivore attack, NPR1 negatively regulates SA production, allowing the unfettered elicitation of JA-mediated defenses; when NPR1 is silenced, the elicited increases in SA production antagonize JA and JA-related defenses, making the plants susceptible to herbivores.

  9. Feeding on Host Plants with Different Concentrations and Structures of Pyrrolizidine Alkaloids Impacts the Chemical-Defense Effectiveness of a Specialist Herbivore

    PubMed Central

    Cunha, Beatriz P.; Solferini, Vera N.

    2015-01-01

    Sequestration of chemical defenses from host plants is a strategy widely used by herbivorous insects to avoid predation. Larvae of the arctiine moth Utetheisa ornatrix feeding on unripe seeds and leaves of many species of Crotalaria (Leguminosae) sequester N-oxides of pyrrolizidine alkaloids (PAs) from these host plants, and transfer them to adults through the pupal stage. PAs confer protection against predation on all life stages of U. ornatrix. As U. ornatrix also uses other Crotalaria species as host plants, we evaluated whether the PA chemical defense against predation is independent of host plant use. We fed larvae from hatching to pupation with either leaves or seeds of one of eight Crotalaria species (C. incana, C. juncea, C. micans, C. ochroleuca, C. pallida, C. paulina, C. spectabilis, and C. vitellina), and tested if adults were preyed upon or released by the orb-weaving spider Nephila clavipes. We found that the protection against the spider was more effective in adults whose larvae fed on seeds, which had a higher PA concentration than leaves. The exceptions were adults from larvae fed on C. paulina, C. spectabilis and C. vitellina leaves, which showed high PA concentrations. With respect to the PA profile, we describe for the first time insect-PAs in U. ornatrix. These PAs, biosynthesized from the necine base retronecine of plant origin, or monocrotaline- and senecionine-type PAs sequestered from host plants, were equally active in moth chemical defense, in a dose-dependent manner. These results are also partially explained by host plant phylogeny, since PAs of the host plants do have a phylogenetic signal (clades with high and low PA concentrations in leaves) which is reflected in the adult defense. PMID:26517873

  10. Capsicum annuum homeobox 1 (CaHB1) is a nuclear factor that has roles in plant development, salt tolerance, and pathogen defense

    SciTech Connect

    Oh, Sang-Keun; Yoon, Joonseon; Choi, Gyung Ja; Jang, Hyun A; Kwon, Suk-Yoon; Choi, Doil

    2013-12-06

    Highlights: •The CaHB1 is a nuclear factor, belonging to HD-Zip proteins. •SA and ET, as signal molecules, modulate CaHB1-mediated responses. •Overexpression of CaHB1 in tomato resulted in a thicker cell wall. •CaHB1-transgenic tomato confers resistance to Phytophthora infestans. •CaHB1 enhanced tolerance to saline stress in tomato. -- Abstract: Homeodomain-leucine zipper (HD-Zip) family proteins are unique to plants, but little is known about their role in defense responses. CaHB1 is a nuclear factor in peppers, belonging to subfamily II of HD-Zip proteins. Here, we determined the role of CaHB1 in the defense response. CaHB1 expression was induced when pepper plants were challenged with Phytophthora capsici, a plant pathogen to which peppers are susceptible, or environmental stresses such as drought and salt stimuli. CaHB1 was also highly expressed in pepper leaves following application of SA, whereas ethephon and MeJA had a moderate effect. To further investigate the function of CaHB1 in plants, we performed gain-of-function study by overexpression of CaHB1 in tomato. CaHB1-transgenic tomatoes showed significant growth enhancement including increased leaf thickness and enlarged cell size (1.8-fold larger than control plants). Microscopic analysis revealed that leaves from CaHB1-transgenic plants had thicker cell walls and cuticle layers than those from controls. Moreover, CaHB1-transgenic plants displayed enhanced resistance against Phytophthora infestans and increased tolerance to salt stress. Additionally, RT-PCR analysis of CaHB1-transgenic tomatoes revealed constitutive up-regulation of multiple genes involved in plant defense and osmotic stress. Therefore, our findings suggest roles for CaHB1 in development, salt stress, and pathogen defense.

  11. Feeding on Host Plants with Different Concentrations and Structures of Pyrrolizidine Alkaloids Impacts the Chemical-Defense Effectiveness of a Specialist Herbivore.

    PubMed

    Martins, Carlos H Z; Cunha, Beatriz P; Solferini, Vera N; Trigo, José R

    2015-01-01

    Sequestration of chemical defenses from host plants is a strategy widely used by herbivorous insects to avoid predation. Larvae of the arctiine moth Utetheisa ornatrix feeding on unripe seeds and leaves of many species of Crotalaria (Leguminosae) sequester N-oxides of pyrrolizidine alkaloids (PAs) from these host plants, and transfer them to adults through the pupal stage. PAs confer protection against predation on all life stages of U. ornatrix. As U. ornatrix also uses other Crotalaria species as host plants, we evaluated whether the PA chemical defense against predation is independent of host plant use. We fed larvae from hatching to pupation with either leaves or seeds of one of eight Crotalaria species (C. incana, C. juncea, C. micans, C. ochroleuca, C. pallida, C. paulina, C. spectabilis, and C. vitellina), and tested if adults were preyed upon or released by the orb-weaving spider Nephila clavipes. We found that the protection against the spider was more effective in adults whose larvae fed on seeds, which had a higher PA concentration than leaves. The exceptions were adults from larvae fed on C. paulina, C. spectabilis and C. vitellina leaves, which showed high PA concentrations. With respect to the PA profile, we describe for the first time insect-PAs in U. ornatrix. These PAs, biosynthesized from the necine base retronecine of plant origin, or monocrotaline- and senecionine-type PAs sequestered from host plants, were equally active in moth chemical defense, in a dose-dependent manner. These results are also partially explained by host plant phylogeny, since PAs of the host plants do have a phylogenetic signal (clades with high and low PA concentrations in leaves) which is reflected in the adult defense.

  12. The maize lipoxygenase, ZmLOX10, mediates green leaf volatile, jasmonate, and herbivore-induced plant volatile production for defense against insect attack

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fatty acid derivatives are of central importance for plant immunity against insect herbivores. However, major regulatory genes and the signals that modulate these defense metabolites are vastly understudied, especially in important agro-economic monocot species. Here we show that products and sign...

  13. Ectopic Terpene Synthase Expression Enhances Sesquiterpene Emission in Nicotiana attenuata without Altering Defense or Development of Transgenic Plants or Neighbors1[W

    PubMed Central

    Schuman, Meredith C.; Palmer-Young, Evan C.; Schmidt, Axel; Gershenzon, Jonathan; Baldwin, Ian T.

    2014-01-01

    Sesquiterpenoids, with approximately 5,000 structures, are the most diverse class of plant volatiles with manifold hypothesized functions in defense, stress tolerance, and signaling between and within plants. These hypotheses have often been tested by transforming plants with sesquiterpene synthases expressed behind the constitutively active 35S promoter, which may have physiological costs measured as inhibited growth and reduced reproduction or may require augmentation of substrate pools to achieve enhanced emission, complicating the interpretation of data from affected transgenic lines. Here, we expressed maize (Zea mays) terpene synthase10 (ZmTPS10), which produces (E)-α-bergamotene and (E)-β-farnesene, or a point mutant ZmTPS10M, which produces primarily (E)-β-farnesene, under control of the 35S promoter in the ecological model plant Nicotiana attenuata. Transgenic N. attenuata plants had specifically enhanced emission of target sesquiterpene(s) with no changes detected in their emission of any other volatiles. Treatment with herbivore or jasmonate elicitors induces emission of (E)-α-bergamotene in wild-type plants and also tended to increase emission of (E)-α-bergamotene and (E)-β-farnesene in transgenics. However, transgenics did not differ from the wild type in defense signaling or chemistry and did not alter defense chemistry in neighboring wild-type plants. These data are inconsistent with within-plant and between-plant signaling functions of (E)-β-farnesene and (E)-α-bergamotene in N. attenuata. Ectopic sesquiterpene emission was apparently not costly for transgenics, which were similar to wild-type plants in their growth and reproduction, even when forced to compete for common resources. These transgenics would be well suited for field experiments to investigate indirect ecological effects of sesquiterpenes for a wild plant in its native habitat. PMID:25187528

  14. Antioxidant Enzyme Responses Induced by Whiteflies in Tobacco Plants in Defense against Aphids: Catalase May Play a Dominant Role

    PubMed Central

    Zhao, Haipeng; Sun, Xia; Xue, Ming; Zhang, Xiao; Li, Qingliang

    2016-01-01

    led to the suppression of the B. tabaci mediated PR-2a expression. Conclusions/Significance Aphid resistance in plants infested with B. tabaci nymphs is associated with enhanced antioxidant activities in which CAT may play a dominant role. This resistance probably acted via interactions with SA-mediated defense responses. PMID:27788203

  15. Tyramine Pathways in Citrus Plant Defense: Glycoconjugates of Tyramine and Its N-Methylated Derivatives.

    PubMed

    Servillo, Luigi; Castaldo, Domenico; Giovane, Alfonso; Casale, Rosario; D'Onofrio, Nunzia; Cautela, Domenico; Balestrieri, Maria Luisa

    2017-02-01

    Glucosylated forms of tyramine and some of its N-methylated derivatives are here reported for the first time to occur in Citrus genus plants. The compounds tyramine-O-β-d-glucoside, N-methyltyramine-O-β-d-glucoside, and N,N-dimethyltyramine-O-β-d-glucoside were detected in juice and leaves of sweet orange, bitter orange, bergamot, citron, lemon, mandarin, and pomelo. The compounds were identified by mass spectrometric analysis, enzymatic synthesis, and comparison with extracts of Stapelia hirsuta L., a plant belonging to the Apocynaceae family in which N,N-dimethyltyramine-O-β-d-glucoside was identified by others. Interestingly, in Stapelia hirsuta we discovered also tyramine-O-β-d-glucoside, N-methyltyramine-O-β-d-glucoside, and the tyramine metabolite, N,N,N-trimethyltyramine-O-β-glucoside. However, the latter tyramine metabolite, never described before, was not detected in any of the Citrus plants included in this study. The presence of N-methylated tyramine derivatives and their glucosylated forms in Citrus plants, together with octopamine and synephrine, also deriving from tyramine, supports the hypothesis of specific biosynthetic pathways of adrenergic compounds aimed to defend against biotic stress.

  16. Glyceollin is an important component of soybean plant defense against Phytophthora sojae and Macrophomina phaseolina

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transgenic soybean plants were generated using bombardment of embryogenic cultures with the PAL5 (phenylalanine ammonia lyase), CHS6 (chalcone synthase) and IFS2 (isoflavone synthase) genes in sense orientation, driven by the cotyledon-preferable lectin promoter, or with the IFS2 (isoflavone synthas...

  17. Interactive Effects of UV-B Light with Abiotic Factors on Plant Growth and Chemistry, and Their Consequences for Defense against Arthropod Herbivores.

    PubMed

    Escobar-Bravo, Rocio; Klinkhamer, Peter G L; Leiss, Kirsten A

    2017-01-01

    Ultraviolet-B (UV-B) light plays a crucial role in plant-herbivorous arthropods interactions by inducing changes in constitutive and inducible plant defenses. In particular, constitutive defenses can be modulated by UV-B-induced photomorphogenic responses and changes in the plant metabolome. In accordance, the prospective use of UV-B light as a tool to increase plant protection in agricultural practice has gained increasing interest. Changes in the environmental conditions might, however, modulate the UV-B -induced plant responses. While in some cases plant responses to UV-B can increase adaptation to changes in certain abiotic factors, UV-B-induced responses might be also antagonized by the changing environment. The outcome of these interactions might have a great influence on how plants interact with their enemies, e.g., herbivorous arthropods. Here, we provide a review on the interactive effects of UV-B and light quantity and quality, increased temperature and drought stress on plant biochemistry, and we discuss the implications of the outcome of these interactions for plant resistance to arthropod pests.

  18. Population-level variation of the preproricin gene contradicts expectation of neutral equilibrium for generalist plant defense toxins.

    PubMed

    Weeks, Andrea; Leshin, Jonathan A; Dretchen, Kenneth L; Skowronski, Evan W; O'Connell, Kevin P

    2010-07-01

    The preproricin gene encodes ricin, the highly toxic, type II ribosome-inactivating protein of castor bean (Ricinus communis L.). As a generalist plant defense gene, preproricin is expected to exhibit population-level variation consistent with the neutral equilibrium model and to comprise few functionally different alleles. We first test the hypothesis that the preproricin gene family should comprise six to eight members by searching the publicly available draft genome sequence of R. communis and analyzing its ricin-like loci. We then test the neutral equilibrium expectation for the preproricin gene by characterizing its allelic variation among 25 geographically diverse castor bean plants. We confirm the presence of six ricin-like loci that share with the preproricin gene 62.9-96.3% nucleotide identity and intact A-chains. DNA sequence variation among the preproricin haplotypes significantly rejects tests of the neutral equilibrium model. Replacement mutations preserve the 12 amino acids known to affect catalytic and electrostatic interactions of the native protein toxin, which suggests functional divergence among alleles has been minimal. Nucleotide polymorphism is maintained by purifying selection (omega < 0.3) yet includes an excess of rare silent mutations greater than predicted by the neutral equilibrium model. Development of robust detection methods for ricin contamination must account for the presence of these other ricin-like molecules and should leverage the specificity provided by the numerous single nucleotide polymorphisms in the preproricin gene.

  19. Viral RNase3 Co-Localizes and Interacts with the Antiviral Defense Protein SGS3 in Plant Cells

    PubMed Central

    Weinheimer, Isabel; Haikonen, Tuuli; Ala-Poikela, Marjo; Moser, Mirko; Streng, Janne; Rajamäki, Minna-Liisa; Valkonen, Jari P. T.

    2016-01-01

    Sweet potato chlorotic stunt virus (SPCSV; family Closteroviridae) encodes a Class 1 RNase III endoribonuclease (RNase3) that suppresses post-transcriptional RNA interference (RNAi) and eliminates antiviral defense in sweetpotato plants (Ipomoea batatas). For RNAi suppression, RNase3 cleaves double-stranded small interfering RNAs (ds-siRNA) and long dsRNA to fragments that are too short to be utilized in RNAi. However, RNase3 can suppress only RNAi induced by sense RNA. Sense-mediated RNAi involves host suppressor of gene silencing 3 (SGS3) and RNA–dependent RNA polymerase 6 (RDR6). In this study, subcellular localization and host interactions of RNase3 were studied in plant cells. RNase3 was found to interact with SGS3 of sweetpotato and Arabidopsis thaliana when expressed in leaves, and it localized to SGS3/RDR6 bodies in the cytoplasm of leaf cells and protoplasts. RNase3 was also detected in the nucleus. Co-expression of RNase3 and SGS3 in leaf tissue enhanced the suppression of RNAi, as compared with expression of RNase3 alone. These results suggest additional mechanisms needed for efficient RNase3-mediated suppression of RNAi and provide new information about the subcellular context and phase of the RNAi pathway in which RNase3 realizes RNAi suppression. PMID:27391019

  20. Disruption of web structure and predatory behavior of a spider by plant-derived chemical defenses of an aposematic aphid.

    PubMed

    Malcolm, S B

    1989-06-01

    Two toxic and bitter-tasting cardenolides (cardiac-active steroids) were sequestered by the brightly colored oleander aphid,Aphis nerii B. de F., from the neotropical milkweed host plantAsclepias curassavica L. After feeding on milkweed-reared aphids, the orb-web spiderZygiella x-notata (Clerck) built severely disrupted webs and attacked fewer nontoxic, control aphids, whereas the webs of spiders fed only nontoxic aphids remained intact. The regularity and size of the prey-trapping area of webs were reduced significantly in proportion to the amount of toxic aphids eaten. The effects of toxic aphids on spider web structure were mimicked by feeding spiders the bitter-tasting cardenolide digitoxin, a cardenolide with similar steroidal structure and pharmacological activity to the two aphid cardenolides. These results show that the well-known effects of psychoactive drugs on spider web structure are more than interesting behavioral assays of drag activity. Similar effects, produced by plant-derived chemicals in the spider's aphid prey, are relevant to the ecology and evolution of interactions between prey defense and predator foraging.

  1. Influence of potent antioxidant leguminosae family plant extracts on growth and antioxidant defense system of Hep2 cancer cell line.

    PubMed

    Spanou, Chrysoula; Stagos, Dimitrios; Aligiannis, Nektarios; Kouretas, Demetrios

    2010-02-01

    Legumes are considered to be a very good source of polyphenolic compounds that may act as chemopreventive agents, especially by their antioxidant properties. However, many of the chemopreventive properties may depend on the concentrations of the phytochemical compounds because potent antioxidant polyphenolic compounds may have pro-oxidant properties and negatively affect cell growth and viability. Thus, the aim of the present study was to assess the possible effect of two potent antioxidant Greek Leguminosae family plant extracts on the growth of a specific cancer cell line and its antioxidant defense cell system. Aqueous extracts of aerial parts of Lathyrus laxiflorus and Phaseolus vulgaris plants were initially examined for their cytotoxicity on the Hep2 cancer cell line at concentrations that possess potent antioxidant properties (100, 400, and 800 microg/mL). After a 24-hour incubation with the extracts, only L. laxiflorus plant extract exhibited the ability to inhibit the cell growth at 400 and 800 microg/mL by 57% and 74%, respectively, whereas P. vulgaris extract had no effect on cell growth at any of the tested concentrations. Noncytotoxic concentrations, 100 microg/mL L. laxiflorus and 800 microg/mL P. vulgaris extract, were used for 2-, 12-, and 24-hour incubation of the cells. The influence of the extracts on the antioxidant defense system of the cells was assessed by measuring the total antioxidant capacity (TAC) of the cells, the catalase (CAT) activity, and the concentrations of reduced glutathione, the oxidized form of glutathione, and thiobarbituric-reactive substances (TBARS) in all times of incubation with the cells. From the results obtained, it seems that only L. laxiflorus extract induces oxidative stress in the cells by reducing TAC and CAT activity and by inducing TBARS, especially with 2 and 12 hours of incubation. P. vulgaris extract reduced only TAC at 2 hours of incubation, indicating also a mild induction of oxidative stress. These

  2. Socioeconomic assessment of defense waste processing facility impacts in the Savannah River Plant region

    SciTech Connect

    Peelle, E.; Reed, J.H.; Stevenson, R.H.

    1981-09-01

    The DWPF will immobilize highly radioactive defense wastes for storage on site until shipment to an approved federal repository for radioactive wastes. This document assesses the socioeconomic impacts of constructing and operating the proposed facility and presents the assessment methodology. Because various schedules and various ways of staging the construction of the DWPF are considered and because in some of these instances a large nearby construction project (the Vogtle Nuclear Power Station) may influence the socioeconomic impacts, four scenarios involving different facility options and schedules are assessed. In general, the impacts were found not to be large. In the scenario where the socioeconomic effects were the greatest, it was found that there are likely to be some impacts on schools in Barnwell County as well as a shortage of mobile homes in that county. Aiken, Allendale, and Bamberg counties are also likely to experience slight-to-moderate housing shortages. Minor impacts are anticipated for fire and police services, roads, traffic, and land use. There will be noticeable economic impact from the project. Other scenarios had fewer socioeconomic impacts.

  3. Development of a qPCR Strategy to Select Bean Genes Involved in Plant Defense Response and Regulated by the Trichoderma velutinum - Rhizoctonia solani Interaction.

    PubMed

    Mayo, Sara; Cominelli, Eleonora; Sparvoli, Francesca; González-López, Oscar; Rodríguez-González, Alvaro; Gutiérrez, Santiago; Casquero, Pedro A

    2016-01-01

    Bean production is affected by a wide diversity of fungal pathogens, among them Rhizoctonia solani is one of the most important. A strategy to control bean infectious diseases, mainly those caused by fungi, is based on the use of biocontrol agents (BCAs) that can reduce the negative effects of plant pathogens and also can promote positive responses in the plant. Trichoderma is a fungal genus that is able to induce the expression of genes involved in plant defense response and also to promote plant growth, root development and nutrient uptake. In this article, a strategy that combines in silico analysis and real time PCR to detect additional bean defense-related genes, regulated by the presence of Trichoderma velutinum and/or R. solani has been applied. Based in this strategy, from the 48 bean genes initially analyzed, 14 were selected, and only WRKY33, CH5b and hGS showed an up-regulatory response in the presence of T. velutinum. The other genes were or not affected (OSM34) or down-regulated by the presence of this fungus. R. solani infection resulted in a down-regulation of most of the genes analyzed, except PR1, OSM34 and CNGC2 that were not affected, and the presence of both, T. velutinum and R. solani, up-regulates hGS and down-regulates all the other genes analyzed, except CH5b which was not significantly affected. As conclusion, the strategy described in the present work has been shown to be effective to detect genes involved in plant defense, which respond to the presence of a BCA or to a pathogen and also to the presence of both. The selected genes show significant homology with previously described plant defense genes and they are expressed in bean leaves of plants treated with T. velutinum and/or infected with R. solani.

  4. Development of a qPCR Strategy to Select Bean Genes Involved in Plant Defense Response and Regulated by the Trichoderma velutinum – Rhizoctonia solani Interaction

    PubMed Central

    Mayo, Sara; Cominelli, Eleonora; Sparvoli, Francesca; González-López, Oscar; Rodríguez-González, Alvaro; Gutiérrez, Santiago; Casquero, Pedro A.

    2016-01-01

    Bean production is affected by a wide diversity of fungal pathogens, among them Rhizoctonia solani is one of the most important. A strategy to control bean infectious diseases, mainly those caused by fungi, is based on the use of biocontrol agents (BCAs) that can reduce the negative effects of plant pathogens and also can promote positive responses in the plant. Trichoderma is a fungal genus that is able to induce the expression of genes involved in plant defense response and also to promote plant growth, root development and nutrient uptake. In this article, a strategy that combines in silico analysis and real time PCR to detect additional bean defense-related genes, regulated by the presence of Trichoderma velutinum and/or R. solani has been applied. Based in this strategy, from the 48 bean genes initially analyzed, 14 were selected, and only WRKY33, CH5b and hGS showed an up-regulatory response in the presence of T. velutinum. The other genes were or not affected (OSM34) or down-regulated by the presence of this fungus. R. solani infection resulted in a down-regulation of most of the genes analyzed, except PR1, OSM34 and CNGC2 that were not affected, and the presence of both, T. velutinum and R. solani, up-regulates hGS and down-regulates all the other genes analyzed, except CH5b which was not significantly affected. As conclusion, the strategy described in the present work has been shown to be effective to detect genes involved in plant defense, which respond to the presence of a BCA or to a pathogen and also to the presence of both. The selected genes show significant homology with previously described plant defense genes and they are expressed in bean leaves of plants treated with T. velutinum and/or infected with R. solani. PMID:27540382

  5. A below-ground herbivore shapes root defensive chemistry in natural plant populations.

    PubMed

    Huber, Meret; Bont, Zoe; Fricke, Julia; Brillatz, Théo; Aziz, Zohra; Gershenzon, Jonathan; Erb, Matthias

    2016-03-30

    Plants display extensive intraspecific variation in secondary metabolites. However, the selective forces shaping this diversity remain often unknown, especially below ground. Using Taraxacum officinale and its major native insect root herbivore Melolontha melolontha, we tested whether below-ground herbivores drive intraspecific variation in root secondary metabolites. We found that high M. melolontha infestation levels over recent decades are associated with high concentrations of major root latex secondary metabolites across 21 central European T. officinale field populations. By cultivating offspring of these populations, we show that both heritable variation and phenotypic plasticity contribute to the observed differences. Furthermore, we demonstrate that the production of the sesquiterpene lactone taraxinic acid β-D-glucopyranosyl ester (TA-G) is costly in the absence, but beneficial in the presence of M. melolontha, resulting in divergent selection of TA-G. Our results highlight the role of soil-dwelling insects for the evolution of plant defences in nature.

  6. A below-ground herbivore shapes root defensive chemistry in natural plant populations

    PubMed Central

    Huber, Meret; Bont, Zoe; Fricke, Julia; Brillatz, Théo; Aziz, Zohra; Gershenzon, Jonathan; Erb, Matthias

    2016-01-01

    Plants display extensive intraspecific variation in secondary metabolites. However, the selective forces shaping this diversity remain often unknown, especially below ground. Using Taraxacum officinale and its major native insect root herbivore Melolontha melolontha, we tested whether below-ground herbivores drive intraspecific variation in root secondary metabolites. We found that high M. melolontha infestation levels over recent decades are associated with high concentrations of major root latex secondary metabolites across 21 central European T. officinale field populations. By cultivating offspring of these populations, we show that both heritable variation and phenotypic plasticity contribute to the observed differences. Furthermore, we demonstrate that the production of the sesquiterpene lactone taraxinic acid β-d-glucopyranosyl ester (TA-G) is costly in the absence, but beneficial in the presence of M. melolontha, resulting in divergent selection of TA-G. Our results highlight the role of soil-dwelling insects for the evolution of plant defences in nature. PMID:27009228

  7. EDTA enhanced plant growth, antioxidant defense system, and phytoextraction of copper by Brassica napus L.

    PubMed

    Habiba, Ume; Ali, Shafaqat; Farid, Mujahid; Shakoor, Muhammad Bilal; Rizwan, Muhammad; Ibrahim, Muhammad; Abbasi, Ghulam Hasan; Hayat, Tahir; Ali, Basharat

    2015-01-01

    Copper (Cu) is an essential micronutrient for normal plant growth and development, but in excess, it is also toxic to plants. The present study investigated the influence of ethylenediaminetetraacetic acid (EDTA) in enhancing Cu uptake and tolerance as well as the morphological and physiological responses of Brassica napus L. seedlings under Cu stress. Four-week-old seedlings were transferred to hydroponics containing Hoagland's nutrient solution. After 2 weeks of transplanting, three levels (0, 50, and 100 μM) of Cu were applied with or without application of 2.5 mM EDTA and plants were further grown for 8 weeks in culture media. Results showed that Cu alone significantly decreased plant growth, biomass, photosynthetic pigments, and gas exchange characteristics. Cu stress also reduced the activities of antioxidants, such as superoxide dismutase (SOD), peroxidase (POD), ascorbate peroxidase (APX), and catalase (CAT) along with protein contents. Cu toxicity increased the concentration of reactive oxygen species (ROS) as indicated by the increased production of malondialdehyde (MDA) and hydrogen peroxide (H2O2) in both leaves and roots. The application of EDTA significantly alleviated Cu-induced toxic effects in B. napus, showing remarkable improvement in all these parameters. EDTA amendment increased the activity of antioxidant enzymes by decreasing the concentrations of MDA and H2O2 both in leaves and roots of B. napus. Although, EDTA amendment with Cu significantly increased Cu uptake in roots, stems, and leaves in decreasing order of concentration but increased the growth, photosynthetic parameters, and antioxidant enzymes. These results showed that the application of EDTA can be a useful strategy for phytoextraction of Cu by B. napus from contaminated soils.

  8. Expression of α-DIOXYGENASE 1 in tomato and Arabidopsis contributes to plant defenses against aphids.

    PubMed

    Avila, Carlos Augusto; Arevalo-Soliz, Lirio Milenka; Lorence, Argelia; Goggin, Fiona L

    2013-08-01

    Plant α-dioxygenases (α-DOX) are fatty acid-hydroperoxidases that contribute to the synthesis of oxylipins, a diverse group of compounds primarily generated through oxidation of linoleic (LA) and linolenic acid (LNA). Oxylipins are implicated in plant signaling against biotic and abiotic stresses. We report here that the potato aphid (Macrosiphum euphorbiae) induces Slα-DOX1 but not Slα-DOX2 expression in tomato (Solanum lycopersicum). Slα-DOX1 upregulation by aphids does not require either jasmonic acid (JA) or salicylic acid (SA) accumulation, since tomato mutants deficient in JA (spr2, acx1) or SA accumulation (NahG) still show Slα-DOX1 induction. Virus-induced gene silencing of Slα-DOX1 enhanced aphid population growth in wild-type (WT) plants, revealing that Slα-DOX1 contributes to basal resistance to aphids. Moreover, an even higher percent increase in aphid numbers occurred when Slα-DOX1 was silenced in spr2, a mutant line characterized by elevated LA levels, decreased LNA, and enhanced aphid resistance as compared with WT. These results suggest that aphid reproduction is influenced by oxylipins synthesized from LA by Slα-DOX1. In agreement with our experiments in tomato, two independent α-dox1 T-DNA insertion mutant lines in Arabidopsis thaliana also showed increased susceptibility to the green peach aphid (Myzus persicae), indicating that the role α-DOX is conserved in other plant-aphid interactions.

  9. Exposure of cerium oxide nanoparticles to kidney bean shows disturbance in the plant defense mechanisms.

    PubMed

    Majumdar, Sanghamitra; Peralta-Videa, Jose R; Bandyopadhyay, Susmita; Castillo-Michel, Hiram; Hernandez-Viezcas, Jose-Angel; Sahi, Shivendra; Gardea-Torresdey, Jorge L

    2014-08-15

    Overwhelming use of engineered nanoparticles demands rapid assessment of their environmental impacts. The transport of cerium oxide nanoparticles (nCeO2) in plants and their impact on cellular homeostasis as a function of exposure duration is not well understood. In this study, kidney bean plants were exposed to suspensions of ∼ 8 ± 1 nm nCeO2 (62.5 to 500 mg/L) for 15 days in hydroponic conditions. Plant parts were analyzed for cerium accumulation after one, seven, and 15 days of nCeO2 exposure. The primary indicators of stress like lipid peroxidation, antioxidant enzyme activities, total soluble protein and chlorophyll contents were studied. Cerium in tissues was localized using scanning electron microscopy and synchrotron μ-XRF mapping, and the chemical forms were identified using μ-XANES. In the root epidermis, cerium was primarily shown to exist as nCeO2, although a small fraction (12%) was biotransformed to Ce(III) compound. Cerium was found to reach the root vascular tissues and translocate to aerial parts with time. Upon prolonged exposure to 500 mg nCeO2/L, the root antioxidant enzyme activities were significantly reduced, simultaneously increasing the root soluble protein by 204%. In addition, leaf's guaiacol peroxidase activity was enhanced with nCeO2 exposure in order to maintain cellular homeostasis.

  10. Cowpea Chloroplastic ATP Synthase Is the Source of Multiple Plant Defense Elicitors during Insect Herbivory12[W][OA

    PubMed Central

    Schmelz, Eric A.; LeClere, Sherry; Carroll, Mark J.; Alborn, Hans T.; Teal, Peter E.A.

    2007-01-01

    In cowpea (Vigna unguiculata), fall armyworm (Spodoptera frugiperda) herbivory and oral secretions (OS) elicit phytohormone production and volatile emission due to inceptin [Vu-In; +ICDINGVCVDA−], a peptide derived from chloroplastic ATP synthase γ-subunit (cATPC) proteins. Elicitor-induced plant volatiles can function as attractants for natural enemies of insect herbivores. We hypothesized that inceptins are gut proteolysis products and that larval OS should contain a mixture of related peptides. In this study, we identified three additional cATPC fragments, namely Vu-GE+In [+GEICDINGVCVDA−], Vu-E+In [+EICDINGVCVDA−], and Vu-In−A [+ICDINGVCVD−]. Leaf bioassays for induced ethylene (E) production demonstrated similar effective concentration50 values of 68, 45, and 87 fmol leaf−1 for Vu-In, Vu-E+In, and Vu-GE+In, respectively; however, Vu-In−A proved inactive. Shortly following ingestion of recombinant proteins harboring cATPC sequences, larval OS revealed similar concentrations of the three elicitors with 80% of the potential inceptin-related peptides recovered. Rapidly shifting peptide ratios over time were consistent with continued proteolysis and preferential stability of inceptin. Likewise, larvae ingesting host plants with inceptin precursors containing an internal trypsin cleavage site rapidly lost OS-based elicitor activity. OS containing inceptin elicited a rapid and sequential induction of defense-related phytohormones jasmonic acid, E, and salicylic acid at 30, 120, and 240 min, respectively, and also the volatile (E)-4,8-dimethyl-1,3,7-nonatriene. Similar to established peptide signals such as systemin and flg22, amino acid substitutions of Vu-In demonstrate an essential role for aspartic acid residues and an unaltered C terminus. In cowpea, insect gut proteolysis following herbivory generates inappropriate fragments of an essential metabolic enzyme enabling plant non-self-recognition. PMID:17369425

  11. RNA-Seq Links the Transcription Factors AINTEGUMENTA and AINTEGUMENTA-LIKE6 to Cell Wall Remodeling and Plant Defense Pathways1[OPEN

    PubMed Central

    Bequette, Carlton J.; Fu, Zheng Qing; Loraine, Ann E.

    2016-01-01

    AINTEGUMENTA (ANT) and AINTEGUMENTA-LIKE6 (AIL6) are two related transcription factors in Arabidopsis (Arabidopsis thaliana) that have partially overlapping roles in several aspects of flower development, including floral organ initiation, identity specification, growth, and patterning. To better understand the biological processes regulated by these two transcription factors, we performed RNA sequencing (RNA-Seq) on ant ail6 double mutants. We identified thousands of genes that are differentially expressed in the double mutant compared with the wild type. Analyses of these genes suggest that ANT and AIL6 regulate floral organ initiation and growth through modifications to the cell wall polysaccharide pectin. We found reduced levels of demethylesterified homogalacturonan and altered patterns of auxin accumulation in early stages of ant ail6 flower development. The RNA-Seq experiment also revealed cross-regulation of AIL gene expression at the transcriptional level. The presence of a number of overrepresented Gene Ontology terms related to plant defense in the set of genes differentially expressed in ant ail6 suggest that ANT and AIL6 also regulate plant defense pathways. Furthermore, we found that ant ail6 plants have elevated levels of two defense hormones: salicylic acid and jasmonic acid, and show increased resistance to the bacterial pathogen Pseudomonas syringae. These results suggest that ANT and AIL6 regulate biological pathways that are critical for both development and defense. PMID:27208279

  12. Overexpression of an Isoprenyl Diphosphate Synthase in Spruce Leads to Unexpected Terpene Diversion Products That Function in Plant Defense1[W][OPEN

    PubMed Central

    Nagel, Raimund; Berasategui, Aileen; Paetz, Christian; Gershenzon, Jonathan; Schmidt, Axel

    2014-01-01

    Spruce (Picea spp.) and other conifers employ terpenoid-based oleoresin as part of their defense against herbivores and pathogens. The short-chain isoprenyl diphosphate synthases (IDS) are situated at critical branch points in terpene biosynthesis, producing the precursors of the different terpenoid classes. To determine the role of IDS and to create altered terpene phenotypes for assessing the defensive role of terpenoids, we overexpressed a bifunctional spruce IDS, a geranyl diphosphate and geranylgeranyl diphosphate synthase in white spruce (Picea glauca) saplings. While transcript level (350-fold), enzyme activity level (7-fold), and in planta geranyl diphosphate and geranylgeranyl diphosphate levels (4- to 8-fold) were significantly increased in the needles of transgenic plants, there was no increase in the major monoterpenes and diterpene acids of the resin and no change in primary isoprenoids, such as sterols, chlorophylls, and carotenoids. Instead, large amounts of geranylgeranyl fatty acid esters, known from various gymnosperm and angiosperm plant species, accumulated in needles and were shown to act defensively in reducing the performance of larvae of the nun moth (Lymantria monacha), a conifer pest in Eurasia. These results show the impact of overexpression of an IDS and the defensive role of an unexpected accumulation product of terpenoid biosynthesis with the potential for a broader function in plant protection. PMID:24346420

  13. Interactive Effects of UV-B Light with Abiotic Factors on Plant Growth and Chemistry, and Their Consequences for Defense against Arthropod Herbivores

    PubMed Central

    Escobar-Bravo, Rocio; Klinkhamer, Peter G. L.; Leiss, Kirsten A.

    2017-01-01

    Ultraviolet-B (UV-B) light plays a crucial role in plant–herbivorous arthropods interactions by inducing changes in constitutive and inducible plant defenses. In particular, constitutive defenses can be modulated by UV-B-induced photomorphogenic responses and changes in the plant metabolome. In accordance, the prospective use of UV-B light as a tool to increase plant protection in agricultural practice has gained increasing interest. Changes in the environmental conditions might, however, modulate the UV-B -induced plant responses. While in some cases plant responses to UV-B can increase adaptation to changes in certain abiotic factors, UV-B-induced responses might be also antagonized by the changing environment. The outcome of these interactions might have a great influence on how plants interact with their enemies, e.g., herbivorous arthropods. Here, we provide a review on the interactive effects of UV-B and light quantity and quality, increased temperature and drought stress on plant biochemistry, and we discuss the implications of the outcome of these interactions for plant resistance to arthropod pests. PMID:28303147

  14. Diverting the flux of the JA pathway in Nicotiana attenuata compromises the plant's defense metabolism and fitness in nature and glasshouse.

    PubMed

    Stitz, Michael; Baldwin, Ian T; Gaquerel, Emmanuel

    2011-01-01

    A plant's inducible defenses against herbivores as well as certain developmental processes are known to be controlled by the jasmonic acid (JA) pathway. We have previously shown that ectopically expressing Arabidopsis thaliana JA O-methyltransferase in Nicotiana attenuata (35S-jmt) strongly reduces the herbivory-elicited jasmonate bursts by acting as metabolic sink that redirects free JA towards methylation; here we examine the consequences of this metabolic sink on N. attenuata's secondary metabolism and performance in nature. In the glasshouse, 35S-jmt plants produced fewer seed capsules due to shorter floral styles, which could be restored to wild type (WT) levels after hand-pollination, and were more susceptible to Manduca sexta larvae attack. When transplanted into the Great Basin Desert in Utah, 35S-jmt plants grew as well as WT empty vector, but were highly attacked by native herbivores of different feeding guilds: leaf chewers, miners, and single cell feeders. This greater susceptibility was strongly associated with reduced emissions of volatile organic compounds (hexenylesters, monoterpenes and sesquiterpenes) and profound alterations in the production of direct defenses (trypsin proteinase inhibitors [TPI], nicotine, diterpene glycosides [DTGs] and phenylpropanoid-polyamine conjugates) as revealed by a combination of targeted and metabolomics analyses of field collected samples. Complementation experiments with JA-Ile, whose formation is outcompeted in 35S-jmt plants by the methylation reaction, restored the local TPI activation to WT levels and partially complemented nicotine and DTG levels in elicited but not systemic leaves. These findings demonstrate that MeJA, the major JA metabolite in 35S-jmt plants, is not an active signal in defense activation and highlights the value of creating JA sinks to disrupt JA signaling, without interrupting the complete octadecanoid pathway, in order to investigate the regulation of plants' defense metabolism in nature.

  15. The pepper GNA-related lectin and PAN domain protein gene, CaGLP1, is required for plant cell death and defense signaling during bacterial infection.

    PubMed

    Kim, Nak Hyun; Lee, Dong Hyuk; Choi, Du Seok; Hwang, Byung Kook

    2015-12-01

    Carbohydrate-binding proteins, commonly referred to as lectins or agglutinins, function in defense responses to microbial pathogens. Pepper (Capsicum annuum) GNA-related lectin and PAN-domain protein gene CaGLP1 was isolated and functionally characterized from pepper leaves infected with Xanthomonas campestris pv. vesicatoria (Xcv). CaGLP1 contained an amine-terminus prokaryotic membrane lipoprotein lipid attachment site, a Galanthus nivalis agglutinin (GNA)-related lectin domain responsible for the recognition of high-mannose N-glycans, and a carboxyl-terminus PAN/apple domain. RNA gel blot and immunoblot analyses determined that CaGLP1 was strongly induced in pepper by compatible and incompatible Xcv infection. CaGLP1 protein localized primarily to the plasma membrane and exhibited mannose-binding specificity. CaGLP1-silenced pepper plants were more susceptible to compatible or incompatible Xcv infection compared with that of non-silenced control plants. CaGLP1 silencing in pepper leaves did not accumulate H2O2 and induce cell death during incompatible Xcv infection. Defense-related CaDEF1 (defensin) gene expression was significantly reduced in CaGLP1-silenced pepper plants. CaGLP1-overexpression in Arabidopsis thaliana enhanced resistance to Pseudomonas syringae pv. tomato. Defense-related AtPDF1.2 expression was elevated in CaGLP1-overexpression lines. Together, these results suggest that CaGLP1 is required for plant cell death and defense responses through the reactive oxygen species burst and downstream defense-related gene expression in response to bacterial pathogen challenge.

  16. An Amino Acid Substitution Inhibits Specialist Herbivore Production of an Antagonist Effector and Recovers Insect-Induced Plant Defenses1[W][OA

    PubMed Central

    Schmelz, Eric A.; Huffaker, Alisa; Carroll, Mark J.; Alborn, Hans T.; Ali, Jared G.; Teal, Peter E.A.

    2012-01-01

    Plants respond to insect herbivory through the production of biochemicals that function as either direct defenses or indirect defenses via the attraction of natural enemies. While attack by closely related insect pests can result in distinctive levels of induced plant defenses, precise biochemical mechanisms responsible for differing responses remain largely unknown. Cowpea (Vigna unguiculata) responds to Fall armyworm (Spodoptera frugiperda) herbivory through the detection of fragments of chloroplastic ATP synthase γ-subunit proteins, termed inceptin-related peptides, present in larval oral secretions (OS). In contrast to generalists like Fall armyworm, OS of the legume-specializing velvetbean caterpillar (VBC; Anticarsia gemmatalis) do not elicit ethylene production and demonstrate significantly lower induced volatile emission in direct herbivory comparisons. Unlike all other Lepidoptera OS examined, which preferentially contain inceptin (Vu-In; +ICDINGVCVDA−), VBC OS contain predominantly a C-terminal truncated peptide, Vu-In−A (+ICDINGVCVD−). Vu-In−A is both inactive and functions as a potent naturally occurring antagonist of Vu-In-induced responses. To block antagonist production, amino acid substitutions at the C terminus were screened for differences in VBC gut proteolysis. A valine-substituted peptide (Vu-InΔV; +ICDINGVCVDV−) retaining full elicitor activity was found to accumulate in VBC OS. Compared with the native polypeptide, VBC that previously ingested 500 pmol of the valine-modified chloroplastic ATP synthase γ-subunit precursor elicited significantly stronger plant responses in herbivory assays. We demonstrate that a specialist herbivore minimizes the activation of defenses by converting an elicitor into an antagonist effector and identify an amino acid substitution that recovers these induced plant defenses to a level observed with generalist herbivores. PMID:23008466

  17. Stability of plant defensive traits among populations in two Eucalyptus species under elevated carbon dioxide.

    PubMed

    McKiernan, Adam B; O'Reilly-Wapstra, Julianne M; Price, Cassandra; Davies, Noel W; Potts, Brad M; Hovenden, Mark J

    2012-02-01

    Plant secondary metabolites (PSMs) mediate a wide range of ecological interactions. Investigating the effect of environment on PSM production is important for our understanding of how plants will adapt to large scale environmental change, and the extended effects on communities and ecosystems. We explored the production of PSMs under elevated atmospheric carbon dioxide ([CO(2)]) in the species rich, ecologically and commercially important genus Eucalyptus. Seedlings from multiple Eucalyptus globulus and E. pauciflora populations were grown in common glasshouse gardens under elevated or ambient [CO(2)]. Variation in primary and secondary chemistry was determined as a function of genotype and treatment. There were clear population differences in PSM expression in each species. Elevated [CO(2)] did not affect concentrations of individual PSMs, total phenolics, condensed tannins or the total oil yield, and there was no population by [CO(2)] treatment interaction for any traits. Multivariate analysis revealed similar results with significant variation in concentrations of E. pauciflora oil components between populations. A [CO(2)] treatment effect was detected within populations but no interactions were found between elevated [CO(2)] and population. These eucalypt seedlings appear to be largely unresponsive to elevated [CO(2)], indicating stronger genetic than environmental (elevated [CO(2)]) control of expression of PSMs.

  18. Arabidopsis protein phosphatase DBP1 nucleates a protein network with a role in regulating plant defense.

    PubMed

    Carrasco, José Luis; Castelló, María José; Naumann, Kai; Lassowskat, Ines; Navarrete-Gómez, Marisa; Scheel, Dierk; Vera, Pablo

    2014-01-01

    Arabidopsis thaliana DBP1 belongs to the plant-specific family of DNA-binding protein phosphatases. Although recently identified as a novel host factor mediating susceptibility to potyvirus, little is known about DBP1 targets and partners and the molecular mechanisms underlying its function. Analyzing changes in the phosphoproteome of a loss-of-function dbp1 mutant enabled the identification of 14-3-3λ isoform (GRF6), a previously reported DBP1 interactor, and MAP kinase (MAPK) MPK11 as components of a small protein network nucleated by DBP1, in which GRF6 stability is modulated by MPK11 through phosphorylation, while DBP1 in turn negatively regulates MPK11 activity. Interestingly, grf6 and mpk11 loss-of-function mutants showed altered response to infection by the potyvirus Plum pox virus (PPV), and the described molecular mechanism controlling GRF6 stability was recapitulated upon PPV infection. These results not only contribute to a better knowledge of the biology of DBP factors, but also of MAPK signalling in plants, with the identification of GRF6 as a likely MPK11 substrate and of DBP1 as a protein phosphatase regulating MPK11 activity, and unveils the implication of this protein module in the response to PPV infection in Arabidopsis.

  19. Insect attraction versus plant defense: young leaves high in glucosinolates stimulate oviposition by a specialist herbivore despite poor larval survival due to high saponin content.

    PubMed

    Badenes-Perez, Francisco R; Gershenzon, Jonathan; Heckel, David G

    2014-01-01

    Glucosinolates are plant secondary metabolites used in plant defense. For insects specialized on Brassicaceae, such as the diamondback moth, Plutella xylostella L. (Lepidoptera: Plutellidae), glucosinolates act as "fingerprints" that are essential in host plant recognition. Some plants in the genus Barbarea (Brassicaceae) contain, besides glucosinolates, saponins that act as feeding deterrents for P. xylostella larvae, preventing their survival on the plant. Two-choice oviposition tests were conducted to study the preference of P. xylostella among Barbarea leaves of different size within the same plant. P. xylostella laid more eggs per leaf area on younger leaves compared to older ones. Higher concentrations of glucosinolates and saponins were found in younger leaves than in older ones. In 4-week-old plants, saponins were present in true leaves, while cotyledons contained little or no saponins. When analyzing the whole foliage of the plant, the content of glucosinolates and saponins also varied significantly in comparisons among plants that were 4, 8, and 12 weeks old. In Barbarea plants and leaves of different ages, there was a positive correlation between glucosinolate and saponin levels. This research shows that, in Barbarea plants, ontogenetical changes in glucosinolate and saponin content affect both attraction and resistance to P. xylostella. Co-occurrence of a high content of glucosinolates and saponins in the Barbarea leaves that are most valuable for the plant, but are also the most attractive to P. xylostella, provides protection against this specialist herbivore, which oviposition behavior on Barbarea seems to be an evolutionary mistake.

  20. Preparation and properties of SYNROC D containing simulated Savannah River Plant high-level defense waste

    SciTech Connect

    Hoenig, C.; Rozsa, R.; Bazan, F.; Otto, R.; Grens, J.

    1981-07-23

    We describe in detail the formulation and processing steps used to prepare all SYNROC D samples tested in the Comparative Leach Testing Program at the Savannah River Laboratory. We also discuss how the composition of the Savannah River Plant sludge influences the formulation and ultimate preparation of SYNROC D. Mechanical properties are reported in the categories of elastic constants, flexural and compressive strengths, and microhardness; thermal expansion and thermal conductivity results are presented. The thermal expansion data indicated the presence of significant residual strain and the possibility of an unidentified amorphous or glassy phase in the microstructure. We summarize the standardized (MCC) leaching results for both crushed Synroc and monoliths in deionized water, silicate water, and salt brine at 90/sup 0/C and 150/sup 0/C.

  1. Carrion odor and cattle grazing: Evidence for plant defense by carrion odor.

    PubMed

    Lev-Yadun, Simcha; Gutman, Mario

    2013-11-01

    Recently, it has been proposed on theoretical grounds that carrion odor from flowers may not only attract pollinators, but also repel mammalian herbivores. Two grazing experiments involving 16 to 26 cattle heads per year, one for eight years (1982-1989) and the other for seven (1994-2000), in a region with no large carnivores that could influence cattle behavior, show that cattle avoid areas where dead cattle have recently been dumped. They grazed much less in these unfenced plots that were used to dump dead cattle each year. In the first experiment, with an area of ca. 20,000 m(2) per head, the average grass biomass at the end of the season was 124.6 gr/m(2) for the regular grazing area, whereas it was 236.5 gr/m(2) for the carcass dumping area. In the second experiment, with a higher stocking level, with ca. 9,000 m(2) per head, the average grass biomass at the end of the season was 61.7 gr/m(2) for the regular grazing area, and 153.7 gr/m(2) for the carcass dumping area. These significant differences existed throughout the 15 y of the experiments. We propose that these results are clear evidence of necrophobia in cattle, a character that might defend them from both pathogenic microbes and predators. This in turn demonstrates that carrion odor, primarily used by plants to attract pollinators, can simultaneously defend plants from herbivory by mammals as proposed.

  2. Trichodiene Production in a Trichoderma harzianum erg1-Silenced Strain Provides Evidence of the Importance of the Sterol Biosynthetic Pathway in Inducing Plant Defense-Related Gene Expression.

    PubMed

    Malmierca, M G; McCormick, S P; Cardoza, R E; Monte, E; Alexander, N J; Gutiérrez, S

    2015-11-01

    Trichoderma species are often used as biocontrol agents against plant-pathogenic fungi. A complex molecular interaction occurs among the biocontrol agent, the antagonistic fungus, and the plant. Terpenes and sterols produced by the biocontrol fungus have been found to affect gene expression in both the antagonistic fungus and the plant. The terpene trichodiene (TD) elicits the expression of genes related to tomato defense and to Botrytis virulence. We show here that TD itself is able to induce the expression of Botrytis genes involved in the synthesis of botrydial (BOT) and also induces terpene gene expression in Trichoderma spp. The terpene ergosterol, in addition to its role as a structural component of the fungal cell membranes, acts as an elicitor of defense response in plants. In the present work, using a transformant of T. harzianum, which is silenced in the erg1 gene and accumulates high levels of squalene, we show that this ergosterol precursor also acts as an important elicitor molecule of tomato defense-related genes and induces Botrytis genes involved in BOT biosynthesis, in both cases, in a concentration-dependent manner. Our data emphasize the importance of a balance of squalene and ergosterol in fungal interactions as well as in the biocontrol activity of Trichoderma spp.

  3. Nuclear waste form risk assessment for US defense waste at Savannah River Plant. Annual report fiscal year 1980

    SciTech Connect

    Cheung, H.; Jackson, D.D.; Revelli, M.A.

    1981-07-01

    Waste form dissolution studies and preliminary performance analyses were carried out to contribute a part of the data needed for the selection of a waste form for the disposal of Savannah River Plant defense waste in a deep geologic repository. The first portion of this work provides descriptions of the chemical interactions between the waste form and the geologic environment. We reviewed critically the dissolution/leaching data for borosilicate glass and SYNROC. Both chemical kinetic and thermodynamic models were developed to describe the dissolution process of these candidate waste forms so as to establish a fundamental basis for interpretation of experimental data and to provide directions for future experiments. The complementary second portion of this work is an assessment of the impacts of alternate waste forms upon the consequences of disposal in various proposed geological media. Employing systems analysis methodology, we began to evaluate the performance of a generic waste form for the case of a high risk scenario for a bedded salt repository. Results of sensitivity analysis, uncertainty analyses, and sensitivity to uncertainty analysis are presented.

  4. Plant Defense Response to Fungal Pathogens (II. G-Protein-Mediated Changes in Host Plasma Membrane Redox Reactions).

    PubMed Central

    Vera-Estrella, R.; Higgins, V. J.; Blumwald, E.

    1994-01-01

    Elicitor preparations containing the avr5 gene products from races 4 and 2.3 of Cladosporium fulvum, and tomato (Lycopersicon esculentum L.) cells containing the resistance gene Cf5 were used to investigate the involvement of redox processes in the production of active oxygen species associated with the plant response to the fungal elicitors. Here we demonstrate that certain race-specific elicitors of C. fulvum induced an increase in ferricyanide reduction in enriched plasma membrane fractions of tomato cells. The addition of elicitors to plasma membranes also induced increases in NADH oxidase and NADH-dependent cytochrome c reductase activities, whereas ascorbate peroxidase activity was decreased. These results suggest that changes in the host plasma membrane redox processes, transferring electrons from reducing agents to oxygen, could be involved in the increased production of active oxygen species by the race-specific elicitors. Our results also show that the dephosphorylation of enzymes involved in redox reactions is responsible for the race-specific induced redox activity. The effects of guanidine nucleotide analogs and mastoparan on the activation of plasma membrane redox reactions support the role of GTP-binding proteins in the transduction of signals leading to the activation of the defense response mechanisms of tomato against fungal pathogens. PMID:12232307

  5. DEAR1, a transcriptional repressor of DREB protein that mediates plant defense and freezing stress responses in Arabidopsis.

    PubMed

    Tsutsui, Tomokazu; Kato, Wataru; Asada, Yutaka; Sako, Kaori; Sato, Takeo; Sonoda, Yutaka; Kidokoro, Satoshi; Yamaguchi-Shinozaki, Kazuko; Tamaoki, Masanori; Arakawa, Keita; Ichikawa, Takanari; Nakazawa, Miki; Seki, Motoaki; Shinozaki, Kazuo; Matsui, Minami; Ikeda, Akira; Yamaguchi, Junji

    2009-11-01

    Plants have evolved intricate mechanisms to respond and adapt to a wide variety of biotic and abiotic stresses in their environment. The Arabidopsis DEAR1 (DREB and EAR motif protein 1; At3g50260) gene encodes a protein containing significant homology to the DREB1/CBF (dehydration-responsive element binding protein 1/C-repeat binding factor) domain and the EAR (ethylene response factor-associated amphiphilic repression) motif. We show here that DEAR1 mRNA accumulates in response to both pathogen infection and cold treatment. Transgenic Arabidopsis overexpressing DEAR1 (DEAR1ox) showed a dwarf phenotype and lesion-like cell death, together with constitutive expression of PR genes and accumulation of salicylic acid. DEAR1ox also showed more limited P. syringae pathogen growth compared to wild-type, consistent with an activated defense phenotype. In addition, transient expression experiments revealed that the DEAR1 protein represses DRE/CRT (dehydration-responsive element/C-repeat)-dependent transcription, which is regulated by low temperature. Furthermore, the induction of DREB1/CBF family genes by cold treatment was suppressed in DEAR1ox, leading to a reduction in freezing tolerance. These results suggest that DEAR1 has an upstream regulatory role in mediating crosstalk between signaling pathways for biotic and abiotic stress responses.

  6. Does secondary plant metabolism provide a mechanism for plant defenses in the tropical soda apple Solanum viarum (Solanales: Solanaceae) against the beet armyworm Spodoptera exigua and southern armyworm S. eridania?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Survival assays were conducted with beet armyworm Spodoptera exigua and southern armyworm S. eridania with tropical soda apple Solanum viarum a relative of tomato. In addition, polyphenol oxidase (PPO) enzyme assays were conducted to determine if secondary plant defense compounds are being produce...

  7. Second site of pyrrolizidine alkaloid biosynthesis in Comfrey boosts plant defense in floral stage.

    PubMed

    Kruse, Lars H; Stegemann, Thomas; Sievert, Christian; Ober, Dietrich

    2017-03-08

    Pyrrolizidine alkaloids (PAs) are toxic secondary metabolites that are found in several, distantly related families of the angiosperms. The first specific step in PA biosynthesis is catalyzed by homospermidine synthase (HSS), which has been recruited several times independently by duplication of the gene encoding deoxyhypusine synthase (DHS), an enzyme involved in the post-translational activation of the eukaryotic initiation factor 5A. HSS shows highly diverse spatiotemporal gene expression in various PA-producing species. In Symphytum officinale (Boraginaceae), PAs are reported to be synthesized in the roots, with HSS being localized in cells of the root endodermis. Here, we show that S. officinale plants activate a second site of HSS expression when inflorescences start to develop. HSS has been localized in the bundle sheath cells of specific leaves. Tracer feeding experiments have confirmed that these young leaves not only express HSS, but the whole PA biosynthetic route. This second site of PA biosynthesis results in drastically increased PA levels within the inflorescences. The boost of PA biosynthesis is proposed to guarantee optimal protection especially of the reproductive structures.

  8. Volatile isoprenoids as defense compounds during abiotic stress in tropical plants

    NASA Astrophysics Data System (ADS)

    Jardine, K.

    2015-12-01

    Emissions of volatile isoprenoids from tropical forests play central roles in atmospheric processes by fueling atmospheric chemistry resulting in modified aerosol and cloud lifecycles and their associated feedbacks with the terrestrial biosphere. However, the identities of tropical isoprenoids, their biological and environmental controls, and functions within plants and ecosystems remain highly uncertain. As part of the DOE ARM program's GoAmazon 2014/15 campaign, extensive field and laboratory observations of volatile isoprenoids are being conducted in the central Amazon. Here we report the results of our completed and ongoing activities at the ZF2 forest reserve in the central Amazon. Among the results of the research are the suprisingly high abundance of light-dependent volatile isoprenoid emissions across abundant tree genera in the Amazon in both primary and secondary forests, the discovery of highly reactive monoterpene emissions from Amazon trees, and evidence for the importance of volatile isoprenoids in protecting photosynthesis during oxidative stress under elevated temperatures including energy consumption and direct antioxidant functions and a tight connection betwen volatile isoprenoid emissions, photorespiration, and CO2 recycling within leaves. The results highlight the need to model allocation of carbon to isoprenoids during elevated temperature stress in the tropics.

  9. Reconnaissance hydrogeologic investigation of the Defense Waste Processing Facility and vicinity, Savannah River Plant, South Carolina

    USGS Publications Warehouse

    Dennehy, K.F.; Prowell, D.C.; McMahon, P.B.

    1989-01-01

    The hydrogeologic framework of the area around the Savannah River Plant, South Carolina consists of 2 to 3 separate water bearing units. In the northern half of the study area, the Barnwell and underlying McBean aquifers are considered one aquifer owing to the absence of the tan clay-confining unit between them. In the southern half of the study area they are separated by the tan clay into two aquifers. Underlying these aquifers, and separated from them by the green clay-confining unit, is the Congaree aquifer. Hydraulic conductivities of the aquifers range from 0.00000001 to 0.0001 ft/sec. Directions of groundwater flow in the Barnwell and McBean aquifers are to the north, with a component of flow directed downward across the green clay and into the Congaree aquifer. The direction of flow in the Congaree aquifer is to the northwest. Water in these aquifers evolves from an acidic (pH < 6.5) mixed-cation type in the Barnwell aquifer to an alkaline (pH > 8) calcium bicarbonate water in the Congaree aquifer. Laboratory experiments indicate that reactions between sediments of the Barnwell aquifer and a salt-solution waste to be stored at the study area would significantly reduce the permeability of the sediment, thereby limiting the movement of the waste in groundwater at the site. (USGS)

  10. Impact of an Invasive Insect and Plant Defense on a Native Forest Defoliator

    PubMed Central

    Wilson, Claire M.; Vendettuoli, Justin F.; Orwig, David A.; Preisser, Evan L.

    2016-01-01

    Eastern hemlock (Tsuga canadensis [L.] Carriére) in the United States is threatened by the invasive hemlock woolly adelgid (Adelges tsugae Annand). The native hemlock looper (Lambdina fiscellaria Guenée) also appears to have played a role in previous population declines of this conifer. Although these two insects co-occur in much of the adelgid’s invaded range, their interactions remain unstudied. We assessed looper performance and preference on both uninfested and adelgid-infested foliage from adelgid-susceptible hemlocks, as well as on uninfested foliage from an eastern hemlock that is naturally adelgid-resistant. Larvae reared on uninfested foliage from adelgid-susceptible hemlocks experienced 60% mortality within the first two weeks of the experiment, and pupated at a lower weight than larvae fed adelgid-infested foliage. Despite differences in foliage source, this first look and strong pattern suggests that the hemlock looper performs better (pupates earlier, weighs more) on adelgid-infested foliage. In addition, trends suggested that larvae reared on foliage from the adelgid-resistant tree survived better, pupated earlier, and weighed more than in the other treatments. Larvae preferred adelgid-resistant over adelgid-susceptible foliage. Our results suggest that looper perform slightly better on adelgid-infested foliage and that plant resistance to xylem-feeding adelgid may increase susceptibility to foliar-feeding looper larvae. PMID:27649247

  11. Disposal of defense spent fuel and HLW from the Idaho Chemical Processing Plant

    SciTech Connect

    Ermold, L.F.; Loo, H.H.; Klingler, R.D.; Herzog, J.D.; Knecht, D.A.

    1992-12-01

    Acid high-level radioactive waste (HLW) resulting from fuel reprocessing at the Idaho Chemical Processing Plant (ICPP) for the US Department of Energy (DOE) has been solidified to a calcine since 1963 and stored in stainless steel bins enclosed by concrete vaults. Several different types of unprocessed irradiated DOE-owned fuels are also in storage ate the ICPP. In April, 1992, DOE announced that spent fuel would no longer be reprocessed to recover enriched uranium and called for a shutdown of the reprocessing facilities at the ICPP. A new Spent Fuel and HLW Technology Development program was subsequently initiated to develop technologies for immobilizing ICPP spent fuels and HLW for disposal, in accordance with the Nuclear Waste Policy Act. The Program elements include Systems Analysis, Graphite Fuel Disposal, Other Spent Fuel Disposal, Sodium-Bearing Liquid Waste Processing, Calcine Immobilization, and Metal Recycle/Waste Minimization. This paper presents an overview of the ICPP radioactive wastes and current spent fuels, with an emphasis on the description of HLW and spent fuels requiring repository disposal.

  12. Avoidance of antinutritive plant defense: Role of midgut pH in Colorado potato beetle.

    PubMed

    Felton, G W; Workman, J; Duffey, S S

    1992-04-01

    The fate of the tomato foliar phenolic, chlorogenic acid, in the digestive systems of Colorado potato beetleLeptinotarsa decemlineata (Coleoptera: Chrysomelidae) andHelicoverpa tea (Lepidoptera: Noctuidae) is compared. In larvalH. zea and other lepidopteran species previously examined, approximately 35-50% of the ingested chlorogenic acid was oxidized in the digestive system by foliar phenolic oxidases (i.e., polyphenol oxidase and peroxidase) from the tomato plant. The oxidized form of chlorogenic acid, chlorogenoquinone, is a potent alkylator of dietary protein and can exert a strong antinutritive effect upon larvae through chemical degradation of essential amino acids. In contrast, inL. decemlineata less than 4% of the ingested dose of chlorogenic acid was bound to protein. In vitro experiments to determine the influence of pH on covalent binding of chlorogenic acid to protein showed that 30-45% less chlorogenic acid bound to protein at pHs representative of the beetle midgut (pH 5.5-6.5) than at a pH representing the lepidopteran midgut (pH 8.5). At an acidic pH, considerably more of the alkylatable functional groups of amino acids (-NH2, -SH) are in the nonreactive, protonated state. Hence, polyphenol oxidases are unlikely to have significant antinutritive effects against the Colorado potato beetle and may not be a useful biochemical source of resistance against this insect. The influence of feeding by larval Colorado potato beetle on foliar polyphenol oxidase activity in tomato foliage and its possible significance to interspecific competition is also considered.

  13. A high-throughput virus-induced gene-silencing vector for screening transcription factors in virus-induced plant defense response in orchid.

    PubMed

    Lu, Hsiang-Chia; Hsieh, Ming-Hsien; Chen, Cheng-En; Chen, Hong-Hwa; Wang, Hsiang-Iu; Yeh, Hsin-Hung

    2012-06-01

    The large number of species and worldwide spread of species of Orchidaceae indicates their successful adaptation to environmental stresses. Thus, orchids provide rich resources to study how plants have evolved to cope with stresses. This report describes our improvement of our previously reported orchid virus-induced gene silencing vector, pCymMV-pro60, with a modified Gateway cloning system which requires only one recombination and can be inoculated by agroinfiltration. We cloned 1,700 DNA fragments, including 187 predicted transcription factors derived from an established expression sequence tag library of orchid, into pCymMV-Gateway. Phalaenopsis aphrodite was inoculated with these vectors that contained DNA fragments of the 187 predicted transcription factors. The viral vector initially triggered the expression of the salicylic acid (SA)-related plant defense responses and later induced silencing of the endogenous target transcription factor genes. By monitoring the expression of the SA-related plant defense marker PhaPR1 (homolog of PR1), we identified a gene, PhaTF15, involved in the expression of PhaPR1. Knockdown of PhaTF15 by virus-induced gene silencing and by transient delivery of double-stranded RNA (dsRNA) reduced expression of the orchid homolog of the conserved positive defense regulator NPR1, PhaNPR1. Cymbidium mosaic virus also accumulated to high levels with knockdown of PhaTF15 by transient delivery of dsRNA. We demonstrated efficient cloning and screening strategies for high-throughput analysis of orchid and identify a gene, PhaTF15, involved in regulation of SA-related plant defense.

  14. Intensive archeological survey of the proposed Saltcrete area of the Defense Waste Processing Facility, Savannah River Plant, Aiken County, South Carolina. Research manuscript series 172

    SciTech Connect

    Brooks, R.D.

    1981-06-01

    An intensive archeological survey of the proposed Saltcrete (200-Z) area of the Defense Waste Processing Facility on the Savannah River Plant, Aiken County, South Carolina was conducted. The purpose was to locate, describe and assess the archeological resources within the proposed construction area and to provide the Department of Energy with the recommendations as to the significance of the resources. This report presents a summary of the background, methods, results and recommendations resulting from the Saltcrete area intensive survey.

  15. A Deletion in NRT2.1 Attenuates Pseudomonas syringae-Induced Hormonal Perturbation, Resulting in Primed Plant Defenses1[C][W

    PubMed Central

    Camañes, Gemma; Pastor, Victoria; Cerezo, Miguel; García-Andrade, Javier; Vicedo, Begonya; García-Agustín, Pilar; Flors, Victor

    2012-01-01

    For an efficient defense response against pathogens, plants must coordinate rapid genetic reprogramming to produce an incompatible interaction. Nitrate Trasnporter2 (NRT2) gene family members are sentinels of nitrate availability. In this study, we present an additional role for NRT2.1 linked to plant resistance against pathogens. This gene antagonizes the priming of plant defenses against the bacterial pathogen Pseudomonas syringae pv tomato DC3000 (Pst). The nrt2 mutant (which is deficient in two genes, NRT2.1 and NRT2.2) displays reduced susceptibility to this bacterium. We demonstrate that modifying environmental conditions that stimulate the derepression of the NRT2.1 gene influences resistance to Pst independently of the total level of endogenous nitrogen. Additionally, hormonal homeostasis seemed to be affected in nrt2, which displays priming of salicylic acid signaling and concomitant irregular functioning of the jasmonic acid and abscisic acid pathways upon infection. Effector-triggered susceptibility and hormonal perturbation by the bacterium seem to be altered in nrt2, probably due to reduced sensitivity to the bacterial phytotoxin coronatine. The main genetic and metabolic targets of coronatine in Arabidopsis (Arabidopsis thaliana) remain largely unstimulated in nrt2 mutants. In addition, a P. syringae strain defective in coronatine synthesis showed the same virulence toward nrt2 as the coronatine-producing strain. Taken together, the reduced susceptibility of nrt2 mutants seems to be a combination of priming of salicylic acid-dependent defenses and reduced sensitivity to the bacterial effector coronatine. These results suggest additional functions for NRT2.1 that may influence plant disease resistance by down-regulating biotic stress defense mechanisms and favoring abiotic stress responses. PMID:22158760

  16. Study on citrus response to huanglongbing highlights a down-regulation of defense-related proteins in lemon plants upon 'Ca. Liberibacter asiaticus' infection.

    PubMed

    Nwugo, Chika C; Duan, Yongping; Lin, Hong

    2013-01-01

    Citrus huanglongbing (HLB) is a highly destructive disease of citrus presumably caused by 'Candidatus Liberibacterasiaticus' (Las), a gram-negative, insect-transmitted, phloem-limited α-proteobacterium. Although almost all citrus plants are susceptible to HLB, reports have shown reduced susceptibility to Las infection in lemon (Citrus limon) plants. The aim of this study is to identify intra-species specific molecular mechanisms associated with Las-induced responses in lemon plants. To achieve this, comparative 2-DE and mass spectrometry, in addition to Inductively Coupled Plasma Spectroscopy (ICPS) analyses, were applied to investigate differences in protein accumulation and the concentrations of cationic elements in leaves of healthy and Las-infected lemon plants. Results showed a differential accumulation of 27 proteins, including an increase in accumulation of starch synthase but decrease in the production of photosynthesis-related proteins in Las-infected lemon plants compared to healthy plants. Furthermore, there was a 6% increase (P > 0.05) in K concentration in leaves of lemon plants upon Las infection, which support results from previous studies and might represent a common response pattern of citrus plants to Las infection. Interestingly, contrary to reports from prior studies, this study showed a general reduction in the production of defense-related pathogen-response proteins but a 128% increase in Zn concentration in lemon plants in response to Las infection. Taken together, this study sheds light on general and intra-species specific responses associated with the response of citrus plants to Las.

  17. Tri-trophic effects of seasonally variable induced plant defenses vary across the development of a shelter building moth larva and its parasitoid.

    PubMed

    Rose, Noah H; Halitschke, Rayko; Morse, Douglass H

    2015-01-01

    Plant chemical defenses can negatively affect insect herbivore fitness, but they can also decrease herbivore palatability to predators or decrease parasitoid fitness, potentially changing selective pressures on both plant investment in production of chemical defenses and host feeding behavior. Larvae of the fern moth Herpetogramma theseusalis live in and feed upon leaf shelters of their own construction, and their most abundant parasitoid Alabagrus texanus oviposits in early instar larvae, where parasitoid larvae lay dormant for most of host development before rapidly developing and emerging just prior to host pupation. As such, both might be expected to live in a relatively constant chemical environment. Instead, we find that a correlated set of phenolic compounds shows strong seasonal variation both within shelters and in undamaged fern tissue, and the relative level of these compounds in these two different fern tissue types switches across the summer. Using experimental feeding treatments, in which we exposed fern moth larvae to different chemical trajectories across their development, we show that exposure to this set of phenolic compounds reduces the survival of larvae in early development. However, exposure to this set of compounds just before the beginning of explosive parasitoid growth increased parasitoid survival. Exposure during the period of rapid parasitoid growth and feeding decreased parasitoid survival. These results highlight the spatial and temporal complexity of leaf shelter chemistry, and demonstrate the developmental contingency of associated effects on both host and parasitoid, implying the existence of complex selective pressures on plant investment in chemical defenses, host feeding behavior, and parasitoid life history.

  18. Green and Red Light Reduces the Disease Severity by Pseudomonas cichorii JBC1 in Tomato Plants via Upregulation of Defense-Related Gene Expression.

    PubMed

    Nagendran, Rajalingam; Lee, Yong Hoon

    2015-04-01

    Light influences many physiological processes in most organisms. To investigate the influence of light on plant and pathogen interaction, we challenged tomato seedlings with Pseudomonas cichorii JBC1 by flood inoculation and incubated the seedlings under different light conditions. Tomato seedlings exposed to green or red light showed a significant reduction in disease incidence compared with those grown under white light or dark conditions. To understand the underlying mechanisms, we investigated the effects of each light wavelength on P. cichorii JBC1 and tomato plants. Treatment with various light wavelengths at 120 µmol m(-2) s(-1) revealed no significant difference in growth, swarming motility, or biofilm formation of the pathogen. In addition, when we vacuum-infiltrated P. cichorii JBC1 into tomato plants, green and red light also suppressed disease incidence which indicated that the reduced disease severity was not from direct influence of light on the pathogen. Significant upregulation of the defense-related genes, phenylalanine ammonia-lyase (PAL) and pathogenesis-related protein 1a (PR-1a) was observed in P. cichorii JBC1-infected tomato seedlings grown under green or red light compared with seedlings grown under white light or dark conditions. The results of this study indicate that light conditions can influence plant defense mechanisms. In particular, green and red light increase the resistance of tomato plants to infection by P. cichorii.

  19. Cuticular Defects in Oryza sativa ATP-binding Cassette Transporter G31 Mutant Plants Cause Dwarfism, Elevated Defense Responses and Pathogen Resistance.

    PubMed

    Garroum, Imène; Bidzinski, Przemyslaw; Daraspe, Jean; Mucciolo, Antonio; Humbel, Bruno M; Morel, Jean-Benoit; Nawrath, Christiane

    2016-06-01

    The cuticle covers the surface of the polysaccharide cell wall of leaf epidermal cells and forms an essential diffusion barrier between plant and environment. Homologs of the ATP-binding cassette (ABC) transporter AtABCG32/HvABCG31 clade are necessary for the formation of a functional cuticle in both monocots and dicots. Here we characterize the osabcg31 knockout mutant and hairpin RNA interference (RNAi)-down-regulated OsABCG31 plant lines having reduced plant growth and a permeable cuticle. The reduced content of cutin in leaves and structural alterations in the cuticle and at the cuticle-cell wall interface in plants compromised in OsABCG31 expression explain the cuticle permeability. Effects of modifications of the cuticle on plant-microbe interactions were evaluated. The cuticular alterations in OsABCG31-compromised plants did not cause deficiencies in germination of the spores or the formation of appressoria of Magnaporthe oryzae on the leaf surface, but a strong reduction of infection structures inside the plant. Genes involved in pathogen resistance were constitutively up-regulated in OsABCG31-compromised plants, thus being a possible cause of the resistance to M. oryzae and the dwarf growth phenotype. The findings show that in rice an abnormal cuticle formation may affect the signaling of plant growth and defense.

  20. Plant defense gene promoter enhances the reliability of shiva-1 gene-induced resistance to soft rot disease in potato.

    PubMed

    Yi, Jung Yoon; Seo, Hyo Won; Yang, Moon Sik; Robb, E Jane; Nazar, Ross N; Lee, Shin Woo

    2004-11-01

    PAL5, a tomato (Lycopersicon esculentum Mill.) plant defense gene that encodes phenylalanine ammonia-lyase, is known to respond to a variety of environmental stresses including pathogen infection and wounding. A shiva-1 gene recombinant that encodes a small synthetic antibacterial peptide under the PAL5 gene promoter was transformed into potato (Solanum tuberosum L.) and its ability to induce resistance to Erwinia carotovora was compared with a construct under the control of the constitutive and widely used cauliflower mosaic virus (CaMV) 35S promoter. The shiva-1 peptide, an analog of natural cecropin B, was shown previously to have high bactericidal activity in vitro, but when expressed in vivo under the control of the CaMV 35S promoter, the effects were very inconsistent. As observed previously, in the present studies a few transformants with the CaMV 35S promoter were highly resistant when assayed for susceptibility to soft rot disease. In marked contrast the majority of transformants with the PAL5 gene promoter were highly resistant. More-detailed analyses of the incorporated DNA indicated that most of the transformants with the CaMV 35S promoter contained multiple copies of the transforming DNA while all of the PAL5 recombinants contained single copies. The highly resistant CaMV 35S recombinant also was present as a single copy. The results indicate that, at least in this instance, a constitutive promoter may not be ideal for the effective expression of a foreign gene and suggest that multiple insertions may have negative consequences.

  1. Visualizing a plant defense and insect counterploy: alkaloid distribution in Lobelia leaves trenched by a plusiine caterpillar.

    PubMed

    Oppel, Craig B; Dussourd, David E; Garimella, Umadevi

    2009-06-01

    Insects that feed on plants protected by latex canals often sever leaf veins or cut trenches across leaves before feeding distal to the cuts. The insects thereby depressurize the canals and reduce latex exudation at their prospective feeding site. How the cuts affect the distribution and concentration of latex chemicals was not known. We modified a microwave-assisted extraction technique to analyze the spatial distribution of alkaloids in leaves of Lobelia cardinalis (Campanulaceae) that have been trenched by a plusiine caterpillar, Enigmogramma basigera (Lepidoptera: Noctuidae). We produced sharp two dimensional maps of alkaloid distribution by microwaving leaves to transfer alkaloids to TLC plates that were then sprayed with Dragendorff's reagent to visualize the alkaloids. The leaf prints were photographed and analyzed with image processing software for quantifying alkaloid levels. A comparison of control and trenched leaves documented that trenching reduces alkaloid levels by approximately 50% both distal and proximal to the trench. The trench becomes greatly enriched in alkaloids due to latex draining from surrounding areas. Measurements of exudation from trenched leaves demonstrate that latex pressures are rapidly restored proximal, but not distal to the trench. Thus, the trench serves not only to drain latex with alkaloids from the caterpillar's prospective feeding site, but also to isolate this section, thereby preventing an influx of latex from an extensive area that likely extends beyond the leaf. Microwave-assisted extraction of leaves has potential for diverse applications that include visualizing the impact of pathogens, leaf miners, sap-sucking insects, and other herbivores on the distribution and abundance of alkaloids and other important defensive compounds.

  2. The plant growth-promoting fungus Penicillium simplicissimum GP17-2 induces resistance in Arabidopsis thaliana by activation of multiple defense signals.

    PubMed

    Hossain, Md Motaher; Sultana, Farjana; Kubota, Mayumi; Koyama, Hiroyuki; Hyakumachi, Mitsuro

    2007-12-01

    Arabidopsis thaliana grown in soil amended with barley grain inocula of Penicillium simplicissimum GP17-2 or receiving root treatment with its culture filtrate (CF) exhibited clear resistance to Pseudomonas syringae pv. tomato DC3000 (Pst). To assess the contribution of different defense pathways, Arabidopsis genotypes implicated in salicylic acid (SA) signaling expressing the NahG transgene or carrying disruption in NPR1 (npr1), jasmonic acid (JA) signaling (jar1) and ethylene (ET) signaling (ein2) were tested. All genotypes screened were protected by GP17-2 or its CF. However, the level of protection was significantly lower in NahG and npr1 plants than it was in similarly treated wild-type plants, indicating that the SA signaling pathway makes a minor contribution to the GP17-2-mediated resistance and is insufficient for a full response. Examination of local and systemic gene expression revealed that GP17-2 and its CF modulate the expression of genes involved in both the SA and JA/ET signaling pathways. Subsequent challenge of GP17-2-colonized plants with Pst was accompanied by direct activation of SA-inducible PR-2 and PR-5 genes as well as potentiated expression of the JA-inducible Vsp gene. In contrast, CF-treated plants infected with Pst exhibited elevated expression of most defense-related genes (PR-1, PR-2, PR-5, PDF1.2 and Hel) studied. Moreover, an initial elevation of SA responses was followed by late induction of JA responses during Pst infection of induced systemic resistance (ISR)-expressing plants. In conclusion, we hypothesize the involvement of multiple defense mechanisms leading to an ISR of Arabidopsis by GP17-2.

  3. Alternative Growth and Defensive Strategies Reveal Potential and Gender Specific Trade-Offs in Dioecious Plants Salix paraplesia to Nutrient Availability

    PubMed Central

    Jiang, Hao; Zhang, Sheng; Lei, Yanbao; Xu, Gang; Zhang, Dan

    2016-01-01

    Population sex ratios of many dioecious plants in nature are biased. This may be attributed to sexually different resource demands and adaptive capacity. In male-biasedPopulus, males often display stronger physiological adaptation than females. Interestingly, Populus and Salix, belonging to Salicaceae, display an opposite biased sex ratio, especially in nutrient-poor environmental conditions. Do female willows have a greater tolerance to nutrient deficiency than males? In this study, we investigated the growth and defensive strategies of Salix paraplesia cuttings, which were grown with high and low soil fertility for about 140 days over one growing season. Results suggest that different strategies for biomass allocation may result in sexually different defense capacities and trade-offs between growth and defense. Females are likely to adopt radical strategies, overdrawing on available resources to satisfy both growth and defense, which seems to be more like a gamble compared with males. It is also suggested that females may have an extra mechanism to compensate for the investment in growth under nutrient-poor conditions. In summary, the results may help focus restoration efforts on sex selection such that a moderate increase in female willow quantity could increase the resistance and resilience of willow populations to early sporadic desertification. PMID:27489556

  4. Alternative Growth and Defensive Strategies Reveal Potential and Gender Specific Trade-Offs in Dioecious Plants Salix paraplesia to Nutrient Availability.

    PubMed

    Jiang, Hao; Zhang, Sheng; Lei, Yanbao; Xu, Gang; Zhang, Dan

    2016-01-01

    Population sex ratios of many dioecious plants in nature are biased. This may be attributed to sexually different resource demands and adaptive capacity. In male-biasedPopulus, males often display stronger physiological adaptation than females. Interestingly, Populus and Salix, belonging to Salicaceae, display an opposite biased sex ratio, especially in nutrient-poor environmental conditions. Do female willows have a greater tolerance to nutrient deficiency than males? In this study, we investigated the growth and defensive strategies of Salix paraplesia cuttings, which were grown with high and low soil fertility for about 140 days over one growing season. Results suggest that different strategies for biomass allocation may result in sexually different defense capacities and trade-offs between growth and defense. Females are likely to adopt radical strategies, overdrawing on available resources to satisfy both growth and defense, which seems to be more like a gamble compared with males. It is also suggested that females may have an extra mechanism to compensate for the investment in growth under nutrient-poor conditions. In summary, the results may help focus restoration efforts on sex selection such that a moderate increase in female willow quantity could increase the resistance and resilience of willow populations to early sporadic desertification.

  5. Insect Herbivory-Elicited GABA Accumulation in Plants is a Wound-Induced, Direct, Systemic, and Jasmonate-Independent Defense Response

    PubMed Central

    Scholz, Sandra S.; Reichelt, Michael; Mekonnen, Dereje W.; Ludewig, Frank; Mithöfer, Axel

    2015-01-01

    The non-proteinogenic amino acid γ-aminobutyric acid (GABA) is present in all organisms analyzed so far. In invertebrates GABA acts as a neurotransmitter; in plants different functions are under discussion. Among others, its involvement in abiotic stress reactions and as a defensive compound against feeding insects is suggested. GABA is synthesized from glutamate by glutamate decarboxylases and degraded by GABA-transaminases. Here, in Arabidopsis thaliana, gad1/2 double mutants showing reduced GABA concentrations as well as GABA-enriched triple mutants (gad1/2 x pop2-5) were generated and employed for a systematic study of GABA induction, accumulation and related effects in Arabidopsis leaves upon herbivory. The results demonstrate that GABA accumulation is stimulated by insect feeding-like wounding by a robotic caterpillar, MecWorm, as well as by real insect (Spodoptera littoralis) herbivory. Higher GABA levels in both plant tissue and artificial dietary supplements in turn affect the performance of feeding larvae. GABA enrichment occurs not only in the challenged but also in adjacent leaf. This induced response is neither dependent on herbivore defense-related phytohormones, jasmonates, nor is jasmonate induction dependent on the presence of GABA. Thus, in Arabidopsis the rapid accumulation of GABA very likely represents a general, direct and systemic defense reaction against insect herbivores. PMID:26734035

  6. Two Volatile Organic Compounds Trigger Plant Self-Defense against a Bacterial Pathogen and a Sucking Insect in Cucumber under Open Field Conditions

    PubMed Central

    Song, Geun Cheol; Ryu, Choong-Min

    2013-01-01

    Systemic acquired resistance (SAR) is a plant self-defense mechanism against a broad-range of pathogens and insect pests. Among chemical SAR triggers, plant and bacterial volatiles are promising candidates for use in pest management, as these volatiles are highly effective, inexpensive, and can be employed at relatively low concentrations compared with agrochemicals. However, such volatiles have some drawbacks, including the high evaporation rate of these compounds after application in the open field, their negative effects on plant growth, and their inconsistent levels of effectiveness. Here, we demonstrate the effectiveness of volatile organic compound (VOC)-mediated induced resistance against both the bacterial angular leaf spot pathogen, Pseudononas syringae pv. lachrymans, and the sucking insect aphid, Myzus persicae, in the open field. Using the VOCs 3-pentanol and 2-butanone where fruit yields increased gave unexpectedly, a significant increase in the number of ladybird beetles, Coccinella septempunctata, a natural enemy of aphids. The defense-related gene CsLOX was induced by VOC treatment, indicating that triggering the oxylipin pathway in response to the emission of green leaf volatiles can recruit the natural enemy of aphids. These results demonstrate that VOCs may help prevent plant disease and insect damage by eliciting induced resistance, even in open fields. PMID:23698768

  7. Cyclic Lipopeptides of Bacillus amyloliquefaciens subsp. plantarum Colonizing the Lettuce Rhizosphere Enhance Plant Defense Responses Toward the Bottom Rot Pathogen Rhizoctonia solani.

    PubMed

    Chowdhury, Soumitra Paul; Uhl, Jenny; Grosch, Rita; Alquéres, Sylvia; Pittroff, Sabrina; Dietel, Kristin; Schmitt-Kopplin, Philippe; Borriss, Rainer; Hartmann, Anton

    2015-09-01

    The commercially available inoculant Bacillus amyloliquefaciens FZB42 is able to considerably reduce lettuce bottom rot caused by Rhizoctonia solani. To understand the interaction between FZB42 and R. solani in the rhizosphere of lettuce, we used an axenic system with lettuce bacterized with FZB42 and inoculated with R. solani. Confocal laser scanning microscopy showed that FZB42 could delay the initial establishment of R. solani on the plants. To show which secondary metabolites of FZB42 are produced under these in-situ conditions, we developed an ultra-high performance liquid chromatography coupled to time of flight mass spectrometry-based method and identified surfactin, fengycin, and bacillomycin D in the lettuce rhizosphere. We hypothesized that lipopeptides and polyketides play a role in enhancing the plant defense responses in addition to the direct antagonistic effect toward R. solani and used a quantitative real-time polymerase chain reaction-based assay for marker genes involved in defense signaling pathways in lettuce. A significant higher expression of PDF 1.2 observed in the bacterized plants in response to subsequent pathogen challenge showed that FZB42 could enhance the lettuce defense response toward the fungal pathogen. To identify if surfactin or other nonribosomally synthesized secondary metabolites could elicit the observed enhanced defense gene expression, we examined two mutants of FZB42 deficient in production of surfactin and the lipopetides and polyketides, by expression analysis and pot experiments. In the absence of surfactin and other nonribosomally synthesized secondary metabolites, there was no enhanced PDF 1.2-mediated response to the pathogen challenge. Pot experiment results showed that the mutants failed to reduce disease incidence in lettuce as compared with the FZB42 wild type, indicating, that surfactin as well as other nonribosomally synthesized secondary metabolites play a role in the actual disease suppression and on lettuce

  8. Differential transcriptome analysis of leaves of tea plant (Camellia sinensis) provides comprehensive insights into the defense responses to Ectropis oblique attack using RNA-Seq.

    PubMed

    Wang, Ya-Nan; Tang, Lei; Hou, Yan; Wang, Ping; Yang, Hua; Wei, Chao-Ling

    2016-07-01

    Tea is a very popular and healthy nonalcoholic beverage worldwide. As an evergreen woody plant, the cultivation of tea plants (Camellia sinensis) is challenged by biotic stresses, and one of which is feeding of Ectropis oblique. In China, E. oblique infestation causes serious damages in many tea cultivation areas. Tea plants have evolved sophisticated strategies to cope with attack by E. oblique. To elucidate the molecular mechanisms of the response to E. oblique in tea plants, the differential gene expression profiles between the E. oblique damage-induced tea plants and undamaged control using RNA sequencing (RNA-Seq) were obtained. A total of 1859 differentially expressed genes were identified, including 949 upregulated and 910 downregulated genes. Overall, 90 signal transduction genes, 100 anti-insect responsive transcription factors, 50 genes related to phenylpropanoid biosynthesis, 41 unigenes related to herbivore-induced plant volatiles (HIPVs) biosynthesis, and 8 caffeine biosynthesis genes were found to be differentially regulated. Metabolic pathway analysis indicated that plant secondary metabolites and the signaling pathways may play an important role in defense against insects, and a closer examination at the expression of some crucial genes revealed differential expression patterns after feeding by E. oblique. Furthermore, quantitative RT-PCR (qRT-PCR) analysis further confirmed the results of RNA-Seq. Our dataset provides the most comprehensive sequence resource available for studying the resistance to E. oblique in tea, which will benefit our understanding of the overall mechanisms underlying inducible defenses responses, and may be useful to create novel prevention measures against insects to reduce pesticide usage in eco-friendly tea farming.

  9. Pepper pathogenesis-related protein 4c is a plasma membrane-localized cysteine protease inhibitor that is required for plant cell death and defense signaling.

    PubMed

    Kim, Nak Hyun; Hwang, Byung Kook

    2015-01-01

    Xanthomonas campestris pv. vesicatoria (Xcv) type III effector AvrBsT triggers programmed cell death (PCD) and activates the hypersensitive response (HR) in plants. Here, we isolated and identified the plasma membrane localized pathogenesis-related (PR) protein 4c gene (CaPR4c) from pepper (Capsicum annuum) leaves undergoing AvrBsT-triggered HR cell death. CaPR4c encodes a protein with a signal peptide and a Barwin domain. Recombinant CaPR4c protein expressed in Escherichia coli exhibited cysteine protease-inhibitor activity and ribonuclease (RNase) activity. Subcellular localization analyses revealed that CaPR4c localized to the plasma membrane in plant cells. CaPR4c expression was rapidly and specifically induced by avirulent Xcv (avrBsT) infection. Transient expression of CaPR4c caused HR cell death in pepper leaves, which was accompanied by enhanced accumulation of H2 O2 and significant induction of some defense-response genes. Deletion of the signal peptide from CaPR4c abolished the induction of HR cell death, indicating a requirement for plasma membrane localization of CaPR4c for HR cell death. CaPR4c silencing in pepper disrupted both basal and AvrBsT-triggered resistance responses, and enabled Xcv proliferation in infected leaves. H2 O2 accumulation, cell-death induction, and defense-response gene expression were distinctly reduced in CaPR4c-silenced pepper. CaPR4c overexpression in transgenic Arabidopsis plants conferred greater resistance against infection by Pseudomonas syringae pv. tomato and Hyaloperonospora arabidopsidis. These results collectively suggest that CaPR4c plays an important role in plant cell death and defense signaling.

  10. Low Agrobacterium tumefaciens inoculum levels and a long co-culture period lead to reduced plant defense responses and increase transgenic shoot production of sunflower (Helianthus annuus L.).

    PubMed

    Zhang, Zhifen; Finer, John J

    2016-01-01

    Agrobacterium-mediated plant transformation is typically conducted by inoculating plant tissues with an Agrobacterium suspension containing approximately 10(8)-10(9) bacteria mL(-1), followed by a 2-3-d co-culture period. Use of longer co-culture periods could potentially increase transformation efficiencies by allowing more time for Agrobacterium to interact with plant cells, but bacterial overgrowth is likely to occur, leading to severe tissue browning and reduced transformation and regeneration. Low bacterial inoculum levels were therefore evaluated as a means to reduce the negative outcomes associated with long co-culture. The use of low inoculum bacterial suspensions (approximately 6 × 10(2) bacteria mL(-1)) followed by long co-culture (15 d) led to the production of an average of three transformed sunflower shoots per explant while the use of high inoculum (approximately 6 × 10(8) bacteria mL(-1)) followed by short co-culture (3 d) led to no transformed shoots. Low inoculum and long co-culture acted synergistically, and both were required for the improvement of sunflower transformation. Gene expression analysis via qRT-PCR showed that genes related to plant defense response were generally expressed at lower levels in the explants treated with low inoculum than those treated with high inoculum during 15 d of co-culture, suggesting that low inoculum reduced the induction of plant defense responses. The use of low inoculum with long co-culture (LI/LC) led to large increases in sunflower transformation efficiency. This method has great potential for improving transformation efficiencies and expanding the types of target tissues amenable for transformation of different plant species.

  11. Plant Defenses and Predation Risk Differentially Shape Patterns of Consumption, Growth, and Digestive Efficiency in a Guild of Leaf-Chewing Insects

    PubMed Central

    Kaplan, Ian; McArt, Scott H.; Thaler, Jennifer S.

    2014-01-01

    Herbivores are squeezed between the two omnipresent threats of variable food quality and natural enemy attack, but these two factors are not independent of one another. The mechanisms by which organisms navigate the dual challenges of foraging while avoiding predation are poorly understood. We tested the effects of plant defense and predation risk on herbivory in an assemblage of leaf-chewing insects on Solanum lycopersicum (tomato) that included two Solanaceae specialists (Manduca sexta and Leptinotarsa decemlineata) and one generalist (Trichoplusia ni). Defenses were altered using genetic manipulations of the jasmonate phytohormonal cascade, whereas predation risk was assessed by exposing herbivores to cues from the predaceous stink bug, Podisus maculiventris. Predation risk reduced herbivore food intake by an average of 29% relative to predator-free controls. Interestingly, this predator-mediated impact on foraging behavior largely attenuated when quantified in terms of individual growth rate. Only one of the three species experienced lower body weight under predation risk and the magnitude of this effect was small (17% reduction) compared with effects on foraging behavior. Manduca sexta larvae, compensated for their predator-induced reduction in food intake by more effectively converting leaf tissue to body mass. They also had higher whole-body lipid content when exposed to predators, suggesting that individuals convert energy to storage forms to draw upon when risk subsides. In accordance with expectations based on insect diet breadth, plant defenses tended to have a stronger impact on consumption and growth in the generalist than the two specialists. These data both confirm the ecological significance of predators in the foraging behavior of herbivorous prey and demonstrate how sophisticated compensatory mechanisms allow foragers to partially offset the detrimental effects of reduced food intake. The fact that these mechanisms operated across a wide range of

  12. Tri-Trophic Effects of Seasonally Variable Induced Plant Defenses Vary across the Development of a Shelter Building Moth Larva and Its Parasitoid

    PubMed Central

    Rose, Noah H.; Halitschke, Rayko; Morse, Douglass H.

    2015-01-01

    Plant chemical defenses can negatively affect insect herbivore fitness, but they can also decrease herbivore palatability to predators or decrease parasitoid fitness, potentially changing selective pressures on both plant investment in production of chemical defenses and host feeding behavior. Larvae of the fern moth Herpetogramma theseusalis live in and feed upon leaf shelters of their own construction, and their most abundant parasitoid Alabagrus texanus oviposits in early instar larvae, where parasitoid larvae lay dormant for most of host development before rapidly developing and emerging just prior to host pupation. As such, both might be expected to live in a relatively constant chemical environment. Instead, we find that a correlated set of phenolic compounds shows strong seasonal variation both within shelters and in undamaged fern tissue, and the relative level of these compounds in these two different fern tissue types switches across the summer. Using experimental feeding treatments, in which we exposed fern moth larvae to different chemical trajectories across their development, we show that exposure to this set of phenolic compounds reduces the survival of larvae in early development. However, exposure to this set of compounds just before the beginning of explosive parasitoid growth increased parasitoid survival. Exposure during the period of rapid parasitoid growth and feeding decreased parasitoid survival. These results highlight the spatial and temporal complexity of leaf shelter chemistry, and demonstrate the developmental contingency of associated effects on both host and parasitoid, implying the existence of complex selective pressures on plant investment in chemical defenses, host feeding behavior, and parasitoid life history. PMID:25781029

  13. NaJAZh Regulates a Subset of Defense Responses against Herbivores and Spontaneous Leaf Necrosis in Nicotiana attenuata Plants[C][W][OA

    PubMed Central

    Oh, Youngjoo; Baldwin, Ian T.; Gális, Ivan

    2012-01-01

    The JASMONATE ZIM DOMAIN (JAZ) proteins function as negative regulators of jasmonic acid signaling in plants. We cloned 12 JAZ genes from native tobacco (Nicotiana attenuata), including nine novel JAZs in tobacco, and examined their expression in plants that had leaves elicited by wounding or simulated herbivory. Most JAZ genes showed strong expression in the elicited leaves, but NaJAZg was mainly expressed in roots. Another novel herbivory-elicited gene, NaJAZh, was analyzed in detail. RNA interference suppression of this gene in inverted-repeat (ir)JAZh plants deregulated a specific branch of jasmonic acid-dependent direct and indirect defenses: irJAZh plants showed greater trypsin protease inhibitor activity, 17-hydroxygeranyllinalool diterpene glycosides accumulation, and emission of volatile organic compounds from leaves. Silencing of NaJAZh also revealed a novel cross talk in JAZ-regulated secondary metabolism, as irJAZh plants had significantly reduced nicotine levels. In addition, irJAZh spontaneously developed leaf necrosis during the transition to flowering. Because the lesions closely correlated with the elevated expression of programmed cell death genes and the accumulations of salicylic acid and hydrogen peroxide in the leaves, we propose a novel role of the NaJAZh protein as a repressor of necrosis and/or programmed cell death during plant development. PMID:22496510

  14. Environmental evaluation of alternatives for long-term management of Defense high-level radioactive wastes at the Idaho Chemical Processing Plant

    SciTech Connect

    Not Available

    1982-09-01

    The U.S. Department of Energy (DOE) is considering the selection of a strategy for the long-term management of the defense high-level wastes at the Idaho Chemical Processing Plant (ICPP). This report describes the environmental impacts of alternative strategies. These alternative strategies include leaving the calcine in its present form at the Idaho National Engineering Laboratory (INEL), or retrieving and modifying the calcine to a more durable waste form and disposing of it either at the INEL or in an offsite repository. This report addresses only the alternatives for a program to manage the high-level waste generated at the ICPP. 24 figures, 60 tables.

  15. Comparative analysis of antiviral responses in Brachypodium distachyon and Setaria viridis reveals conserved and unique outcomes among C3 and C4 plant defenses.

    PubMed

    Mandadi, Kranthi K; Pyle, Jesse D; Scholthof, Karen-Beth G

    2014-11-01

    Viral diseases cause significant losses in global agricultural production, yet little is known about grass antiviral defense mechanisms. We previously reported on host immune responses triggered by Panicum mosaic virus (PMV) and its satellite virus (SPMV) in the model C3 grass Brachypodium distachyon. To aid comparative analyses of C3 and C4 grass antiviral defenses, here, we establish B. distachyon and Setaria viridis (a C4 grass) as compatible hosts for seven grass-infecting viruses, including PMV and SPMV, Brome mosaic virus, Barley stripe mosaic virus, Maize mild mottle virus, Sorghum yellow banding virus, Wheat streak mosaic virus (WSMV), and Foxtail mosaic virus (FoMV). Etiological and molecular characterization of the fourteen grass-virus pathosystems showed evidence for conserved crosstalk among salicylic acid (SA), jasmonic acid, and ethylene pathways in B. distachyon and S. viridis. Strikingly, expression of PHYTOALEXIN DEFICIENT4, an upstream modulator of SA signaling, was consistently suppressed during most virus infections in B. distachyon and S. viridis. Hierarchical clustering analyses further identified unique antiviral responses triggered by two morphologically similar viruses, FoMV and WSMV, and uncovered other host-dependent effects. Together, the results of this study establish B. distachyon and S. viridis as models for the analysis of plant-virus interactions and provide the first framework for conserved and unique features of C3 and C4 grass antiviral defenses.

  16. Post-translational derepression of invertase activity in source leaves via down-regulation of invertase inhibitor expression is part of the plant defense response.

    PubMed

    Bonfig, Katharina B; Gabler, Andrea; Simon, Uwe K; Luschin-Ebengreuth, Nora; Hatz, Martina; Berger, Susanne; Muhammad, Naseem; Zeier, Jürgen; Sinha, Alok K; Roitsch, Thomas

    2010-11-01

    a role for extracellular invertase in plant defense. The acarbose-mediated increase in susceptibility was also detectable in sid2 and cpr6 mutants and resulted in slightly elevated levels of salicylic acid, demonstrating that the effect is independent of the salicylic acid-regulated defense pathway. These findings provide an explanation for high extractable invertase activity found in source leaves that is kept inhibited in situ by post-translational interaction between invertase and the invertase inhibitor proteins. Upon pathogen infection, the invertase activity is released by repression of invertase inhibitor expression, thus linking the local induction of sink strength to the plant defense response.

  17. Internal radiation exposure of Ground Self-Defense Force members involved in the management of the Fukushima Nuclear Power Plant disaster.

    PubMed

    Naoi, Yutaka; Fujikawa, Akira; Kyoto, Yukishige; Kunishima, Naoaki; Ono, Masahiro; Watanabe, Yukie

    2013-01-01

    When the Great East Japan Earthquake occurred on March 11, 2011, the Ground Self-Defense Force (GSDF) was dispatched nationally to Northeast area in Japan. The highly trained GSDF members were simultaneously assigned to various missions for the Fukushima Nuclear Power Plants disaster. The missions of GSDF terminated on August 31, 2011. Special medical examinations were conducted for the members as they returned to each military unit. GSDF members who were assigned to the nuclear power plant were at risk of radiation exposure; therefore, pocket dosimeters were used to assess external radiation exposure. A few months after the mission was terminated, measurements of internal radiation exposure were performed. This is the first report of the internal exposure of GSDF members who worked in the restricted radiation contamination area. Here, we report the amounts of internal and external exposure of and the equipment used by the GSDF members.

  18. Aphids indirectly increase virulence and transmission potential of a monarch butterfly parasite by reducing defensive chemistry of a shared food plant.

    PubMed

    de Roode, Jacobus C; Rarick, Rachel M; Mongue, Andrew J; Gerardo, Nicole M; Hunter, Mark D

    2011-05-01

    Parasites and hosts live in communities consisting of many interacting species, but few studies have examined how communities affect parasite virulence and transmission. We studied a food web consisting of two species of milkweed, two milkweed herbivores (monarch butterfly and oleander aphid) and a monarch butterfly-specific parasite. We found that the presence of aphids increased the virulence and transmission potential of the monarch butterfly's parasite on one milkweed species. These increases were associated with aphid-induced decreases in the defensive chemicals of milkweed plants. Our experiment suggests that aphids can indirectly increase the virulence and transmission potential of monarch butterfly parasites, probably by altering the chemical composition of a shared food plant. These results indicate that species that are far removed from host-parasite interactions can alter such interactions through cascading indirect effects in the food web. As such, indirect effects within ecological communities may drive the dynamics and evolution of parasites.

  19. Biological inventory of the proposed site of the Defense Waste Processing Facility on the Savannah River Plant in Aiken, South Carolina. Annual report

    SciTech Connect

    Vitt, L.J.

    1981-10-01

    Continued inventories of biota at the Defense Waste Processing Facility (DWPF) site have resulted in the identification of indicator species (Representative Important Species) in addition to adding to our long-term data base on biota of the site. A large number of plant, insect, miscellaneous invertebrate, fish, amphibian, reptile, bird, and mammal species occur on the DWPF site. Of these, there are no nationally Threatened or Endangered species. Three plant species considered Threatened by the State of South Carolina occur on the DWPF site, and one of these, the spathulate seed box is known on the SRP only from Sun Bay, the Carolina bay located directly on the DWPF site. Mitigation attempts to relocate species are discussed. Monitoring will continue. (PSB)

  20. Reserves accumulated in non-photosynthetic organs during the previous growing season drive plant defenses and growth in aspen in the subsequent growing season.

    PubMed

    Najar, Ahmed; Landhäusser, Simon M; Whitehill, Justin G A; Bonello, Pierluigi; Erbilgin, Nadir

    2014-01-01

    Plants store non-structural carbohydrates (NSC), nitrogen (N), as well as other macro and micronutrients, in their stems and roots; the role of these stored reserves in plant growth and defense under herbivory pressure is poorly understood, particularly in trees. Trembling aspen (Populus tremuloides) seedlings with different NSC and N reserves accumulated during the previous growing season were generated in the greenhouse. Based on NSC and N contents, seedlings were assigned to one of three reserve statuses: Low N-Low NSC, High N-Medium NSC, or High N-High NSC. In the subsequent growing season, half of the seedlings in each reserve status was subjected to defoliation by forest tent caterpillar (Malacosoma disstria) while the other half was left untreated. Following defoliation, the effect of reserves was measured on foliar chemistry (N, NSC) and caterpillar performance (larval development). Due to their importance in herbivore feeding, we also quantified concentrations of phenolic glycoside compounds in foliage. Seedlings in Low N-Low NSC reserve status contained higher amounts of induced phenolic glycosides, grew little, and supported fewer caterpillars. In contrast, aspen seedlings in High N-Medium or High NSC reserve statuses contained lower amounts of induced phenolic glycosides, grew faster, and some of the caterpillars which fed on these seedlings developed up to their fourth instar. Furthermore, multiple regression analysis indicated that foliar phenolic glycoside concentration was related to reserve chemistry (NSC, N). Overall, these results demonstrate that reserves accumulated during the previous growing season can influence tree defense and growth in the subsequent growing season. Additionally, our study concluded that the NSC/N ratio of reserves in the previous growing season represents a better measure of resources available for use in defense and growth than the foliar NSC/N ratios.

  1. Survivorship of Z-Pheromone Race European Corn Borer (Lepidoptera: Crambidae) on a Range of Host Plants Varying in Defensive Chemistry.

    PubMed

    Fisher, Kelsey E; Mason, Charles E; Flexner, J Lindsey; Hough-Goldstein, Judith; McDonald, John H

    2017-03-03

    The European corn borer, Ostrinia nubilalis (Hübner), was introduced in North America in the early 1900s and became a major pest of corn. After its introduction, it was found on > 200 other plant hosts, but corn remained its primary host. Early life history studies indicated that European corn borer had the potential of a wide host range. For nearly 80 yr before the introduction of Bt corn, the European corn borer was a major pest of corn in North America. This study investigated the growth and survivorship of the Z-pheromone race European corn borer on a range of hosts that vary in defensive chemistries and historic degree of infestation to better understand the current host plant range of Z-pheromone race of O. nubilalis. The plants tested include sweet corn, cry1F Bt field corn, non-Bt corn, cucumber, tomato, and green bean. Experiments were conducted in the growth chamber, greenhouse, and field to determine survival under different conditions. In most cases, results supported the expected outcome, with significantly higher survival on non-Bt corn hosts than the other hosts tested. Neonate larvae fed exclusively on leaves of green bean exhibited intermediate survival, whereas third-instars fed on only leaves of cucumber survived intermediately. Larvae on Bt corn and tomato had comparable low survival rates, overall suggesting that the defensive features of tomato are about as effective as Cry1F Bt corn. Non-Bt corn was found to be the most suitable host plant, overall for European corn borer among those tested.

  2. Pepper osmotin-like protein 1 (CaOSM1) is an essential component for defense response, cell death, and oxidative burst in plants.

    PubMed

    Choi, Du Seok; Hong, Jeum Kyu; Hwang, Byung Kook

    2013-12-01

    Osmotin or osmotin-like protein, a PR-5 family member, is differentially induced in plants by abiotic and biotic stresses. Here, we demonstrate that the pepper (Capsicum annuum) osmotin-like protein 1 gene, CaOSM1, was required for the defense and hypersensitive cell death response and oxidative burst signaling during Xanthomonas campestris pv. vesicatoria (Xcv) infection. CaOSM1 protein was localized to the plasma membrane in leaf cells of Nicotiana benthamiana. Agrobacterium-mediated transient expression of CaOSM1 in pepper distinctly induced the hypersensitive cell death response and H2O2 accumulation. Knock-down of CaOSM1 in pepper by virus-induced gene silencing increased the susceptibility to Xcv infection, which was accompanied by attenuation of the cell death response and decreased accumulation of H2O2. CaOSM1 overexpression in transgenic Arabidopsis conferred reduced susceptibility and accelerated cell death response and H2O2 accumulation to infection by Pseudomonas syringe pv. tomato and Hyaloperonospora arabidopsidis. Together, these results suggest that CaOSM1 is involved in cell death and oxidative burst responses during plant defense against microbial pathogens.

  3. NpPDR1, a Pleiotropic Drug Resistance-Type ATP-Binding Cassette Transporter from Nicotiana plumbaginifolia, Plays a Major Role in Plant Pathogen Defense1

    PubMed Central

    Stukkens, Yvan; Bultreys, Alain; Grec, Sébastien; Trombik, Tomasz; Vanham, Delphine; Boutry, Marc

    2005-01-01

    Nicotiana plumbaginifolia NpPDR1, a plasma membrane pleiotropic drug resistance-type ATP-binding cassette transporter formerly named NpABC1, has been suggested to transport the diterpene sclareol, an antifungal compound. However, direct evidence for a role of pleiotropic drug resistance transporters in the plant defense is still lacking. In situ immunolocalization and histochemical analysis using the gusA reporter gene showed that NpPDR1 was constitutively expressed in the whole root, in the leaf glandular trichomes, and in the flower petals. However, NpPDR1 expression was induced in the whole leaf following infection with the fungus Botrytis cinerea, and the bacteria Pseudomonas syringae pv tabaci, Pseudomonas fluorescens, and Pseudomonas marginalis pv marginalis, which do not induce a hypersensitive response in N. plumbaginifolia, whereas a weaker response was observed using P. syringae pv syringae, which does induce a hypersensitive response. Induced NpPDR1 expression was more associated with the jasmonic acid than the salicylic acid signaling pathway. These data suggest that NpPDR1 is involved in both constitutive and jasmonic acid-dependent induced defense. Transgenic plants in which NpPDR1 expression was prevented by RNA interference showed increased sensitivity to sclareol and reduced resistance to B. cinerea. These data show that NpPDR1 is involved in pathogen resistance and thus demonstrate a new role for the ATP-binding cassette transporter family. PMID:16126865

  4. Induced Release of a Plant-Defense Volatile ‘Deceptively’ Attracts Insect Vectors to Plants Infected with a Bacterial Pathogen

    PubMed Central

    Mann, Rajinder S.; Ali, Jared G.; Hermann, Sara L.; Tiwari, Siddharth; Pelz-Stelinski, Kirsten S.; Alborn, Hans T.; Stelinski, Lukasz L.

    2012-01-01

    Transmission of plant pathogens by insect vectors is a complex biological process involving interactions between the plant, insect, and pathogen. Pathogen-induced plant responses can include changes in volatile and nonvolatile secondary metabolites as well as major plant nutrients. Experiments were conducted to understand how a plant pathogenic bacterium, Candidatus Liberibacter asiaticus (Las), affects host preference behavior of its psyllid (Diaphorina citri Kuwayama) vector. D. citri were attracted to volatiles from pathogen-infected plants more than to those from non-infected counterparts. Las-infected plants were more attractive to D. citri adults than non-infected plants initially; however after feeding, psyllids subsequently dispersed to non-infected rather than infected plants as their preferred settling point. Experiments with Las-infected and non-infected plants under complete darkness yielded similar results to those recorded under light. The behavior of psyllids in response to infected versus non-infected plants was not influenced by whether or not they were carriers of the pathogen. Quantification of volatile release from non-infected and infected plants supported the hypothesis that odorants mediate psyllid preference. Significantly more methyl salicylate, yet less methyl anthranilate and D-limonene, was released by infected than non-infected plants. Methyl salicylate was attractive to psyllids, while methyl anthranilate did not affect their behavior. Feeding on citrus by D. citri adults also induced release of methyl salicylate, suggesting that it may be a cue revealing location of conspecifics on host plants. Infected plants were characterized by lower levels of nitrogen, phosphorus, sulfur, zinc, and iron, as well as, higher levels of potassium and boron than non-infected plants. Collectively, our results suggest that host selection behavior of D. citri may be modified by bacterial infection of plants, which alters release of specific headspace

  5. Identification of Genes Potentially Responsible for extra-Oral Digestion and Overcoming Plant Defense from Salivary Glands of the Tarnished Plant Bug (Hemiptera: Miridae) Using cDNA Sequencing

    PubMed Central

    Zhu, Yu-Cheng; Yao, Jianxiu; Luttrell, Randall

    2016-01-01

    Saliva is known to play a crucial role in tarnished plant bug (TPB, Lygus lineolaris [Palisot de Beauvois]) feeding. By facilitating the piercing, the enzyme-rich saliva may be used for extra-oral digestion and for overcoming plant defense before the plant fluids are ingested by TPBs. To identify salivary gland genes, mRNA was extracted from salivary glands and cDNA library clones were sequenced. A de novo-assembling of 7,000 Sanger sequences revealed 666 high-quality unique cDNAs with an average size of 624 bp, in which the identities of 347 cDNAs were determined using Blast2GO. Kyoto Encyclopedia of Genes and Genomes analysis indicated that these genes participate in eighteen metabolic pathways. Identifications of large number of enzyme genes in TPB salivary glands evidenced functions for extra-oral digestion and feeding damage mechanism, including 45 polygalacturonase, two α- amylase, one glucosidase, one glycan enzyme, one aminopeptidase, four lipase, and many serine protease cDNAs. The presence of multiple transcripts, multigene members, and high abundance of cell wall degradation enzymes (polygalacturonases) indicated that the enzyme-rich saliva may cause damage to plants by breaking down plant cell walls to make nutrients available for feeding. We also identified genes potentially involved in insect adaptation and detoxifying xenobiotics that may allow insects to overcome plant defense responses, including four glutathione S-transferases, three esterases, one cytochrome P450, and several serine proteases. The gene profiles of TPB salivary glands revealed in this study provides a foundation for further understanding and potential development of novel enzymatic inhibitors, or other RNAi approaches that may interrupt or minimize TPB feeding damage. PMID:27324587

  6. Identification of Genes Potentially Responsible for extra-Oral Digestion and Overcoming Plant Defense from Salivary Glands of the Tarnished Plant Bug (Hemiptera: Miridae) Using cDNA Sequencing.

    PubMed

    Zhu, Yu-Cheng; Yao, Jianxiu; Luttrell, Randall

    2016-01-01

    Saliva is known to play a crucial role in tarnished plant bug (TPB, Lygus lineolaris [Palisot de Beauvois]) feeding. By facilitating the piercing, the enzyme-rich saliva may be used for extra-oral digestion and for overcoming plant defense before the plant fluids are ingested by TPBs. To identify salivary gland genes, mRNA was extracted from salivary glands and cDNA library clones were sequenced. A de novo-assembling of 7,000 Sanger sequences revealed 666 high-quality unique cDNAs with an average size of 624 bp, in which the identities of 347 cDNAs were determined using Blast2GO. Kyoto Encyclopedia of Genes and Genomes analysis indicated that these genes participate in eighteen metabolic pathways. Identifications of large number of enzyme genes in TPB salivary glands evidenced functions for extra-oral digestion and feeding damage mechanism, including 45 polygalacturonase, two α- amylase, one glucosidase, one glycan enzyme, one aminopeptidase, four lipase, and many serine protease cDNAs. The presence of multiple transcripts, multigene members, and high abundance of cell wall degradation enzymes (polygalacturonases) indicated that the enzyme-rich saliva may cause damage to plants by breaking down plant cell walls to make nutrients available for feeding. We also identified genes potentially involved in insect adaptation and detoxifying xenobiotics that may allow insects to overcome plant defense responses, including four glutathione S-transferases, three esterases, one cytochrome P450, and several serine proteases. The gene profiles of TPB salivary glands revealed in this study provides a foundation for further understanding and potential development of novel enzymatic inhibitors, or other RNAi approaches that may interrupt or minimize TPB feeding damage.

  7. Hydroxycinnamic acid degradation, a broadly conserved trait, protects Ralstonia solanacearum from chemical plant defenses and contributes to root colonization and virulence

    PubMed Central

    Lowe, Tiffany M.; Ailloud, Florent; Allen, Caitilyn

    2014-01-01

    Plants produce hydroxycinnamic acid defense compounds (HCAs) to combat pathogens, such as the bacterium Ralstonia solanacearum. We showed that an HCA degradation pathway is genetically and functionally conserved across diverse R. solanacearum strains. Further, a Δfcs (feruloyl-CoA synthetase) mutant that cannot degrade HCAs was less virulent on tomato plants. To understand the role of HCA degradation in bacterial wilt disease, we tested the following hypotheses: HCA degradation helps the pathogen (1) grow, as a carbon source; (2) spread, by reducing physical barriers HCA-derived; and (3) survive plant antimicrobial compounds. Although HCA degradation enabled R. solanacearum growth on HCAs in vitro, HCA degradation was dispensable for growth in xylem sap and root exudate, suggesting that HCAs are not significant carbon sources in planta. Acetyl-bromide quantification of lignin demonstrated that R. solanacearum infections did not affect the gross quantity or distribution of stem lignin. However, the Δfcs mutant was significantly more susceptible to inhibition by two HCAs: caffeate and p-coumarate. Finally, plant colonization assays suggested that HCA degradation facilitates early stages of infection and root colonization. Together, these results indicated that ability to degrade HCAs contributes to bacterial wilt virulence by facilitating root entry and by protecting the pathogen from HCA toxicity. PMID:25423265

  8. Hydroxycinnamic Acid Degradation, a Broadly Conserved Trait, Protects Ralstonia solanacearum from Chemical Plant Defenses and Contributes to Root Colonization and Virulence.

    PubMed

    Lowe, Tiffany M; Ailloud, Florent; Allen, Caitilyn

    2015-03-01

    Plants produce hydroxycinnamic acid (HCA) defense compounds to combat pathogens, such as the bacterium Ralstonia solanacearum. We showed that an HCA degradation pathway is genetically and functionally conserved across diverse R. solanacearum strains. Further, a feruloyl-CoA synthetase (Δfcs) mutant that cannot degrade HCA was less virulent on tomato plants. To understand the role of HCA degradation in bacterial wilt disease, we tested the following hypotheses: HCA degradation helps the pathogen i) grow, as a carbon source; ii) spread, by reducing HCA-derived physical barriers; and iii) survive plant antimicrobial compounds. Although HCA degradation enabled R. solanacearum growth on HCA in vitro, HCA degradation was dispensable for growth in xylem sap and root exudate, suggesting that HCA are not significant carbon sources in planta. Acetyl-bromide quantification of lignin demonstrated that R. solanacearum infections did not affect the gross quantity or distribution of stem lignin. However, the Δfcs mutant was significantly more susceptible to inhibition by two HCA, namely, caffeate and p-coumarate. Finally, plant colonization assays suggested that HCA degradation facilitates early stages of infection and root colonization. Together, these results indicated that ability to degrade HCA contributes to bacterial wilt virulence by facilitating root entry and by protecting the pathogen from HCA toxicity.

  9. Disruption of Ethylene Responses by Turnip mosaic virus Mediates Suppression of Plant Defense against the Green Peach Aphid Vector1[OPEN

    PubMed Central

    Casteel, Clare L.; De Alwis, Manori; Bak, Aurélie; Dong, Haili; Whitham, Steven A.; Jander, Georg

    2015-01-01

    Plants employ diverse responses mediated by phytohormones to defend themselves against pathogens and herbivores. Adapted pathogens and herbivores often manipulate these responses to their benefit. Previously, we demonstrated that Turnip mosaic virus (TuMV) infection suppresses callose deposition, an important plant defense induced in response to feeding by its aphid vector, the green peach aphid (Myzus persicae), and increases aphid fecundity compared with uninfected control plants. Further, we determined that production of a single TuMV protein, Nuclear Inclusion a-Protease (NIa-Pro) domain, was responsible for changes in host plant physiology and increased green peach aphid reproduction. To characterize the underlying molecular mechanisms of this phenomenon, we examined the role of three phytohormone signaling pathways, jasmonic acid, salicylic acid, and ethylene (ET), in TuMV-infected Arabidopsis (Arabidopsis thaliana), with or without aphid herbivory. Experiments with Arabidopsis mutants ethylene insensitive2 and ethylene response1, and chemical inhibitors of ET synthesis and perception (aminoethoxyvinyl-glycine and 1-methylcyclopropene, respectively), show that the ET signaling pathway is required for TuMV-mediated suppression of Arabidopsis resistance to the green peach aphid. Additionally, transgenic expression of NIa-Pro in Arabidopsis alters ET responses and suppresses aphid-induced callose formation in an ET-dependent manner. Thus, disruption of ET responses in plants is an additional function of NIa-Pro, a highly conserved potyvirus protein. Virus-induced changes in ET responses may mediate vector-plant interactions more broadly and thus represent a conserved mechanism for increasing transmission by insect vectors across generations. PMID:26091820

  10. Application of Plant-Growth-Promoting Fungi Trichoderma longibrachiatum T6 Enhances Tolerance of Wheat to Salt Stress through Improvement of Antioxidative Defense System and Gene Expression.

    PubMed

    Zhang, Shuwu; Gan, Yantai; Xu, Bingliang

    2016-01-01

    Soil salinity is a serious problem worldwide that reduces agricultural productivity. Trichoderma longibrachiatum T6 (T6) has been shown to promote wheat growth and induce plant resistance to parasitic nematodes, but whether the plant-growth-promoting fungi T6 can enhance plant tolerance to salt stress is unknown. Here, we determined the effect of plant-growth-promoting fungi T6 on wheat seedlings' growth and development under salt stress, and investigated the role of T6 in inducing the resistance to NaCl stress at physiological, biochemical, and molecular levels. Wheat seedlings were inoculated with the strain of T6 and then compared with non-inoculated controls. Shoot height, root length, and shoot and root weights were measured on 15 days old wheat seedlings grown either under 150 mM NaCl or in a controlled setting without any NaCl. A number of colonies were re-isolated from the roots of wheat seedlings under salt stress. The relative water content in the leaves and roots, chlorophyll content, and root activity were significantly increased, and the accumulation of proline content in leaves was markedly accelerated with the plant growth parameters, but the content of leaf malondialdehyde under saline condition was significantly decreased. The antioxidant enzymes-superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) in wheat seedlings were increased by 29, 39, and 19%, respectively, with the application of the strain of T6 under salt stress; the relative expression of SOD, POD, and CAT genes in these wheat seedlings were significantly up-regulated. Our results indicated that the strain of T6 ameliorated the adverse effects significantly, protecting the seedlings from salt stress during their growth period. The possible mechanisms by which T6 suppresses the negative effect of NaCl stress on wheat seedling growth may be due to the improvement of the antioxidative defense system and gene expression in the stressed wheat plants.

  11. Application of Plant-Growth-Promoting Fungi Trichoderma longibrachiatum T6 Enhances Tolerance of Wheat to Salt Stress through Improvement of Antioxidative Defense System and Gene Expression

    PubMed Central

    Zhang, Shuwu; Gan, Yantai; Xu, Bingliang

    2016-01-01

    Soil salinity is a serious problem worldwide that reduces agricultural productivity. Trichoderma longibrachiatum T6 (T6) has been shown to promote wheat growth and induce plant resistance to parasitic nematodes, but whether the plant-growth-promoting fungi T6 can enhance plant tolerance to salt stress is unknown. Here, we determined the effect of plant-growth-promoting fungi T6 on wheat seedlings’ growth and development under salt stress, and investigated the role of T6 in inducing the resistance to NaCl stress at physiological, biochemical, and molecular levels. Wheat seedlings were inoculated with the strain of T6 and then compared with non-inoculated controls. Shoot height, root length, and shoot and root weights were measured on 15 days old wheat seedlings grown either under 150 mM NaCl or in a controlled setting without any NaCl. A number of colonies were re-isolated from the roots of wheat seedlings under salt stress. The relative water content in the leaves and roots, chlorophyll content, and root activity were significantly increased, and the accumulation of proline content in leaves was markedly accelerated with the plant growth parameters, but the content of leaf malondialdehyde under saline condition was significantly decreased. The antioxidant enzymes-superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) in wheat seedlings were increased by 29, 39, and 19%, respectively, with the application of the strain of T6 under salt stress; the relative expression of SOD, POD, and CAT genes in these wheat seedlings were significantly up-regulated. Our results indicated that the strain of T6 ameliorated the adverse effects significantly, protecting the seedlings from salt stress during their growth period. The possible mechanisms by which T6 suppresses the negative effect of NaCl stress on wheat seedling growth may be due to the improvement of the antioxidative defense system and gene expression in the stressed wheat plants. PMID:27695475

  12. Novel aspinolide production by Trichoderma arundinaceum with a potential role in Botrytis cinerea antagonistic activity and plant defense priming

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Harzianum A (HA), a trichothecene produced by Trichoderma arundinaceum, has recently been described to have antagonistic activity against fungal plant pathogens and to induce plant defence genes. In the present work, we have shown that a tri5 genedisrupted mutant that lacks HA production overproduce...

  13. Attenuation of the jasmonate burst, plant defensive traits, and resistance to specialist monarch caterpillars on shaded common milkweed (Asclepias syriaca).

    PubMed

    Agrawal, Anurag A; Kearney, Emily E; Hastings, Amy P; Ramsey, Trey E

    2012-07-01

    Plant responses to herbivory and light competition are often in opposing directions, posing a potential conflict for plants experiencing both stresses. For sun-adapted species, growing in shade typically makes plants more constitutively susceptible to herbivores via reduced structural and chemical resistance traits. Nonetheless, the impact of light environment on induced resistance has been less well-studied, especially in field experiments that link physiological mechanisms to ecological outcomes. Accordingly, we studied induced resistance of common milkweed (Asclepias syriaca, a sun-adapted plant), and linked hormonal responses, resistance traits, and performance of specialist monarch caterpillars (Danaus plexippus) in varying light environments. In natural populations, plants growing under forest-edge shade showed reduced levels of resistance traits (lower leaf toughness, cardenolides, and trichomes) and enhanced light-capture traits (higher specific leaf area, larger leaves, and lower carbon-to-nitrogen ratio) compared to paired plants in full sun. In a field experiment repeated over two years, only milkweeds growing in full sun exhibited induced resistance to monarchs, whereas plants growing in shade were constitutively more susceptible and did not induce resistance. In a more controlled field experiment, plant hormones were higher in the sun (jasmonic acid, salicylic acid, abscisic acid, indole acidic acid) and were induced by herbivory (jasmonic acid and abscisic acid). In particular, the jasmonate burst following herbivory was halved in plants raised in shaded habitats, and this correspondingly reduced latex induction (but not cardenolide induction). Thus, we provide a mechanistic basis for the attenuation of induced plant resistance in low resource environments. Additionally, there appears to be specificity in these interactions, with light-mediated impacts on jasmonate-induction being stronger for latex exudation than cardenolides.

  14. Considering Plants.

    ERIC Educational Resources Information Center

    Flannery, Maura C.

    1991-01-01

    Examples from research that incorporate plants to illustrate biological principles are presented. Topics include dried pea shape, homeotic genes, gene transcription in plants that are touched or wounded, production of grasslands, seaweed defenses, migrating plants, camouflage, and family rivalry. (KR)

  15. Control of plant defense mechanisms and fire blight pathogenesis through the regulation of 6-thioguanine biosynthesis in Erwinia amylovora.

    PubMed

    Coyne, Sébastien; Litomska, Agnieszka; Chizzali, Cornelia; Khalil, Mohammed N A; Richter, Klaus; Beerhues, Ludger; Hertweck, Christian

    2014-02-10

    Fire blight is a devastating disease of Rosaceae plants, such as apple and pear trees. It is characterized by necrosis of plant tissue, caused by the phytopathogenic bacterium Erwinia amylovora. The plant pathogen produces the well-known antimetabolite 6-thioguanine (6TG), which plays a key role in fire blight pathogenesis. Here we report that YcfR, a member of the LTTR family, is a major regulator of 6TG biosynthesis in E. amylovora. Inactivation of the regulator gene (ycfR) led to dramatically decreased 6TG production. Infection assays with apple plants (Malus domestica cultivar Holsteiner Cox) and cell cultures of Sorbus aucuparia (mountain ash, rowan) revealed abortive fire blight pathogenesis and reduced plant response (biphenyl and dibenzofuran phytoalexin production). In the presence of the ΔycfR mutant, apple trees were capable of activating the abscission machinery to remove infected tissue. In addition to unveiling the regulation of 6TG biosynthesis in a major plant pathogen, we demonstrate for the first time that this antimetabolite plays a pivotal role in dysregulating the plant response to infection.

  16. Cement-based radioactive waste hosts formed under elevated temperatures and pressures (FUETAP concretes) for Savannah River Plant high-level defense waste

    SciTech Connect

    Dole, L.R.; Rogers, G.C.; Morgan, M.T.; Stinton, D.P.; Kessler, J.H.; Robinson, S.M.; Moore, J.G.

    1983-03-01

    Concretes that are formed under elevated temperatures and pressures (called FUETAP) are effective hosts for high-level radioactive defense wastes. Tailored concretes developed at the Oak Ridge National Laboratory (ORNL) have been prepared from common Portland cements, fly ash, sand, clays, and waste products. These concretes are produced by accelerated curing under mild autoclave conditions (85 to 200/sup 0/C, 0.1 to 1.5 MPa) for 24 h. The solids are subsequently dewatered (to remove unbound water) at 250/sup 0/C for 24 h. The resulting products are strong (compressive strength, 40 to 100 MPa), leach resistant (plutonium leaches at the rate of 10 pg/(cm/sup 2/.d)), and radiolytically stable, monolithic waste forms (total gas value = 0.005 molecule/100 eV). This report summarizes the results of a 4-year FUETAP development program for Savannah River Plant (SRP) high-level defense wastes. It addresses the major questions concerning the performance of concretes as radioactive waste forms. These include leachability, radiation stability, thermal stability, thermal conductivity, impact strength, permeability, phase complexity, and effect of waste composition.

  17. Transcriptome analysis of tobacco BY-2 cells elicited by cryptogein reveals new potential actors of calcium-dependent and calcium-independent plant defense pathways.

    PubMed

    Amelot, Nicolas; Dorlhac de Borne, François; San Clemente, Hélène; Mazars, Christian; Grima-Pettenati, Jacqueline; Brière, Christian

    2012-02-01

    Cryptogein is a proteinaceous elicitor secreted by the oomycete Phytophthora cryptogea, which induces a hypersensitive response in tobacco plants. We have previously reported that in tobacco BY-2 cells treated with cryptogein, most of the genes of the phenylpropanoid pathway were upregulated and cell wall-bound phenolics accumulated. Both events were Ca(2+) dependent. In this study, we designed a microarray covering a large proportion of the tobacco genome and monitored gene expression in cryptogein-elicited BY-2 cells to get a more complete view of the transcriptome changes and to assess their Ca(2+) dependence. The predominant functional gene categories affected by cryptogein included stress- and disease-related proteins, phenylpropanoid pathway, signaling components, transcription factors and cell wall reinforcement. Among the 3819 unigenes whose expression changed more than fourfold, 90% were Ca(2+) dependent, as determined by their sensitivity to lanthanum chloride. The most Ca(2+)-dependent transcripts upregulated by cryptogein were involved in defense responses or the oxylipin pathway. This genome-wide study strongly supports the importance of Ca(2+)-dependent transcriptional regulation of regulatory and defense-related genes contributing to cryptogein responses in tobacco.

  18. The pathogen-inducible promoter of defense-related LsGRP1 gene from Lilium functioning in phylogenetically distinct species of plants.

    PubMed

    Lin, Chia-Hua; Chen, Chao-Ying

    2017-01-01

    A suitable promoter greatly enhances the efficiency of target gene expression of plant molecular breeding and farming; however, only very few promoters are available for economically important non-graminaceous ornamental monocots. In this study, an 868-bp upstream region of defense-related LsGRP1 of Lilium, named PLsGRP1, was cloned by genome walking and proven to exhibit promoter activity in Nicotiana benthamiana and Lilium 'Stargazer' as assayed by agroinfiltration-based β-glucuronidase (GUS) expression system. Many putative biotic stress-, abiotic stress- and physiological regulation-related cis-acting elements were found in PLsGRP1. Serial deletion analysis of PLsGRP1 performed in Nicotiana tabacum var. Wisconsin 38 accompanied with types of treatments indicated that 868-bp PLsGRP1 was highly induced upon pathogen challenges and cold stress while the 131-bp 3'-end region of PLsGRP1 could be dramatically induced by many kinds of abiotic stresses, biotic stresses and phytohormone treatments. Besides, transient GUS expression in a fern, gymnosperms, monocots and dicots revealed good promotor activity of PLsGRP1 in many phylogenetically distinct plant species. Thus, pathogen-inducible PLsGRP1 and its 131-bp 3'-end region are presumed potential as tools for plant molecular breeding and farming.

  19. Isoprenoids and phenylpropanoids are part of the antioxidant defense orchestrated daily by drought-stressed Platanus × acerifolia plants during Mediterranean summers.

    PubMed

    Tattini, Massimiliano; Loreto, Francesco; Fini, Alessio; Guidi, Lucia; Brunetti, Cecilia; Velikova, Violeta; Gori, Antonella; Ferrini, Francesco

    2015-08-01

    The hypothesis was tested that isoprenoids and phenylpropanoids play a prominent role in countering photooxidative stress, following the depletion of antioxidant enzyme activity in plants exposed to severe drought stress under high solar irradiance and high temperatures. Platanus × acerifolia, a high isoprene-emitting species, was drought-stressed during summer (WS) and compared with unstressed controls (WW). Water relations and photosynthetic parameters were measured under mild, moderate, and severe drought stress conditions. Volatile and nonvolatile isoprenoids, antioxidant enzymes, and phenylpropanoids were measured with the same time course, but in four different periods of the day. Drought severely inhibited photosynthesis, whereas it did not markedly affect the photochemical machinery. Isoprene emission and zeaxanthin concentration were higher in WS than in WW leaves, particularly at mild and moderate stresses, and during the hottest hours of the day. The activities of catalase and ascorbate peroxidase steeply declined during the day, while the activity of guaiacol peroxidase and the concentration of quercetin increased during the day, peaking in the hottest hours in both WW and WS plants. Our experiment reveals a sequence of antioxidants that were used daily by plants to orchestrate defense against oxidative stress induced by drought and associated high light and high temperature. Secondary metabolites seem valuable complements of antioxidant enzymes to counter oxidative stress during the hottest daily hours.

  20. Effects of Trichothecene Production on the Plant Defense Response and Fungal Physiology: Overexpression of the Trichoderma arundinaceum tri4 Gene in T. harzianum

    PubMed Central

    Cardoza, R. E.; McCormick, S. P.; Malmierca, M. G.; Olivera, E. R.; Alexander, N. J.; Monte, E.

    2015-01-01

    Trichothecenes are fungal sesquiterpenoid compounds, the majority of which have phytotoxic activity. They contaminate food and feed stocks, resulting in potential harm to animals and human beings. Trichoderma brevicompactum and T. arundinaceum produce trichodermin and harzianum A (HA), respectively, two trichothecenes that show different bioactive properties. Both compounds have remarkable antibiotic and cytotoxic activities, but in addition, trichodermin is highly phytotoxic, while HA lacks this activity when analyzed in vivo. Analysis of Fusarium trichothecene intermediates led to the conclusion that most of them, with the exception of the hydrocarbon precursor trichodiene (TD), have a detectable phytotoxic activity which is not directly related to the structural complexity of the intermediate. In the present work, the HA intermediate 12,13-epoxytrichothec-9-ene (EPT) was produced by expression of the T. arundinaceum tri4 gene in a transgenic T. harzianum strain that already produces TD after transformation with the T. arundinaceum tri5 gene. Purified EPT did not show antifungal or phytotoxic activity, while purified HA showed both antifungal and phytotoxic activities. However, the use of the transgenic T. harzianum tri4 strain induced a downregulation of defense-related genes in tomato plants and also downregulated plant genes involved in fungal root colonization. The production of EPT by the transgenic tri4 strain raised levels of erg1 expression and reduced squalene accumulation while not affecting levels of ergosterol. Together, these results indicate the complex interactions among trichothecene intermediates, fungal antagonists, and host plants. PMID:26150463

  1. Effects of Trichothecene Production on the Plant Defense Response and Fungal Physiology: Overexpression of the Trichoderma arundinaceum tri4 Gene in T. harzianum.

    PubMed

    Cardoza, R E; McCormick, S P; Malmierca, M G; Olivera, E R; Alexander, N J; Monte, E; Gutiérrez, S

    2015-09-01

    Trichothecenes are fungal sesquiterpenoid compounds, the majority of which have phytotoxic activity. They contaminate food and feed stocks, resulting in potential harm to animals and human beings. Trichoderma brevicompactum and T. arundinaceum produce trichodermin and harzianum A (HA), respectively, two trichothecenes that show different bioactive properties. Both compounds have remarkable antibiotic and cytotoxic activities, but in addition, trichodermin is highly phytotoxic, while HA lacks this activity when analyzed in vivo. Analysis of Fusarium trichothecene intermediates led to the conclusion that most of them, with the exception of the hydrocarbon precursor trichodiene (TD), have a detectable phytotoxic activity which is not directly related to the structural complexity of the intermediate. In the present work, the HA intermediate 12,13-epoxytrichothec-9-ene (EPT) was produced by expression of the T. arundinaceum tri4 gene in a transgenic T. harzianum strain that already produces TD after transformation with the T. arundinaceum tri5 gene. Purified EPT did not show antifungal or phytotoxic activity, while purified HA showed both antifungal and phytotoxic activities. However, the use of the transgenic T. harzianum tri4 strain induced a downregulation of defense-related genes in tomato plants and also downregulated plant genes involved in fungal root colonization. The production of EPT by the transgenic tri4 strain raised levels of erg1 expression and reduced squalene accumulation while not affecting levels of ergosterol. Together, these results indicate the complex interactions among trichothecene intermediates, fungal antagonists, and host plants.

  2. A Bayesian Network-Based Approach to Selection of Intervention Points in the Mitogen-Activated Protein Kinase Plant Defense Response Pathway.

    PubMed

    Venkat, Priya S; Narayanan, Krishna R; Datta, Aniruddha

    2017-04-01

    An important problem in computational biology is the identification of potential points of intervention that can lead to modified network behavior in a genetic regulatory network. We consider the problem of deducing the effect of individual genes on the behavior of the network in a statistical framework. In this article, we make use of biological information from the literature to develop a Bayesian network and introduce a method to estimate parameters of this network using data that are relevant to the biological phenomena under study. Then, we give a novel approach to select significant nodes in the network using a decision-theoretic approach. The proposed method is applied to the analysis of the mitogen-activated protein kinase pathway in the plant defense response to pathogens. Results from applying the method to experimental data show that the proposed approach is effective in selecting genes that play crucial roles in the biological phenomenon being studied.

  3. Induction of leucine aminopeptidase (LAP) like activity with wounding and methyl jasmonate in pigeonpea (Cajanas cajan) suggests the role of these enzymes in plant defense in leguminosae.

    PubMed

    Lomate, Purushottam R; Hivrale, Vandana K

    2011-06-01

    Aminopeptidases are ubiquitous in nature and their activities have been identified in several plant species. Leucine aminopeptidases (LAPs) are predominantly studied in solanaceous plants and are induced in response to wounding, herbivory and methyl jasmonate (MeJA). The functions of plant aminopeptidases are still under discussion and it is likely that the different classes play various roles. In the present study we report the local and systemic induction of LAP-like activity upon mechanical wounding and MeJA treatment. Two proteins with LAP-like activity were detected in pigeonpea leaves. They were designated as AP1 and AP2. AP1 activity was significantly induced upon wounding and application of MeJA. The estimated molecular masses of AP1 and AP2 were ∼ 60 and 41 kDa respectively in SDS-PAGE. The pH optimum for LAP-like activity in control leaf extracts was found to be neutral (pH 7.0) however the enzymes showed highest activity at alkaline pH (pH 9.0) in the leaf extracts of treated plants. The temperature optimum for LAP-like activity was around 40-50 °C. The enzymes were strongly inhibited by 1, 10 phenanthroline and bestatin. Heavy metal ions and EDTA inhibited LAP-like activities, whereas Mn(+2) and Mg(+2) activated the enzyme activities. Beside LpNA (33.5 U/mg/min) pigeonpea LAP-like enzymes also cleaved ApNA (15 U/mg/min) but were unable to cleave VpNA. Total proteolytic activity was also observed to be induced in treated plants. LAP-like activity was increased upto 19.5 fold after gel filtration chromatography. Results suggest that these enzymes may have functional defensive role in pigeonpea.

  4. Enhanced Botrytis cinerea resistance of Arabidopsis plants grown in compost may be explained by increased expression of defense-related genes, as revealed by microarray analysis.

    PubMed

    Segarra, Guillem; Santpere, Gabriel; Elena, Georgina; Trillas, Isabel

    2013-01-01

    Composts are the products obtained after the aerobic degradation of different types of organic matter waste and can be used as substrates or substrate/soil amendments for plant cultivation. There is a small but increasing number of reports that suggest that foliar diseases may be reduced when using compost, rather than standard substrates, as growing medium. The purpose of this study was to examine the gene expression alteration produced by the compost to gain knowledge of the mechanisms involved in compost-induced systemic resistance. A compost from olive marc and olive tree leaves was able to induce resistance against Botrytis cinerea in Arabidopsis, unlike the standard substrate, perlite. Microarray analyses revealed that 178 genes were differently expressed, with a fold change cut-off of 1, of which 155 were up-regulated and 23 were down-regulated in compost-grown, as against perlite-grown plants. A functional enrichment study of up-regulated genes revealed that 38 Gene Ontology terms were significantly enriched. Response to stress, biotic stimulus, other organism, bacterium, fungus, chemical and abiotic stimulus, SA and ABA stimulus, oxidative stress, water, temperature and cold were significantly enriched, as were immune and defense responses, systemic acquired resistance, secondary metabolic process and oxireductase activity. Interestingly, PR1 expression, which was equally enhanced by growing the plants in compost and by B. cinerea inoculation, was further boosted in compost-grown pathogen-inoculated plants. Compost triggered a plant response that shares similarities with both systemic acquired resistance and ABA-dependent/independent abiotic stress responses.

  5. Shift in egg-laying strategy to avoid plant defense leads to reproductive isolation in mutualistic and cheating yucca moths.

    PubMed

    Althoff, David M

    2014-01-01

    Through the process of ecological speciation, insect populations that adapt to new host plant species or to different plant tissues could speciate if such adaptations cause reproductive isolation. One of the key issues in this process is identifying the mechanisms by which adaptation in ecological traits leads directly to reproductive isolation. Here I show that within a radiation of specialist moths that pollinate and feed on yuccas, shifts in egg placement resulted in changes in female moth egg-laying structures that led to concomitant changes in male reproductive morphology. As pollinator moths evolved to circumvent the ability of yuccas to selectively abscise flowers that contain pollinator eggs, ovipositor length became shorter. Because mating occurs through the ovipositor, shortening of the ovipositor also led to significantly shorter and wider male intromittent organs. In instances where two pollinator moth species occur in sympatry and on the same host plant species, there is one short and one long ovipositor species that are reproductively isolated. Given that many plant-feeding insects lay eggs into plant tissues, changes in ovipositor morphology that lead to correlated changes in reproductive morphology may be a mechanism that maintains reproductive isolation among closely related species using the same host plant species.

  6. Cytokinin oxidase/dehydrogenase overexpression modifies antioxidant defense against heat, drought and their combination in Nicotiana tabacum plants.

    PubMed

    Lubovská, Zuzana; Dobrá, Jana; Storchová, Helena; Wilhelmová, Naďa; Vanková, Radomíra

    2014-11-01

    Cytokinins (CKs) as well as the antioxidant enzyme system (AES) play important roles in plant stress responses. The expression and activity of antioxidant enzymes (AE) were determined in drought, heat and combination of both stresses, comparing the response of tobacco plants overexpressing the main cytokinin degrading enzyme, cytokinin oxidase/dehydrogenase, under the control of root-specific WRKY6 promoter (W6:CKX1 plants) or constitutive promoter (35S:CKX1 plants) and the corresponding wild-type (WT). Expression levels as well as activities of cytosolic ascorbate peroxidase, catalase 3, and cytosolic superoxide dismutase were low under optimal conditions and increased after heat and combined stress in all genotypes. Unlike catalase 3, two other peroxisomal enzymes, catalase 1 and catalase 2, were transcribed extensively under control conditions. Heat stress, in contrast to drought or combined stress, increased catalase 1 and reduced catalase 2 expression in WT and W6:CKX1 plants. In 35S:CKX1, catalase 1 expression was enhanced by heat or drought, but not under combined stress conditions. Mitochondrial superoxide dismutase expression was generally higher in 35S:CKX1 plants than in WT. Genes encoding for chloroplastic AEs, stromatal ascorbate peroxidase, thylakoidal ascorbate peroxidase and chloroplastic superoxide dismutase, were strongly transcribed under control conditions. All stresses down-regulated their expression in WT and W6:CKX1, whereas more stress-tolerant 35S:CKX1 plants maintained high expression during drought and heat. The achieved data show that the effect of down-regulation of CK levels on AES may be mediated by altered habit, resulting in improved stress tolerance, which is associated with diminished stress impact on photosynthesis, and changes in source/sink relations.

  7. Host plant defense against sugarcane aphid in sorghum and genetic mechanism of resistance to the new pest

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugarcane aphid (SCA), Melanaphis sacchari (Zerhntner), is typically known as a key pest to sorghum and sugarcane in tropical and subtropical regions around the world. In 2013, this new invasive pest was found on grain sorghum plants in South and East Texas, and now it has already spread over 17 st...

  8. Plant Nucleotide Binding Site–Leucine-Rich Repeat (NBS-LRR) Genes: Active Guardians in Host Defense Responses

    PubMed Central

    Marone, Daniela; Russo, Maria A.; Laidò, Giovanni; De Leonardis, Anna M.; Mastrangelo, Anna M.

    2013-01-01

    The most represented group of resistance genes are those of the nucleotide binding site–leucine-rich repeat (NBS-LRR) class. These genes are very numerous in the plant genome, and they often occur in clusters at specific loci following gene duplication and amplification events. To date, hundreds of resistance genes and relatively few quantitative trait loci for plant resistance to pathogens have been mapped in different species, with some also cloned. When these NBS-LRR genes have been physically or genetically mapped, many cases have shown co-localization between resistance loci and NBS-LRR genes. This has allowed the identification of candidate genes for resistance, and the development of molecular markers linked to R genes. This review is focused on recent genomics studies that have described the abundance, distribution and evolution of NBS-LRR genes in plant genomes. Furthermore, in terms of their expression, NBS-LRR genes are under fine regulation by cis- and trans-acting elements. Recent findings have provided insights into the roles of alternative splicing, the ubiquitin/proteasome system, and miRNAs and secondary siRNAs in the regulation of NBS-LRR gene expression at the post-transcriptional, post-translational and epigenetic levels. The possibility to use this knowledge for genetic improvement of plant resistance to pathogens is discussed. PMID:23549266

  9. Just in time: circadian defense patterns and the optimal defense hypothesis.

    PubMed

    Baldwin, Ian T; Meldau, Stefan

    2013-06-01

    The optimal defense hypothesis (ODH) provides a functional explanation for the inhomogeneous distribution of defensive structures and defense metabolites throughout a plant's body: tissues that are most valuable in terms of fitness and have the highest probability of attack are generally the best defended. In a previous review, we argue that ontogenically-controlled accumulations of defense metabolites are likely regulated through an integration of developmental and defense signaling pathways. In this addendum, we extend the discussion of ODH patterns by including the recent discoveries of circadian clock-controlled defenses in plants.

  10. The AvrB_AvrC domain of AvrXccC of Xanthomonas campestris pv. campestris is required to elicit plant defense responses and manipulate ABA homeostasis.

    PubMed

    Ho, Yi-Ping; Tan, Choon Meng; Li, Meng-Ying; Lin, Hong; Deng, Wen-Ling; Yang, Jun-Yi

    2013-04-01

    Plant disease induced by Xanthomonas campestris pv. campestris depends on type III effectors but the molecular basis is poorly understood. Here, AvrXccC8004 was characterized, and it was found that the AvrB_AvrC domain was essential and sufficient to elicit defense responses in an Arabidopsis-resistant ecotype (Col-0). An upregulation of genes in responding to the AvrB_AvrC domain of AvrXccC8004 was shown in a profile of host gene expression. The molecular changes were correlated with morphological changes observed in phenotypic and ultrastructural characterizations. Interestingly, the abscisic acid (ABA)-signaling pathway was also a prominent target for the AvrB_AvrC domain of AvrXccC8004. The highly elicited NCED5, encoding a key enzyme of ABA biosynthesis, was increased in parallel with ABA levels in AvrXccC8004 transgenic plants. Consistently, the X. campestris pv. campestris 8004 ΔavrXccC mutant was severely impaired in the ability to manipulate the accumulation of ABA and induction of ABA-related genes in challenged leaves. Moreover, exogenous application of ABA also enhanced the susceptibility of Arabidopsis to the X. campestris pv. campestris strains. These results indicate that the AvrB_AvrC domain of AvrXccC8004 alone has the activity to manipulate ABA homeostasis, which plays an important role in regulating the interactions of X. campestris pv. campestris and Arabidopsis.

  11. (1)H NMR and GC-MS Based Metabolomics Reveal Defense and Detoxification Mechanism of Cucumber Plant under Nano-Cu Stress.

    PubMed

    Zhao, Lijuan; Huang, Yuxiong; Hu, Jerry; Zhou, Hongjun; Adeleye, Adeyemi S; Keller, Arturo A

    2016-02-16

    Because copper nanoparticles are being increasingly used in agriculture as pesticides, it is important to assess their potential implications for agriculture. Concerns have been raised about the bioaccumulation of nano-Cu and their toxicity to crop plants. Here, the response of cucumber plants in hydroponic culture at early development stages to two concentrations of nano-Cu (10 and 20 mg/L) was evaluated by proton nuclear magnetic resonance spectroscopy ((1)H NMR) and gas chromatography-mass spectrometry (GC-MS) based metabolomics. Changes in mineral nutrient metabolism induced by nano-Cu were determined by inductively coupled plasma-mass spectrometry (ICP-MS). Results showed that nano-Cu at both concentrations interferes with the uptake of a number of micro- and macro-nutrients, such as Na, P, S, Mo, Zn, and Fe. Metabolomics data revealed that nano-Cu at both levels triggered significant metabolic changes in cucumber leaves and root exudates. The root exudate metabolic changes revealed an active defense mechanism against nano-Cu stress: up-regulation of amino acids to sequester/exclude Cu/nano-Cu; down-regulation of citric acid to reduce the mobilization of Cu ions; ascorbic acid up-regulation to combat reactive oxygen species; and up-regulation of phenolic compounds to improve antioxidant system. Thus, we demonstrate that nontargeted (1)H NMR and GC-MS based metabolomics can successfully identify physiological responses induced by nanoparticles. Root exudates metabolomics revealed important detoxification mechanisms.

  12. Evolutionary biology of plant defenses against herbivory and their predictive implications for endocrine disruptor susceptibility in vertebrates.

    PubMed Central

    Wynne-Edwards, K E

    2001-01-01

    Hormone disruption is a major, underappreciated component of the plant chemical arsenal, and the historical coevolution between hormone-disrupting plants and herbivores will have both increased the susceptibility of carnivores and diversified the sensitivities of herbivores to man-made endocrine disruptors. Here I review diverse evidence of the influence of plant secondary compounds on vertebrate reproduction, including human reproduction. Three of the testable hypotheses about the evolutionary responses of vertebrate herbivores to hormone-disrupting challenges from their diet are developed. Specifically, the hypotheses are that a) vertebrate herbivores will express steroid hormone receptors in the buccal cavity and/or the vomeronasal organ; b) absolute sex steroid concentrations will be lower in carnivores than in herbivores; and c) herbivore steroid receptors should be more diverse in their binding affinities than carnivore lineages. The argument developed in this review, if empirically validated by support for the specific hypotheses, suggests that a) carnivores will be more susceptible than herbivores to endocrine-disrupting compounds of anthropogenic origin entering their bodies, and b) diverse herbivore lineages will be variably susceptible to any given natural or synthetic contaminant. As screening methods for hormone-disrupting potential are compared and adopted, comparative endocrine physiology research is urgently needed to develop models that predict the broad applicability of those screening results in diverse vertebrate species. PMID:11401754

  13. Fire blight disease reactome: RNA-seq transcriptional profile of apple host plant defense responses to Erwinia amylovora pathogen infection.

    PubMed

    Kamber, Tim; Buchmann, Jan P; Pothier, Joël F; Smits, Theo H M; Wicker, Thomas; Duffy, Brion

    2016-02-17

    The molecular basis of resistance and susceptibility of host plants to fire blight, a major disease threat to pome fruit production globally, is largely unknown. RNA-sequencing data from challenged and mock-inoculated flowers were analyzed to assess the susceptible response of apple to the fire blight pathogen Erwinia amylovora. In presence of the pathogen 1,080 transcripts were differentially expressed at 48 h post inoculation. These included putative disease resistance, stress, pathogen related, general metabolic, and phytohormone related genes. Reads, mapped to regions on the apple genome where no genes were assigned, were used to identify potential novel genes and open reading frames. To identify transcripts specifically expressed in response to E. amylovora, RT-PCRs were conducted and compared to the expression patterns of the fire blight biocontrol agent Pantoea vagans strain C9-1, another apple pathogen Pseudomonas syringae pv. papulans, and mock inoculated apple flowers. This led to the identification of a peroxidase superfamily gene that was lower expressed in response to E. amylovora suggesting a potential role in the susceptibility response. Overall, this study provides the first transcriptional profile by RNA-seq of the host plant during fire blight disease and insights into the response of susceptible apple plants to E. amylovora.

  14. Optimal defense theory explains deviations from latitudinal herbivory defense hypothesis.

    PubMed

    Kooyers, Nicholas J; Blackman, Benjamin K; Holeski, Liza M

    2017-04-01

    The latitudinal herbivory defense hypothesis (LHDH) postulates that the prevalence of species interactions, including herbivory, is greater at lower latitudes, leading to selection for increased levels of plant defense. While latitudinal defense clines may be caused by spatial variation in herbivore pressure, optimal defense theory predicts that clines could also be caused by ecogeographic variation in the cost of defense. For instance, allocation of resources to defense may not increase plant fitness when growing seasons are short and plants must reproduce quickly. Here we use a common garden experiment to survey genetic variation for constitutive and induced phenylpropanoid glycoside (PPG) concentrations across 35 Mimulus guttatus populations over a ~13° latitudinal transect. Our sampling regime is unique among studies of the LHDH in that it allows us to disentangle the effects of growing season length from those of latitude, temperature, and elevation. For five of the seven PPGs surveyed, we find associations between latitude and plant defense that are robust to population structure. However, contrary to the LHDH, only two PPGs were found at higher levels in low latitude populations, and total PPG concentrations were higher at higher latitudes. PPG levels are strongly correlated with growing season length, with higher levels of PPGs in plants from areas with longer growing seasons. Further, flowering time is positively correlated with the concentration of nearly all PPGs, suggesting that there may be a strong trade-off between development time and defense production. Our results reveal that ecogeographic patterns in plant defense may reflect variation in the cost of producing defense compounds in addition to variation in herbivore pressure. Thus, the biogeographic pattern predicted by the LHDH may not be accurate because the underlying factors driving variation in defense, in this case, growing season length, are not always associated with latitude in the same

  15. Transforming Defense

    DTIC Science & Technology

    2005-09-01

    or agency each week?” 47 By way of just one example, Madrid’s La Razon reported on September 13 , 2004, that Spain would lose U.S. bases to Portugal...public release, distribution unlimited 13 . SUPPLEMENTARY NOTES 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF...DEFENSE 7 responsibilities. The homeland security JOC envisions a layered and comprehensive defense requiring geographical and functional integra- tion. 13

  16. Beyond plant defense: insights on the potential of salicylic and methylsalicylic acid to contain growth of the phytopathogen Botrytis cinerea

    PubMed Central

    Dieryckx, Cindy; Gaudin, Vanessa; Dupuy, Jean-William; Bonneu, Marc; Girard, Vincent; Job, Dominique

    2015-01-01

    Using Botrytis cinerea we confirmed in the present work several previous studies showing that salicylic acid, a main plant hormone, inhibits fungal growth in vitro. Such an inhibitory effect was also observed for the two salicylic acid derivatives, methylsalicylic and acetylsalicylic acid. In marked contrast, 5-sulfosalicylic acid was totally inactive. Comparative proteomics from treated vs. control mycelia showed that both the intracellular and extracellular proteomes were affected in the presence of salicylic acid or methylsalicylic acid. These data suggest several mechanisms that could potentially account for the observed fungal growth inhibition, notably pH regulation, metal homeostasis, mitochondrial respiration, ROS accumulation and cell wall remodeling. The present observations support a role played by the phytohormone SA and derivatives in directly containing the pathogen. Data are available via ProteomeXchange with identifier PXD002873. PMID:26528317

  17. De-submergence responses of antioxidative defense systems in two wetland plants having escape and quiescence strategies.

    PubMed

    Luo, Fang-Li; Thiele, Björn; Janzik, Ingar; Zeng, Bo; Schurr, Ulrich; Matsubara, Shizue

    2012-11-15

    Fast recovery after de-submergence requires efficient protection against oxidative injuries. We investigated whether de-submergence responses of antioxidant systems differ in two wetland plants, Alternanthera philoxeroides and Hemarthria altissima, characterized by 'escape' and 'quiescence' strategies of flood tolerance, respectively. The antioxidant capacity was assessed in the two species during 10d of recovery following 20d of complete submergence (low light+low O(2)) or severe shading (low light+ambient O(2)). The activities of superoxide dismutase and catalase were measured in leaf and root tissues, along with the concentrations of reduced ascorbate, malondialdehyde, and acetaldehyde. In addition, formation of superoxide (O(2)(-)) and hydrogen peroxide (H(2)O(2)) was detected in leaves by chemical staining. Following de-submergence, plants of A. philoxeroides showed a transient burst of acetaldehyde, while the concentration of acetaldehyde increased slowly and stayed high in leaves of H. altissima. In leaves of A. philoxeroides, the variations in O(2)(-) and H(2)O(2) correlated with the levels of light and O(2), respectively, whereas neither of the two reactive oxygen species was detected in H. altissima. For A. philoxeroides, the antioxidant capacities changed mainly in leaves during the recovery. For H. altissima, changes in reduced ascorbate were found in leaves and those of antioxidant enzyme activities in roots. De-submergence caused some lipid peroxidation in leaves of both species. We conclude that de-submergence responses of the detoxification systems differ between A. philoxeroides and H. altissima, especially in leaves. Dynamic changes were found in A. philoxeroides (having the escape strategy), as opposed to little or slow changes in H. altissima (having the quiescence strategy). Whereas the antioxidant capacities are often strongly influenced by light environments, the toxic compounds and lipid peroxidation indicate harmful effects of changing O(2