Science.gov

Sample records for java sequence alignment

  1. MSAViewer: interactive JavaScript visualization of multiple sequence alignments.

    PubMed

    Yachdav, Guy; Wilzbach, Sebastian; Rauscher, Benedikt; Sheridan, Robert; Sillitoe, Ian; Procter, James; Lewis, Suzanna E; Rost, Burkhard; Goldberg, Tatyana

    2016-11-15

    The MSAViewer is a quick and easy visualization and analysis JavaScript component for Multiple Sequence Alignment data of any size. Core features include interactive navigation through the alignment, application of popular color schemes, sorting, selecting and filtering. The MSAViewer is 'web ready': written entirely in JavaScript, compatible with modern web browsers and does not require any specialized software. The MSAViewer is part of the BioJS collection of components.

  2. Viewing multiple sequence alignments with the JavaScript Sequence Alignment Viewer (JSAV).

    PubMed

    Martin, Andrew C R

    2014-01-01

    The JavaScript Sequence Alignment Viewer (JSAV) is designed as a simple-to-use JavaScript component for displaying sequence alignments on web pages. The display of sequences is highly configurable with options to allow alternative coloring schemes, sorting of sequences and 'dotifying' repeated amino acids. An option is also available to submit selected sequences to another web site, or to other JavaScript code. JSAV is implemented purely in JavaScript making use of the JQuery and JQuery-UI libraries. It does not use any HTML5-specific options to help with browser compatibility. The code is documented using JSDOC and is available from http://www.bioinf.org.uk/software/jsav/.

  3. JavaScript DNA translator: DNA-aligned protein translations.

    PubMed

    Perry, William L

    2002-12-01

    There are many instances in molecular biology when it is necessary to identify ORFs in a DNA sequence. While programs exist for displaying protein translations in multiple ORFs in alignment with a DNA sequence, they are often expensive, exist as add-ons to software that must be purchased, or are only compatible with a particular operating system. JavaScript DNA Translator is a shareware application written in JavaScript, a scripting language interpreted by the Netscape Communicator and Internet Explorer Web browsers, which makes it compatible with several different operating systems. While the program uses a familiar Web page interface, it requires no connection to the Internet since calculations are performed on the user's own computer. The program analyzes one or multiple DNA sequences and generates translations in up to six reading frames aligned to a DNA sequence, in addition to displaying translations as separate sequences in FASTA format. ORFs within a reading frame can also be displayed as separate sequences. Flexible formatting options are provided, including the ability to hide ORFs below a minimum size specified by the user. The program is available free of charge at the BioTechniques Software Library (www.Biotechniques.com).

  4. Pairwise Sequence Alignment Library

    SciTech Connect

    Jeff Daily, PNNL

    2015-05-20

    Vector extensions, such as SSE, have been part of the x86 CPU since the 1990s, with applications in graphics, signal processing, and scientific applications. Although many algorithms and applications can naturally benefit from automatic vectorization techniques, there are still many that are difficult to vectorize due to their dependence on irregular data structures, dense branch operations, or data dependencies. Sequence alignment, one of the most widely used operations in bioinformatics workflows, has a computational footprint that features complex data dependencies. The trend of widening vector registers adversely affects the state-of-the-art sequence alignment algorithm based on striped data layouts. Therefore, a novel SIMD implementation of a parallel scan-based sequence alignment algorithm that can better exploit wider SIMD units was implemented as part of the Parallel Sequence Alignment Library (parasail). Parasail features: Reference implementations of all known vectorized sequence alignment approaches. Implementations of Smith Waterman (SW), semi-global (SG), and Needleman Wunsch (NW) sequence alignment algorithms. Implementations across all modern CPU instruction sets including AVX2 and KNC. Language interfaces for C/C++ and Python.

  5. Accelerating Computation of DNA Sequence Alignment in Distributed Environment

    NASA Astrophysics Data System (ADS)

    Guo, Tao; Li, Guiyang; Deaton, Russel

    Sequence similarity and alignment are most important operations in computational biology. However, analyzing large sets of DNA sequence seems to be impractical on a regular PC. Using multiple threads with JavaParty mechanism, this project has successfully implemented in extending the capabilities of regular Java to a distributed environment for simulation of DNA computation. With the aid of JavaParty and the design of multiple threads, the results of this study demonstrated that the modified regular Java program could perform parallel computing without using RMI or socket communication. In this paper, an efficient method for modeling and comparing DNA sequences with dynamic programming and JavaParty was firstly proposed. Additionally, results of this method in distributed environment have been discussed.

  6. Multiple sequence alignment with hierarchical clustering.

    PubMed Central

    Corpet, F

    1988-01-01

    An algorithm is presented for the multiple alignment of sequences, either proteins or nucleic acids, that is both accurate and easy to use on microcomputers. The approach is based on the conventional dynamic-programming method of pairwise alignment. Initially, a hierarchical clustering of the sequences is performed using the matrix of the pairwise alignment scores. The closest sequences are aligned creating groups of aligned sequences. Then close groups are aligned until all sequences are aligned in one group. The pairwise alignments included in the multiple alignment form a new matrix that is used to produce a hierarchical clustering. If it is different from the first one, iteration of the process can be performed. The method is illustrated by an example: a global alignment of 39 sequences of cytochrome c. PMID:2849754

  7. An efficient method for multiple sequence alignment

    SciTech Connect

    Kim, J.; Pramanik, S.

    1994-12-31

    Multiple sequence alignment has been a useful method in the study of molecular evolution and sequence-structure relationships. This paper presents a new method for multiple sequence alignment based on simulated annealing technique. Dynamic programming has been widely used to find an optimal alignment. However, dynamic programming has several limitations to obtain optimal alignment. It requires long computation time and cannot apply certain types of cost functions. We describe detail mechanisms of simulated annealing for multiple sequence alignment problem. It is shown that simulated annealing can be an effective approach to overcome the limitations of dynamic programming in multiple sequence alignment problem.

  8. FOGSAA: Fast Optimal Global Sequence Alignment Algorithm

    NASA Astrophysics Data System (ADS)

    Chakraborty, Angana; Bandyopadhyay, Sanghamitra

    2013-04-01

    In this article we propose a Fast Optimal Global Sequence Alignment Algorithm, FOGSAA, which aligns a pair of nucleotide/protein sequences faster than any optimal global alignment method including the widely used Needleman-Wunsch (NW) algorithm. FOGSAA is applicable for all types of sequences, with any scoring scheme, and with or without affine gap penalty. Compared to NW, FOGSAA achieves a time gain of (70-90)% for highly similar nucleotide sequences (> 80% similarity), and (54-70)% for sequences having (30-80)% similarity. For other sequences, it terminates with an approximate score. For protein sequences, the average time gain is between (25-40)%. Compared to three heuristic global alignment methods, the quality of alignment is improved by about 23%-53%. FOGSAA is, in general, suitable for aligning any two sequences defined over a finite alphabet set, where the quality of the global alignment is of supreme importance.

  9. Progressive multiple sequence alignments from triplets

    PubMed Central

    Kruspe, Matthias; Stadler, Peter F

    2007-01-01

    Background The quality of progressive sequence alignments strongly depends on the accuracy of the individual pairwise alignment steps since gaps that are introduced at one step cannot be removed at later aggregation steps. Adjacent insertions and deletions necessarily appear in arbitrary order in pairwise alignments and hence form an unavoidable source of errors. Research Here we present a modified variant of progressive sequence alignments that addresses both issues. Instead of pairwise alignments we use exact dynamic programming to align sequence or profile triples. This avoids a large fractions of the ambiguities arising in pairwise alignments. In the subsequent aggregation steps we follow the logic of the Neighbor-Net algorithm, which constructs a phylogenetic network by step-wisely replacing triples by pairs instead of combining pairs to singletons. To this end the three-way alignments are subdivided into two partial alignments, at which stage all-gap columns are naturally removed. This alleviates the "once a gap, always a gap" problem of progressive alignment procedures. Conclusion The three-way Neighbor-Net based alignment program aln3nn is shown to compare favorably on both protein sequences and nucleic acids sequences to other progressive alignment tools. In the latter case one easily can include scoring terms that consider secondary structure features. Overall, the quality of resulting alignments in general exceeds that of clustalw or other multiple alignments tools even though our software does not included heuristics for context dependent (mis)match scores. PMID:17631683

  10. Improving pairwise sequence alignment accuracy using near-optimal protein sequence alignments

    PubMed Central

    2010-01-01

    Background While the pairwise alignments produced by sequence similarity searches are a powerful tool for identifying homologous proteins - proteins that share a common ancestor and a similar structure; pairwise sequence alignments often fail to represent accurately the structural alignments inferred from three-dimensional coordinates. Since sequence alignment algorithms produce optimal alignments, the best structural alignments must reflect suboptimal sequence alignment scores. Thus, we have examined a range of suboptimal sequence alignments and a range of scoring parameters to understand better which sequence alignments are likely to be more structurally accurate. Results We compared near-optimal protein sequence alignments produced by the Zuker algorithm and a set of probabilistic alignments produced by the probA program with structural alignments produced by four different structure alignment algorithms. There is significant overlap between the solution spaces of structural alignments and both the near-optimal sequence alignments produced by commonly used scoring parameters for sequences that share significant sequence similarity (E-values < 10-5) and the ensemble of probA alignments. We constructed a logistic regression model incorporating three input variables derived from sets of near-optimal alignments: robustness, edge frequency, and maximum bits-per-position. A ROC analysis shows that this model more accurately classifies amino acid pairs (edges in the alignment path graph) according to the likelihood of appearance in structural alignments than the robustness score alone. We investigated various trimming protocols for removing incorrect edges from the optimal sequence alignment; the most effective protocol is to remove matches from the semi-global optimal alignment that are outside the boundaries of the local alignment, although trimming according to the model-generated probabilities achieves a similar level of improvement. The model can also be used to

  11. Alignment of Helical Membrane Protein Sequences Using AlignMe

    PubMed Central

    Khafizov, Kamil; Forrest, Lucy R.

    2013-01-01

    Few sequence alignment methods have been designed specifically for integral membrane proteins, even though these important proteins have distinct evolutionary and structural properties that might affect their alignments. Existing approaches typically consider membrane-related information either by using membrane-specific substitution matrices or by assigning distinct penalties for gap creation in transmembrane and non-transmembrane regions. Here, we ask whether favoring matching of predicted transmembrane segments within a standard dynamic programming algorithm can improve the accuracy of pairwise membrane protein sequence alignments. We tested various strategies using a specifically designed program called AlignMe. An updated set of homologous membrane protein structures, called HOMEP2, was used as a reference for optimizing the gap penalties. The best of the membrane-protein optimized approaches were then tested on an independent reference set of membrane protein sequence alignments from the BAliBASE collection. When secondary structure (S) matching was combined with evolutionary information (using a position-specific substitution matrix (P)), in an approach we called AlignMePS, the resultant pairwise alignments were typically among the most accurate over a broad range of sequence similarities when compared to available methods. Matching transmembrane predictions (T), in addition to evolutionary information, and secondary-structure predictions, in an approach called AlignMePST, generally reduces the accuracy of the alignments of closely-related proteins in the BAliBASE set relative to AlignMePS, but may be useful in cases of extremely distantly related proteins for which sequence information is less informative. The open source AlignMe code is available at https://sourceforge.net/projects/alignme/, and at http://www.forrestlab.org, along with an online server and the HOMEP2 data set. PMID:23469223

  12. ALIGN_MTX--an optimal pairwise textual sequence alignment program, adapted for using in sequence-structure alignment.

    PubMed

    Vishnepolsky, Boris; Pirtskhalava, Malak

    2009-06-01

    The presented program ALIGN_MTX makes alignment of two textual sequences with an opportunity to use any several characters for the designation of sequence elements and arbitrary user substitution matrices. It can be used not only for the alignment of amino acid and nucleotide sequences but also for sequence-structure alignment used in threading, amino acid sequence alignment, using preliminary known PSSM matrix, and in other cases when alignment of biological or non-biological textual sequences is required. This distinguishes it from the majority of similar alignment programs that make, as a rule, alignment only of amino acid or nucleotide sequences represented as a sequence of single alphabetic characters. ALIGN_MTX is presented as downloadable zip archive at http://www.imbbp.org/software/ALIGN_MTX/ and available for free use. As application of using the program, the results of comparison of different types of substitution matrix for alignment quality in distantly related protein pair sets were presented. Threading matrix SORDIS, based on side-chain orientation in relation to hydrophobic core centers with evolutionary change-based substitution matrix BLOSUM and using multiple sequence alignment information position-specific score matrices (PSSM) were taken for test alignment accuracy. The best performance shows PSSM matrix, but in the reduced set with lower sequence similarity threading matrix SORDIS shows the same performance and it was shown that combined potential with SORDIS and PSSM can improve alignment quality in evolutionary distantly related protein pairs.

  13. Aligning Two Genomic Sequences That Contain Duplications

    NASA Astrophysics Data System (ADS)

    Hou, Minmei; Riemer, Cathy; Berman, Piotr; Hardison, Ross C.; Miller, Webb

    It is difficult to properly align genomic sequences that contain intra-species duplications. With this goal in mind, we have developed a tool, called TOAST (two-way orthologous alignment selection tool), for predicting whether two aligned regions from different species are orthologous, i.e., separated by a speciation event, as opposed to a duplication event. The advantage of restricting alignment to orthologous pairs is that they constitute the aligning regions that are most likely to share the same biological function, and most easily analyzed for evidence of selection. We evaluate TOAST on 12 human/mouse gene clusters.

  14. Multiple sequence alignment in HTML: colored, possibly hyperlinked, compact representations.

    PubMed

    Campagne, F; Maigret, B

    1998-02-01

    Protein sequence alignments are widely used in protein structure prediction, protein engineering, modeling of proteins, etc. This type of representation is useful at different stages of scientific activity: looking at previous results, working on a research project, and presenting the results. There is a need to make it available through a network (intranet or WWW), in a way that allows biologists, chemists, and noncomputer specialists to look at the data and carry on research--possibly in a collaborative research. Previous methods (text-based, Java-based) are reported and their advantages are discussed. We have developed two novel approaches to represent the alignments as colored, hyper-linked HTML pages. The first method creates an HTML page that uses efficiently the image cache mechanism of a WWW browser, thereby allowing the user to browse different alignments without waiting for the images to be loaded through the network, but only for the first viewed alignment. The generated pages can be browsed with any HTML2.0-compliant browser. The second method that we propose uses W3C-CSS1-style sheets to render alignments. This new method generates pages that require recent browsers to be viewed. We implemented these methods in the Viseur program and made a WWW service available that allows a user to convert an MSF alignment file in HTML for WWW publishing. The latter service is available at http:@www.lctn.u-nancy.fr/viseur/services.htm l.

  15. Alignment method for spectrograms of DNA sequences.

    PubMed

    Bucur, Anca; van Leeuwen, Jasper; Dimitrova, Nevenka; Mittal, Chetan

    2010-01-01

    DNA spectrograms express the periodicities of each of the four nucleotides A, T, C, and G in one or several genomic sequences to be analyzed. DNA spectral analysis can be applied to systematically investigate DNA patterns, which may correspond to relevant biological features. As opposed to looking at nucleotide sequences, spectrogram analysis may detect structural characteristics in very long sequences that are not identifiable by sequence alignment. Alignment of DNA spectrograms can be used to facilitate analysis of very long sequences or entire genomes at different resolutions. Standard clustering algorithms have been used in spectral analysis to find strong patterns in spectra. However, as they use a global distance metric, these algorithms can only detect strong patterns coexisting in several frequencies. In this paper, we propose a new method and several algorithms for aligning spectra suitable for efficient spectral analysis and allowing for the easy detection of strong patterns in both single frequencies and multiple frequencies.

  16. Two Hybrid Algorithms for Multiple Sequence Alignment

    NASA Astrophysics Data System (ADS)

    Naznin, Farhana; Sarker, Ruhul; Essam, Daryl

    2010-01-01

    In order to design life saving drugs, such as cancer drugs, the design of Protein or DNA structures has to be accurate. These structures depend on Multiple Sequence Alignment (MSA). MSA is used to find the accurate structure of Protein and DNA sequences from existing approximately correct sequences. To overcome the overly greedy nature of the well known global progressive alignment method for multiple sequence alignment, we have proposed two different algorithms in this paper; one is using an iterative approach with a progressive alignment method (PAMIM) and the second one is using a genetic algorithm with a progressive alignment method (PAMGA). Both of our methods started with a "kmer" distance table to generate single guide-tree. In the iterative approach, we have introduced two new techniques: the first technique is to generate Guide-trees with randomly selected sequences and the second is of shuffling the sequences inside that tree. The output of the tree is a multiple sequence alignment which has been evaluated by the Sum of Pairs Method (SPM) considering the real value data from PAM250. In our second GA approach, these two techniques are used to generate an initial population and also two different approaches of genetic operators are implemented in crossovers and mutation. To test the performance of our two algorithms, we have compared these with the existing well known methods: T-Coffee, MUSCEL, MAFFT and Probcon, using BAliBase benchmarks. The experimental results show that the first algorithm works well for some situations, where other existing methods face difficulties in obtaining better solutions. The proposed second method works well compared to the existing methods for all situations and it shows better performance over the first one.

  17. Robust temporal alignment of multimodal cardiac sequences

    NASA Astrophysics Data System (ADS)

    Perissinotto, Andrea; Queirós, Sandro; Morais, Pedro; Baptista, Maria J.; Monaghan, Mark; Rodrigues, Nuno F.; D'hooge, Jan; Vilaça, João. L.; Barbosa, Daniel

    2015-03-01

    Given the dynamic nature of cardiac function, correct temporal alignment of pre-operative models and intraoperative images is crucial for augmented reality in cardiac image-guided interventions. As such, the current study focuses on the development of an image-based strategy for temporal alignment of multimodal cardiac imaging sequences, such as cine Magnetic Resonance Imaging (MRI) or 3D Ultrasound (US). First, we derive a robust, modality-independent signal from the image sequences, estimated by computing the normalized cross-correlation between each frame in the temporal sequence and the end-diastolic frame. This signal is a resembler for the left-ventricle (LV) volume curve over time, whose variation indicates different temporal landmarks of the cardiac cycle. We then perform the temporal alignment of these surrogate signals derived from MRI and US sequences of the same patient through Dynamic Time Warping (DTW), allowing to synchronize both sequences. The proposed framework was evaluated in 98 patients, which have undergone both 3D+t MRI and US scans. The end-systolic frame could be accurately estimated as the minimum of the image-derived surrogate signal, presenting a relative error of 1.6 +/- 1.9% and 4.0 +/- 4.2% for the MRI and US sequences, respectively, thus supporting its association with key temporal instants of the cardiac cycle. The use of DTW reduces the desynchronization of the cardiac events in MRI and US sequences, allowing to temporally align multimodal cardiac imaging sequences. Overall, a generic, fast and accurate method for temporal synchronization of MRI and US sequences of the same patient was introduced. This approach could be straightforwardly used for the correct temporal alignment of pre-operative MRI information and intra-operative US images.

  18. Identifying subset errors in multiple sequence alignments.

    PubMed

    Roy, Aparna; Taddese, Bruck; Vohra, Shabana; Thimmaraju, Phani K; Illingworth, Christopher J R; Simpson, Lisa M; Mukherjee, Keya; Reynolds, Christopher A; Chintapalli, Sree V

    2014-01-01

    Multiple sequence alignment (MSA) accuracy is important, but there is no widely accepted method of judging the accuracy that different alignment algorithms give. We present a simple approach to detecting two types of error, namely block shifts and the misplacement of residues within a gap. Given a MSA, subsets of very similar sequences are generated through the use of a redundancy filter, typically using a 70-90% sequence identity cut-off. Subsets thus produced are typically small and degenerate, and errors can be easily detected even by manual examination. The errors, albeit minor, are inevitably associated with gaps in the alignment, and so the procedure is particularly relevant to homology modelling of protein loop regions. The usefulness of the approach is illustrated in the context of the universal but little known [K/R]KLH motif that occurs in intracellular loop 1 of G protein coupled receptors (GPCR); other issues relevant to GPCR modelling are also discussed.

  19. Image Correlation Method for DNA Sequence Alignment

    PubMed Central

    Curilem Saldías, Millaray; Villarroel Sassarini, Felipe; Muñoz Poblete, Carlos; Vargas Vásquez, Asticio; Maureira Butler, Iván

    2012-01-01

    The complexity of searches and the volume of genomic data make sequence alignment one of bioinformatics most active research areas. New alignment approaches have incorporated digital signal processing techniques. Among these, correlation methods are highly sensitive. This paper proposes a novel sequence alignment method based on 2-dimensional images, where each nucleic acid base is represented as a fixed gray intensity pixel. Query and known database sequences are coded to their pixel representation and sequence alignment is handled as object recognition in a scene problem. Query and database become object and scene, respectively. An image correlation process is carried out in order to search for the best match between them. Given that this procedure can be implemented in an optical correlator, the correlation could eventually be accomplished at light speed. This paper shows an initial research stage where results were “digitally” obtained by simulating an optical correlation of DNA sequences represented as images. A total of 303 queries (variable lengths from 50 to 4500 base pairs) and 100 scenes represented by 100 x 100 images each (in total, one million base pair database) were considered for the image correlation analysis. The results showed that correlations reached very high sensitivity (99.01%), specificity (98.99%) and outperformed BLAST when mutation numbers increased. However, digital correlation processes were hundred times slower than BLAST. We are currently starting an initiative to evaluate the correlation speed process of a real experimental optical correlator. By doing this, we expect to fully exploit optical correlation light properties. As the optical correlator works jointly with the computer, digital algorithms should also be optimized. The results presented in this paper are encouraging and support the study of image correlation methods on sequence alignment. PMID:22761742

  20. Image correlation method for DNA sequence alignment.

    PubMed

    Curilem Saldías, Millaray; Villarroel Sassarini, Felipe; Muñoz Poblete, Carlos; Vargas Vásquez, Asticio; Maureira Butler, Iván

    2012-01-01

    The complexity of searches and the volume of genomic data make sequence alignment one of bioinformatics most active research areas. New alignment approaches have incorporated digital signal processing techniques. Among these, correlation methods are highly sensitive. This paper proposes a novel sequence alignment method based on 2-dimensional images, where each nucleic acid base is represented as a fixed gray intensity pixel. Query and known database sequences are coded to their pixel representation and sequence alignment is handled as object recognition in a scene problem. Query and database become object and scene, respectively. An image correlation process is carried out in order to search for the best match between them. Given that this procedure can be implemented in an optical correlator, the correlation could eventually be accomplished at light speed. This paper shows an initial research stage where results were "digitally" obtained by simulating an optical correlation of DNA sequences represented as images. A total of 303 queries (variable lengths from 50 to 4500 base pairs) and 100 scenes represented by 100 x 100 images each (in total, one million base pair database) were considered for the image correlation analysis. The results showed that correlations reached very high sensitivity (99.01%), specificity (98.99%) and outperformed BLAST when mutation numbers increased. However, digital correlation processes were hundred times slower than BLAST. We are currently starting an initiative to evaluate the correlation speed process of a real experimental optical correlator. By doing this, we expect to fully exploit optical correlation light properties. As the optical correlator works jointly with the computer, digital algorithms should also be optimized. The results presented in this paper are encouraging and support the study of image correlation methods on sequence alignment.

  1. DNA sequence chromatogram browsing using JAVA and CORBA.

    PubMed

    Parsons, J D; Buehler, E; Hillier, L

    1999-03-01

    DNA sequence chromatograms (traces) are the primary data source for all large-scale genomic and expressed sequence tags (ESTs) sequencing projects. Access to the sequencing trace assists many later analyses, for example contig assembly and polymorphism detection, but obtaining and using traces is problematic. Traces are not collected and published centrally, they are much larger than the base calls derived from them, and viewing them requires the interactivity of a local graphical client with local data. To provide efficient global access to DNA traces, we developed a client/server system based on flexible Java components integrated into other applications including an applet for use in a WWW browser and a stand-alone trace viewer. Client/server interaction is facilitated by CORBA middleware which provides a well-defined interface, a naming service, and location independence. [The software is packaged as a Jar file available from the following URL: http://www.ebi.ac.uk/jparsons. Links to working examples of the trace viewers can be found at http://corba.ebi.ac.uk/EST. All the Washington University mouse EST traces are available for browsing at the same URL.

  2. EzEditor: a versatile sequence alignment editor for both rRNA- and protein-coding genes.

    PubMed

    Jeon, Yoon-Seong; Lee, Kihyun; Park, Sang-Cheol; Kim, Bong-Soo; Cho, Yong-Joon; Ha, Sung-Min; Chun, Jongsik

    2014-02-01

    EzEditor is a Java-based molecular sequence editor allowing manipulation of both DNA and protein sequence alignments for phylogenetic analysis. It has multiple features optimized to connect initial computer-generated multiple alignment and subsequent phylogenetic analysis by providing manual editing with reference to biological information specific to the genes under consideration. It provides various functionalities for editing rRNA alignments using secondary structure information. In addition, it supports simultaneous editing of both DNA sequences and their translated protein sequences for protein-coding genes. EzEditor is, to our knowledge, the first sequence editing software designed for both rRNA- and protein-coding genes with the visualization of biologically relevant information and should be useful in molecular phylogenetic studies. EzEditor is based on Java, can be run on all major computer operating systems and is freely available from http://sw.ezbiocloud.net/ezeditor/.

  3. Regular Language Constrained Sequence Alignment Revisited

    NASA Astrophysics Data System (ADS)

    Kucherov, Gregory; Pinhas, Tamar; Ziv-Ukelson, Michal

    Imposing constraints in the form of a finite automaton or a regular expression is an effective way to incorporate additional a priori knowledge into sequence alignment procedures. With this motivation, Arslan [1] introduced the Regular Language Constrained Sequence Alignment Problem and proposed an O(n 2 t 4) time and O(n 2 t 2) space algorithm for solving it, where n is the length of the input strings and t is the number of states in the non-deterministic automaton, which is given as input. Chung et al. [2] proposed a faster O(n 2 t 3) time algorithm for the same problem. In this paper, we further speed up the algorithms for Regular Language Constrained Sequence Alignment by reducing their worst case time complexity bound to O(n 2 t 3/logt). This is done by establishing an optimal bound on the size of Straight-Line Programs solving the maxima computation subproblem of the basic dynamic programming algorithm. We also study another solution based on a Steiner Tree computation. While it does not improve the run time complexity in the worst case, our simulations show that both approaches are efficient in practice, especially when the input automata are dense.

  4. Parallel sequence alignment in limited space.

    PubMed

    Grice, J A; Hughey, R; Speck, D

    1995-01-01

    Sequence comparison with affine gap costs is a problem that is readily parallelizable on simple single-instruction, multiple-data stream (SIMD) parallel processors using only constant space per processing element. Unfortunately, the twin problem of sequence alignment, finding the optimal character-by-character correspondence between two sequences, is more complicated. While the innovative O(n2)-time and O(n)-space serial algorithm has been parallelized for multiple-instruction, multiple-data stream (MIMD) computers with only a communication-time slowdown, typically O(log n), it is not suitable for hardware-efficient SIMD parallel processors with only local communication. This paper proposes several methods of computing sequence alignments with limited memory per processing element. The algorithms are also well-suited to serial implementation. The simpler algorithms feature, for an arbitrary integer L, a factor of L slowdown in exchange for reducing space requirements from O(n) to O(L square root of n) per processing element. Using this result, we describe an O(n log n) parallel time algorithm that requires O(log n) space per processing element on O(n) SIMD processing elements with only a mesh or linear interconnection network.

  5. DNA Sequence Alignment during Homologous Recombination.

    PubMed

    Greene, Eric C

    2016-05-27

    Homologous recombination allows for the regulated exchange of genetic information between two different DNA molecules of identical or nearly identical sequence composition, and is a major pathway for the repair of double-stranded DNA breaks. A key facet of homologous recombination is the ability of recombination proteins to perfectly align the damaged DNA with homologous sequence located elsewhere in the genome. This reaction is referred to as the homology search and is akin to the target searches conducted by many different DNA-binding proteins. Here I briefly highlight early investigations into the homology search mechanism, and then describe more recent research. Based on these studies, I summarize a model that includes a combination of intersegmental transfer, short-distance one-dimensional sliding, and length-specific microhomology recognition to efficiently align DNA sequences during the homology search. I also suggest some future directions to help further our understanding of the homology search. Where appropriate, I direct the reader to other recent reviews describing various issues related to homologous recombination.

  6. Sequence Alignment to Predict Across Species Susceptibility ...

    EPA Pesticide Factsheets

    Conservation of a molecular target across species can be used as a line-of-evidence to predict the likelihood of chemical susceptibility. The web-based Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS) tool was developed to simplify, streamline, and quantitatively assess protein sequence/structural similarity across taxonomic groups as a means to predict relative intrinsic susceptibility. The intent of the tool is to allow for evaluation of any potential protein target, so it is amenable to variable degrees of protein characterization, depending on available information about the chemical/protein interaction and the molecular target itself. To allow for flexibility in the analysis, a layered strategy was adopted for the tool. The first level of the SeqAPASS analysis compares primary amino acid sequences to a query sequence, calculating a metric for sequence similarity (including detection of candidate orthologs), the second level evaluates sequence similarity within selected domains (e.g., ligand-binding domain, DNA binding domain), and the third level of analysis compares individual amino acid residue positions identified as being of importance for protein conformation and/or ligand binding upon chemical perturbation. Each level of the SeqAPASS analysis provides increasing evidence to apply toward rapid, screening-level assessments of probable cross species susceptibility. Such analyses can support prioritization of chemicals for further ev

  7. SQUARE--determining reliable regions in sequence alignments.

    PubMed

    Tress, Michael L; Graña, Osvaldo; Valencia, Alfonso

    2004-04-12

    The Server for Quick Alignment Reliability Evaluation (SQUARE) is a Web-based version of the method we developed to predict regions of reliably aligned residues in sequence alignments. Given an alignment between a query sequence and a sequence of known structure, SQUARE is able to predict which residues are reliably aligned. The server accesses a database of profiles of sequences of known three-dimensional structures in order to calculate the scores for each residue in the alignment. SQUARE produces a graphical output of the residue profile-derived alignment scores along with an indication of the reliability of the alignment. In addition, the scores can be compared against template secondary structure, conserved residues and important sites.

  8. Blasting and Zipping: Sequence Alignment and Mutual Information

    NASA Astrophysics Data System (ADS)

    Penner, Orion; Grassberger, Peter; Paczuski, Maya

    2009-03-01

    Alignment of biological sequences such as DNA, RNA or proteins is one of the most widely used tools in computational bioscience. While the accomplishments of sequence alignment algorithms are undeniable the fact remains that these algorithms are based upon heuristic scoring schemes. Therefore, these algorithms do not provide model independent and objective measures for how similar two (or more) sequences actually are. Although information theory provides such a similarity measure - the mutual information (MI) - numerous previous attempts to connect sequence alignment and information have not produced realistic estimates for the MI from a given alignment. We report on a simple and flexible approach to get robust estimates of MI from global alignments. The presented results may help establish MI as a reliable tool for evaluating the quality of global alignments, judging the relative merits of different alignment algorithms, and estimating the significance of specific alignments.

  9. A novel partial sequence alignment tool for finding large deletions.

    PubMed

    Aruk, Taner; Ustek, Duran; Kursun, Olcay

    2012-01-01

    Finding large deletions in genome sequences has become increasingly more useful in bioinformatics, such as in clinical research and diagnosis. Although there are a number of publically available next generation sequencing mapping and sequence alignment programs, these software packages do not correctly align fragments containing deletions larger than one kb. We present a fast alignment software package, BinaryPartialAlign, that can be used by wet lab scientists to find long structural variations in their experiments. For BinaryPartialAlign, we make use of the Smith-Waterman (SW) algorithm with a binary-search-based approach for alignment with large gaps that we called partial alignment. BinaryPartialAlign implementation is compared with other straight-forward applications of SW. Simulation results on mtDNA fragments demonstrate the effectiveness (runtime and accuracy) of the proposed method.

  10. [Tabular excel editor for analysis of aligned nucleotide sequences].

    PubMed

    Demkin, V V

    2010-01-01

    Excel platform was used for transition of results of multiple aligned nucleotide sequences obtained using the BLAST network service to the form appropriate for visual analysis and editing. Two macros operators for MS Excel 2007 were constructed. The array of aligned sequences transformed into Excel table and processed using macros operators is more appropriate for analysis than initial html data.

  11. Probabilistic sequence alignment of stratigraphic records

    NASA Astrophysics Data System (ADS)

    Lin, Luan; Khider, Deborah; Lisiecki, Lorraine E.; Lawrence, Charles E.

    2014-10-01

    The assessment of age uncertainty in stratigraphically aligned records is a pressing need in paleoceanographic research. The alignment of ocean sediment cores is used to develop mutually consistent age models for climate proxies and is often based on the δ18O of calcite from benthic foraminifera, which records a global ice volume and deep water temperature signal. To date, δ18O alignment has been performed by manual, qualitative comparison or by deterministic algorithms. Here we present a hidden Markov model (HMM) probabilistic algorithm to find 95% confidence bands for δ18O alignment. This model considers the probability of every possible alignment based on its fit to the δ18O data and transition probabilities for sedimentation rate changes obtained from radiocarbon-based estimates for 37 cores. Uncertainty is assessed using a stochastic back trace recursion to sample alignments in exact proportion to their probability. We applied the algorithm to align 35 late Pleistocene records to a global benthic δ18O stack and found that the mean width of 95% confidence intervals varies between 3 and 23 kyr depending on the resolution and noisiness of the record's δ18O signal. Confidence bands within individual cores also vary greatly, ranging from ~0 to >40 kyr. These alignment uncertainty estimates will allow researchers to examine the robustness of their conclusions, including the statistical evaluation of lead-lag relationships between events observed in different cores.

  12. Quantifying the Displacement of Mismatches in Multiple Sequence Alignment Benchmarks

    PubMed Central

    Bawono, Punto; van der Velde, Arjan; Abeln, Sanne; Heringa, Jaap

    2015-01-01

    Multiple Sequence Alignment (MSA) methods are typically benchmarked on sets of reference alignments. The quality of the alignment can then be represented by the sum-of-pairs (SP) or column (CS) scores, which measure the agreement between a reference and corresponding query alignment. Both the SP and CS scores treat mismatches between a query and reference alignment as equally bad, and do not take the separation into account between two amino acids in the query alignment, that should have been matched according to the reference alignment. This is significant since the magnitude of alignment shifts is often of relevance in biological analyses, including homology modeling and MSA refinement/manual alignment editing. In this study we develop a new alignment benchmark scoring scheme, SPdist, that takes the degree of discordance of mismatches into account by measuring the sequence distance between mismatched residue pairs in the query alignment. Using this new score along with the standard SP score, we investigate the discriminatory behavior of the new score by assessing how well six different MSA methods perform with respect to BAliBASE reference alignments. The SP score and the SPdist score yield very similar outcomes when the reference and query alignments are close. However, for more divergent reference alignments the SPdist score is able to distinguish between methods that keep alignments approximately close to the reference and those exhibiting larger shifts. We observed that by using SPdist together with SP scoring we were able to better delineate the alignment quality difference between alternative MSA methods. With a case study we exemplify why it is important, from a biological perspective, to consider the separation of mismatches. The SPdist scoring scheme has been implemented in the VerAlign web server (http://www.ibi.vu.nl/programs/veralignwww/). The code for calculating SPdist score is also available upon request. PMID:25993129

  13. Novel hybrid genetic algorithm for progressive multiple sequence alignment.

    PubMed

    Afridi, Muhammad Ishaq

    2013-01-01

    The family of evolutionary or genetic algorithms is used in various fields of bioinformatics. Genetic algorithms (GAs) can be used for simultaneous comparison of a large pool of DNA or protein sequences. This article explains how the GA is used in combination with other methods like the progressive multiple sequence alignment strategy to get an optimal multiple sequence alignment (MSA). Optimal MSA get much importance in the field of bioinformatics and some other related disciplines. Evolutionary algorithms evolve and improve their performance. In this optimisation, the initial pair-wise alignment is achieved through a progressive method and then a good objective function is used to select and align more alignments and profiles. Child and subpopulation initialisation is based upon changes in the probability of similarity or the distance matrix of the alignment population. In this genetic algorithm, optimisation of mutation, crossover and migration in the population of candidate solution reflect events of natural organic evolution.

  14. An enhanced algorithm for multiple sequence alignment of protein sequences using genetic algorithm

    PubMed Central

    Kumar, Manish

    2015-01-01

    One of the most fundamental operations in biological sequence analysis is multiple sequence alignment (MSA). The basic of multiple sequence alignment problems is to determine the most biologically plausible alignments of protein or DNA sequences. In this paper, an alignment method using genetic algorithm for multiple sequence alignment has been proposed. Two different genetic operators mainly crossover and mutation were defined and implemented with the proposed method in order to know the population evolution and quality of the sequence aligned. The proposed method is assessed with protein benchmark dataset, e.g., BALIBASE, by comparing the obtained results to those obtained with other alignment algorithms, e.g., SAGA, RBT-GA, PRRP, HMMT, SB-PIMA, CLUSTALX, CLUSTAL W, DIALIGN and PILEUP8 etc. Experiments on a wide range of data have shown that the proposed algorithm is much better (it terms of score) than previously proposed algorithms in its ability to achieve high alignment quality. PMID:27065770

  15. Protein Sequence Alignment Taking the Structure of Peptide Bond

    NASA Astrophysics Data System (ADS)

    Hara, Toshihide; Sato, Keiko; Ohya, Masanori

    2013-01-01

    In a previous paper1 we proposed a new method for performing pairwise alignment of protein sequences. The method, called MTRAP, achieves the highest performance compared with other alignment methods such as ClustalW22,3 on two benchmarks for alignment accuracy. In this paper, we introduce a new measure between two amino acids based on the formation of peptide bonds. The measure is implemented into MTRAP software to further improve alignment accuracy. Our alignment software is available at

  16. Complete Whole-Genome Sequence of Salmonella enterica subsp. enterica Serovar Java NCTC5706.

    PubMed

    Fazal, Mohammed-Abbas; Alexander, Sarah; Burnett, Edward; Deheer-Graham, Ana; Oliver, Karen; Holroyd, Nancy; Parkhill, Julian; Russell, Julie E

    2016-11-03

    Salmonellae are a significant cause of morbidity and mortality globally. Here, we report the first complete genome sequence for Salmonella enterica subsp. enterica serovar Java strain NCTC5706. This strain is of historical significance, having been isolated in the pre-antibiotic era and was deposited into the National Collection of Type Cultures in 1939.

  17. Complete Whole-Genome Sequence of Salmonella enterica subsp. enterica Serovar Java NCTC5706

    PubMed Central

    Fazal, Mohammed-Abbas; Burnett, Edward; Deheer-Graham, Ana; Oliver, Karen; Holroyd, Nancy; Russell, Julie E.

    2016-01-01

    Salmonellae are a significant cause of morbidity and mortality globally. Here, we report the first complete genome sequence for Salmonella enterica subsp. enterica serovar Java strain NCTC5706. This strain is of historical significance, having been isolated in the pre-antibiotic era and was deposited into the National Collection of Type Cultures in 1939. PMID:27811100

  18. MANGO: a new approach to multiple sequence alignment.

    PubMed

    Zhang, Zefeng; Lin, Hao; Li, Ming

    2007-01-01

    Multiple sequence alignment is a classical and challenging task for biological sequence analysis. The problem is NP-hard. The full dynamic programming takes too much time. The progressive alignment heuristics adopted by most state of the art multiple sequence alignment programs suffer from the 'once a gap, always a gap' phenomenon. Is there a radically new way to do multiple sequence alignment? This paper introduces a novel and orthogonal multiple sequence alignment method, using multiple optimized spaced seeds and new algorithms to handle these seeds efficiently. Our new algorithm processes information of all sequences as a whole, avoiding problems caused by the popular progressive approaches. Because the optimized spaced seeds are provably significantly more sensitive than the consecutive k-mers, the new approach promises to be more accurate and reliable. To validate our new approach, we have implemented MANGO: Multiple Alignment with N Gapped Oligos. Experiments were carried out on large 16S RNA benchmarks showing that MANGO compares favorably, in both accuracy and speed, against state-of-art multiple sequence alignment methods, including ClustalW 1.83, MUSCLE 3.6, MAFFT 5.861, Prob-ConsRNA 1.11, Dialign 2.2.1, DIALIGN-T 0.2.1, T-Coffee 4.85, POA 2.0 and Kalign 2.0.

  19. Sequence alignments and pair hidden Markov models using evolutionary history.

    PubMed

    Knudsen, Bjarne; Miyamoto, Michael M

    2003-10-17

    This work presents a novel pairwise statistical alignment method based on an explicit evolutionary model of insertions and deletions (indels). Indel events of any length are possible according to a geometric distribution. The geometric distribution parameter, the indel rate, and the evolutionary time are all maximum likelihood estimated from the sequences being aligned. Probability calculations are done using a pair hidden Markov model (HMM) with transition probabilities calculated from the indel parameters. Equations for the transition probabilities make the pair HMM closely approximate the specified indel model. The method provides an optimal alignment, its likelihood, the likelihood of all possible alignments, and the reliability of individual alignment regions. Human alpha and beta-hemoglobin sequences are aligned, as an illustration of the potential utility of this pair HMM approach.

  20. Spatio-temporal alignment of pedobarographic image sequences.

    PubMed

    Oliveira, Francisco P M; Sousa, Andreia; Santos, Rubim; Tavares, João Manuel R S

    2011-07-01

    This article presents a methodology to align plantar pressure image sequences simultaneously in time and space. The spatial position and orientation of a foot in a sequence are changed to match the foot represented in a second sequence. Simultaneously with the spatial alignment, the temporal scale of the first sequence is transformed with the aim of synchronizing the two input footsteps. Consequently, the spatial correspondence of the foot regions along the sequences as well as the temporal synchronizing is automatically attained, making the study easier and more straightforward. In terms of spatial alignment, the methodology can use one of four possible geometric transformation models: rigid, similarity, affine, or projective. In the temporal alignment, a polynomial transformation up to the 4th degree can be adopted in order to model linear and curved time behaviors. Suitable geometric and temporal transformations are found by minimizing the mean squared error (MSE) between the input sequences. The methodology was tested on a set of real image sequences acquired from a common pedobarographic device. When used in experimental cases generated by applying geometric and temporal control transformations, the methodology revealed high accuracy. In addition, the intra-subject alignment tests from real plantar pressure image sequences showed that the curved temporal models produced better MSE results (P < 0.001) than the linear temporal model. This article represents an important step forward in the alignment of pedobarographic image data, since previous methods can only be applied on static images.

  1. Multiple sequence alignment with user-defined anchor points

    PubMed Central

    Morgenstern, Burkhard; Prohaska, Sonja J; Pöhler, Dirk; Stadler, Peter F

    2006-01-01

    Background Automated software tools for multiple alignment often fail to produce biologically meaningful results. In such situations, expert knowledge can help to improve the quality of alignments. Results Herein, we describe a semi-automatic version of the alignment program DIALIGN that can take pre-defined constraints into account. It is possible for the user to specify parts of the sequences that are assumed to be homologous and should therefore be aligned to each other. Our software program can use these sites as anchor points by creating a multiple alignment respecting these constraints. This way, our alignment method can produce alignments that are biologically more meaningful than alignments produced by fully automated procedures. As a demonstration of how our method works, we apply our approach to genomic sequences around the Hox gene cluster and to a set of DNA-binding proteins. As a by-product, we obtain insights about the performance of the greedy algorithm that our program uses for multiple alignment and about the underlying objective function. This information will be useful for the further development of DIALIGN. The described alignment approach has been integrated into the TRACKER software system. PMID:16722533

  2. Protein multiple sequence alignment by hybrid bio-inspired algorithms.

    PubMed

    Cutello, Vincenzo; Nicosia, Giuseppe; Pavone, Mario; Prizzi, Igor

    2011-03-01

    This article presents an immune inspired algorithm to tackle the Multiple Sequence Alignment (MSA) problem. MSA is one of the most important tasks in biological sequence analysis. Although this paper focuses on protein alignments, most of the discussion and methodology may also be applied to DNA alignments. The problem of finding the multiple alignment was investigated in the study by Bonizzoni and Vedova and Wang and Jiang, and proved to be a NP-hard (non-deterministic polynomial-time hard) problem. The presented algorithm, called Immunological Multiple Sequence Alignment Algorithm (IMSA), incorporates two new strategies to create the initial population and specific ad hoc mutation operators. It is based on the 'weighted sum of pairs' as objective function, to evaluate a given candidate alignment. IMSA was tested using both classical benchmarks of BAliBASE (versions 1.0, 2.0 and 3.0), and experimental results indicate that it is comparable with state-of-the-art multiple alignment algorithms, in terms of quality of alignments, weighted Sums-of-Pairs (SP) and Column Score (CS) values. The main novelty of IMSA is its ability to generate more than a single suboptimal alignment, for every MSA instance; this behaviour is due to the stochastic nature of the algorithm and of the populations evolved during the convergence process. This feature will help the decision maker to assess and select a biologically relevant multiple sequence alignment. Finally, the designed algorithm can be used as a local search procedure to properly explore promising alignments of the search space.

  3. Efficient pairwise RNA structure prediction and alignment using sequence alignment constraints

    PubMed Central

    Dowell, Robin D; Eddy, Sean R

    2006-01-01

    Background We are interested in the problem of predicting secondary structure for small sets of homologous RNAs, by incorporating limited comparative sequence information into an RNA folding model. The Sankoff algorithm for simultaneous RNA folding and alignment is a basis for approaches to this problem. There are two open problems in applying a Sankoff algorithm: development of a good unified scoring system for alignment and folding and development of practical heuristics for dealing with the computational complexity of the algorithm. Results We use probabilistic models (pair stochastic context-free grammars, pairSCFGs) as a unifying framework for scoring pairwise alignment and folding. A constrained version of the pairSCFG structural alignment algorithm was developed which assumes knowledge of a few confidently aligned positions (pins). These pins are selected based on the posterior probabilities of a probabilistic pairwise sequence alignment. Conclusion Pairwise RNA structural alignment improves on structure prediction accuracy relative to single sequence folding. Constraining on alignment is a straightforward method of reducing the runtime and memory requirements of the algorithm. Five practical implementations of the pairwise Sankoff algorithm – this work (Consan), David Mathews' Dynalign, Ian Holmes' Stemloc, Ivo Hofacker's PMcomp, and Jan Gorodkin's FOLDALIGN – have comparable overall performance with different strengths and weaknesses. PMID:16952317

  4. PASTA: Ultra-Large Multiple Sequence Alignment for Nucleotide and Amino-Acid Sequences.

    PubMed

    Mirarab, Siavash; Nguyen, Nam; Guo, Sheng; Wang, Li-San; Kim, Junhyong; Warnow, Tandy

    2015-05-01

    We introduce PASTA, a new multiple sequence alignment algorithm. PASTA uses a new technique to produce an alignment given a guide tree that enables it to be both highly scalable and very accurate. We present a study on biological and simulated data with up to 200,000 sequences, showing that PASTA produces highly accurate alignments, improving on the accuracy and scalability of the leading alignment methods (including SATé). We also show that trees estimated on PASTA alignments are highly accurate--slightly better than SATé trees, but with substantial improvements relative to other methods. Finally, PASTA is faster than SATé, highly parallelizable, and requires relatively little memory.

  5. ParAlign: a parallel sequence alignment algorithm for rapid and sensitive database searches.

    PubMed

    Rognes, T

    2001-04-01

    There is a need for faster and more sensitive algorithms for sequence similarity searching in view of the rapidly increasing amounts of genomic sequence data available. Parallel processing capabilities in the form of the single instruction, multiple data (SIMD) technology are now available in common microprocessors and enable a single microprocessor to perform many operations in parallel. The ParAlign algorithm has been specifically designed to take advantage of this technology. The new algorithm initially exploits parallelism to perform a very rapid computation of the exact optimal ungapped alignment score for all diagonals in the alignment matrix. Then, a novel heuristic is employed to compute an approximate score of a gapped alignment by combining the scores of several diagonals. This approximate score is used to select the most interesting database sequences for a subsequent Smith-Waterman alignment, which is also parallelised. The resulting method represents a substantial improvement compared to existing heuristics. The sensitivity and specificity of ParAlign was found to be as good as Smith-Waterman implementations when the same method for computing the statistical significance of the matches was used. In terms of speed, only the significantly less sensitive NCBI BLAST 2 program was found to outperform the new approach. Online searches are available at http://dna.uio.no/search/

  6. Recursive dynamic programming for adaptive sequence and structure alignment

    SciTech Connect

    Thiele, R.; Zimmer, R.; Lengauer, T.

    1995-12-31

    We propose a new alignment procedure that is capable of aligning protein sequences and structures in a unified manner. Recursive dynamic programming (RDP) is a hierarchical method which, on each level of the hierarchy, identifies locally optimal solutions and assembles them into partial alignments of sequences and/or structures. In contrast to classical dynamic programming, RDP can also handle alignment problems that use objective functions not obeying the principle of prefix optimality, e.g. scoring schemes derived from energy potentials of mean force. For such alignment problems, RDP aims at computing solutions that are near-optimal with respect to the involved cost function and biologically meaningful at the same time. Towards this goal, RDP maintains a dynamic balance between different factors governing alignment fitness such as evolutionary relationships and structural preferences. As in the RDP method gaps are not scored explicitly, the problematic assignment of gap cost parameters is circumvented. In order to evaluate the RDP approach we analyse whether known and accepted multiple alignments based on structural information can be reproduced with the RDP method.

  7. Nucleotide sequence alignment using sparse coding and belief propagation.

    PubMed

    Roozgard, Aminmohammad; Barzigar, Nafise; Wang, Shuang; Jiang, Xiaoqian; Ohno-Machado, Lucila; Cheng, Samuel

    2013-01-01

    Advances in DNA information extraction techniques have led to huge sequenced genomes from organisms spanning the tree of life. This increasing amount of genomic information requires tools for comparison of the nucleotide sequences. In this paper, we propose a novel nucleotide sequence alignment method based on sparse coding and belief propagation to compare the similarity of the nucleotide sequences. We used the neighbors of each nucleotide as features, and then we employed sparse coding to find a set of candidate nucleotides. To select optimum matches, belief propagation was subsequently applied to these candidate nucleotides. Experimental results show that the proposed approach is able to robustly align nucleotide sequences and is competitive to SOAPaligner [1] and BWA [2].

  8. Image-based temporal alignment of echocardiographic sequences

    NASA Astrophysics Data System (ADS)

    Danudibroto, Adriyana; Bersvendsen, Jørn; Mirea, Oana; Gerard, Olivier; D'hooge, Jan; Samset, Eigil

    2016-04-01

    Temporal alignment of echocardiographic sequences enables fair comparisons of multiple cardiac sequences by showing corresponding frames at given time points in the cardiac cycle. It is also essential for spatial registration of echo volumes where several acquisitions are combined for enhancement of image quality or forming larger field of view. In this study, three different image-based temporal alignment methods were investigated. First, a method based on dynamic time warping (DTW). Second, a spline-based method that optimized the similarity between temporal characteristic curves of the cardiac cycle using 1D cubic B-spline interpolation. Third, a method based on the spline-based method with piecewise modification. These methods were tested on in-vivo data sets of 19 echo sequences. For each sequence, the mitral valve opening (MVO) time was manually annotated. The results showed that the average MVO timing error for all methods are well under the time resolution of the sequences.

  9. A sequence alignment-independent method for protein classification.

    PubMed

    Vries, John K; Munshi, Rajan; Tobi, Dror; Klein-Seetharaman, Judith; Benos, Panayiotis V; Bahar, Ivet

    2004-01-01

    Annotation of the rapidly accumulating body of sequence data relies heavily on the detection of remote homologues and functional motifs in protein families. The most popular methods rely on sequence alignment. These include programs that use a scoring matrix to compare the probability of a potential alignment with random chance and programs that use curated multiple alignments to train profile hidden Markov models (HMMs). Related approaches depend on bootstrapping multiple alignments from a single sequence. However, alignment-based programs have limitations. They make the assumption that contiguity is conserved between homologous segments, which may not be true in genetic recombination or horizontal transfer. Alignments also become ambiguous when sequence similarity drops below 40%. This has kindled interest in classification methods that do not rely on alignment. An approach to classification without alignment based on the distribution of contiguous sequences of four amino acids (4-grams) was developed. Interest in 4-grams stemmed from the observation that almost all theoretically possible 4-grams (20(4)) occur in natural sequences and the majority of 4-grams are uniformly distributed. This implies that the probability of finding identical 4-grams by random chance in unrelated sequences is low. A Bayesian probabilistic model was developed to test this hypothesis. For each protein family in Pfam-A and PIR-PSD, a feature vector called a probe was constructed from the set of 4-grams that best characterised the family. In rigorous jackknife tests, unknown sequences from Pfam-A and PIR-PSD were compared with the probes for each family. A classification result was deemed a true positive if the probe match with the highest probability was in first place in a rank-ordered list. This was achieved in 70% of cases. Analysis of false positives suggested that the precision might approach 85% if selected families were clustered into subsets. Case studies indicated that the 4

  10. Heuristic reusable dynamic programming: efficient updates of local sequence alignment.

    PubMed

    Hong, Changjin; Tewfik, Ahmed H

    2009-01-01

    Recomputation of the previously evaluated similarity results between biological sequences becomes inevitable when researchers realize errors in their sequenced data or when the researchers have to compare nearly similar sequences, e.g., in a family of proteins. We present an efficient scheme for updating local sequence alignments with an affine gap model. In principle, using the previous matching result between two amino acid sequences, we perform a forward-backward alignment to generate heuristic searching bands which are bounded by a set of suboptimal paths. Given a correctly updated sequence, we initially predict a new score of the alignment path for each contour to select the best candidates among them. Then, we run the Smith-Waterman algorithm in this confined space. Furthermore, our heuristic alignment for an updated sequence shows that it can be further accelerated by using reusable dynamic programming (rDP), our prior work. In this study, we successfully validate "relative node tolerance bound" (RNTB) in the pruned searching space. Furthermore, we improve the computational performance by quantifying the successful RNTB tolerance probability and switch to rDP on perturbation-resilient columns only. In our searching space derived by a threshold value of 90 percent of the optimal alignment score, we find that 98.3 percent of contours contain correctly updated paths. We also find that our method consumes only 25.36 percent of the runtime cost of sparse dynamic programming (sDP) method, and to only 2.55 percent of that of a normal dynamic programming with the Smith-Waterman algorithm.

  11. A novel approach to multiple sequence alignment using hadoop data grids.

    PubMed

    Sudha Sadasivam, G; Baktavatchalam, G

    2010-01-01

    Multiple alignment of protein sequences helps to determine evolutionary linkage and to predict molecular structures. The factors to be considered while aligning multiple sequences are speed and accuracy of alignment. Although dynamic programming algorithms produce accurate alignments, they are computation intensive. In this paper we propose a time efficient approach to sequence alignment that also produces quality alignment. The dynamic nature of the algorithm coupled with data and computational parallelism of hadoop data grids improves the accuracy and speed of sequence alignment. The principle of block splitting in hadoop coupled with its scalability facilitates alignment of very large sequences.

  12. FastaValidator: an open-source Java library to parse and validate FASTA formatted sequences

    PubMed Central

    2014-01-01

    Background Advances in sequencing technologies challenge the efficient importing and validation of FASTA formatted sequence data which is still a prerequisite for most bioinformatic tools and pipelines. Comparative analysis of commonly used Bio*-frameworks (BioPerl, BioJava and Biopython) shows that their scalability and accuracy is hampered. Findings FastaValidator represents a platform-independent, standardized, light-weight software library written in the Java programming language. It targets computer scientists and bioinformaticians writing software which needs to parse quickly and accurately large amounts of sequence data. For end-users FastaValidator includes an interactive out-of-the-box validation of FASTA formatted files, as well as a non-interactive mode designed for high-throughput validation in software pipelines. Conclusions The accuracy and performance of the FastaValidator library qualifies it for large data sets such as those commonly produced by massive parallel (NGS) technologies. It offers scientists a fast, accurate and standardized method for parsing and validating FASTA formatted sequence data. PMID:24929426

  13. AlignMiner: a Web-based tool for detection of divergent regions in multiple sequence alignments of conserved sequences

    PubMed Central

    2010-01-01

    Background Multiple sequence alignments are used to study gene or protein function, phylogenetic relations, genome evolution hypotheses and even gene polymorphisms. Virtually without exception, all available tools focus on conserved segments or residues. Small divergent regions, however, are biologically important for specific quantitative polymerase chain reaction, genotyping, molecular markers and preparation of specific antibodies, and yet have received little attention. As a consequence, they must be selected empirically by the researcher. AlignMiner has been developed to fill this gap in bioinformatic analyses. Results AlignMiner is a Web-based application for detection of conserved and divergent regions in alignments of conserved sequences, focusing particularly on divergence. It accepts alignments (protein or nucleic acid) obtained using any of a variety of algorithms, which does not appear to have a significant impact on the final results. AlignMiner uses different scoring methods for assessing conserved/divergent regions, Entropy being the method that provides the highest number of regions with the greatest length, and Weighted being the most restrictive. Conserved/divergent regions can be generated either with respect to the consensus sequence or to one master sequence. The resulting data are presented in a graphical interface developed in AJAX, which provides remarkable user interaction capabilities. Users do not need to wait until execution is complete and can.even inspect their results on a different computer. Data can be downloaded onto a user disk, in standard formats. In silico and experimental proof-of-concept cases have shown that AlignMiner can be successfully used to designing specific polymerase chain reaction primers as well as potential epitopes for antibodies. Primer design is assisted by a module that deploys several oligonucleotide parameters for designing primers "on the fly". Conclusions AlignMiner can be used to reliably detect

  14. SeqLib: a C ++ API for rapid BAM manipulation, sequence alignment and sequence assembly.

    PubMed

    Wala, Jeremiah; Beroukhim, Rameen

    2017-03-01

    We present SeqLib, a C ++ API and command line tool that provides a rapid and user-friendly interface to BAM/SAM/CRAM files, global sequence alignment operations and sequence assembly. Four C libraries perform core operations in SeqLib: HTSlib for BAM access, BWA-MEM and BLAT for sequence alignment and Fermi for error correction and sequence assembly. Benchmarking indicates that SeqLib has lower CPU and memory requirements than leading C ++ sequence analysis APIs. We demonstrate an example of how minimal SeqLib code can extract, error-correct and assemble reads from a CRAM file and then align with BWA-MEM. SeqLib also provides additional capabilities, including chromosome-aware interval queries and read plotting. Command line tools are available for performing integrated error correction, micro-assemblies and alignment.

  15. New developments of alignment-free sequence comparison: measures, statistics and next-generation sequencing

    PubMed Central

    Song, Kai; Ren, Jie; Reinert, Gesine; Deng, Minghua

    2014-01-01

    With the development of next-generation sequencing (NGS) technologies, a large amount of short read data has been generated. Assembly of these short reads can be challenging for genomes and metagenomes without template sequences, making alignment-based genome sequence comparison difficult. In addition, sequence reads from NGS can come from different regions of various genomes and they may not be alignable. Sequence signature-based methods for genome comparison based on the frequencies of word patterns in genomes and metagenomes can potentially be useful for the analysis of short reads data from NGS. Here we review the recent development of alignment-free genome and metagenome comparison based on the frequencies of word patterns with emphasis on the dissimilarity measures between sequences, the statistical power of these measures when two sequences are related and the applications of these measures to NGS data. PMID:24064230

  16. Distributed sequence alignment applications for the public computing architecture.

    PubMed

    Pellicer, S; Chen, G; Chan, K C C; Pan, Y

    2008-03-01

    The public computer architecture shows promise as a platform for solving fundamental problems in bioinformatics such as global gene sequence alignment and data mining with tools such as the basic local alignment search tool (BLAST). Our implementation of these two problems on the Berkeley open infrastructure for network computing (BOINC) platform demonstrates a runtime reduction factor of 1.15 for sequence alignment and 16.76 for BLAST. While the runtime reduction factor of the global gene sequence alignment application is modest, this value is based on a theoretical sequential runtime extrapolated from the calculation of a smaller problem. Because this runtime is extrapolated from running the calculation in memory, the theoretical sequential runtime would require 37.3 GB of memory on a single system. With this in mind, the BOINC implementation not only offers the reduced runtime, but also the aggregation of the available memory of all participant nodes. If an actual sequential run of the problem were compared, a more drastic reduction in the runtime would be seen due to an additional secondary storage I/O overhead for a practical system. Despite the limitations of the public computer architecture, most notably in communication overhead, it represents a practical platform for grid- and cluster-scale bioinformatics computations today and shows great potential for future implementations.

  17. The impact of single substitutions on multiple sequence alignments.

    PubMed

    Klaere, Steffen; Gesell, Tanja; von Haeseler, Arndt

    2008-12-27

    We introduce another view of sequence evolution. Contrary to other approaches, we model the substitution process in two steps. First we assume (arbitrary) scaled branch lengths on a given phylogenetic tree. Second we allocate a Poisson distributed number of substitutions on the branches. The probability to place a mutation on a branch is proportional to its relative branch length. More importantly, the action of a single mutation on an alignment column is described by a doubly stochastic matrix, the so-called one-step mutation matrix. This matrix leads to analytical formulae for the posterior probability distribution of the number of substitutions for an alignment column.

  18. A guide to parallel execution of sequence alignment

    NASA Astrophysics Data System (ADS)

    Lauredo, Alexandre M.; Sena, Alexandre C.; de Castro, Maria Clicia S.; Leandro, Marzulo, A. J.

    2016-12-01

    Finding the longest common subsequence (LCS) is an important part of DNA sequence alignment. Through dynamic programming it is possible to find the exact solution to the LCS, with space and time complexity of O(m × n), being m e n the sequence sizes. Parallel algorithms are essential, since large sequences require too much time and memory to be processed sequentially. Thus, the aim of this work is to implement and evaluate different parallel solutions for distributed memory machines, so that the amount of memory is equally divided among the various processing nodes.

  19. Reconfigurable systems for sequence alignment and for general dynamic programming.

    PubMed

    Jacobi, Ricardo P; Ayala-Rincón, Mauricio; Carvalho, Luis G A; Llanos, Carlos H; Hartenstein, Reiner W

    2005-09-30

    Reconfigurable systolic arrays can be adapted to efficiently resolve a wide spectrum of computational problems; parallelism is naturally explored in systolic arrays and reconfigurability allows for redefinition of the interconnections and operations even during run time (dynamically). We present a reconfigurable systolic architecture that can be applied for the efficient treatment of several dynamic programming methods for resolving well-known problems, such as global and local sequence alignment, approximate string matching and longest common subsequence. The dynamicity of the reconfigurability was found to be useful for practical applications in the construction of sequence alignments. A VHDL (VHSIC hardware description language) version of this new architecture was implemented on an APEX FPGA (Field programmable gate array). It would be several magnitudes faster than the software algorithm alternatives.

  20. Optimizing Data Intensive GPGPU Computations for DNA Sequence Alignment

    PubMed Central

    Trapnell, Cole; Schatz, Michael C.

    2009-01-01

    MUMmerGPU uses highly-parallel commodity graphics processing units (GPU) to accelerate the data-intensive computation of aligning next generation DNA sequence data to a reference sequence for use in diverse applications such as disease genotyping and personal genomics. MUMmerGPU 2.0 features a new stackless depth-first-search print kernel and is 13× faster than the serial CPU version of the alignment code and nearly 4× faster in total computation time than MUMmerGPU 1.0. We exhaustively examined 128 GPU data layout configurations to improve register footprint and running time and conclude higher occupancy has greater impact than reduced latency. MUMmerGPU is available open-source at http://mummergpu.sourceforge.net. PMID:20161021

  1. Incremental Window-based Protein Sequence Alignment Algorithms

    DTIC Science & Technology

    2006-03-23

    Huzefa Rangwala and George Karypis March 23, 2006 Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection of... Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 Incremental Window-based Protein Sequence Alignment Algorithms Huzefa Rangwala and George Karypis...Then it per- forms a series of iterations in which it performs the following three steps: First, it extracts from ’ the residue-pair with the highest

  2. On the Impact of Widening Vector Registers on Sequence Alignment

    SciTech Connect

    Daily, Jeffrey A.; Kalyanaraman, Anantharaman; Krishnamoorthy, Sriram; Ren, Bin

    2016-09-22

    Vector extensions, such as SSE, have been part of the x86 since the 1990s, with applications in graphics, signal processing, and scientific applications. Although many algorithms and applications can naturally benefit from automatic vectorization techniques, there are still many that are difficult to vectorize due to their dependence on irregular data structures, dense branch operations, or data dependencies. Sequence alignment, one of the most widely used operations in bioinformatics workflows, has a computational footprint that features complex data dependencies. In this paper, we demonstrate that the trend of widening vector registers adversely affects the state-of-the-art sequence alignment algorithm based on striped data layouts. We present a practically efficient SIMD implementation of a parallel scan based sequence alignment algorithm that can better exploit wider SIMD units. We conduct comprehensive workload and use case analyses to characterize the relative behavior of the striped and scan approaches and identify the best choice of algorithm based on input length and SIMD width.

  3. Sampling rare events: statistics of local sequence alignments.

    PubMed

    Hartmann, Alexander K

    2002-05-01

    A method to calculate probability distributions in regions where the events are very unlikely (e.g., p approximately 10(-40)) is presented. The basic idea is to map the underlying model on a physical system. The system is simulated at a low temperature, such that preferably configurations with originally low probabilities are generated. Since the distribution of such a physical system is known, the original unbiased distribution can be obtained. As an application, local alignment of protein sequences is studied. The deviation of the distribution p(S) of optimum scores from the extreme-value distribution is quantified. This deviation decreases with growing sequence length.

  4. Exploring Dance Movement Data Using Sequence Alignment Methods

    PubMed Central

    Chavoshi, Seyed Hossein; De Baets, Bernard; Neutens, Tijs; De Tré, Guy; Van de Weghe, Nico

    2015-01-01

    Despite the abundance of research on knowledge discovery from moving object databases, only a limited number of studies have examined the interaction between moving point objects in space over time. This paper describes a novel approach for measuring similarity in the interaction between moving objects. The proposed approach consists of three steps. First, we transform movement data into sequences of successive qualitative relations based on the Qualitative Trajectory Calculus (QTC). Second, sequence alignment methods are applied to measure the similarity between movement sequences. Finally, movement sequences are grouped based on similarity by means of an agglomerative hierarchical clustering method. The applicability of this approach is tested using movement data from samba and tango dancers. PMID:26181435

  5. MACSIMS : multiple alignment of complete sequences information management system

    PubMed Central

    Thompson, Julie D; Muller, Arnaud; Waterhouse, Andrew; Procter, Jim; Barton, Geoffrey J; Plewniak, Frédéric; Poch, Olivier

    2006-01-01

    Background In the post-genomic era, systems-level studies are being performed that seek to explain complex biological systems by integrating diverse resources from fields such as genomics, proteomics or transcriptomics. New information management systems are now needed for the collection, validation and analysis of the vast amount of heterogeneous data available. Multiple alignments of complete sequences provide an ideal environment for the integration of this information in the context of the protein family. Results MACSIMS is a multiple alignment-based information management program that combines the advantages of both knowledge-based and ab initio sequence analysis methods. Structural and functional information is retrieved automatically from the public databases. In the multiple alignment, homologous regions are identified and the retrieved data is evaluated and propagated from known to unknown sequences with these reliable regions. In a large-scale evaluation, the specificity of the propagated sequence features is estimated to be >99%, i.e. very few false positive predictions are made. MACSIMS is then used to characterise mutations in a test set of 100 proteins that are known to be involved in human genetic diseases. The number of sequence features associated with these proteins was increased by 60%, compared to the features available in the public databases. An XML format output file allows automatic parsing of the MACSIM results, while a graphical display using the JalView program allows manual analysis. Conclusion MACSIMS is a new information management system that incorporates detailed analyses of protein families at the structural, functional and evolutionary levels. MACSIMS thus provides a unique environment that facilitates knowledge extraction and the presentation of the most pertinent information to the biologist. A web server and the source code are available at . PMID:16792820

  6. Alignments of DNA and protein sequences containing frameshift errors.

    PubMed

    Guan, X; Uberbacher, E C

    1996-02-01

    Molecular sequences, like all experimental data, are subject to error. Many current DNA sequencing protocols have very significant error rates and often generate artefactual insertions and deletions of bases (indels) which corrupt the translation of sequences and compromise the detection of protein homologies. The impact of these errors on the utility of molecular sequence data is dependent on the analytic technique used to interpret the data. In the presence of frameshift errors, standard algorithms using six-frame translation can miss important homologies because only subfragments of the correct translation are available in any given frame. We present a new algorithm which can detect and correct frameshift errors in DNA sequences during comparison of translated sequences with protein sequences in the databases. This algorithm can recognize homologous proteins sharing 30% identity even in the presence of a 7% frameshift error rate. Our algorithm uses dynamic programming, producing a guaranteed optimal alignment in the presence of frameshifts, and has a sensitivity equivalent to Smith-Waterman. The computational efficiency of the algorithm is O(nm) where n and m are the sizes of two sequences being compared. The algorithm does not rely on prior knowledge or heuristic rules and performs significantly better than any previously reported method.

  7. Extracting protein alignment models from the sequence database.

    PubMed Central

    Neuwald, A F; Liu, J S; Lipman, D J; Lawrence, C E

    1997-01-01

    Biologists often gain structural and functional insights into a protein sequence by constructing a multiple alignment model of the family. Here a program called Probe fully automates this process of model construction starting from a single sequence. Central to this program is a powerful new method to locate and align only those, often subtly, conserved patterns essential to the family as a whole. When applied to randomly chosen proteins, Probe found on average about four times as many relationships as a pairwise search and yielded many new discoveries. These include: an obscure subfamily of globins in the roundworm Caenorhabditis elegans ; two new superfamilies of metallohydrolases; a lipoyl/biotin swinging arm domain in bacterial membrane fusion proteins; and a DH domain in the yeast Bud3 and Fus2 proteins. By identifying distant relationships and merging families into superfamilies in this way, this analysis further confirms the notion that proteins evolved from relatively few ancient sequences. Moreover, this method automatically generates models of these ancient conserved regions for rapid and sensitive screening of sequences. PMID:9108146

  8. Genetic algorithms with permutation coding for multiple sequence alignment.

    PubMed

    Ben Othman, Mohamed Tahar; Abdel-Azim, Gamil

    2013-08-01

    Multiple sequence alignment (MSA) is one of the topics of bio informatics that has seriously been researched. It is known as NP-complete problem. It is also considered as one of the most important and daunting tasks in computational biology. Concerning this a wide number of heuristic algorithms have been proposed to find optimal alignment. Among these heuristic algorithms are genetic algorithms (GA). The GA has mainly two major weaknesses: it is time consuming and can cause local minima. One of the significant aspects in the GA process in MSA is to maximize the similarities between sequences by adding and shuffling the gaps of Solution Coding (SC). Several ways for SC have been introduced. One of them is the Permutation Coding (PC). We propose a hybrid algorithm based on genetic algorithms (GAs) with a PC and 2-opt algorithm. The PC helps to code the MSA solution which maximizes the gain of resources, reliability and diversity of GA. The use of the PC opens the area by applying all functions over permutations for MSA. Thus, we suggest an algorithm to calculate the scoring function for multiple alignments based on PC, which is used as fitness function. The time complexity of the GA is reduced by using this algorithm. Our GA is implemented with different selections strategies and different crossovers. The probability of crossover and mutation is set as one strategy. Relevant patents have been probed in the topic.

  9. Genome-wide synteny through highly sensitive sequence alignment: Satsuma

    PubMed Central

    Grabherr, Manfred G.; Russell, Pamela; Meyer, Miriah; Mauceli, Evan; Alföldi, Jessica; Di Palma, Federica; Lindblad-Toh, Kerstin

    2010-01-01

    Motivation: Comparative genomics heavily relies on alignments of large and often complex DNA sequences. From an engineering perspective, the problem here is to provide maximum sensitivity (to find all there is to find), specificity (to only find real homology) and speed (to accommodate the billions of base pairs of vertebrate genomes). Results: Satsuma addresses all three issues through novel strategies: (i) cross-correlation, implemented via fast Fourier transform; (ii) a match scoring scheme that eliminates almost all false hits; and (iii) an asynchronous ‘battleship’-like search that allows for aligning two entire fish genomes (470 and 217 Mb) in 120 CPU hours using 15 processors on a single machine. Availability: Satsuma is part of the Spines software package, implemented in C++ on Linux. The latest version of Spines can be freely downloaded under the LGPL license from http://www.broadinstitute.org/science/programs/genome-biology/spines/ Contact: grabherr@broadinstitute.org PMID:20208069

  10. Training alignment parameters for arbitrary sequencers with LAST-TRAIN

    PubMed Central

    Ono, Yukiteru; Asai, Kiyoshi

    2017-01-01

    Abstract Summary: LAST-TRAIN improves sequence alignment accuracy by inferring substitution and gap scores that fit the frequencies of substitutions, insertions, and deletions in a given dataset. We have applied it to mapping DNA reads from IonTorrent and PacBio RS, and we show that it reduces reference bias for Oxford Nanopore reads. Availability and Implementation: the source code is freely available at http://last.cbrc.jp/ Contact: mhamada@waseda.jp or mcfrith@edu.k.u-tokyo.ac.jp Supplementary information: Supplementary data are available at Bioinformatics online. PMID:28039163

  11. Implied alignment: a synapomorphy-based multiple-sequence alignment method and its use in cladogram search

    NASA Technical Reports Server (NTRS)

    Wheeler, Ward C.

    2003-01-01

    A method to align sequence data based on parsimonious synapomorphy schemes generated by direct optimization (DO; earlier termed optimization alignment) is proposed. DO directly diagnoses sequence data on cladograms without an intervening multiple-alignment step, thereby creating topology-specific, dynamic homology statements. Hence, no multiple-alignment is required to generate cladograms. Unlike general and globally optimal multiple-alignment procedures, the method described here, implied alignment (IA), takes these dynamic homologies and traces them back through a single cladogram, linking the unaligned sequence positions in the terminal taxa via DO transformation series. These "lines of correspondence" link ancestor-descendent states and, when displayed as linearly arrayed columns without hypothetical ancestors, are largely indistinguishable from standard multiple alignment. Since this method is based on synapomorphy, the treatment of certain classes of insertion-deletion (indel) events may be different from that of other alignment procedures. As with all alignment methods, results are dependent on parameter assumptions such as indel cost and transversion:transition ratios. Such an IA could be used as a basis for phylogenetic search, but this would be questionable since the homologies derived from the implied alignment depend on its natal cladogram and any variance, between DO and IA + Search, due to heuristic approach. The utility of this procedure in heuristic cladogram searches using DO and the improvement of heuristic cladogram cost calculations are discussed. c2003 The Willi Hennig Society. Published by Elsevier Science (USA). All rights reserved.

  12. Implied alignment: a synapomorphy-based multiple-sequence alignment method and its use in cladogram search.

    PubMed

    Wheeler, Ward C

    2003-06-01

    A method to align sequence data based on parsimonious synapomorphy schemes generated by direct optimization (DO; earlier termed optimization alignment) is proposed. DO directly diagnoses sequence data on cladograms without an intervening multiple-alignment step, thereby creating topology-specific, dynamic homology statements. Hence, no multiple-alignment is required to generate cladograms. Unlike general and globally optimal multiple-alignment procedures, the method described here, implied alignment (IA), takes these dynamic homologies and traces them back through a single cladogram, linking the unaligned sequence positions in the terminal taxa via DO transformation series. These "lines of correspondence" link ancestor-descendent states and, when displayed as linearly arrayed columns without hypothetical ancestors, are largely indistinguishable from standard multiple alignment. Since this method is based on synapomorphy, the treatment of certain classes of insertion-deletion (indel) events may be different from that of other alignment procedures. As with all alignment methods, results are dependent on parameter assumptions such as indel cost and transversion:transition ratios. Such an IA could be used as a basis for phylogenetic search, but this would be questionable since the homologies derived from the implied alignment depend on its natal cladogram and any variance, between DO and IA + Search, due to heuristic approach. The utility of this procedure in heuristic cladogram searches using DO and the improvement of heuristic cladogram cost calculations are discussed.

  13. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega

    PubMed Central

    Sievers, Fabian; Wilm, Andreas; Dineen, David; Gibson, Toby J; Karplus, Kevin; Li, Weizhong; Lopez, Rodrigo; McWilliam, Hamish; Remmert, Michael; Söding, Johannes; Thompson, Julie D; Higgins, Desmond G

    2011-01-01

    Multiple sequence alignments are fundamental to many sequence analysis methods. Most alignments are computed using the progressive alignment heuristic. These methods are starting to become a bottleneck in some analysis pipelines when faced with data sets of the size of many thousands of sequences. Some methods allow computation of larger data sets while sacrificing quality, and others produce high-quality alignments, but scale badly with the number of sequences. In this paper, we describe a new program called Clustal Omega, which can align virtually any number of protein sequences quickly and that delivers accurate alignments. The accuracy of the package on smaller test cases is similar to that of the high-quality aligners. On larger data sets, Clustal Omega outperforms other packages in terms of execution time and quality. Clustal Omega also has powerful features for adding sequences to and exploiting information in existing alignments, making use of the vast amount of precomputed information in public databases like Pfam. PMID:21988835

  14. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega.

    PubMed

    Sievers, Fabian; Wilm, Andreas; Dineen, David; Gibson, Toby J; Karplus, Kevin; Li, Weizhong; Lopez, Rodrigo; McWilliam, Hamish; Remmert, Michael; Söding, Johannes; Thompson, Julie D; Higgins, Desmond G

    2011-10-11

    Multiple sequence alignments are fundamental to many sequence analysis methods. Most alignments are computed using the progressive alignment heuristic. These methods are starting to become a bottleneck in some analysis pipelines when faced with data sets of the size of many thousands of sequences. Some methods allow computation of larger data sets while sacrificing quality, and others produce high-quality alignments, but scale badly with the number of sequences. In this paper, we describe a new program called Clustal Omega, which can align virtually any number of protein sequences quickly and that delivers accurate alignments. The accuracy of the package on smaller test cases is similar to that of the high-quality aligners. On larger data sets, Clustal Omega outperforms other packages in terms of execution time and quality. Clustal Omega also has powerful features for adding sequences to and exploiting information in existing alignments, making use of the vast amount of precomputed information in public databases like Pfam.

  15. FASMA: a service to format and analyze sequences in multiple alignments.

    PubMed

    Costantini, Susan; Colonna, Giovanni; Facchiano, Angelo M

    2007-12-01

    Multiple sequence alignments are successfully applied in many studies for under- standing the structural and functional relations among single nucleic acids and protein sequences as well as whole families. Because of the rapid growth of sequence databases, multiple sequence alignments can often be very large and difficult to visualize and analyze. We offer a new service aimed to visualize and analyze the multiple alignments obtained with different external algorithms, with new features useful for the comparison of the aligned sequences as well as for the creation of a final image of the alignment. The service is named FASMA and is available at http://bioinformatica.isa.cnr.it/FASMA/.

  16. Does protein relatedness require sequence matching? Alignment via networks in sequence space.

    PubMed

    Frenkel, Zakharia M

    2008-10-01

    To establish possible function of a newly discovered protein, alignment of its sequence with other known sequences is required. When the similarity is marginal, the function remains uncertain. A principally new approach is suggested: to use networks in the protein sequence space. The functionality of the protein is firmly established via networks forming chains of consecutive pair-wise matching fragments. The distant relatives are, thus, considered as relatives, though in some cases, there is even no sequence match between the ends of the chain, while the entire chain belongs to the same functional and structural network.

  17. MSA-PAD: DNA multiple sequence alignment framework based on PFAM accessed domain information.

    PubMed

    Balech, Bachir; Vicario, Saverio; Donvito, Giacinto; Monaco, Alfonso; Notarangelo, Pasquale; Pesole, Graziano

    2015-08-01

    Here we present the MSA-PAD application, a DNA multiple sequence alignment framework that uses PFAM protein domain information to align DNA sequences encoding either single or multiple protein domains. MSA-PAD has two alignment options: gene and genome mode.

  18. AlignerBoost: A Generalized Software Toolkit for Boosting Next-Gen Sequencing Mapping Accuracy Using a Bayesian-Based Mapping Quality Framework

    PubMed Central

    Zheng, Qi; Grice, Elizabeth A.

    2016-01-01

    Accurate mapping of next-generation sequencing (NGS) reads to reference genomes is crucial for almost all NGS applications and downstream analyses. Various repetitive elements in human and other higher eukaryotic genomes contribute in large part to ambiguously (non-uniquely) mapped reads. Most available NGS aligners attempt to address this by either removing all non-uniquely mapping reads, or reporting one random or "best" hit based on simple heuristics. Accurate estimation of the mapping quality of NGS reads is therefore critical albeit completely lacking at present. Here we developed a generalized software toolkit "AlignerBoost", which utilizes a Bayesian-based framework to accurately estimate mapping quality of ambiguously mapped NGS reads. We tested AlignerBoost with both simulated and real DNA-seq and RNA-seq datasets at various thresholds. In most cases, but especially for reads falling within repetitive regions, AlignerBoost dramatically increases the mapping precision of modern NGS aligners without significantly compromising the sensitivity even without mapping quality filters. When using higher mapping quality cutoffs, AlignerBoost achieves a much lower false mapping rate while exhibiting comparable or higher sensitivity compared to the aligner default modes, therefore significantly boosting the detection power of NGS aligners even using extreme thresholds. AlignerBoost is also SNP-aware, and higher quality alignments can be achieved if provided with known SNPs. AlignerBoost’s algorithm is computationally efficient, and can process one million alignments within 30 seconds on a typical desktop computer. AlignerBoost is implemented as a uniform Java application and is freely available at https://github.com/Grice-Lab/AlignerBoost. PMID:27706155

  19. SeqAPASS: Sequence alignment to predict across-species ...

    EPA Pesticide Factsheets

    Efforts to shift the toxicity testing paradigm from whole organism studies to those focused on the initiation of toxicity and relevant pathways have led to increased utilization of in vitro and in silico methods. Hence the emergence of high through-put screening (HTS) programs, such as U.S. EPA ToxCast, and application of the adverse outcome pathway (AOP) framework for identifying and defining biological key events triggered upon perturbation of molecular initiating events and leading to adverse outcomes occuring at a level of organization relevant for risk assessment [1]. With these recent initiatives to harness the power of “the pathway” in describing and evaluating toxicity comes the need to extrapolate data beyond the model species. Sequence alignment to predict across-species susceptibilty (SeqAPASS) is a web-based tool that allows the user to begin to understand how broadly HTS data or AOP constructs may plausibly be extrapolated across species, while describing the relative intrinsic susceptibiltiy of different taxa to chemicals with known modes of action (e.g., pharmaceuticals and pesticides). The tool rapidly and strategically assesses available molecular target information to describe protein sequence similarity at the primary amino acid sequence, conserved domain, and individual amino acid residue levels. This in silico approach to species extrapolation was designed to automate and streamline the relatively complex and time-consuming process of co

  20. Kraken: ultrafast metagenomic sequence classification using exact alignments

    PubMed Central

    2014-01-01

    Kraken is an ultrafast and highly accurate program for assigning taxonomic labels to metagenomic DNA sequences. Previous programs designed for this task have been relatively slow and computationally expensive, forcing researchers to use faster abundance estimation programs, which only classify small subsets of metagenomic data. Using exact alignment of k-mers, Kraken achieves classification accuracy comparable to the fastest BLAST program. In its fastest mode, Kraken classifies 100 base pair reads at a rate of over 4.1 million reads per minute, 909 times faster than Megablast and 11 times faster than the abundance estimation program MetaPhlAn. Kraken is available at http://ccb.jhu.edu/software/kraken/. PMID:24580807

  1. Analysing the performance of personal computers based on Intel microprocessors for sequence aligning bioinformatics applications.

    PubMed

    Nair, Pradeep S; John, Eugene B

    2007-01-01

    Aligning specific sequences against a very large number of other sequences is a central aspect of bioinformatics. With the widespread availability of personal computers in biology laboratories, sequence alignment is now often performed locally. This makes it necessary to analyse the performance of personal computers for sequence aligning bioinformatics benchmarks. In this paper, we analyse the performance of a personal computer for the popular BLAST and FASTA sequence alignment suites. Results indicate that these benchmarks have a large number of recurring operations and use memory operations extensively. It seems that the performance can be improved with a bigger L1-cache.

  2. Alignment-free sequence comparison based on next-generation sequencing reads.

    PubMed

    Song, Kai; Ren, Jie; Zhai, Zhiyuan; Liu, Xuemei; Deng, Minghua; Sun, Fengzhu

    2013-02-01

    Next-generation sequencing (NGS) technologies have generated enormous amounts of shotgun read data, and assembly of the reads can be challenging, especially for organisms without template sequences. We study the power of genome comparison based on shotgun read data without assembly using three alignment-free sequence comparison statistics, D(2), D(*)(2) and D(s)(2), both theoretically and by simulations. Theoretical formulas for the power of detecting the relationship between two sequences related through a common motif model are derived. It is shown that both D(*)(2) and D(s)(2), outperform D(2) for detecting the relationship between two sequences based on NGS data. We then study the effects of length of the tuple, read length, coverage, and sequencing error on the power of D(*)(2) and D(s)(2). Finally, variations of these statistics, d(2), d(*)(2) and d(s)(2), respectively, are used to first cluster five mammalian species with known phylogenetic relationships, and then cluster 13 tree species whose complete genome sequences are not available using NGS shotgun reads. The clustering results using d(s)(2) are consistent with biological knowledge for the 5 mammalian and 13 tree species, respectively. Thus, the statistic d(s)(2) provides a powerful alignment-free comparison tool to study the relationships among different organisms based on NGS read data without assembly.

  3. Fast single-pass alignment and variant calling using sequencing data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sequencing research requires efficient computation. Few programs use already known information about DNA variants when aligning sequence data to the reference map. New program findmap.f90 reads the previous variant list before aligning sequence, calling variant alleles, and summing the allele counts...

  4. Multi-Harmony: detecting functional specificity from sequence alignment.

    PubMed

    Brandt, Bernd W; Feenstra, K Anton; Heringa, Jaap

    2010-07-01

    Many protein families contain sub-families with functional specialization, such as binding different ligands or being involved in different protein-protein interactions. A small number of amino acids generally determine functional specificity. The identification of these residues can aid the understanding of protein function and help finding targets for experimental analysis. Here, we present multi-Harmony, an interactive web sever for detecting sub-type-specific sites in proteins starting from a multiple sequence alignment. Combining our Sequence Harmony (SH) and multi-Relief (mR) methods in one web server allows simultaneous analysis and comparison of specificity residues; furthermore, both methods have been significantly improved and extended. SH has been extended to cope with more than two sub-groups. mR has been changed from a sampling implementation to a deterministic one, making it more consistent and user friendly. For both methods Z-scores are reported. The multi-Harmony web server produces a dynamic output page, which includes interactive connections to the Jalview and Jmol applets, thereby allowing interactive analysis of the results. Multi-Harmony is available at http://www.ibi.vu.nl/ programs/shmrwww.

  5. Constructing sequence alignments from a Markov decision model with estimated parameter values.

    PubMed

    Hunt, Fern Y; Kearsley, Anthony J; O'Gallagher, Agnes

    2004-01-01

    Current methods for aligning biological sequences are based on dynamic programming algorithms. If large numbers of sequences or a number of long sequences are to be aligned, the required computations are expensive in memory and central processing unit (CPU) time. In an attempt to bring the tools of large-scale linear programming (LP) methods to bear on this problem, we formulate the alignment process as a controlled Markov chain and construct a suggested alignment based on policies that minimise the expected total cost of the alignment. We discuss the LP associated with the total expected discounted cost and show the results of a solution of the problem based on a primal-dual interior point method. Model parameters, estimated from aligned sequences, along with cost function parameters are used to construct the objective and constraint conditions of the LP problem. This article concludes with a discussion of some alignments obtained from the LP solutions of problems with various cost function parameter values.

  6. A direct method for computing extreme value (Gumbel) parameters for gapped biological sequence alignments.

    PubMed

    Quinn, Terrance; Sinkala, Zachariah

    2014-01-01

    We develop a general method for computing extreme value distribution (Gumbel, 1958) parameters for gapped alignments. Our approach uses mixture distribution theory to obtain associated BLOSUM matrices for gapped alignments, which in turn are used for determining significance of gapped alignment scores for pairs of biological sequences. We compare our results with parameters already obtained in the literature.

  7. ProfileGrids as a new visual representation of large multiple sequence alignments: a case study of the RecA protein family

    PubMed Central

    Roca, Alberto I; Almada, Albert E; Abajian, Aaron C

    2008-01-01

    Background Multiple sequence alignments are a fundamental tool for the comparative analysis of proteins and nucleic acids. However, large data sets are no longer manageable for visualization and investigation using the traditional stacked sequence alignment representation. Results We introduce ProfileGrids that represent a multiple sequence alignment as a matrix color-coded according to the residue frequency occurring at each column position. JProfileGrid is a Java application for computing and analyzing ProfileGrids. A dynamic interaction with the alignment information is achieved by changing the ProfileGrid color scheme, by extracting sequence subsets at selected residues of interest, and by relating alignment information to residue physical properties. Conserved family motifs can be identified by the overlay of similarity plot calculations on a ProfileGrid. Figures suitable for publication can be generated from the saved spreadsheet output of the colored matrices as well as by the export of conservation information for use in the PyMOL molecular visualization program. We demonstrate the utility of ProfileGrids on 300 bacterial homologs of the RecA family – a universally conserved protein involved in DNA recombination and repair. Careful attention was paid to curating the collected RecA sequences since ProfileGrids allow the easy identification of rare residues in an alignment. We relate the RecA alignment sequence conservation to the following three topics: the recently identified DNA binding residues, the unexplored MAW motif, and a unique Bacillus subtilis RecA homolog sequence feature. Conclusion ProfileGrids allow large protein families to be visualized more effectively than the traditional stacked sequence alignment form. This new graphical representation facilitates the determination of the sequence conservation at residue positions of interest, enables the examination of structural patterns by using residue physical properties, and permits the display

  8. TranslatorX: multiple alignment of nucleotide sequences guided by amino acid translations.

    PubMed

    Abascal, Federico; Zardoya, Rafael; Telford, Maximilian J

    2010-07-01

    We present TranslatorX, a web server designed to align protein-coding nucleotide sequences based on their corresponding amino acid translations. Many comparisons between biological sequences (nucleic acids and proteins) involve the construction of multiple alignments. Alignments represent a statement regarding the homology between individual nucleotides or amino acids within homologous genes. As protein-coding DNA sequences evolve as triplets of nucleotides (codons) and it is known that sequence similarity degrades more rapidly at the DNA than at the amino acid level, alignments are generally more accurate when based on amino acids than on their corresponding nucleotides. TranslatorX novelties include: (i) use of all documented genetic codes and the possibility of assigning different genetic codes for each sequence; (ii) a battery of different multiple alignment programs; (iii) translation of ambiguous codons when possible; (iv) an innovative criterion to clean nucleotide alignments with GBlocks based on protein information; and (v) a rich output, including Jalview-powered graphical visualization of the alignments, codon-based alignments coloured according to the corresponding amino acids, measures of compositional bias and first, second and third codon position specific alignments. The TranslatorX server is freely available at http://translatorx.co.uk.

  9. HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment.

    PubMed

    Remmert, Michael; Biegert, Andreas; Hauser, Andreas; Söding, Johannes

    2011-12-25

    Sequence-based protein function and structure prediction depends crucially on sequence-search sensitivity and accuracy of the resulting sequence alignments. We present an open-source, general-purpose tool that represents both query and database sequences by profile hidden Markov models (HMMs): 'HMM-HMM-based lightning-fast iterative sequence search' (HHblits; http://toolkit.genzentrum.lmu.de/hhblits/). Compared to the sequence-search tool PSI-BLAST, HHblits is faster owing to its discretized-profile prefilter, has 50-100% higher sensitivity and generates more accurate alignments.

  10. AlexSys: a knowledge-based expert system for multiple sequence alignment construction and analysis.

    PubMed

    Aniba, Mohamed Radhouene; Poch, Olivier; Marchler-Bauer, Aron; Thompson, Julie Dawn

    2010-10-01

    Multiple sequence alignment (MSA) is a cornerstone of modern molecular biology and represents a unique means of investigating the patterns of conservation and diversity in complex biological systems. Many different algorithms have been developed to construct MSAs, but previous studies have shown that no single aligner consistently outperforms the rest. This has led to the development of a number of 'meta-methods' that systematically run several aligners and merge the output into one single solution. Although these methods generally produce more accurate alignments, they are inefficient because all the aligners need to be run first and the choice of the best solution is made a posteriori. Here, we describe the development of a new expert system, AlexSys, for the multiple alignment of protein sequences. AlexSys incorporates an intelligent inference engine to automatically select an appropriate aligner a priori, depending only on the nature of the input sequences. The inference engine was trained on a large set of reference multiple alignments, using a novel machine learning approach. Applying AlexSys to a test set of 178 alignments, we show that the expert system represents a good compromise between alignment quality and running time, making it suitable for high throughput projects. AlexSys is freely available from http://alnitak.u-strasbg.fr/∼aniba/alexsys.

  11. Parasail: SIMD C library for global, semi-global, and local pairwise sequence alignments

    SciTech Connect

    Daily, Jeffrey A.

    2016-02-10

    Sequence alignment algorithms are a key component of many bioinformatics applications. Though various fast Smith-Waterman local sequence alignment implementations have been developed for x86 CPUs, most are embedded into larger database search tools. In addition, fast implementations of Needleman-Wunsch global sequence alignment and its semi-global variants are not as widespread. This article presents the first software library for local, global, and semi-global pairwise intra-sequence alignments and improves the performance of previous intra-sequence implementations. As a result, a faster intra-sequence pairwise alignment implementation is described and benchmarked. Using a 375 residue query sequence a speed of 136 billion cell updates per second (GCUPS) was achieved on a dual Intel Xeon E5-2670 12-core processor system, the highest reported for an implementation based on Farrar’s ’striped’ approach. When using only a single thread, parasail was 1.7 times faster than Rognes’s SWIPE. For many score matrices, parasail is faster than BLAST. The software library is designed for 64 bit Linux, OS X, or Windows on processors with SSE2, SSE41, or AVX2. Source code is available from https://github.com/jeffdaily/parasail under the Battelle BSD-style license. In conclusion, applications that require optimal alignment scores could benefit from the improved performance. For the first time, SIMD global, semi-global, and local alignments are available in a stand-alone C library.

  12. BarraCUDA - a fast short read sequence aligner using graphics processing units

    PubMed Central

    2012-01-01

    Background With the maturation of next-generation DNA sequencing (NGS) technologies, the throughput of DNA sequencing reads has soared to over 600 gigabases from a single instrument run. General purpose computing on graphics processing units (GPGPU), extracts the computing power from hundreds of parallel stream processors within graphics processing cores and provides a cost-effective and energy efficient alternative to traditional high-performance computing (HPC) clusters. In this article, we describe the implementation of BarraCUDA, a GPGPU sequence alignment software that is based on BWA, to accelerate the alignment of sequencing reads generated by these instruments to a reference DNA sequence. Findings Using the NVIDIA Compute Unified Device Architecture (CUDA) software development environment, we ported the most computational-intensive alignment component of BWA to GPU to take advantage of the massive parallelism. As a result, BarraCUDA offers a magnitude of performance boost in alignment throughput when compared to a CPU core while delivering the same level of alignment fidelity. The software is also capable of supporting multiple CUDA devices in parallel to further accelerate the alignment throughput. Conclusions BarraCUDA is designed to take advantage of the parallelism of GPU to accelerate the alignment of millions of sequencing reads generated by NGS instruments. By doing this, we could, at least in part streamline the current bioinformatics pipeline such that the wider scientific community could benefit from the sequencing technology. BarraCUDA is currently available from http://seqbarracuda.sf.net PMID:22244497

  13. Structure-based evaluation of sequence comparison and fold recognition alignment accuracy.

    PubMed

    Domingues, F S; Lackner, P; Andreeva, A; Sippl, M J

    2000-04-07

    The biological role, biochemical function, and structure of uncharacterized protein sequences is often inferred from their similarity to known proteins. A constant goal is to increase the reliability, sensitivity, and accuracy of alignment techniques to enable the detection of increasingly distant relationships. Development, tuning, and testing of these methods benefit from appropriate benchmarks for the assessment of alignment accuracy.Here, we describe a benchmark protocol to estimate sequence-to-sequence and sequence-to-structure alignment accuracy. The protocol consists of structurally related pairs of proteins and procedures to evaluate alignment accuracy over the whole set. The set of protein pairs covers all the currently known fold types. The benchmark is challenging in the sense that it consists of proteins lacking clear sequence similarity. Correct target alignments are derived from the three-dimensional structures of these pairs by rigid body superposition. An evaluation engine computes the accuracy of alignments obtained from a particular algorithm in terms of alignment shifts with respect to the structure derived alignments. Using this benchmark we estimate that the best results can be obtained from a combination of amino acid residue substitution matrices and knowledge-based potentials.

  14. BioJava: an open-source framework for bioinformatics in 2012

    PubMed Central

    Prlić, Andreas; Yates, Andrew; Bliven, Spencer E.; Rose, Peter W.; Jacobsen, Julius; Troshin, Peter V.; Chapman, Mark; Gao, Jianjiong; Koh, Chuan Hock; Foisy, Sylvain; Holland, Richard; Rimša, Gediminas; Heuer, Michael L.; Brandstätter–Müller, H.; Bourne, Philip E.; Willis, Scooter

    2012-01-01

    Motivation: BioJava is an open-source project for processing of biological data in the Java programming language. We have recently released a new version (3.0.5), which is a major update to the code base that greatly extends its functionality. Results: BioJava now consists of several independent modules that provide state-of-the-art tools for protein structure comparison, pairwise and multiple sequence alignments, working with DNA and protein sequences, analysis of amino acid properties, detection of protein modifications and prediction of disordered regions in proteins as well as parsers for common file formats using a biologically meaningful data model. Availability: BioJava is an open-source project distributed under the Lesser GPL (LGPL). BioJava can be downloaded from the BioJava website (http://www.biojava.org). BioJava requires Java 1.6 or higher. All inquiries should be directed to the BioJava mailing lists. Details are available at http://biojava.org/wiki/BioJava:MailingLists Contact: andreas.prlic@gmail.com PMID:22877863

  15. Flexible structural protein alignment by a sequence of local transformations

    PubMed Central

    Rocha, Jairo; Segura, Joan; Wilson, Richard C.; Dasgupta, Swagata

    2009-01-01

    Motivation: Throughout evolution, homologous proteins have common regions that stay semi-rigid relative to each other and other parts that vary in a more noticeable way. In order to compare the increasing number of structures in the PDB, flexible geometrical alignments are needed, that are reliable and easy to use. Results: We present a protein structure alignment method whose main feature is the ability to consider different rigid transformations at different sites, allowing for deformations beyond a global rigid transformation. The performance of the method is comparable with that of the best ones from 10 aligners tested, regarding both the quality of the alignments with respect to hand curated ones, and the classification ability. An analysis of some structure pairs from the literature that need to be matched in a flexible fashion are shown. The use of a series of local transformations can be exported to other classifiers, and a future golden protein similarity measure could benefit from it. Availability: A public server for the program is available at http://dmi.uib.es/ProtDeform/. Contact: jairo@uib.es Supplementary information: All data used, results and examples are available at http://dmi.uib.es/people/jairo/bio/ProtDeform.Supplementary data are available at Bioinformatics online. PMID:19417057

  16. Coval: Improving Alignment Quality and Variant Calling Accuracy for Next-Generation Sequencing Data

    PubMed Central

    Kosugi, Shunichi; Natsume, Satoshi; Yoshida, Kentaro; MacLean, Daniel; Cano, Liliana; Kamoun, Sophien; Terauchi, Ryohei

    2013-01-01

    Accurate identification of DNA polymorphisms using next-generation sequencing technology is challenging because of a high rate of sequencing error and incorrect mapping of reads to reference genomes. Currently available short read aligners and DNA variant callers suffer from these problems. We developed the Coval software to improve the quality of short read alignments. Coval is designed to minimize the incidence of spurious alignment of short reads, by filtering mismatched reads that remained in alignments after local realignment and error correction of mismatched reads. The error correction is executed based on the base quality and allele frequency at the non-reference positions for an individual or pooled sample. We demonstrated the utility of Coval by applying it to simulated genomes and experimentally obtained short-read data of rice, nematode, and mouse. Moreover, we found an unexpectedly large number of incorrectly mapped reads in ‘targeted’ alignments, where the whole genome sequencing reads had been aligned to a local genomic segment, and showed that Coval effectively eliminated such spurious alignments. We conclude that Coval significantly improves the quality of short-read sequence alignments, thereby increasing the calling accuracy of currently available tools for SNP and indel identification. Coval is available at http://sourceforge.net/projects/coval105/. PMID:24116042

  17. IP-MSA: Independent order of progressive multiple sequence alignments using different substitution matrices

    NASA Astrophysics Data System (ADS)

    Boraik, Aziz Nasser; Abdullah, Rosni; Venkat, Ibrahim

    2014-12-01

    Multiple sequence alignment (MSA) is an essential process for many biological sequence analyses. There are many algorithms developed to solve MSA, but an efficient computation method with very high accuracy is still a challenge. Progressive alignment is the most widely used approach to compute the final MSA. In this paper, we present a simple and effective progressive approach. Based on the independent order of sequences progressive alignment which proposed in QOMA, this method has been modified to align the whole sequences to maximize the score of MSA. Moreover, in order to further improve the accuracy of the method, we estimate the similarity of any pair of input sequences by using their percent identity, and based on this measure, we choose different substitution matrices during the progressive alignment. In addition, we have included horizontal information to alignment by adjusting the weights of amino acid residues based on their neighboring residues. The experimental results have been tested on popular benchmark of global protein sequences BAliBASE 3.0 and local protein sequences IRMBASE 2.0. The results of the proposed approach outperform the original method in QOMA in terms of sum-of-pair score and column score by up to 14% and 7% respectively.

  18. PhyPA: Phylogenetic method with pairwise sequence alignment outperforms likelihood methods in phylogenetics involving highly diverged sequences.

    PubMed

    Xia, Xuhua

    2016-09-01

    While pairwise sequence alignment (PSA) by dynamic programming is guaranteed to generate one of the optimal alignments, multiple sequence alignment (MSA) of highly divergent sequences often results in poorly aligned sequences, plaguing all subsequent phylogenetic analysis. One way to avoid this problem is to use only PSA to reconstruct phylogenetic trees, which can only be done with distance-based methods. I compared the accuracy of this new computational approach (named PhyPA for phylogenetics by pairwise alignment) against the maximum likelihood method using MSA (the ML+MSA approach), based on nucleotide, amino acid and codon sequences simulated with different topologies and tree lengths. I present a surprising discovery that the fast PhyPA method consistently outperforms the slow ML+MSA approach for highly diverged sequences even when all optimization options were turned on for the ML+MSA approach. Only when sequences are not highly diverged (i.e., when a reliable MSA can be obtained) does the ML+MSA approach outperforms PhyPA. The true topologies are always recovered by ML with the true alignment from the simulation. However, with MSA derived from alignment programs such as MAFFT or MUSCLE, the recovered topology consistently has higher likelihood than that for the true topology. Thus, the failure to recover the true topology by the ML+MSA is not because of insufficient search of tree space, but by the distortion of phylogenetic signal by MSA methods. I have implemented in DAMBE PhyPA and two approaches making use of multi-gene data sets to derive phylogenetic support for subtrees equivalent to resampling techniques such as bootstrapping and jackknifing.

  19. Studying long 16S rDNA sequences with ultrafast-metagenomic sequence classification using exact alignments (Kraken).

    PubMed

    Valenzuela-González, Fabiola; Martínez-Porchas, Marcel; Villalpando-Canchola, Enrique; Vargas-Albores, Francisco

    2016-03-01

    Ultrafast-metagenomic sequence classification using exact alignments (Kraken) is a novel approach to classify 16S rDNA sequences. The classifier is based on mapping short sequences to the lowest ancestor and performing alignments to form subtrees with specific weights in each taxon node. This study aimed to evaluate the classification performance of Kraken with long 16S rDNA random environmental sequences produced by cloning and then Sanger sequenced. A total of 480 clones were isolated and expanded, and 264 of these clones formed contigs (1352 ± 153 bp). The same sequences were analyzed using the Ribosomal Database Project (RDP) classifier. Deeper classification performance was achieved by Kraken than by the RDP: 73% of the contigs were classified up to the species or variety levels, whereas 67% of these contigs were classified no further than the genus level by the RDP. The results also demonstrated that unassembled sequences analyzed by Kraken provide similar or inclusively deeper information. Moreover, sequences that did not form contigs, which are usually discarded by other programs, provided meaningful information when analyzed by Kraken. Finally, it appears that the assembly step for Sanger sequences can be eliminated when using Kraken. Kraken cumulates the information of both sequence senses, providing additional elements for the classification. In conclusion, the results demonstrate that Kraken is an excellent choice for use in the taxonomic assignment of sequences obtained by Sanger sequencing or based on third generation sequencing, of which the main goal is to generate larger sequences.

  20. SparkBWA: Speeding Up the Alignment of High-Throughput DNA Sequencing Data

    PubMed Central

    2016-01-01

    Next-generation sequencing (NGS) technologies have led to a huge amount of genomic data that need to be analyzed and interpreted. This fact has a huge impact on the DNA sequence alignment process, which nowadays requires the mapping of billions of small DNA sequences onto a reference genome. In this way, sequence alignment remains the most time-consuming stage in the sequence analysis workflow. To deal with this issue, state of the art aligners take advantage of parallelization strategies. However, the existent solutions show limited scalability and have a complex implementation. In this work we introduce SparkBWA, a new tool that exploits the capabilities of a big data technology as Spark to boost the performance of one of the most widely adopted aligner, the Burrows-Wheeler Aligner (BWA). The design of SparkBWA uses two independent software layers in such a way that no modifications to the original BWA source code are required, which assures its compatibility with any BWA version (future or legacy). SparkBWA is evaluated in different scenarios showing noticeable results in terms of performance and scalability. A comparison to other parallel BWA-based aligners validates the benefits of our approach. Finally, an intuitive and flexible API is provided to NGS professionals in order to facilitate the acceptance and adoption of the new tool. The source code of the software described in this paper is publicly available at https://github.com/citiususc/SparkBWA, with a GPL3 license. PMID:27182962

  1. A distributed system for fast alignment of next-generation sequencing data.

    PubMed

    Srimani, Jaydeep K; Wu, Po-Yen; Phan, John H; Wang, May D

    2010-12-01

    We developed a scalable distributed computing system using the Berkeley Open Interface for Network Computing (BOINC) to align next-generation sequencing (NGS) data quickly and accurately. NGS technology is emerging as a promising platform for gene expression analysis due to its high sensitivity compared to traditional genomic microarray technology. However, despite the benefits, NGS datasets can be prohibitively large, requiring significant computing resources to obtain sequence alignment results. Moreover, as the data and alignment algorithms become more prevalent, it will become necessary to examine the effect of the multitude of alignment parameters on various NGS systems. We validate the distributed software system by (1) computing simple timing results to show the speed-up gained by using multiple computers, (2) optimizing alignment parameters using simulated NGS data, and (3) computing NGS expression levels for a single biological sample using optimal parameters and comparing these expression levels to that of a microarray sample. Results indicate that the distributed alignment system achieves approximately a linear speed-up and correctly distributes sequence data to and gathers alignment results from multiple compute clients.

  2. iPBA: a tool for protein structure comparison using sequence alignment strategies

    PubMed Central

    Gelly, Jean-Christophe; Joseph, Agnel Praveen; Srinivasan, Narayanaswamy; de Brevern, Alexandre G.

    2011-01-01

    With the immense growth in the number of available protein structures, fast and accurate structure comparison has been essential. We propose an efficient method for structure comparison, based on a structural alphabet. Protein Blocks (PBs) is a widely used structural alphabet with 16 pentapeptide conformations that can fairly approximate a complete protein chain. Thus a 3D structure can be translated into a 1D sequence of PBs. With a simple Needleman–Wunsch approach and a raw PB substitution matrix, PB-based structural alignments were better than many popular methods. iPBA web server presents an improved alignment approach using (i) specialized PB Substitution Matrices (SM) and (ii) anchor-based alignment methodology. With these developments, the quality of ∼88% of alignments was improved. iPBA alignments were also better than DALI, MUSTANG and GANGSTA+ in >80% of the cases. The webserver is designed to for both pairwise comparisons and database searches. Outputs are given as sequence alignment and superposed 3D structures displayed using PyMol and Jmol. A local alignment option for detecting subs-structural similarity is also embedded. As a fast and efficient ‘sequence-based’ structure comparison tool, we believe that it will be quite useful to the scientific community. iPBA can be accessed at http://www.dsimb.inserm.fr/dsimb_tools/ipba/. PMID:21586582

  3. Parasail: SIMD C library for global, semi-global, and local pairwise sequence alignments

    DOE PAGES

    Daily, Jeffrey A.

    2016-02-10

    Sequence alignment algorithms are a key component of many bioinformatics applications. Though various fast Smith-Waterman local sequence alignment implementations have been developed for x86 CPUs, most are embedded into larger database search tools. In addition, fast implementations of Needleman-Wunsch global sequence alignment and its semi-global variants are not as widespread. This article presents the first software library for local, global, and semi-global pairwise intra-sequence alignments and improves the performance of previous intra-sequence implementations. As a result, a faster intra-sequence pairwise alignment implementation is described and benchmarked. Using a 375 residue query sequence a speed of 136 billion cell updates permore » second (GCUPS) was achieved on a dual Intel Xeon E5-2670 12-core processor system, the highest reported for an implementation based on Farrar’s ’striped’ approach. When using only a single thread, parasail was 1.7 times faster than Rognes’s SWIPE. For many score matrices, parasail is faster than BLAST. The software library is designed for 64 bit Linux, OS X, or Windows on processors with SSE2, SSE41, or AVX2. Source code is available from https://github.com/jeffdaily/parasail under the Battelle BSD-style license. In conclusion, applications that require optimal alignment scores could benefit from the improved performance. For the first time, SIMD global, semi-global, and local alignments are available in a stand-alone C library.« less

  4. A Comprehensive Benchmark Study of Multiple Sequence Alignment Methods: Current Challenges and Future Perspectives

    PubMed Central

    Thompson, Julie D.; Linard, Benjamin; Lecompte, Odile; Poch, Olivier

    2011-01-01

    Multiple comparison or alignmentof protein sequences has become a fundamental tool in many different domains in modern molecular biology, from evolutionary studies to prediction of 2D/3D structure, molecular function and inter-molecular interactions etc. By placing the sequence in the framework of the overall family, multiple alignments can be used to identify conserved features and to highlight differences or specificities. In this paper, we describe a comprehensive evaluation of many of the most popular methods for multiple sequence alignment (MSA), based on a new benchmark test set. The benchmark is designed to represent typical problems encountered when aligning the large protein sequence sets that result from today's high throughput biotechnologies. We show that alignmentmethods have significantly progressed and can now identify most of the shared sequence features that determine the broad molecular function(s) of a protein family, even for divergent sequences. However,we have identified a number of important challenges. First, the locally conserved regions, that reflect functional specificities or that modulate a protein's function in a given cellular context,are less well aligned. Second, motifs in natively disordered regions are often misaligned. Third, the badly predicted or fragmentary protein sequences, which make up a large proportion of today's databases, lead to a significant number of alignment errors. Based on this study, we demonstrate that the existing MSA methods can be exploited in combination to improve alignment accuracy, although novel approaches will still be needed to fully explore the most difficult regions. We then propose knowledge-enabled, dynamic solutions that will hopefully pave the way to enhanced alignment construction and exploitation in future evolutionary systems biology studies. PMID:21483869

  5. A novel multi-alignment pipeline for high-throughput sequencing data.

    PubMed

    Huang, Shunping; Holt, James; Kao, Chia-Yu; McMillan, Leonard; Wang, Wei

    2014-01-01

    Mapping reads to a reference sequence is a common step when analyzing allele effects in high-throughput sequencing data. The choice of reference is critical because its effect on quantitative sequence analysis is non-negligible. Recent studies suggest aligning to a single standard reference sequence, as is common practice, can lead to an underlying bias depending on the genetic distances of the target sequences from the reference. To avoid this bias, researchers have resorted to using modified reference sequences. Even with this improvement, various limitations and problems remain unsolved, which include reduced mapping ratios, shifts in read mappings and the selection of which variants to include to remove biases. To address these issues, we propose a novel and generic multi-alignment pipeline. Our pipeline integrates the genomic variations from known or suspected founders into separate reference sequences and performs alignments to each one. By mapping reads to multiple reference sequences and merging them afterward, we are able to rescue more reads and diminish the bias caused by using a single common reference. Moreover, the genomic origin of each read is determined and annotated during the merging process, providing a better source of information to assess differential expression than simple allele queries at known variant positions. Using RNA-seq of a diallel cross, we compare our pipeline with the single-reference pipeline and demonstrate our advantages of more aligned reads and a higher percentage of reads with assigned origins. Database URL: http://csbio.unc.edu/CCstatus/index.py?run=Pseudo.

  6. Support for linguistic macrofamilies from weighted sequence alignment.

    PubMed

    Jäger, Gerhard

    2015-10-13

    Computational phylogenetics is in the process of revolutionizing historical linguistics. Recent applications have shed new light on controversial issues, such as the location and time depth of language families and the dynamics of their spread. So far, these approaches have been limited to single-language families because they rely on a large body of expert cognacy judgments or grammatical classifications, which is currently unavailable for most language families. The present study pursues a different approach. Starting from raw phonetic transcription of core vocabulary items from very diverse languages, it applies weighted string alignment to track both phonetic and lexical change. Applied to a collection of ∼1,000 Eurasian languages and dialects, this method, combined with phylogenetic inference, leads to a classification in excellent agreement with established findings of historical linguistics. Furthermore, it provides strong statistical support for several putative macrofamilies contested in current historical linguistics. In particular, there is a solid signal for the Nostratic/Eurasiatic macrofamily.

  7. Skeleton-based human action recognition using multiple sequence alignment

    NASA Astrophysics Data System (ADS)

    Ding, Wenwen; Liu, Kai; Cheng, Fei; Zhang, Jin; Li, YunSong

    2015-05-01

    Human action recognition and analysis is an active research topic in computer vision for many years. This paper presents a method to represent human actions based on trajectories consisting of 3D joint positions. This method first decompose action into a sequence of meaningful atomic actions (actionlets), and then label actionlets with English alphabets according to the Davies-Bouldin index value. Therefore, an action can be represented using a sequence of actionlet symbols, which will preserve the temporal order of occurrence of each of the actionlets. Finally, we employ sequence comparison to classify multiple actions through using string matching algorithms (Needleman-Wunsch). The effectiveness of the proposed method is evaluated on datasets captured by commodity depth cameras. Experiments of the proposed method on three challenging 3D action datasets show promising results.

  8. SARA-Coffee web server, a tool for the computation of RNA sequence and structure multiple alignments

    PubMed Central

    Di Tommaso, Paolo; Bussotti, Giovanni; Kemena, Carsten; Capriotti, Emidio; Chatzou, Maria; Prieto, Pablo; Notredame, Cedric

    2014-01-01

    This article introduces the SARA-Coffee web server; a service allowing the online computation of 3D structure based multiple RNA sequence alignments. The server makes it possible to combine sequences with and without known 3D structures. Given a set of sequences SARA-Coffee outputs a multiple sequence alignment along with a reliability index for every sequence, column and aligned residue. SARA-Coffee combines SARA, a pairwise structural RNA aligner with the R-Coffee multiple RNA aligner in a way that has been shown to improve alignment accuracy over most sequence aligners when enough structural data is available. The server can be accessed from http://tcoffee.crg.cat/apps/tcoffee/do:saracoffee. PMID:24972831

  9. PyMod: sequence similarity searches, multiple sequence-structure alignments, and homology modeling within PyMOL

    PubMed Central

    2012-01-01

    Background In recent years, an exponential growing number of tools for protein sequence analysis, editing and modeling tasks have been put at the disposal of the scientific community. Despite the vast majority of these tools have been released as open source software, their deep learning curves often discourages even the most experienced users. Results A simple and intuitive interface, PyMod, between the popular molecular graphics system PyMOL and several other tools (i.e., [PSI-]BLAST, ClustalW, MUSCLE, CEalign and MODELLER) has been developed, to show how the integration of the individual steps required for homology modeling and sequence/structure analysis within the PyMOL framework can hugely simplify these tasks. Sequence similarity searches, multiple sequence and structural alignments generation and editing, and even the possibility to merge sequence and structure alignments have been implemented in PyMod, with the aim of creating a simple, yet powerful tool for sequence and structure analysis and building of homology models. Conclusions PyMod represents a new tool for the analysis and the manipulation of protein sequences and structures. The ease of use, integration with many sequence retrieving and alignment tools and PyMOL, one of the most used molecular visualization system, are the key features of this tool. Source code, installation instructions, video tutorials and a user's guide are freely available at the URL http://schubert.bio.uniroma1.it/pymod/index.html PMID:22536966

  10. Flexible, Fast and Accurate Sequence Alignment Profiling on GPGPU with PaSWAS

    PubMed Central

    Warris, Sven; Yalcin, Feyruz; Jackson, Katherine J. L.; Nap, Jan Peter

    2015-01-01

    Motivation To obtain large-scale sequence alignments in a fast and flexible way is an important step in the analyses of next generation sequencing data. Applications based on the Smith-Waterman (SW) algorithm are often either not fast enough, limited to dedicated tasks or not sufficiently accurate due to statistical issues. Current SW implementations that run on graphics hardware do not report the alignment details necessary for further analysis. Results With the Parallel SW Alignment Software (PaSWAS) it is possible (a) to have easy access to the computational power of NVIDIA-based general purpose graphics processing units (GPGPUs) to perform high-speed sequence alignments, and (b) retrieve relevant information such as score, number of gaps and mismatches. The software reports multiple hits per alignment. The added value of the new SW implementation is demonstrated with two test cases: (1) tag recovery in next generation sequence data and (2) isotype assignment within an immunoglobulin 454 sequence data set. Both cases show the usability and versatility of the new parallel Smith-Waterman implementation. PMID:25830241

  11. Design of multiple sequence alignment algorithms on parallel, distributed memory supercomputers.

    PubMed

    Church, Philip C; Goscinski, Andrzej; Holt, Kathryn; Inouye, Michael; Ghoting, Amol; Makarychev, Konstantin; Reumann, Matthias

    2011-01-01

    The challenge of comparing two or more genomes that have undergone recombination and substantial amounts of segmental loss and gain has recently been addressed for small numbers of genomes. However, datasets of hundreds of genomes are now common and their sizes will only increase in the future. Multiple sequence alignment of hundreds of genomes remains an intractable problem due to quadratic increases in compute time and memory footprint. To date, most alignment algorithms are designed for commodity clusters without parallelism. Hence, we propose the design of a multiple sequence alignment algorithm on massively parallel, distributed memory supercomputers to enable research into comparative genomics on large data sets. Following the methodology of the sequential progressiveMauve algorithm, we design data structures including sequences and sorted k-mer lists on the IBM Blue Gene/P supercomputer (BG/P). Preliminary results show that we can reduce the memory footprint so that we can potentially align over 250 bacterial genomes on a single BG/P compute node. We verify our results on a dataset of E.coli, Shigella and S.pneumoniae genomes. Our implementation returns results matching those of the original algorithm but in 1/2 the time and with 1/4 the memory footprint for scaffold building. In this study, we have laid the basis for multiple sequence alignment of large-scale datasets on a massively parallel, distributed memory supercomputer, thus enabling comparison of hundreds instead of a few genome sequences within reasonable time.

  12. Self-consistently optimized statistical mechanical energy functions for sequence structure alignment.

    PubMed Central

    Koretke, K. K.; Luthey-Schulten, Z.; Wolynes, P. G.

    1996-01-01

    A quantitative form of the principle of minimal frustration is used to obtain from a database analysis statistical mechanical energy functions and gap parameters for aligning sequences to three-dimensional structures. The analysis that partially takes into account correlations in the energy landscape improves upon the previous approximations of Goldstein et al. (1994, 1995) (Goldstein R, Luthey-Schulten Z, Wolynes P, 1994, Proceedings of the 27th Hawaii International Conference on System Sciences. Los Alamitos, California: IEEE Computer Society Press. pp 306-315; Goldstein R, Luthey-Schulten Z, Wolynes P, 1995, In: Elber R, ed. New developments in theoretical studies of proteins. Singapore: World Scientific). The energy function allows for ordering of alignments based on the compatibility of a sequence to be in a given structure (i.e., lowest energy) and therefore removes the necessity of using percent identity or similarity as scoring parameters. The alignments produced by the energy function on distant homologues with low percent identity (less than 21%) are generally better than those generated with evolutionary information. The lowest energy alignment generated with the energy function for sequences containing prosite signatures but unknown structures is a structure containing the same prosite signature, providing a check on the robustness of the algorithm. Finally, the energy function can make use of known experimental evidence as constraints within the alignment algorithm to aid in finding the correct structural alignment. PMID:8762136

  13. Alignment-free Transcriptomic and Metatranscriptomic Comparison Using Sequencing Signatures with Variable Length Markov Chains

    PubMed Central

    Liao, Weinan; Ren, Jie; Wang, Kun; Wang, Shun; Zeng, Feng; Wang, Ying; Sun, Fengzhu

    2016-01-01

    The comparison between microbial sequencing data is critical to understand the dynamics of microbial communities. The alignment-based tools analyzing metagenomic datasets require reference sequences and read alignments. The available alignment-free dissimilarity approaches model the background sequences with Fixed Order Markov Chain (FOMC) yielding promising results for the comparison of microbial communities. However, in FOMC, the number of parameters grows exponentially with the increase of the order of Markov Chain (MC). Under a fixed high order of MC, the parameters might not be accurately estimated owing to the limitation of sequencing depth. In our study, we investigate an alternative to FOMC to model background sequences with the data-driven Variable Length Markov Chain (VLMC) in metatranscriptomic data. The VLMC originally designed for long sequences was extended to apply to high-throughput sequencing reads and the strategies to estimate the corresponding parameters were developed. The flexible number of parameters in VLMC avoids estimating the vast number of parameters of high-order MC under limited sequencing depth. Different from the manual selection in FOMC, VLMC determines the MC order adaptively. Several beta diversity measures based on VLMC were applied to compare the bacterial RNA-Seq and metatranscriptomic datasets. Experiments show that VLMC outperforms FOMC to model the background sequences in transcriptomic and metatranscriptomic samples. A software pipeline is available at https://d2vlmc.codeplex.com. PMID:27876823

  14. Malakite: an automatic tool for characterisation of structure of reliable blocks in multiple alignments of protein sequences.

    PubMed

    Burkov, Boris; Nagaev, Boris; Spirin, Sergei; Alexeevski, Andrei

    2010-06-01

    It makes sense to speak of alignment of protein sequences only within the regions, where the sequences are related to each other. This simple consideration is often disregarded by programs of multiple alignment construction. A package for alignment analysis MAlAKiTE (Multiple Alignment Automatic Kinship Tiling Engine) is introduced. It aims to find the blocks of reliable alignment, which contain related regions only, within the whole alignment and allows for dealing with them. The validity of the detection of reliable blocks' was verified by comparison with structural data.

  15. Mulan: Multiple-Sequence Local Alignment and Visualization for Studying Function and Evolution

    SciTech Connect

    Ovcharenko, I; Loots, G; Giardine, B; Hou, M; Ma, J; Hardison, R; Stubbs, L; Miller, W

    2004-07-14

    Multiple sequence alignment analysis is a powerful approach for understanding phylogenetic relationships, annotating genes and detecting functional regulatory elements. With a growing number of partly or fully sequenced vertebrate genomes, effective tools for performing multiple comparisons are required to accurately and efficiently assist biological discoveries. Here we introduce Mulan (http://mulan.dcode.org/), a novel method and a network server for comparing multiple draft and finished-quality sequences to identify functional elements conserved over evolutionary time. Mulan brings together several novel algorithms: the tba multi-aligner program for rapid identification of local sequence conservation and the multiTF program for detecting evolutionarily conserved transcription factor binding sites in multiple alignments. In addition, Mulan supports two-way communication with the GALA database; alignments of multiple species dynamically generated in GALA can be viewed in Mulan, and conserved transcription factor binding sites identified with Mulan/multiTF can be integrated and overlaid with extensive genome annotation data using GALA. Local multiple alignments computed by Mulan ensure reliable representation of short-and large-scale genomic rearrangements in distant organisms. Mulan allows for interactive modification of critical conservation parameters to differentially predict conserved regions in comparisons of both closely and distantly related species. We illustrate the uses and applications of the Mulan tool through multi-species comparisons of the GATA3 gene locus and the identification of elements that are conserved differently in avians than in other genomes allowing speculation on the evolution of birds. Source code for the aligners and the aligner-evaluation software can be freely downloaded from http://bio.cse.psu.edu/.

  16. SATCHMO-JS: a webserver for simultaneous protein multiple sequence alignment and phylogenetic tree construction.

    PubMed

    Hagopian, Raffi; Davidson, John R; Datta, Ruchira S; Samad, Bushra; Jarvis, Glen R; Sjölander, Kimmen

    2010-07-01

    We present the jump-start simultaneous alignment and tree construction using hidden Markov models (SATCHMO-JS) web server for simultaneous estimation of protein multiple sequence alignments (MSAs) and phylogenetic trees. The server takes as input a set of sequences in FASTA format, and outputs a phylogenetic tree and MSA; these can be viewed online or downloaded from the website. SATCHMO-JS is an extension of the SATCHMO algorithm, and employs a divide-and-conquer strategy to jump-start SATCHMO at a higher point in the phylogenetic tree, reducing the computational complexity of the progressive all-versus-all HMM-HMM scoring and alignment. Results on a benchmark dataset of 983 structurally aligned pairs from the PREFAB benchmark dataset show that SATCHMO-JS provides a statistically significant improvement in alignment accuracy over MUSCLE, Multiple Alignment using Fast Fourier Transform (MAFFT), ClustalW and the original SATCHMO algorithm. The SATCHMO-JS webserver is available at http://phylogenomics.berkeley.edu/satchmo-js. The datasets used in these experiments are available for download at http://phylogenomics.berkeley.edu/satchmo-js/supplementary/.

  17. Multiple sequence alignment using multi-objective based bacterial foraging optimization algorithm.

    PubMed

    Rani, R Ranjani; Ramyachitra, D

    2016-12-01

    Multiple sequence alignment (MSA) is a widespread approach in computational biology and bioinformatics. MSA deals with how the sequences of nucleotides and amino acids are sequenced with possible alignment and minimum number of gaps between them, which directs to the functional, evolutionary and structural relationships among the sequences. Still the computation of MSA is a challenging task to provide an efficient accuracy and statistically significant results of alignments. In this work, the Bacterial Foraging Optimization Algorithm was employed to align the biological sequences which resulted in a non-dominated optimal solution. It employs Multi-objective, such as: Maximization of Similarity, Non-gap percentage, Conserved blocks and Minimization of gap penalty. BAliBASE 3.0 benchmark database was utilized to examine the proposed algorithm against other methods In this paper, two algorithms have been proposed: Hybrid Genetic Algorithm with Artificial Bee Colony (GA-ABC) and Bacterial Foraging Optimization Algorithm. It was found that Hybrid Genetic Algorithm with Artificial Bee Colony performed better than the existing optimization algorithms. But still the conserved blocks were not obtained using GA-ABC. Then BFO was used for the alignment and the conserved blocks were obtained. The proposed Multi-Objective Bacterial Foraging Optimization Algorithm (MO-BFO) was compared with widely used MSA methods Clustal Omega, Kalign, MUSCLE, MAFFT, Genetic Algorithm (GA), Ant Colony Optimization (ACO), Artificial Bee Colony (ABC), Particle Swarm Optimization (PSO) and Hybrid Genetic Algorithm with Artificial Bee Colony (GA-ABC). The final results show that the proposed MO-BFO algorithm yields better alignment than most widely used methods.

  18. A Java applet for multiple linked visualization of protein structure and sequence.

    PubMed

    Oldfield, Thomas J

    2004-04-01

    The amount of biological data available from experimental techniques is huge, and rapidly expanding. The ability to make sense of this vast amount of data requires that we make correlations between distinct biological disciplines using visualization techniques to highlight the critical information. This article describes the visualization techniques of dynamic data brushing, view context maintenance, fisheye sequence view, and a magic lens that have been developed to display protein structure and sequence information.

  19. Multiple sequence alignment with arbitrary gap costs: computing an optimal solution using polyhedral combinatorics.

    PubMed

    Althaus, Ernst; Caprara, Alberto; Lenhof, Hans-Peter; Reinert, Knut

    2002-01-01

    Multiple sequence alignment is one of the dominant problems in computational molecular biology. Numerous scoring functions and methods have been proposed, most of which result in NP-hard problems. In this paper we propose for the first time a general formulation for multiple alignment with arbitrary gap-costs based on an integer linear program (ILP). In addition we describe a branch-and-cut algorithm to effectively solve the ILP to optimality. We evaluate the performances of our approach in terms of running time and quality of the alignments using the BAliBase database of reference alignments. The results show that our implementation ranks amongst the best programs developed so far.

  20. Welterweight Java

    NASA Astrophysics Data System (ADS)

    Östlund, Johan; Wrigstad, Tobias

    This paper presents Welterweight Java (WJ), a new minimal core Java calculus intended to be a suitable starting point for investigations in the semantics of Java-like programs. To this end, WJ adds a few extra pounds to Featherweight Java. WJ is imperative and stateful, which is a frequent extension of Featherweight Java. To account for the importance of concurrency, WJ models Java's thread-based concurrency and lock-based synchronisation. The design of WJ is distilled from recent work on concurrent Java-like systems. We believe that the calculus is a good starting point for extensions. We illustrate the potential of the calculus by showing two extensions. The first is a version of WJ extended with deep ownership. This serves two purposes - it is a minimal formalisation of ownership, interesting in its own right, and shows how easily WJ can be extended. The second is a simple non-null types system.

  1. ALVIS: interactive non-aggregative visualization and explorative analysis of multiple sequence alignments.

    PubMed

    Schwarz, Roland F; Tamuri, Asif U; Kultys, Marek; King, James; Godwin, James; Florescu, Ana M; Schultz, Jörg; Goldman, Nick

    2016-05-05

    Sequence Logos and its variants are the most commonly used method for visualization of multiple sequence alignments (MSAs) and sequence motifs. They provide consensus-based summaries of the sequences in the alignment. Consequently, individual sequences cannot be identified in the visualization and covariant sites are not easily discernible. We recently proposed Sequence Bundles, a motif visualization technique that maintains a one-to-one relationship between sequences and their graphical representation and visualizes covariant sites. We here present Alvis, an open-source platform for the joint explorative analysis of MSAs and phylogenetic trees, employing Sequence Bundles as its main visualization method. Alvis combines the power of the visualization method with an interactive toolkit allowing detection of covariant sites, annotation of trees with synapomorphies and homoplasies, and motif detection. It also offers numerical analysis functionality, such as dimension reduction and classification. Alvis is user-friendly, highly customizable and can export results in publication-quality figures. It is available as a full-featured standalone version (http://www.bitbucket.org/rfs/alvis) and its Sequence Bundles visualization module is further available as a web application (http://science-practice.com/projects/sequence-bundles).

  2. Parametric and non-parametric masking of randomness in sequence alignments can be improved and leads to better resolved trees

    PubMed Central

    2010-01-01

    Background Methods of alignment masking, which refers to the technique of excluding alignment blocks prior to tree reconstructions, have been successful in improving the signal-to-noise ratio in sequence alignments. However, the lack of formally well defined methods to identify randomness in sequence alignments has prevented a routine application of alignment masking. In this study, we compared the effects on tree reconstructions of the most commonly used profiling method (GBLOCKS) which uses a predefined set of rules in combination with alignment masking, with a new profiling approach (ALISCORE) based on Monte Carlo resampling within a sliding window, using different data sets and alignment methods. While the GBLOCKS approach excludes variable sections above a certain threshold which choice is left arbitrary, the ALISCORE algorithm is free of a priori rating of parameter space and therefore more objective. Results ALISCORE was successfully extended to amino acids using a proportional model and empirical substitution matrices to score randomness in multiple sequence alignments. A complex bootstrap resampling leads to an even distribution of scores of randomly similar sequences to assess randomness of the observed sequence similarity. Testing performance on real data, both masking methods, GBLOCKS and ALISCORE, helped to improve tree resolution. The sliding window approach was less sensitive to different alignments of identical data sets and performed equally well on all data sets. Concurrently, ALISCORE is capable of dealing with different substitution patterns and heterogeneous base composition. ALISCORE and the most relaxed GBLOCKS gap parameter setting performed best on all data sets. Correspondingly, Neighbor-Net analyses showed the most decrease in conflict. Conclusions Alignment masking improves signal-to-noise ratio in multiple sequence alignments prior to phylogenetic reconstruction. Given the robust performance of alignment profiling, alignment masking

  3. Probabilistic sequence alignment of Late Pleistocene benthic δ18O data

    NASA Astrophysics Data System (ADS)

    Lawrence, C.; Lin, L.; Lisiecki, L. E.; Stern, J.

    2013-12-01

    The stratigraphic alignment of ocean sediment cores plays a vital role in paleoceanographic research because it is used to develop mutually consistent age models for climate proxies measured in these cores. The most common proxy used for alignment is the The stratigraphic alignment of ocean sediment cores plays a vital role in paleoceanographic research because it is used to develop mutually consistent age models for climate proxies measured in these cores. The most common proxy used for alignment is the δ18O of calcite from benthic or planktonic foraminifera because a large fraction of δ18O variance derives from the global signal of ice volume. To date, alignment has been performed either by manual, qualitative comparison or by deterministic algorithms (Martinson, Pisias et al. Quat. Res. 27 1987; Lisiecki and Lisiecki Paleoceanography 17, 2002; Huybers and Wunsch, Paleoceanography 19, 2004). Here we present a probabilistic sequence alignment algorithm which provides 95% confidence bands for the alignment of pairs of benthic δ18O records. The probabilistic algorithm presented here is based on a hidden Markov model (HMM) (Levinson, Rabiner et al. Bell Systems Technical Journal, 62,1983) similar to those that have been used extensively to align DNA and protein sequences (Durbin, Eddy et al. Biological Sequence Analysis, Ch. 4, 1998). However, here the need to the alignment of sequences stems from expansion and/or contraction in the records due to changes in sedimentation rates rather than the insertion or deletion of residues. Transition probabilities that are used in this HMM to model changes in sedimentation rates are based on radiocarbon estimates of sedimentation rates. The probabilistic algorithm considers all possible alignments with these predefined sedimentation rates. Exact calculations are completed using dynamic programming recursions. The algorithm yields the probability distributions of the age at each point in the record, which are probabilistically

  4. DUC-Curve, a highly compact 2D graphical representation of DNA sequences and its application in sequence alignment

    NASA Astrophysics Data System (ADS)

    Li, Yushuang; Liu, Qian; Zheng, Xiaoqi

    2016-08-01

    A highly compact and simple 2D graphical representation of DNA sequences, named DUC-Curve, is constructed through mapping four nucleotides to a unit circle with a cyclic order. DUC-Curve could directly detect nucleotide, di-nucleotide compositions and microsatellite structure from DNA sequences. Moreover, it also could be used for DNA sequence alignment. Taking geometric center vectors of DUC-Curves as sequence descriptor, we perform similarity analysis on the first exons of β-globin genes of 11 species, oncogene TP53 of 27 species and twenty-four Influenza A viruses, respectively. The obtained reasonable results illustrate that the proposed method is very effective in sequence comparison problems, and will at least play a complementary role in classification and clustering problems.

  5. MGAlignIt: A web service for the alignment of mRNA/EST and genomic sequences.

    PubMed

    Lee, Bernett T K; Tan, Tin Wee; Ranganathan, Shoba

    2003-07-01

    Splicing is a biological phenomenon that removes the non-coding sequence from the transcripts to produce a mature transcript suitable for translation. To study this phenomenon, information on the intron-exon arrangement of a gene is essential, usually obtained by aligning mRNA/EST sequences to their cognate genomic sequences. MGAlign is a novel, rapid, memory efficient and practical method for aligning mRNA/EST and genome sequences. We present here a freely available web service, MGAlignIt (http://origin.bic.nus.edu.sg/mgalign/mgalignit), based on MGAlign. Besides the alignment itself, this web service allows users to effectively visualize the alignment in a graphical manner and to perform limited analysis on the alignment output. The server also permits the alignment to be saved in several forms, both graphical and text, suitable for further processing and analysis by other programs.

  6. SDT: a virus classification tool based on pairwise sequence alignment and identity calculation.

    PubMed

    Muhire, Brejnev Muhizi; Varsani, Arvind; Martin, Darren Patrick

    2014-01-01

    The perpetually increasing rate at which viral full-genome sequences are being determined is creating a pressing demand for computational tools that will aid the objective classification of these genome sequences. Taxonomic classification approaches that are based on pairwise genetic identity measures are potentially highly automatable and are progressively gaining favour with the International Committee on Taxonomy of Viruses (ICTV). There are, however, various issues with the calculation of such measures that could potentially undermine the accuracy and consistency with which they can be applied to virus classification. Firstly, pairwise sequence identities computed based on multiple sequence alignments rather than on multiple independent pairwise alignments can lead to the deflation of identity scores with increasing dataset sizes. Also, when gap-characters need to be introduced during sequence alignments to account for insertions and deletions, methodological variations in the way that these characters are introduced and handled during pairwise genetic identity calculations can cause high degrees of inconsistency in the way that different methods classify the same sets of sequences. Here we present Sequence Demarcation Tool (SDT), a free user-friendly computer program that aims to provide a robust and highly reproducible means of objectively using pairwise genetic identity calculations to classify any set of nucleotide or amino acid sequences. SDT can produce publication quality pairwise identity plots and colour-coded distance matrices to further aid the classification of sequences according to ICTV approved taxonomic demarcation criteria. Besides a graphical interface version of the program for Windows computers, command-line versions of the program are available for a variety of different operating systems (including a parallel version for cluster computing platforms).

  7. R3D-2-MSA: the RNA 3D structure-to-multiple sequence alignment server

    PubMed Central

    Cannone, Jamie J.; Sweeney, Blake A.; Petrov, Anton I.; Gutell, Robin R.; Zirbel, Craig L.; Leontis, Neocles

    2015-01-01

    The RNA 3D Structure-to-Multiple Sequence Alignment Server (R3D-2-MSA) is a new web service that seamlessly links RNA three-dimensional (3D) structures to high-quality RNA multiple sequence alignments (MSAs) from diverse biological sources. In this first release, R3D-2-MSA provides manual and programmatic access to curated, representative ribosomal RNA sequence alignments from bacterial, archaeal, eukaryal and organellar ribosomes, using nucleotide numbers from representative atomic-resolution 3D structures. A web-based front end is available for manual entry and an Application Program Interface for programmatic access. Users can specify up to five ranges of nucleotides and 50 nucleotide positions per range. The R3D-2-MSA server maps these ranges to the appropriate columns of the corresponding MSA and returns the contents of the columns, either for display in a web browser or in JSON format for subsequent programmatic use. The browser output page provides a 3D interactive display of the query, a full list of sequence variants with taxonomic information and a statistical summary of distinct sequence variants found. The output can be filtered and sorted in the browser. Previous user queries can be viewed at any time by resubmitting the output URL, which encodes the search and re-generates the results. The service is freely available with no login requirement at http://rna.bgsu.edu/r3d-2-msa. PMID:26048960

  8. R3D-2-MSA: the RNA 3D structure-to-multiple sequence alignment server.

    PubMed

    Cannone, Jamie J; Sweeney, Blake A; Petrov, Anton I; Gutell, Robin R; Zirbel, Craig L; Leontis, Neocles

    2015-07-01

    The RNA 3D Structure-to-Multiple Sequence Alignment Server (R3D-2-MSA) is a new web service that seamlessly links RNA three-dimensional (3D) structures to high-quality RNA multiple sequence alignments (MSAs) from diverse biological sources. In this first release, R3D-2-MSA provides manual and programmatic access to curated, representative ribosomal RNA sequence alignments from bacterial, archaeal, eukaryal and organellar ribosomes, using nucleotide numbers from representative atomic-resolution 3D structures. A web-based front end is available for manual entry and an Application Program Interface for programmatic access. Users can specify up to five ranges of nucleotides and 50 nucleotide positions per range. The R3D-2-MSA server maps these ranges to the appropriate columns of the corresponding MSA and returns the contents of the columns, either for display in a web browser or in JSON format for subsequent programmatic use. The browser output page provides a 3D interactive display of the query, a full list of sequence variants with taxonomic information and a statistical summary of distinct sequence variants found. The output can be filtered and sorted in the browser. Previous user queries can be viewed at any time by resubmitting the output URL, which encodes the search and re-generates the results. The service is freely available with no login requirement at http://rna.bgsu.edu/r3d-2-msa.

  9. EvalMSA: A Program to Evaluate Multiple Sequence Alignments and Detect Outliers.

    PubMed

    Chiner-Oms, Alvaro; González-Candelas, Fernando

    2016-01-01

    We present EvalMSA, a software tool for evaluating and detecting outliers in multiple sequence alignments (MSAs). This tool allows the identification of divergent sequences in MSAs by scoring the contribution of each row in the alignment to its quality using a sum-of-pair-based method and additional analyses. Our main goal is to provide users with objective data in order to take informed decisions about the relevance and/or pertinence of including/retaining a particular sequence in an MSA. EvalMSA is written in standard Perl and also uses some routines from the statistical language R. Therefore, it is necessary to install the R-base package in order to get full functionality. Binary packages are freely available from http://sourceforge.net/projects/evalmsa/for Linux and Windows.

  10. EvalMSA: A Program to Evaluate Multiple Sequence Alignments and Detect Outliers

    PubMed Central

    Chiner-Oms, Alvaro; González-Candelas, Fernando

    2016-01-01

    We present EvalMSA, a software tool for evaluating and detecting outliers in multiple sequence alignments (MSAs). This tool allows the identification of divergent sequences in MSAs by scoring the contribution of each row in the alignment to its quality using a sum-of-pair-based method and additional analyses. Our main goal is to provide users with objective data in order to take informed decisions about the relevance and/or pertinence of including/retaining a particular sequence in an MSA. EvalMSA is written in standard Perl and also uses some routines from the statistical language R. Therefore, it is necessary to install the R-base package in order to get full functionality. Binary packages are freely available from http://sourceforge.net/projects/evalmsa/for Linux and Windows. PMID:27920488

  11. Java XMGR

    SciTech Connect

    Dr. George L. Mesina; Steven P. Miller

    2004-08-01

    The XMGR5 graphing package [1] for drawing RELAP5 [2] plots is being re-written in Java [3]. Java is a robust programming language that is available at no cost for most computer platforms from Sun Microsystems, Inc. XMGR5 is an extension of an XY plotting tool called ACE/gr extended to plot data from several US Nuclear Regulatory Commission (NRC) applications. It is also the most popular graphing package worldwide for making RELAP5 plots. In Section 1, a short review of XMGR5 is given, followed by a brief overview of Java. In Section 2, shortcomings of both tkXMGR [4] and XMGR5 are discussed and the value of converting to Java is given. Details of the conversion to Java are given in Section 3. The progress to date, some conclusions and future work are given in Section 4. Some screen shots of the Java version are shown.

  12. A parallel approach of COFFEE objective function to multiple sequence alignment

    NASA Astrophysics Data System (ADS)

    Zafalon, G. F. D.; Visotaky, J. M. V.; Amorim, A. R.; Valêncio, C. R.; Neves, L. A.; de Souza, R. C. G.; Machado, J. M.

    2015-09-01

    The computational tools to assist genomic analyzes show even more necessary due to fast increasing of data amount available. With high computational costs of deterministic algorithms for sequence alignments, many works concentrate their efforts in the development of heuristic approaches to multiple sequence alignments. However, the selection of an approach, which offers solutions with good biological significance and feasible execution time, is a great challenge. Thus, this work aims to show the parallelization of the processing steps of MSA-GA tool using multithread paradigm in the execution of COFFEE objective function. The standard objective function implemented in the tool is the Weighted Sum of Pairs (WSP), which produces some distortions in the final alignments when sequences sets with low similarity are aligned. Then, in studies previously performed we implemented the COFFEE objective function in the tool to smooth these distortions. Although the nature of COFFEE objective function implies in the increasing of execution time, this approach presents points, which can be executed in parallel. With the improvements implemented in this work, we can verify the execution time of new approach is 24% faster than the sequential approach with COFFEE. Moreover, the COFFEE multithreaded approach is more efficient than WSP, because besides it is slightly fast, its biological results are better.

  13. Greene SCPrimer: a rapid comprehensive tool for designing degenerate primers from multiple sequence alignments

    PubMed Central

    Jabado, Omar J.; Palacios, Gustavo; Kapoor, Vishal; Hui, Jeffrey; Renwick, Neil; Zhai, Junhui; Briese, Thomas; Lipkin, W. Ian

    2006-01-01

    Polymerase chain reaction (PCR) is widely applied in clinical and environmental microbiology. Primer design is key to the development of successful assays and is often performed manually by using multiple nucleic acid alignments. Few public software tools exist that allow comprehensive design of degenerate primers for large groups of related targets based on complex multiple sequence alignments. Here we present a method for designing such primers based on tree building followed by application of a set covering algorithm, and demonstrate its utility in compiling Multiplex PCR primer panels for detection and differentiation of viral pathogens. PMID:17135211

  14. Comparative Topological Analysis of Neuronal Arbors via Sequence Representation and Alignment

    NASA Astrophysics Data System (ADS)

    Gillette, Todd Aaron

    Neuronal morphology is a key mediator of neuronal function, defining the profile of connectivity and shaping signal integration and propagation. Reconstructing neurite processes is technically challenging and thus data has historically been relatively sparse. Data collection and curation along with more efficient and reliable data production methods provide opportunities for the application of informatics to find new relationships and more effectively explore the field. This dissertation presents a method for aiding the development of data production as well as a novel representation and set of analyses for extracting morphological patterns. The DIADEM Challenge was organized for the purposes of determining the state of the art in automated neuronal reconstruction and what existing challenges remained. As one of the co-organizers of the Challenge, I developed the DIADEM metric, a tool designed to measure the effectiveness of automated reconstruction algorithms by comparing resulting reconstructions to expert-produced gold standards and identifying errors of various types. It has been used in the DIADEM Challenge and in the testing of several algorithms since. Further, this dissertation describes a topological sequence representation of neuronal trees amenable to various forms of sequence analysis, notably motif analysis, global pairwise alignment, clustering, and multiple sequence alignment. Motif analysis of neuronal arbors shows a large difference in bifurcation type proportions between axons and dendrites, but that relatively simple growth mechanisms account for most higher order motifs. Pairwise global alignment of topological sequences, modified from traditional sequence alignment to preserve tree relationships, enabled cluster analysis which displayed strong correspondence with known cell classes by cell type, species, and brain region. Multiple alignment of sequences in selected clusters enabled the extraction of conserved features, revealing mouse

  15. OrthoSelect: a web server for selecting orthologous gene alignments from EST sequences.

    PubMed

    Schreiber, Fabian; Wörheide, Gert; Morgenstern, Burkhard

    2009-07-01

    In the absence of whole genome sequences for many organisms, the use of expressed sequence tags (EST) offers an affordable approach for researchers conducting phylogenetic analyses to gain insight about the evolutionary history of organisms. Reliable alignments for phylogenomic analyses are based on orthologous gene sequences from different taxa. So far, researchers have not sufficiently tackled the problem of the completely automated construction of such datasets. Existing software tools are either semi-automated, covering only part of the necessary data processing, or implemented as a pipeline, requiring the installation and configuration of a cascade of external tools, which may be time-consuming and hard to manage. To simplify data set construction for phylogenomic studies, we set up a web server that uses our recently developed OrthoSelect approach. To the best of our knowledge, our web server is the first web-based EST analysis pipeline that allows the detection of orthologous gene sequences in EST libraries and outputs orthologous gene alignments. Additionally, OrthoSelect provides the user with an extensive results section that lists and visualizes all important results, such as annotations, data matrices for each gene/taxon and orthologous gene alignments. The web server is available at http://orthoselect.gobics.de.

  16. Rice pseudomolecule-anchored cross-species DNA sequence alignments indicate regional genomic variation in expressed sequence conservation

    PubMed Central

    Armstead, Ian; Huang, Lin; King, Julie; Ougham, Helen; Thomas, Howard; King, Ian

    2007-01-01

    Background Various methods have been developed to explore inter-genomic relationships among plant species. Here, we present a sequence similarity analysis based upon comparison of transcript-assembly and methylation-filtered databases from five plant species and physically anchored rice coding sequences. Results A comparison of the frequency of sequence alignments, determined by MegaBLAST, between rice coding sequences in TIGR pseudomolecules and annotations vs 4.0 and comprehensive transcript-assembly and methylation-filtered databases from Lolium perenne (ryegrass), Zea mays (maize), Hordeum vulgare (barley), Glycine max (soybean) and Arabidopsis thaliana (thale cress) was undertaken. Each rice pseudomolecule was divided into 10 segments, each containing 10% of the functionally annotated, expressed genes. This indicated a correlation between relative segment position in the rice genome and numbers of alignments with all the queried monocot and dicot plant databases. Colour-coded moving windows of 100 functionally annotated, expressed genes along each pseudomolecule were used to generate 'heat-maps'. These revealed consistent intra- and inter-pseudomolecule variation in the relative concentrations of significant alignments with the tested plant databases. Analysis of the annotations and derived putative expression patterns of rice genes from 'hot-spots' and 'cold-spots' within the heat maps indicated possible functional differences. A similar comparison relating to ancestral duplications of the rice genome indicated that duplications were often associated with 'hot-spots'. Conclusion Physical positions of expressed genes in the rice genome are correlated with the degree of conservation of similar sequences in the transcriptomes of other plant species. This relative conservation is associated with the distribution of different sized gene families and segmentally duplicated loci and may have functional and evolutionary implications. PMID:17708759

  17. Comparison of alignment software for genome-wide bisulphite sequence data

    PubMed Central

    Chatterjee, Aniruddha; Stockwell, Peter A.; Rodger, Euan J.; Morison, Ian M.

    2012-01-01

    Recent advances in next generation sequencing (NGS) technology now provide the opportunity to rapidly interrogate the methylation status of the genome. However, there are challenges in handling and interpretation of the methylation sequence data because of its large volume and the consequences of bisulphite modification. We sequenced reduced representation human genomes on the Illumina platform and efficiently mapped and visualized the data with different pipelines and software packages. We examined three pipelines for aligning bisulphite converted sequencing reads and compared their performance. We also comment on pre-processing and quality control of Illumina data. This comparison highlights differences in methods for NGS data processing and provides guidance to advance sequence-based methylation data analysis for molecular biologists. PMID:22344695

  18. Alignment editing and identification of consensus secondary structures for nucleic acid sequences: interactive use of dot matrix representations.

    PubMed Central

    Davis, J P; Janjić, N; Pribnow, D; Zichi, D A

    1995-01-01

    We present a computer-aided approach for identifying and aligning consensus secondary structure within a set of functionally related oligonucleotide sequences aligned by sequence. The method relies on visualization of secondary structure using a generalization of the dot matrix representation appropriate for consensus sequence data sets. An interactive computer program implementing such a visualization of consensus structure has been developed. The program allows for alignment editing, data and display filtering and various modes of base pair representation, including co-variation. The utility of this approach is demonstrated with four sample data sets derived from in vitro selection experiments and one data set comprising tRNA sequences. Images PMID:7501472

  19. Review of alignment and SNP calling algorithms for next-generation sequencing data.

    PubMed

    Mielczarek, M; Szyda, J

    2016-02-01

    Application of the massive parallel sequencing technology has become one of the most important issues in life sciences. Therefore, it was crucial to develop bioinformatics tools for next-generation sequencing (NGS) data processing. Currently, two of the most significant tasks include alignment to a reference genome and detection of single nucleotide polymorphisms (SNPs). In many types of genomic analyses, great numbers of reads need to be mapped to the reference genome; therefore, selection of the aligner is an essential step in NGS pipelines. Two main algorithms-suffix tries and hash tables-have been introduced for this purpose. Suffix array-based aligners are memory-efficient and work faster than hash-based aligners, but they are less accurate. In contrast, hash table algorithms tend to be slower, but more sensitive. SNP and genotype callers may also be divided into two main different approaches: heuristic and probabilistic methods. A variety of software has been subsequently developed over the past several years. In this paper, we briefly review the current development of NGS data processing algorithms and present the available software.

  20. Enzyme sequence similarity improves the reaction alignment method for cross-species pathway comparison

    SciTech Connect

    Ovacik, Meric A.; Androulakis, Ioannis P.

    2013-09-15

    Pathway-based information has become an important source of information for both establishing evolutionary relationships and understanding the mode of action of a chemical or pharmaceutical among species. Cross-species comparison of pathways can address two broad questions: comparison in order to inform evolutionary relationships and to extrapolate species differences used in a number of different applications including drug and toxicity testing. Cross-species comparison of metabolic pathways is complex as there are multiple features of a pathway that can be modeled and compared. Among the various methods that have been proposed, reaction alignment has emerged as the most successful at predicting phylogenetic relationships based on NCBI taxonomy. We propose an improvement of the reaction alignment method by accounting for sequence similarity in addition to reaction alignment method. Using nine species, including human and some model organisms and test species, we evaluate the standard and improved comparison methods by analyzing glycolysis and citrate cycle pathways conservation. In addition, we demonstrate how organism comparison can be conducted by accounting for the cumulative information retrieved from nine pathways in central metabolism as well as a more complete study involving 36 pathways common in all nine species. Our results indicate that reaction alignment with enzyme sequence similarity results in a more accurate representation of pathway specific cross-species similarities and differences based on NCBI taxonomy.

  1. A Probabilistic Model for Sequence Alignment with Context-Sensitive Indels

    NASA Astrophysics Data System (ADS)

    Hickey, Glenn; Blanchette, Mathieu

    Probabilistic approaches for sequence alignment are usually based on pair Hidden Markov Models (HMMs) or Stochastic Context Free Grammars (SCFGs). Recent studies have shown a significant correlation between the content of short indels and their flanking regions, which by definition cannot be modelled by the above two approaches. In this work, we present a context-sensitive indel model based on a pair Tree-Adjoining Grammar (TAG), along with accompanying algorithms for efficient alignment and parameter estimation. The increased precision and statistical power of this model is shown on simulated and real genomic data. As the cost of sequencing plummets, the usefulness of comparative analysis is becoming limited by alignment accuracy rather than data availability. Our results will therefore have an impact on any type of downstream comparative genomics analyses that rely on alignments. Fine-grained studies of small functional regions or disease markers, for example, could be significantly improved by our method. The implementation is available at http://www.mcb.mcgill.ca/~blanchem/software.html

  2. A Convex Atomic-Norm Approach to Multiple Sequence Alignment and Motif Discovery

    PubMed Central

    Yen, Ian E. H.; Lin, Xin; Zhang, Jiong; Ravikumar, Pradeep; Dhillon, Inderjit S.

    2016-01-01

    Multiple Sequence Alignment and Motif Discovery, known as NP-hard problems, are two fundamental tasks in Bioinformatics. Existing approaches to these two problems are based on either local search methods such as Expectation Maximization (EM), Gibbs Sampling or greedy heuristic methods. In this work, we develop a convex relaxation approach to both problems based on the recent concept of atomic norm and develop a new algorithm, termed Greedy Direction Method of Multiplier, for solving the convex relaxation with two convex atomic constraints. Experiments show that our convex relaxation approach produces solutions of higher quality than those standard tools widely-used in Bioinformatics community on the Multiple Sequence Alignment and Motif Discovery problems. PMID:27559428

  3. Empirical Transition Probability Indexing Sparse-Coding Belief Propagation (ETPI-SCoBeP) Genome Sequence Alignment

    PubMed Central

    Roozgard, Aminmohammad; Barzigar, Nafise; Wang, Shuang; Jiang, Xiaoqian; Cheng, Samuel

    2014-01-01

    The advance in human genome sequencing technology has significantly reduced the cost of data generation and overwhelms the computing capability of sequence analysis. Efficiency, efficacy, and scalability remain challenging in sequence alignment, which is an important and foundational operation for genome data analysis. In this paper, we propose a two-stage approach to tackle this problem. In the preprocessing step, we match blocks of reference and target sequences based on the similarities between their empirical transition probability distributions using belief propagation. We then conduct a refined match using our recently published sparse-coding belief propagation (SCoBeP) technique. Our experimental results demonstrated robustness in nucleotide sequence alignment, and our results are competitive to those of the SOAP aligner and the BWA algorithm. Moreover, compared to SCoBeP alignment, the proposed technique can handle sequences of much longer lengths. PMID:25983537

  4. RBT-GA: a novel metaheuristic for solving the multiple sequence alignment problem

    PubMed Central

    Taheri, Javid; Zomaya, Albert Y

    2009-01-01

    Background Multiple Sequence Alignment (MSA) has always been an active area of research in Bioinformatics. MSA is mainly focused on discovering biologically meaningful relationships among different sequences or proteins in order to investigate the underlying main characteristics/functions. This information is also used to generate phylogenetic trees. Results This paper presents a novel approach, namely RBT-GA, to solve the MSA problem using a hybrid solution methodology combining the Rubber Band Technique (RBT) and the Genetic Algorithm (GA) metaheuristic. RBT is inspired by the behavior of an elastic Rubber Band (RB) on a plate with several poles, which is analogues to locations in the input sequences that could potentially be biologically related. A GA attempts to mimic the evolutionary processes of life in order to locate optimal solutions in an often very complex landscape. RBT-GA is a population based optimization algorithm designed to find the optimal alignment for a set of input protein sequences. In this novel technique, each alignment answer is modeled as a chromosome consisting of several poles in the RBT framework. These poles resemble locations in the input sequences that are most likely to be correlated and/or biologically related. A GA-based optimization process improves these chromosomes gradually yielding a set of mostly optimal answers for the MSA problem. Conclusion RBT-GA is tested with one of the well-known benchmarks suites (BALiBASE 2.0) in this area. The obtained results show that the superiority of the proposed technique even in the case of formidable sequences. PMID:19594869

  5. rasbhari: Optimizing Spaced Seeds for Database Searching, Read Mapping and Alignment-Free Sequence Comparison

    PubMed Central

    Hahn, Lars; Leimeister, Chris-André; Morgenstern, Burkhard

    2016-01-01

    Many algorithms for sequence analysis rely on word matching or word statistics. Often, these approaches can be improved if binary patterns representing match and don’t-care positions are used as a filter, such that only those positions of words are considered that correspond to the match positions of the patterns. The performance of these approaches, however, depends on the underlying patterns. Herein, we show that the overlap complexity of a pattern set that was introduced by Ilie and Ilie is closely related to the variance of the number of matches between two evolutionarily related sequences with respect to this pattern set. We propose a modified hill-climbing algorithm to optimize pattern sets for database searching, read mapping and alignment-free sequence comparison of nucleic-acid sequences; our implementation of this algorithm is called rasbhari. Depending on the application at hand, rasbhari can either minimize the overlap complexity of pattern sets, maximize their sensitivity in database searching or minimize the variance of the number of pattern-based matches in alignment-free sequence comparison. We show that, for database searching, rasbhari generates pattern sets with slightly higher sensitivity than existing approaches. In our Spaced Words approach to alignment-free sequence comparison, pattern sets calculated with rasbhari led to more accurate estimates of phylogenetic distances than the randomly generated pattern sets that we previously used. Finally, we used rasbhari to generate patterns for short read classification with CLARK-S. Here too, the sensitivity of the results could be improved, compared to the default patterns of the program. We integrated rasbhari into Spaced Words; the source code of rasbhari is freely available at http://rasbhari.gobics.de/ PMID:27760124

  6. BuddySuite: Command-line toolkits for manipulating sequences, alignments, and phylogenetic trees.

    PubMed

    Bond, Stephen R; Keat, Karl E; Barreira, Sofia N; Baxevanis, Andreas D

    2017-02-25

    The ability to manipulate sequence, alignment, and phylogenetic tree files has become an increasingly important skill in the life sciences, whether to generate summary information or to prepare data for further downstream analysis. The command line can be an extremely powerful environment for interacting with these resources, but only if the user has the appropriate general-purpose tools on hand. BuddySuite is a collection of four independent yet interrelated command-line toolkits that facilitate each step in the workflow of sequence discovery, curation, alignment, and phylogenetic reconstruction. Most common sequence, alignment, and tree file formats are automatically detected and parsed, and over 100 tools have been implemented for manipulating these data. The project has been engineered to easily accommodate the addition of new tools, it is written in the popular programming language Python, and is hosted on the Python Package Index and GitHub to maximize accessibility. Documentation for each BuddySuite tool, including usage examples, is available at http://tiny.cc/buddysuite wiki. All software is open source and freely available through http://research.nhgri.nih.gov/software/BuddySuite.

  7. Detection of conserved segments in proteins: iterative scanning of sequence databases with alignment blocks.

    PubMed Central

    Tatusov, R L; Altschul, S F; Koonin, E V

    1994-01-01

    We describe an approach to analyzing protein sequence databases that, starting from a single uncharacterized sequence or group of related sequences, generates blocks of conserved segments. The procedure involves iterative database scans with an evolving position-dependent weight matrix constructed from a coevolving set of aligned conserved segments. For each iteration, the expected distribution of matrix scores under a random model is used to set a cutoff score for the inclusion of a segment in the next iteration. This cutoff may be calculated to allow the chance inclusion of either a fixed number or a fixed proportion of false positive segments. With sufficiently high cutoff scores, the procedure converged for all alignment blocks studied, with varying numbers of iterations required. Different methods for calculating weight matrices from alignment blocks were compared. The most effective of those tested was a logarithm-of-odds, Bayesian-based approach that used prior residue probabilities calculated from a mixture of Dirichlet distributions. The procedure described was used to detect novel conserved motifs of potential biological importance. Images PMID:7991589

  8. Objective method for estimating asymptotic parameters, with an application to sequence alignment

    NASA Astrophysics Data System (ADS)

    Sheetlin, Sergey; Park, Yonil; Spouge, John L.

    2011-09-01

    Sequence alignment is an indispensable computational tool in modern molecular biology. The model underlying biological sequence alignment is of interest to physicists because it approximates the statistical mechanics of DNA and protein annealing, while bearing an intimate relationship to models of directed polymers in random media. Recent methods for determining the statistics of random sequence alignments have reduced the computation time to less than 1 s, opening up some interesting possibilities for online computation with biological search engines. Before implementation, however, the methods required an objective technique for computing regression coefficients pertinent to an asymptotic regime. Typically, physicists estimate parameters pertinent to an asymptotic regime subjectively: They eyeball their data; estimate the asymptotic regime where the regression model holds with reasonable accuracy; and then regress data only within the estimated asymptotic regime. Our publicly available computer program arrp replaces the subjective assessment of the asymptotic regime with an objective change-point detection method, increasing confidence in the scientific objectivity of the parameter estimates. Asymptotic regression has potential applications across most of physics.

  9. Distant homology detection using a LEngth and STructure-based sequence Alignment Tool (LESTAT).

    PubMed

    Lee, Marianne M; Bundschuh, Ralf; Chan, Michael K

    2008-05-15

    A new machine learning algorithm, LESTAT (LEngth and STructure-based sequence Alignment Tool) has been developed for detecting protein homologs having low-sequence identity. LESTAT is an iterative profile-based method that runs without reliance on a predefined library and incorporates several novel features that enhance its ability to identify remote sequences. To overcome the inherent bias associated with a single starting model, LESTAT utilizes three structural homologs to create a profile consisting of structurally conserved positions and block separation distances. Subsequent profiles are refined iteratively using sequence information obtained from previous cycles. Additionally, the refinement process incorporates a "lock-in" feature to retain the high-scoring sequences involved in previous alignments for subsequent model building and an enhancement factor to complement the weighting scheme used to build the position specific scoring matrix. A comparison of the performance of LESTAT against PSI-BLAST for seven systems reveals that LESTAT exhibits increased sensitivity and specificity over PSI-BLAST in six of these systems, based on the number of true homologs detected and the number of families these homologs covered. Notably, many of the hits identified are unique to each method, presumably resulting from the distinct differences in the two approaches. Taken together, these findings suggest that LESTAT is a useful complementary method to PSI-BLAST in the detection of distant homologs.

  10. Genomic signal processing methods for computation of alignment-free distances from DNA sequences.

    PubMed

    Borrayo, Ernesto; Mendizabal-Ruiz, E Gerardo; Vélez-Pérez, Hugo; Romo-Vázquez, Rebeca; Mendizabal, Adriana P; Morales, J Alejandro

    2014-01-01

    Genomic signal processing (GSP) refers to the use of digital signal processing (DSP) tools for analyzing genomic data such as DNA sequences. A possible application of GSP that has not been fully explored is the computation of the distance between a pair of sequences. In this work we present GAFD, a novel GSP alignment-free distance computation method. We introduce a DNA sequence-to-signal mapping function based on the employment of doublet values, which increases the number of possible amplitude values for the generated signal. Additionally, we explore the use of three DSP distance metrics as descriptors for categorizing DNA signal fragments. Our results indicate the feasibility of employing GAFD for computing sequence distances and the use of descriptors for characterizing DNA fragments.

  11. Genomic Signal Processing Methods for Computation of Alignment-Free Distances from DNA Sequences

    PubMed Central

    Borrayo, Ernesto; Mendizabal-Ruiz, E. Gerardo; Vélez-Pérez, Hugo; Romo-Vázquez, Rebeca; Mendizabal, Adriana P.; Morales, J. Alejandro

    2014-01-01

    Genomic signal processing (GSP) refers to the use of digital signal processing (DSP) tools for analyzing genomic data such as DNA sequences. A possible application of GSP that has not been fully explored is the computation of the distance between a pair of sequences. In this work we present GAFD, a novel GSP alignment-free distance computation method. We introduce a DNA sequence-to-signal mapping function based on the employment of doublet values, which increases the number of possible amplitude values for the generated signal. Additionally, we explore the use of three DSP distance metrics as descriptors for categorizing DNA signal fragments. Our results indicate the feasibility of employing GAFD for computing sequence distances and the use of descriptors for characterizing DNA fragments. PMID:25393409

  12. Genomic divergences among cattle, dog and human estimated from large-scale alignments of genomic sequences

    PubMed Central

    Liu, George E; Matukumalli, Lakshmi K; Sonstegard, Tad S; Shade, Larry L; Van Tassell, Curtis P

    2006-01-01

    Background Approximately 11 Mb of finished high quality genomic sequences were sampled from cattle, dog and human to estimate genomic divergences and their regional variation among these lineages. Results Optimal three-way multi-species global sequence alignments for 84 cattle clones or loci (each >50 kb of genomic sequence) were constructed using the human and dog genome assemblies as references. Genomic divergences and substitution rates were examined for each clone and for various sequence classes under different functional constraints. Analysis of these alignments revealed that the overall genomic divergences are relatively constant (0.32–0.37 change/site) for pairwise comparisons among cattle, dog and human; however substitution rates vary across genomic regions and among different sequence classes. A neutral mutation rate (2.0–2.2 × 10(-9) change/site/year) was derived from ancestral repetitive sequences, whereas the substitution rate in coding sequences (1.1 × 10(-9) change/site/year) was approximately half of the overall rate (1.9–2.0 × 10(-9) change/site/year). Relative rate tests also indicated that cattle have a significantly faster rate of substitution as compared to dog and that this difference is about 6%. Conclusion This analysis provides a large-scale and unbiased assessment of genomic divergences and regional variation of substitution rates among cattle, dog and human. It is expected that these data will serve as a baseline for future mammalian molecular evolution studies. PMID:16759380

  13. A unified statistical model of protein multiple sequence alignment integrating direct coupling and insertions

    PubMed Central

    Kinjo, Akira R.

    2016-01-01

    The multiple sequence alignment (MSA) of a protein family provides a wealth of information in terms of the conservation pattern of amino acid residues not only at each alignment site but also between distant sites. In order to statistically model the MSA incorporating both short-range and long-range correlations as well as insertions, I have derived a lattice gas model of the MSA based on the principle of maximum entropy. The partition function, obtained by the transfer matrix method with a mean-field approximation, accounts for all possible alignments with all possible sequences. The model parameters for short-range and long-range interactions were determined by a self-consistent condition and by a Gaussian approximation, respectively. Using this model with and without long-range interactions, I analyzed the globin and V-set domains by increasing the “temperature” and by “mutating” a site. The correlations between residue conservation and various measures of the system’s stability indicate that the long-range interactions make the conservation pattern more specific to the structure, and increasingly stabilize better conserved residues. PMID:27924257

  14. A horizontal alignment tool for numerical trend discovery in sequence data: application to protein hydropathy.

    PubMed

    Hadzipasic, Omar; Wrabl, James O; Hilser, Vincent J

    2013-01-01

    An algorithm is presented that returns the optimal pairwise gapped alignment of two sets of signed numerical sequence values. One distinguishing feature of this algorithm is a flexible comparison engine (based on both relative shape and absolute similarity measures) that does not rely on explicit gap penalties. Additionally, an empirical probability model is developed to estimate the significance of the returned alignment with respect to randomized data. The algorithm's utility for biological hypothesis formulation is demonstrated with test cases including database search and pairwise alignment of protein hydropathy. However, the algorithm and probability model could possibly be extended to accommodate other diverse types of protein or nucleic acid data, including positional thermodynamic stability and mRNA translation efficiency. The algorithm requires only numerical values as input and will readily compare data other than protein hydropathy. The tool is therefore expected to complement, rather than replace, existing sequence and structure based tools and may inform medical discovery, as exemplified by proposed similarity between a chlamydial ORFan protein and bacterial colicin pore-forming domain. The source code, documentation, and a basic web-server application are available.

  15. Alignment of Short Reads: A Crucial Step for Application of Next-Generation Sequencing Data in Precision Medicine

    PubMed Central

    Ye, Hao; Meehan, Joe; Tong, Weida; Hong, Huixiao

    2015-01-01

    Precision medicine or personalized medicine has been proposed as a modernized and promising medical strategy. Genetic variants of patients are the key information for implementation of precision medicine. Next-generation sequencing (NGS) is an emerging technology for deciphering genetic variants. Alignment of raw reads to a reference genome is one of the key steps in NGS data analysis. Many algorithms have been developed for alignment of short read sequences since 2008. Users have to make a decision on which alignment algorithm to use in their studies. Selection of the right alignment algorithm determines not only the alignment algorithm but also the set of suitable parameters to be used by the algorithm. Understanding these algorithms helps in selecting the appropriate alignment algorithm for different applications in precision medicine. Here, we review current available algorithms and their major strategies such as seed-and-extend and q-gram filter. We also discuss the challenges in current alignment algorithms, including alignment in multiple repeated regions, long reads alignment and alignment facilitated with known genetic variants. PMID:26610555

  16. Assessing genetic diversity in java fine-flavor cocoa (theobroma cacao l.) Germplasm by simple sequence repeat (ssr) markers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Indonesia is the 3rd largest cocoa producing countries in the world, with an annual cacao bean production of 572,000 tons. The currently cultivated cacao varieties in Indonesia were inter-hybrids of various clones introduced from the Americas since the 16th century. Among them, “Java cocoa” is a wel...

  17. MSAProbs-MPI: parallel multiple sequence aligner for distributed-memory systems.

    PubMed

    González-Domínguez, Jorge; Liu, Yongchao; Touriño, Juan; Schmidt, Bertil

    2016-12-15

    MSAProbs is a state-of-the-art protein multiple sequence alignment tool based on hidden Markov models. It can achieve high alignment accuracy at the expense of relatively long runtimes for large-scale input datasets. In this work we present MSAProbs-MPI, a distributed-memory parallel version of the multithreaded MSAProbs tool that is able to reduce runtimes by exploiting the compute capabilities of common multicore CPU clusters. Our performance evaluation on a cluster with 32 nodes (each containing two Intel Haswell processors) shows reductions in execution time of over one order of magnitude for typical input datasets. Furthermore, MSAProbs-MPI using eight nodes is faster than the GPU-accelerated QuickProbs running on a Tesla K20. Another strong point is that MSAProbs-MPI can deal with large datasets for which MSAProbs and QuickProbs might fail due to time and memory constraints, respectively.

  18. Feature-based multiexposure image-sequence fusion with guided filter and image alignment

    NASA Astrophysics Data System (ADS)

    Xu, Liang; Du, Junping; Zhang, Zhenhong

    2015-01-01

    Multiexposure fusion images have a higher dynamic range and reveal more details than a single captured image of a real-world scene. A clear and intuitive feature-based fusion technique for multiexposure image sequences is conceptually proposed. The main idea of the proposed method is to combine three image features [phase congruency (PC), local contrast, and color saturation] to obtain weight maps of the images. Then, the weight maps are further refined using a guided filter which can improve their accuracy. The final fusion result is constructed using the weighted sum of the source image sequence. In addition, for multiexposure image-sequence fusion involving dynamic scenes containing moving objects, ghost artifacts can easily occur if fusion is directly performed. Therefore, an image-alignment method is first used to adjust the input images to correspond to a reference image, after which fusion is performed. Experimental results demonstrate that the proposed method has a superior performance compared to the existing methods.

  19. RAMICS: trainable, high-speed and biologically relevant alignment of high-throughput sequencing reads to coding DNA

    PubMed Central

    Wright, Imogen A.; Travers, Simon A.

    2014-01-01

    The challenge presented by high-throughput sequencing necessitates the development of novel tools for accurate alignment of reads to reference sequences. Current approaches focus on using heuristics to map reads quickly to large genomes, rather than generating highly accurate alignments in coding regions. Such approaches are, thus, unsuited for applications such as amplicon-based analysis and the realignment phase of exome sequencing and RNA-seq, where accurate and biologically relevant alignment of coding regions is critical. To facilitate such analyses, we have developed a novel tool, RAMICS, that is tailored to mapping large numbers of sequence reads to short lengths (<10 000 bp) of coding DNA. RAMICS utilizes profile hidden Markov models to discover the open reading frame of each sequence and aligns to the reference sequence in a biologically relevant manner, distinguishing between genuine codon-sized indels and frameshift mutations. This approach facilitates the generation of highly accurate alignments, accounting for the error biases of the sequencing machine used to generate reads, particularly at homopolymer regions. Performance improvements are gained through the use of graphics processing units, which increase the speed of mapping through parallelization. RAMICS substantially outperforms all other mapping approaches tested in terms of alignment quality while maintaining highly competitive speed performance. PMID:24861618

  20. CUDA ClustalW: An efficient parallel algorithm for progressive multiple sequence alignment on Multi-GPUs.

    PubMed

    Hung, Che-Lun; Lin, Yu-Shiang; Lin, Chun-Yuan; Chung, Yeh-Ching; Chung, Yi-Fang

    2015-10-01

    For biological applications, sequence alignment is an important strategy to analyze DNA and protein sequences. Multiple sequence alignment is an essential methodology to study biological data, such as homology modeling, phylogenetic reconstruction and etc. However, multiple sequence alignment is a NP-hard problem. In the past decades, progressive approach has been proposed to successfully align multiple sequences by adopting iterative pairwise alignments. Due to rapid growth of the next generation sequencing technologies, a large number of sequences can be produced in a short period of time. When the problem instance is large, progressive alignment will be time consuming. Parallel computing is a suitable solution for such applications, and GPU is one of the important architectures for contemporary parallel computing researches. Therefore, we proposed a GPU version of ClustalW v2.0.11, called CUDA ClustalW v1.0, in this work. From the experiment results, it can be seen that the CUDA ClustalW v1.0 can achieve more than 33× speedups for overall execution time by comparing to ClustalW v2.0.11.

  1. HBLAST: Parallelised sequence similarity--A Hadoop MapReducable basic local alignment search tool.

    PubMed

    O'Driscoll, Aisling; Belogrudov, Vladislav; Carroll, John; Kropp, Kai; Walsh, Paul; Ghazal, Peter; Sleator, Roy D

    2015-04-01

    The recent exponential growth of genomic databases has resulted in the common task of sequence alignment becoming one of the major bottlenecks in the field of computational biology. It is typical for these large datasets and complex computations to require cost prohibitive High Performance Computing (HPC) to function. As such, parallelised solutions have been proposed but many exhibit scalability limitations and are incapable of effectively processing "Big Data" - the name attributed to datasets that are extremely large, complex and require rapid processing. The Hadoop framework, comprised of distributed storage and a parallelised programming framework known as MapReduce, is specifically designed to work with such datasets but it is not trivial to efficiently redesign and implement bioinformatics algorithms according to this paradigm. The parallelisation strategy of "divide and conquer" for alignment algorithms can be applied to both data sets and input query sequences. However, scalability is still an issue due to memory constraints or large databases, with very large database segmentation leading to additional performance decline. Herein, we present Hadoop Blast (HBlast), a parallelised BLAST algorithm that proposes a flexible method to partition both databases and input query sequences using "virtual partitioning". HBlast presents improved scalability over existing solutions and well balanced computational work load while keeping database segmentation and recompilation to a minimum. Enhanced BLAST search performance on cheap memory constrained hardware has significant implications for in field clinical diagnostic testing; enabling faster and more accurate identification of pathogenic DNA in human blood or tissue samples.

  2. Alignment of high-throughput sequencing data inside in-memory databases.

    PubMed

    Firnkorn, Daniel; Knaup-Gregori, Petra; Lorenzo Bermejo, Justo; Ganzinger, Matthias

    2014-01-01

    In times of high-throughput DNA sequencing techniques, performance-capable analysis of DNA sequences is of high importance. Computer supported DNA analysis is still an intensive time-consuming task. In this paper we explore the potential of a new In-Memory database technology by using SAP's High Performance Analytic Appliance (HANA). We focus on read alignment as one of the first steps in DNA sequence analysis. In particular, we examined the widely used Burrows-Wheeler Aligner (BWA) and implemented stored procedures in both, HANA and the free database system MySQL, to compare execution time and memory management. To ensure that the results are comparable, MySQL has been running in memory as well, utilizing its integrated memory engine for database table creation. We implemented stored procedures, containing exact and inexact searching of DNA reads within the reference genome GRCh37. Due to technical restrictions in SAP HANA concerning recursion, the inexact matching problem could not be implemented on this platform. Hence, performance analysis between HANA and MySQL was made by comparing the execution time of the exact search procedures. Here, HANA was approximately 27 times faster than MySQL which means, that there is a high potential within the new In-Memory concepts, leading to further developments of DNA analysis procedures in the future.

  3. Performance evaluation of Warshall algorithm and dynamic programming for Markov chain in local sequence alignment.

    PubMed

    Khan, Mohammad Ibrahim; Kamal, Md Sarwar

    2015-03-01

    Markov Chain is very effective in prediction basically in long data set. In DNA sequencing it is always very important to find the existence of certain nucleotides based on the previous history of the data set. We imposed the Chapman Kolmogorov equation to accomplish the task of Markov Chain. Chapman Kolmogorov equation is the key to help the address the proper places of the DNA chain and this is very powerful tools in mathematics as well as in any other prediction based research. It incorporates the score of DNA sequences calculated by various techniques. Our research utilize the fundamentals of Warshall Algorithm (WA) and Dynamic Programming (DP) to measures the score of DNA segments. The outcomes of the experiment are that Warshall Algorithm is good for small DNA sequences on the other hand Dynamic Programming are good for long DNA sequences. On the top of above findings, it is very important to measure the risk factors of local sequencing during the matching of local sequence alignments whatever the length.

  4. Open-Phylo: a customizable crowd-computing platform for multiple sequence alignment

    PubMed Central

    2013-01-01

    Citizen science games such as Galaxy Zoo, Foldit, and Phylo aim to harness the intelligence and processing power generated by crowds of online gamers to solve scientific problems. However, the selection of the data to be analyzed through these games is under the exclusive control of the game designers, and so are the results produced by gamers. Here, we introduce Open-Phylo, a freely accessible crowd-computing platform that enables any scientist to enter our system and use crowds of gamers to assist computer programs in solving one of the most fundamental problems in genomics: the multiple sequence alignment problem. PMID:24148814

  5. Open-Phylo: a customizable crowd-computing platform for multiple sequence alignment.

    PubMed

    Kwak, Daniel; Kam, Alfred; Becerra, David; Zhou, Qikuan; Hops, Adam; Zarour, Eleyine; Kam, Arthur; Sarmenta, Luis; Blanchette, Mathieu; Waldispühl, Jérôme

    2013-01-01

    Citizen science games such as Galaxy Zoo, Foldit, and Phylo aim to harness the intelligence and processing power generated by crowds of online gamers to solve scientific problems. However, the selection of the data to be analyzed through these games is under the exclusive control of the game designers, and so are the results produced by gamers. Here, we introduce Open-Phylo, a freely accessible crowd-computing platform that enables any scientist to enter our system and use crowds of gamers to assist computer programs in solving one of the most fundamental problems in genomics: the multiple sequence alignment problem.

  6. Prediction of protein function improving sequence remote alignment search by a fuzzy logic algorithm.

    PubMed

    Gómez, Antonio; Cedano, Juan; Espadaler, Jordi; Hermoso, Antonio; Piñol, Jaume; Querol, Enrique

    2008-02-01

    The functional annotation of the new protein sequences represents a major drawback for genomic science. The best way to suggest the function of a protein from its sequence is by finding a related one for which biological information is available. Current alignment algorithms display a list of protein sequence stretches presenting significant similarity to different protein targets, ordered by their respective mathematical scores. However, statistical and biological significance do not always coincide, therefore, the rearrangement of the program output according to more biological characteristics than the mathematical scoring would help functional annotation. A new method that predicts the putative function for the protein integrating the results from the PSI-BLAST program and a fuzzy logic algorithm is described. Several protein sequence characteristics have been checked in their ability to rearrange a PSI-BLAST profile according more to their biological functions. Four of them: amino acid content, matched segment length and hydropathic and flexibility profiles positively contributed, upon being integrated by a fuzzy logic algorithm into a program, BYPASS, to the accurate prediction of the function of a protein from its sequence.

  7. Nucleotide sequence alignment of hdcA from Gram-positive bacteria

    PubMed Central

    Diaz, Maria; Ladero, Victor; Redruello, Begoña; Sanchez-Llana, Esther; del Rio, Beatriz; Fernandez, Maria; Martin, Maria Cruz; Alvarez, Miguel A.

    2016-01-01

    The decarboxylation of histidine -carried out mainly by some gram-positive bacteria- yields the toxic dietary biogenic amine histamine (Ladero et al. 2010 〈10.2174/157340110791233256〉 [1], Linares et al. 2016 〈http://dx.doi.org/10.1016/j.foodchem.2015.11.013〉〉 [2]). The reaction is catalyzed by a pyruvoyl-dependent histidine decarboxylase (Linares et al. 2011 〈10.1080/10408398.2011.582813〉 [3]), which is encoded by the gene hdcA. In order to locate conserved regions in the hdcA gene of Gram-positive bacteria, this article provides a nucleotide sequence alignment of all the hdcA sequences from Gram-positive bacteria present in databases. For further utility and discussion, see 〈http://dx.doi.org/ 10.1016/j.foodcont.2015.11.035〉〉 [4]. PMID:26958625

  8. An alignment-free method to find and visualise rearrangements between pairs of DNA sequences

    PubMed Central

    Pratas, Diogo; Silva, Raquel M.; Pinho, Armando J.; Ferreira, Paulo J.S.G.

    2015-01-01

    Species evolution is indirectly registered in their genomic structure. The emergence and advances in sequencing technology provided a way to access genome information, namely to identify and study evolutionary macro-events, as well as chromosome alterations for clinical purposes. This paper describes a completely alignment-free computational method, based on a blind unsupervised approach, to detect large-scale and small-scale genomic rearrangements between pairs of DNA sequences. To illustrate the power and usefulness of the method we give complete chromosomal information maps for the pairs human-chimpanzee and human-orangutan. The tool by means of which these results were obtained has been made publicly available and is described in detail. PMID:25984837

  9. A memory-efficient dynamic programming algorithm for optimal alignment of a sequence to an RNA secondary structure

    PubMed Central

    2002-01-01

    Background Covariance models (CMs) are probabilistic models of RNA secondary structure, analogous to profile hidden Markov models of linear sequence. The dynamic programming algorithm for aligning a CM to an RNA sequence of length N is O(N3) in memory. This is only practical for small RNAs. Results I describe a divide and conquer variant of the alignment algorithm that is analogous to memory-efficient Myers/Miller dynamic programming algorithms for linear sequence alignment. The new algorithm has an O(N2 log N) memory complexity, at the expense of a small constant factor in time. Conclusions Optimal ribosomal RNA structural alignments that previously required up to 150 GB of memory now require less than 270 MB. PMID:12095421

  10. A probabilistic coding based quantum genetic algorithm for multiple sequence alignment.

    PubMed

    Huo, Hongwei; Xie, Qiaoluan; Shen, Xubang; Stojkovic, Vojislav

    2008-01-01

    This paper presents an original Quantum Genetic algorithm for Multiple sequence ALIGNment (QGMALIGN) that combines a genetic algorithm and a quantum algorithm. A quantum probabilistic coding is designed for representing the multiple sequence alignment. A quantum rotation gate as a mutation operator is used to guide the quantum state evolution. Six genetic operators are designed on the coding basis to improve the solution during the evolutionary process. The features of implicit parallelism and state superposition in quantum mechanics and the global search capability of the genetic algorithm are exploited to get efficient computation. A set of well known test cases from BAliBASE2.0 is used as reference to evaluate the efficiency of the QGMALIGN optimization. The QGMALIGN results have been compared with the most popular methods (CLUSTALX, SAGA, DIALIGN, SB_PIMA, and QGMALIGN) results. The QGMALIGN results show that QGMALIGN performs well on the presenting biological data. The addition of genetic operators to the quantum algorithm lowers the cost of overall running time.

  11. QuickProbs--a fast multiple sequence alignment algorithm designed for graphics processors.

    PubMed

    Gudyś, Adam; Deorowicz, Sebastian

    2014-01-01

    Multiple sequence alignment is a crucial task in a number of biological analyses like secondary structure prediction, domain searching, phylogeny, etc. MSAProbs is currently the most accurate alignment algorithm, but its effectiveness is obtained at the expense of computational time. In the paper we present QuickProbs, the variant of MSAProbs customised for graphics processors. We selected the two most time consuming stages of MSAProbs to be redesigned for GPU execution: the posterior matrices calculation and the consistency transformation. Experiments on three popular benchmarks (BAliBASE, PREFAB, OXBench-X) on quad-core PC equipped with high-end graphics card show QuickProbs to be 5.7 to 9.7 times faster than original CPU-parallel MSAProbs. Additional tests performed on several protein families from Pfam database give overall speed-up of 6.7. Compared to other algorithms like MAFFT, MUSCLE, or ClustalW, QuickProbs proved to be much more accurate at similar speed. Additionally we introduce a tuned variant of QuickProbs which is significantly more accurate on sets of distantly related sequences than MSAProbs without exceeding its computation time. The GPU part of QuickProbs was implemented in OpenCL, thus the package is suitable for graphics processors produced by all major vendors.

  12. Sequence stratigraphy, structural style, and age of deformation of the Malaita accretionary prism (Solomon arc-Ontong Java Plateau convergent zone)

    NASA Astrophysics Data System (ADS)

    Phinney, Eric J.; Mann, Paul; Coffin, Millard F.; Shipley, Thomas H.

    2004-10-01

    Possibilities for the fate of oceanic plateaus at subduction zones range from complete subduction of the plateau beneath the arc to complete plateau-arc accretion and resulting collisional orogenesis. Deep penetration, multi-channel seismic reflection (MCS) data from the northern flank of the Solomon Islands reveal the sequence stratigraphy, structural style, and age of deformation of an accretionary prism formed during late Neogene (5-0 Ma) convergence between the ˜33-km-thick crust of the Ontong Java oceanic plateau and the ˜15-km-thick Solomon island arc. Correlation of MCS data with the satellite-derived, free-air gravity field defines the tectonic boundaries and internal structure of the 800-km-long, 140-km-wide accretionary prism. We name this prism the "Malaita accretionary prism" or "MAP" after Malaita, the largest and best-studied island exposure of the accretionary prism in the Solomon Islands. MCS data, gravity data, and stratigraphic correlations to islands and ODP sites on the Ontong Java Plateau (OJP) reveal that the offshore MAP is composed of folded and thrust faulted sedimentary rocks and upper crystalline crust offscraped from the Solomon the subducting Ontong Java Plateau (Pacific plate) and transferred to the Solomon arc. With the exception of an upper, sequence of Quaternary? island-derived terrigenous sediments, the deformed stratigraphy of the MAP is identical to that of the incoming Ontong Java Plateau in the North Solomon trench. We divide the MAP into four distinct, folded and thrust fault-bounded structural domains interpreted to have formed by diachronous, southeast-to-northwest, and highly oblique entry of the Ontong Java Plateau into a former trench now marked by the Kia-Kaipito-Korigole (KKK) left-lateral strike-slip fault zone along the suture between the Solomon arc and the MAP. The structural style within each of the four structural domains consists of a parallel series of three to four fault propagation folds formed by the

  13. Definition of the tempo of sequence diversity across an alignment and automatic identification of sequence motifs: Application to protein homologous families and superfamilies

    PubMed Central

    May, Alex C.W.

    2002-01-01

    It is often possible to identify sequence motifs that characterize a protein family in terms of its fold and/or function from aligned protein sequences. Such motifs can be used to search for new family members. Partitioning of sequence alignments into regions of similar amino acid variability is usually done by hand. Here, I present a completely automatic method for this purpose: one that is guaranteed to produce globally optimal solutions at all levels of partition granularity. The method is used to compare the tempo of sequence diversity across reliable three-dimensional (3D) structure-based alignments of 209 protein families (HOMSTRAD) and that for 69 superfamilies (CAMPASS). (The mean alignment length for HOMSTRAD and CAMPASS are very similar.) Surprisingly, the optimal segmentation distributions for the closely related proteins and distantly related ones are found to be very similar. Also, optimal segmentation identifies an unusual protein superfamily. Finally, protein 3D structure clues from the tempo of sequence diversity across alignments are examined. The method is general, and could be applied to any area of comparative biological sequence and 3D structure analysis where the constraint of the inherent linear organization of the data imposes an ordering on the set of objects to be clustered. PMID:12441381

  14. AREM: Aligning Short Reads from ChIP-Sequencing by Expectation Maximization

    NASA Astrophysics Data System (ADS)

    Newkirk, Daniel; Biesinger, Jacob; Chon, Alvin; Yokomori, Kyoko; Xie, Xiaohui

    High-throughput sequencing coupled to chromatin immunoprecipitation (ChIP-Seq) is widely used in characterizing genome-wide binding patterns of transcription factors, cofactors, chromatin modifiers, and other DNA binding proteins. A key step in ChIP-Seq data analysis is to map short reads from high-throughput sequencing to a reference genome and identify peak regions enriched with short reads. Although several methods have been proposed for ChIP-Seq analysis, most existing methods only consider reads that can be uniquely placed in the reference genome, and therefore have low power for detecting peaks located within repeat sequences. Here we introduce a probabilistic approach for ChIP-Seq data analysis which utilizes all reads, providing a truly genome-wide view of binding patterns. Reads are modeled using a mixture model corresponding to K enriched regions and a null genomic background. We use maximum likelihood to estimate the locations of the enriched regions, and implement an expectation-maximization (E-M) algorithm, called AREM (aligning reads by expectation maximization), to update the alignment probabilities of each read to different genomic locations. We apply the algorithm to identify genome-wide binding events of two proteins: Rad21, a component of cohesin and a key factor involved in chromatid cohesion, and Srebp-1, a transcription factor important for lipid/cholesterol homeostasis. Using AREM, we were able to identify 19,935 Rad21 peaks and 1,748 Srebp-1 peaks in the mouse genome with high confidence, including 1,517 (7.6%) Rad21 peaks and 227 (13%) Srebp-1 peaks that were missed using only uniquely mapped reads. The open source implementation of our algorithm is available at http://sourceforge.net/projects/arem

  15. STRUCTFAST: protein sequence remote homology detection and alignment using novel dynamic programming and profile-profile scoring.

    PubMed

    Debe, Derek A; Danzer, Joseph F; Goddard, William A; Poleksic, Aleksandar

    2006-09-01

    STRUCTFAST is a novel profile-profile alignment algorithm capable of detecting weak similarities between protein sequences. The increased sensitivity and accuracy of the STRUCTFAST method are achieved through several unique features. First, the algorithm utilizes a novel dynamic programming engine capable of incorporating important information from a structural family directly into the alignment process. Second, the algorithm employs a rigorous analytical formula for profile-profile scoring to overcome the limitations of ad hoc scoring functions that require adjustable parameter training. Third, the algorithm employs Convergent Island Statistics (CIS) to compute the statistical significance of alignment scores independently for each pair of sequences. STRUCTFAST routinely produces alignments that meet or exceed the quality obtained by an expert human homology modeler, as evidenced by its performance in the latest CAFASP4 and CASP6 blind prediction benchmark experiments.

  16. Welding-induced alignment distortion in DIP LD packages: effect of laser welding sequence

    NASA Astrophysics Data System (ADS)

    Liu, Wenning; Lin, Yaomin; Shi, Frank G.

    2002-06-01

    In pigtailing of a single mode fiber to a semiconductor laser for optical communication applications, the tolerance for displacement of the fiber relative to the laser is extremely tight, a submicron movement can often lead to a significant misalignment and thus the reduction in the power coupled into the fiber. Among various fiber pigtailing assembly technologies, pulsed laser welding is the method with submicron accuracy and is most conducive to automation. However, the melting-solidification process during laser welding can often distort the pre-achieved fiber-optic alignment. This Welding-Induced-Alignment-Distortion (WIAD) is a serious concern and significantly affects the yield for single mode fiber pigtailing to a semiconductor laser. This work presents a method for predicting WIAD as a function of various processing, laser, tooling and materials parameters. More specifically, the degree of WIAD produced by the laser welding in a dual-in-line laser diode package is predicted for the first time. An optimal welding sequence is obtained for minimizing WIAD.

  17. Alignment of 3D Building Models and TIR Video Sequences with Line Tracking

    NASA Astrophysics Data System (ADS)

    Iwaszczuk, D.; Stilla, U.

    2014-11-01

    Thermal infrared imagery of urban areas became interesting for urban climate investigations and thermal building inspections. Using a flying platform such as UAV or a helicopter for the acquisition and combining the thermal data with the 3D building models via texturing delivers a valuable groundwork for large-area building inspections. However, such thermal textures are useful for further analysis if they are geometrically correctly extracted. This can be achieved with a good coregistrations between the 3D building models and thermal images, which cannot be achieved by direct georeferencing. Hence, this paper presents methodology for alignment of 3D building models and oblique TIR image sequences taken from a flying platform. In a single image line correspondences between model edges and image line segments are found using accumulator approach and based on these correspondences an optimal camera pose is calculated to ensure the best match between the projected model and the image structures. Among the sequence the linear features are tracked based on visibility prediction. The results of the proposed methodology are presented using a TIR image sequence taken from helicopter in a densely built-up urban area. The novelty of this work is given by employing the uncertainty of the 3D building models and by innovative tracking strategy based on a priori knowledge from the 3D building model and the visibility checking.

  18. Ribosomal ITS sequences allow resolution of freshwater sponge phylogeny with alignments guided by secondary structure prediction.

    PubMed

    Itskovich, Valeria; Gontcharov, Andrey; Masuda, Yoshiki; Nohno, Tsutomu; Belikov, Sergey; Efremova, Sofia; Meixner, Martin; Janussen, Dorte

    2008-12-01

    Freshwater sponges include six extant families which belong to the suborder Spongillina (Porifera). The taxonomy of freshwater sponges is problematic and their phylogeny and evolution are not well understood. Sequences of the ribosomal internal transcribed spacers (ITS1 and ITS2) of 11 species from the family Lubomirskiidae, 13 species from the family Spongillidae, and 1 species from the family Potamolepidae were obtained to study the phylogenetic relationships between endemic and cosmopolitan freshwater sponges and the evolution of sponges in Lake Baikal. The present study is the first one where ITS1 sequences were successfully aligned using verified secondary structure models and, in combination with ITS2, used to infer relationships between the freshwater sponges. Phylogenetic trees inferred using maximum likelihood, neighbor-joining, and parsimony methods and Bayesian inference revealed that the endemic family Lubomirskiidae was monophyletic. Our results do not support the monophyly of Spongillidae because Lubomirskiidae formed a robust clade with E. muelleri, and Trochospongilla latouchiana formed a robust clade with the outgroup Echinospongilla brichardi (Potamolepidae). Within the cosmopolitan family Spongillidae the genera Radiospongilla and Eunapius were found to be monophyletic, while Ephydatia muelleri was basal to the family Lubomirskiidae. The genetic distances between Lubomirskiidae species being much lower than those between Spongillidae species are indicative of their relatively recent radiation from a common ancestor. These results indicated that rDNA spacers sequences can be useful in the study of phylogenetic relationships of and the identification of species of freshwater sponges.

  19. A genome survey sequencing of the Java mouse deer (Tragulus javanicus) adds new aspects to the evolution of lineage specific retrotransposons in Ruminantia (Cetartiodactyla).

    PubMed

    Gallus, S; Kumar, V; Bertelsen, M F; Janke, A; Nilsson, M A

    2015-10-25

    Ruminantia, the ruminating, hoofed mammals (cow, deer, giraffe and allies) are an unranked artiodactylan clade. Around 50-60 million years ago the BovB retrotransposon entered the ancestral ruminantian genome through horizontal gene transfer. A survey genome screen using 454-pyrosequencing of the Java mouse deer (Tragulus javanicus) and the lesser kudu (Tragelaphus imberbis) was done to investigate and to compare the landscape of transposable elements within Ruminantia. The family Tragulidae (mouse deer) is the only representative of Tragulina and phylogenetically important, because it represents the earliest divergence in Ruminantia. The data analyses show that, relative to other ruminantian species, the lesser kudu genome has seen an expansion of BovB Long INterspersed Elements (LINEs) and BovB related Short INterspersed Elements (SINEs) like BOVA2. In comparison the genome of Java mouse deer has fewer BovB elements than other ruminants, especially Bovinae, and has in addition a novel CHR-3 SINE most likely propagated by LINE-1. By contrast the other ruminants have low amounts of CHR SINEs but high numbers of actively propagating BovB-derived and BovB-propagated SINEs. The survey sequencing data suggest that the transposable element landscape in mouse deer (Tragulina) is unique among Ruminantia, suggesting a lineage specific evolutionary trajectory that does not involve BovB mediated retrotransposition. This shows that the genomic landscape of mobile genetic elements can rapidly change in any lineage.

  20. IBBOMSA: An Improved Biogeography-based Approach for Multiple Sequence Alignment

    PubMed Central

    Yadav, Rohit Kumar; Banka, Haider

    2016-01-01

    In bioinformatics, multiple sequence alignment (MSA) is an NP-hard problem. Hence, nature-inspired techniques can better approximate the solution. In the current study, a novel biogeography-based optimization (NBBO) is proposed to solve an MSA problem. The biogeography-based optimization (BBO) is a new paradigm for optimization. But, there exists some deficiencies in solving complicated problems such as low population diversity and slow convergence rate. NBBO is an enhanced version of BBO, in which, a new migration operation is proposed to overcome the limitations of BBO. The new migration adopts more information from other habitats, maintains population diversity, and preserves exploitation ability. In the performance analysis, the proposed and existing techniques such as VDGA, MOMSA, and GAPAM are tested on publicly available benchmark datasets (ie, Bali base). It has been observed that the proposed method shows the superiority/competitiveness with the existing techniques. PMID:27812276

  1. SP-Designer: a user-friendly program for designing species-specific primer pairs from DNA sequence alignments.

    PubMed

    Villard, Pierre; Malausa, Thibaut

    2013-07-01

    SP-Designer is an open-source program providing a user-friendly tool for the design of specific PCR primer pairs from a DNA sequence alignment containing sequences from various taxa. SP-Designer selects PCR primer pairs for the amplification of DNA from a target species on the basis of several criteria: (i) primer specificity, as assessed by interspecific sequence polymorphism in the annealing regions, (ii) the biochemical characteristics of the primers and (iii) the intended PCR conditions. SP-Designer generates tables, detailing the primer pair and PCR characteristics, and a FASTA file locating the primer sequences in the original sequence alignment. SP-Designer is Windows-compatible and freely available from http://www2.sophia.inra.fr/urih/sophia_mart/sp_designer/info_sp_designer.php.

  2. A method to avoid errors associated with the analysis of hypermutated viral sequences by alignment-based methods.

    PubMed

    Alinejad-Rokny, Hamid; Ebrahimi, Diako

    2015-12-01

    The human genome encodes for a family of editing enzymes known as APOBEC3 (apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like3). They induce context dependent G-to-A changes, referred to as "hypermutation", in the genome of viruses such as HIV, SIV, HBV and endogenous retroviruses. Hypermutation is characterized by aligning affected sequences to a reference sequence. We show that indels (insertions/deletions) in the sequences lead to an incorrect assignment of APOBEC3 targeted and non-target sites. This can result in an incorrect identification of hypermutated sequences and erroneous biological inferences made based on hypermutation analysis.

  3. StreamingTrim 1.0: a Java software for dynamic trimming of 16S rRNA sequence data from metagenetic studies.

    PubMed

    Bacci, G; Bazzicalupo, M; Benedetti, A; Mengoni, A

    2014-03-01

    Next-generation sequencing technologies are extensively used in the field of molecular microbial ecology to describe taxonomic composition and to infer functionality of microbial communities. In particular, the so-called barcode or metagenetic applications that are based on PCR amplicon library sequencing are very popular at present. One of the problems, related to the utilization of the data of these libraries, is the analysis of reads quality and removal (trimming) of low-quality segments, while retaining sufficient information for subsequent analyses (e.g. taxonomic assignment). Here, we present StreamingTrim, a DNA reads trimming software, written in Java, with which researchers are able to analyse the quality of DNA sequences in fastq files and to search for low-quality zones in a very conservative way. This software has been developed with the aim to provide a tool capable of trimming amplicon library data, retaining as much as taxonomic information as possible. This software is equipped with a graphical user interface for a user-friendly usage. Moreover, from a computational point of view, StreamingTrim reads and analyses sequences one by one from an input fastq file, without keeping anything in memory, permitting to run the computation on a normal desktop PC or even a laptop. Trimmed sequences are saved in an output file, and a statistics summary is displayed that contains the mean and standard deviation of the length and quality of the whole sequence file. Compiled software, a manual and example data sets are available under the BSD-2-Clause License at the GitHub repository at https://github.com/GiBacci/StreamingTrim/.

  4. A quantum-inspired genetic algorithm based on probabilistic coding for multiple sequence alignment.

    PubMed

    Huo, Hong-Wei; Stojkovic, Vojislav; Xie, Qiao-Luan

    2010-02-01

    Quantum parallelism arises from the ability of a quantum memory register to exist in a superposition of base states. Since the number of possible base states is 2(n), where n is the number of qubits in the quantum memory register, one operation on a quantum computer performs what an exponential number of operations on a classical computer performs. The power of quantum algorithms comes from taking advantages of quantum parallelism. Quantum algorithms are exponentially faster than classical algorithms. Genetic optimization algorithms are stochastic search algorithms which are used to search large, nonlinear spaces where expert knowledge is lacking or difficult to encode. QGMALIGN--a probabilistic coding based quantum-inspired genetic algorithm for multiple sequence alignment is presented. A quantum rotation gate as a mutation operator is used to guide the quantum state evolution. Six genetic operators are designed on the coding basis to improve the solution during the evolutionary process. The experimental results show that QGMALIGN can compete with the popular methods, such as CLUSTALX and SAGA, and performs well on the presenting biological data. Moreover, the addition of genetic operators to the quantum-inspired algorithm lowers the cost of overall running time.

  5. Structure-Based Sequence Alignment of the Transmembrane Domains of All Human GPCRs: Phylogenetic, Structural and Functional Implications

    PubMed Central

    Cvicek, Vaclav; Goddard, William A.; Abrol, Ravinder

    2016-01-01

    The understanding of G-protein coupled receptors (GPCRs) is undergoing a revolution due to increased information about their signaling and the experimental determination of structures for more than 25 receptors. The availability of at least one receptor structure for each of the GPCR classes, well separated in sequence space, enables an integrated superfamily-wide analysis to identify signatures involving the role of conserved residues, conserved contacts, and downstream signaling in the context of receptor structures. In this study, we align the transmembrane (TM) domains of all experimental GPCR structures to maximize the conserved inter-helical contacts. The resulting superfamily-wide GpcR Sequence-Structure (GRoSS) alignment of the TM domains for all human GPCR sequences is sufficient to generate a phylogenetic tree that correctly distinguishes all different GPCR classes, suggesting that the class-level differences in the GPCR superfamily are encoded at least partly in the TM domains. The inter-helical contacts conserved across all GPCR classes describe the evolutionarily conserved GPCR structural fold. The corresponding structural alignment of the inactive and active conformations, available for a few GPCRs, identifies activation hot-spot residues in the TM domains that get rewired upon activation. Many GPCR mutations, known to alter receptor signaling and cause disease, are located at these conserved contact and activation hot-spot residue positions. The GRoSS alignment places the chemosensory receptor subfamilies for bitter taste (TAS2R) and pheromones (Vomeronasal, VN1R) in the rhodopsin family, known to contain the chemosensory olfactory receptor subfamily. The GRoSS alignment also enables the quantification of the structural variability in the TM regions of experimental structures, useful for homology modeling and structure prediction of receptors. Furthermore, this alignment identifies structurally and functionally important residues in all human GPCRs

  6. An optimized and low-cost FPGA-based DNA sequence alignment--a step towards personal genomics.

    PubMed

    Shah, Hurmat Ali; Hasan, Laiq; Ahmad, Nasir

    2013-01-01

    DNA sequence alignment is a cardinal process in computational biology but also is much expensive computationally when performing through traditional computational platforms like CPU. Of many off the shelf platforms explored for speeding up the computation process, FPGA stands as the best candidate due to its performance per dollar spent and performance per watt. These two advantages make FPGA as the most appropriate choice for realizing the aim of personal genomics. The previous implementation of DNA sequence alignment did not take into consideration the price of the device on which optimization was performed. This paper presents optimization over previous FPGA implementation that increases the overall speed-up achieved as well as the price incurred by the platform that was optimized. The optimizations are (1) The array of processing elements is made to run on change in input value and not on clock, so eliminating the need for tight clock synchronization, (2) the implementation is unrestrained by the size of the sequences to be aligned, (3) the waiting time required for the sequences to load to FPGA is reduced to the minimum possible and (4) an efficient method is devised to store the output matrix that make possible to save the diagonal elements to be used in next pass, in parallel with the computation of output matrix. Implemented on Spartan3 FPGA, this implementation achieved 20 times performance improvement in terms of CUPS over GPP implementation.

  7. Design Pattern Mining Using Distributed Learning Automata and DNA Sequence Alignment

    PubMed Central

    Esmaeilpour, Mansour; Naderifar, Vahideh; Shukur, Zarina

    2014-01-01

    Context Over the last decade, design patterns have been used extensively to generate reusable solutions to frequently encountered problems in software engineering and object oriented programming. A design pattern is a repeatable software design solution that provides a template for solving various instances of a general problem. Objective This paper describes a new method for pattern mining, isolating design patterns and relationship between them; and a related tool, DLA-DNA for all implemented pattern and all projects used for evaluation. DLA-DNA achieves acceptable precision and recall instead of other evaluated tools based on distributed learning automata (DLA) and deoxyribonucleic acid (DNA) sequences alignment. Method The proposed method mines structural design patterns in the object oriented source code and extracts the strong and weak relationships between them, enabling analyzers and programmers to determine the dependency rate of each object, component, and other section of the code for parameter passing and modular programming. The proposed model can detect design patterns better that available other tools those are Pinot, PTIDEJ and DPJF; and the strengths of their relationships. Results The result demonstrate that whenever the source code is build standard and non-standard, based on the design patterns, then the result of the proposed method is near to DPJF and better that Pinot and PTIDEJ. The proposed model is tested on the several source codes and is compared with other related models and available tools those the results show the precision and recall of the proposed method, averagely 20% and 9.6% are more than Pinot, 27% and 31% are more than PTIDEJ and 3.3% and 2% are more than DPJF respectively. Conclusion The primary idea of the proposed method is organized in two following steps: the first step, elemental design patterns are identified, while at the second step, is composed to recognize actual design patterns. PMID:25243670

  8. eMatchSite: Sequence Order-Independent Structure Alignments of Ligand Binding Pockets in Protein Models

    PubMed Central

    Brylinski, Michal

    2014-01-01

    Detecting similarities between ligand binding sites in the absence of global homology between target proteins has been recognized as one of the critical components of modern drug discovery. Local binding site alignments can be constructed using sequence order-independent techniques, however, to achieve a high accuracy, many current algorithms for binding site comparison require high-quality experimental protein structures, preferably in the bound conformational state. This, in turn, complicates proteome scale applications, where only various quality structure models are available for the majority of gene products. To improve the state-of-the-art, we developed eMatchSite, a new method for constructing sequence order-independent alignments of ligand binding sites in protein models. Large-scale benchmarking calculations using adenine-binding pockets in crystal structures demonstrate that eMatchSite generates accurate alignments for almost three times more protein pairs than SOIPPA. More importantly, eMatchSite offers a high tolerance to structural distortions in ligand binding regions in protein models. For example, the percentage of correctly aligned pairs of adenine-binding sites in weakly homologous protein models is only 4–9% lower than those aligned using crystal structures. This represents a significant improvement over other algorithms, e.g. the performance of eMatchSite in recognizing similar binding sites is 6% and 13% higher than that of SiteEngine using high- and moderate-quality protein models, respectively. Constructing biologically correct alignments using predicted ligand binding sites in protein models opens up the possibility to investigate drug-protein interaction networks for complete proteomes with prospective systems-level applications in polypharmacology and rational drug repositioning. eMatchSite is freely available to the academic community as a web-server and a stand-alone software distribution at http://www.brylinski.org/ematchsite. PMID

  9. Science course sequences: The alignment of written, enacted, and tested curricula and their impact on grade 11 HSPA science scores

    NASA Astrophysics Data System (ADS)

    Lentz, Christine A.

    The purpose of this mixed method study was to examine the alignment of the written, enacted, and tested curricula of the Ocean City High School science course sequencing and its impact on student achievement. This study also examined the school's ability to predict student scores on the science portion of the High School Proficiency Assessment (HSPA). Data collected for science achievement included the science portion of the Grade Eight Proficiency Assessment (GEPA) as a pretest and the scores for the science portion of the HSPA as a posttest. Data collected for curriculum alignment included an examination of teacher generated course curriculum maps to determine the alignment with the New Jersey Core Curriculum Content Standards and the HSPA Test Specifications Directory. The quantitative data were treated through a series of paired samples t-tests, Pearson product moment correlation was used to examine relationships between variables, an ANCOVA analysis and a stepwise regression analysis were also completed. Based on the findings of the data analysis of this research effort, the following conclusions were drawn: (1) the alignment of the enacted curriculum with the tested and written curricula affected science achievement. (2) GEPA scores are significantly tied to HSPA scores and (3) GEPA scores and enrollment in the science sequence whose curriculum was aligned with the written and tested curricula, met the requirements of a predictor of scores on the HSPA exam. It is expected that educational leadership will use the results of this research to inform practice and drive decision-making in respect to student placement in to course sequences. It is hoped that the results will not only increase support for the district's curricula development plan but also add to the overall body of knowledge surrounding science program effectiveness in relation to the No Child Left Behind standards.

  10. iCODEHOP: a new interactive program for designing COnsensus-DEgenerate Hybrid Oligonucleotide Primers from multiply aligned protein sequences

    PubMed Central

    Boyce, Richard; Chilana, Parmit; Rose, Timothy M.

    2009-01-01

    PCR amplification using COnsensus DEgenerate Hybrid Oligonucleotide Primers (CODEHOPs) has proven to be highly effective for identifying unknown pathogens and characterizing novel genes. We describe iCODEHOP; a new interactive web application that simplifies the process of designing and selecting CODEHOPs from multiply-aligned protein sequences. iCODEHOP intelligently guides the user through the degenerate primer design process including uploading sequences, creating a multiple alignment, deriving CODEHOPs and calculating their annealing temperatures. The user can quickly scan over an entire set of degenerate primers designed by the program to assess their relative quality and select individual primers for further analysis. The program displays phylogenetic information for input sequences and allows the user to easily design new primers from selected sequence sub-clades. It also allows the user to bias primer design to favor specific clades or sequences using sequence weights. iCODEHOP is freely available to all interested researchers at https://icodehop.cphi.washington.edu/i-codehop-context/Welcome. PMID:19443442

  11. CloudAligner: A fast and full-featured MapReduce based tool for sequence mapping

    PubMed Central

    2011-01-01

    Background Research in genetics has developed rapidly recently due to the aid of next generation sequencing (NGS). However, massively-parallel NGS produces enormous amounts of data, which leads to storage, compatibility, scalability, and performance issues. The Cloud Computing and MapReduce framework, which utilizes hundreds or thousands of shared computers to map sequencing reads quickly and efficiently to reference genome sequences, appears to be a very promising solution for these issues. Consequently, it has been adopted by many organizations recently, and the initial results are very promising. However, since these are only initial steps toward this trend, the developed software does not provide adequate primary functions like bisulfite, pair-end mapping, etc., in on-site software such as RMAP or BS Seeker. In addition, existing MapReduce-based applications were not designed to process the long reads produced by the most recent second-generation and third-generation NGS instruments and, therefore, are inefficient. Last, it is difficult for a majority of biologists untrained in programming skills to use these tools because most were developed on Linux with a command line interface. Results To urge the trend of using Cloud technologies in genomics and prepare for advances in second- and third-generation DNA sequencing, we have built a Hadoop MapReduce-based application, CloudAligner, which achieves higher performance, covers most primary features, is more accurate, and has a user-friendly interface. It was also designed to be able to deal with long sequences. The performance gain of CloudAligner over Cloud-based counterparts (35 to 80%) mainly comes from the omission of the reduce phase. In comparison to local-based approaches, the performance gain of CloudAligner is from the partition and parallel processing of the huge reference genome as well as the reads. The source code of CloudAligner is available at http://cloudaligner.sourceforge.net/ and its web version

  12. Choice of Reference Sequence and Assembler for Alignment of Listeria monocytogenes Short-Read Sequence Data Greatly Influences Rates of Error in SNP Analyses

    PubMed Central

    Pightling, Arthur W.; Petronella, Nicholas; Pagotto, Franco

    2014-01-01

    The wide availability of whole-genome sequencing (WGS) and an abundance of open-source software have made detection of single-nucleotide polymorphisms (SNPs) in bacterial genomes an increasingly accessible and effective tool for comparative analyses. Thus, ensuring that real nucleotide differences between genomes (i.e., true SNPs) are detected at high rates and that the influences of errors (such as false positive SNPs, ambiguously called sites, and gaps) are mitigated is of utmost importance. The choices researchers make regarding the generation and analysis of WGS data can greatly influence the accuracy of short-read sequence alignments and, therefore, the efficacy of such experiments. We studied the effects of some of these choices, including: i) depth of sequencing coverage, ii) choice of reference-guided short-read sequence assembler, iii) choice of reference genome, and iv) whether to perform read-quality filtering and trimming, on our ability to detect true SNPs and on the frequencies of errors. We performed benchmarking experiments, during which we assembled simulated and real Listeria monocytogenes strain 08-5578 short-read sequence datasets of varying quality with four commonly used assemblers (BWA, MOSAIK, Novoalign, and SMALT), using reference genomes of varying genetic distances, and with or without read pre-processing (i.e., quality filtering and trimming). We found that assemblies of at least 50-fold coverage provided the most accurate results. In addition, MOSAIK yielded the fewest errors when reads were aligned to a nearly identical reference genome, while using SMALT to align reads against a reference sequence that is ∼0.82% distant from 08-5578 at the nucleotide level resulted in the detection of the greatest numbers of true SNPs and the fewest errors. Finally, we show that whether read pre-processing improves SNP detection depends upon the choice of reference sequence and assembler. In total, this study demonstrates that researchers should

  13. Evaluating alignment and variant-calling software for mutation identification in C. elegans by whole-genome sequencing

    PubMed Central

    Yun, Sijung

    2017-01-01

    Whole-genome sequencing is a powerful tool for analyzing genetic variation on a global scale. One particularly useful application is the identification of mutations obtained by classical phenotypic screens in model species. Sequence data from the mutant strain is aligned to the reference genome, and then variants are called to generate a list of candidate alleles. A number of software pipelines for mutation identification have been targeted to C. elegans, with particular emphasis on ease of use, incorporation of mapping strain data, subtraction of background variants, and similar criteria. Although success is predicated upon the sensitive and accurate detection of candidate alleles, relatively little effort has been invested in evaluating the underlying software components that are required for mutation identification. Therefore, we have benchmarked a number of commonly used tools for sequence alignment and variant calling, in all pair-wise combinations, against both simulated and actual datasets. We compared the accuracy of those pipelines for mutation identification in C. elegans, and found that the combination of BBMap for alignment plus FreeBayes for variant calling offers the most robust performance. PMID:28333980

  14. A simple and fast approach to prediction of protein secondary structure from multiply aligned sequences with accuracy above 70%.

    PubMed Central

    Mehta, P. K.; Heringa, J.; Argos, P.

    1995-01-01

    To improve secondary structure predictions in protein sequences, the information residing in multiple sequence alignments of substituted but structurally related proteins is exploited. A database comprised of 70 protein families and a total of 2,500 sequences, some of which were aligned by tertiary structural superpositions, was used to calculate residue exchange weight matrices within alpha-helical, beta-strand, and coil substructures, respectively. Secondary structure predictions were made based on the observed residue substitutions in local regions of the multiple alignments and the largest possible associated exchange weights in each of the three matrix types. Comparison of the observed and predicted secondary structure on a per-residue basis yielded a mean accuracy of 72.2%. Individual alpha-helix, beta-strand, and coil states were respectively predicted at 66.7, and 75.8% correctness, representing a well-balanced three-state prediction. The accuracy level, verified by cross-validation through jack-knife tests on all protein families, dropped, on average, to only 70.9%, indicating the rigor of the prediction procedure. On the basis of robustness, conceptual clarity, accuracy, and executable efficiency, the method has considerable advantage, especially with its sole reliance on amino acid substitutions within structurally related proteins. PMID:8580842

  15. Evaluating alignment and variant-calling software for mutation identification in C. elegans by whole-genome sequencing.

    PubMed

    Smith, Harold E; Yun, Sijung

    2017-01-01

    Whole-genome sequencing is a powerful tool for analyzing genetic variation on a global scale. One particularly useful application is the identification of mutations obtained by classical phenotypic screens in model species. Sequence data from the mutant strain is aligned to the reference genome, and then variants are called to generate a list of candidate alleles. A number of software pipelines for mutation identification have been targeted to C. elegans, with particular emphasis on ease of use, incorporation of mapping strain data, subtraction of background variants, and similar criteria. Although success is predicated upon the sensitive and accurate detection of candidate alleles, relatively little effort has been invested in evaluating the underlying software components that are required for mutation identification. Therefore, we have benchmarked a number of commonly used tools for sequence alignment and variant calling, in all pair-wise combinations, against both simulated and actual datasets. We compared the accuracy of those pipelines for mutation identification in C. elegans, and found that the combination of BBMap for alignment plus FreeBayes for variant calling offers the most robust performance.

  16. A Novel Method for Alignment-free DNA Sequence Similarity Analysis Based on the Characterization of Complex Networks

    PubMed Central

    Zhou, Jie; Zhong, Pianyu; Zhang, Tinghui

    2016-01-01

    Determination of sequence similarity is one of the major steps in computational phylogenetic studies. One of the major tasks of computational biologists is to develop novel mathematical descriptors for similarity analysis. DNA clustering is an important technology that automatically identifies inherent relationships among large-scale DNA sequences. The comparison between the DNA sequences of different species helps determine phylogenetic relationships among species. Alignment-free approaches have continuously gained interest in various sequence analysis applications such as phylogenetic inference and metagenomic classification/clustering, particularly for large-scale sequence datasets. Here, we construct a novel and simple mathematical descriptor based on the characterization of cis sequence complex DNA networks. This new approach is based on a code of three cis nucleotides in a gene that could code for an amino acid. In particular, for each DNA sequence, we will set up a cis sequence complex network that will be used to develop a characterization vector for the analysis of mitochondrial DNA sequence phylogenetic relationships among nine species. The resulting phylogenetic relationships among the nine species were determined to be in agreement with the actual situation. PMID:27746676

  17. A Novel Method for Alignment-free DNA Sequence Similarity Analysis Based on the Characterization of Complex Networks.

    PubMed

    Zhou, Jie; Zhong, Pianyu; Zhang, Tinghui

    2016-01-01

    Determination of sequence similarity is one of the major steps in computational phylogenetic studies. One of the major tasks of computational biologists is to develop novel mathematical descriptors for similarity analysis. DNA clustering is an important technology that automatically identifies inherent relationships among large-scale DNA sequences. The comparison between the DNA sequences of different species helps determine phylogenetic relationships among species. Alignment-free approaches have continuously gained interest in various sequence analysis applications such as phylogenetic inference and metagenomic classification/clustering, particularly for large-scale sequence datasets. Here, we construct a novel and simple mathematical descriptor based on the characterization of cis sequence complex DNA networks. This new approach is based on a code of three cis nucleotides in a gene that could code for an amino acid. In particular, for each DNA sequence, we will set up a cis sequence complex network that will be used to develop a characterization vector for the analysis of mitochondrial DNA sequence phylogenetic relationships among nine species. The resulting phylogenetic relationships among the nine species were determined to be in agreement with the actual situation.

  18. New Challenges of the Computation of Multiple Sequence Alignments in the High-Throughput Era (2010 JGI/ANL HPC Workshop)

    ScienceCinema

    Notredame, Cedric [Centre for Genomic Regulation

    2016-07-12

    Cedric Notredame from the Centre for Genomic Regulation gives a presentation on "New Challenges of the Computation of Multiple Sequence Alignments in the High-Throughput Era" at the JGI/Argonne HPC Workshop on January 26, 2010.

  19. Identifying New Drug Targets for Potent Phospholipase D Inhibitors: Combining Sequence Alignment, Molecular Docking, and Enzyme Activity/Binding Assays.

    PubMed

    Djakpa, Helene; Kulkarni, Aditya; Barrows-Murphy, Scheneque; Miller, Greg; Zhou, Weihong; Cho, Hyejin; Török, Béla; Stieglitz, Kimberly

    2016-05-01

    Phospholipase D enzymes cleave phospholipid substrates generating choline and phosphatidic acid. Phospholipase D from Streptomyces chromofuscus is a non-HKD (histidine, lysine, and aspartic acid) phospholipase D as the enzyme is more similar to members of the diverse family of metallo-phosphodiesterase/phosphatase enzymes than phospholipase D enzymes with active site HKD repeats. A highly efficient library of phospholipase D inhibitors based on 1,3-disubstituted-4-amino-pyrazolopyrimidine core structure was utilized to evaluate the inhibition of purified S. chromofuscus phospholipase D. The molecules exhibited inhibition of phospholipase D activity (IC50 ) in the nanomolar range with monomeric substrate diC4 PC and micromolar range with phospholipid micelles and vesicles. Binding studies with vesicle substrate and phospholipase D strongly indicate that these inhibitors directly block enzyme vesicle binding. Following these compelling results as a starting point, sequence searches and alignments with S. chromofuscus phospholipase D have identified potential new drug targets. Using AutoDock, inhibitors were docked into the enzymes selected from sequence searches and alignments (when 3D co-ordinates were available) and results analyzed to develop next-generation inhibitors for new targets. In vitro enzyme activity assays with several human phosphatases demonstrated that the predictive protocol was accurate. The strategy of combining sequence comparison, docking, and high-throughput screening assays has helped to identify new drug targets and provided some insight into how to make potential inhibitors more specific to desired targets.

  20. Alignment of 700 globin sequences: extent of amino acid substitution and its correlation with variation in volume.

    PubMed Central

    Kapp, O. H.; Moens, L.; Vanfleteren, J.; Trotman, C. N.; Suzuki, T.; Vinogradov, S. N.

    1995-01-01

    Seven-hundred globin sequences, including 146 nonvertebrate sequences, were aligned on the basis of conservation of secondary structure and the avoidance of gap penalties. Of the 182 positions needed to accommodate all the globin sequences, only 84 are common to all, including the absolutely conserved PheCD1 and HisF8. The mean number of amino acid substitutions per position ranges from 8 to 13 for all globins and 5 to 9 for internal positions. Although the total sequence volumes have a variation approximately 2-3%, the variation in volume per position ranges from approximately 13% for the internal to approximately 21% for the surface positions. Plausible correlations exist between amino acid substitution and the variation in volume per position for the 84 common and the internal but not the surface positions. The amino acid substitution matrix derived from the 84 common positions was used to evaluate sequence similarity within the globins and between the globins and phycocyanins C and colicins A, via calculation of pairwise similarity scores. The scores for globin-globin comparisons over the 84 common positions overlap the globin-phycocyanin and globin-colicin scores, with the former being intermediate. For the subset of internal positions, overlap is minimal between the three groups of scores. These results imply a continuum of amino acid sequences able to assume the common three-on-three alpha-helical structure and suggest that the determinants of the latter include sites other than those inaccessible to solvent. PMID:8535255

  1. Application of the MAFFT sequence alignment program to large data—reexamination of the usefulness of chained guide trees

    PubMed Central

    Yamada, Kazunori D.; Tomii, Kentaro; Katoh, Kazutaka

    2016-01-01

    Motivation: Large multiple sequence alignments (MSAs), consisting of thousands of sequences, are becoming more and more common, due to advances in sequencing technologies. The MAFFT MSA program has several options for building large MSAs, but their performances have not been sufficiently assessed yet, because realistic benchmarking of large MSAs has been difficult. Recently, such assessments have been made possible through the HomFam and ContTest benchmark protein datasets. Along with the development of these datasets, an interesting theory was proposed: chained guide trees increase the accuracy of MSAs of structurally conserved regions. This theory challenges the basis of progressive alignment methods and needs to be examined by being compared with other known methods including computationally intensive ones. Results: We used HomFam, ContTest and OXFam (an extended version of OXBench) to evaluate several methods enabled in MAFFT: (1) a progressive method with approximate guide trees, (2) a progressive method with chained guide trees, (3) a combination of an iterative refinement method and a progressive method and (4) a less approximate progressive method that uses a rigorous guide tree and consistency score. Other programs, Clustal Omega and UPP, available for large MSAs, were also included into the comparison. The effect of method 2 (chained guide trees) was positive in ContTest but negative in HomFam and OXFam. Methods 3 and 4 increased the benchmark scores more consistently than method 2 for the three datasets, suggesting that they are safer to use. Availability and Implementation: http://mafft.cbrc.jp/alignment/software/ Contact: katoh@ifrec.osaka-u.ac.jp Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27378296

  2. Computational approaches for protein function prediction: a combined strategy from multiple sequence alignment to molecular docking-based virtual screening.

    PubMed

    Pierri, Ciro Leonardo; Parisi, Giovanni; Porcelli, Vito

    2010-09-01

    The functional characterization of proteins represents a daily challenge for biochemical, medical and computational sciences. Although finally proved on the bench, the function of a protein can be successfully predicted by computational approaches that drive the further experimental assays. Current methods for comparative modeling allow the construction of accurate 3D models for proteins of unknown structure, provided that a crystal structure of a homologous protein is available. Binding regions can be proposed by using binding site predictors, data inferred from homologous crystal structures, and data provided from a careful interpretation of the multiple sequence alignment of the investigated protein and its homologs. Once the location of a binding site has been proposed, chemical ligands that have a high likelihood of binding can be identified by using ligand docking and structure-based virtual screening of chemical libraries. Most docking algorithms allow building a list sorted by energy of the lowest energy docking configuration for each ligand of the library. In this review the state-of-the-art of computational approaches in 3D protein comparative modeling and in the study of protein-ligand interactions is provided. Furthermore a possible combined/concerted multistep strategy for protein function prediction, based on multiple sequence alignment, comparative modeling, binding region prediction, and structure-based virtual screening of chemical libraries, is described by using suitable examples. As practical examples, Abl-kinase molecular modeling studies, HPV-E6 protein multiple sequence alignment analysis, and some other model docking-based characterization reports are briefly described to highlight the importance of computational approaches in protein function prediction.

  3. AliBiMotif: integrating alignment and biclustering to unravel transcription factor binding sites in DNA sequences.

    PubMed

    Gonçalves, Joana P; Moreau, Yves; Madeira, Sara C

    2012-01-01

    Transcription Factors (TFs) control transcription by binding to specific sites in the promoter regions of the target genes, which can be modelled by structured motifs. In this paper we propose AliBiMotif, a method combining sequence alignment and a biclustering approach based on efficient string matching techniques using suffix trees to unravel approximately conserved sets of blocks (structured motifs) while straightforwardly disregarding non-conserved stretches in-between. The ability to ignore the width of non-conserved regions is a major advantage of the proposed method over other motif finders, as the lengths of the binding sites are usually easier to estimate than the separating distances.

  4. SHARAKU: an algorithm for aligning and clustering read mapping profiles of deep sequencing in non-coding RNA processing

    PubMed Central

    Tsuchiya, Mariko; Amano, Kojiro; Abe, Masaya; Seki, Misato; Hase, Sumitaka; Sato, Kengo; Sakakibara, Yasubumi

    2016-01-01

    Motivation: Deep sequencing of the transcripts of regulatory non-coding RNA generates footprints of post-transcriptional processes. After obtaining sequence reads, the short reads are mapped to a reference genome, and specific mapping patterns can be detected called read mapping profiles, which are distinct from random non-functional degradation patterns. These patterns reflect the maturation processes that lead to the production of shorter RNA sequences. Recent next-generation sequencing studies have revealed not only the typical maturation process of miRNAs but also the various processing mechanisms of small RNAs derived from tRNAs and snoRNAs. Results: We developed an algorithm termed SHARAKU to align two read mapping profiles of next-generation sequencing outputs for non-coding RNAs. In contrast with previous work, SHARAKU incorporates the primary and secondary sequence structures into an alignment of read mapping profiles to allow for the detection of common processing patterns. Using a benchmark simulated dataset, SHARAKU exhibited superior performance to previous methods for correctly clustering the read mapping profiles with respect to 5′-end processing and 3′-end processing from degradation patterns and in detecting similar processing patterns in deriving the shorter RNAs. Further, using experimental data of small RNA sequencing for the common marmoset brain, SHARAKU succeeded in identifying the significant clusters of read mapping profiles for similar processing patterns of small derived RNA families expressed in the brain. Availability and Implementation: The source code of our program SHARAKU is available at http://www.dna.bio.keio.ac.jp/sharaku/, and the simulated dataset used in this work is available at the same link. Accession code: The sequence data from the whole RNA transcripts in the hippocampus of the left brain used in this work is available from the DNA DataBank of Japan (DDBJ) Sequence Read Archive (DRA) under the accession number DRA

  5. Sequence alignment status and amplicon size difference affecting EST-SSR primer performance and polymorphism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Little attention has been given to failed, poorly-performing, and non-polymorphic expressed sequence tag (EST) simple sequence repeat (SSR) primers. This is due in part to a lack of interest and value in reporting them but also because of the difficulty in addressing the causes of failure on a prime...

  6. Sequence stratigraphy, structure, and tectonic history of the southwestern Ontong Java Plateau adjacent to the North Solomon Trench and Solomon Islands Arc

    NASA Astrophysics Data System (ADS)

    Phinney, Eric J.; Mann, Paul; Coffin, Millard F.; Shipley, Thomas H.

    1999-09-01

    The Ontong Java Plateau (OJP) is the largest and thickest oceanic plateau on Earth and one of the few oceanic plateaus actively converging on an island arc. We present velocity determinations and geologic interpretation of 2000 km of two-dimensional, multi-channel seismic data from the southwestern Ontong Java Plateau, North Solomon Trench, and northern Solomon Islands. We recognize three megasequences, ranging in age from early Cretaceous to Quaternary, on the basis of distinct interval velocities and seismic stratigraphic facies. Megasequence OJ1 is early Cretaceous, upper igneous crust of the OJP and correlates with basalt outcrops dated at 122-125 Ma on the island of Malaita. The top of the overlying megasequence OJ2, a late Cretaceous mudstone unit, had been identified by previous workers as the top of igneous basement. Seismic facies and correlation to distant Deep Sea Drilling Project/Ocean Drilling Program sites indicate that OJ2 was deposited in a moderately low-energy, marine environment near a fluctuating carbonate compensation depth that resulted in multiple periods of dissolution. OJ2 thins south of the Stewart Arch onto the Solomon Islands where it is correlated with the Kwaraae Mudstone Formation. Megasequence OJ3 is late Cretaceous through Quaternary pelagic cover which caps the Ontong Java Plateau; it thickens into the North Solomon Trench, and seismic facies suggest that OJ3 was deposited in a low-energy marine environment. We use seismic facies analysis, sediment thickness, structural observations, and quantitative plate reconstructions of the position of the OJP and Solomon Islands to propose a tectonic, magmatic, and sedimentary history of the southwestern Ontong Java Plateau. Prior to 125 Ma late Jurassic and early Cretaceous oceanic crust formed. From 125 to 122 Ma, the first mantle plume formed igneous crust (OJ1). Between 122 and 92 Ma, marine mudstone (OJ2 and Kwaraae mudstone of Malaita, Solomon Islands) was deposited on Ontong Java

  7. Program Synthesizes UML Sequence Diagrams

    NASA Technical Reports Server (NTRS)

    Barry, Matthew R.; Osborne, Richard N.

    2006-01-01

    A computer program called "Rational Sequence" generates Universal Modeling Language (UML) sequence diagrams of a target Java program running on a Java virtual machine (JVM). Rational Sequence thereby performs a reverse engineering function that aids in the design documentation of the target Java program. Whereas previously, the construction of sequence diagrams was a tedious manual process, Rational Sequence generates UML sequence diagrams automatically from the running Java code.

  8. SeqAPASS (Sequence Alignment to Predict Across Species Susceptibility) software and documentation

    EPA Science Inventory

    SeqAPASS is a software application facilitates rapid and streamlined, yet transparent, comparisons of the similarity of toxicologically-significant molecular targets across species. The present application facilitates analysis of primary amino acid sequence similarity (including ...

  9. Identifying recombinants in human and primate immunodeficiency virus sequence alignments using quartet scanning

    PubMed Central

    Lemey, Philippe; Lott, Martin; Martin, Darren P; Moulton, Vincent

    2009-01-01

    Background Recombination has a profound impact on the evolution of viruses, but characterizing recombination patterns in molecular sequences remains a challenging endeavor. Despite its importance in molecular evolutionary studies, identifying the sequences that exhibit such patterns has received comparatively less attention in the recombination detection framework. Here, we extend a quartet-mapping based recombination detection method to enable identification of recombinant sequences without prior specifications of either query and reference sequences. Through simulations we evaluate different recombinant identification statistics and significance tests. We compare the quartet approach with triplet-based methods that employ additional heuristic tests to identify parental and recombinant sequences. Results Analysis of phylogenetic simulations reveal that identifying the descendents of relatively old recombination events is a challenging task for all methods available, and that quartet scanning performs relatively well compared to the triplet based methods. The use of quartet scanning is further demonstrated by analyzing both well-established and putative HIV-1 recombinant strains. In agreement with recent findings, we provide evidence that the presumed circulating recombinant CRF02_AG is a 'pure' lineage, whereas the presumed parental lineage subtype G has a recombinant origin. We also demonstrate HIV-1 intrasubtype recombination, confirm the hybrid origin of SIV in chimpanzees and further disentangle the recombinant history of SIV lineages in a primate immunodeficiency virus data set. Conclusion Quartet scanning makes a valuable addition to triplet-based methods for identifying recombinant sequences without prior specifications of either query and reference sequences. The new method is available in the VisRD v.3.0 package . PMID:19397803

  10. SGP-1: Prediction and Validation of Homologous Genes Based on Sequence Alignments

    PubMed Central

    Wiehe, Thomas; Gebauer-Jung, Steffi; Mitchell-Olds, Thomas; Guigó, Roderic

    2001-01-01

    Conventional methods of gene prediction rely on the recognition of DNA-sequence signals, the coding potential or the comparison of a genomic sequence with a cDNA, EST, or protein database. Reasons for limited accuracy in many circumstances are species-specific training and the incompleteness of reference databases. Lately, comparative genome analysis has attracted increasing attention. Several analysis tools that are based on human/mouse comparisons are already available. Here, we present a program for the prediction of protein-coding genes, termed SGP-1 (Syntenic Gene Prediction), which is based on the similarity of homologous genomic sequences. In contrast to most existing tools, the accuracy of SGP-1 depends little on species-specific properties such as codon usage or the nucleotide distribution. SGP-1 may therefore be applied to nonstandard model organisms in vertebrates as well as in plants, without the need for extensive parameter training. In addition to predicting genes in large-scale genomic sequences, the program may be useful to validate gene structure annotations from databases. To this end, SGP-1 output also contains comparisons between predicted and annotated gene structures in HTML format. The program can be accessed via a Web server at http://soft.ice.mpg.de/sgp-1. The source code, written in ANSI C, is available on request from the authors. PMID:11544202

  11. Gleaning structural and functional information from correlations in protein multiple sequence alignments.

    PubMed

    Neuwald, Andrew F

    2016-06-01

    The availability of vast amounts of protein sequence data facilitates detection of subtle statistical correlations due to imposed structural and functional constraints. Recent breakthroughs using Direct Coupling Analysis (DCA) and related approaches have tapped into correlations believed to be due to compensatory mutations. This has yielded some remarkable results, including substantially improved prediction of protein intra- and inter-domain 3D contacts, of membrane and globular protein structures, of substrate binding sites, and of protein conformational heterogeneity. A complementary approach is Bayesian Partitioning with Pattern Selection (BPPS), which partitions related proteins into hierarchically-arranged subgroups based on correlated residue patterns. These correlated patterns are presumably due to structural and functional constraints associated with evolutionary divergence rather than to compensatory mutations. Hence joint application of DCA- and BPPS-based approaches should help sort out the structural and functional constraints contributing to sequence correlations.

  12. Analysis and Visualization of ChIP-Seq and RNA-Seq Sequence Alignments Using ngs.plot.

    PubMed

    Loh, Yong-Hwee Eddie; Shen, Li

    2016-01-01

    The continual maturation and increasing applications of next-generation sequencing technology in scientific research have yielded ever-increasing amounts of data that need to be effectively and efficiently analyzed and innovatively mined for new biological insights. We have developed ngs.plot-a quick and easy-to-use bioinformatics tool that performs visualizations of the spatial relationships between sequencing alignment enrichment and specific genomic features or regions. More importantly, ngs.plot is customizable beyond the use of standard genomic feature databases to allow the analysis and visualization of user-specified regions of interest generated by the user's own hypotheses. In this protocol, we demonstrate and explain the use of ngs.plot using command line executions, as well as a web-based workflow on the Galaxy framework. We replicate the underlying commands used in the analysis of a true biological dataset that we had reported and published earlier and demonstrate how ngs.plot can easily generate publication-ready figures. With ngs.plot, users would be able to efficiently and innovatively mine their own datasets without having to be involved in the technical aspects of sequence coverage calculations and genomic databases.

  13. PASS2 database for the structure-based sequence alignment of distantly related SCOP domain superfamilies: update to version 5 and added features

    PubMed Central

    Gandhimathi, Arumugam; Ghosh, Pritha; Hariharaputran, Sridhar; Mathew, Oommen K.; Sowdhamini, R.

    2016-01-01

    Structure-based sequence alignment is an essential step in assessing and analysing the relationship of distantly related proteins. PASS2 is a database that records such alignments for protein domain superfamilies and has been constantly updated periodically. This update of the PASS2 version, named as PASS2.5, directly corresponds to the SCOPe 2.04 release. All SCOPe structural domains that share less than 40% sequence identity, as defined by the ASTRAL compendium of protein structures, are included. The current version includes 1977 superfamilies and has been assembled utilizing the structure-based sequence alignment protocol. Such an alignment is obtained initially through MATT, followed by a refinement through the COMPARER program. The JOY program has been used for structural annotations of such alignments. In this update, we have automated the protocol and focused on inclusion of new features such as mapping of GO terms, absolutely conserved residues among the domains in a superfamily and inclusion of PDBs, that are absent in SCOPe 2.04, using the HMM profiles from the alignments of the superfamily members and are provided as a separate list. We have also implemented a more user-friendly manner of data presentation and options for downloading more features. PASS2.5 version is available at http://caps.ncbs.res.in/pass2/. PMID:26553811

  14. Model Checking JAVA Programs Using Java Pathfinder

    NASA Technical Reports Server (NTRS)

    Havelund, Klaus; Pressburger, Thomas

    2000-01-01

    This paper describes a translator called JAVA PATHFINDER from JAVA to PROMELA, the "programming language" of the SPIN model checker. The purpose is to establish a framework for verification and debugging of JAVA programs based on model checking. This work should be seen in a broader attempt to make formal methods applicable "in the loop" of programming within NASA's areas such as space, aviation, and robotics. Our main goal is to create automated formal methods such that programmers themselves can apply these in their daily work (in the loop) without the need for specialists to manually reformulate a program into a different notation in order to analyze the program. This work is a continuation of an effort to formally verify, using SPIN, a multi-threaded operating system programmed in Lisp for the Deep-Space 1 spacecraft, and of previous work in applying existing model checkers and theorem provers to real applications.

  15. Sequence-function analysis of the K+-selective family of ion channels using a comprehensive alignment and the KcsA channel structure.

    PubMed

    Shealy, Robin T; Murphy, Anuradha D; Ramarathnam, Rampriya; Jakobsson, Eric; Subramaniam, Shankar

    2003-05-01

    Sequence-function analysis of K(+)-selective channels was carried out in the context of the 3.2 A crystal structure of a K(+) channel (KcsA) from Streptomyces lividans (Doyle et al., 1998). The first step was the construction of an alignment of a comprehensive set of K(+)-selective channel sequences forming the putative permeation path. This pathway consists of two transmembrane segments plus an extracellular linker. Included in the alignment are channels from the eight major classes of K(+)-selective channels from a wide variety of species, displaying varied rectification, gating, and activation properties. Segments of the alignment were assigned to structural motifs based on the KcsA structure. The alignment's accuracy was verified by two observations on these motifs: 1), the most variability is shown in the turret region, which functionally is strongly implicated in susceptibility to toxin binding; and 2), the selectivity filter and pore helix are the most highly conserved regions. This alignment combined with the KcsA structure was used to assess whether clusters of contiguous residues linked by hydrophobic or electrostatic interactions in KcsA are conserved in the K(+)-selective channel family. Analysis of sequence conservation patterns in the alignment suggests that a cluster of conserved residues is critical for determining the degree of K(+) selectivity. The alignment also supports the near-universality of the "glycine hinge" mechanism at the center of the inner helix for opening K channels. This mechanism has been suggested by the recent crystallization of a K channel in the open state. Further, the alignment reveals a second highly conserved glycine near the extracellular end of the inner helix, which may be important in minimizing deformation of the extracellular vestibule as the channel opens. These and other sequence-function relationships found in this analysis suggest that much of the permeation path architecture in KcsA is present in most K

  16. Java Concurrency Guidelines

    DTIC Science & Technology

    2010-05-01

    Compliant Solution (java.util.concurrent.atomic.AtomicBoolean) 10 2.1.4 Compliant Solution (synchronized) 11 2.1.5 Exceptions 12 2.1.6 Risk ...Compliant Solution (Synchronization) 14 2.2.3 Compliant Solution (volatile) 14 2.2.4 Compliant Solution (java.util.concurrent Utilities) 15 2.2.5 Risk

  17. The map-based genome sequence of Spirodela polyrhiza aligned with its chromosomes, a reference for karyotype evolution.

    PubMed

    Cao, Hieu Xuan; Vu, Giang Thi Ha; Wang, Wenqin; Appenroth, Klaus J; Messing, Joachim; Schubert, Ingo

    2016-01-01

    Duckweeds are aquatic monocotyledonous plants of potential economic interest with fast vegetative propagation, comprising 37 species with variable genome sizes (0.158-1.88 Gbp). The genomic sequence of Spirodela polyrhiza, the smallest and the most ancient duckweed genome, needs to be aligned to its chromosomes as a reference and prerequisite to study the genome and karyotype evolution of other duckweed species. We selected physically mapped bacterial artificial chromosomes (BACs) containing Spirodela DNA inserts with little or no repetitive elements as probes for multicolor fluorescence in situ hybridization (mcFISH), using an optimized BAC pooling strategy, to validate its physical map and correlate it with its chromosome complement. By consecutive mcFISH analyses, we assigned the originally assembled 32 pseudomolecules (supercontigs) of the genomic sequences to the 20 chromosomes of S. polyrhiza. A Spirodela cytogenetic map containing 96 BAC markers with an average distance of 0.89 Mbp was constructed. Using a cocktail of 41 BACs in three colors, all chromosome pairs could be individualized simultaneously. Seven ancestral blocks emerged from duplicated chromosome segments of 19 Spirodela chromosomes. The chromosomally integrated genome of S. polyrhiza and the established prerequisites for comparative chromosome painting enable future studies on the chromosome homoeology and karyotype evolution of duckweed species.

  18. The Oryza map alignment project: Construction, alignment and analysis of 12 BAC fingerprint/end sequence framework physical maps that represent the 10 genome types of genus Oryza

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Oryza Map Alignment Project (OMAP) provides the first comprehensive experimental system for understanding the evolution, physiology and biochemistry of a full genus in plants or animals. We have constructed twelve deep-coverage BAC libraries that are representative of both diploid and tetraploid...

  19. An Alignment-Free Algorithm in Comparing the Similarity of Protein Sequences Based on Pseudo-Markov Transition Probabilities among Amino Acids.

    PubMed

    Li, Yushuang; Song, Tian; Yang, Jiasheng; Zhang, Yi; Yang, Jialiang

    2016-01-01

    In this paper, we have proposed a novel alignment-free method for comparing the similarity of protein sequences. We first encode a protein sequence into a 440 dimensional feature vector consisting of a 400 dimensional Pseudo-Markov transition probability vector among the 20 amino acids, a 20 dimensional content ratio vector, and a 20 dimensional position ratio vector of the amino acids in the sequence. By evaluating the Euclidean distances among the representing vectors, we compare the similarity of protein sequences. We then apply this method into the ND5 dataset consisting of the ND5 protein sequences of 9 species, and the F10 and G11 datasets representing two of the xylanases containing glycoside hydrolase families, i.e., families 10 and 11. As a result, our method achieves a correlation coefficient of 0.962 with the canonical protein sequence aligner ClustalW in the ND5 dataset, much higher than those of other 5 popular alignment-free methods. In addition, we successfully separate the xylanases sequences in the F10 family and the G11 family and illustrate that the F10 family is more heat stable than the G11 family, consistent with a few previous studies. Moreover, we prove mathematically an identity equation involving the Pseudo-Markov transition probability vector and the amino acids content ratio vector.

  20. An Alignment-Free Algorithm in Comparing the Similarity of Protein Sequences Based on Pseudo-Markov Transition Probabilities among Amino Acids

    PubMed Central

    Li, Yushuang; Yang, Jiasheng; Zhang, Yi

    2016-01-01

    In this paper, we have proposed a novel alignment-free method for comparing the similarity of protein sequences. We first encode a protein sequence into a 440 dimensional feature vector consisting of a 400 dimensional Pseudo-Markov transition probability vector among the 20 amino acids, a 20 dimensional content ratio vector, and a 20 dimensional position ratio vector of the amino acids in the sequence. By evaluating the Euclidean distances among the representing vectors, we compare the similarity of protein sequences. We then apply this method into the ND5 dataset consisting of the ND5 protein sequences of 9 species, and the F10 and G11 datasets representing two of the xylanases containing glycoside hydrolase families, i.e., families 10 and 11. As a result, our method achieves a correlation coefficient of 0.962 with the canonical protein sequence aligner ClustalW in the ND5 dataset, much higher than those of other 5 popular alignment-free methods. In addition, we successfully separate the xylanases sequences in the F10 family and the G11 family and illustrate that the F10 family is more heat stable than the G11 family, consistent with a few previous studies. Moreover, we prove mathematically an identity equation involving the Pseudo-Markov transition probability vector and the amino acids content ratio vector. PMID:27918587

  1. CLaMS: Classifier for Metagenomic Sequences

    SciTech Connect

    Pati, Amrita

    2010-12-01

    CLaMS-"Classifer for Metagenonic Sequences" is a Java application for binning assembled metagenomes wings user-specified training sequence sets and other user-specified initial parameters. Since ClAmS analyzes and matches sequence composition-based genomic signatures, it is much faster than binning tools that rely on alignments to homologs; CLaMS can bin ~20,000 sequences in 3 minutes on a laptop with a 2.4 Ghz. Intel Core 2 Duo processor and 2 GB Ram. CLaMS is meant to be desktop application for biologist and can be run on any machine under any operating system on which the Java Runtime Environment is enabled. CLaMS is freely available in both GVI-based and command-line based forms.

  2. Evaluation of global sequence comparison and one-to-one FASTA local alignment in regulatory allergenicity assessment of transgenic proteins in food crops.

    PubMed

    Song, Ping; Herman, Rod A; Kumpatla, Siva

    2014-09-01

    To address the high false positive rate using >35% identity over 80 amino acids in the regulatory assessment of transgenic proteins for potential allergenicity and the change of E-value with database size, the Needleman-Wunsch global sequence alignment and a one-to-one (1:1) local FASTA search (one protein in the target database at a time) using FASTA were evaluated by comparing proteins randomly selected from Arabidopsis, rice, corn, and soybean with known allergens in a peer-reviewed allergen database (http://www.allergenonline.org/). Compared with the approach of searching >35%/80aa+, the false positive rate measured by specificity rate for identification of true allergens was reduced by a 1:1 global sequence alignment with a cut-off threshold of ≧30% identity and a 1:1 FASTA local alignment with a cut-off E-value of ≦1.0E-09 while maintaining the same sensitivity. Hence, a 1:1 sequence comparison, especially using the FASTA local alignment tool with a biological relevant E-value of 1.0E-09 as a threshold, is recommended for the regulatory assessment of sequence identities between transgenic proteins in food crops and known allergens.

  3. Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS): A web-based tool for addressing the challenges of cross-species extrapolation of chemical toxicity

    EPA Science Inventory

    Conservation of a molecular target across species can be used as a line-of-evidence to predict the likelihood of chemical susceptibility. The web-based Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS) tool was developed to simplify, streamline, and quantitat...

  4. C.U.R.R.F. (Codon Usage regarding Restriction Finder): a free Java(®)-based tool to detect potential restriction sites in both coding and non-coding DNA sequences.

    PubMed

    Gatter, Michael; Gatter, Thomas; Matthäus, Falk

    2012-10-01

    The synthesis of complete genes is becoming a more and more popular approach in heterologous gene expression. Reasons for this are the decreasing prices and the numerous advantages in comparison to classic molecular cloning methods. Two of these advantages are the possibility to adapt the codon usage to the host organism and the option to introduce restriction enzyme target sites of choice. C.U.R.R.F. (Codon Usage regarding Restriction Finder) is a free Java(®)-based software program which is able to detect possible restriction sites in both coding and non-coding DNA sequences by introducing multiple silent or non-silent mutations, respectively. The deviation of an alternative sequence containing a desired restriction motive from the sequence with the optimal codon usage is considered during the search of potential restriction sites in coding DNA and mRNA sequences as well as protein sequences. C.U.R.R.F is available at http://www.zvm.tu-dresden.de/die_tu_dresden/fakultaeten/fakultaet_mathematik_und_naturwissenschaften/fachrichtung_biologie/mikrobiologie/allgemeine_mikrobiologie/currf.

  5. Java Programming Language

    NASA Technical Reports Server (NTRS)

    Shaykhian, Gholam Ali

    2007-01-01

    The Java seminar covers the fundamentals of Java programming language. No prior programming experience is required for participation in the seminar. The first part of the seminar covers introductory concepts in Java programming including data types (integer, character, ..), operators, functions and constants, casts, input, output, control flow, scope, conditional statements, and arrays. Furthermore, introduction to Object-Oriented programming in Java, relationships between classes, using packages, constructors, private data and methods, final instance fields, static fields and methods, and overloading are explained. The second part of the seminar covers extending classes, inheritance hierarchies, polymorphism, dynamic binding, abstract classes, protected access. The seminar conclude by introducing interfaces, properties of interfaces, interfaces and abstract classes, interfaces and cailbacks, basics of event handling, user interface components with swing, applet basics, converting applications to applets, the applet HTML tags and attributes, exceptions and debugging.

  6. Java for flight software

    NASA Technical Reports Server (NTRS)

    Benowitz, E. G.; Niessner, A. F.

    2003-01-01

    We have successfully demonstrated a portion of the spacecraft attitude control and fault protection, running on a standard Java platform, and are currently in the process of taking advantage of the features provided by the RTSJ.

  7. Diversity Measures in Environmental Sequences Are Highly Dependent on Alignment Quality—Data from ITS and New LSU Primers Targeting Basidiomycetes

    PubMed Central

    Fischer, Christiane; Daniel, Rolf; Wubet, Tesfaye

    2012-01-01

    The ribosomal DNA comprised of the ITS1-5.8S-ITS2 regions is widely used as a fungal marker in molecular ecology and systematics but cannot be aligned with confidence across genetically distant taxa. In order to study the diversity of Agaricomycotina in forest soils, we designed primers targeting the more alignable 28S (LSU) gene, which should be more useful for phylogenetic analyses of the detected taxa. This paper compares the performance of the established ITS1F/4B primer pair, which targets basidiomycetes, to that of two new pairs. Key factors in the comparison were the diversity covered, off-target amplification, rarefaction at different Operational Taxonomic Unit (OTU) cutoff levels, sensitivity of the method used to process the alignment to missing data and insecure positional homology, and the congruence of monophyletic clades with OTU assignments and BLAST-derived OTU names. The ITS primer pair yielded no off-target amplification but also exhibited the least fidelity to the expected phylogenetic groups. The LSU primers give complementary pictures of diversity, but were more sensitive to modifications of the alignment such as the removal of difficult-to align stretches. The LSU primers also yielded greater numbers of singletons but also had a greater tendency to produce OTUs containing sequences from a wider variety of species as judged by BLAST similarity. We introduced some new parameters to describe alignment heterogeneity based on Shannon entropy and the extent and contents of the OTUs in a phylogenetic tree space. Our results suggest that ITS should not be used when calculating phylogenetic trees from genetically distant sequences obtained from environmental DNA extractions and that it is inadvisable to define OTUs on the basis of very heterogeneous alignments. PMID:22363808

  8. Diversity measures in environmental sequences are highly dependent on alignment quality--data from ITS and new LSU primers targeting basidiomycetes.

    PubMed

    Krüger, Dirk; Kapturska, Danuta; Fischer, Christiane; Daniel, Rolf; Wubet, Tesfaye

    2012-01-01

    The ribosomal DNA comprised of the ITS1-5.8S-ITS2 regions is widely used as a fungal marker in molecular ecology and systematics but cannot be aligned with confidence across genetically distant taxa. In order to study the diversity of Agaricomycotina in forest soils, we designed primers targeting the more alignable 28S (LSU) gene, which should be more useful for phylogenetic analyses of the detected taxa. This paper compares the performance of the established ITS1F/4B primer pair, which targets basidiomycetes, to that of two new pairs. Key factors in the comparison were the diversity covered, off-target amplification, rarefaction at different Operational Taxonomic Unit (OTU) cutoff levels, sensitivity of the method used to process the alignment to missing data and insecure positional homology, and the congruence of monophyletic clades with OTU assignments and BLAST-derived OTU names. The ITS primer pair yielded no off-target amplification but also exhibited the least fidelity to the expected phylogenetic groups. The LSU primers give complementary pictures of diversity, but were more sensitive to modifications of the alignment such as the removal of difficult-to align stretches. The LSU primers also yielded greater numbers of singletons but also had a greater tendency to produce OTUs containing sequences from a wider variety of species as judged by BLAST similarity. We introduced some new parameters to describe alignment heterogeneity based on Shannon entropy and the extent and contents of the OTUs in a phylogenetic tree space. Our results suggest that ITS should not be used when calculating phylogenetic trees from genetically distant sequences obtained from environmental DNA extractions and that it is inadvisable to define OTUs on the basis of very heterogeneous alignments.

  9. Data for amino acid alignment of Japanese stingray melanocortin receptors with other gnathostome melanocortin receptor sequences, and the ligand selectivity of Japanese stingray melanocortin receptors.

    PubMed

    Takahashi, Akiyoshi; Davis, Perry; Reinick, Christina; Mizusawa, Kanta; Sakamoto, Tatsuya; Dores, Robert M

    2016-06-01

    This article contains structure and pharmacological characteristics of melanocortin receptors (MCRs) related to research published in "Characterization of melanocortin receptors from stingray Dasyatis akajei, a cartilaginous fish" (Takahashi et al., 2016) [1]. The amino acid sequences of the stingray, D. akajei, MC1R, MC2R, MC3R, MC4R, and MC5R were aligned with the corresponding melanocortin receptor sequences from the elephant shark, Callorhinchus milii, the dogfish, Squalus acanthias, the goldfish, Carassius auratus, and the mouse, Mus musculus. These alignments provide the basis for phylogenetic analysis of these gnathostome melanocortin receptor sequences. In addition, the Japanese stingray melanocortin receptors were separately expressed in Chinese Hamster Ovary cells, and stimulated with stingray ACTH, α-MSH, β-MSH, γ-MSH, δ-MSH, and β-endorphin. The dose response curves reveal the order of ligand selectivity for each stingray MCR.

  10. PSI/TM-Coffee: a web server for fast and accurate multiple sequence alignments of regular and transmembrane proteins using homology extension on reduced databases

    PubMed Central

    Floden, Evan W.; Tommaso, Paolo D.; Chatzou, Maria; Magis, Cedrik; Notredame, Cedric; Chang, Jia-Ming

    2016-01-01

    The PSI/TM-Coffee web server performs multiple sequence alignment (MSA) of proteins by combining homology extension with a consistency based alignment approach. Homology extension is performed with Position Specific Iterative (PSI) BLAST searches against a choice of redundant and non-redundant databases. The main novelty of this server is to allow databases of reduced complexity to rapidly perform homology extension. This server also gives the possibility to use transmembrane proteins (TMPs) reference databases to allow even faster homology extension on this important category of proteins. Aside from an MSA, the server also outputs topological prediction of TMPs using the HMMTOP algorithm. Previous benchmarking of the method has shown this approach outperforms the most accurate alignment methods such as MSAProbs, Kalign, PROMALS, MAFFT, ProbCons and PRALINE™. The web server is available at http://tcoffee.crg.cat/tmcoffee. PMID:27106060

  11. Flexibility in MuA transposase family protein structures: functional mapping with scanning mutagenesis and sequence alignment of protein homologues.

    PubMed

    Rasila, Tiina S; Vihinen, Mauno; Paulin, Lars; Haapa-Paananen, Saija; Savilahti, Harri

    2012-01-01

    MuA transposase protein is a member of the retroviral integrase superfamily (RISF). It catalyzes DNA cleavage and joining reactions via an initial assembly and subsequent structural transitions of a protein-DNA complex, known as the Mu transpososome, ultimately attaching transposon DNA to non-specific target DNA. The transpososome functions as a molecular DNA-modifying machine and has been used in a wide variety of molecular biology and genetics/genomics applications. To analyze structure-function relationships in MuA action, a comprehensive pentapeptide insertion mutagenesis was carried out for the protein. A total of 233 unique insertion variants were generated, and their activity was analyzed using a quantitative in vivo DNA transposition assay. The results were then correlated with the known MuA structures, and the data were evaluated with regard to the protein domain function and transpososome development. To complement the analysis with an evolutionary component, a protein sequence alignment was produced for 44 members of MuA family transposases. Altogether, the results pinpointed those regions, in which insertions can be tolerated, and those where insertions are harmful. Most insertions within the subdomains Iγ, IIα, IIβ, and IIIα completely destroyed the transposase function, yet insertions into certain loop/linker regions of these subdomains increased the protein activity. Subdomains Iα and IIIβ were largely insertion-tolerant. The comprehensive structure-function data set will be useful for designing MuA transposase variants with improved properties for biotechnology/genomics applications, and is informative with regard to the function of RISF proteins in general.

  12. easyPAC: A Tool for Fast Prediction, Testing and Reference Mapping of Degenerate PCR Primers from Alignments or Consensus Sequences

    PubMed Central

    Rosenkranz, David

    2012-01-01

    The PCR-amplification of unknown homologous or paralogous genes generally relies on PCR primers predicted from multi sequence alignments. But increasing sequence divergence can induce the need to use degenerate primers which entails the problem of testing the characteristics, unwanted interactions and potential mispriming of degenerate primers. Here I introduce easyPAC, a new software for the prediction of degenerate primers from multi sequence alignments or single consensus sequences. As a major innovation, easyPAC allows to apply all customary primer test procedures to degenerate primer sequences including fast mapping to reference files. Thus, easyPAC simplifies and expedites the designing of specific degenerate primers enormously. Degenerate primers suggested by easyPAC were used in PCR amplification with subsequent de novo sequencing of TDRD1 exon 11 homologs from several representatives of the haplorrhine primate phylogeny. The results demonstrate the efficient performance of the suggested primers and therefore show that easyPAC can advance upcoming comparative genetic studies.

  13. JAVA PathFinder

    NASA Technical Reports Server (NTRS)

    Mehhtz, Peter

    2005-01-01

    JPF is an explicit state software model checker for Java bytecode. Today, JPF is a swiss army knife for all sort of runtime based verification purposes. This basically means JPF is a Java virtual machine that executes your program not just once (like a normal VM), but theoretically in all possible ways, checking for property violations like deadlocks or unhandled exceptions along all potential execution paths. If it finds an error, JPF reports the whole execution that leads to it. Unlike a normal debugger, JPF keeps track of every step how it got to the defect.

  14. AdoMet radical proteins—from structure to evolution—alignment of divergent protein sequences reveals strong secondary structure element conservation

    PubMed Central

    Nicolet, Yvain; Drennan, Catherine L.

    2004-01-01

    Eighteen subclasses of S-adenosyl-l-methionine (AdoMet) radical proteins have been aligned in the first bioinformatics study of the AdoMet radical superfamily to utilize crystallographic information. The recently resolved X-ray structure of biotin synthase (BioB) was used to guide the multiple sequence alignment, and the recently resolved X-ray structure of coproporphyrinogen III oxidase (HemN) was used as the control. Despite the low 9% sequence identity between BioB and HemN, the multiple sequence alignment correctly predicted all but one of the core helices in HemN, and correctly predicted the residues in the enzyme active site. This alignment further suggests that the AdoMet radical proteins may have evolved from half-barrel structures (αβ)4 to three-quarter-barrel structures (αβ)6 to full-barrel structures (αβ)8. It predicts that anaerobic ribonucleotide reductase (RNR) activase, an ancient enzyme that, it has been suggested, serves as a link between the RNA and DNA worlds, will have a half-barrel structure, whereas the three-quarter barrel, exemplified by HemN, will be the most common architecture for AdoMet radical enzymes, and fewer members of the superfamily will join BioB in using a complete (αβ)8 TIM-barrel fold to perform radical chemistry. These differences in barrel architecture also explain how AdoMet radical enzymes can act on substrates that range in size from 10 atoms to 608 residue proteins. PMID:15289575

  15. Automated insertion of sequences into a ribosomal RNA alignment: An application of computational linguistics in molecular biology

    SciTech Connect

    Taylor, R.C.

    1991-11-01

    This thesis involved the construction of (1) a grammar that incorporates knowledge on base invariancy and secondary structure in a molecule and (2) a parser engine that uses the grammar to position bases into the structural subunits of the molecule. These concepts were combined with a novel pinning technique to form a tool that semi-automates insertion of a new species into the alignment for the 16S rRNA molecule (a component of the ribosome) maintained by Dr. Carl Woese`s group at the University of Illinois at Urbana. The tool was tested on species extracted from the alignment and on a group of entirely new species. The results were very encouraging, and the tool should be substantial aid to the curators of the 16S alignment. The construction of the grammar was itself automated, allowing application of the tool to alignments for other molecules. The logic programming language Prolog was used to construct all programs involved. The computational linguistics approach used here was found to be a useful way to attach the problem of insertion into an alignment.

  16. Automated insertion of sequences into a ribosomal RNA alignment: An application of computational linguistics in molecular biology

    SciTech Connect

    Taylor, R.C.

    1991-11-01

    This thesis involved the construction of (1) a grammar that incorporates knowledge on base invariancy and secondary structure in a molecule and (2) a parser engine that uses the grammar to position bases into the structural subunits of the molecule. These concepts were combined with a novel pinning technique to form a tool that semi-automates insertion of a new species into the alignment for the 16S rRNA molecule (a component of the ribosome) maintained by Dr. Carl Woese's group at the University of Illinois at Urbana. The tool was tested on species extracted from the alignment and on a group of entirely new species. The results were very encouraging, and the tool should be substantial aid to the curators of the 16S alignment. The construction of the grammar was itself automated, allowing application of the tool to alignments for other molecules. The logic programming language Prolog was used to construct all programs involved. The computational linguistics approach used here was found to be a useful way to attach the problem of insertion into an alignment.

  17. Benefits of Java

    MedlinePlus

    ... Training and Recovery Exercise Topics Fueling Your Workout Benefits of Physical Activity Exercise Nutrition Top Articles Man running - Protein and the Athlete - How Much Do You Need? Protein and the Athlete — How Much Do You Need? stop watch - Timing Your Pre- and Post-Workout ... of Java Published September 29, 2014 Print Email ...

  18. Java Metadata Facility

    SciTech Connect

    Buttler, D J

    2008-03-06

    The Java Metadata Facility is introduced by Java Specification Request (JSR) 175 [1], and incorporated into the Java language specification [2] in version 1.5 of the language. The specification allows annotations on Java program elements: classes, interfaces, methods, and fields. Annotations give programmers a uniform way to add metadata to program elements that can be used by code checkers, code generators, or other compile-time or runtime components. Annotations are defined by annotation types. These are defined the same way as interfaces, but with the symbol {at} preceding the interface keyword. There are additional restrictions on defining annotation types: (1) They cannot be generic; (2) They cannot extend other annotation types or interfaces; (3) Methods cannot have any parameters; (4) Methods cannot have type parameters; (5) Methods cannot throw exceptions; and (6) The return type of methods of an annotation type must be a primitive, a String, a Class, an annotation type, or an array, where the type of the array is restricted to one of the four allowed types. See [2] for additional restrictions and syntax. The methods of an annotation type define the elements that may be used to parameterize the annotation in code. Annotation types may have default values for any of its elements. For example, an annotation that specifies a defect report could initialize an element defining the defect outcome submitted. Annotations may also have zero elements. This could be used to indicate serializability for a class (as opposed to the current Serializability interface).

  19. Java Tool Retirement

    Atmospheric Science Data Center

    2014-05-15

    Date(s):  Wednesday, May 14, 2014 Time:  08:00 am EDT Event Impact:  The ASDC Java Order Tool was officially retired on Wednesday, May 14, 2014.  The HTML Order Tool and additional options are available...

  20. Java for flight software

    NASA Technical Reports Server (NTRS)

    Benowitz, E.; Niessner, A.

    2003-01-01

    This work involves developing representative mission-critical spacecraft software using the Real-Time Specification for Java (RTSJ). This work currently leverages actual flight software used in the design of actual flight software in the NASA's Deep Space 1 (DSI), which flew in 1998.

  1. Alignment of U3 region sequences of mammalian type C viruses: identification of highly conserved motifs and implications for enhancer design.

    PubMed Central

    Golemis, E A; Speck, N A; Hopkins, N

    1990-01-01

    We aligned published sequences for the U3 region of 35 type C mammalian retroviruses. The alignment reveals that certain sequence motifs within the U3 region are strikingly conserved. A number of these motifs correspond to previously identified sites. In particular, we found that the enhancer region of most of the viruses examined contains a binding site for leukemia virus factor b, a viral corelike element, the consensus motif for nuclear factor 1, and the glucocorticoid response element. Most viruses containing more than one copy of enhancer sequences include these binding sites in both copies of the repeat. We consider this set of binding sites to constitute a framework for the enhancers of this set of viruses. Other highly conserved motifs in the U3 region include the retrovirus inverted repeat sequence, a negative regulatory element, and the CCAAT and TATA boxes. In addition, we identified two novel motifs in the promoter region that were exceptionally highly conserved but have not been previously described. PMID:2153223

  2. A Java commodity grid kit.

    SciTech Connect

    von Laszewski, G.; Foster, I.; Gawor, J.; Lane, P.; Mathematics and Computer Science

    2001-07-01

    In this paper we report on the features of the Java Commodity Grid Kit. The Java CoG Kit provides middleware for accessing Grid functionality from the Java framework. Java CoG Kit middleware is general enough to design a variety of advanced Grid applications with quite different user requirements. Access to the Grid is established via Globus protocols, allowing the Java CoG Kit to communicate also with the C Globus reference implementation. Thus, the Java CoG Kit provides Grid developers with the ability to utilize the Grid, as well as numerous additional libraries and frameworks developed by the Java community to enable network, Internet, enterprise, and peer-to peer computing. A variety of projects have successfully used the client libraries of the Java CoG Kit to access Grids driven by the C Globus software. In this paper we also report on the efforts to develop server side Java CoG Kit components. As part of this research we have implemented a prototype pure Java resource management system that enables one to run Globus jobs on platforms on which a Java virtual machine is supported, including Windows NT machines.

  3. MC64-ClustalWP2: a highly-parallel hybrid strategy to align multiple sequences in many-core architectures.

    PubMed

    Díaz, David; Esteban, Francisco J; Hernández, Pilar; Caballero, Juan Antonio; Guevara, Antonio; Dorado, Gabriel; Gálvez, Sergio

    2014-01-01

    We have developed the MC64-ClustalWP2 as a new implementation of the Clustal W algorithm, integrating a novel parallelization strategy and significantly increasing the performance when aligning long sequences in architectures with many cores. It must be stressed that in such a process, the detailed analysis of both the software and hardware features and peculiarities is of paramount importance to reveal key points to exploit and optimize the full potential of parallelism in many-core CPU systems. The new parallelization approach has focused into the most time-consuming stages of this algorithm. In particular, the so-called progressive alignment has drastically improved the performance, due to a fine-grained approach where the forward and backward loops were unrolled and parallelized. Another key approach has been the implementation of the new algorithm in a hybrid-computing system, integrating both an Intel Xeon multi-core CPU and a Tilera Tile64 many-core card. A comparison with other Clustal W implementations reveals the high-performance of the new algorithm and strategy in many-core CPU architectures, in a scenario where the sequences to align are relatively long (more than 10 kb) and, hence, a many-core GPU hardware cannot be used. Thus, the MC64-ClustalWP2 runs multiple alignments more than 18x than the original Clustal W algorithm, and more than 7x than the best x86 parallel implementation to date, being publicly available through a web service. Besides, these developments have been deployed in cost-effective personal computers and should be useful for life-science researchers, including the identification of identities and differences for mutation/polymorphism analyses, biodiversity and evolutionary studies and for the development of molecular markers for paternity testing, germplasm management and protection, to assist breeding, illegal traffic control, fraud prevention and for the protection of the intellectual property (identification

  4. Java Vertexing Tools

    SciTech Connect

    Strube, Jan; Graf, Norman; /SLAC

    2006-03-03

    This document describes the implementation of the topological vertex finding algorithm ZVTOP within the org.lcsim reconstruction and analysis framework. At the present date, Java vertexing tools allow users to perform topological vertexing on tracks that have been obtained from a Fast MC simulation. An implementation that will be able to handle fully reconstructed events is being designed from the ground up for longevity and maintainability.

  5. Liquid-theory analogy of direct-coupling analysis of multiple-sequence alignment and its implications for protein structure prediction

    PubMed Central

    Kinjo, Akira R.

    2015-01-01

    The direct-coupling analysis is a powerful method for protein contact prediction, and enables us to extract “direct” correlations between distant sites that are latent in “indirect” correlations observed in a protein multiple-sequence alignment. I show that the direct correlation can be obtained by using a formulation analogous to the Ornstein-Zernike integral equation in liquid theory. This formulation intuitively illustrates how the indirect or apparent correlation arises from an infinite series of direct correlations, and provides interesting insights into protein structure prediction. PMID:27493860

  6. GOblet: a platform for Gene Ontology annotation of anonymous sequence data

    PubMed Central

    Groth, Detlef; Lehrach, Hans; Hennig, Steffen

    2004-01-01

    GOblet is a comprehensive web server application providing the annotation of anonymous sequence data with Gene Ontology (GO) terms. It uses a variety of different protein databases (human, murines, invertebrates, plants, sp-trembl) and their respective GO mappings. The user selects the appropriate database and alignment threshold and thereafter submits single or multiple nucleotide or protein sequences. Results are shown in different ways, e.g. as survey statistics for the main GO categories for all sequences or as detailed results for each single sequence that has been submitted. In its newest version, GOblet allows the batch submission of sequences and provides an improved display of results with the aid of Java applets. All output data, together with the Java applet, are packed to a downloadable archive for local installation and analysis. GOblet can be accessed freely at http://goblet.molgen.mpg.de. PMID:15215401

  7. CATO: The Clone Alignment Tool.

    PubMed

    Henstock, Peter V; LaPan, Peter

    2016-01-01

    High-throughput cloning efforts produce large numbers of sequences that need to be aligned, edited, compared with reference sequences, and organized as files and selected clones. Different pieces of software are typically required to perform each of these tasks. We have designed a single piece of software, CATO, the Clone Alignment Tool, that allows a user to align, evaluate, edit, and select clone sequences based on comparisons to reference sequences. The input and output are designed to be compatible with standard data formats, and thus suitable for integration into a clone processing pipeline. CATO provides both sequence alignment and visualizations to facilitate the analysis of cloning experiments. The alignment algorithm matches each of the relevant candidate sequences against each reference sequence. The visualization portion displays three levels of matching: 1) a top-level summary of the top candidate sequences aligned to each reference sequence, 2) a focused alignment view with the nucleotides of matched sequences displayed against one reference sequence, and 3) a pair-wise alignment of a single reference and candidate sequence pair. Users can select the minimum matching criteria for valid clones, edit or swap reference sequences, and export the results to a summary file as part of the high-throughput cloning workflow.

  8. Open reading frame sequencing and structure-based alignment of polypeptides encoded by RT1-Bb, RT1-Ba, RT1-Db, and RT1-Da alleles.

    PubMed

    Ettinger, Ruth A; Moustakas, Antonis K; Lobaton, Suzanne D

    2004-11-01

    MHC class II genes are major genetic components in rats developing autoimmunity. The majority of rat MHC class II sequencing has focused on exon 2, which forms the first external domain. Sequence of the complete open reading frame for rat MHC class II haplotypes and structure-based alignment is lacking. Herein, the complete open reading frame for RT1-Bbeta, RT1-Balpha, RT1-Dbeta, and RT1-Dalpha was sequenced from ten different rat strains, covering eight serological haplotypes, namely a, b, c, d, k, l, n, and u. Each serological haplotype was unique at the nucleotide level of the sequenced RT1-B/D region. Within individual genes, the number of alleles identified was seven, seven, six, and three and the degree of amino-acid polymorphism between allotypes for each gene was 22%, 16%, 19%, and 0.4% for RT1-Bbeta, RT1-Balpha, RT1-Dbeta, and RT1-Dalpha, respectively. The extent and distribution of amino-acid polymorphism was comparable with mouse and human MHC class II. Structure-based alignment identified the beta65-66 deletion, the beta84a insertion, the alpha9a insertion, and the alpha1a-1c insertion in RT1-B previously described for H2-A. Rat allele-specific deletions were found at RT1-Balpha76 and RT1-Dbeta90-92. The mature RT1-Dbeta polypeptide was one amino acid longer than HLA-DRB1 due to the position of the predicted signal peptide cleavage site. These data are important to a comprehensive understanding of MHC class II structure-function and for mechanistic studies of rat models of autoimmunity.

  9. Sequence alignment of 18S ribosomal RNA and the basal relationships of Adephagan beetles: evidence for monophyly of aquatic families and the placement of Trachypachidae.

    PubMed

    Shull, V L; Vogler, A P; Baker, M D; Maddison, D R; Hammond, P M

    2001-01-01

    Current hypotheses regarding family relationships in the suborder Adephaga (Coleoptera) are conflicting. Here we report full-length 18S ribosomal RNA sequences of 39 adephagans and 13 outgroup taxa. Data analysis focused on the impact of sequence alignment on tree topology, using two principally different approaches. Tree alignments, which seek to minimize indels and substitutions on the tree in a single step, as implemented in an approximate procedure by the computer program POY, were contrasted with a more traditional procedure based on alignments followed by phylogenetic inference based on parsimony, likelihood, and distance analyses. Despite substantial differences between the procedures, phylogenetic conclusions regarding basal relationships within Adephaga and relationships between the four suborders of Coleoptera were broadly similar. The analysis weakly supports monophyly of Adephaga, with Polyphaga usually as its sister, and the two small suborders Myxophaga and Archostemata basal to them. In some analyses, however, Polyphaga was reconstructed as having arisen from within Hydradephaga. Adephaga generally split into two monophyletic groups, corresponding to the terrestrial Geadephaga and the aquatic Hydradephaga, as initially proposed by Crowson in 1955, consistent with a single colonization of the aquatic environment by adephagan ancestors and contradicting the recent proposition of three independent invasions. A monophyletic Hydradephaga is consistently, though not strongly, supported under most analyses, and a parametric bootstrapping test significantly rejects an hypothesis of nonmonophyly. The enigmatic Trachypachidae, which exhibit many similarities to aquatic forms but whose species are entirely terrestrial, were usually recovered as a basal lineage within Geadephaga. Strong evidence opposes the view that terrestrial trachypachids are related to the dytiscoid water beetles.

  10. Theoretical assessment of feasibility to sequence DNA through interlayer electronic tunneling transport at aligned nanopores in bilayer graphene

    NASA Astrophysics Data System (ADS)

    Prasongkit, Jariyanee; Feliciano, Gustavo T.; Rocha, Alexandre R.; He, Yuhui; Osotchan, Tanakorn; Ahuja, Rajeev; Scheicher, Ralph H.

    2015-12-01

    Fast, cost effective, single-shot DNA sequencing could be the prelude of a new era in genetics. As DNA encodes the information for the production of proteins in all known living beings on Earth, determining the nucleobase sequences is the first and necessary step in that direction. Graphene-based nanopore devices hold great promise for next-generation DNA sequencing. In this work, we develop a novel approach for sequencing DNA using bilayer graphene to read the interlayer conductance through the layers in the presence of target nucleobases. Classical molecular dynamics simulations of DNA translocation through the pore were performed to trace the nucleobase trajectories and evaluate the interaction between the nucleobases and the nanopore. This interaction stabilizes the bases in different orientations, resulting in smaller fluctuations of the nucleobases inside the pore. We assessed the performance of a bilayer graphene nanopore setup for the purpose of DNA sequencing by employing density functional theory and non-equilibrium Green’s function method to investigate the interlayer conductance of nucleobases coupling simultaneously to the top and bottom graphene layers. The obtained conductance is significantly affected by the presence of DNA in the bilayer graphene nanopore, allowing us to analyze DNA sequences.

  11. Theoretical assessment of feasibility to sequence DNA through interlayer electronic tunneling transport at aligned nanopores in bilayer graphene

    PubMed Central

    Prasongkit, Jariyanee; Feliciano, Gustavo T.; Rocha, Alexandre R.; He, Yuhui; Osotchan, Tanakorn; Ahuja, Rajeev; Scheicher, Ralph H.

    2015-01-01

    Fast, cost effective, single-shot DNA sequencing could be the prelude of a new era in genetics. As DNA encodes the information for the production of proteins in all known living beings on Earth, determining the nucleobase sequences is the first and necessary step in that direction. Graphene-based nanopore devices hold great promise for next-generation DNA sequencing. In this work, we develop a novel approach for sequencing DNA using bilayer graphene to read the interlayer conductance through the layers in the presence of target nucleobases. Classical molecular dynamics simulations of DNA translocation through the pore were performed to trace the nucleobase trajectories and evaluate the interaction between the nucleobases and the nanopore. This interaction stabilizes the bases in different orientations, resulting in smaller fluctuations of the nucleobases inside the pore. We assessed the performance of a bilayer graphene nanopore setup for the purpose of DNA sequencing by employing density functional theory and non-equilibrium Green’s function method to investigate the interlayer conductance of nucleobases coupling simultaneously to the top and bottom graphene layers. The obtained conductance is significantly affected by the presence of DNA in the bilayer graphene nanopore, allowing us to analyze DNA sequences. PMID:26634811

  12. Phylo-VISTA: An interactive visualization tool for multiple DNAsequence alignments

    SciTech Connect

    Shah, Nameeta; Couronne, Olivier; Pennacchio, Len A.; Brudno,Michael; Batzoglou, Serafim; Bethel, E. Wes; Rubin, Edward M.; Hamann,Bernd; Dubchak, Inna

    2003-04-25

    Motivation. The power of multi-sequence comparison forbiological discovery is well established and sequence data from a growinglist of organisms is becoming available. Thus, a need exists forcomputational strategies to visually compare multiple aligned sequencesto support conservation analysis across various species. To be efficientthese visualization algorithms require the ability to universally handlea wide range of evolutionary distances while taking into accountphylogeny Results. We have developed Phylo-VISTA, an interactive tool foranalyzing multiple alignments by visualizing the similarity of DNAsequences among multiple species while considering their phylogenicrelationships. Features include a broad spectrum of resolution parametersfor examining the alignment and the ability to easily compare any subtreeof sequences within a complete alignment dataset. Phylo-VISTA uses VISTAconcepts that have been successfully applied previously to a wide rangeof comparative genomics data analysis problems. Availability Phylo-VISTAis an interactive java applet available for downloading athttp://graphics.cs.ucdavis.edu/~;nyshah/Phylo-VISTA. It is also availableon-line at http://www-gsd.lbl.gov/phylovista and is integrated with theglobal alignment program LAGAN athttp://lagan.stanford.edu.Contactphylovista@lbl.gov

  13. Implementation of NAS Parallel Benchmarks in Java

    NASA Technical Reports Server (NTRS)

    Frumkin, Michael; Schultz, Matthew; Jin, Hao-Qiang; Yan, Jerry

    2000-01-01

    A number of features make Java an attractive but a debatable choice for High Performance Computing (HPC). In order to gauge the applicability of Java to the Computational Fluid Dynamics (CFD) we have implemented NAS Parallel Benchmarks in Java. The performance and scalability of the benchmarks point out the areas where improvement in Java compiler technology and in Java thread implementation would move Java closer to Fortran in the competition for CFD applications.

  14. Differentiated evolutionary relationships among chordates from comparative alignments of multiple sequences of MyoD and MyoG myogenic regulatory factors.

    PubMed

    Oliani, L C; Lidani, K C F; Gabriel, J E

    2015-10-16

    MyoD and MyoG are transcription factors that have essential roles in myogenic lineage determination and muscle differentiation. The purpose of this study was to compare multiple amino acid sequences of myogenic regulatory proteins to infer evolutionary relationships among chordates. Protein sequences from Mus musculus (P10085 and P12979), human Homo sapiens (P15172 and P15173), bovine Bos taurus (Q7YS82 and Q7YS81), wild pig Sus scrofa (P49811 and P49812), quail Coturnix coturnix (P21572 and P34060), chicken Gallus gallus (P16075 and P17920), rat Rattus norvegicus (Q02346 and P20428), domestic water buffalo Bubalus bubalis (D2SP11 and A7L034), and sheep Ovis aries (Q90477 and D3YKV7) were searched from a non-redundant protein sequence database UniProtKB/Swiss-Prot, and subsequently analyzed using the Mega6.0 software. MyoD evolutionary analyses revealed the presence of three main clusters with all mammals branched in one cluster, members of the order Rodentia (mouse and rat) in a second branch linked to the first, and birds of the order Galliformes (chicken and quail) remaining isolated in a third. MyoG evolutionary analyses aligned sequences in two main clusters, all mammalian specimens grouped in different sub-branches, and birds clustered in a second branch. These analyses suggest that the evolution of MyoD and MyoG was driven by different pathways.

  15. MC64-ClustalWP2: A Highly-Parallel Hybrid Strategy to Align Multiple Sequences in Many-Core Architectures

    PubMed Central

    Díaz, David; Esteban, Francisco J.; Hernández, Pilar; Caballero, Juan Antonio; Guevara, Antonio

    2014-01-01

    We have developed the MC64-ClustalWP2 as a new implementation of the Clustal W algorithm, integrating a novel parallelization strategy and significantly increasing the performance when aligning long sequences in architectures with many cores. It must be stressed that in such a process, the detailed analysis of both the software and hardware features and peculiarities is of paramount importance to reveal key points to exploit and optimize the full potential of parallelism in many-core CPU systems. The new parallelization approach has focused into the most time-consuming stages of this algorithm. In particular, the so-called progressive alignment has drastically improved the performance, due to a fine-grained approach where the forward and backward loops were unrolled and parallelized. Another key approach has been the implementation of the new algorithm in a hybrid-computing system, integrating both an Intel Xeon multi-core CPU and a Tilera Tile64 many-core card. A comparison with other Clustal W implementations reveals the high-performance of the new algorithm and strategy in many-core CPU architectures, in a scenario where the sequences to align are relatively long (more than 10 kb) and, hence, a many-core GPU hardware cannot be used. Thus, the MC64-ClustalWP2 runs multiple alignments more than 18x than the original Clustal W algorithm, and more than 7x than the best x86 parallel implementation to date, being publicly available through a web service. Besides, these developments have been deployed in cost-effective personal computers and should be useful for life-science researchers, including the identification of identities and differences for mutation/polymorphism analyses, biodiversity and evolutionary studies and for the development of molecular markers for paternity testing, germplasm management and protection, to assist breeding, illegal traffic control, fraud prevention and for the protection of the intellectual property (identification

  16. A systematic review and meta-analysis of experimental clinical evidence on initial aligning archwires and archwire sequences.

    PubMed

    Papageorgiou, S N; Konstantinidis, I; Papadopoulou, K; Jäger, A; Bourauel, C

    2014-11-01

    The aim of the study was to assess treatment effects and potential side effects of different archwires used on patients receiving orthodontic therapy. Electronic and manual unrestricted searches were conducted in 19 databases including MEDLINE, Cochrane Library, and Google Scholar until April 2012 to identify randomized controlled trials (RCTs) and quasi-RCTs. After duplicate study selection, data extraction, risk of bias assessment with the Cochrane risk of bias tool, and narrative analysis, mean differences (MDs) with confidence intervals (CIs) of similar studies were pooled using a random-effects model and evaluated with GRADE. A total of 16 RCTs were included assessing different archwire characteristics on 1108 patients. Regarding initial archwires, meta-analysis of two trials found slightly greater irregularity correction with an austenitic-active nickel-titanium (NiTi) compared with an martensitic-stabilized NiTi archwire (corresponding to MD: 1.11 mm, 95% CI: -0.38 to 2.61). Regarding archwire sequences, meta-analysis of two trials found it took patient treated with a sequence of martensitic-active copper-nickel-titanium (CuNiTi) slightly longer to reach the working archwire (MD: 0.54 months, 95% CI: -0.87 to 1.95) compared with a martensitic-stabilized NiTi sequence. However, patients treated with a sequence of martensitic-active CuNiTi archwires reported general greater pain intensity on the Likert scale 4 h and 1 day after placement of each archwire, compared with a martensitic-stabilized NiTi sequence. Although confidence in effect estimates ranged from moderate to high, meta-analyses could be performed only for limited comparisons, while inconsistency might pose a threat to some of them. At this point, there is insufficient data to make recommendations about the majority of initial archwires or for a specific archwire sequence.

  17. The Aladin Java Applet Experience

    NASA Astrophysics Data System (ADS)

    Fernique, P.; Bonnarel, F.

    The applet feature has certainly been the reason of the success of the Java language fast development: with a simple mouse-click it became possible to download remote executables and to run them via standard browsers such as Netscape or IExplorer. However, three years after its first release, many Java developments are in fact standalone applications which require an installation of the JVM (Java virtual machine) rather than applets. In which conditions is the applet feature a really applicable concept? This paper presents the CDS (Centre de Données astronomiques de Strasbourg) experience of Java applets through the development of Aladin Java. We present the limitations that we encountered, and how to overcome them: support of all browser versions, insuring sufficient performances, dealing with the access restrictions to local disks and in particular keeping the code small enough to be easily downloaded.

  18. FANSe2: a robust and cost-efficient alignment tool for quantitative next-generation sequencing applications.

    PubMed

    Xiao, Chuan-Le; Mai, Zhi-Biao; Lian, Xin-Lei; Zhong, Jia-Yong; Jin, Jing-Jie; He, Qing-Yu; Zhang, Gong

    2014-01-01

    Correct and bias-free interpretation of the deep sequencing data is inevitably dependent on the complete mapping of all mappable reads to the reference sequence, especially for quantitative RNA-seq applications. Seed-based algorithms are generally slow but robust, while Burrows-Wheeler Transform (BWT) based algorithms are fast but less robust. To have both advantages, we developed an algorithm FANSe2 with iterative mapping strategy based on the statistics of real-world sequencing error distribution to substantially accelerate the mapping without compromising the accuracy. Its sensitivity and accuracy are higher than the BWT-based algorithms in the tests using both prokaryotic and eukaryotic sequencing datasets. The gene identification results of FANSe2 is experimentally validated, while the previous algorithms have false positives and false negatives. FANSe2 showed remarkably better consistency to the microarray than most other algorithms in terms of gene expression quantifications. We implemented a scalable and almost maintenance-free parallelization method that can utilize the computational power of multiple office computers, a novel feature not present in any other mainstream algorithm. With three normal office computers, we demonstrated that FANSe2 mapped an RNA-seq dataset generated from an entire Illunima HiSeq 2000 flowcell (8 lanes, 608 M reads) to masked human genome within 4.1 hours with higher sensitivity than Bowtie/Bowtie2. FANSe2 thus provides robust accuracy, full indel sensitivity, fast speed, versatile compatibility and economical computational utilization, making it a useful and practical tool for deep sequencing applications. FANSe2 is freely available at http://bioinformatics.jnu.edu.cn/software/fanse2/.

  19. Knowledge-based expert systems and a proof-of-concept case study for multiple sequence alignment construction and analysis.

    PubMed

    Aniba, Mohamed Radhouene; Siguenza, Sophie; Friedrich, Anne; Plewniak, Frédéric; Poch, Olivier; Marchler-Bauer, Aron; Thompson, Julie Dawn

    2009-01-01

    The traditional approach to bioinformatics analyses relies on independent task-specific services and applications, using different input and output formats, often idiosyncratic, and frequently not designed to inter-operate. In general, such analyses were performed by experts who manually verified the results obtained at each step in the process. Today, the amount of bioinformatics information continuously being produced means that handling the various applications used to study this information presents a major data management and analysis challenge to researchers. It is now impossible to manually analyse all this information and new approaches are needed that are capable of processing the large-scale heterogeneous data in order to extract the pertinent information. We review the recent use of integrated expert systems aimed at providing more efficient knowledge extraction for bioinformatics research. A general methodology for building knowledge-based expert systems is described, focusing on the unstructured information management architecture, UIMA, which provides facilities for both data and process management. A case study involving a multiple alignment expert system prototype called AlexSys is also presented.

  20. SigniSite: Identification of residue-level genotype-phenotype correlations in protein multiple sequence alignments

    PubMed Central

    Jessen, Leon Eyrich; Hoof, Ilka; Lund, Ole; Nielsen, Morten

    2013-01-01

    Identifying which mutation(s) within a given genotype is responsible for an observable phenotype is important in many aspects of molecular biology. Here, we present SigniSite, an online application for subgroup-free residue-level genotype–phenotype correlation. In contrast to similar methods, SigniSite does not require any pre-definition of subgroups or binary classification. Input is a set of protein sequences where each sequence has an associated real number, quantifying a given phenotype. SigniSite will then identify which amino acid residues are significantly associated with the data set phenotype. As output, SigniSite displays a sequence logo, depicting the strength of the phenotype association of each residue and a heat-map identifying ‘hot’ or ‘cold’ regions. SigniSite was benchmarked against SPEER, a state-of-the-art method for the prediction of specificity determining positions (SDP) using a set of human immunodeficiency virus protease-inhibitor genotype–phenotype data and corresponding resistance mutation scores from the Stanford University HIV Drug Resistance Database, and a data set of protein families with experimentally annotated SDPs. For both data sets, SigniSite was found to outperform SPEER. SigniSite is available at: http://www.cbs.dtu.dk/services/SigniSite/. PMID:23761454

  1. JavaTech, an Introduction to Scientific and Technical Computing with Java

    NASA Astrophysics Data System (ADS)

    Lindsey, Clark S.; Tolliver, Johnny S.; Lindblad, Thomas

    2010-06-01

    Preface; Acknowledgements; Part I. Introduction to Java: 1. Introduction; 2. Language basics; 3. Classes and objects in Java; 4. More about objects in Java; 5. Organizing Java files and other practicalities; 6. Java graphics; 7. Graphical user interfaces; 8. Threads; 9. Java input/output; 10. Java utilities; 11. Image handling and processing; 12. More techniques and tips; Part II. Java and the Network: 13. Java networking basics; 14. A Java web server; 15. Client/server with sockets; 16. Distributed computing; 17. Distributed computing - the client; 18. Java remote method invocation (RMI); 19. CORBA; 20. Distributed computing - putting it all together; 21. Introduction to web services and XML; Part III. Out of the Sandbox: 22. The Java native interface (JNI); 23. Accessing the platform; 24. Embedded Java; Appendices; Index.

  2. JavaTech, an Introduction to Scientific and Technical Computing with Java

    NASA Astrophysics Data System (ADS)

    Lindsey, Clark S.; Tolliver, Johnny S.; Lindblad, Thomas

    2005-10-01

    Preface; Acknowledgements; Part I. Introduction to Java: 1. Introduction; 2. Language basics; 3. Classes and objects in Java; 4. More about objects in Java; 5. Organizing Java files and other practicalities; 6. Java graphics; 7. Graphical user interfaces; 8. Threads; 9. Java input/output; 10. Java utilities; 11. Image handling and processing; 12. More techniques and tips; Part II. Java and the Network: 13. Java networking basics; 14. A Java web server; 15. Client/server with sockets; 16. Distributed computing; 17. Distributed computing - the client; 18. Java remote method invocation (RMI); 19. CORBA; 20. Distributed computing - putting it all together; 21. Introduction to web services and XML; Part III. Out of the Sandbox: 22. The Java native interface (JNI); 23. Accessing the platform; 24. Embedded Java; Appendices; Index.

  3. Java PathFinder: A Translator From Java to Promela

    NASA Technical Reports Server (NTRS)

    Havelund, Klaus

    1999-01-01

    JAVA PATHFINDER, JPF, is a prototype translator from JAVA to PROMELA, the modeling language of the SPIN model checker. JPF is a product of a major effort by the Automated Software Engineering group at NASA Ames to make model checking technology part of the software process. Experience has shown that severe bugs can be found in final code using this technique, and that automated translation from a programming language to a modeling language like PROMELA can help reducing the effort required.

  4. JavaScript: Data Visualizations

    EPA Pesticide Factsheets

    D3 is a JavaScript library that, in a manner similar to jQuery library, allows direct inspection and manipulation of the Document Object Model, but is intended for the primary purpose of data visualization.

  5. Model Checker for Java Programs

    NASA Technical Reports Server (NTRS)

    Visser, Willem

    2007-01-01

    Java Pathfinder (JPF) is a verification and testing environment for Java that integrates model checking, program analysis, and testing. JPF consists of a custom-made Java Virtual Machine (JVM) that interprets bytecode, combined with a search interface to allow the complete behavior of a Java program to be analyzed, including interleavings of concurrent programs. JPF is implemented in Java, and its architecture is highly modular to support rapid prototyping of new features. JPF is an explicit-state model checker, because it enumerates all visited states and, therefore, suffers from the state-explosion problem inherent in analyzing large programs. It is suited to analyzing programs less than 10kLOC, but has been successfully applied to finding errors in concurrent programs up to 100kLOC. When an error is found, a trace from the initial state to the error is produced to guide the debugging. JPF works at the bytecode level, meaning that all of Java can be model-checked. By default, the software checks for all runtime errors (uncaught exceptions), assertions violations (supports Java s assert), and deadlocks. JPF uses garbage collection and symmetry reductions of the heap during model checking to reduce state-explosion, as well as dynamic partial order reductions to lower the number of interleavings analyzed. JPF is capable of symbolic execution of Java programs, including symbolic execution of complex data such as linked lists and trees. JPF is extensible as it allows for the creation of listeners that can subscribe to events during searches. The creation of dedicated code to be executed in place of regular classes is supported and allows users to easily handle native calls and to improve the efficiency of the analysis.

  6. Going back to Java.

    PubMed

    Critchfield, R

    1985-01-01

    In Indonesia, achievements in food production have helped lower the country's deaths rates and increase life expectancy, making concern about the birthrate all the more critical, particularly in the already crowded Java. Indonesia's rice production in 1985 is expected to reach 26.3 million tons, 58% more than the 1975-79 average. With every country except Malaysia now self-sufficient or surplus in rice, the world market price for rice has dropped markedly. Indonesia's National Logistics Board (BULOG), which aims to establish a floor price for rice, has had to stockpile 3.5 million tons, double its normal reserve and enough for 3 years. Some of it has been kept 2 years already, but it cannot be exported as the quality is low and everybody else also has plenty of rice. Peasants and agriculture experts agree that alternatives to rice pose greater risks in terms of weather and disease. Whatever the government does, rice prices have dropped sharply and are likely to stay down. Fertilizer use can also be expected to decline for the 1st time in years. Indonesia is the scene of a scientific breakthrough, a new hybrid seed corn that grows in the tropics. If seed companies are able to sell seed for half of Indonesia's existing corn acreage, this would be an increase of 1.3 million tons, which would mostly be a surplus to be used for export, processing, or increased human or animal consumption. In revisiting Indonesia, the biggest dissapointment is the failure of family planning to slow the rate of population growth more drastically. 5 years ago, Indonesia's family planning program, started in 1970, appeared a great success. Countrywide, the proportion of women aged 15-44 using contraceptives increased from almost nothing to almost 40% and in Bali topped 60%. Indonesia's overall annual population growth rate had dropped to 1.7%, raising hopes it could be brought down to the 1.2% rate of East Java and Bali by 1985. What has happended instead is that an unexpectedly fast

  7. Phylogeny of prokaryotes and chloroplasts revealed by a simple composition approach on all protein sequences from complete genomes without sequence alignment.

    PubMed

    Yu, Z G; Zhou, L Q; Anh, V V; Chu, K H; Long, S C; Deng, J Q

    2005-04-01

    The complete genomes of living organisms have provided much information on their phylogenetic relationships. Similarly, the complete genomes of chloroplasts have helped to resolve the evolution of this organelle in photosynthetic eukaryotes. In this paper we propose an alternative method of phylogenetic analysis using compositional statistics for all protein sequences from complete genomes. This new method is conceptually simpler than and computationally as fast as the one proposed by Qi et al. (2004b) and Chu et al. (2004). The same data sets used in Qi et al. (2004b) and Chu et al. (2004) are analyzed using the new method. Our distance-based phylogenic tree of the 109 prokaryotes and eukaryotes agrees with the biologists "tree of life" based on 16S rRNA comparison in a predominant majority of basic branching and most lower taxa. Our phylogenetic analysis also shows that the chloroplast genomes are separated to two major clades corresponding to chlorophytes s.l. and rhodophytes s.l. The interrelationships among the chloroplasts are largely in agreement with the current understanding on chloroplast evolution.

  8. JAVA Stereo Display Toolkit

    NASA Technical Reports Server (NTRS)

    Edmonds, Karina

    2008-01-01

    This toolkit provides a common interface for displaying graphical user interface (GUI) components in stereo using either specialized stereo display hardware (e.g., liquid crystal shutter or polarized glasses) or anaglyph display (red/blue glasses) on standard workstation displays. An application using this toolkit will work without modification in either environment, allowing stereo software to reach a wider audience without sacrificing high-quality display on dedicated hardware. The toolkit is written in Java for use with the Swing GUI Toolkit and has cross-platform compatibility. It hooks into the graphics system, allowing any standard Swing component to be displayed in stereo. It uses the OpenGL graphics library to control the stereo hardware and to perform the rendering. It also supports anaglyph and special stereo hardware using the same API (application-program interface), and has the ability to simulate color stereo in anaglyph mode by combining the red band of the left image with the green/blue bands of the right image. This is a low-level toolkit that accomplishes simply the display of components (including the JadeDisplay image display component). It does not include higher-level functions such as disparity adjustment, 3D cursor, or overlays all of which can be built using this toolkit.

  9. Java Radar Analysis Tool

    NASA Technical Reports Server (NTRS)

    Zaczek, Mariusz P.

    2005-01-01

    Java Radar Analysis Tool (JRAT) is a computer program for analyzing two-dimensional (2D) scatter plots derived from radar returns showing pieces of the disintegrating Space Shuttle Columbia. JRAT can also be applied to similar plots representing radar returns showing aviation accidents, and to scatter plots in general. The 2D scatter plots include overhead map views and side altitude views. The superposition of points in these views makes searching difficult. JRAT enables three-dimensional (3D) viewing: by use of a mouse and keyboard, the user can rotate to any desired viewing angle. The 3D view can include overlaid trajectories and search footprints to enhance situational awareness in searching for pieces. JRAT also enables playback: time-tagged radar-return data can be displayed in time order and an animated 3D model can be moved through the scene to show the locations of the Columbia (or other vehicle) at the times of the corresponding radar events. The combination of overlays and playback enables the user to correlate a radar return with a position of the vehicle to determine whether the return is valid. JRAT can optionally filter single radar returns, enabling the user to selectively hide or highlight a desired radar return.

  10. An introduction to the Lagan alignment toolkit.

    PubMed

    Brudno, Michael

    2007-01-01

    The Lagan Toolkit is a software package for comparison of genomic sequences. It includes the CHAOS local alignment program, LAGAN global alignment program for two, or more sequences and Shuffle-LAGAN, a "glocal" alignment method that handles genomic rearrangements in a global alignment framework. The alignment programs included in the Lagan Toolkit have been widely used to compare genomes of many organisms, from bacteria to large mammalian genomes. This chapter provides an overview of the algorithms used by the LAGAN programs to construct genomic alignments, explains how to build alignments using either the standalone program or the web server, and discusses some of the common pitfalls users encounter when using the toolkit.

  11. Combining Multiple Pairwise Structure-based Alignments

    SciTech Connect

    2014-11-12

    CombAlign is a new Python code that generates a gapped, one-to-many, multiple structure-based sequence alignment(MSSA) given a set of pairwise structure-based alignments. In order to better define regions of similarity among related protein structures, it is useful to detect the residue-residue correspondences among a set of pairwise structure alignments. Few codes exist for constructing a one-to-many, multiple sequence alignment derived from a set of structure alignments, and we perceived a need for creating a new tool for combing pairwise structure alignments that would allow for insertion of gaps in the reference structure.

  12. Java Application Shell: A Framework for Piecing Together Java Applications

    NASA Technical Reports Server (NTRS)

    Miller, Philip; Powers, Edward I. (Technical Monitor)

    2001-01-01

    This session describes the architecture of Java Application Shell (JAS), a Swing-based framework for developing interactive Java applications. Java Application Shell is being developed by Commerce One, Inc. for NASA Goddard Space Flight Center Code 588. The purpose of JAS is to provide a framework for the development of Java applications, providing features that enable the development process to be more efficient, consistent and flexible. Fundamentally, JAS is based upon an architecture where an application is considered a collection of 'plugins'. In turn, a plug-in is a collection of Swing actions defined using XML and packaged in a jar file. Plug-ins may be local to the host platform or remotely-accessible through HTTP. Local and remote plugins are automatically discovered by JAS upon application startup; plugins may also be loaded dynamically without having to re-start the application. Using Extensible Markup Language (XML) to define actions, as opposed to hardcoding them in application logic, allows easier customization of application-specific operations by separating application logic from presentation. Through XML, a developer defines an action that may appear on any number of menus, toolbars, and buttons. Actions maintain and propagate enable/disable states and specify icons, tool-tips, titles, etc. Furthermore, JAS allows actions to be implemented using various scripting languages through the use of IBM's Bean Scripting Framework. Scripted action implementation is seamless to the end-user. In addition to action implementation, scripts may be used for application and unit-level testing. In the case of application-level testing, JAS has hooks to assist a script in simulating end-user input. JAS also provides property and user preference management, JavaHelp, Undo/Redo, Multi-Document Interface, Single-Document Interface, printing, and logging. Finally, Jini technology has also been included into the framework by means of a Jini services browser and the

  13. HIV-1 and HIV-2 LTR nucleotide sequences: assessment of the alignment by N-block presentation, "retroviral signatures" of overrepeated oligonucleotides, and a probable important role of scrambled stepwise duplications/deletions in molecular evolution.

    PubMed

    Laprevotte, I; Pupin, M; Coward, E; Didier, G; Terzian, C; Devauchelle, C; Hénaut, A

    2001-07-01

    Previous analyses of retroviral nucleotide sequences, suggest a so-called "scrambled duplicative stepwise molecular evolution" (many sectors with successive duplications/deletions of short and longer motifs) that could have stemmed from one or several starter tandemly repeated short sequence(s). In the present report, we tested this hypothesis by focusing on the long terminal repeats (LTRs) (and flanking sequences) of 24 human and 3 simian immunodeficiency viruses. By using a calculation strategy applicable to short sequences, we found consensus overrepresented motifs (often containing CTG or CAG) that were congruent with the previously defined "retroviral signature." We also show many local repetition patterns that are significant when compared with simply shuffled sequences. First- and second-order Markov chain analyses demonstrate that a major portion of the overrepresented oligonucleotides can be predicted from the dinucleotide compositions of the sequences, but by no means can biological mechanisms be deduced from these results: some of the listed local repetitions remain significant against dinucleotide-conserving shuffled sequences; together with previous results, this suggests that interspersed and/or local mononucleotide and oligonucleotide repetitions could have biased the dinucleotide compositions of the sequences. We searched for suggestive evolutionary patterns by scrutinizing a reliable multiple alignment of the 27 sequences. A manually constructed alignment based on homology blocks was in good agreement with the polypeptide alignment in the coding sectors and has been exhaustively assessed by using a multiplied alphabet obtained by the promising mathematical strategy called the N-block presentation (taking into account the environment of each nucleotide in a sequence). Sector by sector, we hypothesize many successive duplication/deletion scenarios that fit our previous evolutionary hypotheses. This suggests an important duplication/deletion role for

  14. Model Checking Real Time Java Using Java PathFinder

    NASA Technical Reports Server (NTRS)

    Lindstrom, Gary; Mehlitz, Peter C.; Visser, Willem

    2005-01-01

    The Real Time Specification for Java (RTSJ) is an augmentation of Java for real time applications of various degrees of hardness. The central features of RTSJ are real time threads; user defined schedulers; asynchronous events, handlers, and control transfers; a priority inheritance based default scheduler; non-heap memory areas such as immortal and scoped, and non-heap real time threads whose execution is not impeded by garbage collection. The Robust Software Systems group at NASA Ames Research Center has JAVA PATHFINDER (JPF) under development, a Java model checker. JPF at its core is a state exploring JVM which can examine alternative paths in a Java program (e.g., via backtracking) by trying all nondeterministic choices, including thread scheduling order. This paper describes our implementation of an RTSJ profile (subset) in JPF, including requirements, design decisions, and current implementation status. Two examples are analyzed: jobs on a multiprogramming operating system, and a complex resource contention example involving autonomous vehicles crossing an intersection. The utility of JPF in finding logic and timing errors is illustrated, and the remaining challenges in supporting all of RTSJ are assessed.

  15. Monitoring Java Programs with Java PathExplorer

    NASA Technical Reports Server (NTRS)

    Havelund, Klaus; Rosu, Grigore; Clancy, Daniel (Technical Monitor)

    2001-01-01

    We present recent work on the development Java PathExplorer (JPAX), a tool for monitoring the execution of Java programs. JPAX can be used during program testing to gain increased information about program executions, and can potentially furthermore be applied during operation to survey safety critical systems. The tool facilitates automated instrumentation of a program's late code which will then omit events to an observer during its execution. The observer checks the events against user provided high level requirement specifications, for example temporal logic formulae, and against lower level error detection procedures, for example concurrency related such as deadlock and data race algorithms. High level requirement specifications together with their underlying logics are defined in the Maude rewriting logic, and then can either be directly checked using the Maude rewriting engine, or be first translated to efficient data structures and then checked in Java.

  16. JavaGenes Molecular Evolution

    NASA Technical Reports Server (NTRS)

    Lohn, Jason; Smith, David; Frank, Jeremy; Globus, Al; Crawford, James

    2007-01-01

    JavaGenes is a general-purpose, evolutionary software system written in Java. It implements several versions of a genetic algorithm, simulated annealing, stochastic hill climbing, and other search techniques. This software has been used to evolve molecules, atomic force field parameters, digital circuits, Earth Observing Satellite schedules, and antennas. This version differs from version 0.7.28 in that it includes the molecule evolution code and other improvements. Except for the antenna code, JaveGenes is available for NASA Open Source distribution.

  17. Enhancing Web applications in radiology with Java: estimating MR imaging relaxation times.

    PubMed

    Dagher, A P; Fitzpatrick, M; Flanders, A E; Eng, J

    1998-01-01

    Java is a relatively new programming language that has been used to develop a World Wide Web-based tool for estimating magnetic resonance (MR) imaging relaxation times, thereby demonstrating how Java may be used for Web-based radiology applications beyond improving the user interface of teaching files. A standard processing algorithm coded with Java is downloaded along with the hypertext markup language (HTML) document. The user (client) selects the desired pulse sequence and inputs data obtained from a region of interest on the MR images. The algorithm is used to modify selected MR imaging parameters in an equation that models the phenomenon being evaluated. MR imaging relaxation times are estimated, and confidence intervals and a P value expressing the accuracy of the final results are calculated. Design features such as simplicity, object-oriented programming, and security restrictions allow Java to expand the capabilities of HTML by offering a more versatile user interface that includes dynamic annotations and graphics. Java also allows the client to perform more sophisticated information processing and computation than is usually associated with Web applications. Java is likely to become a standard programming option, and the development of stand-alone Java applications may become more common as Java is integrated into future versions of computer operating systems.

  18. JAVA based LCD Reconstruction and Analysis Tools

    SciTech Connect

    Bower, G.

    2004-10-11

    We summarize the current status and future developments of the North American Group's Java-based system for studying physics and detector design issues at a linear collider. The system is built around Java Analysis Studio (JAS) an experiment-independent Java-based utility for data analysis. Although the system is an integrated package running in JAS, many parts of it are also standalone Java utilities.

  19. Dynamic triggering of Lusi, East Java Basin

    NASA Astrophysics Data System (ADS)

    Lupi, Matteo; Saenger, Erik H.; Fuchs, Florian; Miller, Steve

    2016-04-01

    On the 27th of May 2006, a M6.3 strike slip earthquake struck beneath Yogyakarta, Java. Forty-seven hours later a mixture of mud, breccia, and gas reached the surface near Sidoarjo, 250 km far from the epicenter, creating several mud vents aligned along a NW-SE direction. The mud eruption reached a peak of 180.000 km3 of erupted material per day and it is still ongoing. The major eruption crater was named Lusi and represents the surface expression of a newborn sedimentary-hosted hydrothermal system. Lusi flooded several villages causing a loss of approximately 4 billions to Indonesia. Previous geochemical and geological data suggest that the Yogyakarta earthquake may have reactivated parts of the Watukosek fault system, a strike slip structure upon which Lusi resides. The Watukosek fault systems connects the East Java basin to the volcanic arc, which may explain the presence of both biogenic and thermogenic fluids. To quantify the effects of incoming seismic energy at Lusi we conducted a seismic wave propagation study on a geological model of Lusi's structure. A key feature of our model is a low velocity shear zone in the Kalibeng formation caused by elevated pore pressures, which is often neglected in other studies. Our analysis highlights the importance of the overall geological structure that focused the seismic energy causing elevated strain rates at depth. In particular, we show that body waves generated by the Yogyakarta earthquake may have induced liquefaction of the Kalibeng formation. As consequence, the liquefied mud injected and reactivated parts of the Watukosek fault system. Our findings are in agreement with previous studies suggesting that Lusi was an unfortunate case of dynamic triggering promoted by the Yogyakarta earthquake.

  20. The alignment strategy of HADES

    NASA Astrophysics Data System (ADS)

    Pechenova, O.; Pechenov, V.; Galatyuk, T.; Hennino, T.; Holzmann, R.; Kornakov, G.; Markert, J.; Müntz, C.; Salabura, P.; Schmah, A.; Schwab, E.; Stroth, J.

    2015-06-01

    The global as well as intrinsic alignment of any spectrometer impacts directly on its performance and the quality of the achievable physics results. An overview of the current alignment procedure of the DiElectron Spectrometer HADES is presented with an emphasis on its main features and its accuracy. The sequence of all steps and procedures is given, including details on photogrammetric and track-based alignment.

  1. MzJava: An open source library for mass spectrometry data processing.

    PubMed

    Horlacher, Oliver; Nikitin, Frederic; Alocci, Davide; Mariethoz, Julien; Müller, Markus; Lisacek, Frederique

    2015-11-03

    Mass spectrometry (MS) is a widely used and evolving technique for the high-throughput identification of molecules in biological samples. The need for sharing and reuse of code among bioinformaticians working with MS data prompted the design and implementation of MzJava, an open-source Java Application Programming Interface (API) for MS related data processing. MzJava provides data structures and algorithms for representing and processing mass spectra and their associated biological molecules, such as metabolites, glycans and peptides. MzJava includes functionality to perform mass calculation, peak processing (e.g. centroiding, filtering, transforming), spectrum alignment and clustering, protein digestion, fragmentation of peptides and glycans as well as scoring functions for spectrum-spectrum and peptide/glycan-spectrum matches. For data import and export MzJava implements readers and writers for commonly used data formats. For many classes support for the Hadoop MapReduce (hadoop.apache.org) and Apache Spark (spark.apache.org) frameworks for cluster computing was implemented. The library has been developed applying best practices of software engineering. To ensure that MzJava contains code that is correct and easy to use the library's API was carefully designed and thoroughly tested. MzJava is an open-source project distributed under the AGPL v3.0 licence. MzJava requires Java 1.7 or higher. Binaries, source code and documentation can be downloaded from http://mzjava.expasy.org and https://bitbucket.org/sib-pig/mzjava. This article is part of a Special Issue entitled: Computational Proteomics.

  2. Features of the Java commodity grid kit.

    SciTech Connect

    von Laszewski, G.; Gawor, J.; Lane, P.; Rehn, N.; Russell, M.; Mathematics and Computer Science

    2002-11-01

    In this paper we report on the features of the Java Commodity Grid Kit (Java CoG Kit). The Java CoG Kit provides middleware for accessing Grid functionality from the Java framework. Java CoG Kit middleware is general enough to design a variety of advanced Grid applications with quite different user requirements. Access to the Grid is established via Globus Toolkit protocols, allowing the Java CoG Kit to also communicate with the services distributed as part of the C Globus Toolkit reference implementation. Thus, the Java CoG Kit provides Grid developers with the ability to utilize the Grid, as well as numerous additional libraries and frameworks developed by the Java community to enable network, Internet, enterprise and peer-to-peer computing. A variety of projects have successfully used the client libraries of the Java CoG Kit to access Grids driven by the C Globus Toolkit software. In this paper we also report on the efforts to develop serverside Java CoG Kit components. As part of this research we have implemented a prototype pure Java resource management system that enables one to run Grid jobs on platforms on which a Java virtual machine is supported, including Windows NT machines.

  3. Java: An Explosion on the Internet.

    ERIC Educational Resources Information Center

    Read, Tim; Hall, Hazel

    Summer 1995 saw the release, with considerable media attention, of draft versions of Sun Microsystems' Java computer programming language and the HotJava browser. Java has been heralded as the latest "killer" technology in the Internet explosion. Sun Microsystems and numerous companies including Microsoft, IBM, and Netscape have agreed…

  4. Encoding Ownership Types in Java

    NASA Astrophysics Data System (ADS)

    Cameron, Nicholas; Noble, James

    Ownership types systems organise the heap into a hierarchy which can be used to support encapsulation properties, effects, and invariants. Ownership types have many applications including parallelisation, concurrency, memory management, and security. In this paper, we show that several flavours and extensions of ownership types can be entirely encoded using the standard Java type system.

  5. Alignment validation

    SciTech Connect

    ALICE; ATLAS; CMS; LHCb; Golling, Tobias

    2008-09-06

    The four experiments, ALICE, ATLAS, CMS and LHCb are currently under constructionat CERN. They will study the products of proton-proton collisions at the Large Hadron Collider. All experiments are equipped with sophisticated tracking systems, unprecedented in size and complexity. Full exploitation of both the inner detector andthe muon system requires an accurate alignment of all detector elements. Alignmentinformation is deduced from dedicated hardware alignment systems and the reconstruction of charged particles. However, the system is degenerate which means the data is insufficient to constrain all alignment degrees of freedom, so the techniques are prone to converging on wrong geometries. This deficiency necessitates validation and monitoring of the alignment. An exhaustive discussion of means to validate is subject to this document, including examples and plans from all four LHC experiments, as well as other high energy experiments.

  6. DNAAlignEditor: DNA alignment editor tool

    PubMed Central

    Sanchez-Villeda, Hector; Schroeder, Steven; Flint-Garcia, Sherry; Guill, Katherine E; Yamasaki, Masanori; McMullen, Michael D

    2008-01-01

    Background With advances in DNA re-sequencing methods and Next-Generation parallel sequencing approaches, there has been a large increase in genomic efforts to define and analyze the sequence variability present among individuals within a species. For very polymorphic species such as maize, this has lead to a need for intuitive, user-friendly software that aids the biologist, often with naïve programming capability, in tracking, editing, displaying, and exporting multiple individual sequence alignments. To fill this need we have developed a novel DNA alignment editor. Results We have generated a nucleotide sequence alignment editor (DNAAlignEditor) that provides an intuitive, user-friendly interface for manual editing of multiple sequence alignments with functions for input, editing, and output of sequence alignments. The color-coding of nucleotide identity and the display of associated quality score aids in the manual alignment editing process. DNAAlignEditor works as a client/server tool having two main components: a relational database that collects the processed alignments and a user interface connected to database through universal data access connectivity drivers. DNAAlignEditor can be used either as a stand-alone application or as a network application with multiple users concurrently connected. Conclusion We anticipate that this software will be of general interest to biologists and population genetics in editing DNA sequence alignments and analyzing natural sequence variation regardless of species, and will be particularly useful for manual alignment editing of sequences in species with high levels of polymorphism. PMID:18366684

  7. Cloning of PRL and VIP cDNAs of the Java sparrow (Padda oryzivora).

    PubMed

    Hiyama, Gen; Sato, Tsukasa; Zadworny, David; Kansaku, Norio

    2009-04-01

    Complementary DNA (cDNA) of prolactin (PRL) and vasoactive intestinal polypeptide (VIP) of the Java sparrow were cloned and sequenced. The proximal region of the PRL promoter was also identified. Java sparrow PRL was found to have 88.3, 88.3, and 89.1% sequence identity at the cDNA level to PRL of chicken, turkey, and duck, respectively. The predicted amino acid sequence had an overall similarity with a comparable region of chicken (91.4%), turkey (88.9%) and duck (92.0%) PRL. Based on the cDNA sequence and genomic structure of the chicken PRL gene, the proximal promoter was characterized. Sequence analysis of the proximal region of Java sparrow PRL promoter revealed a high degree of similarity to that of chicken, turkey and duck PRL promoters. Moreover, cDNA of prepro-VIP was also cloned and sequenced. Java sparrow prepro-VIP shows high similarity to chicken and turkey prepro-VIP. However, the region upstream of the 5' untranslated region of Java sparrow prepro-VIP did not show similarity to that of chicken. These results suggest that the mechanisms, which regulate expression of the VIP gene, may be different between precocial and altricial birds, but expression of the PRL gene may be widely conserved in avian species.

  8. Java Mission Evaluation Workstation System

    NASA Technical Reports Server (NTRS)

    Pettinger, Ross; Watlington, Tim; Ryley, Richard; Harbour, Jeff

    2006-01-01

    The Java Mission Evaluation Workstation System (JMEWS) is a collection of applications designed to retrieve, display, and analyze both real-time and recorded telemetry data. This software is currently being used by both the Space Shuttle Program (SSP) and the International Space Station (ISS) program. JMEWS was written in the Java programming language to satisfy the requirement of platform independence. An object-oriented design was used to satisfy additional requirements and to make the software easily extendable. By virtue of its platform independence, JMEWS can be used on the UNIX workstations in the Mission Control Center (MCC) and on office computers. JMEWS includes an interactive editor that allows users to easily develop displays that meet their specific needs. The displays can be developed and modified while viewing data. By simply selecting a data source, the user can view real-time, recorded, or test data.

  9. Developing JAVA Card Application with RMI API

    NASA Astrophysics Data System (ADS)

    JunWu, Xu; JunLing, Liang

    This paper describes research in the use of the RMI to develop Java Card applications. the Java Card RMI (JCRMI), which is based on the J2SE RMI distributed-object model. In the RMI model a server application creates and makes accessible remote objects, and a client application obtains remote references to the server's remote objects, and then invokes remote methods on them. In JCRMI, the Java Card applet is the server, and the host application is the client.

  10. Jess, the Java expert system shell

    SciTech Connect

    Friedman-Hill, E.J.

    1997-11-01

    This report describes Jess, a clone of the popular CLIPS expert system shell written entirely in Java. Jess supports the development of rule-based expert systems which can be tightly coupled to code written in the powerful, portable Java language. The syntax of the Jess language is discussed, and a comprehensive list of supported functions is presented. A guide to extending Jess by writing Java code is also included.

  11. Multiple protein structure alignment.

    PubMed Central

    Taylor, W. R.; Flores, T. P.; Orengo, C. A.

    1994-01-01

    A method was developed to compare protein structures and to combine them into a multiple structure consensus. Previous methods of multiple structure comparison have only concatenated pairwise alignments or produced a consensus structure by averaging coordinate sets. The current method is a fusion of the fast structure comparison program SSAP and the multiple sequence alignment program MULTAL. As in MULTAL, structures are progressively combined, producing intermediate consensus structures that are compared directly to each other and all remaining single structures. This leads to a hierarchic "condensation," continually evaluated in the light of the emerging conserved core regions. Following the SSAP approach, all interatomic vectors were retained with well-conserved regions distinguished by coherent vector bundles (the structural equivalent of a conserved sequence position). Each bundle of vectors is summarized by a resultant, whereas vector coherence is captured in an error term, which is the only distinction between conserved and variable positions. Resultant vectors are used directly in the comparison, which is weighted by their error values, giving greater importance to the matching of conserved positions. The resultant vectors and their errors can also be used directly in molecular modeling. Applications of the method were assessed by the quality of the resulting sequence alignments, phylogenetic tree construction, and databank scanning with the consensus. Visual assessment of the structural superpositions and consensus structure for various well-characterized families confirmed that the consensus had identified a reasonable core. PMID:7849601

  12. ALIGNING JIG

    DOEpatents

    Culver, J.S.; Tunnell, W.C.

    1958-08-01

    A jig or device is described for setting or aligning an opening in one member relative to another member or structure, with a predetermined offset, or it may be used for measuring the amount of offset with which the parts have previously been sct. This jig comprises two blocks rabbeted to each other, with means for securing thc upper block to the lower block. The upper block has fingers for contacting one of the members to be a1igmed, the lower block is designed to ride in grooves within the reference member, and calibration marks are provided to determine the amount of offset. This jig is specially designed to align the collimating slits of a mass spectrometer.

  13. Image alignment

    DOEpatents

    Dowell, Larry Jonathan

    2014-04-22

    Disclosed is a method and device for aligning at least two digital images. An embodiment may use frequency-domain transforms of small tiles created from each image to identify substantially similar, "distinguishing" features within each of the images, and then align the images together based on the location of the distinguishing features. To accomplish this, an embodiment may create equal sized tile sub-images for each image. A "key" for each tile may be created by performing a frequency-domain transform calculation on each tile. A information-distance difference between each possible pair of tiles on each image may be calculated to identify distinguishing features. From analysis of the information-distance differences of the pairs of tiles, a subset of tiles with high discrimination metrics in relation to other tiles may be located for each image. The subset of distinguishing tiles for each image may then be compared to locate tiles with substantially similar keys and/or information-distance metrics to other tiles of other images. Once similar tiles are located for each image, the images may be aligned in relation to the identified similar tiles.

  14. Performance and Scalability of the NAS Parallel Benchmarks in Java

    NASA Technical Reports Server (NTRS)

    Frumkin, Michael A.; Schultz, Matthew; Jin, Haoqiang; Yan, Jerry; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    Several features make Java an attractive choice for scientific applications. In order to gauge the applicability of Java to Computational Fluid Dynamics (CFD), we have implemented the NAS (NASA Advanced Supercomputing) Parallel Benchmarks in Java. The performance and scalability of the benchmarks point out the areas where improvement in Java compiler technology and in Java thread implementation would position Java closer to Fortran in the competition for scientific applications.

  15. Implementation of the NAS Parallel Benchmarks in Java

    NASA Technical Reports Server (NTRS)

    Frumkin, Michael A.; Schultz, Matthew; Jin, Haoqiang; Yan, Jerry; Biegel, Bryan (Technical Monitor)

    2002-01-01

    Several features make Java an attractive choice for High Performance Computing (HPC). In order to gauge the applicability of Java to Computational Fluid Dynamics (CFD), we have implemented the NAS (NASA Advanced Supercomputing) Parallel Benchmarks in Java. The performance and scalability of the benchmarks point out the areas where improvement in Java compiler technology and in Java thread implementation would position Java closer to Fortran in the competition for CFD applications.

  16. GS-align for glycan structure alignment and similarity measurement

    PubMed Central

    Lee, Hui Sun; Jo, Sunhwan; Mukherjee, Srayanta; Park, Sang-Jun; Skolnick, Jeffrey; Lee, Jooyoung; Im, Wonpil

    2015-01-01

    Motivation: Glycans play critical roles in many biological processes, and their structural diversity is key for specific protein-glycan recognition. Comparative structural studies of biological molecules provide useful insight into their biological relationships. However, most computational tools are designed for protein structure, and despite their importance, there is no currently available tool for comparing glycan structures in a sequence order- and size-independent manner. Results: A novel method, GS-align, is developed for glycan structure alignment and similarity measurement. GS-align generates possible alignments between two glycan structures through iterative maximum clique search and fragment superposition. The optimal alignment is then determined by the maximum structural similarity score, GS-score, which is size-independent. Benchmark tests against the Protein Data Bank (PDB) N-linked glycan library and PDB homologous/non-homologous N-glycoprotein sets indicate that GS-align is a robust computational tool to align glycan structures and quantify their structural similarity. GS-align is also applied to template-based glycan structure prediction and monosaccharide substitution matrix generation to illustrate its utility. Availability and implementation: http://www.glycanstructure.org/gsalign. Contact: wonpil@ku.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25857669

  17. BAYESIAN PROTEIN STRUCTURE ALIGNMENT1

    PubMed Central

    RODRIGUEZ, ABEL; SCHMIDLER, SCOTT C.

    2015-01-01

    The analysis of the three-dimensional structure of proteins is an important topic in molecular biochemistry. Structure plays a critical role in defining the function of proteins and is more strongly conserved than amino acid sequence over evolutionary timescales. A key challenge is the identification and evaluation of structural similarity between proteins; such analysis can aid in understanding the role of newly discovered proteins and help elucidate evolutionary relationships between organisms. Computational biologists have developed many clever algorithmic techniques for comparing protein structures, however, all are based on heuristic optimization criteria, making statistical interpretation somewhat difficult. Here we present a fully probabilistic framework for pairwise structural alignment of proteins. Our approach has several advantages, including the ability to capture alignment uncertainty and to estimate key “gap” parameters which critically affect the quality of the alignment. We show that several existing alignment methods arise as maximum a posteriori estimates under specific choices of prior distributions and error models. Our probabilistic framework is also easily extended to incorporate additional information, which we demonstrate by including primary sequence information to generate simultaneous sequence–structure alignments that can resolve ambiguities obtained using structure alone. This combined model also provides a natural approach for the difficult task of estimating evolutionary distance based on structural alignments. The model is illustrated by comparison with well-established methods on several challenging protein alignment examples. PMID:26925188

  18. Sandia secure processor : a native Java processor.

    SciTech Connect

    Wickstrom, Gregory Lloyd; Gale, Jason Carl; Ma, Kwok Kee

    2003-08-01

    The Sandia Secure Processor (SSP) is a new native Java processor that has been specifically designed for embedded applications. The SSP's design is a system composed of a core Java processor that directly executes Java bytecodes, on-chip intelligent IO modules, and a suite of software tools for simulation and compiling executable binary files. The SSP is unique in that it provides a way to control real-time IO modules for embedded applications. The system software for the SSP is a 'class loader' that takes Java .class files (created with your favorite Java compiler), links them together, and compiles a binary. The complete SSP system provides very powerful functionality with very light hardware requirements with the potential to be used in a wide variety of small-system embedded applications. This paper gives a detail description of the Sandia Secure Processor and its unique features.

  19. GenomeVISTA—an integrated software package for whole-genome alignment and visualization

    PubMed Central

    Poliakov, Alexandre; Foong, Justin; Brudno, Michael; Dubchak, Inna

    2014-01-01

    Summary: With the ubiquitous generation of complete genome assemblies for a variety of species, efficient tools for whole-genome alignment along with user-friendly visualization are critically important. Our VISTA family of tools for comparative genomics, based on algorithms for pairwise and multiple alignments of genomic sequences and whole-genome assemblies, has become one of the standard techniques for comparative analysis. Most of the VISTA programs have been implemented as Web-accessible servers and are extensively used by the biomedical community. In this manuscript, we introduce GenomeVISTA: a novel implementation that incorporates most features of the VISTA family—fast and accurate alignment, visualization capabilities, GUI and analytical tools within a stand-alone software package. GenomeVISTA thus provides flexibility and security for users who need to conduct whole-genome comparisons on their own computers. Availability and implementation: Implemented in Perl, C/C++ and Java, the source code is freely available for download at the VISTA Web site: http://genome.lbl.gov/vista/ Contact: avpoliakov@lbl.gov or ildubchak@lbl.gov Supplementary information: Supplementary data are available at Bioinformatics online. PMID:24860159

  20. A begomovirus associated with Ageratum yellow vein disease in Indonesia: evidence for natural recombination between tomato leaf curl Java virus and Ageratum yellow vein virus-[Java].

    PubMed

    Kon, T; Kuwabara, K; Hidayat, S H; Ikegami, M

    2007-01-01

    A begomovirus (2747 nucleotides) and a satellite DNA beta component (1360 nucleotides) have been isolated from Ageratum conyzoides L. plants with yellow vein symptoms growing in Java, Indonesia. The begomovirus is most closely related to Tomato leaf curl Java virus (ToLCJV) (91 and 98% in the total nucleotide and coat protein amino acid sequences, respectively), although the products of ORFs C1 and C4 are more closely related to those of Ageratum yellow vein virus-[Java] (91 and 95% identity, respectively). For this reason, the begomovirus it is considered to be a strain of ToLCJV and is referred to as ToLCJV-Ageratum. The virus probably derives from a recombination event in which nucleotides 2389-2692 of ToLCJV have been replaced with the corresponding region of the AYVV-[Java] genome, which includes the 5' part of the intergenic region and the C1 and C4 ORFs. Infection of A. conyzoides with ToLCJV-Ageratum alone produced no symptoms, but co-infection with DNAbeta induced yellow vein symptoms. Symptoms induced in Nicotiana benthamiana by ToLCJV-Ageratum, ToLCJV and AYVV-[Java] are consistent with the exchange of pathogenicity determinant ORF C4 during recombination.

  1. Accelerator and transport line survey and alignment

    SciTech Connect

    Ruland, R.E.

    1991-10-01

    This paper summarizes the survey and alignment processes of accelerators and transport lines and discusses the propagation of errors associated with these processes. The major geodetic principles governing the survey and alignment measurement space are introduced and their relationship to a lattice coordinate system shown. The paper continues with a broad overview about the activities involved in the step sequence from initial absolute alignment to final smoothing. Emphasis is given to the relative alignment of components, in particular to the importance of incorporating methods to remove residual systematic effects in surveying and alignment operations. Various approaches to smoothing used at major laboratories are discussed. 47 refs., 19 figs., 1 tab.

  2. Alignment-free phylogenetics and population genetics.

    PubMed

    Haubold, Bernhard

    2014-05-01

    Phylogenetics and population genetics are central disciplines in evolutionary biology. Both are based on comparative data, today usually DNA sequences. These have become so plentiful that alignment-free sequence comparison is of growing importance in the race between scientists and sequencing machines. In phylogenetics, efficient distance computation is the major contribution of alignment-free methods. A distance measure should reflect the number of substitutions per site, which underlies classical alignment-based phylogeny reconstruction. Alignment-free distance measures are either based on word counts or on match lengths, and I apply examples of both approaches to simulated and real data to assess their accuracy and efficiency. While phylogeny reconstruction is based on the number of substitutions, in population genetics, the distribution of mutations along a sequence is also considered. This distribution can be explored by match lengths, thus opening the prospect of alignment-free population genomics.

  3. Bringing Interactivity to the Web: The JAVA Solution.

    ERIC Educational Resources Information Center

    Knee, Richard H.; Cafolla, Ralph

    Java is an object-oriented programming language of the Internet. It's popularity lies in its ability to create interactive Web sites across platforms. The most common Java programs are applications and applets, which adhere to a set of conventions that lets them run within a Java-compatible browser. Java is becoming an essential subject matter and…

  4. Java and its future in biomedical computing.

    PubMed Central

    Rodgers, R P

    1996-01-01

    Java, a new object-oriented computing language related to C++, is receiving considerable attention due to its use in creating network-sharable, platform-independent software modules (known as "applets") that can be used with the World Wide Web. The Web has rapidly become the most commonly used information-retrieval tool associated with the global computer network known as the Internet, and Java has the potential to further accelerate the Web's application to medical problems. Java's potentially wide acceptance due to its Web association and its own technical merits also suggests that it may become a popular language for non-Web-based, object-oriented computing. PMID:8880677

  5. Analysis of variables affecting unemployment rate and detecting for cluster in West Java, Central Java, and East Java in 2012

    NASA Astrophysics Data System (ADS)

    Samuel, Putra A.; Widyaningsih, Yekti; Lestari, Dian

    2016-02-01

    The objective of this study is modeling the Unemployment Rate (UR) in West Java, Central Java, and East Java, with rate of disease, infant mortality rate, educational level, population size, proportion of married people, and GDRP as the explanatory variables. Spatial factors are also considered in the modeling since the closer the distance, the higher the correlation. This study uses the secondary data from BPS (Badan Pusat Statistik). The data will be analyzed using Moran I test, to obtain the information about spatial dependence, and using Spatial Autoregressive modeling to obtain the information, which variables are significant affecting UR and how great the influence of the spatial factors. The result is, variables proportion of married people, rate of disease, and population size are related significantly to UR. In all three regions, the Hotspot of unemployed will also be detected districts/cities using Spatial Scan Statistics Method. The results are 22 districts/cities as a regional group with the highest unemployed (Most likely cluster) in the study area; 2 districts/cities as a regional group with the highest unemployed in West Java; 1 district/city as a regional groups with the highest unemployed in Central Java; 15 districts/cities as a regional group with the highest unemployed in East Java.

  6. The effects of alignment error and alignment filtering on the sitewise detection of positive selection.

    PubMed

    Jordan, Gregory; Goldman, Nick

    2012-04-01

    When detecting positive selection in proteins, the prevalence of errors resulting from misalignment and the ability of alignment filters to mitigate such errors are not well understood, but filters are commonly applied to try to avoid false positive results. Focusing on the sitewise detection of positive selection across a wide range of divergence levels and indel rates, we performed simulation experiments to quantify the false positives and false negatives introduced by alignment error and the ability of alignment filters to improve performance. We found that some aligners led to many false positives, whereas others resulted in very few. False negatives were a problem for all aligners, increasing with sequence divergence. Of the aligners tested, PRANK's codon-based alignments consistently performed the best and ClustalW performed the worst. Of the filters tested, GUIDANCE performed the best and Gblocks performed the worst. Although some filters showed good ability to reduce the error rates from ClustalW and MAFFT alignments, none were found to substantially improve the performance of PRANK alignments under most conditions. Our results revealed distinct trends in error rates and power levels for aligners and filters within a biologically plausible parameter space. With the best aligner, a low false positive rate was maintained even with extremely divergent indel-prone sequences. Controls using the true alignment and an optimal filtering method suggested that performance improvements could be gained by improving aligners or filters to reduce the prevalence of false negatives, especially at higher divergence levels and indel rates.

  7. Java PathFinder User Guide

    NASA Technical Reports Server (NTRS)

    Havelund, Klaus

    1999-01-01

    The JAVA PATHFINDER, JPF, is a translator from a subset of JAVA 1.0 to PROMELA, the programming language of the SPIN model checker. The purpose of JPF is to establish a framework for verification and debugging of JAVA programming based on model checking. The main goal is to automate program verification such that a programmer can apply it in the daily work without the need for a specialist to manually reformulate a program into a different notation in order to analyze the program. The system is especially suited for analyzing multi-threaded JAVA applications, where normal testing usually falls short. The system can find deadlocks and violations of boolean assertions stated by the programmer in a special assertion language. This document explains how to Use JPF.

  8. Multiparadigm communications in Java for Grid computing.

    SciTech Connect

    Getov, V.; von Laszewski, G.; Philippsen, M.; Foster, I.; Mathematics and Computer Science; Univ. of Westminster; Univ. of Karlsruhe

    2001-01-01

    In this article, we argue that the rapid development of Java technology now makes it possible to support, in a single object-oriented framework, the different communication and coordination structures that arise in scientific applications. We outline how this integrated approach can be achieved, reviewing in the process the state-of-the-art in communication paradigms within Java. We also present recent evaluation results indicating that this integrated approach can be achieved without compromising on performance.

  9. Java simulations of embedded control systems.

    PubMed

    Farias, Gonzalo; Cervin, Anton; Arzén, Karl-Erik; Dormido, Sebastián; Esquembre, Francisco

    2010-01-01

    This paper introduces a new Open Source Java library suited for the simulation of embedded control systems. The library is based on the ideas and architecture of TrueTime, a toolbox of Matlab devoted to this topic, and allows Java programmers to simulate the performance of control processes which run in a real time environment. Such simulations can improve considerably the learning and design of multitasking real-time systems. The choice of Java increases considerably the usability of our library, because many educators program already in this language. But also because the library can be easily used by Easy Java Simulations (EJS), a popular modeling and authoring tool that is increasingly used in the field of Control Education. EJS allows instructors, students, and researchers with less programming capabilities to create advanced interactive simulations in Java. The paper describes the ideas, implementation, and sample use of the new library both for pure Java programmers and for EJS users. The JTT library and some examples are online available on http://lab.dia.uned.es/jtt.

  10. Java Expert System Shell Version 6.0

    SciTech Connect

    Friedman-Hill, Ernest

    2002-06-18

    Java Expert Shell System - Jess - is a rule engine and scripting environment written entirely in Sun's Java language, Jess was orginially inspired by the CLIPS expert system shell, but has grown int a complete, distinct JAVA-influenced environment of its own. Using Jess, you can build Java applets and applications that have the capacity to "reason" using knowledge you supply in the form of declarative rules. Jess is surprisingly fast, and for some problems is faster than CLIPS, in that many Jess scripts are valid CLIPS scripts and vice-versa. Like CLIPS, Jess uses the Rete algorithm to process rules, a very efficient mechanism for solving the difficult many-to-many matching problem. Jess adds many features to CLIPS, including backwards chaining and the ability to manipulate and directly reason about Java objects. Jess is also a powerful Java scripting environment, from which you can create Java objects and call Java methods without compiling any Java Code.

  11. Hyper-Threaded Java: Use the Java Concurrency API to Speed Up Time-Consuming Tasks

    SciTech Connect

    Scarberry, Randy

    2006-11-21

    This is for a Java World article that was already published on Nov 21, 2006. When I originally submitted the draft, Java World wasn't in the available lists of publications. Now that it is, Hanford Library staff recommended that I resubmit so it would be counted. Original submission ID: PNNL-SA-52490

  12. BioLayout(Java): versatile network visualisation of structural and functional relationships.

    PubMed

    Goldovsky, Leon; Cases, Ildefonso; Enright, Anton J; Ouzounis, Christos A

    2005-01-01

    Visualisation of biological networks is becoming a common task for the analysis of high-throughput data. These networks correspond to a wide variety of biological relationships, such as sequence similarity, metabolic pathways, gene regulatory cascades and protein interactions. We present a general approach for the representation and analysis of networks of variable type, size and complexity. The application is based on the original BioLayout program (C-language implementation of the Fruchterman-Rheingold layout algorithm), entirely re-written in Java to guarantee portability across platforms. BioLayout(Java) provides broader functionality, various analysis techniques, extensions for better visualisation and a new user interface. Examples of analysis of biological networks using BioLayout(Java) are presented.

  13. Java classes for nonprocedural variogram modeling

    NASA Astrophysics Data System (ADS)

    Faulkner, Barton R.

    2002-04-01

    A set of Java TM classes was written for variogram modeling to support research for US EPA's Regional Vulnerability Assessment Program (ReVA). The modeling objectives of this research program are to use conceptual programming tools for numerical analysis for regional risk assessment. The classes presented use of object-oriented design elements, and their use is described for the benefit of programmers. To help facilitate their use, class diagrams and standard JavaDoc commenting were employed. Java's support for polymorphism and inheritance is used and these are described as ways to promote extension of these classes for other geostatistical applications. Among the advantages is the ease of programming, code reuse, and conceptual, rather than procedural implementation. A graphical application for variogram modeling that uses the classes is also provided and described. It can also be used by non-programmers. This application uses a generalized least-squares fitting algorithm for robust parametric variogram model fitting through the variogram cloud. This feature makes this program unique from other freely available variogram modeling programs, though the classes are presented primarily so they may be extended for use in other Java programs. More traditional variogram plotting and fitting utilities are also provided. This application is graphical and platform-neutral. It uses classes of the recently proposed Java API for linear algebra, called the JAMA package.

  14. Phylogenetic Inference From Conserved sites Alignments

    SciTech Connect

    grundy, W.N.; Naylor, G.J.P.

    1999-08-15

    Molecular sequences provide a rich source of data for inferring the phylogenetic relationships among species. However, recent work indicates that even an accurate multiple alignment of a large sequence set may yield an incorrect phylogeny and that the quality of the phylogenetic tree improves when the input consists only of the highly conserved, motif regions of the alignment. This work introduces two methods of producing multiple alignments that include only the conserved regions of the initial alignment. The first method retains conserved motifs, whereas the second retains individual conserved sites in the initial alignment. Using parsimony analysis on a mitochondrial data set containing 19 species among which the phylogenetic relationships are widely accepted, both conserved alignment methods produce better phylogenetic trees than the complete alignment. Unlike any of the 19 inference methods used before to analyze this data, both methods produce trees that are completely consistent with the known phylogeny. The motif-based method employs far fewer alignment sites for comparable error rates. For a larger data set containing mitochondrial sequences from 39 species, the site-based method produces a phylogenetic tree that is largely consistent with known phylogenetic relationships and suggests several novel placements.

  15. Instrumentation of Java Bytecode for Runtime Analysis

    NASA Technical Reports Server (NTRS)

    Goldberg, Allen; Haveland, Klaus

    2003-01-01

    This paper describes JSpy, a system for high-level instrumentation of Java bytecode and its use with JPaX, OUT system for runtime analysis of Java programs. JPaX monitors the execution of temporal logic formulas and performs predicative analysis of deadlocks and data races. JSpy s input is an instrumentation specification, which consists of a collection of rules, where a rule is a predicate/action pair The predicate is a conjunction of syntactic constraints on a Java statement, and the action is a description of logging information to be inserted in the bytecode corresponding to the statement. JSpy is built using JTrek an instrumentation package at a lower level of abstraction.

  16. Sawja: Static Analysis Workshop for Java

    NASA Astrophysics Data System (ADS)

    Hubert, Laurent; Barré, Nicolas; Besson, Frédéric; Demange, Delphine; Jensen, Thomas; Monfort, Vincent; Pichardie, David; Turpin, Tiphaine

    Static analysis is a powerful technique for automatic verification of programs but raises major engineering challenges when developing a full-fledged analyzer for a realistic language such as Java. Efficiency and precision of such a tool rely partly on low level components which only depend on the syntactic structure of the language and therefore should not be redesigned for each implementation of a new static analysis. This paper describes the Sawja library: a static analysis workshop fully compliant with Java 6 which provides OCaml modules for efficiently manipulating Java bytecode programs. We present the main features of the library, including i) efficient functional data-structures for representing a program with implicit sharing and lazy parsing, ii) an intermediate stack-less representation, and iii) fast computation and manipulation of complete programs. We provide experimental evaluations of the different features with respect to time, memory and precision.

  17. Computing posterior probabilities for score-based alignments using ppALIGN.

    PubMed

    Wolfsheimer, Stefan; Hartmann, Alexander; Rabus, Ralf; Nuel, Gregory

    2012-05-16

    Score-based pairwise alignments are widely used in bioinformatics in particular with molecular database search tools, such as the BLAST family. Due to sophisticated heuristics, such algorithms are usually fast but the underlying scoring model unfortunately lacks a statistical description of the reliability of the reported alignments. In particular, close to gaps, in low-score or low-complexity regions, a huge number of alternative alignments arise which results in a decrease of the certainty of the alignment. ppALIGN is a software package that uses hidden Markov Model techniques to compute position-wise reliability of score-based pairwise alignments of DNA or protein sequences. The design of the model allows for a direct connection between the scoring function and the parameters of the probabilistic model. For this reason it is suitable to analyze the outcomes of popular score based aligners and search tools without having to choose a complicated set of parameters. By contrast, our program only requires the classical score parameters (the scoring function and gap costs). The package comes along with a library written in C++, a standalone program for user defined alignments (ppALIGN) and another program (ppBLAST) which can process a complete result set of BLAST. The main algorithms essentially exhibit a linear time complexity (in the alignment lengths), and they are hence suitable for on-line computations. We have also included alternative decoding algorithms to provide alternative alignments. ppALIGN is a fast program/library that helps detect and quantify questionable regions in pairwise alignments. Due to its structure, the input/output interface it can to be connected to other post-processing tools. Empirically, we illustrate its usefulness in terms of correctly predicted reliable regions for sequences generated using the ROSE model for sequence evolution, and identify sensor-specific regions in the denitrifying betaproteobacterium Aromatoleum aromaticum.

  18. A Java Applet for Illustrating Internet Error Control

    ERIC Educational Resources Information Center

    Holliday, Mark A.

    2004-01-01

    This paper discusses the author's experiences developing a Java applet that illustrates how error control is implemented in the Transmission Control Protocol (TCP). One section discusses the concepts which the TCP error control Java applet is intended to convey, while the nature of the Java applet is covered in another section. The author…

  19. Tectonic Control of Piercement Structures in Central Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Mazzini, A.; Hadi, S.; Etiope, G.; Inguaggiato, S.

    2014-12-01

    A recent field expedition in Central Java targeted the mapping and sampling of several piercements structures in central Java (Indonesia), most of which have never been documented before. Here, at least seven structures erupting mud water and gas are distributed along a NE-SW alignment that extends for about 10 kilometers. Some of the mapped structures (Bledug Kuwu, Bledug Cangkring Krabagan, Mendikil, Banjarsari, Krewek) have been named after the neighboring local village. None of these have obvious elevation despite the vigorous emission of gas and mud, suggesting that significant caldera collapse is ongoing. Among the most relevant: Bledug Kuwu is certainly the most impressive structure with three main eruption sites in the crater area bursting more than 5 m large hot mud bubbles. Similar characteristics are present at the smaller (200 m in diameter) Bledug Cangkring Krabagan, that is also surrounded by numerous pools and gryphons seeping around the main crater. The smaller sized Mendikil is the only visited structure that, at the moment of the sampling, did not show seepage of hot fluids. Banjarsari and Krewek (up to 200 m wide) are characterized by scattered hot water-dominated pools where gas is vented vigorously. In particular the hot pools are systematically covered by travertine concretions. Water and gas geochemisty confirms the seepage of CO2 dominated gas and water with hydrothermal signature. The investigated structures appear to follow an obvious NE-SW oriented lineament that most likely coincides with a tectonic structure (fault?) that controls their location. Indeed the field observations and the analyses suggest that likely scenario is that this fault (?) acts as a preferential pathway for the expulsion of hydrothermal fluids to the surface. Very little is known about this region, neither is known why several of these structures erupt hot mud despite their significant distance from the two closest volcanic structures (i.e. Mt. Muria 60 km to the NW

  20. Multiple Whole Genome Alignments Without a Reference Organism

    SciTech Connect

    Dubchak, Inna; Poliakov, Alexander; Kislyuk, Andrey; Brudno, Michael

    2009-01-16

    Multiple sequence alignments have become one of the most commonly used resources in genomics research. Most algorithms for multiple alignment of whole genomes rely either on a reference genome, against which all of the other sequences are laid out, or require a one-to-one mapping between the nucleotides of the genomes, preventing the alignment of recently duplicated regions. Both approaches have drawbacks for whole-genome comparisons. In this paper we present a novel symmetric alignment algorithm. The resulting alignments not only represent all of the genomes equally well, but also include all relevant duplications that occurred since the divergence from the last common ancestor. Our algorithm, implemented as a part of the VISTA Genome Pipeline (VGP), was used to align seven vertebrate and sixDrosophila genomes. The resulting whole-genome alignments demonstrate a higher sensitivity and specificity than the pairwise alignments previously available through the VGP and have higher exon alignment accuracy than comparable public whole-genome alignments. Of the multiple alignment methods tested, ours performed the best at aligning genes from multigene families?perhaps the most challenging test for whole-genome alignments. Our whole-genome multiple alignments are available through the VISTA Browser at http://genome.lbl.gov/vista/index.shtml.

  1. Multiple whole-genome alignments without a reference organism.

    PubMed

    Dubchak, Inna; Poliakov, Alexander; Kislyuk, Andrey; Brudno, Michael

    2009-04-01

    Multiple sequence alignments have become one of the most commonly used resources in genomics research. Most algorithms for multiple alignment of whole genomes rely either on a reference genome, against which all of the other sequences are laid out, or require a one-to-one mapping between the nucleotides of the genomes, preventing the alignment of recently duplicated regions. Both approaches have drawbacks for whole-genome comparisons. In this paper we present a novel symmetric alignment algorithm. The resulting alignments not only represent all of the genomes equally well, but also include all relevant duplications that occurred since the divergence from the last common ancestor. Our algorithm, implemented as a part of the VISTA Genome Pipeline (VGP), was used to align seven vertebrate and six Drosophila genomes. The resulting whole-genome alignments demonstrate a higher sensitivity and specificity than the pairwise alignments previously available through the VGP and have higher exon alignment accuracy than comparable public whole-genome alignments. Of the multiple alignment methods tested, ours performed the best at aligning genes from multigene families-perhaps the most challenging test for whole-genome alignments. Our whole-genome multiple alignments are available through the VISTA Browser at http://genome.lbl.gov/vista/index.shtml.

  2. JAVA CLASSES FOR NONPROCEDURAL VARIOGRAM MONITORING

    EPA Science Inventory

    A set of Java classes was written for variogram modeling to support research for US EPA's Regional Vulnerability Assessment Program (ReVA). The modeling objectives of this research program are to use conceptual programming tools for numerical analysis for regional risk assessm...

  3. Interactive Economics Instruction with Java and CGI.

    ERIC Educational Resources Information Center

    Gerdes, Geoffrey R.

    2000-01-01

    States that this Web site is based on the conviction that Web-based materials must contain interactive modules to achieve value beyond that obtained by conventional media. Discusses three applets that can be reached at the homepage of the Web site by selecting the Java applets link. (CMK)

  4. Modular VO oriented Java EE service deployer

    NASA Astrophysics Data System (ADS)

    Molinaro, Marco; Cepparo, Francesco; De Marco, Marco; Knapic, Cristina; Apollo, Pietro; Smareglia, Riccardo

    2014-07-01

    The International Virtual Observatory Alliance (IVOA) has produced many standards and recommendations whose aim is to generate an architecture that starts from astrophysical resources, in a general sense, and ends up in deployed consumable services (that are themselves astrophysical resources). Focusing on the Data Access Layer (DAL) system architecture, that these standards define, in the last years a web based application has been developed and maintained at INAF-OATs IA2 (Italian National institute for Astrophysics - Astronomical Observatory of Trieste, Italian center of Astronomical Archives) to try to deploy and manage multiple VO (Virtual Observatory) services in a uniform way: VO-Dance. However a set of criticalities have arisen since when the VO-Dance idea has been produced, plus some major changes underwent and are undergoing at the IVOA DAL layer (and related standards): this urged IA2 to identify a new solution for its own service layer. Keeping on the basic ideas from VO-Dance (simple service configuration, service instantiation at call time and modularity) while switching to different software technologies (e.g. dismissing Java Reflection in favour of Enterprise Java Bean, EJB, based solution), the new solution has been sketched out and tested for feasibility. Here we present the results originating from this test study. The main constraints for this new project come from various fields. A better homogenized solution rising from IVOA DAL standards: for example the new DALI (Data Access Layer Interface) specification that acts as a common interface system for previous and oncoming access protocols. The need for a modular system where each component is based upon a single VO specification allowing services to rely on common capabilities instead of homogenizing them inside service components directly. The search for a scalable system that takes advantage from distributed systems. The constraints find answer in the adopted solutions hereafter sketched. The

  5. Beam and target alignment at the National Ignition Facility using the Target Alignment Sensor (TAS)

    NASA Astrophysics Data System (ADS)

    Di Nicola, P.; Kalantar, D.; McCarville, T.; Klingmann, J.; Alvarez, S.; Lowe-Webb, R.; Lawson, J.; Datte, P.; Danforth, P.; Schneider, M.; Di Nicola, J.-M.; Jackson, J.; Orth, C.; Azevedo, S.; Tommasini, R.; Manuel, A.; Wallace, R.

    2012-10-01

    The requirements for beam and target alignment for successful ignition experiments on the National Ignition Facility (NIF) are stringent: the average of beams to the target must be within 25 μm. Beam and target alignment are achieved with the Target Alignment Sensor (TAS). The TAS is a precision optical device that is inserted into target chamber center to facilitate both beam and target alignment. It incorporates two camera views (upper/lower and side) mounted on each of two stage assemblies (jaws) to view and align the target. It also incorporates a large mirror on each of the two assemblies to reflect the alignment beams onto the upper/lower cameras for beam alignment. The TAS is located in the chamber using reference features by viewing it with two external telescope views. The two jaws are adjusted in elevation to match the desired beam and target alignment locations. For some shot setups, a sequence of TAS positions is required to achieve the full setup and alignment. In this paper we describe the TAS, the characterization of the TAS coordinates for beam and target alignment, and summarize pointing shots that demonstrate the accuracy of beam-target alignment.

  6. An integrated SNP mining and utilization (ISMU) pipeline for next generation sequencing data.

    PubMed

    Azam, Sarwar; Rathore, Abhishek; Shah, Trushar M; Telluri, Mohan; Amindala, BhanuPrakash; Ruperao, Pradeep; Katta, Mohan A V S K; Varshney, Rajeev K

    2014-01-01

    Open source single nucleotide polymorphism (SNP) discovery pipelines for next generation sequencing data commonly requires working knowledge of command line interface, massive computational resources and expertise which is a daunting task for biologists. Further, the SNP information generated may not be readily used for downstream processes such as genotyping. Hence, a comprehensive pipeline has been developed by integrating several open source next generation sequencing (NGS) tools along with a graphical user interface called Integrated SNP Mining and Utilization (ISMU) for SNP discovery and their utilization by developing genotyping assays. The pipeline features functionalities such as pre-processing of raw data, integration of open source alignment tools (Bowtie2, BWA, Maq, NovoAlign and SOAP2), SNP prediction (SAMtools/SOAPsnp/CNS2snp and CbCC) methods and interfaces for developing genotyping assays. The pipeline outputs a list of high quality SNPs between all pairwise combinations of genotypes analyzed, in addition to the reference genome/sequence. Visualization tools (Tablet and Flapjack) integrated into the pipeline enable inspection of the alignment and errors, if any. The pipeline also provides a confidence score or polymorphism information content value with flanking sequences for identified SNPs in standard format required for developing marker genotyping (KASP and Golden Gate) assays. The pipeline enables users to process a range of NGS datasets such as whole genome re-sequencing, restriction site associated DNA sequencing and transcriptome sequencing data at a fast speed. The pipeline is very useful for plant genetics and breeding community with no computational expertise in order to discover SNPs and utilize in genomics, genetics and breeding studies. The pipeline has been parallelized to process huge datasets of next generation sequencing. It has been developed in Java language and is available at http://hpc.icrisat.cgiar.org/ISMU as a standalone

  7. An Integrated SNP Mining and Utilization (ISMU) Pipeline for Next Generation Sequencing Data

    PubMed Central

    Azam, Sarwar; Rathore, Abhishek; Shah, Trushar M.; Telluri, Mohan; Amindala, BhanuPrakash; Ruperao, Pradeep; Katta, Mohan A. V. S. K.; Varshney, Rajeev K.

    2014-01-01

    Open source single nucleotide polymorphism (SNP) discovery pipelines for next generation sequencing data commonly requires working knowledge of command line interface, massive computational resources and expertise which is a daunting task for biologists. Further, the SNP information generated may not be readily used for downstream processes such as genotyping. Hence, a comprehensive pipeline has been developed by integrating several open source next generation sequencing (NGS) tools along with a graphical user interface called Integrated SNP Mining and Utilization (ISMU) for SNP discovery and their utilization by developing genotyping assays. The pipeline features functionalities such as pre-processing of raw data, integration of open source alignment tools (Bowtie2, BWA, Maq, NovoAlign and SOAP2), SNP prediction (SAMtools/SOAPsnp/CNS2snp and CbCC) methods and interfaces for developing genotyping assays. The pipeline outputs a list of high quality SNPs between all pairwise combinations of genotypes analyzed, in addition to the reference genome/sequence. Visualization tools (Tablet and Flapjack) integrated into the pipeline enable inspection of the alignment and errors, if any. The pipeline also provides a confidence score or polymorphism information content value with flanking sequences for identified SNPs in standard format required for developing marker genotyping (KASP and Golden Gate) assays. The pipeline enables users to process a range of NGS datasets such as whole genome re-sequencing, restriction site associated DNA sequencing and transcriptome sequencing data at a fast speed. The pipeline is very useful for plant genetics and breeding community with no computational expertise in order to discover SNPs and utilize in genomics, genetics and breeding studies. The pipeline has been parallelized to process huge datasets of next generation sequencing. It has been developed in Java language and is available at http://hpc.icrisat.cgiar.org/ISMU as a standalone

  8. Interplate coupling along the Java trench from CGPS observation

    NASA Astrophysics Data System (ADS)

    Meilano, I.; Kuncoro, H.; Susilo, S.; Efendi, J.; Abidin, H. Z.; Nugraha, A. D.; Widiyantoro, S.

    2014-12-01

    Interplate seismogenic zones along the Java trench were estimated by using continuous GPS observation from South of Lampung in the west to Lombok Island in the east. The observation period starting from 2010 to 2013 with more than 60 CGPS observation stations. The GPS analysis indicates that present-day deformation of Java Island is controlled by rotation of Sunda land, extension in the southern Strait of Sunda, postseismic deformation of the 2006 earthquake and the coupling between Indo-Australian plate and Sunda land. Strain rate solutions indicate compression in the south of Java Island. Using elastic dislocation theory the estimated interplate seismozonic coupling in the Java trench is about 50 percent in the sunda strait, smaller in the south west java and become larger to the east. Slip deficit on subduction interface has important implication for seismic hazard of Java Island. Keywords: CGPS observation, Interplate Seismogenic, Java Trench

  9. The complete mitochondrial genome of Java warty pig (Sus verrucosus).

    PubMed

    Fan, Jie; Li, Chun-Hong; Shi, Wei

    2015-06-01

    In the present study, the complete mitochondrial genome sequence of the Java warty pig was reported for the first time. The total length of the mitogenome was 16,479 bp. It contained the typical structure, including 2 ribosomal RNA genes, 13 protein-coding genes, 22 transfer RNA genes and 1 non-coding control region (D-loop region) as that of most other pigs. The overall composition of the mitogenome was estimated to be 34.9% for A, 26.1% for T, 26.0% for C and 13.0% for G showing an A-T (61.0%)-rich feature. The mitochondrial genome analyzed here will provide new genetic resource to uncover pigs' evolution.

  10. The meaning of alignment: lessons from structural diversity

    PubMed Central

    Pirovano, Walter; Feenstra, K Anton; Heringa, Jaap

    2008-01-01

    Background Protein structural alignment provides a fundamental basis for deriving principles of functional and evolutionary relationships. It is routinely used for structural classification and functional characterization of proteins and for the construction of sequence alignment benchmarks. However, the available techniques do not fully consider the implications of protein structural diversity and typically generate a single alignment between sequences. Results We have taken alternative protein crystal structures and generated simulation snapshots to explicitly investigate the impact of structural changes on the alignments. We show that structural diversity has a significant effect on structural alignment. Moreover, we observe alignment inconsistencies even for modest spatial divergence, implying that the biological interpretation of alignments is less straightforward than commonly assumed. A salient example is the GroES 'mobile loop' where sub-Ångstrom variations give rise to contradictory sequence alignments. Conclusion A comprehensive treatment of ambiguous alignment regions is crucial for further development of structural alignment applications and for the representation of alignments in general. For this purpose we have developed an on-line database containing our data and new ways of visualizing alignment inconsistencies, which can be found at . PMID:19105835

  11. JavaGenes and Condor: Cycle-Scavenging Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Globus, Al; Langhirt, Eric; Livny, Miron; Ramamurthy, Ravishankar; Soloman, Marvin; Traugott, Steve

    2000-01-01

    A genetic algorithm code, JavaGenes, was written in Java and used to evolve pharmaceutical drug molecules and digital circuits. JavaGenes was run under the Condor cycle-scavenging batch system managing 100-170 desktop SGI workstations. Genetic algorithms mimic biological evolution by evolving solutions to problems using crossover and mutation. While most genetic algorithms evolve strings or trees, JavaGenes evolves graphs representing (currently) molecules and circuits. Java was chosen as the implementation language because the genetic algorithm requires random splitting and recombining of graphs, a complex data structure manipulation with ample opportunities for memory leaks, loose pointers, out-of-bound indices, and other hard to find bugs. Java garbage-collection memory management, lack of pointer arithmetic, and array-bounds index checking prevents these bugs from occurring, substantially reducing development time. While a run-time performance penalty must be paid, the only unacceptable performance we encountered was using standard Java serialization to checkpoint and restart the code. This was fixed by a two-day implementation of custom checkpointing. JavaGenes is minimally integrated with Condor; in other words, JavaGenes must do its own checkpointing and I/O redirection. A prototype Java-aware version of Condor was developed using standard Java serialization for checkpointing. For the prototype to be useful, standard Java serialization must be significantly optimized. JavaGenes is approximately 8700 lines of code and a few thousand JavaGenes jobs have been run. Most jobs ran for a few days. Results include proof that genetic algorithms can evolve directed and undirected graphs, development of a novel crossover operator for graphs, a paper in the journal Nanotechnology, and another paper in preparation.

  12. BigFoot: Bayesian alignment and phylogenetic footprinting with MCMC

    PubMed Central

    Satija, Rahul; Novák, Ádám; Miklós, István; Lyngsø, Rune; Hein, Jotun

    2009-01-01

    Background We have previously combined statistical alignment and phylogenetic footprinting to detect conserved functional elements without assuming a fixed alignment. Considering a probability-weighted distribution of alignments removes sensitivity to alignment errors, properly accommodates regions of alignment uncertainty, and increases the accuracy of functional element prediction. Our method utilized standard dynamic programming hidden markov model algorithms to analyze up to four sequences. Results We present a novel approach, implemented in the software package BigFoot, for performing phylogenetic footprinting on greater numbers of sequences. We have developed a Markov chain Monte Carlo (MCMC) approach which samples both sequence alignments and locations of slowly evolving regions. We implement our method as an extension of the existing StatAlign software package and test it on well-annotated regions controlling the expression of the even-skipped gene in Drosophila and the α-globin gene in vertebrates. The results exhibit how adding additional sequences to the analysis has the potential to improve the accuracy of functional predictions, and demonstrate how BigFoot outperforms existing alignment-based phylogenetic footprinting techniques. Conclusion BigFoot extends a combined alignment and phylogenetic footprinting approach to analyze larger amounts of sequence data using MCMC. Our approach is robust to alignment error and uncertainty and can be applied to a variety of biological datasets. The source code and documentation are publicly available for download from PMID:19715598

  13. GATA: A graphic alignment tool for comparative sequenceanalysis

    SciTech Connect

    Nix, David A.; Eisen, Michael B.

    2005-01-01

    Several problems exist with current methods used to align DNA sequences for comparative sequence analysis. Most dynamic programming algorithms assume that conserved sequence elements are collinear. This assumption appears valid when comparing orthologous protein coding sequences. Functional constraints on proteins provide strong selective pressure against sequence inversions, and minimize sequence duplications and feature shuffling. For non-coding sequences this collinearity assumption is often invalid. For example, enhancers contain clusters of transcription factor binding sites that change in number, orientation, and spacing during evolution yet the enhancer retains its activity. Dotplot analysis is often used to estimate non-coding sequence relatedness. Yet dot plots do not actually align sequences and thus cannot account well for base insertions or deletions. Moreover, they lack an adequate statistical framework for comparing sequence relatedness and are limited to pairwise comparisons. Lastly, dot plots and dynamic programming text outputs fail to provide an intuitive means for visualizing DNA alignments.

  14. MP-Align: alignment of metabolic pathways

    PubMed Central

    2014-01-01

    Background Comparing the metabolic pathways of different species is useful for understanding metabolic functions and can help in studying diseases and engineering drugs. Several comparison techniques for metabolic pathways have been introduced in the literature as a first attempt in this direction. The approaches are based on some simplified representation of metabolic pathways and on a related definition of a similarity score (or distance measure) between two pathways. More recent comparative research focuses on alignment techniques that can identify similar parts between pathways. Results We propose a methodology for the pairwise comparison and alignment of metabolic pathways that aims at providing the largest conserved substructure of the pathways under consideration. The proposed methodology has been implemented in a tool called MP-Align, which has been used to perform several validation tests. The results showed that our similarity score makes it possible to discriminate between different domains and to reconstruct a meaningful phylogeny from metabolic data. The results further demonstrate that our alignment algorithm correctly identifies subpathways sharing a common biological function. Conclusion The results of the validation tests performed with MP-Align are encouraging. A comparison with another proposal in the literature showed that our alignment algorithm is particularly well-suited to finding the largest conserved subpathway of the pathways under examination. PMID:24886436

  15. Girder Alignment Plan

    SciTech Connect

    Wolf, Zackary; Ruland, Robert; LeCocq, Catherine; Lundahl, Eric; Levashov, Yurii; Reese, Ed; Rago, Carl; Poling, Ben; Schafer, Donald; Nuhn, Heinz-Dieter; Wienands, Uli; /SLAC

    2010-11-18

    The girders for the LCLS undulator system contain components which must be aligned with high accuracy relative to each other. The alignment is one of the last steps before the girders go into the tunnel, so the alignment must be done efficiently, on a tight schedule. This note documents the alignment plan which includes efficiency and high accuracy. The motivation for girder alignment involves the following considerations. Using beam based alignment, the girder position will be adjusted until the beam goes through the center of the quadrupole and beam finder wire. For the machine to work properly, the undulator axis must be on this line and the center of the undulator beam pipe must be on this line. The physics reasons for the undulator axis and undulator beam pipe axis to be centered on the beam are different, but the alignment tolerance for both are similar. In addition, the beam position monitor must be centered on the beam to preserve its calibration. Thus, the undulator, undulator beam pipe, quadrupole, beam finder wire, and beam position monitor axes must all be aligned to a common line. All relative alignments are equally important, not just, for example, between quadrupole and undulator. We begin by making the common axis the nominal beam axis in the girder coordinate system. All components will be initially aligned to this axis. A more accurate alignment will then position the components relative to each other, without incorporating the girder itself.

  16. Net2Align: An Algorithm For Pairwise Global Alignment of Biological Networks

    PubMed Central

    Wadhwab, Gulshan; Upadhyayaa, K. C.

    2016-01-01

    The amount of data on molecular interactions is growing at an enormous pace, whereas the progress of methods for analysing this data is still lacking behind. Particularly, in the area of comparative analysis of biological networks, where one wishes to explore the similarity between two biological networks, this holds a potential problem. In consideration that the functionality primarily runs at the network level, it advocates the need for robust comparison methods. In this paper, we describe Net2Align, an algorithm for pairwise global alignment that can perform node-to-node correspondences as well as edge-to-edge correspondences into consideration. The uniqueness of our algorithm is in the fact that it is also able to detect the type of interaction, which is essential in case of directed graphs. The existing algorithm is only able to identify the common nodes but not the common edges. Another striking feature of the algorithm is that it is able to remove duplicate entries in case of variable datasets being aligned. This is achieved through creation of a local database which helps exclude duplicate links. In a pervasive computational study on gene regulatory network, we establish that our algorithm surpasses its counterparts in its results. Net2Align has been implemented in Java 7 and the source code is available as supplementary files. PMID:28356678

  17. The state of the Java universe

    SciTech Connect

    2011-02-08

    Speaker Bio: James Gosling received a B.Sc. in computer science from the University of Calgary, Canada in 1977. He received a Ph.D. in computer science from Carnegie-Mellon University in 1983. The title of his thesis was The Algebraic Manipulation of Constraints. He has built satellite data acquisition systems, a multiprocessor version of UNIX®, several compilers, mail systems, and window managers. He has also built a WYSIWYG text editor, a constraint-based drawing editor, and a text editor called Emacs, for UNIX systems. At Sun his early activity was as lead engineer of the NeWS window system. He did the original design of the Java programming language and implemented its original compiler and virtual machine. He has recently been a contributor to the Real-Time Specification for Java.

  18. The state of the Java universe

    ScienceCinema

    None

    2016-07-12

    Speaker Bio: James Gosling received a B.Sc. in computer science from the University of Calgary, Canada in 1977. He received a Ph.D. in computer science from Carnegie-Mellon University in 1983. The title of his thesis was The Algebraic Manipulation of Constraints. He has built satellite data acquisition systems, a multiprocessor version of UNIX®, several compilers, mail systems, and window managers. He has also built a WYSIWYG text editor, a constraint-based drawing editor, and a text editor called Emacs, for UNIX systems. At Sun his early activity was as lead engineer of the NeWS window system. He did the original design of the Java programming language and implemented its original compiler and virtual machine. He has recently been a contributor to the Real-Time Specification for Java.

  19. A magnetotelluric profile across Central Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Ritter, O.; Hoffmann-Rothe, A.; Müller, A.; Dwipa, S.; Arsadi, E. M.; Mahfi, A.; Nurnusanto, I.; Byrdina, S.; Echternacht, F.; Haak, V.

    1998-12-01

    Along a N30°E striking profile in central Java, Indonesia we recorded broadband magnetotelluric data at 8 sites in the period range 0.01 s-10000s. A preliminary analysis of apparent resistivity, phase and magnetic transfer function data favours a one-dimensional interpretation of most sites for the upper 3-5 km of the crust and a two- or three- dimensional structure for the lower crust. Several conductive features can be distinguished: (i) a strong “ocean effect” at the southern most site, (ii) a zone of very high conductivity in the central part of the profile, and (iii) a conductor in the north that cannot be caused by the shallow Java sea. We discuss tentatively causes for these anomalies. The conductor in the central part of the profile is probably connected with volcanic or geothermal activity, while the anomaly in the north could be an expression of processes associated with an active fault zone.

  20. Safe Commits for Transactional Featherweight Java

    NASA Astrophysics Data System (ADS)

    Thuong Tran, Thi Mai; Steffen, Martin

    Transactions are a high-level alternative for low-level concurrency-control mechanisms such as locks, semaphores, monitors. A recent proposal for integrating transactional features into programming languages is Transactional Featherweight Java (TFJ), extending Featherweight Java by adding transactions. With support for nested and multi-threaded transactions, its transactional model is rather expressive. In particular, the constructs governing transactions - to start and to commit a transaction - can be used freely with a non-lexical scope. On the downside, this flexibility also allows for an incorrect use of these constructs, e.g., trying to perform a commit outside any transaction. To catch those kinds of errors, we introduce a static type and effect system for the safe use of transactions for TFJ. We prove the soundness of our type system by subject reduction.

  1. A Reconfigurable Processor Infrastructure for Accelerating Java Applications

    NASA Astrophysics Data System (ADS)

    Han, Youngsun; Hwang, Seok Joong; Kim, Seon Wook

    In this paper, we present a reconfigurable processor infrastructure to accelerate Java applications, called Jaguar. The Jaguar infrastructure consists of a compiler framework and a runtime environment support. The compiler framework selects a group of Java methods to be translated into hardware for delivering the best performance under limited resources, and translates the selected Java methods into Verilog synthesizable code modules. The runtime environment support includes the Java virtual machine (JVM) running on a host processor to provide Java execution environment to the generated Java accelerator through communication interface units while preserving Java semantics. Our compiler infrastructure is a tightly integrated and solid compiler-aided solution for Java reconfigurable computing. There is no limitation in generating synthesizable Verilog modules from any Java application while preserving Java semantics. In terms of performance, our infrastructure achieves the speedup by 5.4 times on average and by up to 9.4 times in measured benchmarks with respect to JVM-only execution. Furthermore, two optimization schemes such as an instruction folding and a live buffer removal can reduce 24% on average and up to 39% of the resource consumption.

  2. APINetworks Java. A Java approach to the efficient treatment of large-scale complex networks

    NASA Astrophysics Data System (ADS)

    Muñoz-Caro, Camelia; Niño, Alfonso; Reyes, Sebastián; Castillo, Miriam

    2016-10-01

    We present a new version of the core structural package of our Application Programming Interface, APINetworks, for the treatment of complex networks in arbitrary computational environments. The new version is written in Java and presents several advantages over the previous C++ version: the portability of the Java code, the easiness of object-oriented design implementations, and the simplicity of memory management. In addition, some additional data structures are introduced for storing the sets of nodes and edges. Also, by resorting to the different garbage collectors currently available in the JVM the Java version is much more efficient than the C++ one with respect to memory management. In particular, the G1 collector is the most efficient one because of the parallel execution of G1 and the Java application. Using G1, APINetworks Java outperforms the C++ version and the well-known NetworkX and JGraphT packages in the building and BFS traversal of linear and complete networks. The better memory management of the present version allows for the modeling of much larger networks.

  3. JavaGenes: Evolving Graphs with Crossover

    NASA Technical Reports Server (NTRS)

    Globus, Al; Atsatt, Sean; Lawton, John; Wipke, Todd

    2000-01-01

    Genetic algorithms usually use string or tree representations. We have developed a novel crossover operator for a directed and undirected graph representation, and used this operator to evolve molecules and circuits. Unlike strings or trees, a single point in the representation cannot divide every possible graph into two parts, because graphs may contain cycles. Thus, the crossover operator is non-trivial. A steady-state, tournament selection genetic algorithm code (JavaGenes) was written to implement and test the graph crossover operator. All runs were executed by cycle-scavagging on networked workstations using the Condor batch processing system. The JavaGenes code has evolved pharmaceutical drug molecules and simple digital circuits. Results to date suggest that JavaGenes can evolve moderate sized drug molecules and very small circuits in reasonable time. The algorithm has greater difficulty with somewhat larger circuits, suggesting that directed graphs (circuits) are more difficult to evolve than undirected graphs (molecules), although necessary differences in the crossover operator may also explain the results. In principle, JavaGenes should be able to evolve other graph-representable systems, such as transportation networks, metabolic pathways, and computer networks. However, large graphs evolve significantly slower than smaller graphs, presumably because the space-of-all-graphs explodes combinatorially with graph size. Since the representation strongly affects genetic algorithm performance, adding graphs to the evolutionary programmer's bag-of-tricks should be beneficial. Also, since graph evolution operates directly on the phenotype, the genotype-phenotype translation step, common in genetic algorithm work, is eliminated.

  4. Measurement Analysis When Benchmarking Java Card Platforms

    NASA Astrophysics Data System (ADS)

    Paradinas, Pierre; Cordry, Julien; Bouzefrane, Samia

    The advent of the Java Card standard has been a major turning point in smart card technology. With the growing acceptance of this standard, understanding the performance behaviour of these platforms is becoming crucial. To meet this need, we present in this paper, a benchmark framework that enables performance evaluation at the bytecode level. This paper focuses on the validity of our time measurements on smart cards.

  5. Rickettsia Felis in Xenopsylla Cheopis, Java, Indonesia

    DTIC Science & Technology

    2006-08-01

    Gonzalez JP, et al. Identification of Rickettsia spp. and Bartonella spp. in fleas from the Thai-Myanmar border. Ann N Y Acad Sci. 2003;990:173–81. 6...Oriental rat fleas (Xenopsylla cheopis) collect- ed from rodents and shrews in Java, Indonesia. We describe the first evidence of R. felis in...Indonesia and nat- urally occurring R. felis in Oriental rat fleas . Murine typhus (endemic typhus, fleaborne typhus),caused by Rickettsia typhi, is

  6. Mango: multiple alignment with N gapped oligos.

    PubMed

    Zhang, Zefeng; Lin, Hao; Li, Ming

    2008-06-01

    Multiple sequence alignment is a classical and challenging task. The problem is NP-hard. The full dynamic programming takes too much time. The progressive alignment heuristics adopted by most state-of-the-art works suffer from the "once a gap, always a gap" phenomenon. Is there a radically new way to do multiple sequence alignment? In this paper, we introduce a novel and orthogonal multiple sequence alignment method, using both multiple optimized spaced seeds and new algorithms to handle these seeds efficiently. Our new algorithm processes information of all sequences as a whole and tries to build the alignment vertically, avoiding problems caused by the popular progressive approaches. Because the optimized spaced seeds have proved significantly more sensitive than the consecutive k-mers, the new approach promises to be more accurate and reliable. To validate our new approach, we have implemented MANGO: Multiple Alignment with N Gapped Oligos. Experiments were carried out on large 16S RNA benchmarks, showing that MANGO compares favorably, in both accuracy and speed, against state-of-the-art multiple sequence alignment methods, including ClustalW 1.83, MUSCLE 3.6, MAFFT 5.861, ProbConsRNA 1.11, Dialign 2.2.1, DIALIGN-T 0.2.1, T-Coffee 4.85, POA 2.0, and Kalign 2.0. We have further demonstrated the scalability of MANGO on very large datasets of repeat elements. MANGO can be downloaded at http://www.bioinfo.org.cn/mango/ and is free for academic usage.

  7. astrojs: JavaScript Libraries for Astronomy

    NASA Astrophysics Data System (ADS)

    Kapadia, A.; Smith, A.

    2013-10-01

    Astronomers mainly use the web for data retrieval. To create visualizations and conduct analyses requires installation of many external packages, often creating a difficult task for the astronomer. An ideal situation would move many of the common tasks to a browser — a homogenous solution for data access, visualization, and analyses in one application. As part of an effort to build research tools around core citizen science experiences, the Zooniverse is building science grade tools for handling astronomical data. As the browser is Zooniverse's medium, JavaScript — the only client-side programming language — becomes ever more relevant for feature-rich web applications. The technology industry is investing large development time in improving JavaScript engines resulting in performance gains that exceed other scripting languages. The science community could benefit from this investment by migrating development of desktop applications to web applications. Similar to the astropy initiative, ASTROJS is providing a consolidation of JavaScript libraries for in-browser client-side astronomical data visualization and analyses.

  8. A Visual Editor in Java for View

    NASA Technical Reports Server (NTRS)

    Stansifer, Ryan

    2000-01-01

    In this project we continued the development of a visual editor in the Java programming language to create screens on which to display real-time data. The data comes from the numerous systems monitoring the operation of the space shuttle while on the ground and in space, and from the many tests of subsystems. The data can be displayed on any computer platform running a Java-enabled World Wide Web (WWW) browser and connected to the Internet. Previously a special-purpose program bad been written to display data on emulations of character-based display screens used for many years at NASA. The goal now is to display bit-mapped screens created by a visual editor. We report here on the visual editor that creates the display screens. This project continues the work we bad done previously. Previously we had followed the design of the 'beanbox,' a prototype visual editor created by Sun Microsystems. We abandoned this approach and implemented a prototype using a more direct approach. In addition, our prototype is based on newly released Java 2 graphical user interface (GUI) libraries. The result has been a visually more appealing appearance and a more robust application.

  9. Frameshift alignment: statistics and post-genomic applications

    PubMed Central

    Frith, Martin C.; Spouge, John L.

    2014-01-01

    Motivation: The alignment of DNA sequences to proteins, allowing for frameshifts, is a classic method in sequence analysis. It can help identify pseudogenes (which accumulate mutations), analyze raw DNA and RNA sequence data (which may have frameshift sequencing errors), investigate ribosomal frameshifts, etc. Often, however, only ad hoc approximations or simulations are available to provide the statistical significance of a frameshift alignment score. Results: We describe a method to estimate statistical significance of frameshift alignments, similar to classic BLAST statistics. (BLAST presently does not permit its alignments to include frameshifts.) We also illustrate the continuing usefulness of frameshift alignment with two ‘post-genomic’ applications: (i) when finding pseudogenes within the human genome, frameshift alignments show that most anciently conserved non-coding human elements are recent pseudogenes with conserved ancestral genes; and (ii) when analyzing metagenomic DNA reads from polluted soil, frameshift alignments show that most alignable metagenomic reads contain frameshifts, suggesting that metagenomic analysis needs to use frameshift alignment to derive accurate results. Availability and implementation: The statistical calculation is available in FALP (http://www.ncbi.nlm.nih.gov/CBBresearch/Spouge/html_ncbi/html/index/software.html), and giga-scale frameshift alignment is available in LAST (http://last.cbrc.jp/falp). Contact: spouge@ncbi.nlm.nih.gov or martin@cbrc.jp Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25172925

  10. Alignment of multiple proteins with an ensemble of Hidden Markov Models

    PubMed Central

    Song, Yinglei; Qu, Junfeng; Hura, Gurdeep S.

    2011-01-01

    In this paper, we developed a new method that progressively construct and update a set of alignments by adding sequences in certain order to each of the existing alignments. Each of the existing alignments is modelled with a profile Hidden Markov Model (HMM) and an added sequence is aligned to each of these profile HMMs. We introduced an integer parameter for the number of profile HMMs. The profile HMMs are then updated based on the alignments with leading scores. Our experiments on BaliBASE showed that our approach could efficiently explore the alignment space and significantly improve the alignment accuracy. PMID:20376922

  11. Erasing Errors due to Alignment Ambiguity When Estimating Positive Selection

    PubMed Central

    Redelings, Benjamin

    2014-01-01

    Current estimates of diversifying positive selection rely on first having an accurate multiple sequence alignment. Simulation studies have shown that under biologically plausible conditions, relying on a single estimate of the alignment from commonly used alignment software can lead to unacceptably high false-positive rates in detecting diversifying positive selection. We present a novel statistical method that eliminates excess false positives resulting from alignment error by jointly estimating the degree of positive selection and the alignment under an evolutionary model. Our model treats both substitutions and insertions/deletions as sequence changes on a tree and allows site heterogeneity in the substitution process. We conduct inference starting from unaligned sequence data by integrating over all alignments. This approach naturally accounts for ambiguous alignments without requiring ambiguously aligned sites to be identified and removed prior to analysis. We take a Bayesian approach and conduct inference using Markov chain Monte Carlo to integrate over all alignments on a fixed evolutionary tree topology. We introduce a Bayesian version of the branch-site test and assess the evidence for positive selection using Bayes factors. We compare two models of differing dimensionality using a simple alternative to reversible-jump methods. We also describe a more accurate method of estimating the Bayes factor using Rao-Blackwellization. We then show using simulated data that jointly estimating the alignment and the presence of positive selection solves the problem with excessive false positives from erroneous alignments and has nearly the same power to detect positive selection as when the true alignment is known. We also show that samples taken from the posterior alignment distribution using the software BAli-Phy have substantially lower alignment error compared with MUSCLE, MAFFT, PRANK, and FSA alignments. PMID:24866534

  12. Implementation of a parallel protein structure alignment service on cloud.

    PubMed

    Hung, Che-Lun; Lin, Yaw-Ling

    2013-01-01

    Protein structure alignment has become an important strategy by which to identify evolutionary relationships between protein sequences. Several alignment tools are currently available for online comparison of protein structures. In this paper, we propose a parallel protein structure alignment service based on the Hadoop distribution framework. This service includes a protein structure alignment algorithm, a refinement algorithm, and a MapReduce programming model. The refinement algorithm refines the result of alignment. To process vast numbers of protein structures in parallel, the alignment and refinement algorithms are implemented using MapReduce. We analyzed and compared the structure alignments produced by different methods using a dataset randomly selected from the PDB database. The experimental results verify that the proposed algorithm refines the resulting alignments more accurately than existing algorithms. Meanwhile, the computational performance of the proposed service is proportional to the number of processors used in our cloud platform.

  13. Amino acid alignment of cholinesterases, esterases, lipases, and related proteins

    SciTech Connect

    Gentry, M.K.; Doctor, B.P.

    1995-12-31

    The alignments previously published (Gentry Doctor, 1991; Cygler et al., 1993), nine and 32 sequences respectively, have been further expanded by the addition of 22 newly-found sequences. References and protein sequences were found by searching on the term acetylcholinesterase using the software package Entrez, an integrated citation and sequence retrieval system (National Center for Biotechnology Information, NLM, Bethesda, MD).

  14. Tidal alignment of galaxies

    SciTech Connect

    Blazek, Jonathan; Vlah, Zvonimir; Seljak, Uroš

    2015-08-01

    We develop an analytic model for galaxy intrinsic alignments (IA) based on the theory of tidal alignment. We calculate all relevant nonlinear corrections at one-loop order, including effects from nonlinear density evolution, galaxy biasing, and source density weighting. Contributions from density weighting are found to be particularly important and lead to bias dependence of the IA amplitude, even on large scales. This effect may be responsible for much of the luminosity dependence in IA observations. The increase in IA amplitude for more highly biased galaxies reflects their locations in regions with large tidal fields. We also consider the impact of smoothing the tidal field on halo scales. We compare the performance of this consistent nonlinear model in describing the observed alignment of luminous red galaxies with the linear model as well as the frequently used "nonlinear alignment model," finding a significant improvement on small and intermediate scales. We also show that the cross-correlation between density and IA (the "GI" term) can be effectively separated into source alignment and source clustering, and we accurately model the observed alignment down to the one-halo regime using the tidal field from the fully nonlinear halo-matter cross correlation. Inside the one-halo regime, the average alignment of galaxies with density tracers no longer follows the tidal alignment prediction, likely reflecting nonlinear processes that must be considered when modeling IA on these scales. Finally, we discuss tidal alignment in the context of cosmic shear measurements.

  15. Tidal alignment of galaxies

    SciTech Connect

    Blazek, Jonathan; Vlah, Zvonimir; Seljak, Uroš E-mail: zvlah@stanford.edu

    2015-08-01

    We develop an analytic model for galaxy intrinsic alignments (IA) based on the theory of tidal alignment. We calculate all relevant nonlinear corrections at one-loop order, including effects from nonlinear density evolution, galaxy biasing, and source density weighting. Contributions from density weighting are found to be particularly important and lead to bias dependence of the IA amplitude, even on large scales. This effect may be responsible for much of the luminosity dependence in IA observations. The increase in IA amplitude for more highly biased galaxies reflects their locations in regions with large tidal fields. We also consider the impact of smoothing the tidal field on halo scales. We compare the performance of this consistent nonlinear model in describing the observed alignment of luminous red galaxies with the linear model as well as the frequently used 'nonlinear alignment model,' finding a significant improvement on small and intermediate scales. We also show that the cross-correlation between density and IA (the 'GI' term) can be effectively separated into source alignment and source clustering, and we accurately model the observed alignment down to the one-halo regime using the tidal field from the fully nonlinear halo-matter cross correlation. Inside the one-halo regime, the average alignment of galaxies with density tracers no longer follows the tidal alignment prediction, likely reflecting nonlinear processes that must be considered when modeling IA on these scales. Finally, we discuss tidal alignment in the context of cosmic shear measurements.

  16. BLASTGrabber: a bioinformatic tool for visualization, analysis and sequence selection of massive BLAST data

    PubMed Central

    2014-01-01

    Background Advances in sequencing efficiency have vastly increased the sizes of biological sequence databases, including many thousands of genome-sequenced species. The BLAST algorithm remains the main search engine for retrieving sequence information, and must consequently handle data on an unprecedented scale. This has been possible due to high-performance computers and parallel processing. However, the raw BLAST output from contemporary searches involving thousands of queries becomes ill-suited for direct human processing. Few programs attempt to directly visualize and interpret BLAST output; those that do often provide a mere basic structuring of BLAST data. Results Here we present a bioinformatics application named BLASTGrabber suitable for high-throughput sequencing analysis. BLASTGrabber, being implemented as a Java application, is OS-independent and includes a user friendly graphical user interface. Text or XML-formatted BLAST output files can be directly imported, displayed and categorized based on BLAST statistics. Query names and FASTA headers can be analysed by text-mining. In addition to visualizing sequence alignments, BLAST data can be ordered as an interactive taxonomy tree. All modes of analysis support selection, export and storage of data. A Java interface-based plugin structure facilitates the addition of customized third party functionality. Conclusion The BLASTGrabber application introduces new ways of visualizing and analysing massive BLAST output data by integrating taxonomy identification, text mining capabilities and generic multi-dimensional rendering of BLAST hits. The program aims at a non-expert audience in terms of computer skills; the combination of new functionalities makes the program flexible and useful for a broad range of operations. PMID:24885091

  17. Rapid protein alignment in the cloud: HAMOND combines fast DIAMOND alignments with Hadoop parallelism.

    PubMed

    Yu, Jia; Blom, Jochen; Sczyrba, Alexander; Goesmann, Alexander

    2017-02-21

    The introduction of next generation sequencing has caused a steady increase in the amounts of data that have to be processed in modern life science. Sequence alignment plays a key role in the analysis of sequencing data e.g. within whole genome sequencing or metagenome projects. BLAST is a commonly used alignment tool that was the standard approach for more than two decades, but in the last years faster alternatives have been proposed including RapSearch, GHOSTX, and DIAMOND. Here we introduce HAMOND, an application that uses Apache Hadoop to parallelize DIAMOND computation in order to scale-out the calculation of alignments. HAMOND is fault tolerant and scalable by utilizing large cloud computing infrastructures like Amazon Web Services. HAMOND has been tested in comparative genomics analyses and showed promising results both in efficiency and accuracy.

  18. Pairagon: a highly accurate, HMM-based cDNA-to-genome aligner

    PubMed Central

    Lu, David V.; Brown, Randall H.; Arumugam, Manimozhiyan; Brent, Michael R.

    2009-01-01

    Motivation: The most accurate way to determine the intron–exon structures in a genome is to align spliced cDNA sequences to the genome. Thus, cDNA-to-genome alignment programs are a key component of most annotation pipelines. The scoring system used to choose the best alignment is a primary determinant of alignment accuracy, while heuristics that prevent consideration of certain alignments are a primary determinant of runtime and memory usage. Both accuracy and speed are important considerations in choosing an alignment algorithm, but scoring systems have received much less attention than heuristics. Results: We present Pairagon, a pair hidden Markov model based cDNA-to-genome alignment program, as the most accurate aligner for sequences with high- and low-identity levels. We conducted a series of experiments testing alignment accuracy with varying sequence identity. We first created ‘perfect’ simulated cDNA sequences by splicing the sequences of exons in the reference genome sequences of fly and human. The complete reference genome sequences were then mutated to various degrees using a realistic mutation simulator and the perfect cDNAs were aligned to them using Pairagon and 12 other aligners. To validate these results with natural sequences, we performed cross-species alignment using orthologous transcripts from human, mouse and rat. We found that aligner accuracy is heavily dependent on sequence identity. For sequences with 100% identity, Pairagon achieved accuracy levels of >99.6%, with one quarter of the errors of any other aligner. Furthermore, for human/mouse alignments, which are only 85% identical, Pairagon achieved 87% accuracy, higher than any other aligner. Availability: Pairagon source and executables are freely available at http://mblab.wustl.edu/software/pairagon/ Contact: davidlu@wustl.edu; brent@cse.wustl.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:19414532

  19. Aligned genomic data compression via improved modeling.

    PubMed

    Ochoa, Idoia; Hernaez, Mikel; Weissman, Tsachy

    2014-12-01

    With the release of the latest Next-Generation Sequencing (NGS) machine, the HiSeq X by Illumina, the cost of sequencing the whole genome of a human is expected to drop to a mere $1000. This milestone in sequencing history marks the era of affordable sequencing of individuals and opens the doors to personalized medicine. In accord, unprecedented volumes of genomic data will require storage for processing. There will be dire need not only of compressing aligned data, but also of generating compressed files that can be fed directly to downstream applications to facilitate the analysis of and inference on the data. Several approaches to this challenge have been proposed in the literature; however, focus thus far has been on the low coverage regime and most of the suggested compressors are not based on effective modeling of the data. We demonstrate the benefit of data modeling for compressing aligned reads. Specifically, we show that, by working with data models designed for the aligned data, we can improve considerably over the best compression ratio achieved by previously proposed algorithms. Our results indicate that the pareto-optimal barrier for compression rate and speed claimed by Bonfield and Mahoney (2013) [Bonfield JK and Mahoneys MV, Compression of FASTQ and SAM format sequencing data, PLOS ONE, 8(3):e59190, 2013.] does not apply for high coverage aligned data. Furthermore, our improved compression ratio is achieved by splitting the data in a manner conducive to operations in the compressed domain by downstream applications.

  20. Java-based framework for the secure distribution of electronic medical records.

    PubMed

    Goh, A

    1999-01-01

    In this paper, we present a Java-based framework for the processing, storage and delivery of Electronic Medical Records (EMR). The choice of Java as a developmental and operational environment ensures operability over a wide-range of client-side platforms, with our on-going work emphasising migration towards Extensible Markup Language (XML) capable Web browser clients. Telemedicine in support of womb-to-tomb healthcare as articulated by the Multimedia Supercorridor (MSC) Telemedicine initiative--which motivated this project--will require high-volume data exchange over an insecure public-access Wide Area Network (WAN), thereby requiring a hybrid cryptosystem with both symmetric and asymmetric components. Our prototype framework features a pre-transaction authentication and key negotiation sequence which can be readily modified for client-side environments ranging from Web browsers without local storage capability to workstations with serial connectivity to a tamper-proof device, and also for point-to-multipoint transaction processes.

  1. Implementation of BT, SP, LU, and FT of NAS Parallel Benchmarks in Java

    NASA Technical Reports Server (NTRS)

    Schultz, Matthew; Frumkin, Michael; Jin, Hao-Qiang; Yan, Jerry

    2000-01-01

    A number of Java features make it an attractive but a debatable choice for High Performance Computing. We have implemented benchmarks working on single structured grid BT,SP,LU and FT in Java. The performance and scalability of the Java code shows that a significant improvement in Java compiler technology and in Java thread implementation are necessary for Java to compete with Fortran in HPC applications.

  2. Developmental Process Model for the Java Intelligent Tutoring System

    ERIC Educational Resources Information Center

    Sykes, Edward

    2007-01-01

    The Java Intelligent Tutoring System (JITS) was designed and developed to support the growing trend of Java programming around the world. JITS is an advanced web-based personalized tutoring system that is unique in several ways. Most programming Intelligent Tutoring Systems require the teacher to author problems with corresponding solutions. JITS,…

  3. JavaScript: Convenient Interactivity for the Class Web Page.

    ERIC Educational Resources Information Center

    Gray, Patricia

    This paper shows how JavaScript can be used within HTML pages to add interactive review sessions and quizzes incorporating graphics and sound files. JavaScript has the advantage of providing basic interactive functions without the use of separate software applications and players. Because it can be part of a standard HTML page, it is…

  4. Java: A New Brew for Educators, Administrators and Students.

    ERIC Educational Resources Information Center

    Gordon, Barbara

    1996-01-01

    Java is an object-oriented programming language developed by Sun Microsystems; its benefits include platform independence, security, and interactivity. Within the college community, Java is being used in programming courses, collaborative technology research projects, computer graphics instruction, and distance education. (AEF)

  5. Paintbrush of Discovery: Using Java Applets to Enhance Mathematics Education

    ERIC Educational Resources Information Center

    Eason, Ray; Heath, Garrett

    2004-01-01

    This article addresses the enhancement of the learning environment by using Java applets in the mathematics classroom. Currently, the first year mathematics program at the United States Military Academy involves one semester of modeling with discrete dynamical systems (DDS). Several faculty members from the Academy have integrated Java applets…

  6. High-Performance Java Codes for Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Riley, Christopher; Chatterjee, Siddhartha; Biswas, Rupak; Biegel, Bryan (Technical Monitor)

    2001-01-01

    The computational science community is reluctant to write large-scale computationally -intensive applications in Java due to concerns over Java's poor performance, despite the claimed software engineering advantages of its object-oriented features. Naive Java implementations of numerical algorithms can perform poorly compared to corresponding Fortran or C implementations. To achieve high performance, Java applications must be designed with good performance as a primary goal. This paper presents the object-oriented design and implementation of two real-world applications from the field of Computational Fluid Dynamics (CFD): a finite-volume fluid flow solver (LAURA, from NASA Langley Research Center), and an unstructured mesh adaptation algorithm (2D_TAG, from NASA Ames Research Center). This work builds on our previous experience with the design of high-performance numerical libraries in Java. We examine the performance of the applications using the currently available Java infrastructure and show that the Java version of the flow solver LAURA performs almost within a factor of 2 of the original procedural version. Our Java version of the mesh adaptation algorithm 2D_TAG performs within a factor of 1.5 of its original procedural version on certain platforms. Our results demonstrate that object-oriented software design principles are not necessarily inimical to high performance.

  7. A Geostationary Earth Orbit Satellite Model Using Easy Java Simulation

    ERIC Educational Resources Information Center

    Wee, Loo Kang; Goh, Giam Hwee

    2013-01-01

    We develop an Easy Java Simulation (EJS) model for students to visualize geostationary orbits near Earth, modelled using a Java 3D implementation of the EJS 3D library. The simplified physics model is described and simulated using a simple constant angular velocity equation. We discuss four computer model design ideas: (1) a simple and realistic…

  8. Dynamic Learning Objects to Teach Java Programming Language

    ERIC Educational Resources Information Center

    Narasimhamurthy, Uma; Al Shawkani, Khuloud

    2010-01-01

    This article describes a model for teaching Java Programming Language through Dynamic Learning Objects. The design of the learning objects was based on effective learning design principles to help students learn the complex topic of Java Programming. Visualization was also used to facilitate the learning of the concepts. (Contains 1 figure and 2…

  9. Real-time Java for flight applications: an update

    NASA Technical Reports Server (NTRS)

    Dvorak, D.

    2003-01-01

    The RTSJ is a specification for supporting real-time execution in the Java programming language. The specification has been shaped by several guiding principles, particularly: predictable execution as the first priority in all tradeoffs, no syntactic extensions to Java, and backward compatibility.

  10. JAVA SWING-BASED PLOTTING PACKAGE RESIDING WITHIN XAL

    SciTech Connect

    Shishlo, Andrei P; Chu, Paul; Pelaia II, Tom

    2007-01-01

    A data plotting package residing in the XAL tools set is presented. This package is based on Java SWING, and therefore it has the same portability as Java itself. The data types for charts, bar-charts, and color-surface plots are described. The algorithms, performance, interactive capabilities, limitations, and the best usage practices of this plotting package are discussed.

  11. Long Read Alignment with Parallel MapReduce Cloud Platform.

    PubMed

    Al-Absi, Ahmed Abdulhakim; Kang, Dae-Ki

    2015-01-01

    Genomic sequence alignment is an important technique to decode genome sequences in bioinformatics. Next-Generation Sequencing technologies produce genomic data of longer reads. Cloud platforms are adopted to address the problems arising from storage and analysis of large genomic data. Existing genes sequencing tools for cloud platforms predominantly consider short read gene sequences and adopt the Hadoop MapReduce framework for computation. However, serial execution of map and reduce phases is a problem in such systems. Therefore, in this paper, we introduce Burrows-Wheeler Aligner's Smith-Waterman Alignment on Parallel MapReduce (BWASW-PMR) cloud platform for long sequence alignment. The proposed cloud platform adopts a widely accepted and accurate BWA-SW algorithm for long sequence alignment. A custom MapReduce platform is developed to overcome the drawbacks of the Hadoop framework. A parallel execution strategy of the MapReduce phases and optimization of Smith-Waterman algorithm are considered. Performance evaluation results exhibit an average speed-up of 6.7 considering BWASW-PMR compared with the state-of-the-art Bwasw-Cloud. An average reduction of 30% in the map phase makespan is reported across all experiments comparing BWASW-PMR with Bwasw-Cloud. Optimization of Smith-Waterman results in reducing the execution time by 91.8%. The experimental study proves the efficiency of BWASW-PMR for aligning long genomic sequences on cloud platforms.

  12. Long Read Alignment with Parallel MapReduce Cloud Platform

    PubMed Central

    Al-Absi, Ahmed Abdulhakim; Kang, Dae-Ki

    2015-01-01

    Genomic sequence alignment is an important technique to decode genome sequences in bioinformatics. Next-Generation Sequencing technologies produce genomic data of longer reads. Cloud platforms are adopted to address the problems arising from storage and analysis of large genomic data. Existing genes sequencing tools for cloud platforms predominantly consider short read gene sequences and adopt the Hadoop MapReduce framework for computation. However, serial execution of map and reduce phases is a problem in such systems. Therefore, in this paper, we introduce Burrows-Wheeler Aligner's Smith-Waterman Alignment on Parallel MapReduce (BWASW-PMR) cloud platform for long sequence alignment. The proposed cloud platform adopts a widely accepted and accurate BWA-SW algorithm for long sequence alignment. A custom MapReduce platform is developed to overcome the drawbacks of the Hadoop framework. A parallel execution strategy of the MapReduce phases and optimization of Smith-Waterman algorithm are considered. Performance evaluation results exhibit an average speed-up of 6.7 considering BWASW-PMR compared with the state-of-the-art Bwasw-Cloud. An average reduction of 30% in the map phase makespan is reported across all experiments comparing BWASW-PMR with Bwasw-Cloud. Optimization of Smith-Waterman results in reducing the execution time by 91.8%. The experimental study proves the efficiency of BWASW-PMR for aligning long genomic sequences on cloud platforms. PMID:26839887

  13. Volume visualization of multiple alignment of genomic DNA

    SciTech Connect

    Shah, Nameeta; Weber, Gunther H.; Dillard, Scott E.; Hamann, Bernd

    2004-05-01

    Genomes of hundreds of species have been sequenced to date and many more are being sequenced. As more and more sequence data sets become available, and as the challenge of comparing these massive ''billion basepair DNA sequences'' becomes substantial, so does the need for more powerful tools supporting the exploration of these data sets. Similarity score data used to compare aligned DNA sequences is inherently one-dimensional. One-dimensional (1D) representations of these data sets do not effectively utilize screen real estate. We present a technique to arrange 1D data in 3D space to allow us to apply state-of-the-art interactive volume visualization techniques for data exploration. We provide results for aligned DNA sequence data and compare it with traditional 1D line plots. Our technique, coupled with 1D line plots, results in effective multiresolution visualization of very large aligned sequence data sets.

  14. Precision alignment device

    DOEpatents

    Jones, N.E.

    1988-03-10

    Apparatus for providing automatic alignment of beam devices having an associated structure for directing, collimating, focusing, reflecting, or otherwise modifying the main beam. A reference laser is attached to the structure enclosing the main beam producing apparatus and produces a reference beam substantially parallel to the main beam. Detector modules containing optical switching devices and optical detectors are positioned in the path of the reference beam and are effective to produce an electrical output indicative of the alignment of the main beam. This electrical output drives servomotor operated adjustment screws to adjust the position of elements of the structure associated with the main beam to maintain alignment of the main beam. 5 figs.

  15. Precision alignment device

    DOEpatents

    Jones, Nelson E.

    1990-01-01

    Apparatus for providing automatic alignment of beam devices having an associated structure for directing, collimating, focusing, reflecting, or otherwise modifying the main beam. A reference laser is attached to the structure enclosing the main beam producing apparatus and produces a reference beam substantially parallel to the main beam. Detector modules containing optical switching devices and optical detectors are positioned in the path of the reference beam and are effective to produce an electrical output indicative of the alignment of the main beam. This electrical output drives servomotor operated adjustment screws to adjust the position of elements of the structure associated with the main beam to maintain alignment of the main beam.

  16. Hybrid vehicle motor alignment

    DOEpatents

    Levin, Michael Benjamin

    2001-07-03

    A rotor of an electric motor for a motor vehicle is aligned to an axis of rotation for a crankshaft of an internal combustion engine having an internal combustion engine and an electric motor. A locator is provided on the crankshaft, a piloting tool is located radially by the first locator to the crankshaft. A stator of the electric motor is aligned to a second locator provided on the piloting tool. The stator is secured to the engine block. The rotor is aligned to the crankshaft and secured thereto.

  17. TM-align: a protein structure alignment algorithm based on the TM-score

    PubMed Central

    Zhang, Yang; Skolnick, Jeffrey

    2005-01-01

    We have developed TM-align, a new algorithm to identify the best structural alignment between protein pairs that combines the TM-score rotation matrix and Dynamic Programming (DP). The algorithm is ∼4 times faster than CE and 20 times faster than DALI and SAL. On average, the resulting structure alignments have higher accuracy and coverage than those provided by these most often-used methods. TM-align is applied to an all-against-all structure comparison of 10 515 representative protein chains from the Protein Data Bank (PDB) with a sequence identity cutoff <95%: 1996 distinct folds are found when a TM-score threshold of 0.5 is used. We also use TM-align to match the models predicted by TASSER for solved non-homologous proteins in PDB. For both folded and misfolded models, TM-align can almost always find close structural analogs, with an average root mean square deviation, RMSD, of 3 Å and 87% alignment coverage. Nevertheless, there exists a significant correlation between the correctness of the predicted structure and the structural similarity of the model to the other proteins in the PDB. This correlation could be used to assist in model selection in blind protein structure predictions. The TM-align program is freely downloadable at . PMID:15849316

  18. Java multi-histogram volume rendering framework for medical images

    NASA Astrophysics Data System (ADS)

    Senseney, Justin; Bokinsky, Alexandra; Cheng, Ruida; McCreedy, Evan; McAuliffe, Matthew J.

    2013-03-01

    This work extends the multi-histogram volume rendering framework proposed by Kniss et al. [1] to provide rendering results based on the impression of overlaid triangles on a graph of image intensity versus gradient magnitude. The developed method of volume rendering allows for greater emphasis to boundary visualization while avoiding issues common in medical image acquisition. For example, partial voluming effects in computed tomography and intensity inhomogeneity of similar tissue types in magnetic resonance imaging introduce pixel values that will not reflect differing tissue types when a standard transfer function is applied to an intensity histogram. This new framework uses developing technology to improve upon the Kniss multi-histogram framework by using Java, the GPU, and MIPAV, an open-source medical image processing application, to allow multi-histogram techniques to be widely disseminated. The OpenGL view aligned texture rendering approach suffered from performance setbacks, inaccessibility, and usability problems. Rendering results can now be interactively compared with other rendering frameworks, surfaces can now be extracted for use in other programs, and file formats that are widely used in the field of biomedical imaging can be visualized using this multi-histogram approach. OpenCL and GLSL are used to produce this new multi-histogram approach, leveraging texture memory on the graphics processing unit of desktops to provide a new interactive method for visualizing biomedical images. Performance results for this method are generated and qualitative rendering results are compared. The resulting framework provides the opportunity for further applications in medical imaging, both in volume rendering and in generic image processing.

  19. Alignment of CEBAF cryomodules

    SciTech Connect

    Schneider, W.J.; Bisognano, J.J.; Fischer, J.

    1993-06-01

    CEBAF, the Continuous Electron Beam Accelerator Facility, when completed, will house a 4 GeV recirculating accelerator. Each of the accelerator`s two linacs contains 160 superconducting radio frequency (SRF) 1497 MHz niobium cavities in 20 cryomodules. Alignments of the cavities within the cryomodule with respect to beam axis is critical to achieving the optimum accelerator performance. This paper discusses the rationale for the current specification on cavity mechanical alignment: 2 mrad (rms) applied to the 0.5 m active length cavities. We describe the tooling that was developed to achieve the tolerance at the time of cavity pair assembly, to preserve and integrate alignment during cryomodule assembly, and to translate alignment to appropriate installation in the beam line.

  20. BioViews: Java-Based Tools for Genomic Data Visualization

    PubMed Central

    Helt, Gregg A.; Lewis, Suzanna; Loraine, Ann E.; Rubin, Gerald M.

    1998-01-01

    Visualization tools for bioinformatics ideally should provide universal access to the most current data in an interactive and intuitive graphical user interface. Since the introduction of Java, a language designed for distributed programming over the Web, the technology now exists to build a genomic data visualization tool that meets these requirements. Using Java we have developed a prototype genome browser applet (BioViews) that incorporates a three-level graphical view of genomic data: a physical map, an annotated sequence map, and a DNA sequence display. Annotated biological features are displayed on the physical and sequence-based maps, and the different views are interconnected. The applet is linked to several databases and can retrieve features and display hyperlinked textual data on selected features. In addition to browsing genomic data, different types of analyses can be performed interactively and the results of these analyses visualized alongside prior annotations. Our genome browser is built on top of extensible, reusable graphic components specifically designed for bioinformatics. Other groups can (and do) reuse this work in various ways. Genome centers can reuse large parts of the genome browser with minor modifications, bioinformatics groups working on sequence analysis can reuse components to build front ends for analysis programs, and biology laboratories can reuse components to publish results as dynamic Web documents. PMID:9521932

  1. Anatomy of the western Java plate interface from depth-migrated seismic images

    USGS Publications Warehouse

    Kopp, H.; Hindle, D.; Klaeschen, D.; Oncken, O.; Reichert, C.; Scholl, D.

    2009-01-01

    Newly pre-stack depth-migrated seismic images resolve the structural details of the western Java forearc and plate interface. The structural segmentation of the forearc into discrete mechanical domains correlates with distinct deformation styles. Approximately 2/3 of the trench sediment fill is detached and incorporated into frontal prism imbricates, while the floor sequence is underthrust beneath the d??collement. Western Java, however, differs markedly from margins such as Nankai or Barbados, where a uniform, continuous d??collement reflector has been imaged. In our study area, the plate interface reveals a spatially irregular, nonlinear pattern characterized by the morphological relief of subducted seamounts and thicker than average patches of underthrust sediment. The underthrust sediment is associated with a low velocity zone as determined from wide-angle data. Active underplating is not resolved, but likely contributes to the uplift of the large bivergent wedge that constitutes the forearc high. Our profile is located 100 km west of the 2006 Java tsunami earthquake. The heterogeneous d??collement zone regulates the friction behavior of the shallow subduction environment where the earthquake occurred. The alternating pattern of enhanced frictional contact zones associated with oceanic basement relief and weak material patches of underthrust sediment influences seismic coupling and possibly contributed to the heterogeneous slip distribution. Our seismic images resolve a steeply dipping splay fault, which originates at the d??collement and terminates at the sea floor and which potentially contributes to tsunami generation during co-seismic activity. ?? 2009 Elsevier B.V.

  2. FRESCO: flexible alignment with rectangle scoring schemes.

    PubMed

    Dalca, A V; Brudno, M

    2008-01-01

    While the popular DNA sequence alignment tools incorporate powerful heuristics to allow for fast and accurate alignment of DNA, most of them still optimize the classical Needleman Wunsch scoring scheme. The development of novel scoring schemes is often hampered by the difficulty of finding an optimizing algorithm for each non-trivial scheme. In this paper we define the broad class of rectangle scoring schemes, and describe an algorithm and tool that can align two sequences with an arbitrary rectangle scoring scheme in polynomial time. Rectangle scoring schemes encompass some of the popular alignment scoring metrics currently in use, as well as many other functions. We investigate a novel scoring function based on minimizing the expected number of random diagonals observed with the given scores and show that it rivals the LAGAN and Clustal-W aligners, without using any biological or evolutionary parameters. The FRESCO program, freely available at http://compbio.cs.toronto.edu/fresco, gives bioinformatics researchers the ability to quickly compare the performance of other complex scoring formulas without having to implement new algorithms to optimize them.

  3. Methylation of cytosine at C5 in a CpG sequence context causes a conformational switch of a benzo[a]pyrene diol epoxide-N2-guanine adduct in DNA from a minor groove alignment to intercalation with base displacement.

    SciTech Connect

    Zhang, N.; Lin, C.; Huang, X.; Kolbanovskiy, A.; Hingerty, Brian E; Amin, S.; Broyde, S.; Geactinov, N. E.; Patel, D. J.

    2005-03-01

    It is well known that CpG dinucleotide steps in DNA, which are highly methylated at the 5-position of cytosine (meC) in human tissues, exhibit a disproportionate number of mutations within certain codons of the p53 gene. There is ample published evidence indicating that the reactivity of guanine with anti-B[a]PDE (a metabolite of the environmental carcinogen benzo[a]pyrene) at CpG mutation hot spots is enhanced by the methylation of the cytosine residue flanking the target guanine residue on the 5'-side. In this work we demonstrate that such a methylation can also dramatically affect the conformational characteristics of an adduct derived from the reaction of one of the two enantiomers of anti-B[a]PDE with the exocyclic amino group of guanine ([BP]G adduct). A detailed NMR study indicates that the 10R (-)-trans-anti-[BP]G adduct undergoes a transition from a minor groove-binding alignment of the aromatic BP ring system in the unmethylated C-[BP]G sequence context, to an intercalative BP alignment with a concomitant displacement of the modified guanine residue into the minor groove in the methylated meC-[BP]G sequence context. By contrast, a minor groove-binding alignment was observed for the stereoisomeric 10S (+)-trans-anti-[BP]G adduct in both the C-[BP]G and meC-[BP]G sequence contexts. This remarkable conformational switch resulting from the presence of a single methyl group at the 5-position of the cytosine residue flanking the lesion on the 5'-side, is attributed to the hydrophobic effect of the methyl group that can stabilize intercalated adduct conformations in an adduct stereochemistry-dependent manner. Such conformational differences in methylated and unmethylated CpG sequences may be significant because of potential alterations in the cellular processing of the [BP]G adducts by DNA transcription, replication, and repair enzymes.

  4. Recursions for statistical multiple alignment

    PubMed Central

    Hein, Jotun; Jensen, Jens Ledet; Pedersen, Christian N. S.

    2003-01-01

    Algorithms are presented that allow the calculation of the probability of a set of sequences related by a binary tree that have evolved according to the Thorne–Kishino–Felsenstein model for a fixed set of parameters. The algorithms are based on a Markov chain generating sequences and their alignment at nodes in a tree. Depending on whether the complete realization of this Markov chain is decomposed into the first transition and the rest of the realization or the last transition and the first part of the realization, two kinds of recursions are obtained that are computationally similar but probabilistically different. The running time of the algorithms is \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}O({\\Pi}_{i}^{d}=1~L_{i})\\end{equation*}\\end{document}, where Li is the length of the ith observed sequences and d is the number of sequences. An alternative recursion is also formulated that uses only a Markov chain involving the inner nodes of a tree. PMID:14657378

  5. Petroleum systems of the Northwest Java Province, Java and offshore southeast Sumatra, Indonesia

    USGS Publications Warehouse

    Bishop, Michele G.

    2000-01-01

    Mature, synrift lacustrine shales of Eocene to Oligocene age and mature, late-rift coals and coaly shales of Oligocene to Miocene age are source rocks for oil and gas in two important petroleum systems of the onshore and offshore areas of the Northwest Java Basin. Biogenic gas and carbonate-sourced gas have also been identified. These hydrocarbons are trapped primarily in anticlines and fault blocks involving sandstone and carbonate reservoirs. These source rocks and reservoir rocks were deposited in a complex of Tertiary rift basins formed from single or multiple half-grabens on the south edge of the Sunda Shelf plate. The overall transgressive succession was punctuated by clastic input from the exposed Sunda Shelf and marine transgressions from the south. The Northwest Java province may contain more than 2 billion barrels of oil equivalent in addition to the 10 billion barrels of oil equivalent already identified.

  6. An explorative multiproxy approach to characterize the ecospace of Homo erectus at Sangiran (Java, Indonesia)

    NASA Astrophysics Data System (ADS)

    Hertler, Christine; Haupt, Susanne; Lüdecke, Tina; Wirkner, Mathias; Bruch, Angela

    2015-04-01

    Homo erectus inhabited the islands of the Sunda Shelf in the late Early Pleistocene. This is illustrated by an extensive record of hominid specimens stemming from a variety of sites in Java. The hominid locality Sangiran plays a crucial role in studying related environments, because the geological record at the Sangiran dome covers a stratigraphic sequence, unlike any other hominid site in Java. Although the detailed chronology of the localities in Java is still under dispute, it covers the period between the late Early and early Middle Pleistocene. Fossil evidence includes the hominin specimens proper, diverse and evolving vertebrate faunas as well as pollen profiles. We applied a multiproxy approach to analyse and reconstruct features of the Homo erectus ecospace. Preliminary results of our explorative study are introduced in this paper. Based on the pollen record, we reconstructed temperature and precipitation for the major stratigraphic units. Although resulting values are averaging over wide chronological intervals, they illustrate general climatic trends in the late Early and early Middle Pleistocene in accordance with previous studies and the MIS record. The mammalian specimens we selected for this preliminary study possess a more restricted stratigraphic provenience. Our analyses are based on a dental sample of Duboisia santeng from the Koenigswald collection (n=14). The occurrence of the taxon is restricted to 3 layers in the stratigraphy. We reconstructed body mass and inferred diet from mesowear and isotope studies. There is no significant shift in body masses of Duboisia santeng. This result is in accordance with studies from other localities in Java. However, slight shifts in the mesowear signals (mixed feeder with increasingly browsing signal) are confirmed by studies of carbon isotopes. The analysis of oxygen isotopes provides evidence for seasonality which is compared with the signals from the vegetation.

  7. Sequence information signal processor

    DOEpatents

    Peterson, John C.; Chow, Edward T.; Waterman, Michael S.; Hunkapillar, Timothy J.

    1999-01-01

    An electronic circuit is used to compare two sequences, such as genetic sequences, to determine which alignment of the sequences produces the greatest similarity. The circuit includes a linear array of series-connected processors, each of which stores a single element from one of the sequences and compares that element with each successive element in the other sequence. For each comparison, the processor generates a scoring parameter that indicates which segment ending at those two elements produces the greatest degree of similarity between the sequences. The processor uses the scoring parameter to generate a similar scoring parameter for a comparison between the stored element and the next successive element from the other sequence. The processor also delivers the scoring parameter to the next processor in the array for use in generating a similar scoring parameter for another pair of elements. The electronic circuit determines which processor and alignment of the sequences produce the scoring parameter with the highest value.

  8. New Web Server - the Java Version of Tempest - Produced

    NASA Technical Reports Server (NTRS)

    York, David W.; Ponyik, Joseph G.

    2000-01-01

    A new software design and development effort has produced a Java (Sun Microsystems, Inc.) version of the award-winning Tempest software (refs. 1 and 2). In 1999, the Embedded Web Technology (EWT) team received a prestigious R&D 100 Award for Tempest, Java Version. In this article, "Tempest" will refer to the Java version of Tempest, a World Wide Web server for desktop or embedded systems. Tempest was designed at the NASA Glenn Research Center at Lewis Field to run on any platform for which a Java Virtual Machine (JVM, Sun Microsystems, Inc.) exists. The JVM acts as a translator between the native code of the platform and the byte code of Tempest, which is compiled in Java. These byte code files are Java executables with a ".class" extension. Multiple byte code files can be zipped together as a "*.jar" file for more efficient transmission over the Internet. Today's popular browsers, such as Netscape (Netscape Communications Corporation) and Internet Explorer (Microsoft Corporation) have built-in Virtual Machines to display Java applets.

  9. Debris Dispersion Model Using Java 3D

    NASA Technical Reports Server (NTRS)

    Thirumalainambi, Rajkumar; Bardina, Jorge

    2004-01-01

    This paper describes web based simulation of Shuttle launch operations and debris dispersion. Java 3D graphics provides geometric and visual content with suitable mathematical model and behaviors of Shuttle launch. Because the model is so heterogeneous and interrelated with various factors, 3D graphics combined with physical models provides mechanisms to understand the complexity of launch and range operations. The main focus in the modeling and simulation covers orbital dynamics and range safety. Range safety areas include destruct limit lines, telemetry and tracking and population risk near range. If there is an explosion of Shuttle during launch, debris dispersion is explained. The shuttle launch and range operations in this paper are discussed based on the operations from Kennedy Space Center, Florida, USA.

  10. VOTable JAVA Streaming Writer and Applications.

    NASA Astrophysics Data System (ADS)

    Kulkarni, P.; Kembhavi, A.; Kale, S.

    2004-07-01

    Virtual Observatory related tools use a new standard for data transfer called the VOTable format. This is a variant of the xml format that enables easy transfer of data over the web. We describe a streaming interface that can bridge the VOTable format, through a user friendly graphical interface, with the FITS and ASCII formats, which are commonly used by astronomers. A streaming interface is important for efficient use of memory because of the large size of catalogues. The tools are developed in JAVA to provide a platform independent interface. We have also developed a stand-alone version that can be used to convert data stored in ASCII or FITS format on a local machine. The Streaming writer is successfully being used in VOPlot (See Kale et al 2004 for a description of VOPlot).We present the test results of converting huge FITS and ASCII data into the VOTable format on machines that have only limited memory.

  11. Geological Features Inferred from Local Seismic Tomography in the Sunda Strait and West Java regions, Indonesia

    NASA Astrophysics Data System (ADS)

    Nugraha, A. D.; Sakti, A. P.; Rohadi, S.; Widiyantoro, S.

    2012-12-01

    We have conducted seismic tomographic inversions to obtain a P-wave seismic velocity structure beneath the Sunda Strait and West Java regions, Indonesia. The Sunda Strait is located in a complex geological system i.e. in the transition from the oblique subduction beneath Sumatra to the nearly perpendicular subduction below Java. The Krakatau active volcano is located in the Sunda Strait. In this study, we have used selected P-wave arrival times from the data catalogs of the SeisComP-BMKG network (from 2009 to 2011) and the BMKG BALAI II network (from 1992 to 2011) compiled by Badan Meteorologi,Klimatologi dan Geofisika (BMKG), Indonesia. In total, there are 1,598 local earthquakes and 10,366 P-wave phases from 25 seismographic stations that have been used for the tomographic inversions. We have also relocated the hypocenter locations along with velocity inversions simultaneously. Our preliminary results depict some prominent geological features that include: (1) a low velocity anomaly beneath north of the Ujung Kulon region, which coincides with a low gravity anomaly resulting from a previous study, (2) a low velocity anomaly alignment beneath the Krakatau volcano in the Sunda Strait, (3) a sharp contrast in velocity anomalies extending from Pelabuhan Ratu towards Jakarta with a strike of SW-NE, and (4) a low velocity anomaly in the offshore of Pelabuhan Ratu that may be correlated with the continuation of the Cimandiri fault zone. More detailed information will be presented during the meeting. Keywords: tomography, Sunda Strait, West Java, velocity anomaly

  12. HIV Sequence Compendium 2015

    SciTech Connect

    Foley, Brian Thomas; Leitner, Thomas Kenneth; Apetrei, Cristian; Hahn, Beatrice; Mizrachi, Ilene; Mullins, James; Rambaut, Andrew; Wolinsky, Steven; Korber, Bette Tina Marie

    2015-10-05

    This compendium is an annual printed summary of the data contained in the HIV sequence database. We try to present a judicious selection of the data in such a way that it is of maximum utility to HIV researchers. Each of the alignments attempts to display the genetic variability within the different species, groups and subtypes of the virus. This compendium contains sequences published before January 1, 2015. Hence, though it is published in 2015 and called the 2015 Compendium, its contents correspond to the 2014 curated alignments on our website. The number of sequences in the HIV database is still increasing. In total, at the end of 2014, there were 624,121 sequences in the HIV Sequence Database, an increase of 7% since the previous year. This is the first year that the number of new sequences added to the database has decreased compared to the previous year. The number of near complete genomes (>7000 nucleotides) increased to 5834 by end of 2014. However, as in previous years, the compendium alignments contain only a fraction of these. A more complete version of all alignments is available on our website, http://www.hiv.lanl.gov/ content/sequence/NEWALIGN/align.html As always, we are open to complaints and suggestions for improvement. Inquiries and comments regarding the compendium should be addressed to seq-info@lanl.gov.

  13. Space Radar Image of Central Java, Indonesia

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The summits of two large volcanoes in Central Java, Indonesia are shown in the center of this radar image. Lava flows of different ages and surface roughness appear in shades of green and yellow surrounding the summit of Mt. Merbabu (mid-center) and Mt. Merapi (lower center). Mt. Merapi erupted on November 28, 1994 about six weeks after this image was taken. The eruption killed more than 60 people and forced the evacuation of more than 6,000 others. Thousands of other residents were put on alert due to the possibility of volcanic debris mudflows, called lahars, that threatened nearby towns. Mt. Merapi is located approximately 40 kilometers (25 miles) north of Yogyakarta, the capital of Central Java. The older volcano at the top of the image is unnamed. Lake Rawapening is the dark blue feature in the upper right. The light blue area southeast of the lake is the city of Salatiga. Directly south of Salatiga and southeast of Mt. Merapi is the city of Boyolali. Scientists are studying Mt. Merapi as part of the international 'Decade Volcanoes' project, because of its recent activity and potential threat to local populations. The radar data are being used to identify and distinguish a variety of volcanic features. This image was acquired on October 10, 1994 by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour. SIR-C/X-SAR, a joint mission of the German, Italian and the United States space agencies, is part of NASA's Mission to Planet Earth. The image is centered at 7.5 degrees South latitude and 110.5 degrees East longitude and covers an area of 33 kilometers by 65 kilometers (20 miles by 40 miles).

  14. Context-sensitive trace inlining for Java.

    PubMed

    Häubl, Christian; Wimmer, Christian; Mössenböck, Hanspeter

    2013-12-01

    Method inlining is one of the most important optimizations in method-based just-in-time (JIT) compilers. It widens the compilation scope and therefore allows optimizing multiple methods as a whole, which increases the performance. However, if method inlining is used too frequently, the compilation time increases and too much machine code is generated. This has negative effects on the performance. Trace-based JIT compilers only compile frequently executed paths, so-called traces, instead of whole methods. This may result in faster compilation, less generated machine code, and better optimized machine code. In the previous work, we implemented a trace recording infrastructure and a trace-based compiler for [Formula: see text], by modifying the Java HotSpot VM. Based on this work, we evaluate the effect of trace inlining on the performance and the amount of generated machine code. Trace inlining has several major advantages when compared to method inlining. First, trace inlining is more selective than method inlining, because only frequently executed paths are inlined. Second, the recorded traces may capture information about virtual calls, which simplify inlining. A third advantage is that trace information is context sensitive so that different method parts can be inlined depending on the specific call site. These advantages allow more aggressive inlining while the amount of generated machine code is still reasonable. We evaluate several inlining heuristics on the benchmark suites DaCapo 9.12 Bach, SPECjbb2005, and SPECjvm2008 and show that our trace-based compiler achieves an up to 51% higher peak performance than the method-based Java HotSpot client compiler. Furthermore, we show that the large compilation scope of our trace-based compiler has a positive effect on other compiler optimizations such as constant folding or null check elimination.

  15. Curriculum Alignment Research Suggests that Alignment Can Improve Student Achievement

    ERIC Educational Resources Information Center

    Squires, David

    2012-01-01

    Curriculum alignment research has developed showing the relationship among three alignment categories: the taught curriculum, the tested curriculum and the written curriculum. Each pair (for example, the taught and the written curriculum) shows a positive impact for aligning those results. Following this, alignment results from the Third…

  16. HotJava: Sun's Animated Interactive World Wide Web Browser for the Internet.

    ERIC Educational Resources Information Center

    Machovec, George S., Ed.

    1995-01-01

    Examines HotJava and Java, World Wide Web technology for use on the Internet. HotJava, an interactive, animated Web browser, based on the object-oriented Java programming language, is different from HTML-based browsers such as Netscape. Its client/server design does not understand Internet protocols but can dynamically find what it needs to know.…

  17. Spilling the beans on java 3D: a tool for the virtual anatomist.

    PubMed

    Guttmann, G D

    1999-04-15

    The computing world has just provided the anatomist with another tool: Java 3D, within the Java 2 platform. On December 9, 1998, Sun Microsystems released Java 2. Java 3D classes are now included in the jar (Java Archive) archives of the extensions directory of Java 2. Java 3D is also a part of the Java Media Suite of APIs (Application Programming Interfaces). But what is Java? How does Java 3D work? How do you view Java 3D objects? A brief introduction to the concepts of Java and object-oriented programming is provided. Also, there is a short description of the tools of Java 3D and of the Java 3D viewer. Thus, the virtual anatomist has another set of computer tools to use for modeling various aspects of anatomy, such as embryological development. Also, the virtual anatomist will be able to assist the surgeon with virtual surgery using the tools found in Java 3D. Java 3D will be able to fulfill gaps, such as the lack of platform independence, interactivity, and manipulability of 3D images, currently existing in many anatomical computer-aided learning programs.

  18. JavaScript and interactive web pages in radiology.

    PubMed

    Gurney, J W

    2001-10-01

    Web publishing is becoming a more common method of disseminating information. JavaScript is an object-orientated language embedded into modern browsers and has a wide variety of uses. The use of JavaScript in radiology is illustrated by calculating the indices of sensitivity, specificity, and predictive values from a table of true positives, true negatives, false positives, and false negatives. In addition, a single line of JavaScript code can be used to annotate images, which has a wide variety of uses.

  19. Prototyping Faithful Execution in a Java virtual machine.

    SciTech Connect

    Tarman, Thomas David; Campbell, Philip LaRoche; Pierson, Lyndon George

    2003-09-01

    This report presents the implementation of a stateless scheme for Faithful Execution, the design for which is presented in a companion report, ''Principles of Faithful Execution in the Implementation of Trusted Objects'' (SAND 2003-2328). We added a simple cryptographic capability to an already simplified class loader and its associated Java Virtual Machine (JVM) to provide a byte-level implementation of Faithful Execution. The extended class loader and JVM we refer to collectively as the Sandia Faithfully Executing Java architecture (or JavaFE for short). This prototype is intended to enable exploration of more sophisticated techniques which we intend to implement in hardware.

  20. Splign: algorithms for computing spliced alignments with identification of paralogs

    PubMed Central

    Kapustin, Yuri; Souvorov, Alexander; Tatusova, Tatiana; Lipman, David

    2008-01-01

    Background The computation of accurate alignments of cDNA sequences against a genome is at the foundation of modern genome annotation pipelines. Several factors such as presence of paralogs, small exons, non-consensus splice signals, sequencing errors and polymorphic sites pose recognized difficulties to existing spliced alignment algorithms. Results We describe a set of algorithms behind a tool called Splign for computing cDNA-to-Genome alignments. The algorithms include a high-performance preliminary alignment, a compartment identification based on a formally defined model of adjacent duplicated regions, and a refined sequence alignment. In a series of tests, Splign has produced more accurate results than other tools commonly used to compute spliced alignments, in a reasonable amount of time. Conclusion Splign's ability to deal with various issues complicating the spliced alignment problem makes it a helpful tool in eukaryotic genome annotation processes and alternative splicing studies. Its performance is enough to align the largest currently available pools of cDNA data such as the human EST set on a moderate-sized computing cluster in a matter of hours. The duplications identification (compartmentization) algorithm can be used independently in other areas such as the study of pseudogenes. Reviewers This article was reviewed by: Steven Salzberg, Arcady Mushegian and Andrey Mironov (nominated by Mikhail Gelfand). PMID:18495041

  1. Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies.

    PubMed

    Haas, Brian J; Delcher, Arthur L; Mount, Stephen M; Wortman, Jennifer R; Smith, Roger K; Hannick, Linda I; Maiti, Rama; Ronning, Catherine M; Rusch, Douglas B; Town, Christopher D; Salzberg, Steven L; White, Owen

    2003-10-01

    The spliced alignment of expressed sequence data to genomic sequence has proven a key tool in the comprehensive annotation of genes in eukaryotic genomes. A novel algorithm was developed to assemble clusters of overlapping transcript alignments (ESTs and full-length cDNAs) into maximal alignment assemblies, thereby comprehensively incorporating all available transcript data and capturing subtle splicing variations. Complete and partial gene structures identified by this method were used to improve The Institute for Genomic Research Arabidopsis genome annotation (TIGR release v.4.0). The alignment assemblies permitted the automated modeling of several novel genes and >1000 alternative splicing variations as well as updates (including UTR annotations) to nearly half of the approximately 27 000 annotated protein coding genes. The algorithm of the Program to Assemble Spliced Alignments (PASA) tool is described, as well as the results of automated updates to Arabidopsis gene annotations.

  2. Magnetically Aligned Supramolecular Hydrogels

    PubMed Central

    Wallace, Matthew; Cardoso, Andre Zamith; Frith, William J; Iggo, Jonathan A; Adams, Dave J

    2014-01-01

    The magnetic-field-induced alignment of the fibrillar structures present in an aqueous solution of a dipeptide gelator, and the subsequent retention of this alignment upon transformation to a hydrogel upon the addition of CaCl2 or upon a reduction in solution pH is reported. Utilising the switchable nature of the magnetic field coupled with the slow diffusion of CaCl2, it is possible to precisely control the extent of anisotropy across a hydrogel, something that is generally very difficult to do using alternative methods. The approach is readily extended to other compounds that form viscous solutions at high pH. It is expected that this work will greatly expand the utility of such low-molecular-weight gelators (LMWG) in areas where alignment is key. PMID:25345918

  3. Improved docking alignment system

    NASA Technical Reports Server (NTRS)

    Monford, Leo G. (Inventor)

    1988-01-01

    Improved techniques are provided for the alignment of two objects. The present invention is particularly suited for 3-D translation and 3-D rotational alignment of objects in outer space. A camera is affixed to one object, such as a remote manipulator arm of the spacecraft, while the planar reflective surface is affixed to the other object, such as a grapple fixture. A monitor displays in real-time images from the camera such that the monitor displays both the reflected image of the camera and visible marking on the planar reflective surface when the objects are in proper alignment. The monitor may thus be viewed by the operator and the arm manipulated so that the reflective surface is perpendicular to the optical axis of the camera, the roll of the reflective surface is at a selected angle with respect to the camera, and the camera is spaced a pre-selected distance from the reflective surface.

  4. JavaProtein Dossier: a novel web-based data visualization tool for comprehensive analysis of protein structure

    PubMed Central

    Neshich, Goran; Rocchia, Walter; Mancini, Adauto L.; Yamagishi, Michel E. B.; Kuser, Paula R.; Fileto, Renato; Baudet, Christian; Pinto, Ivan P.; Montagner, Arnaldo J.; Palandrani, Juliana F.; Krauchenco, Joao N.; Torres, Renato C.; Souza, Savio; Togawa, Roberto C.; Higa, Roberto H.

    2004-01-01

    JavaProtein Dossier (JPD) is a new concept, database and visualization tool providing one of the largest collections of the physicochemical parameters describing proteins' structure, stability, function and interaction with other macromolecules. By collecting as many descriptors/parameters as possible within a single database, we can achieve a better use of the available data and information. Furthermore, data grouping allows us to generate different parameters with the potential to provide new insights into the sequence–structure–function relationship. In JPD, residue selection can be performed according to multiple criteria. JPD can simultaneously display and analyze all the physicochemical parameters of any pair of structures, using precalculated structural alignments, allowing direct parameter comparison at corresponding amino acid positions among homologous structures. In order to focus on the physicochemical (and consequently pharmacological) profile of proteins, visualization tools (showing the structure and structural parameters) also had to be optimized. Our response to this challenge was the use of Java technology with its exceptional level of interactivity. JPD is freely accessible (within the Gold Sting Suite) at http://sms.cbi.cnptia.embrapa.br, http://mirrors.rcsb.org/SMS, http://trantor.bioc.columbia.edu/SMS and http://www.es.embnet.org/SMS/ (Option: JavaProtein Dossier). PMID:15215458

  5. MUSE optical alignment procedure

    NASA Astrophysics Data System (ADS)

    Laurent, Florence; Renault, Edgard; Loupias, Magali; Kosmalski, Johan; Anwand, Heiko; Bacon, Roland; Boudon, Didier; Caillier, Patrick; Daguisé, Eric; Dubois, Jean-Pierre; Dupuy, Christophe; Kelz, Andreas; Lizon, Jean-Louis; Nicklas, Harald; Parès, Laurent; Remillieux, Alban; Seifert, Walter; Valentin, Hervé; Xu, Wenli

    2012-09-01

    MUSE (Multi Unit Spectroscopic Explorer) is a second generation VLT integral field spectrograph (1x1arcmin² Field of View) developed for the European Southern Observatory (ESO), operating in the visible wavelength range (0.465-0.93 μm). A consortium of seven institutes is currently assembling and testing MUSE in the Integration Hall of the Observatoire de Lyon for the Preliminary Acceptance in Europe, scheduled for 2013. MUSE is composed of several subsystems which are under the responsibility of each institute. The Fore Optics derotates and anamorphoses the image at the focal plane. A Splitting and Relay Optics feed the 24 identical Integral Field Units (IFU), that are mounted within a large monolithic instrument mechanical structure. Each IFU incorporates an image slicer, a fully refractive spectrograph with VPH-grating and a detector system connected to a global vacuum and cryogenic system. During 2011, all MUSE subsystems were integrated, aligned and tested independently in each institute. After validations, the systems were shipped to the P.I. institute at Lyon and were assembled in the Integration Hall This paper describes the end-to-end optical alignment procedure of the MUSE instrument. The design strategy, mixing an optical alignment by manufacturing (plug and play approach) and few adjustments on key components, is presented. We depict the alignment method for identifying the optical axis using several references located in pupil and image planes. All tools required to perform the global alignment between each subsystem are described. The success of this alignment approach is demonstrated by the good results for the MUSE image quality. MUSE commissioning at the VLT (Very Large Telescope) is planned for 2013.

  6. BBMap: A Fast, Accurate, Splice-Aware Aligner

    SciTech Connect

    Bushnell, Brian

    2014-03-17

    Alignment of reads is one of the primary computational tasks in bioinformatics. Of paramount importance to resequencing, alignment is also crucial to other areas - quality control, scaffolding, string-graph assembly, homology detection, assembly evaluation, error-correction, expression quantification, and even as a tool to evaluate other tools. An optimal aligner would greatly improve virtually any sequencing process, but optimal alignment is prohibitively expensive for gigabases of data. Here, we will present BBMap [1], a fast splice-aware aligner for short and long reads. We will demonstrate that BBMap has superior speed, sensitivity, and specificity to alternative high-throughput aligners bowtie2 [2], bwa [3], smalt, [4] GSNAP [5], and BLASR [6].

  7. Inexact Local Alignment Search over Suffix Arrays.

    PubMed

    Ghodsi, Mohammadreza; Pop, Mihai

    2009-11-01

    We describe an algorithm for finding approximate seeds for DNA homology searches. In contrast to previous algorithms that use exact or spaced seeds, our approximate seeds may contain insertions and deletions. We present a generalized heuristic for finding such seeds efficiently and prove that the heuristic does not affect sensitivity. We show how to adapt this algorithm to work over the memory efficient suffix array with provably minimal overhead in running time.We demonstrate the effectiveness of our algorithm on two tasks: whole genome alignment of bacteria and alignment of the DNA sequences of 177 genes that are orthologous in human and mouse. We show our algorithm achieves better sensitivity and uses less memory than other commonly used local alignment tools.

  8. PILOT optical alignment

    NASA Astrophysics Data System (ADS)

    Longval, Y.; Mot, B.; Ade, P.; André, Y.; Aumont, J.; Baustista, L.; Bernard, J.-Ph.; Bray, N.; de Bernardis, P.; Boulade, O.; Bousquet, F.; Bouzit, M.; Buttice, V.; Caillat, A.; Charra, M.; Chaigneau, M.; Crane, B.; Crussaire, J.-P.; Douchin, F.; Doumayrou, E.; Dubois, J.-P.; Engel, C.; Etcheto, P.; Gélot, P.; Griffin, M.; Foenard, G.; Grabarnik, S.; Hargrave, P..; Hughes, A.; Laureijs, R.; Lepennec, Y.; Leriche, B.; Maestre, S.; Maffei, B.; Martignac, J.; Marty, C.; Marty, W.; Masi, S.; Mirc, F.; Misawa, R.; Montel, J.; Montier, L.; Narbonne, J.; Nicot, J.-M.; Pajot, F.; Parot, G.; Pérot, E.; Pimentao, J.; Pisano, G.; Ponthieu, N.; Ristorcelli, I.; Rodriguez, L.; Roudil, G.; Salatino, M.; Savini, G.; Simonella, O.; Saccoccio, M.; Tapie, P.; Tauber, J.; Torre, J.-P.; Tucker, C.

    2016-07-01

    PILOT is a balloon-borne astronomy experiment designed to study the polarization of dust emission in the diffuse interstellar medium in our Galaxy at wavelengths 240 μm with an angular resolution about two arcminutes. Pilot optics is composed an off-axis Gregorian type telescope and a refractive re-imager system. All optical elements, except the primary mirror, are in a cryostat cooled to 3K. We combined the optical, 3D dimensional measurement methods and thermo-elastic modeling to perform the optical alignment. The talk describes the system analysis, the alignment procedure, and finally the performances obtained during the first flight in September 2015.

  9. The 17 July 2006 Tsunami earthquake in West Java, Indonesia

    USGS Publications Warehouse

    Mori, J.; Mooney, W.D.; Afnimar,; Kurniawan, S.; Anaya, A.I.; Widiyantoro, S.

    2007-01-01

    A tsunami earthquake (Mw = 7.7) occurred south of Java on 17 July 2006. The event produced relatively low levels of high-frequency radiation, and local felt reports indicated only weak shaking in Java. There was no ground motion damage from the earthquake, but there was extensive damage and loss of life from the tsunami along 250 km of the southern coasts of West Java and Central Java. An inspection of the area a few days after the earthquake showed extensive damage to wooden and unreinforced masonry buildings that were located within several hundred meters of the coast. Since there was no tsunami warning system in place, efforts to escape the large waves depended on how people reacted to the earthquake shaking, which was only weakly felt in the coastal areas. This experience emphasizes the need for adequate tsunami warning systems for the Indian Ocean region.

  10. The CERN PS/SL Controls Java Application Programming Interface

    SciTech Connect

    I. Deloose; J. Cuperus; P. Charrue; F. DiMaio; K. Kostro; M. Vanden Eynden; W. Watson

    1999-10-01

    The PS/SL Convergence Project was launched in March 1998. Its objective is to deliver a common control as infrastructure for the CERN accelerators by year 2001. In the framework of this convergence activity, a project was launched to develop a Java Application Programming Interface (API) between programs written in the Java language and the PS and SL accelerator equipment. This Java API was specified and developed in collaboration with TJNAF. It is based on the Java CDEV [1] package that has been extended in order to end up with a CERN/TJNAF common product. It implements a detailed model composed of devices organized in named classes that provide a property-based interface. It supports data subscription and introspection facilities. The device model is presented and the capabilities of the API are described with syntax examples. The software architecture is also described.

  11. Subduction of seamounts at the Java Trench: a view with long-range sidescan sonar

    NASA Astrophysics Data System (ADS)

    Masson, D. G.; Parson, L. M.; Milsom, J.; Nichols, G.; Sikumbang, N.; Dwiyanto, B.; Kallagher, H.

    1990-12-01

    We describe here a 1300 km by 45 km GLORIA long-range sidescan sonar swath along the eastern Java Trench. The swath images the trench axis, a narrow strip of oceanic crust to the south, and the toe of the accretionary wedge to the north, between 108° and 120° E. Sonar images of the ocean crust show a pattern of normal faults typical of the outer wall of trenches. These result from tension related to the bending of the oceanic lithosphere into the subduction zone. A number of sub-circular seamounts are also seen, some of which are currently being subducted. Isolated "ponds" of flat-lying sediments occur in the trench axis, although along much of its length the trench is devoid of such sediment accumulations. On the inner trench wall, the accretionary wedge is recognised by its distinctive "grainy" texture, with the grain aligned sub-parallel to the deformation front. Where subducting seamounts are colliding with the wedge, large crescentic areas of very high backscattering correlate with re-entrants in the deformation front and large indentations in the wedge. The high backscattering within these collision scars is interpreted to arise from outcropping strata and talus covered slopes, resulting from erosion of an inner trench wall shortened and oversteepened by collision with a seamount. All of the sediment ponds in the trench axis occur in close association with collision scars, strongly suggesting localised erosion of the accretionary wedge in the scar areas. However, the volume of the indentations appears to be an order of magnitude greater than the volume of eroded sediments deposited in the trench, indicating that erosion cannot be the primary mechanism by which indentations are created. Most of the "missing" material must be displaced landward by thrusting and folding ahead of the seamount. Our observations at the Java Trench are broadly comparable with those made at the Japan Trench by French and Japanese workers. However, some differences in the detail of

  12. HIV sequence compendium 2002

    SciTech Connect

    Kuiken, Carla; Foley, Brian; Freed, Eric; Hahn, Beatrice; Marx, Preston; McCutchan, Francine; Mellors, John; Wolinsky, Steven; Korber, Bette

    2002-12-31

    This compendium is an annual printed summary of the data contained in the HIV sequence database. In these compendia we try to present a judicious selection of the data in such a way that it is of maximum utility to HIV researchers. Traditionally, we present the sequence data themselves in the form of alignments: Section II, an alignment of a selection of HIV-1/SIVcpz full-length genomes (a lot of LAI-like sequences, for example, have been omitted because they are so similar that they bias the alignment); Section III, a combined HIV-1/HIV-2/SIV whole genome alignment; Sections IV–VI, amino acid alignments for HIV-1/SIV-cpz, HIV-2/SIV, and SIVagm. The HIV-2/SIV and SIVagm amino acid alignments are separate because the genetic distances between these groups are so great that presenting them in one alignment would make it very elongated because of the large number of gaps that have to be inserted. As always, tables with extensive background information gathered from the literature accompany the whole genome alignments. The collection of whole-gene sequences in the database is now large enough that we have abundant representation of most subtypes. For many subtypes, and especially for subtype B, a large number of sequences that span entire genes were not included in the printed alignments to conserve space. A more complete version of all alignments is available on our website, http://hiv-web.lanl.gov/content/hiv-db/ALIGN_CURRENT/ALIGN-INDEX.html. Importantly, all these alignments have been edited to include only one sequence per person, based on phylogenetic trees that were created for all of them, as well as on the literature. Because of the number of sequences available, we have decided to use a different selection principle this year, based on the epidemiological importance of the subtypes. Subtypes A–D and CRFs 01 and 02 are by far the most widespread variants, and for these (when available) we have included 8–10 representatives in the alignments. The other

  13. Java Performance for Scientific Applications on LLNL Computer Systems

    SciTech Connect

    Kapfer, C; Wissink, A

    2002-05-10

    Languages in use for high performance computing at the laboratory--Fortran (f77 and f90), C, and C++--have many years of development behind them and are generally considered the fastest available. However, Fortran and C do not readily extend to object-oriented programming models, limiting their capability for very complex simulation software. C++ facilitates object-oriented programming but is a very complex and error-prone language. Java offers a number of capabilities that these other languages do not. For instance it implements cleaner (i.e., easier to use and less prone to errors) object-oriented models than C++. It also offers networking and security as part of the language standard, and cross-platform executables that make it architecture neutral, to name a few. These features have made Java very popular for industrial computing applications. The aim of this paper is to explain the trade-offs in using Java for large-scale scientific applications at LLNL. Despite its advantages, the computational science community has been reluctant to write large-scale computationally intensive applications in Java due to concerns over its poor performance. However, considerable progress has been made over the last several years. The Java Grande Forum [1] has been promoting the use of Java for large-scale computing. Members have introduced efficient array libraries, developed fast just-in-time (JIT) compilers, and built links to existing packages used in high performance parallel computing.

  14. Real-time Java for on-board systems

    NASA Astrophysics Data System (ADS)

    Cechticky, V.; Pasetti, A.

    2002-07-01

    The Java language has several attractive features but cannot at present be used in on-board systems primarily because it lacks support for hard real-time operation. This shortcoming is in being addressed: some suppliers are already providing implementations of Java that are RT-compliant; Sun Microsystem has approved a formal specification for a real-time extension of the language; and an independent consortium is working on an alternative specification for real-time Java. It is therefore expected that, within a year or so, standardized commercial implementations of real-time Java will be on the market. Availability of real-time implementations now opens the way to its use on-board. Within this context, this paper has two objectives. Firstly, it discusses the suitability of Java for on-board applications. Secondly, it reports the results of an ESA study to port a software framework for on-board control systems to a commercial real-time version of Java.

  15. jFuzz: A Concolic Whitebox Fuzzer for Java

    NASA Technical Reports Server (NTRS)

    Jayaraman, Karthick; Harvison, David; Ganesh, Vijay; Kiezun, Adam

    2009-01-01

    We present jFuzz, a automatic testing tool for Java programs. jFuzz is a concolic whitebox fuzzer, built on the NASA Java PathFinder, an explicit-state Java model checker, and a framework for developing reliability and analysis tools for Java. Starting from a seed input, jFuzz automatically and systematically generates inputs that exercise new program paths. jFuzz uses a combination of concrete and symbolic execution, and constraint solving. Time spent on solving constraints can be significant. We implemented several well-known optimizations and name-independent caching, which aggressively normalizes the constraints to reduce the number of calls to the constraint solver. We present preliminary results due to the optimizations, and demonstrate the effectiveness of jFuzz in creating good test inputs. The source code of jFuzz is available as part of the NASA Java PathFinder. jFuzz is intended to be a research testbed for investigating new testing and analysis techniques based on concrete and symbolic execution. The source code of jFuzz is available as part of the NASA Java PathFinder.

  16. A JAVA User Interface for the Virtual Human

    SciTech Connect

    Easterly, C E; Strickler, D J; Tolliver, J S; Ward, R C

    1999-10-13

    A human simulation environment, the Virtual Human (VH), is under development at the Oak Ridge National Laboratory (ORNL). Virtual Human connects three-dimensional (3D) anatomical models of the body with dynamic physiological models to investigate a wide range of human biological and physical responses to stimuli. We have utilized the Java programming language to develop a flexible user interface to the VH. The Java prototype interface has been designed to display dynamic results from selected physiological models, with user control of the initial model parameters and ability to steer the simulation as it is proceeding. Taking advantage of Java's Remote Method Invocation (RMI) features, the interface runs as a Java client that connects to a Java RMI server process running on a remote server machine. The RMI server can couple to physiological models written in Java, or in other programming languages, including C and FORTRAN. Future versions of the interface will be linked to 3D anatomical models of the human body to complete the development of the VH.

  17. Leveraging FPGAs for Accelerating Short Read Alignment.

    PubMed

    Arram, James; Kaplan, Thomas; Luk, Wayne; Jiang, Peiyong

    2016-02-29

    One of the key challenges facing genomics today is how to efficiently analyse the massive amounts of data produced by next-generation sequencing platforms. With general-purpose computing systems struggling to address this challenge, specialised processors such as the Field-Programmable Gate Array (FPGA) are receiving growing interest. The means by which to leverage this technology for accelerating genomic data analysis is however largely unexplored. In this paper we present a runtime reconfigurable architecture for accelerating short read alignment using FPGAs. This architecture exploits the reconfigurability of FPGAs to allow the development of fast yet flexible alignment designs. We apply this architecture to develop an alignment design which supports exact and approximate alignment with up to 2 mismatches. Our design is based on the FM-index, with optimisations to improve the alignment performance. In particular, the n-step FM-index, index oversampling, a seedand- compare stage, and bi-directional backtracking are included. Our design is implemented and evaluated on a 1U Maxeler MPC-X2000 dataflow node with 8 Altera Stratix-V FPGAs. Measurements show that our design is 28 times faster than Bowtie2 running with 16 threads on dual Intel Xeon E5-2640 CPUs, and 9 times faster than Soap3-dp running on an NVIDIA Tesla C2070 GPU.

  18. Aligned-or Not?

    ERIC Educational Resources Information Center

    Roseman, Jo Ellen; Koppal, Mary

    2015-01-01

    When state leaders and national partners in the development of the Next Generation Science Standards met to consider implementation strategies, states and school districts wanted to know which materials were aligned to the new standards. The answer from the developers was short but not sweet: You won't find much now, and it's going to…

  19. Optically Aligned Drill Press

    NASA Technical Reports Server (NTRS)

    Adderholdt, Bruce M.

    1994-01-01

    Precise drill press equipped with rotary-indexing microscope. Microscope and drill exchange places when turret rotated. Microscope axis first aligned over future hole, then rotated out of way so drill axis assumes its precise position. New procedure takes less time to locate drilling positions and produces more accurate results. Apparatus adapted to such other machine tools as milling and measuring machines.

  20. Curriculum Alignment: Establishing Coherence

    ERIC Educational Resources Information Center

    Gagné, Philippe; Dumont, Laurence; Brunet, Sabine; Boucher, Geneviève

    2013-01-01

    In this paper, we present a step-by-step guide to implement a curricular alignment project, directed at professional development and student support, and developed in a higher education French as a second language department. We outline best practices and preliminary results from our experience and provide ways to adapt our experience to other…

  1. Sedimentary deposits study of the 2006 Java tsunami, in Pangandaran, West Java (preliminary result)

    SciTech Connect

    Maemunah, Imun; Suparka, Emmy Puspito, Nanang T; Hidayati, Sri

    2015-04-24

    The 2006 Java Earthquake (Mw 7.2) has generated a tsunami that reached Pangandaran coastal plain with 9.7 m above sea level height of wave. In 2014 we examined the tsunami deposit exposed in shallow trenches along a∼300 m at 5 transect from shoreline to inland on Karapyak and Madasari, Pangandaran. We documented stratigraphically and sedimentologically, the characteristics of Java Tsunami deposit on Karapyak and Madasari and compared both sediments. In local farmland a moderately-sorted, brown soil is buried by a poorly-sorted, grey, medium-grained sand-sheet. The tsunami deposit was distinguished from the underlying soil by a pronounced increase in grain size that becomes finner upwards and landwards. Decreasing concentration of coarse size particles with distance toward inland are in agreement with grain size analysis. The thickest tsunami deposit is about 25 cm found at 84 m from shoreline in Madasari and about 15 cm found at 80 m from shoreline in Karapyak. The thickness of tsunami deposits in some transect become thinner landward but in some other transect lack a consistent suggested strongly affected by local topography. Tsunami deposits at Karapyak and Madasari show many similarities. Both deposits consist of coarse sand that sharply overlies a finer sandy soil. The presence mud drapes and other sedimentary structure like graded bedding, massive beds, mud clasts in many locations shows a dynamics process of tsunami waves. The imbrication coarse and shell fragments of the 2006 Java, tsunami deposits also provide information about the curent direction, allowing us to distinguish run up deposits from backwash deposits.

  2. HIV Sequence Compendium 2010

    SciTech Connect

    Kuiken, Carla; Foley, Brian; Leitner, Thomas; Apetrei, Christian; Hahn, Beatrice; Mizrachi, Ilene; Mullins, James; Rambaut, Andrew; Wolinsky, Steven; Korber, Bette

    2010-12-31

    This compendium is an annual printed summary of the data contained in the HIV sequence database. In these compendia we try to present a judicious selection of the data in such a way that it is of maximum utility to HIV researchers. Each of the alignments attempts to display the genetic variability within the different species, groups and subtypes of the virus. This compendium contains sequences published before January 1, 2010. Hence, though it is called the 2010 Compendium, its contents correspond to the 2009 curated alignments on our website. The number of sequences in the HIV database is still increasing exponentially. In total, at the time of printing, there were 339,306 sequences in the HIV Sequence Database, an increase of 45% since last year. The number of near complete genomes (>7000 nucleotides) increased to 2576 by end of 2009, reflecting a smaller increase than in previous years. However, as in previous years, the compendium alignments contain only a small fraction of these. Included in the alignments are a small number of sequences representing each of the subtypes and the more prevalent circulating recombinant forms (CRFs) such as 01 and 02, as well as a few outgroup sequences (group O and N and SIV-CPZ). Of the rarer CRFs we included one representative each. A more complete version of all alignments is available on our website, http://www.hiv.lanl.gov/content/sequence/NEWALIGN/align.html. Reprints are available from our website in the form of both HTML and PDF files. As always, we are open to complaints and suggestions for improvement. Inquiries and comments regarding the compendium should be addressed to seq-info@lanl.gov.

  3. Jeagle: a JAVA Runtime Verification Tool

    NASA Technical Reports Server (NTRS)

    DAmorim, Marcelo; Havelund, Klaus

    2005-01-01

    We introduce the temporal logic Jeagle and its supporting tool for runtime verification of Java programs. A monitor for an Jeagle formula checks if a finite trace of program events satisfies the formula. Jeagle is a programming oriented extension of the rule-based powerful Eagle logic that has been shown to be capable of defining and implementing a range of finite trace monitoring logics, including future and past time temporal logic, real-time and metric temporal logics, interval logics, forms of quantified temporal logics, and so on. Monitoring is achieved on a state-by-state basis avoiding any need to store the input trace. Jeagle extends Eagle with constructs for capturing parameterized program events such as method calls and method returns. Parameters can be the objects that methods are called upon, arguments to methods, and return values. Jeagle allows one to refer to these in formulas. The tool performs automated program instrumentation using AspectJ. We show the transformational semantics of Jeagle.

  4. Org.Lcsim: Event Reconstruction in Java

    SciTech Connect

    Graf, Norman A.; /SLAC

    2012-04-19

    Maximizing the physics performance of detectors being designed for the International Linear Collider, while remaining sensitive to cost constraints, requires a powerful, efficient, and flexible simulation, reconstruction and analysis environment to study the capabilities of a large number of different detector designs. The preparation of Letters Of Intent for the International Linear Collider involved the detailed study of dozens of detector options, layouts and readout technologies; the final physics benchmarking studies required the reconstruction and analysis of hundreds of millions of events. We describe the Java-based software toolkit (org.lcsim) which was used for full event reconstruction and analysis. The components are fully modular and are available for tasks from digitization of tracking detector signals through to cluster finding, pattern recognition, track-fitting, calorimeter clustering, individual particle reconstruction, jet-finding, and analysis. The detector is defined by the same xml input files used for the detector response simulation, ensuring the simulation and reconstruction geometries are always commensurate by construction. We discuss the architecture as well as the performance.

  5. Molecular characterization and phylogenetic analysis of Fasciola gigantica from western Java, Indonesia.

    PubMed

    Hayashi, Kei; Ichikawa-Seki, Madoka; Allamanda, Puttik; Wibowo, Putut Eko; Mohanta, Uday Kumar; Sodirun; Guswanto, Azirwan; Nishikawa, Yoshifumi

    2016-10-01

    Fasciola gigantica and aspermic (hybrid) Fasciola flukes are thought to be distributed in Southeast Asian countries. The objectives of this study were to investigate the distribution of these flukes from unidentified ruminants in western Java, Indonesia, and to determine their distribution history into the area. Sixty Fasciola flukes from western Java were identified as F. gigantica based on the nucleotide sequences of the nuclear phosphoenolpyruvate carboxykinase (pepck) and DNA polymerase delta (pold) genes. The flukes were then analyzed phylogenetically based on the nucleotide sequence of the mitochondrial NADH dehydrogenase subunit 1 (nad1) gene, together with Fasciola flukes from other Asian countries. All but one F. gigantica fluke were classified in F. gigantica haplogroup C, which mainly contains nad1 haplotypes detected in flukes from Thailand, Vietnam, and China. A population genetic analysis suggested that haplogroup C spread from Thailand to the neighboring countries including Indonesia together with domestic ruminants, such as the swamp buffalo, Bubalus bubalis. The swamp buffalo is one of the important definitive hosts of Fasciola flukes in Indonesia, and is considered to have been domesticated in the north of Thailand. The remaining one fluke displayed a novel nad1 haplotype that has never been detected in the reference countries. Therefore, the origin of the fluke could not be established. No hybrid Fasciola flukes were detected in this study, in contrast to neighboring Asian countries.

  6. MUSE alignment onto VLT

    NASA Astrophysics Data System (ADS)

    Laurent, Florence; Renault, Edgard; Boudon, Didier; Caillier, Patrick; Daguisé, Eric; Dupuy, Christophe; Jarno, Aurélien; Lizon, Jean-Louis; Migniau, Jean-Emmanuel; Nicklas, Harald; Piqueras, Laure

    2014-07-01

    MUSE (Multi Unit Spectroscopic Explorer) is a second generation Very Large Telescope (VLT) integral field spectrograph developed for the European Southern Observatory (ESO). It combines a 1' x 1' field of view sampled at 0.2 arcsec for its Wide Field Mode (WFM) and a 7.5"x7.5" field of view for its Narrow Field Mode (NFM). Both modes will operate with the improved spatial resolution provided by GALACSI (Ground Atmospheric Layer Adaptive Optics for Spectroscopic Imaging), that will use the VLT deformable secondary mirror and 4 Laser Guide Stars (LGS) foreseen in 2015. MUSE operates in the visible wavelength range (0.465-0.93 μm). A consortium of seven institutes is currently commissioning MUSE in the Very Large Telescope for the Preliminary Acceptance in Chile, scheduled for September, 2014. MUSE is composed of several subsystems which are under the responsibility of each institute. The Fore Optics derotates and anamorphoses the image at the focal plane. A Splitting and Relay Optics feed the 24 identical Integral Field Units (IFU), that are mounted within a large monolithic structure. Each IFU incorporates an image slicer, a fully refractive spectrograph with VPH-grating and a detector system connected to a global vacuum and cryogenic system. During 2012 and 2013, all MUSE subsystems were integrated, aligned and tested to the P.I. institute at Lyon. After successful PAE in September 2013, MUSE instrument was shipped to the Very Large Telescope in Chile where that was aligned and tested in ESO integration hall at Paranal. After, MUSE was directly transported, fully aligned and without any optomechanical dismounting, onto VLT telescope where the first light was overcame the 7th of February, 2014. This paper describes the alignment procedure of the whole MUSE instrument with respect to the Very Large Telescope (VLT). It describes how 6 tons could be move with accuracy better than 0.025mm and less than 0.25 arcmin in order to reach alignment requirements. The success

  7. Building interactive virtual environments for simulated training in medicine using VRML and Java/JavaScript.

    PubMed

    Korocsec, D; Holobar, A; Divjak, M; Zazula, D

    2005-12-01

    Medicine is a difficult thing to learn. Experimenting with real patients should not be the only option; simulation deserves a special attention here. Virtual Reality Modelling Language (VRML) as a tool for building virtual objects and scenes has a good record of educational applications in medicine, especially for static and animated visualisations of body parts and organs. However, to create computer simulations resembling situations in real environments the required level of interactivity and dynamics is difficult to achieve. In the present paper we describe some approaches and techniques which we used to push the limits of the current VRML technology further toward dynamic 3D representation of virtual environments (VEs). Our demonstration is based on the implementation of a virtual baby model, whose vital signs can be controlled from an external Java application. The main contributions of this work are: (a) outline and evaluation of the three-level VRML/Java implementation of the dynamic virtual environment, (b) proposal for a modified VRML Timesensor node, which greatly improves the overall control of system performance, and (c) architecture of the prototype distributed virtual environment for training in neonatal resuscitation comprising the interactive virtual newborn, active bedside monitor for vital signs and full 3D representation of the surgery room.

  8. Aligning genomes with inversions and swaps

    SciTech Connect

    Holloway, J.L.; Cull, P.

    1994-12-31

    The decision about what operators to allow and how to charge for these operations when aligning strings that arise in a biological context is the decision about what model of evolution to assume. Frequently the operators used to construct an alignment between biological sequences axe limited to deletion, insertion, or replacement of a character or block of characters, but there is biological evidence for the evolutionary operations of exchanging the positions of two segments in a sequence and the replacement of a segment by its reversed complement. In this paper we describe a family of heuristics designed to compute alignments of biological sequences assuming a model of evolution with swaps and inversions. The heuristics will necessarily be approximate since the appropriate way to charge for the evolutionary events (delete, insert, substitute, swap, and invert) is not known. The paper concludes with a pair-wise comparison of 20 Picornavirus genomes, and a detailed comparison of the hepatitis delta virus with the citrus exocortis viroid.

  9. Inflation by alignment

    SciTech Connect

    Burgess, C.P.; Roest, Diederik

    2015-06-08

    Pseudo-Goldstone bosons (pGBs) can provide technically natural inflatons, as has been comparatively well-explored in the simplest axion examples. Although inflationary success requires trans-Planckian decay constants, f≳M{sub p}, several mechanisms have been proposed to obtain this, relying on (mis-)alignments between potential and kinetic energies in multiple-field models. We extend these mechanisms to a broader class of inflationary models, including in particular the exponential potentials that arise for pGB potentials based on noncompact groups (and so which might apply to moduli in an extra-dimensional setting). The resulting potentials provide natural large-field inflationary models and can predict a larger primordial tensor signal than is true for simpler single-field versions of these models. In so doing we provide a unified treatment of several alignment mechanisms, showing how each emerges as a limit of the more general setup.

  10. Establishing a framework for comparative analysis of genome sequences

    SciTech Connect

    Bansal, A.K.

    1995-06-01

    This paper describes a framework and a high-level language toolkit for comparative analysis of genome sequence alignment The framework integrates the information derived from multiple sequence alignment and phylogenetic tree (hypothetical tree of evolution) to derive new properties about sequences. Multiple sequence alignments are treated as an abstract data type. Abstract operations have been described to manipulate a multiple sequence alignment and to derive mutation related information from a phylogenetic tree by superimposing parsimonious analysis. The framework has been applied on protein alignments to derive constrained columns (in a multiple sequence alignment) that exhibit evolutionary pressure to preserve a common property in a column despite mutation. A Prolog toolkit based on the framework has been implemented and demonstrated on alignments containing 3000 sequences and 3904 columns.

  11. Automatic Word Alignment

    DTIC Science & Technology

    2014-02-18

    strategy was evalu­ ated in the context of English -to-Pashto (E2P) and Pashto-to- English (P2E), a low-resource language pair. For E2P, the training and...improves the quality of automatic word alignment, for example for resource poor language pairs, thus improving Statistical Machine Translation (SMT...example for resource poor language pairs, thus improving Statistical Machine Translation (SMT) performance. 15. SUBJECT TERMS 16. SECURITY

  12. Orbit IMU alignment: Error analysis

    NASA Technical Reports Server (NTRS)

    Corson, R. W.

    1980-01-01

    A comprehensive accuracy analysis of orbit inertial measurement unit (IMU) alignments using the shuttle star trackers was completed and the results are presented. Monte Carlo techniques were used in a computer simulation of the IMU alignment hardware and software systems to: (1) determine the expected Space Transportation System 1 Flight (STS-1) manual mode IMU alignment accuracy; (2) investigate the accuracy of alignments in later shuttle flights when the automatic mode of star acquisition may be used; and (3) verify that an analytical model previously used for estimating the alignment error is a valid model. The analysis results do not differ significantly from expectations. The standard deviation in the IMU alignment error for STS-1 alignments was determined to the 68 arc seconds per axis. This corresponds to a 99.7% probability that the magnitude of the total alignment error is less than 258 arc seconds.

  13. Nuclear reactor alignment plate configuration

    SciTech Connect

    Altman, David A; Forsyth, David R; Smith, Richard E; Singleton, Norman R

    2014-01-28

    An alignment plate that is attached to a core barrel of a pressurized water reactor and fits within slots within a top plate of a lower core shroud and upper core plate to maintain lateral alignment of the reactor internals. The alignment plate is connected to the core barrel through two vertically-spaced dowel pins that extend from the outside surface of the core barrel through a reinforcement pad and into corresponding holes in the alignment plate. Additionally, threaded fasteners are inserted around the perimeter of the reinforcement pad and into the alignment plate to further secure the alignment plate to the core barrel. A fillet weld also is deposited around the perimeter of the reinforcement pad. To accomodate thermal growth between the alignment plate and the core barrel, a gap is left above, below and at both sides of one of the dowel pins in the alignment plate holes through with the dowel pins pass.

  14. Dynamic Alignment at SLS

    SciTech Connect

    Ruland, Robert E.

    2003-04-23

    The relative alignment of components in the storage ring of the Swiss Light Source (SLS) is guaranteed by mechanical means. The magnets are rigidly fixed to 48 girders by means of alignment rails with tolerances of less than {+-}15 {micro}m. The bending magnets, supported by 3 point ball bearings, overlap adjacent girders and thus establish virtual train links between the girders, located near the bending magnet centres. Keeping the distortion of the storage ring geometry within a tolerance of {+-}100 {micro}m in order to guarantee sufficient dynamic apertures, requires continuous monitoring and correction of the girder locations. Two monitoring systems for the horizontal and the vertical direction will be installed to measure displacements of the train link between girders, which are due to ground settings and temperature effects: The hydrostatic levelling system (HLS) gives an absolute vertical reference, while the horizontal positioning system (HPS), which employs low cost linear encoders with sub-micron resolution, measures relative horizontal movements. The girder mover system based on five DC motors per girder allows a dynamic realignment of the storage ring within a working window of more than {+-}1 mm for girder translations and {+-}1 mrad for rotations. We will describe both monitoring systems (HLS and HPS) as well as the applied correction scheme based on the girder movers. We also show simulations indicating that beam based girder alignment takes care of most of the static closed orbit correction.

  15. webPRC: the Profile Comparer for alignment-based searching of public domain databases.

    PubMed

    Brandt, Bernd W; Heringa, Jaap

    2009-07-01

    Profile-profile methods are well suited to detect remote evolutionary relationships between protein families. Profile Comparer (PRC) is an existing stand-alone program for scoring and aligning hidden Markov models (HMMs), which are based on multiple sequence alignments. Since PRC compares profile HMMs instead of sequences, it can be used to find distant homologues. For this purpose, PRC is used by, for example, the CATH and Pfam-domain databases. As PRC is a profile comparer, it only reports profile HMM alignments and does not produce multiple sequence alignments. We have developed webPRC server, which makes it straightforward to search for distant homologues or similar alignments in a number of domain databases. In addition, it provides the results both as multiple sequence alignments and aligned HMMs. Furthermore, the user can view the domain annotation, evaluate the PRC hits with the Jalview multiple alignment editor and generate logos from the aligned HMMs or the aligned multiple alignments. Thus, this server assists in detecting distant homologues with PRC as well as in evaluating and using the results. The webPRC interface is available at http://www.ibi.vu.nl/programs/prcwww/.

  16. Automated whole-genome multiple alignment of rat, mouse, and human

    SciTech Connect

    Brudno, Michael; Poliakov, Alexander; Salamov, Asaf; Cooper, Gregory M.; Sidow, Arend; Rubin, Edward M.; Solovyev, Victor; Batzoglou, Serafim; Dubchak, Inna

    2004-07-04

    We have built a whole genome multiple alignment of the three currently available mammalian genomes using a fully automated pipeline which combines the local/global approach of the Berkeley Genome Pipeline and the LAGAN program. The strategy is based on progressive alignment, and consists of two main steps: (1) alignment of the mouse and rat genomes; and (2) alignment of human to either the mouse-rat alignments from step 1, or the remaining unaligned mouse and rat sequences. The resulting alignments demonstrate high sensitivity, with 87% of all human gene-coding areas aligned in both mouse and rat. The specificity is also high: <7% of the rat contigs are aligned to multiple places in human and 97% of all alignments with human sequence > 100kb agree with a three-way synteny map built independently using predicted exons in the three genomes. At the nucleotide level <1% of the rat nucleotides are mapped to multiple places in the human sequence in the alignment; and 96.5% of human nucleotides within all alignments agree with the synteny map. The alignments are publicly available online, with visualization through the novel Multi-VISTA browser that we also present.

  17. Method for alignment of microwires

    DOEpatents

    Beardslee, Joseph A.; Lewis, Nathan S.; Sadtler, Bryce

    2017-01-24

    A method of aligning microwires includes modifying the microwires so they are more responsive to a magnetic field. The method also includes using a magnetic field so as to magnetically align the microwires. The method can further include capturing the microwires in a solid support structure that retains the longitudinal alignment of the microwires when the magnetic field is not applied to the microwires.

  18. Alignment as a Teacher Variable

    ERIC Educational Resources Information Center

    Porter, Andrew C.; Smithson, John; Blank, Rolf; Zeidner, Timothy

    2007-01-01

    With the exception of the procedures developed by Porter and colleagues (Porter, 2002), other methods of defining and measuring alignment are essentially limited to alignment between tests and standards. Porter's procedures have been generalized to investigating the alignment between content standards, tests, textbooks, and even classroom…

  19. Creating Web-Based Scientific Applications Using Java Servlets

    NASA Technical Reports Server (NTRS)

    Palmer, Grant; Arnold, James O. (Technical Monitor)

    2001-01-01

    There are many advantages to developing web-based scientific applications. Any number of people can access the application concurrently. The application can be accessed from a remote location. The application becomes essentially platform-independent because it can be run from any machine that has internet access and can run a web browser. Maintenance and upgrades to the application are simplified since only one copy of the application exists in a centralized location. This paper details the creation of web-based applications using Java servlets. Java is a powerful, versatile programming language that is well suited to developing web-based programs. A Java servlet provides the interface between the central server and the remote client machines. The servlet accepts input data from the client, runs the application on the server, and sends the output back to the client machine. The type of servlet that supports the HTTP protocol will be discussed in depth. Among the topics the paper will discuss are how to write an http servlet, how the servlet can run applications written in Java and other languages, and how to set up a Java web server. The entire process will be demonstrated by building a web-based application to compute stagnation point heat transfer.

  20. First geodetic measurement of convergence across the Java Trench

    NASA Technical Reports Server (NTRS)

    Tregoning, P.; Brunner, F. K.; Bock, Y.; Puntodewo, S. S. O.; Mccraffrey, R.; Genrich, J. F.; Calais, E.; Rais, J.; Subarya, C.

    1994-01-01

    Convergence across the Java Trench has been estimated for the first time, from annual Global Positioning System (GPS) measurements commencing in 1989. The directions of motion of Christmas and Cocos Island are within 1 deg of that predicted by the No-Net Rotation (NNR) NUVEL-1 plate motion model for the Australian plate although their rates are 25% and 37% less than predcited, respectively. The motion of West Java differs significantly from the NNR NUVEL-1 prediction for the Eurasian plate with a 1 deg difference in direction and a 40% increase in rate. We infer that either West Java moves with a distinct Southeast Asian plate or this region experiences plate margin deformation. The convergence of Christmas Island with respect to West Java is 67 +/- mm/yr in a direction N11 deg E +/- 4 deg which is orthogonal to the trench. The magnitude of convergence agrees well with rescaled NUVEL-1 relative plate model which predicts a value of 71 mm/yr between Australia and Eurasia. The direction of motion matches the direction inferred from earthquake slip vectors at the trench but may be more northerly than the N20 deg E +/- 3 deg predicted by NUVEL-1. On June 2, 1994, almost a year after the last GPS survey, an M(sub W) = 7.5 earthquake with slip vector direction N5 deg occurred south of central Java.

  1. Chimeric alignment by dynamic programming: Algorithm and biological uses

    SciTech Connect

    Komatsoulis, G.A.; Waterman, M.S.

    1997-12-01

    A new nearest-neighbor method for detecting chimeric 16S rRNA artifacts generated during PCR amplification from mixed populations has been developed. The method uses dynamic programming to generate an optimal chimeric alignment, defined as the highest scoring alignment between a query and a concatenation of a 5{prime} and a 3{prime} segment from two separate entries from a database of related sequences. Chimeras are detected by studying the scores and form of the chimeric and global sequence alignments. The chimeric alignment method was found to be marginally more effective than k-tuple based nearest-neighbor methods in simulation studies, but its most effective use is in concert with k-tuple methods. 15 refs., 3 figs., 1 tab.

  2. SWAMP+: multiple subsequence alignment using associative massive parallelism

    SciTech Connect

    Steinfadt, Shannon Irene; Baker, Johnnie W

    2010-10-18

    A new parallel algorithm SWAMP+ incorporates the Smith-Waterman sequence alignment on an associative parallel model known as ASC. It is a highly sensitive parallel approach that expands traditional pairwise sequence alignment. This is the first parallel algorithm to provide multiple non-overlapping, non-intersecting subsequence alignments with the accuracy of Smith-Waterman. The efficient algorithm provides multiple alignments similar to BLAST while creating a better workflow for the end users. The parallel portions of the code run in O(m+n) time using m processors. When m = n, the algorithmic analysis becomes O(n) with a coefficient of two, yielding a linear speedup. Implementation of the algorithm on the SIMD ClearSpeed CSX620 confirms this theoretical linear speedup with real timings.

  3. ASH structure alignment package: Sensitivity and selectivity in domain classification

    PubMed Central

    Standley, Daron M; Toh, Hiroyuki; Nakamura, Haruki

    2007-01-01

    Background Structure alignment methods offer the possibility of measuring distant evolutionary relationships between proteins that are not visible by sequence-based analysis. However, the question of how structural differences and similarities ought to be quantified in this regard remains open. In this study we construct a training set of sequence-unique CATH and SCOP domains, from which we develop a scoring function that can reliably identify domains with the same CATH topology and SCOP fold classification. The score is implemented in the ASH structure alignment package, for which the source code and a web service are freely available from the PDBj website . Results The new ASH score shows increased selectivity and sensitivity compared with values reported for several popular programs using the same test set of 4,298,905 structure pairs, yielding an area of .96 under the receiver operating characteristic (ROC) curve. In addition, weak sequence homologies between similar domains are revealed that could not be detected by BLAST sequence alignment. Also, a subset of domain pairs is identified that exhibit high similarity, even though their CATH and SCOP classification differs. Finally, we show that the ranking of alignment programs based solely on geometric measures depends on the choice of the quality measure. Conclusion ASH shows high selectivity and sensitivity with regard to domain classification, an important step in defining distantly related protein sequence families. Moreover, the CPU cost per alignment is competitive with the fastest programs, making ASH a practical option for large-scale structure classification studies. PMID:17407606

  4. Sim4cc: a cross-species spliced alignment program.

    PubMed

    Zhou, Leming; Pertea, Mihaela; Delcher, Arthur L; Florea, Liliana

    2009-06-01

    Advances in sequencing technologies have accelerated the sequencing of new genomes, far outpacing the generation of gene and protein resources needed to annotate them. Direct comparison and alignment of existing cDNA sequences from a related species is an effective and readily available means to determine genes in the new genomes. Current spliced alignment programs are inadequate for comparing sequences between different species, owing to their low sensitivity and splice junction accuracy. A new spliced alignment tool, sim4cc, overcomes problems in the earlier tools by incorporating three new features: universal spaced seeds, to increase sensitivity and allow comparisons between species at various evolutionary distances, and powerful splice signal models and evolutionarily-aware alignment techniques, to improve the accuracy of gene models. When tested on vertebrate comparisons at diverse evolutionary distances, sim4cc had significantly higher sensitivity compared to existing alignment programs, more than 10% higher than the closest competitor for some comparisons, while being comparable in speed to its predecessor, sim4. Sim4cc can be used in one-to-one or one-to-many comparisons of genomic and cDNA sequences, and can also be effectively incorporated into a high-throughput annotation engine, as demonstrated by the mapping of 64,000 Fagus grandifolia 454 ESTs and unigenes to the poplar genome.

  5. Precision alignment and mounting apparatus

    NASA Technical Reports Server (NTRS)

    Preston, Dennis R. (Inventor)

    1993-01-01

    An alignment and mounting apparatus for mounting two modules (10,12) includes a first portion having a cylindrical alignment pin (16) projecting normal to a module surface, a second portion having a three-stage alignment guide (18) including a shoehorn flange (34), a Y-slot (42) and a V-block (22) which sequentially guide the alignment pin (16) with successively finer precision and a third portion in the form of a spring-loaded captive fastener (20) for connecting the two modules after alignment is achieved.

  6. Aspect-Oriented Subprogram Synthesizes UML Sequence Diagrams

    NASA Technical Reports Server (NTRS)

    Barry, Matthew R.; Osborne, Richard N.

    2006-01-01

    The Rational Sequence computer program described elsewhere includes a subprogram that utilizes the capability for aspect-oriented programming when that capability is present. This subprogram is denoted the Rational Sequence (AspectJ) component because it uses AspectJ, which is an extension of the Java programming language that introduces aspect-oriented programming techniques into the language

  7. A Java speech implementation of the Mini Mental Status Exam.

    PubMed Central

    Wang, S. S.; Starren, J.

    1999-01-01

    The Folstein Mini Mental Status Exam (MMSE) is a simple, widely used, verbally administered test to assess cognitive function. The Java Speech Application Programming Interface (JSAPI) is a new, cross-platform interface for both speech recognition and speech synthesis in the Java environment. To evaluate the suitability of the JSAPI for interactive, patient interview applications, a JSAPI implementation of the MMSE was developed. The MMSE contains questions that vary in structure in order to assess different cognitive functions. This question variability provided an excellent test-bed to evaluate the strengths and weaknesses of JSAPI. The application is based on Java platform 2 and a JSAPI interface to the IBM ViaVoice recognition engine. Design and implementations issues are discussed. Preliminary usability studies demonstrate that an automated MMSE maybe a useful screening tool for cognitive disorders and changes. Images Figure 2 Figure 3 Figure 4 PMID:10566396

  8. Engineering cell alignment in vitro.

    PubMed

    Li, Yuhui; Huang, Guoyou; Zhang, Xiaohui; Wang, Lin; Du, Yanan; Lu, Tian Jian; Xu, Feng

    2014-01-01

    Cell alignment plays a critical role in various cell behaviors including cytoskeleton reorganization, membrane protein relocation, nucleus gene expression, and ECM remodeling. Cell alignment is also known to exert significant effects on tissue regeneration (e.g., neuron) and modulate mechanical properties of tissues including skeleton, cardiac muscle and tendon. Therefore, it is essential to engineer cell alignment in vitro for biomechanics, cell biology, tissue engineering and regenerative medicine applications. With advances in nano- and micro-scale technologies, a variety of approaches have been developed to engineer cell alignment in vitro, including mechanical loading, topographical patterning, and surface chemical treatment. In this review, we first present alignments of various cell types and their functionality in different tissues in vivo including muscle and nerve tissues. Then, we provide an overview of recent approaches for engineering cell alignment in vitro. Finally, concluding remarks and perspectives are addressed for future improvement of engineering cell alignment.

  9. Add Java extensions to your wiki: Java applets can bring dynamic functionality to your wiki pages

    SciTech Connect

    Scarberry, Randall E.

    2008-08-12

    Virtually everyone familiar with today’s world wide web has encountered the free online encyclopedia Wikipedia many times. What you may not know is that Wikipedia is driven by an excellent open-source product called MediaWiki which is available to anyone for free. This has led to a proliferation of wiki sites devoted to just about any topic one can imagine. Users of a wiki can add content -- all that is required of them is that they type in their additions into their web browsers using the simple markup language called wikitext. Even better, the developers of wikitext made it extensible. With a little server-side development of your own, you can add your own custom syntax. Users aware of your extensions can then utilize them on their wiki pages with a few simple keystrokes. These extensions can be custom decorations, formatting, web applications, and even instances of the venerable old Java applet. One example of a Java applet extension is the Jmol extension (REF), used to embed a 3-D molecular viewer. This article will walk you through the deployment of a fairly elaborate applet via a MediaWiki extension. By no means exhaustive -- an entire book would be required for that -- it will demonstrate how to give the applet resize handles using using a little Javascript and CSS coding and some popular Javascript libraries. It even describes how a user may customize the extension somewhat using a wiki template. Finally, it explains a rudimentary persistence mechanism which allows applets to save data directly to the wiki pages on which they reside.

  10. Primary structure of the A chain of human complement-classical-pathway enzyme C1r. N-terminal sequences and alignment of autolytic fragments and CNBr-cleavage peptides.

    PubMed Central

    Gagnon, J; Arlaud, G J

    1985-01-01

    Activated human complement-classical-pathway enzyme C1r has previously been shown to undergo autolytic cleavages occurring in the A chain [Arlaud, Villiers, Chesne & Colomb (1980) Biochim. Biophys. Acta 616, 116-129]. Chemical analysis of the autolytic products confirms that the A chain undergoes two major cleavages, generating three fragments, which have now been isolated and characterized. The N-terminal alpha fragment (approx. 210 residues long) has a blocked N-terminus, as does the whole A chain, whereas N-terminal sequences of fragments beta and gamma (approx. 66 and 176 residues long respectively) do not, and their N-terminal sequences were determined. Fragments alpha, beta and gamma, which are not interconnected by disulphide bridges, are located in this order within C1r A chain. Fragment gamma is disulphide-linked to the B chain of C1r, which is C-terminal in the single polypeptide chain of precursor C1r. CNBr cleavage of C1r A chain yields seven major peptides, CN1b, CN4a, CN2a, CN1a, CN3, CN4b and CN2b, which were positioned in that order, on the basis of N-terminal sequences of the methionine-containing peptides generated from tryptic cleavage of the succinylated (3-carboxypropionylated) C1r A chain. About 60% of the sequence of C1r A chain (440-460 residues long) was determined, including the complete sequence of the C-terminal 95 residues. This region shows homology with the corresponding parts of plasminogen and chymotrypsinogen and, more surprisingly, with the alpha 1 chain of human haptoglobin 1-1, a serine proteinase homologue. PMID:2983658

  11. TSGC and JSC Alignment

    NASA Technical Reports Server (NTRS)

    Sanchez, Humberto

    2013-01-01

    NASA and the SGCs are, by design, intended to work closely together and have synergistic Vision, Mission, and Goals. The TSGC affiliates and JSC have been working together, but not always in a concise, coordinated, nor strategic manner. Today we have a couple of simple ideas to present about how TSGC and JSC have started to work together in a more concise, coordinated, and strategic manner, and how JSC and non-TSG Jurisdiction members have started to collaborate: Idea I: TSGC and JSC Technical Alignment Idea II: Concept of Clusters.

  12. FlexSnap: Flexible Non-sequential Protein Structure Alignment

    NASA Astrophysics Data System (ADS)

    Salem, Saeed; Zaki, Mohammed J.; Bystroff, Chris

    Proteins have evolved subject to energetic selection pressure for stability and flexibility. Structural similarity between proteins which have gone through conformational changes can be captured effectively if flexibility is considered. Topologically unrelated proteins that preserve secondary structure packing interactions can be detected if both flexibility and sequence permutations are considered. We propose the FlexSnap algorithm for flexible non-topological protein structural alignment. The effectiveness of FlexSnap is demonstrated by measuring the agreement of its alignments with manually curated non-sequential structural alignments. FlexSnap showed competitive results against state-of-the-art algorithms, like DALI, SARF2, MultiProt, FlexProt, and FATCAT.

  13. A Standalone Vision Impairments Simulator for Java Swing Applications

    NASA Astrophysics Data System (ADS)

    Oikonomou, Theofanis; Votis, Konstantinos; Korn, Peter; Tzovaras, Dimitrios; Likothanasis, Spriridon

    A lot of work has been done lately in an attempt to assess accessibility. For the case of web rich-client applications several tools exist that simulate how a vision impaired or colour-blind person would perceive this content. In this work we propose a simulation tool for non-web JavaTM Swing applications. Developers and designers face a real challenge when creating software that has to cope with a lot of interaction situations, as well as specific directives for ensuring an accessible interaction. The proposed standalone tool will assist them to explore user-centered design and important accessibility issues for their JavaTM Swing implementations.

  14. Symbolic PathFinder: Symbolic Execution of Java Bytecode

    NASA Technical Reports Server (NTRS)

    Pasareanu, Corina S.; Rungta, Neha

    2010-01-01

    Symbolic Pathfinder (SPF) combines symbolic execution with model checking and constraint solving for automated test case generation and error detection in Java programs with unspecified inputs. In this tool, programs are executed on symbolic inputs representing multiple concrete inputs. Values of variables are represented as constraints generated from the analysis of Java bytecode. The constraints are solved using off-the shelf solvers to generate test inputs guaranteed to achieve complex coverage criteria. SPF has been used successfully at NASA, in academia, and in industry.

  15. [A Java class library for accessing Cadplan data].

    PubMed

    Zagler, Norbert

    2008-01-01

    A Java class library was developed to be able to access the data of the treatment planning system Varian Cad-plan which was decommissioned in 2005. The library reads and encapsulates the most important patient data. It facilitates creating viewing software for CT slices, contours and isodoses. Keeping alive old Cadplan hardware is no longer necessary. The files can be stored on any server in the network of a department and they can be accessed from any workstation capable of running Java software.

  16. Zika Virus, a Cause of Fever in Central Java, Indonesia

    DTIC Science & Technology

    1981-01-01

    ZIKA VIRUS, A CAUSE OF FEVER IN CENTRAL JAVA, INDONESIA J.G. Olson, T.G. Ksiazek, Suhandiman and Triwibowo REPORT NO. TR-879 NAMRU- DT1 &, AUG 0 9...75, No. 3, 1981 Zika virus, a cause of fever in Central Java, Indonesia J. G. OLSON’, T. G. KSIAZEK’, SUHANDIMAN 2 AND TRIwIBOWO 2 ’U.S. Naval...clinical history was taken and a involvement. Three additional isolations of ZIKA check list of signs and symptoms was completed were made from

  17. Scientific Programming Using Java and C: A Remote Sensing Example

    NASA Technical Reports Server (NTRS)

    Prados, Donald; Johnson, Michael; Mohamed, Mohamed A.; Cao, Chang-Yong; Gasser, Jerry; Powell, Don; McGregor, Lloyd

    1999-01-01

    This paper presents results of a project to port code for processing remotely sensed data from the UNIX environment to Windows. Factors considered during this process include time schedule, cost, resource availability, reuse of existing code, rapid interface development, ease of integration, and platform independence. The approach selected for this project used both Java and C. By using Java for the graphical user interface and C for the domain model, the strengths of both languages were utilized and the resulting code can easily be ported to other platforms. The advantages of this approach are discussed in this paper.

  18. Verification of Java Programs using Symbolic Execution and Invariant Generation

    NASA Technical Reports Server (NTRS)

    Pasareanu, Corina; Visser, Willem

    2004-01-01

    Software verification is recognized as an important and difficult problem. We present a norel framework, based on symbolic execution, for the automated verification of software. The framework uses annotations in the form of method specifications an3 loop invariants. We present a novel iterative technique that uses invariant strengthening and approximation for discovering these loop invariants automatically. The technique handles different types of data (e.g. boolean and numeric constraints, dynamically allocated structures and arrays) and it allows for checking universally quantified formulas. Our framework is built on top of the Java PathFinder model checking toolset and it was used for the verification of several non-trivial Java programs.

  19. Detecting Theft of Java Applications via a Static Birthmark Based on Weighted Stack Patterns

    NASA Astrophysics Data System (ADS)

    Lim, Hyun-Il; Park, Heewan; Choi, Seokwoo; Han, Taisook

    A software birthmark means the inherent characteristics of a program that can be used to identify the program. A comparison of such birthmarks facilitates the detection of software theft. In this paper, we propose a static Java birthmark based on a set of stack patterns, which reflect the characteristic of Java applications. A stack pattern denotes a sequence of bytecodes that share their operands through the operand stack. A weight scheme is used to balance the influence of each bytecode in a comparison of the birthmarks. We evaluate the proposed birthmark with respect to two properties required for a birthmark: credibility and resilience. The empirical results show that the proposed birthmark is highly credible and resilient to program transformation. We also compare the proposed birthmark with existing birthmarks, such as that of Tamada et al. and the k-gram birthmark. The experimental results show that the proposed birthmark is more stable than the birthmarks in terms of resilience to program transformation. Thus, the proposed birthmark can provide more reliable evidence of software theft when the software is modified by someone other than author.

  20. Identification of recently active faults and folds in Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Marliyani, G. I.; Arrowsmith, R.; Helmi, H.

    2013-12-01

    We analyze the spatial pattern of active deformation in Java, Indonesia with the aim of characterizing the deformation of the upper plate of the subduction zone in this region. The lack of detailed neotectonic studies in Java is mostly because of its relatively low rate of deformation in spite of significant historical seismic activity. In addition, the abundance of young volcanic materials as well as the region's high precipitation rate and vegetation cover obscure structural relationships and prevent reliable estimates of offset along active faults as well as exhumed intra-arc faults. Detailed maps of active faults derived from satellite and field-based neotectonic mapping, paleoseismic data, as well as new data on the fault kinematics and estimates of orientation of principal stresses from volcano morphology characterize recently active faults and folds. The structures in West Java are dominated by strike-slip faulting, while Central and northern part of East Java are dominated by folds and thrusting with minor normal faulting. The structures vary in length from hundreds meters to tens of kilometers and mainly trend N75°E, N8°E with some minor N45°W. Our preliminary mapping indicates that there are no large scale continuous structures in Java, and that instead deformation is distributed over wide areas along small structures. We established several paleoseismic sites along some of the identified structures. We excavated two shallow trenches along the Pasuruan fault, a normal fault striking NW-SE that forms a straight 13 km scarp cutting Pleistocene deltaic deposits of the north shore of East Java. The trenches exposed faulted and folded fluvial, alluvial and colluvial strata that record at least four ground-rupturing earthquakes since the Pleistocene. The Pasuruan site proves its potential to provide a paleoseismic record rarely found in Java. Abundant Quaternary volcanoes are emplaced throughout Java; most of the volcanoes show elongation in N100°E and N20

  1. Nonparametric Combinatorial Sequence Models

    NASA Astrophysics Data System (ADS)

    Wauthier, Fabian L.; Jordan, Michael I.; Jojic, Nebojsa

    This work considers biological sequences that exhibit combinatorial structures in their composition: groups of positions of the aligned sequences are "linked" and covary as one unit across sequences. If multiple such groups exist, complex interactions can emerge between them. Sequences of this kind arise frequently in biology but methodologies for analyzing them are still being developed. This paper presents a nonparametric prior on sequences which allows combinatorial structures to emerge and which induces a posterior distribution over factorized sequence representations. We carry out experiments on three sequence datasets which indicate that combinatorial structures are indeed present and that combinatorial sequence models can more succinctly describe them than simpler mixture models. We conclude with an application to MHC binding prediction which highlights the utility of the posterior distribution induced by the prior. By integrating out the posterior our method compares favorably to leading binding predictors.

  2. Establishing homologies in protein sequences

    NASA Technical Reports Server (NTRS)

    Dayhoff, M. O.; Barker, W. C.; Hunt, L. T.

    1983-01-01

    Computer-based statistical techniques used to determine homologies between proteins occurring in different species are reviewed. The technique is based on comparison of two protein sequences, either by relating all segments of a given length in one sequence to all segments of the second or by finding the best alignment of the two sequences. Approaches discussed include selection using printed tabulations, identification of very similar sequences, and computer searches of a database. The use of the SEARCH, RELATE, and ALIGN programs (Dayhoff, 1979) is explained; sample data are presented in graphs, diagrams, and tables and the construction of scoring matrices is considered.

  3. Novel Plasmids and Resistance Phenotypes in Yersinia pestis: Unique Plasmid Inventory of Strain Java 9 Mediates High Levels of Arsenic Resistance

    PubMed Central

    Eppinger, Mark; Radnedge, Lyndsay; Andersen, Gary; Vietri, Nicholas; Severson, Grant; Mou, Sherry; Ravel, Jacques; Worsham, Patricia L.

    2012-01-01

    Growing evidence suggests that the plasmid repertoire of Yersinia pestis is not restricted to the three classical virulence plasmids. The Java 9 strain of Y. pestis is a biovar Orientalis isolate obtained from a rat in Indonesia. Although it lacks the Y. pestis-specific plasmid pMT, which encodes the F1 capsule, it retains virulence in mouse and non-human primate animal models. While comparing diverse Y. pestis strains using subtractive hybridization, we identified sequences in Java 9 that were homologous to a Y. enterocolitica strain carrying the transposon Tn2502, which is known to encode arsenic resistance. Here we demonstrate that Java 9 exhibits high levels of arsenic and arsenite resistance mediated by a novel promiscuous class II transposon, named Tn2503. Arsenic resistance was self-transmissible from Java 9 to other Y. pestis strains via conjugation. Genomic analysis of the atypical plasmid inventory of Java 9 identified pCD and pPCP plasmids of atypical size and two previously uncharacterized cryptic plasmids. Unlike the Tn2502-mediated arsenic resistance encoded on the Y. enterocolitica virulence plasmid; the resistance loci in Java 9 are found on all four indigenous plasmids, including the two novel cryptic plasmids. This unique mobilome introduces more than 105 genes into the species gene pool. The majority of these are encoded by the two entirely novel self-transmissible plasmids, which show partial homology and synteny to other enterics. In contrast to the reductive evolution in Y. pestis, this study underlines the major impact of a dynamic mobilome and lateral acquisition in the genome evolution of the plague bacterium. PMID:22479347

  4. Strategies and tools for whole genome alignments

    SciTech Connect

    Couronne, Olivier; Poliakov, Alexander; Bray, Nicolas; Ishkhanov,Tigran; Ryaboy, Dmitriy; Rubin, Edward; Pachter, Lior; Dubchak, Inna

    2002-11-25

    The availability of the assembled mouse genome makespossible, for the first time, an alignment and comparison of two largevertebrate genomes. We have investigated different strategies ofalignment for the subsequent analysis of conservation of genomes that areeffective for different quality assemblies. These strategies were appliedto the comparison of the working draft of the human genome with the MouseGenome Sequencing Consortium assembly, as well as other intermediatemouse assemblies. Our methods are fast and the resulting alignmentsexhibit a high degree of sensitivity, covering more than 90 percent ofknown coding exons in the human genome. We have obtained such coveragewhile preserving specificity. With a view towards the end user, we havedeveloped a suite of tools and websites for automatically aligning, andsubsequently browsing and working with whole genome comparisons. Wedescribe the use of these tools to identify conserved non-coding regionsbetween the human and mouse genomes, some of which have not beenidentified by other methods.

  5. Alignment of asymetric-top molecules using multiple-pulse trains.

    SciTech Connect

    Pabst, S.; Santra, R.; X-Ray Science Division; Univ. Erlangen-Nuremberg; Univ. of Chicago

    2010-06-07

    We theoretically analyze the effectiveness of multiple-pulse laser alignment methods for asymmetric-top molecules. As an example, we choose SO2 and investigate the alignment dynamics induced by two different sequences, each consisting of four identical laser pulses. Each sequence differs only in the time delay between the pulses. Equally spaced pulses matching the alignment revival of the symmetrized SO2 rotor model are exploited in the first sequence. The pulse separations in the second sequence are short compared to the rotation dynamics of the molecule and monotonically increase the degree of alignment until the maximum alignment is reached. We point out the significant differences between the alignment dynamics of SO2 treated as an asymmetric-top and a symmetric-top rotor, respectively. We also explain why the fast sequence of laser pulses creates considerably stronger one-dimensional molecular alignment for asymmetric-top molecules. In addition, we show that multiple-pulse trains with elliptically polarized pulses do not enhance one-dimensional alignment or create three-dimensional alignment.

  6. Onorbit IMU alignment error budget

    NASA Technical Reports Server (NTRS)

    Corson, R. W.

    1980-01-01

    The Star Tracker, Crew Optical Alignment Sight (COAS), and Inertial Measurement Unit (IMU) from a complex navigation system with a multitude of error sources were combined. A complete list of the system errors is presented. The errors were combined in a rational way to yield an estimate of the IMU alignment accuracy for STS-1. The expected standard deviation in the IMU alignment error for STS-1 type alignments was determined to be 72 arc seconds per axis for star tracker alignments and 188 arc seconds per axis for COAS alignments. These estimates are based on current knowledge of the star tracker, COAS, IMU, and navigation base error specifications, and were partially verified by preliminary Monte Carlo analysis.

  7. Nova laser alignment control system

    SciTech Connect

    Van Arsdall, P.J.; Holloway, F.W.; McGuigan, D.L.; Shelton, R.T.

    1984-03-29

    Alignment of the Nova laser requires control of hundreds of optical components in the ten beam paths. Extensive application of computer technology makes daily alignment practical. The control system is designed in a manner which provides both centralized and local manual operator controls integrated with automatic closed loop alignment. Menudriven operator consoles using high resolution color graphics displays overlaid with transport touch panels allow laser personnel to interact efficiently with the computer system. Automatic alignment is accomplished by using image analysis techniques to determine beam references points from video images acquired along the laser chain. A major goal of the design is to contribute substantially to rapid experimental turnaround and consistent alignment results. This paper describes the computer-based control structure and the software methods developed for aligning this large laser system.

  8. Nuclear reactor internals alignment configuration

    DOEpatents

    Gilmore, Charles B.; Singleton, Norman R.

    2009-11-10

    An alignment system that employs jacking block assemblies and alignment posts around the periphery of the top plate of a nuclear reactor lower internals core shroud to align an upper core plate with the lower internals and the core shroud with the core barrel. The distal ends of the alignment posts are chamfered and are closely received within notches machined in the upper core plate at spaced locations around the outer circumference of the upper core plate. The jacking block assemblies are used to center the core shroud in the core barrel and the alignment posts assure the proper orientation of the upper core plate. The alignment posts may alternately be formed in the upper core plate and the notches may be formed in top plate.

  9. Carving out turf in a biodiversity hotspot: multiple, previously unrecognized shrew species co-occur on Java Island, Indonesia.

    PubMed

    Esselstyn, Jacob A; Maharadatunkamsi; Achmadi, Anang S; Siler, Cameron D; Evans, Ben J

    2013-10-01

    In theory, competition among species in a shared habitat results in niche separation. In the case of small recondite mammals such as shrews, little is known about their autecologies, leaving open questions regarding the degree to which closely related species co-occur and how or whether ecological niches are partitioned. The extent to which species are able to coexist may depend on the degree to which they exploit different features of their habitat, which may in turn influence our ability to recognize them as species. We explored these issues in a biodiversity hotspot, by surveying shrew (genus Crocidura) diversity on the Indonesian island of Java. We sequenced portions of nine unlinked genes in 100-117 specimens of Javan shrews and incorporated homologous data from most known Crocidura species from other parts of island South-East Asia. Current taxonomy recognizes four Crocidura species on Java, including two endemics. However, our phylogenetic, population genetic and species delimitation analyses identify five species on the island, and all are endemic to Java. While the individual ranges of these species may not overlap in their entirety, we found up to four species living syntopically and all five species co-occurring on one mountain. Differences in species' body size, use of above ground-level habitats by one species and habitat partitioning along ecological gradients may have facilitated species diversification and coexistence.

  10. Microbial Diversity of Acidic Hot Spring (Kawah Hujan B) in Geothermal Field of Kamojang Area, West Java-Indonesia

    PubMed Central

    Aditiawati, Pingkan; Yohandini, Heni; Madayanti, Fida; Akhmaloka

    2009-01-01

    Microbial communities in an acidic hot spring, namely Kawah Hujan B, at Kamojang geothermal field, West Java-Indonesia was examined using culture dependent and culture independent strategies. Chemical analysis of the hot spring water showed a characteristic of acidic-sulfate geothermal activity that contained high sulfate concentrations and low pH values (pH 1.8 to 1.9). Microbial community present in the spring was characterized by 16S rRNA gene combined with denaturing gradient gel electrophoresis (DGGE) analysis. The majority of the sequences recovered from culture-independent method were closely related to Crenarchaeota and Proteobacteria phyla. However, detail comparison among the member of Crenarchaeota showing some sequences variation compared to that the published data especially on the hypervariable and variable regions. In addition, the sequences did not belong to certain genus. Meanwhile, the 16S Rdna sequences from culture-dependent samples revealed mostly close to Firmicute and gamma Proteobacteria. PMID:19440252

  11. Aligned Defrosting Dunes

    NASA Technical Reports Server (NTRS)

    2004-01-01

    17 August 2004 This July 2004 Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a group of aligned barchan sand dunes in the martian north polar region. At the time, the dunes were covered with seasonal frost, but the frost had begun to sublime away, leaving dark spots and dark outlines around the dunes. The surrounding plains exhibit small, diffuse spots that are also the result of subliming seasonal frost. This northern spring image, acquired on a descending ground track (as MGS was moving north to south on the 'night' side of Mars) is located near 78.8oN, 34.8oW. The image covers an area about 3 km (1.9 mi) across and sunlight illuminates the scene from the upper left.

  12. Developing Multimedia Courseware for the Internet's Java versus Shockwave.

    ERIC Educational Resources Information Center

    Majchrzak, Tina L.

    1996-01-01

    Describes and compares two methods for developing multimedia courseware for use on the Internet: an authoring tool called Shockwave, and an object-oriented language called Java. Topics include vector graphics, browsers, interaction with network protocols, data security, multithreading, and computer languages versus development environments. (LRW)

  13. Infrastructure for Rapid Development of Java GUI Programs

    NASA Technical Reports Server (NTRS)

    Jones, Jeremy; Hostetter, Carl F.; Wheeler, Philip

    2006-01-01

    The Java Application Shell (JAS) is a software framework that accelerates the development of Java graphical-user-interface (GUI) application programs by enabling the reuse of common, proven GUI elements, as distinguished from writing custom code for GUI elements. JAS is a software infrastructure upon which Java interactive application programs and graphical user interfaces (GUIs) for those programs can be built as sets of plug-ins. JAS provides an application- programming interface that is extensible by application-specific plugins that describe and encapsulate both specifications of a GUI and application-specific functionality tied to the specified GUI elements. The desired GUI elements are specified in Extensible Markup Language (XML) descriptions instead of in compiled code. JAS reads and interprets these descriptions, then creates and configures a corresponding GUI from a standard set of generic, reusable GUI elements. These elements are then attached (again, according to the XML descriptions) to application-specific compiled code and scripts. An application program constructed by use of JAS as its core can be extended by writing new plug-ins and replacing existing plug-ins. Thus, JAS solves many problems that Java programmers generally solve anew for each project, thereby reducing development and testing time.

  14. Simulation Tools for Power Electronics Courses Based on Java Technologies

    ERIC Educational Resources Information Center

    Canesin, Carlos A.; Goncalves, Flavio A. S.; Sampaio, Leonardo P.

    2010-01-01

    This paper presents interactive power electronics educational tools. These interactive tools make use of the benefits of Java language to provide a dynamic and interactive approach to simulating steady-state ideal rectifiers (uncontrolled and controlled; single-phase and three-phase). Additionally, this paper discusses the development and use of…

  15. Teaching Introductory Programming to IS Students: Java Problems and Pitfalls

    ERIC Educational Resources Information Center

    Pendergast, Mark O.

    2006-01-01

    This paper examines the impact the use of the Java programming language has had on the way our students learn to program and the success they achieve. The importance of a properly constructed first course in programming cannot be overstated. A course well experienced will leave students with good programming habits, the ability to learn on their…

  16. [A biomedical signal processing toolkit programmed by Java].

    PubMed

    Xie, Haiyuan

    2012-09-01

    According to the biomedical signal characteristics, a new biomedical signal processing toolkit is developed. The toolkit is programmed by Java. It is used in basic digital signal processing, random signal processing and etc. All the methods in toolkit has been tested, the program is robust. The feature of the toolkit is detailed explained, easy use and good practicability.

  17. Distriblets: Java-Based Distributed Computing on the Web.

    ERIC Educational Resources Information Center

    Finkel, David; Wills, Craig E.; Brennan, Brian; Brennan, Chris

    1999-01-01

    Describes a system for using the World Wide Web to distribute computational tasks to multiple hosts on the Web that is written in Java programming language. Describes the programs written to carry out the load distribution, the structure of a "distriblet" class, and experiences in using this system. (Author/LRW)

  18. JSXGraph--Dynamic Mathematics with JavaScript

    ERIC Educational Resources Information Center

    Gerhauser, Michael; Valentin, Bianca; Wassermann, Alfred

    2010-01-01

    Since Java applets seem to be on the retreat in web application, other approaches for displaying interactive mathematics in the web browser are needed. One such alternative could be our open-source project JSXGraph. It is a cross-browser library for displaying interactive geometry, function plotting, graphs, and data visualization in a web…

  19. Estimation of toxicity using a Java based software tool

    EPA Science Inventory

    A software tool has been developed that will allow a user to estimate the toxicity for a variety of endpoints (such as acute aquatic toxicity). The software tool is coded in Java and can be accessed using a web browser (or alternatively downloaded and ran as a stand alone applic...

  20. Early Supplemental Feeding and Spontaneous Play in West Java, Indonesia.

    ERIC Educational Resources Information Center

    Walka, Helen; Pollitt, Ernesto; Triana, Nina; Jahari, Abas B.

    This study examined the effects of nutritional supplements on the duration and level of spontaneous play of 55 mildly to moderately malnourished toddlers living within the tea plantations of West Java, Indonesia. Infants were randomly assigned by their day care centers to one of three supplement groups: (1) energy and micronutrient supplements;…

  1. Strategies for Teaching Object-Oriented Concepts with Java

    ERIC Educational Resources Information Center

    Sicilia, Miguel-Angel

    2006-01-01

    A considerable amount of experiences in teaching object-oriented concepts using the Java language have been reported to date, some of which describe language pitfalls and concrete learning difficulties. In this paper, a number of additional issues that have been experienced as difficult for students to master, along with approaches intended to…

  2. HEP data analysis using jHepWork and Java.

    SciTech Connect

    Chekanov, S.; High Energy Physics

    2009-03-23

    A role of Java in high-energy physics (HEP) and recent progress in development of a platform-independent data-analysis framework, jHepWork, is discussed. The framework produces professional graphics and has many libraries for data manipulation.

  3. Lunar Alignments - Identification and Analysis

    NASA Astrophysics Data System (ADS)

    González-García, A. César

    Lunar alignments are difficult to establish given the apparent lack of written accounts clearly pointing toward lunar alignments for individual temples. While some individual cases are reviewed and highlighted, the weight of the proof must fall on statistical sampling. Some definitions for the lunar alignments are provided in order to clarify the targets, and thus, some new tools are provided to try to test the lunar hypothesis in several cases, especially in megalithic astronomy.

  4. Reconstructing Ontong Java Nui: Implications for Pacific absolute plate motion, hotspot drift and true polar wander

    NASA Astrophysics Data System (ADS)

    Chandler, Michael T.; Wessel, Paul; Taylor, Brian; Seton, Maria; Kim, Seung-Sep; Hyeong, Kiseong

    2012-05-01

    The Taylor (2006) hypothesis suggesting a common origin for the Ontong Java, Manihiki, and Hikurangi large igneous provinces provides an opportunity for a quantitative reconstruction and reassessment of the Ontong Java-Louisville hotspot connection. Our plate tectonic reconstructions of the three plateaus into Ontong Java Nui, or greater Ontong Java, combined with models for Pacific absolute plate motion (APM), allow an analysis of this connection. A new survey of the central Ellice Basin confirms easterly fracture zones, northerly abyssal hill fabric, as well as an area of sigmoidally-southeast-trending fracture zones associated with a late-stage spreading reorientation. From the fracture zone trends we derive new rotation poles for a two-stage model of Ellice Basin opening between the Ontong Java and Manihiki Plateaus. We use these and a single stage pole for separation of the Manihiki and Hikurangi Plateaus, together with three different Pacific APMs, to reconstruct the Ontong Java Nui super plateau back to 123 Ma and compare its predicted location with paleolatitude data obtained from the Ontong Java and Manihiki plateaus. Discrepancies between our Ontong Java Nui reconstructions and Ontong Java and Manihiki paleolatitudes are largest for the fixed Pacific hotspot APM. Assuming a Louisville hotspot source for Ontong Java Nui, remaining disparity between Ontong Java Nui's paleo-location at 123 Ma and published paleomagnetic latitudes for Ontong Java plateau imply that 8°-19° of Louisville hotspot drift or true polar wander may have occurred since the formation of Ontong Java Nui. However, the older portions of the Pacific APMs could easily be biased by a similar amount, making a firm identification of the dominant source of misfit difficult. Prior studies required a combined 26° of hotspot drift, octupole bias effects, and true polar wander just to link the Ontong Java Plateau to Louisville. Consequently, we suggest the super plateau hypothesis and our new

  5. Interactive Learning with Java Applets: Using Interactive, Web-Based Java Applets to Present Science in a Concrete, Meaningful Manner

    ERIC Educational Resources Information Center

    Corder, Greg

    2005-01-01

    Science teachers face challenges that affect the quality of instruction. Tight budgets, limited resources, school schedules, and other obstacles limit students' opportunities to experience science that is visual and interactive. Incorporating web-based Java applets into science instruction offers a practical solution to these challenges. The…

  6. OntoCAT -- simple ontology search and integration in Java, R and REST/JavaScript

    PubMed Central

    2011-01-01

    Background Ontologies have become an essential asset in the bioinformatics toolbox and a number of ontology access resources are now available, for example, the EBI Ontology Lookup Service (OLS) and the NCBO BioPortal. However, these resources differ substantially in mode, ease of access, and ontology content. This makes it relatively difficult to access each ontology source separately, map their contents to research data, and much of this effort is being replicated across different research groups. Results OntoCAT provides a seamless programming interface to query heterogeneous ontology resources including OLS and BioPortal, as well as user-specified local OWL and OBO files. Each resource is wrapped behind easy to learn Java, Bioconductor/R and REST web service commands enabling reuse and integration of ontology software efforts despite variation in technologies. It is also available as a stand-alone MOLGENIS database and a Google App Engine application. Conclusions OntoCAT provides a robust, configurable solution for accessing ontology terms specified locally and from remote services, is available as a stand-alone tool and has been tested thoroughly in the ArrayExpress, MOLGENIS, EFO and Gen2Phen phenotype use cases. Availability http://www.ontocat.org PMID:21619703

  7. miRDeep*: an integrated application tool for miRNA identification from RNA sequencing data.

    PubMed

    An, Jiyuan; Lai, John; Lehman, Melanie L; Nelson, Colleen C

    2013-01-01

    miRDeep and its varieties are widely used to quantify known and novel micro RNA (miRNA) from small RNA sequencing (RNAseq). This article describes miRDeep*, our integrated miRNA identification tool, which is modeled off miRDeep, but the precision of detecting novel miRNAs is improved by introducing new strategies to identify precursor miRNAs. miRDeep* has a user-friendly graphic interface and accepts raw data in FastQ and Sequence Alignment Map (SAM) or the binary equivalent (BAM) format. Known and novel miRNA expression levels, as measured by the number of reads, are displayed in an interface, which shows each RNAseq read relative to the pre-miRNA hairpin. The secondary pre-miRNA structure and read locations for each predicted miRNA are shown and kept in a separate figure file. Moreover, the target genes of known and novel miRNAs are predicted using the TargetScan algorithm, and the targets are ranked according to the confidence score. miRDeep* is an integrated standalone application where sequence alignment, pre-miRNA secondary structure calculation and graphical display are purely Java coded. This application tool can be executed using a normal personal computer with 1.5 GB of memory. Further, we show that miRDeep* outperformed existing miRNA prediction tools using our LNCaP and other small RNAseq datasets. miRDeep* is freely available online at http://www.australianprostatecentre.org/research/software/mirdeep-star.

  8. Mask alignment system for semiconductor processing

    DOEpatents

    Webb, Aaron P.; Carlson, Charles T.; Weaver, William T.; Grant, Christopher N.

    2017-02-14

    A mask alignment system for providing precise and repeatable alignment between ion implantation masks and workpieces. The system includes a mask frame having a plurality of ion implantation masks loosely connected thereto. The mask frame is provided with a plurality of frame alignment cavities, and each mask is provided with a plurality of mask alignment cavities. The system further includes a platen for holding workpieces. The platen may be provided with a plurality of mask alignment pins and frame alignment pins configured to engage the mask alignment cavities and frame alignment cavities, respectively. The mask frame can be lowered onto the platen, with the frame alignment cavities moving into registration with the frame alignment pins to provide rough alignment between the masks and workpieces. The mask alignment cavities are then moved into registration with the mask alignment pins, thereby shifting each individual mask into precise alignment with a respective workpiece.

  9. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses

    PubMed Central

    Capella-Gutiérrez, Salvador; Silla-Martínez, José M.; Gabaldón, Toni

    2009-01-01

    Summary: Multiple sequence alignments are central to many areas of bioinformatics. It has been shown that the removal of poorly aligned regions from an alignment increases the quality of subsequent analyses. Such an alignment trimming phase is complicated in large-scale phylogenetic analyses that deal with thousands of alignments. Here, we present trimAl, a tool for automated alignment trimming, which is especially suited for large-scale phylogenetic analyses. trimAl can consider several parameters, alone or in multiple combinations, for selecting the most reliable positions in the alignment. These include the proportion of sequences with a gap, the level of amino acid similarity and, if several alignments for the same set of sequences are provided, the level of consistency across different alignments. Moreover, trimAl can automatically select the parameters to be used in each specific alignment so that the signal-to-noise ratio is optimized. Availability: trimAl has been written in C++, it is portable to all platforms. trimAl is freely available for download (http://trimal.cgenomics.org) and can be used online through the Phylemon web server (http://phylemon2.bioinfo.cipf.es/). Supplementary Material is available at http://trimal.cgenomics.org/publications. Contact: tgabaldon@crg.es PMID:19505945

  10. Intraspecific variability of Steinernema feltiae strains from Cemoro Lawang, eastern Java, Indonesia.

    PubMed

    Addis, T; Mulawarman, M; Waeyenberge, L; Moens, M; Viaene, N; Ehlers, R U

    2010-01-01

    Four strains of Steinernema feltiae from Eastern Java, Indonesia were characterized based on morphometric, morphological and molecular data. In addition, their virulence against last instar Tenebrio molitor and heat tolerance was tested. Infective juvenile have a mean body length ranging from 749 to 792 microm. The maximum sequence difference among the four strains was 7 bp (8.8%) in the ITS and 2 bp (0.3%) in D2D3 regions of the rDNA. All the strains are not reproductively isolated and can reproduce with European strain S. feltiae Owiplant. The lowest LC50 was observed for strain SCM (373) and the highest for S. feltiae strain Owiplant (458) IJs/40 T. molitor. All four strains showed relatively better mean heat tolerance when compared with S. feltiae Owiplant, both in adapted and non-adapted heat tolerance experiments.

  11. Volume visualization of multiple alignment of large genomicDNA

    SciTech Connect

    Shah, Nameeta; Dillard, Scott E.; Weber, Gunther H.; Hamann, Bernd

    2005-07-25

    Genomes of hundreds of species have been sequenced to date, and many more are being sequenced. As more and more sequence data sets become available, and as the challenge of comparing these massive ''billion basepair DNA sequences'' becomes substantial, so does the need for more powerful tools supporting the exploration of these data sets. Similarity score data used to compare aligned DNA sequences is inherently one-dimensional. One-dimensional (1D) representations of these data sets do not effectively utilize screen real estate. As a result, tools using 1D representations are incapable of providing informatory overview for extremely large data sets. We present a technique to arrange 1D data in 3D space to allow us to apply state-of-the-art interactive volume visualization techniques for data exploration. We demonstrate our technique using multi-millions-basepair-long aligned DNA sequence data and compare it with traditional 1D line plots. The results show that our technique is superior in providing an overview of entire data sets. Our technique, coupled with 1D line plots, results in effective multi-resolution visualization of very large aligned sequence data sets.

  12. Lexical alignment in triadic communication

    PubMed Central

    Foltz, Anouschka; Gaspers, Judith; Thiele, Kristina; Stenneken, Prisca; Cimiano, Philipp

    2015-01-01

    Lexical alignment refers to the adoption of one’s interlocutor’s lexical items. Accounts of the mechanisms underlying such lexical alignment differ (among other aspects) in the role assigned to addressee-centered behavior. In this study, we used a triadic communicative situation to test which factors may modulate the extent to which participants’ lexical alignment reflects addressee-centered behavior. Pairs of naïve participants played a picture matching game and received information about the order in which pictures were to be matched from a voice over headphones. On critical trials, participants did or did not hear a name for the picture to be matched next over headphones. Importantly, when the voice over headphones provided a name, it did not match the name that the interlocutor had previously used to describe the object. Participants overwhelmingly used the word that the voice over headphones provided. This result points to non-addressee-centered behavior and is discussed in terms of disrupting alignment with the interlocutor as well as in terms of establishing alignment with the voice over headphones. In addition, the type of picture (line drawing vs. tangram shape) independently modulated lexical alignment, such that participants showed more lexical alignment to their interlocutor for (more ambiguous) tangram shapes compared to line drawings. Overall, the results point to a rather large role for non-addressee-centered behavior during lexical alignment. PMID:25762955

  13. Well-pump alignment system

    DOEpatents

    Drumheller, Douglas S.

    1998-01-01

    An improved well-pump for geothermal wells, an alignment system for a well-pump, and to a method for aligning a rotor and stator within a well-pump, wherein the well-pump has a whistle assembly formed at a bottom portion thereof, such that variations in the frequency of the whistle, indicating misalignment, may be monitored during pumping.

  14. Drive alignment pays maintenance dividends

    SciTech Connect

    Fedder, R.

    2008-12-15

    Proper alignment of the motor and gear drive on conveying and processing equipment will result in longer bearing and coupling life, along with lower maintenance costs. Selecting an alignment free drive package instead of a traditional foot mounted drive and motor is a major advancement toward these goals. 4 photos.

  15. A multi-threaded approach to using asynchronous C libraries with Java

    NASA Astrophysics Data System (ADS)

    Gates, John; Deich, William

    2014-07-01

    It is very common to write device drivers and code that access low level operation system functions in C or C+ +. There are also many powerful C and C++ libraries available for a variety of tasks. Java is a programming language that is meant to be system independent and is arguably much simpler to code than C/C++. However, Java has minimal support for talking to native libraries, which results in interesting challenges when using C/C++ libraries with Java code. Part of the problem is that Java's standard mechanism for communicating with C libraries, Java Native Interface, requires a significant amount of effort to do fairly simple things, such as copy structure data from C to a class in Java. This is largely solved by using the Java Native Access Library, which provides a reasonable way of transferring data between C structures and Java classes and calling C functions from Java. A more serious issue is that there is no mechanism for a C/C++ library loaded by a Java program to call a Java function in the Java program, as this is a major issue with any library that uses callback functions. A solution to this problem was found using a moderate amount of C code and multiple threads in Java. The Keck Task Language API (KTL) is used as a primary means of inter-process communication at Keck and Lick Observatory. KTL is implemented in a series or C libraries and uses callback functions for asynchronous communication. It is a good demonstration of how to use a C library within a Java program.

  16. Progressive alignment of genomic signals by multiple dynamic time warping.

    PubMed

    Skutkova, Helena; Vitek, Martin; Sedlar, Karel; Provaznik, Ivo

    2015-11-21

    This paper presents the utilization of progressive alignment principle for positional adjustment of a set of genomic signals with different lengths. The new method of multiple alignment of signals based on dynamic time warping is tested for the purpose of evaluating the similarity of different length genes in phylogenetic studies. Two sets of phylogenetic markers were used to demonstrate the effectiveness of the evaluation of intraspecies and interspecies genetic variability. The part of the proposed method is modification of pairwise alignment of two signals by dynamic time warping with using correlation in a sliding window. The correlation based dynamic time warping allows more accurate alignment dependent on local homologies in sequences without the need of scoring matrix or evolutionary models, because mutual similarities of residues are included in the numerical code of signals.

  17. Alignment of the MINOS FD

    SciTech Connect

    Becker, B.; Boehnlein, D.; /Fermilab

    2004-11-01

    The results and procedure of the alignment of the MINOS Far Detector are presented. The far detector has independent alignments of SM1 and SM2. The misalignments have an estimated uncertainty of {approx}850 {micro}m for SM1 and {approx}750 {micro}m for SM2. The alignment has as inputs the average rotations of U and V as determined by optical survey and strip positions within modules measured from the module mapper. The output of this is a module-module correction for transverse mis-alignments. These results were verified by examining an independent set of data. These alignment constants on average contribute much less then 1% to the total uncertainty in the transverse strip position.

  18. Detecting the limits of regulatory element conservation and divergence estimation using pairwise and multiple alignments

    PubMed Central

    Pollard, Daniel A; Moses, Alan M; Iyer, Venky N; Eisen, Michael B

    2006-01-01

    Background Molecular evolutionary studies of noncoding sequences rely on multiple alignments. Yet how multiple alignment accuracy varies across sequence types, tree topologies, divergences and tools, and further how this variation impacts specific inferences, remains unclear. Results Here we develop a molecular evolution simulation platform, CisEvolver, with models of background noncoding and transcription factor binding site evolution, and use simulated alignments to systematically examine multiple alignment accuracy and its impact on two key molecular evolutionary inferences: transcription factor binding site conservation and divergence estimation. We find that the accuracy of multiple alignments is determined almost exclusively by the pairwise divergence distance of the two most diverged species and that additional species have a negligible influence on alignment accuracy. Conserved transcription factor binding sites align better than surrounding noncoding DNA yet are often found to be misaligned at relatively short divergence distances, such that studies of binding site gain and loss could easily be confounded by alignment error. Divergence estimates from multiple alignments tend to be overestimated at short divergence distances but reach a tool specific divergence at which they cease to increase, leading to underestimation at long divergences. Our most striking finding was that overall alignment accuracy, binding site alignment accuracy and divergence estimation accuracy vary greatly across branches in a tree and are most accurate for terminal branches connecting sister taxa and least accurate for internal branches connecting sub-alignments. Conclusion Our results suggest that variation in alignment accuracy can lead to errors in molecular evolutionary inferences that could be construed as biological variation. These findings have implications for which species to choose for analyses, what kind of errors would be expected for a given set of species and how

  19. Magnetic alignment and the Poisson alignment reference system

    NASA Astrophysics Data System (ADS)

    Griffith, L. V.; Schenz, R. F.; Sommargren, G. E.

    1990-08-01

    Three distinct metrological operations are necessary to align a free-electron laser (FEL): the magnetic axis must be located, a straight line reference (SLR) must be generated, and the magnetic axis must be related to the SLR. This article begins with a review of the motivation for developing an alignment system that will assure better than 100-μm accuracy in the alignment of the magnetic axis throughout an FEL. The 100-μm accuracy is an error circle about an ideal axis for 300 m or more. The article describes techniques for identifying the magnetic axes of solenoids, quadrupoles, and wiggler poles. Propagation of a laser beam is described to the extent of revealing sources of nonlinearity in the beam. Development of a straight-line reference based on the Poisson line, a diffraction effect, is described in detail. Spheres in a large-diameter laser beam create Poisson lines and thus provide a necessary mechanism for gauging between the magnetic axis and the SLR. Procedures for installing FEL components and calibrating alignment fiducials to the magnetic axes of the components are also described. The Poisson alignment reference system should be accurate to 25 μm over 300 m, which is believed to be a factor-of-4 improvement over earlier techniques. An error budget shows that only 25% of the total budgeted tolerance is used for the alignment reference system, so the remaining tolerances should fall within the allowable range for FEL alignment.

  20. Applications of alignment-free methods in epigenomics

    PubMed Central

    Pinello, Luca

    2014-01-01

    Epigenetic mechanisms play an important role in the regulation of cell type-specific gene activities, yet how epigenetic patterns are established and maintained remains poorly understood. Recent studies have supported a role of DNA sequences in recruitment of epigenetic regulators. Alignment-free methods have been applied to identify distinct sequence features that are associated with epigenetic patterns and to predict epigenomic profiles. Here, we review recent advances in such applications, including the methods to map DNA sequence to feature space, sequence comparison and prediction models. Computational studies using these methods have provided important insights into the epigenetic regulatory mechanisms. PMID:24197932