Sample records for jatropha bio-diesel production

  1. Feasibility study of utilizing jatropha curcas oil as bio-diesel in an oil firing burner system

    NASA Astrophysics Data System (ADS)

    Shaiful, A. I. M.; Jaafar, M. N. Mohd; Sahar, A. M.

    2017-09-01

    Jatropha oil derived from the Jatropha Curcas Linnaeus is one of the high potential plants to be use as bio-diesel. The purpose of this research is to carry out a feasibility study of using jatropha oil as bio-diesel on oil firing burner system. Like other bio-diesels, jatropha oil can also be used in any combustion engine and the performance and emissions such as NOx, SO2, CO and CO2 as well as unburned hydocarbon (UHC) from the engine will vary depending on the bio-diesel blends. The properties of Conventional Diesel Fuel (CDF) obtained will be used as baseline and the jatropha oil properties will be compared as well as other bio-diesels. From several researches, the properties of jatropha oil was found to be quite similar with other bio-diesel such as palm oil, neem, keranja and pongamia bio-diesel and complying with the ASTM standard for bio-diesel. Still, there are factors and issues concerning the use of jatropha oil such as technology, economy, legislation and resource. Plus, there several challenges to the growth of bio-diesel industry development since the world right now do not totally depend on the bio-diesel.

  2. Sustainable Energy Production from Jatropha Bio-Diesel

    NASA Astrophysics Data System (ADS)

    Yadav, Amit Kumar; Krishna, Vijai

    2012-10-01

    The demand for petroleum has risen rapidly due to increasing industrialization and modernization of the world. This economic development has led to a huge demand for energy, where the major part of that energy is derived from fossil sources such as petroleum, coal and natural gas. Continued use of petroleum sourced fuels is now widely recognized as unsustainable because of depleting supplies. There is a growing interest in using Jatropha curcas L. oil as the feedstock for biodiesel production because it is non-edible and thus does not compromise the edible oils, which are mainly used for food consumption. Further, J. curcas L. seed has a high content of free fatty acids that is converted in to biodiesel by trans esterification with alcohol in the presence of a catalyst. The biodiesel produced has similar properties to that of petroleum-based diesel. Biodiesel fuel has better properties than petro diesel fuel; it is renewable, biodegradable, non-toxic, and essentially free of sulfur and aromatics. Biodiesel seems to be a realistic fuel for future. Biodiesel has the potential to economically, socially, and environmentally benefit communities as well as countries, and to contribute toward their sustainable development.

  3. Life Cycle Assessment of Bio-diesel Production—A Comparative Analysis

    NASA Astrophysics Data System (ADS)

    Chatterjee, R.; Sharma, V.; Mukherjee, S.; Kumar, S.

    2014-04-01

    This work deals with the comparative analysis of environmental impacts of bio-diesel produced from Jatropha curcas, Rapeseed and Palm oil by applying the life cycle assessment and eco-efficiency concepts. The environmental impact indicators considered in the present paper include global warming potential (GWP, CO2 equivalent), acidification potential (AP, SO2 equivalent) and eutrophication potential (EP, NO3 equivalent). Different weighting techniques have been used to present and evaluate the environmental characteristics of bio-diesel. With the assistance of normalization values, the eco-efficiency was demonstrated in this work. The results indicate that the energy consumption of bio-diesel production is lowest in Jatropha while AP and EP are more in case of Jatropha than that of Rapeseed and Palm oil.

  4. Bio-electricity Generation using Jatropha Oil Seed Cake.

    PubMed

    Raheman, Hifjur; Padhee, Debasish

    2016-01-01

    The review of patents reveals that Handling of Jatropha seed cake after extraction of oil is essential as it contains toxic materials which create environmental pollution. The goal of this work is complete utilisation of Jatropha seeds. For this purpose, Jatropha oil was used for producing biodiesel and the byproduct Jatropha seed cake was gasified to obtain producer gas. Both biodiesel and producer gas were used to generate electricity. To achieve this, a system comprising gasifier, briquetting machine, diesel engine and generator was developed. Biodiesel was produced successfully using the method patented for biodiesel production and briquettes of Jatropha seed cake were made using a vertical extruding machine. Producer gas was obtained by gasifying these briquettes in a downdraft gasifier. A diesel engine was then run in dual fuel mode with biodiesel and producer gas instead of only diesel. Electricity was generated by coupling it to a generator. The cost of producing kilowatthour of electricity with biodiesel and diesel in dual fuel mode with producer gas was found to be 0.84 $ and 0.75 $, respectively as compared to 0.69 $ and 0.5 $ for the same fuels in single fuel mode resulting in up to 48 % saving of pilot fuel. Compared to singlefuel mode, there was 25-32 % reduction in system and brake thermal efficiency along with significantly lower NOx, higher CO and CO2 emissions when the bio-electricity generating system was operated in dual fuel mode. Overall, the developed system could produce electricity successfully by completely uti- lising Jatropha seeds without leaving any seed cake to cause environmental pollution.

  5. Combustion Characteristics of CI Diesel Engine Fuelled With Blends of Jatropha Oil Biodiesel

    NASA Astrophysics Data System (ADS)

    Singh, Manpreet; Yunus Sheikh, Mohd.; Singh, Dharmendra; Nageswara rao, P.

    2018-03-01

    Jatropha Curcas oil is a non-edible oil which is used for Jatropha biodiesel (JBD) production. Jatropha biodiesel is produced using transesterification technique and it is used as an alternative fuel in CI diesel engine without any hardware modification. Jatropha biodiesel is used in CI diesel engine with various volumetric concentrations (blends) such as JBD5, JBD15, JBD25, JBD35 and JBD45. The combustion parameters such as in-cylinder pressure, rate of pressure rise, net heat release, cumulative heat release, mass fraction burned are analyzed and compared for all blends combustion data with mineral diesel fuel (D100).

  6. Experimental Investigations on Diesel engine using Methyl esters of Jatropha oil and fish oil

    NASA Astrophysics Data System (ADS)

    Karthikeyan, A.; Jayaprabakar, J.; Dude Williams, Richard

    2017-05-01

    The aim of the study is to use fish oil methyl ester (FME) and Jatropha oil methyl ester (JME) as a substitute for diesel in compression ignition engine. Experiments were conducted when the engine was fuelled with Diesel, Fish oil methyl ester and Jatropha oil methyl ester. The experiment covered a range of loads. An AVL smoke meter was used to measure the smoke density in HSU (Hatridge Smoke Unit). The exhaust emissions were measured using exhaust gas analyzer. High volume sampler was employed to measure the particulate matter in exhaust. The performance of the engine was evaluated in terms of brake specific fuel consumption, brake thermal efficiency. The combustion characteristics of the engine were studied in terms of cylinder pressure with respect to crank angle. The emissions of the engine were studied in terms of concentration of CO, NOx, particulate matter and smoke density. The results obtained for Fish oil methyl ester, Jatropha oil methyl ester, were compared with the results of diesel. Bio-diesel, which can be used as an alternate diesel fuel, is made from vegetable oil and animal fats. It is renewable, non-toxic and possesses low emission profiles.

  7. Biofuel Production from Jatropha Bio-Oil Derived Fast Pyrolysis: Effect and Mechanism of CoMoS Supported on Al2O3

    NASA Astrophysics Data System (ADS)

    Rodseanglung, T.; Ratana, T.; Phongaksorn, M.; Tungkamani, S.

    2018-03-01

    The aims of this research was to understand the CoMo/Al2O3 sulfide catalyst effect to remove oxygen-containing and nitrogen-containing molecules from Jatropha bio-oil derived fast pyrolysis converted to biofuels via hydrotreating process. The activity and selectivity of CoMo/γ-Al2O3 sulfided catalysts in hydrodeoxygenation (HDO) of Jatropha bio-oil derived fast pyrolysis was evaluated in a Parr batch reactor under 50 bar of H2 atmosphere for 2 h at 300 320 and 340 °C. It appeared that the CoMo/Al2O3 sulfide catalyst have high performance in activity for promoting the fatty acid, fatty ester, fatty amide and fatty nitrile compounds were converted to paraffin/olefin (Diesel range), this could be the CUS site on supported Al2O3 catalyst. The difference in selectivity products allowed us to propose a reaction scheme.

  8. Experimental assessment of toxic phytochemicals in Jatropha curcas: oil, cake, bio-diesel and glycerol.

    PubMed

    Pradhan, Subhalaxmi; Naik, S N; Khan, M Ashhar I; Sahoo, P K

    2012-02-01

    Jatropha curcas seed is a rich source of oil; however, it can not be utilised for nutritional purposes due to presence of toxic and anti-nutritive compounds. The main objective of the present study was to quantify the toxic phytochemicals present in Indian J. curcas (oil, cake, bio-diesel and glycerol). The amount of phorbol esters is greater in solvent extracted oil (2.8 g kg⁻¹) than in expeller oil (2.1 g kg⁻¹). Liquid chromatography-mass spectroscopy analysis of the purified compound from an active extract of oil confirmed the presence of phorbol esters. Similarly, the phorbol esters content is greater in solvent extracted cake (1.1 g kg⁻¹) than in cake after being expelled (0.8 g kg⁻¹). The phytate and trypsin inhibitory activity of the cake was found to be 98 g kg⁻¹ and 8347 TIU g⁻¹ of cake, respectively. Identification of curcin was achieved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and the concentration of curcin was 0.95 g L⁻¹ of crude concentrate obtained from cake. Higher amounts of phorbol esters are present in oil than cake but bio-diesel and glycerol are free of phorbol esters. The other anti-nutritional components such as trypsin inhibitors, phytates and curcin are present in cake, so the cake should be detoxified before being used for animal feed. Copyright © 2011 Society of Chemical Industry.

  9. Performance and emission characteristics of a low heat rejection engine with different air gap thicknesses with Jatropha oil based bio-diesel.

    PubMed

    Murali Krishna, M V S; Sarita, G; Seshagiri Rao, V V R; Chowdary, R P; Ramana Reddy, Ch V

    2010-04-01

    The research work on alternate fuels has been the topic of wider interest in the context of depletion of fossil fuels and increasing of pollution levels of the engines with conventional fossil fuels. Alcohols and vegetable oils are considered to replace diesel fuels as they are renewable in nature. However, use of alcohols in internal combustion engines is limited in India, as these fuels are diverted to PetroChemical industries and hence much emphasis is given to the non-edible vegetable oils as alternate fuels in internal combustion engines. However, the drawbacks of low volatility and high viscosity associated with non-edible vegetable oils call for hot combustion chamber, provided by low heat rejection (LHR) diesel engine. Investigations are carried out on a LHR diesel engine with varied air gap thicknesses and injection pressures with jatropha oil based bio-diesel at normal temperature. Performance is improved with high degree of insulation with LHR engine with vegetable oil in comparison with conventional engine (CE) with pure diesel operation.

  10. Study on production of biodiesel from Jatropha oil and the performance and emission of a diesel engine

    NASA Astrophysics Data System (ADS)

    Nor, N. F. M.; Hafidzal, M. H. M.; Shamsuddin, S. A.; Ismail, M. S.; Hashim, A. H.

    2015-05-01

    The use of nonedible oil as a feedstock is needed to replace edible oil as an alternative fuel for diesel engine. This nonedible oils in diesel engine however leads to low performance and higher emission due to its high viscosity. The characteristics of the fuel can be improved through transesterification process. The yield of biodiesel from Jatropha oil using potassium hydroxide catalyst concentration of 1%, reaction temperature 60°C, reaction time 40 minutes and molar ratio methanol to oil 6:1 was 70.1% from the lab scale. The experimental study on the performances and emissions of a diesel engine is carried out using the Jatropha biodiesel produced from the transesterification process and compared with pure diesel. Results show that B20 has closer performance to diesel and lower emission compared to B5 and diesel in terms of CO2 and HC.

  11. Experimental Investigation of Performance and emission characteristics of Various Nano Particles with Bio-Diesel blend on Di Diesel Engine

    NASA Astrophysics Data System (ADS)

    Karthik, N.; Goldwin Xavier, X.; Rajasekar, R.; Ganesh Bairavan, P.; Dhanseelan, S.

    2017-05-01

    Present study provides the effect of Zinc Oxide (ZnO) and Cerium Oxide (CeO2) nanoparticles additives on the Performance and emission uniqueness of Jatropha. Jatropha blended fuel is prepared by the emulsification technique with assist of mechanical agitator. Nano particles (Zinc Oxide (ZnO)) and Cerium Oxide (CeO2)) mixed with Jatropha blended fuel in mass fraction (100 ppm) with assist of an ultrasonicator. Experiments were conducted in single cylinder constant speed direct injection diesel engine for various test fuels. Performance results revealed that Brake Thermal Efficiency (BTE) of Jatropha blended Cerium Oxide (B20CE) is 3% and 11% higher than Jatropha blended zinc oxide (B20ZO) and Jatropha blended fuel (B20) and 4% lower than diesel fuel (D100) at full load conditions. Emission result shows that HC and CO emissions of Jatropha blended Cerium Oxide (B20CE) are (6%, 22%, 11% and 6%, 15%, 12%) less compared with Jatropha blended Zinc Oxide (B20ZO), diesel (D100) and Jatropha blended fuel (B20) at full load conditions. NOx emissions of Jatropha blended Cerium Oxide is 1 % higher than diesel fuel (D100) and 2% and 5% lower than Jatropha blended Zinc Oxide, and jatropha blended fuel.

  12. A Comparative Characteristic Study of Jatropha and Cardanol Biodiesel Blends

    NASA Astrophysics Data System (ADS)

    Pugazhenthi, R.; Chandrasekaran, M.; Muthuraman, R. K.; Vivek, P.; Parthiban, A.

    2017-03-01

    The demand in fuel needs and the depleting fossil fuels raised the need towards bio-fuels. The emerging trend in research field is highly focused on biodiesel production and their characteristic analysis. Since pollution is a major threat to the environment, emission parameter analyses are much important to be concentrated. As the entire world contains plenty of biofuels, it is necessary to explore them for its efficiency and analyze their parameters. In this experimental work jatropha and cashew nut shell biodiesel (Cardanol) was extracted and they were blended with diesel. The characteristics of jatropha and cardanol biodiesel were studied in the DI diesel engine by varying the load at the same speed. In brief, this experimental analysis is carried out to compare the emission characteristics between Jatropha biodiesel at 20% (B20) and 40% (B40) and Cardanol biodiesel blends at 20% (C20) and 40% (C40).

  13. Bio-diesel production directly from the microalgae biomass of Nannochloropsis by microwave and ultrasound radiation.

    PubMed

    Koberg, Miri; Cohen, Moshe; Ben-Amotz, Ami; Gedanken, Aharon

    2011-03-01

    This work offers an optimized method for the direct conversion of harvested Nannochloropsis algae into bio-diesel using two novel techniques. The first is a unique bio-technology-based environmental system utilizing flue gas from coal burning power stations for microalgae cultivation. This method reduces considerably the cost of algae production. The second technique is the direct transesterification (a one-stage method) of the Nannochloropsis biomass to bio-diesel production using microwave and ultrasound radiation with the aid of a SrO catalyst. These two techniques were tested and compared to identify the most effective bio-diesel production method. Based on our results, it is concluded that the microwave oven method appears to be the most simple and efficient method for the one-stage direct transesterification of the as-harvested Nannochloropsis algae. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Mathematical Modeling Of Production Of Bio-surfactant Through Bio-desulfurization Of Hydrotreated Diesel In A Fermenter

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Sujaya; Chowdhury, Ranjana; Bhattacharjee, Chiranjib

    2010-10-01

    The conventional deep desulfurization must be followed by a suitable desulfurization process to achieve ultra low sulfur diesel (ULSD) with 10-15 ppm sulfur level which satisfies the strict environmental regulations. Bio-desulfurization is one of the potential routes for the above mentioned purpose. In this present investigation our major concern is production of Ultra Low sulfur diesel (ULSD) and production of biosurfactant simultaneously using Rhodococcus sp. The substituted benzothiophenes (BTs) and dibenzothiophenes (DBTs) get converted to 2-hydroxy biphenyl, which is a potential bio-surfactant. Kinetics of biodesulfurisation of deep desulfurized diesel using Rhodococcus sp. has been studied with special reference to removal of organo-sulfur compounds in diesel and production of 2-hydroxy biphenyl. The sulfur concentration of feed diesel is in the range of 200-540 mg/L. Aqueous phase to diesel ratios have been varied in the range of 9:1 to 1:9. The optimum ratio has been found to be 1:4 and the maximum conversion of sulfur of 95% has been achieved. The values of Monod kinetic parameters, μmax, maximum specific growth rate and Ks, saturation constant of the microbial growth and Yield coefficient of surfactant have been measured to be 0.096 h-1, 71 mg/L, and 17 μmol/g dry cell weights respectively by conducting batch type experiments. A deterministic mathematical model has been developed using the kinetic parameters and the experimental data have been compared with simulated ones satisfactorily.

  15. [Particle emission characteristics of diesel bus fueled with bio-diesel].

    PubMed

    Lou, Di-Ming; Chen, Feng; Hu, Zhi-Yuan; Tan, Pi-Qiang; Hu, Wei

    2013-10-01

    With the use of the Engine Exhaust Particle Sizer (EEPS), a study on the characteristics of particle emissions was carried out on a China-IV diesel bus fueled with blends of 5% , 10% , 20% , 50% bio-diesel transformed from restaurant waste oil and China-IV diesel (marked separately by BD5, BD10, BD20, BD50), pure bio-diesel (BD100) and pure diesel (BD0). The results indicated that particulate number (PN) and mass (PM) emissions of bio-diesel blends increased with the increase in bus speed and acceleration; with increasing bio-diesel content, particulate emissions displayed a relevant declining trend. In different speed ranges, the size distribution of particulate number emissions (PNSD) was bimodal; in different acceleration ranges, PNSD showed a gradual transition from bimodal shape to unimodal when bus operation was switched from decelerating to accelerating status. Bio-diesel blends with higher mixture ratios showed significant reduction in PN emissions for accumulated modes, and the particulate number emission peaks moved towards smaller sizes; but little change was obtained in PN emissions for nuclei modes; reduction also occurred in particle geometric diameter (Dg).

  16. Isolation and characterization of an ubiquitin extension protein gene (JcUEP) promoter from Jatropha curcas.

    PubMed

    Tao, Yan-Bin; He, Liang-Liang; Niu, Long-Jian; Xu, Zeng-Fu

    2015-04-01

    The JcUEP promoter is active constitutively in the bio-fuel plant Jatropha curcas , and is an alternative to the widely used CaMV35S promoter for driving constitutive overexpression of transgenes in Jatropha. Well-characterized promoters are required for transgenic breeding of Jatropha curcas, a biofuel feedstock with great potential for production of bio-diesel and bio-jet fuel. In this study, an ubiquitin extension protein gene from Jatropha, designated JcUEP, was identified to be ubiquitously expressed. Thus, we isolated a 1.2 kb fragment of the 5' flanking region of JcUEP and evaluated its activity as a constitutive promoter in Arabidopsis and Jatropha using the β-glucuronidase (GUS) reporter gene. As expected, histochemical GUS assay showed that the JcUEP promoter was active in all Arabidopsis and Jatropha tissues tested. We also compared the activity of the JcUEP promoter with that of the cauliflower mosaic virus 35S (CaMV35S) promoter, a well-characterized constitutive promoter conferring strong transgene expression in dicot species, in various tissues of Jatropha. In a fluorometric GUS assay, the two promoters showed similar activities in stems, mature leaves and female flowers; while the CaMV35S promoter was more effective than the JcUEP promoter in other tissues, especially young leaves and inflorescences. In addition, the JcUEP promoter retained its activity under stress conditions in low temperature, high salt, dehydration and exogenous ABA treatments. These results suggest that the plant-derived JcUEP promoter could be an alternative to the CaMV35S promoter for driving constitutive overexpression of transgenes in Jatropha and other plants.

  17. Determination of the Economic Viability & Technical Feasibility of Commercial Jatropha Curcas Production for Generation of Jatropha oil as Bio-Fuel Feedstock from Wasteland: Final Technical Report on Life Cycle Impact Assessment of Jatropha Cultivation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Arup; Chikara, Jitendra; Wheeler, Candace

    2012-12-01

    Ever since it was demonstrated that Jatropha seed oil could be converted into a world class biodiesel and could run in unmodified stationary and mobile diesel engines with simultaneous reduction in emissions, it caught the attention of the world. The capability to grow this crop on wastelands added to its attractiveness. However, the single biggest challenge came in the form of the availability of adequate feed stock in the form of the Jatropha fruit. Adequacy of feed stock can only be possible if large plantations are cultivated and produce enough fruit. The people, world over, jumped into Jatropha cultivation withoutmore » heeding to the need to first ensure quality germplasm and understand the agronomic requirements of the plants. As a result many plantations failed to give the required yield. CSIR-CSMCRI had been researching Jatropha and had an end-to-end approach, i.e., it developed the best technology to prepare biodiesel and also worked towards the practical problems that it envisaged to be important for raising Jatropha productivity. It focused only on cultivation on wastelands as this was the only practical strategy, given the limited arable land India has and the risk of food security for the burgeoning population. While working in this direction, the Institute zeroed-in on a few germplasm, which gave consistently higher seed yield over several years. These germplasm were clonally propagated in large numbers to be raised in experimental plantations at different geographical locations in India. Many agronomic practices were developed as a part of these different projects. It was at this juncture that General Motors and the U.S. Department of Energy joined hands with CSIR-CSMCRI to further the work on Jatropha. A center of expertise for Jatropha was established and work was initiated to further refine the understanding regarding the best practices. Efforts were to be made to generate primary data, hitherto unavailable for wastelands, on which life cycle

  18. Biodiesel production from Jatropha oil by catalytic and non-catalytic approaches: an overview.

    PubMed

    Juan, Joon Ching; Kartika, Damayani Agung; Wu, Ta Yeong; Hin, Taufiq-Yap Yun

    2011-01-01

    Biodiesel (fatty acids alkyl esters) is a promising alternative fuel to replace petroleum-based diesel that is obtained from renewable sources such as vegetable oil, animal fat and waste cooking oil. Vegetable oils are more suitable source for biodiesel production compared to animal fats and waste cooking since they are renewable in nature. However, there is a concern that biodiesel production from vegetable oil would disturb the food market. Oil from Jatropha curcas is an acceptable choice for biodiesel production because it is non-edible and can be easily grown in a harsh environment. Moreover, alkyl esters of jatropha oil meet the standard of biodiesel in many countries. Thus, the present paper provides a review on the transesterification methods for biodiesel production using jatropha oil as feedstock. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.

  19. Impact of Various Compression Ratio on the Compression Ignition Engine with Diesel and Jatropha Biodiesel

    NASA Astrophysics Data System (ADS)

    Sivaganesan, S.; Chandrasekaran, M.; Ruban, M.

    2017-03-01

    The present experimental investigation evaluates the effects of using blends of diesel fuel with 20% concentration of Methyl Ester of Jatropha biodiesel blended with various compression ratio. Both the diesel and biodiesel fuel blend was injected at 23º BTDC to the combustion chamber. The experiment was carried out with three different compression ratio. Biodiesel was extracted from Jatropha oil, 20% (B20) concentration is found to be best blend ratio from the earlier experimental study. The engine was maintained at various compression ratio i.e., 17.5, 16.5 and 15.5 respectively. The main objective is to obtain minimum specific fuel consumption, better efficiency and lesser Emission with different compression ratio. The results concluded that full load show an increase in efficiency when compared with diesel, highest efficiency is obtained with B20MEOJBA with compression ratio 17.5. It is noted that there is an increase in thermal efficiency as the blend ratio increases. Biodiesel blend has performance closer to diesel, but emission is reduced in all blends of B20MEOJBA compared to diesel. Thus this work focuses on the best compression ratio and suitability of biodiesel blends in diesel engine as an alternate fuel.

  20. Calculation of greenhouse gas emissions of jatropha oil and jatropha biodiesel as alternative fuels for electricity production in Côte d'Ivoire

    NASA Astrophysics Data System (ADS)

    Atta, Pascal Atta; N'guessan, Yao; Morin, Celine; Voirol, Anne Jaecker; Descombes, Georges

    2017-02-01

    The electricity in Côte d'Ivoire is mainly produced from fossil energy sources. This causes damages on environment due to greenhouse gas emissions (GHG). The aim of this paper is to calculate the greenhouse gas (GHG) emissions of jatropha oil and jatropha biodiesel as alternative fuels for electricity production in Côte d'Ivoire by using Life Cycle Assessment (LCA) methodology. The functional unit in this LCA is defined as 1 kWh of electricity produced by the combustion of jatropha oil or jatropha biodiesel in the engine of a generator. Two scenarios, called short chain and long chain, were examined in this LCA. The results show that 0.132 kg CO2 equivalent is emitted for the scenario 1 with jatropha oil as an alternative fuel against 0.6376 kg CO2 equivalent for the scenario 2 with jatropha biodiesel as an alternative fuel. An 87 % reduction of kg CO2 equivalent is observed in scenario 1 and a 37 % reduction of kg CO2 equivalent is observed in the scenario 2, when compared with a Diesel fuel.

  1. Performance Evaluation of Diesel Engine with Preheated Bio Diesel with Additives

    NASA Astrophysics Data System (ADS)

    Ram Vajja, Sai; Murali, R. B. V.

    2016-09-01

    This paper mainly reviews about the usage of preheated bio diesel added with 0.5% Etchant as an alternative fuel and evaluates its performance for various blends with different loads. Bio diesel is added with Etchant for rapid combustion as for the bio diesel, the cetane number is high that results in shorter delay of ignition and the mixture is preheated to raise its temperature to improve the combustion process. Analysis of the parameters required to define the combustion characteristics such as IP, BP, ηbth, ηm, ISFC, BSFC, IMEP, MFC, Exhaust Gas Temperature, Heat Release and heat balance is necessary as these values are significant to assess the performance of engine and its emissions of preheated bio diesel.

  2. Antifungal activities of ethanolic extract from Jatropha curcas seed cake.

    PubMed

    Saetae, Dolaporn; Suntornsuk, Worapot

    2010-02-01

    Phorbol ester extraction was carried out from Jatropha curcas seed cake, a by-product from the bio-diesel fuel industry. Four repeated extractions from 5 g J. curcas seed cake using 15 ml of 90% (v/v) ethanol and a shaking speed of 150 rev/min gave the highest yield of phosbol esters. The ethanolic extract of J. curcas seed cake showed antifungal activities against important phytofungal pathogens: Fusarium oxysporum, Pythium aphanidermatum, Lasiodiplodia theobromae, Curvularia lunata, Fusarium semitectum, Colletotrichum capsici and Colletotrichum gloeosporiodes. The extract contained phorbol esters mainly responsible for antifungal activities. The extract could therefore be used as an antifungal agent for agricultural applications.

  3. Utilization of biodiesel by-products for mosquito control.

    PubMed

    Pant, Megha; Sharma, Satyawati; Dubey, Saurabh; Naik, Satya Narayan; Patanjali, Phool Kumar

    2016-03-01

    The current paper has elaborated the efficient utilization of non-edible oil seed cakes (NEOC), by-products of the bio-diesel extraction process to develop a herbal and novel mosquitocidal composition against the Aedes aegypti larvae. The composition consisted of botanical active ingredients, inerts, burning agents and preservatives; where the botanical active ingredients were karanja (Pongamia glabra) cake powder and jatropha (Jatropha curcas) cake powder, products left after the extraction of oil from karanja and jatropha seed. The percentage mortality value recorded for the combination with concentration, karanja cake powder (20%) and jatropha cake powder (20%), 1:1 was 96%. The coil formulations developed from these biodiesel by-products are of low cost, environmentally friendly and are less toxic than the synthetic active ingredients. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  4. Hydroprocessing of Jatropha Oil for Production of Green Diesel over Non-sulfided Ni-PTA/Al2O3 Catalyst

    PubMed Central

    Liu, Jing; Lei, Jiandu; He, Jing; Deng, Lihong; Wang, Luying; Fan, Kai; Rong, Long

    2015-01-01

    The non-sulfided Ni-PTA/Al2O3 catalyst was developed to produce green diesel from the hydroprocessing of Jatropha oil. The Ni-PTA/Al2O3 catalyst was prepared by one-pot synthesis of Ni/Al2O3 with the co-precipitation method and then impregnanting Ni/Al2O3 with PTA solution. The catalysts were characterized with BET, SEM-EDX, TEM, XRD, XPS, TGA and NH3-TPD. The Ni and W species of the Ni-PTA/Al2O3 catalyst were much more homogeneously distributed on the surface than that of commercial Al2O3. Catalytic performance in the hydroprocessing of Jatropha oil was evaluated by GC. The maximum conversion of Jatropha oil (98.5 wt%) and selectivity of the C15-C18 alkanes fraction (84.5 wt %) occurred at 360 °C, 3.0 MPa, 0.8 h−1. The non-sulfided Ni-PTA/Al2O3 catalyst is more environmentally friendly than the conventional sulfided hydroprocessing catalyst, and it exhibited the highest catalytic activity than the Ni-PTA catalyst supported with commercial Al2O3 grain and Al2O3 powder. PMID:26162092

  5. Effect of culture media and environmental factors on mycelial growth and pycnidial production of Lasiodiplodia theobromae in physic nut (Jatropha curcas).

    PubMed

    Latha, P; Prakasam, V; Jonathan, E I; Samiyappan, R; Natarajan, C

    2013-07-01

    Physic nut (Jatropha curcas) is an important commercial bio-diesel plant species and is being advocated for development of waste and dry land. The collar and root rot caused by Lasiodiplodia theobromae is an important soil borne disease which causes considerable yield loss in this crop. In this study, the effects of culture media, temperature, photoperiod, carbon and nitrogen sources and pH on mycelial growth and pycnidial production were evaluated. Among the growth media tested, potato dextrose agar supported the highest growth followed by potato sucrose agar and corn meal agar. Among several carbon sources tested, carboxy methyl cellulose and sucrose were found superior for growth and pycnidial production. The nitrogen sources viz., ammonium oxalate and ammonium dihydrogen phosphate were recorded maximum mycelial growth and pycnidial production. The fungus grows at pH 5.0-9.0 and optimum growth was observed at pH 7.0.

  6. Recycling used palm oil and used engine oil to produce white bio oil, bio petroleum diesel and heavy fuel

    NASA Astrophysics Data System (ADS)

    Al-abbas, Mustafa Hamid; Ibrahim, Wan Aini Wan; Sanagi, Mohd. Marsin

    2012-09-01

    Recycling waste materials produced in our daily life is considered as an additional resource of a wide range of materials and it conserves the environment. Used engine oil and used cooking oil are two oils disposed off in large quantities as a by-product of our daily life. This study aims at providing white bio oil, bio petroleum diesel and heavy fuel from the disposed oils. Toxic organic materials suspected to be present in the used engine oil were separated using vacuum column chromatography to reduce the time needed for the separation process and to avoid solvent usage. The compounds separated were detected by gas chromatography-mass spectrometry (GC-MS) and found to contain toxic aromatic carboxylic acids. Used cooking oils (thermally cracked from usage) were collected and separated by vacuum column chromatography. White bio oil produced was examined by GC-MS. The white bio oil consists of non-toxic hydrocarbons and is found to be a good alternative to white mineral oil which is significantly used in food industry, cosmetics and drugs with the risk of containing polycyclic aromatic compounds which are carcinogenic and toxic. Different portions of the used cooking oil and used engine were mixed to produce several blends for use as heavy oil fuels. White bio oil was used to produce bio petroleum diesel by blending it with petroleum diesel and kerosene. The bio petroleum diesel produced passed the PETRONAS flash point and viscosity specification test. The heat of combustion of the two blends of heavy fuel produced was measured and one of the blends was burned to demonstrate its burning ability. Higher heat of combustion was obtained from the blend containing greater proportion of used engine oil. This study has provided a successful recycled alternative for white bio oil, bio petroleum fuel and diesel which can be an energy source.

  7. Preparation and characterization of bio-diesels from various bio-oils.

    PubMed

    Lang, X; Dalai, A K; Bakhshi, N N; Reaney, M J; Hertz, P B

    2001-10-01

    Methyl, ethyl, 2-propyl and butyl esters were prepared from canola and linseed oils through transesterification using KOH and/ or sodium alkoxides as catalysts. In addition, methyl and ethyl esters were prepared from rapeseed and sunflower oils using the same catalysts. Chemical composition of the esters was determined by HPLC for the class of lipids and by GC for fatty acid compositions. The bio-diesel esters were characterized for their physical and fuel properties including density, viscosity, iodine value, acid value, cloud point, pure point, gross heat of combustion and volatility. Methyl and ethyl esters prepared from a particular vegetable oil had similar viscosities, cloud points and pour points, whereas methyl, ethyl, 2-propyl and butyl esters derived from a particular vegetable oil had similar gross heating values. However, their densities, which were 2 7% higher than those of diesel fuels, statistically decreased in the order of methyl approximately 2-propyl > ethyl > butyl esters. Butyl esters showed reduced cloud points (-6 degrees C to -10 degrees C) and pour points (-13 degrees C to -16 degrees C) similar to those of summer diesel fuel having cloud and pour points of -8 degrees C and -15 degrees C, respectively. The viscosities of bio-diesels (3.3-7.6 x 10(-4) Pa s at 40 degrees C) were much less than those of pure oils (22.4-45.1 x 10(-4) Pa s at 40 degrees C) and were twice those of summer and winter diesel fuels (3.50 and 1.72 x 10(-4) Pa s at 40 degrees C), and their gross heat contents of approximately 40 MJ/kg were 11% less than those of diesel fuels (approximately 45 MJ/kg). For different esters from the same vegetable oil, methyl esters were the most volatile, and the volatility decreased as the alkyl group grew bulkier. However, the bio-diesels were considerably less volatile than the conventional diesel fuels.

  8. Optimization of bio-diesel production from soybean and wastes of cooked oil: combining dielectric microwave irradiation and a SrO catalyst.

    PubMed

    Koberg, Miri; Abu-Much, Riam; Gedanken, Aharon

    2011-01-01

    This work offers an optimized method in the transesterification of pristine (soybean) oil and cooked oil to bio-diesel, based on microwave dielectric irradiation as a driving force for the transesterification reaction and SrO as a catalyst. This combination has demonstrated excellent catalytic activity and stability. The transesterification was carried out with and without stirring. According to 1H NMR spectroscopy and TLC results, this combination accelerates the reaction (to less than 60 s), maintaining a very high conversion (99%) and high efficiency. The catalytic activity of SrO under atmospheric pressure in the presence of air and under the argon atmosphere is demonstrated. The optimum conversion of cooked oil (99.8%) is achieved under MW irradiation of 1100 W output with magnetic stirring after only 10 s. The optimum method decreases the cost of bio-diesel production and has the potential for industrial application in the transesterification of cooked oil to bio-diesel. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Deoiledjatropha seed cake is a useful nutrient for pullulan production.

    PubMed

    Choudhury, Anirban Roy; Sharma, Nishat; Prasad, G S

    2012-03-30

    Ever increasing demand for fossil fuels is a major factor for rapid depletion of these non-renewable energy resources, which has enhanced the interest of finding out alternative sources of energy. In recent years jatropha seed oil has been used extensively for production of bio-diesel and has shown significant potential to replace petroleum fuels at least partially. De-oiled jatropha seed cake (DOJSC) which comprises of approximately 55 to 65% of the biomass is a byproduct of bio-diesel industry. DOJSC contains toxic components like phorbol esters which restricts its utilization as animal feed. Thus along with the enhancement of biodiesel production from jatropha, there is an associated problem of handling this toxic byproduct. Utilization of DOJSC as a feed stock for production of biochemicals may be an attractive solution to the problem.Pullulan is an industrially important polysaccharide with several potential applications in food, pharmaceuticals and cosmetic industries. However, the major bottleneck for commercial utilization of pullulan is its high cost. A cost effective process for pullulan production may be developed using DOJSC as sole nutrient source which will in turn also help in utilization of the byproduct of bio-diesel industry. In the present study, DOJSC has been used as a nutrient for production of pullulan, in place of conventional nutrients like yeast extract and peptone. Process optimization was done in shake flasks, and under optimized conditions (8% DOJSC, 15% dextrose, 28°C temperature, 200 rpm, 5% inoculum, 6.0 pH) 83.98 g/L pullulan was obtained. The process was further validated in a 5 L laboratory scale fermenter. This is the first report of using DOJSC as nutrient for production of an exopolysaccharide. Successful use of DOJSC as nutrient will help in finding significant application of this toxic byproduct of biodiesel industry. This in turn also have a significant impact on cost reduction and may lead to development of a cost

  10. Deoiledjatropha seed cake is a useful nutrient for pullulan production

    PubMed Central

    2012-01-01

    Background Ever increasing demand for fossil fuels is a major factor for rapid depletion of these non-renewable energy resources, which has enhanced the interest of finding out alternative sources of energy. In recent years jatropha seed oil has been used extensively for production of bio-diesel and has shown significant potential to replace petroleum fuels at least partially. De-oiled jatropha seed cake (DOJSC) which comprises of approximately 55 to 65% of the biomass is a byproduct of bio-diesel industry. DOJSC contains toxic components like phorbol esters which restricts its utilization as animal feed. Thus along with the enhancement of biodiesel production from jatropha, there is an associated problem of handling this toxic byproduct. Utilization of DOJSC as a feed stock for production of biochemicals may be an attractive solution to the problem. Pullulan is an industrially important polysaccharide with several potential applications in food, pharmaceuticals and cosmetic industries. However, the major bottleneck for commercial utilization of pullulan is its high cost. A cost effective process for pullulan production may be developed using DOJSC as sole nutrient source which will in turn also help in utilization of the byproduct of bio-diesel industry. Results In the present study, DOJSC has been used as a nutrient for production of pullulan, in place of conventional nutrients like yeast extract and peptone. Process optimization was done in shake flasks, and under optimized conditions (8% DOJSC, 15% dextrose, 28°C temperature, 200 rpm, 5% inoculum, 6.0 pH) 83.98 g/L pullulan was obtained. The process was further validated in a 5 L laboratory scale fermenter. Conclusion This is the first report of using DOJSC as nutrient for production of an exopolysaccharide. Successful use of DOJSC as nutrient will help in finding significant application of this toxic byproduct of biodiesel industry. This in turn also have a significant impact on cost reduction and may lead to

  11. DSC studies to evaluate the impact of bio-oil on cold flow properties and oxidation stability of bio-diesel.

    PubMed

    Garcia-Perez, Manuel; Adams, Thomas T; Goodrum, John W; Das, K C; Geller, Daniel P

    2010-08-01

    This paper describes the use of Differential Scanning Calorimetry (DSC) to evaluate the impact of varying mix ratios of bio-oil (pyrolysis oil) and bio-diesel on the oxidation stability and on some cold flow properties of resulting blends. The bio-oils employed were produced from the semi-continuous Auger pyrolysis of pine pellets and the batch pyrolysis of pine chips. The bio-diesel studied was obtained from poultry fat. The conditions used to prepare the bio-oil/bio-diesel blends as well as some of the fuel properties of these blends are reported. The experimental results suggest that the addition of bio-oil improves the oxidation stability of the resulting blends and modifies the crystallization behavior of unsaturated compounds. Upon the addition of bio-oil an increase in the oxidation onset temperature, as determined by DSC, was observed. The increase in bio-diesel oxidation stability is likely to be due to the presence of hindered phenols abundant in bio-oils. A relatively small reduction in DSC characteristic temperatures which are associated with cold flow properties was also observed but can likely be explained by a dilution effect. (c) 2010 Elsevier Ltd. All rights reserved.

  12. Life Cycle Assessment Comparing the Use of Jatropha Biodiesel in the Indian Road and Rail Sectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitaker, M.; Heath, G.

    2010-05-01

    This life cycle assessment of Jatropha biodiesel production and use evaluates the net greenhouse gas (GHG) emission (not considering land-use change), net energy value (NEV), and net petroleum consumption impacts of substituting Jatropha biodiesel for conventional petroleum diesel in India. Several blends of biodiesel with petroleum diesel are evaluated for the rail freight, rail passenger, road freight, and road-passenger transport sectors that currently rely heavily on petroleum diesel. For the base case, Jatropha cultivation, processing, and use conditions that were analyzed, the use of B20 results in a net reduction in GHG emissions and petroleum consumption of 14% and 17%,more » respectively, and a NEV increase of 58% compared with the use of 100% petroleum diesel. While the road-passenger transport sector provides the greatest sustainability benefits per 1000 gross tonne kilometers, the road freight sector eventually provides the greatest absolute benefits owing to substantially higher projected utilization by year 2020. Nevertheless, introduction of biodiesel to the rail sector might present the fewest logistic and capital expenditure challenges in the near term. Sensitivity analyses confirmed that the sustainability benefits are maintained under multiple plausible cultivation, processing, and distribution scenarios. However, the sustainability of any individual Jatropha plantation will depend on site-specific conditions.« less

  13. Bio-oil extraction of Jatropha curcas with ionic liquid co-solvent: Fate of biomass protein.

    PubMed

    Severa, Godwin; Edwards, Melisa; Cooney, Michael J

    2017-02-01

    The fate of oil-seed biomass protein has been tracked through all steps of a multi-phase extraction process using an ionic liquid based co-solvent system previously demonstrated to extract bio-oil and phorbol esters and to recover fermentable sugars from Jatropha oil seed. These analyses, however, did not address the fate of biomass protein. This work demonstrated that the majority of protein (∼86%) tracked with the biomass with the balance lost to co-solvent (∼12%) and methanol (∼2%) washes. A significant portion of the ionic liquid remained with the treated biomass and required aggressive methanol washes to recover. A system analysis showed a net-positive energy balance and thus the potential of this system to produce both bio-oil and protein-rich toxin-free biomass. While these results further support Jatropha as an oil seed crop, the additional costs of solvent recovery will need to be addressed if commercialization is to be realized. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Environmental Impacts of Jatropha curcas Biodiesel in India

    PubMed Central

    Gmünder, Simon; Singh, Reena; Pfister, Stephan; Adheloya, Alok; Zah, Rainer

    2012-01-01

    In the context of energy security, rural development and climate change, India actively promotes the cultivation of Jatropha curcas, a biodiesel feedstock which has been identified as suitable for achieving the Indian target of 20% biofuel blending by 2017. In this paper, we present results concerning the range of environmental impacts of different Jatropha curcas cultivation systems. Moreover, nine agronomic trials in Andhra Pradesh are analysed, in which the yield was measured as a function of different inputs such as water, fertilizer, pesticides, and arbuscular mycorrhizal fungi. Further, the environmental impact of the whole Jatropha curcas biodiesel value chain is benchmarked with fossil diesel, following the ISO 14040/44 life cycle assessment procedure. Overall, this study shows that the use of Jatropha curcas biodiesel generally reduces the global warming potential and the nonrenewable energy demand as compared to fossil diesel. On the other hand, the environmental impacts on acidification, ecotoxicity, eutrophication, and water depletion all showed increases. Key for reducing the environmental impact of Jatropha curcas biodiesel is the resource efficiency during crop cultivation (especially mineral fertilizer application) and the optimal site selection of the Jatropha curcas plantations. PMID:22919274

  15. Environmental impacts of Jatropha curcas biodiesel in India.

    PubMed

    Gmünder, Simon; Singh, Reena; Pfister, Stephan; Adheloya, Alok; Zah, Rainer

    2012-01-01

    In the context of energy security, rural development and climate change, India actively promotes the cultivation of Jatropha curcas, a biodiesel feedstock which has been identified as suitable for achieving the Indian target of 20% biofuel blending by 2017. In this paper, we present results concerning the range of environmental impacts of different Jatropha curcas cultivation systems. Moreover, nine agronomic trials in Andhra Pradesh are analysed, in which the yield was measured as a function of different inputs such as water, fertilizer, pesticides, and arbuscular mycorrhizal fungi. Further, the environmental impact of the whole Jatropha curcas biodiesel value chain is benchmarked with fossil diesel, following the ISO 14040/44 life cycle assessment procedure. Overall, this study shows that the use of Jatropha curcas biodiesel generally reduces the global warming potential and the nonrenewable energy demand as compared to fossil diesel. On the other hand, the environmental impacts on acidification, ecotoxicity, eutrophication, and water depletion all showed increases. Key for reducing the environmental impact of Jatropha curcas biodiesel is the resource efficiency during crop cultivation (especially mineral fertilizer application) and the optimal site selection of the Jatropha curcas plantations.

  16. Improving the performance and emission characteristics of a single cylinder diesel engine having reentrant combustion chamber using diesel and Jatropha methyl esters.

    PubMed

    Premnath, S; Devaradjane, G

    2015-11-01

    The emissions from the Compression ignition (CI) engines introduce toxicity to the atmosphere. The undesirable carbon deposits from these engines are realized in the nearby static or dynamic systems such as vehicles, inhabitants, etc. The objective of this research work is to improve the performance and emission characteristics of a diesel engine in the modified re-entrant combustion chamber using a diesel and Jatropha methyl ester blend (J20) at three different injection pressures. From the literature, it is revealed that the shape of the combustion chamber and the fuel injection pressure have an impact on the performance and emission parameters of the CI engine. In this work, a re-entrant combustion chamber with three different fuel injection pressures (200, 220 and 240bars) has been used in the place of the conventional hemispherical combustion chamber for diesel and J20. From the experimental results, it is found that the re-entrant chamber improves the brake thermal efficiency of diesel and J20 in all the tested conditions. It is also found that the 20% blend of Jatropha methyl ester showed 4% improvement in the brake thermal efficiency in the re-entrant chamber at the maximum injection pressure. Environmental safety directly relates to the reduction in the undesirable effects on both living and non-living things. Currently environmental pollution is of major concern. Even with the stringent emission norms new methods are required to reduce the harmful effects from automobiles. The toxicity of carbon monoxide (CO) is well known. In the re-entrant combustion chamber, the amount of CO emission is reduced by 26% when compared with the conventional fuel operation of the engine. Moreover, the amount of smoke is reduced by 24% and hydrocarbons (HC) emission by 24%. Thus, the modified re-entrant combustion chamber reduces harmful pollutants such as unburned HC and CO as well as toxic smoke emissions. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Medicinal and cosmetics soap production from Jatropha oil.

    PubMed

    Shahinuzzaman, M; Yaakob, Zahira; Moniruzzaman, M

    2016-06-01

    Soap is the most useful things which we use our everyday life in various cleansing and cosmetics purposes. Jatropha oil is nonedible oil which has more benefits to soap making. It has also cosmetics and medicinal properties. But the presence of toxic Phorbol esters in Jatropha oil is the main constrains to use it. So it is necessary to search a more suitable method for detoxifying the Jatropha oil before the use as the main ingredient of soap production. This review implies a more suitable method for removing phorbol esters from Jatropha oil. Several parameters such as the % yield of pure Jatropha oil soap, TFM value of soap, total alkali content, free caustic alkalinity content, pH, the antimicrobial activity, and CMC value of general soap should be taken into consideration for soap from detoxified Jatropha oil. © 2016 Wiley Periodicals, Inc.

  18. Storage Tanks and Dispensers for E85 and Bio-Diesel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webster, Michael; Frederick, Justin

    2014-02-10

    Project objective is to improve the District's alternative fueling infrastructure by installing storage tanks and dispensers for E-85 and Bio-Diesel at the existing Blackwell Forest Preserve Alternative Fuel Station. The addition of E-85 and Bio-Diesel at this station will continue to reduce our dependency on foreign oil, while promoting the use of clean burning, domestically produced, renewable alternative fuels. In addition, this station will promote strong intergovernmental cooperation as other governmental agencies have expressed interest in utilizing this station.

  19. Ectopic expression of Jatropha curcas APETALA1 (JcAP1) caused early flowering in Arabidopsis, but not in Jatropha

    PubMed Central

    Tang, Mingyong; Tao, Yan-Bin

    2016-01-01

    Jatropha curcas is a promising feedstock for biofuel production because Jatropha oil is highly suitable for the production of biodiesel and bio-jet fuels. However, Jatropha exhibits a low seed yield as a result of unreliable and poor flowering. APETALA1 (AP1) is a floral meristem and organ identity gene in higher plants. The flower meristem identity genes of Jatropha have not yet been identified or characterized. To better understand the genetic control of flowering in Jatropha, an AP1 homolog (JcAP1) was isolated from Jatropha. An amino acid sequence analysis of JcAP1 revealed a high similarity to the AP1 proteins of other perennial plants. JcAP1 was expressed in inflorescence buds, flower buds, sepals and petals. The highest expression level was observed during the early developmental stage of the flower buds. The overexpression of JcAP1 using the cauliflower mosaic virus (CaMV) 35S promoter resulted in extremely early flowering and abnormal flowers in transgenic Arabidopsis plants. Several flowering genes downstream of AP1 were up-regulated in the JcAP1-overexpressing transgenic plant lines. Furthermore, JcAP1 overexpression rescued the phenotype caused by the Arabidopsis AP1 loss-of-function mutant ap1-11. Therefore, JcAP1 is an ortholog of AtAP1, which plays a similar role in the regulation of flowering in Arabidopsis. However, the overexpression of JcAP1 in Jatropha using the same promoter resulted in little variation in the flowering time and floral organs, indicating that JcAP1 may be insufficient to regulate flowering by itself in Jatropha. This study helps to elucidate the function of JcAP1 and contributes to the understanding of the molecular mechanisms of flower development in Jatropha. PMID:27168978

  20. Jatropha (Jatropha curcas L.).

    PubMed

    Maravi, Devendra Kumar; Mazumdar, Purabi; Alam, Shamsher; Goud, Vaibhav V; Sahoo, Lingaraj

    2015-01-01

    The seed oil of Jatropha (Jatropha curcas L.) as a source of biodiesel fuel is gaining worldwide importance. Commercial-scale exploration of Jatropha has not succeeded due to low and unstable seed yield in semiarid lands unsuitable for the food production and infestation to diseases. Genetic engineering is promising to improve various agronomic traits in Jatropha and to understand the molecular functions of key Jatropha genes for molecular breeding. We describe a protocol routinely followed in our laboratory for stable and efficient Agrobacterium tumefaciens-mediated transformation of Jatropha using cotyledonary leaf as explants. The 4-day-old explants are infected with Agrobacterium tumefaciens strain EHA105 harboring pBI121 plant binary vector, which contains nptII as plant selectable marker and gus as reporter. The putative transformed plants are selected on kanamycin, and stable integration of transgene(s) is confirmed by histochemical GUS assay, polymerase chain reaction, and Southern hybridization.

  1. Analysis of the performance, emission and combustion characteristics of a turbocharged diesel engine fuelled with Jatropha curcas biodiesel-diesel blends using kernel-based extreme learning machine.

    PubMed

    Silitonga, Arridina Susan; Hassan, Masjuki Haji; Ong, Hwai Chyuan; Kusumo, Fitranto

    2017-11-01

    The purpose of this study is to investigate the performance, emission and combustion characteristics of a four-cylinder common-rail turbocharged diesel engine fuelled with Jatropha curcas biodiesel-diesel blends. A kernel-based extreme learning machine (KELM) model is developed in this study using MATLAB software in order to predict the performance, combustion and emission characteristics of the engine. To acquire the data for training and testing the KELM model, the engine speed was selected as the input parameter, whereas the performance, exhaust emissions and combustion characteristics were chosen as the output parameters of the KELM model. The performance, emissions and combustion characteristics predicted by the KELM model were validated by comparing the predicted data with the experimental data. The results show that the coefficient of determination of the parameters is within a range of 0.9805-0.9991 for both the KELM model and the experimental data. The mean absolute percentage error is within a range of 0.1259-2.3838. This study shows that KELM modelling is a useful technique in biodiesel production since it facilitates scientists and researchers to predict the performance, exhaust emissions and combustion characteristics of internal combustion engines with high accuracy.

  2. Emissions of Jatropha oil-derived biodiesel blend fuels during combustion in a swirl burner

    NASA Astrophysics Data System (ADS)

    Norwazan, A. R.; Mohd. Jaafar, M. N.; Sapee, S.; Farouk, Hazir

    2018-03-01

    Experimental works on combustion of jatropha oil biodiesel blends of fuel with high swirling flow in swirl burner have been studied in various blends percentage. Jatropha oil biodiesel was produced using a two-step of esterification-transesterification process. The paper focuses on the emissions of biodiesel blends fuel using jatropha oil in lean through to rich air/fuel mixture combustion in swirl burner. The emissions performances were evaluated by using axial swirler amongst jatropha oil blends fuel including diesel fuel as baseline. The results show that the B25 has good emissions even though it has a higher emission of NOx than diesel fuel, while it emits as low as 42% of CO, 33% of SO2 and 50% of UHC emissions with high swirl number. These are due to the higher oxygen content in jatropha oil biodiesel.

  3. Diesel production from lignocellulosic feed: the bioCRACK process

    PubMed Central

    Ritzberger, J.; Schwaiger, N.; Pucher, P.; Siebenhofer, M.

    2017-01-01

    The bioCRACK process is a promising technology for the production of second generation biofuels. During this process, biomass is pyrolized in vacuum gas oil and converted into gaseous, liquid and solid products. In cooperation with the Graz University of Technology, the liquid phase pyrolysis process was investigated by BDI – BioEnergy International AG at an industrial pilot plant, fully integrated in the OMV refinery in Vienna/Schwechat. The influence of various biogenous feedstocks and the influence of the temperature on the product distribution in the temperature range of 350°C to 390°C was studied. It was shown that the temperature has a major impact on the product formation. With rising temperature, the fraction of liquid products, namely liquid CHO-products, reaction water and hydrocarbons, increases and the fraction of biochar decreases. At 390°C, 39.8 wt% of biogenous carbon was transferred into a crude hydrocarbon fractions. The type of lignocellulosic feedstock has a minor impact on the process. The biomass liquefaction concept of the bioCRACK process was in pilot scale compatible with oil refinery processes. PMID:29291098

  4. Synthesis of fatty acid methyl ester from crude jatropha (Jatropha curcas Linnaeus) oil using aluminium oxide modified Mg-Zn heterogeneous catalyst.

    PubMed

    Olutoye, M A; Hameed, B H

    2011-06-01

    The synthesis of fatty acid methyl esters (FAME) as a substitute to petroleum diesel was investigated in this study from crude jatropha oil (CJO), a non-edible, low-cost alternative feedstock, using aluminium modified heterogeneous basic oxide (Mg-Zn) catalyst. The transesterification reaction with methanol to methyl esters yielded 94% in 6h with methanol-oil ratio of 11:1, catalyst loading of 8.68 wt.% at 182°C and the properties of CJO fuel produced were determine and found to be comparable to the standards according to ASTM. In the range of experimental parameters investigated, it showed that the catalyst is selective to production of methyl esters from oil with high free fatty acid (FFA) and water content of 7.23% and 3.28%, respectively in a single stage process. Thus, jatropha oil is a promising feedstock for methyl ester production and large scale cultivation will help to reduce the product cost. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Influence of High Temperature and Duration of Heating on the Sunflower Seed Oil Properties for Food Use and Bio-diesel Production.

    PubMed

    Giuffrè, Angelo Maria; Capocasale, Marco; Zappia, Clotilde; Poiana, Marco

    2017-01-01

    Two important problems for the food industry are oil oxidation and oil waste after frying. Sunflower seed oil is one of the vegetable oils most commonly used in the food industry. Two variables were applied to the low oleic sunflower seed oil in this work i.e. heating temperature (180-210-240°C) and time of heating (15-30-60-120 minutes), to study from the edible point of view the variations of its physico-chemical properties. After 120 minutes heating at 240°C the following was found: refractive index (1.476), free acidity (0.35%), K232 (2.87), K270 (3.71), antiradical activity (45.90% inhibition), total phenols (523 mg kg -1 ), peroxide value (17.00 meq kg -1 ), p-anisidine value (256.8) and Totox (271.7), all of which showed a constant deterioration. In relation to the use as a feedstock for bio-diesel production, after 120 minutes heating at 240℃ the following was found: acid value 0.70 mg KOH g -1 oil, iodine value 117.83 g I 2 100 g -1 oil, oil stability index 0.67 h, kinematic viscosity (at 40°C) 77.85 mm 2 s -1 , higher heating value 39.86 MJ kg -1 , density 933.34 kg/m 3 and cetane number 67.04. The parameters studied in this work were influenced, in different ways, by the applied variables. Heating temperature between 180 and 210°C and 120 min heating duration were found to be the most appropriate conditions for sunflower seed oil both from the deep frying point of view and from a subsequent use as feedstock for bio-diesel production. In light of the vegetable oils' International standards for an edible use and for a bio-diesel production, findings of this work can be used to set heating temperature and heating duration to preserve as long possible the physico-chemical properties of a low oleic sunflower seed oil for both its edible use as a fat during cooking and for its re-use after frying.

  6. [Determination of lead in microemulsified rapeseed oil and bio-diesel oil by GFAAS].

    PubMed

    Li, Sheng-qing; He, Xiao-min; Du, Ping; Wang, Min; Chen, Hao; Wu, Mou-cheng

    2008-10-01

    Bio-diesel oil has attracted much attention as a substitutable energy sources for its renewable and eco-friendly property. However, problems of lead contamination in fuel are also emphasized increasingly at present. So it was of quite significance to determine the contents of lead in bio-diesel oil and its raw material rapeseed oil. An effective method was developed for the rapid determination of lead in rapeseed oil and bio-diesel oil by graphite furnace atomic absorption spectrometry (GFAAS) after their stabilization as microemulsions. In this research work, polyethyleneglycol octyl phenyl ether and n-butanol were used for emulsifier and auxiliary emulsifying agent, respectively. For Pb, efficient thermal stabilization was obtained using NH4H2PO4 as matrix modifier. Sample stabilization was necessary because of evident analyte losses that occurred immediately after sampling. Excellent long-term sample stabilization and the influence of the microemulsion composition on the GFAAS response were observed by mixing different organic solvents. The ashing and atomization temperature and ramp rate influenced the sensitivity obtained for Ph. Take this into account, the optimum conditions of the graphite furnace atomic absorption spectrometric determination of Pb in rapeseed oil and bio-diesel oil samples were investigated. The results showed that the microemulsion was quite stable when the value of V(20% polyethyleneglycol octyl phenyl ether), V(n-butanol), V(oil) and V(water) was 0.1: 8.9: 0.5: 0.5, without matrix interference effect. The determination limit of the proposed method was 126.2 microg x L(-1) for Pb, comfortably below the values found in the analyzed samples. The recoveries were from 81.8% to 109.0%, which performed using the addition of different concentrations of lead to bio-diesel oil, rapeseed oil and petrochemical diesel samples. The relative standard deviation of determination was 5.84%. This work showed the great efficiency of the microemulsion

  7. Development of a Laminar Flame Test Facility for Bio-Diesel Characterization

    NASA Astrophysics Data System (ADS)

    Tan, Giam

    2009-11-01

    The relevance of applying testing standards established for diesel fuels to evaluate bio-diesel fuels motivates the design and fabrication of a vertical combustion chamber to be able to measure flame speeds of the varying strains of bio-diesel fuels and to attain more detailed kinetics information for biodiesel fuel. Extensive research is ongoing to understand the impact of fundamental combustion properties such as ignition characteristics, laminar flame speed, strain sensitivity and extinction strain rates on emission and stability characteristics of the combustor. It is envisioned that further flame studies will provide key kinetics validation data for biodiesel-like molecules -- the current test rig was developed with provisions for optical access and for future spectroscopic measurements. The current work focuses on laminar flame speeds since this important parameter contains fundamental information regarding reactivity, diffusivity, and exothermicity of the fuel mixture. It has a significant impact upon the propensity of a flame to flashback and blowoff and also serves as a key scaling parameter for other important combustion characteristics, such as the turbulent flame structure, turbulent flame speed and flame's spatial distribution etc. The flame experiments are challenging as the tested bio-fuel must be uniformly atomized and uniformly dispersed.

  8. Experiment on the Effects of Storage Duration of Biodiesel produced from Crude Palm Oil, Waste Cooking oil and Jatropha

    NASA Astrophysics Data System (ADS)

    Nanihar, Nadiarulah; Khalid, Amir; Mustaffa, Norrizal; Jaat, Norrizam; Sapit, Azwan; Razali, Azahari; Sunar, Norshuhaila Mohamed

    2017-10-01

    Biodiesel based on vegetable oil is an alternative that had various advantage in term of sustainability and environmental attractive compare to others conventional diesel. Biodiesel is product of any fat or oil that derived from any organic sources through a refinery process called transesterification process. This research investigates the effects of storage duration and variant ambient condition on the biodiesel properties and characteristics. In this study, there are three types of blending which is 5vol% blends ( 5vol% plant oil 95vol% diesel), 10vol% blending (10vol% plant oil and 90vol% diesel) and 15vol% blending (15vol% plant oil and 85vol% diesel) each called CPO5 (crude palm oil 5vol%), CPO10 (crude palm oil 10vol%),CPO15 (crude palm oil 15vol%), JO5 (jatropha oil 5vol%), JO10 (jatropha oil 10vol%),and JO15 (jatropha oil 15vol%) respectively. Biodiesel samples were stored at indoor condition and outdoor condition for a 3 months period. The fuel properties such as acid value, viscosity, density, water content and flash point are observed with the laboratory instrument. Flash point value and water content increased under both of indoor and outdoor condition and a steady data for viscosity and density. However, acid value at indoor condition nearly constant but increased dramatically for outdoor condition over the time.

  9. Pyrolysis of de-oiled seed cake of Jatropha Curcas and catalytic steam reforming of pyrolytic bio-oil to hydrogen.

    PubMed

    Renny, Andrew; Santhosh, Viswanathan; Somkuwar, Nitin; Gokak, D T; Sharma, Pankaj; Bhargava, Sanjay

    2016-11-01

    The aim of this work was to study the pyrolysis of de-oiled seed cake of Jatropha Curcas and catalytic steam reforming of pyrolytic bio-oil to hydrogen. As per literature, presence of heavy nitrogenous and oxygenated compounds leads to catalyst deactivation. Here, an attempt has been made to tune pyrolytic reactions to optimize the N and O content of the pyrolytic bio-oil. Bio-oil conversion and hydrogen yield decreased as reaction progressed, which attributes to temporary loss of catalytic activity by blockage of catalyst pores by carbon deposition. Further, retention of steam reforming activity after repetitive steam activation suggests long-term catalyst usage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Processing Of Neem And Jatropha Methyl Esters -Alternative Fuels From Vegetable Oil

    NASA Astrophysics Data System (ADS)

    Ramasubramanian, S.; Manavalan, S.; Gnanavel, C.; Balakrishnan, G.

    2017-03-01

    Biodiesel is an alternative fuel for diesel engine. The methyl esters of vegetable oils, known as biodiesel are becoming increasingly popular because of their low environmental impact and potential as a green alternative fuel for diesel engine. This paper deals with the manufacturing process of Biodiesel from jatropha and neem oil. Biodiesel was prepared from neem oil and jatropha oil, the transestrified having kinematic viscosity of 3 & 2.6 centistokes, methanol ratio is 6:1 & 5.1respectively. The secondary solution is preheated at 65 C & 60 C and reaction temperature is maintained at 60C & 55 C and reaction time is 60 minutes approximately with NaOH catalyst and low viscosity oil is allowed to settle 24 hours. The average yield of neem and jatropha methyl esters was about 85%. These methyl esters shows excellent alternative under optimum condition for fossil fuels.

  11. Compatibility Assessment of Fuel System Elastomers with Bio-oil and Diesel Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kass, Michael D.; Janke, Christopher J.; Connatser, Raynella M.

    Bio-oil derived via fast pyrolysis is being developed as a renewable fuel option for petroleum distillates. The compatibility of neat bio-oil with six elastomer types was evaluated against the elastomer performance in neat diesel fuel, which served as the baseline. The elastomers included two fluorocarbons, six acrylonitrile butadiene rubbers (NBRs), and one type each of fluorosilicone, silicone, styrene butadiene rubber (SBR), polyurethane, and neoprene. Specimens of each material were exposed to the liquid and gaseous phases of the test fuels for 4 weeks at 60 degrees C, and properties in the wetted and dried states were measured. Exposure to bio-oilmore » produced significant volume expansion in the fluorocarbons, NBRs, and fluorosilicone; however, excessive swelling (over 80%) was only observed for the two fluorocarbons and two NBR grades. The polyurethane specimens were completely degraded by the bio-oil. In contrast, both silicone and SBR exhibited lower swelling levels in bio-oil compared to neat diesel fuel. The implication is that, while polyurethane and fluorocarbon may not be acceptable seal materials for bio-oils, silicone may offer a lower cost alternative.« less

  12. Compatibility Assessment of Fuel System Elastomers with Bio-oil and Diesel Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kass, Michael D.; Janke, Christopher J.; Connatser, Raynella M.

    Here we report that bio-oil derived via fast pyrolysis is being developed as a renewable fuel option for petroleum distillates. The compatibility of neat bio-oil with six elastomer types was evaluated against the elastomer performance in neat diesel fuel, which served as the baseline. The elastomers included two fluorocarbons, six acrylonitrile butadiene rubbers (NBRs), and one type each of fluorosilicone, silicone, styrene butadiene rubber (SBR), polyurethane, and neoprene. Specimens of each material were exposed to the liquid and gaseous phases of the test fuels for 4 weeks at 60 °C, and properties in the wetted and dried states were measured.more » Exposure to bio-oil produced significant volume expansion in the fluorocarbons, NBRs, and fluorosilicone; however, excessive swelling (over 80%) was only observed for the two fluorocarbons and two NBR grades. The polyurethane specimens were completely degraded by the bio-oil. In contrast, both silicone and SBR exhibited lower swelling levels in bio-oil compared to neat diesel fuel. The implication is that, while polyurethane and fluorocarbon may not be acceptable seal materials for bio-oils, silicone may offer a lower cost alternative.« less

  13. Compatibility Assessment of Fuel System Elastomers with Bio-oil and Diesel Fuel

    DOE PAGES

    Kass, Michael D.; Janke, Christopher J.; Connatser, Raynella M.; ...

    2016-07-12

    Here we report that bio-oil derived via fast pyrolysis is being developed as a renewable fuel option for petroleum distillates. The compatibility of neat bio-oil with six elastomer types was evaluated against the elastomer performance in neat diesel fuel, which served as the baseline. The elastomers included two fluorocarbons, six acrylonitrile butadiene rubbers (NBRs), and one type each of fluorosilicone, silicone, styrene butadiene rubber (SBR), polyurethane, and neoprene. Specimens of each material were exposed to the liquid and gaseous phases of the test fuels for 4 weeks at 60 °C, and properties in the wetted and dried states were measured.more » Exposure to bio-oil produced significant volume expansion in the fluorocarbons, NBRs, and fluorosilicone; however, excessive swelling (over 80%) was only observed for the two fluorocarbons and two NBR grades. The polyurethane specimens were completely degraded by the bio-oil. In contrast, both silicone and SBR exhibited lower swelling levels in bio-oil compared to neat diesel fuel. The implication is that, while polyurethane and fluorocarbon may not be acceptable seal materials for bio-oils, silicone may offer a lower cost alternative.« less

  14. Compatibility Assessment of Fuel System Infrastructure Plastics with Bio-oil and Diesel Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kass, Michael D.; Janke, Christopher James; Connatser, Raynella M.

    We report that bio-oil derived via fast pyrolysis is being developed as a renewable fuel option for petroleum distillates. The compatibility of neat bio-oil with 18 plastic types was evaluated using neat diesel fuel as the baseline. The plastic materials included polyphenylene sulfide (PPS), polyethylene terephthalate (PET), polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polyoxymethylene (POM), POM copolymer, high density polyethylene (HDPE), polybutylene terephthalate (PBT), polypropylene (PP), polyethylene terephthalate glycol (PETG), polythiourea (PTU), four nylon grades, and four thermosetting resins. Specimens of each material were immersed in the test fuels for a period of 16 weeks to achieve full saturation. Except formore » PP and HDPE, the plastic materials underwent higher volume expansion in bio-oil than in the baseline diesel (which was negligible in most cases). This volume increase corresponds to the higher polarity of the bio-oil. PPS, PET, and PTFE were unaffected by bio-oil exposure, but modest swelling (between 2 and 5%) occurred for the two acetals (POM and POM copolymer), Nylon-12, PBT, PETG, and the four resin grades. More moderate swelling (8–15%) was noted for Nylon-6, Nylon-6/6, and Nylon-11, and excessive swell (>40%) occurred for PTU. The nonpolar nature of PP and HDPE matches that of diesel, leading to higher solubility (swell) in this fuel type. Finally, the relatively low volume expansion following exposure indicates that many of the existing infrastructure plastics (excluding PTU) should be suitable for use with bio-oil.« less

  15. Experimental studies on natural aspirated diesel engine fuelled with corn seed oil methyl ester as a bio-diesel.

    NASA Astrophysics Data System (ADS)

    Rama Krishna Reddy, E.; Dhana Raju, V.

    2018-03-01

    This paper evaluates the possibilities of using corn seed oil methyl ester as a fuel for compression ignition engines. The biodiesels are contained high oxygen content, and high Cetane number, due to this properties efficiency of biodiesel is higher than diesel fuel. The experiments were conducted with different biodiesel blends of (B10, B15, B20 and B25) corn seed oil on single cylinder four stroke natural aspirated diesel engines. Performance parameters and exhaust emissions are investigated in this experimental with the blends of the corn seed oil methyl ester and diesel fuel. The test results showed that the bio-diesel blends gives improved results for brake thermal efficiency and specific fuel consumption when compared with the diesel fuel. The emissions of corn seed methyl esters follow the same trend of diesel but the smoke opacity was reduces for all blends. From the investigation, corn seed methyl ester is also having the properties similar to diesel fuel; it is biodegradable and renewable fuel, so it will be used as an alternative for diesel fuel.

  16. Analysis of chlorophyll fluorescence spectra for the monitoring of Cd toxicity in a bio-energy crop (Jatropha curcas).

    PubMed

    Marques, Marise Conceição; do Nascimento, Clístenes Williams Araújo

    2013-10-05

    The vegetation of metal-contaminated soils using non-edible crops can be a safe and economical technique for Cd immobilization and the remediation of contaminated sites. Jatropha (Jatropha curcas L.) exhibits a relative tolerance to heavy metals and potential for biofuel production. The study was performed to monitor the Cd-induced alterations in jatropha plants by X-ray chlorophyll fluorescence. The Cd effects on photosynthetic pigments, the mineral composition of plants, defense enzyme activity and soluble proteins were also studied. Plants were grown for 20days in a nutrient solution with five Cd contents: 5, 10, 20, 30 and 40μmolL(-1); a control with no Cd addition was also monitored. The analysis of the chlorophyll fluorescence spectra allowed detecting alterations caused by Cd toxicity in the jatropha plants. The mineral composition of the plants was affected by the Cd doses; however, the Fe and Mg contents were not significantly reduced, which most likely improved the effects on the contents of the photosynthetic pigments. Because of its relative tolerance to Cd, Jatropha curcas may be a promising species to revegetate Cd-contaminated sites. Considering the long period needed to phytoremediate soils, the combination of remediation with bioenergy production could be an attractive option. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Biogas production from Jatropha curcas press-cake.

    PubMed

    Staubmann, R; Foidl, G; Foidl, N; Gübitz, G M; Lafferty, R M; Arbizu, V M; Steiner, W

    1997-01-01

    Seeds of the tropical plant Jatropha curcas (purge nut, physic nut) are used for the production of oil. Several methods for oil extraction have been developed. In all processes, about 50% of the weight of the seeds remain as a press cake containing mainly protein and carbohydrates. Investigations have shown that this residue contains toxic compounds and cannot be used as animal feed without further processing. Preliminary experiments have shown that the residue is a good substrate for biogas production. Biogas formation was studied using a semicontinous upflow anaerobic sludge blanket (UASB) reactor; a contact-process and an anaerobic filter each reactor having a total volume of 110 L. A maximum production rate of 3.5 m3 m"3 d"1 was obtained in the anaerobic filter with a loading rate of 13 kg COD m~3 d"1. However, the UASB reactor and the contact-process were not suitable for using this substrate. When using an anaerobic filter with Jatropha curcas seed cake as a substrate, 76% of the COD was degraded and 1 kg degraded COD yielded 355 L of biogas containing 70% methane.

  18. The use of Jatropha curcas to achieve a self sufficient water distribution system: A case study in rural Senegal

    NASA Astrophysics Data System (ADS)

    Archer, Alexandra

    The use of Jatropha curcas as a source of oil for fueling water pumps holds promise for rural communities struggling to achieve water security in arid climates. The potential for use in developing communities as an affordable, sustainable fuel source has been highly recommended for many reasons: it is easily propagated, drought resistant, grows rapidly, and has high-oil-content seeds, as well as medicinal and economic potential. This study uses a rural community in Senegal, West Africa, and calculates at what level of Jatropha curcas production the village is able to be self-sufficient in fueling their water system to meet drinking, sanitation and irrigation requirements. The current water distribution system was modelled to represent irrigation requirements for nine different Jatropha curcas cultivation and processing schemes. It was found that a combination of using recycled greywater for irrigation and a mechanical press to maximize oil recovered from the seeds of mature Jatropha curcas trees, would be able to operate the water system with no diesel required.

  19. Isolation and functional characterization of JcFT, a FLOWERING LOCUS T (FT) homologous gene from the biofuel plant Jatropha curcas.

    PubMed

    Li, Chaoqiong; Luo, Li; Fu, Qiantang; Niu, Longjian; Xu, Zeng-Fu

    2014-05-08

    Physic nut (Jatropha curcas L.) is a potential feedstock for biofuel production because Jatropha oil is highly suitable for the production of the biodiesel and bio-jet fuels. However, Jatropha exhibits low seed yield as a result of unreliable and poor flowering. FLOWERING LOCUS T (FT) -like genes are important flowering regulators in higher plants. To date, the flowering genes in Jatropha have not yet been identified or characterized. To better understand the genetic control of flowering in Jatropha, an FT homolog was isolated from Jatropha and designated as JcFT. Sequence analysis and phylogenetic relationship of JcFT revealed a high sequence similarity with the FT genes of Litchi chinensis, Populus nigra and other perennial plants. JcFT was expressed in all tissues of adult plants except young leaves, with the highest expression level in female flowers. Overexpression of JcFT in Arabidopsis and Jatropha using the constitutive promoter cauliflower mosaic virus 35S or the phloem-specific promoter Arabidopsis SUCROSE TRANSPORTER 2 promoter resulted in an extremely early flowering phenotype. Furthermore, several flowering genes downstream of JcFT were up-regulated in the JcFT-overexpression transgenic plant lines. JcFT may encode a florigen that acts as a key regulator in flowering pathway. This study is the first to functionally characterize a flowering gene, namely, JcFT, in the biofuel plant Jatropha.

  20. Isolation and functional characterization of JcFT, a FLOWERING LOCUS T (FT) homologous gene from the biofuel plant Jatropha curcas

    PubMed Central

    2014-01-01

    Background Physic nut (Jatropha curcas L.) is a potential feedstock for biofuel production because Jatropha oil is highly suitable for the production of the biodiesel and bio-jet fuels. However, Jatropha exhibits low seed yield as a result of unreliable and poor flowering. FLOWERING LOCUS T (FT) –like genes are important flowering regulators in higher plants. To date, the flowering genes in Jatropha have not yet been identified or characterized. Results To better understand the genetic control of flowering in Jatropha, an FT homolog was isolated from Jatropha and designated as JcFT. Sequence analysis and phylogenetic relationship of JcFT revealed a high sequence similarity with the FT genes of Litchi chinensis, Populus nigra and other perennial plants. JcFT was expressed in all tissues of adult plants except young leaves, with the highest expression level in female flowers. Overexpression of JcFT in Arabidopsis and Jatropha using the constitutive promoter cauliflower mosaic virus 35S or the phloem-specific promoter Arabidopsis SUCROSE TRANSPORTER 2 promoter resulted in an extremely early flowering phenotype. Furthermore, several flowering genes downstream of JcFT were up-regulated in the JcFT-overexpression transgenic plant lines. Conclusions JcFT may encode a florigen that acts as a key regulator in flowering pathway. This study is the first to functionally characterize a flowering gene, namely, JcFT, in the biofuel plant Jatropha. PMID:24886195

  1. Using mobile distributed pyrolysis facilities to deliver a forest residue resource for bio-fuel production

    NASA Astrophysics Data System (ADS)

    Brown, Duncan

    Distributed mobile conversion facilities using either fast pyrolysis or torrefaction processes can be used to convert forest residues to more energy dense substances (bio-oil, bio-slurry or torrefied wood) that can be transported as feedstock for bio-fuel facilities. All feedstock are suited for gasification, which produces syngas that can be used to synthesise petrol or diesel via Fischer-Tropsch reactions, or produce hydrogen via water gas shift reactions. Alternatively, the bio-oil product of fast pyrolysis may be upgraded to produce petrol and diesel, or can undergo steam reformation to produce hydrogen. Implementing a network of mobile facilities reduces the energy content of forest residues delivered to a bio-fuel facility as mobile facilities use a fraction of the biomass energy content to meet thermal or electrical demands. The total energy delivered by bio-oil, bio-slurry and torrefied wood is 45%, 65% and 87% of the initial forest residue energy content, respectively. However, implementing mobile facilities is economically feasible when large transport distances are required. For an annual harvest of 1.717 million m3 (equivalent to 2000 ODTPD), transport costs are reduced to less than 40% of the total levelised delivered feedstock cost when mobile facilities are implemented; transport costs account for up to 80% of feedstock costs for conventional woodchip delivery. Torrefaction provides the lowest cost pathway of delivering a forest residue resource when using mobile facilities. Cost savings occur against woodchip delivery for annual forest residue harvests above 2.25 million m3 or when transport distances greater than 250 km are required. Important parameters that influence levelised delivered costs of feedstock are transport distances (forest residue spatial density), haul cost factors, thermal and electrical demands of mobile facilities, and initial moisture content of forest residues. Relocating mobile facilities can be optimised for lowest cost

  2. Bio Gas Oil Production from Waste Lard

    PubMed Central

    Hancsók, Jenő; Baladincz, Péter; Kasza, Tamás; Kovács, Sándor; Tóth, Csaba; Varga, Zoltán

    2011-01-01

    Besides the second generations bio fuels, one of the most promising products is the bio gas oil, which is a high iso-paraffin containing fuel, which could be produced by the catalytic hydrogenation of different triglycerides. To broaden the feedstock of the bio gas oil the catalytic hydrogenation of waste lard over sulphided NiMo/Al2O3 catalyst, and as the second step, the isomerization of the produced normal paraffin rich mixture (intermediate product) over Pt/SAPO-11 catalyst was investigated. It was found that both the hydrogenation and the decarboxylation/decarbonylation oxygen removing reactions took place but their ratio depended on the process parameters (T = 280–380°C, P = 20–80 bar, LHSV = 0.75–3.0 h−1 and H2/lard ratio: 600 Nm3/m3). In case of the isomerization at the favourable process parameters (T = 360–370°C, P = 40 –50 bar, LHSV = 1.0 h−1 and H2/hydrocarbon ratio: 400 Nm3/m3) mainly mono-branching isoparaffins were obtained. The obtained products are excellent Diesel fuel blending components, which are practically free of heteroatoms. PMID:21403875

  3. Bio gas oil production from waste lard.

    PubMed

    Hancsók, Jeno; Baladincz, Péter; Kasza, Tamás; Kovács, Sándor; Tóth, Csaba; Varga, Zoltán

    2011-01-01

    Besides the second generations bio fuels, one of the most promising products is the bio gas oil, which is a high iso-paraffin containing fuel, which could be produced by the catalytic hydrogenation of different triglycerides. To broaden the feedstock of the bio gas oil the catalytic hydrogenation of waste lard over sulphided NiMo/Al(2)O(3) catalyst, and as the second step, the isomerization of the produced normal paraffin rich mixture (intermediate product) over Pt/SAPO-11 catalyst was investigated. It was found that both the hydrogenation and the decarboxylation/decarbonylation oxygen removing reactions took place but their ratio depended on the process parameters (T = 280-380°C, P = 20-80 bar, LHSV = 0.75-3.0  h(-1) and H(2)/lard ratio: 600  Nm(3)/m(3)). In case of the isomerization at the favourable process parameters (T = 360-370°C, P = 40-50 bar, LHSV = 1.0  h(-1) and H(2)/hydrocarbon ratio: 400  Nm(3)/m(3)) mainly mono-branching isoparaffins were obtained. The obtained products are excellent Diesel fuel blending components, which are practically free of heteroatoms.

  4. Biogas production from Jatropha curcas press-cake

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Staubmann, R.; Guebitz, G.M.; Lafferty, R.M.

    Seeds of the tropical plant Jatropha curcas (purge nut, physic nut) are used for the production of oil. Several methods for oil extraction have been developed. In all processes, about 50% of the weight of the seeds remain as a press cake containing mainly protein and carbohydrates. Investigations have shown that this residue contains toxic compounds and cannot be used as animal feed without further processing. Preliminary experiments have shown that the residue is a good substrate for biogas production. Biogas formation was studied using a semicontinous upflow anaerobic sludge blanket (UASB) reactor; a contact-process and an anaerobic filter eachmore » reactor having a total volume of 110 L. A maximum production rate of 3.5 m{sup 3} m{sup -3} d{sup -1} was obtained in the anaerobic filter with a loading rate of 13 kg COD m{sup -3} d{sup -1}. However, the UAS reactor and the contact-process were not suitable for using this substrate. When using an anaerobic filter with Jatropha curcas seed cake as a substrate, 76% of the COD was degraded and 1 kg degraded COD yielded 355 L of biogas containing 70% methane. 28 refs., 3 figs., 4 tabs.« less

  5. Multivariate diallel analysis allows multiple gains in segregating populations for agronomic traits in Jatropha.

    PubMed

    Teodoro, P E; Rodrigues, E V; Peixoto, L A; Silva, L A; Laviola, B G; Bhering, L L

    2017-03-22

    Jatropha is research target worldwide aimed at large-scale oil production for biodiesel and bio-kerosene. Its production potential is among 1200 and 1500 kg/ha of oil after the 4th year. This study aimed to estimate combining ability of Jatropha genotypes by multivariate diallel analysis to select parents and crosses that allow gains in important agronomic traits. We performed crosses in diallel complete genetic design (3 x 3) arranged in blocks with five replications and three plants per plot. The following traits were evaluated: plant height, stem diameter, canopy projection between rows, canopy projection on the line, number of branches, mass of hundred grains, and grain yield. Data were submitted to univariate and multivariate diallel analysis. Genotypes 107 and 190 can be used in crosses for establishing a base population of Jatropha, since it has favorable alleles for increasing the mass of hundred grains and grain yield and reducing the plant height. The cross 190 x 107 is the most promising to perform the selection of superior genotypes for the simultaneous breeding of these traits.

  6. Diesel reformulation using bio-derived propanol to control toxic emissions from a light-duty agricultural diesel engine.

    PubMed

    Thillainayagam, Muthukkumar; Venkatesan, Krishnamoorthy; Dipak, Rana; Subramani, Saravanan; Sethuramasamyraja, Balaji; Babu, Rajesh Kumar

    2017-07-01

    In the Indian agricultural sector, millions of diesel-driven pump-sets were used for irrigation purposes. These engines produce carcinogenic diesel particulates, toxic nitrogen oxides (NOx), and carbon monoxide (CO) emissions which threaten the livelihood of large population of farmers in India. The present study investigates the use of n-propanol, a less-explored high carbon bio-alcohol that can be produced by sustainable pathways from industrial and crop wastes that has an attractive opportunity for powering stationary diesel engines meant for irrigation and rural electrification. This study evaluates the use of n-propanol addition in fossil diesel by up to 30% by vol. and concurrently reports the effects of exhaust gas recirculation (EGR) on emissions of an agricultural DI diesel engine. Three blends PR10, PR20, and PR30 were prepared by mixing 10, 20, and 30% by vol. of n-propanol with fossil diesel. Results when compared to baseline diesel case indicated that smoke density reduced with increasing n-propanol fraction in the blends. PR10, PR20, and PR30 reduced smoke density by 13.33, 33.33, and 60%, respectively. NOx emissions increased with increasing n-propanol fraction in the blends. Later, three EGR rates (10, 20, and 30%) were employed. At any particular EGR rate, smoke density remained lower with increasing n-propanol content in the blends under increasing EGR rates. NOx reduced gradually with EGR. At 30% EGR, the blends PR10, PR20, and PR30 reduced NOx emissions by 43.04, 37.98, and 34.86%, respectively when compared to baseline diesel. CO emissions remained low but hydrocarbon (HC) emissions were high for n-propanol/diesel blends under EGR. Study confirmed that n-propanol could be used by up to 30% by vol. with diesel and the blends delivered lower soot density, NOx, and CO emissions under EGR.

  7. Combustion Performance and Exhaust Emission of DI Diesel Engine Using Various Sources of Waste Cooking Oil

    NASA Astrophysics Data System (ADS)

    Afiq, Mohd; Azuhairi, Mohd; Jazair, Wira

    2010-06-01

    In Malaysia, more than 200-tone of cooking oil are used by domestic users everyday. After frying process, about a quarter of these cooking oil was remained and drained into sewage system. This will pollutes waterways and affects the ecosystem. The use of waste cooking oil (WCO) for producing bio-diesel was considered in economical factor which current production cost of bio-diesel production is higher in Malaysia due to higher price of palm oil. Thus, the aim of this study is to investigate the most suitable source of WCO to become a main source of bio-diesel for bio-diesel production in this country. To perform this research, three type of WCO were obtained from house's kitchen, cafeteria and mamak's restaurant. In this study, prospect of these bio-diesel source was evaluated based on its combustion performance and exhaust emissions operated in diesel engine in the form of waste cooking oil methyl ester (WCOME) and have been compared with pure diesel fuel. A 0.6 liter, single-cylinder, air-cooled direct injection diesel engine was used to perform this experiment. Experiment was done at variable engine loads and constant engine speed. As the result, among three stated WCOMEs, the one collected from house's kitchen gives the best performance in term of brake specific fuel consumption (bsfc) and brake power (BP) with lowest soot emission.

  8. Influence of Antioxidant Addition in Jatropha Biodiesel on the Performance, Combustion and Emission Characteristics of a DI Diesel Engine

    NASA Astrophysics Data System (ADS)

    Arockiasamy, Prabu; Ramachandran Bhagavathiammal, Anand

    2018-04-01

    An experimental investigation is conducted on a single-cylinder DI diesel engine, to evaluate the performance, combustion and emission characteristics of Jatropha biodiesel with the addition of antioxidants namely, Succinimide (C4H5NO2), N,N-Dimethyl p-phenylenediamine dihydrochloride (C8H14Cl2N2) and N-Phenyl- p-phenylenediamine (C6H5NHC6H4NH2) at 500, 1000 and 2000 ppm. The performance, combustion and emission characteristic tests are conducted at a constant speed of 1500 rpm, injection pressure of 215 bar, injection timing of 26° before top dead centre for the nine test fuels and the experimental results are compared with neat diesel and neat biodiesel as base fuels. The experimental results show that the addition of antioxidant in biodiesel suppresses the NO emission by quenching the OH radicals that are produced by the reaction of hydrocarbon radicals with molecular nitrogen. The maximum percentage reduction of NO emission by 5, 6 and 7% are observed for N-Phenyl- p-phenylenediamine, N,N-Dimethyl p-phenylenediamine dihydrochloride and Succinimide blended test fuels at 2000 ppm antioxidant addition with biodiesel.

  9. Degradation of Jatropha curcas phorbol esters derived from Jatropha oil cake and their tumor-promoting activity.

    PubMed

    Nakao, Motoyuki; Hasegawa, Go; Yasuhara, Tadashi; Ishihara, Yoko

    2015-04-01

    Large amount of oil cake is generated during biodiesel production from Jatropha seeds. Although Jatropha oil cake is rich in plant nutrients, presence of toxic phorbol esters restricts the usage of oil cake as a fertilizer. The objective of this study is to evaluate the components and tumor promoting activity of phorbol esters in Jatropha oil cake-supplemented soil and plants grown in the treated soil. Contents and their biological activity of Jatropha phorbol esters in soil and plants were sequentially analyzed by high-performance liquid chromatography (HPLC) and in vitro cell transformation assay, respectively. Disappearance of Jatropha phorbol-ester-specific peaks were followed with HPLC during incubation of Jatropha oil cake with soil for five weeks. Along with the degradation of Jatropha phorbol ester in soil, tumor-promoting activity in the sample was also attenuated and ultimately disappeared. Jatropha phorbol esters and tumor promoting activity were not detected from mustard spinach grown in the Jatropha oil cake-supplemented soil. In addition, the esterase KM109 degrades DHPB (see definition below; Jatropha phorbol ester) and reduced its tumor-promoting activity. From these data, we conclude: (1) components and tumor promoting activity of Jatropha phorbol esters in the oil cake disappeared completely by incubation with soil for five-week, (2) Jatropha phorbol esters did not transfer into plants grown in the Jatropha oil cake-supplemented soil, and (3) DHPB can be degraded by esterase from soil bacterium. These observations are useful for utilization of Jatropha oil cake as a fertilizer. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Optimization of Biomass Gasification Process for F-T Bio-Diesel Synthesys

    NASA Astrophysics Data System (ADS)

    Song, Jae Hun; Sung, Yeon Kyung; Yu, Tae U.; Choi, Young Tae; Lee, Uen Do

    The characteristics of biomass steam gasification were investigated to make an optimum syngas for Fischer Tropsch (F-T) synthesis of bio-diesel. Korean pine wood chip was used as a fuel and the experiment was conducted in a lab scale bubbling fluidized bed (0.1m LD. x 3.Omheight). Gas composition was evaluated by changing operating parameters such as gasifier temperature, and steam to fuel ratio. Major syngas was monitored by on-line gas analyzer (ND-IR spectroscopy) and gas chromatography (GC). As the temperature of gasifier increases hydrogen in the syngas increases while CO in the product gas decreases. The low concentration of sulfur compound and nitrogen in the product gas shows the potential advantages in the purification process of the syngas for F-T process. Optimum operating condition of the gasifier was found concerning the following gas cleaning and F-T process; H2-CO ratio and total gas yield increase while decreasing methane and CO2 concentrations in the syngas.

  11. Assessment of bio-fuel options for solid oxide fuel cell applications

    NASA Astrophysics Data System (ADS)

    Lin, Jiefeng

    Rising concerns of inadequate petroleum supply, volatile crude oil price, and adverse environmental impacts from using fossil fuels have spurred the United States to promote bio-fuel domestic production and develop advanced energy systems such as fuel cells. The present dissertation analyzed the bio-fuel applications in a solid oxide fuel cell-based auxiliary power unit from environmental, economic, and technological perspectives. Life cycle assessment integrated with thermodynamics was applied to evaluate the environmental impacts (e.g., greenhouse gas emission, fossil energy consumption) of producing bio-fuels from waste biomass. Landfill gas from municipal solid wastes and biodiesel from waste cooking oil are both suggested as the promising bio-fuel options. A nonlinear optimization model was developed with a multi-objective optimization technique to analyze the economic aspect of biodiesel-ethanol-diesel ternary blends used in transportation sectors and capture the dynamic variables affecting bio-fuel productions and applications (e.g., market disturbances, bio-fuel tax credit, policy changes, fuel specification, and technological innovation). A single-tube catalytic reformer with rhodium/ceria-zirconia catalyst was used for autothermal reformation of various heavy hydrocarbon fuels (e.g., diesel, biodiesel, biodiesel-diesel, and biodiesel-ethanol-diesel) to produce a hydrogen-rich stream reformates suitable for use in solid oxide fuel cell systems. A customized mixing chamber was designed and integrated with the reformer to overcome the technical challenges of heavy hydrocarbon reformation. A thermodynamic analysis, based on total Gibbs free energy minimization, was implemented to optimize the operating environment for the reformations of various fuels. This was complimented by experimental investigations of fuel autothermal reformation. 25% biodiesel blended with 10% ethanol and 65% diesel was determined to be viable fuel for use on a truck travelling with

  12. Lipase-catalyzed biodiesel production and quality with Jatropha curcas oil: exploring its potential for Central America.

    PubMed

    Bueso, Francisco; Moreno, Luis; Cedeño, Mathew; Manzanarez, Karla

    2015-01-01

    Extensive native Jatropha curcas L. (Jatropha) crop areas have been planted in Central America marginal lands since 2008 as a non-edible prospective feedstock alternative to high-value, edible palm oil. Jatropha biodiesel is currently exclusively produced in the region at commercial scale utilizing alkaline catalysts. Recently, a free, soluble Thermomyces lanuginosus (TL) 1,3 specific lipase has shown promise as biocatalyst, reportedly yielding up to 96 % ASTM D6751 compliant biodiesel after 24 h transesterification of soybean, canola oils and other feedstocks. Biodiesel conversion rate and quality of enzymatically catalyzed transesterification of Jatropha oil was evaluated. Two lipases: free, soluble TL and immobilized Candida antarctica (CA) catalyzed methanolic transesterification of crude Jatropha and refined palm oil. Jatropha yields were similar to palm biodiesel with NaOH as catalyst. After 24 h transesterification, Jatropha (81 %) and palm oil (86 %) biodiesel yields with TL as catalyst were significantly higher than CA (<70 %) but inferior to NaOH (>90 %). Enzymatic catalysts (TL and CA) produced Jatropha biodiesel with optimum flow properties but did not complied with ASTM D6751 stability parameters (free fatty acid content and oil stability index). Biodiesel production with filtered, degummed, low FFA Jatropha oil using a free liquid lipase (TL) as catalyst showed higher yielding potential than immobilized CA lipase as substitute of RBD palm oil with alkaline catalyst. However, Jatropha enzymatic biodiesel yield and stability were inferior to alkaline catalyzed biodiesel and not in compliance with international quality standards. Lower quality due to incomplete alcoholysis and esterification, potential added costs due to need of more than 24 h to achieve comparable biodiesel yields and extra post-transesterification refining reactions are among the remaining drawbacks for the environmentally friendlier enzymatic catalysis of crude Jatropha oil to

  13. Kinetics study of Jatropha oil esterification with ethanol in the presence of tin (II) chloride catalyst for biodiesel production

    NASA Astrophysics Data System (ADS)

    Kusumaningtyas, Ratna Dewi; Ratrianti, Naomi; Purnamasari, Indah; Budiman, Arief

    2017-01-01

    Jatropha oil is one of the promising feedstocks for biodiesel production. Jatropha oil is non-edible oil hence utilization of this oil would not compete with the needs of food. However, crude jatropha oil usually has high free fatty acid (FFA) content. Due to this fact, direct alkaline-catalyzed transesterification of crude jatropha oil for biodiesel production cannot be performed. FFA in crude jatropha oil will react with a base catalyst, resulting in soap as by product and hindering methyl ester (biodiesel) production. Therefore, prior to a transesterification reaction, it is crucial to run a pretreatment step of jatropha oil which can lower the FFA content in the oil. In this work, the pretreatment process was conducted through the esterification reaction of FFA contained in crude jatropha oil with ethanol over tin (II) chloride catalyst to reduce the acid value of the feedstock. The feedstock was Indonesia crude jatropha oil containing 12.03% of FFA. The esterification reaction was carried out in a batch reactor with a molar ratio of FFA to ethanol was 1:60 and total reaction time was 180 minutes. Tin (II) chloride catalyst was varied at 2.5, 5, 7.5, and 10% wt, whereas the effect of the reaction temperature was studied at 35, 34, 55, and 65 °C. The best reaction conversion was 71.55%, achieved at the following condition: a reaction temperature of 65 °C, catalyst concentration of 10% wt, the reaction time of 180 min, and the molar ratio of FFA to ethanol was 1:60. Kinetics study was also conducted in this work. It was found that esterification reaction of jatropha oil FFA with ethanol catalyzed by tin(II) chloride fitted the first-order pseudo-homogeneous kinetics model. It was also revealed that the frequency factor (A) and the activation energy (Ea) were 4.3864 × 106 min-1 and 56.2513 kJ/mole, respectively.

  14. Effects of Alumina Nano Metal Oxide Blended Palm Stearin Methyl Ester Bio-Diesel on Direct Injection Diesel Engine Performance and Emissions

    NASA Astrophysics Data System (ADS)

    Krishna, K.; Kumar, B. Sudheer Prem; Reddy, K. Vijaya Kumar; Charan Kumar, S.; Kumar, K. Ravi

    2017-08-01

    The Present Investigation was carried out to study the effect of Alumina Metal Oxide (Al2O3) Nano Particles as additive for Palm Stearin Methyl Ester Biodiesel (B 100) and their blends as an alternate fuel in four stroke single cylinder water cooled, direct injection diesel engine. Alumina Nano Particles has high calorific value and relatively high thermal conductivity (30-1 W m K-1) compare to diesel, which helps to promote more combustion in engines due to their higher thermal efficiency. In the experimentation Al2O3 were doped in various proportions with the Palm Stearin Methyl Ester Biodiesel (B-100) using an ultrasonicator and a homogenizer with cetyl trimethyl ammonium bromide (CTAB) as the cationic surfactant. The test were performed on a Kirsloskar DI diesel engine at constant speed of 1500 rpm using different Nano Biodiesel Fuel blends (psme+50 ppm, psme+150 ppm, and psme+200 ppm) and results were compared with those of neat conventional diesel and Palm Stearin Methyl Ester Bio diesel. It was observed that for Nano Biodiesel Fuel blend (psme+50ppm) there is an significant reduction in carbon monoxide (CO) emissions and Nox emissions compared to diesel and the brake thermal efficiency for (psme+50ppm) was almost same as diesel.

  15. Green bio-oil extraction for oil crops

    NASA Astrophysics Data System (ADS)

    Zainab, H.; Nurfatirah, N.; Norfaezah, A.; Othman, H.

    2016-06-01

    The move towards a green bio-oil extraction technique is highlighted in this paper. The commonly practised organic solvent oil extraction technique could be replaced with a modified microwave extraction. Jatropha seeds (Jatropha curcas) were used to extract bio-oil. Clean samples were heated in an oven at 110 ° C for 24 hours to remove moisture content and ground to obtain particle size smaller than 500μm. Extraction was carried out at different extraction times 15 min, 30 min, 45 min, 60 min and 120 min to determine oil yield. The biooil yield obtained from microwave assisted extraction system at 90 minutes was 36% while that from soxhlet extraction for 6 hours was 42%. Bio-oil extracted using the microwave assisted extraction (MAE) system could enhance yield of bio-oil compared to soxhlet extraction. The MAE extraction system is rapid using only water as solvent which is a nonhazardous, environment-friendly technique compared to soxhlet extraction (SE) method using hexane as solvent. Thus, this is a green technique of bio-oil extraction using only water as extractant. Bio-oil extraction from the pyrolysis of empty fruit bunch (EFB), a biomass waste from oil palm crop, was enhanced using a biocatalyst derived from seashell waste. Oil yield for non-catalytic extraction was 43.8% while addition of seashell based biocatalyst was 44.6%. Oil yield for non-catalytic extraction was 43.8% while with addition of seashell-based biocatalyst was 44.6%. The pH of bio-oil increased from 3.5 to 4.3. The viscosity of bio-oil obtained by catalytic means increased from 20.5 to 37.8 cP. A rapid and environment friendly extraction technique is preferable to enhance bio-oil yield. The microwave assisted approach is a green, rapid and environmental friendly extraction technique for the production of bio-oil bearing crops.

  16. Construction of combustion models for rapeseed methyl ester bio-diesel fuel for internal combustion engine applications.

    PubMed

    Golovitchev, Valeri I; Yang, Junfeng

    2009-01-01

    Bio-diesel fuels are non-petroleum-based diesel fuels consisting of long chain alkyl esters produced by the transesterification of vegetable oils, that are intended for use (neat or blended with conventional fuels) in unmodified diesel engines. There have been few reports of studies proposing theoretical models for bio-diesel combustion simulations. In this study, we developed combustion models based on ones developed previously. We compiled the liquid fuel properties, and the existing detailed mechanism of methyl butanoate ester (MB, C(5)H(10)O(2)) oxidation was supplemented by sub-mechanisms for two proposed fuel constituent components, C(7)H(16) and C(7)H(8)O (and then, by mp2d, C(4)H(6)O(2) and propyne, C(3)H(4)) to represent the combustion model for rapeseed methyl ester described by the chemical formula, C(19)H(34)O(2) (or C(19)H(36)O(2)). The main fuel vapor thermal properties were taken as those of methyl palmitate C(19)H(36)O(2) in the NASA polynomial form of the Burcat database. The special global reaction was introduced to "crack" the main fuel into its constituent components. This general reaction included 309 species and 1472 reactions, including soot and NO(x) formation processes. The detailed combustion mechanism was validated using shock-tube ignition-delay data under diesel engine conditions. For constant volume and diesel engine (Volvo D12C) combustion modeling, this mechanism could be reduced to 88 species participating in 363 reactions.

  17. Production of bio-hydrogenated diesel by catalytic hydrotreating of palm oil over NiMoS2/γ-Al2O3 catalyst.

    PubMed

    Srifa, Atthapon; Faungnawakij, Kajornsak; Itthibenchapong, Vorranutch; Viriya-Empikul, Nawin; Charinpanitkul, Tawatchai; Assabumrungrat, Suttichai

    2014-04-01

    Catalytic hydrotreating of palm oil (refined palm olein type) to produce bio-hydrogenated diesel (BHD) was carried out in a continuous-flow fixed-bed reactor over NiMoS2/γ-Al2O3 catalyst. Effects of dominant hydrotreating parameters: temperature: 270-420°C; H2 pressure: 15-80 bar; LHSV: 0.25-5.0 h(-1); and H2/oil ratio: 250-2000 N(cm(3)/cm(3)) on the conversion, product yield, and a contribution of hydrodeoxygenation (HDO) and decarbonylation/decarboxylation (DCO/DCO2) were investigated to find the optimal hydrotreating conditions. All calculations including product yield and the contribution of HDO and DCO/DCO2 were extremely estimated based on mole balance corresponding to the fatty acid composition in feed to fully understand deoxygenation behaviors at different conditions. These analyses demonstrated that HDO, DCO, and DCO2 reactions competitively occurred at each condition, and had different optimal and limiting conditions. The differences in the hydrotreating reactions, liquid product compositions, and gas product composition were also discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Domestication and Breeding of Jatropha curcas L.

    PubMed

    Montes, Juan M; Melchinger, Albrecht E

    2016-12-01

    Jatropha curcas L. (jatropha) has a high, untapped potential to contribute towards sustainable production of food and bioenergy, rehabilitation of degraded land, and reduction of atmospheric carbon dioxide. Tremendous progress in jatropha domestication and breeding has been achieved during the past decade. This review: (i) summarizes current knowledge about the domestication and breeding of jatropha; (ii) identifies and prioritizes areas for further research; and (iii) proposes strategies to exploit the full genetic potential of this plant species. Altogether, the outlook is promising for accelerating the domestication of jatropha by applying modern scientific methods and novel technologies developed in plant breeding. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Preliminary assessment of Malaysian micro-algae strains for the production of bio jet fuel

    NASA Astrophysics Data System (ADS)

    Chen, J. T.; Mustafa, E. M.; Vello, V.; Lim, P.; Nik Sulaiman, N. M.; Majid, N. Abdul; Phang, S.; Tahir, P. Md.; Liew, K.

    2016-10-01

    Malaysia is the main hub in South-East Asia and has one of the highest air traffic movements in the region. Being rich in biodiversity, Malaysia has long been touted as country rich in biodiversity and therefore, attracts great interests as a place to setup bio-refineries and produce bio-fuels such as biodiesel, bio-petrol, green diesel, and bio-jet fuel Kerosene Jet A-1. Micro-algae is poised to alleviate certain disadvantages seen in first generation and second generation feedstock. In this study, the objective is to seek out potential micro-algae species in Malaysia to determine which are suitable to be used as the feedstock to enable bio-jet fuel production in Malaysia. From 79 samples collected over 30 sites throughout Malaysia, six species were isolated and compared for their biomass productivity and lipid content. Their lipid contents were then used to derived the require amount of micro-algae biomass to yield 1 kg of certifiable jet fuel via the HEFA process, and to meet a scenario where Malaysia implements a 2% alternative (bio-) jet fuel requirement.

  20. Microbial bio-fuels: a solution to carbon emissions and energy crisis.

    PubMed

    Kumar, Arun; Kaushal, Sumit; Saraf, Shubhini A; Singh, Jay Shankar

    2018-06-01

    Increasing energy demand, limited fossil fuel resources and climate change have prompted development of alternative sustainable and economical fuel resources such as crop-based bio-ethanol and bio-diesel. However, there is concern over use of arable land that is used for food agriculture for creation of biofuel. Thus, there is a renewed interest in the use of microbes particularly microalgae for bio-fuel production. Microbes such as micro-algae and cyanobacteria that are used for biofuel production also produce other bioactive compounds under stressed conditions. Microbial agents used for biofuel production also produce bioactive compounds with antimicrobial, antiviral, anticoagulant, antioxidant, antifungal, anti-inflammatory and anticancer activity. Because of importance of such high-value compounds in aquaculture and bioremediation, and the potential to reduce carbon emissions and energy security, the biofuels produced by microbial biotechnology might substitute the crop-based bio-ethanol and bio-diesel production.

  1. Bio-oil based biorefinery strategy for the production of succinic acid.

    PubMed

    Wang, Caixia; Thygesen, Anders; Liu, Yilan; Li, Qiang; Yang, Maohua; Dang, Dan; Wang, Ze; Wan, Yinhua; Lin, Weigang; Xing, Jianmin

    2013-01-01

    Succinic acid is one of the key platform chemicals which can be produced via biotechnology process instead of petrochemical process. Biomass derived bio-oil have been investigated intensively as an alternative of diesel and gasoline fuels. Bio-oil could be fractionized into organic phase and aqueous phase parts. The organic phase bio-oil can be easily upgraded to transport fuel. The aqueous phase bio-oil (AP-bio-oil) is of low value. There is no report for its usage or upgrading via biological methods. In this paper, the use of AP-bio-oil for the production of succinic acid was investigated. The transgenic E. coli strain could grow in modified M9 medium containing 20 v/v% AP-bio-oil with an increase in OD from 0.25 to 1.09. And 0.38 g/L succinic acid was produced. With the presence of 4 g/L glucose in the medium, succinic acid concentration increased from 1.4 to 2.4 g/L by addition of 20 v/v% AP-bio-oil. When enzymatic hydrolysate of corn stover was used as carbon source, 10.3 g/L succinic acid was produced. The obtained succinic acid concentration increased to 11.5 g/L when 12.5 v/v% AP-bio-oil was added. However, it decreased to 8 g/L when 50 v/v% AP-bio-oil was added. GC-MS analysis revealed that some low molecular carbon compounds in the AP-bio-oil were utilized by E. coli. The results indicate that AP-bio-oil can be used by E. coli for cell growth and succinic acid production.

  2. Saving energy and reducing emissions of both polycyclic aromatic hydrocarbons and particulate matter by adding bio-solution to emulsified diesel.

    PubMed

    Lin, Yuan-Chung; Lee, Wen-Jhy; Chen, Chun-Chi; Chen, Chung-Bang

    2006-09-01

    Development of emulsified diesel has been driven by the need to reduce emissions from diesel engines and to save energy. Emulsification technology and bio-solution (NOE-7F) were used to produce emulsified diesel in this study. The experimental results indicated that there were no significant separation layers in W13 (13 wt % water + 87 wt % PDF), W16 (16 wt % water + 84 wt % PDF), W19 (19 wt % water + 81 wt % PDF), E13 (13 wt % NOE-7F water + 87 wt % PDF), E16 (16 wt % NOE-7F water + 83 wt % PDF), and E19 (19 wt % NOE-7F water + 81 wt % PDF) after premium diesel fuel (PDF) was emulsified for more than 30 days. In addition, there was no significant increase in damage from using these six emulsified fuels after the operation of the diesel generator for more than one year. The energy saving and reduction of particulate matter (PM) and total polycyclic aromatic hydrocarbons (PAHs) for W13, W16, W19, E13, E16 and E19, respectively, were 3.90%, 30.9%, 27.6%; 3.38%, 37.0%, 34.9%; 2.17%, 22.2%, 15.4%; 5.87%, 38.6%, 49.3%; 5.88%, 57.8%, 58.0%; and 4.75%, 31.1%, 47.3%, compared with PDF. The above results revealed that the bio-solution (NOE-7F) had a catalytic effect which elevated the combustion efficiency and decreased pollutant emissions during the combustion process. Furthermore, bio-solution (NOE-7F) can stabilize the emulsified fuels and enhance energy saving. Thus, emulsified fuels are highly suitable for use as alternative fuels. Due to the increasing price of diesel, emulsified diesel containing NOE-7F has potential for commercial application.

  3. Potential treatments to reduce phorbol esters levels in jatropha seed cake for improving the value added product.

    PubMed

    Sadubthummarak, Umapron; Parkpian, Preeda; Ruchirawat, Mathuros; Kongchum, Manoch; Delaune, R D

    2013-01-01

    Jatropha seed cake contains high amounts of protein and other nutrients, however it has a drawback due to toxic compounds. The aim of this study was to investigate the methods applied to detoxify the main toxin, phorbol esters in jatropha seed cake, to a safe and acceptable level by maintaining the nutritional values. Phorbol esters are tetracyclic diterpenoids-polycyclic compounds that are known as tumor promoters and hence exhibited the toxicity within a broad range of species. Mismanagement of the jatropha waste from jatropha oil industries would lead to contamination of the environment, affecting living organisms and human health through the food chain, so several methods were tested for reducing the toxicity of the seed cake. The results from this investigation showed that heat treatments at either 120°C or 220°C for 1 hour and then mixing with adsorbing bentonite (10%), nanoparticles of zinc oxide (100 μg/g) plus NaHCO3 at 4%, followed by a 4-week incubation period yielded the best final product. The remaining phorbol esters concentration (0.05-0.04 mg/g) from this treatment was less than that reported for the nontoxic jatropha varieties (0.11-0.27 mg/g). Nutritional values of the seed cake after treatment remained at the same levels found in the control group and these values were crude protein (20.47-21.40 + 0.17-0.25%), crude lipid (14.27-14.68 + 0.13-0.14%) and crude fiber (27.33-29.67 + 0.58%). A cytotoxicity test conducted using L929 and normal human dermal fibroblast cell lines confirmed that most of the toxic compounds, especially phorbol esters, were shown as completely eliminated. The results suggested that the detoxification of phorbol esters residues in the jatropha seed cake was possible while it also retained nutritional values. Therefore, the methods to detoxify phorbol esters are necessary to minimize the toxicity of jatropha seed cake. Further, it is essential to reduce the possible environmental impacts that may be generated

  4. Development of marker-free transgenic Jatropha plants with increased levels of seed oleic acid

    PubMed Central

    2012-01-01

    Background Jatropha curcas is recognized as a new energy crop due to the presence of the high amount of oil in its seeds that can be converted into biodiesel. The quality and performance of the biodiesel depends on the chemical composition of the fatty acids present in the oil. The fatty acids profile of the oil has a direct impact on ignition quality, heat of combustion and oxidative stability. An ideal biodiesel composition should have more monounsaturated fatty acids and less polyunsaturated acids. Jatropha seed oil contains 30% to 50% polyunsaturated fatty acids (mainly linoleic acid) which negatively impacts the oxidative stability and causes high rate of nitrogen oxides emission. Results The enzyme 1-acyl-2-oleoyl-sn-glycero-3-phosphocholine delta 12-desaturase (FAD2) is the key enzyme responsible for the production of linoleic acid in plants. We identified three putative delta 12 fatty acid desaturase genes in Jatropha (JcFAD2s) through genome-wide analysis and downregulated the expression of one of these genes, JcFAD2-1, in a seed-specific manner by RNA interference technology. The resulting JcFAD2-1 RNA interference transgenic plants showed a dramatic increase of oleic acid (> 78%) and a corresponding reduction in polyunsaturated fatty acids (< 3%) in its seed oil. The control Jatropha had around 37% oleic acid and 41% polyunsaturated fatty acids. This indicates that FAD2-1 is the major enzyme responsible for converting oleic acid to linoleic acid in Jatropha. Due to the changes in the fatty acids profile, the oil of the JcFAD2-1 RNA interference seed was estimated to yield a cetane number as high as 60.2, which is similar to the required cetane number for conventional premium diesel fuels (60) in Europe. The presence of high seed oleic acid did not have a negative impact on other Jatropha agronomic traits based on our preliminary data of the original plants under greenhouse conditions. Further, we developed a marker-free system to generate the transgenic

  5. Hydrothermal microwave processing of microalgae as a pre-treatment and extraction technique for bio-fuels and bio-products.

    PubMed

    Biller, Patrick; Friedman, Cerri; Ross, Andrew B

    2013-05-01

    Microalgae are regarded as a promising source of lipids for bio-diesel production and bio-products. The current paper investigates the processing of microalgal slurries under controlled microwave irradiation. Microwave power was applied to reach temperatures of 80, 100, 120 and 140 °C at a constant residence time of 12 min. Microwave irradiation led to disruption of the algal cell walls which facilitated lipid extraction. The influence of inorganic material on microwave heating was assessed for three strains including, Nannochloropsis occulata, Chlorogloeopsis fritschii and Pseudochoricystis ellipsoidea. Mass balances were calculated and showed that the amount of carbon, nitrogen and total mass recovered in the residue was highly dependent on process conditions and algae strain. Hydrothermal microwave processing (HMP) was found to be an effective pre-treatment for hydrothermal liquefaction and extraction of lipids and phytochemicals. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Engineering low phorbol ester Jatropha curcas seed by intercepting casbene biosynthesis.

    PubMed

    Li, Chunhong; Ng, Ailing; Xie, Lifen; Mao, Huizhu; Qiu, Chengxiang; Srinivasan, Ramachandran; Yin, Zhongchao; Hong, Yan

    2016-01-01

    Casbene is a precursor to phorbol esters and down-regulating casbene synthase effectively reduces phorbol ester biosynthesis. Seed-specific reduction of phorbol ester (PE) helps develop Jatropha seed cake for animal nutrition. Phorbol esters (PEs) are diterpenoids present in some Euphorbiaceae family members like Jatropha curcas L. (Jatropha), a tropical shrub yielding high-quality oil suitable as feedstock for biodiesel and bio jet fuel. Jatropha seed contains up to 40 % of oil and can produce oil together with cake containing high-quality proteins. However, skin-irritating and cancer-promoting PEs make Jatropha cake meal unsuitable for animal nutrition and also raise some safety and environmental concerns on its planting and processing. Two casbene synthase gene (JcCASA163 and JcCASD168) homologues were cloned from Jatropha genome and both genes were highly expressed during seed development. In vitro functional analysis proved casbene synthase activity of JcCASA163 in converting geranylgeranyl diphosphate into casbene which has been speculated to be the precursor to PEs. A seed-specific promoter driving inverted repeats for RNAi interference targeting at either JcCASA163 or both genes could effectively down-regulate casbene synthase gene expression with concurrent marked reduction of PE level (by as much as 85 %) in seeds with no pleiotropic effects observed. Such engineered low PE in seed was heritable and co-segregated with the transgene. Our work implicated casbene synthase in Jatropha PE biosynthesis and provided evidence for casbene being the precursor for PEs. The success in reducing seed PE content through down-regulation of casbene synthase demonstrates the feasibility of intercepting PE biosynthesis in Jatropha seed to help address safety concerns on Jatropha plantation and seed processing and facilitate use of its seed protein for animal nutrition.

  7. Extraction of medium chain fatty acids from organic municipal waste and subsequent production of bio-based fuels.

    PubMed

    Kannengiesser, Jan; Sakaguchi-Söder, Kaori; Mrukwia, Timo; Jager, Johannes; Schebek, Liselotte

    2016-01-01

    This paper provides an overview on investigations for a new technology to generate bio-based fuel additives from bio-waste. The investigations are taking place at the composting plant in Darmstadt-Kranichstein (Germany). The aim is to explore the potential of bio-waste as feedstock in producing different bio-based products (or bio-based fuels). For this investigation, a facultative anaerobic process is to be integrated into the normal aerobic waste treatment process for composting. The bio-waste is to be treated in four steps to produce biofuels. The first step is the facultative anaerobic treatment of the waste in a rotting box namely percolate to generate a fatty-acid rich liquid fraction. The Hydrolysis takes place in the rotting box during the waste treatment. The organic compounds are then dissolved and transferred into the waste liquid phase. Browne et al. (2013) describes the hydrolysis as an enzymatically degradation of high solid substrates to soluble products which are further degraded to volatile fatty acids (VFA). This is confirmed by analytical tests done on the liquid fraction. After the percolation, volatile and medium chain fatty acids are found in the liquid phase. Concentrations of fatty acids between 8.0 and 31.5 were detected depending on the nature of the input material. In the second step, a fermentation process will be initiated to produce additional fatty acids. Existing microorganism mass is activated to degrade the organic components that are still remaining in the percolate. After fermentation the quantity of fatty acids in four investigated reactors increased 3-5 times. While fermentation mainly non-polar fatty acids (pentanoic to octanoic acid) are build. Next to the fermentation process, a chain-elongation step is arranged by adding ethanol to the fatty acid rich percolate. While these investigations a chain-elongation of mainly fatty acids with pair numbers of carbon atoms (acetate, butanoic and hexanoic acid) are demonstrated. After

  8. Bio-oil based biorefinery strategy for the production of succinic acid

    PubMed Central

    2013-01-01

    Background Succinic acid is one of the key platform chemicals which can be produced via biotechnology process instead of petrochemical process. Biomass derived bio-oil have been investigated intensively as an alternative of diesel and gasoline fuels. Bio-oil could be fractionized into organic phase and aqueous phase parts. The organic phase bio-oil can be easily upgraded to transport fuel. The aqueous phase bio-oil (AP-bio-oil) is of low value. There is no report for its usage or upgrading via biological methods. In this paper, the use of AP-bio-oil for the production of succinic acid was investigated. Results The transgenic E. coli strain could grow in modified M9 medium containing 20 v/v% AP-bio-oil with an increase in OD from 0.25 to 1.09. And 0.38 g/L succinic acid was produced. With the presence of 4 g/L glucose in the medium, succinic acid concentration increased from 1.4 to 2.4 g/L by addition of 20 v/v% AP-bio-oil. When enzymatic hydrolysate of corn stover was used as carbon source, 10.3 g/L succinic acid was produced. The obtained succinic acid concentration increased to 11.5 g/L when 12.5 v/v% AP-bio-oil was added. However, it decreased to 8 g/L when 50 v/v% AP-bio-oil was added. GC-MS analysis revealed that some low molecular carbon compounds in the AP-bio-oil were utilized by E. coli. Conclusions The results indicate that AP-bio-oil can be used by E. coli for cell growth and succinic acid production. PMID:23657107

  9. Occular and dermal toxicity of Jatropha curcas phorbol esters.

    PubMed

    Devappa, Rakshit K; Roach, Joy S; Makkar, Harinder P S; Becker, Klaus

    2013-08-01

    Jatropha curcas seeds are a promising feedstock for biodiesel production. However, Jatropha seed oil and other plant parts are toxic due to the presence of phorbol esters (PEs). The ever-increasing cultivation of toxic genotype of J. curcas runs the risk of increased human exposure to Jatropha products. In the present study, effects of J. curcas oil (from both toxic and nontoxic genotypes), purified PEs-rich extract and purified PEs (factors C1, C2, C(3mixture), (C4+C5)) on reconstituted human epithelium (RHE) and human corneal epithelium (HCE) were evaluated in vitro. The PEs were purified from toxic Jatropha oil. In both RHE and HCE, the topical application of PEs containing samples produced severe cellular alterations such as marked oedema, presence of less viable cell layers, necrosis and/or partial tissue disintegration in epithelium and increased inflammatory response (interleukin-1α and prostaglandin E2). When compared to toxic oil, histological alterations and inflammatory response were less evident (P<0.05) in nontoxic oil indicating the severity of toxicity was due to PEs. Conclusively, topical applications of Jatropha PEs are toxic towards RHE and HCE models, which represents dermal and occular toxicity respectively. Data obtained from this study would aid in the development of safety procedures for Jatropha biodiesel industries. It is advised to use protective gloves and glasses when handling PEs containing Jatropha products. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Mild Biomass Liquefaction Process for Economic Production of Stabilized Refinery-Ready Bio-oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gangwal, Santosh; Meng, Jiajia; McCabe, Kevin

    Southern Research (SR) in cooperation with U.S. Department of Energy (DOE), Bioenergy Technology Office (BETO), investigated a biomass liquefaction process for economic production of stabilized refinery-ready bio-oil. The project was awarded by DOE under a Funding Opportunity Announcement (DE-FOA-0000686) for Bio-oil Stabilization and Commoditization that intended to evaluate the feasibility of using bio-oil as a potential feedstock in an existing petroleum refinery. SR investigated Topic Area 1 of the FOA at Technology Readiness Level 2-3 to develop thermochemical liquefaction technologies for producing a bio-oil feedstock from high-impact biomass that can be utilized within a petroleum refinery. Bio-oil obtained from fastmore » pyrolysis of biomass is a green intermediate that can be further upgraded into a biofuel for blending in a petroleum refinery using a hydro-deoxygenation (HDO) route. Co-processing pyrolysis bio-oil in a petroleum refinery is an attractive approach to leverage the refinery’s existing capital. However, the petroleum industry is reluctant to accept pyrolysis bio-oil because of a lack of a standard definition for an acceptable bio-oil feedstock in existing refinery processes. Also per BETO’s multiyear program plan, fast pyrolysis-based bio-fuel is presently not cost competitive with petroleum-based transportation fuels. SR aims to develop and demonstrate a cost-effective low-severity thermal liquefaction and hydrodeoxygenation (HDO) process to convert woody biomass to stabilized bio-oils that can be directly blended with hydrotreater input streams in a petroleum refinery for production of gasoline and/or diesel range hydrocarbons. The specific project objectives are to demonstrate the processes at laboratory scale, characterize the bio-oil product and develop a plan in partnership with a refinery company to move the technology towards commercialization.« less

  11. Analytical characterization of products obtained from slow pyrolysis of Calophyllum inophyllum seed cake: study on performance and emission characteristics of direct injection diesel engine fuelled with bio-oil blends.

    PubMed

    Rajamohan, Sakthivel; Kasimani, Ramesh

    2018-04-01

    This paper aims to analyse the characteristics and properties of the fractions obtained from slow pyrolysis of non-edible seed cake of Calophyllum inophyllum (CI). The gas, bio-oil and biochar obtained from the pyrolysis carried out at 500 °C in a fixed bed batch type reactor at a heating rate of 30 °C/min were characterized by various analytical techniques. Owing to the high volatile content of CI biomass (72.61%), it was selected as the raw material in this present investigation. GC-MS and FT-IR analysis of bio-oil showed the presence of higher amount of oxygenated compounds, phenol derivatives, esters, acid and furans. The physicochemical properties of the bio-oil were tested as per ASTM norms which imply that bio-oil is a highly viscous liquid with lower heating value as compared to that of diesel fuel. The chemical composition of evolved gas was analysed by using GC testing which revealed the presence of combustible components. The FT-IR characterization of biochar showed the presence of aliphatic and aromatic hydrocarbons whereas the elevated amount of carbon in biochar indicates its potential to be used as solid fuel. The performance and emission characteristics of CI engine were assessed with different CI bio-oil blends and compared with baseline diesel fuel. The results showed that addition of bio-oil leads to decreased brake thermal efficiency and increased brake specific energy consumption. Meanwhile, increase in blend ratio reduces harmful pollutants such as oxides of nitrogen and smoke in the exhaust. From the engine testing, it is suggested to employ 20% of CI bio-oil blends in CI engine to obtain better operation.

  12. Environmental implications of jatropha biofuel from a silvi-pastoral production system in central-west Brazil.

    PubMed

    Bailis, Rob; Kavlak, Goksin

    2013-07-16

    We present a life cycle assessment of synthetic paraffinic kerosene produced from Jatropha curcas. The feedstock is grown in an intercropping arrangement with pasture grasses so that Jatropha is coproduced with cattle. Additional innovations are introduced including hybrid seeds, detoxification of jatropha seedcake, and cogeneration. Two fuel pathways are examined including a newly developed catalytic decarboxylation process. Sensitivities are examined including higher planting density at the expense of cattle production as well as 50% lower yields. Intercropping with pasture and detoxifying seedcake yield coproducts that are expected to relieve pressure on Brazil's forests and indirectly reduce environmental impacts of biofuel production. Other innovations also reduce impacts. Results of the baseline assessment indicate that innovations would reduce impacts relative to the fossil fuel reference scenario in most categories including 62-75% reduction in greenhouse gas emissions, 64-82% reduction in release of ozone depleting chemicals, 33-52% reduction in smog-forming pollutants, 6-25% reduction in acidification, and 60-72% reduction in use of nonrenewable energy. System expansion, which explicitly accounts for avoided deforestation, results in larger improvements. Results are robust across allocation methodologies, improve with higher planting density, and persist if yield is reduced by half.

  13. A comparative study of bio-oils from pyrolysis of microalgae and oil seed waste in a fluidized bed.

    PubMed

    Kim, Sung Won; Koo, Bon Seok; Lee, Dong Hyun

    2014-06-01

    The pyrolysis of Scenedesmus sp. and Jatropha seedshell cake (JSC) was investigated under similar operating condition in a fluidized bed reactor for comparison of pyrolytic behaviors from different species of lipids-containing biomass. Microalgae showed a narrower main peak in differential thermogravimetric curve compared to JSC due to different constituents. Pyrolysis liquid yields were similar; liquid's oil proportion of microalgae is higher than JSC. Microalgae bio-oil was characterized by similar carbon and hydrogen contents and higher H/C and O/C molar ratios compared to JSC due to compositional difference. The pyrolytic oils from microalgae and JSC contained more oxygen and nitrogen and less sulfur than petroleum and palm oils. The pyrolytic oils showed high yields of fatty oxygenates and nitrogenous compounds. The microalgae bio-oil features in high concentrations of aliphatic compounds, fatty acid alkyl ester, alcohols and nitriles. Microalgae showed potentials for alternative feedstock for green diesel, and commodity and valuable chemicals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Integration of internet of things to reduce various losses of jatropha seed supply chain

    NASA Astrophysics Data System (ADS)

    Srinivasan, S. P.; Anitha, J.; Vijayakumar, R.

    2017-06-01

    The evolution of bio fuel supply chain has revolutionized the organization by restructuring the practices of the traditional management. A flexible distribution system is becoming the need of our society. The main focus of this paper is to integrate IoT technologies into a cultivation, extraction and management of Jatropha seed. It was noticed that major set-back of farmers due to poor supply chain integration. The various losses like information about the Jatropha seed availability, the location of esterification plants and distribution details are identified through this IoT. This enables the farmers to reorganize the land resources, yield estimation and distribution functions. The wastage and the scarcity of energy can be tackled by using the smart phone technologies. This paper is proposes a conceptual frame work on various losses involved in the supply chain of Jatropha seed.

  15. Performance and emission parameters of single cylinder diesel engine using castor oil bio-diesel blended fuels

    NASA Astrophysics Data System (ADS)

    Rahimi, A.; Ghobadian, B.; Najafi, G.; Jaliliantabar, F.; Mamat, R.

    2015-12-01

    The purpose of this study is to investigate the performance and emission parameters of a CI single cylinder diesel engine operating on biodiesel-diesel blends (B0, B5, B10, B15 and E20: 20% biodiesel and 80% diesel by volume). A reactor was designed, fabricated and evaluated for biodiesel production. The results showed that increasing the biodiesel content in the blend fuel will increase the performance parameters and decrease the emission parameters. Maximum power was detected for B0 at 2650 rpm and maximum torque was belonged to B20 at 1600 rpm. The experimental results revealed that using biodiesel-diesel blended fuels increased the power and torque output of the engine. For biodiesel blends it was found that the specific fuel consumption (sfc) was decreased. B10 had the minimum amount for sfc. The concentration of CO2 and HC emissions in the exhaust pipe were measured and found to be decreased when biodiesel blends were introduced. This was due to the high oxygen percentage in the biodiesel compared to the net diesel fuel. In contrast, the concentration of CO and NOx was found to be increased when biodiesel is introduced.

  16. Short term endurance results on a single cylinder diesel engine fueled with upgraded bio oil biodiesel emulsion

    NASA Astrophysics Data System (ADS)

    Prakash, R.; Murugan, S.

    2017-11-01

    This paper deliberates the endurance test outcomes obtained from a single cylinder, diesel engine fueled with an upgraded bio oil biodiesel emulsion. In this investigation a bio oil obtained by pyrolysis of woody biomass was upgraded with acid treatment. The resulted bio oil was emulsified with addition of biodiesel and suitable surfactant which is termed as ATJOE15. The main objective of the endurance test was to evaluate the wear characteristics of the engine components and lubrication oil properties, when the engine is fueled with the ATJOE15 emulsion. The photographic views taken before and after the end of 100 hrs endurance test, and visual inspection of the engine components, wear and carbon deposit results, are discussed in this paper.

  17. Co-cracking of real MSW into bio-oil over natural kaolin

    NASA Astrophysics Data System (ADS)

    Gandidi, I. M.; Susila, M. D.; Pambudi, N. A.

    2017-03-01

    Municipal solid waste (MSW) is a potential material that can be converted into bio-oil through thermal degradation process or pyrolysis. The efficiency and productivity of pyrolysis can be increased with the use of natural catalyst like kaolin. The addition of catalyst also reduces the overall cost of conversion process. In this study conversion of MSW into Bio Fuel using Pyrolysis in the presence of of natural kaolin as catalyst has been investigated for 60 min at 400°C temperature. During the process 0.5 w/w catalyst to MSW ratio was maintained. Gas chromatography-mass spectrometry (GC-MS) was used to analyse the chemical composition of bio fuel. It is found that bio-oil production increases substantially with the use of catalyst. It is observed that the production of bio-oil is 23.6 % with the use of catalyst in process, which was only 15.2 % without the use of catalyst. The hydrocarbon range distribution of oil produced through pyrolysis reveals that gasoline and diesel fuel (C5-C20) are its main constituents. The functional group detected in bio-oil by GC-MS analysis is similar to that of diesel-48 in which paraffin and olefin are major mass species.

  18. Direct production of biodiesel from high-acid value Jatropha oil with solid acid catalyst derived from lignin

    PubMed Central

    2011-01-01

    Background Solid acid catalyst was prepared from Kraft lignin by chemical activation with phosphoric acid, pyrolysis and sulfuric acid. This catalyst had high acid density as characterized by scanning electron microscope (SEM), energy-dispersive x-ray spectrometry (EDX) and Brunauer, Emmett, and Teller (BET) method analyses. It was further used to catalyze the esterification of oleic acid and one-step conversion of non-pretreated Jatropha oil to biodiesel. The effects of catalyst loading, reaction temperature and oil-to-methanol molar ratio, on the catalytic activity of the esterification were investigated. Results The highest catalytic activity was achieved with a 96.1% esterification rate, and the catalyst can be reused three times with little deactivation under optimized conditions. Biodiesel production from Jatropha oil was studied under such conditions. It was found that 96.3% biodiesel yield from non-pretreated Jatropha oil with high-acid value (12.7 mg KOH/g) could be achieved. Conclusions The catalyst can be easily separated for reuse. This single-step process could be a potential route for biodiesel production from high-acid value oil by simplifying the procedure and reducing costs. PMID:22145867

  19. Hydrothermal liquefaction of de-oiled Jatropha curcas cake using Deep Eutectic Solvents (DESs) as catalysts and co-solvents.

    PubMed

    Alhassan, Yahaya; Kumar, Naveen; Bugaje, Idris M

    2016-01-01

    Biomass liquefaction using ionic liquids (ILs) as catalysts has received appreciable attention, in renewable fuels and chemicals production, recently. However, issues associated with the production cost, long reaction time and use of volatile solvents are undeniably challenging. Thus, Deep Eutectic Solvents (DESs) emerged as promising and potential ILs substitutes. The hydrothermal liquefaction of de-oiled Jatropha curcas cake was catalyzed by four synthesized DESs as catalysts and co-solvents for selective extraction. Proximate and ultimate analyses including ash, moisture and carbon contents of bio-crude produced varied slightly. The higher heating values found ranges from 21.15 ± 0.82 MJ/kg to 24.30 ± 0.98 MJ/kg. The bio-crude yields obtained using ChCl-KOH DES was 43.53 wt% and ChCl-p-TsOH DES was 38.31 wt%. Bio-crude yield using ChCl-FeCl3 DES was 30.80 wt%. It is suggested that, the selectivity of bio-crude could be improved, by using DESs as catalyst and co-solvent in HTL of biomass such as de-oiled J. curcas cake. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Effects of gamma irradiation on the performance of Jatropha (Jatropha curcas L.) accessions

    NASA Astrophysics Data System (ADS)

    Surahman, M.; Santosa, E.; Agusta, H.; Aisyah, S. I.; Nisya, F. N.

    2018-03-01

    This study aimed to assess the effects of mutation by using gamma ray on the performance of jatropha plants. The study was conducted at PAIR BATAN. Jatropha seeds obtained from the collection farm of SBRC LPPM IPB and PT Indocement Tunggal Prakarsa Tbk in Gunung Putri, Bogor, were irradiated. The irradiated seeds were grown in Jonggol Trial Farm of IPB. Gamma irradiation was conducted by using a GCM 4000A device. Treatments consisted of irradiation doses, irradiation methods, and accessions. Irradiation doses given were 175, 200, 225 Gy, and no irradiation (control). Irradiation methods consisted of acute, intermittent, and split-dose. Accessions used in this study were Dompu, Medan, Bima, Lombok, ITP II, IP2P, and Thailand. Results of the study were analysed until 5 months after planting showed that gamma ray mutation gave stimulating and inhibiting effects on similar traits. Irradiation dose of 225 Gy was good to be given in acute, intermittent, and split-dose methods. Irradiation effects were found to be significant in jatropha accessions. Effects of irradiation on production will be published soon.

  1. Jatropha curcas, a biofuel crop: Functional genomics for understanding metabolic pathways and genetic improvement

    PubMed Central

    Maghuly, Fatemeh; Laimer, Margit

    2013-01-01

    Jatropha curcas is currently attracting much attention as an oilseed crop for biofuel, as Jatropha can grow under climate and soil conditions that are unsuitable for food production. However, little is known about Jatropha, and there are a number of challenges to be overcome. In fact, Jatropha has not really been domesticated; most of the Jatropha accessions are toxic, which renders the seedcake unsuitable for use as animal feed. The seeds of Jatropha contain high levels of polyunsaturated fatty acids, which negatively impact the biofuel quality. Fruiting of Jatropha is fairly continuous, thus increasing costs of harvesting. Therefore, before starting any improvement program using conventional or molecular breeding techniques, understanding gene function and the genome scale of Jatropha are prerequisites. This review presents currently available and relevant information on the latest technologies (genomics, transcriptomics, proteomics and metabolomics) to decipher important metabolic pathways within Jatropha, such as oil and toxin synthesis. Further, it discusses future directions for biotechnological approaches in Jatropha breeding and improvement. PMID:24092674

  2. Transcriptome of the inflorescence meristems of the biofuel plant Jatropha curcas treated with cytokinin.

    PubMed

    Pan, Bang-Zhen; Chen, Mao-Sheng; Ni, Jun; Xu, Zeng-Fu

    2014-11-17

    Jatropha curcas, whose seed content is approximately 30-40% oil, is an ideal feedstock for producing biodiesel and bio-jet fuels. However, Jatropha plants have a low number of female flowers, which results in low seed yield that cannot meet the needs of the biofuel industry. Thus, increasing the number of female flowers is critical for the improvement of Jatropha seed yield. Our previous findings showed that cytokinin treatment can increase the flower number and female to male ratio and also induce bisexual flowers in Jatropha. The mechanisms underlying the influence of cytokinin on Jatropha flower development and sex determination, however, have not been clarified. This study examined the transcriptional levels of genes involved in the response to cytokinin in Jatropha inflorescence meristems at different time points after cytokinin treatment by 454 sequencing, which gave rise to a total of 294.6 Mb of transcript sequences. Up-regulated and down-regulated annotated and novel genes were identified, and the expression levels of the genes of interest were confirmed by qRT-PCR. The identified transcripts include those encoding genes involved in the biosynthesis, metabolism, and signaling of cytokinin and other plant hormones, flower development and cell division, which may be related to phenotypic changes of Jatropha in response to cytokinin treatment. Our analysis indicated that Jatropha orthologs of the floral organ identity genes known as ABCE model genes, JcAP1,2, JcPI, JcAG, and JcSEP1,2,3, were all significantly repressed, with an exception of one B-function gene JcAP3 that was shown to be up-regulated by BA treatment, indicating different mechanisms to be involved in the floral organ development of unisexual flowers of Jatropha and bisexual flowers of Arabidopsis. Several cell division-related genes, including JcCycA3;2, JcCycD3;1, JcCycD3;2 and JcTSO1, were up-regulated, which may contribute to the increased flower number after cytokinin treatment. This study

  3. Jatropha curcas, a biofuel crop: functional genomics for understanding metabolic pathways and genetic improvement.

    PubMed

    Maghuly, Fatemeh; Laimer, Margit

    2013-10-01

    Jatropha curcas is currently attracting much attention as an oilseed crop for biofuel, as Jatropha can grow under climate and soil conditions that are unsuitable for food production. However, little is known about Jatropha, and there are a number of challenges to be overcome. In fact, Jatropha has not really been domesticated; most of the Jatropha accessions are toxic, which renders the seedcake unsuitable for use as animal feed. The seeds of Jatropha contain high levels of polyunsaturated fatty acids, which negatively impact the biofuel quality. Fruiting of Jatropha is fairly continuous, thus increasing costs of harvesting. Therefore, before starting any improvement program using conventional or molecular breeding techniques, understanding gene function and the genome scale of Jatropha are prerequisites. This review presents currently available and relevant information on the latest technologies (genomics, transcriptomics, proteomics and metabolomics) to decipher important metabolic pathways within Jatropha, such as oil and toxin synthesis. Further, it discusses future directions for biotechnological approaches in Jatropha breeding and improvement. © 2013 The Authors. Biotechnology Journal published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. 77 FR 59458 - Regulation of Fuels and Fuel Additives: 2013 Biomass-Based Diesel Renewable Fuel Volume

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-27

    ... Consumption A. Demand for Biomass-Based Diesel B. Availability of Feedstocks To Produce 1.28 Billion Gallons of Biodiesel 1. Grease and Rendered Fats 2. Corn Oil 3. Soybean Oil 4. Effects on Food Prices 5. Other Bio-Oils C. Production Capacity D. Consumption Capacity E. Biomass-Based Diesel Distribution...

  5. Maximizing the stability of pyrolysis oil/diesel fuel emulsions

    USDA-ARS?s Scientific Manuscript database

    Several emulsions consisting of biomass pyrolysis oil (bio-oil) in diesel fuel were produced and analyzed for stability over time. An ultrasonic probe was used to generate microscopic droplets of bio-oil suspended in diesel fuel, and this emulsion was stabilized using surfactant chemicals. The most...

  6. Complex Approach to Conceptual Design of Machine Mechanically Extracting Oil from Jatropha curcas L. Seeds for Biomass-Based Fuel Production

    PubMed Central

    Mašín, Ivan

    2016-01-01

    One of important sources of biomass-based fuel is Jatropha curcas L. Great attention is paid to the biofuel produced from the oil extracted from the Jatropha curcas L. seeds. A mechanised extraction is the most efficient and feasible method for oil extraction for small-scale farmers but there is a need to extract oil in more efficient manner which would increase the labour productivity, decrease production costs, and increase benefits of small-scale farmers. On the other hand innovators should be aware that further machines development is possible only when applying the systematic approach and design methodology in all stages of engineering design. Systematic approach in this case means that designers and development engineers rigorously apply scientific knowledge, integrate different constraints and user priorities, carefully plan product and activities, and systematically solve technical problems. This paper therefore deals with the complex approach to design specification determining that can bring new innovative concepts to design of mechanical machines for oil extraction. The presented case study as the main part of the paper is focused on new concept of screw of machine mechanically extracting oil from Jatropha curcas L. seeds. PMID:27668259

  7. Genetic Tracing of Jatropha curcas L. from Its Mesoamerican Origin to the World

    PubMed Central

    Li, Haiyan; Tsuchimoto, Suguru; Harada, Kyuya; Yamasaki, Masanori; Sakai, Hiroe; Wada, Naoki; Alipour, Atefeh; Sasai, Tomohiro; Tsunekawa, Atsushi; Tsujimoto, Hisashi; Ando, Takayuki; Tomemori, Hisashi; Sato, Shusei; Hirakawa, Hideki; Quintero, Victor P.; Zamarripa, Alfredo; Santos, Primitivo; Hegazy, Adel; Ali, Abdalla M.; Fukui, Kiichi

    2017-01-01

    Jatropha curcas L. (Jatropha), a shrub species of the family Euphorbiaceae, has been recognized as a promising biofuel plant for reducing greenhouse gas emissions. However, recent attempts at commercial cultivation in Africa and Asia have failed because of low productivity. It is important to elucidate genetic diversity and relationship in worldwide Jatropha genetic resources for breeding of better commercial cultivars. Here, genetic diversity was analyzed by using 246 accessions from Mesoamerica, Africa and Asia, based on 59 simple sequence repeat markers and eight retrotransposon-based insertion polymorphism markers. We found that central Chiapas of Mexico possesses the most diverse genetic resources, and the Chiapas Central Depression could be the center of origin. We identified three genetic groups in Mesoamerica, whose distribution revealed a distinct geographic cline. One of them consists mainly of accessions from central Chiapas. This suggests that it represents the original genetic group. We found two Veracruz accessions in another group, whose ancestors might be shipped from Port of Veracruz to the Old World, to be the source of all African and Asian Jatropha. Our results suggest the human selection that caused low productivity in Africa and Asia, and also breeding strategies to improve African and Asian Jatropha. Cultivars improved in the productivity will contribute to expand mass commercial cultivation of Jatropha in Africa and Asia to increase biofuel production, and finally will support in the battle against the climate change. PMID:28936216

  8. RNAi Mediated curcin precursor gene silencing in Jatropha (Jatropha curcas L.).

    PubMed

    Patade, Vikas Yadav; Khatri, Deepti; Kumar, Kamal; Grover, Atul; Kumari, Maya; Gupta, Sanjay Mohan; Kumar, Devender; Nasim, Mohammed

    2014-07-01

    Curcin, a type I ribosomal inhibiting protein-RIP, encoded by curcin precursor gene, is a phytotoxin present in Jatropha (Jatropha curcas L.). Here, we report designing of RNAi construct for the curcin precursor gene and further its genetic transformation of Jatropha to reduce its transcript expression. Curcin precursor gene was first cloned from Jatropha strain DARL-2 and part of the gene sequence was cloned in sense and antisense orientation separated by an intron sequence in plant expression binary vector pRI101 AN. The construction of the RNAi vector was confirmed by double digestion and nucleotide sequencing. The vector was then mobilized into Agrobacterium tumefaciens strain GV 3101 and used for tissue culture independent in planta transformation protocol optimized for Jatropha. Germinating seeds were injured with a needle before infection with Agrobacterium and then transferred to sterilized sand medium. The seedlings were grown for 90 days and genomic DNA was isolated from leaves for transgenic confirmation based on real time PCR with NPT II specific dual labeled probe. Result of the transgenic confirmation analysis revealed presence of the gene silencing construct in ten out of 30 tested seedlings. Further, quantitative transcript expression analysis of the curcin precursor gene revealed reduction in the transcript abundance by more than 98% to undetectable level. The transgenic plants are being grown in containment for further studies on reduction in curcin protein content in Jatropha seeds.

  9. Visualization of Oil Body Distribution in Jatropha curcas L. by Four-Wave Mixing Microscopy

    NASA Astrophysics Data System (ADS)

    Ishii, Makiko; Uchiyama, Susumu; Ozeki, Yasuyuki; Kajiyama, Sin'ichiro; Itoh, Kazuyoshi; Fukui, Kiichi

    2013-06-01

    Jatropha curcas L. (jatropha) is a superior oil crop for biofuel production. To improve the oil yield of jatropha by breeding, the development of effective and reliable tools to evaluate the oil production efficiency is essential. The characteristics of the jatropha kernel, which contains a large amount of oil, are not fully understood yet. Here, we demonstrate the application of four-wave mixing (FWM) microscopy to visualize the distribution of oil bodies in a jatropha kernel without staining. FWM microscopy enables us to visualize the size and morphology of oil bodies and to determine the oil content in the kernel to be 33.2%. The signal obtained from FWM microscopy comprises both of stimulated parametric emission (SPE) and coherent anti-Stokes Raman scattering (CARS) signals. In the present situation, where a very short pump pulse is employed, the SPE signal is believed to dominate the FWM signal.

  10. Jatropha oil derived sophorolipids: production and characterization as laundry detergent additive.

    PubMed

    Joshi-Navare, Kasturi; Khanvilkar, Poonam; Prabhune, Asmita

    2013-01-01

    Sophorolipids (SLs) are glycolipidic biosurfactants suitable for various biological and physicochemical applications. The nonedible Jatropha oil has been checked as the alternative raw material for SL synthesis using C. bombicola (ATCC22214). This is useful towards lowering the SL production cost. Through optimization of fermentation parameters and use of resting cell method, the yield 15.25 g/L could be achieved for Jatropha oil derived SL (SLJO) with 1% v/v oil feeding. The synthesized SL displayed good surfactant property. It reduced the surface tension of distilled water from 70.7 mN/m to 33.5 mN/m with the Critical Micelle Concentration (CMC) value of 9.5 mg/L. Keeping the prospective use of the SL in mind, the physicochemical properties were checked along with emulsion stability under temperature, pH stress, and in hard water. Also antibacterial action and stain removal capability in comparison with commercial detergent was demonstrated. SLJO enhanced the detergent performance. Based on the results, it can be said that SLs have utility as fabric cleaner with advantageous properties such as skin friendly nature, antibacterial action, and biodegradability. Therefore SLs are potential green molecules to replace synthetic surfactants in detergents so as to reduce harm caused to environment through detergent usage.

  11. FROM FIELD TO FUEL TANK: EXPLORING THE IMPLEMENTATION OF BIODIESEL AS A SUSTAINABLE ALTERNATIVE TO PETROLEUM DIESEL IN OREGON'S WILLAMETTE VALLEY

    EPA Science Inventory

    The technical challenge is to demonstrate the feasibility of the production and use of a renewable bio-based diesel fuel as an alternative to petroleum-based diesel. The innovative objectives of the project are to:

    • Demonstrate the engineering and economic feasib...

  12. Air Permitting Implications of a Biorefinery Producing Raw Bio-Oil in Comparison with Producing Gasoline and Diesel Blendstocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhatt, Arpit H; Zhang, Yi Min

    A biorefinery, considered a chemical process plant under the Clean Air Act permitting program, could be classified as a major or minor source based on the size of the facility and magnitude of regulated pollutants emitted. Our previous analysis indicates that a biorefinery using fast pyrolysis conversion process to produce finished gasoline and diesel blendstocks with a capacity of processing 2,000 dry metric tons of biomass per day would likely be classified as a major source because several regulated pollutants (such as particulate matter, sulfur dioxide, nitrogen oxide) are estimated to exceed the 100 tons per year (tpy) major sourcemore » threshold, applicable to chemical process plants. Being subject to a major source classification could pose additional challenges associated with obtaining an air permit in a timely manner before the biorefinery can start its construction. Recent developments propose an alternative approach to utilize bio-oil produced via the fast pyrolysis conversion process by shipping it to an existing petroleum refinery, where the raw bio-oil can be blended with petroleum-based feedstocks (e.g., vacuum gas oil) to produce gasoline and diesel blendstocks with renewable content. Without having to hydro-treat raw bio-oil, a biorefinery is likely to reduce its potential-to-emit to below the 100 tpy major source threshold, and therefore expedite its permitting process. We compare the PTE estimates for the two biorefinery designs with and without hydrotreating of bio-oils and examine the air permitting implications on potential air permit classification and discuss the best available control technology requirements for the major source biorefinery utilizing hydrotreating operation. Our analysis is expected to provide useful information to new biofuel project developers to identify opportunities to overcome challenges associated with air permitting.« less

  13. Assessment of Antioxidant and Cytoprotective Potential of Jatropha (Jatropha curcas) Grown in Southern Italy

    PubMed Central

    Papalia, Teresa; Barreca, Davide; Panuccio, Maria Rosaria

    2017-01-01

    Jatropha (Jatropha curcas L.) is a plant native of Central and South America, but widely distributed in the wild or semi-cultivated areas in Africa, India, and South East Asia. Although studies are available in literature on the polyphenolic content and bioactivity of Jatropha curcas L., no information is currently available on plants grown in pedoclimatic and soil conditions different from the autochthon regions. The aim of the present work was to characterize the antioxidant system developed by the plant under a new growing condition and to evaluate the polyphenol amount in a methanolic extract of leaves. Along with these analyses we have also tested the antioxidant and cytoprotective activities on lymphocytes. RP-HPLC-DAD analysis of flavonoids revealed a chromatographic profile dominated by the presence of flavone C-glucosydes. Vitexin is the most abundant identified compound followed by vicenin-2, stellarin-2, rhoifolin, and traces of isovitexin and isorhoifolin. Methanolic extract had high scavenging activity in all antioxidant assays tested and cytoprotective activity on lymphocytes exposed to tertz-buthylhydroperoxide. The results highlighted a well-defined mechanism of adaptation of the plant and a significant content of secondary metabolites with antioxidant properties, which are of interest for their potential uses, especially as a rich source of biologically active products. PMID:28335473

  14. Assessment of Antioxidant and Cytoprotective Potential of Jatropha (Jatropha curcas) Grown in Southern Italy.

    PubMed

    Papalia, Teresa; Barreca, Davide; Panuccio, Maria Rosaria

    2017-03-18

    Jatropha ( Jatropha curcas L.) is a plant native of Central and South America, but widely distributed in the wild or semi-cultivated areas in Africa, India, and South East Asia. Although studies are available in literature on the polyphenolic content and bioactivity of Jatropha curcas L., no information is currently available on plants grown in pedoclimatic and soil conditions different from the autochthon regions. The aim of the present work was to characterize the antioxidant system developed by the plant under a new growing condition and to evaluate the polyphenol amount in a methanolic extract of leaves. Along with these analyses we have also tested the antioxidant and cytoprotective activities on lymphocytes. RP-HPLC-DAD analysis of flavonoids revealed a chromatographic profile dominated by the presence of flavone C -glucosydes. Vitexin is the most abundant identified compound followed by vicenin-2, stellarin-2, rhoifolin, and traces of isovitexin and isorhoifolin. Methanolic extract had high scavenging activity in all antioxidant assays tested and cytoprotective activity on lymphocytes exposed to tertz-buthylhydroperoxide. The results highlighted a well-defined mechanism of adaptation of the plant and a significant content of secondary metabolites with antioxidant properties, which are of interest for their potential uses, especially as a rich source of biologically active products.

  15. Large-scale production of diesel-like biofuels - process design as an inherent part of microorganism development.

    PubMed

    Cuellar, Maria C; Heijnen, Joseph J; van der Wielen, Luuk A M

    2013-06-01

    Industrial biotechnology is playing an important role in the transition to a bio-based economy. Currently, however, industrial implementation is still modest, despite the advances made in microorganism development. Given that the fuels and commodity chemicals sectors are characterized by tight economic margins, we propose to address overall process design and efficiency at the start of bioprocess development. While current microorganism development is targeted at product formation and product yield, addressing process design at the start of bioprocess development means that microorganism selection can also be extended to other critical targets for process technology and process scale implementation, such as enhancing cell separation or increasing cell robustness at operating conditions that favor the overall process. In this paper we follow this approach for the microbial production of diesel-like biofuels. We review current microbial routes with both oleaginous and engineered microorganisms. For the routes leading to extracellular production, we identify the process conditions for large scale operation. The process conditions identified are finally translated to microorganism development targets. We show that microorganism development should be directed at anaerobic production, increasing robustness at extreme process conditions and tailoring cell surface properties. All the same time, novel process configurations integrating fermentation and product recovery, cell reuse and low-cost technologies for product separation are mandatory. This review provides a state-of-the-art summary of the latest challenges in large-scale production of diesel-like biofuels. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Green engineering: Green composite material, biodiesel from waste coffee grounds, and polyurethane bio-foam

    NASA Astrophysics Data System (ADS)

    Cheng, Hsiang-Fu

    In this thesis we developed several ways of producing green materials and energy resources. First, we developed a method to fabricate natural fibers composites, with the purpose to develop green textile/woven composites that could potentially serve as an alternative to materials derived from non-renewable sources. Flax and hemp fabrics were chosen because of their lightweight and exceptional mechanical properties. To make these textile/woven composites withstand moist environments, a commercially available marine resin was utilized as a matrix. The tensile, three-point bending, and edgewise compression strengths of these green textile/woven composites were measured using ASTM protocols. Secondly, we developed a chemical procedure to obtain oil from waste coffee grounds; we did leaching and liquid extractions to get liquid oil from the solid coffee. This coffee oil was used to produce bio-diesel that could be used as a substitute for petroleum-based diesel. Finally, polyurethane Bio-foam formation utilized glycerol that is the by-product from the biodiesel synthesis. A chemical synthesis procedure from the literature was used as the reference system: a triol and isocynate are mixed to produce polyurethane foam. Moreover, we use a similar triol, a by-product from bio-diesel synthesis, to reproduce polyurethane foam.

  17. Biophysicochemical evaluation of wild hilly biotypes of Jatropha curcas for biodiesel production and micropropagation study of elite plant parts.

    PubMed

    Verma, K C; Verma, S K

    2015-01-01

    Depleting reserves of fossil fuel and increasing effects of environmental pollution from petrochemicals demands eco-friendly alternative fuel sources. Jatropha curcas oil, an inedible vegetable oil, can be a substitute feedstock for traditional food crops in the production of environment-friendly and renewable fuel. Jatropha oil is looked up in terms of availability and cost and also has several applications and enormous economic benefits. The seed oils of various jatropha biotypes from hilly regions were screened out and evaluated for their physiochemical parameters, viz, seed index(520-600 g), oil content (15-42 %), biodiesel yield (71-98 %), moisture content (2.3-6.5 %), ash content (3.2-5.6 %), acid value (4.2-26), density (0.9172-0.9317 g/cm(3)), viscosity (5-37 mm(2)/s), saponification value (195.8-204.2 mg/g), iodine value (106.6-113.6 mg/g), flash point (162-235 °C), cetane value (46.70-50.06 °C), free fatty acid value (2.5-10.2 %), and refractive index (1.4600-1.4710). Fatty acid profiling of jatropha resembles as edible oilseeds. NAA with BAP was found to be superior for callus induction (up to 87 %), as well as for shoot regeneration (up to12 shoots). Root induction (90-100 %) was successfully obtained in MS medium with or without phytoregulators. Grown plantlets were successfully transferred from lab to field with a survival rate of 80 %.

  18. Comparative Studies of Oleaginous Fungal Strains (Mucor circinelloides and Trichoderma reesei) for Effective Wastewater Treatment and Bio-Oil Production

    PubMed Central

    Bhanja, Anshuman; Kalyanraman, V.

    2014-01-01

    Biological wastewater treatment typically requires the use of bacteria for degradation of carbonaceous and nitrogenous compounds present in wastewater. The high lipid containing biomass can be used to extract oil and the contents can be termed as bio-oil (or biodiesel or myco-diesel after transesterification). The separate experiments were conducted on actual wastewater samples with 5% v/v inoculum of Mucor circinelloides MTCC1297 and Trichoderma reesei NCIM992 strains. The observed reductions in chemical oxygen demand (COD) were 88.72% and 86.75% in 96 hrs and the observed substrate based biomass yields were 0.21 mg VSS/mg COD and 0.22 mg VSS/mg COD for M. circinelloides reactor and for T. reesei reactor, respectively. The resulted bio-oil production from wastewater treatment by M. circinelloides and T. reesei reactors was 142.2 mg/L and 74.1 mg/L, whereas biomass containing bio-oil contents (%w/w) were 22.11% and 9.82%, respectively. In this experiment, the fungal wastewater treatment was also compared with conventional bacterial process with respect to specific growth rate, biomass production, and oil content. This study suggests that wastewater can be used as a potential feedstock for bio-oil production with the use of oleaginous fungal strains and which could be a possible route of waste to energy. PMID:25530884

  19. Comparative Studies of Oleaginous Fungal Strains (Mucor circinelloides and Trichoderma reesei) for Effective Wastewater Treatment and Bio-Oil Production.

    PubMed

    Bhanja, Anshuman; Minde, Gauri; Magdum, Sandip; Kalyanraman, V

    2014-01-01

    Biological wastewater treatment typically requires the use of bacteria for degradation of carbonaceous and nitrogenous compounds present in wastewater. The high lipid containing biomass can be used to extract oil and the contents can be termed as bio-oil (or biodiesel or myco-diesel after transesterification). The separate experiments were conducted on actual wastewater samples with 5% v/v inoculum of Mucor circinelloides MTCC1297 and Trichoderma reesei NCIM992 strains. The observed reductions in chemical oxygen demand (COD) were 88.72% and 86.75% in 96 hrs and the observed substrate based biomass yields were 0.21 mg VSS/mg COD and 0.22 mg VSS/mg COD for M. circinelloides reactor and for T. reesei reactor, respectively. The resulted bio-oil production from wastewater treatment by M. circinelloides and T. reesei reactors was 142.2 mg/L and 74.1 mg/L, whereas biomass containing bio-oil contents (%w/w) were 22.11% and 9.82%, respectively. In this experiment, the fungal wastewater treatment was also compared with conventional bacterial process with respect to specific growth rate, biomass production, and oil content. This study suggests that wastewater can be used as a potential feedstock for bio-oil production with the use of oleaginous fungal strains and which could be a possible route of waste to energy.

  20. NiO-PTA supported on ZIF-8 as a highly effective catalyst for hydrocracking of Jatropha oil

    PubMed Central

    Liu, Jing; He, Jing; Wang, Luying; Li, Rong; Chen, Pan; Rao, Xin; Deng, Lihong; Rong, Long; Lei, Jiandu

    2016-01-01

    Nickel oxide (NiO) and phosphotungstic acid (PTA) supported on a ZIF-8 (NiO-PTA/ZIF-8) catalyst was first synthesized and it showed high activity and good selectivity for the hydrocracking of Jatropha oil. The catalyst was characterized by SEM, SEM-EDS, TEM, N2 adsorption, FT-IR, XRD and XPS. Compared with the NiO-PTA/Al2O3 catalyst, the selectivity of C15-C18 hydrocarbon increased over 36%, and catalytic efficiency increased 10 times over the NiO-PTA/ZIF-8 catalyst. The prepared NiO-PTA/ZIF-8 catalyst was stable for a reaction time of 104 h and the kinetic behavior was also analyzed. This catalyst was found to bypass the presulfurization process, showing promise as an alternative to sulfided catalysts for green diesel production. PMID:27020579

  1. Testing and preformance measurement of straight vegetable oils as an alternative fuel for diesel engines

    NASA Astrophysics Data System (ADS)

    Lakshminarayanan, Arunachalam

    Rising fuel prices, growing energy demand, concerns over domestic energy security and global warming from greenhouse gas emissions have triggered the global interest in bio-energy and bio-fuel crop development. Backlash from these concerns can result in supply shocks of traditional fossil fuels and create immense economic pressure. It is thus widely argued that bio-fuels would particularly benefit developing countries by off-setting their dependencies on imported petroleum. Domestically, the transportation sector accounts for almost 40% of liquid fuel consumption, while on-farm application like tractors and combines for agricultural purposes uses close to an additional 18%. It is estimated that 40% of the farm budget can be attributed to the fuel costs. With the cost of diesel continuously rising, farmers are now looking at using Straight Vegetable Oil (SVO) as an alternative fuel by producing their own fuel crops. This study evaluates conventional diesel compared to the use of SVO like Camelina, Canola and Juncea grown on local farms in Colorado for their performance and emissions on a John Deere 4045 Tier-II engine. Additionally, physical properties like density and viscosity, metal/mineral content, and cold flow properties like CFPP and CP of these oils were measured using ASTM standards and compared to diesel. It was found that SVOs did not show significant differences compared to diesel fuel with regards to engine emissions, but did show an increase in thermal efficiency. Therefore, this study supports the continued development of SVO production as a viable alternative to diesel fuels, particularly for on-farm applications. The need for providing and developing a sustainable, economic and environmental friendly fuel alternative has taken an aggressive push which will require a strong multidisciplinary education in the field of bio-energy. Commercial bio-energy development has the potential to not only alleviate the energy concerns, but also to give renewed

  2. Thermal and Tribological Properties of Jatropha Oil as Additive in Commercial Oil

    NASA Astrophysics Data System (ADS)

    Gallardo-Hernández, E. A.; Lara-Hernández, G.; Nieto-Camacho, F.; Domínguez-Pacheco, A.; Cruz-Orea, A.; Hernández-Aguilar, C.; Contreras-Gallegos, E.; Torres, M. Vite; Flores-Cuautle, J. J. A.

    2017-04-01

    The recent use that has been given to bio-oil as an additive, in a commercial engine oil, raises the necessity to study its physical properties. The present study is aimed to obtain thermal properties of blends made with Jatropha-Curcas L. Oil, Crude, and Refined, at different concentrations using SAE40W oil (EO) as a lubricant base. By using photothermal techniques, thermal effusivity and diffusivity were obtained. The obtained results show that thermal effusivity increases from 455 Ws^{1/2}{\\cdot }m^{-2}{\\cdot }K^{-1} to 520 Ws^{1/2}{\\cdot }m^{-2}{\\cdot }K^{-1} as the percentage of additive increases as well, whereas thermal diffusivity values range from 7× 10^{-8}m2{\\cdot }s^{-1} to 10× 10^{-8}m2{\\cdot }s^{-1}. In the present study, four balls test was used in order to obtain friction coefficient and wear scar values for studied samples, the obtained results point out that in general refined Jatropha-Curcas L. oil presents smaller wear scars than the crude one.

  3. Fast pyrolysis oil from pinewood chips co-processing with vacuum gas oil in an FCC unit for second generation fuel production

    DOE PAGES

    Pinho, Andrea de Rezende; de Almeida, Marlon B. B.; Mendes, Fabio Leal; ...

    2016-10-15

    Raw bio-oil produced from fast pyrolysis of pine woodchips was co-processed with standard Brazilian vacuum gasoil (VGO) and tested in a 200 kg•h -1 fluid catalytic cracking (FCC) demonstration-scale unit using a commercial FCC equilibrium catalyst. Two different bio-oil/VGO weight ratios were used: 5/95 and 10/90. Co-processing of raw bio-oil in FCC was shown to be technically feasible. Bio-oil could be directly co-processed with a regular gasoil FCC feed up to 10 wt%. The bio-oil and the conventional gasoil were cracked into valuable liquid products such as gasoline and diesel range products. Most of the oxygen present in the bio-oilmore » was eliminated as water and carbon monoxide as these yields were always higher than that of carbon dioxide. Product quality analysis shows that trace oxygenates, primarily alkyl phenols, in FCC gasoline and diesel products are present with or without co-processing oxygenated intermediates. The oxygenate concentrations increase with co-processing, but have not resulted in increased concerns with quality of fuel properties. The presence of renewable carbon was confirmed in gasoline and diesel cuts through 14C isotopic analysis, showing that renewable carbon is not only being converted into coke, CO, and CO 2, but also into valuable refining liquid products. Thus, gasoline and diesel could be produced from lignocellulosic raw materials through a conventional refining scheme, which uses the catalytic cracking process. As a result, the bio-oil renewable carbon conversion into liquid products (carbon efficiency) was approximately 30%, well above the efficiency found in literature for FCC bio-oil upgrading.« less

  4. Fast pyrolysis oil from pinewood chips co-processing with vacuum gas oil in an FCC unit for second generation fuel production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinho, Andrea de Rezende; de Almeida, Marlon B. B.; Mendes, Fabio Leal

    Raw bio-oil produced from fast pyrolysis of pine woodchips was co-processed with standard Brazilian vacuum gasoil (VGO) and tested in a 200 kg•h -1 fluid catalytic cracking (FCC) demonstration-scale unit using a commercial FCC equilibrium catalyst. Two different bio-oil/VGO weight ratios were used: 5/95 and 10/90. Co-processing of raw bio-oil in FCC was shown to be technically feasible. Bio-oil could be directly co-processed with a regular gasoil FCC feed up to 10 wt%. The bio-oil and the conventional gasoil were cracked into valuable liquid products such as gasoline and diesel range products. Most of the oxygen present in the bio-oilmore » was eliminated as water and carbon monoxide as these yields were always higher than that of carbon dioxide. Product quality analysis shows that trace oxygenates, primarily alkyl phenols, in FCC gasoline and diesel products are present with or without co-processing oxygenated intermediates. The oxygenate concentrations increase with co-processing, but have not resulted in increased concerns with quality of fuel properties. The presence of renewable carbon was confirmed in gasoline and diesel cuts through 14C isotopic analysis, showing that renewable carbon is not only being converted into coke, CO, and CO 2, but also into valuable refining liquid products. Thus, gasoline and diesel could be produced from lignocellulosic raw materials through a conventional refining scheme, which uses the catalytic cracking process. As a result, the bio-oil renewable carbon conversion into liquid products (carbon efficiency) was approximately 30%, well above the efficiency found in literature for FCC bio-oil upgrading.« less

  5. Past, Present, and Future Production of Bio-oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steele, Philip; Yu, Fei; Gajjela, Sanjeev

    Bio-oil is a liquid product produced by fast pyrol-ysis of biomass. The fast pyrolysis is performed by heating the biomass rapidly (2 sec) at temperatures ranging from 350 to 650 oC. The vapors produced by this rapid heating are then condensed to produce a dark brown water-based emulsion composed of frag-ments of the original hemicellulose, cellulose and lignin molecules contained in the biomass. Yields range from 60 to 75% based on the feedstock type and the pyrolysis reactor employed. The bio-oil pro-duced by this process has a number of negative prop-erties that are produced mainly by the high oxygen contentmore » (40 to 50%) contributed by that contained in water (25 to 30% of total mass) and oxygenated compounds. Each bio-oil contains hundreds of chemi-cal compounds. The chemical composition of bio-oil renders it a very recalcitrant chemical compound. To date, the difficulties in utilizing bio-oil have limited its commercial development to the production of liq-uid smoke as food flavoring. Practitioners have at-tempted to utilize raw bio-oil as a fuel; they have also applied many techniques to upgrade bio-oil to a fuel. Attempts to utilize raw bio-oil as a combustion engine fuel have resulted in engine or turbine dam-age; however, Stirling engines have been shown to successfully combust raw bio-oil without damage. Utilization of raw bio-oil as a boiler fuel has met with more success and an ASTM standard has recently been released describing bio-oil characteristics in relation to assigned fuel grades. However, commercialization has been slow to follow and no reports of distribution of these bio-oil boiler fuels have been reported. Co-feeding raw bio-oil with coal has been successfully performed but no current power generation facilities are following this practice. Upgrading of bio-oils to hydrocarbons via hydroprocessing is being performed by several organizations. Currently, limited catalyst life is the obstacle to commercialization of this tech

  6. Nutritional, biochemical, and pharmaceutical potential of proteins and peptides from jatropha: review.

    PubMed

    Devappa, Rakshit K; Makkar, Harinder P S; Becker, Klaus

    2010-06-09

    Increased bioenergy consciousness and high demand for animal products have propelled the search for alternative resources that could meet the dual demands. Jatropha seeds have potential to fit these roles in view of their multipurpose uses, broad climatic adaptability features, and high oil and protein contents. During the past five years many large-scale cultivation projects have been undertaken to produce jatropha seed oil as a feedstock for the biodiesel industry. The present review aims at providing biological significance of jatropha proteins and peptides along with their nutritional and therapeutic applications. The nutritional qualities of the kernel meal and protein concentrates or isolates prepared from seed cake are presented, enabling their efficient use in animal nutrition. In addition, (a) biologically active proteins involved in plant protection, for example, aquaporin and betaine aldehyde dehydrogenase, which have roles in drought resistance, and beta-glucanase, which has antifungal activity, as well as those having pharmaceutical properties, and (b) cyclic peptides with various biological activities such as antiproliferative, immunomodulatory, antifungal, and antimalarial activity are discussed. It is expected that the information collated will open avenues for new applications of proteins present in jatropha plant, thereby contributing to enhance the financial viability and sustainability of a jatropha-based biodiesel industry.

  7. Combination of bioremediation and electrokinetics for the in-situ treatment of diesel polluted soil: A comparison of strategies.

    PubMed

    Mena Ramírez, Esperanza; Villaseñor Camacho, José; Rodrigo, Manuel A; Cañizares, Pablo

    2015-11-15

    The aim of this work is to compare different strategies based on electrokinetic soil flushing and bioremediation for the remediation of diesel-polluted soil. Four options were tested at the laboratory scale: single bioremediation (Bio), performed as a control test; a direct combination of electrokinetic soil flushing and biological technologies (EKSF-Bio); EKSF-Bio with daily polarity reversal of the electric field (PR-EKSF-Bio); and a combination of electrokinetic soil flushing and a permeable reactive biological barrier (EKSF-BioPRB). Four batch experiments of 14 days duration were carried out for comparing technologies at room temperature with an electric field of 1.0 V cm(-1) (in EKSF). A diesel degrading microbial consortium was used. The experimental procedure and some specific details, such as the flushing fluids used, varied depending on the strategy. When using the EKSF-Bio option, a high buffer concentration was required to control the pH, causing soil heating, which negatively affected the biological growth and thus the diesel removal. The PR-EKSF-Bio and the EKSF-BioPRB options attained suitable operating conditions and improved the transport processes for biological growth. Polarity reversal was an efficient option for pH, moisture and temperature control. Homogeneous microbial growth was observed, and approximately 20% of the diesel was removed. The BioPRB option was not as efficient as PR-EKSF-Bio in controlling the operating conditions, but the central biobarrier protected the biological activity. Microbial growth was observed not only in the biobarrier but also in a large portion of the soil, and 29% of the diesel was removed in the short remediation test. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Enriching Genomic Resources and Marker Development from Transcript Sequences of Jatropha curcas for Microgravity Studies

    PubMed Central

    Tian, Wenlan; Paudel, Dev

    2017-01-01

    Jatropha (Jatropha curcas L.) is an economically important species with a great potential for biodiesel production. To enrich the jatropha genomic databases and resources for microgravity studies, we sequenced and annotated the transcriptome of jatropha and developed SSR and SNP markers from the transcriptome sequences. In total 1,714,433 raw reads with an average length of 441.2 nucleotides were generated. De novo assembling and clustering resulted in 115,611 uniquely assembled sequences (UASs) including 21,418 full-length cDNAs and 23,264 new jatropha transcript sequences. The whole set of UASs were fully annotated, out of which 59,903 (51.81%) were assigned with gene ontology (GO) term, 12,584 (10.88%) had orthologs in Eukaryotic Orthologous Groups (KOG), and 8,822 (7.63%) were mapped to 317 pathways in six different categories in Kyoto Encyclopedia of Genes and Genome (KEGG) database, and it contained 3,588 putative transcription factors. From the UASs, 9,798 SSRs were discovered with AG/CT as the most frequent (45.8%) SSR motif type. Further 38,693 SNPs were detected and 7,584 remained after filtering. This UAS set has enriched the current jatropha genomic databases and provided a large number of genetic markers, which can facilitate jatropha genetic improvement and many other genetic and biological studies. PMID:28154822

  9. Comparative mutagenicity and genotoxicity of particles and aerosols emitted by the combustion of standard vs. rapeseed methyl ester supplemented bio-diesel fuels: impact of after treatment devices: oxidation catalyst and particulate filter.

    PubMed

    André, V; Barraud, C; Capron, D; Preterre, D; Keravec, V; Vendeville, C; Cazier, F; Pottier, D; Morin, J P; Sichel, F

    2015-01-01

    Diesel exhausts are partly responsible for the deleterious effects on human health associated with urban pollution, including cardiovascular diseases, asthma, COPD, and possibly lung cancer. Particulate fraction has been incriminated and thus largely investigated for its genotoxic properties, based on exposure conditions that are, however, not relevant for human risk assessment. In this paper, original and more realistic protocols were used to investigate the hazards induced by exhausts emitted by the combustion of standard (DF0) vs. bio-diesel fuels (DF7 and DF30) and to assess the impact of exhaust treatment devices (DOC and DPF). Mutagenicity and genotoxicity were evaluated for (1) resuspended particles ("off line" exposure that takes into account the bioavailability of adsorbed chemicals) and for (2) the whole aerosols (particles+gas phase components) under continuous flow exposure ("on line" exposure). Native particles displayed mutagenic properties associated with nitroaromatic profiles (YG1041), whereas PAHs did not seem to be involved. After DOC treatment, the mutagenicity of particles was fully abolished. In contrast, the level of particle deposition was low under continuous flow exposure, and the observed mutagenicity in TA98 and TA102 was thus attributable to the gas phase. A bactericidal effect was also observed in TA102 after DOC treatment, and a weak but significant mutagenicity persisted after DPF treatment for bio-diesel fuels. No formation of bulky DNA-adducts was observed on A549 cells exposed to diesel exhaust, even in very drastic conditions (organic extracts corresponding to 500 μg equivalent particule/mL, 48 h exposure). Taken together, these data indicate that the exhausts issued from the bio-diesel fuels supplemented with rapseed methyl ester (RME), and generated by current diesel engines equipped with after treatment devices are less mutagenic than older ones. The residual mutagenicity is linked to the gas phase and could be due to pro

  10. Optimization of experimental conditions for composite biodiesel production from transesterification of mixed oils of Jatropha and Pongamia

    NASA Astrophysics Data System (ADS)

    Yogish, H.; Chandrashekara, K.; Pramod Kumar, M. R.

    2012-11-01

    India is looking at the renewable alternative sources of energy to reduce its dependence on import of crude oil. As India imports 70 % of the crude oil, the country has been greatly affected by increasing cost and uncertainty. Biodiesel fuel derived by the two step acid transesterification of mixed non-edible oils from Jatropha curcas and Pongamia (karanja) can meet the requirements of diesel fuel in the coming years. In the present study, different proportions of Methanol, Sodium hydroxide, variation of Reaction time, Sulfuric acid and Reaction Temperature were adopted in order to optimize the experimental conditions for maximum biodiesel yield. The preliminary studies revealed that biodiesel yield varied widely in the range of 75-95 % using the laboratory scale reactor. The average yield of 95 % was obtained. The fuel and chemical properties of biodiesel, namely kinematic viscosity, specific gravity, density, flash point, fire point, calorific value, pH, acid value, iodine value, sulfur content, water content, glycerin content and sulfated ash values were found to be within the limits suggested by Bureau of Indian Standards (BIS 15607: 2005). The optimum combination of Methanol, Sodium hydroxide, Sulfuric acid, Reaction Time and Reaction Temperature are established.

  11. Production of protease and lipase by solvent tolerant Pseudomonas aeruginosa PseA in solid-state fermentation using Jatropha curcas seed cake as substrate.

    PubMed

    Mahanta, Nilkamal; Gupta, Anshu; Khare, S K

    2008-04-01

    Deoiled Jatropha seed cake was assessed for its suitability as substrate for enzyme production by solid-state fermentation (SSF). Solvent tolerant Pseudomonas aeruginosa PseA strain previously reported by us was used for fermentation. The seed cake supported good bacterial growth and enzyme production (protease, 1818 U/g of substrate and lipase, 625 U/g of substrate) as evident by its chemical composition. Maximum protease and lipase production was observed at 50% substrate moisture, a growth period of 72 and 120 h, and a substrate pH of 6.0 and 7.0, respectively. Enrichment with maltose as carbon source increased protease and lipase production by 6.3- and 1.6-fold, respectively. Nitrogen supplementation with peptone for protease and NaNO(3) for lipase production also enhanced the enzyme yield reaching 11,376 U protease activity and 1084 U lipase activity per gram of Jatropha seed cake. These results demonstrated viable approach for utilization of this huge biomass by solid-state fermentation for the production of industrial enzymes. This offers significant benefit due to low cost and abundant availability of cake during biodiesel production.

  12. Biofuel by isomerizing metathesis of rapeseed oil esters with (bio)ethylene for use in contemporary diesel engines

    PubMed Central

    Pfister, Kai F.; Baader, Sabrina; Baader, Mathias; Berndt, Silvia; Goossen, Lukas J.

    2017-01-01

    Rapeseed oil methyl ester (RME) and (bio)ethylene are converted into biofuel with an evenly rising boiling point curve, which fulfills the strict boiling specifications prescribed by the fuel standard EN 590 for modern (petro)diesel engines. Catalyzed by a Pd/Ru system, RME undergoes isomerizing metathesis in a stream of ethylene gas, leading to a defined olefin, monoester, and diester blend. This innovative refining concept requires negligible energy input (60°C) and no solvents and does not produce waste. It demonstrates that the pressing challenge of increasing the fraction of renewables in engine fuel may be addressed purely chemically rather than by motor engineering. PMID:28630908

  13. Biofuel by isomerizing metathesis of rapeseed oil esters with (bio)ethylene for use in contemporary diesel engines.

    PubMed

    Pfister, Kai F; Baader, Sabrina; Baader, Mathias; Berndt, Silvia; Goossen, Lukas J

    2017-06-01

    Rapeseed oil methyl ester (RME) and (bio)ethylene are converted into biofuel with an evenly rising boiling point curve, which fulfills the strict boiling specifications prescribed by the fuel standard EN 590 for modern (petro)diesel engines. Catalyzed by a Pd/Ru system, RME undergoes isomerizing metathesis in a stream of ethylene gas, leading to a defined olefin, monoester, and diester blend. This innovative refining concept requires negligible energy input (60°C) and no solvents and does not produce waste. It demonstrates that the pressing challenge of increasing the fraction of renewables in engine fuel may be addressed purely chemically rather than by motor engineering.

  14. Finding the Bio in Biobased Products: Electrophoretic Identification of Wheat Proteins in Processed Products

    USDA-ARS?s Scientific Manuscript database

    Verification of the bio-content in bio-based or green products identifies genuine products, exposes counterfeit copies, supports or refutes content claims and ensures consumer confidence. When the bio-content includes protein, elemental nitrogen analysis is insufficient for verification since non-pr...

  15. [Bio-oil production from biomass pyrolysis in molten salt].

    PubMed

    Ji, Dengxiang; Cai, Tengyue; Ai, Ning; Yu, Fengwen; Jiang, Hongtao; Ji, Jianbing

    2011-03-01

    In order to investigate the effects of pyrolysis conditions on bio-oil production from biomass in molten salt, experiments of biomass pyrolysis were carried out in a self-designed reactor in which the molten salt ZnCl2-KCl (with mole ratio 7/6) was selected as heat carrier, catalyst and dispersion agent. The effects of metal salt added into ZnCl2-KCl and biomass material on biomass pyrolysis were discussed, and the main compositions of bio-oil were determined by GC-MS. Metal salt added into molten salt could affect pyrolysis production yields remarkably. Lanthanon salt could enhance bio-oil yield and decrease water content in bio-oil, when mole fraction of 5.0% LaCl3 was added, bio-oil yield could reach up to 32.0%, and water content of bio-oil could reduce to 61.5%. The bio-oil and char yields were higher when rice straw was pyrolysed, while gas yield was higher when rice husk was used. Metal salts showed great selectivity on compositions of bio-oil. LiCl and FeCl2 promoted biomass to pyrolyse into smaller molecular weight compounds. CrCl3, CaCl2 and LaCl3 could restrain second pyrolysis of bio-oil. The research provided a scientific reference for production of bio-oil from biomass pyrolysis in molten salt.

  16. Pyrolysis of waste animal fats in a fixed-bed reactor: Production and characterization of bio-oil and bio-char

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ben Hassen-Trabelsi, A., E-mail: aidabenhassen@yahoo.fr; Kraiem, T.; Département de Géologie, Université de Tunis, 2092, Tunis

    Highlights: • Produced bio-fuels (bio-oil and bio-char) from some animal fatty wastes. • Investigated the effects of main parameters on pyrolysis products distribution. • Determined the suitable conditions for the production of the maximum of bio-oil. • Characterized bio-oils and bio-chars obtained from several animal fatty wastes. - Abstract: Several animal (lamb, poultry and swine) fatty wastes were pyrolyzed under nitrogen, in a laboratory scale fixed-bed reactor and the main products (liquid bio-oil, solid bio-char and syngas) were obtained. The purpose of this study is to produce and characterize bio-oil and bio-char obtained from pyrolysis of animal fatty wastes. Themore » maximum production of bio-oil was achieved at a pyrolysis temperature of 500 °C and a heating rate of 5 °C/min. The chemical (GC–MS analyses) and spectroscopic analyses (FTIR analyses) of bio-oil showed that it is a complex mixture consisting of different classes of organic compounds, i.e., hydrocarbons (alkanes, alkenes, cyclic compounds…etc.), carboxylic acids, aldehydes, ketones, esters,…etc. According to fuel properties, produced bio-oils showed good properties, suitable for its use as an engine fuel or as a potential source for synthetic fuels and chemical feedstock. Obtained bio-chars had low carbon content and high ash content which make them unattractive for as renewable source energy.« less

  17. Stabilization of Bio-Oil Fractions for Insertion into Petroleum Refineries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Robert C.; Smith, Ryan; Wright, Mark

    This project is part of a collaboration effort between Iowa State University (ISU), University of Oklahoma (OK) and Pacific Northwest National Laboratory (PNNL). The purpose of this project is to stabilize bio-oil fractions and improve their suitability for insertion into petroleum refineries. Bio-oil from fast pyrolysis of biomass is a complex mixture of unstable organic compounds. These organic compounds react under standard room conditions resulting in increases in bio-oil viscosity and water content – both detrimental for bio-oil storage and transportation. This study employed fractionation and upgrading systems to improve the stability of bio-oil. The fractionation system consists of amore » series of condensers, and electrostatic precipitators designed to separate bio-oil into five fractions: soluble carbohydrates (SF1&2), clean phenolic oligomers (CPO) and middle fraction (SF3&4), light oxygenates (SF5). A two-stage upgrading process was designed to process bio-oil stage fractions into stable products that can be inserted into a refinery. In the upgrading system, heavy and middle bio-oil fractions were upgraded into stable oil via cracking and subsequent hydrodeoxygenation. The light oxygenate fraction was steam reformed to provide a portion of requisite hydrogen for hydroprocessing. Hydrotreating and hydrocracking employed hydrogen from natural gas, fuel gas and light oxygenates reforming. The finished products from this study consist of gasoline- and diesel-blend stock fuels.« less

  18. Implementation of direct LSC method for diesel samples on the fuel market.

    PubMed

    Krištof, Romana; Hirsch, Marko; Kožar Logar, Jasmina

    2014-11-01

    The European Union develops common EU policy and strategy on biofuels and sustainable bio-economy through several documents. The encouragement of biofuel's consumption is therefore the obligation of each EU member state. The situation in Slovenian fuel market is presented and compared with other EU countries in the frame of prescribed values from EU directives. Diesel is the most common fuel for transportation needs in Slovenia. The study was therefore performed on diesel. The sampling net was determined in accordance with the fuel consumption statistics of the country. 75 Sampling points were located on different types of roads. The quantity of bio-component in diesel samples was determined by direct LSC method through measurement of C-14 content. The measured values were in the range from 0 up to nearly 6 mass percentage of bio-component in fuel. The method has proved to be appropriate, suitable and effective for studies on the real fuel market. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Does epigenetic polymorphism contribute to phenotypic variances in Jatropha curcas L.?

    PubMed

    Yi, Chengxin; Zhang, Shilu; Liu, Xiaokun; Bui, Ha T N; Hong, Yan

    2010-11-23

    There is a growing interest in Jatropha curcas L. (jatropha) as a biodiesel feedstock plant. Variations in its morphology and seed productivity have been well documented. However, there is the lack of systematic comparative evaluation of distinct collections under same climate and agronomic practices. With the several reports on low genetic diversity in jatropha collections, there is uncertainty on genetic contribution to jatropha morphology. In this study, five populations of jatropha plants collected from China (CN), Indonesia (MD), Suriname (SU), Tanzania (AF) and India (TN) were planted in one farm under the same agronomic practices. Their agronomic traits (branching pattern, height, diameter of canopy, time to first flowering, dormancy, accumulated seed yield and oil content) were observed and tracked for two years. Significant variations were found for all the agronomic traits studied. Genetic diversity and epigenetic diversity were evaluated using florescence Amplified Fragment Length Polymorphism (fAFLP) and methylation sensitive florescence AFLP (MfAFLP) methods. Very low level of genetic diversity was detected (polymorphic band <0.1%) within and among populations. In contrast, intermediate but significant epigenetic diversity was detected (25.3% of bands were polymorphic) within and among populations. More than half of CCGG sites surveyed by MfAFLP were methylated with significant difference in inner cytosine and double cytosine methylation among populations. Principal coordinates analysis (PCoA) based on Nei's epigenetic distance showed Tanzania/India group distinct from China/Indonesia/Suriname group. Inheritance of epigenetic markers was assessed in one F1 hybrid population between two morphologically distinct parent plants and one selfed population. 30 out of 39 polymorphic markers (77%) were found heritable and followed Mendelian segregation. One epiallele was further confirmed by bisulphite sequencing of its corresponding genomic region. Our study

  20. Does epigenetic polymorphism contribute to phenotypic variances in Jatropha curcas L.?

    PubMed Central

    2010-01-01

    Background There is a growing interest in Jatropha curcas L. (jatropha) as a biodiesel feedstock plant. Variations in its morphology and seed productivity have been well documented. However, there is the lack of systematic comparative evaluation of distinct collections under same climate and agronomic practices. With the several reports on low genetic diversity in jatropha collections, there is uncertainty on genetic contribution to jatropha morphology. Result In this study, five populations of jatropha plants collected from China (CN), Indonesia (MD), Suriname (SU), Tanzania (AF) and India (TN) were planted in one farm under the same agronomic practices. Their agronomic traits (branching pattern, height, diameter of canopy, time to first flowering, dormancy, accumulated seed yield and oil content) were observed and tracked for two years. Significant variations were found for all the agronomic traits studied. Genetic diversity and epigenetic diversity were evaluated using florescence Amplified Fragment Length Polymorphism (fAFLP) and methylation sensitive florescence AFLP (MfAFLP) methods. Very low level of genetic diversity was detected (polymorphic band <0.1%) within and among populations. In contrast, intermediate but significant epigenetic diversity was detected (25.3% of bands were polymorphic) within and among populations. More than half of CCGG sites surveyed by MfAFLP were methylated with significant difference in inner cytosine and double cytosine methylation among populations. Principal coordinates analysis (PCoA) based on Nei's epigenetic distance showed Tanzania/India group distinct from China/Indonesia/Suriname group. Inheritance of epigenetic markers was assessed in one F1 hybrid population between two morphologically distinct parent plants and one selfed population. 30 out of 39 polymorphic markers (77%) were found heritable and followed Mendelian segregation. One epiallele was further confirmed by bisulphite sequencing of its corresponding genomic

  1. Experimental investigation on Performance and Emission Characteristics of J20, P20, N20 Biodiesel blends and Sound Characteristics of P20 Biodiesel blend Used in Single Cylinder Diesel Engine

    NASA Astrophysics Data System (ADS)

    rajasekar, R.; karthik, N.; Xavier, Goldwin

    2017-05-01

    Present work provides the effect of biodiesel blends and Sound Characteristics of P20 Biodiesel blend compared with Performance and emission Characteristics of diesel. Methods and analysis biodiesel blends was prepared by the Transesterification Process. Experiments were conducted in single cylinder constant speed direct injection diesel engine for various test fuels. Research is mainly focused on pongamia oil. It was observed that a 20% Pongamia oil blends and its properties were similar to diesel. The results showed that 20% Pongamia oil blends gave better performance, less in noise and emission compared with ester of Jatropha and neem oil blends. Hence Pongamia blends can be used in existing diesel engine without compromising the engine performance.

  2. Heterogeneous base catalysts for edible palm and non-edible Jatropha-based biodiesel production

    PubMed Central

    2014-01-01

    Background Transesterification catalyzed by solid base catalyst is a brilliant technology for the noble process featuring the fast reaction under mild reacting condition in biodiesel production. Heterogeneous base catalysts are generally more reactive than solid acid catalysts which require extreme operating condition for high conversion and biodiesel yield. In the present study, synthesis of biodiesel was studied by using edible (palm) or non-edible (Jatropha) feedstock catalyzed by heterogeneous base catalysts such as supported alkali metal (NaOH/Al2O3), alkaline-earth metal oxide (MgO, CaO and SrO) and mixed metal oxides catalysts (CaMgO and CaZnO). Results The chemical characteristic, textural properties, basicity profile and leaching test of synthesized catalysts were studied by using X-ray diffraction, BET measurement, TPD-CO2 and ICP-AES analysis, respectively. Transesterification activity of solid base catalysts showed that > 90% of palm biodiesel and > 80% of Jatropha biodiesel yield under 3 wt.% of catalyst, 3 h reaction time, methanol to oil ratio of 15:1 under 65°C. This indicated that other than physicochemical characteristic of catalysts; different types of natural oil greatly influence the catalytic reaction due to the presence of free fatty acids (FFAs). Conclusions Among the solid base catalysts, calcium based mixed metal oxides catalysts with binary metal system (CaMgO and CaZnO) showed capability to maintain the transesterification activity for 3 continuous runs at ~ 80% yield. These catalysts render high durability characteristic in transesterification with low active metal leaching for several cycles. PMID:24812574

  3. Production of Renewable Diesel Fuel

    DOT National Transportation Integrated Search

    2012-06-01

    Vegetable oils have been investigated as a way to provide a renewable source for diesel fuel. A successful approach to using : vegetable oils in diesel engines has been transesterification of the oils with simple alcohols to produce mono-alkyl esters...

  4. Pyrolysis of forest residues: An approach to techno-economics for bio-fuel production

    DOE PAGES

    Carrasco, Jose L.; Gunukula, Sampath; Boateng, Akwasi A.; ...

    2017-04-01

    Here, the techno-economics for producing liquid fuels from Maine forest residues were determined from a combination of: (1) laboratory experiments at USDA-ARS’s Eastern Regional Research Center using hog fuel (a secondary woody residue produced from mill byproducts such as sawdust, bark and shavings) as a feedstock for pyrolysis to establish product yields and composition, and (2) Aspen Plus® process simulation for a feed rate of 2000 dry metric tons per day to estimate energy requirements and equipment sizes. The simulated plant includes feedstock sizing and drying, pyrolysis, hydrogen production and hydrotreatment of pyrolysis oils. The biomass is converted into bio-oilmore » (61% yield), char (24%) and gases (15%) in the pyrolysis reactor, with an energy demand of 17%. The bio-oil is then hydrotreated to remove oxygen, thereby producing hydrocarbon fuels. The final mass yield of gasoline/diesel hydrocarbons is 16% with a 40% energy yield based on the dry biomass fed, this yield represents a fuel production of 51.9 gallons per dry metric ton of feedstock. A unique aspect of the process simulated herein is that pyrolysis char and gases are used as sources for both thermal energy and hydrogen, greatly decreasing the need to input fossil energy. The total capital investment for a grass-roots plant was estimated to be US$427 million with an annual operational cost of US$154 million. With a 30 year project life, a minimum fuel selling price was determined to be US$6.25 per gallon. The economic concerns are related to high capital costs, high feedstock costs and short hydrotreating catalyst lifetimes.« less

  5. Pyrolysis of forest residues: An approach to techno-economics for bio-fuel production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrasco, Jose L.; Gunukula, Sampath; Boateng, Akwasi A.

    Here, the techno-economics for producing liquid fuels from Maine forest residues were determined from a combination of: (1) laboratory experiments at USDA-ARS’s Eastern Regional Research Center using hog fuel (a secondary woody residue produced from mill byproducts such as sawdust, bark and shavings) as a feedstock for pyrolysis to establish product yields and composition, and (2) Aspen Plus® process simulation for a feed rate of 2000 dry metric tons per day to estimate energy requirements and equipment sizes. The simulated plant includes feedstock sizing and drying, pyrolysis, hydrogen production and hydrotreatment of pyrolysis oils. The biomass is converted into bio-oilmore » (61% yield), char (24%) and gases (15%) in the pyrolysis reactor, with an energy demand of 17%. The bio-oil is then hydrotreated to remove oxygen, thereby producing hydrocarbon fuels. The final mass yield of gasoline/diesel hydrocarbons is 16% with a 40% energy yield based on the dry biomass fed, this yield represents a fuel production of 51.9 gallons per dry metric ton of feedstock. A unique aspect of the process simulated herein is that pyrolysis char and gases are used as sources for both thermal energy and hydrogen, greatly decreasing the need to input fossil energy. The total capital investment for a grass-roots plant was estimated to be US$427 million with an annual operational cost of US$154 million. With a 30 year project life, a minimum fuel selling price was determined to be US$6.25 per gallon. The economic concerns are related to high capital costs, high feedstock costs and short hydrotreating catalyst lifetimes.« less

  6. Transcription profile data of phorbol esters biosynthetic genes during developmental stages in Jatropha curcas.

    PubMed

    Jadid, Nurul; Mardika, Rizal Kharisma; Purwani, Kristanti Indah; Permatasari, Erlyta Vivi; Prasetyowati, Indah; Irawan, Mohammad Isa

    2018-06-01

    Jatropha curcas is currently known as an alternative source for biodiesel production. Beside its high free fatty acid content, J. curcas also contains typical diterpenoid-toxic compounds of Euphorbiaceae plant namely phorbol esters. This article present the transcription profile data of genes involved in the biosynthesis of phorbol esters at different developmental stages of leaves, fruit, and seed in Jatropha curcas . Transcriptional profiles were analyzed using reverse transcription-polymerase chain reaction (RT-PCR). We used two genes including GGPPS (Geranylgeranyl diphospate synthase), which is responsible for the formation of common diterpenoid precursor (GGPP) and CS (Casbene Synthase), which functions in the synthesis of casbene. Meanwhile, J. curcas Actin ( ACT ) was used as internal standard. We demonstrated dynamic of GGPPS and CS expression among different stage of development of leaves, fruit and seed in Jatropha .

  7. Genetic variability in Jatropha curcas L. from diallel crossing.

    PubMed

    Ribeiro, D O; Silva-Mann, R; Alvares-Carvalho, S V; Souza, E M S; Vasconcelos, M C; Blank, A F

    2017-05-18

    Physic nut (Jatropha curcas L.) presents high oilseed yield and low production cost. However, technical-scientific knowledge on this crop is still limited. This study aimed to evaluate and estimate the genetic variability of hybrids obtained from dialell crossing. Genetic variability was carried out using ISSR molecular markers. For genetic variability, nine primers were used, and six were selected with 80.7% polymorphism. Genetic similarity was obtained using the NTSYS pc. 2.1 software, and cluster analysis was obtained by the UPGMA method. Mean genetic similarity was 58.4% among hybrids; the most divergent pair was H1 and H10 and the most similar pair was H9 and H10. ISSR PCR markers provided a quick and highly informative system for DNA fingerprinting, and also allowed establishing genetic relationships of Jatropha hybrids.

  8. Utilization of deoiled Jatropha curcas seed cake for production of xylanase from thermophilic Scytalidium thermophilum.

    PubMed

    Joshi, Chetna; Khare, S K

    2011-01-01

    Jatropha curcas is a major biodiesel crop. Large amount of deoiled cake is generated as by-product during biodiesel production from its seeds. Deoiled J. curcas seed cake was assessed as substrate for the production of xylanase from thermophilic fungus Scytalidium thermophilum by solid-state fermentation. The seed cake was efficiently utilized by S. thermophilum for its growth during which it produced good amount of heat stable extracellular xylanase. The solid-state fermentation conditions were optimized for maximum xylanase production. Under the optimized conditions viz. deoiled seed cake supplemented with 1% oat-spelt xylan, adjusted to pH 9.0, moisture content 1:3 w/v, inoculated with 1×10(6) spores per 5 g cake and incubated at 45 °C, 1455 U xylanase/g deoiled seed cake was obtained. The xylanase was useful in biobleaching of paper pulp. Solid-state fermentation of deoiled cake appears a potentially viable approach for its effective utilization. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Genetic structure from the oldest Jatropha germplasm bank of Brazil and contribution for the genetic improvement.

    PubMed

    Santos, Dalilhia N Dos; Ferreira, Juliano L; Setotaw, Tesfahun A; Cançado, Geraldo M A; Pasqual, Moacir; Londe, Luciana C N; Saturnino, Heloisa M; Vendrame, Wagner A

    2016-01-01

    Jatropha is a potential oilseed crop, which requires mitigating factors such as the low genetic variability of the species. The solution runs through the research of Brazilian germplasm. Attention should be given to the germplasm of jatropha the north of Minas Gerais, because this is the oldest national collection and because this region may be a regions of jatropha diversity due to selection pressure arising from environmental adversities. Therefore, the objective of this study was to investigate the genetic diversity of 48 accessions of collection from Empresa de Pesquisa Agropecuária de Minas Gerais (EPAMIG), using SSR and ISSR markers. The results showed low genetic diversity, but some individuals stood out as J. mollissima (48), J. podagrica (47), Mexican accessions (42, 43, 44 and 45) and some national accessions (28, 29, 41 and 46). Therefore, aiming to increase the genetic variability and improve the effectiveness of jatropha breeding programs, it is suggested to explore such as parental accessions to generate commercial hybrids. This fact implies the possibility to support future production of jatropha, since this culture may be an important source of income, especially for small farmers living in semiarid regions of Brazil.

  10. Sulforaphane-stimulated phase II enzyme induction inhibits cytokine production by airway epithelial cells stimulated with diesel extract.

    PubMed

    Ritz, Stacey A; Wan, Junxiang; Diaz-Sanchez, David

    2007-01-01

    Airborne particulate pollutants, such as diesel exhaust particles, are thought to exacerbate lung and cardiovascular diseases through induction of oxidative stress. Sulforaphane, derived from cruciferous vegetables, is the most potent known inducer of phase II enzymes involved in the detoxification of xenobiotics. We postulated that sulforaphane may be able to ameliorate the adverse effects of pollutants by upregulating expression of endogenous antioxidant enzymes. Stimulation of bronchial epithelial cells with the chemical constituents of diesel particles result in the production of proinflammatory cytokines. We first demonstrated a role for phase II enzymes in regulating diesel effects by transfecting the airway epithelial cell line (BEAS-2B) with the sentinel phase II enzyme NAD(P)H: quinine oxidoreductase 1 (NQO1). IL-8 production in response to diesel extract was significantly reduced in these compared with untransfected cells. We then examined whether sulforaphane would stimulate phase II induction and whether this would thereby ablate the effect of diesel extracts on cytokine production. We verified that sulforaphane significantly augmented expression of the phase II enzyme genes GSTM1 and NQO1 and confirmed that sulforaphane treatment increased glutathione S-transferase activity in epithelial cells without inducing cell death or apoptosis. Sulforaphane pretreatment inhibited IL-8 production by BEAS-2B cells upon stimulation with diesel extract. Similarly, whereas diesel extract stimulated production of IL-8, granulocyte-macrophage colony-stimulating factor, and IL-1beta from primary human bronchial epithelial cells, sulforaphane pretreatment inhibited diesel-induced production of all of these cytokines. Our studies show that sulforaphane can mitigate the effect of diesel in respiratory epithelial cells and demonstrate the chemopreventative potential of phase II enzyme enhancement.

  11. Study on demetalization of sewage sludge by sequential extraction before liquefaction for the production of cleaner bio-oil and bio-char.

    PubMed

    Leng, Lijian; Yuan, Xingzhong; Shao, Jianguang; Huang, Huajun; Wang, Hou; Li, Hui; Chen, Xiaohong; Zeng, Guangming

    2016-01-01

    Demetalization of sewage sludge (SS) by sequential extraction before liquefaction was implemented to produce cleaner bio-char and bio-oil. Demetalization steps 1 and 2 did not cause much organic matter loss on SS, and thus the bio-oil and bio-char yields and the compositions of bio-oils were also not affected significantly. However, the demetalization procedures resulted in the production of cleaner bio-chars and bio-oils. The total concentrations and the acid soluble/exchangeable fraction (F1 fraction, the most toxic heavy metal fraction) of heavy metals (Cu, Cr, Pb, Zn, and Cd) in these products were significantly reduced and the environmental risks of these products were also relived considerably compared with those produced from raw SS, respectively. Additionally, these bio-oils had less heavy fractions. Demetalization processes with removal of F1 and F2 fractions of heavy metals would benefit the production of cleaner bio-char and bio-oil by liquefaction of heavy metal abundant biomass like SS. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Bio-cellulose Production by Beijerinckia fluminensis WAUPM53 and Gluconacetobacter xylinus 0416 in Sago By-product Medium.

    PubMed

    Voon, W W Y; Muhialdin, B J; Yusof, N L; Rukayadi, Y; Meor Hussin, A S

    2018-06-19

    Bio-cellulose is the microbial extracellular cellulose that is produced by growing several microorganisms on agriculture by-products, and it is used in several food applications. This study aims to utilize sago by-product, coconut water, and the standard medium Hestrin-Schramm as the carbon sources in the culture medium for bio-cellulose production. The bacteria Beijerinkia fluminensis WAUPM53 and Gluconacetobacter xylinus 0416 were selected based on their bio-cellulose production activity. The structure was determined by Fourier transform infrared spectroscopy and scanning electron microscopy, while the toxicity safety was evaluated by brine shrimp lethality test. The results of Fourier transform infrared spectroscopy showed that the bio-cellulose produced by B. fluminensis cultivated in sago by-products was of high quality. The bio-cellulose production by B. fluminensis in the sago by-product medium was slightly higher than that in the coconut water medium and was comparable with the production in the Hestrin-Schramm medium. Brine shrimp lethality test confirmed that the bio-cellulose produced by B. fluminensis in the sago by-product medium has no toxicity, which is safe for applications in the food industry. This is the first study to determine the high potential of sago by-product to be used as a new carbon source for the bio-cellulose production.

  13. Sulphide production and corrosion in seawaters during exposure to FAME diesel.

    PubMed

    Lee, Jason S; Ray, Richard I; Little, Brenda J; Duncan, Kathleen E; Oldham, Athenia L; Davidova, Irene A; Suflita, Joseph M

    2012-01-01

    Experiments were designed to evaluate the corrosion-related consequences of storing/transporting fatty acid methyl ester (FAME) alternative diesel fuel in contact with natural seawater. Coastal Key West, FL (KW), and Persian Gulf (PG) seawaters, representing an oligotrophic and a more organic- and inorganic mineral-rich environment, respectively, were used in 60 day incubations with unprotected carbon steel. The original microflora of the two seawaters were similar with respect to major taxonomic groups but with markedly different species. After exposure to FAME diesel, the microflora of the waters changed substantially, with Clostridiales (Firmicutes) becoming dominant in both. Despite low numbers of sulphate-reducing bacteria in the original waters and after FAME diesel exposure, sulphide levels and corrosion increased markedly due to microbial sulphide production. Corrosion morphology was in the form of isolated pits surrounded by an intact, passive surface with the deepest pits associated with the fuel/seawater interface in the KW exposure. In the presence of FAME diesel, the highest corrosion rates measured by linear polarization occurred in the KW exposure correlating with significantly higher concentrations of sulphur and chlorine (presumed sulphide and chloride, respectively) in the corrosion products.

  14. Detoxification of Jatropha curcas kernel cake by a novel Streptomyces fimicarius strain.

    PubMed

    Wang, Xing-Hong; Ou, Lingcheng; Fu, Liang-Liang; Zheng, Shui; Lou, Ji-Dong; Gomes-Laranjo, José; Li, Jiao; Zhang, Changhe

    2013-09-15

    A huge amount of kernel cake, which contains a variety of toxins including phorbol esters (tumor promoters), is projected to be generated yearly in the near future by the Jatropha biodiesel industry. We showed that the kernel cake strongly inhibited plant seed germination and root growth and was highly toxic to carp fingerlings, even though phorbol esters were undetectable by HPLC. Therefore it must be detoxified before disposal to the environment. A mathematic model was established to estimate the general toxicity of the kernel cake by determining the survival time of carp fingerling. A new strain (Streptomyces fimicarius YUCM 310038) capable of degrading the total toxicity by more than 97% in a 9-day solid state fermentation was screened out from 578 strains including 198 known strains and 380 strains isolated from air and soil. The kernel cake fermented by YUCM 310038 was nontoxic to plants and carp fingerlings and significantly promoted tobacco plant growth, indicating its potential to transform the toxic kernel cake to bio-safe animal feed or organic fertilizer to remove the environmental concern and to reduce the cost of the Jatropha biodiesel industry. Microbial strain profile essential for the kernel cake detoxification was discussed. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Cyanobacteria: A Precious Bio-resource in Agriculture, Ecosystem, and Environmental Sustainability

    PubMed Central

    Singh, Jay Shankar; Kumar, Arun; Rai, Amar N.; Singh, Devendra P.

    2016-01-01

    Keeping in view, the challenges concerning agro-ecosystem and environment, the recent developments in biotechnology offers a more reliable approach to address the food security for future generations and also resolve the complex environmental problems. Several unique features of cyanobacteria such as oxygenic photosynthesis, high biomass yield, growth on non-arable lands and a wide variety of water sources (contaminated and polluted waters), generation of useful by-products and bio-fuels, enhancing the soil fertility and reducing green house gas emissions, have collectively offered these bio-agents as the precious bio-resource for sustainable development. Cyanobacterial biomass is the effective bio-fertilizer source to improve soil physico-chemical characteristics such as water-holding capacity and mineral nutrient status of the degraded lands. The unique characteristics of cyanobacteria include their ubiquity presence, short generation time and capability to fix the atmospheric N2. Similar to other prokaryotic bacteria, the cyanobacteria are increasingly applied as bio-inoculants for improving soil fertility and environmental quality. Genetically engineered cyanobacteria have been devised with the novel genes for the production of a number of bio-fuels such as bio-diesel, bio-hydrogen, bio-methane, synga, and therefore, open new avenues for the generation of bio-fuels in the economically sustainable manner. This review is an effort to enlist the valuable information about the qualities of cyanobacteria and their potential role in solving the agricultural and environmental problems for the future welfare of the planet. PMID:27148218

  16. Cyanobacteria: A Precious Bio-resource in Agriculture, Ecosystem, and Environmental Sustainability.

    PubMed

    Singh, Jay Shankar; Kumar, Arun; Rai, Amar N; Singh, Devendra P

    2016-01-01

    Keeping in view, the challenges concerning agro-ecosystem and environment, the recent developments in biotechnology offers a more reliable approach to address the food security for future generations and also resolve the complex environmental problems. Several unique features of cyanobacteria such as oxygenic photosynthesis, high biomass yield, growth on non-arable lands and a wide variety of water sources (contaminated and polluted waters), generation of useful by-products and bio-fuels, enhancing the soil fertility and reducing green house gas emissions, have collectively offered these bio-agents as the precious bio-resource for sustainable development. Cyanobacterial biomass is the effective bio-fertilizer source to improve soil physico-chemical characteristics such as water-holding capacity and mineral nutrient status of the degraded lands. The unique characteristics of cyanobacteria include their ubiquity presence, short generation time and capability to fix the atmospheric N2. Similar to other prokaryotic bacteria, the cyanobacteria are increasingly applied as bio-inoculants for improving soil fertility and environmental quality. Genetically engineered cyanobacteria have been devised with the novel genes for the production of a number of bio-fuels such as bio-diesel, bio-hydrogen, bio-methane, synga, and therefore, open new avenues for the generation of bio-fuels in the economically sustainable manner. This review is an effort to enlist the valuable information about the qualities of cyanobacteria and their potential role in solving the agricultural and environmental problems for the future welfare of the planet.

  17. Subcritical hydrothermal liquefaction of cattle manure to bio-oil: Effects of conversion parameters on bio-oil yield and characterization of bio-oil.

    PubMed

    Yin, Sudong; Dolan, Ryan; Harris, Matt; Tan, Zhongchao

    2010-05-01

    In this study, cattle manure was converted to bio-oil by subcritical hydrothermal liquefaction in the presence of NaOH. The effects of conversion temperature, process gas, initial conversion pressure, residence time and mass ratio of cattle manure to water on the bio-oil yield were studied. The bio-oil was characterized in terms of elemental composition, higher heating value, ultraviolet-visible (UV/Vis) spectroscopy, Fourier transform infrared spectroscopy (FTIR), gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). Results showed that the bio-oil yield depended on the conversion temperature and the process gas. Higher initial conversion pressure, longer residence time and larger mass ratio of cattle manure to water, however, had negative impacts on the bio-oil yield. The higher heating value of bio-oil was 35.53MJ/kg on average. The major non-polar components of bio-oil were toluene, ethyl benzene and xylene, which are components of crude oil, gasoline and diesel. Copyright 2010 Elsevier Ltd. All rights reserved.

  18. Joint BioEnergy Institute

    ScienceCinema

    Keasling, Jay; Simmons, Blake; Tartaglino, Virginia; Baidoo, Edward; Kothari, Ankita

    2018-05-11

    The Joint BioEnergy Institute (JBEI) is a U.S. Department of Energy (DOE) Bioenergy Research Center dedicated to developing advanced biofuels—liquid fuels derived from the solar energy stored in plant biomass that can replace gasoline, diesel and jet fuels.

  19. Engineering Clostridium acetobutylicum for production of kerosene and diesel blendstock precursors.

    PubMed

    Bormann, Sebastian; Baer, Zachary C; Sreekumar, Sanil; Kuchenreuther, Jon M; Dean Toste, F; Blanch, Harvey W; Clark, Douglas S

    2014-09-01

    Processes for the biotechnological production of kerosene and diesel blendstocks are often economically unattractive due to low yields and product titers. Recently, Clostridium acetobutylicum fermentation products acetone, butanol, and ethanol (ABE) were shown to serve as precursors for catalytic upgrading to higher chain-length molecules that can be used as fuel substitutes. To produce suitable kerosene and diesel blendstocks, the butanol:acetone ratio of fermentation products needs to be increased to 2-2.5:1, while ethanol production is minimized. Here we show that the overexpression of selected proteins changes the ratio of ABE products relative to the wild type ATCC 824 strain. Overexpression of the native alcohol/aldehyde dehydrogenase (AAD) has been reported to primarily increase ethanol formation in C. acetobutylicum. We found that overexpression of the AAD(D485G) variant increased ethanol titers by 294%. Catalytic upgrading of the 824(aad(D485G)) ABE products resulted in a blend with nearly 50wt%≤C9 products, which are unsuitable for diesel. To selectively increase butanol production, C. beijerinckii aldehyde dehydrogenase and C. ljungdhalii butanol dehydrogenase were co-expressed (strain designate 824(Cb ald-Cl bdh)), which increased butanol titers by 27% to 16.9gL(-1) while acetone and ethanol titers remained essentially unaffected. The solvent ratio from 824(Cb ald-Cl bdh) resulted in more than 80wt% of catalysis products having a carbon chain length≥C11 which amounts to 9.8gL(-1) of products suitable as kerosene or diesel blendstock based on fermentation volume. To further increase solvent production, we investigated expression of both native and heterologous chaperones in C. acetobutylicum. Expression of a heat shock protein (HSP33) from Bacillus psychrosaccharolyticus increased the total solvent titer by 22%. Co-expression of HSP33 and aldehyde/butanol dehydrogenases further increased ABE formation as well as acetone and butanol yields. HSP33 was

  20. Overexpression of Jatropha Gibberellin 2-oxidase 6 (JcGA2ox6) Induces Dwarfism and Smaller Leaves, Flowers and Fruits in Arabidopsis and Jatropha

    PubMed Central

    Hu, Ying-Xiong; Tao, Yan-Bin; Xu, Zeng-Fu

    2017-01-01

    Gibberellins (GAs) are plant hormones that play fundamental roles in plant growth and development. Gibberellin 2-oxidase (GA2ox) plays a direct role in determining the levels of bioactive GAs by catalyzing bioactive GAs or their immediate precursors to inactive forms. In this study, a GA2ox gene, designated JcGA2ox6, was isolated from Jatropha curcas. JcGA2ox6 is expressed in all tissues of adult Jatropha, with the highest expression level in male flowers and the lowest expression level in young leaves. Overexpression of JcGA2ox6 in Arabidopsis resulted in a typical dwarf phenotype, along with late flowering, smaller leaves and flowers, shorter siliques and smaller seeds. Similarly, when JcGA2ox6 was overexpressed in Jatropha, the transgenic plants exhibited a dwarf phenotype with dark-green leaves and smaller inflorescences, flowers, fruits and seeds. However, the flowering time of Jatropha was not affected by overexpression of JcGA2ox6, unlike that in the transgenic Arabidopsis. Moreover, the number of flowers per inflorescence, the weight of 10 seeds and the seed oil content were significantly decreased in transgenic Jatropha. The results indicated that overexpression of JcGA2ox6 had a great impact on the vegetative and reproductive growth of transgenic Jatropha. Furthermore, we found that the dwarf phenotype of transgenic Jatropha was caused by a decrease in endogenous bioactive GA4, which was correlated with the degree of dwarfism. PMID:29312375

  1. Biotechnological approaches to determine the impact of viruses in the energy crop plant Jatropha curcas

    PubMed Central

    2011-01-01

    Background Geminiviruses infect a wide range of plant species including Jatropha and cassava both belonging to family Euphorbiaceae. Cassava is traditionally an important food crop in Sub - Saharan countries, while Jatropha is considered as valuable biofuel plant with great perspectives in the future. Results A total of 127 Jatropha samples from Ethiopia and Kenya and 124 cassava samples from Kenya were tested by Enzyme-Linked Immunosorbent Assay (ELISA) for RNA viruses and polymerase chain reaction for geminiviruses. Jatropha samples from 4 different districts in Kenya and Ethiopia (analyzed by ELISA) were negative for all three RNA viruses tested: Cassava brown streak virus (CBSV), Cassava common mosaic virus, Cucumber mosaic virus, Three cassava samples from Busia district (Kenya) contained CBSV. Efforts to develop diagnostic approaches allowing reliable pathogen detection in Jatropha, involved the amplification and sequencing of the entire DNA A molecules of 40 Kenyan isolates belonging to African cassava mosaic virus (ACMV) and East African cassava mosaic virus - Uganda. This information enabled the design of novel primers to address different questions: a) primers amplifying longer sequences led to a phylogenetic tree of isolates, allowing some predictions on the evolutionary aspects of Begomoviruses in Jatrophia; b) primers amplifying shorter sequences represent a reliable diagnostic tool. This is the first report of the two Begomoviruses in J. curcas. Two cassava samples were co - infected with cassava mosaic geminivirus and CBSV. A Defective DNA A of ACMV was found for the first time in Jatropha. Conclusion Cassava geminiviruses occurring in Jatropha might be spread wider than anticipated. If not taken care of, this virus infection might negatively impact large scale plantations for biofuel production. Being hosts for similar pathogens, the planting vicinity of the two crop plants needs to be handled carefully. PMID:21812981

  2. Waste cockle shell as natural catalyst for biodiesel production from jatropha oil

    NASA Astrophysics Data System (ADS)

    Hadi, Norulakmal Nor; Idrus, Nur Afini; Ghafar, Faridah; Salleh, Marmy Roshaidah Mohd

    2017-12-01

    Due to the increasing of industrialization and modernization of the world, the demand of petroleum has risen rapidly. The increasing demand for energy and environmental awareness has prompted many researches to embark on alternative fuel platforms that are environmentally acceptable. In this study, jatropha oil was used to produce biodiesel by a new transesterification routine in which cockle shell was used as source of heterogeneous catalyst. The investigation showed the catalyst that was calcined at temperature of 800 °C has the optimum capability to produce high yield. The highest yield of biodiesel production of 93.20 % were obtained by using 1.5 wt% of catalyst. The reaction was conducted at a temperature of 65 °C with the optimum methanol to oil ratio of 6:1. It was found that the physical properties of the biodiesel produced were significant to ASTM standard of fatty acid methyl ester (FAME).

  3. Recirculation: A New Concept to Drive Innovation in Sustainable Product Design for Bio-Based Products.

    PubMed

    Sherwood, James; Clark, James H; Farmer, Thomas J; Herrero-Davila, Lorenzo; Moity, Laurianne

    2016-12-29

    Bio-based products are made from renewable materials, offering a promising basis for the production of sustainable chemicals, materials, and more complex articles. However, biomass is not a limitless resource or one without environmental and social impacts. Therefore, while it is important to use biomass and grow a bio-based economy, displacing the unsustainable petroleum basis of energy and chemical production, any resource must be used effectively to reduce waste. Standards have been developed to support the bio-based product market in order to achieve this aim. However, the design of bio-based products has not received the same level of attention. Reported here are the first steps towards the development of a framework of understanding which connects product design to resource efficiency. Research and development scientists and engineers are encouraged to think beyond simple functionality and associate value to the potential of materials in their primary use and beyond.

  4. Microbial production of 1-octanol: A naturally excreted biofuel with diesel-like properties

    PubMed Central

    Akhtar, M. Kalim; Dandapani, Hariharan; Thiel, Kati; Jones, Patrik R.

    2014-01-01

    The development of sustainable, bio-based technologies to convert solar energy and carbon dioxide into fuels is a grand challenge. A core part of this challenge is to produce a fuel that is compatible with the existing transportation infrastructure. This task is further compounded by the commercial desire to separate the fuel from the biotechnological host. Based on its fuel characteristics, 1-octanol was identified as an attractive metabolic target with diesel-like properties. We therefore engineered a synthetic pathway specifically for the biosynthesis of 1-octanol in Escherichia coli BL21(DE3) by over-expression of three enzymes (thioesterase, carboxylic acid reductase and aldehyde reductase) and one maturation factor (phosphopantetheinyl transferase). Induction of this pathway in a shake flask resulted in 4.4 mg 1-octanol L−1 h−1 which exceeded the productivity of previously engineered strains. Furthermore, the majority (73%) of the fatty alcohol was localised within the media without the addition of detergent or solvent overlay. The deletion of acrA reduced the production and excretion of 1-octanol by 3-fold relative to the wild-type, suggesting that the AcrAB–TolC complex may be responsible for the majority of product efflux. This study presents 1-octanol as a potential fuel target that can be synthesised and naturally accumulated within the media using engineered microbes. PMID:27066394

  5. Microbial production of 1-octanol: A naturally excreted biofuel with diesel-like properties.

    PubMed

    Akhtar, M Kalim; Dandapani, Hariharan; Thiel, Kati; Jones, Patrik R

    2015-12-01

    The development of sustainable, bio-based technologies to convert solar energy and carbon dioxide into fuels is a grand challenge. A core part of this challenge is to produce a fuel that is compatible with the existing transportation infrastructure. This task is further compounded by the commercial desire to separate the fuel from the biotechnological host. Based on its fuel characteristics, 1-octanol was identified as an attractive metabolic target with diesel-like properties. We therefore engineered a synthetic pathway specifically for the biosynthesis of 1-octanol in Escherichia coli BL21(DE3) by over-expression of three enzymes (thioesterase, carboxylic acid reductase and aldehyde reductase) and one maturation factor (phosphopantetheinyl transferase). Induction of this pathway in a shake flask resulted in 4.4 mg 1-octanol L -1  h -1 which exceeded the productivity of previously engineered strains. Furthermore, the majority (73%) of the fatty alcohol was localised within the media without the addition of detergent or solvent overlay. The deletion of acrA reduced the production and excretion of 1-octanol by 3-fold relative to the wild-type, suggesting that the AcrAB-TolC complex may be responsible for the majority of product efflux. This study presents 1-octanol as a potential fuel target that can be synthesised and naturally accumulated within the media using engineered microbes.

  6. Influence of bio-additives on combustion of liquid fuels

    NASA Astrophysics Data System (ADS)

    Patsch, Marek; Durčanský, Peter

    2016-06-01

    In this contribution there are analyses of the course of the pressure curves, which were measured in the diesel engine MD UR IV, which is often used in cogeneration units. The results of the analyses confront the properties and quality of fuels. The measuring was realized with a constant rotation speed of the engine and by using different fuels. The fuels were pure diesel fuels and diesel fuel with bio-additives of hydrogenate RO (rape oil), FAME, and bioethanol.

  7. Biosynthesis of poly(3-hydroxybutyrate) (PHB) by Cupriavidus necator H16 from jatropha oil as carbon source.

    PubMed

    Batcha, Abeed Fatima Mohidin; Prasad, D M Reddy; Khan, Maksudur R; Abdullah, Hamidah

    2014-05-01

    Poly(3-hydroxybutyrate) (PHB) is a biodegradable polymer that can be synthesized through bacterial fermentation. In this study, Cupriavidus necator H16 is used to synthesize PHB by using Jatropha oil as its sole carbon source. Different variables mainly jatropha oil and urea concentrations, and agitation rate were investigated to determine the optimum condition for microbial fermentation in batch culture. Based on the results, the highest cell dry weight and PHB concentrations of 20.1 and 15.5 g/L, respectively, were obtained when 20 g/L of jatropha oil was used. Ethanol was used as external stress factor and the addition of 1.5 % ethanol at 38 h had a positive effect with a high PHB yield of 0.987 g PHB/g jatropha oil. The kinetic studies for cell growth rate and PHB production were conducted and the data were fitted with Logistic and Leudeking–Piret models. The rate constants were evaluated and the theoretical values were in accordance with the experimental data obtained

  8. Tailpipe emissions and engine performance of a light-duty diesel engine operating on petro- and bio-diesel fuel blends.

    DOT National Transportation Integrated Search

    2014-06-01

    This report summarizes the experimental apparatus developed in the Transportation Air Quality Laboratory (TAQ Lab) at the University of Vermont to compare light-duty diesel engine performance and exhaust emissions when operating on petroleum diesel (...

  9. Preliminary investigation on the production of fuels and bio-char from Chlamydomonas reinhardtii biomass residue after bio-hydrogen production.

    PubMed

    Torri, Cristian; Samorì, Chiara; Adamiano, Alessio; Fabbri, Daniele; Faraloni, Cecilia; Torzillo, Giuseppe

    2011-09-01

    The aim of this work was to investigate the potential conversion of Chlamydomonas reinhardtii biomass harvested after hydrogen production. The spent algal biomass was converted into nitrogen-rich bio-char, biodiesel and pyrolysis oil (bio-oil). The yield of lipids (algal oil), obtained by solvent extraction, was 15 ± 2% w/w(dry-biomass). This oil was converted into biodiesel with a 8.7 ± 1% w/w(dry-biomass) yield. The extraction residue was pyrolysed in a fixed bed reactor at 350 °C obtaining bio-char as the principal fraction (44 ± 1% w/w(dry-biomass)) and 28 ± 2% w/w(dry-biomass) of bio-oil. Pyrolysis fractions were characterized by elemental analysis, while the chemical composition of bio-oil was fully characterized by GC-MS, using various derivatization techniques. Energy outputs resulting from this approach were distributed in hydrogen (40%), biodiesel (12%) and pyrolysis fractions (48%), whereas bio-char was the largest fraction in terms of mass. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Production of ethoxylated fatty acids derived from Jatropha non-edible oil as a nonionic fat-liquoring agent.

    PubMed

    El-Shattory, Y; Abo-Elwafa, Ghada A; Aly, Saadia M; Nashy, El-Shahat H A

    2012-01-01

    Natural fatty derivatives (oleochemicals) have been used as intermediate materials in several industries replacing the harmful and expensive petrochemicals. Fatty ethoxylates are one of these natural fatty derivatives. In the present work Jatropha fatty acids were derived from the non edible Jatropha oil and used as the fat source precursor. The ethoxylation process was carried out on the derived fatty acids using a conventional cheap catalyst (K₂CO₃) in order to obtain economically and naturally valuable non-ionic surfactants. Ethoxylation reaction was proceeded using ethylene oxide gas in the presence of 1 or 2% K₂CO₃ catalyst at 120 and 145°C for 5, 8 and 12 hours. The prepared products were evaluated for their chemical and physical properties as well as its application as non- ionic fat-liquoring agents in leather industry. The obtained results showed that the number of ethylene oxide groups introduced in the fatty acids as well as their EO% increased as the temperature and time of the reaction increased. The highest ethoxylation number was obtained at 145°C for 8 hr. Also, the prepared ethoxylated products were found to be effective fat-liquors with high HLB values giving stable oil in water emulsions. The fat-liquored leather led to an improvement in its mechanical properties such as tensile strength and elongation at break. In addition, a significant enhancement in the texture of the treated leather by the prepared fat-liquors as indicated from the scanning electron microscope (SEM) images was observed.

  11. Total flavonoid content and formulation antioxidant cream stem of jatropha multifida l.

    NASA Astrophysics Data System (ADS)

    Dwi Franyoto, Yuvianti; Kusmita, Lia; Mutmainah; Demma Angrena, Riega

    2018-05-01

    Free radical induced oxidative stress that influences the occurrence of various degenerative diseases such as cancer, coronary heart disease and premature aging. Stems of Jatropha multifida L are known to contain flavanoid compounds have antioxidant activity. A study has been carried out to determine antioxidant potential of stems of Jatropha multifida L. Initially, material was macerated gradually with ethanol. The extract obtained was filtered and evaporated. Determination of total flavanoid contents (TFC) using spectrophotometric methods. The antioxidant potential of this extract was evaluated by 2, 2-diphenyl-1- picrylhydrazyl (DPPH) radical scavenging assay. In the DPPH radical-scavenging activities, the extract had the antioxidant activity (IC50 = 72 ± 0.01 μg/ml). The results showed the extracts of Jatropha multifida L. could be considered as natural antioxidants and may be useful for curing diseases arising from oxidative deterioration. The formulation comprises with 5% of extract and was formulated using fusion method. The evaluation of the formulated cream showed good results and can be good potential for cosmetic product development.

  12. Catalytic upgrading of bio-oil produced from hydrothermal liquefaction of Nannochloropsis sp.

    PubMed

    Shakya, Rajdeep; Adhikari, Sushil; Mahadevan, Ravishankar; Hassan, El Barbary; Dempster, Thomas A

    2018-03-01

    Upgrading of bio-oil obtained from hydrothermal liquefaction (HTL) of algae is necessary for it to be used as a fuel. In this study, bio-oil obtained from HTL of Nannochloropsis sp. was upgraded using five different catalysts (Ni/C, ZSM-5, Ni/ZSM-5, Ru/C and Pt/C) at 300 °C and 350 °C. The upgraded bio-oil yields were higher at 300 °C; however, higher quality upgraded bio-oils were obtained at 350 °C. Ni/C gave the maximum upgraded bio-oil yield (61 wt%) at 350 °C. However, noble metal catalysts (Ru/C and Pt/C) gave the better upgraded bio-oils in terms of acidity, heating values, and nitrogen values. The higher heating value of the upgraded bio-oils ranged from 40 to 44 MJ/kg, and the nitrogen content decreased from 5.37 to 1.29 wt%. Most of the upgraded bio-oils (35-40 wt%) were in the diesel range. The major components present in the gaseous products were CH 4 , CO, CO 2 and lower alkanes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Hydrocarbon liquid production via the bioCRACK process and catalytic hydroprocessing of the product oil

    DOE PAGES

    Schwaiger, Nickolaus; Elliott, Douglas C.; Ritzberger, Jurgen; ...

    2015-01-01

    Continuous hydroprocessing of liquid phase pyrolysis bio-oil, provided by BDI-BioEnergy International bioCRACK pilot plant at OMV Refinery in Schwechat/Vienna Austria was investigated. These hydroprocessing tests showed promising results using catalytic hydroprocessing strategies developed for unfractionated bio-oil. A sulfided base metal catalyst (CoMo on Al2O3) was evaluated. The bed of catalyst was operated at 400 °C in a continuous-flow reactor at a pressure of 12.1 MPa with flowing hydrogen. The condensed liquid products were analyzed and found that the hydrocarbon liquid was significantly hydrotreated so that nitrogen and sulfur were below the level of detection (<0.05), while the residual oxygen rangedmore » from 0.7 to 1.2%. The density of the products varied from 0.71 g/mL up to 0.79 g/mL with a correlated change of the hydrogen to carbon atomic ratio from 2.1 down to 1.9. The product quality remained high throughout the extended tests suggesting minimal loss of catalyst activity through the test. These tests provided the data needed to assess the quality of liquid fuel products obtained from the bioCRACK process as well as the activity of the catalyst for comparison with products obtained from hydrotreated fast pyrolysis bio-oils from fluidized-bed operation.« less

  14. Biodegradation of Jatropha curcas phorbol esters in soil.

    PubMed

    Devappa, Rakshit K; Makkar, Harinder Ps; Becker, Klaus

    2010-09-01

    Jatropha curcas seed cake is generated as a by-product during biodiesel production. Seed cake containing toxic phorbol esters (PEs) is currently used as a fertiliser and thus it is of eco-toxicological concern. In the present study the fate of PEs in soil was studied. Two approaches for the incorporation of PEs in soil were used. In the first, silica was bound to PEs, and in the second, seedcake was used. At day 0, the concentration of PEs in soil was 2.6 and 0.37 mg g(-1) for approach 1 and 2 respectively. PEs from silica bound PEs were completely degraded after 19, 12, 12 days (at 130 g kg(-1) moisture) and after 17, 9, 9 days (at 230 g kg(-1) moisture) at room temperature, 32 degrees C and 42 degrees C respectively. Similarly at these temperatures PEs from seed cake were degraded after 21, 17 and 17 days (at 130 g kg(-1) moisture) and after 23, 17, and 15 days (at 230 g kg(-1) moisture). Increase in temperature and moisture increased rate of PEs degradation. Using the snail (Physa fontinalis) bioassay, mortality by PE-amended soil extracts decreased with the decrease in PE concentration in soil. Jatropha PEs are biodegradable. The degraded products are innocuous. Copyright 2010 Society of Chemical Industry.

  15. Lipid profile of in vitro oil produced through cell culture of Jatropha curcas.

    PubMed

    Correa, Sandra M; Atehortúa, Lucía

    2012-01-01

    Recent increases in energy demands as a consequence of population growth and industrialization, and pollution caused during the extraction and combustion of fossil fuel sources have driven the development of new energy sources that do not cause pollution and are inexpensive and renewable. Consequently, it is necessary to develop alternative ways of generating biofuels that put less pressure on agricultural lands and water supplies, and ensure ecosystems conservation. In order to achieve the proposed goals related to energetic coverage and independence, several approaches have been developed, including biodiesel production using vegetal oils as feedstock. The aim of the current research project was to apply a nonconventional bioprocess for in vitro biomass and oil production of Jatropha curcas, for assessing different J. curcas varieties, where seed tissue was isolated and used for callus induction. Once friable callus was obtained, cell suspension cultures were established. The cell viability, fatty acid content, and characteristics were used to select the most promising cell line according to its fatty acid profile and ability to grow and develop under in vitro conditions. Oil produced by cell suspension culture of the Jatropha varieties studied was extracted and characterized by GC/MS. Differences encountered among Jatropha varieties were related to their fatty acid profiles, oil content (% on dry basis), and cell viability measurements (%).

  16. Application of a Burkholderia cepacia lipase-immobilized silica monolith to batch and continuous biodiesel production with a stoichiometric mixture of methanol and crude Jatropha oil

    PubMed Central

    2011-01-01

    Background The enzymatic production of biodiesel through alcoholysis of triglycerides has become more attractive because it shows potential in overcoming the drawbacks of chemical processes. In this study, we investigate the production of biodiesel from crude, non-edible Jatropha oil and methanol to characterize Burkholderia cepacia lipase immobilized in an n-butyl-substituted hydrophobic silica monolith. We also evaluate the performance of a lipase-immobilized silica monolith bioreactor in the continuous production of biodiesel. Results The Jatropha oil used contained 18% free fatty acids, which is problematic in a base-catalyzed process. In the lipase-catalyzed reaction, the presence of free fatty acids made the reaction mixture homogeneous and allowed bioconversion to proceed to 90% biodiesel yield after a 12 hour reaction time. The optimal molar ratio of methanol to oil was 3.3 to 3.5 parts methanol to one part oil, with water content of 0.6% (w/w). Further experiments revealed that B. cepacia lipase immobilized in hydrophobic silicates was sufficiently tolerant to methanol, and glycerol adsorbed on the support disturbed the reaction to some extent in the present reaction system. The continuous production of biodiesel was performed at steady state using a lipase-immobilized silica monolith bioreactor loaded with 1.67 g of lipase. The yield of 95% was reached at a flow rate of 0.6 mL/h, although the performance of the continuous bioreactor was somewhat below that predicted from the batch reactor. The bioreactor was operated successfully for almost 50 days with 80% retention of the initial yield. Conclusions The presence of free fatty acids originally contained in Jatropha oil improved the reaction efficiency of the biodiesel production. A combination of B. cepacia lipase and its immobilization support, n-butyl-substituted silica monolith, was effective in the production of biodiesel. This procedure is easily applicable to the design of a continuous flow

  17. Density of Jatropha curcas Seed Oil and its Methyl Esters: Measurement and Estimations

    NASA Astrophysics Data System (ADS)

    Veny, Harumi; Baroutian, Saeid; Aroua, Mohamed Kheireddine; Hasan, Masitah; Raman, Abdul Aziz; Sulaiman, Nik Meriam Nik

    2009-04-01

    Density data as a function of temperature have been measured for Jatropha curcas seed oil, as well as biodiesel jatropha methyl esters at temperatures from above their melting points to 90 ° C. The data obtained were used to validate the method proposed by Spencer and Danner using a modified Rackett equation. The experimental and estimated density values using the modified Rackett equation gave almost identical values with average absolute percent deviations less than 0.03% for the jatropha oil and 0.04% for the jatropha methyl esters. The Janarthanan empirical equation was also employed to predict jatropha biodiesel densities. This equation performed equally well with average absolute percent deviations within 0.05%. Two simple linear equations for densities of jatropha oil and its methyl esters are also proposed in this study.

  18. Performance and Emission Investigations of Jatropha and Karanja Biodiesels in a Single-Cylinder Compression-Ignition Engine Using Endoscopic Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mistri, Gayatri K.; Aggarwal, Suresh K.; Longman, Douglas

    Biofuels produced from non-edible sources that are cultivated on marginal lands represent a viable source of renewable and carbon-neutral energy. In this context, biodiesel obtained from Jatropha and Karanja oil seeds have received significant interest, especially in South Asian subcontinent. Both of these fuels are produced from non-edible plant seeds with high oil content, which can be grown on marginal lands. In this research, we have investigated the performance and emission characteristics of Jatropha and Karanja methyl esters (biodiesel) and their blends with diesel. Another objective is to examine the effect of long-term storage on biodiesel’s oxidative stability. The biodieselsmore » were produced at Indian Institute of Technology Kanpur, (IIT Kanpur), India, and the engine experiments were performed in a single cylinder, 4-stroke, compression ignition engine at Argonne National Laboratory (ANL), Chicago. An endoscope was used to visualize in-cylinder combustion events and examine the soot distribution. The effects of fuel and start of injection (SOI) on engine performance and emissions were investigated. Results indicated that ignition delay was shorter with biodiesel. Consequently the cylinder pressure and premixed heat release were higher for diesel compared to biodiesel. Engine performance data for biodiesel (J100, K100) and biodiesel blends (J30, K30) showed an increase in break thermal efficiency (BTE) (10.9%, 7.6% for biodiesel and blend, respectively), BSFC (13.1% and 5.6%), and NOx emission (9.8% and 12.9%), and a reduction in BSHC (8.64% and 12.9%), and BSCO (15.56% and 4.0%). The soot analysis from optical images qualitatively showed that biodiesel and blends produced less soot compared to diesel. The temperature profiles obtained from optical imaging further supported higher NOx in biodiesels and their blends compared to diesel. Additionally, the data indicated that retarding the injection timing leads to higher BSFC, but lower flame

  19. Promotion of hydrogen-rich gas and phenolic-rich bio-oil production from green macroalgae Cladophora glomerata via pyrolysis over its bio-char.

    PubMed

    Norouzi, Omid; Jafarian, Sajedeh; Safari, Farid; Tavasoli, Ahmad; Nejati, Behnam

    2016-11-01

    Conversion of Cladophora glomerata (C. glomerata) as a Caspian Sea's green macroalgae into gaseous, liquid and solid products was carried out via pyrolysis at different temperatures to determine its potential for bio-oil and hydrogen-rich gas production for further industrial utilization. Non-catalytic tests were performed to determine the optimum condition for bio-oil production. The highest portion of bio-oil was retrieved at 500°C. The catalytic test was performed using the bio-char derived at 500°C as a catalyst. Effect of the addition of the algal bio-char on the composition of the bio-oil and also gaseous products was investigated. Pyrolysis derived bio-char was characterized by BET, FESEM and ICP method to show its surface area, porosity, and presence of inorganic metals on its surface, respectively. Phenols were increased from 8.5 to 20.76area% by the addition of bio-char. Moreover, the hydrogen concentration and hydrogen selectivity were also enhanced by the factors of 1.37, 1.59 respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Retrofitting hetrotrophically cultivated algae biomass as pyrolytic feedstock for biogas, bio-char and bio-oil production encompassing biorefinery.

    PubMed

    Sarkar, Omprakash; Agarwal, Manu; Naresh Kumar, A; Venkata Mohan, S

    2015-02-01

    Algal biomass grown hetrotrophically in domestic wastewater was evaluated as pyrolytic feedstock for harnessing biogas, bio-oil and bio-char. Freshly harvested microalgae (MA) and lipid extracted microalgae (LEMA) were pyrolysed in packed bed reactor in the presence and absence of sand as additive. MA (without sand additive) depicted higher biogas (420 ml/g; 800 °C; 3 h) and bio-oil (0.70 ml/g; 500 °C; 3 h). Sand addition enhanced biogas production (210 ml/g; 600 °C; 2 h) in LEMA operation. The composition of bio-gas and bio-oil was found to depend on the nature of feedstock as well as the process conditions viz., pyrolytic-temperature, retention time and presence of additive. Sand additive improved the H2 composition while pyrolytic temperature increment caused a decline in CO2 fraction. Bio-char productivity increased with increasing temperature specifically with LEMA. Integration of thermo-chemical process with microalgae cultivation showed to yield multiple resources and accounts for environmental sustainability in the bio-refinery framework. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Three generation production biotechnology of biomass into bio-fuel

    NASA Astrophysics Data System (ADS)

    Zheng, Chaocheng

    2017-08-01

    The great change of climate change, depletion of natural resources, and scarcity of fossil fuel in the whole world nowadays have witnessed a sense of urgency home and abroad among scales of researchers, development practitioners, and industrialists to search for completely brand new sustainable solutions in the area of biomass transforming into bio-fuels attributing to our duty-that is, it is our responsibility to take up this challenge to secure our energy in the near future with the help of sustainable approaches and technological advancements to produce greener fuel from nature organic sources or biomass which comes generally from organic natural matters such as trees, woods, manure, sewage sludge, grass cuttings, and timber waste with a source of huge green energy called bio-fuel. Biomass includes most of the biological materials, livings or dead bodies. This energy source is ripely used industrially, or domestically for rather many years, but the recent trend is on the production of green fuel with different advance processing systems in a greener. More sustainable method. Biomass is becoming a booming industry currently on account of its cheaper cost and abundant resources all around, making it fairly more effective for the sustainable use of the bio-energy. In the past few years, the world has witnessed a remarkable development in the bio-fuel production technology, and three generations of bio-fuel have already existed in our society. The combination of membrane technology with the existing process line can play a vital role for the production of green fuel in a sustainable manner. In this paper, the science and technology for sustainable bio-fuel production will be introduced in detail for a cleaner world.

  2. Optimizing Clinical Drug Product Performance: Applying Biopharmaceutics Risk Assessment Roadmap (BioRAM) and the BioRAM Scoring Grid.

    PubMed

    Dickinson, Paul A; Kesisoglou, Filippos; Flanagan, Talia; Martinez, Marilyn N; Mistry, Hitesh B; Crison, John R; Polli, James E; Cruañes, Maria T; Serajuddin, Abu T M; Müllertz, Anette; Cook, Jack A; Selen, Arzu

    2016-11-01

    The aim of Biopharmaceutics Risk Assessment Roadmap (BioRAM) and the BioRAM Scoring Grid is to facilitate optimization of clinical performance of drug products. BioRAM strategy relies on therapy-driven drug delivery and follows an integrated systems approach for formulating and addressing critical questions and decision-making (J Pharm Sci. 2014,103(11): 3777-97). In BioRAM, risk is defined as not achieving the intended in vivo drug product performance, and success is assessed by time to decision-making and action. Emphasis on time to decision-making and time to action highlights the value of well-formulated critical questions and well-designed and conducted integrated studies. This commentary describes and illustrates application of the BioRAM Scoring Grid, a companion to the BioRAM strategy, which guides implementation of such an integrated strategy encompassing 12 critical areas and 6 assessment stages. Application of the BioRAM Scoring Grid is illustrated using published literature. Organizational considerations for implementing BioRAM strategy, including the interactions, function, and skillsets of the BioRAM group members, are also reviewed. As a creative and innovative systems approach, we believe that BioRAM is going to have a broad-reaching impact, influencing drug development and leading to unique collaborations influencing how we learn, and leverage and share knowledge. Published by Elsevier Inc.

  3. Results of the International Energy Agency Round Robin on Fast Pyrolysis Bio-oil Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elliott, Douglas C.; Meier, Dietrich; Oasmaa, Anja

    An international round robin study of the production of fast pyrolysis bio-oil was undertaken. Fifteen institutions in six countries contributed. Three biomass samples were distributed to the laboratories for processing in fast pyrolysis reactors. Samples of the bio-oil produced were transported to a central analytical laboratory for analysis. The round robin was focused on validating the pyrolysis community understanding of production of fast pyrolysis bio-oil by providing a common feedstock for bio-oil preparation. The round robin included: •distribution of 3 feedstock samples from a common source to each participating laboratory; •preparation of fast pyrolysis bio-oil in each laboratory with themore » 3 feedstocks provided; •return of the 3 bio-oil products (minimum 500 ml) with operational description to a central analytical laboratory for bio-oil property determination. The analyses of interest were: density, viscosity, dissolved water, filterable solids, CHN, S, trace element analysis, ash, total acid number, pyrolytic lignin, and accelerated aging of bio-oil. In addition, an effort was made to compare the bio-oil components to the products of analytical pyrolysis through GC/MS analysis. The results showed that clear differences can occur in fast pyrolysis bio-oil properties by applying different reactor technologies or configurations. The comparison to analytical pyrolysis method suggested that Py-GC/MS could serve as a rapid screening method for bio-oil composition when produced in fluid-bed reactors. Furthermore, hot vapor filtration generally resulted in the most favorable bio-oil product, with respect to water, solids, viscosity, and total acid number. These results can be helpful in understanding the variation in bio-oil production methods and their effects on bio-oil product composition.« less

  4. Production of Biodiesel from Jatropha Curcas using Nano Materials

    NASA Astrophysics Data System (ADS)

    Khan, M. Bilal; Bahadar, Ali; Anjum, Waqas

    2009-09-01

    Biodiesel is proving to be a viable clean energy resource for conventional fuel as well as more exotic, value added jet fuel applications. Various non edible agriculture based sources are exploited to produce biodiesel with varying degrees of conversion and properties. Systematic studies carried out to date reveal that the oil extracted from Jatropha Curcas gives best results on yield basis (2800 kg oil/Hectare max). However the research is marred by the production of often undesirable and cumbersome byproducts, which needs multifarious purification steps with associated cost. Sponification step is a main hurdle in the old technology. We have made a paradigm shift by introducing nanomaterials which not only eliminate the cited side reactions/byproducts, but also yield higher conversion and lower costs. Typically we have reduced the reaction time from 90 min at 70° C to a gainful 5 min at ambient temperatures. The nanomaterial has been characterized by SEM and EDS (Electron Dispersion Scanning Analysis) which clearly shows bimodal distribution of the nonmaterial employed. Further characterization study was carried out by FTIR and the results are compared with petrodiesel and standard biodiesel in the important region of 2000-4000 cm-1. Perfect matching/finger printing was achieved. In this work we also report detailed comparative elemental and flash point analysis of the Biodiesel produced via various established roots.

  5. Recycling of waste engine oil for diesel production.

    PubMed

    Maceiras, R; Alfonsín, V; Morales, F J

    2017-02-01

    The aim of this work was to recycle waste engine oil until converting it into reusable product, diesel fuel. The waste oil was treated using pyrolytic distillation. The effect of two additives (sodium hydroxide and sodium carbonate) in the purification of the obtained fuel was also studied. Moreover, the influence of the number of distillations were analysed. Some thermal and physicochemical properties (density, viscosity, colour, turbidity, acidity value, distillation curves, cetane number, corrosiveness to Cu, water content, flash point and hydrocarbons) were determined to analyse the quality of the obtained fuel. The best results were obtained with 2% of sodium carbonate and two successive distillations. The obtained results showed that pyrolytic distillation of waste engine oil is an excellent way to produce diesel fuel to be used in engines. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Bio-oil upgrading strategies to improve PHA production from selected aerobic mixed cultures.

    PubMed

    Moita Fidalgo, Rita; Ortigueira, Joana; Freches, André; Pelica, João; Gonçalves, Magarida; Mendes, Benilde; Lemos, Paulo C

    2014-06-25

    Recent research on polyhydroxyalkanoates (PHAs) has focused on developing cost-effective production processes using low-value or industrial waste/surplus as substrate. One of such substrates is the liquid fraction resulting from pyrolysis processes, bio-oil. In this study, valorisation of bio-oil through PHA production was investigated. The impact of the complex bio-oil matrix on PHA production by an enriched mixed culture was examined. The performance of the direct utilization of pure bio-oil was compared with the utilization of three defined substrates contained in this bio-oil: acetate, glucose and xylose. When compared with acetate, bio-oil revealed lower capacity for polymer production as a result of a lower polymer yield on substrate and a lower PHA cell content. Two strategies for bio-oil upgrade were performed, anaerobic fermentation and vacuum distillation, and the resulting liquid streams were tested for polymer production. The first one was enriched in volatile fatty acids and the second one mainly on phenolic and long-chain fatty acids. PHA accumulation assays using the upgraded bio-oils attained polymer yields on substrate similar or higher than the one achieved with acetate, although with a lower PHA content. The capacity to use the enriched fractions for polymer production has yet to be optimized. The anaerobic digestion of bio-oil could also open-up the possibility to use the fermented bio-oil directly in the enrichment process of the mixed culture. This would increase the selective pressure toward an optimized PHA accumulating culture selection. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Valorization of algal waste via pyrolysis in a fixed-bed reactor: Production and characterization of bio-oil and bio-char.

    PubMed

    Aboulkas, A; Hammani, H; El Achaby, M; Bilal, E; Barakat, A; El Harfi, K

    2017-11-01

    The aim of the present work is to develop processes for the production of bio-oil and bio-char from algae waste using the pyrolysis at controlled conditions. The pyrolysis was carried out at different temperatures 400-600°C and different heating rates 5-50°C/min. The algal waste, bio-oil and bio-char were successfully characterized using Elemental analysis, Chemical composition, TGA, FTIR, 1 H NMR, GC-MS and SEM. At a temperature of 500°C and a heating rate of 10°C/min, the maximum yield of bio-oil and bio-char was found to be 24.10 and 44.01wt%, respectively, which was found to be strongly influenced by the temperature variation, and weakly affected by the heating rate variation. Results show that the bio-oil cannot be used as bio-fuel, but can be used as a source of value-added chemicals. On the other hand, the bio-char is a promising candidate for solid fuel applications and for the production of carbon materials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Co-composting of physic nut (Jatropha curcas) deoiled cake with rice straw and different animal dung.

    PubMed

    Das, Manab; Uppal, H S; Singh, Reena; Beri, Shanuja; Mohan, K S; Gupta, Vikas C; Adholeya, Alok

    2011-06-01

    To address the dispensing of this growing volume, a study on utilization of jatropha (Jatropha curcas) deoiled cake through compost production was carried out. The deoiled cake was composted with rice straw, four different animal dung (cow dung, buffalo dung, horse dung and goat dung) and hen droppings in different proportions followed by assessment, and comparison of biochemical characteristics among finished composts. Nutrient content in finished compost was within the desired level whereas metals such as copper, lead and nickel were much below the maximum allowable concentrations. Although a few finished material contained phorbol ester (0.12 mg/g), but it was far below the original level found in the deoiled cake. Such a study indicates that a huge volume of jatropha deoiled cake can be eliminated through composting. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Bio-Oil Separation and Stabilization by Supercritical Fluid Fractionation. 2014 Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agblevor, Foster; Petkovic, Lucia; Bennion, Edward

    -oil stabilization by near critical propane extraction had minimal impact in the overall energetics of the process with NER contributions of 0.03. Based on the LCA, the overall conversion pathways were found to be energy intensive with a NER of about 2.3 and 1.2 for catalytic pyrolysis and HTL, respectively. GHG emissions for the catalytic pyrolysis process were greater than that of petroleum diesel at 210 g CO2 eq compared to 18.9 g CO2 eq. Microalgae bio-oil based diesel with thermochemical conversion through HTL meets renewable fuel standards with favorable emission reductions of -10.8 g CO2 eq. The importance of the outcomes is that the critical fluid extraction and stabilization process improved product stability and did so with minimal energy inputs and processing costs. The LCA and GHG emission calculations point toward the HTL pathway as the more favorable thermochemical route towards upgrading algae to bio-fuels. Since the quality of the HTL oil was significantly lower than that of the catalytic pyrolysis bio-oil, the next steps point toward improving the quality of the HTL oils from algae biomass and focusing the critical fluid stabilization on that bio-oil product.« less

  10. Advanced biomass science and technology for bio-based products: proceedings

    Treesearch

    Chung Hse; Zehui Jiang; Mon-Lin Kuo

    2009-01-01

    This book was developed from the proceedings of the Advanced Biomass Science and Technology for Bio-Based Products Symposium held in Beijing, China, May 23-25, 2007. The symposium was designed to provide a forum for researchers, producers, and consumers of biomass and bio-based products; to exchange information and ideas; and to stimulate new research and...

  11. Response of jatropha on a clay soil to different concentrations of micronutrients

    USDA-ARS?s Scientific Manuscript database

    In recent years Jatropha curcas L. has emerged as a biofuel crop with potential for its production in marginal land with application of treated sewage water. Since this is a new crop for its profitable cultivation, additional research is needed to develop optimal management programs, including macro...

  12. Production of bio-synthetic natural gas in Canada.

    PubMed

    Hacatoglu, Kevork; McLellan, P James; Layzell, David B

    2010-03-15

    Large-scale production of renewable synthetic natural gas from biomass (bioSNG) in Canada was assessed for its ability to mitigate energy security and climate change risks. The land area within 100 km of Canada's network of natural gas pipelines was estimated to be capable of producing 67-210 Mt of dry lignocellulosic biomass per year with minimal adverse impacts on food and fiber production. Biomass gasification and subsequent methanation and upgrading were estimated to yield 16,000-61,000 Mm(3) of pipeline-quality gas (equivalent to 16-63% of Canada's current gas use). Life-cycle greenhouse gas emissions of bioSNG-based electricity were calculated to be only 8.2-10% of the emissions from coal-fired power. Although predicted production costs ($17-21 GJ(-1)) were much higher than current energy prices, a value for low-carbon energy would narrow the price differential. A bioSNG sector could infuse Canada's rural economy with $41-130 billion of investments and create 410,000-1,300,000 jobs while developing a nation-wide low-carbon energy system.

  13. Simultaneous saccharification and fermentation (SSF) of Jatropha curcas shells: utilization of co-products from the biodiesel production process.

    PubMed

    Visser, Evan Michael; Oliveira Filho, Delly; Tótola, Marcos Rogério; Martins, Marcio Arêdes; Guimarães, Valéria Monteze

    2012-06-01

    Jatropha curcas has great potential as an oil crop for use in biodiesel applications, and the outer shell is rich in lignocellulose that may be converted to ethanol, giving rise to the concept of a biorefinery. In this study, two dilute pretreatments of 0.5% H(2)SO(4) and 1.0% NaOH were performed on Jatropha shells with subsequent simultaneous saccharification and fermentation (SSF) of the pretreated water-insoluble solids (WIS) to evaluate the effect of inhibitors in the pretreatment slurry. A cellulase loading of 15 FPU/g WIS, complimented with an excess of cellobiase (19.25 U/g), was used for SSF of either the washed WIS or the original slurry to determine the effect of inhibitors. Ethanol and glucose were monitored during SSF of 20 g of pretreated biomass. The unwashed slurry showed to have a positive effect on SSF efficiency for the NaOH-pretreated biomass. Maximum efficiencies of glucan conversion to ethanol in the WIS were 40.43% and 41.03% for the H(2)SO(4)- and NaOH-pretreated biomasses, respectively.

  14. Effects of Jatropha oil on rats following 28-day oral treatment.

    PubMed

    Poon, Raymond; Valli, Victor E; Ratnayake, W M Nimal; Rigden, Marc; Pelletier, Guillaume

    2013-07-01

    Jatropha oil is an emerging feedstock for the production of biodiesels. The increasing use of this nonedible, toxic oil will result in higher potential for accidental exposures. A repeated-dose 28-day oral toxicity study was conducted to provide data for risk assessment. Jatropha oil diluted in corn oil was administered by gavage to male and female rats at 0.5, 5, 50 and 500 mg kg(-1) body weight per day for 28 consecutive days. Control rats were administered corn oil only. The growth rates and consumption of food and water were monitored. At necropsy, organs were weighed and hematological parameters assessed. Serum clinical chemistry and C-reactive protein were measured and histological examinations of organs and tissues were performed. Markedly depressed growth rate was observed in males and females receiving Jatropha oil at 500 mg kg(-1) per day. Decreased white blood cell and lymphocyte counts were detected in females at 50 and 500 mg kg(-1) per day and in males at 500 mg kg(-1) per day. These changes were correlated to mild and reversible histological changes in male and female spleens. In the liver, a mild increase in portal hepatocytes cytoplasm density was observed in males and females, while periportal vacuolation was observed exclusively in females. Mild acinar proliferation was observed in the female mammary glands at all dose levels. It is concluded that Jatropha oil produces adverse effects on female rats starting at 50 mg kg(-1) per day with decreased white blood cell and lymphocyte counts and at 500 mg kg(-1) per day in both genders in term of depressed growth rates. Copyright © 2011 John Wiley & Sons, Ltd.

  15. Characterizing parameters of Jatropha curcas cell cultures for microgravity studies

    NASA Astrophysics Data System (ADS)

    Vendrame, Wagner A.; Pinares, Ania

    2013-06-01

    Jatropha (Jatropha curcas) is a tropical perennial species identified as a potential biofuel crop. The oil is of excellent quality and it has been successfully tested as biodiesel and in jet fuel mixes. However, studies on breeding and genetic improvement of jatropha are limited. Space offers a unique environment for experiments aiming at the assessment of mutations and differential gene expression of crops and in vitro cultures of plants are convenient for studies of genetic variation as affected by microgravity. However, before microgravity studies can be successfully performed, pre-flight experiments are necessary to characterize plant material and validate flight hardware environmental conditions. Such preliminary studies set the ground for subsequent spaceflight experiments. The objectives of this study were to compare the in vitro growth of cultures from three explant sources (cotyledon, leaf, and stem sections) of three jatropha accessions (Brazil, India, and Tanzania) outside and inside the petriGAP, a modified group activation pack (GAP) flight hardware to fit petri dishes. In vitro jatropha cell cultures were established in petri dishes containing a modified MS medium and maintained in a plant growth chamber at 25 ± 2 °C in the dark. Parameters evaluated were surface area of the explant tissue (A), fresh weight (FW), and dry weight (DW) for a period of 12 weeks. Growth was observed for cultures from all accessions at week 12, including subsequent plantlet regeneration. For all accessions differences in A, FW and DW were observed for inside vs. outside the PetriGAPs. Growth parameters were affected by accession (genotype), explant type, and environment. The type of explant influenced the type of cell growth and subsequent plantlet regeneration capacity. However, overall cell growth showed no abnormalities. The present study demonstrated that jatropha in vitro cell cultures are suitable for growth inside PetriGAPs for a period of 12 weeks. The parameters

  16. MFP AND JATROPHA PROGRAM

    EPA Science Inventory

    We expect to successfully install and monitor 3 MFPs, to establish a local fabrication plan for the modification kits, to complete pilot testing of SMS based improved data collection techniques, and to increase jatropha mobilization in 20 farming cooperatives.

  17. Electrifying white biotechnology: engineering and economic potential of electricity-driven bio-production.

    PubMed

    Harnisch, Falk; Rosa, Luis F M; Kracke, Frauke; Virdis, Bernardino; Krömer, Jens O

    2015-03-01

    The production of fuels and chemicals by electricity-driven bio-production (i.e., using electric energy to drive biosynthesis) holds great promises. However, this electrification of white biotechnology is particularly challenging to achieve because of the different optimal operating conditions of electrochemical and biochemical reactions. In this article, we address the technical parameters and obstacles to be taken into account when engineering microbial bioelectrochemical systems (BES) for bio-production. In addition, BES-based bio-production processes reported in the literature are compared against industrial needs showing that a still large gap has to be closed. Finally, the feasibility of BES bio-production is analysed based on bulk electricity prices. Using the example of lysine production from sucrose, we demonstrate that there is a realistic market potential as cost savings of 8.4 % (in EU) and 18.0 % (in US) could be anticipated, if the necessary yields can be obtained. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Study on performance of blended fuel PPO - Diesel at generator

    NASA Astrophysics Data System (ADS)

    Prasetyo, Joni; Prasetyo, Dwi Husodo; Murti, S. D. Sumbogo; Adiarso, Priyanto, Unggul

    2018-02-01

    Bio-energy is renewable energy made from plant. Biomass-based energy sources are potentially CO2 neutral and recycle the same carbon atoms. In order to reduce pollution caused by fossil fuel combustion either for mechanical or electrical energy generation, the performance characteristic of purified palm oil blends are analyzed at various ratios. Bio-energy, Pure Plant Oil, represent a sustainable solution.A generator has been modified due to adapt the viscosity ofblended fuel, PPO - diesel, by pre-heating. Several PPO - diesel composition and injection timing were tested in order to investigate the characteristic of mixed fuel with and without pre-heating. The term biofuel refers to liquid or gaseous fuels for the internal combustion engines that are predominantly produced fro m biomass. Surprising result showed that BSFC of blended PPO - diesel was more efficient when injection timing set more than 15° BTDC. The mixed fuel produced power with less mixed fuel even though the calorie content of diesel is higher than PPO. The most efficient was 20% PPO in diesel with BSFC 296 gr fuel / kwh rather than 100% diesel with BSFC 309 gr fuel / kwh at the same injection timing 18° BTDC with pre-heating. The improvement of BSFC is caused by heating up of mixed fuel which it added calorie in the mixed fuel. Therefore, the heating up of blended PPO - diesel is not only to adapt the viscosity but also improving the efficiency of fuel usage representing by lower BSFC. In addition, torque of the 20% PPO was also as smooth as 100% diesel representing by almost the same torqueat injection timing 15° BTDC. The AIP Proceedings article template has many predefined paragraph styles for you to use/apply as you write your paper. To format your abstract, use the Microsoft Word template style: Abstract. Each paper must include an abstract. Begin the abstract with the word "Abstract" followed by a period in bold font, and then continue with a normal 9 point font.

  19. Understanding the growth of the bio-struvite production Brevibacterium antiquum in sludge liquors.

    PubMed

    Simoes, Francisco; Vale, Peter; Stephenson, Tom; Soares, Ana

    2017-12-21

    Biological struvite (bio-struvite) production through biomineralization has been suggested as an alternative to chemically derived struvite production to recover phosphorus from wastewater streams. In this study, statistical experimental design techniques were used to find the optimal growth rate (μ) of Brevibacterium antiquum in sludge liquors. Acetate, oleic acid, NaCl, NH 4 -N, and Ca 2+ were shown to affect the growth rate of B. antiquum. The growth rate reached 3.44 1/d when the bacteria were supplemented with 3.0% w/v NaCl and 1124 mg chemical oxygen demand/L as acetate. However, NaCl was found to hinder the biomineralization of bio-struvite. A two-stage experiment demonstrated that bio-struvite was produced in the presence of acetate. Bio-struvite production was confirmed with X-ray spectroscopy and crystal morphology (prismatic, tabular, and twinned crystal habit) through electron microscope analysis. The bio-struvite production was estimated by measuring phosphate content of the recovered precipitates, reaching 9.6 mg P/L as bio-struvite. Overall, these results demonstrated the optimal conditions required to achieve high growth rates as well as bio-struvite production with B. antiquum. The results obtained in this study could be used to develop a process to grow B. antiquum in wastewater streams in mixed cultures and recover phosphorus-rich products such as struvite.

  20. Linking Load, Fuel, and Emission Controls to Photochemical Production of Secondary Organic Aerosol from a Diesel Engine.

    PubMed

    Jathar, Shantanu H; Friedman, Beth; Galang, Abril A; Link, Michael F; Brophy, Patrick; Volckens, John; Eluri, Sailaja; Farmer, Delphine K

    2017-02-07

    Diesel engines are important sources of fine particle pollution in urban environments, but their contribution to the atmospheric formation of secondary organic aerosol (SOA) is not well constrained. We investigated direct emissions of primary organic aerosol (POA) and photochemical production of SOA from a diesel engine using an oxidation flow reactor (OFR). In less than a day of simulated atmospheric aging, SOA production exceeded POA emissions by an order of magnitude or more. Efficient combustion at higher engine loads coupled to the removal of SOA precursors and particle emissions by aftertreatment systems reduced POA emission factors by an order of magnitude and SOA production factors by factors of 2-10. The only exception was that the retrofitted aftertreatment did not reduce SOA production at idle loads where exhaust temperatures were low enough to limit removal of SOA precursors in the oxidation catalyst. Use of biodiesel resulted in nearly identical POA and SOA compared to diesel. The effective SOA yield of diesel exhaust was similar to that of unburned diesel fuel. While OFRs can help study the multiday evolution, at low particle concentrations OFRs may not allow for complete gas/particle partitioning and bias the potential of precursors to form SOA.

  1. Bio-based products from solar energy and carbon dioxide.

    PubMed

    Yu, Jian

    2014-01-01

    Producing bio-based products directly from CO₂ and solar energy is a desirable alternative to the conventional biorefining that relies on biomass feedstocks. The production paradigm is based on an artificial photosynthetic system that converts sunlight to electricity and H₂ via water electrolysis. An autotrophic H₂-oxidizing bacterium fixes CO₂ in dark conditions. The assimilated CO₂ is stored in bacterial cells as polyhydroxybutyrate (PHB), from which a range of products can be derived. Compared with natural photosynthesis of a fast-growing cyanobacterium, the artificial photosynthetic system has much higher energy efficiency and productivity of bio-based products. The new technology looks promising because of possible cost reduction in feedstock, equipment, and operation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. An overview of palm, jatropha and algae as a potential biodiesel feedstock in Malaysia

    NASA Astrophysics Data System (ADS)

    Yunus, S.; Abdullah, N. R.; Mamat, R.; Rashid, A. A.

    2013-12-01

    The high demand to replace petroleum fuel makes renewable and sustainable sources such as Palm oil, Jatropha oil and Algae a main focus feedstock for biodiesel production in Malaysia. There are many studies conducted on Palm oil and Jatropha oil, however, the use of Algae as an alternative fuel is still in its infancy. Malaysia already implemented B5 based Palm oil as a feedstock and this biodiesel has been proven safe and can be used without any engine modification. The use of biodiesel produced from these feedstock will also developed domestic economic and provide job opportunities especially in the rural area. In addition, biodiesel has many advantages especially when dealing with the emissions produce as compared to petroleum fuel such as; it can reduce unwanted gases and particulate matter harmful to the atmosphere and mankind. Thus, this paper gathered and examines the most prominent engine emission produced from Palm oil and Jatropha feedstock and also to observe the potential of Algae to be one of the sources of alternative fuel in Malaysia.

  3. Experimental investigation of performance and emissions of a VCR diesel engine fuelled with n-butanol diesel blends under varying engine parameters.

    PubMed

    Nayyar, Ashish; Sharma, Dilip; Soni, Shyam Lal; Mathur, Alok

    2017-09-01

    The continuous rise in the cost of fossil fuels as well as in environmental pollution has attracted research in the area of clean alternative fuels for improving the performance and emissions of internal combustion (IC) engines. In the present work, n-butanol is treated as a bio-fuel and investigations have been made to evaluate the feasibility of replacing diesel with a suitable n-butanol-diesel blend. In the current research, an experimental investigation was carried out on a variable compression ratio CI engine with n-butanol-diesel blends (10-25% by volume) to determine the optimum blending ratio and optimum operating parameters of the engine for reduced emissions. The best results of performance and emissions were observed for 20% n-butanol-diesel blend (B20) at a higher compression ratio as compared to diesel while keeping the other parameters unchanged. The observed deterioration in engine performance was within tolerable limits. The reductions in smoke, nitrogen oxides (NO x ), and carbon monoxide (CO) were observed up to 56.52, 17.19, and 30.43%, respectively, for B20 in comparison to diesel at rated power. However, carbon dioxide (CO 2 ) and hydrocarbons (HC) were found to be higher by 17.58 and 15.78%, respectively, for B20. It is concluded that n-butanol-diesel blend would be a potential fuel to control emissions from diesel engines. Graphical abstract ᅟ.

  4. Comparison of the toxicity of diesel exhaust produced by bio- and fossil diesel combustion in human lung cells in vitro

    NASA Astrophysics Data System (ADS)

    Steiner, Sandro; Czerwinski, Jan; Comte, Pierre; Popovicheva, Olga; Kireeva, Elena; Müller, Loretta; Heeb, Norbert; Mayer, Andreas; Fink, Alke; Rothen-Rutishauser, Barbara

    2013-12-01

    Alternative fuels are increasingly combusted in diesel- and gasoline engines and the contribution of such exhausts to the overall air pollution is on the rise. Recent findings on the possible adverse effects of biodiesel exhaust are contradictive, at least partly resulting from the various fuel qualities, engine types and different operation conditions that were tested. However, most of the studies are biased by undesired interactions between the exhaust samples and biological culture media. We here report how complete, freshly produced exhausts from fossil diesel (B0), from a blend of 20% rapeseed-methyl ester (RME) and 80% fossil diesel (B20) and from pure rapeseed methyl ester (B100) affect a complex 3D cellular model of the human airway epithelium in vitro by exposing the cells at the air-liquid interface. The induction of pro-apoptotic and necrotic cell death, cellular morphology, oxidative stress, and pro-inflammatory responses were assessed. Compared to B0 exhaust, B20 exhaust decreased oxidative stress and pro-inflammatory responses, whereas B100 exhaust, depending on exposure duration, decreased oxidative stress but increased pro-inflammatory responses. The effects are only very weak and given the compared to fossil diesel higher ecological sustainability of biodiesel, it appears that - at least RME - can be considered a valuable alternative to pure fossil diesel.

  5. Matching Crew Diet and Crop Food Production in BIO-Plex

    NASA Technical Reports Server (NTRS)

    Jones, Harry; Kwauk, Xianmin; Mead, Susan C. (Technical Monitor)

    2000-01-01

    This paper matches the BIO-Plex crop food production to the crew diet requirements. The expected average calorie requirement for BIO-Plex is 2,975 Calories per crewmember per day, for a randomly selected crew with a typical level of physical activity. The range of 2,550 to 3,400 Calories will cover about two-thirds of all crews. The exact calorie requirement will depend on the gender composition, individual weights, exercise, and work effort of the selected crew. The expected average crewmember calorie requirement can be met by 430 grams of carbohydrate, 100 grams of fat, and 90 grams of protein per crewmember per day, for a total of 620 grams. Some fat can replaced by carbohydrate. Each crewmember requires only 2 grams of vitamins and minerals per day. Only unusually restricted diets may lack essential nutrients. The Advanced Life Support (ALS) consensus is that BIO-Plex should grow wheat, potato, and soybean, and maybe sweet potato or peanut, and maybe lettuce and tomato. The BIO-Plex Biomass Production System food production and the external food supply must be matched to the crew diet requirement for calories and nutritional balance. The crop production and external supply specifications can each be varied as long as their sum matches the required diet specification. We have wide flexibility in choosing the crops and resupply. We can easily grow one-half the crew calories in one BIO-Plex Biomass Production Chamber (BPC) if we grow only the most productive crops (wheat, potato, and sweet potato) and it we achieve nominal crop productivity. If we assume higher productivity we can grow a wider variety of crops. If we grow one-half of the crew calories, externally supplied foods can easily provide the other half of the calories and balance the diet. We can not grow 95 percent of the crew calories in two BPCs at nominal productivity while growing a balanced diet. We produce maximum calories by growing wheat, potato, and peanut.

  6. Effects of Nano Additives in engine emission Characteristics using Blends of Lemon Balm oil with Diesel

    NASA Astrophysics Data System (ADS)

    Senthil kumar, J.; Ganesan, S.; Sivasaravanan, S.; Padmanabhan, S.; Krishnan, L.; Aniruthan, V. C.

    2017-05-01

    Economic growth in developing countries has led to enormous increase in energy demand. In India the energy demand is increasing at a rate of 6.5% every year. The crude oil demand of country is meet by bring in of about 70%. Thus the energy safety measures have become key issue for our country. Bio diesel an eco-friendly and renewable fuel alternate for diesel has been getting the consideration of researcher’s entire world. The main aim of this paper is to evaluate the engine parameters using blend of pure lemon balm oil with diesel. Also nano Additives is used as a catalyst with blends of bio fuel to enhance the Emission Characteristics of various effective gases like CO2, NOx, CO and UHC with various levels of engine process parameters.

  7. Biofilm lifestyle enhances diesel bioremediation and biosurfactant production in the Antarctic polyhydroxyalkanoate producer Pseudomonas extremaustralis.

    PubMed

    Tribelli, Paula M; Di Martino, Carla; López, Nancy I; Raiger Iustman, Laura J

    2012-09-01

    Diesel is a widely distributed pollutant. Bioremediation of this kind of compounds requires the use of microorganisms able to survive and adapt to contaminated environments. Pseudomonas extremaustralis is an Antarctic bacterium with a remarkable survival capability associated to polyhydroxyalkanoates (PHAs) production. This strain was used to investigate the effect of cell growth conditions--in biofilm versus shaken flask cultures--as well as the inocula characteristics associated with PHAs accumulation, on diesel degradation. Biofilms showed increased cell growth, biosurfactant production and diesel degradation compared with that obtained in shaken flask cultures. PHA accumulation decreased biofilm cell attachment and enhanced biosurfactant production. Degradation of long-chain and branched alkanes was observed in biofilms, while in shaken flasks only medium-chain length alkanes were degraded. This work shows that the PHA accumulating bacterium P. extremaustralis can be a good candidate to be used as hydrocarbon bioremediation agent, especially in extreme environments.

  8. 40 CFR 80.590 - What are the product transfer document requirements for motor vehicle diesel fuel, NRLM diesel...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... such fuel is dispensed into motor vehicles or nonroad equipment, locomotives, marine diesel engines or...) Undyed Ultra-Low Sulfur Diesel Fuel. For use in all diesel vehicles and engines.” From June 1, 2006... (maximum) Dyed Ultra-Low Sulfur Diesel Fuel. For use in all nonroad diesel engines. Not for use in highway...

  9. 40 CFR 80.590 - What are the product transfer document requirements for motor vehicle diesel fuel, NRLM diesel...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... such fuel is dispensed into motor vehicles or nonroad equipment, locomotives, marine diesel engines or...) Undyed Ultra-Low Sulfur Diesel Fuel. For use in all diesel vehicles and engines.” From June 1, 2006... (maximum) Dyed Ultra-Low Sulfur Diesel Fuel. For use in all nonroad diesel engines. Not for use in highway...

  10. 40 CFR 80.590 - What are the product transfer document requirements for motor vehicle diesel fuel, NRLM diesel...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... such fuel is dispensed into motor vehicles or nonroad equipment, locomotives, marine diesel engines or...) Undyed Ultra-Low Sulfur Diesel Fuel. For use in all diesel vehicles and engines.” From June 1, 2006... (maximum) Dyed Ultra-Low Sulfur Diesel Fuel. For use in all nonroad diesel engines. Not for use in highway...

  11. 40 CFR 80.590 - What are the product transfer document requirements for motor vehicle diesel fuel, NRLM diesel...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... such fuel is dispensed into motor vehicles or nonroad equipment, locomotives, marine diesel engines or...) Undyed Ultra-Low Sulfur Diesel Fuel. For use in all diesel vehicles and engines.” From June 1, 2006... (maximum) Dyed Ultra-Low Sulfur Diesel Fuel. For use in all nonroad diesel engines. Not for use in highway...

  12. 40 CFR 80.590 - What are the product transfer document requirements for motor vehicle diesel fuel, NRLM diesel...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... such fuel is dispensed into motor vehicles or nonroad equipment, locomotives, marine diesel engines or...) Undyed Ultra-Low Sulfur Diesel Fuel. For use in all diesel vehicles and engines.” From June 1, 2006... (maximum) Dyed Ultra-Low Sulfur Diesel Fuel. For use in all nonroad diesel engines. Not for use in highway...

  13. Activities of Jatropha curcas phorbol esters in various bioassays.

    PubMed

    Devappa, Rakshit K; Rajesh, Sanjay K; Kumar, Vikas; Makkar, Harinder P S; Becker, Klaus

    2012-04-01

    Jatropha curcas seeds contain 30-35% oil, which can be converted to high quality biodiesel. However, Jatropha oil is toxic, ascribed to the presence of phorbol esters (PEs). In this study, isolated phorbol ester rich fraction (PEEF) was used to evaluate the activity of PEs using three aquatic species based bioassays (snail (Physa fontinalis), brine shrimp (Artemeia salina), daphnia (Daphnia magna)) and microorganisms. In all the bioassays tested, increase in concentration of PEs increased mortality with an EC(50) (48 h) of 0.33, 26.48 and 0.95 mg L(-1) PEs for snail, artemia and daphnia, respectively. The sensitivity of various microorganisms for PEs was also tested. Among the bacterial species tested, Streptococcus pyogenes and Proteus mirabilis were highly susceptible with a minimum inhibitory concentration (MIC) of 215 mg L(-1) PEs; and Pseudomonas putida were also sensitive with MIC of 251 mg L(-1) PEs. Similarly, Fusarium species of fungi exhibited EC(50) of 58 mg L(-1) PEs, while Aspergillus niger and Curvularia lunata had EC(50) of 70 mg L(-1). The snail bioassay was most sensitive with 100% snail mortality at 1 μg of PEs mL(-1). In conclusion, snail bioassay could be used to monitor PEs in Jatropha derived products such as oil, biodiesel, fatty acid distillate, kernel meal, cake, glycerol or for contamination in soil or other environmental matrices. In addition, PEs with molluscicidal/antimicrobial activities could be utilized for agricultural and pharmaceutical applications. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. [Polycyclic aromatic hydrocarbons in ultrafine particles of diesel exhaust fumes--the use of ultrafast liquid chromatography].

    PubMed

    Małgorzata Szewczyńska; Małgorzata Pośniak

    2014-01-01

    The article presents the results of the determination of polycyclic aromatic hydrocarbons (PAHs) in the fine par ticles fraction emitted from 3 types of diesel fuels using ultra-high pressure liquid chromatography. Samples of diesel Eco, Verwa and Bio exhaust combustion fumes were generated at the model station which consisted of a diesel engine from the 2007 Diesel TDI 2.0. Personal Cascade Sioutas Impactor (IPCSI) with Teflon filters was used to collect samples of exhaust fume ultrafine particles. PAHs adsorbed on particulate fractions were analyzed by ultra-high pressure liquid chromatography with fluorescence detection (UHPLC/FL). Phenanthrene, fluoranthene, pyrene and chrysene present the highest concentration in the particulate matter emitted by an engine. The total contents of fine particles collected during engine operation on fuels Eco, Verwa and Bio were 134.2 μg/g, 183.8 μg/g and 153.4 μg/g, respectively, which makes 75%, 90% and 83% of the total PAHs, respectively. The highest content of benzo(a)pyrene determined in particles emitted during the combustion of fuels Eco and Bio was 1.5 μg/g and 1 μg/g, respectively. The study of the PAH concentration in the particles of fine fraction below 0.25 μm emitted from different fuels designed for diesel engines indicate that the exhaust gas content of carcinogens, including PAHs deposited on particulates, is still significant, regardless of the fuel. Application of ultrahigh pressure liquid chromatography with fluorescence detection for the analysis ofPAHs in the particles emitted in the fine fraction of diesel exhaust allowed to shorten the analysis time from 35 min to 8 min.

  15. Replacing fossil based plastic performance products by bio-based plastic products-Technical feasibility.

    PubMed

    van den Oever, Martien; Molenveld, Karin

    2017-07-25

    Larger scale market introduction of new bio-based products requires a clear advantage regarding sustainability, as well as an adequate techno-economic positioning relative to fossil based products. In a previous paper [Broeren et al., 2016], LCA results per kg and per functionality equivalent of bio-based plastics were presented, together with economic considerations. The present paper discusses the mechanical and thermal properties of a range of commercially available bio-based plastics based on polylactic acid (PLA), cellulose esters, starch and polyamides, and the feasibility of replacing fossil-based counterparts based on performance. The evaluation is approached from an end user perspective. First, potentially suitable bio-based plastics are selected based on manufacturers' specifications in technical data sheets, then a first experimental evaluation is performed on injection moulded ISO specimens, and finally a further selection of plastics is tested on large 50×70cm panels. This technical feasibility study indicates that so far bio-based plastics do not completely match the properties of high performance materials like flame retardant V-0 PC/ABS blends used in electronic devices. The performance gap is being decreased by the development of stereocomplex PLA and hybrid PLA blends with polycarbonate, which offer clearly improved properties with respect to maximum usage temperature and toughness. In addition, several materials meet the V-0 flammability requirements needed in specific durable applications. On the other hand, improving these properties so far has negative consequences for the bio-based content. This study also shows that replacement of bulk polymers like PS is feasible using PLA compounds with a bio-based content as high as 85%. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Biosynthesis of medium chain length alkanes for bio-aviation fuel by metabolic engineered Escherichia coli.

    PubMed

    Wang, Meng; Nie, Kaili; Cao, Hao; Xu, Haijun; Fang, Yunming; Tan, Tianwei; Baeyens, Jan; Liu, Luo

    2017-09-01

    The aim of this work was to study the synthesis of medium-chain length alkanes (MCLA), as bio-aviation product. To control the chain length of alkanes and increase the production of MCLA, Escherichia coli cells were engineered by incorporating (i) a chain length specific thioesterase from Umbellularia californica (UC), (ii) a plant origin acyl carrier protein (ACP) gene and (iii) the whole fatty acid synthesis system (FASs) from Jatropha curcas (JC). The genetic combination was designed to control the product spectrum towards optimum MCLA. Decanoic, lauric and myristic acid were produced at concentrations of 0.011, 0.093 and 1.657mg/g, respectively. The concentration of final products nonane, undecane and tridecane were 0.00062mg/g, 0.0052mg/g, and 0.249mg/g respectively. Thioesterase from UC controlled the fatty acid chain length in a range of 10-14 carbons and the ACP gene with whole FASs from JC significantly increased the production of MCLA. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. High genetic diversity of Jatropha curcas assessed by ISSR.

    PubMed

    Díaz, B G; Argollo, D M; Franco, M C; Nucci, S M; Siqueira, W J; de Laat, D M; Colombo, C A

    2017-05-31

    Jatropha curcas L. is a highly promising oilseed for sustainable production of biofuels and bio-kerosene due to its high oil content and excellent quality. However, it is a perennial and incipiently domesticated species with none stable cultivar created until now despite genetic breeding programs in progress in several countries. Knowledge of the genetic structure and diversity of the species is a necessary step for breeding programs. The molecular marker can be used as a tool for speed up the process. This study was carried out to assess genetic diversity of a germplasm bank represented by J. curcas accessions from different provenance beside interspecific hybrid and backcrosses generated by IAC breeding programs using inter-simple sequence repeat markers. The molecular study revealed 271 bands of which 98.9% were polymorphic with an average of 22.7 polymorphic bands per primer. Genetic diversity of the germplasm evaluated was slightly higher than other germplasm around the world and ranged from 0.55 to 0.86 with an average of 0.59 (Jaccard index). Cluster analysis (UPGMA) revealed no clear grouping as to the geographical origin of accessions, consistent with genetic structure analysis using the Structure software. For diversity analysis between groups, accessions were divided into eight groups by origin. Nei's genetic distance between groups was 0.14. The results showed the importance of Mexican accessions, congeneric wild species, and interspecific hybrids for conservation and development of new genotypes in breeding programs.

  18. Pyrolysis of triglyceride materials for the production of renewable fuels and chemicals.

    PubMed

    Maher, K D; Bressler, D C

    2007-09-01

    Conversion of vegetable oils and animal fats composed predominantly of triglycerides using pyrolysis type reactions represents a promising option for the production of renewable fuels and chemicals. The purpose of this article was to collect and review literature on the thermo-chemical conversion of triglyceride based materials. The literature was divided and discussed as (1) direct thermal cracking and (2) combination of thermal and catalytic cracking. Typically, four main catalyst types are used including transition metal catalysts, molecular sieve type catalysts, activated alumina, and sodium carbonate. Reaction products are heavily dependant on the catalyst type and reaction conditions and can range from diesel like fractions to gasoline like fractions. Research in this area is not as advanced as bio-oil and bio-diesel research and there is opportunity for further study in the areas of reaction optimization, detailed characterization of products and properties, and scale-up.

  19. Efficient production of fatty acid methyl ester from waste activated bleaching earth using diesel oil as organic solvent.

    PubMed

    Kojima, Seiji; Du, Dongning; Sato, Masayasu; Park, Enoch Y

    2004-01-01

    Fatty acid methyl ester (FAME) production from waste activated bleaching earth (ABE) discarded by the crude oil refining industry was investigated using fossil fuel as a solvent in the esterification of triglycerides. Lipase from Candida cylindracea showed the highest stability in diesel oil. Using diesel oil as a solvent, 3 h was sufficient to obtain a yield of approximately 100% of FAME in the presence of 10% lipase from waste ABE. Kerosene was also a good solvent in the esterification of triglycerides embedded in the waste ABE. Fuel analysis showed that the FAME produced using diesel oil as a solvent complied with the Japanese diesel standard and the 10% residual carbon amount was lower than that of FAME produced using other solvents. Use of diesel oil as solvent in the FAME production from the waste ABE simplified the process, because there was no need to separate the organic solvent from the FAME-solvent mixture. These results demonstrate a promising reutilization method for the production of FAME, for use as a biodiesel, from industrial waste resources containing waste vegetable oils.

  20. Bio-oil production from fast pyrolysis of waste furniture sawdust in a fluidized bed.

    PubMed

    Heo, Hyeon Su; Park, Hyun Ju; Park, Young-Kwon; Ryu, Changkook; Suh, Dong Jin; Suh, Young-Woong; Yim, Jin-Heong; Kim, Seung-Soo

    2010-01-01

    The amount of waste furniture generated in Korea was over 2.4 million tons in the past 3 years, which can be used for renewable energy or fuel feedstock production. Fast pyrolysis is available for thermo-chemical conversion of the waste wood mostly into bio-oil. In this work, fast pyrolysis of waste furniture sawdust was investigated under various reaction conditions (pyrolysis temperature, particle size, feed rate and flow rate of fluidizing medium) in a fluidized-bed reactor. The optimal pyrolysis temperature for increased yields of bio-oil was 450 degrees C. Excessively smaller or larger feed size negatively affected the production of bio-oil. Higher flow and feeding rates were more effective for the production of bio-oil, but did not greatly affect the bio-oil yields within the tested ranges. The use of product gas as the fluidizing medium had a potential for increased bio-oil yields.

  1. Production of rhamnolipids and diesel oil degradation by bacteria isolated from soil contaminated by petroleum.

    PubMed

    Leite, Giuseppe G F; Figueirôa, Juciane V; Almeida, Thiago C M; Valões, Jaqueline L; Marques, Walber F; Duarte, Maria D D C; Gorlach-Lira, Krystyna

    2016-03-01

    Biosurfactants are microbial secondary metabolites. The most studied are rhamnolipids, which decrease the surface tension and have emulsifying capacity. In this study, the production of biosurfactants, with emphasis on rhamnolipids, and diesel oil degradation by 18 strains of bacteria isolated from waste landfill soil contaminated by petroleum was analyzed. Among the studied bacteria, gram-positive endospore forming rods (39%), gram positive rods without endospores (17%), and gram-negative rods (44%) were found. The following methods were used to test for biosurfactant production: oil spreading, emulsification, and hemolytic activity. All strains showed the ability to disperse the diesel oil, while 77% and 44% of the strains showed hemolysis and emulsification of diesel oil, respectively. Rhamnolipids production was observed in four strains that were classified on the basis of the 16S rRNA sequences as Pseudomonas aeruginosa. Only those strains showed the rhlAB gene involved in rhamnolipids synthesis, and antibacterial activity against Escherichia coli, P. aeruginosa, Staphylococcus aureus, Bacillus cereus, Erwinia carotovora, and Ralstonia solanacearum. The highest production of rhamnolipids was 565.7 mg/L observed in mineral medium containing olive oil (pH 8). With regard to the capacity to degrade diesel oil, it was observed that 7 strains were positive in reduction of the dye 2,6-dichlorophenolindophenol (2,6-DCPIP) while 16 had the gene alkane mono-oxygenase (alkB), and the producers of rhamnolipids were positive in both tests. Several bacterial strains have shown high potential to be explored further for bioremediation purposes due to their simultaneous ability to emulsify, disperse, and degrade diesel oil. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 32:262-270, 2016. © 2015 American Institute of Chemical Engineers.

  2. Gas and Particle Oxidation Products from Ozone Aging of Airborne Diesel Particles

    NASA Astrophysics Data System (ADS)

    Holmen, B. A.; Chen, Z.

    2005-12-01

    Diesel exhaust emissions contain fine particulate matter (PM2.5) composed of carbon-based particles with adsorbed compounds, including water soluble and insoluble substances. Many nonpolar organic compounds associated with diesel particulate matter (DPM) are known to be mutagenic and carcinogenic. In the presence of ozone, these DPM compounds can be transformed into polar species that are more toxic and poorly characterized. Understanding the gas and particle reaction products from DPM aging in the presence of tropospheric ozone is important for air quality, climate change and aerosol health effects. Aging experiments were conducted in a flow reactor to identify gas and particle-phase reaction products of DPM exposed to ambient levels of ozone. Diesel bus exhaust particles were collected on filters and then exposed to 0.1 - 0.5 ppm O3 for 0 to 72 h. Gaseous polar organic products formed during the aging experiments were collected on Tenax TA adsorbent coated with PFBHA derivatization agent. A thermal desorption gas chromatography mass spectrometry (TD/GC/MS) method was developed to determine gas-phase and particle-phase organic compounds. PFBHA and BSTFA derivatization agents converted polar species into less polar analogues prior to analysis. Preliminary results indicate that DPM hydrocarbons react with O3 to form many gas-phase polar products containing C=O (carbonyl) and COOH (carboxy) functional groups. Particle-phase PAH and alkane concentrations decreased significantly depending on time of exposure.

  3. Bio-gas production from alligator weeds

    NASA Technical Reports Server (NTRS)

    Latif, A.

    1976-01-01

    Laboratory experiments were conducted to study the effect of temperature, sample preparation, reducing agents, light intensity and pH of the media, on bio-gas and methane production from the microbial anaerobic decomposition of alligator weeds (Alternanthera philoxeroides. Efforts were also made for the isolation and characterization of the methanogenic bacteria.

  4. The influence of different pretreatment methods on biogas production from Jatropha curcas oil cake.

    PubMed

    Jabłoński, Sławomir Jan; Kułażyński, Marek; Sikora, Ilona; Łukaszewicz, Marcin

    2017-12-01

    Drought and pest resistance, together with high oil content in its seeds, make Jatropha curcas a good oil source for biodiesel. Oil cake from J. curcas is not suitable for animal feeding and thus may be profitably used for additional energy production by conversion into biogas; however, the anaerobic digestion process must be optimized to obtain good efficiency. We subjected oil cake to thermal and acidic pretreatment to deactivate protease inhibitors and partially hydrolyze phytate. We then digested the samples in batch conditions to determine the effects of pretreatment on biogas production. Thermal pretreatment changed the kinetics of anaerobic digestion and reduced protease inhibitor activity and the concentration of phytate; however, biogas production efficiency was not affected (0.281 m 3  kg -1 ). To evaluate the possibility of recirculating water for SSF hydrolysis, ammonium nitrogen recovery from effluent was evaluated by its precipitation in the form of struvite (magnesium ammonium phosphate).Concentration of ammonium ions was reduced by 53% (to 980 mg L -1 ). We propose a water-saving concept based on percolation of J. curcas cake using anaerobic digestion effluent and feeding that percolate into a methanogenic bioreactor. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Nannochloropsis algae pyrolysis with ceria-based catalysts for production of high-quality bio-oils.

    PubMed

    Aysu, Tevfik; Sanna, Aimaro

    2015-10-01

    Pyrolysis of Nannochloropsis was carried out in a fixed-bed reactor with newly prepared ceria based catalysts. The effects of pyrolysis parameters such as temperature and catalysts on product yields were investigated. The amount of bio-char, bio-oil and gas products, as well as the compositions of the resulting bio-oils was determined. The results showed that both temperature and catalyst had significant effects on conversion of Nannochloropsis into solid, liquid and gas products. The highest bio-oil yield (23.28 wt%) and deoxygenation effect was obtained in the presence of Ni-Ce/Al2O3 as catalyst at 500°C. Ni-Ce/Al2O3 was able to retain 59% of the alga starting energy in the bio-oil, compared to only 41% in absence of catalyst. Lower content of acids and oxygen in the bio-oil, higher aliphatics (62%), combined with HHV show promise for production of high-quality bio-oil from Nannochloropsis via Ni-Ce/Al2O3 catalytic pyrolysis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. An ortholog of LEAFY in Jatropha curcas regulates flowering time and floral organ development.

    PubMed

    Tang, Mingyong; Tao, Yan-Bin; Fu, Qiantang; Song, Yaling; Niu, Longjian; Xu, Zeng-Fu

    2016-11-21

    Jatropha curcas seeds are an excellent biofuel feedstock, but seed yields of Jatropha are limited by its poor flowering and fruiting ability. Thus, identifying genes controlling flowering is critical for genetic improvement of seed yield. We isolated the JcLFY, a Jatropha ortholog of Arabidopsis thaliana LEAFY (LFY), and identified JcLFY function by overexpressing it in Arabidopsis and Jatropha. JcLFY is expressed in Jatropha inflorescence buds, flower buds, and carpels, with highest expression in the early developmental stage of flower buds. JcLFY overexpression induced early flowering, solitary flowers, and terminal flowers in Arabidopsis, and also rescued the delayed flowering phenotype of lfy-15, a LFY loss-of-function Arabidopsis mutant. Microarray and qPCR analysis revealed several flower identity and flower organ development genes were upregulated in JcLFY-overexpressing Arabidopsis. JcLFY overexpression in Jatropha also induced early flowering. Significant changes in inflorescence structure, floral organs, and fruit shape occurred in JcLFY co-suppressed plants in which expression of several flower identity and floral organ development genes were changed. This suggests JcLFY is involved in regulating flower identity, floral organ patterns, and fruit shape, although JcLFY function in Jatropha floral meristem determination is not as strong as that of Arabidopsis.

  7. An ortholog of LEAFY in Jatropha curcas regulates flowering time and floral organ development

    PubMed Central

    Tang, Mingyong; Tao, Yan-Bin; Fu, Qiantang; Song, Yaling; Niu, Longjian; Xu, Zeng-Fu

    2016-01-01

    Jatropha curcas seeds are an excellent biofuel feedstock, but seed yields of Jatropha are limited by its poor flowering and fruiting ability. Thus, identifying genes controlling flowering is critical for genetic improvement of seed yield. We isolated the JcLFY, a Jatropha ortholog of Arabidopsis thaliana LEAFY (LFY), and identified JcLFY function by overexpressing it in Arabidopsis and Jatropha. JcLFY is expressed in Jatropha inflorescence buds, flower buds, and carpels, with highest expression in the early developmental stage of flower buds. JcLFY overexpression induced early flowering, solitary flowers, and terminal flowers in Arabidopsis, and also rescued the delayed flowering phenotype of lfy-15, a LFY loss-of-function Arabidopsis mutant. Microarray and qPCR analysis revealed several flower identity and flower organ development genes were upregulated in JcLFY-overexpressing Arabidopsis. JcLFY overexpression in Jatropha also induced early flowering. Significant changes in inflorescence structure, floral organs, and fruit shape occurred in JcLFY co-suppressed plants in which expression of several flower identity and floral organ development genes were changed. This suggests JcLFY is involved in regulating flower identity, floral organ patterns, and fruit shape, although JcLFY function in Jatropha floral meristem determination is not as strong as that of Arabidopsis. PMID:27869146

  8. Production of bio-jet fuel from microalgae

    NASA Astrophysics Data System (ADS)

    Elmoraghy, Marian

    The increase in petroleum-based aviation fuel consumption, the decrease in petroleum resources, the fluctuation of the crude oil price, the increase in greenhouse gas emission and the need for energy security are motivating the development of an alternate jet fuel. Bio-jet fuel has to be a drop in fuel, technically and economically feasible, environmentally friendly, greener than jet fuel, produced locally and low gallon per Btu. Bic jet fuel has been produced by blending petro-based jet fuel with microalgae biodiesel (Fatty Acid Methyl Ester, or simply FAME). Indoor microalgae growth, lipids extraction and transetrification to biodiesel are energy and fresh water intensive and time consuming. In addition, the quality of the biodiesel product and the physical properties of the bio-jet fuel blends are unknown. This work addressed these challenges. Minimizing the energy requirements and making microalgae growth process greener were accomplished by replacing fluorescent lights with light emitting diodes (LEDs). Reducing fresh water footprint in algae growth was accomplished by waste water use. Microalgae biodiesel production time was reduced using the one-step (in-situ transestrification) process. Yields up to 56.82 mg FAME/g dry algae were obtained. Predicted physical properties of in-situ FAME satisfied European and American standards confirming its quality. Lipid triggering by nitrogen deprivation was accomplished in order to increase the FAME production. Bio-jet fuel freezing points and heating values were measured for different jet fuel to biodiesel blend ratios.

  9. Bio-oil production from palm fronds by fast pyrolysis process in fluidized bed reactor

    NASA Astrophysics Data System (ADS)

    Rinaldi, Nino; Simanungkalit, Sabar P.; Kiky Corneliasari, S.

    2017-01-01

    Fast pyrolysis process of palm fronds has been conducted in the fluidized bed reactor to yield bio-oil product (pyrolysis oil). The process employed sea sand as the heat transfer medium. The objective of this study is to design of the fluidized bed rector, to conduct fast pyrolysis process to product bio-oil from palm fronds, and to characterize the feed and bio-oil product. The fast pyrolysis process was conducted continuously with the feeding rate around 500 g/hr. It was found that the biomass conversion is about 35.5% to yield bio-oil, however this conversion is still minor. It is suggested due to the heating system inside the reactor was not enough to decompose the palm fronds as a feedstock. Moreover, the acids compounds ware mostly observed on the bio-oil product.

  10. Simultaneous Clostridial fermentation, lipase-catalyzed esterification, and ester extraction to enrich diesel with butyl butyrate.

    PubMed

    van den Berg, Corjan; Heeres, Arjan S; van der Wielen, Luuk A M; Straathof, Adrie J J

    2013-01-01

    The recovery of 1-butanol from fermentation broth is energy-intensive since typical concentrations in fermentation broth are below 20 g L(-1). To prevent butanol inhibition and high downstream processing costs, we aimed at producing butyl esters instead of 1-butanol. It is shown that it is possible to perform simultaneously clostridial fermentation, esterification of the formed butanol to butyl butyrate, and extraction of this ester by hexadecane. The very high partition coefficient of butyl butyrate pulls the esterification towards the product side even at fermentation pH and relatively low butanol concentrations. The hexadecane extractant is a model diesel compound and is nontoxic to the cells. If butyl butyrate enriched diesel can directly be used as car fuel, no product recovery is required. A proof-of-principle experiment for the one-pot bio-ester production from glucose led to 5 g L(-1) butyl butyrate in the hexadecane phase. The principle may be extended to a wide range of esters, especially to longer chain ones. Copyright © 2012 Wiley Periodicals, Inc.

  11. Functional Group Analysis for Diesel-like Mixing-Controlled Compression Ignition Combustion Blendstocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaspar, Daniel J.; McCormick, Robert L.; Polikarpov, Evgueni

    This report addresses the suitability of hydrocarbon and oxygenate functional groups for use as a diesel-like fuel blending component in an advanced, mixing-controlled, compression ignition combustion engine. The functional groups are chosen from those that could be derived from a biomass feedstock, and represent a full range of chemistries. This first systematic analysis of functional groups will be of value to all who are pursuing new bio-blendstocks for diesel-like fuels.

  12. Phytoremediation of soil contaminated with used lubricating oil using Jatropha curcas.

    PubMed

    Agamuthu, P; Abioye, O P; Aziz, A Abdul

    2010-07-15

    Soil contamination by used lubricating oil from automobiles is a growing concern in many countries, especially in Asian and African continents. Phytoremediation of this polluted soil with non-edible plant like Jatropha curcas offers an environmental friendly and cost-effective method for remediating the polluted soil. In this study, phytoremediation of soil contaminated with 2.5 and 1% (w/w) waste lubricating oil using J. curcas and enhancement with organic wastes [Banana skin (BS), brewery spent grain (BSG) and spent mushroom compost (SMC)] was undertaken for a period of 180 days under room condition. 56.6% and 67.3% loss of waste lubricating oil was recorded in Jatropha remediated soil without organic amendment for 2.5% and 1% contamination, respectively. However addition of organic waste (BSG) to Jatropha remediation rapidly increases the removal of waste lubricating oil to 89.6% and 96.6% in soil contaminated with 2.5% and 1% oil, respectively. Jatropha root did not accumulate hydrocarbons from the soil, but the number of hydrocarbon utilizing bacteria was high in the rhizosphere of the Jatropha plant, thus suggesting that the mechanism of the oil degradation was via rhizodegradation. These studies have proven that J. curcas with organic amendment has a potential in reclaiming hydrocarbon-contaminated soil. 2010 Elsevier B.V. All rights reserved.

  13. Comprehensive near infrared study of Jatropha oil esterification with ethanol for biodiesel production

    NASA Astrophysics Data System (ADS)

    Oliveira, Alianda Dantas de; Sá, Ananda Franco de; Pimentel, Maria Fernanda; Pacheco, José Geraldo A.; Pereira, Claudete Fernandes; Larrechi, Maria Soledad

    2017-01-01

    This work presents a comprehensive near infrared study for in-line monitoring of the esterification reaction of high acid oils, such as Jatropha curcas oil, using ethanol. Parallel reactions involved in the process were carried out to select a spectral region that characterizes the evolution of the esterification reaction. Using absorbance intensities at 5176 cm- 1, the conversion and kinetic behaviors of the esterification reaction were estimated. This method was applied to evaluate the influence of temperature and catalyst concentration on the estimates of initial reaction rate and ester conversion as responses to a 22 factorial experimental design. Employment of an alcohol/oil ratio of 16:1, catalyst concentration of 1.5% w/w, and temperatures at 65 °C or 75 °C, made it possible to reduce the initial acidity from 18% to 1.3% w/w, which is suitable for transesterification of high free fatty acid oils for biodiesel production. Using the proposed analytical method in the esterification reaction of raw materials with high free fatty acid content for biodiesel makes the monitoring process inexpensive, fast, simple, and practical.

  14. Refuse derived soluble bio-organics enhancing tomato plant growth and productivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sortino, Orazio; Dipasquale, Mauro; Montoneri, Enzo, E-mail: enzo.montoneri@unito.it

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Municipal bio-wastes are a sustainable source of bio-based products. Black-Right-Pointing-Pointer Refuse derived soluble bio-organics promote chlorophyll synthesis. Black-Right-Pointing-Pointer Refuse derived soluble bio-organics enhance plant growth and fruit ripening rate. Black-Right-Pointing-Pointer Sustainable chemistry exploiting urban refuse allows sustainable development. Black-Right-Pointing-Pointer Chemistry, agriculture and the environment benefit from biowaste technology. - Abstract: Municipal bio-refuse (CVD), containing kitchen wastes, home gardening residues and public park trimmings, was treated with alkali to yield a soluble bio-organic fraction (SBO) and an insoluble residue. These materials were characterized using elemental analysis, potentiometric titration, and 13C NMR spectroscopy, and then applied as organic fertilizers tomore » soil for tomato greenhouse cultivation. Their performance was compared with a commercial product obtained from animal residues. Plant growth, fruit yield and quality, and soil and leaf chemical composition were the selected performance indicators. The SBO exhibited the best performance by enhancing leaf chlorophyll content, improving plant growth and fruit ripening rate and yield. No product performance-chemical composition relationship could be assessed. Solubility could be one reason for the superior performance of SBO as a tomato growth promoter. The enhancement of leaf chlorophyll content is discussed to identify a possible link with the SBO photosensitizing properties that have been demonstrated in other work, and thus with photosynthetic performance.« less

  15. Developing New Alternative Energy in Virginia: Bio-Diesel from Algae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatcher, Patrick

    limitation. The positive economics of this process are influenced by the following: 1. the weight percent of dry algae in suspension that can be fed into the evaporator, 2. the alga species’ ability to produce a higher yield of biodiesel, 3. the isolation of valuable methoxylated by-products, 4. recycling and regeneration of methanol and TMAH, and 5. the market value of biodiesel, commercial agricultural fertilizer, and the three methoxylated by-products. The negative economics of the process are the following: 1. the cost of producing dried, ground algae, 2. the capital cost of the equipment required for feedstock mixing, reaction, separation and recovery of products, and reactant recycling, and 3. the electrical cost and other utilities. In this report, the economic factors and results are assembled to predict the commercialization cost and its viability. This direct conversion process and equipment discussed herein can be adapted for various feedstocks including: other algal species, vegetable oil, jatropha oil, peanut oil, sunflower oil, and other TAG containing raw materials as a renewable energy resource.« less

  16. Influences of Fuel Additive, Crude Palm and Waste Cooking Oil on Emission Characteristics of Small Diesel Engine

    NASA Astrophysics Data System (ADS)

    Khalid, Amir; Jaat, Norrizam; Manshoor, Bukhari; Zaman, Izzuddin; Sapit, Azwan; Razali, Azahari; Basharie, Mariam

    2017-08-01

    Major research has been conducted on the use of input products, such as rapeseed, canola, soybean, sunflower oil, waste cooking oil (WCO), crude palm oil (CPO) and crude jatropha oil as alternative fuels. Biodiesel is renewable, biodegradable and oxygenated, where it can be easily adopted by current existing conventional diesel engine without any major modification of the engine. To meet the future performance and emission regulations, is urged to improve the performance and exhaust emissions from biodiesel fuels. Hence, further investigation have been carried out on the emission characteristics of small diesel engine that fuelled by variant blending ratio of WCO and CPO with booster additive. For each of the biodiesel blends ratio from 5 to 15 percent volume which are WCO5, WCO10 and WCO15 for WCO biodiesel and CPO5, CPO10 and CPO15 for CPO biodiesel. The exhaust emissions were measured at engine speeds varied at 2000 rpm and 2500 rpm with different booster additive volume DRA (biodiesel without additive), DRB (0.2 ml) and DRC (0.4 ml). Emissions characteristics that had been measured were Hydrocarbon (HC), Carbon Monoxide (CO), Carbon Dioxide (CO2), Nitrogen Oxide (NOx), and smoke opacity. The results showed that increased of blending ratio with booster additive volume significantly decreased the CO emission, while increased in NOx and CO2 due to changes of fuel characteristics in biodiesel fuel blends.

  17. Performance and emission analysis on blends of diesel, restaurant yellow grease and n-pentanol in direct-injection diesel engine.

    PubMed

    Ravikumar, J; Saravanan, S

    2017-02-01

    Yellow grease from restaurants is typically waste cooking oil (WCO) free from suspended food particles with free fatty acid (FFA) content less than 15%. This study proposes an approach to formulate a renewable, eco-friendly fuel by recycling WCO with diesel (D) and n-pentanol (P) to improve fuel-spray characteristics. Three ternary blends (D50-WCO45-P5, D50-WCO40-P10 and D50-WCO30-P20) were selected based on the stability tests and prepared with an objective to substitute diesel by 50% with up to 45% recycled component (WCO) and up to 20% bio-component (n-pentanol) by volume. The fuel properties of these ternary blends were measured and compared. The emission impacts of these blends on a diesel engine were analysed in comparison with diesel and D50-WCO50 (50% of diesel + 50% of WCO) under naturally articulated and EGR (exhaust gas recirculation) approaches. Doping of n-pentanol showed improved fuel properties when compared to D50-WCO50. Viscosity is reduced up to 45%. Cetane number and density were comparable to that of diesel. Addition of n-pentanol to D50-WCO50 presented improved brake specific fuel consumption (BSFC) for all ternary blends. Brake thermal efficiency (BTE) of D50-WCO30-P20 blend is comparable to diesel due to improved atomization. Smoke opacity reduced, HC emissions increased and CO emissions remained unchanged with doping n-pentanol in the WCO. NOx emission increases with increase in n-pentanol and remained lower than diesel and all load conditions. However, NOx can be decreased by up to threefold using EGR. By adopting this approach, WCO can be effectively reused as a clean energy source by negating environmental hazards before and after its use in diesel engines, instead of being dumped into sewers and landfills.

  18. Antiquity, botany, origin and domestication of Jatropha curcas (Euphorbiaceae), a plant species with potential for biodiesel production.

    PubMed

    Dias, L A S; Missio, R F; Dias, D C F S

    2012-08-16

    Jatropha curcas is a multi-purpose plant species, with many advantages for biodiesel production. Its potential oil productivity is 1.9 t/ha, beginning the fourth year after planting. Nevertheless, limitations such as high harvest cost, lack of scientific konowledge and low profitability have prevented it from being utilized commercially. In order to provide information that could be useful to improve the status of this species as a bioenergy plant, we elucidated the center of origin and the center of domestication of J. curcas (Mexico). Evidence of the antiquity of knowledge of J. curcas by Olmeca people, who lived 3500-5000 years ago, reinforces its Mexican origin. The existence of non-toxic types, which only exist in that country, along with DNA studies, also strongly suggest that Mexico is the domestication center of this species. In Brazil, the Northern region of Minas Gerais State presents types with the highest oil content. Here we propose this region as a secondary center of diversity of J. curcas.

  19. Toxicological properties of emission particles from heavy duty engines powered by conventional and bio-based diesel fuels and compressed natural gas.

    PubMed

    Jalava, Pasi I; Aakko-Saksa, Päivi; Murtonen, Timo; Happo, Mikko S; Markkanen, Ari; Yli-Pirilä, Pasi; Hakulinen, Pasi; Hillamo, Risto; Mäki-Paakkanen, Jorma; Salonen, Raimo O; Jokiniemi, Jorma; Hirvonen, Maija-Riitta

    2012-09-29

    One of the major areas for increasing the use of renewable energy is in traffic fuels e.g. bio-based fuels in diesel engines especially in commuter traffic. Exhaust emissions from fossil diesel fuelled engines are known to cause adverse effects on human health, but there is very limited information available on how the new renewable fuels may change the harmfulness of the emissions, especially particles (PM). We evaluated the PM emissions from a heavy-duty EURO IV diesel engine powered by three different fuels; the toxicological properties of the emitted PM were investigated. Conventional diesel fuel (EN590) and two biodiesels were used - rapeseed methyl ester (RME, EN14214) and hydrotreated vegetable oil (HVO) either as such or as 30% blends with EN590. EN590 and 100% HVO were also operated with or without an oxidative catalyst (DOC + POC). A bus powered by compressed natural gas (CNG) was included for comparison with the liquid fuels. However, the results from CNG powered bus cannot be directly compared to the other situations in this study. High volume PM samples were collected on PTFE filters from a constant volume dilution tunnel. The PM mass emission with HVO was smaller and with RME larger than that with EN590, but both biofuels produced lower PAH contents in emission PM. The DOC + POC catalyst greatly reduced the PM emission and PAH content in PM with both HVO and EN590. Dose-dependent TNFα and MIP-2 responses to all PM samples were mostly at the low or moderate level after 24-hour exposure in a mouse macrophage cell line RAW 264.7. Emission PM from situations with the smallest mass emissions (HVO + cat and CNG) displayed the strongest potency in MIP-2 production. The catalyst slightly decreased the PM-induced TNFα responses and somewhat increased the MIP-2 responses with HVO fuel. Emission PM with EN590 and with 30% HVO blended in EN590 induced the strongest genotoxic responses, which were significantly greater than those with EN590

  20. Adjuvant activity of diesel-exhaust particulates for the production of IgE antibody in mice.

    PubMed

    Muranaka, M; Suzuki, S; Koizumi, K; Takafuji, S; Miyamoto, T; Ikemori, R; Tokiwa, H

    1986-04-01

    The prevalence rate of allergic rhinitis caused by pollen has strikingly increased in Japan in the last three decades. The number of diesel cars in use has also rapidly increased in the country. This fact urged us to study the effects of particulates emitted from diesel cars on the production of IgE antibody. The primary IgE antibody responses in mice immunized with intraperitoneal injection of ovalbumin (OA) mixed with diesel-exhaust particulates (DEP) were higher than those in the animals immunized with OA alone. This effect of DEP on the production of IgE antibody in mice was also demonstrated when mice were immunized with repeated injections of dinitrophenylated-OA. In addition, persistent IgE-antibody response to major allergen of Japanese cedar pollen (JCPA), a most common pollen causing allergic rhinitis in Japan, was observed in mice immunized with JCPA mixed with DEP but not in the animals immunized with JCPA alone. The results do indicate that the adjuvant activity of DEP can not be excluded as a possible cause of the associated change in the number of diesel cars and allergic rhinitis caused by pollen in Japan.

  1. 75 FR 31816 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Diesel After...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-04

    ... DEPARTMENT OF JUSTICE Antitrust Division Notice Pursuant to the National Cooperative Research and Production Act of 1993--Diesel After Treatment Accelerated Aging Cycles--Heavy-Duty Notice is hereby given... Group on Diesel After treatment Accelerated Aging Cycles--Heavy-Duty (``DAAAC-HD'') has filed written...

  2. Phytochemical screening and quantification of flavonoids from leaf extract of Jatropha curcas Linn.

    PubMed

    Ebuehi, O A T; Okorie, N A

    2009-01-01

    The Jatropha curcas L. (Euphorbiaceae) herb is found in SouthWest, Nigeria and other parts of West Africa, and is claimed to possess anti-hypertensive property. The phytochemical screening and flavonoid quantification of the leaf extract of Jatropha curcas Linn were studied. The phytochemical screening of the methanolic leaf extract of J. curcas L. was carried using acceptable and standard methods. The flavonoid contents of the leaf extract of Jatropha curcas L. were determined using thin layer chromatography (TLC), infrared spectroscopy (IRS) and a reversed phase high performance liquid chromatography (HPLC). The phytochemical screening of the methanolic extract of the leaves of the plant shows the presence of alkaloids, cardiac glycosides, cyanogenic glycosides, phlobatannins, tannins, flavonoids and saponins. To quantify the flavonoid contents of leaf extract of Jatropha curcas L, extracts from the plant samples where examined in a C-18 column with UV detection and isocratic elution with acetonitrile; water (45:55). Levels of flavonoids (flavones) in leaves ranged from 6:90 to 8:85 mg/g dry weight. Results indicate that the methanolic extract of the leaves of Jatropha curcas L. contains useful active ingredients which may serve as potential drug for the treatment of diseases. In addition, a combination of TLC, IRS and HPLC can be used to analyse and quantify the flavonoids present in the leaves of Jatropha curcas L.

  3. Removal of Cd (II) from water using the waste of jatropha fruit ( Jatropha curcas L.)

    NASA Astrophysics Data System (ADS)

    Nacke, Herbert; Gonçalves, Affonso Celso; Coelho, Gustavo Ferreira; Schwantes, Daniel; Campagnolo, Marcelo Angelo; Leismann, Eduardo Ariel Völz; Junior, Élio Conradi; Miola, Alisson Junior

    2017-10-01

    The aim of this work was to evaluate the removal of Cd (II) from water using three biosorbents originated from the biomass of jatropha (bark, endosperm, and endosperm + tegument). For that, batch tests were performed to verify the effect of solution pH, adsorbent mass, contact time, initial concentration of Cd (II), and the temperature of the process. The adsorption process was evaluated by the studies of kinetics, isotherms, and thermodynamics. The ideal conditions of solution pH were 5.5 and 8 g L-1 of adsorbent mass of biosorbents by solution volume, with an equilibrium time of 60 min. According to the Langmuir model, the maximum adsorption capacity for bark, endosperm, and bark + endosperm of jatropha was, respectively, 29.665, 19.562, and 34.674 mg g-1, predominating chemisorption in monolayers. The biosorbents presented potential for the remediation of waters contaminated with Cd (II).

  4. Secondary organic aerosol production from diesel vehicle exhaust: impact of aftertreatment, fuel chemistry and driving cycle

    NASA Astrophysics Data System (ADS)

    Gordon, T. D.; Presto, A. A.; Nguyen, N. T.; Robertson, W. H.; Na, K.; Sahay, K. N.; Zhang, M.; Maddox, C.; Rieger, P.; Chattopadhyay, S.; Maldonado, H.; Maricq, M. M.; Robinson, A. L.

    2014-05-01

    Environmental chamber ("smog chamber") experiments were conducted to investigate secondary organic aerosol (SOA) production from dilute emissions from two medium-duty diesel vehicles (MDDVs) and three heavy-duty diesel vehicles (HDDVs) under urban-like conditions. Some of the vehicles were equipped with emission control aftertreatment devices, including diesel particulate filters (DPFs), selective catalytic reduction (SCR) and diesel oxidation catalysts (DOCs). Experiments were also performed with different fuels (100% biodiesel and low-, medium- or high-aromatic ultralow sulfur diesel) and driving cycles (Unified Cycle,~Urban Dynamometer Driving Schedule, and creep + idle). During normal operation, vehicles with a catalyzed DPF emitted very little primary particulate matter (PM). Furthermore, photooxidation of dilute emissions from these vehicles produced essentially no SOA (below detection limit). However, significant primary PM emissions and SOA production were measured during active DPF regeneration experiments. Nevertheless, under reasonable assumptions about DPF regeneration frequency, the contribution of regeneration emissions to the total vehicle emissions is negligible, reducing PM trapping efficiency by less than 2%. Therefore, catalyzed DPFs appear to be very effective in reducing both primary PM emissions and SOA production from diesel vehicles. For both MDDVs and HDDVs without aftertreatment substantial SOA formed in the smog chamber - with the emissions from some vehicles generating twice as much SOA as primary organic aerosol after 3 h of oxidation at typical urban VOC / NOx ratios (3 : 1). Comprehensive organic gas speciation was performed on these emissions, but less than half of the measured SOA could be explained by traditional (speciated) SOA precursors. The remainder presumably originates from the large fraction (~30%) of the nonmethane organic gas emissions that could not be speciated using traditional one-dimensional gas chromatography. The

  5. Characterization of Vinyl Ester Composites Filled with Carbonized Jatropha seed shell: effect of accelerated weathering

    NASA Astrophysics Data System (ADS)

    Sri Aprilia, N. A.; Khalil, H. P. S. Abdul; Amin, Amri; Meurah Rosnelly, Cut; Fathanah, Ummi; Mariana

    2018-05-01

    The effect of accelerated weathering test of carbonized jatropha seed shell filled vinyl ester biocomposites was investigated. In this study, four loading of carbonized jatropha seed shell and one without loading of vinyl ester biocomposites were used. The samples exposure at several circles time in QUV chamber. The durability of vinyl ester biocomposites filled carbonized jatropha seed shell changes in mechanical properties and weight loss during exposure in UV and condensation. The tensile test and flexural indicated decrease with increasing of carbonized jatropha seed shell loading. The SEM fracture surface of biocomposites looks rough and some carbonized out of the matrix.

  6. Molecular characterization of a new begomovirus associated with leaf yellow mosaic disease of Jatropha curcas in India.

    PubMed

    Srivastava, Ashish; Kumar, S; Jaidi, Meraj; Raj, S K

    2015-05-01

    During a survey in June 2011, severe leaf yellow mosaic disease was observed on about 45 % plants of Jatropha curcas growing in the Katerniaghat wildlife sanctuary in India. An association of a begomovirus with disease was detected in 15 out of 20 samples by PCR using begomovirus genus-specific primers and total DNA isolated from symptomatic leaf samples. For identification of the begomovirus, the complete genome was amplified using a Phi-29 DNA-polymerase-based rolling-circle amplification kit and total DNA from five representative samples and then digested with BamHI. The linearized RCA products were cloned and sequenced. Their GenBank accession numbers are JN698954 (SKRK1) and JN135236 (SKRK2). The sequences of the two begomovirus isolates were 97 % identical to each other and no more than 86 % to those of jatropha mosaic India virus (JMIV, HM230683) and other begomoviruses reported worldwide. In phylogenetic analysis, SKRK1 and SKRK2 clustered together and showed distant relationships to jatropha mosaic India virus, Jatropha curcas mosaic virus, Indian cassava mosaic virus, Sri Lankan cassava mosaic virus and other begomoviruses. Based on 86 % sequence identities and distant phylogenetic relationships to JMIV and other begomoviruses and the begomovirus species demarcation criteria of the ICTV (<89 % sequence identity of complete DNA-A genome), the begomovirus isolates associated with leaf yellow mosaic disease of J. curcas were identified as members of a new begomovirus species and provisionally designated as jatropha leaf yellow mosaic Katerniaghat virus (JLYMKV). Agroinfectious clones of the DNA molecule of the begomovirus isolate were also generated, and the fulfillment of Koch's postulates was demonstrated in J. curcas plants.

  7. Acid--chlorite pretreatment and liquefaction of cornstalk in hot-compressed water for bio-oil production.

    PubMed

    Liu, Hua-Min; Feng, Bing; Sun, Run-Cang

    2011-10-12

    In this study, cornstalk was pretreated by an acid-chlorite delignification procedure to enhance the conversion of cornstalk to bio-oil in hot-compressed water liquefaction. The effects of the pretreatment conditions on the compositional and structural changes of the cornstalk and bio-oil yield were investigated. It was found that acid-chlorite pretreatment changed the main components and physical structures of cornstalk and effectively enhanced the bio-oil yield. Shorter residence time favored production of the total bio-oil products, whereas longer time led to cracking of the products. A high water loading was found to be favorable for high yields of total bio-oil and water-soluble oil. GC-MS analysis showed that the water-soluble oil and heavy oil were the complicated products of C(5-10) and C(8-11) organic compounds.

  8. The Impact of Diesel Oil Pollution on the Hydrophobicity and CO2 Efflux of Forest Soils.

    PubMed

    Hewelke, Edyta; Szatyłowicz, Jan; Hewelke, Piotr; Gnatowski, Tomasz; Aghalarov, Rufat

    2018-01-01

    The contamination of soil with petroleum products is a major environmental problem. Petroleum products are common soil contaminants as a result of human activities, and they are causing substantial changes in the biological (particularly microbiological) processes, chemical composition, structure and physical properties of soil. The main objective of this study was to assess the impact of soil moisture on CO 2 efflux from diesel-contaminated albic podzol soils. Two contamination treatments (3000 and 9000 mg of diesel oil per kg of soil) were prepared for four horizons from two forest study sites with different initial levels of soil water repellency. CO 2 emissions were measured using a portable infrared gas analyser (LCpro+, ADC BioScientific, UK) while the soil samples were drying under laboratory conditions (from saturation to air-dry). The assessment of soil water repellency was performed using the water drop penetration time test. An analysis of variance (ANVOA) was conducted for the CO 2 efflux data. The obtained results show that CO 2 efflux from diesel-contaminated soils is higher than efflux from uncontaminated soils. The initially water-repellent soils were found to have a bigger CO 2 efflux. The non-linear relationship between soil moisture content and CO 2 efflux only existed for the upper soil horizons, while for deeper soil horizons, the efflux is practically independent of soil moisture content. The contamination of soil by diesel leads to increased soil water repellency.

  9. Three TFL1 homologues regulate floral initiation in the biofuel plant Jatropha curcas

    PubMed Central

    Li, Chaoqiong; Fu, Qiantang; Niu, Longjian; Luo, Li; Chen, Jianghua; Xu, Zeng-Fu

    2017-01-01

    Recent research revealed that TERMINAL FLOWER 1 (TFL1) homologues are involved in the critical developmental process of floral initiation in several plant species. In this study, the functions of three putative TFL1 homologues (JcTFL1a, JcTFL1b and JcTFL1c) in the biofuel plant Jatropha curcas were analysed using the transgenic approach. JcTFL1b and JcTFL1c, but not JcTFL1a, could complement the TFL1 function and rescue early flowering and determinate inflorescence phenotype in tfl1-14 Arabidopsis mutant, thus suggesting that JcTFL1b and JcTFL1c may be homologues of TFL1. Transgenic Jatropha overexpressing JcTFL1a, JcTFL1b or JcTFL1c showed late flowering, whereas only JcTFL1b and JcTFL1c overexpression delayed flowering in transgenic Arabidopsis. JcTFL1b-RNAi transgenic Jatropha consistently exhibited moderately early flowering phenotype. JcFT and JcAP1 were significantly downregulated in transgenic Jatropha overexpressing JcTFL1a, JcTFL1b or JcTFL1c, which suggested that the late flowering phenotype of these transgenic Jatropha may result from the repressed expression of JcFT and JcAP1. Our results indicate that these three JcTFL1 genes play redundant roles in repressing flowering in Jatropha. PMID:28225036

  10. Genetic evaluation of Jatropha curcas: an important oilseed for biodiesel production.

    PubMed

    Freitas, R G; Missio, R F; Matos, F S; Resende, M D V; Dias, L A S

    2011-01-01

    Jatropha curcas, internationally and locally known, respectively, as physic nut and pinhão manso, is a highly promising species for biodiesel production in Brazil and other countries in the tropics. It is rustic, grows in warm regions and is easily cultivated. These characteristics and high-quality oil yields from the seeds have made this plant a priority for biodiesel programs in Brazil. Consequently, this species merits genetic investigations aimed at improving yields. Some studies have detected genetic variability in accessions in Africa and Asia. We have made the first genetic evaluation of J. curcas collected from Brazil. Our objective was to quantify genetic diversity and to estimate genetic parameters for growth and production traits and seed oil content. We evaluated 75 J. curcas progenies collected from Brazil and three from Cambodia. The mean oil content in the seeds was 31%, ranging from 16 to 45%. No genetic correlation between growth traits and seed oil content was found. However, high coefficients of genetic variation were found for plant height, number of branches, height of branches, and stem diameter. The highest individual narrow-sense heritabilities were found for leaf length (0.35) and width (0.34), stem diameter (0.24) and height of branches (0.21). We used a clustering algorithm to genetically identify the closest and most distant progenies, to assist in the development of new cultivars. Geographical diversity did not necessarily represent the genetic diversity among the accessions collected. These results are important for the continuity of breeding programs, aimed at obtaining cultivars with high grain yield and high oil content in seeds.

  11. Fuel Property Determination of Biodiesel-Diesel Blends By Terahertz Spectrum

    NASA Astrophysics Data System (ADS)

    Zhao, Hui; Zhao, Kun; Bao, Rima

    2012-05-01

    The frequency-dependent absorption characteristics of biodiesel and its blends with conventional diesel fuel have been researched in the spectral range of 0.2-1.5 THz by the terahertz time-domain spectroscopy (THz-TDS). The absorption coefficient presented a regular increasing with biodiesel content. A nonlinear multivariate model that correlating cetane number and solidifying point of bio-diesel blends with absorption coefficient has been established, making the quantitative analysis of fuel properties simple. The results made the cetane number and solidifying point prediction possible by THz-TDS technology and indicated a bright future in practical application.

  12. Chemical Profiling of Jatropha Tissues under Different Torrefaction Conditions: Application to Biomass Waste Recovery

    PubMed Central

    Watanabe, Taiji; Shino, Amiu; Akashi, Kinya; Kikuchi, Jun

    2014-01-01

    Gradual depletion of the world petroleum reserves and the impact of environmental pollution highlight the importance of developing alternative energy resources such as plant biomass. To address these issues, intensive research has focused on the plant Jatropha curcas, which serves as a rich source of biodiesel because of its high seed oil content. However, producing biodiesel from Jatropha generates large amounts of biomass waste that are difficult to use. Therefore, the objective of our research was to analyze the effects of different conditions of torrefaction on Jatropha biomass. Six different types of Jatropha tissues (seed coat, kernel, stem, xylem, bark, and leaf) were torrefied at four different temperature conditions (200°C, 250°C, 300°C, and 350°C), and changes in the metabolite composition of the torrefied products were determined by Fourier transform-infrared spectroscopy and nuclear magnetic resonance analyses. Cellulose was gradually converted to oligosaccharides in the temperature range of 200°C–300°C and completely degraded at 350°C. Hemicellulose residues showed different degradation patterns depending on the tissue, whereas glucuronoxylan efficiently decomposed between 300°C and 350°C. Heat-induced depolymerization of starch to maltodextrin started between 200°C and 250°C, and oligomer sugar structure degradation occurred at higher temperatures. Lignin degraded at each temperature, e.g., syringyl (S) degraded at lower temperatures than guaiacyl (G). Finally, the toxic compound phorbol ester degraded gradually starting at 235°C and efficiently just below 300°C. These results suggest that torrefaction is a feasible treatment for further processing of residual biomass to biorefinery stock or fertilizer. PMID:25191879

  13. Chemical profiling of Jatropha tissues under different torrefaction conditions: application to biomass waste recovery.

    PubMed

    Watanabe, Taiji; Shino, Amiu; Akashi, Kinya; Kikuchi, Jun

    2014-01-01

    Gradual depletion of the world petroleum reserves and the impact of environmental pollution highlight the importance of developing alternative energy resources such as plant biomass. To address these issues, intensive research has focused on the plant Jatropha curcas, which serves as a rich source of biodiesel because of its high seed oil content. However, producing biodiesel from Jatropha generates large amounts of biomass waste that are difficult to use. Therefore, the objective of our research was to analyze the effects of different conditions of torrefaction on Jatropha biomass. Six different types of Jatropha tissues (seed coat, kernel, stem, xylem, bark, and leaf) were torrefied at four different temperature conditions (200°C, 250°C, 300°C, and 350°C), and changes in the metabolite composition of the torrefied products were determined by Fourier transform-infrared spectroscopy and nuclear magnetic resonance analyses. Cellulose was gradually converted to oligosaccharides in the temperature range of 200°C-300°C and completely degraded at 350°C. Hemicellulose residues showed different degradation patterns depending on the tissue, whereas glucuronoxylan efficiently decomposed between 300°C and 350°C. Heat-induced depolymerization of starch to maltodextrin started between 200°C and 250°C, and oligomer sugar structure degradation occurred at higher temperatures. Lignin degraded at each temperature, e.g., syringyl (S) degraded at lower temperatures than guaiacyl (G). Finally, the toxic compound phorbol ester degraded gradually starting at 235°C and efficiently just below 300°C. These results suggest that torrefaction is a feasible treatment for further processing of residual biomass to biorefinery stock or fertilizer.

  14. Sulphide Production and Corrosion in Seawaters During Exposure to FAME Diesel

    DTIC Science & Technology

    2012-05-12

    FAME diesel is a renewable fuel produced from vegetable oils made by converting triglyceride oils to methyl (or ethyl) esters by... oil from which the biodiesel was made (Knothe 2004; Barabas and Todorut 2011). FAME diesel mixes easily with petro- leum diesel (Chotwichien et al...Materials and methods FAME diesel A previously characterized soy -based diesel was obtained from US Navy Fuel and Lubes, Patuxent River, MD (Lee

  15. Effect on the use of ultrasonic cavitation for biodiesel production from crued Jatropha curcas L. seed oil with a high content of free fatty acid

    NASA Astrophysics Data System (ADS)

    Worapun, Ittipon; Pianthong, Kulachate; Thaiyasuit, Prachasanti; Thinvongpituk, Chawalit

    2010-03-01

    A typical way to produce biodiesel is the transesterification of plant oils. This is commonly carried out by treating the pre-extracted oil with an appropriate alcohol in the presence of an acidic or alkaline catalyst over one or two hours in a batch reactor.Because oils and methanol are not completely miscible. It has been widely demonstrated that low-frequency ultrasonic irradiation is an effective tool for emulsifying immiscible liquids. The objective of this research is to investigate the optimum conditions for biodiesel production from crude Jatropha curcas oil with short chain alcohols by ultrasonic cavitation (at 40 kHz frequency and 400 Watt) assisted, using two step catalyst method. Usually, the crude Jatropha curcas oil has very high free fatty acid which obstructs the transesterification reaction. As a result it provides low yield of biodiesel production. In the first step, the reaction was carried out in the presence of sulfuric acid as an acid catalyst. The product was then further transesterified with potassium hydroxide in the second step. The effects of different operating parameters such as molar ratio of reactants, catalyst quantity, and operating temperature, have been studied with the aim of process optimization. It has been observed that the mass transfer and kinetic rate enhancements were due to the increase in interfacial area and activity of the microscopic and macroscopic bubbles formed. For example, the product yield levels of more than 90% have been observed with the use of ultrasonic cavitation in about 60 minutes under room temperature operating conditions.

  16. Characterization and Catalytic Upgrading of Crude Bio-oil Produced by Hydrothermal Liquefaction of Swine Manure and Pyrolysis of Biomass

    NASA Astrophysics Data System (ADS)

    Cheng, Dan

    The distillation curve of crude bio-oil from glycerol-assisted hydrothermal liquefaction of swine manure was measured using an advanced distillation apparatus. The crude bio-oil had much higher distillation temperatures than diesel and gasoline and was more distillable than the bio-oil produced by the traditional liquefaction of swine manure and the pyrolysis of corn stover. Each 10% volumetric fraction was analyzed from aspects of its chemical compositions, chemical and physical properties. The appearance of hydrocarbons in the distillates collected at the temperature of 410.9°C and above indicated that the thermal cracking at a temperature from 410°C to 500°C may be a proper approach to upgrade the crude bio-oil produced from the glycerol-assisted liquefaction of swine manure. The effects of thermal cracking conditions including reaction temperature (350-425°C), retention time (15-60 min) and catalyst loadings (0-10 wt%) on the yield and quality of the upgraded oil were analyzed. Under the optimum thermal cracking conditions at 400°C, a catalyst loading of 5% by mass and the reaction time of 30 min, the yield of bio-oil was 46.14% of the mass of the crude bio-oil and 62.5% of the energy stored in the crude bio-oil was recovered in the upgraded bio-oil. The upgraded bio-oil with a heating value of 41.4 MJ/kg and viscosity of 3.6 cP was comparable to commercial diesel. In upgrading crude bio-oil from fast pyrolysis, converting organic acids into neutral esters is significant and can be achieved by sulfonated activated carbon/bio-char developed from fermentation residues. Acitivated carbon and bio-char were sulfonated by concentrated sulfuric acid at 150°C for 18 h. Sulfonation helped activated carbon/bio-char develop acid functional groups. Sulfonated activated carbon with BET surface area of 349.8 m2/g, was effective in converting acetic acid. Acetic acid can be effectively esterified by sulfonated activated carbon (5 wt%) at 78°C for 60 min with the

  17. Production of bio-oil from underutilized forest biomass using an auger reactor

    Treesearch

    H. Ravindran; S. Thangalzhy-Gopakumar; S. Adhikari; O. Fasina; M. Tu; B. Via; E. Carter; S. Taylor

    2015-01-01

    Conversion of underutilized forest biomass to bio-oil could be a niche market for energy production. In this work, bio-oil was produced from underutilized forest biomass at selected temperatures between 425–500°C using an auger reactor. Physical properties of bio-oil, such as pH, density, heating value, ash, and water, were analyzed and compared with an ASTM standard...

  18. Reproductive biology characteristic of Jatropha curcas (Euphorbiaceae).

    PubMed

    Wang, Xiu-Rong; Ding, Gui-Jie

    2012-12-01

    Jatropha curcas belongs to family of Euphorbiaceae, and is an important biological tree species for diesel production. The current descriptions of the phenotypic traits for male and female flowers are not comprehensive and there have been no reports about the process of J. curcas from pollen germination on stigma to pollen tubes conducting fertilization after entering the ovary and ovule. To assess this, experiments were undertaken to study the reproductive biology characteristic of J. curcas in Guiyang Guizhou Province, China. Floral structure and pollen germination process were described in detail and the breeding system was determined. The results showed that flower of J. curcas was both unisexual and monoecious, with a flowering phase between April-November. Both female and male flowers have five petals in contorted arrangement and five calyxes in imbricated arrangement. Female flower originated from bisexual flower finally formed unisexual flowers as the stamen ceased growth in different period. The pistil had 3-5 styles, connected at base and separated into 3-5 stigmas on the top. Each stigma had 2-4 lobes. The styles were hollow. The pollen germinated on the surface of the stigma, is then transported via the vascular tissues, which was arranged in bundles, and finally channeled through the micropyle to enter the blastula. The pollen tube was shaped in a long uneven cylinder. The top end of it became swollen and formed a small round hole for the purpose of releasing sperm nuclei while the pollen tube itself was growing and extending. Estimation of out-crossing index and artificial pollination experiments indicated that J. curcas was capable of both self-pollination and cross-pollination. The germination speed of the pollen on the stigma did not differ so much between the one by self-pollination and the one by cross-pollination, and the pollen from the two different sources could both reach the ovary within one day. Both artificial pollination test and out

  19. Process contribution evaluation for COD removal and energy production from molasses wastewater in a BioH2-BioCH4-MFC-integrated system.

    PubMed

    Yun, Jeonghee; Lee, Yun-Yeong; Choi, Hyung Joo; Cho, Kyung-Suk

    2017-01-01

    In this study, a three-stage-integrated process using the hydrogenic process (BioH 2 ), methanogenic process (BioCH 4 ), and a microbial fuel cell (MFC) was operated using molasses wastewater. The contribution of individual processes to chemical oxygen demand (COD) removal and energy production was evaluated. The three-stage integration system was operated at molasses of 20 g-COD L -1 , and each process achieved hydrogen production rate of 1.1 ± 0.24 L-H 2 L -1 day -1 , methane production rate of 311 ± 18.94 mL-CH 4 L -1 day -1 , and production rate per electrode surface area of 10.8 ± 1.4 g m -2 day -1 . The three-stage integration system generated energy production of 32.32 kJ g-COD -1 and achieved COD removal of 98 %. The contribution of BioH 2 , BioCH 4 , and the MFC reactor was 20.8, 72.2, and, 7.0 % of the total COD removal, and 18.7, 81.2, and 0.16 % of the total energy production, respectively. The continuous stirred-tank reactor BioH 2 at HRT of 1 day, up-flow anaerobic sludge blanket BioCH 4 at HRT of 2 days, and MFC reactor at HRT of 3 days were decided in 1:2:3 ratios of working volume under hydraulic retention time consideration. This integration system can be applied to various configurations depending on target wastewater inputs, and it is expected to enhance energy recovery and reduce environmental impact of the final effluent.

  20. Reducing emissions of persistent organic pollutants from a diesel engine by fueling with water-containing butanol diesel blends.

    PubMed

    Chang, Yu-Cheng; Lee, Wen-Jhy; Yang, Hsi-Hsien; Wang, Lin-Chi; Lu, Jau-Huai; Tsai, Ying I; Cheng, Man-Ting; Young, Li-Hao; Chiang, Chia-Jui

    2014-05-20

    The manufacture of water-containing butanol diesel blends requires no excess dehydration and surfactant addition. Therefore, compared with the manufacture of conventional bio-alcohols, the energy consumption for the manufacture of water-containing butanol diesel blends is reduced, and the costs are lowered. In this study, we verified that using water-containing butanol diesel blends not only solves the tradeoff problem between nitrogen oxides (NOx) and particulate matter emissions from diesel engines, but it also reduces the emissions of persistent organic pollutants (POPs), including polycyclic aromatic hydrocarbons, polychlorinated dibenzo-p-dioxins and dibenzofurans, polychlorinated biphenyls, polychlorinated diphenyl ethers, polybrominated dibenzo-p-dioxins and dibenzofurans, polybrominated biphenyls and polybrominated diphenyl ethers. After using blends of B2 with 10% and 20% water-containing butanol, the POP emission factors were decreased by amounts in the range of 22.6%-42.3% and 38.0%-65.5% on a mass basis, as well as 18.7%-78.1% and 51.0%-84.9% on a toxicity basis. The addition of water-containing butanol introduced a lower content of aromatic compounds and most importantly, lead to more complete combustion, thus resulting in a great reduction in the POP emissions. Not only did the self-provided oxygen of butanol promote complete oxidation but also the water content in butanol diesel blends could cause a microexplosion mechanism, which provided a better turbulence and well-mixed environment for complete combustion.

  1. Revolutionary systems for catalytic combustion and diesel catalytic particulate traps.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stuecker, John Nicholas; Witze, Peter O.; Ferrizz, Robert Matthew

    2004-12-01

    This report is a summary of an LDRD project completed for the development of materials and structures conducive to advancing the state of the art for catalyst supports and diesel particulate traps. An ancillary development for bio-medical bone scaffolding was also realized. Traditionally, a low-pressure drop catalyst support, such as a ceramic honeycomb monolith, is used for catalytic reactions that require high flow rates of gases at high-temperatures. A drawback to the traditional honeycomb monoliths under these operating conditions is poor mass transfer to the catalyst surface in the straight-through channels. ''Robocasting'' is a unique process developed at Sandia Nationalmore » Laboratories that can be used to manufacture ceramic monoliths with alternative 3-dimensional geometries, providing tortuous pathways to increase mass transfer while maintaining low-pressure drops. These alternative 3-dimensional geometries may also provide a foundation for the development of self-regenerating supports capable of trapping and combusting soot particles from a diesel engine exhaust stream. This report describes the structures developed and characterizes the improved catalytic performance that can result. The results show that, relative to honeycomb monolith supports, considerable improvement in mass transfer efficiency is observed for robocast samples synthesized using an FCC-like geometry of alternating rods. Also, there is clearly a trade-off between enhanced mass transfer and increased pressure drop, which can be optimized depending on the particular demands of a given application. Practical applications include the combustion of natural gas for power generation, production of syngas, and hydrogen reforming reactions. The robocast lattice structures also show practicality for diesel particulate trapping. Preliminary results for trapping efficiency are reported as well as the development of electrically resistive lattices that can regenerate the structure by

  2. Secondary organic aerosol production from diesel vehicle exhaust: impact of aftertreatment, fuel chemistry and driving cycle

    NASA Astrophysics Data System (ADS)

    Gordon, T. D.; Presto, A. A.; Nguyen, N. T.; Robertson, W. H.; Na, K.; Sahay, K. N.; Zhang, M.; Maddox, C.; Rieger, P.; Chattopadhyay, S.; Maldonado, H.; Maricq, M. M.; Robinson, A. L.

    2013-09-01

    Environmental chamber ("smog chamber") experiments were conducted to investigate secondary organic aerosol (SOA) production from dilute emissions from two medium-duty diesel vehicles (MDDVs) and three heavy-duty diesel vehicles (HDDVs) under urban-like conditions. Some of the vehicles were equipped with emission control aftertreatment devices including diesel particulate filters (DPF), selective catalytic reduction (SCR) and diesel oxidation catalysts (DOC). Experiments were also performed with different fuels (100% biodiesel and low-, medium- or high-aromatic ultralow sulfur diesel) and driving cycles (Unified Cycle, Urban Dynamometer Driving Schedule, and creep+idle). During normal operation, vehicles with a catalyzed DPF emitted very little primary particulate matter (PM). Furthermore, photo-oxidation of dilute emissions from these vehicles produced essentially no SOA (below detection limit). However, significant primary PM emissions and SOA production were measured during active DPF regeneration experiments. Nevertheless, under reasonable assumptions about DPF regeneration frequency, the contribution of regeneration emissions to the total vehicle emissions is negligible, reducing PM trapping efficiency by less than 2%. Therefore, catalyzed DPFs appear to be very effective in reducing both primary and secondary fine particulate matter from diesel vehicles. For both MDDVs and HDDVs without aftertreatment substantial SOA formed in the smog chamber - with the emissions from some vehicles generating twice as much SOA as primary organic aerosol after three hours of oxidation at typical urban VOC : NOx ratios (3:1). Comprehensive organic gas speciation was performed on these emissions, but less than half of the measured SOA could be explained by traditional (speciated) SOA precursors. The remainder presumably originates from the large fraction (~30%) of the non-methane organic gas emissions that could not be speciated using traditional one-dimensional gas

  3. 40 CFR 80.602 - What records must be kept by entities in the NRLM diesel fuel, ECA marine fuel, and diesel fuel...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... in the NRLM diesel fuel, ECA marine fuel, and diesel fuel additive production, importation, and... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel... fuel additive production, importation, and distribution systems? (a) Records that must be kept by...

  4. 40 CFR 80.602 - What records must be kept by entities in the NRLM diesel fuel, ECA marine fuel, and diesel fuel...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... in the NRLM diesel fuel, ECA marine fuel, and diesel fuel additive production, importation, and... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel... fuel additive production, importation, and distribution systems? (a) Records that must be kept by...

  5. 40 CFR 80.602 - What records must be kept by entities in the NRLM diesel fuel, ECA marine fuel, and diesel fuel...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... in the NRLM diesel fuel, ECA marine fuel, and diesel fuel additive production, importation, and... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel... fuel additive production, importation, and distribution systems? (a) Records that must be kept by...

  6. 40 CFR 80.602 - What records must be kept by entities in the NRLM diesel fuel, ECA marine fuel, and diesel fuel...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... in the NRLM diesel fuel, ECA marine fuel, and diesel fuel additive production, importation, and... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel... fuel additive production, importation, and distribution systems? (a) Records that must be kept by...

  7. 40 CFR 80.602 - What records must be kept by entities in the NRLM diesel fuel, ECA marine fuel, and diesel fuel...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... in the NRLM diesel fuel, ECA marine fuel, and diesel fuel additive production, importation, and... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel... fuel additive production, importation, and distribution systems? (a) Records that must be kept by...

  8. Process simulation and techno economic analysis of renewable diesel production via catalytic decarboxylation of rubber seed oil - A case study in Malaysia.

    PubMed

    Cheah, Kin Wai; Yusup, Suzana; Gurdeep Singh, Haswin Kaur; Uemura, Yoshimitsu; Lam, Hon Loong

    2017-12-01

    This work describes the economic feasibility of hydroprocessed diesel fuel production via catalytic decarboxylation of rubber seed oil in Malaysia. A comprehensive techno-economic assessment is developed using Aspen HYSYS V8.0 software for process modelling and economic cost estimates. The profitability profile and minimum fuels selling price of this synthetic fuels production using rubber seed oil as biomass feedstock are assessed under a set of assumptions for what can be plausibly be achieved in 10-years framework. In this study, renewable diesel processing facility is modelled to be capable of processing 65,000 L of inedible oil per day and producing a total of 20 million litre of renewable diesel product per annual with assumed annual operational days of 347. With the forecasted renewable diesel retail price of 3.64 RM per kg, the pioneering renewable diesel project investment offers an assuring return of investment of 12.1% and net return as high as 1.35 million RM. Sensitivity analysis conducted showed that renewable diesel production cost is most sensitive to rubber seed oil price and hydrogen gas price, reflecting on the relative importance of feedstock prices in the overall profitability profile. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Inhibitors removal from bio-oil aqueous fraction for increased ethanol production.

    PubMed

    Sukhbaatar, Badamkhand; Li, Qi; Wan, Caixia; Yu, Fei; Hassan, El-Barbary; Steele, Philip

    2014-06-01

    Utilization of 1,6-anhydro-β-d-glucopyranose (levoglucosan) present (11% w/v) in the water fraction of bio-oil for ethanol production will facilitate improvement in comprehensive utilization of total carbon in biomass. One of the major challenges for conversion of anhydrous sugars from the bio-oil water fraction to bio-ethanol is the presence of inhibitory compounds that slow or impede the microbial fermentation process. Removal of inhibitory compounds was first approached by n-butanol extraction. Optimal ratio of n-butanol and bio-oil water fraction was 1.8:1. Removal of dissolved n-butanol was completed by evaporation. Concentration of sugars in the bio-oil water fraction was performed by membrane filtration and freeze drying. Fermentability of the pyrolytic sugars was tested by fermentation of hydrolyzed sugars with Saccharomyces pastorianus lager yeast. The yield of ethanol produced from pyrolytic sugars in the bio-oil water fraction reached a maximum of 98% of the theoretical yield. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Degradation of phorbol esters by Pseudomonas aeruginosa PseA during solid-state fermentation of deoiled Jatropha curcas seed cake.

    PubMed

    Joshi, Chetna; Mathur, Priyanka; Khare, S K

    2011-04-01

    Large amount of seed cake is generated as by-product during biodiesel production from Jatropha seeds. Presence of toxic phorbol esters restricts its utilization as livestock feed. Safe disposal or meaningful utilization of this major by-product necessitates the degradation of these phorbol esters. The present study describes the complete degradation of phorbol esters by Pseudomonas aeruginosa PseA strain during solid state fermentation (SSF) of deoiled Jatropha curcas seed cake. Phorbol esters were completely degraded in nine days under the optimized SSF conditions viz. deoiled cake 5.0 g; moistened with 5.0 ml distilled water; inoculum 1.5 ml of overnight grown P. aeruginosa; incubation at temperature 30 °C, pH 7.0 and RH 65%. SSF of deoiled cake seems a potentially viable approach towards the complete degradation of the toxic phorbol esters. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Toxicological properties of emission particles from heavy duty engines powered by conventional and bio-based diesel fuels and compressed natural gas

    PubMed Central

    2012-01-01

    Background One of the major areas for increasing the use of renewable energy is in traffic fuels e.g. bio-based fuels in diesel engines especially in commuter traffic. Exhaust emissions from fossil diesel fuelled engines are known to cause adverse effects on human health, but there is very limited information available on how the new renewable fuels may change the harmfulness of the emissions, especially particles (PM). We evaluated the PM emissions from a heavy-duty EURO IV diesel engine powered by three different fuels; the toxicological properties of the emitted PM were investigated. Conventional diesel fuel (EN590) and two biodiesels were used − rapeseed methyl ester (RME, EN14214) and hydrotreated vegetable oil (HVO) either as such or as 30% blends with EN590. EN590 and 100% HVO were also operated with or without an oxidative catalyst (DOC + POC). A bus powered by compressed natural gas (CNG) was included for comparison with the liquid fuels. However, the results from CNG powered bus cannot be directly compared to the other situations in this study. Results High volume PM samples were collected on PTFE filters from a constant volume dilution tunnel. The PM mass emission with HVO was smaller and with RME larger than that with EN590, but both biofuels produced lower PAH contents in emission PM. The DOC + POC catalyst greatly reduced the PM emission and PAH content in PM with both HVO and EN590. Dose-dependent TNFα and MIP-2 responses to all PM samples were mostly at the low or moderate level after 24-hour exposure in a mouse macrophage cell line RAW 264.7. Emission PM from situations with the smallest mass emissions (HVO + cat and CNG) displayed the strongest potency in MIP-2 production. The catalyst slightly decreased the PM-induced TNFα responses and somewhat increased the MIP-2 responses with HVO fuel. Emission PM with EN590 and with 30% HVO blended in EN590 induced the strongest genotoxic responses, which were significantly greater than

  12. Combustion of diesel fuel from a toxicological perspective. I. Origin of incomplete combustion products.

    PubMed

    Scheepers, P T; Bos, R P

    1992-01-01

    Since the use of diesel engines is still increasing, the contribution of their incomplete combustion products to air pollution is becoming ever more important. The presence of irritating and genotoxic substances in both the gas phase and the particulate phase constituents is considered to have significant health implications. The quantity of soot particles and the particle-associated organics emitted from the tail pipe of a diesel-powered vehicle depend primarily on the engine type and combustion conditions but also on fuel properties. The quantity of soot particles in the emissions is determined by the balance between the rate of formation and subsequent oxidation. Organics are absorbed onto carbon cores in the cylinder, in the exhaust system, in the atmosphere and even on the filter during sample collection. Diesel fuel contains polycyclic aromatic hydrocarbons (PAHs) and some alkyl derivatives. Both groups of compounds may survive the combustion process. PAHs are formed by the combustion of crankcase oil or may be resuspended from engine and/or exhaust deposits. The conversion of parent PAHs to oxygenated and nitrated PAHs in the combustion chamber or in the exhaust system is related to the vast amount of excess combustion air that is supplied to the engine and the high combustion temperature. Whether the occurrence of these derivatives is characteristic for the composition of diesel engine exhaust remains to be ascertained. After the emission of the particles, their properties may change because of atmospheric processes such as aging and resuspension. The particle-associated organics may also be subject to (photo)chemical conversions or the components may change during sampling and analysis. Measurement of emissions of incomplete combustion products as determined on a chassis dynamometer provides knowledge of the chemical composition of the particle-associated organics. This knowledge is useful as a basis for a toxicological evaluation of the health hazards of

  13. Pyrolysis of azolla, sargassum tenerrimum and water hyacinth for production of bio-oil.

    PubMed

    Biswas, Bijoy; Singh, Rawel; Krishna, Bhavya B; Kumar, Jitendra; Bhaskar, Thallada

    2017-10-01

    Pyrolysis of azolla, sargassum tenerrimum and water hyacinth were carried out in a fixed-bed reactor at different temperatures in the range of 300-450°C in the presence of nitrogen (inert atmosphere). The objective of this study is to understand the effect of compositional changes of various aquatic biomass samples on product distribution and nature of products during slow pyrolysis. The maximum liquid product yield of azolla, sargassum tenerrimum and water hyacinth (38.5, 43.4 and 24.6wt.% respectively) obtained at 400, 450 and 400°C. Detailed analysis of the bio-oil and bio-char was investigated using 1 H NMR, FT-IR, and XRD. The characterization of bio-oil showed a high percentage of aliphatic functional groups and presence of phenolic, ketones and nitrogen-containing group. The characterization results showed that the bio-oil obtained from azolla, sargassum tenerrimum and water hyacinth can be potentially valuable as a fuel and chemicals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. WebBio, a web-based management and analysis system for patient data of biological products in hospital.

    PubMed

    Lu, Ying-Hao; Kuo, Chen-Chun; Huang, Yaw-Bin

    2011-08-01

    We selected HTML, PHP and JavaScript as the programming languages to build "WebBio", a web-based system for patient data of biological products and used MySQL as database. WebBio is based on the PHP-MySQL suite and is run by Apache server on Linux machine. WebBio provides the functions of data management, searching function and data analysis for 20 kinds of biological products (plasma expanders, human immunoglobulin and hematological products). There are two particular features in WebBio: (1) pharmacists can rapidly find out whose patients used contaminated products for medication safety, and (2) the statistics charts for a specific product can be automatically generated to reduce pharmacist's work loading. WebBio has successfully turned traditional paper work into web-based data management.

  15. Detailed characterization of bio-oil from pyrolysis of non-edible seed-cakes by Fourier Transform Infrared Spectroscopy (FTIR) and gas chromatography mass spectrometry (GC-MS) techniques.

    PubMed

    Sugumaran, Vatsala; Prakash, Shanti; Ramu, Emmandi; Arora, Ajay Kumar; Bansal, Veena; Kagdiyal, Vivekanand; Saxena, Deepak

    2017-07-15

    Bio-oil obtained from pyrolysis is highly complicated mixture with valued chemicals. In order to reduce the complexity for unambiguous characterization of components present in bio-oil, solvent extractions using different solvents with increasing polarity have been adopted. The fractions have been analyzed by Fourier transform infrared (FTIR) spectroscopy for identifying the functional groups and Gas chromatography-mass spectrometry (GC-MS), for detailed characterization of components present in various fractions, thereby providing in-depth information at molecular level of various components in bio-oil. This paper reveals the potential of the analytical techniques in identification and brings out the similarities as well as differences in the components present in the bio-oil obtained from two non-edible oil seed-cakes, viz., Jatropha and Karanjia. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. The BioDyn facility on ISS: Advancing biomaterial production in microgravity for commercial applications

    NASA Astrophysics Data System (ADS)

    Myers, Niki; Wessling, Francis; Deuser, Mark; Anderson, C. D.; Lewis, Marian

    1999-01-01

    The primary goals of the BioDyn program are to foster use of the microgravity environment for commercial production of bio-materials from cells, and to develop services and processes for obtaining these materials through space processing. The scope of products includes commercial bio-molecules such as cytokines, other cell growth regulatory proteins, hormones, monoclonal antibodies and enzymes; transplantable cells or tissues which can be improved by low-G processes, or which cannot be obtained through standard processes in earth gravity; agriculture biotechnology products from plant cells; microencapsulation for diabetes treatment; and factors regulating cellular aging. To facilitate BioDyn's commercial science driven goals, hardware designed for ISS incorporates the flexibility for interchange between the different ISS facilities including the glovebox, various thermal units and centrifuges. By providing a permanent research facility, ISS is the critical space-based platform required by scientists for carrying out the long-term experiments necessary for developing bio-molecules and tissues using several cell culture modalities including suspension and anchorage-dependent cell types.

  17. Mining whole genomes and transcriptomes of Jatropha (Jatropha curcas) and Castor bean (Ricinus communis) for NBS-LRR genes and defense response associated transcription factors.

    PubMed

    Sood, Archit; Jaiswal, Varun; Chanumolu, Sree Krishna; Malhotra, Nikhil; Pal, Tarun; Chauhan, Rajinder Singh

    2014-11-01

    Jatropha (Jatropha curcas L.) and Castor bean (Ricinus communis) are oilseed crops of family Euphorbiaceae with the potential of producing high quality biodiesel and having industrial value. Both the bioenergy plants are becoming susceptible to various biotic stresses directly affecting the oil quality and content. No report exists as of today on analysis of Nucleotide Binding Site-Leucine Rich Repeat (NBS-LRR) gene repertoire and defense response transcription factors in both the plant species. In silico analysis of whole genomes and transcriptomes identified 47 new NBS-LRR genes in both the species and 122 and 318 defense response related transcription factors in Jatropha and Castor bean, respectively. The identified NBS-LRR genes and defense response transcription factors were mapped onto the respective genomes. Common and unique NBS-LRR genes and defense related transcription factors were identified in both the plant species. All NBS-LRR genes in both the species were characterized into Toll/interleukin-1 receptor NBS-LRRs (TNLs) and coiled-coil NBS-LRRs (CNLs), position on contigs, gene clusters and motifs and domains distribution. Transcript abundance or expression values were measured for all NBS-LRR genes and defense response transcription factors, suggesting their functional role. The current study provides a repertoire of NBS-LRR genes and transcription factors which can be used in not only dissecting the molecular basis of disease resistance phenotype but also in developing disease resistant genotypes in Jatropha and Castor bean through transgenic or molecular breeding approaches.

  18. The Geoland2 BioPar burned area product

    NASA Astrophysics Data System (ADS)

    Tansey, K.; Bradley, A.; Smets, B.; van Best, C.; Lacaze, R.

    2012-04-01

    The European Commission Geoland2 project intends to constitute a major step forward to the implementation of the GMES Land Monitoring Core Service (LMCS). The Bio-geophysical Parameters (BioPar) Core Monitoring Service aims at setting-up pre-operational infrastructures for providing regional, European, and global bio-geophysical variables, both in near real time and off-line mode, for describing the vegetation state, the radiation budget at the surface, and the water cycle. The burned area product is part of the BioPar portfolio. The burned area product further builds on the experience of the Global Burned Area (GBA2000) and L3JRC projects. In the GBA2000 project, several algorithms were developed for different geographical regions of the world, and applied to a 1-year time series (the year 2000) of SPOT-VEGETATION data. In the L3JRC project, a single algorithm was improved and applied to a 7-year global dataset of SPOT-VEGETATION data. Since the conception of the Geoland2 project, work has been undertaken to improve the L3JRC algorithm, mainly based on user comments and feedback. Furthermore, the Geoland2 burned area product specification has been developed to meet the requirements of the Core Information Service, specifically LandCarbon and Natural Resource Monitoring in Africa (Narma). The Geoland2 burned area product has the following improvements over the L3JRC product: • It resolves issues with users extracting statistics and burned area estimates for time periods considered to be outside the main seasons for burning. Specifically, this deals with issues in northern latitude winters. • The number of pre-processing steps has been shortened, reducing processing time. • An improved land-water mask has been used. This resolves a problem around the coastlines of land masses which were frequently being detected as being burned. • A season metric calculation is performed over a 1x1 degree grid. For each grid cell, a date is logged against the start of the

  19. Branching, flowering and fruiting of Jatropha curcas treated with ethephon or benzyladenine and gibberellins.

    PubMed

    Costa, Anne P; Vendrame, Wagner; Nietsche, Sílvia; Crane, Jonathan; Moore, Kimberly; Schaffer, Bruce

    2016-05-31

    Jatropha curcas L. has been identified for biofuel production but it presents limited commercial yields due to limited branching and a lack of yield uniformity. The objective of this study was to evaluate the effects of single application of ethephon or a combination of 6-benzyladenine (BA) with gibberellic acid isomers A4 and A7 (GA4+7) on branch induction, flowering and fruit production in jatropha plants with and without leaves. Plants with and without leaves showed differences for growth and reproductive variables. For all variables except inflorescence set, there were no significant statistical interactions between the presence of leaves and plant growth regulators concentration. The total number of flowers per inflorescence was reduced as ethephon concentration was increased. As BA + GA4 +7 concentration increased, seed dry weight increased. Thus, ethephon and BA + GA4 +7 applications appeared to affect flowering and seed production to a greater extent than branching. The inability to discern significant treatment effects for most variables might have been due to the large variability within plant populations studied and thus resulting in an insufficient sample size. Therefore, data collected from this study were used for statistical estimations of sample sizes to provide a reference for future studies.

  20. Computational Methods to Assess the Production Potential of Bio-Based Chemicals.

    PubMed

    Campodonico, Miguel A; Sukumara, Sumesh; Feist, Adam M; Herrgård, Markus J

    2018-01-01

    Elevated costs and long implementation times of bio-based processes for producing chemicals represent a bottleneck for moving to a bio-based economy. A prospective analysis able to elucidate economically and technically feasible product targets at early research phases is mandatory. Computational tools can be implemented to explore the biological and technical spectrum of feasibility, while constraining the operational space for desired chemicals. In this chapter, two different computational tools for assessing potential for bio-based production of chemicals from different perspectives are described in detail. The first tool is GEM-Path: an algorithm to compute all structurally possible pathways from one target molecule to the host metabolome. The second tool is a framework for Modeling Sustainable Industrial Chemicals production (MuSIC), which integrates modeling approaches for cellular metabolism, bioreactor design, upstream/downstream processes, and economic impact assessment. Integrating GEM-Path and MuSIC will play a vital role in supporting early phases of research efforts and guide the policy makers with decisions, as we progress toward planning a sustainable chemical industry.

  1. Production of bio-oil and biochar from soapstock via microwave-assisted co-catalytic fast pyrolysis.

    PubMed

    Dai, Leilei; Fan, Liangliang; Liu, Yuhuan; Ruan, Roger; Wang, Yunpu; Zhou, Yue; Zhao, Yunfeng; Yu, Zhenting

    2017-02-01

    In this study, production of bio-oil and biochar from soapstock via microwave-assisted co-catalytic fast pyrolysis combining the advantages of in-situ and ex-situ catalysis was performed. The effects of catalyst and pyrolysis temperature on product fractional yields and bio-oil chemical compositions were investigated. From the perspective of bio-oil yield, the optimal pyrolysis temperature was 550°C. The use of catalysts reduced the water content, and the addition of bentonite increased the bio-oil yield. Up to 84.16wt.% selectivity of hydrocarbons in the bio-oil was obtained in the co-catalytic process. In addition, the co-catalytic process can reduce the proportion of oxygenates in the bio-oil to 15.84wt.% and eliminate the N-containing compounds completely. The addition of bentonite enhanced the BET surface area of bio-char. In addition, the bio-char removal efficiency of Cd 2+ from soapstock pyrolysis in presence of bentonite was 27.4wt.% higher than without bentonite. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Growth, reproductive phenology and yield responses of a potential biofuel plant, Jatropha curcas grown under projected 2050 levels of elevated CO2.

    PubMed

    Kumar, Sumit; Chaitanya, Bharatula S K; Ghatty, Sreenivas; Reddy, Attipalli R

    2014-11-01

    Jatropha (Jatropha curcas) is a non-edible oil producing plant which is being advocated as an alternative biofuel energy resource. Its ability to grow in diverse soil conditions and minimal requirements of essential agronomical inputs compared with other oilseed crops makes it viable for cost-effective advanced biofuel production. We designed a study to investigate the effects of elevated carbon dioxide concentration ([CO(2)]) (550 ppm) on the growth, reproductive development, source-sink relationships, fruit and seed yield of J. curcas. We report, for the first time that elevated CO(2) significantly influences reproductive characteristics of Jatropha and improve its fruit and seed yields. Net photosynthetic rate of Jatropha was 50% higher in plants grown in elevated CO(2) compared with field and ambient CO(2) -grown plants. The study also revealed that elevated CO(2) atmosphere significantly increased female to male flower ratio, above ground biomass and carbon sequestration potential in Jatropha (24 kg carbon per tree) after 1 year. Our data demonstrate that J. curcas was able to sustain enhanced rate of photosynthesis in elevated CO(2) conditions as it had sufficient sink strength to balance the increased biomass yields. Our study also elucidates that the economically important traits including fruit and seed yield in elevated CO(2) conditions were significantly high in J. curcas that holds great promise as a potential biofuel tree species for the future high CO(2) world. © 2014 Scandinavian Plant Physiology Society.

  3. Crude glycerin in swine

    USDA-ARS?s Scientific Manuscript database

    With the rapid expansion of the bio-diesel industry, there will be substantial amounts of crude glycerol (the principal co-product of bio-diesel production) that will become available for use as a livestock feedstuff. Because glycerol is a precursor to glucose via gluconeogenesis, is a backbone of f...

  4. Adsorption-synergic biodegradation of diesel oil in synthetic seawater by acclimated strains immobilized on multifunctional materials.

    PubMed

    Wang, Xin; Wang, Xuejiang; Liu, Mian; Bu, Yunjie; Zhang, Jing; Chen, Jie; Zhao, Jianfu

    2015-03-15

    Using enrichment culture technique, three isolates marked as ODB-1, ODB-2 and ODB-3, were selected from oil contaminated seawater. 16S rDNA gene sequencing indicated that ODB-1 affiliated with Pseudomonas sp. while ODB-2 and ODB-3 affiliated with Brevundimonas sp. Subsequently, the bacterial cells were immobilized on the surface of expanded graphite (EG), expanded perlite (EP) and bamboo charcoal (BC). Among the three isolates, ODB-1 showed a strong binding to the bio-carriers through extracellular polysaccharides, while ODB-2 and ODB-3 made the adhesion to bio-carrier through direct physical adsorption. The immobilized bacteria exhibited good salinity tolerance compared with the planktonic bacteria. Their total diesel oil removal rates were more than 85% after 6 days' incubation. Adsorption-biodegradation process played an important role in the oil-pollution remediation. EG-bacteria system was treated as a promising remediation method, which achieved nearly 100% removal of diesel oil. Thereinto, over 83% removal of diesel oil owed to biodegradation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Separation and characterization of lignin from bio-ethanol production residue.

    PubMed

    Guo, Guowan; Li, Shujun; Wang, Lu; Ren, Shixue; Fang, Guizhen

    2013-05-01

    In order to develop an adequate method to separate lignin from bio-ethanol production residue, solvent extraction was conducted by using benzyl alcohol, dioxane and ethanol. Compared to the conventional alkali-solution and acid-isolation method, benzyl alcohol and dioxane extraction could reach higher lignin yield of 71.55% and 74.14% respectively. FTIR and XRD analysis results indicate that sodium hydroxide solution dissolved most of the lignin in the raw material. However, the low lignin yield by this method may be attributed to the products loss during the complex separation process. GPC and (1)H NMR results revealed that the dioxane-lignin had closer molecular weight with alkali-lignin, lower S/G ratio (0.22) and higher OHPh/OHAl ratio (0.45) with respect to benzyl alcohol-lignin. The results divulge that the lignin products separated from bio-ethanol production residue by dioxane extraction had fairly potential application with better chemical activity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Non-Edible Plant Oils as New Sources for Biodiesel Production

    PubMed Central

    Chhetri, Arjun B.; Tango, Martin S.; Budge, Suzanne M.; Watts, K. Chris; Islam, M. Rafiqul

    2008-01-01

    Due to the concern on the availability of recoverable fossil fuel reserves and the environmental problems caused by the use those fossil fuels, considerable attention has been given to biodiesel production as an alternative to petrodiesel. However, as the biodiesel is produced from vegetable oils and animal fats, there are concerns that biodiesel feedstock may compete with food supply in the long-term. Hence, the recent focus is to find oil bearing plants that produce non-edible oils as the feedstock for biodiesel production. In this paper, two plant species, soapnut (Sapindus mukorossi) and jatropha (jatropha curcas, L.) are discussed as newer sources of oil for biodiesel production. Experimental analysis showed that both oils have great potential to be used as feedstock for biodiesel production. Fatty acid methyl ester (FAME) from cold pressed soapnut seed oil was envisaged as biodiesel source for the first time. Soapnut oil was found to have average of 9.1% free FA, 84.43% triglycerides, 4.88% sterol and 1.59% others. Jatropha oil contains approximately 14% free FA, approximately 5% higher than soapnut oil. Soapnut oil biodiesel contains approximately 85% unsaturated FA while jatropha oil biodiesel was found to have approximately 80% unsaturated FA. Oleic acid was found to be the dominant FA in both soapnut and jatropha biodiesel. Over 97% conversion to FAME was achieved for both soapnut and jatropha oil. PMID:19325741

  7. Planting Jatropha curcas on Constrained Land: Emission and Effects from Land Use Change

    PubMed Central

    Firdaus, M. S.; Husni, M. H. A.

    2012-01-01

    A study was carried out to assess carbon emission and carbon loss caused from land use change (LUC) of converting a wasteland into a Jatropha curcas plantation. The study was conducted for 12 months at a newly established Jatropha curcas plantation in Port Dickson, Malaysia. Assessments of soil carbon dioxide (CO2) flux, changes of soil total carbon and plant biomass loss and growth were made on the wasteland and on the established plantation to determine the effects of land preparation (i.e., tilling) and removal of the wasteland's native vegetation. Overall soil CO2 flux showed no significant difference (P < 0.05) between the two plots while no significant changes (P < 0.05) on soil total carbon at both plots were detected. It took 1.5 years for the growth of Jatropha curcas to recover the biomass carbon stock lost during land conversion. As far as the present study is concerned, converting wasteland to Jatropha curcas showed no adverse effects on the loss of carbon from soil and biomass and did not exacerbate soil respiration. PMID:22545018

  8. Molecular cloning and expression of heteromeric ACCase subunit genes from Jatropha curcas.

    PubMed

    Gu, Keyu; Chiam, Huihui; Tian, Dongsheng; Yin, Zhongchao

    2011-04-01

    Acetyl-CoA carboxylase (ACCase) catalyzes the biotin-dependent carboxylation of acetyl-CoA to produce malonyl-CoA, which is the essential first step in the biosynthesis of long-chain fatty acids. ACCase exists as a multi-subunit enzyme in most prokaryotes and the chloroplasts of most plants and algae, while it is present as a multi-domain enzyme in the endoplasmic reticulum of most eukaryotes. The heteromeric ACCase of higher plants consists of four subunits: an α-subunit of carboxyltransferase (α-CT, encoded by accA gene), a biotin carboxyl carrier protein (BCCP, encoded by accB gene), a biotin carboxylase (BC, encoded by accC gene) and a β-subunit of carboxyltransferase (β-CT, encoded by accD gene). In this study, we cloned and characterized the genes accA, accB1, accC and accD that encode the subunits of heteromeric ACCase in Jatropha (Jatropha curcas), a potential biofuel plant. The full-length cDNAs of the four subunit genes were isolated from a Jatropha cDNA library and by using 5' RACE, whereas the genomic clones were obtained from a Jatropha BAC library. They encode a 771 amino acid (aa) α-CT, a 286-aa BCCP1, a 537-aa BC and a 494-aa β-CT, respectively. The single-copy accA, accB1 and accC genes are nuclear genes, while the accD gene is located in chloroplast genome. Jatropha α-CT, BCCP1, BC and β-CT show high identity to their homologues in other higher plants at amino acid level and contain all conserved domains for ACCase activity. The accA, accB1, accC and accD genes are temporally and spatially expressed in the leaves and endosperm of Jatropha plants, which are regulated by plant development and environmental factors. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  9. Measuring the Effect of Fuel Structures and Blend Distribution on Diesel Emissions Using Isotope Tracing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, A S; Mueller, C J; Buchholz, B A

    2004-02-10

    Carbon atoms occupying specific positions within fuel molecules can be labeled and followed in emissions. Renewable bio-derived fuels possess a natural uniform carbon-14 ({sup 14}C) tracer several orders of magnitude above petroleum-derived fuels. These fuels can be used to specify sources of carbon in particulate matter (PM) or other emissions. Differences in emissions from variations in the distribution of a fuel component within a blend can also be measured. Using Accelerator Mass Spectrometry (AMS), we traced fuel components with biological {sup 14}C/C levels of 1 part in 10{sup 12} against a {sup 14}C-free petroleum background in PM and CO{sub 2}.more » Different carbon atoms in the ester structure of the diesel oxygenate dibutyl maleate displayed far different propensities to produce PM. Homogeneous cosolvent and heterogeneous emulsified ethanol-in-diesel blends produced significantly different PM despite having the same oxygen content in the fuel. Emulsified blends produced PM with significantly more volatile species. Although ethanol-derived carbon was less likely to produce PM than diesel fuel, it formed non-volatile structures when it resided in PM. The contribution of lubrication oil to PM was determined by measuring an isotopic difference between 100% bio-diesel and the PM it produced. Data produced by the experiments provides validation for combustion models.« less

  10. Increase in ozone due to the use of biodiesel fuel rather than diesel fuel.

    PubMed

    Thang, Phan Quang; Muto, Yusuke; Maeda, Yasuaki; Trung, Nguyen Quang; Itano, Yasuyuki; Takenaka, Norimichi

    2016-09-01

    The consumption of fuel by vehicles emits nitrogen oxides (NOx) and non-methane hydrocarbons (NMHCs) into the atmosphere, which are important ozone precursors. Ozone is formed as a secondary pollutant via photochemical processes and is not emitted directly into the atmosphere. In this paper, the ozone increase resulting from the use of biodiesel and diesel fuels was investigated, and the different ozone formation trends were experimentally evaluated. Known amounts of exhaust gas from a power generator operated using biodiesel and diesel fuels were added to ambient air. The quality of the ambient air, such as the initial NMHC and NOx concentrations, and the irradiation intensity have an effect on the ozone levels. When 30 cm(3) of biodiesel fuel exhaust gas (BFEG) or diesel fuel exhausted gas (DFEG) was added to 18 dm(3) of ambient air, the highest ratios of ozone increase from BFEG compared with DFEG in Japan and Vietnam were 31.2 and 42.8%, respectively, and the maximum ozone increases resulting from DFEG and BFEG compared with the ambient air in Japan were 17.4 and 26.4 ppb, respectively. The ozone increase resulting from the use of BFEG was large and significant compared to that from DFEG under all experimental conditions. The ozone concentration increased as the amount of added exhaust gas increased. The ozone increase from the Jatropha-BFEG was slightly higher than that from waste cooking oil-BFEG. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Greenhouse gas emissions and land use change from Jatropha curcas-based jet fuel in Brazil.

    PubMed

    Bailis, Robert E; Baka, Jennifer E

    2010-11-15

    This analysis presents a comparison of life-cycle GHG emissions from synthetic paraffinic kerosene (SPK) produced as jet fuel substitute from jatropha curcas feedstock cultivated in Brazil against a reference scenario of conventional jet fuel. Life cycle inventory data are derived from surveys of actual Jatropha growers and processors. Results indicate that a baseline scenario, which assumes a medium yield of 4 tons of dry fruit per hectare under drip irrigation with existing logistical conditions using energy-based coproduct allocation methodology, and assumes a 20-year plantation lifetime with no direct land use change (dLUC), results in the emissions of 40 kg CO₂e per GJ of fuel produced, a 55% reduction relative to conventional jet fuel. However, dLUC based on observations of land-use transitions leads to widely varying changes in carbon stocks ranging from losses in excess of 50 tons of carbon per hectare when Jatropha is planted in native cerrado woodlands to gains of 10-15 tons of carbon per hectare when Jatropha is planted in former agro-pastoral land. Thus, aggregate emissions vary from a low of 13 kg CO₂e per GJ when Jatropha is planted in former agro-pastoral lands, an 85% decrease from the reference scenario, to 141 kg CO₂e per GJ when Jatropha is planted in cerrado woodlands, a 60% increase over the reference scenario. Additional sensitivities are also explored, including changes in yield, exclusion of irrigation, shortened supply chains, and alternative allocation methodologies.

  12. Corrosion Considerations for Thermochemical Biomass Liquefaction Process Systems in Biofuel Production

    NASA Astrophysics Data System (ADS)

    Brady, M. P.; Keiser, J. R.; Leonard, D. N.; Whitmer, L.; Thomson, J. K.

    2014-12-01

    Thermochemical liquefaction processing of biomass to produce bio-derived fuels (e.g., gasoline, jet fuel, diesel, home heating oil, etc.) is of great recent interest as a renewable energy source. Approaches under investigation include direct liquefaction, hydrothermal liquefaction, hydropyrolysis, fast pyrolysis, etc., to produce energy dense liquids that can be utilized as produced or further processed to provide products of higher value. An issue with bio-oils is that they tend to contain significant concentrations of organic oxygenates, including acids, which make the bio-oil a potential source of corrosion issues in transport, storage, and use. Efforts devoted to modified/further processing of bio-oils to make them less corrosive are currently being widely pursued. Another issue that must also be addressed in bio-oil liquefaction is potential corrosion issues in the process equipment. Depending on the specific process, bio-oil liquefaction production temperatures are typically in the 300-600°C range, and the process environment can contain aggressive sulfur and halide species from both the biomass used and/or process additives. Detailed knowledge of the corrosion resistance of candidate process equipment alloys in these bio-oil production environments is currently lacking. This paper summarizes recent, ongoing efforts to assess the extent of corrosion of bio-oil process equipment, with the ultimate goal of providing a basis for the selection of the lowest cost alloy grades capable of providing the long-term corrosion resistance needed for future bio-oil production plants.

  13. Role of solid acid catalysts in bio diesel production.

    PubMed

    Shivayogimath, C B; Sunita, G; Manoj Kumar, B

    2009-07-01

    Biodiesel is gaining importance as an alternate source of attractive fuel because of depleting fossil fuel resources. It is produced by trans-esterification, in which oil or fat reacts with a monohydric alcohol in presence of a catalyst. In the present work, trans-esterification of sunflower oil with methanol is carried out by using zirconia supported isopoly and heteropoly tungstates (HPAs) as catalysts. Effects of reaction parameters, such as catalyst types and its concentration, molar ratio of sunflower oil to methanol, reaction temperature and time, have been optimized to get higher conversion of sunflower oil and the product distribution of fatty acid methyl esters (FAME) in the trans-esterfication reaction.

  14. Bio-detoxification of phorbol esters and other anti-nutrients of Jatropha curcas seed cake by fungal cultures using solid-state fermentation.

    PubMed

    Sharath, B S; Mohankumar, B V; Somashekar, D

    2014-03-01

    Jatropha seed cake, a byproduct after biodiesel extraction, has several anti-nutrients and toxins. Solid-state fermentation was carried out for the detoxification of the Jatropha seed cake (JSC) using different fungal cultures. The reduction in the anti-nutritional components such as tannins, phytates, saponins, lectin and protease inhibitor, and phorbol esters on 6th, 9th, and 12th day of fermentation was analyzed. The phorbol ester content in the unfermented JSC was 0.83 mg/g, and the maximum degradation of phorbol esters to the extent of 75% was observed in the case of JSC fermented with Cunninghamella echinulata CJS-90. The phytate degradation in the fermented JSC was in the range of 65-96%. There was a gradual reduction of saponin content in the JSC from 6th to 12th day, and the reduction of saponin was in the range of 55-99% after solid-state fermentation. The trypsin inhibitor activity and lectin were 1,680 trypsin inhibitor units (TIU) per gram and 0.32 hemagglutinating unit in the unfermented JSC, respectively. Trypsin inhibitor activity and lectin could not be detected in JSC after 12th day of solid-state fermentation. Tannins accounted for 0.53% in unfermented JSC, and there was a marginal increase of tannins after solid-state fermentation. The results indicate that biological detoxification could be a promising method to reduce anti-nutritional compounds and toxins in the JSC.

  15. Diesels in combined cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuehn, S.E.

    1995-03-01

    This article examines why the diesel engine is a very attractive choice for producing power in the combined-cycle configuration. The medium-speed diesel is already one of the most efficient simple cycle sources of electricity, especially with lower grade fuels. Large units have heat-rate efficiencies as high as 45%, equating to a heat rate of 7,580 Btu/k Whr, and no other power production prime mover can match this efficiency. Diesels also offer designers fuel flexibility and can burn an extreme variety of fuels without sacrificing many of its positive operating attributes. Diesels are the first building block in a highly efficientmore » combined cycle system that relies on the hot gas and oxygen in the diesel`s exhaust to combust either natural gas, light distillate oil, heavy oil or coal, in a boiler. By using a fired boiler, steam can be generated at sufficient temperature and pressure to operate a Rankine steam cycle efficiently. Diesel combined-cycle plants can be configured in much the same way a gas turbine plant would be. However, the diesel combined-cycle scheme requires supplemental firing to generate appropriate steam conditions. The most efficient cycle, therefore, would not be achieved until combustion air and supplemental fuel are minimized to levels that satisfy steam conditions, steam generation and power generation constraints.« less

  16. A Preliminary study of deoxygenation of Calophyllum inophyllum L. oil for green diesel production

    NASA Astrophysics Data System (ADS)

    Prasetyo, J.; Adiarso; Murti, S. D. S.; Senda, S. P.; Rfdh, S. M.; Prada, Y. E.; Oktariani, E.

    2018-03-01

    Biofuel is a solution to reduce the dependence of fossil fuels. Pure Plant Oil (PPO) of Calophyllum inophyllum L. is a potential raw material for green diesel through the processes of deoxygenation, hydrotreating, and isomerization. Deoxygenation of the PPO with NiMo / Al2O3 catalyst was carried out in a stirred autoclave reactor at a temperature of 300 - 400°C for 3 hours, and the water/PPO ratio was 1:2 and 1:4. The result showed that deoxygenation would work more effective at high temperature as indicated by higher CO and CO2 resulting from carboxylation and carbonylation. In addition, raising the reaction temperature from 300 to 400°C succeeded in increasing the diesel fraction of C16 - C20 by 33.01% and decreased the fraction of C21-C25 by 2.41%. Increasing water/ppo ratio did not give any significant improvement on green diesel products.

  17. Ethanol-diesel fuel blends -- a review.

    PubMed

    Hansen, Alan C; Zhang, Qin; Lyne, Peter W L

    2005-02-01

    Ethanol is an attractive alternative fuel because it is a renewable bio-based resource and it is oxygenated, thereby providing the potential to reduce particulate emissions in compression-ignition engines. In this review the properties and specifications of ethanol blended with diesel fuel are discussed. Special emphasis is placed on the factors critical to the potential commercial use of these blends. These factors include blend properties such as stability, viscosity and lubricity, safety and materials compatibility. The effect of the fuel on engine performance, durability and emissions is also considered. The formulation of additives to correct certain key properties and maintain blend stability is suggested as a critical factor in ensuring fuel compatibility with engines. However, maintaining vehicle safety with these blends may entail fuel tank modifications. Further work is required in specifying acceptable fuel characteristics, confirming the long-term effects on engine durability, and ensuring safety in handling and storing ethanol-diesel blends.

  18. Biodiesel production from microbial oil derived from wood isolate Trichoderma reesei.

    PubMed

    Bharathiraja, B; Sowmya, V; Sridharan, Sridevi; Yuvaraj, D; Jayamuthunagai, J; Praveenkumar, R

    2017-09-01

    In the present study Trichoderma reesei, a wood isolate can yield high biomass quantities up to 30g/L, yielding 32.4% of lipids of dry cell weight (DCW). Biodiesel production from Trichoderma reesei involved simple unit operations like filtration and ultrasonication, yet giving good lipid yield with desirable bio-diesel properties. Optimization of ultrasonication conditions was done to ensure maximum lipid extraction. SEM analysis of ultrasonicated samples showed distinct breakage of fungal hyphae. The lipids were found to contain 49.7% saturated fatty acids. Transesterification using chemical and biological catalysts were compared and 96.09% efficiency was observed for lipase-catalyzed transesterification. The bio-diesel properties satisfied ASTM and EN specifications with cetane number: 53.1, iodine value: 63.34g, saponification value: 235.07mg KOH/g, cold flow plugging point: 9.13°C. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. A study on pyrolysis of Canada thistle (Cirsium arvense) with titania based catalysts for bio-fuel production.

    PubMed

    Aysu, Tevfik

    2016-11-01

    The catalytic pyrolysis of Cirsium arvense was performed with titania supported catalysts under the operating conditions of 500°C, 40°C/min heating rate, 100mL/min N2 flow rate in a fixed bed reactor for biofuel production. The effect of catalysts on product yields was investigated. The amount of pyrolysis products (bio-char, bio-oil, gas) and the composition of the produced bio-oils were determined by proton nuclear magnetic resonance ((1)H NMR), Fourier transform infrared spectroscopy (FT-IR), gas chromatography/mass spectrometry (GC-MS) and elemental analysis (EA) techniques. Thistle bio-oils had lower O/C and H/C molar ratios compared to feedstock. The highest bio-char and bio-oil yields of 29.32wt% and 36.71wt% were obtained in the presence of Ce/TiO2 and Ni/TiO2 catalysts respectively. GC-MS identified 97 different compounds in the bio-oils obtained from thistle pyrolysis. (1)H NMR analysis showed that the bio-oils contained ∼55-77% aliphatic and ∼6-19% aromatic structural units. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. DECREASED PRODUCTION OF SURFACTANT PROTEINS AFTER DIESEL EXHAUST EXPOSURE INCREASES SUSCEPTIBILITY TO INFLUENZA INFECTION

    EPA Science Inventory

    Pulmonary surfactant proteins A and D (SP-A and SP-D), termed collectins, enhance the opsonization of foreign particles and pathogens by phagocytic cells. Inhaled pollutants such as diesel exhaust (DE) have a possible role in suppressing the production of surfactant proteins whic...

  1. Beneficial synergistic effect on bio-oil production from co-liquefaction of sewage sludge and lignocellulosic biomass.

    PubMed

    Leng, Lijian; Li, Jun; Yuan, Xingzhong; Li, Jingjing; Han, Pei; Hong, Yuchun; Wei, Feng; Zhou, Wenguang

    2018-03-01

    Co-liquefaction of municipal sewage sludge (MSS) and lignocellulosic biomass such as rice straw or wood sawdust at different mixing ratios and the characterization of the obtained bio-oil and bio-char were investigated. Synergistic effects were found during co-processing of MSS with biomass for production of bio-oil with higher yield and better fuel properties than those from individual feedstock. The co-liquefaction of MSS/rice straw (4/4, wt) increased the bio-oil yield from 22.74% (bio-oil yield from liquefaction of MSS individually) or 23.67% (rice straw) to 32.45%. Comparable increase on bio-oil yield was also observed for MSS/wood sawdust mixtures (2/6, wt). The bio-oils produced from MSS/biomass mixtures were mainly composed of esters and phenols with lower boiling points (degradation temperatures) than those from individual feedstock (identified with higher heavy bio-oil fractions). These synergistic effects were probably resulted from the interactions between the intermittent products of MSS and those of biomass during processing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Bio-ethanol Production from Green Onion by Yeast in Repeated Batch.

    PubMed

    Robati, Reza

    2013-09-01

    Considered to be the cleanest liquid fuel, bio-ethanol can be a reliable alternative to fossil fuels. It is produced by fermentation of sugar components of plant materials. The common onions are considered to be a favorable source of fermentation products as they have high sugar contents as well as contain various nutrients. This study focused on the effective production of ethanol from Green onion (Allium fistulosum L.) by the yeast "Saccharomyces cerevisiae" in repeated batch. The results showed that the total sugar concentration of onion juice was 68.4 g/l. The maximum rate of productivity, ethanol yield and final bio-ethanol percentage was 7 g/l/h (g ethanol per liter of onion juice per hour), 35 g/l (g ethanol per liter of onion juice) and 90 %, respectively.

  3. Potential hazards associated with combustion of bio-derived versus petroleum-derived diesel fuel

    PubMed Central

    Bünger, Jürgen; Krahl, Jürgen; Schröder, Olaf; Schmidt, Lasse; Westphal, Götz A.

    2012-01-01

    Fuels from renewable resources have gained worldwide interest due to limited fossil oil sources and the possible reduction of atmospheric greenhouse gas. One of these fuels is so called biodiesel produced from vegetable oil by transesterification into fatty acid methyl esters (FAME). To get a first insight into changes of health hazards from diesel engine emissions (DEE) by use of biodiesel scientific studies were reviewed which compared the combustion of FAME with common diesel fuel (DF) for legally regulated and non-regulated emissions as well as for toxic effects. A total number of 62 publications on chemical analyses of DEE and 18 toxicological in vitro studies were identified meeting the criteria. In addition, a very small number of human studies and animal experiments were available. In most studies, combustion of biodiesel reduces legally regulated emissions of carbon monoxide, hydrocarbons, and particulate matter. Nitrogen oxides are regularly increased. Among the non-regulated emissions aldehydes are increased, while polycyclic aromatic hydrocarbons are lowered. Most biological in vitro assays show a stronger cytotoxicity of biodiesel exhaust and the animal experiments reveal stronger irritant effects. Both findings are possibly caused by the higher content of nitrogen oxides and aldehydes in biodiesel exhaust. The lower content of PAH is reflected by a weaker mutagenicity compared to DF exhaust. However, recent studies show a very low mutagenicity of DF exhaust as well, probably caused by elimination of sulfur in present DF qualities and the use of new technology diesel engines. Combustion of vegetable oil (VO) in common diesel engines causes a strongly enhanced mutagenicity of the exhaust despite nearly unchanged regulated emissions. The newly developed fuel “hydrotreated vegetable oil” (HVO) seems to be promising. HVO has physical and chemical advantages compared to FAME. Preliminary results show lower regulated and non-regulated emissions and a

  4. Potential hazards associated with combustion of bio-derived versus petroleum-derived diesel fuel.

    PubMed

    Bünger, Jürgen; Krahl, Jürgen; Schröder, Olaf; Schmidt, Lasse; Westphal, Götz A

    2012-10-01

    Fuels from renewable resources have gained worldwide interest due to limited fossil oil sources and the possible reduction of atmospheric greenhouse gas. One of these fuels is so called biodiesel produced from vegetable oil by transesterification into fatty acid methyl esters (FAME). To get a first insight into changes of health hazards from diesel engine emissions (DEE) by use of biodiesel scientific studies were reviewed which compared the combustion of FAME with common diesel fuel (DF) for legally regulated and non-regulated emissions as well as for toxic effects. A total number of 62 publications on chemical analyses of DEE and 18 toxicological in vitro studies were identified meeting the criteria. In addition, a very small number of human studies and animal experiments were available. In most studies, combustion of biodiesel reduces legally regulated emissions of carbon monoxide, hydrocarbons, and particulate matter. Nitrogen oxides are regularly increased. Among the non-regulated emissions aldehydes are increased, while polycyclic aromatic hydrocarbons are lowered. Most biological in vitro assays show a stronger cytotoxicity of biodiesel exhaust and the animal experiments reveal stronger irritant effects. Both findings are possibly caused by the higher content of nitrogen oxides and aldehydes in biodiesel exhaust. The lower content of PAH is reflected by a weaker mutagenicity compared to DF exhaust. However, recent studies show a very low mutagenicity of DF exhaust as well, probably caused by elimination of sulfur in present DF qualities and the use of new technology diesel engines. Combustion of vegetable oil (VO) in common diesel engines causes a strongly enhanced mutagenicity of the exhaust despite nearly unchanged regulated emissions. The newly developed fuel "hydrotreated vegetable oil" (HVO) seems to be promising. HVO has physical and chemical advantages compared to FAME. Preliminary results show lower regulated and non-regulated emissions and a

  5. Use of Water-Fuel Mixture in Diesel Engines at Fishing Vessels

    NASA Astrophysics Data System (ADS)

    Klyus, Oleg; Bezyukov, O.

    2017-06-01

    The paper presents the laboratory test results determining physical parameters of fuel mixture made up of petroleum diesel oil, rapeseed oil methyl esters (up to 20%) and water (up to 2.5%). The obtained parameters prove that adding bio-components (rapeseed oil methyl esters) and water to fuel does not result in deterioration of their physical and chemical properties and are comparable to base fuel parameters, namely petroleum diesel oil. The mixture was a subject of bench testing with the use of a self-ignition engine by means of pre-catalytic fuel treatment. The treatment process consisted in fuel - catalytically active material direct contact on the atomizer body. At the comparable operational parameters for the engine, the obtained exhaust gases opacity was lower up to 60% due to the preliminary fuel mixture treatment in relation to the factory-made fuel injection system using petroleum diesel oil.

  6. BIOLOGICAL PROPERTIES AND CHEMICAL COMPOSITION OF JATROPHA NEOPAUCIFLORA PAX

    PubMed Central

    Hernández-Hernández, A. B.; Alarcón-Aguilar, F. J.; Jiménez-Estrada, M.; Hernández-Portilla, L.B.; Flores-Ortiz, C.M.; Rodríguez-Monroy, M.A.; Canales-Martínez, M

    2017-01-01

    Background: Ethnopharmacological relevance. Jatropha neopauciflora (Pax) is an endemic species of the Tehuacan- Cuicatlan Valley, Mexico. This species has long been used as a remedy to alleviate illnesses of bacterial, fungal and viral origin. Aim of the study. Experimentally test the traditional use of Jatropha neopauciflora in Mexican traditional medicine. Materials and methods.: The methanol extract (MeOH1), of Jatropha neopauciflora (Euphorbiaceae) was obtained by maceration. Next, the methanol (MeOH2) and hexane (H) fractions were obtained. The essential oil was obtained by hydro- distillation. The extract, fractions and essential oil were analyzed by GC-MS. The antimicrobial activity was measured by the disc diffusion agar and radial inhibition growth methods. Results: The extract and fractions showed antibacterial activity against eleven strains (five Gram-positive and six Gram- negative) and a bacteriostatic effect in the survival curves for Staphylococcus aureus and Vibrio cholerae. The extract and fractions were also shown to have antifungal activity, particularly against Trichophyton mentagrophytes (CF50 = MeOH1: 1.07 mg/mL, MeOH2: 1.32 mg/mL and H: 1.08 mg/mL). The antioxidant activity of MeOH1 (68.6 μg/mL) was higher than for MeOH2 (108.1 μg/mL). The main compounds of the essential oil were β-pinene, 1,3,8-p-menthatriene, ledene, m- menthane, linalyl acetate and 3-carene. The main compounds of MeOH1 were β-sitosterol, lupeol and pyrogallol; the main compounds of MeOH2 were β-sitosterol, spathulenol, coniferyl alcohol and lupeol; and the main compounds of H were β-sitostenone, γ-sitosterol and stigmasterol. Conclusions: This study indicates that Jatropha neopauciflora is a potential antibacterial and antifungal agent. PMID:28331913

  7. Jatropha curcas Protein Concentrate Stimulates Insulin Signaling, Lipogenesis, Protein Synthesis and the PKCα Pathway in Rat Liver.

    PubMed

    León-López, Liliana; Márquez-Mota, Claudia C; Velázquez-Villegas, Laura A; Gálvez-Mariscal, Amanda; Arrieta-Báez, Daniel; Dávila-Ortiz, Gloria; Tovar, Armando R; Torres, Nimbe

    2015-09-01

    Jatropha curcas is an oil seed plant that belongs to the Euphorbiaceae family. Nontoxic genotypes have been reported in Mexico. The purpose of the present work was to evaluate the effect of a Mexican variety of J. curcas protein concentrate (JCP) on weight gain, biochemical parameters, and the expression of genes and proteins involved in insulin signaling, lipogenesis, cholesterol and protein synthesis in rats. The results demonstrated that short-term consumption of JCP increased serum glucose, insulin, triglycerides and cholesterol levels as well as the expression of transcription factors involved in lipogenesis and cholesterol synthesis (SREBP-1 and LXRα). Moreover, there was an increase in insulin signaling mediated by Akt phosphorylation and mTOR. JCP also increased PKCα protein abundance and the activation of downstream signaling pathway targets such as the AP1 and NF-κB transcription factors typically activated by phorbol esters. These results suggested that phorbol esters are present in JCP, and that they could be involved in the activation of PKC which may be responsible for the high insulin secretion and consequently the activation of insulin-dependent pathways. Our data suggest that this Mexican Jatropha variety contains toxic compounds that produce negative metabolic effects which require caution when using in the applications of Jatropha-based products in medicine and nutrition.

  8. Production of Sporotrichum thermophile xylanase by solid state fermentation utilizing deoiled Jatropha curcas seed cake and its application in xylooligosachharide synthesis.

    PubMed

    Sadaf, Ayesha; Khare, S K

    2014-02-01

    De-oiled Jatropha curcas seed cake, a plentiful by-product of biodiesel industry was used as substrate for the production of a useful xylanase from Sporotrichum thermophile in solid state fermentation. Under the optimized conditions, 1025U xylanase/g (deoiled seed cake) was produced. The xylanase exhibited half life of 4h at 45°C and 71.44min at 50°C respectively. It was stable in a broad pH range of 7.0-11.0. Km and Vmax were 12.54mg/ml and 454.5U/ml/min respectively. S. thermophile xylanase is an endoxylanase free of exoxylanase activity, hence advantageous for xylan hydrolysis to produce xylooligosachharides. Hydrolysis of oat spelt xylan by S. thermophile xylanase yielded 73% xylotetraose, 15.4% xylotriose and 10% xylobiose. The S. thermophile endoxylanase thus seem potentially useful in the food industries. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. MSU-Northern Bio-Energy Center of Excellence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kegel, Greg; Alcorn-Windy Boy, Jessica; Abedin, Md. Joynal

    2014-09-30

    MSU-Northern established the Bio-Energy Center (the Center) into a Regional Research Center of Excellence to address the obstacles concerning biofuels, feedstock, quality, conversion process, economic viability and public awareness. The Center built its laboratories and expertise in order to research and support product development and commercialization for the bio-energy industry in our region. The Center wanted to support the regional agricultural based economy by researching biofuels based on feedstock’s that can be grown in our region in an environmentally responsible manner. We were also interested in any technology that will improve the emissions and fuel economy performance of heavy dutymore » diesel engines. The Center had a three step approach to accomplish these goals: 1. Enhance the Center’s research and testing capabilities 2. Develop advanced biofuels from locally grown agricultural crops. 3. Educate and outreach for public understanding and acceptance of new technology. The Center was very successful in completing the tasks as outlined in the project plan. Key successes include discovering and patenting a new chemical conversion process for converting camelina oil to jet fuel, as well as promise in developing a heterogeneous Grubs catalyst to support the new chemical conversion process. The Center also successfully fragmented and deoxygenated naturally occurring lignin with a Ni-NHC catalyst, showing promise for further exploration of using lignin for fuels and fuel additives. This would create another value-added product for lignin that can be sourced from beetle kill trees or waste products from cellulose ethanol fuel facilities.« less

  10. A Non-sulfided flower-like Ni-PTA Catalyst that Enhances the Hydrotreatment Efficiency of Plant Oil to Produce Green Diesel

    PubMed Central

    Liu, Jing; Chen, Pan; Deng, Lihong; He, Jing; Wang, Luying; Rong, Long; Lei, Jiandu

    2015-01-01

    The development of a novel non-sulfided catalyst with high activity for the hydrotreatment processing of plant oils, is of high interest as a way to improve the efficient production of renewable diesel. To attempt to develop such a catalyst, we first synthesized a high activity flower-like Ni-PTA catalyst used in the hydrotreatment processes of plant oils. The obtained catalyst was characterized with SEM, EDX, HRTEM, BET, XRD, H2-TPR, XPS and TGA. A probable formation mechanism of flower-like Ni(OH)2 is proposed on the basis of a range of contrasting experiments. The results of GC showed that the conversion yield of Jatropha oil was 98.95%, and the selectivity of C11-C18 alkanes was 70.93% at 360 °C, 3 MPa, and 15 h−1. The activity of this flower-like Ni-PTA catalyst was more than 15 times higher than those of the conventional Ni-PTA/Al2O3 catalysts. Additionally, the flower-like Ni-PTA catalyst exhibited good stability during the process of plant oil hydrotreatment. PMID:26503896

  11. Production of higher quality bio-oils by in-line esterification of pyrolysis vapor

    DOEpatents

    Hilten, Roger Norris; Das, Keshav; Kastner, James R; Bibens, Brian P

    2014-12-02

    The disclosure encompasses in-line reactive condensation processes via vapor phase esterification of bio-oil to decease reactive species concentration and water content in the oily phase of a two-phase oil, thereby increasing storage stability and heating value. Esterification of the bio-oil vapor occurs via the vapor phase contact and subsequent reaction of organic acids with ethanol during condensation results in the production of water and esters. The pyrolysis oil product can have an increased ester content and an increased stability when compared to a condensed pyrolysis oil product not treated with an atomized alcohol.

  12. Catalytic pyrolysis of Alcea pallida stems in a fixed-bed reactor for production of liquid bio-fuels.

    PubMed

    Aysu, Tevfik

    2015-09-01

    Pyrolysis of Alcea pallida stems was performed in a fixed-bed tubular reactor with and without catalyst at three different temperatures. The effects of pyrolysis parameters including temperature and catalyst on the product yields were investigated. It was found that higher temperature resulted in lower liquid (bio-oil) and solid (bio-char) yields and higher gas yields. Catalysts had different effects on product yields and composition of bio-oils. Liquid yields were increased in the presence of zinc chloride and alumina but decreased with calcium hydroxide, tincal and ulexite. The highest bio-oil yield (39.35%) by weight including aqueous phase was produced with alumina catalyst at 500 °C. The yields of bio-char, bio-oil and gas produced, as well as the compositions of the resulting bio-oils were determined by elemental analysis, TGA, FT-IR and GC-MS. 160 different compounds were identified by GC-MS in the bio-oils obtained at 500 °C. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Recent Developments in BMW's Diesel Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinparzer, F

    2003-08-24

    The image of BMW is very strongly associated to high power, sports biased, luxury cars in the premium car segment, however, particularly in the United States and some parts of Asia, the combination of a car in this segment with a diesel engine was up until now almost unthinkable. I feel sure that many people in the USA are not even aware that BMW produces diesel-powered cars. In Europe there is a completely contrary situation which, driven by the relative high fuel price, and the noticeable difference between gasoline and diesel prices, there has been a continuous growth in themore » diesel market since the early eighties. During this time BMW has accumulated more then 20 years experience in developing and producing powerful diesel engines for sports and luxury cars. BMW started the production of its 1st generation diesel engine in 1983 with a 2,4 l, turbocharged IDI engine in the 5 series model range. With a specific power of 35 kW/l, this was the most powerful diesel engine on the market at this time. In 1991 BMW introduced the 2nd generation diesel engine, beginning with a 2,5 l inline six, followed in 1994 by a 1,7 l inline four. All engines of this 2nd BMW diesel engine family were turbocharged and utilized an indirect injection combustion system. With the availability of high-pressure injection systems such as the common rail system, BMW developed its 3rd diesel engine family which consists of four different engines. The first was the 4-cylinder for the 3 series car in the spring of 1998, followed by the 6-cylinder in the fall of 1998 and then in mid 1999 by the worlds first V8 passenger car diesel with direct injection. Beginning in the fall of 2001 with the 4-cylinder, BMW reworked this DI engine family fundamentally. Key elements are an improved core engine design, the use of the common rail system of the 2nd generation and a new engine control unit with even better performance. Step by step, these technological improvements were introduce d to

  14. Enhancement of Surfactin and Fengycin Production by Bacillus mojavensis A21: Application for Diesel Biodegradation.

    PubMed

    Hmidet, Noomen; Ben Ayed, Hanen; Jacques, Philippe; Nasri, Moncef

    2017-01-01

    This work concerns the study of the enhancement of surfactin and fengycin production by B. mojavensis A21 and application of the produced product in diesel biodegradation. The influences of the culture medium and cells immobilization were studied. The highest lipopeptides production was achieved after 72 hours of incubation in a culture medium containing 30 g/L glucose as carbon source and a combination of yeast extract (1 g/L) and glutamic acid (5 g/L) as nitrogen sources with initial pH 7.0 at 30°C and 90% volumetric aeration. The study of primary metabolites production showed mainly the production of acetoin, with a maximum production after 24 h of strain growth. The use of immobilized cells seemed to be a promising method for improving lipopeptides productivity. In fact, the synthesis of both lipopeptides, mainly fengycin, was greatly enhanced by the immobilization of A21 cells. An increase of diesel degradation capacity of approximately 20, 27, and 40% in the presence of 0.5, 1, and 2 g/L of produced lipopeptides, respectively, was observed. Considering these properties, B. mojavensis A21 strain producing a lipopeptide mixture, containing both surfactin and fengycin, may be considered as a potential candidate for future use in bioremediation and crop protection.

  15. [Characteristics and operation of enhanced continuous bio-hydrogen production reactor using support carrier].

    PubMed

    Ren, Nan-qi; Tang, Jing; Gong, Man-li

    2006-06-01

    A kind of granular activated carbon, whose granular size is no more than 2mm and specific gravity is 1.54g/cm3, was used as the support carrier to allow retention of activated sludge within a continuous stirred-tank reactor (CSTR) using molasses wastewater as substrate for bio-hydrogen production. Continuous operation characteristics and operational controlling strategy of the enhanced continuous bio-hydrogen production system were investigated. It was indicated that, support carriers could expand the activity scope of hydrogen production bacteria, make the system fairly stable in response to organic load impact and low pH value (pH <3.8), and maintain high biomass concentration in the reactor at low HRT. The reactor with ethanol-type fermentation achieved an optimal hydrogen production rate of 0.37L/(g x d), while the pH value ranged from 3.8 to 4.4, and the hydrogen content was approximately 40% approximately 57% of biogas. It is effective to inhibit the methanogens by reducing the pH value of the bio-hydrogen production system, consequently accelerate the start-up of the reactor.

  16. Evaluations of the nutritional value of Jatropha curcas protein isolate in common carp (Cyprinus carpio L.).

    PubMed

    Kumar, V; Makkar, H P S; Becker, K

    2012-12-01

    Jatropha curcas seeds are rich in oil and protein. The oil is used for biodiesel production. Jatropha seed cake (JSC) obtained after oil extraction is rich in protein; however, it is toxic (phorbol esters content 1.3 mg/g) and consists of 50-60% shells, which are indigestible. The principle of isoelectric precipitation was used to obtain Jatropha protein isolate (JPI) from JSC and it was detoxified (DJPI). Carp (n = 45, 20.3 ± 0.13 g) were randomly distributed into five groups with three replicates and for 12-week fed iso-nitrogenous diets (crude protein 38%): Control [fishmeal (FM)-based protein]; J(50) and J(75) (50% and 75% of FM protein replaced by DJPI); S(50) and S(75) (50% and 75% of FM protein replaced by soy protein isolate). Growth performance and nutrient utilisation parameters were highest in S(75) group and not significantly different to those in J(50) and S(50) groups but were significantly higher than those for all other groups. Similar trend was observed for protein and energy digestibilities of experimental diets, whereas opposite trend was observed for the feed to gain ratio. Activities of intestinal digestive enzymes did not different significantly between the five groups. In conclusion, DJPI is a good quality protein source for carp. © 2011 Blackwell Verlag GmbH.

  17. Identification of the mosquito biting deterrent constituents from the Indian folk remedy plant Jatropha curcas

    USDA-ARS?s Scientific Manuscript database

    An investigation of the Indian folk remedy plant, Jatropha curcas, was performed to specifically identify the constituents responsible for the mosquito biting deterrent activity of the oil as a whole. Jatropha curcas seed oil is burned in oil lamps in India and part of Africa to repel biting insect...

  18. Molecular analysis of ARF1 expression profiles during development of physic nut (Jatropha curcas L.).

    PubMed

    Qin, Xiaobo; Lin, Fanrong; Lii, Yifan; Gou, Chunbao; Chen, Fang

    2011-03-01

    A cDNA clone designated arf1 was isolated from a physic nut (Jatropha curcas L.) endosperm cDNA library which encodes a small GTP-binding protein and has significant homology to ADP-ribosylation factors (ARF) in plants, animals and microbes. The cDNA contains an open reading frame that encodes a polypeptide of 181 amino acids with a calculated molecular mass of 20.7 kDa. The deduced amino acid sequence showed high homology to known ARFs from other organisms. The products of the arf1 obtained by overexpression in E. coli revealed the specific binding activity toward GTP. The expression of arf1 was observed in flowers, roots, stems and leaves as analyzed by RT-PCR, and its transcriptional level was highest in flowers. In particular, the accumulation of arf1 transcripts was different under various environmental stresses in seedlings. The results suggest that arf1 plays distinct physiological roles in Jatropha curcas cells.

  19. Corrosion considerations for thermochemical biomass liquefaction process systems in biofuel production

    DOE PAGES

    Brady, Michael P.; Keiser, James R.; Leonard, Donovan N.; ...

    2014-11-11

    Thermochemical liquifaction processing of biomass to produce bio-derived fuels (e.g. gasoline, jet fuel, diesel, home heating oil, etc.) is of great recent interest as a renewable energy source. Approaches under investigation include direct liquefaction, hydrothermal liquefaction, hydropyrolysis, fast pyrolysis, etc. to produce energy dense liquids that can be utilized as produced or further processed to provide products of higher value. An issue with bio-oils is that they tend to contain significant concentrations of organic compounds, which make the bio-oil acidic and a potential source of corrosion issues in in transport, storage, and use. Efforts devoted to modified/further processing of bio-oilsmore » to make them less corrosive are currently being widely pursued. Another aspect that must also be addressed is potential corrosion issues in the bio-oil liquefaction process equipment itself. Depending on the specific process, bio-oil liquefaction production temperatures can reach up to 400-600 °C, and involve the presence of aggressive sulfur, and halide species from both the biomass used and/or process additives. Detailed knowledge of the corrosion resistance of candidate process equipment alloys in these bio-oil production environments is currently lacking. Lastly, this paper summarizes our recent, ongoing efforts to assess the extent to which corrosion of bio-oil process equipment may be an issue, with the ultimate goal of providing the basis to select the lowest cost alloy grades capable of providing the long-term corrosion resistance needed for future bio-oil production plants.« less

  20. Optimized Co-Processing of Algae Bio-Crude through a Petroleum Refinery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saydah, Ben; Behnke, Craig

    2014-03-14

    A middle distillate algal oil blend and red diesel algal oil blend from Sapphire Energy, Inc. were hydrotreated and distilled. The middle distillate feedstock blend was 8.0 wt.% biocrude and 92.0 wt.% middle distillate. The red diesel feedstock blend was 12.6 wt.% biocrude and 87.4 wt.% red diesel. During steady state, 151.4 kilograms of hydrotreated middle distillate/algal oil blend product was collected. During steady state, 312.6 kilograms of red diesel/algal oil blend hydrotreated product was collected. From the liquid product of the hydrotreated middle distillate/algal oil blend, 9.75 wt.% of the jet fuel cut is estimated to be from themore » algal oil. From the liquid product of the hydrotreated red diesel/algal oil blend, 11.3 wt.% of the diesel cut is estimated to be from the algal oil. The jet fuel cut of the middle distillate algal oil blend hydrotreated liquid product was analyzed using ASTM D1655, Standard Specification for Aviation Turbine Fuels. The diesel cut of the red diesel algal oil blend hydrotreated liquid product was analyzed using ASTM D975, Standard Specification for Diesel Fuel Oils.« less

  1. Editorial: from plant biotechnology to bio-based products.

    PubMed

    Stöger, Eva

    2013-10-01

    From plant biotechnology to bio-based products - this Special Issue of Biotechnology Journal is dedicated to plant biotechnology and is edited by Prof. Eva Stöger (University of Natural Resources and Life Sciences, Vienna, Austria). The Special Issue covers a wide range of topics in plant biotechnology, including metabolic engineering of biosynthesis pathways in plants; taking advantage of the scalability of the plant system for the production of innovative materials; as well as the regulatory challenges and society acceptance of plant biotechnology. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Single step purification of concanavalin A (Con A) and bio-sugar production from jack bean using glucosylated magnetic nano matrix.

    PubMed

    Kim, Ho Myeong; Cho, Eun Jin; Bae, Hyeun-Jong

    2016-08-01

    Jack bean (JB, Canavalia ensiformis) is the source of bio-based products, such as proteins and bio-sugars that contribute to modern molecular biology and biomedical research. In this study, the use of jack bean was evaluated as a source for concanavalin A (Con A) and bio-sugar production. A novel method for purifying Con A from JBs was successfully developed using a glucosylated magnetic nano matrix (GMNM) as a physical support, which facilitated easy separation and purification of Con A. In addition, the enzymatic conversion rate of 2% (w/v) Con A extracted residue to bio-sugar was 98.4%. Therefore, this new approach for the production of Con A and bio-sugar is potentially useful for obtaining bio-based products from jack bean. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Opportunities for Bio-Based Solvents Created as Petrochemical and Fuel Products Transition towards Renewable Resources

    PubMed Central

    Clark, James H.; Farmer, Thomas J.; Hunt, Andrew J.; Sherwood, James

    2015-01-01

    The global bio-based chemical market is growing in size and importance. Bio-based solvents such as glycerol and 2-methyltetrahydrofuran are often discussed as important introductions to the conventional repertoire of solvents. However adoption of new innovations by industry is typically slow. Therefore it might be anticipated that neoteric solvent systems (e.g., ionic liquids) will remain niche, while renewable routes to historically established solvents will continue to grow in importance. This review discusses bio-based solvents from the perspective of their production, identifying suitable feedstocks, platform molecules, and relevant product streams for the sustainable manufacturing of conventional solvents. PMID:26225963

  4. Opportunities for Bio-Based Solvents Created as Petrochemical and Fuel Products Transition towards Renewable Resources.

    PubMed

    Clark, James H; Farmer, Thomas J; Hunt, Andrew J; Sherwood, James

    2015-07-28

    The global bio-based chemical market is growing in size and importance. Bio-based solvents such as glycerol and 2-methyltetrahydrofuran are often discussed as important introductions to the conventional repertoire of solvents. However adoption of new innovations by industry is typically slow. Therefore it might be anticipated that neoteric solvent systems (e.g., ionic liquids) will remain niche, while renewable routes to historically established solvents will continue to grow in importance. This review discusses bio-based solvents from the perspective of their production, identifying suitable feedstocks, platform molecules, and relevant product streams for the sustainable manufacturing of conventional solvents.

  5. Comparative Toxicity of Biodiesel Exhaust and Petroleum Diesel Exhaust Particulate Matter Using WKY Rat Alveolar Machrophages

    EPA Science Inventory

    Exposure to fine ambient particulate matter <2.5um (PM2.5) can induce airway inflammation, cardiopulmonary morbidity and mortality. Combustion of petroleum diesel and biodiesel contributes to PM2.5. Possible toxicity caused by inhalation of biodiesel emission particles (BioDEP) h...

  6. Green diesel production via catalytic hydrogenation/decarboxylation of triglycerides and fatty acids of vegetable oil and brown grease

    NASA Astrophysics Data System (ADS)

    Sari, Elvan

    Increase in the petroleum prices, projected increases in the world's energy demand and environmental awareness have shifted the research interest to the alternative fuel technologies. In particular, green diesel, vegetable oil/animal fat/waste oil and grease derived hydrocarbons in diesel boiling range, has become an attractive alternative to biodiesel---a mixture of fatty acid methyl esters, particularly due to its superior fuel properties that are similar to petroleum diesel. Hence, green diesel can be used as a drop-in fuel in the current diesel engines. The current technology for production of green diesel-hydrodeoxygenation of triglycerides and fatty acids over conventional hydrotreating catalysts suffers from fast catalyst deactivation in the absence of hydrogen combined with high temperatures and high fatty acid content in the feedstock. Additionally, excess hydrogen requirement for hydrodeoxygenation technique leads to high production costs. This thesis proposes a new technology-selective decarboxylation of brown grease, which is a mixture of fats and oils collected from waste water trap and rich in fatty acids, over a supported noble metal catalyst that overcomes the green diesel production challenges. In contrast to other feedstocks used for liquid biofuel production, brown grease is inexpensive and non-food competing feedstock, therefore the process finds solution to waste management issues, reduces the renewable fuel production cost and does not add to the global food shortage problems. Special catalyst formulations were developed to have a high activity and stability in the absence of hydrogen in the fatty acid decarboxylation process. The study shows how catalyst innovations can lead to a new technology that overcomes the process challenges. First, the effect of reaction parameters on the activity and the selectivity of brown grease decarboxylation with minimum hydrogen consumption over an activated carbon supported palladium catalyst were

  7. Production of bio-sugar and bioethanol from coffee residue (CR) by acid-chlorite pretreatment.

    PubMed

    Kim, Ho Myeong; Choi, Yong-Soo; Lee, Dae-Seok; Kim, Yong-Hwan; Bae, Hyeun-Jong

    2017-07-01

    Nowadays, coffee residue (CR) after roasting is recognized as one of the most useful resources in the world for producing the biofuel and bio-materials. In this study, we evaluated the potential of bio-sugar and bioethanol production from acid-chlorite treated CR. Notably, CR treated three times with acid-chlorite after organic solvent extraction (OSE-3), showed the high monosaccharide content, and the efficient sugar conversion yield compared to the other pretreatment conditions. The OSE-3 (6% substrate loading, w/v) can produce bio-sugar (0.568g/g OSE-3). Also, simultaneous saccharification and fermentation (SSF) produced ethanol (0.266g/g OSE-3), and showed an ethanol conversion yield of 73.8% after a 72-h reaction period. These results suggest that acid-chlorite pretreatment can improve the bio-sugar and bioethanol production of CR by removing the phenolic and brown compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Towards sustainable agricultural production: Growth and production of three varieties of shallot with some various Nitrobacter bio-fertilizer concentrations

    NASA Astrophysics Data System (ADS)

    Saharuddin; Dungga, N. E.; Syam’un, E.; Amin, A. R.

    2018-05-01

    Organic production is important for health and eliminates the risk of chemical residues. Taking part on sustainable agriculture production, this research was conducted in January to March 2017. Located in Palajau Village, in Jeneponto Regency, altitude 120 m above sea level, South Sulawesi. The research was aimed to determine the growth and production of shallot varieties and their interaction with Nitrobacter bio-fertilizer. The study conducted in the form of a two-factor factorial experiment using Randomized Block Design as environmental design. The first factor was varieties (Bima, Bangkok and Tajuk), and the second factor was concentration of Nitrobacter bio-fertilizer; control-without fertilizer, 30 and 60 mL of fertilizer per 3000 mL of water. Results show that the varietal treatment of Tajuk gave a good response to the observed parameters, and the Nitrobacter bio-fertilizer treatment of 60 mL of fertilizer 3000 mL of water gave good results on the number of bulbs per cluster, bulbs and dried bulbs per plot (of tons per ha bulbs). Bangkok variety combined with Nitrobacter bio-fertilizer concentration of 60 mL of fertilizer per 3000 mL of water per plot showed the highest yield of bulb that is 9.13 tons per ha compared with Bima and Tajuk varieties.

  9. Isolation and characterization of the Jatropha curcas APETALA1 (JcAP1) promoter conferring preferential expression in inflorescence buds.

    PubMed

    Tao, Yan-Bin; He, Liang-Liang; Niu, Longjian; Xu, Zeng-Fu

    2016-08-01

    The 1.5 kb JcAP1 promoter from the biofuel plant Jatropha curcas is predominantly active in the inflorescence buds of transgenic plants, in which the -1313/-1057 region is essential for maintaining the activity. Arabidopsis thaliana APETALA1 (AP1) is a MADS-domain transcription factor gene that functions primarily in flower development. We isolated a homolog of AP1 from Jatropha curcas (designated JcAP1), which was shown to exhibit flower-specific expression in Jatropha. JcAP1 is first expressed in inflorescence buds and continues to be primarily expressed in the sepals. We isolated a 1.5 kb JcAP1 promoter and evaluated its activity in transgenic Arabidopsis and Jatropha using the β-glucuronidase (GUS) reporter gene. In transgenic Arabidopsis and Jatropha, the inflorescence buds exhibited notable GUS activity, whereas the sepals did not. Against expectations, the JcAP1 promoter was active in the anthers of Arabidopsis and Jatropha and was highly expressed in Jatropha seeds. An analysis of promoter deletions in transgenic Arabidopsis revealed that deletion of the -1313/-1057 region resulted in loss of JcAP1 promoter activity in the inflorescence buds and increased activity in the anthers. These results suggested that some regulatory sequences in the -1313/-1057 region are essential for maintaining promoter activity in inflorescence buds and can partly suppress activity in the anthers. Based on these findings, we hypothesized that other elements located upstream of the 1.5 kb JcAP1 promoter may be required for flower-specific activation. The JcAP1 promoter characterized in this study can be used to drive transgene expression in both the inflorescence buds and seeds of Jatropha.

  10. Industrial Fermentation of Auxenochlorella protothecoides for Production of Biodiesel and Its Application in Vehicle Diesel Engines.

    PubMed

    Xiao, Yibo; Lu, Yue; Dai, Junbiao; Wu, Qingyu

    2015-01-01

    Microalgae-derived biodiesel has been regarded as a promising alternative for fossil diesel. However, the commercial production of microalgal biodiesel was halted due to its high cost. Here, we presented a pilot study on the industrial production of algal biodiesel. We began with the heterotrophic cultivation of Auxenochlorella protothecoides in a 60-m(3) fermentor that produced biomass at 3.81 g L(-1) day(-1) with a neutral lipid content at 51%. Next, we developed plate-frame filter, natural drying, and ball milling methods to harvest, dry, and extract oil from the cells at low cost. Additionally, algal biodiesel was produced for a vehicle engine test, which indicated that the microalgal biodiesel was comparable to fossil diesel but resulted in fewer emissions of particulate matter, carbon monoxide, and hydrocarbon. Altogether, our data suggested that the heterotrophic fermentation of A. protothecoides could have the potential for the future industrial production of biodiesel.

  11. Industrial Fermentation of Auxenochlorella protothecoides for Production of Biodiesel and Its Application in Vehicle Diesel Engines

    PubMed Central

    Xiao, Yibo; Lu, Yue; Dai, Junbiao; Wu, Qingyu

    2015-01-01

    Microalgae-derived biodiesel has been regarded as a promising alternative for fossil diesel. However, the commercial production of microalgal biodiesel was halted due to its high cost. Here, we presented a pilot study on the industrial production of algal biodiesel. We began with the heterotrophic cultivation of Auxenochlorella protothecoides in a 60-m3 fermentor that produced biomass at 3.81 g L−1 day−1 with a neutral lipid content at 51%. Next, we developed plate-frame filter, natural drying, and ball milling methods to harvest, dry, and extract oil from the cells at low cost. Additionally, algal biodiesel was produced for a vehicle engine test, which indicated that the microalgal biodiesel was comparable to fossil diesel but resulted in fewer emissions of particulate matter, carbon monoxide, and hydrocarbon. Altogether, our data suggested that the heterotrophic fermentation of A. protothecoides could have the potential for the future industrial production of biodiesel. PMID:26539434

  12. Agro-climatic zoning of Jatropha curcas as a subside for crop planning and implementation in Brazil.

    PubMed

    Yamada, Eliane S M; Sentelhas, Paulo C

    2014-11-01

    As jatropha (Jatropha curcas L.) is a recent crop in Brazil, the studies for defining its suitability for different regions are not yet available, even considering the promises about this plant as of high potential for marginal zones where poor soils and dry climate occur. Based on that, the present study had as objective to characterize the climatic conditions of jatropha's center of origin in Central America for establishing its climatic requirements and to develop the agro-climatic zoning for this crop for some Brazilian regions where, according to the literature, it would be suitable. For classifying the climatic conditions of the jatropha's center of origin, climate data from 123 weather stations located in Mexico (93) and in Guatemala (30) were used. These data were input for Thornthwaite and Mather's climatological water balance for determining the annual water deficiency (WD) and water surplus (WS) of each location, considering a soil water-holding capacity (SWHC) of 100 mm. Mean annual temperature (T m), WD, and WS data were organized in histograms for defining the limits of suitability for jatropha cultivation. The results showed that the suitable range of T m for jatropha cultivation is between 23 and 27 °C. T m between 15 and 22.9 °C and between 27.1 and 28 °C were classified as marginal by thermal deficiency and excess, respectively. T m below 15 °C and above 28 °C were considered as unsuitable for jatropha cultivation, respectively, by risk of frosts and physiological disturbs. For WD, suitability for rain-fed jatropha cultivation was considered when its value is below 360 mm, while between 361 and 720 mm is considered as marginal and over 720 mm unsuitable. The same order of suitability was also defined for WS, with the following limits: suitable for WS up to 1,200 mm; marginal for WS between 1,201 and 2,400 mm, and unsuitable for WS above 2,400 mm. For the crop zoning, the criteria previously defined were applied to 1,814 climate stations in

  13. Enhancement of Surfactin and Fengycin Production by Bacillus mojavensis A21: Application for Diesel Biodegradation

    PubMed Central

    Ben Ayed, Hanen; Jacques, Philippe; Nasri, Moncef

    2017-01-01

    This work concerns the study of the enhancement of surfactin and fengycin production by B. mojavensis A21 and application of the produced product in diesel biodegradation. The influences of the culture medium and cells immobilization were studied. The highest lipopeptides production was achieved after 72 hours of incubation in a culture medium containing 30 g/L glucose as carbon source and a combination of yeast extract (1 g/L) and glutamic acid (5 g/L) as nitrogen sources with initial pH 7.0 at 30°C and 90% volumetric aeration. The study of primary metabolites production showed mainly the production of acetoin, with a maximum production after 24 h of strain growth. The use of immobilized cells seemed to be a promising method for improving lipopeptides productivity. In fact, the synthesis of both lipopeptides, mainly fengycin, was greatly enhanced by the immobilization of A21 cells. An increase of diesel degradation capacity of approximately 20, 27, and 40% in the presence of 0.5, 1, and 2 g/L of produced lipopeptides, respectively, was observed. Considering these properties, B. mojavensis A21 strain producing a lipopeptide mixture, containing both surfactin and fengycin, may be considered as a potential candidate for future use in bioremediation and crop protection. PMID:29082251

  14. From zero to hero - production of bio-based nylon from renewable resources using engineered Corynebacterium glutamicum.

    PubMed

    Kind, Stefanie; Neubauer, Steffi; Becker, Judith; Yamamoto, Motonori; Völkert, Martin; Abendroth, Gregory von; Zelder, Oskar; Wittmann, Christoph

    2014-09-01

    Polyamides are important industrial polymers. Currently, they are produced exclusively from petrochemical monomers. Herein, we report the production of a novel bio-nylon, PA5.10 through an integration of biological and chemical approaches. First, systems metabolic engineering of Corynebacterium glutamicum was used to create an effective microbial cell factory for the production of diaminopentane as the polymer building block. In this way, a hyper-producer, with a high diaminopentane yield of 41% in shake flask culture, was generated. Subsequent fed-batch production of C. glutamicum DAP-16 allowed a molar yield of 50%, a productivity of 2.2gL(-1)h(-1), and a final titer of 88gL(-1). The streamlined producer accumulated diaminopentane without generating any by-products. Solvent extraction from alkalized broth and two-step distillation provided highly pure diaminopentane (99.8%), which was then directly accessible for poly-condensation. Chemical polymerization with sebacic acid, a ten-carbon dicarboxylic acid derived from castor plant oil, yielded the bio-nylon, PA5.10. In pure form and reinforced with glass fibers, the novel 100% bio-polyamide achieved an excellent melting temperature and the mechanical strength of the well-established petrochemical polymers, PA6 and PA6.6. It even outperformed the oil-based products in terms of having a 6% lower density. It thus holds high promise for applications in energy-friendly transportation. The demonstration of a novel route for generation of bio-based nylon from renewable sources opens the way to production of sustainable bio-polymers with enhanced material properties and represents a milestone in industrial production. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Conversion of crude Jatropha curcas seed oil into biodiesel using liquid recombinant Candida rugosa lipase isozymes.

    PubMed

    Kuo, Ting-Chun; Shaw, Jei-Fu; Lee, Guan-Chiun

    2015-09-01

    The versatile Candida rugosa lipase (CRL) has been widely used in biotechnological applications. However, there have not been feasibility reports on the transesterification of non-edible oils to produce biodiesel using the commercial CRL preparations, mixtures of isozymes. In the present study, four liquid recombinant CRL isozymes (CRL1-CRL4) were investigated to convert various non-edible oils into biodiesel. The results showed that recombinant CRL2 and CRL4 exhibited superior catalytic efficiencies for producing fatty acid methyl ester (FAME) from Jatropha curcas seed oil. A maximum 95.3% FAME yield was achieved using CRL2 under the optimal conditions (50 wt% water, an initial 1 equivalent of methanol feeding, and an additional 0.5 equivalents of methanol feeding at 24h for a total reaction time of 48 h at 37 °C). We concluded that specific recombinant CRL isozymes could be excellent biocatalysts for the biodiesel production from low-cost crude Jatropha oil. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Stimulation of the growth of Jatropha curcas by the plant growth promoting bacterium Enterobacter cancerogenus MSA2.

    PubMed

    Jha, Chaitanya Kumar; Patel, Baldev; Saraf, Meenu

    2012-03-01

    A novel Enterobacter cancerogenus MSA2 is a plant growth promoting gamma-proteobacterium that was isolated from the rhizosphere of Jatropha cucas a potentially important biofuel feed stock plant. Based on phenotypic, physiological, biochemical and phylogenetic studies, strain MSA2 could be classified as a member of E. cancerogenus. However, comparisons of characteristics with other known species of the genus Enterobacter suggested that strain MSA2 could be a novel PGPB strain. In vitro studies were carried for the plant growth promoting attribute of this culture. It tested positive for ACC (1-aminocyclopropane-1-carboxylic acid) deaminase production, phytase, phosphate solubilization, IAA (Indole acetic acid) production, siderophore, and ammonia production. The isolate was then used as a inoculant for the vegetative study of Jatropha curcas plant. Enterobacter cancerogenus MSA2 supplemented with 1% carboxymethylcellulose showed overall plant growth promotion effect resulting in enhanced root length (124.14%), fresh root mass (81%), fresh shoot mass (120.02%), dry root mass (124%), dry shoot mass (105.54%), number of leaf (30.72%), chlorophyll content (50.41%), and biomass (87.20%) over control under the days of experimental observation. This study was designed for 120 days and was in triplicate and the data was collected at every 30 days.

  17. Bio-hydrogen production from molasses by anaerobic fermentation in continuous stirred tank reactor

    NASA Astrophysics Data System (ADS)

    Han, Wei; Li, Yong-feng; Chen, Hong; Deng, Jie-xuan; Yang, Chuan-ping

    2010-11-01

    A study of bio-hydrogen production was performed in a continuous flow anaerobic fermentation reactor (with an available volume of 5.4 L). The continuous stirred tank reactor (CSTR) for bio-hydrogen production was operated under the organic loading rates (OLR) of 8-32 kg COD/m3 reactor/d (COD: chemical oxygen demand) with molasses as the substrate. The maximum hydrogen production yield of 8.19 L/d was obtained in the reactor with the OLR increased from 8 kg COD/m3 reactor/d to 24 kg COD/m3 d. However, the hydrogen production and volatile fatty acids (VFAs) drastically decreased at an OLR of 32 kg COD/m3 reactor/d. Ethanoi, acetic, butyric and propionic were the main liquid fermentation products with the percentages of 31%, 24%, 20% and 18%, which formed the mixed-type fermentation.

  18. Transcriptome analysis of Jatropha curcas L. flower buds responded to the paclobutrazol treatment.

    PubMed

    Seesangboon, Anupharb; Gruneck, Lucsame; Pokawattana, Tittinat; Eungwanichayapant, Prapassorn Damrongkool; Tovaranonte, Jantrararuk; Popluechai, Siam

    2018-06-01

    Jatropha seeds can be used to produce high-quality biodiesel due to their high oil content. However, Jatropha produces low numbers of female flowers, which limits seed yield. Paclobutrazol (PCB), a plant growth retardant, can increase number of Jatropha female flowers and seed yield. However, the underlying mechanisms of flower development after PCB treatment are not well understood. To identify the critical genes associated with flower development, the transcriptome of flower buds following PCB treatment was analyzed. Scanning Electron Microscope (SEM) analysis revealed that the flower developmental stage between PCB-treated and control flower buds was similar. Based on the presence of sex organs, flower buds at 0, 4, and 24 h after treatment were chosen for global transcriptome analysis. In total, 100,597 unigenes were obtained, 174 of which were deemed as interesting based on their response to PCB treatment. Our analysis showed that the JcCKX5 and JcTSO1 genes were up-regulated at 4 h, suggesting roles in promoting organogenic capacity and ovule primordia formation in Jatropha. The JcNPGR2, JcMGP2-3, and JcHUA1 genes were down-regulated indicating that they may contribute to increased number of female flowers and amount of seed yield. Expression of cell division and cellulose biosynthesis-related genes, including JcGASA3, JcCycB3;1, JcCycP2;1, JcKNAT7, and JcCSLG3 was decreased, which might have caused the compacted inflorescences. This study represents the first report combining SEM-based morphology, qRT-PCR and transcriptome analysis of PCB-treated Jatropha flower buds at different stages of flower development. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  19. Molecular approaches to improvement of Jatropha curcas Linn. as a sustainable energy crop.

    PubMed

    Sudhakar Johnson, T; Eswaran, Nalini; Sujatha, M

    2011-09-01

    With the increase in crude oil prices, climate change concerns and limited reserves of fossil fuel, attention has been diverted to alternate renewable energy sources such as biofuel and biomass. Among the potential biofuel crops, Jatropha curcas L, a non-domesticated shrub, has been gaining importance as the most promising oilseed, as it does not compete with the edible oil supplies. Economic relevance of J. curcas for biodiesel production has promoted world-wide prospecting of its germplasm for crop improvement and breeding. However, lack of adequate genetic variation and non-availability of improved varieties limited its prospects of being a successful energy crop. In this review, we present the progress made in molecular breeding approaches with particular reference to tissue culture and genetic transformation, genetic diversity assessment using molecular markers, large-scale transcriptome and proteome studies, identification of candidate genes for trait improvement, whole genome sequencing and the current interest by various public and private sector companies in commercial-scale cultivation, which highlights the revival of Jatropha as a sustainable energy crop. The information generated from molecular markers, transcriptome profiling and whole genome sequencing could accelerate the genetic upgradation of J. curcas through molecular breeding.

  20. Development of the Basis for an Analytical Protocol for Feeds and Products of Bio-oil Hydrotreatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oasmaa, Anja; Kuoppala, Eeva; Elliott, Douglas C.

    2012-04-02

    Methods for easily following the main changes in the composition, stability, and acidity of bio-oil in hydrotreatment are presented. The correlation to more conventional methods is provided. Depending on the final use the upgrading requirement is different. This will create challenges also for the analytical protocol. Polar pyrolysis liquids and their products can be divided into five main groups with solvent fractionation the change in which is easy to follow. This method has over ten years been successfully used for comparison of fast pyrolysis bio-oil quality, and the changes during handling, and storage, provides the basis of the analytical protocolmore » presented in this paper. The method has most recently been used also for characterisation of bio-oil hydrotreatment products. Discussion on the use of gas chromatographic and spectroscopic methods is provided. In addition, fuel oil analyses suitable for fast pyrolysis bio-oils and hydrotreatment products are discussed.« less

  1. Structural characterization of copia-type retrotransposons leads to insights into the marker development in a biofuel crop, Jatropha curcas L.

    PubMed Central

    2013-01-01

    Background Recently, Jatropha curcas L. has attracted worldwide attention for its potential as a source of biodiesel. However, most DNA markers have demonstrated high levels of genetic similarity among and within jatropha populations around the globe. Despite promising features of copia-type retrotransposons as ideal genetic tools for gene tagging, mutagenesis, and marker-assisted selection, they have not been characterized in the jatropha genome yet. Here, we examined the diversity, evolution, and genome-wide organization of copia-type retrotransposons in the Asian, African, and Mesoamerican accessions of jatropha, then introduced a retrotransposon-based marker for this biofuel crop. Results In total, 157 PCR fragments that were amplified using the degenerate primers for the reverse transcriptase (RT) domain of copia-type retroelements were sequenced and aligned to construct the neighbor-joining tree. Phylogenetic analysis demonstrated that isolated copia RT sequences were classified into ten families, which were then grouped into three lineages. An in-depth study of the jatropha genome for the RT sequences of each family led to the characterization of full consensus sequences of the jatropha copia-type families. Estimated copy numbers of target sequences were largely different among families, as was presence of genes within 5 kb flanking regions for each family. Five copia-type families were as appealing candidates for the development of DNA marker systems. A candidate marker from family Jc7 was particularly capable of detecting genetic variation among different jatropha accessions. Fluorescence in situ hybridization (FISH) to metaphase chromosomes reveals that copia-type retrotransposons are scattered across chromosomes mainly located in the distal part regions. Conclusion This is the first report on genome-wide analysis and the cytogenetic mapping of copia-type retrotransposons of jatropha, leading to the discovery of families bearing high potential as DNA

  2. Diesel exhaust, diesel fumes, and laryngeal cancer.

    PubMed

    Muscat, J E; Wynder, E L

    1995-03-01

    A hospital-based, case-control study of 235 male patients with laryngeal cancer and 205 male control patients was conducted to determine the effects of exposure to diesel engine exhaust and diesel fumes and the risk of laryngeal cancer. All patients were interviewed directly in the hospital with a standardized questionnaire that gathered information on smoking habits, alcohol consumption, employment history, and occupational exposures. Occupations that involve substantial exposure to diesel engine exhaust include mainly truck drivers, as well as mine workers, firefighters, and railroad workers. The odds ratio for laryngeal cancer associated with these occupations was 0.96 (95% confidence interval, 0.5 to 1.8). The odds ratio for self-reported exposure to diesel exhaust was 1.47 (95% confidence interval, 0.5 to 4.1). An elevated risk was found for self-reported exposure to diesel fumes (odds ratio, 6.4; 95% confidence interval, 1.8 to 22.6). No association was observed between jobs that entail exposure to diesel fumes, such as automobile mechanics, and the risk of laryngeal cancer. These results show that diesel engine exhaust is unrelated to laryngeal cancer risk. The different findings for self-reported diesel fumes and occupations that involve exposure to diesel fumes could reflect a recall bias.

  3. Bio-oil production via fast pyrolysis of biomass residues from cassava plants in a fluidised-bed reactor.

    PubMed

    Pattiya, Adisak

    2011-01-01

    Biomass residues from cassava plants, namely cassava stalk and cassava rhizome, were pyrolysed in a fluidised-bed reactor for production of bio-oil. The aims of this work were to investigate the yields and properties of pyrolysis products produced from both feedstocks as well as to identify the optimum pyrolysis temperature for obtaining the highest organic bio-oil yields. Results showed that the maximum yields of the liquid bio-oils derived from the stalk and rhizome were 62 wt.% and 65 wt.% on dry basis, respectively. The pyrolysis temperatures that gave highest bio-oil yields for both feedstocks were in the range of 475-510 °C. According to the analysis of the bio-oils properties, the bio-oil derived from cassava rhizome showed better quality than that derived from cassava stalk as the former had lower oxygen content, higher heating value and better storage stability. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Sustainable Development for Whom and How? Exploring the Gaps between Popular Discourses and Ground Reality Using the Mexican Jatropha Biodiesel Case.

    PubMed

    Banerjee, Aparajita; Halvorsen, Kathleen E; Eastmond-Spencer, Amarella; Sweitz, Sam R

    2017-06-01

    In the last decade, jatropha-based bioenergy projects have gotten significant attention as a solution to various social, economic, and environmental problems. Jatropha's popularity stemmed out from different discourses, some real and some perceived, in scientific and non-scientific literature. These discourses positioned jatropha as a crop helpful in producing biodiesel and protecting sustainability by reducing greenhouse gas emissions compared to fossil fuels and increasing local, rural development by creating jobs. Consequently, many countries established national policies that incentivized the establishment of jatropha as a bioenergy feedstock crop. In this paper, we explore the case of jatropha bioenergy development in Yucatan, Mexico and argue that the popular discourse around jatropha as a sustainability and rural development tool is flawed. Analyzing our results from 70 semi-structured interviews with community members belonging to a region where plantation-scale jatropha projects were introduced, we found that these projects did not have many significant social sustainability benefits. We conclude from our case that by just adding bioenergy projects cannot help achieve social sustainability in rural areas alone. In ensuring social sustainability of bioenergy projects, future policymaking processes should have a more comprehensive understanding of the rural socioeconomic problems where such projects are promoted and use bioenergy projects as one of the many solutions to local problems rather than creating such policies based just on popular discourses.

  5. Sustainable Development for Whom and How? Exploring the Gaps between Popular Discourses and Ground Reality Using the Mexican Jatropha Biodiesel Case

    NASA Astrophysics Data System (ADS)

    Banerjee, Aparajita; Halvorsen, Kathleen E.; Eastmond-Spencer, Amarella; Sweitz, Sam R.

    2017-06-01

    In the last decade, jatropha-based bioenergy projects have gotten significant attention as a solution to various social, economic, and environmental problems. Jatropha's popularity stemmed out from different discourses, some real and some perceived, in scientific and non-scientific literature. These discourses positioned jatropha as a crop helpful in producing biodiesel and protecting sustainability by reducing greenhouse gas emissions compared to fossil fuels and increasing local, rural development by creating jobs. Consequently, many countries established national policies that incentivized the establishment of jatropha as a bioenergy feedstock crop. In this paper, we explore the case of jatropha bioenergy development in Yucatan, Mexico and argue that the popular discourse around jatropha as a sustainability and rural development tool is flawed. Analyzing our results from 70 semi-structured interviews with community members belonging to a region where plantation-scale jatropha projects were introduced, we found that these projects did not have many significant social sustainability benefits. We conclude from our case that by just adding bioenergy projects cannot help achieve social sustainability in rural areas alone. In ensuring social sustainability of bioenergy projects, future policymaking processes should have a more comprehensive understanding of the rural socioeconomic problems where such projects are promoted and use bioenergy projects as one of the many solutions to local problems rather than creating such policies based just on popular discourses.

  6. 78 FR 42546 - Notice of Lodging of Proposed Consent Decree Under the Comprehensive Environmental Response...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-16

    ... hazardous substances at the BioEnergy of Colorado Superfund Site located on 821 West 56th Avenue, City and Adams County, Colorado 80216. BioEnergy of Colorado, LLC, now defunct, operated a bio-diesel production... pH, caustic materials and methanol used by BioEnergy in the production of bio-fuel that had been...

  7. Development of marker-free transgenic Jatropha curcas producing curcin-deficient seeds through endosperm-specific RNAi-mediated gene silencing.

    PubMed

    Gu, Keyu; Tian, Dongsheng; Mao, Huizhu; Wu, Lifang; Yin, Zhongchao

    2015-10-08

    Jatropha curcas L. is a potential biofuel plant and its seed oil is suitable for biodiesel production. Despite this promising application, jatropha seeds contain two major toxic components, namely phorbol esters and curcins. These compounds would reduce commercial value of seed cake and raise safety and environment concerns on jatropha plantation and processing. Curcins are Type I ribosome inactivating proteins. Several curcin genes have been identified in the jatropha genome. Among which, the Curcin 1 (C1) gene is identified to be specifically expressed in endosperm, whereas the Curcin 2A (C2A) is mainly expressed in young leaves. A marker-free RNAi construct carrying a β-estradiol-regulated Cre/loxP system and a C1 promoter-driven RNAi cassette for C1 gene was made and used to generate marker-free transgenic RNAi plants to specifically silence the C1 gene in the endosperm of J. curcas. Plants of transgenic line L1, derived from T0-1, carry two copies of marker-free RNAi cassette, whereas plants of L35, derived from T0-35, harbored one copy of marker-free RNAi cassette and three copies of closely linked and yet truncated Hpt genes. The C1 protein content in endosperm of L1 and L35 seeds was greatly reduced or undetectable, while the C2A proteins in young leaves of T0-1 and T0-35 plants were unaffected. In addition, the C1 mRNA transcripts were undetectable in the endosperm of T3 seeds of L1 and L35. The results demonstrated that the expression of the C1 gene was specifically down-regulated or silenced by the double-stranded RNA-mediated RNA interference generated from the RNAi cassette. The C1 promoter-driven RNAi cassette for the C1 gene in transgenic plants was functional and heritable. Both C1 transcripts and C1 proteins were greatly down-regulated or silenced in the endosperm of transgenic J. curcas. The marker-free transgenic plants and curcin-deficient seeds developed in this study provided a solution for the toxicity of curcins in jatropha seeds and

  8. Chlamydomonas as a model for biofuels and bio-products production

    PubMed Central

    Scranton, Melissa A.; Ostrand, Joseph T.; Fields, Francis J.; Mayfield, Stephen P.

    2017-01-01

    SUMMARY Developing renewable energy sources is critical to maintaining the economic growth of the planet while protecting the environment. First generation biofuels focused on food crops like corn and sugarcane for ethanol production, and soybean and palm for biodiesel production. Second generation biofuels based on cellulosic ethanol produced from terrestrial plants, has received extensive funding and recently pilot facilities have been commissioned, but to date output of fuels from these sources has fallen well short of what is needed. Recent research and pilot demonstrations have highlighted the potential of algae as one of the most promising sources of sustainable liquid transportation fuels. Algae have also been established as unique biofactories for industrial, therapeutic, and nutraceutical co-products. Chlamydomonas reinhardtii’s long established role in the field of basic research in green algae has paved the way for understanding algal metabolism and developing genetic engineering protocols. These tools are now being utilized in C. reinhardtii and in other algal species for the development of strains to maximize biofuels and bio-products yields from the lab to the field. PMID:25641390

  9. Enrichment of bio-oil after hydrothermal liquefaction (HTL) of microalgae C. vulgaris grown in wastewater: Bio-char and post HTL wastewater utilization studies.

    PubMed

    Arun, Jayaseelan; Varshini, Padmanabhan; Prithvinath, P Kamath; Priyadarshini, Venkataramani; Gopinath, Kannappan Panchamoorthy

    2018-08-01

    In this study, bio-oil was produced through hydrothermal liquefaction (HTL) of C. vulgaris biomass cultivated in wastewater and was enriched into transportation fuels. Bio-oil yield was 29.37% wt at 300 °C, 60 min, at 15 g/200 mL biomass loading rate with 3% wt nano ZnO catalyst loading. Applying catalyst reduced oxygen and nitrogen content in bio-oil and increased its calorific value (19.6 ± 0.8 MJ/Kg). Bio-oil was enriched through liquid-liquid extraction (LLE) and higher yield was obtained at 30 °C for dichloromethane solvent (18.2% wt). Compounds of enriched oil were within the petro-diesel range (C 8 -C 21 ). Bio-char after HTL process was activated and used as adsorbent in wastewater treatment process to remove organic pollutants (COD, NO 3 , NH 3 and PO 4 ). Treated wastewater can be supplied as growth medium for microalgae cultivation in further experiments. Nearly 3-4 times the nanocatalyst can be reused in the HTL process. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Advanced automotive diesel assessment program

    NASA Technical Reports Server (NTRS)

    Sekar, R.; Tozzi, L.

    1983-01-01

    Cummins Engine Company completed an analytical study to identify an advanced automotive (light duty) diesel (AAD) power plant for a 3,000-pound passenger car. The study resulted in the definition of a revolutionary diesel engine with several novel features. A 3,000-pound car with this engine is predicted to give 96.3, 72.2, and 78.8 MPG in highway, city, and combined highway-city driving, respectively. This compares with current diesel powered cars yielding 41.7, 35.0, and 37.7 MPG. The time for 0-60 MPH acceleration is 13.9 sec. compared to the baseline of 15.2 sec. Four technology areas were identified as crucial in bringing this concept to fruition. They are: (1) part-load preheating, (2) positive displacement compounding, (3) spark assisted diesel combustion system, and (4) piston development for adiabatic, oilless diesel engine. Marketing and planning studies indicate that an aggressive program with significant commitment could result in a production car in 10 years from the date of commencement.

  11. Hydrodeoxygenation of water-insoluble bio-oil to alkanes using a highly dispersed Pd-Mo catalyst.

    PubMed

    Duan, Haohong; Dong, Juncai; Gu, Xianrui; Peng, Yung-Kang; Chen, Wenxing; Issariyakul, Titipong; Myers, William K; Li, Meng-Jung; Yi, Ni; Kilpatrick, Alexander F R; Wang, Yu; Zheng, Xusheng; Ji, Shufang; Wang, Qian; Feng, Junting; Chen, Dongliang; Li, Yadong; Buffet, Jean-Charles; Liu, Haichao; Tsang, Shik Chi Edman; O'Hare, Dermot

    2017-09-19

    Bio-oil, produced by the destructive distillation of cheap and renewable lignocellulosic biomass, contains high energy density oligomers in the water-insoluble fraction that can be utilized for diesel and valuable fine chemicals productions. Here, we show an efficient hydrodeoxygenation catalyst that combines highly dispersed palladium and ultrafine molybdenum phosphate nanoparticles on silica. Using phenol as a model substrate this catalyst is 100% effective and 97.5% selective for hydrodeoxygenation to cyclohexane under mild conditions in a batch reaction; this catalyst also demonstrates regeneration ability in long-term continuous flow tests. Detailed investigations into the nature of the catalyst show that it combines hydrogenation activity of Pd and high density of both Brønsted and Lewis acid sites; we believe these are key features for efficient catalytic hydrodeoxygenation behavior. Using a wood and bark-derived feedstock, this catalyst performs hydrodeoxygenation of lignin, cellulose, and hemicellulose-derived oligomers into liquid alkanes with high efficiency and yield.Bio-oil is a potential major source of renewable fuels and chemicals. Here, the authors report a palladium-molybdenum mixed catalyst for the selective hydrodeoxygenation of water-insoluble bio-oil to mixtures of alkanes with high carbon yield.

  12. Bio-Refineries Bioprocess Technologies for Waste-Water Treatment, Energy and Product Valorization

    NASA Astrophysics Data System (ADS)

    Keith Cowan, A.

    2010-04-01

    Increasing pressure is being exerted on communities and nations to source energy from forms other than fossil fuels. Also, potable water is becoming a scarce resource in many parts of the world, and there remains a large divide in the demand and utilization of plant products derived from genetically modified organisms (GMOs) and non-GMOs. The most extensive user and manager of terrestrial ecosystems is agriculture which is also the de facto steward of natural resources. As stated by Miller (2008) no other industry or institution comes close to the comparative advantage held for this vital responsibility while simultaneously providing food, fiber, and other biology-based products, including energy. Since modern commercial agriculture is transitioning from the production of bulk commodities to the provision of standardized products and specific-attribute raw materials for differentiated markets, we can argue that processes such as mass cultivation of microalgae and the concept of bio-refineries be seen as part of a `new' agronomy. EBRU is currently exploring the integration of bioprocess technologies using microalgae as biocatalysts to achieve waste-water treatment, water polishing and endocrine disruptor (EDC) removal, sustainable energy production, and exploitation of the resultant biomass in agriculture as foliar fertilizer and seed coatings, and for commercial extraction of bulk commodities such as bio-oils and lecithin. This presentation will address efforts to establish a fully operational solar-driven microalgae bio-refinery for use not only in waste remediation but to transform waste and biomass to energy, fuels, and other useful materials (valorisation), with particular focus on environmental quality and sustainability goals.

  13. Nitroaromatic carcinogens in diesel soot: a review of laboratory findings.

    PubMed Central

    Wei, E T; Shu, H P

    1983-01-01

    The automobile industry plans to increase production of diesel-powered passenger cars because diesel engines provide better fuel economy than conventional gasoline engines. Diesel engines, however, produce more soot, and increased use of diesel cars will result in more discharge of diesel soot into the atmosphere. Recently, a new class of chemicals, called nitroaromatic compounds, have been identified in chemical extracts of diesel soot. Some of these nitroaromatic compounds produce mutations when tested in in vitro bacterial and mammalian cell assays, and cancer when tested in animals. Here, we review the relevance of these new laboratory findings to current deliberations over emission standards for particles from diesel cars. PMID:6192732

  14. PM, carbon, and PAH emissions from a diesel generator fuelled with soy-biodiesel blends.

    PubMed

    Tsai, Jen-Hsiung; Chen, Shui-Jen; Huang, Kuo-Lin; Lin, Yuan-Chung; Lee, Wen-Jhy; Lin, Chih-Chung; Lin, Wen-Yinn

    2010-07-15

    Biodiesels have received increasing attention as alternative fuels for diesel engines and generators. This study investigates the emissions of particulate matter (PM), total carbon (TC), e.g., organic/elemental carbons, and polycyclic aromatic hydrocarbons (PAHs) from a diesel generator fuelled with soy-biodiesel blends. Among the tested diesel blends (B0, B10 (10 vol% soy-biodiesel), B20, and B50), B20 exhibited the lowest PM emission concentration despite the loads (except the 5 kW case), whereas B10 displayed lower PM emission factors when operating at 0 and 10 kW than the other fuel blends. The emission concentrations or factors of EC, OC, and TC were the lowest when B10 or B20 was used regardless of the loading. Under all tested loads, the average concentrations of total-PAHs emitted from the generator using the B10 and B20 were lower (by 38% and 28%, respectively) than those using pure petroleum diesel fuel (B0), while the emission factors of total-PAHs decreased with an increasing ratio of biodiesel to premium diesel. With an increasing loading, although the brake specific fuel consumption decreased, the energy efficiency increased despite the bio/petroleum diesel ratio. Therefore, soy-biodiesel is promising for use as an alternative fuel for diesel generators to increase energy efficiency and reduce the PM, carbon, and PAH emissions. 2010 Elsevier B.V. All rights reserved.

  15. Top value platform chemicals: bio-based production of organic acids.

    PubMed

    Becker, Judith; Lange, Anna; Fabarius, Jonathan; Wittmann, Christoph

    2015-12-01

    Driven by the quest for sustainability, recent years have seen a tremendous progress in bio-based production routes from renewable raw materials to commercial goods. Particularly, the production of organic acids has crystallized as a competitive and fast-evolving field, related to the broad applicability of organic acids for direct use, as polymer building blocks, and as commodity chemicals. Here, we review recent advances in metabolic engineering and industrial market scenarios with focus on organic acids as top value products from biomass, accessible through fermentation and biotransformation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Stop and Smell the Fries: Collaborative Bio-Fuel Research in the Community College

    ERIC Educational Resources Information Center

    Mojock, Charles; Keefer, Robert; Summer, David

    2008-01-01

    Our project was to provide a community college undergraduate an authentic research opportunity in a science discipline. To do this, students who have completed a two-semester sequence in chemistry or physics were recruited to investigate the technical aspects of producing economically viable bio-diesel fuel from donated discarded restaurant…

  17. Primary gas- and particle-phase emissions and secondary organic aerosol production from gasoline and diesel off-road engines.

    PubMed

    Gordon, Timothy D; Tkacik, Daniel S; Presto, Albert A; Zhang, Mang; Jathar, Shantanu H; Nguyen, Ngoc T; Massetti, John; Truong, Tin; Cicero-Fernandez, Pablo; Maddox, Christine; Rieger, Paul; Chattopadhyay, Sulekha; Maldonado, Hector; Maricq, M Matti; Robinson, Allen L

    2013-12-17

    Dilution and smog chamber experiments were performed to characterize the primary emissions and secondary organic aerosol (SOA) formation from gasoline and diesel small off-road engines (SOREs). These engines are high emitters of primary gas- and particle-phase pollutants relative to their fuel consumption. Two- and 4-stroke gasoline SOREs emit much more (up to 3 orders of magnitude more) nonmethane organic gases (NMOGs), primary PM and organic carbon than newer on-road gasoline vehicles (per kg of fuel burned). The primary emissions from a diesel transportation refrigeration unit were similar to those of older, uncontrolled diesel engines used in on-road vehicles (e.g., premodel year 2007 heavy-duty diesel trucks). Two-strokes emitted the largest fractional (and absolute) amount of SOA precursors compared to diesel and 4-stroke gasoline SOREs; however, 35-80% of the NMOG emissions from the engines could not be speciated using traditional gas chromatography or high-performance liquid chromatography. After 3 h of photo-oxidation in a smog chamber, dilute emissions from both 2- and 4-stroke gasoline SOREs produced large amounts of semivolatile SOA. The effective SOA yield (defined as the ratio of SOA mass to estimated mass of reacted precursors) was 2-4% for 2- and 4-stroke SOREs, which is comparable to yields from dilute exhaust from older passenger cars and unburned gasoline. This suggests that much of the SOA production was due to unburned fuel and/or lubrication oil. The total PM contribution of different mobile source categories to the ambient PM burden was calculated by combining primary emission, SOA production and fuel consumption data. Relative to their fuel consumption, SOREs are disproportionately high total PM sources; however, the vastly greater fuel consumption of on-road vehicles renders them (on-road vehicles) the dominant mobile source of ambient PM in the Los Angeles area.

  18. Bio-hydrogen production from tempeh and tofu processing wastes via fermentation process using microbial consortium: A mini-review

    NASA Astrophysics Data System (ADS)

    Rengga, Wara Dyah Pita; Wati, Diyah Saras; Siregar, Riska Yuliana; Wulandari, Ajeng Riswanti; Lestari, Adela Ayu; Chafidz, Achmad

    2017-03-01

    One of alternative energies that can replace fossil fuels is hydrogen. Hydrogen can be used to generate electricity and to power combustion engines for transportation. Bio-hydrogen produced from tempeh and tofu processing waste can be considered as a renewable energy. Bio-hydrogen produced from tempeh and tofu processing waste is beneficial because the waste of soybean straw and tofu processing waste is plentiful, cheap, renewable and biodegradable. Specification of tempeh and tofu processing waste were soybean straw and sludge of tofu processing. They contain carbohydrates (cellulose, hemicellulose, and lignin) and methane. This paper reviews the optimal condition to produce bio-hydrogen from tempeh and tofu processing waste. The production of bio-hydrogen used microbial consortium which were enriched from cracked cereals and mainly dominated by Clostridium butyricum and Clostridium roseum. The production process of bio-hydrogen from tempeh and tofu processing waste used acid pre-treatment with acid catalyzed hydrolysis to cleave the bond of hemicellulose and cellulose chains contained in biomass. The optimal production of bio-hydrogen has a yield of 6-6.8 mL/g at 35-60 °C, pH 5.5-7 in hydraulic retention time (HRT) less than 16 h. The production used a continuous system in an anaerobic digester. This condition can be used as a reference for the future research.

  19. Life cycle assessment of the production of hydrogen and transportation fuels from corn stover via fast pyrolysis

    NASA Astrophysics Data System (ADS)

    Zhang, Yanan; Hu, Guiping; Brown, Robert C.

    2013-06-01

    This life cycle assessment evaluates and quantifies the environmental impacts of the production of hydrogen and transportation fuels from the fast pyrolysis and upgrading of corn stover. Input data for this analysis come from Aspen Plus modeling, a GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model database and a US Life Cycle Inventory Database. SimaPro 7.3 software is employed to estimate the environmental impacts. The results indicate that the net fossil energy input is 0.25 MJ and 0.23 MJ per km traveled for a light-duty vehicle fueled by gasoline and diesel fuel, respectively. Bio-oil production requires the largest fossil energy input. The net global warming potential (GWP) is 0.037 kg CO2eq and 0.015 kg CO2eq per km traveled for a vehicle fueled by gasoline and diesel fuel, respectively. Vehicle operations contribute up to 33% of the total positive GWP, which is the largest greenhouse gas footprint of all the unit processes. The net GWPs in this study are 88% and 94% lower than for petroleum-based gasoline and diesel fuel (2005 baseline), respectively. Biomass transportation has the largest impact on ozone depletion among all of the unit processes. Sensitivity analysis shows that fuel economy, transportation fuel yield, bio-oil yield, and electricity consumption are the key factors that influence greenhouse gas emissions.

  20. Selected physical properties of various diesel blends

    NASA Astrophysics Data System (ADS)

    Hlaváčová, Zuzana; Božiková, Monika; Hlaváč, Peter; Regrut, Tomáš; Ardonová, Veronika

    2018-01-01

    The quality determination of biofuels requires identifying the chemical and physical parameters. The key physical parameters are rheological, thermal and electrical properties. In our study, we investigated samples of diesel blends with rape-seed methyl esters content in the range from 3 to 100%. In these, we measured basic thermophysical properties, including thermal conductivity and thermal diffusivity, using two different transient methods - the hot-wire method and the dynamic plane source. Every thermophysical parameter was measured 100 times using both methods for all samples. Dynamic viscosity was measured during the heating process under the temperature range 20-80°C. A digital rotational viscometer (Brookfield DV 2T) was used for dynamic viscosity detection. Electrical conductivity was measured using digital conductivity meter (Model 1152) in a temperature range from -5 to 30°C. The highest values of thermal parameters were reached in the diesel sample with the highest biofuel content. The dynamic viscosity of samples increased with higher concentration of bio-component rapeseed methyl esters. The electrical conductivity of blends also increased with rapeseed methyl esters content.

  1. Biomass fast pyrolysis for bio-oil production in a fluidized bed reactor under hot flue atmosphere.

    PubMed

    Li, Ning; Wang, Xiang; Bai, Xueyuan; Li, Zhihe; Zhang, Ying

    2015-10-01

    Fast pyrolysis experiments of corn stalk were performed to investigate the optimal pyrolysis conditions of temperature and bed material for maximum bio-oil production under flue gas atmosphere. Under the optimized pyrolysis conditions, furfural residue, xylose residue and kelp seaweed were pyrolyzed to examine their yield distributions of products, and the physical characteristics of bio-oil were studied. The best flow rate of the flue gas at selected temperature is obtained, and the pyrolysis temperature at 500 degrees C and dolomite as bed material could give a maximum bio-oil yield. The highest bio-oil yield of 43.3% (W/W) was achieved from corn stalk under the optimal conditions. Two main fractions were recovered from the stratified bio-oils: light oils and heavy oils. The physical properties of heavy oils from all feedstocks varied little. The calorific values of heavy oils were much higher than that of light oils. The pyrolysis gas could be used as a gaseous fuel due to a relatively high calorific value of 6.5-8.5 MJ/m3.

  2. Bio-oil production of softwood and hardwood forest industry residues through fast and intermediate pyrolysis and its chromatographic characterization.

    PubMed

    Torri, Isadora Dalla Vecchia; Paasikallio, Ville; Faccini, Candice Schmitt; Huff, Rafael; Caramão, Elina Bastos; Sacon, Vera; Oasmaa, Anja; Zini, Claudia Alcaraz

    2016-01-01

    Bio-oils were produced through intermediate (IP) and fast pyrolysis (FP), using Eucalyptus sp. (hardwood) and Picea abies (softwood), wood wastes produced in large scale in Pulp and Paper industries. Characterization of these bio-oils was made using GC/qMS and GC×GC/TOFMS. The use of GC×GC provided a broader characterization of bio-oils and it allowed tracing potential markers of hardwood bio-oil, such as dimethoxy-phenols, which might co-elute in 1D-GC. Catalytic FP increased the percentage of aromatic hydrocarbons in P. abies bio-oil, indicating its potential for fuel production. However, the presence of polyaromatic hydrocarbons (PAH) draws attention to the need of a proper management of pyrolysis process in order to avoid the production of toxic compounds and also to the importance of GC×GC/TOFMS use to avoid co-elutions and consequent inaccuracies related to identification and quantification associated with GC/qMS. Ketones and phenols were the major bio-oil compounds and they might be applied to polymer production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Conventional engine technology. Volume 2: Status of diesel engine technology

    NASA Technical Reports Server (NTRS)

    Schneider, H. W.

    1981-01-01

    The engines of diesel cars marketed in the United States were examined. Prominent design features, performance characteristics, fuel economy and emissions data were compared. Specific problems, in particular those of NO and smoke emissions, the effects of increasing dieselization on diesel fuel price and availability, current R&D work and advanced diesel concepts are discussed. Diesel cars currently have a fuel economy advantage over gasoline engine powered cars. Diesel drawbacks (noise and odor) were reduced to a less objectionable level. An equivalent gasoline engine driveability was obtained with turbocharging. Diesel manufacturers see a growth in the diesel market for the next ten years. Uncertainties regarding future emission regulation may inhibit future diesel production investments. With spark ignition engine technology advancing in the direction of high compression ratios, the fuel economy advantages of the diesel car is expected to diminish. To return its fuel economy lead, the diesel's potential for future improvement must be used.

  4. Study of Application of Vinasse from Bio-ethanol Production to Farmland

    NASA Astrophysics Data System (ADS)

    Chen, Yan; Shinogi, Yoshiyuki

    During bio-ethanol production from sugarcane molasses, large amounts of vinasse, which is strongly acidic with high COD and BOD, is produced as a by-product. Disposal of vinasse is one restrictive problem for sustainable bio-ethanol production. In this study, possible application of vinasse to farmland was investigated. First, the staple characteristics of vinasse were determined. Second, availability of nutrients such as nitrogen and potassium to crops and dynamics in the soil environment were studied in the laboratory, and crop growth experiments were carried out in the field. Farmland application of vinasse as a substitute for one third of the potassium showed no significant damage to the growth of red-radishes and tomatoes. When large amounts of vinasse are applied to farmland as a substitution for the nitrogen in traditional chemical fertilizers, nitrogen-hunger especially immediately after application is expected. In addition, it is necessary to take into consideration the leaching of ions and the dark material in the vinasse for proper timing of application and soil conditions.

  5. Construction of an ultrahigh-density genetic linkage map for Jatropha curcas L. and identification of QTL for fruit yield.

    PubMed

    Xia, Zhiqiang; Zhang, Shengkui; Wen, Mingfu; Lu, Cheng; Sun, Yufang; Zou, Meiling; Wang, Wenquan

    2018-01-01

    As an important biofuel plant, the demand for higher yield Jatropha curcas L. is rapidly increasing. However, genetic analysis of Jatropha and molecular breeding for higher yield have been hampered by the limited number of molecular markers available. An ultrahigh-density linkage map for a Jatropha mapping population of 153 individuals was constructed and covered 1380.58 cM of the Jatropha genome, with average marker density of 0.403 cM. The genetic linkage map consisted of 3422 SNP and indel markers, which clustered into 11 linkage groups. With this map, 13 repeatable QTLs (reQTLs) for fruit yield traits were identified. Ten reQTLs, qNF - 1 , qNF - 2a , qNF - 2b , qNF - 2c , qNF - 3 , qNF - 4 , qNF - 6 , qNF - 7a , qNF - 7b and qNF - 8, that control the number of fruits (NF) mapped to LGs 1, 2, 3, 4, 6, 7 and 8, whereas three reQTLs, qTWF - 1 , qTWF - 2 and qTWF - 3, that control the total weight of fruits (TWF) mapped to LGs 1, 2 and 3, respectively. It is interesting that there are two candidate critical genes, which may regulate Jatropha fruit yield. We also identified three pleiotropic reQTL pairs associated with both the NF and TWF traits. This study is the first to report an ultrahigh-density Jatropha genetic linkage map construction, and the markers used in this study showed great potential for QTL mapping. Thirteen fruit-yield reQTLs and two important candidate genes were identified based on this linkage map. This genetic linkage map will be a useful tool for the localization of other economically important QTLs and candidate genes for Jatropha .

  6. Recycling of food waste for fuel precursors using an integrated bio-refinery approach.

    PubMed

    Karthikeyan, O P; Nguyen Hao, H T; Razaghi, Ali; Heimann, Kirsten

    2018-01-01

    The main aim was to integrate FW-recycling with cultivation of Rhodotorula glutinis and anaerobic digestion (AD) for bio-energy and -fuel recovery. Mixed FW was mechanically macerated (Pcon) and hydrolysed (at 250gL -1 water) via chemical (Ch), thermal (Th) and TCh (combined Ch and Th) treatments. Cleared hydrolysates from individual pre-treatment processes were used as culture medium for cultivation of R. glutinis, while the residual solids (RS) were subjected to AD. Pcon cultivation yielded maximal R. glutinis dry weight biomass (5.18gL -1 ) and total fatty acid contents (1.03gg -1 DW biomass ). Dominant fatty acid methyl esters (FAME) were Palmitic - (C 16:0 -26%); Stearic - (C 18:0 -17%) and Oleic acids (C 18:1 -38%), ideal for bio-diesel production. Highest methane yields (actual ∼0.139m 3 kg -1 volatile solids) were measured from AD of Th-derived RS. Thus integrated FW recycling approaches will be more feasible for generating energy and economic incentives. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Are agricultural and natural sources of bio-products important for modern regenerative medicine? A review.

    PubMed

    Nowacki, Maciej; Nowacka, Katarzyna; Kloskowski, Tomasz; Pokrywczyńska, Marta; Tyloch, Dominik; Rasmus, Marta; Warda, Karolina; Drewa, Tomasz

    2017-05-11

    [b] Abstract Introduction and objectives[/b]. As tissue engineering and regenerative medicine have continued to evolve within the field of biomedicine, the fundamental importance of bio-products has become increasingly apparent. This true not only in cases where they are derived directly from the natural environment, but also when animals and plants are specially bred and cultivated for their production. [b]Objective.[/b] The study aims to present and assess the global influence and importance of selected bio-products in current regenerative medicine via a broad review of the existing literature. In particular, attention is paid to the matrices, substances and grafts created from plants and animals which could potentially be used in experimental and clinical regeneration, or in reconstructive procedures. [b]Summary.[/b] Evolving trends in agriculture are likely to play a key role in the future development of a number of systemic and local medical procedures within tissue engineering and regenerative medicine. This is in addition to the use of bio-products derived from the natural environment which are found to deliver positive results in the treatment of prospective patients.

  8. Utilisation of Used Palm Oil as an Alternative Fuel in Thailand

    NASA Astrophysics Data System (ADS)

    Permchart, W.; Tanatvanit, S.

    2007-10-01

    This paper summarises the overview of the current situation of alternative energies in Thailand. The utilisation of bio-diesel as an alternative energy in two economic sectors (i.e. transport and industrial sectors), which have the largest energy consumption in the country, is mainly presented because it has seemed to be the most promising project among various energy conservation projects of the Thai government. Actually, there is another bio-fuel project, namely, the ethanol project for blending with gasoline to produce gasohol (E10) used in gasoline engines, which has been developed and already become to an important policy for energy conservation of the country. Due to much more large number of diesel has been utilised, the bio-diesel project has been the first priority one to solve the petroleum crisis problems. However, it is remarked that the utilisation of bio-diesel as an alternative fuel seems to be unsatisfactory because of various reasons. Some issues in terms of both government policies and technical problems have not been clearly addressed. Therefore, this paper not only presents the utilisation of bio-diesel in these two sectors but also discusses the production processes, characterisations and some experimental testing results of bio-diesel.

  9. Biodiesel production from crude Jatropha oil catalyzed by non-commercial immobilized heterologous Rhizopus oryzae and Carica papaya lipases.

    PubMed

    Rodrigues, J; Canet, A; Rivera, I; Osório, N M; Sandoval, G; Valero, F; Ferreira-Dias, S

    2016-08-01

    The aim of this study was to evaluate the feasibility of biodiesel production by transesterification of Jatropha oil with methanol, catalyzed by non-commercial sn-1,3-regioselective lipases. Using these lipases, fatty acid methyl esters (FAME) and monoacylglycerols are produced, avoiding the formation of glycerol as byproduct. Heterologous Rhizopus oryzae lipase (rROL) immobilized on different synthetic resins and Carica papaya lipase (rCPL) immobilized on Lewatit VP OC 1600 were tested. Reactions were performed at 30°C, with seven stepwise methanol additions. For all biocatalysts, 51-65% FAME (theoretical maximum=67%, w/w) was obtained after 4h transesterification. Stability tests were performed in 8 or 10 successive 4h-batches, either with or without rehydration of the biocatalyst between each two consecutive batches. Activity loss was much faster when biocatalysts were rehydrated. For rROL, half-life times varied from 16 to 579h. rROL on Lewatit VPOC 1600 was more stable than for rCPL on the same support. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Kinetic modelling of methane production during bio-electrolysis from anaerobic co-digestion of sewage sludge and food waste.

    PubMed

    Prajapati, Kalp Bhusan; Singh, Rajesh

    2018-05-10

    In present study batch tests were performed to investigate the enhancement in methane production under bio-electrolysis anaerobic co-digestion of sewage sludge and food waste. The bio-electrolysis reactor system (B-EL) yield more methane 148.5 ml/g COD in comparison to reactor system without bio-electrolysis (B-CONT) 125.1 ml/g COD. Whereas bio-electrolysis reactor system (C-EL) Iron Scraps amended yield lesser methane (51.2 ml/g COD) in comparison to control bio-electrolysis reactor system without Iron scraps (C-CONT - 114.4 ml/g COD). Richard and Exponential model were best fitted for cumulative methane production and biogas production rates respectively as revealed modelling study. The best model fit for the different reactors was compared by Akaike's Information Criterion (AIC) and Bayesian Information Criterion (BIC). The bioelectrolysis process seems to be an emerging technology with lesser the loss in cellulase specific activity with increasing temperature from 50 to 80 °C. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Immobilized anaerobic fermentation for bio-fuel production by Clostridium co-culture.

    PubMed

    Xu, Lei; Tschirner, Ulrike

    2014-08-01

    Clostridium thermocellum/Clostridium thermolacticum co-culture fermentation has been shown to be a promising way of producing ethanol from several carbohydrates. In this research, immobilization techniques using sodium alginate and alkali pretreatment were successfully applied on this co-culture to improve the bio-ethanol fermentation performance during consolidated bio-processing (CBP). The ethanol yield obtained increased by over 60 % (as a percentage of the theoretical maximum) as compared to free cell fermentation. For cellobiose under optimized conditions, the ethanol yields were approaching about 85 % of the theoretical efficiency. To examine the feasibility of this immobilization co-culture on lignocellulosic biomass conversion, untreated and pretreated aspen biomasses were also used for fermentation experiments. The immobilized co-culture shows clear benefits in bio-ethanol production in the CBP process using pretreated aspen. With a 3-h, 9 % NaOH pretreatment, the aspen powder fermentation yields approached 78 % of the maximum theoretical efficiency, which is almost twice the yield of the untreated aspen fermentation.

  12. Intermediate Volatility Organic Compound Emissions from On-Road Diesel Vehicles: Chemical Composition, Emission Factors, and Estimated Secondary Organic Aerosol Production.

    PubMed

    Zhao, Yunliang; Nguyen, Ngoc T; Presto, Albert A; Hennigan, Christopher J; May, Andrew A; Robinson, Allen L

    2015-10-06

    Emissions of intermediate-volatility organic compounds (IVOCs) from five on-road diesel vehicles and one off-road diesel engine were characterized during dynamometer testing. The testing evaluated the effects of driving cycles, fuel composition and exhaust aftertreatment devices. On average, more than 90% of the IVOC emissions were not identified on a molecular basis, instead appearing as an unresolved complex mixture (UCM) during gas-chromatography mass-spectrometry analysis. Fuel-based emissions factors (EFs) of total IVOCs (speciated + unspeciated) depend strongly on aftertreatment technology and driving cycle. Total-IVOC emissions from vehicles equipped with catalyzed diesel particulate filters (DPF) are substantially lower (factor of 7 to 28, depending on driving cycle) than from vehicles without any exhaust aftertreatment. Total-IVOC emissions from creep and idle operations are substantially higher than emissions from high-speed operations. Although the magnitude of the total-IVOC emissions can vary widely, there is little variation in the IVOC composition across the set of tests. The new emissions data are combined with published yield data to investigate secondary organic aerosol (SOA) formation. SOA production from unspeciated IVOCs is estimated using surrogate compounds, which are assigned based on gas-chromatograph retention time and mass spectral signature of the IVOC UCM. IVOCs contribute the vast majority of the SOA formed from exhaust from on-road diesel vehicles. The estimated SOA production is greater than predictions by previous studies and substantially higher than primary organic aerosol. Catalyzed DPFs substantially reduce SOA formation potential of diesel exhaust, except at low speed operations.

  13. Chlamydomonas as a model for biofuels and bio-products production.

    PubMed

    Scranton, Melissa A; Ostrand, Joseph T; Fields, Francis J; Mayfield, Stephen P

    2015-05-01

    Developing renewable energy sources is critical to maintaining the economic growth of the planet while protecting the environment. First generation biofuels focused on food crops like corn and sugarcane for ethanol production, and soybean and palm for biodiesel production. Second generation biofuels based on cellulosic ethanol produced from terrestrial plants, has received extensive funding and recently pilot facilities have been commissioned, but to date output of fuels from these sources has fallen well short of what is needed. Recent research and pilot demonstrations have highlighted the potential of algae as one of the most promising sources of sustainable liquid transportation fuels. Algae have also been established as unique biofactories for industrial, therapeutic, and nutraceutical co-products. Chlamydomonas reinhardtii's long established role in the field of basic research in green algae has paved the way for understanding algal metabolism and developing genetic engineering protocols. These tools are now being utilized in C. reinhardtii and in other algal species for the development of strains to maximize biofuels and bio-products yields from the lab to the field. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  14. Current Strategies for the Detoxification of Jatropha curcas Seed Cake: A Review.

    PubMed

    Gomes, Taisa G; Hadi, Sámed I I A; Costa Alves, Gabriel S; Mendonça, Simone; De Siqueira, Felix G; Miller, Robert N G

    2018-03-21

    Jatropha curcas is an important oilseed plant, with considerable potential in the development of biodiesel. Although Jatropha seed cake, the byproduct of oil extraction, is a residue rich in nitrogen, phosphorus, potassium, and carbon, with high protein content suitable for application in animal feed, the presence of toxic phorbol esters limits its application in feed supplements and fertilizers. This review summarizes the current methods available for detoxification of this residue, based upon chemical, physical, biological, or combined processes. The advantages and disadvantages of each process are discussed, and future directions involving genomic and proteomic approaches for advancing our understanding of biodegradation processes involving microorganisms are highlighted.

  15. Western Kentucky University Research Foundation Biodiesel Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Wei-Ping; Cao, Yan

    2013-03-15

    Petroleum-based liquid hydrocarbons is exclusively major energy source in the transportation sector. Thus, it is the major CO{sub 2} source which is the associated with greenhouse effect. In the United States alone, petroleum consumption in the transportation sector approaches 13.8 million barrels per day (Mbbl/d). It is corresponding to a release of 0.53 gigatons of carbon per year (GtC/yr), which accounts for approximate 7.6 % of the current global release of CO{sub 2} from all of the fossil fuel usage (7 GtC/yr). For the long term, the conventional petroleum production is predicted to peak in as little as the nextmore » 10 years to as high as the next 50 years. Negative environmental consequences, the frequently roaring petroleum prices, increasing petroleum utilization and concerns about competitive supplies of petroleum have driven dramatic interest in producing alternative transportation fuels, such as electricity-based, hydrogen-based and bio-based transportation alternative fuels. Use of either of electricity-based or hydrogen-based alternative energy in the transportation sector is currently laden with technical and economical challenges. The current energy density of commercial batteries is 175 Wh/kg of battery. At a storage pressure of 680 atm, the lower heating value (LHV) of H{sub 2} is 1.32 kWh/liter. In contrast, the corresponding energy density for gasoline can reach as high as 8.88 kWh/liter. Furthermore, the convenience of using a liquid hydrocarbon fuel through the existing infrastructures is a big deterrent to replacement by both batteries and hydrogen. Biomass-derived ethanol and bio-diesel (biofuels) can be two promising and predominant U.S. alternative transportation fuels. Both their energy densities and physical properties are comparable to their relatives of petroleum-based gasoline and diesel, however, biofuels are significantly environmental-benign. Ethanol can be made from the sugar-based or starch-based biomass materials, which is

  16. Dual application of duckweed and azolla plants for wastewater treatment and renewable fuels and petrochemicals production

    PubMed Central

    2014-01-01

    Background Shortages in fresh water supplies today affects more than 1 billion people worldwide. Phytoremediation strategies, based on the abilities of aquatic plants to recycle nutrients offer an attractive solution for the bioremediation of water pollution and represents one of the most globally researched issues. The subsequent application of the biomass from the remediation for the production of fuels and petrochemicals offers an ecologically friendly and cost-effective solution for water pollution problems and production of value-added products. Results In this paper, the feasibility of the dual application of duckweed and azolla aquatic plants for wastewater treatment and production of renewable fuels and petrochemicals is explored. The differences in absorption rates of the key wastewater nutrients, ammonium and phosphorus by these aquatic macrophytes were used as the basis for optimization of the composition of wastewater effluents. Analysis of pyrolysis products showed that azolla and algae produce a similar range of bio-oils that contain a large spectrum of petrochemicals including straight-chain C10-C21 alkanes, which can be directly used as diesel fuel supplement, or a glycerin-free component of biodiesel. Pyrolysis of duckweed produces a different range of bio-oil components that can potentially be used for the production of “green” gasoline and diesel fuel using existing techniques, such as catalytic hydrodeoxygenation. Conclusions Differences in absorption rates of the key wastewater nutrients, ammonium and phosphorus by different aquatic macrophytes can be used for optimization of composition of wastewater effluents. The generated data suggest that the composition of the petrochemicals can be modified in a targeted fashion, not only by using different species, but also by changing the source plants’ metabolic profile, by exposing them to different abiotic or biotic stresses. This study presents an attractive, ecologically friendly and cost

  17. Dual application of duckweed and azolla plants for wastewater treatment and renewable fuels and petrochemicals production.

    PubMed

    Muradov, Nazim; Taha, Mohamed; Miranda, Ana F; Kadali, Krishna; Gujar, Amit; Rochfort, Simone; Stevenson, Trevor; Ball, Andrew S; Mouradov, Aidyn

    2014-02-28

    Shortages in fresh water supplies today affects more than 1 billion people worldwide. Phytoremediation strategies, based on the abilities of aquatic plants to recycle nutrients offer an attractive solution for the bioremediation of water pollution and represents one of the most globally researched issues. The subsequent application of the biomass from the remediation for the production of fuels and petrochemicals offers an ecologically friendly and cost-effective solution for water pollution problems and production of value-added products. In this paper, the feasibility of the dual application of duckweed and azolla aquatic plants for wastewater treatment and production of renewable fuels and petrochemicals is explored. The differences in absorption rates of the key wastewater nutrients, ammonium and phosphorus by these aquatic macrophytes were used as the basis for optimization of the composition of wastewater effluents. Analysis of pyrolysis products showed that azolla and algae produce a similar range of bio-oils that contain a large spectrum of petrochemicals including straight-chain C10-C21 alkanes, which can be directly used as diesel fuel supplement, or a glycerin-free component of biodiesel. Pyrolysis of duckweed produces a different range of bio-oil components that can potentially be used for the production of "green" gasoline and diesel fuel using existing techniques, such as catalytic hydrodeoxygenation. Differences in absorption rates of the key wastewater nutrients, ammonium and phosphorus by different aquatic macrophytes can be used for optimization of composition of wastewater effluents. The generated data suggest that the composition of the petrochemicals can be modified in a targeted fashion, not only by using different species, but also by changing the source plants' metabolic profile, by exposing them to different abiotic or biotic stresses. This study presents an attractive, ecologically friendly and cost-effective solution for efficient bio

  18. Thermal processing of paper sludge and characterisation of its pyrolysis products.

    PubMed

    Strezov, Vladimir; Evans, Tim J

    2009-05-01

    Paper sludge is a waste product from the paper and pulp manufacturing industry that is generally disposed of in landfills. Pyrolysis of paper sludge can potentially provide an option for managing this waste by thermal conversion to higher calorific value fuels, bio-gas, bio-oils and charcoal. This work investigates the properties of paper sludge during pyrolysis and energy required to perform thermal conversion. The products of paper sludge pyrolysis were also investigated to determine their properties and potential energy value. The dominant volatile species of paper sludge pyrolysis at 10 degrees C/min were found to be CO and CO(2), contributing to almost 25% of the paper sludge dry weight loss at 500 degrees C. The hydrocarbons (CH(4), C(2)H(4), C(2)H(6)) and hydrogen contributed to only 1% of the total weight loss. The bio-oils collected at 500 degrees C were primarily comprised of organic acids with the major contribution being linoleic acid, 2,4-decadienal acid and oleic acid. The high acidic content indicates that in order to convert the paper sludge bio-oil to bio-diesel or petrochemicals, further upgrading would be necessary. The charcoal produced at 500 degrees C had a calorific value of 13.3MJ/kg.

  19. Demonstration of Parallel Algal Processing: Production of Renewable Diesel Blendstock and a High-Value Chemical Intermediate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knoshaug, Eric P; Mohagheghi, Ali; Nagle, Nicholas J

    Co-production of high-value chemicals such as succinic acid from algal sugars is a promising route to enabling conversion of algal lipids to a renewable diesel blendstock. Biomass from the green alga Scenedesmus acutus was acid pretreated and the resulting slurry separated into its solid and liquor components using charged polyamide induced flocculation and vacuum filtration. Over the course of a subsequent 756 hours continuous fermentation of the algal liquor with Actinobacillus succinogenes 130Z, we achieved maximum productivity, process conversion yield, and titer of 1.1 g L-1 h-1, 0.7 g g-1 total sugars, and 30.5 g L-1 respectively. Succinic acid wasmore » recovered from fermentation media with a yield of 60% at 98.4% purity while lipids were recovered from the flocculated cake at 83% yield with subsequent conversion through deoxygenation and hydroisomerization to a renewable diesel blendstock. This work is a first-of-its-kind demonstration of a novel integrated conversion process for algal biomass to produce fuel and chemical products of sufficient quality to be blend-ready feedstocks for further processing.« less

  20. Method to upgrade bio-oils to fuel and bio-crude

    DOEpatents

    Steele, Philip H; Pittman, Jr., Charles U; Ingram, Jr., Leonard L; Gajjela, Sanjeev; Zhang, Zhijun; Bhattacharya, Priyanka

    2013-12-10

    This invention relates to a method and device to produce esterified, olefinated/esterified, or thermochemolytic reacted bio-oils as fuels. The olefinated/esterified product may be utilized as a biocrude for input to a refinery, either alone or in combination with petroleum crude oils. The bio-oil esterification reaction is catalyzed by addition of alcohol and acid catalyst. The olefination/esterification reaction is catalyzed by addition of resin acid or other heterogeneous catalyst to catalyze olefins added to previously etherified bio-oil; the olefins and alcohol may also be simultaneously combined and catalyzed by addition of resin acid or other heterogeneous catalyst to produce the olefinated/esterified product.

  1. Bio-based production of organic acids with Corynebacterium glutamicum

    PubMed Central

    Wieschalka, Stefan; Blombach, Bastian; Bott, Michael; Eikmanns, Bernhard J

    2013-01-01

    The shortage of oil resources, the steadily rising oil prices and the impact of its use on the environment evokes an increasing political, industrial and technical interest for development of safe and efficient processes for the production of chemicals from renewable biomass. Thus, microbial fermentation of renewable feedstocks found its way in white biotechnology, complementing more and more traditional crude oil-based chemical processes. Rational strain design of appropriate microorganisms has become possible due to steadily increasing knowledge on metabolism and pathway regulation of industrially relevant organisms and, aside from process engineering and optimization, has an outstanding impact on improving the performance of such hosts. Corynebacterium glutamicum is well known as workhorse for the industrial production of numerous amino acids. However, recent studies also explored the usefulness of this organism for the production of several organic acids and great efforts have been made for improvement of the performance. This review summarizes the current knowledge and recent achievements on metabolic engineering approaches to tailor C. glutamicum for the bio-based production of organic acids. We focus here on the fermentative production of pyruvate, l-and d-lactate, 2-ketoisovalerate, 2-ketoglutarate, and succinate. These organic acids represent a class of compounds with manifold application ranges, e.g. in pharmaceutical and cosmetics industry, as food additives, and economically very interesting, as precursors for a variety of bulk chemicals and commercially important polymers. Funding Information Work in the laboratories of the authors was supported by the Fachagentur Nachwachsende Rohstoffe (FNR) of the Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz (BMELV; FNR Grants 220-095-08A and 220-095-08D; Bio-ProChemBB project, ERA-IB programme), by the Deutsche Bundesstiftung Umwelt (DBU Grant AZ13040/05) and the Evonik Degussa AG. PMID

  2. Effect of Jatropha curcas Peptide Fractions on the Angiotensin I-Converting Enzyme Inhibitory Activity

    PubMed Central

    Segura-Campos, Maira R.; Peralta-González, Fanny; Castellanos-Ruelas, Arturo; Chel-Guerrero, Luis A.; Betancur-Ancona, David A.

    2013-01-01

    Hypertension is one of the most common worldwide diseases in humans. Angiotensin I-converting enzyme (ACE) plays an important role in regulating blood pressure and hypertension. An evaluation was done on the effect of Alcalase hydrolysis of defatted Jatropha curcas kernel meal on ACE inhibitory activity in the resulting hydrolysate and its purified fractions. Alcalase exhibited broad specificity and produced a protein hydrolysate with a 21.35% degree of hydrolysis and 34.87% ACE inhibition. Ultrafiltration of the hydrolysate produced peptide fractions with increased biological activity (24.46–61.41%). Hydrophobic residues contributed substantially to the peptides' inhibitory potency. The 5–10 and <1 kDa fractions were selected for further fractionation by gel filtration chromatography. ACE inhibitory activity (%) ranged from 22.66 to 45.96% with the 5–10 kDa ultrafiltered fraction and from 36.91 to 55.83% with the <1 kDa ultrafiltered fraction. The highest ACE inhibitory activity was observed in F2 (IC50 = 6.7 μg/mL) from the 5–10 kDa fraction and F1 (IC50 = 4.78 μg/mL) from the <1 kDa fraction. ACE inhibitory fractions from Jatropha kernel have potential applications in alternative hypertension therapies, adding a new application for the Jatropha plant protein fraction and improving the financial viability and sustainability of a Jatropha-based biodiesel industry. PMID:24224169

  3. Effect of exposure to diesel exhaust particles on the susceptibility of the lung to infection.

    PubMed

    Castranova, V; Ma, J Y; Yang, H M; Antonini, J M; Butterworth, L; Barger, M W; Roberts, J; Ma, J K

    2001-08-01

    There are at least three mechanisms by which alveolar macrophages play a critical role in protecting the lung from bacterial or viral infections: production of inflammatory cytokines that recruit and activate lung phagocytes, production of antimicrobial reactive oxidant species, and production of interferon (an antiviral agent). In this article we summarize data concerning the effect of exposure to diesel exhaust particles on these alveolar macrophage functions and the role of adsorbed organic chemicals compared to the carbonaceous core in the toxicity of diesel particles. In vitro exposure of rat alveolar macrophages to diesel exhaust particles decreased the ability of lipopolysaccharide (LPS), a bacterial product] to stimulate the production of inflammatory cytokines interleukin-1 (IL-1) and tumor necrosis factor-alpha (TNF-alpha). Methanol extract exhibited this potential but methanol-washed diesel particles did not. Exposure of rats to diesel exhaust particles by intratracheal instillation also decreased LPS-induced TNF-alpha and IL-1 production from alveolar macrophages. In contrast, carbon black did not exhibit this inhibitory effect. Exposure of rats to diesel exhaust particles by inhalation decreased the ability of alveolar macrophages to produce antimicrobial reactive oxidant species in response to zymosan (a fungal component). In contrast, exposure to coal dust increased zymosan-stimulated oxidant production. In vivo exposure to diesel exhaust particles but not to carbon black decreased the ability of the lungs to clear bacteria. Inhalation exposure of mice to diesel exhaust particles but not to coal dust depressed the ability of the lung to produce the antiviral agent interferon and increased viral multiplication in the lung. These results support the hypothesis that exposure to diesel exhaust particles increases the susceptibility of the lung to infection by depressing the antimicrobial potential of alveolar macrophages. This inhibitory effect appears

  4. Effect of exposure to diesel exhaust particles on the susceptibility of the lung to infection.

    PubMed Central

    Castranova, V; Ma, J Y; Yang, H M; Antonini, J M; Butterworth, L; Barger, M W; Roberts, J; Ma, J K

    2001-01-01

    There are at least three mechanisms by which alveolar macrophages play a critical role in protecting the lung from bacterial or viral infections: production of inflammatory cytokines that recruit and activate lung phagocytes, production of antimicrobial reactive oxidant species, and production of interferon (an antiviral agent). In this article we summarize data concerning the effect of exposure to diesel exhaust particles on these alveolar macrophage functions and the role of adsorbed organic chemicals compared to the carbonaceous core in the toxicity of diesel particles. In vitro exposure of rat alveolar macrophages to diesel exhaust particles decreased the ability of lipopolysaccharide (LPS), a bacterial product] to stimulate the production of inflammatory cytokines interleukin-1 (IL-1) and tumor necrosis factor-alpha (TNF-alpha). Methanol extract exhibited this potential but methanol-washed diesel particles did not. Exposure of rats to diesel exhaust particles by intratracheal instillation also decreased LPS-induced TNF-alpha and IL-1 production from alveolar macrophages. In contrast, carbon black did not exhibit this inhibitory effect. Exposure of rats to diesel exhaust particles by inhalation decreased the ability of alveolar macrophages to produce antimicrobial reactive oxidant species in response to zymosan (a fungal component). In contrast, exposure to coal dust increased zymosan-stimulated oxidant production. In vivo exposure to diesel exhaust particles but not to carbon black decreased the ability of the lungs to clear bacteria. Inhalation exposure of mice to diesel exhaust particles but not to coal dust depressed the ability of the lung to produce the antiviral agent interferon and increased viral multiplication in the lung. These results support the hypothesis that exposure to diesel exhaust particles increases the susceptibility of the lung to infection by depressing the antimicrobial potential of alveolar macrophages. This inhibitory effect appears

  5. Effect of Variable Compression Ratio on Performance of a Diesel Engine Fueled with Karanja Biodiesel and its Blends

    NASA Astrophysics Data System (ADS)

    Mishra, Rahul Kumar; soota, Tarun, Dr.; singh, Ranjeet

    2017-08-01

    Rapid exploration and lavish consumption of underground petroleum resources have led to the scarcity of underground fossil fuels moreover the toxic emissions from such fuels are pernicious which have increased the health hazards around the world. So the aim was to find an alternative fuel which would meet the requirements of petroleum or fossil fuels. Biodiesel is a clean, renewable and bio-degradable fuel having several advantages, one of the most important of which is being its eco-friendly and better knocking characteristics than diesel fuel. In this work the performance of Karanja oil was analyzed on a four stroke, single cylinder, water cooled, variable compression ratio diesel engine. The fuel used was 5% - 25% karanja oil methyl ester by volume in diesel. The results such obtained are compared with standard diesel fuel. Several properties i.e. Brake Thermal Efficiency, Brake Specific Fuel Consumptions, Exhaust Gas Temperature are determined at all operating conditions & at variable compression ratio 17 and 17.5.

  6. Performance of biomorphic Silicon Carbide as particulate filter in diesel boilers.

    PubMed

    Orihuela, M Pilar; Gómez-Martín, Aurora; Becerra, José A; Chacartegui, Ricardo; Ramírez-Rico, Joaquín

    2017-12-01

    Biomorphic Silicon Carbide (bioSiC) is a novel porous ceramic material with excellent mechanical and thermal properties. Previous studies have demonstrated that it may be a good candidate for its use as particle filter media of exhaust gases at medium or high temperature. In order to determine the filtration efficiency of biomorphic Silicon Carbide, and its adequacy as substrate for diesel particulate filters, different bioSiC-samples have been tested in the flue gases of a diesel boiler. For this purpose, an experimental facility to extract a fraction of the boiler exhaust flow and filter it under controlled conditions has been designed and built. Several filter samples with different microstructures, obtained from different precursors, have been tested in this bench. The experimental campaign was focused on the measurement of the number and size of particles before and after placing the samples. Results show that the initial efficiency of filters made from natural precursors is severely determined by the cutting direction and associated microstructure. In biomorphic Silicon Carbide derived from radially cut wood, the initial efficiency of the filter is higher than 95%. Nevertheless, when the cut of the wood is axial, the efficiency depends on the pore size and the permeability, reaching in some cases values in the range 70-90%. In this case, the presence of macropores in some of the samples reduces their efficiency as particle traps. In continuous operation, the accumulation of particles within the porous media leads to the formation of a soot cake, which improves the efficiency except in the case when extra-large pores exist. For all the samples, after a few operation cycles, capture efficiency was higher than 95%. These experimental results show the potential for developing filters for diesel boilers based on biomorphic Silicon Carbide. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. [Progress in bio-based polyamides].

    PubMed

    Huang, Zhengqiang; Cui, Zhe; Zhang, Heming; Fu, Peng; Zhao, Qingxiang; Liu, Minying

    2016-06-25

    Bio-based polyamides are environment-friendly polymers. The precursors of bio-based polyamides come from bio-based materials such as castor oil, glucose and animal oil. Bio-based polyamides precursors include bio-based amino acids, bio-based lactams, bio-based diprotic acid and bio-based diamines. In this paper, we discussed the route of the precursors of bio-based polyamides that come from bio-based materials. We discussed the properties of bio-based polyamides. Bio-based PA11and bio-based PA1010 are well-known bio-based polyamides; we discussed the origin materials of the precursors, the route of manufacturing bio-based PA11 and PA1010, and their modifications status. The variety, classification and commercial production of bio-based polyamides were described in details, as well as bio-based polyamides development in China.

  8. Hydrocarbon Liquid Production from Biomass via Hot-Vapor-Filtered Fast Pyrolysis and Catalytic Hydroprocessing of the Bio-oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elliott, Douglas C.; Wang, Huamin; French, Richard

    2014-08-14

    Hot-vapor filtered bio-oils were produced from two different biomass feedstocks, oak and switchgrass, and the oils were evaluated in hydroprocessing tests for production of liquid hydrocarbon products. Hot-vapor filtering reduced bio-oil yields and increased gas yields. The yields of fuel carbon as bio-oil were reduced by ten percentage points by hot-vapor filtering for both feedstocks. The unfiltered bio-oils were evaluated alongside the filtered bio-oils using a fixed bed catalytic hydrotreating test. These tests showed good processing results using a two-stage catalytic hydroprocessing strategy. Equal-sized catalyst beds, a sulfided Ru on carbon catalyst bed operated at 220°C and a sulfided CoMomore » on alumina catalyst bed operated at 400°C were used with the entire reactor at 100 atm operating pressure. The products from the four tests were similar. The light oil phase product was fully hydrotreated so that nitrogen and sulfur were below the level of detection, while the residual oxygen ranged from 0.3 to 2.0%. The density of the products varied from 0.80 g/ml up to 0.86 g/ml over the period of the test with a correlated change of the hydrogen to carbon atomic ratio from 1.79 down to 1.57, suggesting some loss of catalyst activity through the test. These tests provided the data needed to assess the suite of liquid fuel products from the process and the activity of the catalyst in relationship to the existing catalyst lifetime barrier for the technology.« less

  9. Particulate emissions from diesel engines: correlation between engine technology and emissions

    PubMed Central

    2014-01-01

    In the last 30 years, diesel engines have made rapid progress to increased efficiency, environmental protection and comfort for both light- and heavy-duty applications. The technical developments include all issues from fuel to combustion process to exhaust gas aftertreatment. This paper provides a comprehensive summary of the available literature regarding technical developments and their impact on the reduction of pollutant emission. This includes emission legislation, fuel quality, diesel engine- and exhaust gas aftertreatment technologies, as well as particulate composition, with a focus on the mass-related particulate emission of on-road vehicle applications. Diesel engine technologies representative of real-world on-road applications will be highlighted. Internal engine modifications now make it possible to minimize particulate and nitrogen oxide emissions with nearly no reduction in power. Among these modifications are cooled exhaust gas recirculation, optimized injections systems, adapted charging systems and optimized combustion processes with high turbulence. With introduction and optimization of exhaust gas aftertreatment systems, such as the diesel oxidation catalyst and the diesel particulate trap, as well as NOx-reduction systems, pollutant emissions have been significantly decreased. Today, sulfur poisoning of diesel oxidation catalysts is no longer considered a problem due to the low-sulfur fuel used in Europe. In the future, there will be an increased use of bio-fuels, which generally have a positive impact on the particulate emissions and do not increase the particle number emissions. Since the introduction of the EU emissions legislation, all emission limits have been reduced by over 90%. Further steps can be expected in the future. Retrospectively, the particulate emissions of modern diesel engines with respect to quality and quantity cannot be compared with those of older engines. Internal engine modifications lead to a clear reduction of the

  10. Particulate emissions from diesel engines: correlation between engine technology and emissions.

    PubMed

    Fiebig, Michael; Wiartalla, Andreas; Holderbaum, Bastian; Kiesow, Sebastian

    2014-03-07

    In the last 30 years, diesel engines have made rapid progress to increased efficiency, environmental protection and comfort for both light- and heavy-duty applications. The technical developments include all issues from fuel to combustion process to exhaust gas aftertreatment. This paper provides a comprehensive summary of the available literature regarding technical developments and their impact on the reduction of pollutant emission. This includes emission legislation, fuel quality, diesel engine- and exhaust gas aftertreatment technologies, as well as particulate composition, with a focus on the mass-related particulate emission of on-road vehicle applications. Diesel engine technologies representative of real-world on-road applications will be highlighted.Internal engine modifications now make it possible to minimize particulate and nitrogen oxide emissions with nearly no reduction in power. Among these modifications are cooled exhaust gas recirculation, optimized injections systems, adapted charging systems and optimized combustion processes with high turbulence. With introduction and optimization of exhaust gas aftertreatment systems, such as the diesel oxidation catalyst and the diesel particulate trap, as well as NOx-reduction systems, pollutant emissions have been significantly decreased. Today, sulfur poisoning of diesel oxidation catalysts is no longer considered a problem due to the low-sulfur fuel used in Europe. In the future, there will be an increased use of bio-fuels, which generally have a positive impact on the particulate emissions and do not increase the particle number emissions.Since the introduction of the EU emissions legislation, all emission limits have been reduced by over 90%. Further steps can be expected in the future. Retrospectively, the particulate emissions of modern diesel engines with respect to quality and quantity cannot be compared with those of older engines. Internal engine modifications lead to a clear reduction of the

  11. A fuzzy goal programming model for biodiesel production

    NASA Astrophysics Data System (ADS)

    Lutero, D. S.; Pangue, EMU; Tubay, J. M.; Lubag, S. P.

    2016-02-01

    A fuzzy goal programming (FGP) model for biodiesel production in the Philippines was formulated with Coconut (Cocos nucifera) and Jatropha (Jatropha curcas) as sources of biodiesel. Objectives were maximization of feedstock production and overall revenue and, minimization of energy used in production and working capital for farming subject to biodiesel and non-biodiesel requirements, and availability of land, labor, water and machine time. All these objectives and constraints were assumed to be fuzzy. Model was tested for different sets of weights. Results for all sets of weights showed the same optimal allocation. Coconut alone can satisfy the biodiesel requirement of 2% per volume.

  12. Diesel oil

    MedlinePlus

    ... oil is a heavy oil used in diesel engines. Diesel oil poisoning occurs when someone swallows diesel ... people trying to suck (siphon) gas from an automobile tank using their mouth and a garden hose ( ...

  13. Factorial analysis of diesel engine performance using different types of biofuels.

    PubMed

    Tashtoush, Ghassan M; Al-Widyan, Mohamad I; Albatayneh, Aiman M

    2007-09-01

    In this study, several bio-source-fuels like fresh and waste vegetable oil and waste animal fat were tested at different injector pressures (120, 140, 190, 210 bar) in a direct-injection, naturally aspirated, single-cylinder diesel engine with a design injection pressure of 190 bar. Using 2k factorial analysis, the effect of injection pressure (Pi) and fuel type on three engine parameters, namely, combustion efficiency (etac), mass fuel consumption (mf), and engine speed (N) was examined. It was found that Pi and fuel type significantly affected both etac and mf while they had a slight effect on engine speed. Moreover, with diesel and biodiesels, the etac increased to a maximum at 190 bar but declined at the higher Pi value. In contrast, higher Pi had a favorable effect on etac over the whole Pi range with all the other more viscous fuels tested. In addition, the mass fuel consumption consistently decreased with an increase in Pi for all the fuels including the baseline diesel fuel, with which the engine consistently attained higher etac and higher rpm compared to all the other fuels tested.

  14. DO BIO-BASED PRODUCTS MOVE US TOWARD SUSTAINABILITY? A LOOK AT THREE CASE STUDIES

    EPA Science Inventory

    The movement to buy "environmentally-friendly" products was recently reinvigorated by the signing of the 2002 Farm Act that requires all federal agencies to give preference to products that are made (in whole or significant part) from bio-based material. This paper add...

  15. Challenges and opportunities of the bio-pesticides production by solid-state fermentation: filamentous fungi as a model.

    PubMed

    De la Cruz Quiroz, Reynaldo; Roussos, Sevastianos; Hernández, Daniel; Rodríguez, Raúl; Castillo, Francisco; Aguilar, Cristóbal N

    2015-01-01

    In recent years, production and use of bio-pesticides have increasing and replacing some synthetic chemical pesticides applied to food commodities. In this review, biological control is focused as an alternative, to some synthetic chemical treatments that cause environmental, human health, and food quality risks. In addition, several phytopathogenic microorganisms have developed resistance to some of these synthetic chemicals and become more difficult to control. Worldwide, the bio-pesticides market is growing annually at a rate of 44% in North America, 20% in Europe and Oceania, 10% in Latin and South American countries and 6% in Asia. Use of agro-industrial wastes and solid-state fermentation (SSF) technology offers an alternative to bio-pesticide production with advantages versus conventional submerged fermentations, as reduced cost and energy consumption, low production of residual water and high stability products. In this review, recent data about state of art regarding bio-pesticides production under SSF on agroindustrial wastes will be discussed. SSF can be defined as a microbial process that generally occurs on solid material in the absence of free water. This material has the ability to absorb water with or without soluble nutrients, since the substrate must have water to support the microorganism's growth and metabolism. Changes in water content are analyzed in order to select the conditions for a future process, where water stress can be combined with the best spore production conditions, obtaining in this way an inexpensive biotechnological option for modern agriculture in developing countries.

  16. Tribological evaluation of hexagonal boron nitride in modified jatropha oil as sustainable metalworking fluid

    NASA Astrophysics Data System (ADS)

    Talib, Norfazillah; Rahim, Erween Abd.; Nasir, Ramdziah Md.

    2017-11-01

    The used of metalworking fluids (MWFs) from petroleum-based oil during machining process contributed negative impact to the humans and environment. Therefore, bio-based oil from vegetable oil was recently explored as an alternative solution to petroleum-based oil to implement sustainable manufacturing process. In this study, modified jatropha oil (MJO5) with and without hexagonal boron nitride (hBN) particles were evaluated through friction and wear test and orthogonal cutting performance in comparison with synthetic ester (SE). MJO5 were mixed with hBN particles at various concentrations (i.e. 0.05, 0.1 and 0.5wt.%). Experimental results showed that the addition of 0.05wt.% of hBN particles in MJO5 (MJO5a) provided lowest coefficient of friction (COF) and smallest wear scar diameter (WSD). MJO5a has the best anti-friction ability by reducing the cutting force and cutting temperature which related to the formation of thinner chips and small tool-chip contact length. MJO5a is the best substitute to SE as sustainable MWFs in the machining operation in regards to the environmental and health concern.

  17. [Effects of oxygenated fuels on emissions and carbon composition of fine particles from diesel engine].

    PubMed

    Shi, Xiao-Yan; He, Ke-Bin; Zhang, Jie; Ge, Yun-Shan; Tan, Jian-Wei

    2009-06-15

    Acetal (1,1-diethoxyethane) is considered as an alternative to ethanol as bio-derived additive for diesel fuel, which is miscible in diesel fuel. Biodiesel can improve the oxygen content and flash point of the fuel blend of acetal and diesel fuel. Two oxygenated fuels were prepared: a blend of 10% acetal + 90% diesel fuel and 10% acetal + 10% biodiesel + 80% diesel fuel. The emissions of NO(x), HC and PM2.5 from oxygenated fuels were investigated on a diesel engine bench at five modes according to various loads at two steady speeds and compared with base diesel fuel. Additionally, the carbon compositions of PM2.5 were analyzed by DRI thermal/optical carbon analyzer. Oxygenated fuels have unconspicuous effect on NO(x) emission rate but HC emission rate is observed significantly increased at some modes. The emission rate of PM2.5 is decreased by using oxygenated fuels and it decreases with the increase of fuel oxygen content. The emission rates of TC (total carbon) and EC (elemental carbon) in PM2.5 are also decreased by oxygenated fuels. The emission rate of organic carbon (OC) is greatly decreased at modes of higher engine speed. The OC/EC ratios of PM2.5 from oxygenated fuels are higher than that from base diesel fuel at most modes. The carbon compositions fractions of PM2.5 from the three test fuels are similar, and OC1 and EC1 are contributed to the most fractions of OC and EC, respectively. Compared with base diesel fuel, oxygenated fuels decrease emission rate of PM2.5, and have more OC contribution to PM2.5 but have little effect on carbon composition fractions.

  18. Study on vacuum pyrolysis of coffee industrial residue for bio-oil production

    NASA Astrophysics Data System (ADS)

    Chen, Nanwei; Ren, Jie; Ye, Ziwei; Xu, Qizhi; Liu, Jingyong; Sun, Shuiyu

    2017-03-01

    Coffee industrial residue (CIR) is a biomass with high volatile content (64.94 wt.%) and heating value (21.3 MJ·kg-1). This study was carried out to investigate the pyrolysis condition and products of CIR using thermogravimetric analyser (TGA) and vacuum tube furnace. The influence of pyrolysis temperature, time, pressure and heating rate on the yield of pyrolysis products were discussed. There was an optimal pyrolysis condition: CIR was heated from normal temperature to 400 °C for 60 min, with 10 °C·min-1 heating rate and a pressure of 30 kPaabs. In this condition, the yields of bio-oil, char and non-condensable gas were 42.29, 33.14 and 24.57 wt.%, respectively. The bio-oil contained palmitic acid (47.48 wt.%), oleic acid (17.45 wt.%), linoleic acid (11.34 wt.%), octadecanoic acid (7.62 wt.%) and caffeine (5.18 wt.%).

  19. The effects of catalysts on the conversion of organic matter and bio-fuel production in the microwave pyrolysis of sludge at different temperatures.

    PubMed

    Ma, Rui; Huang, Xiaofei; Zhou, Yang; Fang, Lin; Sun, Shichang; Zhang, Peixin; Zhang, Xianghua; Zhao, Xuxin

    2017-08-01

    Adding catalyst could improve the yields and qualities of bio-gas and bio-oil, and realize the oriented production. Results showed that the catalytic gas-production capacities of CaO were higher than those of Fe 2 O 3 , and the bio-gas yield at 800°C reached a maximum of 35.1%. Because the polar cracking active sites of CaO reduced the activation energy of the pyrolysis reaction and resulted in high catalytic cracking efficiencies. In addition, the quality of bio-oil produced by CaO was superior to that by Fe 2 O 3 , although the bio-oil yield of CaO was relatively weak. The light bio-fuel oriented catalytic pyrolysis could be realized when adding different catalysts. At 800°C, CaO was 45% higher than Fe 2 O 3 in aspect of H 2 production while Fe 2 O 3 was 103% higher than CaO in aspect of CH 4 production. Therefore, CaO was more suitable for H 2 production and Fe 2 O 3 was more suitable for CH 4 production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Gene silencing of Sugar-dependent 1 (JcSDP1), encoding a patatin-domain triacylglycerol lipase, enhances seed oil accumulation in Jatropha curcas

    PubMed Central

    2014-01-01

    Background Triacylglycerols (TAGs) are the most abundant form of storage oil in plants. They consist of three fatty acid chains (usually C16 or C18) covalently linked to glycerol. SDP1 is a specific lipase for the first step of TAG catabolism in Arabidopsis seeds. Arabidopsis mutants deficient in SDP1 accumulate high levels of oils, probably due to blockage in TAG degradation. We applied this knowledge from the model plant, Arabidopsis thaliana, to engineer increased seed oil content in the biodiesel plant Jatropha curcas using RNA interference (RNAi) technology. Results As Jatropha is a biodiesel crop, any significant increase in its seed oil content would be an important agronomic trait. Using A. thaliana as a model plant, we found that a deficiency of SDP1 led to higher TAG accumulation and a larger number of oil bodies in seeds compared with wild type (Columbia-0; Col-0). We cloned Jatropha JcSDP1, and verified its function by complementation of the Arabidopsis sdp1-5 mutant. Taking advantage of the observation with Arabidopsis, we used RNAi technology to generate JcSDP1 deficiency in transgenic Jatropha. We found that Jatropha JcSDP1-RNAi plants accumulated 13 to 30% higher total seed storage lipid, along with a 7% compensatory decrease in protein content, compared with control (CK; 35S:GFP) plants. Free fatty acid (FFA) content in seeds was reduced from 27% in control plants to 8.5% in JcSDP1-RNAi plants. Conclusion Here, we showed that SDP1 deficiency enhances seed oil accumulation in Arabidopsis. Based on this result, we generated SDP1-deficient transgenic Jatropha plants using by RNAi technology with a native JcSDP1 promoter to silence endogenous JcSDP1 expression. Seeds of Jatropha JcSDP1-RNAi plants accumulated up to 30% higher total lipid and had reduced FFA content compared with control (CK; 35S:GFP) plants. Our strategy of improving an important agronomic trait of Jatropha can be extended to other oil crops to yield higher seed oil. PMID:24606605

  1. Refuse derived soluble bio-organics enhancing tomato plant growth and productivity.

    PubMed

    Sortino, Orazio; Dipasquale, Mauro; Montoneri, Enzo; Tomasso, Lorenzo; Perrone, Daniele G; Vindrola, Daniela; Negre, Michele; Piccone, Giuseppe

    2012-10-01

    Municipal bio-refuse (CVD), containing kitchen wastes, home gardening residues and public park trimmings, was treated with alkali to yield a soluble bio-organic fraction (SBO) and an insoluble residue. These materials were characterized using elemental analysis, potentiometric titration, and 13C NMR spectroscopy, and then applied as organic fertilizers to soil for tomato greenhouse cultivation. Their performance was compared with a commercial product obtained from animal residues. Plant growth, fruit yield and quality, and soil and leaf chemical composition were the selected performance indicators. The SBO exhibited the best performance by enhancing leaf chlorophyll content, improving plant growth and fruit ripening rate and yield. No product performance-chemical composition relationship could be assessed. Solubility could be one reason for the superior performance of SBO as a tomato growth promoter. The enhancement of leaf chlorophyll content is discussed to identify a possible link with the SBO photosensitizing properties that have been demonstrated in other work, and thus with photosynthetic performance. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Role of biotechnological interventions in the improvement of castor (Ricinus communis L.) and Jatropha curcas L.

    PubMed

    Sujatha, M; Reddy, T P; Mahasi, M J

    2008-01-01

    Castor and Jatropha belong to the Euphorbiaceae family. This review highlights the role of biotechnological tools in the genetic improvement of castor and jatropha. Castor is monotypic and breeding programmes have mostly relied on the variability available in the primary gene pool. The major constraints limiting profitable cultivation are: vulnerability to insect pests and diseases, and the press cake is toxic which restrict its use as cattle feed. Conventional breeding techniques have limited scope in improvement of resistance to biotic stresses and in quality improvement owing to low genetic variability for these traits. Genetic diversity was assessed using protein based markers while use of molecular markers is at infancy. In vitro studies in castor have been successful in shoot proliferation from meristematic explants, but not callus-mediated regeneration. Genetic transformation experiments have been initiated for development of insect resistant and ricin-free transgenics with very low transformation frequency. In tropical and subtropical countries jatropha is viewed as a potential biofuel crop. The limitations in available germplasm include; lack of knowledge of the genetic base, poor yields, low genetic diversity and vulnerability to a wide array of insects and diseases. Great scope exists for genetic improvement through conventional methods, induced mutations, interspecific hybridization and genetic transformation. Reliable and highly efficient tissue culture protocols for direct and callus-mediated shoot regeneration and somatic embryogenesis are established for jatropha which indicates potential for widening the genetic base through biotechnological tools. Assessment of genetic diversity using molecular markers disclosed low interaccessional variability in local Jatropha curcas germplasm. The current status and future prospects of in vitro regeneration, genetic transformation and the role of molecular tools in the genetic enhancement of the two

  3. Bio-oil production from hydrothermal liquefaction of Pteris vittata L.: Effects of operating temperatures and energy recovery.

    PubMed

    Chen, Jinbo

    2018-06-14

    Hyper-accumulator biomass, Pteris vittata L., was hydrothermally converted into bio-oils via hydrothermal liquefaction (HTL) in sub-supercritical water. The distributions and characterizations of various products as well as energy recovery under different temperatures (250-390 °C) were investigated. The highest bio-oil yield of 16.88% was obtained at 350 °C with the hydrothermal conversion of 61.79%, where the bio-oil was dominated by alcohols, esters, phenols, ketones and acidic compounds. The higher heating values of bio-oil were in the range of 19.93-35.45 MJ/kg with a H/C ratio of 1.26-1.46, illustrating its high energy density and potential for use as an ideal liquid fuel. The main gaseous products were CO 2 , H 2 , CO, and CH 4 with the H 2 yield peaking at 22.94%. The total energy recovery from bio-oils and solid residues fell within the range of 37.72-45.10%, highlighting the potential of HTL to convert hyper-accumulator biomass into valuable fuels with high conversion efficiency. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Preliminary study : optimization of pH and salinity for biosurfactant production from Pseudomonas aeruginosa in diesel fuel and crude oil medium

    NASA Astrophysics Data System (ADS)

    Ikhwani, A. Z. N.; Nurlaila, H. S.; Ferdinand, F. D. K.; Fachria, R.; Hasan, A. E. Z.; Yani, M.; Setyawati, I.; Suryani

    2017-03-01

    Biosurfactant is secondary metabolite surface active compound produced by microorganisms which is nontoxic and eco-friendly. Microorganism producing biosurfactant that is quite potential to use in many applications is from Pseudomonas aeruginosa strains. Good quality of biosurfactant production from microbes is supported by the suitable nutrients and environmental factors. The aim of this research was to obtain preliminary o data upon the optimum pH and salinity for the production of biosurfactant from Pseudomonas aeruginosa ATCC 15442 in diesel fuel and crude oil medium. P. aeruginosa ATCC 15442 cultured in diesel fuel and crude oil as carbon source showed biosurfactant activity. P.aeruginosa-derived biosurfactant was capable to form stable emulsion for 24 hours (EI24) in hydrocarbons n-hexane solutions. The particular biosurfactant showed EI24 highest value at pH 7 (31.02%) and 1% NaCl (24.00%) when P. aeruginosa was grown in 10% diesel fuel medium in mineral salt solution. As for the media crude oil, the highest EI24 value was at pH 6 (52.16%) and 1% NaCl (33.30%).

  5. Plausible exploitation of Jatropha de-oiled seed cake for lipase and phytase production and simultaneous detoxification by Candida parapsilosis isolated from poultry garbage.

    PubMed

    Kannoju, Balakrishna; Ganapathiwar, Swaruparani; Nunavath, Hanumalal; Sunkar, Bindu; Bhukya, Bhima

    2017-02-01

    Jatropha de-oiled seed cake was explored to utilize as a basic nutrient source for Candida parapsilosis, isolated from poultry garbage and selected based on the production of lipase and phytase enzymes under submerged fermentation. At optimized parameters under solid-state fermentation, lipase and phytase activities were recorded as 1056.66±2.92 and 833±2.5U/g of substrate (U/g), respectively. Besides enzyme production, complete elimination of phorbol esters and significant phytate reduction from 6.51±0.01 to 0.43±0.01g/100g of seed cake were noted after 3days incubation. Curcin and trypsin inhibition activity were reduced significantly from 26.33±0.43 to 0.56±0.02mg/100g and 229.33±2.02 to 11.66±0.28U/g, respectively after 5days incubation. Saponins were reduced from 5.56±0.19 to 1.95±0.01g/100g of seed cake after 7days incubation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Determining the bio-based content of bio-plastics used in Thailand by radiocarbon analysis

    NASA Astrophysics Data System (ADS)

    Ploykrathok, T.; Chanyotha, S.

    2017-06-01

    Presently, there is an increased interest in the development of bio-plastic products from agricultural materials which are biodegradable in order to reduce the problem of waste disposal. Since the amount of modern carbon in bio-plastics can indicate how much the amount of agricultural materials are contained in the bio-plastic products, this research aims to determine the modern carbon in bio-plastic using the carbon dioxide absorption method. The radioactivity of carbon-14 contained in the sample is measured by liquid scintillation counter (Tri-carb 3110 TR, PerkinElmer). The percentages of bio-based content in the samples were determined by comparing the observed modern carbon content with the values contained in agricultural raw materials. The experimental results show that only poly(lactic acid) samples have the modern carbon content of 97.4%, which is close to the agricultural materials while other bio-plastics types are found to have less than 50% of the modern carbon content. In other words, most of these bio-plastic samples were mixed with other materials which are not agriculturally originated.

  7. Base catalytic transesterification of vegetable oil.

    PubMed

    Mainali, Kalidas

    2012-01-01

    Sustainable economic and industrial growth requires safe, sustainable resources of energy. Biofuel is becoming increasingly important as an alternative fuel for the diesel engine. The use of non-edible vegetable oils for biofuel production is significant because of the increasing demand for edible oils as food. With the recent debate of food versus fuel, some non-edible oils like soapnut and Jatropha (Jatropha curcus. L) are being investigated as possible sources of biofuel. Recent research has focused on the application of heterogeneous catalysis. This review considers catalytic transesterification and the possibility of heterogeneous base catalysts. The process of transesterification, and the effect of parameters, mechanism and kinetics are reviewed. Although chromatography (GC and HPLC) are the analytical methods most often used for biofuel characterization, other techniques and some improvements to analytical methods are discussed.

  8. Kinetic study of microwave-assisted alkaline hydrolysis of Jatropha curcas oil

    NASA Astrophysics Data System (ADS)

    Yusuf, Nur'aini Raman; Kamil, Ruzaimah Nik Mohamad; Yusup, Suzana

    2016-11-01

    The kinetics of hydrolysis of Jatropha curcas oil under microwave irradation in the presence of alkaline solution was studied. The temperature of 50°C, 65°C and 80°C were studied in the range of optimum condition of 1.75 M catalyst, solvent/oil ratio of (1: 68) and 15 minutes reaction time. The rate constants of oil hydrolysis are corresponding to triglyceride disappearance concentration. The rates of reaction for fatty acids production was determined by pseudo first order. The activation energy (Ea) achieved at 30.61 kJ/mol is lower using conventional method. This conclude that the rate of reaction via microwave heating is less temperature sensitive therefore reaction can be obtained at lower temperature.

  9. Anaerobic bio-hydrogen production from ethanol fermentation: the role of pH.

    PubMed

    Hwang, Moon H; Jang, Nam J; Hyun, Seung H; Kim, In S

    2004-08-05

    Hydrogen was produced by an ethanol-acetate fermentation at pH of 5.0 +/- 0.2 and HRT of 3 days. The yield of hydrogen was 100-200 ml g Glu(-1) with a hydrogen content of 25-40%. This fluctuation in the hydrogen yield was attributed to the formation of propionate and the activity of hydrogen utilizing methanogens. The change in the operational pH for the inhibition of this methanogenic activity induced a change in the main fermentation pathway. In this study, the main products were butyrate, ethanol and propionate, in the pH ranges 4.0-4.5, 4.5-5.0 and 5.0-6.0, respectively. However, the activity of all the microorganisms was inhibited below pH 4.0. Therefore, pH 4.0 was regarded as the operational limit for the anaerobic bio-hydrogen production process. These results indicate that the pH plays an important role in determining the type of anaerobic fermentation pathway in anaerobic bio-hydrogen processes.

  10. Effectiveness of bio-slurry on the growth and production of soybean (Glycine max (L.) Merrill)

    NASA Astrophysics Data System (ADS)

    Rafiuddin; Mollah, A.; Iswoyo, H.

    2018-05-01

    This research was aimed to determine the effectiveness of bio-slurry fertilizer on the growth and production of soybean plants which was conducted in the Pucak village, Tompobulu District, Maros Regency, South Sulawesi from July to October 2016. The research was set in randomized block design (RBD) with 8 treatments replicated three times. Treatment used were the application of bio-slurry consisted of 8 level of concentrations, namely: control (0 mL.liter-1 of water), 3, 5, 7, 9, 11, 13 and 15 mL.liter-1 of water. The variables measured were plant’s height, number of pods, weight of 100-seed, and soybean seeds’ yield per hectare. The results of research shows that the application of bio-slurry effectively improved growth and yield of soybean (pod’s number, 100-seed’s weight and seed yield per hectare). Optimal concentration of liquid bio-slurry to obtain maximum results were 9.27 mL.liter-1 of water for the highest number of pods (68.49 pods); concentration of 8.75 mL.liter-1 of water for heaviest weight of 100 grains (14.22 grams); and the concentration 8,12 mL.liter-1 of water for the highest production of seed per hectare (23.20 quintal).

  11. Improvement of engine emissions with conventional diesel fuel and diesel-biodiesel blends.

    PubMed

    Nabi, Md Nurun; Akhter, Md Shamim; Zaglul Shahadat, Mhia Md

    2006-02-01

    In this report combustion and exhaust emissions with neat diesel fuel and diesel-biodiesel blends have been investigated. In the investigation, firstly biodiesel from non-edible neem oil has been made by esterification. Biodiesel fuel (BDF) is chemically known as mono-alkyl fatty acid ester. It is renewable in nature and is derived from plant oils including vegetable oils. BDF is non-toxic, biodegradable, recycled resource and essentially free from sulfur and carcinogenic benzene. In the second phase of this investigation, experiment has been conducted with neat diesel fuel and diesel-biodiesel blends in a four stroke naturally aspirated (NA) direct injection (DI) diesel engine. Compared with conventional diesel fuel, diesel-biodiesel blends showed lower carbon monoxide (CO), and smoke emissions but higher oxides of nitrogen (NOx) emission. However, compared with the diesel fuel, NOx emission with diesel-biodiesel blends was slightly reduced when EGR was applied.

  12. Optimization of Rice bran biodiesel blends on CI engine and investigating its effects

    NASA Astrophysics Data System (ADS)

    Jayaprabakar, J.; Dey, Biraj; Dey, Krishanu; Hareesh, Batchu; Anish, M.

    2017-05-01

    Bio-diesel can be produced from various plant oils like soybean, sunflower or rice bran. Here the focus is on converting the rice bran oil into bio-diesel which is produced by transesterifying the rice bran oil with a low molecular weight alcohol (methanol) and a non-conventional catalyst (lipase). Using a lipase based catalyst brings down the cost of bio diesel production significantly by reducing the number of washing cycles and its ability to be reused further. Four different blends of B10, B20, B30, B40 and straight diesel are tested in a single cylinder, fourstroke, vertical air cooled Kirloskar Diesel Engine having ignition timing of 23° before Top Dead Centre (TDC). As compared to straight diesel the Brake Thermal Efficiency (BTE) value for all the blends are higher. The Specific Fuel Consumption (BSFC) values for most of the blends are less as compared to diesel. Emissions of CO, CO2 and HC for all the blends decreased quite significantly. As a summary, the blend B20 records better performance as well as emission characteristics as compared to diesel.

  13. Characterization of bio-oil from hydrothermal liquefaction of organic waste by NMR spectroscopy and FTICR mass spectrometry.

    PubMed

    Leonardis, Irene; Chiaberge, Stefano; Fiorani, Tiziana; Spera, Silvia; Battistel, Ezio; Bosetti, Aldo; Cesti, Pietro; Reale, Samantha; De Angelis, Francesco

    2013-01-01

    Solid wastes of organic origins are potential feedstocks for the production of liquid biofuels, which could be suitable alternatives to fossil fuels for the transport and heating sectors, as well as for industrial use. By hydrothermal liquefaction, the wet biomass is partially transformed into a water-immiscible, oil-like organic matter called bio-oil. In this study, an integrated NMR spectroscopy/mass spectrometry approach has been developed for the characterization of the hydrothermal liquefaction of bio-oil at the molecular level. (1)H and (13)C NMR spectroscopy were used for the identification of functional groups and gauging the aromatic carbon content in the mixture. GC-MS analysis revealed that the volatile fraction was rich in fatty acids, as well as in amides and esters. High-resolution Fourier-transform ion cyclotron resonance mass spectrometry (FTICR-MS) has been applied in a systematic way to fully categorize the bio-oil in terms of different classes of components, according to their molecular formulas. Most importantly, for the first time, by using this technique, and for the liquefaction bio-oil characterization in particular, FT-MS data have been used to develop a methodology for the determination of the aromatic versus aliphatic carbon and nitrogen content. It is well known that, because they resist hydrogenation and represent sources of polluting species, both aromatic molecules and nitrogen-containing species raise concerns for subsequent upgrading of bio-oil into a diesel-like fuel. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Effect ofHydrogen Use on Diesel Engine Performance

    NASA Astrophysics Data System (ADS)

    Ceraat, A.; Pana, C.; Negurescu, N.; Nutu, C.; Mirica, I.; Fuiorescu, D.

    2016-11-01

    Necessity of pollutant emissions decreasing, a great interest aspect discussed at 2015 Paris Climate Conference, highlights the necessity of alternative fuels use at diesel engines. Hydrogen is considered a future fuel for the automotive industry due to its properties which define it as the cleanest fuel and due to the production unlimited sources. The use of hydrogen as fuel for diesel engines has a higher degree of complexity because of some hydrogen particularities which lead to specific issues of the hydrogen use at diesel engine: tendency of uncontrolled ignition with inlet backfire, in-cylinder combustion with higher heat release rates and with high NOx level, storage difficulties. Because hydrogen storing on vehicle board implies important difficulties in terms of safety and automotive range, the partial substitution of diesel fuel by hydrogen injected into the inlet manifold represents the most efficient method. The paper presents the results of the experimental researches carried on a truck diesel engine fuelled with diesel fuel and hydrogen, in-cylinder phenomena's study showing the influence of some parameters on combustion, engine performance and pollutant emissions. The paper novelty is defined by the hydrogen fuelling method applied to diesel engine and the efficient control of the engine running.

  15. Biochemical Changes after Short-term Oral Exposure of Jatropha curcas Seeds in Wistar Rats

    PubMed Central

    Awasthy, Vijeyta; Vadlamudi, V. P.; Koley, K. M.; Awasthy, B. K.; Singh, P. K.

    2010-01-01

    Jatropha curcas (Euphorbiaceae) is a multipurpose shrub with varied medicinal uses and is of significant economic importance. In addition to being the source of biodiesel, its seeds are also considered highly nutritious and could be exploited as a rich and economical protein supplement in animal feeds. However, the inherent phytotoxins present in the seed is the hindrance. The toxicity nature of the seeds of the local variety of J. curcas is not known. Therefore, investigations were undertaken to evaluate the short-term oral toxicity of the seeds of locally grown J. curcas. Short-term toxicity was conducted in rats by daily feeding the basal diet (Group I), and the diet in which the crude protein requirement was supplemented at 25% (Group II) and 50% (Group III) levels through Jatropha seed powder. The adverse effects of Jatropha seed protein supplementation (JSPS) were evaluated by observing alterations in biochemical profiles. The biochemical profile of rats fed on diet with JSPS at both the levels revealed significant reduction in plasma glucose and total protein and increase in plasma creatinine, transaminases (Plasma glutamic pyruvic transaminase and Plasma glutamic oxaloacetic transaminase), and alkaline phosphatase. PMID:21170248

  16. Radiometry from Bio-Argo Floats: a New Strategy to Validate Ocean Color Products at the Global Scale.

    NASA Astrophysics Data System (ADS)

    Organelli, E.; Claustre, H.; Serra, R.; Bricaud, A.; Schmechtig, C.; D'Ortenzio, F.; Poteau, A.; Mangin, A.; Leymarie, E.; Obolensky, G.; Prieur, L. M.; Dall'Olmo, G.; Xing, X.

    2016-02-01

    Thanks to a new generation of Bio-Argo floats equipped with sensors for PAR (Photosynthetically Available Irradiance) and downward irradiance measurements at selected wavelengths (i.e., 380, 412 and 490 nm), the number of radiometric measurements has been dramatically increasing and data are available for diverse open ocean systems, including winter periods with harsh seas when ships can hardly sample. More than 6500 radiometric profiles have so far been acquired around solar noon in the upper 250 m of the ocean. These radiometric profiles, acquired simultaneously to other key biogeochemical and bio-optical variables (chlorophyll a, CDOM, light backscattering), represent a fruitful data source for validation of Ocean Color (OC) products. Two different strategies can be implemented: direct validation of satellite OC products and identification of regions characterized by bio-optical anomalies. Diffuse attenuation coefficients (Kd) derived from these profiles, after a specifically developed quality control, are used for these purposes.A good agreement is observed between satellite-derived Kd values at 490 nm and their Bio-Argo counterparts. However, satellite overestimates low in situ Kd values found in very clear waters (e.g., Atlantic and Pacific Sub-Tropical Gyres). The analysis of the spectral Kd variability in the surface ocean shows the potential of Bio-Argo floats in identifying those regions with optical properties departing from global bio-optical relationships. Divergences of the ratio between Kd values at 380 nm and those at 490 nm from global bio-optical models are observed in areas such as the Mediterranean Sea and the North Atlantic in winter. This might cause difficulties in retrieving biogeochemical parameters from satellite data. Hence, delineation of "anomalous" regions by Bio-Argo floats represents a useful strategy for planning dedicated cruises, setting mooring buoys or using CAL/VAL floats in order to improve Ocean Color applications.

  17. Production of renewable diesel fuel from biologically based feedstocks.

    DOT National Transportation Integrated Search

    2014-09-01

    Renewable diesel is an emerging option to achieve the goal set by the Federal Renewable Fuel Standard of displacing 20% of our nations petroleum consumption with : renewable alternatives by 2022. It involves converting readily available vegetable ...

  18. Montana BioDiesel Initiative

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peyton, Brent

    This initiative funding helped put Montana State University (MSU) in a position to help lead in the development of biodiesel production strategies. Recent shortages in electrical power and rising gasoline prices have focused much attention on the development of alternative energy sources that will end our dependence on fossil fuels. In addition, as the concern for environmental impact of utilizing fossil fuels increases, effective strategies must be implemented to reduce emissions or the increased regulations imposed on fossil fuel production will cause economic barriers for their use to continue to increase. Biodiesel has been repeatedly promoted as a more environmentallymore » sound and renewable source of fuel and may prove to be a highly viable solution to provide, at the least, a proportion of our energy needs. Currently there are both practical and economic barriers to the implementation of alternative energy however the advent of these technologies is inevitable. Since many of the same strategies for the storage, transport, and utilization of biodiesel are common with that of fossil fuels, the practical barriers for biodiesel are comparatively minimal. Strategies were developed to harness the CO 2 as feedstock to support the growth of biodiesel producing algae. The initiative funding led to the successful funding of highly rated projects in competitive national grant programs in the National Science Foundation and the Department of Energy. This funding put MSU in a key position to develop technologies to utilize the CO 2 rich emissions produced in fossil fuel utilization and assembled world experts concerning the growth characteristics of photosynthetic microorganisms capable of producing biodiesel.« less

  19. Plant tolerance to diesel minimizes its impact on soil microbial characteristics during rhizoremediation of diesel-contaminated soils.

    PubMed

    Barrutia, O; Garbisu, C; Epelde, L; Sampedro, M C; Goicolea, M A; Becerril, J M

    2011-09-01

    Soil contamination due to petroleum-derived products is an important environmental problem. We assessed the impacts of diesel oil on plants (Trifolium repens and Lolium perenne) and soil microbial community characteristics within the context of the rhizoremediation of contaminated soils. For this purpose, a diesel fuel spill on a grassland soil was simulated under pot conditions at a dose of 12,000 mg diesel kg(-1) DW soil. Thirty days after diesel addition, T. repens (white clover) and L. perenne (perennial ryegrass) were sown in the pots and grown under greenhouse conditions (temperature 25/18 °C day/night, relative humidity 60/80% day/night and a photosynthetic photon flux density of 400 μmol photon m(-2) s(-1)) for 5 months. A parallel set of unplanted pots was also included. Concentrations of n-alkanes in soil were determined as an indicator of diesel degradation. Seedling germination, plant growth, maximal photochemical efficiency of photosystem II (F(v)/F(m)), pigment composition and lipophylic antioxidant content were determined to assess the impacts of diesel on the studied plants. Soil microbial community characteristics, such as enzyme and community-level physiological profiles, were also determined and used to calculate the soil quality index (SQI). The presence of plants had a stimulatory effect on soil microbial activity. L. perenne was far more tolerant to diesel contamination than T. repens. Diesel contamination affected soil microbial characteristics, although its impact was less pronounced in the rhizosphere of L. perenne. Rhizoremediation with T. repens and L. perenne resulted in a similar reduction of total n-alkanes concentration. However, values of the soil microbial parameters and the SQI showed that the more tolerant species (L. perenne) was able to better maintain its rhizosphere characteristics when growing in diesel-contaminated soil, suggesting a better soil health. We concluded that plant tolerance is of crucial importance for the

  20. Catalytic pyrolysis of waste furniture sawdust for bio-oil production.

    PubMed

    Uzun, Başak B; Kanmaz, Gülin

    2014-07-01

    In this study, the catalytic pyrolysis of waste furniture sawdust in the presence of ZSM-5, H-Y and MCM-41 (10 wt % of the biomass sample) was carried out in order to increase the quality of the liquid product at the various pyrolysis temperatures of 400, 450, 500 and 550(o)C. In the non-catalytic work, the maximum oil yield was obtained as 42% at 500(o)C in a fixed-bed reactor system. In the catalytic work, the maximum oil yield was decreased to 37.48, 30.04 and 29.23% in the presence of ZSM-5, H-Y and MCM-41, respectively. The obtained pyrolysis oils were analyzed by various spectroscopic and chromatographic techniques. It was determined that the use of a catalyst decreased acids and increased valuable organics found in the bio-oil. The removal of oxygen from bio-oil was confirmed with the results of the elemental analysis and gas chromatography-mass spectrometry. © The Author(s) 2014.

  1. Effect of Inoculum Dosage Aspergillus niger and Rhizopus oryzae mixture with Fermentation Time of Oil Seed Cake (Jatropha curcas L) to the content of Protein and Crude Fiber

    NASA Astrophysics Data System (ADS)

    Kurniati, T.; Nurlaila, L.; Iim

    2017-04-01

    Jatropha curcas L already widely cultivated for its seeds pressed oil used as an alternative fuel. This plant productivity per hectare obtained 2.5-5 tonnes of oil/ha / year and jatropha seed cake from 5.5 to 9.5 tonnes/ha/year, nutrient content of Jatropha curcas seed L potential to be used as feed material, However, the constraints faced was the low crude protein and high crude protein. The purpose of the research was to determine the dosage of inoculum and fermentation time of Jatropha seed cake by a mixture of Aspergillus niger and Rhizopus oryzae on crude protein and crude fibre. The study was conducted by an experimental method using a Completely Randomised Design (CRD) factorial design (3×3). The treatment consisted of a mixture of three dosage levels of Aspergillus niger and Rhizopus oryzae (= 0.2% d1, d2 and d3 = 0.3% = 0.4%) and three levels of fermentation time (w1 = 72 hours, 96 hours and w2 = w3 = 120 hours) each repeated three times. The parameters measured were crude protein and crude fibre. The results showed that dosages of 0.3% (Aspergillus niger Rhizopus oryzae 0.15% and 0.15%) and 72 hours (d2w1) is the dosage and the optimal time to generate the highest crude protein content of 21.11% and crude fibre amounted to 21.36%.

  2. Instrumental and bio-monitoring of heavy metal and nanoparticle emissions from diesel engine exhaust in controlled environment.

    PubMed

    Giordano, Simonetta; Adamo, Paola; Spagnuolo, Valeria; Vaglieco, Bianca Maria

    2010-01-01

    In the present article we characterized the emissions at the exhaust of a Common Rail (CR) diesel engine, representative of light-duty class, equipped with a catalyzed diesel particulate filter (CDPF) in controlled environment. The downstream exhausts were directly analyzed (for PM, CO, CO2, 02, HCs, NOx) by infrared and electrochemical sensors, and SEM-EDS microscope; heavy metals were chemically analyzed using mosses and lichens in bags, and glass-fibre filters all exposed at the engine exhausts. The highest particle emission value was in the 7-54 nm size range; the peak concentration rose until one order of magnitude for the highest load and speed. Particle composition was mainly carbonaceous, associated to noticeable amounts of Fe and silica fibres. Moreover, the content of Cu, Fe, Na, Ni and Zn in both moss and lichen, and of Al and Cr in moss, was significantly increased. Glass-fibre filters were significantly enriched in Al, B, Ba, Cu, Fe, Na, and Zn. The role of diesel engines as source of carbonaceous nanoparticles has been confirmed, while further investigations in controlled environment are needed to test the catalytic muffler as a possible source of silica fibres considered very hazardous for human health.

  3. An approach for upgrading biomass and pyrolysis product quality using a combination of aqueous phase bio-oil washing and torrefaction pretreatment.

    PubMed

    Chen, Dengyu; Cen, Kehui; Jing, Xichun; Gao, Jinghui; Li, Chen; Ma, Zhongqing

    2017-06-01

    Bio-oil undergoes phase separation because of poor stability. Practical application of aqueous phase bio-oil is challenging. In this study, a novel approach that combines aqueous phase bio-oil washing and torrefaction pretreatment was used to upgrade the biomass and pyrolysis product quality. The effects of individual and combined pretreatments on cotton stalk pyrolysis were studied using TG-FTIR and a fixed bed reactor. The results showed that the aqueous phase bio-oil washing pretreatment removed metals and resolved the two pyrolysis peaks in the DTG curve. Importantly, it increased the bio-oil yield and improved the pyrolysis product quality. For example, the water and acid content of bio-oil decreased significantly along with an increase in phenol formation, and the heating value of non-condensable gases improved, and these were more pronounced when combined with torrefaction pretreatment. Therefore, the combined pretreatment is a promising method, which would contribute to the development of polygeneration pyrolysis technology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Antimicrobial, Anti-inflammatory and Antioxidant Activities of Jatropha multifida L. (Euphorbiaceae).

    PubMed

    Anani, Kokou; Adjrah, Yao; Améyapoh, Yaovi; Karou, Simplice Damintoti; Agbonon, Amegnona; de Souza, Comlan; Gbeassor, Messanvi

    2016-01-01

    Jatropha multifida is used in Togolease folk medicine for the healing of chronic wounds. This study aims to investigate antibacterial, anti-inflammatory and antioxidant activities of the leaves ethanolic extract. The antimicrobial activity was assayed by National Committee for Clinical Laboratory Standards broth microdilution method on strains of Staphylococcus aureus and Pseudomoas aeruginosa isolated from wounds, whereas the anti-inflammatory activity was performed by carrageenan and histamine induced paw edema method in rat modele. The 2, 2-diphenyl-1picrylhydrazyl (DPPH) free radical scavenging and ferric reducing antioxidant power (FRAP) were used for the antioxidant activity. The antibacterial assay showed an in vitro growth inhibition of P. aeruginosa and S. aureus in dose-dependent manner, with minimum inhibitory concentration values ranging from 2.5 to 3.12 mg/mL for S. aureus and from 6.25 to 12.5 mg/mL for P. aeruginosa. The maximum paw anti-inflammatory effect occurred after 3 and 5 h administration of histamine and carrageenan, respectively. The DPPH radical scavenging and the FRAP assays yielded weak antioxidant activity. J. multifida possesses antibacterial and anti-inflammatory activities that could justify the use of the plant for the treatment of wounds in the folk medicine. Antibacterial on germs isolated from wound, anti-inflammatory and antioxidant activities of Jatropha multifida were assayed by NCCLS broth method, carrageenan and histamine, DPPH and FRAP respectively. The results indicated that Jatropha multifida possesses antibacterial and anti-inflammatory and weak antioxidant activities that could justify its use for the treatment of wounds in the folk medicine.

  5. [Preparation of ethanol-diesel fuel blends and exhausts emission characteristics in diesel engine].

    PubMed

    Zhang, Runduo; He, Hong; Zhang, Changbin; Shi, Xiaoyan

    2003-07-01

    The technology that diesel oil is partly substituted by ethanol can reduce diesel engine exhausts emission, especially fuel soot. This research is concentrated on preparation of ethanol-diesel blend fuel and exhausts emission characteristics using diesel engine bench. Absolute ethanol can dissolve into diesel fuel at an arbitrary ratio. However, a trace of water (0.2%) addition can lead to the phase separation of blends. Organic additive synthesized during this research can develop the ability of resistance to water and maintain the stability of ethanol-diesel-trace amounts of water system. The effects of 10%, 20%, and 30% ethanol-diesel fuel blends on exhausts emission, were compared with that of diesel fuel in direct injection (DI) diesel engine. The optimum ethanol percentage for ethanol-diesel fuel blends was 20%. Using 20% ethanol-diesel fuel blend with 2% additive of the total volume, bench diesel engine showed a large amount decrease of exhaust gas, e.g. 55% of Bosch smoke number, 70% of HC emission, and 45% of CO emission at 13 kW and 1540 r/min. Without the addition of additive, the blend of ethanol produced new organic compounds such as ethanol and acetaldehyde in tail gas. However, the addition of additive obviously reduced the emission of ethanol and acetaldehyde.

  6. Anaerobic digestion of Jatropha curcas L. press cake and effects of an iron-additive.

    PubMed

    Schmidt, Thomas

    2011-11-01

    Oil production from Jatropha curcas L. seeds generates large amounts of Jatropha press cake (JPC) which can be utilized as a substrate for biogas production. The objective of this work was to investigate anaerobic mono-digestion of JPC and the effects of an iron additive (IA) on gas quality and process stability during the increase of the organic loading rate (OLR). With the increase of the OLR from 1.3 to 3.2 g(VS) L(-1) day(-1), the biogas yield in the reference reactor (RR) without IA decreased from 512 to 194 L(N) kg(VS) (-1) and the CH₄ concentration decreased from 69.3 to 44.4%. In the iron additive reactor (IAR), the biogas yield decreased from 530 to 462 L(N) kg(VS) (-1) and the CH₄ concentration decreased from 69.4 to 61.1%. The H₂S concentration in the biogas was reduced by addition of the IA to values below 258 ppm in the IAR while H₂S concentration in the RR increased and exceeded the detection limit of 5000 ppm. The acid capacity (AC) in the RR increased to more than 20 g L(-1), indicating an accumulation of organic acids caused by process instability. AC values in the IAR remained stable at values below 5 g L(-1). The results demonstrate that JPC can be used as sole substrate for anaerobic digestion up to an OLR of 2.4 g(VS) l(-1) day(-1). The addition of IA has effectively decreased the H(2)S content in the biogas and has improved the stability of the anaerobic process and the biogas quality.

  7. Influence of biochemical composition during hydrothermal liquefaction of algae on product yields and fuel properties.

    PubMed

    Shakya, Rajdeep; Adhikari, Sushil; Mahadevan, Ravishankar; Shanmugam, Saravanan R; Nam, Hyungseok; Hassan, El Barbary; Dempster, Thomas A

    2017-11-01

    Hydrothermal liquefaction (HTL) of nine algae species were performed at two reaction temperatures (280 and 320°C) to compare the effect of their biomass composition on product yields and properties. Results obtained after HTL indicate large variations in terms of bio-oil yields and its properties. The maximum bio-oil yield (66wt%) was obtained at 320°C with a high lipid containing algae Nannochloropsis. The higher heating value of bio-oils ranged from 31 to 36MJ/kg and around 50% of the bio-oils was in the vacuum gas oil range while high lipid containing algae Nannochloropsis contained a significant portion (33-42%) in the diesel range. A predictive relationship between bio-oil yields and biochemical compositions was developed and showed a broad agreement between predictive and experimental yields. The aqueous phases obtained had high amount of TOC (12-43g/L), COD (35-160g/L), TN (1-18g/L), ammonium (0.34-12g/L) and phosphate (0.7-12g/L). Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Design of pyrolysis reactor for production of bio-oil and bio-char simultaneously

    NASA Astrophysics Data System (ADS)

    Aladin, Andi; Alwi, Ratna Surya; Syarif, Takdir

    2017-05-01

    The residues from the wood industry are the main contributors to biomass waste in Indonesia. The conventional pyrolysis process, which needs a large energy as well as to produce various toxic chemical to the environment. Therefore, a pyrolysis unit on the laboratory scale was designed that can be a good alternative to achieve zero-waste and low energy cost. In this paper attempts to discuss design and system of pyrolysis reactor to produce bio-oil and bio-char simultaneously.

  9. Reduction in (pro-)inflammatory responses of lung cells exposed in vitro to diesel exhaust treated with a non-catalyzed diesel particle filter

    NASA Astrophysics Data System (ADS)

    Steiner, Sandro; Czerwinski, Jan; Comte, Pierre; Müller, Loretta L.; Heeb, Norbert V.; Mayer, Andreas; Petri-Fink, Alke; Rothen-Rutishauser, Barbara

    2013-12-01

    Increasingly stringent regulation of particulate matter emissions from diesel vehicles has led to the widespread use of diesel particle filters (DPFs), the effect of which on exhaust toxicity is so far poorly understood. We exposed a cellular model of the human respiratory epithelium at the air-liquid interface to non-catalyzed wall-flow DPF-filtered diesel exhaust and compared the resulting biological responses to the ones observed upon exposure to unfiltered exhaust. Filtered diesel exhaust acted highly oxidative, even though to a lesser extent than unfiltered exhaust (quantification of total reduced glutathione), and both exhaust types triggered comparable responses to oxidative stress (measurement of heme-oxygenase 1 (HMOX1) and superoxide-dismutase (SOD1) gene expression). Further, diesel exhaust filtration significantly reduced pro-inflammatory responses (measurement of tumor necrosis factor (TNF) and interleukin-8 (IL-8) gene expression and quantification of the secretion of their gene products TNF-α and IL-8). Because inflammatory processes are central to the onset of adverse respiratory health effects caused by diesel exhaust inhalation, our results imply that DPFs may make a valuable contribution to the detoxification of diesel vehicle emissions. The induction of significant oxidative stress by filtered diesel exhaust however, also implies that the non-particulate exhaust components also need to be considered for lung cell risk assessment.

  10. Reformulated diesel fuel

    DOEpatents

    McAdams, Hiramie T [Carrollton, IL; Crawford, Robert W [Tucson, AZ; Hadder, Gerald R [Oak Ridge, TN; McNutt, Barry D [Arlington, VA

    2006-03-28

    Reformulated diesel fuels for automotive diesel engines which meet the requirements of ASTM 975-02 and provide significantly reduced emissions of nitrogen oxides (NO.sub.x) and particulate matter (PM) relative to commercially available diesel fuels.

  11. Effect of operating parameters on bio-fuel production from waste furniture sawdust.

    PubMed

    Uzun, Basak Burcu; Kanmaz, Gülin

    2013-04-01

    Fast pyrolysis is an effective technology for conversion of biomass into energy and value-added chemicals instead of burning them directly. In this study, fast pyrolysis of waste furniture sawdust (pine sawdust) was investigated under various reaction conditions (reaction time, pyrolysis temperature, heating rate, residence time and particle size) in a tubular reactor. The optimum reaction conditions for bio-oil production was found as reaction time of 5 min, pyrolysis temperature of 500 °C, heating rate of 300 °C min(-1) under nitrogen flow rate of 400 cm(3) min(-1). At these conditions, maximum bio-oil yield was obtained as 42.09%. Pyrolysis oils were characterized by using various elemental analyses, fourier - transformation infrared (FT-IR) spectrometry and gas chromatography-mass spectrometry (GC-MS). The results of the GC-MS showed that cracking of large molecular phenolics was followed by partial conversion into phenol and alkylated phenols (45%) during the pyrolysis. According to the experimental and characterization results; the liquid product could be used as feedstock for the chemical industry or petroleum crude for refinery.

  12. Bio-oil fractionation and condensation

    DOEpatents

    Brown, Robert C; Jones, Samuel T; Pollard, Anthony

    2013-07-02

    A method of fractionating bio-oil vapors which involves providing bio-oil vapors comprising bio-oil constituents is described. The bio-oil vapors are cooled in a first stage which comprises a condenser having passages for the bio-oil separated by a heat conducting wall from passages for a coolant. The coolant in the condenser of the first stage is maintained at a substantially constant temperature, set at a temperature in the range of 75 to 100.degree. C., to condense a first liquid fraction of liquefied bio-oil constituents in the condenser of the first stage. The first liquid fraction of liquified bio-oil constituents from the condenser in the first stage is collected. Also described are steps for subsequently recovering further liquid fractions of liquefied bio-oil constituents. Particular compositions of bio-oil condensation products are also described.

  13. Performance of diesel engine using diesel B3 mixed with crude palm oil.

    PubMed

    Namliwan, Nattapong; Wongwuttanasatian, Tanakorn

    2014-01-01

    The objective of this study was to test the performance of diesel engine using diesel B3 mixed with crude palm oil in ratios of 95 : 5, 90 : 10, and 85 : 15, respectively, and to compare the results with diesel B3. According to the tests, they showed that the physical properties of the mixed fuel in the ratio of 95 : 5 were closest to those of diesel B3. The performance of the diesel engine that used mixed fuels had 5-17% lower torque and power than that of diesel B3. The specific fuel consumption of mixed fuels was 7-33% higher than using diesel B3. The components of gas emissions by using mixed fuel had 1.6-52% fewer amount of carbon monoxide (CO), carbon dioxide (CO2), sulfur dioxide (SO2), and oxygen (O2) than those of diesel B3. On the other hand, nitric oxide (NO) and nitrogen oxides (NO X ) emissions when using mixed fuels were 10-39% higher than diesel B3. By comparing the physical properties, the performance of the engine, and the amount of gas emissions of mixed fuel, we found out that the 95 : 5 ratio by volume was a suitable ratio for agricultural diesel engine (low-speed diesel engine).

  14. Selection of Lipases for the Synthesis of Biodiesel from Jatropha Oil and the Potential of Microwave Irradiation to Enhance the Reaction Rate

    PubMed Central

    2016-01-01

    The present study deals with the enzymatic synthesis of biodiesel by transesterification of Jatropha oil (Jatropha curcas L.) with ethanol in a solvent-free system. Seven commercial lipase preparations immobilized by covalent attachment on epoxy-polysiloxane-polyvinyl alcohol composite (epoxy-SiO2-PVA) were tested as biocatalysts. Among them, immobilized lipases from Pseudomonas fluorescens (lipase AK) and Burkholderia cepacia (lipase PS) were the most active biocatalysts in biodiesel synthesis, reaching ethyl ester yields (FAEE) of 91.1 and 98.3% at 72 h of reaction, respectively. The latter biocatalyst exhibited similar performance compared to Novozym® 435. Purified biodiesel was characterized by different techniques. Transesterification reaction carried out under microwave irradiation exhibited higher yield and productivity than conventional heating. The operational stability of immobilized lipase PS was determined in repeated batch runs under conventional and microwave heating systems, revealing half-life times of 430.4 h and 23.5 h, respectively. PMID:27868060

  15. Degradation of phorbol 12,13-diacetate in aqueous solution by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Kongmany, Santi; Furuta, Masakazu; Matsuura, Hiroto; Okuda, Shuichi; Imamura, Kiyoshi; Maeda, Yasuaki

    2014-12-01

    Phorbol esters (PEs) are highly toxic compounds that cause skin irritation, inflammation, and tumor promotion upon contact with humans or animals. These compounds are naturally present in Jatropha curcas L. To promote the use of J. curcas seed oil in bio-diesel production industries and reduce environmental concerns, it is necessary to find methods of degrading PEs. In this study, the degradation of phorbol 12,13-diacetate (PDA), as a representative PE, in aqueous solution at a concentration of 10 mg/L by 60Co-γ-irradiation was investigated. The results demonstrate that PDA was effectively degraded by this treatment and the degradation efficiency increased with the absorbed dose within the range of 0.5-3 kGy. Complete degradation of PDA was achieved at a dose of 3 kGy. In the presence of radical scavengers (i.e., methanol, tert-butanol, 2-propanol), reactive species from water radiolysis were scavenged, and significant inhibition of PDA degradation was observed at absorbed doses less than 1 kGy. In the presence of nitrous oxide, the generation of hydroxyl radicals (rad OH) was promoted during gamma irradiation and PDA degradation was drastically enhanced.

  16. Bio hydrogen production from cassava starch by anaerobic mixed cultures: Multivariate statistical modeling

    NASA Astrophysics Data System (ADS)

    Tien, Hai Minh; Le, Kien Anh; Le, Phung Thi Kim

    2017-09-01

    Bio hydrogen is a sustainable energy resource due to its potentially higher efficiency of conversion to usable power, high energy efficiency and non-polluting nature resource. In this work, the experiments have been carried out to indicate the possibility of generating bio hydrogen as well as identifying effective factors and the optimum conditions from cassava starch. Experimental design was used to investigate the effect of operating temperature (37-43 °C), pH (6-7), and inoculums ratio (6-10 %) to the yield hydrogen production, the COD reduction and the ratio of volume of hydrogen production to COD reduction. The statistical analysis of the experiment indicated that the significant effects for the fermentation yield were the main effect of temperature, pH and inoculums ratio. The interaction effects between them seem not significant. The central composite design showed that the polynomial regression models were in good agreement with the experimental results. This result will be applied to enhance the process of cassava starch processing wastewater treatment.

  17. Treatment of aqueous phase of bio-oil by granular activated carbon and evaluation of biogas production.

    PubMed

    Shanmugam, Saravanan R; Adhikari, Sushil; Wang, Zhouhang; Shakya, Rajdeep

    2017-01-01

    Hydrothermal liquefaction of wet biomass such as algae is a promising thermochemical process for the production of bio-oil. Bio-oil aqueous phase generated during liquefaction process is rich in complex organics and can be utilized for biogas production following its pre-treatment with granular activated carbon. In our study, use of 30% activated carbon resulted in higher chemical oxygen demand (COD) reduction (53±0.3%) from aqueous phase. Higher CH 4 production (84±12mL/gCOD) was also observed in 30% carbon-treated aqueous phase fed cultures, whereas only 32±6mLCH 4 /gCOD was observed in control (non-carbon treated) cultures. The results from this study indicate that almost 67±0.3% initial COD of aqueous phase can be reduced using a combination of both carbon treatment and biogas production. This study shows that aqueous phase can be utilized for CH 4 production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Impact of the energy crop Jatropha curcas L. on the composition of rhizobial populations nodulating cowpea (Vigna unguiculata L.) and acacia (Acacia seyal L.).

    PubMed

    Dieng, Amadou; Duponnois, Robin; Floury, Antoine; Laguerre, Gisèle; Ndoye, Ibrahima; Baudoin, Ezékiel

    2015-03-01

    Jatropha curcas, a Euphorbiaceae species that produces many toxicants, is increasingly planted as an agrofuel plant in Senegal. The purpose of this study was to determine whether soil priming induced by J. curcas monoculture could alter the rhizobial populations that nodulate cowpea and acacia, two locally widespread legumes. Soil samples were transferred into a greenhouse from three fields previously cultivated with Jatropha for 1, 2, and 15 years, and the two trap legumes were grown in them. Control soil samples were also taken from adjacent Jatropha-fallow plots. Both legumes tended to develop fewer but larger nodules when grown in Jatropha soils. Nearly all the nifH sequences amplified from nodule DNA were affiliated to the Bradyrhizobium genus. Only sequences from Acacia seyal nodules grown in the most recent Jatropha plantation were related to the Mesorhizobium genus, which was much a more conventional finding on A. seyal than the unexpected Bradyrhizobium genus. Apart from this particular case, only minor differences were found in the respective compositions of Jatropha soil versus control soil rhizobial populations. Lastly, the structure of these rhizobial populations was systematically imbalanced owing to the overwhelming dominance of a very small number of nifH genotypes, some of which were identical across soil types or even sites. Despite these weak and sparse effects on rhizobial diversity, future investigations should focus on the characterization of the nitrogen-fixing abilities of the predominant rhizobial strains. Copyright © 2014 Elsevier GmbH. All rights reserved.

  19. Experimental Investigations on Conventional and Semi-Adiabatic Diesel Engine Using Simarouba Biodiesel as Fuel

    NASA Astrophysics Data System (ADS)

    Ravi, M. U.; Reddy, C. P.; Ravindranath, K.

    2013-04-01

    In view of fast depletion of fossil fuels and the rapid rate at which the fuel consumption is taking place all over the world, scientists are searching for alternate fuels for maintaining the growth industrially and economically. Hence search for alternate fuel(s) has become imminent. Out of the limited options for internal combustion engines, the bio diesel fuel appears to be the best. Many advanced countries are implementing several biodiesel initiatives and developmental programmes in order to become self sufficient and reduce the import bills. Biodiesel is biodegradable and renewable fuel with the potential to enhance the performance and reduce engine exhaust emissions. This is due to ready usage of existing diesel engines, fuel distribution pattern, reduced emission profiles, and eco-friendly properties of biodiesel. Simarouba biodiesel (SBD), the methyl ester of Simarouba oil is one such alternative fuel which can be used as substitute to conventional petro-diesel. The present work involves experimental investigation on the use of SBD blends as fuel in conventional diesel engine and semi-adiabatic diesel engine. The oil was triple filtered to eliminate particulate matter and then transesterified to obtain biodiesel. The project envisaged aims at conducting analysis of diesel with SBD blends (10, 20, 30 and 40 %) in conventional engine and semi-adiabatic engine. Also it was decided to vary the injection pressure (180, 190 and 200 bar) and observe its effect on performance and also suggest better value of injection pressure. The engine was made semi adiabatic by coating the piston crown with partially stabilized zirconia (PSZ). Kirloskar AV I make (3.67 kW) vertical, single cylinder, water cooled diesel engine coupled to an eddy current dynamometer with suitable measuring instrumentation/accessories used for the study. Experiments were initially carried out using pure diesel fuel to provide base line data. The test results were compared based on the performance

  20. Bio-Fuel Production Assisted with High Temperature Steam Electrolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grant Hawkes; James O'Brien; Michael McKellar

    2012-06-01

    Two hybrid energy processes that enable production of synthetic liquid fuels that are compatible with the existing conventional liquid transportation fuels infrastructure are presented. Using biomass as a renewable carbon source, and supplemental hydrogen from high-temperature steam electrolysis (HTSE), these two hybrid energy processes have the potential to provide a significant alternative petroleum source that could reduce dependence on imported oil. The first process discusses a hydropyrolysis unit with hydrogen addition from HTSE. Non-food biomass is pyrolyzed and converted to pyrolysis oil. The pyrolysis oil is upgraded with hydrogen addition from HTSE. This addition of hydrogen deoxygenates the pyrolysis oilmore » and increases the pH to a tolerable level for transportation. The final product is synthetic crude that could then be transported to a refinery and input into the already used transportation fuel infrastructure. The second process discusses a process named Bio-Syntrolysis. The Bio-Syntrolysis process combines hydrogen from HTSE with CO from an oxygen-blown biomass gasifier that yields syngas to be used as a feedstock for synthesis of liquid synthetic crude. Conversion of syngas to liquid synthetic crude, using a biomass-based carbon source, expands the application of renewable energy beyond the grid to include transportation fuels. It can also contribute to grid stability associated with non-dispatchable power generation. The use of supplemental hydrogen from HTSE enables greater than 90% utilization of the biomass carbon content which is about 2.5 times higher than carbon utilization associated with traditional cellulosic ethanol production. If the electrical power source needed for HTSE is based on nuclear or renewable energy, the process is carbon neutral. INL has demonstrated improved biomass processing prior to gasification. Recyclable biomass in the form of crop residue or energy crops would serve as the feedstock for this process. A

  1. Performance of Diesel Engine Using Diesel B3 Mixed with Crude Palm Oil

    PubMed Central

    Namliwan, Nattapong; Wongwuttanasatian, Tanakorn

    2014-01-01

    The objective of this study was to test the performance of diesel engine using diesel B3 mixed with crude palm oil in ratios of 95 : 5, 90 : 10, and 85 : 15, respectively, and to compare the results with diesel B3. According to the tests, they showed that the physical properties of the mixed fuel in the ratio of 95 : 5 were closest to those of diesel B3. The performance of the diesel engine that used mixed fuels had 5–17% lower torque and power than that of diesel B3. The specific fuel consumption of mixed fuels was 7–33% higher than using diesel B3. The components of gas emissions by using mixed fuel had 1.6–52% fewer amount of carbon monoxide (CO), carbon dioxide (CO2), sulfur dioxide (SO2), and oxygen (O2) than those of diesel B3. On the other hand, nitric oxide (NO) and nitrogen oxides (NOX) emissions when using mixed fuels were 10–39% higher than diesel B3. By comparing the physical properties, the performance of the engine, and the amount of gas emissions of mixed fuel, we found out that the 95 : 5 ratio by volume was a suitable ratio for agricultural diesel engine (low-speed diesel engine). PMID:24688402

  2. Bio-oil fractionation and condensation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Robert C.; Jones, Samuel T.; Pollard, Anthony

    The present invention relates to a method of fractionating bio-oil vapors which involves providing bio-oil vapors comprising bio-oil constituents. The bio-oil vapors are cooled in a first stage which comprises a condenser having passages for the bio-oil separated by a heat conducting wall from passages for a coolant. The coolant in the condenser of the first stage is maintained at a substantially constant temperature, set at a temperature in the range of 75 to 100.degree. C., to condense a first liquid fraction of liquefied bio-oil constituents in the condenser of the first stage. The first liquid fraction of liquified bio-oilmore » constituents from the condenser in the first stage is collected. Also disclosed are steps for subsequently recovering further liquid fractions of liquefied bio-oil constituents. Particular compositions of bio-oil condensation products are also described.« less

  3. Antimicrobial, Anti-inflammatory and Antioxidant Activities of Jatropha multifida L. (Euphorbiaceae)

    PubMed Central

    Anani, Kokou; Adjrah, Yao; Améyapoh, Yaovi; Karou, Simplice Damintoti; Agbonon, Amegnona; de Souza, Comlan; Gbeassor, Messanvi

    2016-01-01

    Background: Jatropha multifida is used in Togolease folk medicine for the healing of chronic wounds. Objective: This study aims to investigate antibacterial, anti-inflammatory and antioxidant activities of the leaves ethanolic extract. Materials and Methods: The antimicrobial activity was assayed by National Committee for Clinical Laboratory Standards broth microdilution method on strains of Staphylococcus aureus and Pseudomoas aeruginosa isolated from wounds, whereas the anti-inflammatory activity was performed by carrageenan and histamine induced paw edema method in rat modele. The 2, 2-diphenyl-1picrylhydrazyl (DPPH) free radical scavenging and ferric reducing antioxidant power (FRAP) were used for the antioxidant activity. Results: The antibacterial assay showed an in vitro growth inhibition of P. aeruginosa and S. aureus in dose-dependent manner, with minimum inhibitory concentration values ranging from 2.5 to 3.12 mg/mL for S. aureus and from 6.25 to 12.5 mg/mL for P. aeruginosa. The maximum paw anti-inflammatory effect occurred after 3 and 5 h administration of histamine and carrageenan, respectively. The DPPH radical scavenging and the FRAP assays yielded weak antioxidant activity. Conclusion: J. multifida possesses antibacterial and anti-inflammatory activities that could justify the use of the plant for the treatment of wounds in the folk medicine. SUMMARY Antibacterial on germs isolated from wound, anti-inflammatory and antioxidant activities of Jatropha multifida were assayed by NCCLS broth method, carrageenan and histamine, DPPH and FRAP respectively. The results indicated that Jatropha multifida possesses antibacterial and anti-inflammatory and weak antioxidant activities that could justify its use for the treatment of wounds in the folk medicine. PMID:27034606

  4. Diesel pollution biodegradation: synergetic effect of Mycobacterium and filamentous fungi.

    PubMed

    Li, You-Qing; Liu, Hong-Fang; Tian, Zhen-Le; Zhu, Li-Hua; Wu, Ying-Hui; Tang, He-Qing

    2008-06-01

    To biodegrade the diesel pollution in aqueous solution inoculated with Mycobacterium and filamentous fungi. Bacteria sampled from petroleum hydrocarbons contaminated sites in Karamay Oilfield were isolated and identified as Mycobacterium hyalinum (MH) and cladosporium. Spectrophotometry and gas chromatography (GC) were used to analyze of the residual concentrations of diesel oil and its biodegradation products. From the GC data, the values of apparent biodegradation ratio of the bacterial strain MH to diesel oil were close to those obtained in the control experiments. Moreover, the number of MH did not increase with degradation time. However, by using n-octadecane instead of diesel oil, the real biotic degradation ratio increased to 20.9% over 5 days of degradation. Cladosporium strongly biodegraded diesel oil with a real degradation ratio of up to 34% after 5 days treatment. When the two strains were used simultaneously, a significant synergistic effect between them resulted in almost complete degradation of diesel oil, achieving a total diesel removal of 99% over 5 days of treatment, in which one part of about 80% and another part of about 19% were attributed to biotic and abiotic processes, respectively. The observed synergistic effect was closely related to the aromatics-degrading ability of Cladosporium, which favored the growth of MH and promoted the bioavailability of diesel oil.

  5. Potential of Jatropha curcas as a source of renewable oil and animal feed.

    PubMed

    King, Andrew J; He, Wei; Cuevas, Jesús A; Freudenberger, Mark; Ramiaramanana, Danièle; Graham, Ian A

    2009-01-01

    Jatropha curcas (L.) is a perennial plant of the spurge family (Euphorbiaceae). Recently, it has received much attention as a potential source of vegetable oil as a replacement for petroleum, and, in particular, the production of biodiesel. Despite the interest that is being shown in the large-scale cultivation of J. curcas, genetic resources remain poorly characterized and conserved and there has been very little plant breeding for improved traits. At present, the varieties being used to establish plantations in Africa and Asia are inedible. The meal obtained after the extraction of oil cannot, therefore, be used as a source of animal feed. Naturally existing edible varieties are, however, known to occur in Mexico. The toxic components of J. curcas seeds, the potential for plant breeding to generate improved varieties, and the suitability of J. curcas oil as a feedstock for biodiesel production are discussed.

  6. Control of autothermal reforming reactor of diesel fuel

    NASA Astrophysics Data System (ADS)

    Dolanc, Gregor; Pregelj, Boštjan; Petrovčič, Janko; Pasel, Joachim; Kolb, Gunther

    2016-05-01

    In this paper a control system for autothermal reforming reactor for diesel fuel is presented. Autothermal reforming reactors and the pertaining purification reactors are used to convert diesel fuel into hydrogen-rich reformate gas, which is then converted into electricity by the fuel cell. The purpose of the presented control system is to control the hydrogen production rate and the temperature of the autothermal reforming reactor. The system is designed in such a way that the two control loops do not interact, which is required for stable operation of the fuel cell. The presented control system is a part of the complete control system of the diesel fuel cell auxiliary power unit (APU).

  7. Efficacy of jatropha curcas plant extract against the survival of salmonella enteritidis

    USDA-ARS?s Scientific Manuscript database

    Introduction: The use of plant-derived antimicrobials has shown to be effective at inhibiting microbial growth. Although Jatropha curcas is known to possess antimicrobial properties, its efficacy against Salmonella Enteritidis has not yet been investigated. Purpose: The purpose of this study was...

  8. Production of bioelectricity, bio-hydrogen, high value chemicals and bioinspired nanomaterials by electrochemically active biofilms.

    PubMed

    Kalathil, Shafeer; Khan, Mohammad Mansoob; Lee, Jintae; Cho, Moo Hwan

    2013-11-01

    Microorganisms naturally form biofilms on solid surfaces for their mutual benefits including protection from environmental stresses caused by contaminants, nutritional depletion or imbalances. The biofilms are normally dangerous to human health due to their inherited robustness. On the other hand, a recent study suggested that electrochemically active biofilms (EABs) generated by electrically active microorganisms have properties that can be used to catalyze or control the electrochemical reactions in a range of fields, such as bioenergy production, bioremediation, chemical/biological synthesis, bio-corrosion mitigation and biosensor development. EABs have attracted considerable attraction in bioelectrochemical systems (BESs), such as microbial fuel cells and microbial electrolysis cells, where they act as living bioanode or biocathode catalysts. Recently, it was reported that EABs can be used to synthesize metal nanoparticles and metal nanocomposites. The EAB-mediated synthesis of metal and metal-semiconductor nanocomposites is expected to provide a new avenue for the greener synthesis of nanomaterials with high efficiency and speed than other synthetic methods. This review covers the general introduction of EABs, as well as the applications of EABs in BESs, and the production of bio-hydrogen, high value chemicals and bio-inspired nanomaterials. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Process modeling and supply chain design for advanced biofuel production based on bio-oil gasification

    NASA Astrophysics Data System (ADS)

    Li, Qi

    As a potential substitute for petroleum-based fuel, second generation biofuels are playing an increasingly important role due to their economic, environmental, and social benefits. With the rapid development of biofuel industry, there has been an increasing literature on the techno-economic analysis and supply chain design for biofuel production based on a variety of production pathways. A recently proposed production pathway of advanced biofuel is to convert biomass to bio-oil at widely distributed small-scale fast pyrolysis plants, then gasify the bio-oil to syngas and upgrade the syngas to transportation fuels in centralized biorefinery. This thesis aims to investigate two types of assessments on this bio-oil gasification pathway: techno-economic analysis based on process modeling and literature data; supply chain design with a focus on optimal decisions for number of facilities to build, facility capacities and logistic decisions considering uncertainties. A detailed process modeling with corn stover as feedstock and liquid fuels as the final products is presented. Techno-economic analysis of the bio-oil gasification pathway is also discussed to assess the economic feasibility. Some preliminary results show a capital investment of 438 million dollar and minimum fuel selling price (MSP) of $5.6 per gallon of gasoline equivalent. The sensitivity analysis finds that MSP is most sensitive to internal rate of return (IRR), biomass feedstock cost, and fixed capital cost. A two-stage stochastic programming is formulated to solve the supply chain design problem considering uncertainties in biomass availability, technology advancement, and biofuel price. The first-stage makes the capital investment decisions including the locations and capacities of the decentralized fast pyrolysis plants and the centralized biorefinery while the second-stage determines the biomass and biofuel flows. The numerical results and case study illustrate that considering uncertainties can be

  10. Mutagenicity of diesel exhaust particle extracts: influence of fuel composition in two diesel engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, C.R.; Henderson, T.R.; Royer, R.E.

    The influence of diesel fuel composition on mutagenicity of exhaust particle associated organic compounds has been investigated using nine fuels varying in aromatic content and distillation properties. The tests were conducted with Oldsmobile Delta-88 and Peugot 504 diesel cars operated according to the EPA Federal Test Procedure. The particulate exhaust from each test was collected on a filter, extracted in dichloromethane and the resulting extract evaluated for mutagenicity in Salmonella strain TA-100. Mutagenicity of extracts of particles collected from the Oldsmobile were highest in the higher aromatic content fuels (> 30%) but similar for intermediate (20%) and low (13%) aromaticmore » content fuels. No influence of aromaticity on mutagenicity was observed in samples collected from the Peugeot under the same conditions. Thus, fuel aromatic content may enhance the production of mutagenic combustion products at higher concentrations, but may be dependent upon engine type. A good correlation was observed between mutagenicity of the particle extracts and the initial boiling point of the fuel (r = 0.89). Gas chromatography/mass spectrometric analysis of the aromatic fraction of the fuels showed that the fuel producing the most mutagenic combustion products was highest in phenanthrene type compounds.« less

  11. Does Jatropha curcas L. show resistance to drought in the Sahelian zone of West Africa? A case study from Burkina Faso

    NASA Astrophysics Data System (ADS)

    Bayen, P.; Sop, T. K.; Lykke, A. M.; Thiombiano, A.

    2015-02-01

    Land degradation is an environmental problem which weakens agro-silvo-pastoral productivity in Sub-Saharan Africa. The most common manifestation of land degradation is the appearance of denuded land. We carried out an experiment to test the effect of three soil and water conservation techniques on survival and growth of Jatropha curcas seedlings transplanted onto two completely denuded lands in the Sahelian and Sudanian zones of Burkina Faso. We implemented an experimental design with three replicates per restoration technique. A total of 174 seedlings were planted in each study site. The results showed that soil water content varied according to the restoration technique used (df = 2; F = 53.21; p < 0.00) as well as according to study site (df = 1; F = 74.48; p < 0.00). Soil water content was significantly lower in the Sahel than in the Sudanian zone. Seedling survival rate varied significantly according to technique used (df = 2; F = 8.91; p = 0.000) and study site (df = 1; F = 9.74; p = 0.003). Survival rate, diameter and seedling height were highest at the Sudanian site. At the Sahelian site, all seedlings died two years after establishment. These results suggest that Jatropha curcas is unsuited to denuded land in the Sahelian zone. Most of the plants died in the Sahel between April and May, which is the peak of the dry season; this may be an indication that Jatropha may not be as drought-resistant as suggested by the prolific literature which has reported on diverse claims surrounding this plant.

  12. Bio-objects and the media: the role of communication in bio-objectification processes.

    PubMed

    Maeseele, Pieter; Allgaier, Joachim; Martinelli, Lucia

    2013-06-01

    The representation of biological innovations in and through communication and media practices is vital for understanding the nature of "bio-objects" and the process we call "bio-objectification." This paper discusses two ideal-typical analytical approaches based on different underlying communication models, ie, the traditional (science- and media-centered) and media sociological (a multi-layered process involving various social actors in defining the meanings of scientific and technological developments) approach. In this analysis, the latter is not only found to be the most promising approach for understanding the circulation, (re)production, and (re)configuration of meanings of bio-objects, but also to interpret the relationship between media and science. On the basis of a few selected examples, this paper highlights how media function as a primary arena for the (re)production and (re)configuration of scientific and biomedical information with regards to bio-objects in the public sphere in general, and toward decision-makers, interest groups, and the public in specific.

  13. Bio-objects and the media: the role of communication in bio-objectification processes

    PubMed Central

    Maeseele, Pieter; Allgaier, Joachim; Martinelli, Lucia

    2013-01-01

    The representation of biological innovations in and through communication and media practices is vital for understanding the nature of “bio-objects” and the process we call “bio-objectification.” This paper discusses two ideal-typical analytical approaches based on different underlying communication models, ie, the traditional (science- and media-centered) and media sociological (a multi-layered process involving various social actors in defining the meanings of scientific and technological developments) approach. In this analysis, the latter is not only found to be the most promising approach for understanding the circulation, (re)production, and (re)configuration of meanings of bio-objects, but also to interpret the relationship between media and science. On the basis of a few selected examples, this paper highlights how media function as a primary arena for the (re)production and (re)configuration of scientific and biomedical information with regards to bio-objects in the public sphere in general, and toward decision-makers, interest groups, and the public in specific. PMID:23771763

  14. The hard choice for alternative biofuels to diesel in Brazil.

    PubMed

    Carioca, J O B; Hiluy Filho, J J; Leal, M R L V; Macambira, F S

    2009-01-01

    This paper selects biofuel scenarios to substitute diesel in Brazil based on oil reserves increase, diesel imports, CO(2) emissions, crops agronomic yields, byproducts marketing and social impacts. This hard task still considers that agricultural practices in developing countries have large social impacts. Brazil presents high consumption of diesel oil in transport; low agronomic yield of traditional vegetable oil crops, which demand large cultivation areas contrasting with microalgae and palm oils which present high productivity. Concerning technologies, thermal cracking and transesterification of vegetable oils present a difficult economic situation related to vegetable oils price, food competition and glycerin market; BTL technology, meaning thermal gasification of biomass to liquids, faces problems related to low density of biomaterials and low viscosity of synthetic biodiesel produced. Biorefinery algal integrated systems and co-solvent technology to introduce up to 8% of ethanol into diesel seem to be feasible routes to reduce diesel consumption.

  15. Potential use and the energy conversion efficiency analysis of fermentation effluents from photo and dark fermentative bio-hydrogen production.

    PubMed

    Zhang, Zhiping; Li, Yameng; Zhang, Huan; He, Chao; Zhang, Quanguo

    2017-12-01

    Effluent of bio-hydrogen production system also can be adopted to produce methane for further fermentation, cogeneration of hydrogen and methane will significantly improve the energy conversion efficiency. Platanus Orientalis leaves were taken as the raw material for photo- and dark-fermentation bio-hydrogen production. The resulting concentrations of acetic, butyric, and propionic acids and ethanol in the photo- and dark-fermentation effluents were 2966mg/L and 624mg/L, 422mg/L and 1624mg/L, 1365mg/L and 558mg/L, and 866mg/L and 1352mg/L, respectively. Subsequently, we calculated the energy conversion efficiency according to the organic contents of the effluents and their energy output when used as raw material for methane production. The overall energy conversion efficiencies increased by 15.17% and 22.28%, respectively, when using the effluents of photo and dark fermentation. This two-step bio-hydrogen and methane production system can significantly improve the energy conversion efficiency of anaerobic biological treatment plants. Copyright © 2017. Published by Elsevier Ltd.

  16. Experimental study on particulate and NOx emissions of a diesel engine fueled with ultra low sulfur diesel, RME-diesel blends and PME-diesel blends.

    PubMed

    Zhu, Lei; Zhang, Wugao; Liu, Wei; Huang, Zhen

    2010-02-01

    Ultra low sulfur diesel and two different kinds of biodiesel fuels blended with baseline diesel fuel in 5% and 20% v/v were tested in a Cummins 4BTA direct injection diesel engine, with a turbocharger and an intercooler. Experiments were conducted under five engine loads at two steady speeds (1500 rpm and 2500 rpm). The study aims at investigating the engine performance, NO(x) emission, smoke opacity, PM composition, PM size distribution and comparing the impacts of low sulfur content of biodiesel with ULSD on the particulate emission. The results indicate that, compared to base diesel fuel, the increase of biodiesel in blends could cause certain increase in both brake specific fuel consumption and brake thermal efficiency. Compared with baseline diesel fuel, the biodiesel blends bring about more NO(x) emissions. With the proportion of biodiesel increase in blends, the smoke opacity decreases, while total particle number concentration increases. Meanwhile the ULSD gives lower NO(x) emissions, smoke opacity and total number concentration than those of baseline diesel fuel. In addition, the percentages of SOF and sulfate in particulates increase with biodiesel in blends, while the dry soot friction decreases obviously. Compared with baseline diesel fuel, the biodiesel blends increase the total nucleation number concentration, while ULSD reduces the total nucleation number concentration effectively, although they all have lower sulfur content. It means that, for ULSD, the lower sulfur content is the dominant factor for suppressing nucleation particles formation, while for biodiesel blends, lower volatile, lower aromatic content and higher oxygen content of biodiesel are key factors for improving the nucleation particles formation. The results demonstrate that the higher NO(x) emission and total nucleation number concentration are considered as the big obstacles of the application of biodiesel in diesel engine. Copyright 2009 Elsevier B.V. All rights reserved.

  17. Bio-ethanol production from wet coffee processing waste in Ethiopia.

    PubMed

    Woldesenbet, Asrat Gebremariam; Woldeyes, Belay; Chandravanshi, Bhagwan Singh

    2016-01-01

    Large amounts of coffee residues are generated from coffee processing plants in Ethiopia. These residues are toxic and possess serious environmental problems following the direct discharge into the nearby water bodies which cause serious environmental and health problems. This study was aimed to quantify wet coffee processing waste and estimate its bio-ethanol production. The study showed that the wastes are potential environmental problems and cause water pollution due to high organic component and acidic nature. The waste was hydrolyzed by dilute H 2 SO 4 (0.2, 0.4, 0.6, 0.8 and 1 M) and distilled water. Total sugar content of the sample was determined titrimetrically and refractometry. Maximum value (90%) was obtained from hydrolysis by 0.4 M H 2 SO 4 . Ethanol production was monitored by gas chromatography. The optimum yield of ethanol (78%) was obtained from the sample hydrolyzed by 0.4 M H 2 SO 4 for 1 h at hydrolysis temperature of 100 °C and after fermentation for 24 h and initial pH of 4.5. Based on the data, it was concluded that reuse of the main coffee industry wastes is of significant importance from environmental and economical view points. In conclusion, this study has proposed to utilize the wet coffee processing waste to produce bio-ethanol which provides the alternative energy source from waste biomass and solves the environmental waste disposal as well as human health problem.

  18. Clean Diesel

    EPA Pesticide Factsheets

    The Clean Diesel Program offers DERA funding in the form of grants and rebates as well as other support for projects that protect human health and improve air quality by reducing harmful emissions from diesel engines.

  19. Diesel plant retrofitting options to enhance decentralized electricity supply in Indonesia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baring-Gould, E I; Barley, C D; Drouilhet, S

    1997-09-01

    Over the last 20 years, the government of Indonesia has undertaken an extensive program to provide electricity to the population of that country. The electrification of rural areas has been partially achieved through the use of isolated diesel systems, which account for about 20% of the country`s generated electricity. Due to many factors related to inefficient power production with diesels, the National Renewable Energy Laboratory, in conjunction with PLN, the Indonesian national utility, Community Power Corporation, and Idaho Power Company, analyzed options for retrofitting existing diesel power systems. This study considered the use of different combinations of advanced diesel control,more » the addition of wind generators, photovoltaics and batteries to reduce the systems of overall cost and fuel consumption. This analysis resulted in a general methodology for retrofitting diesel power systems. This paper discusses five different retrofitting options to improve the performance of diesel power systems. The systems considered in the Indonesian analysis are cited as examples for the options discussed.« less

  20. Two-step fast microwave-assisted pyrolysis of biomass for bio-oil production using microwave absorbent and HZSM-5 catalyst.

    PubMed

    Zhang, Bo; Zhong, Zhaoping; Xie, Qinglong; Liu, Shiyu; Ruan, Roger

    2016-07-01

    A novel technology of two-step fast microwave-assisted pyrolysis (fMAP) of corn stover for bio-oil production was investigated in the presence of microwave absorbent (SiC) and HZSM-5 catalyst. Effects of fMAP temperature and catalyst-to-biomass ratio on bio-oil yield and chemical components were examined. The results showed that this technology, employing microwave, microwave absorbent and HZSM-5 catalyst, was effective and promising for biomass fast pyrolysis. The fMAP temperature of 500°C was considered the optimum condition for maximum yield and best quality of bio-oil. Besides, the bio-oil yield decreased linearly and the chemical components in bio-oil were improved sequentially with the increase of catalyst-to-biomass ratio from 1:100 to 1:20. The elemental compositions of bio-char were also determined. Additionally, compared to one-step fMAP process, two-step fMAP could promote the bio-oil quality with a smaller catalyst-to-biomass ratio. Copyright © 2016. Published by Elsevier B.V.

  1. First report of a complete genome sequence for a begomovirus infecting Jatropha gossypifolia in the Americas.

    PubMed

    Simmonds-Gordon, R N; Collins-Fairclough, A M; Stewart, C S; Roye, M E

    2014-10-01

    Jatropha gossypifolia is a weed that is commonly found with yellow mosaic symptoms growing along the roadside and in close proximity to cultivated crops in many farming communities in Jamaica. For the first time, the complete genome sequence of a new begomovirus, designated jatropha mosaic virus-[Jamaica:Spanish Town:2004] (JMV-[JM:ST:04]), was determined from field-infected J. gossypifolia in the western hemisphere. DNA-A nucleotide sequence comparisons showed closest identity (84 %) to two tobacco-infecting viruses from Cuba, tobacco mottle leaf curl virus-[Cuba:Sancti Spiritus:03] (TbMoLCV-[CU:SS:03]) and tobacco leaf curl Cuba virus-[Cuba:Taguasco:2005] (TbLCuCUV-[CU:Tag:05]), and two weed-infecting viruses from Cuba and Jamaica, Rhynchosia rugose golden mosaic virus-[Cuba:Camaguey:171:2009] (RhRGMV- [CU:Cam:171:09]) and Wissadula golden mosaic St. Thomas virus-[Jamaica:Albion:2005] (WGMSTV-[JM:Alb:05]). Phylogenetic analysis revealed that JMV-[JM:ST:04] is most closely related to tobacco and tomato viruses from Cuba and WGMSTV-[JM:Alb:05], a common malvaceous-weed-infecting virus from eastern Jamaica, and that it is distinct from begomoviruses infecting Jatropha species in India and Nigeria.

  2. Combining micro-structures and micro-algae to increase lipid production for bio-fuel

    NASA Astrophysics Data System (ADS)

    Vyawahare, Saurabh; Zhu, Emilly; Mestler, Troy; Estévez-Torres, André.; Austin, Robert

    2011-03-01

    3rd generation bio-fuels like lipid producing micro-algae are a promising source of energy that could replace our dependence on petroleum. However, until there are improvements in algae oil yields, and a reduction in the energy needed for processing, algae bio-fuels are not economically competitive with petroleum. Here, we describe our work combining micro-fabricated devices with micro-algae Neochloris oleoabundans, a species first isolated on the sand dunes of Saudi Arabia. Inserting micro-algae of varying fitness into a landscape of micro-habitats allows us to evolve and select them based on a variety of conditions like specific gravity, starvation response and Nile Red fluorescence (which is a marker for lipid production). Hence, we can both estimate the production of lipids and generate conditions that allow the creation and isolation of algae which produce higher amounts of lipids, while discarding the rest. Finally, we can use micro-fabricated structures and flocculation to de-water these high lipid producing algae, reducing the need for expensive centrifugation and filtration.

  3. Bio-oil production via subcritical hydrothermal liquefaction of biomass

    NASA Astrophysics Data System (ADS)

    Durak, Halil

    2017-04-01

    Biomass based raw materials can be converted into the more valued energy forms using biochemical methods such as ethanol fermentation, methane fermentation and the thermochemical methods such as direct combustion, pyrolysis, gasification, liquefaction. The bio-oil obtained from the biomass has many advantages than traditional use. Firstly, it has features such as high energy density, easy storage and easy transportation. Bio-oil can be used as a fuel in engines, turbines and burning units directly. Besides, it can be converted into products in higher quality and volume via catalytic cracking, hydrodexygenation, emulsification, and steam reforming [1,2]. Many organic solvents such as acetone, ethanol, methanol, isopropanol are used in the supercritical liquefaction processes. When we think about the cost and effects of the organic solvent on nature, it will be understood better that it is necessary to find solvent that are more sensitive against nature. Here, water must have an important place because of its features. Most important solvent of the world water is named as "universal solvent" because none of the liquids can dissolve the materials as much as done by water. Water is found much at the nature and cost of it is very few when compared with the other solvent. Hydrothermal liquefaction, a thermochemical conversion process is an effective method used for converting biomass into the liquid products. General reaction conditions for hydrothermal liquefaction process are the 250-374 °C temperature range and 4 - 22 Mpa pressure values range, besides, the temperature values can be higher according to the product that is expected to be obtained [3,4]. In this study, xanthium strumarium plant stems have been used as biomass source. The experiments have been carried out using a cylindrical reactor (75 mL) at the temperatures of 300 °C. The produced liquids at characterized by elemental analysis, GC-MS and FT-IR. According to the analysis, different types of compounds

  4. Diesel Locomotive Exhaust Emission Control and Abatement

    DOT National Transportation Integrated Search

    1972-06-01

    Exhaust emissions from diesel locomotives are a product of engine design and combustion characteristics. These pollutants, control methods, and emissions reduction through engine maintenance and retrofittable equipment changes are discussed in this r...

  5. Low emissions diesel fuel

    DOEpatents

    Compere, Alicia L.; Griffith, William L.; Dorsey, George F.; West, Brian H.

    1998-01-01

    A method and matter of composition for controlling NO.sub.x emissions from existing diesel engines. The method is achieved by adding a small amount of material to the diesel fuel to decrease the amount of NO.sub.x produced during combustion. Specifically, small amounts, less than about 1%, of urea or a triazine compound (methylol melamines) are added to diesel fuel. Because urea and triazine compounds are generally insoluble in diesel fuel, microemulsion technology is used to suspend or dissolve the urea or triazine compound in the diesel fuel. A typical fuel formulation includes 5% t-butyl alcohol, 4.5% water, 0.5% urea or triazine compound, 9% oleic acid, and 1% ethanolamine. The subject invention provides improved emissions in heavy diesel engines without the need for major modifications.

  6. Low emissions diesel fuel

    DOEpatents

    Compere, A.L.; Griffith, W.L.; Dorsey, G.F.; West, B.H.

    1998-05-05

    A method and matter of composition for controlling NO{sub x} emissions from existing diesel engines. The method is achieved by adding a small amount of material to the diesel fuel to decrease the amount of NO{sub x} produced during combustion. Specifically, small amounts, less than about 1%, of urea or a triazine compound (methylol melamines) are added to diesel fuel. Because urea and triazine compounds are generally insoluble in diesel fuel, microemulsion technology is used to suspend or dissolve the urea or triazine compound in the diesel fuel. A typical fuel formulation includes 5% t-butyl alcohol, 4.5% water, 0.5% urea or triazine compound, 9% oleic acid, and 1% ethanolamine. The subject invention provides improved emissions in heavy diesel engines without the need for major modifications.

  7. Effects of the combination between bio-surfactant product types and washing times on the removal of crude oil in nonwoven fabric

    NASA Astrophysics Data System (ADS)

    Triawan, Agus; Ni'matuzahroh, Supriyanto, Agus

    2017-06-01

    This research aimed to characterize bio-surfactants produced by Bacillus subtilis 3KP, Pseudomonas putida T1-8, Micrococcus sp. L II 61 and Acinetobacter sp. P 2(1) and to investigate its combination's effects on the removal of crude oil in nonwoven fabric with different washing times vary from 12, 24 to 36 hours. The production of bio-surfactants was done on Synthetic Mineral Water mixed with molasses 4% within four days. The bio-surfactant products were characterized by measuring the Surface Tension (ST) (mN/m) and Emulsion Activity (EA) (%). Oil removal experiment was done by mixing 10 mL bio-surfactant with nonwoven fabric that contains crude oil into 50 mL bottle inside a shaker. The removed crude oil was extracted with n-hexane and measured gravimetrically. The results were then being analyzed with two ways ANOVA and Duncan test. Bio-surfactant produced by four bacteria has variations of Surface Tension and Emulsion Activity values. Bio-surfactant produced by Bacillus subtilis 3KP and Pseudomonas putida T1-8 showed the increasing of crude oil removal as washing times increase, while bio-surfactant produced by Micrococcus sp. L II 61 and Acinetobacter sp. P2(1) showed the decreasing result at 36 hours. However, the combination that showed the best result was Acinetobacter sp. P 2(1) at 24 hours valued 65,3%.

  8. Characterization and degradation potential of diesel-degrading bacterial strains for application in bioremediation.

    PubMed

    Balseiro-Romero, María; Gkorezis, Panagiotis; Kidd, Petra S; Van Hamme, Jonathan; Weyens, Nele; Monterroso, Carmen; Vangronsveld, Jaco

    2017-10-03

    Bioremediation of polluted soils is a promising technique with low environmental impact, which uses soil organisms to degrade soil contaminants. In this study, 19 bacterial strains isolated from a diesel-contaminated soil were screened for their diesel-degrading potential, biosurfactant (BS) production, and biofilm formation abilities, all desirable characteristics when selecting strains for re-inoculation into hydrocarbon-contaminated soils. Diesel-degradation rates were determined in vitro in minimal medium with diesel as the sole carbon source. The capacity to degrade diesel range organics (DROs) of strains SPG23 (Arthobacter sp.) and PF1 (Acinetobacter oleivorans) reached 17-26% of total DROs after 10 days, and 90% for strain GK2 (Acinetobacter calcoaceticus). The amount and rate of alkane degradation decreased significantly with increasing carbon number for strains SPG23 and PF1. Strain GK2, which produced BSs and biofilms, exhibited a greater extent, and faster rate of alkane degradation compared to SPG23 and PF1. Based on the outcomes of degradation experiments, in addition to BS production, biofilm formation capacities, and previous genome characterizations, strain GK2 is a promising candidate for microbial-assisted phytoremediation of diesel-contaminated soils. These results are of particular interest to select suitable strains for bioremediation, not only presenting high diesel-degradation rates, but also other characteristics which could improve rhizosphere colonization.

  9. Hydrocracking of Jatropha Oil over non-sulfided PTA-NiMo/ZSM-5 Catalyst

    PubMed Central

    Yang, Xiaosong; Liu, Jing; Fan, Kai; Rong, Long

    2017-01-01

    The PTA-NiMo/ZSM-5 catalyst impregnated with phosphotungstic acid (PTA) was designed for the transformation of Jatropha oil into benzene, toluene, and xylenes (BTX) aromatics. The produced catalyst was characterized by N2 adsorption-desorption, powder X-ray diffraction (XRD), Fourier transform infrared (FT-IR), X-ray photoelectron spectroscopy (XPS), and the temperature-programmed desorption of ammonia (NH3-TPD). The catalytic performance was evaluated by gas chromatography (GC). The liquid products were 70 wt% of the feed oil, and the majority of the liquid products were BTX. The aromatization activity of the catalyst was improved by the addition of PTA and the hierarchical process. The favorable PTA amount was 20 wt% and the yield of BTX was 59 wt% at 380 °C, 3 MPa, H2/oil (v/v) = 1000 and LHSV = 1 h−1 over the PTA20-NiMo/HZ0.5 catalyst (PTA 20 wt%) without sulfurization. PMID:28134313

  10. Norms, Standards, and Legislation for Fast Pyrolysis Bio-oils from Lignocellulosic Biomass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oasmaa, Anja; van de Beld, Bert; Saari, Pia

    2015-04-16

    Fast pyrolysis of woody biomass is close to full maturity, with first-of-its-kind commercial size installations for fuel production being commissioned in Finland (Fortum) and in The Netherlands (Empyro), and in the design phase in Brazil (Ensyn). In the industrial-scale combustion tests, the use of fast pyrolysis bio-oil (FPBO) has been demonstrated to be a viable option to replace heavy fuel oil in district heating applications. Commercially usable district heating boilers and burners suitable for FPBO are available. There is research on diesel-engine and gas-turbine applications but, so far, no proven demonstrations. FPBO is completely different from mineral oils; hence, standardsmore » are needed. Analytical methods have been systematically validated and modifications to the standards as well as completely new methods have been made. Two ASTM burner fuel standards already exist and European boiler fuel grades are being developed under CEN. The focus on CEN standardization is on boiler use, because of its commercial readiness.« less

  11. Bio-oil and bio-char from low temperature pyrolysis of spent grains using activated alumina.

    PubMed

    Sanna, Aimaro; Li, Sujing; Linforth, Rob; Smart, Katherine A; Andrésen, John M

    2011-11-01

    The pyrolysis of wheat and barley spent grains resulting from bio-ethanol and beer production respectively was investigated at temperatures between 460 and 540 °C using an activated alumina bed. The results showed that the bio-oil yield and quality depend principally on the applied temperature where pyrolysis at 460 °C leaves a bio-oil with lower nitrogen content in comparison with the original spent grains and low oxygen content. The viscosity profile of the spent grains indicated that activated alumina could promote liquefaction and prevent charring of the structure between 400 and 460 °C. The biochar contains about 10-12% of original carbon and 13-20% of starting nitrogen resulting very attractive as a soil amendment and for carbon sequestration. Overall, value can be added to the spent grains opening a new market in bio-fuel production without the needs of external energy. The bio-oil from spent grains could meet about 9% of the renewable obligation in the UK. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. SYNBIOCHEM-a SynBio foundry for the biosynthesis and sustainable production of fine and speciality chemicals.

    PubMed

    Carbonell, Pablo; Currin, Andrew; Dunstan, Mark; Fellows, Donal; Jervis, Adrian; Rattray, Nicholas J W; Robinson, Christopher J; Swainston, Neil; Vinaixa, Maria; Williams, Alan; Yan, Cunyu; Barran, Perdita; Breitling, Rainer; Chen, George Guo-Qiang; Faulon, Jean-Loup; Goble, Carole; Goodacre, Royston; Kell, Douglas B; Feuvre, Rosalind Le; Micklefield, Jason; Scrutton, Nigel S; Shapira, Philip; Takano, Eriko; Turner, Nicholas J

    2016-06-15

    The Manchester Synthetic Biology Research Centre (SYNBIOCHEM) is a foundry for the biosynthesis and sustainable production of fine and speciality chemicals. The Centre's integrated technology platforms provide a unique capability to facilitate predictable engineering of microbial bio-factories for chemicals production. An overview of these capabilities is described. © 2016 The Author(s).

  13. Suresh K. AggarwalQuantified Analysis of a Production Diesel Injector Using X-Ray Radiography and Engine Diagnostics

    NASA Astrophysics Data System (ADS)

    Ramirez, Anita I.

    The work presented in this thesis pursues further the understanding of fuel spray, combustion, performance, and emissions in an internal combustion engine. Various experimental techniques including x-ray radiography, injection rate measurement, and in-cylinder endoscopy are employed in this work to characterize the effects of various upstream conditions such as injection rate profile and fuel physical properties. A single non-evaporating spray from a 6-hole full-production Hydraulically Actuated Electronically Controlled Unit Injector (HEUI) nozzle is studied under engine-like ambient densities with x-ray radiography at the Advanced Photon Source (APS) of Argonne National Laboratory (ANL). Two different injection pressures were investigated and parameters such as fuel mass distribution, spray penetration, cone angle, and spray velocity were obtained. The data acquired with x-ray radiography is used for the development and validation of improved Computational Fluid Dynamic (CFD) models. Rate of injection is studied using the same HEUI in a single cylinder Caterpillar test engine. The injection rate profile is altered to have three levels of initial injection pressure rise. Combustion behavior, engine performance, and emissions information was acquired for three rate profile variations. It is found that NOx emission reduction is achieved when the SOI timing is constant at the penalty of lower power generated in the cycle. However, if CA50 is aligned amongst the three profiles, the NOx emissions and power are constant with a slight penalty in CO emissions. The influence of physical and chemical parameters of fuel is examined in a study of the heavy alcohol, phytol (C20H40O), in internal combustion engine application. Phytol is blended with diesel in 5%, 10%, and 20% by volume. Combustion behavior is similar between pure diesel and the phytol/diesel blends with small differences noted in peak cylinder pressure, ignition delay, and heat release rate in the premix burn

  14. Jatropha curcas: from biodiesel generation to medicinal applications.

    PubMed

    Paulillo, Luis Cesar; Mo, ChengLin; Isaacson, Janalee; Lessa, Luciene; Lopes, Edjacy; Romero-Suarez, Sandra; Brotto, Leticia; Abreu, Eduardo; Gutheil, William; Brotto, Marco

    2012-12-01

    Jatropha curcas (JC) is a multipurpose perennial plant that belongs to the Euphorbiaceae family and is native to arid and semiarid tropical regions worldwide. It has many attributes and considerable potential for renewable energy, fish and livestock feeding. Despite its rich application as a renewable source and for animal feeding, JC has barely been explored for its medicinal potential. Here we review several patents related to JC that show it has been underused for medicinal purposes. For example, only one invention disclosure to date utilizes JC, combined with three other plants, in a preparation for wound healing. Motivated by support from the Brazilian funding agencies and anecdotal accounts in Brazil of the medicinal value of JC, we performed a series of pilot studies that demonstrate that JC is able to protect skeletal muscle cells in vitro against the deleterious effects of ethanol. We were able to determine that JC's effects are mediated by the up regulation of HSP60, a critical mitochondrial heat shock related protein that is essential for intracellular REDOX regulation. Given the fact that ethanol myopathy accounts for more than 50% of all cases of myopathy worldwide, we hope that our studies will sparkle new interest from the scientific community to explore the medicinal properties of Jatropha curcas, including the development of new patents leading to new drugs and new targets for the treatment of muscle diseases and other human diseases.

  15. Selective One-Pot Production of High-Grade Diesel-Range Alkanes from Furfural and 2-Methylfuran over Pd/NbOPO4.

    PubMed

    Xia, Qineng; Xia, Yinjiang; Xi, Jinxu; Liu, Xiaohui; Zhang, Yongguang; Guo, Yong; Wang, Yanqin

    2017-02-22

    A one-pot method for the selective production of high-grade diesel-range alkanes from biomass-derived furfural and 2-methylfuran (2-MF) was developed by combining the hydroxyalkylation/alkylation (HAA) condensation of furfural with 2-MF and the subsequent hydrodeoxygenation (HDO) over a multifunctional Pd/NbOPO 4 catalyst. The effects of various reaction conditions as well as a variety of solid-acid catalysts and metal-loaded NbOPO 4 catalysts were systematically investigated to optimize the reaction conditions for both reactions. Under the optimal reaction conditions up to 89.1 % total yield of diesel-range alkanes was obtained from furfural and 2-MF by this one-pot method. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Mutagenicity of diesel exhaust particle extracts: influence of fuel composition in two diesel engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, C.R.; Henderson, T.R.; Royer, R.E.

    The influence of diesel fuel composition on mutagenicity of exhaust particle associated organic compounds has been investigated using nine fuels varying in aromatic content and distillation properties. The tests were conducted with Oldsmobile Delta-88 and Peugot 504 diesel cars operated according to the EPA Federal Test Procedure. The particulate exhaust from each test was collected on a filter, extracted in dichloromethane and the resulting extract evaluated for mutagenicity in Salmonella strain TA-100. Mutagenicity of extracts of particles collected from the Oldsmobile were highest in the higher aromatic content fuels (greater than 30%) but similar for intermediate (20%) and low (13%)more » aromatic content fuels. No influence of aromaticity on mutagenicity was observed in samples collected from the Peugeot under the same conditions. Thus, fuel aromatic content may enhance the production of mutagenic combustion products at higher concentrations, but may be dependent upon engine type. A good correlation was observed between mutagenicity of the particle extracts and the initial boiling point of the fuel (r . 0.89). Gas chromatography/mass spectrometric analysis of the aromatic fraction of the fuels showed that the fuel producing the most mutagenic combustion products was highest in phenanthrene type compounds.« less

  17. The combustion behavior of diesel/CNG mixtures in a constant volume combustion chamber

    NASA Astrophysics Data System (ADS)

    Firmansyah; Aziz, A. R. A.; Heikal, M. R.

    2015-12-01

    The stringent emissions and needs to increase fuel efficiency makes controlled auto-ignition (CAI) based combustion an attractive alternative for the new combustion system. However, the combustion control is the main obstacles in its development. Reactivity controlled compression ignition (RCCI) that employs two fuels with significantly different in reactivity proven to be able to control the combustion. The RCCI concept applied in a constant volume chamber fuelled with direct injected diesel and compressed natural gas (CNG) was tested. The mixture composition is varied from 0 - 100% diesel/CNG at lambda 1 with main data collection are pressure profile and combustion images. The results show that diesel-CNG mixture significantly shows better combustion compared to diesel only. It is found that CNG is delaying the diesel combustion and at the same time assisting in diesel distribution inside the chamber. This combination creates a multipoint ignition of diesel throughout the chamber that generate very fast heat release rate and higher maximum pressure. Furthermore, lighter yellow color of the flame indicates lower soot production in compared with diesel combustion.

  18. Engineering Halomonas spp. as A Low-Cost Production Host for Production of Bio-surfactant Protein PhaP.

    PubMed

    Lan, Lu-Hong; Zhao, Han; Chen, Jin-Chun; Chen, Guo-Qiang

    2016-12-01

    Halomonas spp. have been studied as a low cost production host for producing bulk materials such as polyhydroxyalkanoates (PHA) bioplastics, since they are able to grow at high pH and high NaCl concentration under unsterile and continuous conditions without microbial contamination. In this paper, Halomonas strain TD is used as a host to produce a protein named PHA phasin or PhaP which has a potential to be developed into a bio-surfactant. Four Halomonas TD expression strains are constructed based on a strong T7-family expression system. Of these, the strain with phaC deletion and chromosomal expression system resulted in the highest production of PhaP in soluble form, reaching 19% of total cellular soluble proteins and with a yield of 1.86 g/L in an open fed-batch fermentation process. A simple "heat lysis and salt precipitation" method is applied to allow rapid PhaP purification from a mixture of cellular proteins with a PhaP recovery rate of 63%. It clearly demonstrated that Halomonas TD could be used for high yield expression of a bio-surfactant protein PhaP for industrial application in an economical way. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Enhanced Bio-hydrogen Production from Protein Wastewater by Altering Protein Structure and Amino Acids Acidification Type

    PubMed Central

    Xiao, Naidong; Chen, Yinguang; Chen, Aihui; Feng, Leiyu

    2014-01-01

    Enhanced bio-hydrogen production from protein wastewater by altering protein structure and amino acids acidification type via pH control was investigated. The hydrogen production reached 205.2 mL/g-protein when protein wastewater was pretreated at pH 12 and then fermented at pH 10. The mechanism studies showed that pH 12 pretreatment significantly enhanced protein bio-hydrolysis during the subsequent fermentation stage as it caused the unfolding of protein, damaged the protein hydrogen bonding networks, and destroyed the disulfide bridges, which increased the susceptibility of protein to protease. Moreover, pH 10 fermentation produced more acetic but less propionic acid during the anaerobic fermentation of amino acids, which was consistent with the theory of fermentation type affecting hydrogen production. Further analyses of the critical enzymes, genes, and microorganisms indicated that the activity and abundance of hydrogen producing bacteria in the pH 10 fermentation reactor were greater than those in the control. PMID:24495932

  20. Enhanced bio-hydrogen production from protein wastewater by altering protein structure and amino acids acidification type.

    PubMed

    Xiao, Naidong; Chen, Yinguang; Chen, Aihui; Feng, Leiyu

    2014-02-05

    Enhanced bio-hydrogen production from protein wastewater by altering protein structure and amino acids acidification type via pH control was investigated. The hydrogen production reached 205.2 mL/g-protein when protein wastewater was pretreated at pH 12 and then fermented at pH 10. The mechanism studies showed that pH 12 pretreatment significantly enhanced protein bio-hydrolysis during the subsequent fermentation stage as it caused the unfolding of protein, damaged the protein hydrogen bonding networks, and destroyed the disulfide bridges, which increased the susceptibility of protein to protease. Moreover, pH 10 fermentation produced more acetic but less propionic acid during the anaerobic fermentation of amino acids, which was consistent with the theory of fermentation type affecting hydrogen production. Further analyses of the critical enzymes, genes, and microorganisms indicated that the activity and abundance of hydrogen producing bacteria in the pH 10 fermentation reactor were greater than those in the control.

  1. Enhanced Bio-hydrogen Production from Protein Wastewater by Altering Protein Structure and Amino Acids Acidification Type

    NASA Astrophysics Data System (ADS)

    Xiao, Naidong; Chen, Yinguang; Chen, Aihui; Feng, Leiyu

    2014-02-01

    Enhanced bio-hydrogen production from protein wastewater by altering protein structure and amino acids acidification type via pH control was investigated. The hydrogen production reached 205.2 mL/g-protein when protein wastewater was pretreated at pH 12 and then fermented at pH 10. The mechanism studies showed that pH 12 pretreatment significantly enhanced protein bio-hydrolysis during the subsequent fermentation stage as it caused the unfolding of protein, damaged the protein hydrogen bonding networks, and destroyed the disulfide bridges, which increased the susceptibility of protein to protease. Moreover, pH 10 fermentation produced more acetic but less propionic acid during the anaerobic fermentation of amino acids, which was consistent with the theory of fermentation type affecting hydrogen production. Further analyses of the critical enzymes, genes, and microorganisms indicated that the activity and abundance of hydrogen producing bacteria in the pH 10 fermentation reactor were greater than those in the control.

  2. Vegetable oils and animal fats for diesel fuels: a systems study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lipinsky, E.S.; Kresovich, S.; Wagner, C.K.

    1982-01-01

    This paper provided some information on the possible use of vegetable oils and animal fats as substitute fuels and as emergency diesel fuels in the United States. This paper is confined to using triglyceride fuels in agricultural, automotive, and highway transportation applications. Satisfactory substitution of petroleum-based diesel fuels with triglyceride-based fuels requires the development of an integrated system for the production, processing, and end use of the new fuels on a basis that is both technically attractive and economically rewarding to all of the elements of the system. The three subsystems, the farms that produce oilseed crops, the production ofmore » triglycerides and protein, and the manufacturers of the diesel engines and the owners of the present stock of auto-ignition engines, are discussed. It was concluded that vegetable oils and animal fats have substantial prospects as long-term substitutes for diesel fuels. If special auto-ignition engines were developed to handle vegetable oils, on-farm production and use might succeed. In the absence of such engine development, it is likely that large, centralized facilities to manufacture vegetable oils and their methylesters will be the successful processing route. Vegetable oils are likely to succeed first in geographical areas with benign climates. Vegetable oils and animal fats have limited prospects as diesel fuels for acute emergencies. The high viscosity of vegetable oils and the necessity to make substantial capital investments to obtain oils from oilseeds render the system relatively inflexible. 4 tables. (DP)« less

  3. The Production of Biodiesel and Bio-kerosene from Coconut Oil Using Microwave Assisted Reaction

    NASA Astrophysics Data System (ADS)

    SAIFUDDIN, N.; SITI FAZLILI, A.; KUMARAN, P.; PEI-JUA, N.; PRIATHASHINI, P.

    2016-03-01

    Biofuels including biodiesel, an alternative fuel, is renewable, environmentally friendly, non-toxic and low emissions. The raw material used in this work was coconut oil, which contained saturated fatty acids about 90% with high percentage of medium chain (C8-C12), especially lauric acid and myristic acid. The purpose of this research was to study the effect of power and NaOH catalyst in transesterification assisted by microwave for production of biofuels (biodiesel and bio-kerosene) derived from coconut oil. The reaction was performed with oil and methanol using mole ratio of 1:6, catalyst concentration of 0.6% with microwave power at 100W, 180W, 300W, 450W, 600W, and 850W. The reaction time was set at of 3, 5, 7, 10 and 15 min. The results showed that microwave could accelerate the transesterification process to produce biodiesel and bio-kerosene using NaOH catalyst. The highest yield of biodiesel was 97.17 %, or 99.05 % conversion at 5 min and 100W microwave power. Meanwhile, the bio-kerosene obtained was 65% after distillation.

  4. Bio-based and biodegradable plastics for use in crop production.

    PubMed

    Riggi, Ezio; Santagata, Gabriella; Malinconico, Mario

    2011-01-01

    The production and management of crops uses plastics for many applications (e.g., low tunnels, high tunnels, greenhouses, mulching, silage bags, hay bales, pheromone traps, coatings of fertilizers or pesticides or hormones or seeds, and nursery pots and containers for growing transplants). All these applications have led some authors to adopt the term "plasticulture" when discussing the use of plastic materials in agriculture and related industries. Unfortunately, the sustainability of this use of plastics is low, and renewability and degradability have become key words in the debate over sustainable production and utilization of plastic. Recently, researchers and the plastics industry have made strong efforts (i) to identify new biopolymers and natural additives from renewable sources that can be used in plastics production and (ii) to enhance the degradability (biological or physical) of the new ecologically sustainable materials. In the present review, we describe the main research results, current applications, patents that have been applied for in the last two decades, and future perspectives on sustainable use of plastics to support crop production. The article presents some promising patents on bio-based and biodegradable plastics for use in crop production.

  5. Dielectrophoretic separation of Bacillus subtilis spores from environmental diesel particles.

    PubMed

    Fatoyinbo, Henry O; Hughes, Michael P; Martin, Stacey P; Pashby, Paul; Labeed, Fatima H

    2007-01-01

    Isolation of pathogenic bacteria from non-biological material of similar size is a vital sample preparation step in the identification of such organisms, particularly in the context of detecting bio-terrorist attacks. However, many detection methods are impeded by particulate contamination from the environment such as those from engine exhausts. In this paper we use dielectrophoresis--the induced motion of particles in non-uniform fields--to successfully remove over 99% of diesel particulates acquired from environmental samples, whilst letting bacterial spores of B. subtilis pass through the chamber largely unimpeded. We believe that such a device has tremendous potential as a precursor to a range of detection methods, improving the signal-to-noise ratio and ultimately improving detection rates.

  6. Breeding Jatropha curcas by genomic selection: A pilot assessment of the accuracy of predictive models.

    PubMed

    Azevedo Peixoto, Leonardo de; Laviola, Bruno Galvêas; Alves, Alexandre Alonso; Rosado, Tatiana Barbosa; Bhering, Leonardo Lopes

    2017-01-01

    Genomic wide selection is a promising approach for improving the selection accuracy in plant breeding, particularly in species with long life cycles, such as Jatropha. Therefore, the objectives of this study were to estimate the genetic parameters for grain yield (GY) and the weight of 100 seeds (W100S) using restricted maximum likelihood (REML); to compare the performance of GWS methods to predict GY and W100S; and to estimate how many markers are needed to train the GWS model to obtain the maximum accuracy. Eight GWS models were compared in terms of predictive ability. The impact that the marker density had on the predictive ability was investigated using a varying number of markers, from 2 to 1,248. Because the genetic variance between evaluated genotypes was significant, it was possible to obtain selection gain. All of the GWS methods tested in this study can be used to predict GY and W100S in Jatropha. A training model fitted using 1,000 and 800 markers is sufficient to capture the maximum genetic variance and, consequently, maximum prediction ability of GY and W100S, respectively. This study demonstrated the applicability of genome-wide prediction to identify useful genetic sources of GY and W100S for Jatropha breeding. Further research is needed to confirm the applicability of the proposed approach to other complex traits.

  7. Isolation and Identification of miRNAs in Jatropha curcas

    PubMed Central

    Wang, Chun Ming; Liu, Peng; Sun, Fei; Li, Lei; Liu, Peng; Ye, Jian; Yue, Gen Hua

    2012-01-01

    MicroRNAs (miRNAs) are small noncoding RNAs that play crucial regulatory roles by targeting mRNAs for silencing. To identify miRNAs in Jatropha curcas L, a bioenergy crop, cDNA clones from two small RNA libraries of leaves and seeds were sequenced and analyzed using bioinformatic tools. Fifty-two putative miRNAs were found from the two libraries, among them six were identical to known miRNAs and 46 were novel. Differential expression patterns of 15 miRNAs in root, stem, leave, fruit and seed were detected using quantitative real-time PCR. Ten miRNAs were highly expressed in fruit or seed, implying that they may be involved in seed development or fatty acids synthesis in seed. Moreover, 28 targets of the isolated miRNAs were predicted from a jatropha cDNA library database. The miRNA target genes were predicted to encode a broad range of proteins. Sixteen targets had clear BLASTX hits to the Uniprot database and were associated with genes belonging to the three major gene ontology categories of biological process, cellular component, and molecular function. Four targets were identified for JcumiR004. By silencing JcumiR004 primary miRNA, expressions of the four target genes were up-regulated and oil composition were modulated significantly, indicating diverse functions of JcumiR004. PMID:22419887

  8. Role of fuel additives on reduction of NOX emission from a diesel engine powered by camphor oil biofuel.

    PubMed

    Subramanian, Thiyagarajan; Varuvel, Edwin Geo; Ganapathy, Saravanan; Vedharaj, S; Vallinayagam, R

    2018-06-01

    The present study intends to explore the effect of the addition of fuel additives with camphor oil (CMO) on the characteristics of a twin-cylinder compression ignition (CI) engine. The lower viscosity and boiling point of CMO when compared to diesel could improve the fuel atomization, evaporation, and air/fuel mixing process. However, the lower cetane index of CMO limits its use as a drop in fuel for diesel in CI engine. In general, NO X emission increases for less viscous and low cetane (LVLC) fuels due to pronounced premixed combustion phase. To improve the ignition characteristics and decrease NO X emissions, fuel additives such as diglyme (DGE)-a cetane enhancer, cumene (CU)-an antioxidant, and eugenol (EU) and acetone (A)-bio-additives, are added 10% by volume with CMO. The engine used for the experimentation is a twin-cylinder tractor engine that runs at a constant speed of 1500 rpm. The engine was operated with diesel initially to attain warm-up condition, which facilitates the operation of neat CMO. At full load condition, brake thermal efficiency (BTE) for CMO is higher (29.6%) than that of diesel (28.1%), while NO X emission is increased by 9.4%. With DGE10 (10% DGE + 90% CMO), the ignition characteristics of CMO are improved and BTE is increased to 31.7% at full load condition. With EU10 (10% EU + 90% CMO) and A10 (10% A + 90% CMO), NO X emission is decreased by 24.6 and 17.8% when compared to diesel, while BTE is comparable to diesel. While HC and CO emission decreased for DGE10 and CU10, they increased for EU10 and A10 when compared to baseline diesel and CMO.

  9. Induced catabolic bio-electrohydrolysis of complex food waste by regulating external resistance for enhancing acidogenic biohydrogen production.

    PubMed

    Chandrasekhar, K; Venkata Mohan, S

    2014-08-01

    A novel bio-electrohydrolysis system (BEH) based on self-inducing electrogenic activity was designed as pretreatment device to enhance biohydrogen (H2) production efficiency from food waste. Two-stage hybrid operation with hydrolysis in the initial stage and acidogenic fermentation of the resulting hydrolysate (after hydrolysis) for H2 production in the second stage was evaluated. Application of variable external resistances viz., 10Ω, 100Ω, 1000Ω and closed circuit (CC) influenced the hydrolysis of substrate in BEH system and hydrogen production in acidogenic reactor compared to control. Pretreated substrate at 100Ω documented higher H2 production (1.05l) than 10Ω (0.93l), CC (0.91l), 1000Ω (0.88l) and control operation (0.68l). Comparatively, 10Ω documented higher substrate degradation (53.4%) followed by CC (52.42%), 100Ω (49.51%), 1000Ω (47.57%) and control (43.68%). Voltammetric profiles were in agreement with the observed bio-electrohydrolysis and H2 production efficiency. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Hygienic effects and gas production of plastic bio-digesters under tropical conditions.

    PubMed

    Yen-Phi, Vo Thi; Clemens, Joachim; Rechenburg, Andrea; Vinneras, Björn; Lenssen, Christina; Kistemann, Thomas

    2009-12-01

    Plastic plug-flow bio-digesters have been promoted as a good option for improved treatment of manure and wastewater in developing countries although minimal information has been published on their hygienic status. This bench-scale study replicates bio-digester conditions to evaluate the reduction of pathogen and indicator microorganisms at three different hydraulic retention times (HRT) in the anaerobic treatment of pig manures at 30 degrees C for 50 days. Results showed that physicochemical values differed between HRTs. Gas production efficiency was better for longer HRTS. The accumulated sludge at the reactor's base increased with longer HRT. Phages and bacteria examined were reduced, but none was completely eliminated. Log10 reduction of bacteria ranged from 0.54 to 2.47. Phages ranged from 1.60 to 3.42. The reduction of organisms at HRT = 30 days was about one log10 unit higher than HRT = 15 days and about two log10 units higher than HRT = 3 days. The results indicate that the reduction of tested organisms increases with HRT. However the hygienic quality of the liquid effluent does not meet required quality values for surface and irrigation water. Longer HRTs are recommended to increase gas yield and achieve higher pathogen reduction. More barriers should be applied while handling bio-digester outputs to minimise risks to environmental and human health.

  11. DO BIO-BASED PRODUCTS MOVE US TOWARD SUSTAINABILITY? A LOOK AT THREE USEPA CASE STUDIES

    EPA Science Inventory


    Do Bio-Based Products Move Us Toward Sustainability? A Look at Three Case Studies within the US EPA
    Mary Am Curran
    US Environmental Protection Agency, Office of Research & Development, Cincinnati, OH 45268; curran.maryann@epagov
    Abstract The movement to buy "...

  12. Co-production of biochar, bio-oil and syngas from halophyte grass (Achnatherum splendens L.) under three different pyrolysis temperatures.

    PubMed

    Irfan, Muhammad; Chen, Qun; Yue, Yan; Pang, Renzhong; Lin, Qimei; Zhao, Xiaorong; Chen, Hao

    2016-07-01

    In the present study, pyrolysis of Achnatherum splendens L. was performed under three different pyrolysis temperature (300, 500, and 700°C) to investigate the characteristics of biochar, bio-oil, and syngas. Biochar yield decreased from 48% to 24%, whereas syngas yield increased from 34% to 54% when pyrolysis temperature was increased from 300 to 700°C. Maximum bio-oil yield (27%) was obtained at 500°C. The biochar were characterized for elemental composition, surface, and adsorption properties. The results showed that obtained biochar could be used as a potential soil amendment. The bio-oil and syngas co-products will be evaluated in the future as bioenergy sources. Overall, our results suggests that A. splendens L. could be utilized as a potential feedstock for biochar and bioenergy production through pyrolytic route. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Alkaline hydrothermal liquefaction of swine carcasses to bio-oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Ji-Lu, E-mail: triace@163.com; Zhu, Ming-Qiang; Wu, Hai-tang

    Highlights: • Swine carcasses can be converted to bio-oil by alkaline hydrothermal liquefaction. • It seems that the use of the bio-oil for heat or CHP is technically suitable. • Some valuable chemicals were found in the bio-oils. • The bio-oil and the solid residue constituted an energy efficiency of 93.63% for the feedstock. • The solid residue can be used as a soil amendment, to sequester C and for preparing activated carbon. - Abstract: It is imperative that swine carcasses are disposed of safely, practically and economically. Alkaline hydrothermal liquefaction of swine carcasses to bio-oil was performed. Firstly, themore » effects of temperature, reaction time and pH value on the yield of each liquefaction product were determined. Secondly, liquefaction products, including bio-oil and solid residue, were characterized. Finally, the energy recovery ratio (ERR), which was defined as the energy of the resultant products compared to the energy input of the material, was investigated. Our experiment shows that reaction time had certain influence on the yield of liquefaction products, but temperature and pH value had bigger influence on the yield of liquefaction products. Yields of 62.2 wt% bio-oil, having a high heating value of 32.35 MJ/kg and a viscosity of 305cp, and 22 wt% solid residue were realized at a liquefaction temperature of 250 °C, a reaction time of 60 min and a pH value of 9.0. The bio-oil contained up to hundreds of different chemical components that may be classified according to functional groups. Typical compound classes in the bio-oil were hydrocarbons, organic acids, esters, ketones and heterocyclics. The energy recovery ratio (ERR) reached 93.63%. The bio-oil is expected to contribute to fossil fuel replacement in stationary applications, including boilers and furnaces, and upgrading processes for the bio-oil may be used to obtain liquid transport fuels.« less

  14. Bio-Carbon Accounting for Bio-Oil Co-Processing: 14C and 13C/ 12C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mora, Claudia I.; Li, Zhenghua; Vance, Zachary

    This is a powerpoint presentation on bio-carbon accounting for bio-oil co-processing. Because of the overlapping range in the stable C isotope compositions of fossil oils and biooils from C3-type feedstocks, it is widely thought that stable isotopes are not useful to track renewable carbon during co-production. In contrast, our study demonstrates the utility of stable isotopes to: • capture a record of renewable carbon allocation between FCC products of co-processing • record changes in carbon apportionments due to changes in reactor or feed temperature Stable isotope trends as a function of percent bio-oil in the feed are more pronounced whenmore » the δ 13C of the bio-oil endmember differs greatly from the VGO (i.e., it has a C4 biomass source–corn stover, switch grass, Miscanthus, sugarcane– versus a C3 biomass source– pine, wheat, rice, potato), but trends on the latter case are significant for endmember differences of just a few permil. The correlation between measured 14C and δ 13C may be useful as an alternative to carbon accounting, but the relationship must first be established for different bio-oil sources.« less

  15. Diesel Vehicle Maintenance Competencies.

    ERIC Educational Resources Information Center

    Braswell, Robert; And Others

    Designed to provide a model set of competencies, this manual presents tasks which were identified by employers, employees, and teachers as important in a postsecondary diesel vehicle maintenance curriculum. The tasks are divided into seven major component areas of instruction: chassis and suspension, diesel engines, diesel fuel, electrical,…

  16. 40 CFR 80.522 - May used motor oil be dispensed into diesel motor vehicles or nonroad diesel engines?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... diesel motor vehicles or nonroad diesel engines? 80.522 Section 80.522 Protection of Environment... Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Motor Vehicle Diesel Fuel Standards and Requirements § 80.522 May used motor oil be dispensed into diesel motor...

  17. 40 CFR 80.522 - May used motor oil be dispensed into diesel motor vehicles or nonroad diesel engines?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... diesel motor vehicles or nonroad diesel engines? 80.522 Section 80.522 Protection of Environment... Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Motor Vehicle Diesel Fuel Standards and Requirements § 80.522 May used motor oil be dispensed into diesel motor...

  18. Effect of Alcohol on Diesel Engine Combustion Operating with Biodiesel-Diesel Blend at Idling Conditions

    NASA Astrophysics Data System (ADS)

    Mahmudul, H. M.; Hagos, Ftwi. Y.; A, M. Mukhtar N.; Mamat, Rizalman; Abdullah, A. Adam

    2018-03-01

    Biodiesel is a promising alternative fuel to run the automotive engine. However, its blends have not been properly investigated during idling as it is the main problem to run the vehicles in a big city. The purpose of this study is to evaluate the impact of alcohol additives such as butanol and ethanol on combustion parameters under idling conditions when a single cylinder diesel engine operates with diesel, diesel-biodiesel blends, and diesel biodiesel-alcohol blends. The engine combustion parameters such as peak pressure, heat release rate and ignition delay were computed. This investigation has revealed that alcohol blends with diesel and biodiesel, BU20 blend yield higher maximum peak cylinder pressure than diesel. B5 blend was found with the lowest energy release among all. B20 was slightly lower than diesel. BU20 blend was seen with the highest peak energy release where E20 blend was found advance than diesel. Among all, the blends alcohol component revealed shorter ignition delay. B5 and B20 blends were influenced by biodiesel interference and the burning fraction were found slightly slower than conventional diesel where BU20 and E20 blends was found slightly faster than diesel So, based on the result, it can be said that among the alcohol blends butanol and ethanol can be promising alternative at idling conditions and can be used without any engine modifications.

  19. Cryogel-supported titanate nanotubes for waste treatment: Impact on methane production and bio-fertilizer quality.

    PubMed

    Önnby, Linda; Harald, Kirsebom; Nges, Ivo Achu

    2015-08-10

    By reducing the cadmium (Cd(2+)) content in biomass used for bio-based products such as biogas, a less toxic bio-based fertilizer can be obtained. In this work, we demonstrate how a macroporous polymer can support titanate nanotubes, and we take advantage of its known selective adsorption behavior towards Cd(2+) in an adsorption process from real nutrient-rich process water from hydrolysis of seaweed, a pollutant-rich biomass. We show that pretreatment steps involving alteration in area-to-volume ratio performed in aerated and acidic conditions release the most Cd(2+) from the solid material. By integrating an adsorption step between hydrolysis and the biomethane, we show that it was possible to obtain high Cd(2+) removal (ca. 94%) despite molar excess (between 100 and 500) of co-present ions (e.g., Mg(2+), Ca(2+), Na(+), K(+)) and with maintained total phosphorous content. The bio-methane potential did not significantly decrease as compared to a process without cadmium removal and the yielded bio-fertilizer followed Swedish guideline values. This study provides a sound and promising alternative for a novel remediation step, enabling higher use of otherwise tricky and to some extent overlooked biomass sources. Copyright © 2015. Published by Elsevier B.V.

  20. Hydrolysis optimization and characterization study of preparing fatty acids from Jatropha curcas seed oil.

    PubMed

    Salimon, Jumat; Abdullah, Bashar Mudhaffar; Salih, Nadia

    2011-11-01

    Fatty acids (FAs) are important as raw materials for the biotechnology industry. Existing methods of FAs production are based on chemical methods. In this study potassium hydroxide (KOH)-catalyzed reactions were utilized to hydrolysis Jatropha curcas seed oil. The parameters effect of ethanolic KOH concentration, reaction temperature, and reaction time to free fatty acid (FFA%) were investigated using D-Optimal Design. Characterization of the product has been studied using Fourier transforms infrared spectroscopy (FTIR), gas chromatography (GC) and high performance liquid chromatography (HPLC). The optimum conditions for maximum FFA% were achieved at 1.75M of ethanolic KOH concentration, 65°C of reaction temperature and 2.0 h of reaction time. This study showed that ethanolic KOH concentration was significant variable for J. curcas seed oil hydrolysis. In a 18-point experimental design, FFA% of hydrolyzed J. curcas seed oil can be raised from 1.89% to 102.2%, which proved by FTIR and HPLC.