Sample records for jaw muscle homology

  1. Homology of the jaw muscles in lizards and snakes-a solution from a comparative gnathostome approach.

    PubMed

    Johnston, Peter

    2014-03-01

    Homology or shared evolutionary origin of jaw adductor muscles in lizards and snakes has been difficult to establish, although snakes clearly arose within the lizard radiation. Lizards typically have temporal adductors layered lateral to medial, and in snakes the muscles are arranged in a rostral to caudal pattern. Recent work has suggested that the jaw adductor group in gnathostomes is arranged as a folded sheet; when this theory is applied to snakes, homology with lizard morphology can be seen. This conclusion revisits the work of S.B. McDowell, J Herpetol 1986; 20:353-407, who proposed that homology involves identity of m. levator anguli oris and the loss of m. adductor mandibulae externus profundus, at least in "advanced" (colubroid) snakes. Here I advance the folded sheet hypothesis across the whole snake tree using new and literature data, and provide a solution to this homology problem. Copyright © 2014 Wiley Periodicals, Inc.

  2. The Jaw Adductor Muscle Complex in Teleostean Fishes: Evolution, Homologies and Revised Nomenclature (Osteichthyes: Actinopterygii)

    PubMed Central

    Datovo, Aléssio; Vari, Richard P.

    2013-01-01

    The infraclass Teleostei is a highly diversified group of bony fishes that encompasses 96% of all species of living fishes and almost half of extant vertebrates. Evolution of various morphological complexes in teleosts, particularly those involving soft anatomy, remains poorly understood. Notable among these problematic complexes is the adductor mandibulae, the muscle that provides the primary force for jaw adduction and mouth closure and whose architecture varies from a simple arrangement of two segments to an intricate complex of up to ten discrete subdivisions. The present study analyzed multiple morphological attributes of the adductor mandibulae in representatives of 53 of the 55 extant teleostean orders, as well as significant information from the literature in order to elucidate the homologies of the main subdivisions of this muscle. The traditional alphanumeric terminology applied to the four main divisions of the adductor mandibulae – A1, A2, A3, and Aω – patently fails to reflect homologous components of that muscle across the expanse of the Teleostei. Some features traditionally used as landmarks for identification of some divisions of the adductor mandibulae proved highly variable across the Teleostei; notably the insertion on the maxilla and the position of muscle components relative to the path of the ramus mandibularis trigeminus nerve. The evolutionary model of gain and loss of sections of the adductor mandibulae most commonly adopted under the alphanumeric system additionally proved ontogenetically incongruent and less parsimonious than a model of subdivision and coalescence of facial muscle sections. Results of the analysis demonstrate the impossibility of adapting the alphanumeric terminology so as to reflect homologous entities across the spectrum of teleosts. A new nomenclatural scheme is proposed in order to achieve congruence between homology and nomenclature of the adductor mandibulae components across the entire Teleostei. PMID

  3. New insights into dinosaur jaw muscle anatomy.

    PubMed

    Holliday, Casey M

    2009-09-01

    Jaw muscles are key components of the head and critical to testing hypotheses of soft-tissue homology, skull function, and evolution. Dinosaurs evolved an extraordinary diversity of cranial forms adapted to a variety of feeding behaviors. However, disparate evolutionary transformations in head shape and function among dinosaurs and their living relatives, birds and crocodylians, impair straightforward reconstructions of muscles, and other important cephalic soft tissues. This study presents the osteological correlates and inferred soft tissue anatomy of the jaw muscles and relevant neurovasculature in the temporal region of the dinosaur head. Hypotheses of jaw muscle homology were tested across a broad range archosaur and sauropsid taxa to more accurately infer muscle attachments in the adductor chambers of non-avian dinosaurs. Many dinosaurs likely possessed m. levator pterygoideus, a trait shared with lepidosaurs but not extant archosaurs. Several major clades of dinosaurs (e.g., Ornithopoda, Ceratopsidae, Sauropoda) eliminated the epipterygoid, thus impacting interpretations of m. pseudotemporalis profundus. M. pseudotemporalis superficialis most likely attached to the caudoventral surface of the laterosphenoid, a trait shared with extant archosaurs. Although mm. adductor mandibulae externus profundus and medialis likely attached to the caudal half of the dorsotemporal fossa and coronoid process, clear osteological correlates separating the individual bellies are rare. Most dinosaur clades possess osteological correlates indicative of a pterygoideus ventralis muscle that attaches to the lateral surface of the mandible, although the muscle may have extended as far as the jugal in some taxa (e.g., hadrosaurs, tyrannosaurs). The cranial and mandibular attachments of mm adductor mandibulae externus superficialis and adductor mandibulae posterior were consistent across all taxa studied. These new data greatly increase the interpretive resolution of head anatomy in

  4. Ontogeny of the Alligator Cartilago Transiliens and Its Significance for Sauropsid Jaw Muscle Evolution

    PubMed Central

    Tsai, Henry P.; Holliday, Casey M.

    2011-01-01

    The cartilago transiliens is a fibrocartilaginous structure within the jaw muscles of crocodylians. The cartilago transiliens slides between the pterygoid buttress and coronoid region of the lower jaw and connects two muscles historically identified as m. pseudotemporalis superficialis and m. intramandibularis. However, the position of cartilago transiliens, and its anatomical similarities to tendon organs suggest the structure may be a sesamoid linking a single muscle. Incompressible sesamoids often form inside tendons that wrap around bone. However, such structures rarely ossify in reptiles and have thus far received scant attention. We tested the hypothesis that the cartilago transiliens is a sesamoid developed within in one muscle by investigating its structure in an ontogenetic series of Alligator mississippiensis using dissection, 3D imaging, and polarizing and standard light microscopy. In all animals studied, the cartilago transiliens receives collagen fibers and tendon insertions from its two main muscular attachments. However, whereas collagen fibers were continuous within the cartilaginous nodule of younger animals, such continuity decreased in older animals, where the fibrocartilaginous core grew to displace the fibrous region. Whereas several neighboring muscles attached to the fibrous capsule in older individuals, only two muscles had significant contributions to the structure in young animals. Our results indicate that the cartilago transiliens is likely a sesamoid formed within a single muscle (i.e., m. pseudotemporalis superficialis) as it wraps around the pterygoid buttress. This tendon organ is ubiquitous among fossil crocodyliforms indicating it is a relatively ancient, conserved structure associated with the development of the large pterygoid flanges in this clade. Finally, these findings indicate that similar tendon organs exist among potentially homologous muscle groups in birds and turtles, thus impacting inferences of jaw muscle homology

  5. Jaw muscles in older overdenture patients.

    PubMed

    Newton, James P; McManus, Frank C; Menhenick, Stephen

    2004-03-01

    To determine, using computer tomography (CT), whether the retention of a small number of teeth in the older adult used to support overdentures could affect the cross-sectional area (CSA) and X-ray density of two jaw closing muscles. Cross-sectional study of a group of older patients subdivided into dentate, edentulous and those wearing overdentures supported by two to five teeth. The sample consisted of 24 subjects aged 55-68 years. CSA and X-ray density of two jaw closing muscles, masseter and medial pterygoid were measured and evaluated using CT. There were no significant differences between left and right jaw muscles, but the CSA of the masseter muscles were significantly larger than the medial pterygoid muscles. The CSA of the masseter and medial pterygoid muscles was significantly smaller in edentulous subjects compared with dentate subjects but no significant difference was observed between subjects wearing overdentures and those with a natural dentition. No significant differences were observed with the X-ray density between different muscles or dental states. The retention of a small number of teeth in the older adult used to support overdentures appears to sustain the CSA of two jaw closing muscles and therefore could enhance these patients' masticatory ability compared with those who were edentulous.

  6. Jaw-muscle fiber architecture in tufted capuchins favors generating relatively large muscle forces without compromising jaw gape.

    PubMed

    Taylor, Andrea B; Vinyard, Christopher J

    2009-12-01

    Tufted capuchins (sensu lato) are renowned for their dietary flexibility and capacity to exploit hard and tough objects. Cebus apella differs from other capuchins in displaying a suite of craniodental features that have been functionally and adaptively linked to their feeding behavior, particularly the generation and dissipation of relatively large jaw forces. We compared fiber architecture of the masseter and temporalis muscles between C. apella (n=12) and two "untufted" capuchins (C. capucinus, n=3; C. albifrons, n=5). These three species share broadly similar diets, but tufted capuchins occasionally exploit mechanically challenging tissues. We tested the hypothesis that tufted capuchins exhibit architectural properties of their jaw muscles that facilitate relatively large forces including relatively greater physiologic cross-sectional areas (PCSA), more pinnate fibers, and lower ratios of mass to tetanic tension (Mass/P(0)). Results show some evidence supporting these predictions, as C. apella has relatively greater superficial masseter and temporalis PCSAs, significantly so only for the temporalis following Bonferroni adjustment. Capuchins did not differ in pinnation angle or Mass/P(0). As an architectural trade-off between maximizing muscle force and muscle excursion/contraction velocity, we also tested the hypothesis that C. apella exhibits relatively shorter muscle fibers. Contrary to our prediction, there are no significant differences in relative fiber lengths between tufted and untufted capuchins. Therefore, we attribute the relatively greater PCSAs in tufted capuchins primarily to their larger muscle masses. These findings suggest that relatively large jaw-muscle PCSAs can be added to the suite of masticatory features that have been functionally linked to the exploitation of a more resistant diet by C. apella. By enlarging jaw-muscle mass to increase PCSA, rather than reducing fiber lengths and increasing pinnation, tufted capuchins appear to have

  7. Experimental masseter muscle pain alters jaw-neck motor strategy.

    PubMed

    Wiesinger, B; Häggman-Henrikson, B; Hellström, F; Wänman, A

    2013-08-01

    A functional integration between the jaw and neck regions has been demonstrated during normal jaw function. The effect of masseter muscle pain on this integrated motor behaviour in man is unknown. The aim of this study was to investigate the effect of induced masseter muscle pain on jaw-neck movements during a continuous jaw opening-closing task. Sixteen healthy men performed continuous jaw opening-closing movements to a target position, defined as 75% of the maximum jaw opening. Each subject performed two trials without pain (controls) and two trials with masseter muscle pain, induced with hypertonic saline as a single injection. Simultaneous movements of the mandible and the head were registered with a wireless optoelectronic three-dimensional recording system. Differences in movement amplitudes between trials were analysed with Friedman's test and corrected Wilcoxon matched pairs test. The head movement amplitudes were significantly larger during masseter muscle pain trials compared with control. Jaw movement amplitudes did not differ significantly between any of the trials after corrected Wilcoxon tests. The ratio between head and jaw movement amplitudes was significantly larger during the first pain trial compared with control. Experimental masseter muscle pain in humans affected integrated jaw-neck movements by increasing the neck component during continuous jaw opening-closing tasks. The findings indicate that pain can alter the strategy for jaw-neck motor control, which further underlines the functional integration between the jaw and neck regions. This altered strategy may have consequences for development of musculoskeletal pain in the jaw and neck regions. © 2012 European Federation of International Association for the Study of Pain Chapters.

  8. Developmental evidence for serial homology of the vertebrate jaw and gill arch skeleton

    PubMed Central

    Gillis, J. Andrew; Modrell, Melinda S.; Baker, Clare V. H.

    2013-01-01

    Gegenbaur’s classical hypothesis of jaw-gill arch serial homology is widely cited, but remains unsupported by either paleontological evidence (e.g. a series of fossils reflecting the stepwise transformation of a gill arch into a jaw) or developmental genetic data (e.g. shared molecular mechanisms underlying segment identity in the mandibular, hyoid and gill arch endoskeletons). Here we show that nested expression of Dlx genes – the “Dlx code” that specifies upper and lower jaw identity in mammals and teleosts – is a primitive feature of the mandibular, hyoid and gill arches of jawed vertebrates. Using fate-mapping techniques, we demonstrate that the principal dorsal and ventral endoskeletal segments of the jaw, hyoid and gill arches of the skate Leucoraja erinacea derive from molecularly equivalent mesenchymal domains of combinatorial Dlx gene expression. Our data suggest that vertebrate jaw, hyoid and gill arch cartilages are serially homologous, and were primitively patterned dorsoventrally by a common Dlx blueprint. PMID:23385581

  9. Jaw-Dropping: Functional Variation in the Digastric Muscle in Bats.

    PubMed

    Curtis, Abigail A; Santana, Sharlene E

    2018-02-01

    Diet and feeding behavior in mammals is strongly linked to the morphology of their feeding apparatus. Cranio-muscular morphology determines how wide, forcefully, and quickly the jaw can be opened or closed, which limits the size and material properties of the foods that a mammal can eat. Most studies of feeding performance in mammals have focused on skull form and jaw muscles involved in generating bite force, but few explore how jaw abduction is related to feeding performance. In this study, we explored how the morphology of the digastric muscle, the primary jaw abducting muscle in mammals, and its jaw lever mechanics are related to diet in morphologically diverse noctilionoid bats. Results showed that insectivorous bats have strong digastric muscles associated with proportionally long jaws, which suggests these species can open their jaws quickly and powerfully during prey capture and chewing. Short snouted frugivorous bats exhibit traits that would enable them to open their jaws proportionally wider to accommodate the large fruits that they commonly feed on. Our results support the hypothesis that digastric muscle and jaw morphology are correlated with diet in bats, and that our results may also apply to other groups of mammals. Anat Rec, 301:279-290, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  10. The relationships among jaw-muscle fiber architecture, jaw morphology, and feeding behavior in extant apes and modern humans.

    PubMed

    Taylor, Andrea B; Vinyard, Christopher J

    2013-05-01

    The jaw-closing muscles are responsible for generating many of the forces and movements associated with feeding. Muscle physiologic cross-sectional area (PCSA) and fiber length are two architectural parameters that heavily influence muscle function. While there have been numerous comparative studies of hominoid and hominin craniodental and mandibular morphology, little is known about hominoid jaw-muscle fiber architecture. We present novel data on masseter and temporalis internal muscle architecture for small- and large-bodied hominoids. Hominoid scaling patterns are evaluated and compared with representative New- (Cebus) and Old-World (Macaca) monkeys. Variation in hominoid jaw-muscle fiber architecture is related to both absolute size and allometry. PCSAs scale close to isometry relative to jaw length in anthropoids, but likely with positive allometry in hominoids. Thus, large-bodied apes may be capable of generating both absolutely and relatively greater muscle forces compared with smaller-bodied apes and monkeys. Compared with extant apes, modern humans exhibit a reduction in masseter PCSA relative to condyle-M1 length but retain relatively long fibers, suggesting humans may have sacrificed relative masseter muscle force during chewing without appreciably altering muscle excursion/contraction velocity. Lastly, craniometric estimates of PCSAs underestimate hominoid masseter and temporalis PCSAs by more than 50% in gorillas, and overestimate masseter PCSA by as much as 30% in humans. These findings underscore the difficulty of accurately estimating jaw-muscle fiber architecture from craniometric measures and suggest models of fossil hominin and hominoid bite forces will be improved by incorporating architectural data in estimating jaw-muscle forces. Copyright © 2013 Wiley Periodicals, Inc.

  11. Comparative jaw muscle anatomy in kangaroos, wallabies, and rat-kangaroos (marsupialia: macropodoidea).

    PubMed

    Warburton, Natalie Marina

    2009-06-01

    The jaw muscles were studied in seven genera of macropodoid marsupials with diets ranging from mainly fungi in Potorous to grass in Macropus. Relative size, attachments, and lamination within the jaw adductor muscles varied between macropodoid species. Among macropodine species, the jaw adductor muscle proportions vary with feeding type. The relative mass of the masseter is roughly consistent, but grazers and mixed-feeders (Macropus and Lagostrophus) had relatively larger medial pterygoids and smaller temporalis muscles than the browsers (Dendrolagus, Dorcopsulus, and Setonix). Grazing macropods show similar jaw muscle proportions to "ungulate-grinding" type placental mammals. The internal architecture of the jaw muscles also varies between grazing and browsing macropods, most significantly, the anatomy of the medial pterygoid muscle. Potoroines have distinctly different jaw muscle proportions to macropodines. The masseter muscle group, in particular, the superficial masseter is enlarged, while the temporalis group is relatively reduced. Lagostrophus fasciatus is anatomically distinct from other macropods with respect to its masticatory muscle anatomy, including enlarged superficial medial pterygoid and deep temporalis muscles, an anteriorly inflected masseteric process, and the shape of the mandibular condyle. The enlarged triangular pterygoid process of the sphenoid bone, in particular, is distinctive of Lagsotrophus. (c) 2009 Wiley-Liss, Inc.

  12. Myofiber turnover is used to retrofit frog jaw muscles during metamorphosis.

    PubMed

    Alley, K E

    1989-01-01

    Metamorphic reorganization of the head in anuran amphibians entails abrupt restructuring of the jaw complex as larval feeding structures are transformed into their adult configurations. In this morphometric study, light microscopy wa used to analyze the larval maturation and metamorphic transfiguration of the adductor jaw muscles in the leopard frog (Rana pipiens). Larval jaw muscles, first established during embryogenesis, continue to grow by fiber addition until prometamorphosis, stage XII. Thereafter, fiber number remains stable but additional muscle growth continues by hypertrophy of the individual fibers until metamorphic climax. During metamorphic stages XIX-XXIII, a complete involution of all larval myofibers occurs. Simultaneously, within the same muscle beds, a second wave of myogenesis produces myoblasts which are the precursors of adult jaw myofibers. New muscle fibers continue to be added to these muscles well after the completion of metamorphosis; however, the total duration of the postmetamorphic myogenic period has not been defined. These observations provide clear evidence that the entir population of primary myofibers used in larval oral activity disappears from the adductor muscle beds and is replaced by a second wave of myogenesis commencing during climax. These findings indicate that the adductor jaw muscles are prepared for adult feeding by a complicated cellular process that retrofits existing muscle beds with a completely new complement of myofibers.

  13. Experimental muscle pain produces central modulation of proprioceptive signals arising from jaw muscle spindles.

    PubMed

    Capra, N F; Ro, J Y

    2000-05-01

    The aim of the present study was to investigate the effects of intramuscular injection with hypertonic saline, a well-established experimental model for muscle pain, on central processing of proprioceptive input from jaw muscle spindle afferents. Fifty-seven cells were recorded from the medial edge of the subnucleus interpolaris (Vi) and the adjacent parvicellular reticular formation from 11 adult cats. These cells were characterized as central units receiving jaw muscle spindle input based on their responses to electrical stimulation of the masseter nerve, muscle palpation and jaw stretch. Forty-five cells, which were successfully tested with 5% hypertonic saline, were categorized as either dynamic-static (DS) (n=25) or static (S) (n=20) neurons based on their responses to different speeds and amplitudes of jaw movement. Seventy-six percent of the cells tested with an ipsilateral injection of hypertonic saline showed a significant modulation of mean firing rates (MFRs) during opening and/or holding phases. The most remarkable saline-induced change was a significant reduction of MFR during the hold phase in S units (100%, 18/18 modulated). Sixty-nine percent of the DS units (11/16 modulated) also showed significant changes in MFRs limited to the hold phase. However, in the DS neurons, the MFRs increased in seven units and decreased in four units. Finally, five DS neurons showed significant changes of MFRs during both opening and holding phases. Injections of isotonic saline into the ipsilateral masseter muscle had little effect, but hypertonic saline injections made into the contralateral masseter muscle produced similar results to ipsilateral injections with hypertonic saline. These results unequivocally demonstrate that intramuscular injection with an algesic substance, sufficient to produce muscle pain, produces significant changes in the proprioceptive properties of the jaw movement-related neurons. Potential mechanisms involved in saline-induced changes in the

  14. Influence of botulinum toxin on rabbit jaw muscle activity and anatomy.

    PubMed

    Korfage, J A M; Wang, Jeffrey; Lie, S H J T J; Langenbach, Geerling E J

    2012-05-01

    Muscles can adapt their fiber properties to accommodate to new conditions. We investigated the extent to which a decrease in muscle activation can cause an adaptation of fiber properties in synergistic and antagonistic jaw muscles. Three months after the injection of botulinum toxin type A in one masseter (anterior or posterior) muscle changes in fiber type composition and fiber cross-sectional areas in jaw muscles were studied at the microscopic level. The injected masseter showed a steep increase in myosin type IIX fibers, whereas fast fibers decreased by about 50% in size. Depending on the injection site, both synergistic and antagonistic muscles showed a significant increase in the size of their fast IIA fibers, sometimes combined with an increased number of IIX fibers. Silencing the activity in the masseter not only causes changes in the fibers of the injected muscle but also leads to changes in other jaw muscles. Copyright © 2012 Wiley Periodicals, Inc.

  15. Contribution of jaw muscle size and craniofacial morphology to human bite force magnitude.

    PubMed

    Raadsheer, M C; van Eijden, T M; van Ginkel, F C; Prahl-Andersen, B

    1999-01-01

    The existence of an interaction among bite force magnitude, jaw muscle size (e.g., cross-sectional area, thickness), and craniofacial morphology is widely accepted. Bite force magnitude depends on the size of the jaw muscles and the lever arm lengths of bite force and muscle forces, which in turn are dictated by craniofacial morphology. In this study, the relative contributions of craniofacial morphology and jaw muscle thickness to the bite force magnitude were studied. In 121 adult individuals, both magnitude and direction of the maximal voluntary bite force were registered. Craniofacial dimensions were measured by anthropometrics and from lateral radiographs. The thicknesses of the masseter, temporal, and digastric muscles were registered by ultrasonography. After a factor analysis was applied to the anthropometric and cephalometric dimensions, the correlation between bite force magnitude, on the one hand, and the "craniofacial factors" and jaw muscle thicknesses, on the other, was assessed by stepwise multiple regression. Fifty-eight percent of the bite force variance could be explained. From the jaw muscles, only the thickness of the masseter muscle correlated significantly with bite force magnitude. Bite force magnitude also correlated significantly positively with vertical and transverse facial dimensions and the inclination of the midface, and significantly negatively with mandibular inclination and occlusal plane inclination. The contribution of the masseter muscle to the variation in bite force magnitude was higher than that of the craniofacial factors.

  16. Jaw muscle fiber type distribution in Hawaiian gobioid stream fishes: histochemical correlations with feeding ecology and behavior.

    PubMed

    Maie, Takashi; Meister, Andrew B; Leonard, Gerald L; Schrank, Gordon D; Blob, Richard W; Schoenfuss, Heiko L

    2011-12-01

    Differences in fiber type distribution in the axial muscles of Hawaiian gobioid stream fishes have previously been linked to differences in locomotor performance, behavior, and diet across species. Using ATPase assays, we examined fiber types of the jaw opening sternohyoideus muscle across five species, as well as fiber types of three jaw closing muscles (adductor mandibulae A1, A2, and A3). The jaw muscles of some species of Hawaiian stream gobies contained substantial red fiber components. Some jaw muscles always had greater proportions of white muscle fibers than other jaw muscles, independent of species. In addition, comparing across species, the dietary generalists (Awaous guamensis and Stenogobius hawaiiensis) had a lower proportion of white muscle fibers in all jaw muscles than the dietary specialists (Lentipes concolor, Sicyopterus stimpsoni, and Eleotris sandwicensis). Among Hawaiian stream gobies, generalist diets may favor a wider range of muscle performance, provided by a mix of white and red muscle fibers, than is typical of dietary specialists, which may have a higher proportion of fast-twitch white fibers in jaw muscles to help meet the demands of rapid predatory strikes or feeding in fast-flowing habitats. Copyright © 2011 Elsevier GmbH. All rights reserved.

  17. Scaling and Accommodation of Jaw Adductor Muscles in Canidae

    PubMed Central

    Kemp, Graham J.; Jeffery, Nathan

    2016-01-01

    ABSTRACT The masticatory apparatus amongst closely related carnivoran species raises intriguing questions about the interplay between allometry, function, and phylogeny in defining interspecific variations of cranial morphology. Here we describe the gross structure of the jaw adductor muscles of several species of canid, and then examine how the muscles are scaled across the range of body sizes, phylogenies, and trophic groups. We also consider how the muscles are accommodated on the skull, and how this is influenced by differences of endocranial size. Data were collected for a suite of morphological metrics, including body mass, endocranial volume, and muscle masses and we used geometric morphometric shape analysis to reveal associated form changes. We find that all jaw adductor muscles scale isometrically against body mass, regardless of phylogeny or trophic group, but that endocranial volume scales with negative allometry against body mass. These findings suggest that head shape is partly influenced by the need to house isometrically scaling muscles on a neurocranium scaling with negative allometry. Principal component analysis suggests that skull shape changes, such as the relatively wide zygomatic arches and large sagittal crests seen in species with higher body masses, allow the skull to accommodate a relative enlargement of the jaw adductors compared with the endocranium. Anat Rec, 299:951–966, 2016. © 2016 The Authors The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology Published by Wiley Periodicals, Inc. PMID:27103346

  18. Modulation of jaw muscle spindle afferent activity following intramuscular injections with hypertonic saline.

    PubMed

    Ro, J Y; Capra, N F

    2001-05-01

    Transient noxious chemical stimulation of small diameter muscle afferents modulates jaw movement-related responses of caudal brainstem neurons. While it is likely that the effect is mediated from the spindle afferents in the mesencephalic nucleus (Vmes) via the caudally projecting Probst's tract, the mechanisms of pain induced modulations of jaw muscle spindle afferents is not known. In the present study, we tested the hypothesis that jaw muscle nociceptors gain access to muscle spindle afferents in the same muscle via central mechanisms and alter their sensitivity. Thirty-five neurons recorded from the Vmes were characterized as muscle spindle afferents based on their responses to passive jaw movements, muscle palpation, and electrical stimulation of the masseter nerve. Each cell was tested by injecting a small volume (250 microl) of either 5% hypertonic and/or isotonic saline into the receptor-bearing muscle. Twenty-nine units were tested with 5% hypertonic saline, of which 79% (23/29) showed significant modulation of mean firing rates (MFRs) during one or more phases of ramp-and-hold movements. Among the muscle spindle primary-like units (n = 12), MFRs of 4 units were facilitated, five reduced, two showed mixed responses and one unchanged. In secondary-like units (n = 17), MFRs of 9 were facilitated, three reduced and five unchanged. Thirteen units were tested with isotonic saline, of which 77% showed no significant changes of MFRs. Further analysis revealed that the hypertonic saline not only affected the overall output of muscle spindle afferents, but also increased the variability of firing and altered the relationship between afferent signal and muscle length. These results demonstrated that activation of muscle nociceptors significantly affects proprioceptive properties of jaw muscle spindles via central neural mechanisms. The changes can have deleterious effects on oral motor function as well as kinesthetic sensibility.

  19. Does induced masseter muscle pain affect integrated jaw-neck movements similarly in men and women?

    PubMed

    Wiesinger, Birgitta; Häggman-Henrikson, Birgitta; Hellström, Fredrik; Englund, Erling; Wänman, Anders

    2016-12-01

    Normal jaw opening-closing involves simultaneous jaw and head-neck movements. We previously showed that, in men, integrated jaw-neck movements during jaw function are altered by induced masseter muscle pain. The aim of this study was to investigate possible sex-related differences in integrated jaw-neck movements following experimental masseter muscle pain. We evaluated head-neck and jaw movements in 22 healthy women and 16 healthy men in a jaw opening-closing task. The participants performed one control trial and one trial with masseter muscle pain induced by injection of hypertonic saline. Jaw and head movements were registered using a three-dimensional optoelectronic recording system. There were no significant sex-related differences in jaw and head movement amplitudes. Head movement amplitudes were significantly greater in the pain trials for both men and women. The proportional involvement of the neck motor system during jaw movements increased in pain trials for 13 of 16 men and for 18 of 22 women. Thus, acute pain may alter integrated jaw-neck movements, although, given the similarities between men and women, this interaction between acute pain and motor behaviour does not explain sex differences in musculoskeletal pain in the jaw and neck regions. © 2016 Eur J Oral Sci.

  20. Masticatory motor patterns in ungulates: a quantitative assessment of jaw-muscle coordination in goats, alpacas and horses.

    PubMed

    Williams, Susan H; Vinyard, Christopher J; Wall, Christine E; Hylander, William L

    2007-04-01

    We investigated patterns of jaw-muscle coordination during rhythmic mastication in three species of ungulates displaying the marked transverse jaw movements typical of many large mammalian herbivores. In order to quantify consistent motor patterns during chewing, electromyograms were recorded from the superficial masseter, deep masseter, posterior temporalis and medial pterygoid muscles of goats, alpacas and horses. Timing differences between muscle pairs were evaluated in the context of an evolutionary model of jaw-muscle function. In this model, the closing and food reduction phases of mastication are primarily controlled by two distinct muscle groups, triplet I (balancing-side superficial masseter and medial pterygoid and working-side posterior temporalis) and triplet II (working-side superficial masseter and medial pterygoid and balancing-side posterior temporalis), and the asynchronous activity of the working- and balancing-side deep masseters. The three species differ in the extent to which the jaw muscles are coordinated as triplet I and triplet II. Alpacas, and to a lesser extent, goats, exhibit the triplet pattern whereas horses do not. In contrast, all three species show marked asynchrony of the working-side and balancing-side deep masseters, with jaw closing initiated by the working-side muscle and the balancing-side muscle firing much later during closing. However, goats differ from alpacas and horses in the timing of the balancing-side deep masseter relative to the triplet II muscles. This study highlights interspecific differences in the coordination of jaw muscles to influence transverse jaw movements and the production of bite force in herbivorous ungulates.

  1. The relationship between jaw-opening force and the cross-sectional area of the suprahyoid muscles in healthy elderly.

    PubMed

    Kajisa, E; Tohara, H; Nakane, A; Wakasugi, Y; Hara, K; Yamaguchi, K; Yoshimi, K; Minakuchi, S

    2018-03-01

    We conducted a clinical cross-sectional study to examine the relationship between jaw-opening force and the cross-sectional area of the suprahyoid muscles and whole skeletal muscle mass. Subjects were healthy 39 males and 51 females without dysphagia and sarcopenia, aged 65 years and older. Jaw-opening force was measured three times using a jaw-opening sthenometer; the maximum of these three was taken as the measurement value. The cross-sectional area of the geniohyoid and anterior belly of the digastric muscles were evaluated using ultrasonography. The skeletal muscle mass index, gait speed and grip strength were evaluated according to the diagnostic criteria of the Asian Working Group for Sarcopenia. For each sex, a multiple regression analysis determined the factors that affect jaw-opening force. Jaw-opening force was associated with the cross-sectional area of the geniohyoid muscle in males (regression coefficient [β] = 0.441, 95% confidence interval [CI] = 14.28-56.09) and females (β = 0.28, 95% CI = 3.10-54.57). Furthermore, in females only, jaw-opening force was associated with the skeletal muscle mass index (β = 0.40, 95% CI = 3.67-17.81). In contrast, jaw-opening force was not associated with the cross-sectional area of the anterior belly of the digastric muscle in either sex. In healthy elderly males and females, jaw-opening force was positively associated with the cross-sectional area of the geniohyoid muscle. However, the jaw-opening force was positively associated with the skeletal muscle mass index only in females. © 2017 John Wiley & Sons Ltd.

  2. Jaw Dysfunction Is Associated with Neck Disability and Muscle Tenderness in Subjects with and without Chronic Temporomandibular Disorders

    PubMed Central

    Silveira, A.; Gadotti, I. C.; Armijo-Olivo, S.; Biasotto-Gonzalez, D. A.; Magee, D.

    2015-01-01

    Purpose. Tender points in the neck are common in patients with temporomandibular disorders (TMD). However, the correlation among neck disability, jaw dysfunction, and muscle tenderness in subjects with TMD still needs further investigation. This study investigated the correlation among neck disability, jaw dysfunction, and muscle tenderness in subjects with and without chronic TMD. Participants. Forty females between 19 and 49 years old were included in this study. There were 20 healthy controls and 20 subjects who had chronic TMD and neck disability. Methods. Subjects completed the neck disability index and the limitations of daily functions in TMD questionnaires. Tenderness of the masticatory and cervical muscles was measured using an algometer. Results. The correlation between jaw disability and neck disability was significantly high (r = 0.915, P < 0.05). The correlation between level of muscle tenderness in the masticatory and cervical muscles with jaw dysfunction and neck disability showed fair to moderate correlations (r = 0.32–0.65). Conclusion. High levels of muscle tenderness in upper trapezius and temporalis muscles correlated with high levels of jaw and neck dysfunction. Moreover, high levels of neck disability correlated with high levels of jaw disability. These findings emphasize the importance of considering the neck and its structures when evaluating and treating patients with TMD. PMID:25883963

  3. Jaw dysfunction is associated with neck disability and muscle tenderness in subjects with and without chronic temporomandibular disorders.

    PubMed

    Silveira, A; Gadotti, I C; Armijo-Olivo, S; Biasotto-Gonzalez, D A; Magee, D

    2015-01-01

    Tender points in the neck are common in patients with temporomandibular disorders (TMD). However, the correlation among neck disability, jaw dysfunction, and muscle tenderness in subjects with TMD still needs further investigation. This study investigated the correlation among neck disability, jaw dysfunction, and muscle tenderness in subjects with and without chronic TMD. Participants. Forty females between 19 and 49 years old were included in this study. There were 20 healthy controls and 20 subjects who had chronic TMD and neck disability. Subjects completed the neck disability index and the limitations of daily functions in TMD questionnaires. Tenderness of the masticatory and cervical muscles was measured using an algometer. The correlation between jaw disability and neck disability was significantly high (r = 0.915, P < 0.05). The correlation between level of muscle tenderness in the masticatory and cervical muscles with jaw dysfunction and neck disability showed fair to moderate correlations (r = 0.32-0.65). High levels of muscle tenderness in upper trapezius and temporalis muscles correlated with high levels of jaw and neck dysfunction. Moreover, high levels of neck disability correlated with high levels of jaw disability. These findings emphasize the importance of considering the neck and its structures when evaluating and treating patients with TMD.

  4. Development of the trigeminal motor neurons in parrots: implications for the role of nervous tissue in the evolution of jaw muscle morphology.

    PubMed

    Tokita, Masayoshi; Nakayama, Tomoki

    2014-02-01

    Vertebrates have succeeded to inhabit almost every ecological niche due in large part to the anatomical diversification of their jaw complex. As a component of the feeding apparatus, jaw muscles carry a vital role for determining the mode of feeding. Early patterning of the jaw muscles has been attributed to cranial neural crest-derived mesenchyme, however, much remains to be understood about the role of nonneural crest tissues in the evolution and diversification of jaw muscle morphology. In this study, we describe the development of trigeminal motor neurons in a parrot species with the uniquely shaped jaw muscles and compare its developmental pattern to that in the quail with the standard jaw muscles to uncover potential roles of nervous tissue in the evolution of vertebrate jaw muscles. In parrot embryogenesis, the motor axon bundles are detectable within the muscular tissue only after the basic shape of the muscular tissue has been established. This supports the view that nervous tissue does not primarily determine the spatial pattern of jaw muscles. In contrast, the trigeminal motor nucleus, which is composed of somata of neurons that innervate major jaw muscles, of parrot is more developed compared to quail, even in embryonic stage where no remarkable interspecific difference in both jaw muscle morphology and motor nerve branching pattern is recognized. Our data suggest that although nervous tissue may not have a large influence on initial patterning of jaw muscles, it may play an important role in subsequent growth and maintenance of muscular tissue and alterations in cranial nervous tissue development may underlie diversification of jaw muscle morphology. Copyright © 2013 Wiley Periodicals, Inc.

  5. Myoelectric manifestations of jaw elevator muscle fatigue and recovery in healthy and TMD subjects.

    PubMed

    Castroflorio, T; Falla, D; Tartaglia, G M; Sforza, C; Deregibus, A

    2012-09-01

    The effects of muscle pain and fatigue on the control of jaw elevator muscles are not well known. Furthermore, the myoelectric manifestations of fatigue and recovery from fatigue in the masticatory muscles are not reported in literature. The main aims of this study were (i) to evaluate the possible use of surface electromyography (sEMG) as an objective measure of fatigue of the jaw elevator muscles, (ii) to compare the myoelectric manifestations of fatigue in the temporalis anterior and masseter muscles bilaterally, (iii) to assess recovery of the investigated muscles after an endurance test and (iv) to compare fatigue and recovery of the jaw elevator muscles in healthy subjects and patients with muscle-related temporomandibular disorders (TMD). The study was performed on twenty healthy volunteers and eighteen patients with muscle-related TMD. An intra-oral compressive-force sensor was used to measure the voluntary contraction forces close to the intercuspal position and to provide visual feedback of submaximal forces to the subject. Surface EMG signals were recorded with linear electrode arrays during isometric contractions at 20%, 40%, 60% and 80% of the maximum voluntary contraction force, during an endurance test and during the recovery phase. The results showed that (i) the slope of the mean power spectral frequency (MNF) and the initial average rectified value (ARV) could be used to monitor fatigue of the jaw elevators, (ii) the temporalis anterior and masseter muscle show the same myoelectric manifestations of fatigue and recovery and (iii) the initial values of MNF and ARV were lower in patients with muscle-related TMD. The assessment of myoelectric manifestations of fatigue in the masticatory muscles may assist in the clinical assessment of TMDs. © 2012 Blackwell Publishing Ltd.

  6. Evaluation of jaw and neck muscle activities while chewing using EMG-EMG transfer function and EMG-EMG coherence function analyses in healthy subjects.

    PubMed

    Ishii, Tomohiro; Narita, Noriyuki; Endo, Hiroshi

    2016-06-01

    This study aims to quantitatively clarify the physiological features in rhythmically coordinated jaw and neck muscle EMG activities while chewing gum using EMG-EMG transfer function and EMG-EMG coherence function analyses in 20 healthy subjects. The chewing side masseter muscle EMG signal was used as the reference signal, while the other jaw (non-chewing side masseter muscle, bilateral anterior temporal muscles, and bilateral anterior digastric muscles) and neck muscle (bilateral sternocleidomastoid muscles) EMG signals were used as the examined signals in EMG-EMG transfer function and EMG-EMG coherence function analyses. Chewing-related jaw and neck muscle activities were aggregated in the first peak of the power spectrum in rhythmic chewing. The gain in the peak frequency represented the power relationships between jaw and neck muscle activities during rhythmic chewing. The phase in the peak frequency represented the temporal relationships between the jaw and neck muscle activities, while the non-chewing side neck muscle presented a broad range of distributions across jaw closing and opening phases. Coherence in the peak frequency represented the synergistic features in bilateral jaw closing muscles and chewing side neck muscle activities. The coherence and phase in non-chewing side neck muscle activities exhibited a significant negative correlation. From above, the bilateral coordination between the jaw and neck muscle activities is estimated while chewing when the non-chewing side neck muscle is synchronously activated with the jaw closing muscles, while the unilateral coordination is estimated when the non-chewing side neck muscle is irregularly activated in the jaw opening phase. Thus, the occurrence of bilateral or unilateral coordinated features in the jaw and neck muscle activities may correspond to the phase characteristics in the non-chewing side neck muscle activities during rhythmical chewing. Considering these novel findings in healthy subjects, EMG

  7. Indirect Estimates of Jaw Muscle Tension in Children with Suspected Hypertonia, Children with Suspected Hypotonia, and Matched Controls

    ERIC Educational Resources Information Center

    Connaghan, Kathryn P.; Moore, Christopher A.

    2013-01-01

    Purpose: In this study, the authors compared indirect estimates of jaw-muscle tension in children with suspected muscle-tone abnormalities with age- and gender-matched controls. Method: Jaw movement and muscle activation were measured in children (ages 3 years, 11 months, to 10 years) with suspected muscle-tone abnormalities (Down syndrome or…

  8. Evolution of Muscle Activity Patterns Driving Motions of the Jaw and Hyoid during Chewing in Gnathostomes

    PubMed Central

    Konow, Nicolai; Herrel, Anthony; Ross, Callum F.; Williams, Susan H.; German, Rebecca Z.; Sanford, Christopher P. J.; Gintof, Chris

    2011-01-01

    Although chewing has been suggested to be a basal gnathostome trait retained in most major vertebrate lineages, it has not been studied broadly and comparatively across vertebrates. To redress this imbalance, we recorded EMG from muscles powering anteroposterior movement of the hyoid, and dorsoventral movement of the mandibular jaw during chewing. We compared muscle activity patterns (MAP) during chewing in jawed vertebrate taxa belonging to unrelated groups of basal bony fishes and artiodactyl mammals. Our aim was to outline the evolution of coordination in MAP. Comparisons of activity in muscles of the jaw and hyoid that power chewing in closely related artiodactyls using cross-correlation analyses identified reorganizations of jaw and hyoid MAP between herbivores and omnivores. EMG data from basal bony fishes revealed a tighter coordination of jaw and hyoid MAP during chewing than seen in artiodactyls. Across this broad phylogenetic range, there have been major structural reorganizations, including a reduction of the bony hyoid suspension, which is robust in fishes, to the acquisition in a mammalian ancestor of a muscle sling suspending the hyoid. These changes appear to be reflected in a shift in chewing MAP that occurred in an unidentified anamniote stem-lineage. This shift matches observations that, when compared with fishes, the pattern of hyoid motion in tetrapods is reversed and also time-shifted relative to the pattern of jaw movement. PMID:21705368

  9. Cross-bridge kinetics of fast and slow fibres of cat jaw and limb muscles: correlations with myosin subunit composition.

    PubMed

    Hoh, Joseph F Y; Li, Zhao-Bo; Qin, Han; Hsu, Michael K H; Rossmanith, Gunther H

    2007-01-01

    Mechanical properties of the jaw-closing muscles of the cat are poorly understood. These muscles are known to differ in myosin and fibre type compositions from limb muscles. This work aims to correlate mechanical properties of single fibres in cat jaw and limb muscles with their myosin subunit compositions. The stiffness minimum frequency, f(min), which reflects isometric cross-bridge kinetics, was measured in Ca(2+)-activated glycerinated fast and slow fibres from cat jaw and limb muscles for temperatures ranging between 15 and 30 degrees C by mechanical perturbation analysis. At 15 degrees C, f(min) was 0.5 Hz for limb-slow fibres, 4-6 Hz for jaw-slow fibres, and 10-13 Hz for limb-fast and jaw-fast fibres. The activation energy for f(min) obtained from the slope of the Arrhenius plot for limb-slow fibres was 30-40% higher than values for the other three types of fibres. SDS-PAGE and western blotting using highly specific antibodies verified that limb-fast fibres contained IIA or IIX myosin heavy chain (MyHC). Jaw-fast fibres expressed masticatory MyHC while both jaw-fast and jaw-slow fibres expressed masticatory myosin light chains (MLCs). The nucleotide sequences of the 3' ends of the slow MyHC cDNAs isolated from cat masseter and soleus cDNA libraries showed identical coding and 3'-untranslated regions, suggesting that jaw-slow and limb-slow fibres express the same slow MyHC gene. We conclude that the isometric cross-bridge cycling kinetics of jaw-fast and limb-fast fibres detected by f(min) are indistinguishable in spite of differences in MyHC and light chain compositions. However, jaw-slow fibres, in which the same slow MyHCs are found in combination with MLCs of the jaw type, show enhanced cross-bridge cycling kinetics and reduced activation energy for cross-bridge detachment.

  10. Relationships among nocturnal jaw muscle activities, decreased esophageal pH, and sleep positions.

    PubMed

    Miyawaki, Shouichi; Tanimoto, Yuko; Araki, Yoshiko; Katayama, Akira; Imai, Mikako; Takano-Yamamoto, Teruko

    2004-11-01

    The purpose of this study was to examine the relationships among nocturnal jaw muscle activities, decreased esophageal pH, and sleep positions. Twelve adult volunteers, including 4 bruxism patients, participated in this study. Portable pH monitoring, electromyography of the temporal muscle, and audio-video recordings were conducted during the night in the subjects' homes. Rhythmic masticatory muscle activity (RMMA) episodes were observed most frequently, with single short-burst episodes the second most frequent. The frequencies of RMMA, single short-burst, and clenching episodes were significantly higher during decreased esophageal pH episodes than those during other times. Both the electromyography and the decreased esophageal pH episodes were most frequently observed in the supine position. These results suggest that most jaw muscle activities, ie, RMMA, single short-burst, and clenching episodes, occur in relation to gastroesophageal reflux mainly in the supine position.

  11. Asymmetric activation of motor cortex controlling human anterior digastric muscles during speech and target-directed jaw movements.

    PubMed

    Sowman, Paul F; Flavel, Stanley C; McShane, Christie L; Sakuma, Shigemitsu; Miles, Timothy S; Nordstrom, Michael A

    2009-07-01

    Like most of the cranial muscles involved in speech, the trigeminally innervated anterior digastric muscles are controlled by descending corticobulbar projections from the primary motor cortex (M1) of each hemisphere. We hypothesized that changes in corticobulbar M1 excitability during speech production would show a hemispheric asymmetry favoring the left side, which is the dominant hemisphere for language processing in most strongly right handed subjects. Fifteen volunteers aged 24.5+/-5.3 (SD) yr participated. All subjects were strongly right handed as reported by questionnaire. A surface electromyograph (EMG) was recorded bilaterally from digastrics and jaw movement detected by an accelerometer attached to a lower incisor. Focal transcranial magnetic stimulation (TMS) was used to assess corticomotor excitability of the digastric representation in M1 of both hemispheres during four tasks: 1) static isometric contraction of digastrics; 2) speaking a single word; 3) visually guided, nonspeech jaw movement that matched the jaw kinematics recorded during task 2; and 4) reciting a sentence. Background EMG was well matched in all tasks and jaw kinematics were similar around the time of the TMS pulse for tasks 2-4. TMS resting thresholds and digastric muscle-evoked potential (MEP) size during isometric contraction did not differ for TMS over left versus right M1. MEPs elicited by TMS over left, but not right M1 increased in size during speech and nonspeech jaw movement compared with isometric contraction. We conclude that left corticobulbar M1 is preferentially engaged for descending control of digastric muscles during speech and the performance of a rapid jaw movement to match a target kinematic profile.

  12. Postural stability and the influence of concurrent muscle activation--Beneficial effects of jaw and fist clenching.

    PubMed

    Ringhof, Steffen; Leibold, Timo; Hellmann, Daniel; Stein, Thorsten

    2015-10-01

    Recent studies reported on the potential benefits of submaximum clenching of the jaw on human postural control in upright unperturbed stance. However, it remained unclear whether these effects might also be observed among active controls. The purpose of the present study, therefore, was to comparatively examine the influence of concurrent muscle activation in terms of submaximum clenching of the jaw and submaximum clenching of the fists on postural stability. Posturographic analyses were conducted with 17 healthy young adults on firm and foam surfaces while either clenching the jaw (JAW) or clenching the fists (FIST), whereas habitual standing served as the control condition (CON). Both submaximum tasks were performed at 25% maximum voluntary contraction, assessed, and visualized in real time by means of electromyography. Statistical analyses revealed that center of pressure (COP) displacements were significantly reduced during JAW and FIST, but with no differences between both concurrent clenching activities. Further, a significant increase in COP displacements was observed for the foam as compared to the firm condition. The results showed that concurrent muscle activation significantly improved postural stability compared with habitual standing, and thus emphasize the beneficial effects of jaw and fist clenching for static postural control. It is suggested that concurrent activities contribute to the facilitation of human motor excitability, finally increasing the neural drive to the distal muscles. Future studies should evaluate whether elderly or patients with compromised postural control might benefit from these physiological responses, e.g., in the form of a reduced risk of falling. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Jaw Dysfunction Related to Pterygoid and Masseter Muscle Dosimetry After Radiation Therapy in Children and Young Adults With Head-and-Neck Sarcomas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krasin, Matthew J., E-mail: matthew.krasin@stjude.org; Wiese, Kristin M.; Spunt, Sheri L.

    Purpose: To investigate the relationship between jaw function, patient and treatment variables, and radiation dosimetry of the mandibular muscles and joints in children and young adults receiving radiation for soft-tissue and bone sarcomas. Methods and Materials: Twenty-four pediatric and young adult patients with head-and-neck sarcomas were treated on an institutional review board-approved prospective study of focal radiation therapy for local tumor control. Serial jaw depression measurements were related to radiation dosimetry delivered to the medial and lateral pterygoid muscles, masseter muscles, and temporomandibular joints to generate mathematical models of jaw function. Results: Baseline jaw depression was only influenced by themore » degree of surgical resection. In the first 12 weeks from initiation of radiation, surgical procedures greater than a biopsy, administration of cyclophosphamide containing chemotherapy regimes, and large gross tumor volumes adversely affected jaw depression. Increasing dose to the pterygoid and masseter muscles above 40 Gy predicted loss of jaw function over the full course of follow-up. Conclusions: Clinical and treatment factors are related to initial and subsequent jaw dysfunction. Understanding these complex interactions and the affect of specific radiation doses may help reduce the risk for jaw dysfunction in future children and young adults undergoing radiation therapy for the management of soft-tissue and bone sarcomas.« less

  14. Choice of biomaterials—Do soft occlusal splints influence jaw-muscle activity during sleep? A preliminary report

    NASA Astrophysics Data System (ADS)

    Arima, Taro; Takeuchi, Tamiyo; Tomonaga, Akio; Yachida, Wataru; Ohata, Noboru; Svensson, Peter

    2012-12-01

    AimThe choice of biomaterials for occlusal splints may significantly influence biological outcome. In dentistry, hard acrylic occlusal splints (OS) have been shown to have a temporary and inhibitory effect on jaw-muscle activity, such as tooth clenching and grinding during sleep, i.e., sleep bruxism (SB). Traditionally, this inhibitory effect has been explained by changes in the intraoral condition rather than the specific effects of changes in occlusion. The aim of this preliminary study was to investigate the effect of another type of occlusal surface, such as a soft-material OS in addition to a hard-type OS in terms of changes in jaw-muscle activity during sleep. Materials and methodsSeven healthy subjects (mean ± SD, six men and one woman: 28.9 ± 2.7 year old), participated in this study. A soft-material OS (ethylene vinyl acetate copolymer) was fabricated for each subject and the subjects used the OS for five continuous nights. The EMG activity during sleep was compared to baseline (no OS). Furthermore, the EMG activity during the use of a hard-type OS (Michigan-type OS, acrylic resin), and hard-type OS combined with contingent electrical stimulation (CES) was compared to baseline values. Each session was separated by at least two weeks (washout). Jaw-muscle activity during sleep was recorded with single-channel ambulatory devices (GrindCare, MedoTech, Herlev, Denmark) in all sessions for five nights. ResultsJaw-muscle activity during sleep was 46.6 ± 29.8 EMG events/hour at baseline and significantly decreased during the hard-type OS (17.4 ± 10.5, P = 0.007) and the hard-type OS + CES (10.8 ± 7.1, P = 0.002), but not soft-material OS (36.3 ± 24.5, P = 0.055). Interestingly, the soft-material OS (coefficient of variance = 98.6 ± 35.3%) was associated with greater night-to-night variations than baseline (39.0 ± 11.8%) and the hard-type OS + CES (53.3 ± 13.7%, P < 0.013). ConclusionThe present pilot study in small sample showed that a soft

  15. Comparative anatomy, evolution, and homologies of tetrapod hindlimb muscles, comparison with forelimb muscles, and deconstruction of the forelimb-hindlimb serial homology hypothesis.

    PubMed

    Diogo, Rui; Molnar, Julia

    2014-06-01

    For more than two centuries, the idea that the forelimb and hindlimb are serially homologous structures has been accepted without serious question. This study presents the first detailed analysis of the evolution and homologies of all hindlimb muscles in representatives of each major tetrapod group and proposes a unifying nomenclature for these muscles. These data are compared with information obtained previously about the forelimb muscles of tetrapods and the muscles of other gnathostomes in order to address one of the most central and enigmatic questions in evolutionary and comparative anatomy: why are the pelvic and pectoral appendages of gnathostomes generally so similar to each other? An integrative analysis of the new myological data, combined with a review of recent paleontological, developmental, and genetic works and of older studies, does not support serial homology between the structures of these appendages. For instance, many of the strikingly similar forelimb and hindlimb muscles found in each major extant tetrapod taxon were acquired at different geological times and/or have different embryonic origins. These similar muscles are not serial homologues, but the result of evolutionary parallelism/convergence due to a complex interplay of ontogenetic, functional, topological, and phylogenetic constraints/factors. Copyright © 2014 Wiley Periodicals, Inc.

  16. Effect of sympathetic nervous system activation on the tonic vibration reflex in rabbit jaw closing muscles.

    PubMed

    Grassi, C; Deriu, F; Passatore, M

    1993-09-01

    1. In precollicular decerebrate rabbits we investigated the effect of sympathetic stimulation, at frequencies within the physiological range, on the tonic vibration reflex (TVR) elicited in jaw closing muscles by small amplitude vibrations applied to the mandible (15-50 microns, 150-180 Hz). The EMG activity was recorded bilaterally from masseter muscle and the force developed by the reflex was measured through an isometric transducer connected with the mandibular symphysis. 2. Unilateral stimulation of the peripheral stump of the cervical sympathetic by the TVR, and a marked decrease or disappearance of the ipsilateral EMG activity. No significant changes were detected in the EMG contralateral to the stimulated nerve. Bilateral CSN stimulation reduced by 60-90% the force reflexly produced by the jaw closing muscles and strongly decreased or suppressed EMG activity on both sides. This effect was often preceded by a transient TVR enhancement, very variable in amplitude and duration, which was concomitant with the modest increase in pulmonary ventilation induced by the sympathetic stimulation. 3. During bilateral CSN stimulation, an increase in the vibration amplitude by a factor of 1.5-2.5 was sufficient to restore the TVR reduced by sympathetic stimulation. 4. The depressant action exerted by sympathetic activation on the TVR is mediated by alpha-adrenergic receptors, since it was almost completely abolished by the I.V. administration of either phentolamine or prazosin, this last drug being a selective antagonist of alpha 1-adrenoceptors. The sympathetically induced decrease in the TVR was not mimicked by manoeuvres producing a large and sudden reduction or abolition of the blood flow to jaw muscles, such as unilateral or bilateral occlusion of the common carotid artery. 5. The effect of sympathetic stimulation was not significantly modified after denervation of the inferior dental arch and/or anaesthesia of the temporomandibular joint, i.e. after having reduced

  17. Disturbed jaw behavior in whiplash-associated disorders during rhythmic jaw movements.

    PubMed

    Häggman-Henrikson, B; Zafar, H; Eriksson, P-O

    2002-11-01

    As shown previously, "functional jaw movements" are the result of coordinated activation of jaw as well as neck muscles, leading to simultaneous movements in the temporomandibular, atlanto-occipital, and cervical spine joints. In this study, the effect of neck trauma on natural jaw function was evaluated in 12 individuals suffering from whiplash-associated disorders (WAD). Spatiotemporal characteristics of mandibular and concomitant head movements were evaluated for three different modes of rhythmic jaw activities: self-paced continuous maximal jaw-opening/-closing movements, paced continuous maximal jaw-opening/-closing movements at 50 cycles/minute, and unilateral chewing. Compared with healthy subjects, the WAD group showed smaller magnitude and altered coordination pattern (a change in temporal relations) of mandibular and head movements. In conclusion, these results show that neck trauma can derange integrated jaw and neck behavior, and underline the functional coupling between the jaw and head-neck motor systems.

  18. Masticatory myosin unveiled: first determination of contractile parameters of muscle fibers from carnivore jaw muscles.

    PubMed

    Toniolo, Luana; Cancellara, Pasqua; Maccatrozzo, Lisa; Patruno, Marco; Mascarello, Francesco; Reggiani, Carlo

    2008-12-01

    Masticatory myosin heavy chain (M MyHC) is a myosin subunit isoform with expression restricted to muscles derived from the first branchial arch, such as jaw-closer muscles, with pronounced interspecies variability. Only sparse information is available on the contractile properties of muscle fibers expressing M MyHC (M fibers). In this study, we characterized M fibers isolated from the jaw-closer muscles (temporalis and masseter) of two species of domestic carnivores, the cat and the dog, compared with fibers expressing slow or fast (2A, 2X, and 2B) isoforms. In each fiber, during maximally calcium-activated contractions at 12 degrees C, we determined isometric-specific tension (P(o)), unloaded shortening velocity (v(o)) with the slack test protocol, and the rate constant of tension redevelopment (K(TR)) after a fast shortening-relengthening cycle. At the end of the mechanical experiment, we identified MyHC isoform composition of each fiber with gel electrophoresis. Electrophoretic migration rate of M MyHC was similar in both species. We found that in both species the kinetic parameters v(o) and K(TR) of M fibers were similar to those of 2A fibers, whereas P(o) values were significantly greater than in any other fiber types. The similarity between 2A and M fibers and the greater tension development of M fibers were confirmed also in mechanical experiments performed at 24 degrees C. Myosin concentration was determined in single fibers and found not different in M fibers compared with slow and fast fibers, suggesting that the higher tension developed by M fibers does not find an explanation in a greater number of force generators. The specific mechanical characteristics of M fibers might be attributed to a diversity in cross-bridge kinetics.

  19. Homologies of the transversospinalis muscles in the anterior presacral region of Sauria (crown Diapsida).

    PubMed

    Tsuihiji, Takanobu

    2005-02-01

    Homologies of muscles of the m. transversospinalis group in the dorsal and cervical regions in Sauria are established based on detailed dissections and published accounts of lepidosaurs, crocodylians, and birds. Attachments and directions of tendons comprising this muscle group are fairly conserved among the saurian clades, enabling rather robust inferences on muscle homologies. The innervation pattern indicates that mm. ascendentes are the most lateral muscles of the m. transversospinalis group in Aves, and are inferred to be homologous with the crocodylian m. tendinoarticularis based on their topological similarities. It is suggested here that the lepidosaurian articulo-parietalis part of m. longissimus cervico-capitis actually belongs to the m. transversospinalis group because its tendons of origin are shared with those of m. semispinalis. The avian m. complexus and the lateral part of the crocodylian m. transversospinalis capitis have origins and insertions similar to this lepidosaurian muscle, and are proposed to be homologous with the latter. In some birds, m. longus colli dorsalis, pars profunda continues directly into the anterior cervical region as m. splenius accessorius, suggesting a serially homologous relationship. Similarly, m. splenius anticus continues anteriorly from m. longus colli dorsalis, pars cranialis, and both of these muscles lie dorsal to m. splenius accessorius. Therefore, the currently used nomenclature that regards m. splenius accessorius as a part of m. longus colli dorsalis, pars cranialis and that regards m. splenius anticus as a part of the former muscle does not accurately reflect the serial homologies among these muscles and may not be justified. Copyright 2004 Wiley-Liss, Inc.

  20. Functional characteristics of the rat jaw muscles: daily muscle activity and fiber type composition.

    PubMed

    Kawai, Nobuhiko; Sano, Ryota; Korfage, Joannes A M; Nakamura, Saika; Tanaka, Eiji; van Wessel, Tim; Langenbach, Geerling E J; Tanne, Kazuo

    2009-12-01

    Skeletal muscles have a heterogeneous fiber type composition, which reflects their functional demand. The daily muscle use and the percentage of slow-type fibers have been shown to be positively correlated in skeletal muscles of larger animals but for smaller animals there is no information. The examination of this relationship in adult rats was the purpose of this study. We hypothesized a positive relationship between the percentage of fatigue-resistant fibers in each muscle and its total duration of use per day. Fourteen Wistar strain male rats (410-450 g) were used. A radio-telemetric device was implanted to record muscle activity continuously from the superficial masseter, deep masseter, anterior belly of digastric and anterior temporalis muscles. The degree of daily muscle use was quantified by the total duration of muscle activity per day (duty time) exceeding specified levels of the peak activity (2, 5, 20 and 50%). The fiber type composition of the muscles was examined by the myosin heavy chain content of the fibers by means of immunohistochemical staining. At lower activity levels (exceeding 2 and 5% of the peak activity), the duty time of the anterior belly of digastric muscle was significantly (P < 0.01) longer than those of the other muscles. The anterior belly of digastric muscle also contained the highest percentage of slow-type fibers (type I fiber and hybrid fiber co-expressing myosin heavy chain I + IIA) (ca. 11%; P < 0.05). By regression analysis for all four muscles, an inter-muscular comparison showed a positive relationship between the duty time (exceeding 50% of the peak activity) and the percentage of type IIX fibers (P < 0.05), which demonstrate intermediate physiological properties relative to type IIA and IIB fibers. For the jaw muscles of adult male rats, the variations of fiber type composition and muscle use suggest that the muscle containing the largest amounts of slow-type fibers (the anterior belly of digastric muscle) is mainly

  1. Jaw muscle development as evidence for embryonic repatterning in direct-developing frogs.

    PubMed Central

    Hanken, J; Klymkowsky, M W; Alley, K E; Jennings, D H

    1997-01-01

    The Puerto Rican direct-developing frog Eleutherodactylus coqui (Leptodactylidae) displays a novel mode of jaw muscle development for anuran amphibians. Unlike metamorphosing species, several larval-specific features never form in E. coqui; embryonic muscle primordia initially assume an abbreviated, mid-metamorphic configuration that is soon remodelled to form the adult morphology before hatching. Also lacking are both the distinct population of larval myofibres and the conspicuous, larval-to-adult myofibre turnover that are characteristic of muscle development in metamorphosing species. These modifications are part of a comprehensive alteration in embryonic cranial patterning that has accompanied life history evolution in this highly speciose lineage. Embryonic 'repatterning' in Eleutherodactylus may reflect underlying developmental mechanisms that mediate the integrated evolution of complex structures. Such mechanisms may also facilitate, in organisms with a primitively complex life cycle, the evolutionary dissociation of embryonic, larval, and adult features. PMID:9332017

  2. Can short-term oral fine motor training affect precision of task performance and induce cortical plasticity of the jaw muscles?

    PubMed

    Zhang, Hong; Kumar, Abhishek; Kothari, Mohit; Luo, Xiaoping; Trulsson, Mats; Svensson, Krister G; Svensson, Peter

    2016-07-01

    The aim was to test the hypothesis that short-term oral sensorimotor training of the jaw muscles would increase the precision of task performance and induce neuroplastic changes in the corticomotor pathways, related to the masseter muscle. Fifteen healthy volunteers performed six series with ten trials of an oral sensorimotor task. The task was to manipulate and position a spherical chocolate candy in between the anterior teeth and split it into two equal halves. The precision of the task performance was evaluated by comparing the ratio between the two split halves. A series of "hold-and-split" tasks was also performed before and after the training. The hold force and split force along with the electromyographic (EMG) activity of jaw muscles were recorded. Motor-evoked potentials and cortical motor maps of the right masseter muscle were evoked by transcranial magnetic stimulation. There was a significant effect of series on the precision of the task performance during the short-term oral sensorimotor training (P < 0.002). The hold force during the "hold-and-split" task was significantly lower after training than before the short-term training (P = 0.011). However, there was no change in the split force and the EMG activity of the jaw muscles before and after the training. Further, there was a significant increase in the amplitude of the motor-evoked potentials (P < 0.016) and in the motor cortex map areas (P = 0.033), after the short-term oral sensorimotor training. Therefore, short-term oral sensorimotor task training increased the precision of task performance and induced signs of neuroplastic changes in the corticomotor pathways, related to the masseter muscle.

  3. An electromyographic study of aspects of 'deprogramming' of human jaw muscles.

    PubMed

    Donegan, S J; Carr, A B; Christensen, L V; Ziebert, G J

    1990-11-01

    Surface electromyograms from the right and left masseter and anterior temporalis muscles were used to detect peripheral correlates of deprogramming, also known as programming and reprogramming, of jaw elevator muscles. Putative deprogramming was attempted through the clinically recommended use of a leaf gauge, placed for 15 min between the maxillary and mandibular anterior teeth and disoccluding the posterior teeth by about 2 mm. Studied contractile activities were those of postural activity (subconscious, semi-isometric, minimal activity) and intercuspal teeth clenching (conscious, isometric, maximal activity). Use of the leaf gauge did not affect normalized postural activity (about 4%), the duration (about 900 ms) and static work efforts of clenching (about 1200 microV.s), the time to peak mean voltage of clenching (about 400 ms), and the peak mean voltage of clenching (about 300 microV). Activity and asymmetry indices showed that the studied motor innervation patterns were not changed by the leaf gauge.

  4. Chronic low-frequency stimulation transforms cat masticatory muscle fibers into jaw-slow fibers.

    PubMed

    Kang, Lucia H D; Hoh, Joseph F Y

    2011-09-01

    Cat masticatory muscle during regeneration expresses masticatory-specific myofibrillar proteins upon innervation by a fast muscle nerve but acquires the jaw-slow phenotype when innervated by a slow muscle nerve. Here, we test the hypothesis that chronic low-frequency stimulation simulating impulses from the slow nerve can result in masticatory-to-slow fiber-type transformation. In six cats, the temporalis muscle was continuously stimulated directly at 10 Hz for up to 12 weeks using a stimulator affixed to the skull. Stimulated muscles were analyzed by immunohistochemistry using, among others, monoclonal antibodies against masticatory-specific myosin heavy chain (MyHC), myosin binding protein-C, and tropomyosins. Under the electrodes, stimulation induced muscle regeneration, which generated slow fibers. Deep to the electrodes, at two to three weeks, two distinct populations of masticatory fibers began to express slow MyHC: 1) evenly distributed fibers that completely suppressed masticatory-specific proteins but transiently co-expressed fetal MyHCs, and 2) incompletely transformed fibers that express slow and masticatory but not fetal MyHCs. SDS-PAGE confirmed de novo expression of slow MyHC and β-tropomyosin in the stimulated muscles. We conclude that chronic low-frequency stimulation induces masticatory-to-slow fiber-type conversion. The two populations of transforming masticatory fibers may differ in their mode of activation or lineage of their myogenic cells.

  5. Proteomics and immunohistochemistry identify the expression of α-cardiac myosin heavy chain in the jaw-closing muscles of sooty mangabeys (order Primates).

    PubMed

    Wall, Christine E; Holmes, Megan; Soderblom, Erik J; Taylor, Andrea B

    2018-07-01

    The jaw-closing muscles of humans and nonprimate mammals express alpha-cardiac fibers but MyHC α-cardiac has not been identified in the jaw adductors of nonhuman primates. We determined whether MyHC α-cardiac is expressed in the superficial masseter and temporalis muscles of the sooty mangabey (Cercocebus atys), an African Old World monkey that specializes on hard seeds. LC-MS/MS based proteomics was used to identify the presence of MyHC Iα. Immunohistochemistry was used to analyze the composition and distribution of fiber types in the superficial masseter and temporalis muscles of eight C. atys. Serial sections were stained against MyHC α-cardiac (MYH6), as well as MyHC-1 (NOQ7.5.4D), MyHC-2 (MY-32), and MyHC-M (2F4). Proteomics analysis identified the presence of Myosin-6 (MyHC α-cardiac) in both heart atrium and superficial masseter. MyHC α-cardiac was expressed in abundance in the superficial masseter and temporalis muscles of all eight individuals and hybrid fibers were common. The identification of MyHC α-cardiac in the jaw adductors of sooty mangabeys is a novel finding for nonhuman primates. The abundance of MyHC α-cardiac indicates a fatigue-resistant fiber population characterized by intermediate speed of contraction between pure MyHC-1 and MyHC-2 isoforms. We suggest that α-cardiac fibers may be advantageous to sooty mangabeys, whose feeding behavior includes frequent crushing of relatively large, hard seeds during the power stroke of ingestion. Additional studies comparing jaw-adductor fiber phenotype of hard-object feeding primates and other mammals are needed to explore this relationship further. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. The hip adductor muscle group in caviomorph rodents: anatomy and homology.

    PubMed

    García-Esponda, César M; Candela, Adriana M

    2015-06-01

    Anatomical comparative studies including myological data of caviomorph rodents are relatively scarce, leading to a lack of use of muscular features in cladistic and morphofunctional analyses. In rodents, the hip adductor muscles constitute an important group of the hindlimb musculature, having an important function during the beginning of the stance phase. These muscles are subdivided in several distinct ways in the different clades of rodents, making the identification of their homologies hard to establish. In this contribution we provide a detailed description of the anatomical variation of the hip adductor muscle group of different genera of caviomorph rodents and identify the homologies of these muscles in the context of Rodentia. On this basis, we identify the characteristic pattern of the hip adductor muscles in Caviomorpha. Our results indicate that caviomorphs present a singular pattern of the hip adductor musculature that distinguishes them from other groups of rodents. They are characterized by having a single m. adductor brevis that includes solely its genicular part. This muscle, together with the m. gracilis, composes a muscular sheet that is medial to all other muscles of the hip adductor group. Both muscles probably have a synergistic action during locomotion, where the m. adductor brevis reinforces the multiple functions of the m. gracilis in caviomorphs. Mapping of analyzed myological characters in the context of Rodentia indicates that several features are recovered as potential synapomorphies of caviomorphs. Thus, analysis of the myological data described here adds to the current knowledge of caviomorph rodents from anatomical and functional points of view, indicating that this group has features that clearly differentiate them from other rodents. Copyright © 2015 Elsevier GmbH. All rights reserved.

  7. Anatomy, function, and evolution of jaw and hyobranchial muscles in cryptobranchoid salamander larvae.

    PubMed

    Kleinteich, Thomas; Herzen, Julia; Beckmann, Felix; Matsui, Masafumi; Haas, Alexander

    2014-02-01

    Larval salamanders (Lissamphibia: Caudata) are known to be effective suction feeders in their aquatic environments, although they will eventually transform into terrestrial tongue feeding adults during metamorphosis. Early tetrapods may have had a similar biphasic life cycle and this makes larval salamanders a particularly interesting model to study the anatomy, function, development, and evolution of the feeding apparatus in terrestrial vertebrates. Here, we provide a description of the muscles that are involved in the feeding strike in salamander larvae of the Hynobiidae and compare them to larvae of the paedomorphic Cryptobranchidae. We provide a functional and evolutionary interpretation for the observed muscle characters. The cranial muscles in larvae from species of the Hynobiidae and Cryptobranchidae are generally very similar. Most notable are the differences in the presence of the m. hyomandibularis, a muscle that connects the hyobranchial apparatus with the lower jaw. We found this muscle only in Onychodactylus japonicus (Hynobiidae) but not in other hynobiid or cryptobranchid salamanders. Interestingly, the m. hyomandibularis in O. japonicus originates from the ceratobranchial I and not the ceratohyal, and thus exhibits what was previously assumed to be the derived condition. Finally, we applied a biomechanical model to simulate suction feeding in larval salamanders. We provide evidence that a flattened shape of the hyobranchial apparatus in its resting position is beneficial for a fast and successful suction feeding strike. Copyright © 2013 Wiley Periodicals, Inc.

  8. The influence of altered working-side occlusal guidance on masticatory muscles and related jaw movement.

    PubMed

    Belser, U C; Hannam, A G

    1985-03-01

    The effect of four different occlusal situations (group function, canine guidance, working side occlusal interference, and hyperbalancing occlusal interference) on EMG activity in jaw elevator muscles and related mandibular movement was investigated on 12 subjects. With a computer-based system, EMG and displacement signals were collected simultaneously during specific functional (unilateral chewing) and parafunctional tasks (mandibular gliding movements and various tooth clenching efforts) and analyzed quantitatively. When a naturally acquired group function was temporarily and artificially changed into a dominant canine guidance, a significant general reduction of elevator muscle activity was observed when subjects exerted full isometric tooth-clenching efforts in a lateral mandibular position. The original muscular coordination pattern (relative contraction from muscle to muscle) remained unaltered during this test. With respect to unilateral chewing, no significant alterations in the activity or coordination of the muscles occurred when an artificial canine guidance was introduced. Introduction of a hyperbalancing occlusal contact caused significant alterations in muscle activity and coordination during maximal tooth clenching in a lateral mandibular position. A marked shift of temporal muscle EMG activity toward the side of the interference and unchanged bilateral activity of the two masseter muscles were observed. The results suggest that canine-protected occlusions do not significantly alter muscle activity during mastication but significantly reduce muscle activity during parafunctional clenching. They also suggest that non-working side contacts dramatically alter the distribution of muscle activity during parafunctional clenching, and that this redistribution may affect the nature of reaction forces at the temporomandibular joints.

  9. Successful treatment of open jaw and jaw deviation dystonia with botulinum toxin using a simple intraoral approach.

    PubMed

    Moscovich, Mariana; Chen, Zhongxing Peng; Rodriguez, Ramon

    2015-03-01

    Oromandibular dystonia (OMD) is a focal dystonia that involves the mouth, jaw, and/or tongue. It can be classified as idiopathic, tardive dystonia or secondary to other neurological disorders and subdivided into jaw opening, jaw closing, jaw deviation and lip pursing. The muscles involved in jaw opening dystonia are usually the digastrics and lateral pterygoids. It is known that the lateral pterygoids may be approached both internally and externally. The external approach is the most common; however neurologists experienced in treating patients with botulinum toxin can safely and with no extra cost perform the intraoral procedure. We report our experience in the treatment of jaw opening and jaw deviation dystonia using the intraoral injection approach. Eight patients were selected from the University of Florida with a clinical diagnosis of open jaw/jaw deviation dystonia. All of them were injected with onabotulinum toxin A using the internal approach and the clinical global impression scale was applied. The mean age of the patients was 67 (standard deviation [SD] 10.2) years, with a disease duration of 10.2 (SD 7.7) years and the mean distance they traveled to our institution was 448 km (278 miles). After treatment, six patients scored as very much improved in the clinical global impression scale and two patients scored as much improved. Only one patient reported an adverse event of nasal speech following one of the injections that improved after 4 weeks. Botulinum toxin injections for open jaw/jaw deviation dystonia can be safely performed with the intraoral approach without the need of special devices other than electromyography. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Evolutionary Trends in the Jaw Adductor Mechanics of Ornithischian Dinosaurs.

    PubMed

    Nabavizadeh, Ali

    2016-03-01

    Jaw mechanics in ornithischian dinosaurs have been widely studied for well over a century. Most of these studies, however, use only one or few taxa within a given ornithischian clade as a model for feeding mechanics across the entire clade. In this study, mandibular mechanical advantages among 52 ornithischian genera spanning all subclades are calculated using 2D lever arm methods. These lever arm calculations estimate the effect of jaw shape and difference in adductor muscle line of action on relative bite forces along the jaw. Results show major instances of overlap between taxa in tooth positions at which there was highest mechanical advantage. A relatively low bite force is seen across the tooth row among thyreophorans (e.g., stegosaurs and ankylosaurs), with variation among taxa. A convergent transition occurs from a more evenly distributed bite force along the jaw in basal ornithopods and basal marginocephalians to a strong distal bite force in hadrosaurids and ceratopsids, respectively. Accordingly, adductor muscle vector angles show repeated trends from a mid-range caudodorsal orientation in basal ornithischians to a decrease in vector angles indicating more caudally oriented jaw movements in derived taxa (e.g., derived thyreophorans, basal ornithopods, lambeosaurines, pachycephalosaurs, and derived ceratopsids). Analyses of hypothetical jaw morphologies were also performed, indicating that both the coronoid process and lowered jaw joint increase moment arm length therefore increasing mechanical advantage of the jaw apparatus. Adaptive trends in craniomandibular anatomy show that ornithischians evolved more complex feeding apparatuses within different clades as well as morphological convergences between clades. © 2016 Wiley Periodicals, Inc.

  11. Jaw1/LRMP has a role in maintaining nuclear shape via interaction with SUN proteins.

    PubMed

    Kozono, Takuma; Tadahira, Kazuko; Okumura, Wataru; Itai, Nao; Tamura-Nakano, Miwa; Dohi, Taeko; Tonozuka, Takashi; Nishikawa, Atsushi

    2018-06-06

    Jaw1/LRMP is characterized as a type II integral membrane protein that is localized to endoplasmic reticulum (ER), however, its physiological functions have been poorly understood. An alignment of amino acid sequence of Jaw1 with KASH proteins, outer nuclear membrane proteins, revealed that Jaw1 has a partial homology to the KASH domain. Here, we show that the function of Jaw1 is to maintain nuclear shape in mouse melanoma cell line. The siRNA-mediated knockdown of Jaw1 caused a severe defect in nuclear shape, and the defect was rescued by ectopic expression of siRNA-resistant Jaw1. Since co-immunoprecipitation assay indicates that Jaw1 interacts with SUN proteins that are inner nuclear proteins and microtubules, this study suggests that Jaw1 has a role in maintaining nuclear shape via interactions with SUN proteins and microtubules.

  12. Effects of orthognathic surgery for class III malocclusion on signs and symptoms of temporomandibular disorders and on pressure pain thresholds of the jaw muscles.

    PubMed

    Farella, M; Michelotti, A; Bocchino, T; Cimino, R; Laino, A; Steenks, M H

    2007-07-01

    The aim of this longitudinal study was to determine the effects of orthognathic surgery on signs and symptoms of temporomandibular disorders (TMD) and on pressure pain thresholds (PPTs) of the jaw muscles. Fourteen consecutive class III patients undergoing pre-surgical orthodontic treatment were treated by combined Le Fort I osteotomy and bilateral sagittal ramus osteotomy. The clinical examination included the assessment of signs and symptoms of TMD and the assessment of PPTs of the masseter and temporalis muscles. Anamnestic, clinical and algometric data were collected during five sessions over a 1-year period. Seven out of 14 patients presented with disc displacement with reduction at baseline, whereas four patients (two of them were new cases) did so at the end of follow up (p>0.05). None of the patients were diagnosed with myofascial pain of the jaw muscles at the beginning or end of follow up. PPTs of the masseter and temporalis muscles did not change significantly from baseline values throughout the whole study period. The occurrence of signs and symptoms of TMD fluctuates with an unpredictable pattern after orthognathic surgery for class III malocclusions.

  13. Surface electromyographic evaluation of jaw muscles in children with unilateral crossbite and lateral shift in the early mixed dentition. Sexual dimorphism

    PubMed Central

    Lenguas, Leticia; Alarcón, José-Antonio; Venancio, Filipa; Kassem, Marta

    2012-01-01

    Objectives: To examine the activity of jaw muscles at rest and during maximal voluntary clenching (MVC) in children with unilateral posterior crossbite (UPXB) and functional lateral shift in the early mixed dentition and to evaluate sex differences. Material and Methods: The sample included 30 children (15 males, 15 females) aged 6 to 10 years old, with UPXB and functional mandibular lateral shift (≥1.5 mm) in the early mixed dentition. sEMG activity coming from the muscle areas (anterior temporalis [AT], posterior temporalis [PT], masseter [MA] and suprahyoid [SH]) were obtained from both the crossbite (XB) and noncrossbite (NONXB) sides at mandibular rest position. sEMG acti-vity of the bilateral AT and MA muscles sides was obtained during MVC. Asymmetry and activity indexes were calculated for each muscle area at rest and during MVC; the MA/TA ratio during MVC was also determined. Results: At rest, no differences were found between sexes for any muscle areas or asymmetry and activity indexes. No differences were found between XB and NONXB sides. During MVC, however, significant sex differences were found in AT and MA activity, with higher sEMG values in males than in females, on both XB and NONXB sides. Asymmetry indexes, activity indexes and MA/AT ratios did not show significant differences between the sexes. Activity was symmetric both in males and in females. Conclusions: At rest, no sex differences were found, but during MVC males showed higher activity than did females in both XB and NONXB AT and MA muscle areas. Muscular activity was symmetrical at rest and during MVC in both sexes. Sexual dimorphism should be considered in the diagnosis and treatment of UPXB and lateral shift in the early mixed dentition. Key words:Unilateral crossbite, mandibular shift, jaw muscles, sEMG, early mixed dentition. PMID:22926468

  14. Jaw-opening reflex and corticobulbar motor excitability changes during quiet sleep in non-human primates.

    PubMed

    Yao, Dongyuan; Lavigne, Gilles J; Lee, Jye-Chang; Adachi, Kazunori; Sessle, Barry J

    2013-02-01

    To test the hypothesis that the reflex and corticobulbar motor excitability of jaw muscles is reduced during sleep. Polysomnographic recordings in the electrophysiological study. University sleep research laboratories. The reflex and corticobulbar motor excitability of jaw muscles was determined during the quiet awake state (QW) and quiet sleep (QS) in monkeys (n = 4). During QS sleep, compared to QW periods, both tongue stimulation-evoked jaw-opening reflex peak and root mean square amplitudes were significantly decreased with stimulations at 2-3.5 × thresholds (P < 0.001). The jaw-opening reflex latency during sleep was also significantly longer than during QW. Intracortical microstimulation (ICMS) within the cortical masticatory area induced rhythmic jaw movements at a stable threshold (≤ 60 μA) during QW; but during QS, ICMS failed to induce any rhythmic jaw movements at the maximum ICMS intensity used, although sustained jaw-opening movements were evoked at significantly increased threshold (P < 0.001) in one of the monkeys. Similarly, during QW, ICMS within face primary motor cortex induced orofacial twitches at a stable threshold (≤ 35 μA), but the ICMS thresholds were elevated during QS. Soon after the animal awoke, rhythmic jaw movements and orofacial twitches could be evoked at thresholds similar to those before QS. The results suggest that the excitability of reflex and corticobulbar-evoked activity in the jaw motor system is depressed during QS.

  15. Deranged jaw-neck motor control in whiplash-associated disorders.

    PubMed

    Eriksson, Per-Olof; Zafar, Hamayun; Häggman-Henrikson, Birgitta

    2004-02-01

    Recent findings of simultaneous and well coordinated head-neck movements during single as well as rhythmic jaw opening-closing tasks has led to the conclusion that 'functional jaw movements' are the result of activation of jaw as well as neck muscles, leading to simultaneous movements in the temporomandibular, atlanto-occipital and cervical spine joints. It can therefore be assumed that disease or injury to any of these joint systems would disturb natural jaw function. To test this hypothesis, amplitudes, temporal coordination, and spatiotemporal consistency of concomitant mandibular and head-neck movements during single maximal jaw opening-closing tasks were analysed in 25 individuals suffering from whiplash-associated disorders (WAD) using optoelectronic movement recording technique. In addition, the relative durations for which the head position was equal to, leading ahead of, or lagging behind the mandibular position during the entire jaw opening-closing cycle were determined. Compared with healthy individuals, the WAD group showed smaller amplitudes, and changed temporal coordination between mandibular and head-neck movements. No divergence from healthy individuals was found for the spatiotemporal consistency or for the analysis during the entire jaw opening-closing cycle. These findings in the WAD group of a 'faulty', but yet consistent, jaw-neck behavior may reflect a basic importance of linked control of the jaw and neck sensory-motor systems. In conclusion, the present results suggest that neck injury is associated with deranged control of mandibular and head-neck movements during jaw opening-closing tasks, and therefore might compromise natural jaw function.

  16. Jaw lever analysis of Hawaiian gobioid stream fishes: a simulation study of morphological diversity and functional performance.

    PubMed

    Maie, Takashi; Schoenfuss, Heiko L; Blob, Richard W

    2009-08-01

    Differences in feeding behavior and performance among the five native Hawaiian gobioid stream fishes (Sicyopterus stimpsoni, Lentipes concolor, Awaous guamensis, Stenogobius hawaiiensis, and Eleotris sandwicensis) have been proposed based on the skeletal anatomy of their jaws and dietary specialization. However, performance of the feeding apparatus likely depends on the proportions and configurations of the jaw muscles and the arrangement of the jaw skeleton. We used a published mathematical model of muscle function to evaluate potential differences in jaw closing performance and their correlations with morphology among these species. For example, high output force calculated for the adductor mandibulae muscles (A2 and A3) of both A. guamensis and E. sandwicensis matched expectations based on the morphology of these species because these muscles are larger than in the other species. In contrast, Stenogobius hawaiiensis exhibited an alternative morphological strategy for achieving high relative output forces of both A2 and A3, in which the placement and configuration of the muscles conveyed high mechanical advantage despite only moderate cross-sectional areas. These differing anatomical pathways to similar functional performance suggest a pattern of many-to-one mapping of morphology to performance. In addition, a functional differentiation between A2 and A3 was evident for all species, in which A2 was better suited for producing forceful jaw closing and A3 for rapid jaw closing. Thus, the diversity of feeding performance of Hawaiian stream gobies seems to reflect a maintenance of functional breadth through the retention of some primitive traits in combination with novel functional capacities in several species. (c) 2009 Wiley-Liss, Inc.

  17. Orthodontic treatment-induced temporal alteration of jaw-opening reflex excitability.

    PubMed

    Sasaki, Au; Hasegawa, Naoya; Adachi, Kazunori; Sakagami, Hiroshi; Suda, Naoto

    2017-10-01

    The impairment of orofacial motor function during orthodontic treatment needs to be addressed, because most orthodontic patients experience pain and motor excitability would be affected by pain. In the present study, the temporal alteration of the jaw-opening reflex excitability was investigated to determine if orthodontic treatment affects orofacial motor function. The excitability of jaw-opening reflex evoked by electrical stimulation on the gingiva and recorded bilaterally in the anterior digastric muscles was evaluated at 1 (D1), 3 (D3), and 7 days (D7) after orthodontic force application to the teeth of right side; morphological features (e.g., osteoclast genesis and tooth movement) were also evaluated. To clarify the underlying mechanism of orthodontic treatment-induced alteration of orofacial motor excitability, analgesics were administrated for 1 day. At D1 and D3, orthodontic treatment significantly decreased the threshold for inducing the jaw-opening reflex but significantly increased the threshold at D7. Other parameters of the jaw-opening reflex were also evaluated (e.g., latency, duration and area under the curve of anterior digastric muscles activity), and only the latency of the D1 group was significantly different from that of the other groups. Temporal alteration of the jaw-opening reflex excitability was significantly correlated with changes in morphological features. Aspirin (300 mg·kg -1 ·day -1 ) significantly increased the threshold for inducing the jaw-opening reflex, whereas a lower dose (75-150 mg·kg -1 ·day -1 ) of aspirin or acetaminophen (300 mg·kg -1 ·day -1 ) failed to alter the jaw-opening reflex excitability. These results suggest that an increase of the jaw-opening reflex excitability can be induced acutely by orthodontic treatment, possibly through the cyclooxygenase activation. NEW & NOTEWORTHY It is well known that motor function is affected by pain, but the effect of orthodontic treatment-related pain on the trigeminal

  18. Increased sternocleidomastoid, but not trapezius, muscle activity in response to increased chewing load.

    PubMed

    Häggman-Henrikson, Birgitta; Nordh, Erik; Eriksson, Per-Olof

    2013-10-01

    Previous findings, during chewing, that boluses of larger size and harder texture result in larger amplitudes of both mandibular and head-neck movements suggest a relationship between increased chewing load and incremental recruitment of jaw and neck muscles. The present report evaluated jaw (masseter and digastric) and neck [sternocleidomastoid (SCM) and trapezius] muscle activity during the chewing of test foods of different sizes and textures by 10 healthy subjects. Muscle activity was recorded by surface electromyography and simultaneous mandibular and head movements were recorded using an optoelectronic technique. Each subject performed continuous jaw-opening/jaw-closing movements whilst chewing small and large boluses of chewing gum and rubber silicone (Optosil). For jaw opening/jaw closing without a bolus, SCM activity was recorded for jaw opening concomitantly with digastric activity. During chewing, SCM activity was recorded for jaw closing concomitantly with masseter activity. Trapezius activity was present in some, but not all, cycles. For the masseter and SCM muscles, higher activity was seen with larger test foods, suggesting increased demand and recruitment of these muscles in response to an increased chewing load. This result reinforces the previous notion of a close functional connection between the jaw and the neck motor systems in jaw actions and has scientific and clinical significance for studying jaw function and dysfunction. © 2013 Eur J Oral Sci.

  19. The Effect of Varying Jaw-elevator Muscle Forces on a Finite Element Model of a Human Cranium.

    PubMed

    Toro-Ibacache, Viviana; O'Higgins, Paul

    2016-07-01

    Finite element analyses simulating masticatory system loading are increasingly undertaken in primates, hominin fossils and modern humans. Simplifications of models and loadcases are often required given the limits of data and technology. One such area of uncertainty concerns the forces applied to cranial models and their sensitivity to variations in these forces. We assessed the effect of varying force magnitudes among jaw-elevator muscles applied to a finite element model of a human cranium. The model was loaded to simulate incisor and molar bites using different combinations of muscle forces. Symmetric, asymmetric, homogeneous, and heterogeneous muscle activations were simulated by scaling maximal forces. The effects were compared with respect to strain distribution (i.e., modes of deformation) and magnitudes; bite forces and temporomandibular joint (TMJ) reaction forces. Predicted modes of deformation, strain magnitudes and bite forces were directly proportional to total applied muscle force and relatively insensitive to the degree of heterogeneity of muscle activation. However, TMJ reaction forces and mandibular fossa strains decrease and increase on the balancing and working sides according to the degree of asymmetry of loading. These results indicate that when modes, rather than magnitudes, of facial deformation are of interest, errors in applied muscle forces have limited effects. However the degree of asymmetric loading does impact on TMJ reaction forces and mandibular fossa strains. These findings are of particular interest in relation to studies of skeletal and fossil material, where muscle data are not available and estimation of muscle forces from skeletal proxies is prone to error. Anat Rec, 299:828-839, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  20. Jaw-Opening Reflex and Corticobulbar Motor Excitability Changes During Quiet Sleep in Non-Human Primates

    PubMed Central

    Yao, Dongyuan; Lavigne, Gilles J.; Lee, Jye-Chang; Adachi, Kazunori; Sessle, Barry J.

    2013-01-01

    Study Objective: To test the hypothesis that the reflex and corticobulbar motor excitability of jaw muscles is reduced during sleep. Design: Polysomnographic recordings in the electrophysiological study. Setting: University sleep research laboratories. Participants and Interventions: The reflex and corticobulbar motor excitability of jaw muscles was determined during the quiet awake state (QW) and quiet sleep (QS) in monkeys (n = 4). Measurements and Results: During QS sleep, compared to QW periods, both tongue stimulation-evoked jaw-opening reflex peak and root mean square amplitudes were significantly decreased with stimulations at 2-3.5 × thresholds (P < 0.001). The jaw-opening reflex latency during sleep was also significantly longer than during QW. Intracortical microstimulation (ICMS) within the cortical masticatory area induced rhythmic jaw movements at a stable threshold (≤ 60 μA) during QW; but during QS, ICMS failed to induce any rhythmic jaw movements at the maximum ICMS intensity used, although sustained jaw-opening movements were evoked at significantly increased threshold (P < 0.001) in one of the monkeys. Similarly, during QW, ICMS within face primary motor cortex induced orofacial twitches at a stable threshold (≤ 35 μA), but the ICMS thresholds were elevated during QS. Soon after the animal awoke, rhythmic jaw movements and orofacial twitches could be evoked at thresholds similar to those before QS. Conclusions: The results suggest that the excitability of reflex and corticobulbar-evoked activity in the jaw motor system is depressed during QS. Citation: Yao D; Lavigne GJ; Lee JC; Adachi K; Sessle BJ. Jaw-opening reflex and corticobulbar motor excitability changes during quiet sleep in non-human primates. SLEEP 2013;36(2):269-280. PMID:23372275

  1. Effect of pinching-evoked pain on jaw-stretch reflexes and exteroceptive suppression periods in healthy subjects.

    PubMed

    Biasiotta, A; Peddireddy, A; Wang, K; Romaniello, A; Frati, A; Svensson, P; Arendt-Nielsen, L

    2007-10-01

    To investigate the influence of conditioning cutaneous nociceptive inputs by a new "pinch" model on the jaw-stretch reflex and the exteroceptive suppression periods (ES1 and ES2) in jaw muscles. The jaw-stretch reflex was evoked with the use of a custom-made muscle stretcher and electrical stimuli were used to evoke an early and late exteroceptive suppression period (ES1 and ES2) in the jaw-closing muscles. Electromyographic (EMG) activity was recorded bilaterally from the masseter and temporalis muscles. These brainstem reflexes were recorded in 19 healthy men (28.8+/-1.1 years) during three different conditions: one painful clip applied to the earlobe; one painful clip applied to the nostril, and four painful clips applied simultaneously to the earlobe, nostril, eyebrow, and lower lip. Pain intensity induced by the application of the clips was scored continuously by the subjects on a 100mm visual analogue scale (VAS). The highest VAS pain scores were evoked by placement of four clips (79+/-0.5mm). There was no significant modulation of the jaw-stretch reflex (ANOVAs: P=0.929), the ES1 (P=0.298) or ES2 (P=0.082) in any of the three painful conditions. Intense and tonic cutaneous pain could be elicited by this new "pinch" pain model; however, there was no significant modulation on either excitatory or inhibitory brainstem reflex responses. The novel observation that high-intensity pinch stimuli applied to the craniofacial region fail to modulate two different brainstem reflexes is in contrast to other experimental pain studies documented facilitation of the jaw-stretch reflexes or inhibition of exteroceptive suppression periods. The clinical implication of the present findings is that only some craniofacial pain conditions could be expected to show perturbation of the brainstem reflex responses.

  2. Glutamate-evoked jaw muscle pain as a model of persistent myofascial TMD pain?

    PubMed Central

    Castrillon, Eduardo E.; Cairns, Brian E.; Ernberg, Malin; Wang, Kelun; Sessle, Barry; Arendt-Nielsen, Lars; Svensson, Peter

    2008-01-01

    Objective Compare pain-related measures and psychosocial variables between glutamate-evoked jaw muscle pain in healthy subjects (HS) and patients with persistent myofascial temporomandibular disorder (TMD) pain. Design 47 female HS and 10 female patients with persistent myofascial TMD pain participated. The HS received an injection of glutamate into the masseter muscle to model persistent myofascial TMD pain. Participants filled out a coping strategies questionnaire (CSQ), the symptom checklist 90 (SCL-90) and McGill Pain Questionnaire (MPQ). Pain intensity was assessed on an electronic visual analog scale (VAS). Pain-drawing areas, Numerical Rating Scale (NRS) scores of unpleasantness, pressure pain thresholds (PPT) and tolerance (PPTOL) were measured. Unpaired t-tests and correlation tests were used for analyses. Results The groups were significantly different when comparing the CSQ scores of control, decrease, diverting attention, increase of behavioral activities and somatization. The peak VAS pain, NRS of unpleasantness and MPQ scores were not significantly different between groups, but PPT and PPTOL were significantly lower in the TMD patients. Significant positive correlations were found in the TMD patients between peak VAS pain and CSQ catastrophizing score and SCL-90 somatization. The scores of PPTs and PPTOLs, in patients showed positive correlations with CSQ reinterpreting pain sensations scores and PPTs correlated with CSQ praying/hoping scores. Conclusions Glutamate-evoked pain responses in HS and persistent myofascial TMD pain have similar sensory-discriminative and affective-unpleasantness components but differ in psycho-social features. This study suggests that experimental designs based on glutamate injection into muscle can provide an appropriate model for elucidating persistent myofascial pain conditions. PMID:18313028

  3. Small vertical changes in jaw relation affect motor unit recruitment in the masseter.

    PubMed

    Terebesi, S; Giannakopoulos, N N; Brüstle, F; Hellmann, D; Türp, J C; Schindler, H J

    2016-04-01

    Strategies for recruitment of masseter muscle motor units (MUs), provoked by constant bite force, for different vertical jaw relations have not previously been investigated. The objective of this study was to analyse the effect of small changes in vertical jaw relation on MU recruitment behaviour in different regions of the masseter during feedback-controlled submaximum biting tasks. Twenty healthy subjects (mean age: 24·6 ± 2·4 years) were involved in the investigation. Intra-muscular electromyographic (EMG) activity of the right masseter was recorded in different regions of the muscle. MUs were identified by the use of decomposition software, and root-mean-square (RMS) values were calculated for each experimental condition. Six hundred and eleven decomposed MUs with significantly (P < 0·001) different jaw relation-specific recruitment behaviour were organised into localised MU task groups. MUs with different task specificity in seven examined tasks were observed. The RMS EMG values obtained from the different recording sites were also significantly (P < 0·01) different between tasks. Overall MU recruitment was significantly (P < 0·05) greater in the deep masseter than in the superficial muscle. The number of recruited MUs and the RMS EMG values decreased significantly (P < 0·01) with increasing jaw separation. This investigation revealed differential MU recruitment behaviour in discrete subvolumes of the masseter in response to small changes in vertical jaw relations. These fine-motor skills might be responsible for its excellent functional adaptability and might also explain the successful management of temporomandibular disorder patients by somatic intervention, in particular by the use of oral splints. © 2015 John Wiley & Sons Ltd.

  4. Effects of Botulinum Toxin on Jaw Motor Events during Sleep in Sleep Bruxism Patients: A Polysomnographic Evaluation

    PubMed Central

    Shim, Young Joo; Lee, Moon Kyu; Kato, Takafumi; Park, Hyung Uk; Heo, Kyoung; Kim, Seong Taek

    2014-01-01

    Study Objectives: To investigate the effects of botulinum toxin type A (BoNT-A) injection on jaw motor episodes during sleep in patients with or without orofacial pain who did not respond to oral splint treatment. Methods: Twenty subjects with a clinical diagnosis of SB completed this study. Ten subjects received bilateral BoNT-A injections (25 U per muscle) into the masseter muscles only (group A), and the other 10 received the injections into both the masseter and temporalis muscles (group B). Video-polysomnographic (vPSG) recordings were made before and at 4 weeks after injection. Rhythmic masticatory muscle activity (RMMA) and orofacial activity (OFA) were scored and analyzed for several parameters (e.g., frequency of episodes, bursts per episode, episode duration). The peak amplitude of electromyographic (EMG) activity in the two muscles was also measured. Results: BoNT-A injection did not reduce the frequency, number of bursts, or duration for RMMA episodes in the two groups. The injection decreased the peak amplitude of EMG burst of RMMA episodes in the injected muscles (p < 0.001, repeated measure ANOVA) in both groups. At 4 weeks after injection, 9 subjects self-reported reduction of tooth grinding and 18 subjects self-reported reduction of morning jaw stiffness. Conclusions: A single BoNT-A injection is an effective strategy for controlling SB for at least a month. It reduces the intensity rather than the generation of the contraction in jaw-closing muscles. Future investigations on the efficacy and safety in larger samples over a longer follow-up period are needed before establishing management strategies for SB with BoNT-A. Citation: Shim YJ; Lee MK; Kato T; Park HU; Heo K; Kim ST. Effects of botulinum toxin on jaw motor events during sleep in sleep bruxism patients: a polysomnographic evaluation. J Clin Sleep Med 2014;10(3):291-298. PMID:24634627

  5. FGF and TGFβ signaling link form and function during jaw development and evolution.

    PubMed

    Woronowicz, Katherine C; Gline, Stephanie E; Herfat, Safa T; Fields, Aaron J; Schneider, Richard A

    2018-05-16

    How does form arise during development and change during evolution? How does form relate to function, and what enables embryonic structures to presage their later use in adults? To address these questions, we leverage the distinct functional morphology of the jaw in duck, chick, and quail. In connection with their specialized mode of feeding, duck develop a secondary cartilage at the tendon insertion of their jaw adductor muscle on the mandible. An equivalent cartilage is absent in chick and quail. We hypothesize that species-specific jaw architecture and mechanical forces promote secondary cartilage in duck through the differential regulation of FGF and TGFβ signaling. First, we perform transplants between chick and duck embryos and demonstrate that the ability of neural crest mesenchyme (NCM) to direct the species-specific insertion of muscle and the formation of secondary cartilage depends upon the amount and spatial distribution of NCM-derived connective tissues. Second, we quantify motility and build finite element models of the jaw complex in duck and quail, which reveals a link between species-specific jaw architecture and the predicted mechanical force environment. Third, we investigate the extent to which mechanical load mediates FGF and TGFβ signaling in the duck jaw adductor insertion, and discover that both pathways are mechano-responsive and required for secondary cartilage formation. Additionally, we find that FGF and TGFβ signaling can also induce secondary cartilage in the absence of mechanical force or in the adductor insertion of quail embryos. Thus, our results provide novel insights on molecular, cellular, and biomechanical mechanisms that couple musculoskeletal form and function during development and evolution. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Progression from homologous to heterologous desensitization of contraction in gastric smooth muscle cells.

    PubMed

    Severi, C; Carnicelli, V; di Giulio, A; Romano, G; Bozzi, A; Oratore, A; Strom, R; delle Fave, G

    1999-02-01

    Acute desensitization of contraction and its relative mechanisms have been studied in smooth muscle cells isolated from guinea pig stomach. Desensitization was induced by pre-exposure of the cells to one of the excitatory neuropeptides linked to the phospholipase C intracellular cascade, i.e., cholecystokinin (CCK), gastrin-releasing peptide, and Substance P. Desensitization was homologous after a 30-s pre-exposure and heterologous if pre-exposure lasted for 5 min or longer. Homologous desensitization was studied in a more detailed way after pre-exposure to CCK. Preincubation with increasing concentrations of CCK (10 pM-1 microM) induced a progressive rightward shift of the dose-response curves associated with both a decrease in potency (ED50 4.5 pM-2.2 nM) and a maximum response that were not related to a modification of response kinetics. After brief pre-exposure to 1 nM CCK (Dmax), an inhibition of contraction was observed in response to an identical dose of CCK (45.1 +/- 8.6%), the decreased response being associated with an inhibition of inositol phosphates and [Ca++]i mobilization. Both inositol trisphosphate (InsP3)-induced contraction and [Ca++]i mobilization were inhibited to a lesser extent than CCK-induced responses. Any longer pre-exposure of cells to one of the above-mentioned neuropeptides caused heterologous desensitization, with an observed inhibition of contraction in response to all tested agonists (CCK, 60.3 +/- 5.9%; gastrin-releasing peptide: 56.7 +/- 3. 5%; Substance P, 60.6 +/- 6.5%). A similar decrease was observed in InsP3-induced contractions resulting in a desensitization of the InsP3 response as well. Full recovery of contractile responses appeared within 30 min from the end of preincubation, thus indicating that degradation of membrane receptors did not occur. Although pre-exposure of the cells to protein kinase C inhibitor GF109203X did not modify CCK-induced homologous desensitization, it blocked CCK-induced heterologous

  7. Three dimensional digital reconstruction of the jaw adductor musculature of the extinct marsupial giant Diprotodon optatum

    PubMed Central

    2014-01-01

    The morphology and arrangement of the jaw adductor muscles in vertebrates reflects masticatory style and feeding processes, diet and ecology. However, gross muscle anatomy is rarely preserved in fossils and is, therefore, heavily dependent on reconstructions. An undeformed skull of the extinct marsupial, Diprotodon optatum, recovered from Pleistocene sediments at Bacchus Marsh in Victoria, represents the most complete and best preserved specimen of the species offering a unique opportunity to investigate functional anatomy. Computed tomography (CT) scans and digital reconstructions make it possible to visualise internal cranial anatomy and predict location and morphology of soft tissues, including muscles. This study resulted in a 3D digital reconstruction of the jaw adductor musculature of Diprotodon, revealing that the arrangement of muscles is similar to that of kangaroos and that the muscle actions were predominantly vertical. 3D digital muscle reconstructions provide considerable advantages over 2D reconstructions for the visualisation of the spatial arrangement of the individual muscles and the measurement of muscle properties (length, force vectors and volume). Such digital models can further be used to estimate muscle loads and attachment sites for biomechanical analyses. PMID:25165628

  8. Relationship between function of masticatory muscle in mouse and properties of muscle fibers.

    PubMed

    Abe, Shinichi; Hiroki, Emi; Iwanuma, Osamu; Sakiyama, Koji; Shirakura, Yoshitaka; Hirose, Daiki; Shimoo, Yoshiaki; Suzuki, Masashi; Ikari, Yasutoyo; Kikuchi, Ryusuke; Ide, Yoshinobu; Yoshinari, Masao

    2008-05-01

    Mammals exhibit marked morphological differences in the muscles surrounding the jaw bone due to differences in eating habits. Furthermore, the myofiber properties of the muscles differ with function. Since the muscles in the oral region have various functions such as eating, swallowing, and speech, it is believed that the functional role of each muscle differs. Therefore, to clarify the functional role of each masticatory muscle, the myofiber properties of the adult mouse masticatory muscles were investigated at the transcriptional level. Expression of MyHC-2b with a fast contraction rate and strong force was frequently noted in the temporal and masseter muscles. This suggests that the temporal and masseter muscles are closely involved in rapid antero-posterior masticatory movement, which is characteristic in mice. Furthermore, expression of MyHC-1 with a low contraction rate and weak continuous force was frequently detected in the lateral pterygoid muscle. This suggests that, in contrast to other masticatory muscles, mouse lateral pterygoid muscle is not involved in fast masticatory movement, but is involved in functions requiring continuous force such as retention of jaw position. This study revealed that muscles with different roles function comprehensively during complicated masticatory movement.

  9. Role of stag beetle jaw bending and torsion in grip on rivals.

    PubMed

    Goyens, Jana; Dirckx, Joris; Piessen, Maxim; Aerts, Peter

    2016-01-01

    In aggressive battles, the extremely large male stag beetle jaws have to withstand strongly elevated bite forces. We found several adaptations of the male Cyclommatus metallifer jaw morphology for enhanced robustness that conspecific females lack. As a result, males improve their grip on opponents and they maintain their safety factor (5.2-7.2) at the same level as that of females (6.8), despite their strongly elevated bite muscle force (3.9 times stronger). Males have a higher second moment of area and torsion constant than females, owing to an enhanced cross-sectional area and shape. These parameters also increase faster with increasing bending moment towards the jaw base in males than in females. Male jaws are more bending resistant against the bite reaction force than against perpendicular forces (which remain lower in battles). Because of the triangular cross section of the male jaw base, it twists more easily than it bends. This torsional flexibility creates a safety system against overload that, at the same time, secures a firm grip on rivals. We found no structural mechanical function of the large teeth halfway along the male jaws. Therefore, it appears that the main purpose of these teeth is a further improvement of grip on rivals. © 2016 The Author(s).

  10. Role of stag beetle jaw bending and torsion in grip on rivals

    PubMed Central

    Goyens, Jana; Dirckx, Joris; Piessen, Maxim; Aerts, Peter

    2016-01-01

    In aggressive battles, the extremely large male stag beetle jaws have to withstand strongly elevated bite forces. We found several adaptations of the male Cyclommatus metallifer jaw morphology for enhanced robustness that conspecific females lack. As a result, males improve their grip on opponents and they maintain their safety factor (5.2–7.2) at the same level as that of females (6.8), despite their strongly elevated bite muscle force (3.9 times stronger). Males have a higher second moment of area and torsion constant than females, owing to an enhanced cross-sectional area and shape. These parameters also increase faster with increasing bending moment towards the jaw base in males than in females. Male jaws are more bending resistant against the bite reaction force than against perpendicular forces (which remain lower in battles). Because of the triangular cross section of the male jaw base, it twists more easily than it bends. This torsional flexibility creates a safety system against overload that, at the same time, secures a firm grip on rivals. We found no structural mechanical function of the large teeth halfway along the male jaws. Therefore, it appears that the main purpose of these teeth is a further improvement of grip on rivals. PMID:26763329

  11. Finite element modelling predicts changes in joint shape and cell behaviour due to loss of muscle strain in jaw development

    PubMed Central

    Brunt, Lucy H.; Norton, Joanna L.; Bright, Jen A.; Rayfield, Emily J.; Hammond, Chrissy L.

    2015-01-01

    Abnormal joint morphogenesis is linked to clinical conditions such as Developmental Dysplasia of the Hip (DDH) and to osteoarthritis (OA). Muscle activity is known to be important during the developmental process of joint morphogenesis. However, less is known about how this mechanical stimulus affects the behaviour of joint cells to generate altered morphology. Using zebrafish, in which we can image all joint musculoskeletal tissues at high resolution, we show that removal of muscle activity through anaesthetisation or genetic manipulation causes a change to the shape of the joint between the Meckel's cartilage and Palatoquadrate (the jaw joint), such that the joint develops asymmetrically leading to an overlap of the cartilage elements on the medial side which inhibits normal joint function. We identify the time during which muscle activity is critical to produce a normal joint. Using Finite Element Analysis (FEA), to model the strains exerted by muscle on the skeletal elements, we identify that minimum principal strains are located at the medial region of the joint and interzone during mouth opening. Then, by studying the cells immediately proximal to the joint, we demonstrate that biomechanical strain regulates cell orientation within the developing joint, such that when muscle-induced strain is removed, cells on the medial side of the joint notably change their orientation. Together, these data show that biomechanical forces are required to establish symmetry in the joint during development. PMID:26253758

  12. Finite element modelling predicts changes in joint shape and cell behaviour due to loss of muscle strain in jaw development.

    PubMed

    Brunt, Lucy H; Norton, Joanna L; Bright, Jen A; Rayfield, Emily J; Hammond, Chrissy L

    2015-09-18

    Abnormal joint morphogenesis is linked to clinical conditions such as Developmental Dysplasia of the Hip (DDH) and to osteoarthritis (OA). Muscle activity is known to be important during the developmental process of joint morphogenesis. However, less is known about how this mechanical stimulus affects the behaviour of joint cells to generate altered morphology. Using zebrafish, in which we can image all joint musculoskeletal tissues at high resolution, we show that removal of muscle activity through anaesthetisation or genetic manipulation causes a change to the shape of the joint between the Meckel's cartilage and Palatoquadrate (the jaw joint), such that the joint develops asymmetrically leading to an overlap of the cartilage elements on the medial side which inhibits normal joint function. We identify the time during which muscle activity is critical to produce a normal joint. Using Finite Element Analysis (FEA), to model the strains exerted by muscle on the skeletal elements, we identify that minimum principal strains are located at the medial region of the joint and interzone during mouth opening. Then, by studying the cells immediately proximal to the joint, we demonstrate that biomechanical strain regulates cell orientation within the developing joint, such that when muscle-induced strain is removed, cells on the medial side of the joint notably change their orientation. Together, these data show that biomechanical forces are required to establish symmetry in the joint during development. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Influence of muscle pain tolerance on muscle pain threshold in experimental tooth clenching in man.

    PubMed

    Christensen, L V

    1979-07-01

    Ten adults and ten children exercised maximal voluntary tooth clenching until pains appeared in the jaw muscles, i.e. the muscle pain threshold of tooth clenching was determined. Subsequently, the subjects were instructed to exercise tooth clenching until they were forced to stop because of intolerable pains and exhaustion of the contracting muscles, i.e. the muscle pain tolerance of tooth clenching was recorded, and during these bouts of clenching the pain tolerance of tooth clenching was recorded, and during these bouts of clenching the pain threshold was also determined. In adults, determination of the pain tolerance decreased the pain threshold by 19%, and in children it either decreased the pain threshold by 20% or increased it by 56%. It is proposed to introduce the muscle pain tolerance of tooth clenching as an adjunct in the clinical examination of cases of facial pains presumed to originate from the jaw muscles, but the test should be interpreted with caution.

  14. PHRED-1 is a divergent neurexin-1 homolog that organizes muscle fibers and patterns organs during regeneration.

    PubMed

    Adler, Carolyn E; Sánchez Alvarado, Alejandro

    2017-07-01

    Regeneration of body parts requires the replacement of multiple cell types. To dissect this complex process, we utilized planarian flatworms that are capable of regenerating any tissue after amputation. An RNAi screen for genes involved in regeneration of the pharynx identified a novel gene, Pharynx regeneration defective-1 (PHRED-1) as essential for normal pharynx regeneration. PHRED-1 is a predicted transmembrane protein containing EGF, Laminin G, and WD40 domains, is expressed in muscle, and has predicted homologs restricted to other lophotrochozoan species. Knockdown of PHRED-1 causes abnormal regeneration of muscle fibers in both the pharynx and body wall muscle. In addition to defects in muscle regeneration, knockdown of PHRED-1 or the bHLH transcription factor MyoD also causes defects in muscle and intestinal regeneration. Together, our data demonstrate that muscle plays a key role in restoring the structural integrity of closely associated organs, and in planarians it may form a scaffold that facilitates normal intestinal branching. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  15. The semaphorontic view of homology.

    PubMed

    Havstad, Joyce C; Assis, Leandro C S; Rieppel, Olivier

    2015-11-01

    The relation of homology is generally characterized as an identity relation, or alternatively as a correspondence relation, both of which are transitive. We use the example of the ontogenetic development and evolutionary origin of the gnathostome jaw to discuss identity and transitivity of the homology relation under the transformationist and emergentist paradigms respectively. Token identity and consequent transitivity of homology relations are shown to be requirements that are too strong to allow the origin of genuine evolutionary novelties. We consequently introduce the concept of compositional identity that is grounded in relations prevailing between parts (organs and organ systems) of a whole (organism). We recognize an ontogenetic identity of parts within a whole throughout the sequence of successive developmental stages of those parts: this is an intra-organismal character identity maintained throughout developmental trajectory. Correspondingly, we recognize a phylogenetic identity of homologous parts within two or more organisms of different species: this is an inter-species character identity maintained throughout evolutionary trajectory. These different dimensions of character identity--ontogenetic (through development) and phylogenetic (via shared evolutionary history)--break the transitivity of homology relations. Under the transformationist paradigm, the relation of homology reigns over the entire character (-state) transformation series, and thus encompasses the plesiomorphic as well as the apomorphic condition of form. In contrast, genuine evolutionary novelties originate not through transformation of ancestral characters (-states), but instead through deviating developmental trajectories that result in alternate characters. Under the emergentist paradigm, homology is thus synonymous with synapomorphy. © 2015 The Authors. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution Published by Wiley Periodicals, Inc.

  16. Development of mandibular, hyoid and hypobranchial muscles in the zebrafish: homologies and evolution of these muscles within bony fishes and tetrapods

    PubMed Central

    Diogo, Rui; Hinits, Yaniv; Hughes, Simon M

    2008-01-01

    Background During vertebrate head evolution, muscle changes accompanied radical modification of the skeleton. Recent studies have suggested that muscles and their innervation evolve less rapidly than cartilage. The freshwater teleostean zebrafish (Danio rerio) is the most studied actinopterygian model organism, and is sometimes taken to represent osteichthyans as a whole, which include bony fishes and tetrapods. Most work concerning zebrafish cranial muscles has focused on larval stages. We set out to describe the later development of zebrafish head muscles and compare muscle homologies across the Osteichthyes. Results We describe one new muscle and show that the number of mandibular, hyoid and hypobranchial muscles found in four day-old zebrafish larvae is similar to that found in the adult. However, the overall configuration and/or the number of divisions of these muscles change during development. For example, the undivided adductor mandibulae of early larvae gives rise to the adductor mandibulae sections A0, A1-OST, A2 and Aω, and the protractor hyoideus becomes divided into dorsal and ventral portions in adults. There is not always a correspondence between the ontogeny of these muscles in the zebrafish and their evolution within the Osteichthyes. All of the 13 mandibular, hyoid and hypobranchial muscles present in the adult zebrafish are found in at least some other living teleosts, and all except the protractor hyoideus are found in at least some extant non-teleost actinopterygians. Of these muscles, about a quarter (intermandibularis anterior, adductor mandibulae, sternohyoideus) are found in at least some living tetrapods, and a further quarter (levator arcus palatini, adductor arcus palatini, adductor operculi) in at least some extant sarcopterygian fish. Conclusion Although the zebrafish occupies a rather derived phylogenetic position within actinopterygians and even within teleosts, with respect to the mandibular, hyoid and hypobranchial muscles it

  17. Jaw and Order

    ERIC Educational Resources Information Center

    Mooshammer, Christine; Hoole, Philip; Geumann, Anja

    2007-01-01

    It is well-accepted that the jaw plays an active role in influencing vowel height. The general aim of the current study is to further investigate the extent to which the jaw is active in producing consonantal distinctions, with specific focus on coronal consonants. Therefore, tongue tip and jaw positions are compared for the German coronal…

  18. The jaw is a second-class lever in Pedetes capensis (Rodentia: Pedetidae)

    PubMed Central

    2017-01-01

    The mammalian jaw is often modelled as a third-class lever for the purposes of biomechanical analyses, owing to the position of the resultant muscle force between the jaw joint and the teeth. However, it has been proposed that in some rodents the jaws operate as a second-class lever during distal molar bites, owing to the rostral position of the masticatory musculature. In particular, the infraorbital portion of the zygomatico-mandibularis (IOZM) has been suggested to be of major importance in converting the masticatory system from a third-class to a second-class lever. The presence of the IOZM is diagnostic of the hystricomorph rodents, and is particularly well-developed in Pedetes capensis, the South African springhare. In this study, finite element analysis (FEA) was used to assess the lever mechanics of the springhare masticatory system, and to determine the function of the IOZM. An FE model of the skull of P. capensis was constructed and loaded with all masticatory muscles, and then solved for biting at each tooth in turn. Further load cases were created in which each masticatory muscle was removed in turn. The analyses showed that the mechanical advantage of the springhare jaws was above one at all molar bites and very close to one during the premolar bite. Removing the IOZM or masseter caused a drop in mechanical advantage at all bites, but affected strain patterns and cranial deformation very little. Removing the ZM had only a small effect on mechanical advantage, but produced a substantial reduction in strain and deformation across the skull. It was concluded that the masticatory system of P. capensis acts as a second class lever during bites along almost the entire cheek tooth row. The IOZM is clearly a major contributor to this effect, but the masseter also has a part to play. The benefit of the IOZM is that it adds force without substantially contributing to strain or deformation of the skull. This may help explain why the hystricomorphous morphology

  19. Unintended activity in homologous muscle during intended unilateral contractions increases with greater task difficulty.

    PubMed

    Watanabe, Hironori; Kanehisa, Hiroaki; Yoshitake, Yasuhide

    2017-10-01

    The present study aimed to examine (1) the effect of task difficulty on unintended muscle activation (UIMA) levels in contralateral homologous muscle, (2) the difference between young and old adults in degree of UIMA with respect to task difficulty, and (3) temporal correlations between intended and contralateral unintended muscle activity at low frequency during unilateral intended force-matching tasks. Twelve young (21.8 ± 2.4 years) and twelve old (69.9 ± 5.3 years) adult men performed steady isometric abductions with the left index finger at 20-80% of maximal voluntary contraction force. Two task difficulties were set by adjusting the spacing between two bars centered about the target force used for visual feedback on a monitor. The amplitude of surface electromyogram (aEMG) for both hands was calculated and normalized with respect to the maximal value. To determine if oscillations between intended and unintended muscle activities were correlated, cross-correlation function (CCF) of rectified EMG for both hands at low frequency was calculated for samples deemed adequate. The unintended aEMG (right hand) had significant main effects in task difficulty, age, and target force (all P < 0.05) without any interactions. Distinct significant peaks in CCF (0.38 on average, P < 0.05) with small time lags were present between rectified EMGs of intended and unintended muscles in 14 of the 17 samples. The current results indicate that UIMA increases with greater task difficulty regardless of age, and temporal correlations exist between intended and contralateral unintended muscle activities at low frequency.

  20. Illusion caused by vibration of muscle spindles reveals an involvement of muscle spindle inputs in regulating isometric contraction of masseter muscles.

    PubMed

    Tsukiboshi, Taisuke; Sato, Hajime; Tanaka, Yuto; Saito, Mitsuru; Toyoda, Hiroki; Morimoto, Toshifumi; Türker, Kemal Sitki; Maeda, Yoshinobu; Kang, Youngnam

    2012-11-01

    Spindle Ia afferents may be differentially involved in voluntary isometric contraction, depending on the pattern of synaptic connections in spindle reflex pathways. We investigated how isometric contraction of masseter muscles is regulated through the activity of their muscle spindles that contain the largest number of intrafusal fibers among skeletal muscle spindles by examining the effects of vibration of muscle spindles on the voluntary isometric contraction. Subjects were instructed to hold the jaw at resting position by counteracting ramp loads applied on lower molar teeth. In response to the increasing-ramp load, the root mean square (RMS) of masseter EMG activity almost linearly increased under no vibration, while displaying a steep linear increase followed by a slower increase under vibration. The regression line of the relationship between the load and RMS was significantly steeper under vibration than under no vibration, suggesting that the subjects overestimated the ramp load and excessively counteracted it as reflected in the emergence of bite pressure. In response to the decreasing-ramp load applied following the increasing one, the RMS hardly decreased under vibration unlike under no vibration, leading to a generation of bite pressure even after the offset of the negative-ramp load until the vibration was ceased. Thus the subjects overestimated the increasing rate of the load while underestimating the decreasing rate of the load, due to the vibration-induced illusion of jaw opening. These observations suggest that spindle Ia/II inputs play crucial roles both in estimating the load and in controlling the isometric contraction of masseter muscles in the jaw-closed position.

  1. Adaptation of rat jaw muscle fibers in postnatal development with a different food consistency: an immunohistochemical and electromyographic study.

    PubMed

    Kawai, Nobuhiko; Sano, Ryota; Korfage, Joannes A M; Nakamura, Saika; Kinouchi, Nao; Kawakami, Emi; Tanne, Kazuo; Langenbach, Geerling E J; Tanaka, Eiji

    2010-06-01

    .05). The cross-sectional area of type IIX and type IIB fibers of the superficial masseter muscle was significantly smaller in the soft-diet group than in the hard-diet group (P < 0.05). There was no difference in the muscle fiber composition and the cross-sectional area of the anterior belly of the digastric and anterior temporalis muscles. In conclusion, for the jaw muscles of male rats reared on a soft diet, the slow-to-fast transition of muscle fiber was shown in only the superficial masseter muscle. Therefore, the reduction in the amount of powerful muscle contractions could be important for the slow-to-fast transition of the myosin heavy chain isoform in muscle fibers.

  2. The semaphorontic view of homology

    PubMed Central

    Assis, Leandro C.S.; Rieppel, Olivier

    2015-01-01

    ABSTRACT The relation of homology is generally characterized as an identity relation, or alternatively as a correspondence relation, both of which are transitive. We use the example of the ontogenetic development and evolutionary origin of the gnathostome jaw to discuss identity and transitivity of the homology relation under the transformationist and emergentist paradigms respectively. Token identity and consequent transitivity of homology relations are shown to be requirements that are too strong to allow the origin of genuine evolutionary novelties. We consequently introduce the concept of compositional identity that is grounded in relations prevailing between parts (organs and organ systems) of a whole (organism). We recognize an ontogenetic identity of parts within a whole throughout the sequence of successive developmental stages of those parts: this is an intra‐organismal character identity maintained throughout developmental trajectory. Correspondingly, we recognize a phylogenetic identity of homologous parts within two or more organisms of different species: this is an inter‐species character identity maintained throughout evolutionary trajectory. These different dimensions of character identity—ontogenetic (through development) and phylogenetic (via shared evolutionary history)—break the transitivity of homology relations. Under the transformationist paradigm, the relation of homology reigns over the entire character (‐state) transformation series, and thus encompasses the plesiomorphic as well as the apomorphic condition of form. In contrast, genuine evolutionary novelties originate not through transformation of ancestral characters (‐states), but instead through deviating developmental trajectories that result in alternate characters. Under the emergentist paradigm, homology is thus synonymous with synapomorphy. J. Exp. Zool. (Mol. Dev. Evol.) 324B: 578–587, 2015. © 2015 The Authors. Journal of Experimental Zoology Part B: Molecular and

  3. The role of the calponin homology domain of smoothelin-like 1 (SMTNL1) in myosin phosphatase inhibition and smooth muscle contraction.

    PubMed

    Borman, Meredith A; Freed, Tiffany A; Haystead, Timothy A J; Macdonald, Justin A

    2009-07-01

    In this study, we provide further insight into the contribution of the smoothelin-like 1 (SMTNL1) calponin homology (CH)-domain on myosin light chain phosphatase (SMPP-1M) activity and smooth muscle contraction. SMTNL1 protein was shown to have inhibitory effects on SMPP-1M activity but not on myosin light chain kinase (MLCK) activity. Treatment of beta-escin permeabilized rabbit, ileal smooth muscle with SMTNL1 had no effect on the time required to reach half-maximal force (t(1/2)) during stimulation with pCa6.3 solution. The addition of recombinant SMTNL1 protein to permeabilized, smooth muscle strips caused a significant decrease in contractile force. While the calponin homology (CH)-domain was essential for maximal SMTNL1-associated relaxation, it alone did not cause significant changes in force. SMTNL1 was poorly dephosphorylated by PP-1C in the presence of the myosin targeting subunit (MYPT1), suggesting that phosphorylated SMTNL1 does not possess "substrate trapping" properties. Moreover, while full-length SMTNL1 could suppress SMPP-1M activity toward LC(20) in vitro, truncated SMTNL1 lacking the CH-domain was ineffective. In summary, our findings suggest an important role for the CH-domain in mediating the effects of SMTNL1 on smooth muscle contraction.

  4. Functional Morphology of Eunicidan (Polychaeta) Jaws

    NASA Astrophysics Data System (ADS)

    Clemo, W. C.; Dorgan, K. M.

    2016-02-01

    Polychaetes exhibit diverse feeding strategies and diets, with some species possessing hardened teeth or jaws of varying complexity. Species in the order Eunicida have complex, rigidly articulated jaws consisting of multiple pairs of maxillae and a pair of mandibles. While all Eunicida possess this general jaw structure, a number of characteristics of the jaw parts vary considerably among families. These differences, described for fossilized and extant species' jaws, were used to infer evolutionary relationships, but current phylogeny shows that jaw structures that are similar among several families are convergent. Little has been done, however, to relate jaw functional morphology and feeding behavior to diet. To explore these relationships, we compared the jaw kinematics of two taxa with similar but evolutionarily convergent jaw structures: Diopatra (Onuphidae) and Lumbrineris (Lumbrineridae). Diopatra species are tube-dwelling and predominantly herbivorous, whereas Lumbrineris species are burrowing carnivores. Jaw kinematics were observed and analyzed by filming individuals biting or feeding and tracking tooth movements in videos. Differences in jaw structure and kinematics between Diopatra and Lumbrineris can be interpreted to be consistent with their differences in diet. Relating jaw morphology to diet would provide insight into early annelid communities by linking fossil teeth (scolecodonts) to the ecological roles of extant species with similar morphologies.

  5. Corrective Jaw Surgery

    MedlinePlus Videos and Cool Tools

    ... Jaw Surgery Download Download the ebook for further information Corrective jaw, or orthognathic surgery is performed by ... your treatment. Correction of Common Dentofacial Deformities ​ ​ The information provided here is not intended as a substitute ...

  6. Effects of aging and sarcopenia on tongue pressure and jaw-opening force.

    PubMed

    Machida, Nami; Tohara, Haruka; Hara, Koji; Kumakura, Ayano; Wakasugi, Yoko; Nakane, Ayako; Minakuchi, Shunsuke

    2017-02-01

    Aging and sarcopenia reduce not only body strength, but also the strength of swallowing muscles. We examined how aging and sarcopenia affect tongue pressure and jaw-opening force. A total of 97 older adults (97 men, mean age 78.5 ± 6.6 years; 100 women, mean age 77.8 ± 6.2 years) were enrolled. Classification of sarcopenia was based on the Criteria of Asian Working Group for Sarcopenia. To investigate which variable between aging and sarcopenia was a significant independent variable on tongue pressure and jaw-opening force, multivariate linear regression analysis was carried out. The mean tongue pressure was 26.3 ± 7.8 kPa in men and 24.6 ± 7.2 kPa in women. The mean jaw-opening force was 6.3 ± 1.6 kg in men and 5.2 ± 1.3 kg in women. Tongue pressure in men, aging and sarcopenia were significant independent variables, whereas only sarcopenia was a significant independent variable in women. Jaw-opening force in men and sarcopenia were significant independent variables, whereas neither aging nor sarcopenia were significant independent variables in women. We found different characteristics in the effects of aging and sarcopenia based on site and sex. We suggested that aging decreased tongue pressure more than jaw-opening force, and affected men more than women. Sarcopenia affected tongue pressure and jaw-opening force, with the exception of jaw-opening force in women. Considering these characteristics is useful to predict the decline of swallowing function, and provide appropriate interventions preventing dysphagia. Geriatr Gerontol Int 2017; 17: 295-301. © 2016 Japan Geriatrics Society.

  7. Three Hierarchies in Skeletal Muscle Fibre Classification Allotype, Isotype and Phenotype

    NASA Technical Reports Server (NTRS)

    Hoh, Joseph F. Y.; Hughes, Suzanne; Hugh, Gregory; Pozgaj, Irene

    1991-01-01

    Immunocytochemical analyses using specific anti-myosin antibodies of mammalian muscle fibers during regeneration, development, and after denervation have revealed two distinct myogenic components determining fiber phenotype. The jaw-closing muscles of the cat contain superfast fibers which express a unique myosin not found in limb muscles. When superfast muscle is transplanted into a limb muscle bed, regenerating myotubes synthesize superfast myosin independent of innervation. Reinnervation by the nerve to a fast muscle leads to the expression of superfast and not fast myosin, while reinnervation by the nerve to a slow muscle leads to the expression of a slow myosin. When limb muscle is transplanted into the jaw muscle bed, only limb myosins are synthesized. Thus jaw and limb muscles belong to distinct allotypes, each with a unique range of phenotype options, the expressions of which may be modulated by the nerve. Primary and secondary myotubes in developing jaw and limb muscles are observed to belong to different categories characterized by different patterns of myosin gene expression. By taking into consideration the pattern of myosins synthesized and the changes in fiber size after denervation, 3 types of primary (fast, slow, and intermediate) fibers can be distinguished in rat fast limb muscles. All primaries synthesize slow myosin soon after their formation, but this is withdrawn in fast and intermediate primaries at different times. After neonatal denervation, slow and intermediate primaries express slow primaries hypertrophy with other fibers atrophy. In the mature rat, the number of slow fibers in the EDL is less than the number of slow primaries. Upon denervation, hypertrophic slow fibers matching the number and topographic distribution of slow primaries appear, suggesting that a subpopulation of the slow primaries acquire the fast phenotype during adult life, but reveal their original identity as slow primaries in response to denervation by hypertrophying

  8. Biomechanical calculation of human TM joint loading with jaw opening.

    PubMed

    Kuboki, T; Takenami, Y; Maekawa, K; Shinoda, M; Yamashita, A; Clark, G T

    2000-11-01

    A three-dimensional, static mathematical calculation of the stomatognathic system was done to predict total temporomandibular joint (TMJ) loading at different levels of jaw opening. The model assumed that muscle forces acting on the mandible could be simulated by a combination of contractile components (CCs) and elastic components (ECs) and that static equilibrium existed within the body of the mandible. The model also imposed the constraint that any generated joint reaction force would act on the centre of the condyle. The results of the model demonstrated that under all conditions of opening and for all values of the elastic modulus selected, the forces between the TMJ condyle and the articular eminence were compressive in nature. The compressive force magnitude increased from 2.7 to 27.6 N incrementally as the jaw opened from 10 to 40 mm. Overall data in this study indicated that the TMJ tissues undergo low levels of compression at open positions up to 40 mm. Finally, the condition of trismus (increased jaw closing activation with opening) was simulated, the joint reaction force at 20 mm opening increased from 7.7 to 64.9 N with only a 20% activation of the closers.

  9. Masseter muscular weakness affects temporomandibular synovitis induced by jaw opening in growing rats.

    PubMed

    Ozaki, Miho; Kaneko, Sawa; Soma, Kunimichi

    2008-09-01

    To evaluate the influence of impaired masseter function during growth on the development of temporomandibular synovitis. Sixteen 3-week-old male Wistar rats were classified into four groups. The first group served as control; and in the second group, jaw opening was forced for 3 hours when the rats were 9 weeks old. In the third and fourth groups, the masseter muscles were bilaterally resected at 3 weeks of age, and the rats in the fourth group were additionally forced to open their jaw at 9 weeks of age. All rats were sacrificed at 9 weeks. Temporomandibular joint (TMJ) tissue samples were processed for histology, and evaluated for cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expressions by immunohistochemistry to examine the inflammatory changes in the synovial membrane. The control group showed noninflammatory changes. In the jaw-opening group, vascular dilation and weak COX-2 immunoreactivity were induced by jaw opening in the synovium. In the masseter-resection group, the masseter-resected rats exhibited moderate synovial changes while in the resection with opening group, the masseter-resected rats revealed more significant inflammatory changes including synovial hyperplasia, dilated vasculature, fibrin deposits, and intense immunoreactivity for COX-2 and iNOS, all caused by jaw opening. These results suggest that masseter activity in the growth period is an important factor in the induction of temporomandibular synovitis.

  10. Evolution of the vertebrate jaw: comparative embryology and molecular developmental biology reveal the factors behind evolutionary novelty

    PubMed Central

    Kuratani, Shigeru

    2004-01-01

    It is generally believed that the jaw arose through the simple transformation of an ancestral rostral gill arch. The gnathostome jaw differentiates from Hox-free crest cells in the mandibular arch, and this is also apparent in the lamprey. The basic Hox code, including the Hox-free default state in the mandibular arch, may have been present in the common ancestor, and jaw patterning appears to have been secondarily constructed in the gnathostomes. The distribution of the cephalic neural crest cells is similar in the early pharyngula of gnathostomes and lampreys, but different cell subsets form the oral apparatus in each group through epithelial–mesenchymal interactions: and this heterotopy is likely to have been an important evolutionary change that permitted jaw differentiation. This theory implies that the premandibular crest cells differentiate into the upper lip, or the dorsal subdivision of the oral apparatus in the lamprey, whereas the equivalent cell population forms the trabecula of the skull base in gnathostomes. Because the gnathostome oral apparatus is derived exclusively from the mandibular arch, the concepts ‘oral’ and ‘mandibular’ must be dissociated. The ‘lamprey trabecula’ develops from mandibular mesoderm, and is not homologous with the gnathostome trabecula, which develops from premandibular crest cells. Thus the jaw evolved as an evolutionary novelty through tissue rearrangements and topographical changes in tissue interactions. PMID:15575882

  11. Anatomy and adaptations of the chewing muscles in Daubentonia (Lemuriformes).

    PubMed

    Perry, Jonathan M G; Macneill, Kristen E; Heckler, Amanda L; Rakotoarisoa, Gilbert; Hartstone-Rose, Adam

    2014-02-01

    The extractive foraging behavior in aye-ayes (Daubentonia madagascariensis) is unique among primates and likely has led to selection for a specialized jaw adductor musculature. Although this musculature has previously been examined in a subadult, until now, no one has reported the fascicle length, weight, and physiological cross-sectional area (PCSA) for these muscles in an adult aye-aye specimen. For the present study, we dissected an adult wild-born aye-aye from the Tsimbazaza Botanical and Zoological Park, Antananarivo, Madagascar. The aye-aye follows the general strepsirrhine pattern in its overall jaw adductor muscle anatomy, but has very large muscles and PCSA relative to body size. Fascicle length is also relatively great, but not nearly as much as in the juvenile aye-aye previously dissected. Perhaps chewing muscle fascicles begin relatively long, but shorten through use and growth as connective tissue sheets expand and allow for pinnation and increased PCSA. Alternately, it may be that aye-ayes develop fascicular adaptation to wide gapes early in ontogeny, only to increase PCSA through later development into adulthood. The functional demands related to their distinctive manner of extractive foraging are likely responsible for the great PCSA in the jaw adductor muscles of the adult aye-aye. It may be that great jaw adductor PCSA in the adult, as compared to the juvenile, is a means of increasing foraging efficiency in the absence of parental assistance. Anat Rec, 297:308-316, 2014. © 2013 Wiley Periodicals, Inc. Copyright © 2013 Wiley Periodicals, Inc.

  12. Jaw elevator silent periods in complete denture wearers and dentate individuals.

    PubMed

    Celebic, A; Valentic-Peruzovic, M; Alajbeg, I Z; Mehulic, K; Knezovic-Zlataric, D

    2008-12-01

    Functional meaning and underlying mechanisms of jaw elevator silent period (SP) have still not been completely understood. Since complete denture wearers (CDWs) have no periodontal receptors in their jaws, the aim was to examine SPs in CDWs and to compare it with dentate individuals (DIs). Thirty six DIs (skeletal/occlusal Class I) and 24 eugnath CDWs participated. EMG signals were registered using the EMGA-1 apparatus from the left and the right side anterior temporalis (ATM) and masseter muscles (MM). Ten registrations of an open-close-clench (OCC) cycle were obtained for each individual. DIs had the average latency between 12.5 and 12.9 ms and always one single short inhibitory pause (IP) with complete inhibition of motoneurons (20.1-21.1 ms). On the other hand, in CDWs various types of SPs emerged: single or single prolonged SPs, double SPs, SPs with three IPs, periods of depressed muscle activity following the first, or the second IP, SPs with relative inhibition of motoneurons or even in several registrations the SP was missing. Unless more than one IP emerged, complete duration of inhibitory pauses (CDIP) was measured. CDIP varied from 37.17 to 42.49 ms. Average latencies were from 16.22 to 16.76 ms. Based on the results of this study it is obvious that both, the duration and the latencies were significantly longer in CDWs than in DIs (p<0.05), which can be explained by different mechanisms responsible for the muscle reflex behaviour.

  13. Self-aligning lathe chuck jaws

    DOEpatents

    Not Available

    1980-08-26

    A lathe chuck jaw for a lathe chuck having a radially moving actuator which radially moves the jaw into and out from the workpiece is described. A jaw base part is rigidly connected to the actuator. A jaw shoe part is rotatably attached to the base part. The shoe part has a workpiece-conforming surface which can hold the workpiece. The rotatable attachment of the shoe part allows it to match the general orientation of the workpiece, including a nonlongitudinal orientation due to a workpiece's imperfect shape.

  14. Self-aligning lathe chuck jaws

    DOEpatents

    Peterson, William R.

    1982-01-01

    A lathe chuck jaw for a lathe chuck having a radially moving actuator which radially moves the jaw in to and out from the workpiece. A jaw base part is rigidly connected to the actuator. A jaw shoe part is rotatably attached to the base part. The shoe part has a workpiece-comforming surface which can hold the workpiece. The rotatable attachment of the shoe part allows it to match the general orientation of the workpiece, including a nonlongitudinal orientation due to a workpiece's imperfect shape.

  15. Myological variability in a decoupled skeletal system: batoid cranial anatomy.

    PubMed

    Kolmann, Matthew A; Huber, Daniel R; Dean, Mason N; Grubbs, R Dean

    2014-08-01

    Chondrichthyans (sharks, batoids, and chimaeras) have simple feeding mechanisms owing to their relatively few cranial skeletal elements. However, the indirect association of the jaws to the cranium (euhyostylic jaw suspension) has resulted in myriad cranial muscle rearrangements of both the hyoid and mandibular elements. We examined the cranial musculature of an abbreviated phylogenetic representation of batoid fishes, including skates, guitarfishes and with a particular focus on stingrays. We identified homologous muscle groups across these taxa and describe changes in gross morphology across developmental and functional muscle groups, with the goal of exploring how decoupling of the jaws from the skull has effected muscular arrangement. In particular, we focus on the cranial anatomy of durophagous and nondurophagous batoids, as the former display marked differences in morphology compared to the latter. Durophagous stingrays are characterized by hypertrophied jaw adductors, reliance on pennate versus fusiform muscle fiber architecture, tendinous rather than aponeurotic muscle insertions, and an overall reduction in mandibular kinesis. Nondurophagous stingrays have muscles that rely on aponeurotic insertions onto the skeletal structure, and display musculoskeletal specialization for jaw protrusion and independent lower jaw kinesis, relative to durophagous stingrays. We find that among extant chondrichthyans, considerable variation exists in the hyoid and mandibular muscles, slightly less so in hypaxial muscles, whereas branchial muscles are overwhelmingly conserved. As chondrichthyans occupy a position sister to all other living gnathostomes, our understanding of the structure and function of early vertebrate feeding systems rests heavily on understanding chondrichthyan cranial anatomy. Our findings highlight the incredible variation in muscular complexity across chondrichthyans in general and batoids in particular. © 2014 Wiley Periodicals, Inc.

  16. Masticatory muscle architecture in a water-rat from Australasia (Murinae, Hydromys) and its implication for the evolution of carnivory in rodents.

    PubMed

    Fabre, P-H; Herrel, A; Fitriana, Y; Meslin, L; Hautier, L

    2017-09-01

    Murines are well known for their generalist diet, but several of them display specializations towards a carnivorous diet such as the amphibious Indo-Pacific water-rats. Despite the fact that carnivory evolved repeatedly in this group, few studies have investigated associated changes in jaw muscle anatomy and biomechanics. Here, we describe the jaw muscles and cranial anatomy of a carnivorous water-rat, Hydromys chrysogaster. The architecture of the jaw musculature of six specimens captured both on Obi and Papua were studied and described using dissections. We identified the origin and insertions of the jaw muscles, and quantified muscle mass, fiber length, physiological cross-sectional area, and muscle vectors for each muscle. Using a biomechanical model, we estimated maximum incisor and molar bite force at different gape angles. Finally, we conducted a 2D geometric morphometric analyses to compare jaw shape, mechanical potential, and diversity in lever-arm ratios for a set of 238 specimens, representative of Australo-Papuan carnivorous and omnivorous murids. Our study reveals major changes in the muscle proportions among Hydromys and its omnivorous close relative, Melomys. Hydromys was found to have large superficial masseter and temporalis muscles as well as a reduced deep masseter and zygomatico-mandibularis, highlighting major functional divergence among omnivorous and carnivorous murines. Changes in these muscles are also accompanied by changes in jaw shape and the lines of action of the muscles. A more vertically oriented masseter, reduced masseteric muscles, as well as an elongated jaw with proodont lower incisors are key features indicative of a reduced propalinality in carnivorous Hydromys. Differences in the fiber length of the masseteric muscles were also detected between Hydromys and Melomys, which highlight potential adaptations to a wide gape in Hydromys, allowing it to prey on larger animals. Using a biomechanical model, we inferred a greater bite

  17. [Jaws of amphibians and reptiles].

    PubMed

    Tanimoto, Masahiro

    2005-04-01

    Big jaws of amphibians and reptiles are mainly treated in this article. In amphibians enlarged skulls are for the big jaw in contrast with human's skulls for the brain. For example, famous fossils of Homo diluvii testis are ones of salamanders in fact. In reptiles, mosasaur jaws and teeth and their ecology are introduced for instance.

  18. The evolution of the dorsal thalamus of jawed vertebrates, including mammals: cladistic analysis and a new hypothesis.

    PubMed

    Butler, A B

    1994-01-01

    The evolution of the dorsal thalamus in various vertebrate lineages of jawed vertebrates has been an enigma, partly due to two prevalent misconceptions: the belief that the multitude of nuclei in the dorsal thalamus of mammals could be meaningfully compared neither with the relatively few nuclei in the dorsal thalamus of anamniotes nor with the intermediate number of dorsal thalamic nuclei of other amniotes and a definition of the dorsal thalamus that too narrowly focused on the features of the dorsal thalamus of mammals. The cladistic analysis carried out here allows us to recognize which features are plesiomorphic and which apomorphic for the dorsal thalamus of jawed vertebrates and to then reconstruct the major changes that have occurred in the dorsal thalamus over evolution. Embryological data examined in the context of Von Baerian theory (embryos of later-descendant species resemble the embryos of earlier-descendant species to the point of their divergence) supports a new 'Dual Elaboration Hypothesis' of dorsal thalamic evolution generated from this cladistic analysis. From the morphotype for an early stage in the embryological development of the dorsal thalamus of jawed vertebrates, the divergent, sequential stages of the development of the dorsal thalamus are derived for each major radiation and compared. The new hypothesis holds that the dorsal thalamus comprises two basic divisions--the collothalamus and the lemnothalamus--that receive their predominant input from the midbrain roof and (plesiomorphically) from lemniscal pathways, including the optic tract, respectively. Where present, the collothalamic, midbrain-sensory relay nuclei are homologous to each other in all vertebrate radiations as discrete nuclei. Within the lemnothalamus, the dorsal lateral geniculate nucleus of mammals and the dorsal lateral optic nucleus of non-synapsid amniotes (diapsid reptiles, birds and turtles) are homologous as discrete nuclei; most or all of the ventral nuclear group

  19. Three-dimensional finite element modelling of muscle forces during mastication.

    PubMed

    Röhrle, Oliver; Pullan, Andrew J

    2007-01-01

    This paper presents a three-dimensional finite element model of human mastication. Specifically, an anatomically realistic model of the masseter muscles and associated bones is used to investigate the dynamics of chewing. A motion capture system is used to track the jaw motion of a subject chewing standard foods. The three-dimensional nonlinear deformation of the masseter muscles are calculated via the finite element method, using the jaw motion data as boundary conditions. Motion-driven muscle activation patterns and a transversely isotropic material law, defined in a muscle-fibre coordinate system, are used in the calculations. Time-force relationships are presented and analysed with respect to different tasks during mastication, e.g. opening, closing, and biting, and are also compared to a more traditional one-dimensional model. The results strongly suggest that, due to the complex arrangement of muscle force directions, modelling skeletal muscles as conventional one-dimensional lines of action might introduce a significant source of error.

  20. Marcus Gunn jaw-winking synkinesis: clinical features and management.

    PubMed

    Demirci, Hakan; Frueh, Bartley R; Nelson, Christine C

    2010-07-01

    To evaluate the clinical features including eyelid excursion and management of Marcus Gunn jaw-winking synkinesis (MGJWS). Observational case series. Forty-eight consecutive patients with MGJWS. Clinical features and management of 48 patients with MGJWS were reviewed retrospectively. Upper eyelid excursion was measured and graded. Complications of surgical intervention were evaluated. Resolution of MGJWS and symmetry of upper eyelids in primary position. Excursion of the ptotic eyelid with jaw movement in MGJWS was graded as mild (<2 mm) in 16% of patients, moderate (2-4 mm) in 76% of patients, and severe (> or = 5 mm) in 8% of patients. Thirty patients with moderate or severe MGJWS underwent disabling of the involved levator muscle and bilateral or unilateral frontalis suspension and had more than 6 months of follow-up. After a mean follow-up of 62 months, MGJWS resolved in 29 (97%) patients and improved from 6 mm to 2 mm in 1 (3%) patient. Relative upper eyelid height was within 1 mm in 87% of patients in primary position and within 1 mm in 80% of patients in downgaze. Twenty-six patients had bilateral frontalis suspension with disabling of unilateral levator muscle on the involved side. Relative upper eyelid height was within 1 mm in 88% of patients in the primary position and within 1 mm in 88% of patients in downgaze. Four non-amblyopic patients had unilateral frontalis suspension with levator muscle disabling. Relative upper eyelid height was symmetrical in 75% of the patients in primary position and in 25% of patients in downgaze. Complications included eyelash ptosis in 10% of the patients, loss of eyelid crease in 10%, and entropion in 3%. Most of the patients with MGJWS exhibited moderate eyelid excursion. Disabling of the involved levator muscle and bilateral frontalis suspension and, in selected cases, disabling of the involved levator muscle and unilateral frontalis suspension were effective in the treatment of MGJWS. Eyelash ptosis and loss of eyelid

  1. Broken or dislocated jaw

    MedlinePlus

    ... broken or dislocated jaw requires prompt medical attention. Emergency symptoms include difficulty breathing or heavy bleeding. ... safety equipment, such as a helmet when playing football, or using ... can prevent or minimize some injuries to the face or jaw.

  2. Measurement of jaw motion: the proposal of a simple and accurate method.

    PubMed

    Pinheiro, A P; Pereira, A A; Andrade, A O; Bellomo, D

    2011-01-01

    The analysis of jaw movements has long been used as a measure for clinical diagnosis and assessment. A number of strategies are available for monitoring the trajectory; however most of these strategies make use of expensive tools, which are often not available to many clinics in the world. In this context, this research proposes the development of a new tool capable of quantifying the movements of opening/closing, protrusion and laterotrusion of the mandible. These movements are important for the clinical evaluation of both the temporomandibular function and muscles involved in mastication. The proposed system, unlike current commercial systems, employs a low-cost video camera and a computer program, which is used for reconstructing the trajectory of a reflective marker that is fixed on the jaw. In order to illustrate the application of the devised tool a clinical trial was carried out, investigating jaw movements of 10 subjects. The results obtained in this study were compatible with those found in the literature with the advantage of using a low-cost, simple, non-invasive and flexible solution customized for the practical needs of clinics. The average error of the system was less than 1.0%.

  3. [Permanent constrictions of the jaws (author's transl)].

    PubMed

    Dupuis, A; Michaud, J

    1981-01-01

    Permanent constrictions of the jaws are of various types depending on the site of the lesion: temporomaxillary ankylosis, extra-articular constrictions of bone, skin, muscle, or mucosal origin, and those arising from tumors. The commonest cause is injury, those due to infection being currently less frequently observed, which cannot be said for those of tumoral origin. The consequences are difficulty in taking foud and poor buccodental hygiene, while temporomaxillary ankylosis in children provokes mandibular growth disturbances. Surgical treatment is aimed at removing the constriction. Total resection of the ankylosed block is essential to avoid recurrences, while reeducation of buccal opening must be started early and continued for long periods in all cases.

  4. 21 CFR 872.2060 - Jaw tracking device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.2060 Jaw tracking device. (a) Jaw tracking device... Controls Guidance Document: Dental Sonography and Jaw Tracking Devices.” [68 FR 67367, Dec. 2, 2003] ...

  5. Influence of glutamate-evoked pain and sustained elevated muscle activity on blood oxygenation in the human masseter muscle.

    PubMed

    Suzuki, Shunichi; Arima, Taro; Kitagawa, Yoshimasa; Svensson, Peter; Castrillon, Eduardo

    2017-12-01

    This study aimed to investigate the effect of glutamate-evoked masseter muscle pain on intramuscular oxygenation during rest and sustained elevated muscle activity (SEMA). Seventeen healthy individuals participated in two sessions in which they were injected with glutamate and saline in random order. Each session was divided into three, 10-min periods. During the first (period 1) and the last (period 3) 10-min periods, participants performed five intercalated 1-min bouts of masseter SEMA with 1-min periods of 'rest'. At onset of the second 10-min period, glutamate (0.5 ml, 1 M; Ajinomoto, Tokyo, Japan) or isotonic saline (0.5 ml; 0.9%) was injected into the masseter muscle and the participants kept the muscle relaxed in a resting position for 10 min (period 2). The hemodynamic characteristics of the masseter muscle were recorded simultaneously during the experiment by a laser blood-oxygenation monitor. The results demonstrated that glutamate injections caused significant levels of self-reported pain in the masseter muscle; however, this nociceptive input did not have robust effects on intramuscular oxygenation during rest or SEMA tasks. Interestingly, these findings suggest an uncoupling between acute nociceptive activity and hemodynamic parameters in both resting and low-level active jaw muscles. Further studies are needed to explore the pathophysiological significance of blood-flow changes for persistent jaw-muscle pain conditions. © 2017 Eur J Oral Sci.

  6. Expression and interaction of muscle-related genes in the lamprey imply the evolutionary scenario for vertebrate skeletal muscle, in association with the acquisition of the neck and fins.

    PubMed

    Kusakabe, Rie; Kuraku, Shigehiro; Kuratani, Shigeru

    2011-02-01

    Gnathostomes (jawed vertebrates) possess skeletal muscles with unique functional and developmental features that are absent from cyclostomes-i.e., lamprey and hagfish. These gnathostome-specific traits include the epaxial and hypaxial division of myotomes, paired fin/limb muscles, shoulder girdle muscles, and the muscle associated with the tongue and the neck. Many of these muscles are derived from several rostral somites, specifically from their hypaxial myotomic domains. However, it has not been clarified how the complicated morphology of these muscles was acquired in the evolution of vertebrates. Here we describe the expression of lamprey homologs of transcription factor genes, including a myogenic regulatory factor of the Myod family (MRF), Pax3/7, Lbx, and Zic, which play important roles in the development of ep-/hypaxial somitic muscles in gnathostomes, and show that the ventral portion of lamprey somites is comparable to the ventral dermomyotome in gnathostomes. The supra- and infraoptic muscles, derived from the two anterior somites in the lamprey, are molecularly specified before their extensive invasion into the head region. Of these, the infraoptic myotomes are suggested to represent the cucullaris homologue in the lamprey based on their topographical position in the embryonic pattern. Slightly caudal myotomes in the lamprey give rise to the hypobranchial muscle, the developmental homologue of the gnathostome hypobranchial musculature. The dorsal moieties of the lamprey somites express a Zic gene, which in teleosts specifies the epaxial identities of the somites. These evidences suggest that, although the myotomes in the ancestral jawless vertebrates do not exhibit ep-/hypaxial distinction at the morphological level, their dorsoventral specification would have already been present at gene regulatory levels, prior to the cyclostome-gnathostome divergence, which may have functioned as the key innovation to establish the ep-/hypaxial distinction in

  7. Co-contraction behaviour of masticatory and neck muscles during tooth grinding.

    PubMed

    Giannakopoulos, N N; Schindler, H J; Hellmann, D

    2018-07-01

    The objective of this study was to analyse the co-contraction behaviour of jaw and neck muscles during force-controlled experimental grinding in the supine position. Twelve symptom-free subjects were enrolled in the experimental study. Electromyographic (EMG) activity of semispinalis capitis, splenius capitis and levator scapulae muscles was recorded bilaterally with intramuscular fine-wire electrodes, whereas that of sternocleidomastoideus, infrahyoidal, suprahyoidal, masseter and anterior temporalis muscles were registered with surface electrodes. EMG and force measurements were performed during tasks simulating tooth grinding on custom-made intraoral metal splints. The mean EMG activity normalised by maximum voluntary contraction (% MVC) of each of the neck muscles studied during grinding was analysed and compared with previous data from jaw clenching at identical force (100 N) and (supine) position. The occurrence of low-level, long-lasting tonic activation (LLTA) of motor units was also documented. The mean three-dimensional force vector of the grinding forces was 106 ± 74 N. In the frontal plane, the incline to the midsagittal plane ranged between 10° and 15°. In the midsagittal plane, the incline to the frontal plane was negligibly small. Posterior neck muscle activity during grinding ranged between 4.5% and 12% MVC and during clenching with 100 N between 1.8% and 9.9% MVC. Masticatory muscle activity during grinding ranged between 17% and 21% MVC for contralateral masseter and ipsilateral temporalis and between 4% and 6.5% for ipsilateral masseter and contralateral temporalis. LLTA had an average duration of 195 ± 10 seconds. The findings from this study do not support pathophysiological muscle chain theories postulating simple biomechanical coupling of neck and jaw muscles. Co-contractions of neck and masticatory muscles may instead occur as a result of complex neurophysiological interactions. © 2018 John Wiley & Sons Ltd.

  8. Developmental finite element analysis of cichlid pharyngeal jaws: Quantifying the generation of a key innovation.

    PubMed

    Peterson, Tim; Müller, Gerd B

    2018-01-01

    Advances in imaging and modeling facilitate the calculation of biomechanical forces in biological specimens. These factors play a significant role during ontogenetic development of cichlid pharyngeal jaws, a key innovation responsible for one of the most prolific species diversifications in recent times. MicroCT imaging of radiopaque-stained vertebrate embryos were used to accurately capture the spatial relationships of the pharyngeal jaw apparatus in two cichlid species (Haplochromis elegans and Amatitlania nigrofasciata) for the purpose of creating a time series of developmental stages using finite element models, which can be used to assess the effects of biomechanical forces present in a system at multiple points of its ontogeny. Changes in muscle vector orientations, bite forces, force on the neurocranium where cartilage originates, and stress on upper pharyngeal jaws are analyzed in a comparative context. In addition, microCT scanning revealed the presence of previously unreported cement glands in A. nigrofasciata. The data obtained provide an underrepresented dimension of information on physical forces present in developmental processes and assist in interpreting the role of developmental dynamics in evolution.

  9. Developmental finite element analysis of cichlid pharyngeal jaws: Quantifying the generation of a key innovation

    PubMed Central

    Müller, Gerd B.

    2018-01-01

    Advances in imaging and modeling facilitate the calculation of biomechanical forces in biological specimens. These factors play a significant role during ontogenetic development of cichlid pharyngeal jaws, a key innovation responsible for one of the most prolific species diversifications in recent times. MicroCT imaging of radiopaque-stained vertebrate embryos were used to accurately capture the spatial relationships of the pharyngeal jaw apparatus in two cichlid species (Haplochromis elegans and Amatitlania nigrofasciata) for the purpose of creating a time series of developmental stages using finite element models, which can be used to assess the effects of biomechanical forces present in a system at multiple points of its ontogeny. Changes in muscle vector orientations, bite forces, force on the neurocranium where cartilage originates, and stress on upper pharyngeal jaws are analyzed in a comparative context. In addition, microCT scanning revealed the presence of previously unreported cement glands in A. nigrofasciata. The data obtained provide an underrepresented dimension of information on physical forces present in developmental processes and assist in interpreting the role of developmental dynamics in evolution. PMID:29320528

  10. Swiveling Lathe Jaw Concept for Holding Irregular Pieces

    NASA Technical Reports Server (NTRS)

    David, J.

    1966-01-01

    Clamp holds irregularly shaped pieces in lathe chuck without damage and eliminates excessive time in selecting optimum mounting. Interchangeable jaws ride in standard jaw slots but swivel so that the jaw face bears evenly against the workpiece regardless of contour. The jaws can be used on both engine and turret lathes.

  11. 21 CFR 872.2060 - Jaw tracking device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Jaw tracking device. 872.2060 Section 872.2060 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.2060 Jaw tracking device. (a) Jaw tracking device...

  12. 21 CFR 872.2060 - Jaw tracking device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Jaw tracking device. 872.2060 Section 872.2060 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.2060 Jaw tracking device. (a) Jaw tracking device...

  13. 21 CFR 872.2060 - Jaw tracking device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Jaw tracking device. 872.2060 Section 872.2060 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.2060 Jaw tracking device. (a) Jaw tracking device...

  14. 21 CFR 872.2060 - Jaw tracking device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Jaw tracking device. 872.2060 Section 872.2060 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.2060 Jaw tracking device. (a) Jaw tracking device...

  15. Open-jaw syndrome in chinook salmon (Oncorhynchus tshawytscha) at a hatchery

    USGS Publications Warehouse

    Crouch, Dennis E.; Yasutake, William T.; Rucker, Robert R.

    1973-01-01

    Nearly 0.5% of the yearling spring chinook salmon (Oncorhynchus tshawytscha) at a national fish hatchery were observed with mouth agape, the condition occurring in two of 16 ponds. X-radiographs and histological preparations indicated that the articular bone of the lower jaw was malformed and dislocated dorsal and posterior to its normal point of attachment. The bone appeared to be embedded in the mandibular muscle and surrounded by an extensive fibrous tissue network. Genetic aberration, environmental interaction, and teratogenic substances are discussed as possible causes of the anomaly.

  16. On the origin, homologies and evolution of primate facial muscles, with a particular focus on hominoids and a suggested unifying nomenclature for the facial muscles of the Mammalia

    PubMed Central

    Diogo, R; Wood, B A; Aziz, M A; Burrows, A

    2009-01-01

    The mammalian facial muscles are a subgroup of hyoid muscles (i.e. muscles innervated by cranial nerve VII). They are usually attached to freely movable skin and are responsible for facial expressions. In this study we provide an account of the origin, homologies and evolution of the primate facial muscles, based on dissections of various primate and non-primate taxa and a review of the literature. We provide data not previously reported, including photographs showing in detail the facial muscles of primates such as gibbons and orangutans. We show that the facial muscles usually present in strepsirhines are basically the same muscles that are present in non-primate mammals such as tree-shrews. The exceptions are that strepsirhines often have a muscle that is usually not differentiated in tree-shrews, the depressor supercilii, and lack two muscles that are usually differentiated in these mammals, the zygomatico-orbicularis and sphincter colli superficialis. Monkeys such as macaques usually lack two muscles that are often present in strepsirhines, the sphincter colli profundus and mandibulo-auricularis, but have some muscles that are usually absent as distinct structures in non-anthropoid primates, e.g. the levator labii superioris alaeque nasi, levator labii superioris, nasalis, depressor septi nasi, depressor anguli oris and depressor labii inferioris. In turn, macaques typically lack a risorius, auricularis anterior and temporoparietalis, which are found in hominoids such as humans, but have muscles that are usually not differentiated in members of some hominoid taxa, e.g. the platysma cervicale (usually not differentiated in orangutans, panins and humans) and auricularis posterior (usually not differentiated in orangutans). Based on our observations, comparisons and review of the literature, we propose a unifying, coherent nomenclature for the facial muscles of the Mammalia as a whole and provide a list of more than 300 synonyms that have been used in the

  17. Rhythmic chewing with oral jaws in teleost fishes: a comparison with amniotes.

    PubMed

    Gintof, Chris; Konow, Nicolai; Ross, Callum F; Sanford, Christopher P J

    2010-06-01

    Intra-oral prey processing (chewing) using the mandibular jaws occurs more extensively among teleost fishes than previously documented. The lack of muscle spindles, gamma-motoneurons and periodontal afferents in fishes makes them useful for testing hypotheses regarding the relationship between these sensorimotor components and rhythmic chewing in vertebrates. Electromyography (EMG) data from the adductor mandibulae (AM) were used to quantify variation in chew cycle duration in the bowfin Amia, three osteoglossomorphs (bony-tongues), four salmonids and one esocid (pike). All species chewed prey using their oral jaw in repetitive trains of between 3 and 30 consecutive chews, a pattern that resembles cyclic chewing in amniote vertebrates. Variance in rhythmicity was compared within and between lineages using coefficients of variation and Levene's test for homogeneity of variance. These comparisons revealed that some teleosts exhibit degrees of rhythmicity that are comparable to mammalian mastication and higher than in lepidosaurs. Moreover, chew cycle durations in fishes, as in mammals, scale positively with mandible length. Chewing among basal teleosts may be rhythmic because it is stereotyped and inflexible, the result of patterned interactions between sensory feedback and a central pattern generator, because the lack of a fleshy tongue renders jaw-tongue coordination unnecessary and/or because stereotyped opening and closing movements are important for controlling fluid flow in the oral cavity.

  18. On the anatomy of the temporomandibular joint and the muscles that act upon it: observations on the gray whale, Eschrichtius robustus.

    PubMed

    El Adli, Joseph J; Deméré, Thomas A

    2015-04-01

    The temporomandibular joint and its associated musculature are described in a neonate gray whale (Eschrichtius robustus) and serve as the basis for direct anatomical comparisons with the temporomandibular region in other clades of baleen whales (Mysticeti). Members of the right whale/bowhead whale clade (Balaenidae) are known to possess a synovial lower jaw joint, while members of the rorqual clade (Balaenopteridae) have a nonsynovial temporomandibular joint characterized by a highly flexible fibrocartilaginous pad and no joint capsule. In contrast, the gray whale possesses a modified temporomandibular joint (intermediate condition), with a vestigial joint cavity lacking a fibrous capsule, synovial membrane, and articular disk. In addition, the presence of a rudimentary fibrocartilaginous pad appears to be homologous to that seen in balaenopterid mysticetes. The intrinsic temporomandibular musculature in the gray whale was found to include a multibellied superficial masseter and a single-bellied deep masseter. The digastric and internal pterygoid muscles in E. robustus are enlarged relative to the condition documented in species of Balaenoptera. A relatively complex insertion of the temporalis muscle on the dentary is documented in the gray whale and the low, knob-like process on the gray whale dentary is determined to be homologous with the prominent coronoid process of rorquals. Comparison with the anatomy of the temporomandibular musculature in rorquals reveals an increased importance of alpha rotation of the dentary in the gray whale. This difference in muscular morphology and lines of muscle action is interpreted as representing adaptations for suction feeding. © 2015 Wiley Periodicals, Inc.

  19. Intramuscular temperature modulates glutamate-evoked masseter muscle pain intensity in humans.

    PubMed

    Sato, Hitoshi; Castrillon, Eduardo E; Cairns, Brian E; Bendixen, Karina H; Wang, Kelun; Nakagawa, Taneaki; Wajima, Koichi; Svensson, Peter

    2015-01-01

    To determine whether glutamate-evoked jaw muscle pain is altered by the temperature of the solution injected. Sixteen healthy volunteers participated and received injections of hot (48°C), neutral (36°C), or cold (3°C) solutions (0.5 mL) of glutamate or isotonic saline into the masseter muscle. Pain intensity was assessed with an electronic visual analog scale (eVAS). Numeric rating scale (NRS) scores of unpleasantness and temperature perception, pain-drawing areas, and pressure pain thresholds (PPTs) were also measured. Participants filled out the McGill Pain Questionnaire (MPQ). Two-way or three-way repeated measures ANOVA were used for data analyses. Injection of hot glutamate and cold glutamate solutions significantly increased and decreased, respectively, the peak pain intensity compared with injection of neutral glutamate solution. The duration of glutamate-evoked pain was significantly longer when hot glutamate was injected than when cold glutamate was injected. No significant effect of temperature on pain intensity was observed when isotonic saline was injected. No effect of solution temperature was detected on unpleasantness, heat perception, cold perception, area of pain drawings, or PPTs. There was a significantly greater use of the "numb" term in the MPQ to describe the injection of cold solutions compared to the injection of both neutral and hot solutions. Glutamate-evoked jaw muscle pain was significantly altered by the temperature of the injection solution. Although temperature perception in the jaw muscle is poor, pain intensity is increased when the muscle tissue temperature is elevated.

  20. The Effect of Varying Biting Position on Relative Jaw Muscle EMG activity

    DTIC Science & Technology

    1988-09-01

    with muscle force is the key to 13 this approach as it allows inference of muscle contraction activity from EMG data. This relationship has been the...5! 15 LITERATURE REVIEW Introduction: The study of the physiology of bite force, muscle contraction force, joint reaction force and the lever system...Currently, the best method of indirectly observing muscle contraction activity is through electromyography. Although there appears to be a time delay

  1. Bruxism: Is There an Indication for Muscle-Stretching Exercises?

    PubMed

    Gouw, Simone; de Wijer, Anton; Creugers, Nico Hj; Kalaykova, Stanimira I

    Bruxism is a common phenomenon involving repetitive activation of the masticatory muscles. Muscle-stretching exercises are a recommended part of several international guidelines for musculoskeletal disorders and may be effective in management of the jaw muscle activity that gives rise to bruxism. However, most studies of muscle-stretching exercises have mainly focused on their influence on performance (eg, range of motion, coordination, and muscle strength) of the limb or trunk muscles of healthy individuals or individuals with sports-related injuries. Very few have investigated stretching of the human masticatory muscles and none muscle-stretching exercises in the management of (sleep) bruxism. This article reviews the literature on muscle-stretching exercises and their potential role in the management of sleep bruxism or its consequences in the musculoskeletal system.

  2. Appraisal of jaw swellings in a Nigerian tertiary healthcare facility.

    PubMed

    Lasisi, Taye J; Adisa, Akinyele O; Olusanya, Adeola A

    2013-02-01

    The mandible and maxilla can be the site of myriads of lesions that may be categorized as neoplastic, cystic, reactive and infective or inflammatory. Literature reviewing jaw swellings in an amalgamated fashion are uncommon, probably because aetiologies for these swellings are varied. However, to appreciate their relative relationship, it is essential to evaluate the clinico-pathologic profile of jaw swellings. The aim of this appraisal is to describe the array of jaw swellings seen at our hospital from 1990 to 2011, to serve as a reference database. Biopsy records of all histologically diagnosed cases of jaw swellings seen at the department of Oral Pathology, University College Hospital between January 1990 and December 2011 were retrieved, coded and inputted into SPSS version 20. Data on prevalence, age, sex, site and histological diagnosis were analysed descriptively for each category of jaw swellings. All patients below 16 years were regarded as children. A total of 638 jaw swellings were recorded in the 22-year study period. The Non Odontogenic Tumours (NOT) were the commonest, accounting for 46.2% of all jaw swellings. Odontogenic Tumours (OT) formed 45% of all adult jaw swelling while it formed 25.2% in children and adolescents. Ameloblastoma was the commonest while the most common NOT was ossifying fibroma (OF). Chronic osteomyelitis of the jaws was about 6 times commoner in adult females than males and mostly involved the mandible. The most common malignant jaw swelling was Burkitts' lymphoma (BL) that was about 7 times more in children than adults. Osteogenic sarcoma was the most common malignancy in adults. Jaw swellings are extensively varied in types and pattern of occurrence. This study has categorized jaw swellings in a simple but comprehensive fashion to allow for easy referencing in local and international data acquisition and epidemiological comparison. Key words:Jaw swellings, odontogenic, Nigeria.

  3. Jaw-phonatory coordination in chronic developmental stuttering.

    PubMed

    Loucks, Torrey M J; De Nil, Luc F; Sasisekaran, Jayanthi

    2007-01-01

    A deficiency in sensorimotor integration in a person who stutters may be a factor in the pathophysiology of developmental stuttering. To test oral sensorimotor function in adults who stutter, we used a task that requires the coordination of a jaw-opening movement with phonation onset. The task was adapted from previous limb coordination studies, which show that movement coordination depends on intact proprioception. We hypothesized that adult stutterers would show deficient jaw-phonatory coordination relative to control participants. The task required initiation of phonation as a jaw-opening movement passed through a narrow spatial target. Target amplitude and jaw movement speed were varied. The stuttering group showed significantly higher movement error and spatial variability in jaw-phonatory coordination compared to the control group, but group differences in movement velocity or duration were not found. The aberrant jaw-phonatory coordination of the stuttering participants suggests that stuttering is associated with an oral proprioceptive limitation, although, the findings are also consistent with a motor control deficit. As a result of this activity, reader will (1) learn about a hypothesis and evidence supporting the view that a sensorimotor deficit contributes to chronic developmental stuttering and (2) will obtain information about the role of proprioception in multi-articulatory coordination and how it can be tested using an oral-phonatory coordination task.

  4. Frequent jaw-face pain in chronic Whiplash-Associated Disorders.

    PubMed

    Häggman-Henrikson, Birgitta; Grönqvist, Johan; Eriksson, Per-Olof

    2011-01-01

    Chronic Whiplash-Associated Disorders (WAD) present with frequent pain in the neck, head and shoulder regions but the presence of frequent jaw-face pain is unclear. The aim of the study was to investigate the frequency of jaw-face pain, pain in other regions, and general symptoms in chronic WAD patients. Fifty whiplash-patients and 50 healthy age- and sex-matched controls were examined by questionnaire for pain in the jaw-face, pain in other regions and other symptoms. In contrast to healthy, a majority of the WAD patients (88%) reported frequent pain in the jaw-face, in addition to frequent pain in the neck (100%), shoulders (94%), head (90%) and back (72%). The WAD patients also reported stiffness and numbness in the jaw-face region, and frequent general symptoms such as balance problems, stress and sleep disturbances. The result suggests that frequent pain in the jaw-face can be part of the spectrum of symptoms in chronic WAD.The finding of self-reported numbness in the jaw-face indicates disturbed trigeminal nerve function and merits further investigation. We conclude that assessment of WAD should include pain in the jaw-face region. A multidisciplinary rehabilitation program including dentists, preferably specialized in the area of orofacial pain, should be advocated after whiplash injury.

  5. Bisphosphonate Therapy (and Osteonecrosis of the Jaw)

    MedlinePlus

    ... or other invasive dental procedures, a phenomenon called osteonecrosis of the jaw (see Right and note area ... doctors agree that there is an association between osteonecrosis of the jaw and bisphosphonates, although the drugs ...

  6. Muscle fatigue in the temporal and masseter muscles in patients with temporomandibular dysfunction.

    PubMed

    Woźniak, Krzysztof; Lipski, Mariusz; Lichota, Damian; Szyszka-Sommerfeld, Liliana

    2015-01-01

    The aim of this study is to evaluate muscle fatigue in the temporal and masseter muscles in patients with temporomandibular dysfunction (TMD). Two hundred volunteers aged 19.3 to 27.8 years (mean 21.50, SD 0.97) participated in this study. Electromyographical (EMG) recordings were performed using a DAB-Bluetooth Instrument (Zebris Medical GmbH, Germany). Muscle fatigue was evaluated on the basis of a maximum effort test. The test was performed during a 10-second maximum isometric contraction (MVC) of the jaws. An analysis of changes in the mean power frequency of the two pairs of temporal and masseter muscles (MPF%) revealed significant differences in the groups of patients with varying degrees of temporomandibular disorders according to Di (P < 0.0000). The study showed an increase in the muscle fatigue of the temporal and masseter muscles correlated with the intensity of temporomandibular dysfunction symptoms in patients. The use of surface electromyography in assessing muscle fatigue is an excellent diagnostic tool for identifying patients with temporomandibular dysfunction.

  7. Muscle Fatigue in the Temporal and Masseter Muscles in Patients with Temporomandibular Dysfunction

    PubMed Central

    Woźniak, Krzysztof; Lipski, Mariusz; Lichota, Damian

    2015-01-01

    The aim of this study is to evaluate muscle fatigue in the temporal and masseter muscles in patients with temporomandibular dysfunction (TMD). Two hundred volunteers aged 19.3 to 27.8 years (mean 21.50, SD 0.97) participated in this study. Electromyographical (EMG) recordings were performed using a DAB-Bluetooth Instrument (Zebris Medical GmbH, Germany). Muscle fatigue was evaluated on the basis of a maximum effort test. The test was performed during a 10-second maximum isometric contraction (MVC) of the jaws. An analysis of changes in the mean power frequency of the two pairs of temporal and masseter muscles (MPF%) revealed significant differences in the groups of patients with varying degrees of temporomandibular disorders according to Di (P < 0.0000). The study showed an increase in the muscle fatigue of the temporal and masseter muscles correlated with the intensity of temporomandibular dysfunction symptoms in patients. The use of surface electromyography in assessing muscle fatigue is an excellent diagnostic tool for identifying patients with temporomandibular dysfunction. PMID:25883949

  8. Self-aligning fixture used in lathe chuck jaw refacing

    NASA Technical Reports Server (NTRS)

    Linn, C. C.

    1965-01-01

    Self-aligning tool positions and rigidly holds lathe chuck jaws for refacing and truing of the clamping surface. The jaws clamp the fixture in the manner of clamping a workpiece. The fixture can be modified to accommodate four-jawed checks.

  9. Development of the muscles associated with the mandibular and hyoid arches in the Siberian sturgeon, Acipenser baerii (Acipenseriformes: Acipenseridae).

    PubMed

    Warth, Peter; Hilton, Eric J; Naumann, Benjamin; Olsson, Lennart; Konstantinidis, Peter

    2018-02-01

    The skeleton of the jaws and neurocranium of sturgeons (Acipenseridae) are connected only through the hyoid arch. This arrangement allows considerable protrusion and retraction of the jaws and is highly specialized among ray-finned fishes (Actinopterygii). To better understand the unique morphology and the evolution of the jaw apparatus in Acipenseridae, we investigated the development of the muscles of the mandibular and hyoid arches of the Siberian sturgeon, Acipenser baerii. We used a combination of antibody staining and formalin-induced fluorescence of tissues imaged with confocal microscopy and subsequent three-dimensional reconstruction. These data were analyzed to address the identity of previously controversial and newly discovered muscle portions. Our results indicate that the anlagen of the muscles in A. baerii develop similarly to those of other actinopterygians, although they differ by not differentiating into distinct muscles. This is exemplified by the subpartitioning of the m. adductor mandibulae as well as the massive m. protractor hyomandibulae, for which we found a previously undescribed portion in each. The importance of paedomorphosis for the evolution of Acipenseriformes has been discussed before and our results indicate that the muscles of the mandibular and the hyoid may be another example for heterochronic evolution. © 2017 Wiley Periodicals, Inc.

  10. Masseter motor unit recruitment is altered in experimental jaw muscle pain.

    PubMed

    Minami, I; Akhter, R; Albersen, I; Burger, C; Whittle, T; Lobbezoo, F; Peck, C C; Murray, G M

    2013-02-01

    Some management strategies for chronic orofacial pain are influenced by models (e.g., Vicious Cycle Theory, Pain Adaptation Model) proposing either excitation or inhibition within a painful muscle. The aim of this study was to determine if experimental painful stimulation of the masseter muscle resulted in only increases or only decreases in masseter activity. Recordings of single-motor-unit (SMU, basic functional unit of muscle) activity were made from the right masseters of 10 asymptomatic participants during biting trials at the same force level and direction under infusion into the masseter of isotonic saline (no-pain condition), and in another block of biting trials on the same day, with 5% hypertonic saline (pain condition). Of the 36 SMUs studied, 2 SMUs exhibited a significant (p < 0.05) increase, 5 a significant decrease, and 14 no significant change in firing rate during pain. Five units were present only during the no-pain block and 10 units during the pain block only. The findings suggest that, rather than only excitation or only inhibition within a painful muscle, a re-organization of activity occurs, with increases and decreases occurring within the painful muscle. This suggests the need to re-assess management strategies based on models that propose uniform effects of pain on motor activity.

  11. Additively manufactured sub-periosteal jaw implants.

    PubMed

    Mommaerts, M Y

    2017-07-01

    Severe bone atrophy jeopardizes the success of endosseous implants. This technical note aims to present the innovative concept of additively manufactured sub-periosteal jaw implants (AMSJIs). Digital datasets of the patient's jaws and wax trial in occlusion are used to segment the bone and dental arches, for the design of a sub-periosteal frame and abutments in the optimal location related to the dental arch and for the design of the suprastructure. The implants and suprastructure are three-dimensionally (3D) printed in titanium alloy. The provisional denture is 3D-printed in polymer. AMSJIs offer an alternative approach for patients with extreme jaw bone atrophy. This report refers to the use of this technique for full maxillary rehabilitation, but partial defects in either jaw and extended post-resection defects may also be approached using the same technique. This customized, prosthesis-driven reverse-engineering approach avoids bone grafting and provides immediate functional restoration with one surgical session. Copyright © 2017 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  12. Effects of Jaw Clenching and Jaw Alignment Mouthpiece Use on Force Production During Vertical Jump and Isometric Clean Pull.

    PubMed

    Allen, Charles R; Fu, Yang-Chieh; Cazas-Moreno, Vanessa; Valliant, Melinda W; Gdovin, Jacob R; Williams, Charles C; Garner, John C

    2018-01-01

    Allen, CR, Fu, Y-C, Cazas-Moreno, V, Valliant, MW, Gdovin, JR, Williams, CC, and Garner, JC. Effects of jaw clenching and jaw alignment mouthpiece use on force production during vertical jump and isometric clean pull. J Strength Cond Res 32(1): 237-243, 2018-This study examined the effects of jaw clenching, a self-adapted, jaw-repositioning mouthpiece on force production during maximum countermovement vertical jump and maximum isometric midthigh clean pull assessments in an attempt to determine any ergogenic effect attributable to clenching, jaw-repositioning mouthpiece use, or the combination of both. Thirty-six male subjects performed vertical jump and isometric clean pull assessments from a force platform under various mouthpiece and clench conditions. A 3 × 2 (mouthpiece × clench) repeated-measures analysis of variance was conducted to analyze each of the following force production variables for both assessments: peak force, normalized peak force, and rate of force development. In addition, jump height was analyzed for the vertical jump. Results revealed improvements in peak force (F1,35 = 15.84, p ≤ 0.001, (Equation is included in full-text article.)= 0.31), normalized peak force (F1,35 = 16.28, p ≤ 0.001, (Equation is included in full-text article.)= 0.32), and rate of force development (F1,35 = 12.89, p = 0.001, (Equation is included in full-text article.)= 0.27) during the isometric clean pull assessment when participants maximally clenched their jaw, regardless of mouthpiece condition. There were no statistically significant differences in jump height, peak force, normalized peak force, or rate of force development during the vertical jump for any treatment condition. This study supports previous research demonstrating that the implementation of remote voluntary contractions such as jaw clenching can lead to concurrent activation potentiation and a resulting ergogenic effect during activities involving and requiring high-force production.

  13. The virtual craniofacial patient: 3D jaw modeling and animation.

    PubMed

    Enciso, Reyes; Memon, Ahmed; Fidaleo, Douglas A; Neumann, Ulrich; Mah, James

    2003-01-01

    In this paper, we present new developments in the area of 3D human jaw modeling and animation. CT (Computed Tomography) scans have traditionally been used to evaluate patients with dental implants, assess tumors, cysts, fractures and surgical procedures. More recently this data has been utilized to generate models. Researchers have reported semi-automatic techniques to segment and model the human jaw from CT images and manually segment the jaw from MRI images. Recently opto-electronic and ultrasonic-based systems (JMA from Zebris) have been developed to record mandibular position and movement. In this research project we introduce: (1) automatic patient-specific three-dimensional jaw modeling from CT data and (2) three-dimensional jaw motion simulation using jaw tracking data from the JMA system (Zebris).

  14. Phasic jaw motor episodes in healthy subjects with or without clinical signs and symptoms of sleep bruxism: a pilot study.

    PubMed

    Yoshizawa, Shuichiro; Suganuma, Takeshi; Takaba, Masayuki; Ono, Yasuhiro; Sakai, Takuro; Yoshizawa, Ayako; Kawana, Fusae; Kato, Takafumi; Baba, Kazuyoshi

    2014-03-01

    To investigate the association between each clinical diagnosis criterion for sleep bruxism (SB) and the frequency of jaw motor events during sleep. Video-polysomnography was performed on 17 healthy adult subjects (mean age, 26.7 ± 2.8 years), with at least one of the following clinical signs and symptoms of SB: (1) a report of frequent tooth grinding, (2) tooth attrition with dentine exposure through at least three occlusal surfaces, (3) morning masticatory muscle symptoms, and (4) masseter muscle hypertrophy. Episodes of rhythmic masticatory muscle activity (RMMA) and isolated tonic activity were scored visually. These variables were compared with regards to the presence or absence of each clinical sign and symptom. In 17 subjects, 4.0 ± 2.5/h (0.1-10.2) RMMA and 1.0 ± 0.8/h (0-2.4) isolated tonic episodes were observed (total episodes: 5.0 ± 2.4/h (1.2-11.6)). Subjects with self-reported grinding sounds (n=7) exhibited significantly higher numbers of RMMA episodes (5.7 ± 2.3/h) than those without (n=10; 2.8 ± 1.8/h) (p=0.011). Similarly, subjects with tooth attrition (n=6) showed significantly higher number of RMMA episodes (5.6 ± 3.1/h) than those without (n=11; 3.2 ± 1.6/h) (p=0.049). The occurrence of RMMA did not differ between the presence and absence of morning masticatory muscle symptoms or muscle hypertrophy. Clinical signs and symptoms frequently used for diagnosing SB can represent different clinical and physiological aspects of jaw motor activity during sleep.

  15. Morphometric assessment of pterosaur jaw disparity

    NASA Astrophysics Data System (ADS)

    Navarro, Charlie A.; Martin-Silverstone, Elizabeth; Stubbs, Thomas L.

    2018-04-01

    Pterosaurs were a successful group of Mesozoic flying reptiles. They were the first vertebrate group to achieve powered flight and varied enormously in morphology and ecology, occupying a variety of niches and developing specialized feeding strategies. Ecomorphological principles suggest this variation should be reflected by great morphological diversity in the lower jaw, given that the mandible served as the primary apparatus for prey acquisition. Here we present the first study of mandibular shape disparity in pterosaurs and aim to characterize major aspects of variation. We use a combination of geometric morphometric approaches, incorporating both outline analysis using elliptical Fourier analysis and semi-landmark approaches. Our results show that morphological convergence is prevalent and many pterosaurs, belonging to diverse dietary groups and subclades, overlap in morphospace and possessed relatively simple `rod-shaped' jaws. There is no clear trend of size distributions in pterosaur mandibular morphospace, and larger forms are widely distributed. Additionally, there is limited functional signal within pterosaur lower jaw morphospace. Instead, the development of a large anterior ventral crest represents the major component of disparity. This suggests that a socio-sexual trait was a key driver for innovation in pterosaur lower jaw shape.

  16. Morphometric assessment of pterosaur jaw disparity.

    PubMed

    Navarro, Charlie A; Martin-Silverstone, Elizabeth; Stubbs, Thomas L

    2018-04-01

    Pterosaurs were a successful group of Mesozoic flying reptiles. They were the first vertebrate group to achieve powered flight and varied enormously in morphology and ecology, occupying a variety of niches and developing specialized feeding strategies. Ecomorphological principles suggest this variation should be reflected by great morphological diversity in the lower jaw, given that the mandible served as the primary apparatus for prey acquisition. Here we present the first study of mandibular shape disparity in pterosaurs and aim to characterize major aspects of variation. We use a combination of geometric morphometric approaches, incorporating both outline analysis using elliptical Fourier analysis and semi-landmark approaches. Our results show that morphological convergence is prevalent and many pterosaurs, belonging to diverse dietary groups and subclades, overlap in morphospace and possessed relatively simple 'rod-shaped' jaws. There is no clear trend of size distributions in pterosaur mandibular morphospace, and larger forms are widely distributed. Additionally, there is limited functional signal within pterosaur lower jaw morphospace. Instead, the development of a large anterior ventral crest represents the major component of disparity. This suggests that a socio-sexual trait was a key driver for innovation in pterosaur lower jaw shape.

  17. Morphometric assessment of pterosaur jaw disparity

    PubMed Central

    Navarro, Charlie A.; Martin-Silverstone, Elizabeth

    2018-01-01

    Pterosaurs were a successful group of Mesozoic flying reptiles. They were the first vertebrate group to achieve powered flight and varied enormously in morphology and ecology, occupying a variety of niches and developing specialized feeding strategies. Ecomorphological principles suggest this variation should be reflected by great morphological diversity in the lower jaw, given that the mandible served as the primary apparatus for prey acquisition. Here we present the first study of mandibular shape disparity in pterosaurs and aim to characterize major aspects of variation. We use a combination of geometric morphometric approaches, incorporating both outline analysis using elliptical Fourier analysis and semi-landmark approaches. Our results show that morphological convergence is prevalent and many pterosaurs, belonging to diverse dietary groups and subclades, overlap in morphospace and possessed relatively simple ‘rod-shaped’ jaws. There is no clear trend of size distributions in pterosaur mandibular morphospace, and larger forms are widely distributed. Additionally, there is limited functional signal within pterosaur lower jaw morphospace. Instead, the development of a large anterior ventral crest represents the major component of disparity. This suggests that a socio-sexual trait was a key driver for innovation in pterosaur lower jaw shape. PMID:29765665

  18. Introduction to the JAWS Program

    NASA Technical Reports Server (NTRS)

    Mccarthy, John

    1987-01-01

    The JAWS Project is the Joint Airport Weather Studies project conceived in 1980 jointly between the National Center for Atmospheric Research and the Univ. of Chicago. The objectives of the program are threefold: (1) Basic scientific characterization of the microbursts and the statistics of microbursts occurrence; (2) Detection and warning, using the Low Level Wind Shear Alert System (LLWSAS) operation and performance; and (3) Doppler radar and airborne systems. These goals and the operation of the JAWS system in general are discussed in detail.

  19. Association of Orofacial Muscle Activity and Movement during Changes in Speech Rate and Intensity

    ERIC Educational Resources Information Center

    McClean, Michael D.; Tasko, Stephen M.

    2003-01-01

    Understanding how orofacial muscle activity and movement covary across changes in speech rate and intensity has implications for the neural control of speech production and the use of clinical procedures that manipulate speech prosody. The present study involved a correlation analysis relating average lower-lip and jaw-muscle activity to lip and…

  20. The evolutionary origin of jaw yaw in mammals

    PubMed Central

    Grossnickle, David M.

    2017-01-01

    Theria comprises all but three living mammalian genera and is one of the most ecologically pervasive clades on Earth. Yet, the origin and early history of therians and their close relatives (i.e., cladotherians) remains surprisingly enigmatic. A critical biological function that can be compared among early mammal groups is mastication. Morphometrics and modeling analyses of the jaws of Mesozoic mammals indicate that cladotherians evolved musculoskeletal anatomies that increase mechanical advantage during jaw rotation around a dorsoventrally-oriented axis (i.e., yaw) while decreasing the mechanical advantage of jaw rotation around a mediolaterally-oriented axis (i.e., pitch). These changes parallel molar transformations in early cladotherians that indicate their chewing cycles included significant transverse movement, likely produced via yaw rotation. Thus, I hypothesize that cladotherian molar morphologies and musculoskeletal jaw anatomies evolved concurrently with increased yaw rotation of the jaw during chewing cycles. The increased transverse movement resulting from yaw rotation may have been a crucial evolutionary prerequisite for the functionally versatile tribosphenic molar morphology, which underlies the molars of all therians and is retained by many extant clades. PMID:28322334

  1. An electromyographic study on the sequential recruitment of bilateral sternocleidomastoid and masseter muscle activity during gum chewing.

    PubMed

    Guo, S-X; Li, B-Y; Zhang, Y; Zhou, L-J; Liu, L; Widmalm, S-E; Wang, M-Q

    2017-08-01

    Mandibular functions are associated with electromyographic activity of the jaw muscles and also the sternocleidomastoid muscle (SCM). The precise spatiotemporal relation of SCM and masticatory muscles activities during chewing is worthy of investigation. To analyse the sequential recruitment of SCM and masseter activities during chewing as indicated by the spatiotemporal locations of their activity peaks. Jaw movements and bilateral surface electromyographic activity of SCM and masseter were recorded during gum chewing in 20 healthy subjects. The timing order was decided by comparing the length of time from the time when the opening started to the time when the surface electromyographic activity reached its peak value. Spatial order was analysed by locating the peak electromyographic activity onto a standard chewing cycle which was created based on 15 unilateral chewing cycles. Paired t-test, one-way ANOVA and Student-Newman-Keuls post-test were used for comparisons. Although the Time to Peak for the balancing side SCM appeared shorter than for the other three tested muscles, most often it did not reach a level of significance. However, the location of the balancing side SCM's peak activity was further from the terminal chewing position (TCP) than the working side SCM and bilateral masseters (P < 0·05). The balancing side SCM activity reached its peak significantly further away from TCP than the other three tested muscles during chewing. Further studies with spatiotemporal variables included should be helpful to understand the roles of the head, neck and jaw muscles in orofacial and cervical dysfunctional problems. © 2017 John Wiley & Sons Ltd.

  2. The homology of wing base sclerites and flight muscles in Ephemeroptera and Neoptera and the morphology of the pterothorax of Habroleptoides confusa (Insecta: Ephemeroptera: Leptophlebiidae).

    PubMed

    Willkommen, Jana; Hörnschemeyer, Thomas

    2007-06-01

    The ability to fly is the decisive factor for the evolutionary success of winged insects (Pterygota). Despite this, very little is known about the ground-pattern and evolution of the functionally very important wing base. Here we use the Ephemeroptera, usually regarded as the most ancient flying insects, as a model for the analysis of the flight musculature and the sclerites of the wing base. Morphology and anatomy of the pterothorax of 13 species of Ephemeroptera and five species of Plecoptera were examined and a detailed description of Habroleptoides confusa (Ephemeroptera: Leptophlebiidae) is given. A new homology of the wing base sclerites in Ephemeroptera is proposed. The wing base of Ephemeroptera possesses three axillary sclerites that are homologous to the first axillary, the second axillary and the third axillary of Neoptera. For example, the third axillary possesses the axillary-pleural muscle that mostly is considered as a characteristic feature of the Neoptera. Many of the muscles and sclerites of the flight system of the Ephemeroptera and Neoptera can be readily homologised. In fact, there are indications that a foldable wing base may be a ground plan feature of pterygote insects and that the non-foldable wing base of the Ephemeroptera is a derived state.

  3. Multiple developmental mechanisms regulate species-specific jaw size

    PubMed Central

    Fish, Jennifer L.; Sklar, Rachel S.; Woronowicz, Katherine C.; Schneider, Richard A.

    2014-01-01

    Variation in jaw size during evolution has been crucial for the adaptive radiation of vertebrates, yet variation in jaw size during development is often associated with disease. To test the hypothesis that early developmental events regulating neural crest (NC) progenitors contribute to species-specific differences in size, we investigated mechanisms through which two avian species, duck and quail, achieve their remarkably different jaw size. At early stages, duck exhibit an anterior shift in brain regionalization yielding a shorter, broader, midbrain. We find no significant difference in the total number of pre-migratory NC; however, duck concentrate their pre-migratory NC in the midbrain, which contributes to an increase in size of the post-migratory NC population allocated to the mandibular arch. Subsequent differences in proliferation lead to a progressive increase in size of the duck mandibular arch relative to that of quail. To test the role of pre-migratory NC progenitor number in regulating jaw size, we reduced and augmented NC progenitors. In contrast to previous reports of regeneration by NC precursors, we find that neural fold extirpation results in a loss of NC precursors. Despite this reduction in their numbers, post-migratory NC progenitors compensate, producing a symmetric and normal-sized jaw. Our results suggest that evolutionary modification of multiple aspects of NC cell biology, including NC allocation within the jaw primordia and NC-mediated proliferation, have been important to the evolution of jaw size. Furthermore, our finding of NC post-migratory compensatory mechanisms potentially extends the developmental time frame for treatments of disease or injury associated with NC progenitor loss. PMID:24449843

  4. Specification of jaw identity by the Hand2 transcription factor

    PubMed Central

    Funato, Noriko; Kokubo, Hiroki; Nakamura, Masataka; Yanagisawa, Hiromi; Saga, Yumiko

    2016-01-01

    Acquisition of the lower jaw (mandible) was evolutionarily important for jawed vertebrates. In humans, syndromic craniofacial malformations often accompany jaw anomalies. The basic helix-loop-helix transcription factor Hand2, which is conserved among jawed vertebrates, is expressed in the neural crest in the mandibular process but not in the maxillary process of the first branchial arch. Here, we provide evidence that Hand2 is sufficient for upper jaw (maxilla)-to-mandible transformation by regulating the expression of homeobox transcription factors in mice. Altered Hand2 expression in the neural crest transformed the maxillae into mandibles with duplicated Meckel’s cartilage, which resulted in an absence of the secondary palate. In Hand2-overexpressing mutants, non-Hox homeobox transcription factors were dysregulated. These results suggest that Hand2 regulates mandibular development through downstream genes of Hand2 and is therefore a major determinant of jaw identity. Hand2 may have influenced the evolutionary acquisition of the mandible and secondary palate. PMID:27329940

  5. Fine morphology of the jaw apparatus of Puncturella noachina (Fissurellidae, Vetigastropoda).

    PubMed

    Vortsepneva, Elena; Ivanov, Dmitry; Purschke, Günter; Tzetlin, Alexander

    2014-07-01

    Jaws of various kinds occur in virtually all groups of Mollusca, except for Polyplacophora and Bivalvia. Molluscan jaws are formed by the buccal epithelium and either constitute a single plate, a paired formation or a serial structure. Buccal ectodermal structures in gastropods are rather different. They can be nonrenewable or having final growth, like the hooks in Clione (Gastropoda, Gymnosomata). In this case, they are formed by a single cell. Conversely, they can be renewable during the entire life span and in this case they are formed by a set of cells, like the formation of the radula. The fine structure of the jaws was studied in the gastropod Puncturella noachina. The jaw is situated in the buccal cavity and consists of paired elongated cuticular plates. On the anterior edge of each cuticular plate there are numerous longitudinally oriented rodlets disposed over the entire jaw surface and immersed into a cuticular matrix. The jaw can be divided into four zones situated successively toward the anterior edge: 1) the posterior area: the zone of formation of the thick cuticle covering the entire jaw and forming the electron-dense outer layer of the jaw plate; 2) the zone of rodlet formation; 3) the zone of rodlet arrangement; and 4) the anterior zone: the free scraping edge of the plate, or the erosion zone. In the general pattern of jaw formation, Puncturella noachina resembles Testudinalia tessulata (Patellogastropoda) studied previously. The basis of the jaw is a cuticular plate formed by the activity of the strongly developed microvillar apparatus of the gnathoepithelium. However, the mechanism of renewal of the jaw anterior part in P. noachina is much more complex as its scraping edge consists not just of a thick cuticular matrix rather than of a system of denticles being the projecting endings of rodlets. © 2014 Wiley Periodicals, Inc.

  6. Strength improvements through occlusal splints? The effects of different lower jaw positions on maximal isometric force production and performance in different jumping types

    PubMed Central

    Maurer, Christian; Heller, Sebastian; Sure, Jil-Julia; Fuchs, Daniel; Mickel, Christoph; Wanke, Eileen M.; Groneberg, David A.

    2018-01-01

    Objective The influence of the jaw position on postural control, body posture, walking and running pattern has been reported in the literature. All these movements have in common that a relatively small, but well controlled muscle activation is required. The induced effects on motor output through changed jaw positions have been small. Therefore, it has been questioned if it could still be observed in maximal muscle activation. Method Twenty-three healthy, mid age recreational runners (mean age = 34.0 ± 10.3 years) participated in this study. Three different jump tests (squat jump, counter movement jump, and drop jumps from four different heights) and three maximal strength tests (trunk flexion and extension, leg press of the right and left leg) were conducted. Four different dental occlusion conditions and an additional familiarization condition were tested. Subjects performed the tests on different days for which the four occlusion conditions were randomly changed. Results No familiarization effect was found. Occlusion conditions with a relaxation position and with a myocentric condylar position showed significantly higher values for several tests compared to the neutral condition and the maximal occlusion position. Significance was found in the squat jump, countermovement jump, the drop jump from 32cm and 40cm, trunk extension, leg press force and rate of force development. The effect due to the splint conditions is an improvement between 3% and 12% (min and max). No influence of the jaw position on symmetry or balance between extension and flexion muscle was found. Conclusion An influence of occlusion splints on rate of force development (RFD) and maximal strength tests could be confirmed. A small, but consistent increase in the performance parameters could be measured. The influence of the occlusion condition is most likely small compared to other influences as for example training status, age, gender and circadian rhythm. PMID:29474465

  7. Epidemiology of the sarcomas of the jaws in a Peruvian population

    PubMed Central

    Sacsaquispe-Contreras, Sonia J.; Morales-Vadillo, Rafael; Sánchez Lihón, Juvenal

    2012-01-01

    Objective: Analysis of the clinical characteristics of patients with Sarcomas of the Jaws treated in the “Instituto Nacional de Enfermedades Neoplasicas. Dr. Eduardo Caceres Graziani” from 1952-2007. Study Design: Review of 155 clinical records of patients with Sarcomas of the Jaws and record of age, gender, size, location, clinical symptoms and signs, histopathological diagnoses and type of treatment. The data obtained were analyzed by means of Student’s statistical t-test, Fisher and Friedman’s test. Results: Analysis of 155 Sarcomas of the Jaws. The average age of patients was 36.8 years old (range: 1-80 years); the female gender was the most frequent (52.9%); the average tumor size was 5.5 cm; in upper jaw 54.84% occurred and 45.16% in the lower jaw; the predominant sign was facial asymmetry (87.74%) and the predominant symptom: pain (63.23%). The most frequent diagnosis was Osteosarcoma 50.3% followed by Chondrosarcoma 18%. Surgery plus radiation therapy was the treatment type of choice with 21.94% of cases. Conclusion: The results of this study demonstrate the delayed diagnosis and facial asymmetry and pain appear as the most important events for the diagnosis of Sarcomas of the Jaws. Key words: Sarcoma, jaw, jaw neoplasms, mouth neoplasms. PMID:22143684

  8. [Size of lower jaw as an early indicator of skeletal class III development].

    PubMed

    Stojanović, Zdenka; Nikodijević, Angelina; Udovicić, Bozidar; Milić, Jasmina; Nikolić, Predrag

    2008-08-01

    Malocclusion of skeletal class III is a complex abnormality, with a characteristic sagital position of the lower jaw in front of the upper one. A higher level of prognatism of the lower jaw in relation to the upper one can be the consequence of its excessive length. The aim of this study was to find the differences in the length of the lower jaw in the children with skeletal class III and the children with normal sagital interjaw relation (skeletal class I) in the period of mixed dentition. After clinical and x-ray diagnostics, profile tele-x-rays of the head were analyzed in 60 examinees with mixed dentition, aged from 6 to 12 years. The examinees were divided into two groups: group 1--the children with skeletal class III and group 2--the children with skeletal class I. The length of the lower jaw, upper jaw and cranial base were measured. The proportional relations between the lengths measured within each group were established and the level of difference in the lengths measured and their proportions between the groups were estimated. No significant difference between the groups was found in the body length, ramus and the total length of the lower jaw. Proportional relation between the body length and the length of the lower jaw ramus and proportional relation between the forward cranial base and the lower jaw body were not significantly different. A significant difference was found in proportional relations of the total length of the lower jaw with the total lengths of cranial base and the upper jaw and proportional relation of the length of the lower and upper jaw body. Of all the analyzed parameters, the following were selected as the early indicators of the development of skeletal class III on the lower jaw: greater total length of the lower jaw, proportional to the total lengths of cranial base and theupper jaw, as well as greater length of the lower jaw body, proportional to the length of the upper jaw body.

  9. Long-term variability of sleep bruxism and psychological stress in patients with jaw-muscle pain: Report of two longitudinal clinical cases.

    PubMed

    Muzalev, K; Visscher, C M; Koutris, M; Lobbezoo, F

    2018-02-01

    Sleep bruxism (SB) and psychological stress are commonly considered as contributing factors in the aetiology of temporomandibular disorder (TMD) pain. However, the lack of longitudinal studies and fluctuating nature of SB, psychological stress and TMD pain have led to contradictory results regarding the association between the possible aetiological factors and TMD pain. In the present study we investigated the contribution of SB and psychological stress to TMD pain in a longitudinal study of 2 clinical TMD pain cases during a 6-week study protocol. Two female volunteers with clinically diagnosed myalgia based on the Diagnostic Criteria for Temporomandibular Disorders (DC/TMD) participated in the study. Questionnaires were used to record jaw-muscle pain and psychological stress experience, and an ambulatory polysomnography technique was used to record SB intensity. Visual analysis of the data revealed that the intensity of TMD pain was not hardwired, neither with psychological stress experience nor with increased SB activity. Within the limitations of single-patient clinical cases design, our study suggested that the presence of TMD pain cannot be explained by a simple linear model which takes psychological stress or SB into account. It also seems that psychological stress was a more important predictor factor for TMD pain than SB. © 2017 John Wiley & Sons Ltd.

  10. An eye on the head: the development and evolution of craniofacial muscles.

    PubMed

    Sambasivan, Ramkumar; Kuratani, Shigeru; Tajbakhsh, Shahragim

    2011-06-01

    Skeletal muscles exert diverse functions, enabling both crushing with great force and movement with exquisite precision. A remarkably distinct repertoire of genes and ontological features characterise this tissue, and recent evidence has shown that skeletal muscles of the head, the craniofacial muscles, are evolutionarily, morphologically and molecularly distinct from those of the trunk. Here, we review the molecular basis of craniofacial muscle development and discuss how this process is different to trunk and limb muscle development. Through evolutionary comparisons of primitive chordates (such as amphioxus) and jawless vertebrates (such as lampreys) with jawed vertebrates, we also provide some clues as to how this dichotomy arose.

  11. Differential activation of an identified motor neuron and neuromodulation provide Aplysia's retractor muscle an additional function.

    PubMed

    McManus, Jeffrey M; Lu, Hui; Cullins, Miranda J; Chiel, Hillel J

    2014-08-15

    To survive, animals must use the same peripheral structures to perform a variety of tasks. How does a nervous system employ one muscle to perform multiple functions? We addressed this question through work on the I3 jaw muscle of the marine mollusk Aplysia californica's feeding system. This muscle mediates retraction of Aplysia's food grasper in multiple feeding responses and is innervated by a pool of identified neurons that activate different muscle regions. One I3 motor neuron, B38, is active in the protraction phase, rather than the retraction phase, suggesting the muscle has an additional function. We used intracellular, extracellular, and muscle force recordings in several in vitro preparations as well as recordings of nerve and muscle activity from intact, behaving animals to characterize B38's activation of the muscle and its activity in different behavior types. We show that B38 specifically activates the anterior region of I3 and is specifically recruited during one behavior, swallowing. The function of this protraction-phase jaw muscle contraction is to hold food; thus the I3 muscle has an additional function beyond mediating retraction. We additionally show that B38's typical activity during in vivo swallowing is insufficient to generate force in an unmodulated muscle and that intrinsic and extrinsic modulation shift the force-frequency relationship to allow contraction. Using methods that traverse levels from individual neuron to muscle to intact animal, we show how regional muscle activation, differential motor neuron recruitment, and neuromodulation are key components in Aplysia's generation of multifunctionality. Copyright © 2014 the American Physiological Society.

  12. A reevaluation of the anatomy of the jaw-closing system in the extant coelacanth Latimeria chalumnae

    NASA Astrophysics Data System (ADS)

    Dutel, Hugo; Herrel, Anthony; Clément, Gaël; Herbin, Marc

    2013-11-01

    The coelacanth Latimeria is the only extant representative of the Actinistia, a group of sarcopterygian fishes that originated in the Devonian. Moreover, it is the only extant vertebrate in which the neurocranium is divided into an anterior and a posterior portion that articulate by means of an intracranial joint. This joint is thought to be highly mobile, allowing an elevation of the anterior portion of the skull during prey capture. Here we provide a new description of the skull and jaw-closing system in Latimeria chalumnae in order to better understand its skull mechanics during prey capture. Based on a dissection and the CT scanning of an adult coelacanth, we provide a detailed description of the musculature and ligaments of the jaw system. We show that the m. adductor mandibulae is more complex than previously reported. We demonstrate that the basicranial muscle inserts more anteriorly than has been described previously, which has implications for its function. Moreover, the anterior insertion of the basicranial muscle does not correspond to the posterior tip of the tooth plate covering the parasphenoid, questioning previous inferences made on fossil coelacanths and other sarcopterygian fishes. Strong ligaments connect the anterior and the posterior portions of the skull at the level of the intracranial joint, as well as the notochord and the catazygals. These observations suggest that the intracranial joint is likely to be less mobile than previously thought and that its role during feeding merits to be reexamined.

  13. Lip line changes in Class III facial asymmetry patients after orthodontic camouflage treatment, one-jaw surgery, and two-jaw surgery: A preliminary study.

    PubMed

    Lee, Gung-Chol; Yoo, Jo-Kwang; Kim, Seong-Hun; Moon, Cheol-Hyun

    2017-03-01

    To evaluate the effects of orthodontic camouflage treatment (OCT), one-jaw surgery, and two-jaw surgery on the correction of lip line cant (LLC) and to examine factors affecting the correction of LLC in Class III craniofacial asymmetry patients. A sample of 30 Class III craniofacial asymmetry patients was divided into OCT (n = 10), one-jaw surgery (n = 10), and two-jaw surgery (n = 10) groups such that the pretreatment LLC was similar in each group. Pretreatment and posttreatment cone-beam computed tomography scans were used to measure dental and skeletal parameters and LLC. Pretreatment and posttreatment measurements were compared within groups and between groups. Pearson's correlation tests and multiple regression analyses were performed to investigate factors affecting the amount and rate of LLC correction. The average LLC correction was 1.00° in the one-jaw surgery group, and in the two-jaw surgery group, it was 1.71°. In the OCT group it was -0.04°, which differed statistically significantly from the LLC correction in the other two groups. The amount and rate of LLC correction could be explained by settling of skeletal discrepancies or LLC at pretreatment with goodness of fit percentages of approximately 82% and 41%, respectively. Orthognathic surgery resulted in significant correction of LLC in Class III craniofacial asymmetry patients, while OCT did not.

  14. Intraosseous Leiomyoma of the Jaw in an Adolescent.

    PubMed

    Valls-Ontañón, Adaia; Pozuelo-Arquimbau, Laura; Mateu-Esquerda, Gemma; Arranz-Obispo, Carlos; Cuscó-Albors, Sílvia; Melero-Luque, Mireia; Morla, Arnaud; Marí-Roig, Antoni

    2017-05-15

    Leiomyoma is a benign tumor of the smooth muscle that rarely occurs in the mouth as an intraosseous lesion. The purposes of this paper are to: (1) present a case of an intraosseous solid leiomyoma of the mandible in a 13-year-old child, who presented with a well-defined unilocular radiolucency in the right mandible incidentally discovered during a routine dental radiographic examination; and (2) conduct a review of the literature to describe clinicopathological features and management of intraosseous jaw leiomyoma (IJL). A total of 17 articles describing 18 cases of IJL satisfied the selection criteria; including the present patient, to date a total of 19 cases of IJL have been reported. IJL occurs mainly in young patients (36.8 percent), more often in boys (1:5:1 male-to-female ratio), and reaches a larger size in children than in adults. The treatment of choice for IJL is surgical excision, which should be as minimally invasive as possible, especially in children.

  15. Effect of β-hydroxy-β-methylbutyrate in masticatory muscles of rats

    PubMed Central

    Daré, Leticia R; Dias, Daniel V; Rosa Junior, Geraldo M; Bueno, Cleuber R S; Buchaim, Rogerio L; Rodrigues, Antonio de C; Andreo, Jesus C

    2015-01-01

    The aim of this research was to examine the influence of β-hydroxy-β-methylbutyrate (HMB) on changes in the profile of muscle fibers, whether these alterations were similar between the elevator and depressor muscles of the jaw, and whether the effects would be similar in male and female animals. Fifty-eight rats aged 60 days (29 animals of each gender) were divided into four groups: the initial control group (ICG) was sacrificed at the beginning of the experiment; the placebo control group (PCG) received saline and was fed ad libitum; the experimental group (EG) received 0.3 g kg−1 of HMB daily for 4 weeks by gavage as well as the same amount of food consumed by the PCG in the previous day; and the experimental ad libitum group (EAG) received the same dose of the supplement along with food ad libitum. Samples included the digastric and masseter muscles for the histoenzymological analysis. Data were subjected to statistical analysis with a significance level of P < 0.05. Use of HMB caused a decrease in the percentage of fast twitch glycolytic (FG) fibers and an increase in fast twitch oxidative glycolytic (FOG) fibers in males in both experimental groups (EG and EAG). However, it produced no increase in the muscle fiber area, in either gender, in the masseter muscle. In the digastric muscle, the HMB did not change the frequency or the area of any muscle fiber types in either gender. Our data suggest that the use of HMB caused small changes in the enzymological profile of fibers of the mastication muscles; the changes were different in the elevator and depressor muscles of the jaw and the results were different depending on gender. PMID:25400135

  16. Stress distribution in the temporo-mandibular joint discs during jaw closing: a high-resolution three-dimensional finite-element model analysis.

    PubMed

    Savoldelli, Charles; Bouchard, Pierre-Olivier; Loudad, Raounak; Baque, Patrick; Tillier, Yannick

    2012-07-01

    This study aims at analysing the stresses distribution in the temporomandibular joint (TMJ) using a complete high-resolution finite element model (FE Model). This model is used here to analyse the stresses distribution in the discs during a closing jaw cycle. In the end, this model enables the prediction of the stress evolution in the TMJ disc submitted to various loadings induced by mandibular trauma, surgery or parafunction. The geometric data for the model were obtained from MRI and CT scans images of a healthy male patient. Surface and volume meshes were successively obtained using a 3D image segmentation software (AMIRA(®)). Bone components of skull and mandible, both of joint discs, temporomandibular capsules and ligaments and dental arches were meshed as separate bodies. The volume meshes were transferred to the FE analysis software (FORGE(®)). Material properties were assigned for each region. Boundary conditions for closing jaw simulations were represented by different load directions of jaws muscles. The von Mises stresses distribution in both joint discs during closing conditions was analyzed. The pattern of von Mises stresses in the TMJ discs is non-symmetric and changed continuously during jaw movement. Maximal stress is reached on the surface disc in areas in contact with others bodies. The three-dimension finite element model of masticatory system will make it possible to simulate different conditions that appear to be important in the cascade of events leading to joint damage.

  17. Function of the hypobranchial muscles and hyoidiomandibular ligament during suction capture and bite processing in white-spotted bamboo sharks, Chiloscyllium plagiosum.

    PubMed

    Ramsay, Jason B; Wilga, Cheryl D

    2017-11-01

    Suction feeding in teleost fish is a power-dependent behavior, requiring rapid and forceful expansion of the orobranchial cavity by the hypobranchial and trunk muscles. To increase power production for expansion, many species employ in-series tendons and catch mechanisms to store and release elastic strain energy. Suction feeding sharks such as Chiloscyllium plagiosum lack large in-series tendons on the hypobranchials, yet two of the hypobranchials, the coracohyoideus and coracoarcualis (CH and CA; hyoid depressors), are arranged in-series, and run deep and parallel to a third muscle, the coracomandibularis (CM, jaw depressor). The arrangement of the CH and CA suggests that C. plagiosum is using the CH muscle rather than a tendon to store and release elastic strain energy. Here we describe the anatomy of the feeding apparatus, and present data on hyoid and jaw kinematics and fascicle shortening in the CM, CH and CA quantified using sonomicrometry, with muscle activity and buccal pressure recorded simultaneously. Results from prey capture show that prior to jaw and hyoid depression the CH is actively lengthened by shortening of the in-series CA. The active lengthening of the CH and pre-activation of the CH and CA suggest that the CH is functioning to store and release elastic energy during prey capture. Catch mechanisms are proposed involving a dynamic moment arm and four-bar linkage between the hyoidiomandibular ligament (LHML), jaws and ceratohyals that is influenced by the CM. Furthermore, the LHML may be temporarily disengaged during behaviors such as bite processing to release linkage constraints. © 2017. Published by The Company of Biologists Ltd.

  18. Unilateral Muscle Overuse Causes Bilateral Changes in Muscle Fiber Composition and Vascular Supply

    PubMed Central

    Song, Yafeng; Forsgren, Sture; Liu, Jing-Xia; Yu, Ji-Guo; Stål, Per

    2014-01-01

    Unilateral strength training can cause cross-transfer strength effects to the homologous contralateral muscles. However, the impact of the cross-over effects on the muscle tissue is unclear. To test the hypothesis that unilateral muscle overuse causes bilateral alterations in muscle fiber composition and vascular supply, we have used an experimental rabbit model with unilateral unloaded overstrain exercise via electrical muscle stimulation (E/EMS). The soleus (SOL) and gastrocnemius (GA) muscles of both exercised (E) and contralateral non-exercised (NE) legs (n = 24) were morphologically analyzed after 1w, 3w and 6w of EMS. Non-exercised rabbits served as controls (n = 6). After unilateral intervention the muscles of both E and NE legs showed myositis and structural and molecular tissue changes that to various degrees mirrored each other. The fiber area was bilaterally smaller than in controls after 3w of E/EMS in both SOL (E 4420 and NE 4333 µm2 vs. 5183 µm2, p<0.05) and GA (E 3572 and NE 2983 µm2 vs. 4697 µm2, p<0.02) muscles. After 6w of E/EMS, the percentage of slow MyHCI fibers was lower than in controls in the NE legs of SOL (88.1% vs. 98.1%, p<0.009), while the percentage of fast MyHCIIa fibers was higher in the NE legs of GA (25.7% vs. 15.8%, p = 0.02). The number of capillaries around fibers in the E and NE legs was lower (SOL 13% and 15%, respectively, GA 25% and 23%, respectively, p<0.05) than in controls. The overall alterations were more marked in the fast GA muscle than in the slow SOL muscle, which on the other hand showed more histopathological muscle changes. We conclude that unilateral repetitive unloaded overuse exercise via EMS causes myositis and muscle changes in fiber type proportions, fiber area and fiber capillarization not only in the exercised leg, but also in the homologous muscles in the non-exercised leg. PMID:25545800

  19. Association between patterns of jaw motor activity during sleep and clinical signs and symptoms of sleep bruxism.

    PubMed

    Yoshida, Yuya; Suganuma, Takeshi; Takaba, Masayuki; Ono, Yasuhiro; Abe, Yuka; Yoshizawa, Shuichiro; Sakai, Takuro; Yoshizawa, Ayako; Nakamura, Hirotaka; Kawana, Fusae; Baba, Kazuyoshi

    2017-08-01

    The aim of this study was to investigate the association between patterns of jaw motor activity during sleep and clinical signs and symptoms of sleep bruxism. A total of 35 university students and staff members participated in this study after providing informed consent. All participants were divided into either a sleep bruxism group (n = 21) or a control group (n = 14), based on the following clinical diagnostic criteria: (1) reports of tooth-grinding sounds for at least two nights a week during the preceding 6 months by their sleep partner; (2) presence of tooth attrition with exposed dentin; (3) reports of morning masticatory muscle fatigue or tenderness; and (4) presence of masseter muscle hypertrophy. Video-polysomnography was performed in the sleep laboratory for two nights. Sleep bruxism episodes were measured using masseter electromyography, visually inspected and then categorized into phasic or tonic episodes. Phasic episodes were categorized further into episodes with or without grinding sounds as evaluated by audio signals. Sleep bruxism subjects with reported grinding sounds had a significantly higher total number of phasic episodes with grinding sounds than subjects without reported grinding sounds or controls (Kruskal-Wallis/Steel-Dwass tests; P < 0.05). Similarly, sleep bruxism subjects with tooth attrition exhibited significantly longer phasic burst durations than those without or controls (Kruskal-Wallis/Steel-Dwass tests; P < 0.05). Furthermore, sleep bruxism subjects with morning masticatory muscle fatigue or tenderness exhibited significantly longer tonic burst durations than those without or controls (Kruskal-Wallis/Steel-Dwass tests; P < 0.05). These results suggest that each clinical sign and symptom of sleep bruxism represents different aspects of jaw motor activity during sleep. © 2016 European Sleep Research Society.

  20. SU-F-E-19: A Novel Method for TrueBeam Jaw Calibration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corns, R; Zhao, Y; Huang, V

    2016-06-15

    Purpose: A simple jaw calibration method is proposed for Varian TrueBeam using an EPID-Encoder combination that gives accurate fields sizes and a homogeneous junction dose. This benefits clinical applications such as mono-isocentric half-beam block breast cancer or head and neck cancer treatment with junction/field matching. Methods: We use EPID imager with pixel size 0.392 mm × 0.392 mm to determine the radiation jaw position as measured from radio-opaque markers aligned with the crosshair. We acquire two images with different symmetric field sizes and record each individual jaw encoder values. A linear relationship between each jaw’s position and its encoder valuemore » is established, from which we predict the encoder values that produce the jaw positions required by TrueBeam’s calibration procedure. During TrueBeam’s jaw calibration procedure, we move the jaw with the pendant to set the jaw into position using the predicted encoder value. The overall accuracy is under 0.1 mm. Results: Our in-house software analyses images and provides sub-pixel accuracy to determine field centre and radiation edges (50% dose of the profile). We verified the TrueBeam encoder provides a reliable linear relationship for each individual jaw position (R{sup 2}>0.9999) from which the encoder values necessary to set jaw calibration points (1 cm and 19 cm) are predicted. Junction matching dose inhomogeneities were improved from >±20% to <±6% using this new calibration protocol. However, one technical challenge exists for junction matching, if the collimator walkout is large. Conclusion: Our new TrueBeam jaw calibration method can systematically calibrate the jaws to crosshair within sub-pixel accuracy and provides both good junction doses and field sizes. This method does not compensate for a larger collimator walkout, but can be used as the underlying foundation for addressing the walkout issue.« less

  1. Pediatric jaw fractures: indications for open reduction.

    PubMed

    Krausen, A S; Samuel, M

    1979-01-01

    Jaw fractures in children are generally managed without major surgical intervention. Closed reduction usually is sufficient to restore normal anatomy and function. The one inviolate principle is early treatment. During the past three years, four pediatric jaw fractures that required open reduction were treated. This mode of treatment was necessitated by the limitations imposed by pediatric dental anatomy and by the type of fractures encountered. In at least 24 months of follow-up, no dental problems have been seen.

  2. Independently evolved upper jaw protrusion mechanisms show convergent hydrodynamic function in teleost fishes.

    PubMed

    Staab, Katie Lynn; Holzman, Roi; Hernandez, L Patricia; Wainwright, Peter C

    2012-05-01

    A protrusible upper jaw has independently evolved multiple times within teleosts and has been implicated in the success of two groups in particular: Acanthomorpha and Cypriniformes. We use digital particle image velocimetry (DPIV) to compare suction feeding flow dynamics in a representative of each of these clades: goldfish and bluegill. Using DPIV, we contrast the spatial pattern of flow, the temporal relationship between flow and head kinematics, and the contribution of jaw protrusion to the forces exerted on prey. As expected, the spatial patterns of flow were similar in the two species. However, goldfish were slower to reach maximal kinematic excursions, and were more flexible in the relative timing of jaw protrusion, other jaw movements and suction flows. Goldfish were also able to sustain flow speeds for a prolonged period of time as compared with bluegill, in part because goldfish generate lower peak flow speeds. In both species, jaw protrusion increased the force exerted on the prey. However, slower jaw protrusion in goldfish resulted in less augmentation of suction forces. This difference in force exerted on prey corresponds with differences in trophic niches and feeding behavior of the two species. The bluegill uses powerful suction to capture insect larvae whereas the goldfish uses winnowing to sort through detritus and sediment. The kinethmoid of goldfish may permit jaw protrusion that is independent of lower jaw movement, which could explain the ability of goldfish to decouple suction flows (due to buccal expansion) from upper jaw protrusion. Nevertheless, our results show that jaw protrusion allows both species to augment the force exerted on prey, suggesting that this is a fundamental benefit of jaw protrusion to suction feeders.

  3. Motor-Evoked Pain Increases Force Variability in Chronic Jaw Pain.

    PubMed

    Wang, Wei-En; Roy, Arnab; Misra, Gaurav; Archer, Derek B; Ribeiro-Dasilva, Margarete C; Fillingim, Roger B; Coombes, Stephen A

    2018-06-01

    Musculoskeletal pain changes how people move. Although experimental pain is associated with increases in the variability of motor output, it is not clear whether motor-evoked pain in clinical conditions is also associated with increases in variability. In the current study, we measured jaw force production during a visually guided force paradigm in which individuals with chronic jaw pain and control subjects produced force at 2% of their maximum voluntary contraction (low target force level) and at 15% of their maximum voluntary contraction (high target force level). State measures of pain were collected before and after each trial. Trait measures of pain intensity and pain interference, self-report measures of jaw function, and measures of depression, anxiety, and fatigue were also collected. We showed that the chronic jaw pain group exhibited greater force variability compared with controls irrespective of the force level, whereas the accuracy of force production did not differ between groups. Furthermore, predictors of force variability shifted from trait measures of pain intensity and pain interference at the low force level to state measures of pain intensity at the high force level. Our observations show that motor-evoked jaw pain is associated with increases in force variability that are predicted by a combination of trait measures and state measures of pain intensity and pain interference. Chronic jaw pain is characterized by increases in variability during force production, which can be predicted by pain intensity and pain interference. This report could help clinicians better understand the long-term consequences of chronic jaw pain on the motor system. Copyright © 2018 The American Pain Society. Published by Elsevier Inc. All rights reserved.

  4. IGF-I Stimulates Cooperative Interaction between the IGF-I Receptor and CSK Homologous Kinase that Regulates SHPS-1 Phosphorylation in Vascular Smooth Muscle Cells

    PubMed Central

    Radhakrishnan, Yashwanth; Shen, Xinchun; Maile, Laura A.; Xi, Gang

    2011-01-01

    IGF-I plays an important role in smooth muscle cell proliferation and migration. In vascular smooth muscle cells cultured in 25 mm glucose, IGF-I stimulated a significant increase in Src homology 2 domain containing protein tyrosine phosphatase substrate-1 (SHPS-1) phosphorylation compared with 5 mm glucose and this increase was required for smooth muscle cell proliferation. A proteome-wide screen revealed that carboxyl-terminal SRC kinase homologous kinase (CTK) bound directly to phosphotyrosines in the SHPS-1 cytoplasmic domain. Because the kinase(s) that phosphorylates these tyrosines in response to IGF-I is unknown, we determined the roles of IGF-I receptor (IGF-IR) and CTK in mediating SHPS-1 phosphorylation. After IGF-I stimulation, CTK was recruited to IGF-IR and subsequently to phospho-SHPS-1. Expression of an IGF-IR mutant that eliminated CTK binding reduced CTK transfer to SHPS-1, SHPS-1 phosphorylation, and cell proliferation. IGF-IR phosphorylated SHPS-1, which provided a binding site for CTK. CTK recruitment to SHPS-1 resulted in a further enhancement of SHPS-1 phosphorylation. CTK knockdown also impaired IGF-I-stimulated SHPS-1 phosphorylation and downstream signaling. Analysis of specific tyrosines showed that mutation of tyrosines 428/452 in SHPS-1 to phenylalanine reduced SHPS-1 phosphorylation but allowed CTK binding. In contrast, the mutation of tyrosines 469/495 inhibited IGF-IR-mediated the phosphorylation of SHPS-1 and CTK binding, suggesting that IGF-IR phosphorylated Y469/495, allowing CTK binding, and that CTK subsequently phosphorylated Y428/452. Based on the above findings, we conclude that after IGF-I stimulation, CTK is recruited to IGF-IR and its recruitment facilitates CTK's subsequent association with phospho-SHPS-1. This results in the enhanced CTK transfer to SHPS-1, and the two kinases then fully phosphorylate SHPS-1, which is necessary for IGF-I stimulated cellular proliferation. PMID:21799000

  5. Spectral characteristics of speech with fixed jaw displacements

    NASA Astrophysics Data System (ADS)

    Solomon, Nancy P.; Makashay, Matthew J.; Munson, Benjamin

    2004-05-01

    During speech, movements of the mandible and the tongue are interdependent. For some research purposes, the mandible may be constrained to ensure independent tongue motion. To examine specific spectral characteristics of speech with different jaw positions, ten normal adults produced sentences with multiple instances of /t/, /s/, /squflg/, /i/, /ai/, and /squflgi/. Talkers produced stimuli with the jaw free to vary, and while gently biting on 2- and 5-mm bite blocks unilaterally. Spectral moments of /s/ and /squflg/ frication and /t/ bursts differed such that mean spectral energy decreased, and diffuseness and skewness increased with bite blocks. The specific size of the bite block had minimal effect on these results, which were most consistent for /s/. Formant analysis for the vocoids revealed lower F2 frequency in /i/ and at the end of the transition in /ai/ when bite blocks were used; F2 slope for diphthongs was not sensitive to differences in jaw position. Two potential explanations for these results involve the physical presence of the bite blocks in the lateral oral cavity, and the oromotor system's ability to compensate for fixed jaw displacements. [Work supported by NIDCD R03-DC06096.

  6. Inhibition of muscle spindle afferent activity during masseter muscle fatigue in the rat.

    PubMed

    Brunetti, Orazio; Della Torre, Giovannella; Lucchi, Maria Luisa; Chiocchetti, Roberto; Bortolami, Ruggero; Pettorossi, Vito Enrico

    2003-09-01

    The influence of muscle fatigue on the jaw-closing muscle spindle activity has been investigated by analyzing: (1) the field potentials evoked in the trigeminal motor nucleus (Vmot) by trigeminal mesencephalic nucleus (Vmes) stimulation, (2) the orthodromic and antidromic responses evoked in the Vmes by stimulation of the peripheral and central axons of the muscle proprioceptive afferents, and (3) the extracellular unitary discharge of masseter muscle spindles recorded in the Vmes. The masseter muscle was fatigued by prolonged tetanic masseter nerve electrical stimulation. Pre- and postsynaptic components of the potentials evoked in the Vmot showed a significant reduction in amplitude following muscle fatigue. Orthodromic and antidromic potentials recorded in the Vmes also showed a similar amplitude decrease. Furthermore, muscle fatigue caused a decrease of the discharge frequency of masseter muscle spindle afferents in most of the examined units. The inhibition of the potential amplitude and discharge frequency was strictly correlated with the extent of muscle fatigue and was mediated by the group III and IV afferent muscle fibers activated by fatigue. In fact, the inhibitory effect was abolished by capsaicin injection in the masseter muscle that provokes selective degeneration of small afferent muscle fibers containing neurokinins. We concluded that fatigue signals originating from the muscle and traveling through capsaicin-sensitive fibers are able to diminish the proprioceptive input by a central presynaptic influence. In the second part of the study, we examined the central projection of the masseter small afferents sensitive to capsaicin at the electron-microscopic level. Fiber degeneration was induced by injecting capsaicin into the masseter muscle. Degenerating terminals were found on the soma and stem process in Vmes and on the dendritic tree of neurons in Vmot. This suggests that small muscle afferents may influence the muscle spindle activity through

  7. An Ancient Gene Network Is Co-opted for Teeth on Old and New Jaws

    PubMed Central

    Fraser, Gareth J; Hulsey, C. Darrin; Bloomquist, Ryan F; Uyesugi, Kristine; Manley, Nancy R; Streelman, J. Todd

    2009-01-01

    Vertebrate dentitions originated in the posterior pharynx of jawless fishes more than half a billion years ago. As gnathostomes (jawed vertebrates) evolved, teeth developed on oral jaws and helped to establish the dominance of this lineage on land and in the sea. The advent of oral jaws was facilitated, in part, by absence of hox gene expression in the first, most anterior, pharyngeal arch. Much later in evolutionary time, teleost fishes evolved a novel toothed jaw in the pharynx, the location of the first vertebrate teeth. To examine the evolutionary modularity of dentitions, we asked whether oral and pharyngeal teeth develop using common or independent gene regulatory pathways. First, we showed that tooth number is correlated on oral and pharyngeal jaws across species of cichlid fishes from Lake Malawi (East Africa), suggestive of common regulatory mechanisms for tooth initiation. Surprisingly, we found that cichlid pharyngeal dentitions develop in a region of dense hox gene expression. Thus, regulation of tooth number is conserved, despite distinct developmental environments of oral and pharyngeal jaws; pharyngeal jaws occupy hox-positive, endodermal sites, and oral jaws develop in hox-negative regions with ectodermal cell contributions. Next, we studied the expression of a dental gene network for tooth initiation, most genes of which are similarly deployed across the two disparate jaw sites. This collection of genes includes members of the ectodysplasin pathway, eda and edar, expressed identically during the patterning of oral and pharyngeal teeth. Taken together, these data suggest that pharyngeal teeth of jawless vertebrates utilized an ancient gene network before the origin of oral jaws, oral teeth, and ectodermal appendages. The first vertebrate dentition likely appeared in a hox-positive, endodermal environment and expressed a genetic program including ectodysplasin pathway genes. This ancient regulatory circuit was co-opted and modified for teeth in oral

  8. Synovial sarcoma of the jaw in a dog.

    PubMed

    Griffith, J W; Frey, R A; Sharkey, F E

    1987-05-01

    A case of synovial sarcoma of the jaw with pulmonary metastasis is described in a dog. It appears to be a rare or underdiagnosed neoplasm in animals and not previously reported in the jaw. Its diagnostic microscopic features are the biphasic cellular pattern and cleft formations. It may otherwise resemble haemangiopericytoma, malignant fibrous histiocytoma, reticulum cell sarcoma, fibrosarcoma, or giant-cell tumour of soft tissue.

  9. Re-positioning forelimb superficialis muscles: tendon attachment and muscle activity enable active relocation of functional myofibers

    PubMed Central

    Huang, Alice H.; Riordan, Timothy J.; Wang, Lingyan; Eyal, Shai; Zelzer, Elazar; Brigande, John V.; Schweitzer, Ronen

    2013-01-01

    Summary The muscles that govern hand motion are composed of extrinsic muscles that reside within the forearm and intrinsic muscles that reside within the hand. We find that the extrinsic muscles of the flexor digitorum superficialis (FDS) first differentiate as intrinsic muscles within the hand and then relocate as myofibers to their final position in the arm. This unique translocation of differentiated myofibers across a joint is dependent on muscle contraction and muscle-tendon attachment. Interestingly, the intrinsic flexor digitorum brevis (FDB) muscles of the foot are identical to the FDS in tendon pattern and delayed developmental timing, but undergo limited muscle translocation, providing strong support for evolutionary homology between the FDS and FDB muscles. We propose that the intrinsic FDB pattern represents the original tetrapod limb and translocation of the muscles to form the FDS is a mammalian evolutionary addition. PMID:24044893

  10. Repositioning forelimb superficialis muscles: tendon attachment and muscle activity enable active relocation of functional myofibers.

    PubMed

    Huang, Alice H; Riordan, Timothy J; Wang, Lingyan; Eyal, Shai; Zelzer, Elazar; Brigande, John V; Schweitzer, Ronen

    2013-09-16

    The muscles that govern hand motion are composed of extrinsic muscles that reside within the forearm and intrinsic muscles that reside within the hand. We find that the extrinsic muscles of the flexor digitorum superficialis (FDS) first differentiate as intrinsic muscles within the hand and then relocate as myofibers to their final position in the arm. This remarkable translocation of differentiated myofibers across a joint is dependent on muscle contraction and muscle-tendon attachment. Interestingly, the intrinsic flexor digitorum brevis (FDB) muscles of the foot are identical to the FDS in tendon pattern and delayed developmental timing but undergo limited muscle translocation, providing strong support for evolutionary homology between the FDS and FDB muscles. We propose that the intrinsic FDB pattern represents the original tetrapod limb and that translocation of the muscles to form the FDS is a mammalian evolutionary addition. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. The characters of Palaeozoic jawed vertebrates

    PubMed Central

    Brazeau, Martin D; Friedman, Matt

    2014-01-01

    Newly discovered fossils from the Silurian and Devonian periods are beginning to challenge embedded perceptions about the origin and early diversification of jawed vertebrates (gnathostomes). Nevertheless, an explicit cladistic framework for the relationships of these fossils relative to the principal crown lineages of the jawed vertebrates (osteichthyans: bony fishes and tetrapods; chondrichthyans: sharks, batoids, and chimaeras) remains elusive. We critically review the systematics and character distributions of early gnathostomes and provide a clearly stated hierarchy of synapomorphies covering the jaw-bearing stem gnathostomes and osteichthyan and chondrichthyan stem groups. We show that character lists, designed to support the monophyly of putative groups, tend to overstate their strength and lack cladistic corroboration. By contrast, synapomorphic hierarchies are more open to refutation and must explicitly confront conflicting evidence. Our proposed synapomorphy scheme is used to evaluate the status of the problematic fossil groups Acanthodii and Placodermi, and suggest profitable avenues for future research. We interpret placoderms as a paraphyletic array of stem-group gnathostomes, and suggest what we regard as two equally plausible placements of acanthodians: exclusively on the chondrichthyan stem, or distributed on both the chondrichthyan and osteichthyan stems. PMID:25750460

  12. Age-related declines in the swallowing muscle strength of men and women aged 20-89 years: A cross-sectional study on tongue pressure and jaw-opening force in 980 subjects.

    PubMed

    Hara, Koji; Tohara, Haruka; Kobayashi, Kenichiro; Yamaguchi, Kohei; Yoshimi, Kanako; Nakane, Ayako; Minakuchi, Shunsuke

    2018-05-31

    Swallowing muscle strength weakens with aging. Although numerous studies have investigated tongue pressure (TP) changes with age, studies on jaw-opening force (JOF), an indicator of suprahyoid muscle strength, are lacking. We investigated differences between age-related declines in TP and JOF in a cross-sectional study of 980 healthy and independent participants (379 men, 601 women) without dysphagia. Hand grip strength (HGS), TP, and JOF were compared among decade-based age groups in multiple comparison analyses with post-hoc tests and effect size calculated. Participants were divided into adult (20 s-50 s) and elderly groups (60 s-80 s); within each group, Pearson correlations between age and muscle strength indices were evaluated. TP started to significantly decline in the 60 s and 50 s for men and women (p < .01, medium effect size and p < .05, small effect size, respectively); HGS also declined at these ages (men: p < .01, women: p < .01, medium effect size). JOF started to significantly decline in men in their 80 s (p < .01, large effect size), but remained unchanged in women. In the elderly group, all measurements declined with age more sharply in men (HGS: r = -0.56, TP: r = -0.63, JOF: r = -0.13) than in women (HGS: r = -0.38, TP: r = -0.49, JOF: r = -0.003). TP declined more steeply than did JOF. Thus, the age related-decline in TP was similar to that of the HGS, but not the JOF. The results reveal that different patterns exist in the age-related decline in swallowing muscle strength, and suggest that maintenance of JOF might contribute to safe swallowing in healthy elderly individuals. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Surgical treatment of jaw osteonecrosis in "Krokodil" drug addicted patients.

    PubMed

    Poghosyan, Yuri M; Hakobyan, Koryun A; Poghosyan, Anna Yu; Avetisyan, Eduard K

    2014-12-01

    Retrospective study of jaw osteonecrosis treatment in patients using the "Krokodil" drug from 2009 to 2013. On the territory of the former USSR countries there is widespread use of a self-produced drug called "Krokodil". Codeine containing analgesics ("Sedalgin", "Pentalgin" etc), red phosphorus (from match boxes) and other easily acquired chemical components are used for synthesis of this drug, which used intravenously. Jaw osteonecrosis develops as a complication in patients who use "Krokodil". The main feature of this disease is jawbone exposure in the oral cavity. Surgery is the main method for the treatment of jaw osteonecrosis in patients using "Krokodil". 40 "Krokodil" drug addict patients with jaw osteonecrosis were treated. Involvement of maxilla was found in 11 patients (27.5%), mandible in 21 (52.5%), both jaws in 8 (20%) patients. 35 Lesions were found in 29 mandibles and 21 lesions in 19 maxillas. Main factors of treatment success are: cessation of "Krokodil" use in the pre- (minimum 1 month) and postoperative period and osteonecrosis area resection of a minimum of 0.5 cm beyond the visible borders of osteonecrosis towards the healthy tissues. Surgery was not delayed until sequestrum formation. In the mandible marginal or segmental resection (with or without TMJ exarticulation) was performed. After surgery recurrence of disease was seen in 8 (23%) cases in the mandible, with no cases of recurrence in the maxilla. According to our experience in this case series, surgery is the main method for the treatment of jaw osteonecrosis in patients using "Krokodil". Cessation of drug use and jaw resection minimize the rate of recurrences in such patients. Copyright © 2014 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  14. Pain and Disability in the Jaw and Neck Region following Whiplash Trauma.

    PubMed

    Häggman-Henrikson, B; Lampa, E; Marklund, S; Wänman, A

    2016-09-01

    The relationship between whiplash trauma and chronic orofacial pain is unclear, especially with regard to the time elapsed from trauma to development of orofacial pain. The aim was to analyze prevalence of jaw pain and disability, as well as the relationship between pain and disability in the jaw and neck regions in the early nonchronic stage after whiplash trauma. In this case-control study, 70 individuals (40 women, 30 men, mean age 35.5 y) who visited an emergency department with neck pain following a car accident were examined within 3 wk of trauma (group 1) and compared with 70 individuals (42 women, 28 men, mean age 33.8 y), who declined to attend a clinical examination but agreed to fill in questionnaires (group 2). The 2 case groups were compared with a matched control group of 70 individuals (42 women, 28 men, mean age 37.6 y) without a history of neck trauma. All participants completed questionnaires regarding jaw pain and dysfunction, rating pain intensity in jaw and neck regions on the Numerical Rating Scale, the Neck Disability Index, and Jaw Disability Checklist. Compared with controls, individuals with a recent whiplash trauma reported more jaw pain and dysfunction. Furthermore, there was a moderate positive correlation between jaw and neck pain ratings for group 1 (r = 0.61, P < 0.0001) and group 2 (r = 0.59, P < 0.0001). In the logistic regression analysis, cases showed higher odds ratios (range, 6.1 to 40.8) for jaw and neck pain and disability compared with controls. Taken together, the results show that individuals with a recent whiplash trauma report more jaw pain and disability compared with controls without a history of neck trauma. Furthermore, the correlation between jaw and neck pain intensity implies that intensity of neck pain in the acute stage after whiplash trauma might be a possible risk factor also for development of chronic orofacial pain. © International & American Associations for Dental Research 2016.

  15. Parrotfish grazing ability: interspecific differences in relation to jaw-lever mechanics and relative weight of adductor mandibulae on an Okinawan coral reef

    PubMed Central

    2016-01-01

    Parrotfishes (family Labridae: Scarini) are regarded to have important roles for maintaining the ecosystem balance in coral reefs due to their removal of organic matter and calcic substrates by grazing. The purpose of the present study was to clarify the interspecific differences in grazing ability of five parrotfish species (Chlorurus sordidus, C. bowersi, Scarus rivulatus, S. niger and S. forsteni) in relation to interspecific differences in jaw-lever mechanics and the relative weight of the adductor mandibulae (muscles operating jaw closing). The grazing ability was calculated by using stomach contents (CaCO3 weight/organic matter weight) defined as the grazing ability index (GAI). There were significant interspecific differences in GAI (C. sordidus = C. bowersi > S. rivulatus > S. niger = S. forsteni). Teeth of C. sordidus and C. bowersi were protrusive-shape whereas teeth of S. rivulatus, S. niger and S. forsteni were flat-shape. C. sordidus and C. bowersihave jaw-lever mechanics producing a greater biting force and have a larger weight of adductor mandibulae. S. rivulatus has jaw-lever mechanics producing a greater biting force but a smaller weight of adductor mandibulae that produce an intermediate biting force. In contrast, S. niger and S. forsteni have jaw-lever mechanics producing a lesser biting force and have a smaller weight of adductor mandibulae. Feeding rates and foray size of S. rivulatus, S. niger and S. forsteni were greater than C. sordidus and C. bowersi. The degree in bioerosion (GAI × feeding rate) was the largest for S. rivulatusand the smallest for S. forsteni. The degree in bioerosion for C. sordidus was larger than S. niger whereas relatively equal between C. bowersi and S. niger. These results suggest that interspecific difference in GAI was explained by interspecific differences in teeth shape, jaw-lever mechanics and relative weight of adductor mandibulae. The interspecific difference in the degree of bioerosion suggests the

  16. Parrotfish grazing ability: interspecific differences in relation to jaw-lever mechanics and relative weight of adductor mandibulae on an Okinawan coral reef.

    PubMed

    Nanami, Atsushi

    2016-01-01

    Parrotfishes (family Labridae: Scarini) are regarded to have important roles for maintaining the ecosystem balance in coral reefs due to their removal of organic matter and calcic substrates by grazing. The purpose of the present study was to clarify the interspecific differences in grazing ability of five parrotfish species (Chlorurus sordidus, C. bowersi, Scarus rivulatus, S. niger and S. forsteni) in relation to interspecific differences in jaw-lever mechanics and the relative weight of the adductor mandibulae (muscles operating jaw closing). The grazing ability was calculated by using stomach contents (CaCO3 weight/organic matter weight) defined as the grazing ability index (GAI). There were significant interspecific differences in GAI (C. sordidus = C. bowersi > S. rivulatus > S. niger = S. forsteni). Teeth of C. sordidus and C. bowersi were protrusive-shape whereas teeth of S. rivulatus, S. niger and S. forsteni were flat-shape. C. sordidus and C. bowersihave jaw-lever mechanics producing a greater biting force and have a larger weight of adductor mandibulae. S. rivulatus has jaw-lever mechanics producing a greater biting force but a smaller weight of adductor mandibulae that produce an intermediate biting force. In contrast, S. niger and S. forsteni have jaw-lever mechanics producing a lesser biting force and have a smaller weight of adductor mandibulae. Feeding rates and foray size of S. rivulatus, S. niger and S. forsteni were greater than C. sordidus and C. bowersi. The degree in bioerosion (GAI × feeding rate) was the largest for S. rivulatusand the smallest for S. forsteni. The degree in bioerosion for C. sordidus was larger than S. niger whereas relatively equal between C. bowersi and S. niger. These results suggest that interspecific difference in GAI was explained by interspecific differences in teeth shape, jaw-lever mechanics and relative weight of adductor mandibulae. The interspecific difference in the degree of bioerosion suggests the

  17. Use of MRI for the early diagnosis of masticatory muscle myositis.

    PubMed

    Cauduro, Alberto; Paolo, Favole; Asperio, Roberto M; Rossini, Valeria; Dondi, Maurizio; Simonetto, Lucia A; Cantile, Carlo; Lorenzo, Valentina

    2013-01-01

    The medical records of two dogs that were diagnosed with masticatory muscle myositis (MMM) were reviewed. The reported clinical signs included intense pain when opening the mouth and restricted jaw movement. MRI detected widespread, symmetrical, and inhomogeneously hyperintense areas in the masticatory muscle. Electromyography (EMG) demonstrated severe and spontaneous pathologic activity in the temporal and masseter muscles. With early therapeutic treatment, remission of symptoms occurred within 2 mo, and no relapses were observed for the subsequent 2 yr. The gold standard for the diagnosis of MMM is the 2M antibody test, but the purpose of this study was to evaluate the use of MRI as an accurate and efficient diagnostic tool for the initiation of early therapy for the treatment of muscle myositis.

  18. Jaw tremor as a physiological biomarker of bruxism.

    PubMed

    Laine, C M; Yavuz, Ş U; D'Amico, J M; Gorassini, M A; Türker, K S; Farina, D

    2015-09-01

    To determine if sleep bruxism is associated with abnormal physiological tremor of the jaw during a visually-guided bite force control task. Healthy participants and patients with sleep bruxism were given visual feedback of their bite force and asked to trace triangular target trajectories (duration=20s, peak force <35% maximum voluntary force). Bite force control was quantified in terms of the power spectra of force fluctuations, masseter EMG activity, and force-to-EMG coherence. Patients had greater jaw force tremor at ∼8 Hz relative to controls, along with increased masseter EMG activity and force-to-EMG coherence in the same frequency range. Patients also showed lower force-to-EMG coherence at low frequencies (<3 Hz), but greater coherence at high frequencies (20-40 Hz). Finally, patients had greater 6-10 Hz force tremor during periods of descending vs. ascending force, while controls showed no difference in tremor with respect to force dynamics. Patients with bruxism have abnormal jaw tremor when engaged in a visually-guided bite force task. Measurement of jaw tremor may aid in the detection/evaluation of bruxism. In light of previous literature, our results also suggest that bruxism is marked by abnormal or mishandled peripheral feedback from the teeth. Copyright © 2015. Published by Elsevier Ireland Ltd.

  19. Digital impression and jaw relation record for the fabrication of CAD/CAM custom tray.

    PubMed

    Kanazawa, Manabu; Iwaki, Maiko; Arakida, Toshio; Minakuchi, Shunsuke

    2018-03-16

    This article describes the protocol of a digital impression technique to make an impression and recording of the jaw relationship of edentulous patients for the fabrication of CAD/CAM custom tray using computer-aided design and manufacturing (CAD/CAM) technology. Scan the maxillary and mandibular edentulous jaws using an intraoral scanner. Scan the silicone jig with the maxillary and mandibular jaws while keeping the jig between the jaws. Import the standard tessellation language data of the maxillary and mandibular jaws and jig to make a jaw relation record and fabricate custom trays (CAD/CAM trays) using a rapid prototyping system. Make a definitive impression of the maxillary and mandibular jaws using the CAD/CAM trays. Digitalization of the complete denture fabrication process can simplify the complicated treatment and laboratory process of conventional methods In addition, the proposed method enables quality control regardless of the operator's experience and technique. Copyright © 2018. Published by Elsevier Ltd.

  20. Masticatory jaw movement of Exaeretodon argentinus (Therapsida: Cynodontia) inferred from its dental microwear

    PubMed Central

    Yamada, Eisuke; Kubo, Mugino O.

    2017-01-01

    Dental microwear of four postcanine teeth of Exaeretodon argentinus was analyzed using both two dimensional (2D) and three dimensional (3D) methods to infer their masticatory jaw movements. Results of both methods were congruent, showing that linear microwear features (scratches) were well aligned and mostly directed to the antero-posterior direction in all four teeth examined. These findings support the palinal masticatory jaw movement, which was inferred in previous studies based on the observation of gross morphology of wear facets. In contrast, the lack of detection of lateral scratches confirmed the absence of the lateral jaw movement that was also proposed by a previous study. Considering previous microwear studies on cynodonts, palinal jaw movements observed in Exaeretodon evolved within cynognathian cynodonts from the fully orthal jaw movement of its basal member. Although there are currently only three studies of dental microwear of non-mammalian cynodonts including the present study, microwear analysis is a useful tool for the reconstruction of masticatory jaw movement and its future application to various cynodonts will shed light on the evolutionary process of jaw movement towards the mammalian condition in more detail. PMID:29186178

  1. Kinematic analysis of jaw function in children following traumatic brain injury.

    PubMed

    Loh, E W L; Goozée, J V; Murdoch, B E

    2005-07-01

    To investigate jaw movements in children following traumatic brain injury (TBI) during speech using electromagnetic articulography (EMA). Jaw movements of two non-dysarthric children (aged 12.75 and 13.08 years) who had sustained a TBI were recorded using the AG-100 EMA system (Carstens Medizineletronik) during word-initial consonant productions. Mean quantitative kinematic parameters and coefficient of variation (variability) values were calculated and individually compared to the mean values obtained by a group of six control children (mean age 12.57 years, SD 1.52). The two children with TBI exhibited word-initial consonant jaw movement durations that were comparable to the control children, with sub-clinical reductions in speed being offset by reduced distances. Differences were observed between the two children in jaw kinematic variability, with one child exhibiting increased variability, while the other child demonstrated reduced or comparable variability compared to the control group. Possible sub-clinical impairments of jaw movement for speech were exhibited by two children who had sustained a TBI, providing insight into the consequences of TBI on speech motor control development.

  2. A Vibrating Jaw Crusher with Auteresonant Electric Motor Drive of Swinging Movement

    NASA Astrophysics Data System (ADS)

    Zagrivniy, E. A.; Poddubniy, D. A.

    2018-01-01

    The article relates to a vibrating jaw crusher with pendulum vibrating exciter auteresonant electric motor drive and with elastic element rational force distribution, with limited peak-to-peak swing. Its design and its math model are presented. Also disclosed is the operating principle of a vibrating jaw crusher and the control algorithm for controlling the crushing jaw for maintaining the operating mode at resonant frequency.

  3. Involvement of histaminergic inputs in the jaw-closing reflex arc

    PubMed Central

    Gemba, Chikako; Nakayama, Kiyomi; Nakamura, Shiro; Mochizuki, Ayako; Inoue, Tomio

    2015-01-01

    Histamine receptors are densely expressed in the mesencephalic trigeminal nucleus (MesV) and trigeminal motor nucleus. However, little is known about the functional roles of neuronal histamine in controlling oral-motor activity. Thus, using the whole-cell recording technique in brainstem slice preparations from Wistar rats aged between postnatal days 7 and 13, we investigated the effects of histamine on the MesV neurons innervating the masseter muscle spindles and masseter motoneurons (MMNs) that form a reflex arc for the jaw-closing reflex. Bath application of histamine (100 μM) induced membrane depolarization in both MesV neurons and MMNs in the presence of tetrodotoxin, whereas histamine decreased and increased the input resistance in MesV neurons and MMNs, respectively. The effects of histamine on MesV neurons and MMNs were mimicked by an H1 receptor agonist, 2-pyridylethylamine (100 μM). The effects of an H2 receptor agonist, dimaprit (100 μM), on MesV neurons were inconsistent, whereas MMNs were depolarized without changes in the input resistance. An H3 receptor agonist, immethridine (100 μM), also depolarized both MesV neurons and MMNs without changing the input resistance. Histamine reduced the peak amplitude of postsynaptic currents (PSCs) in MMNs evoked by stimulation of the trigeminal motor nerve (5N), which was mimicked by 2-pyridylethylamine but not by dimaprit or immethridine. Moreover, 2-pyridylethylamine increased the failure rate of PSCs evoked by minimal stimulation and the paired-pulse ratio. These results suggest that histaminergic inputs to MesV neurons through H1 receptors are involved in the suppression of the jaw-closing reflex although histamine depolarizes MesV neurons and/or MMNs. PMID:25904711

  4. [Odontogenic and nonodontogenic jaw cysts: experience in 25 cases].

    PubMed

    Ağir, Hakan; Sen, Cenk; Işil, Eda; Unal, Ciğdem; Ustündağ, Emre; Keskin, Gürkan

    2008-01-01

    We retrospectively evaluated the patients with jaw cysts treated at our center. The study included 25 patients (14 males, 11 females; mean age 33+/-19 years; range 7 to 69 years) who underwent surgery for odontogenic or nonodontogenic jaw cysts. The most common presentation was a swelling in the jaw with or without dental problems. Involvement was in the mandible in 18 patients, and in the maxilla in seven patients. The lesions consisted of eight radicular, six dentigerous, two nasoalveolar, two globulomaxillary cysts, and three keratocysts. Four patients had gingival, nasopalatine, residual, and median mandibular cysts, respectively. Marsupialization, curettage, extensive burring, enucleation, or marginal resection were performed depending on pre- and intraoperative findings. The defects were repaired with a corticocancellous iliac bone block graft in three patients and cancellous iliac bone chips in five patients. During a mean follow-up of 14 months (range 12 to 46 months), recurrence was seen in only one patient with a keratocyst. A good preoperative assessment, complete removal of the cystic lesion, and close radiographic follow-up are essential for a successful outcome in jaw cysts. In selected cases, reconstruction of the defects with autogenous corticocancellous iliac bone graft yields highly satisfactory results.

  5. The speech focus position effect on jaw-finger coordination in a pointing task.

    PubMed

    Rochet-Capellan, Amélie; Laboissière, Rafael; Galván, Arturo; Schwartz, Jean-Luc

    2008-12-01

    This article investigates jaw-finger coordination in a task involving pointing to a target while naming it with a CVCV (e.g., /papa/) versus CVCV (e.g., /papa/) word. According to the authors' working hypothesis, the pointing apex (gesture extremum) would be synchronized with the apex of the jaw-opening gesture corresponding to the stressed syllable. Jaw and finger motions were recorded using Optotrak (Northern Digital, Waterloo, Ontario, Canada). The effects of stress position on jaw-finger coordination were tested across different target positions (near vs. far) and different consonants in the target word (/t/ vs. /p/). Twenty native Portuguese Brazilian speakers participated in the experiment (all conditions). Jaw response starts earlier, and finger-target alignment period is longer for CVCV words than for CVCV ones. The apex of the jaw-opening gesture for the stressed syllable appears synchronized with the onset of the finger-target alignment period (corresponding to the pointing apex) for CVCV words and with the offset of that period for CVCV words. For both stress conditions, the stressed syllable occurs within the finger-target alignment period because of tight finger-jaw coordination. This result is interpreted as evidence for an anchoring of the speech deictic site (part of speech that shows) in the pointing gesture.

  6. Electronic speckle-pattern interferometry (ESPI) applied to the study of mechanical behavior of human jaws

    NASA Astrophysics Data System (ADS)

    Roman, Juan F.; Moreno de las Cuevas, Vincente; Salgueiro, Jose R.; Suarez, David; Fernandez, Paula; Gallas, Mercedes; Blanchard, Alain

    1996-01-01

    The study of the mechanical behavior of the human jaw during chewing is helpful in several specific medical fields that cover the maxillo-facial area. In this work, electronic speckle pattern interferometry has been applied to study dead jaw bones under external stress which simulates the deformations induced during chewing. Fringes obtained after subtraction of two images of the jaw, the image of the relaxed jaw and that of the jaw under stress, give us information about the most stressed zones. The interferometric analysis proposed here is attractive as it can be done in real time with the jaw under progressive stress. Image processing can be applied for improving the quality of fringes. This research can be of help in orthognathic surgery, for example in diagnosis and treatment of fractured jaws, in oral surgery, and in orthodontics because it would help us to know the stress dispersion when we insert an osseointegrated implant or place an orthodontic appliance, respectively. Studying fragments of human jaw some results about its elasticity and flexibility were obtained.

  7. Building Finite Element Models to Investigate Zebrafish Jaw Biomechanics.

    PubMed

    Brunt, Lucy H; Roddy, Karen A; Rayfield, Emily J; Hammond, Chrissy L

    2016-12-03

    Skeletal morphogenesis occurs through tightly regulated cell behaviors during development; many cell types alter their behavior in response to mechanical strain. Skeletal joints are subjected to dynamic mechanical loading. Finite element analysis (FEA) is a computational method, frequently used in engineering that can predict how a material or structure will respond to mechanical input. By dividing a whole system (in this case the zebrafish jaw skeleton) into a mesh of smaller 'finite elements', FEA can be used to calculate the mechanical response of the structure to external loads. The results can be visualized in many ways including as a 'heat map' showing the position of maximum and minimum principal strains (a positive principal strain indicates tension while a negative indicates compression. The maximum and minimum refer the largest and smallest strain). These can be used to identify which regions of the jaw and therefore which cells are likely to be under particularly high tensional or compressional loads during jaw movement and can therefore be used to identify relationships between mechanical strain and cell behavior. This protocol describes the steps to generate Finite Element models from confocal image data on the musculoskeletal system, using the zebrafish lower jaw as a practical example. The protocol leads the reader through a series of steps: 1) staining of the musculoskeletal components, 2) imaging the musculoskeletal components, 3) building a 3 dimensional (3D) surface, 4) generating a mesh of Finite Elements, 5) solving the FEA and finally 6) validating the results by comparison to real displacements seen in movements of the fish jaw.

  8. [Osteonecrosis of the jaws and bisphosphonates].

    PubMed

    Junod, A F; Carrel, J-P; Richter, M; Vogt-Ferrier, N

    2005-11-02

    Widely prescribed, bisphosphonates inhibit bone resorption. They are not metabolised and have long half-lives. Two cases of osteonecrosis of the jaws have recently been attributed to bisphosphonates at the University Hospital of Geneva. The recent literature reveals more than a hundred similar cases throughout the world. Bone exposure appears spontaneously or after dental care. Treatment of the osteonecrosis is controversial and cure very difficult. This pathology is usually seen in patients on chemotherapy, steroids and i.v. bisphosphonates, but is sometimes seen with low-dose p.o. bisphosphonates. In view of the strong association between bisphosphonate therapy and osteonecrosis of the jaw, specialists have recommended dental and oral evaluation during bisphosphonate therapy as well as for several years after drug discontinuation.

  9. Physiologic Development of Tongue-Jaw Coordination from Childhood to Adulthood

    ERIC Educational Resources Information Center

    Cheng, Hei Yan; Murdoch, Bruce E.; Goozee, Justine V.; Scott, Dion

    2007-01-01

    Purpose: This investigation aimed to examine the development of tongue-jaw coordination during speech from childhood to adolescence. Method: Electromagnetic articulography was used to track tongue and jaw motion in 48 children and adults (aged 6-38 years) during productions of /t/ and /k/ embedded in sentences. Results: The coordinative…

  10. Repeated Evolution of Power-Amplified Predatory Strikes in Trap-Jaw Spiders.

    PubMed

    Wood, Hannah M; Parkinson, Dilworth Y; Griswold, Charles E; Gillespie, Rosemary G; Elias, Damian O

    2016-04-25

    Small animals possess intriguing morphological and behavioral traits that allow them to capture prey, including innovative structural mechanisms that produce ballistic movements by amplifying power [1-6]. Power amplification occurs when an organism produces a relatively high power output by releasing slowly stored energy almost instantaneously, resulting in movements that surpass the maximal power output of muscles [7]. For example, trap-jaw, power-amplified mechanisms have been described for several ant genera [5, 8], which have evolved some of the fastest known movements in the animal kingdom [6]. However, power-amplified predatory strikes were not previously known in one of the largest animal classes, the arachnids. Mecysmaucheniidae spiders, which occur only in New Zealand and southern South America, are tiny, cryptic, ground-dwelling spiders that rely on hunting rather than web-building to capture prey [9]. Analysis of high-speed video revealed that power-amplified mechanisms occur in some mecysmaucheniid species, with the fastest species being two orders of magnitude faster than the slowest species. Molecular phylogenetic analysis revealed that power-amplified cheliceral strikes have evolved four times independently within the family. Furthermore, we identified morphological innovations that directly relate to cheliceral function: a highly modified carapace in which the cheliceral muscles are oriented horizontally; modification of a cheliceral sclerite to have muscle attachments; and, in the power-amplified species, a thicker clypeus and clypeal apodemes. These structural innovations may have set the stage for the parallel evolution of ballistic predatory strikes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Muscle RAS oncogene homolog (MRAS) recurrent mutation in Borrmann type IV gastric cancer.

    PubMed

    Yasumoto, Makiko; Sakamoto, Etsuko; Ogasawara, Sachiko; Isobe, Taro; Kizaki, Junya; Sumi, Akiko; Kusano, Hironori; Akiba, Jun; Torimura, Takuji; Akagi, Yoshito; Itadani, Hiraku; Kobayashi, Tsutomu; Hasako, Shinichi; Kumazaki, Masafumi; Mizuarai, Shinji; Oie, Shinji; Yano, Hirohisa

    2017-01-01

    The prognosis of patients with Borrmann type IV gastric cancer (Type IV) is extremely poor. Thus, there is an urgent need to elucidate the molecular mechanisms underlying the oncogenesis of Type IV and to identify new therapeutic targets. Although previous studies using whole-exome and whole-genome sequencing have elucidated genomic alterations in gastric cancer, none has focused on comprehensive genetic analysis of Type IV. To discover cancer-relevant genes in Type IV, we performed whole-exome sequencing and genome-wide copy number analysis on 13 patients with Type IV. Exome sequencing identified 178 somatic mutations in protein-coding sequences or at splice sites. Among the mutations, we found a mutation in muscle RAS oncogene homolog (MRAS), which is predicted to cause molecular dysfunction. MRAS belongs to the Ras subgroup of small G proteins, which includes the prototypic RAS oncogenes. We analyzed an additional 46 Type IV samples to investigate the frequency of MRAS mutation. There were eight nonsynonymous mutations (mutation frequency, 17%), showing that MRAS is recurrently mutated in Type IV. Copy number analysis identified six focal amplifications and one homozygous deletion, including insulin-like growth factor 1 receptor (IGF1R) amplification. The samples with IGF1R amplification had remarkably higher IGF1R mRNA and protein expression levels compared with the other samples. This is the first report of MRAS recurrent mutation in human tumor samples. Our results suggest that MRAS mutation and IGF1R amplification could drive tumorigenesis of Type IV and could be new therapeutic targets. © 2016 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  12. Muscles advance the teeth in sand dollars and other sea urchins

    PubMed Central

    Ellers, O.; Telford, M.

    1997-01-01

    We demonstrate the action of the dental promoter muscles in advancing the continuously growing teeth of sand dollars and sea urchins. Teeth wear at the occlusal end, while new calcite is added to the opposite end. Dental ligaments rigidly hold teeth during chewing, but soften and reform during advancement. The source of forces that advance the teeth was unknown until our discovery of the dental promoter muscles. The muscles, which underly the tooth, attach centrally to the stereom of the pyramid of the Aristotle's lantern (jaw) and peripherally to a membrane that covers the distal end of the tooth. The muscles shorten along an axis nearly parallel to the long axis of the tooth. We stimulated contraction by addition of acetylcholine, with increasing concentrations of acetylcholine generating higher forces. Forces exerted by this muscle are appropriate for its size and are 1000 times lower than forces exerted by interpyramidal muscles that generate chewing forces. In sand dollars, a single muscle contraction of the dental promoter muscle can account for half the mean daily advancement of the teeth.

  13. Description of the lower jaws of Baculites from the Upper Cretaceous U.S. Western Interior

    NASA Astrophysics Data System (ADS)

    Larson, Neal L.; Landman, Neil H.

    2017-03-01

    We report the discovery of lower jaws of Baculites (Ammonoidea) from the Upper Cretaceous U.S. Western Interior. In the lower Campanian Smoky Hill Chalk Member of the Niobrara Chalk of Kansas, most of the jaws occur as isolated elements. Based on their age, they probably belong to Baculites sp. (smooth). They conform to the description of rugaptychus, and are ornamented with coarse rugae on their ventral side. One specimen is preserved inside a small fecal pellet that was probably produced by a fish. Another specimen occurs inside in a crushed body chamber near the aperture and is probably in situ. Three small structures are present immediately behind the jaw and may represent the remains of the gills. In the lower Maastrichtian Pierre Shale of Wyoming, two specimens of Baculites grandis contain lower jaws inside their body chambers, and are probably in situ. In both specimens, the jaws are oriented at an acute angle to the long axis of the shell, with their anterior ends pointing toward the dorsum. One of the jaws is folded into a U-shape, which probably approximates the shape of the jaw during life. Based on the measurements of the jaws and the shape of the shell, the jaws could not have touched the sides of the shell even if they were splayed out, implying that they could not have effectively served as opercula. Instead, in combination with the upper jaws and radula, they constituted the buccal apparatus that collected and conveyed food to the esophagus.

  14. An examination of the degrees of freedom of human jaw motion in speech and mastication.

    PubMed

    Ostry, D J; Vatikiotis-Bateson, E; Gribble, P L

    1997-12-01

    The kinematics of human jaw movements were assessed in terms of the three orientation angles and three positions that characterize the motion of the jaw as a rigid body. The analysis focused on the identification of the jaw's independent movement dimensions, and was based on an examination of jaw motion paths that were plotted in various combinations of linear and angular coordinate frames. Overall, both behaviors were characterized by independent motion in four degrees of freedom. In general, when jaw movements were plotted to show orientation in the sagittal plane as a function of horizontal position, relatively straight paths were observed. In speech, the slopes and intercepts of these paths varied depending on the phonetic material. The vertical position of the jaw was observed to shift up or down so as to displace the overall form of the sagittal plane motion path of the jaw. Yaw movements were small but independent of pitch, and vertical and horizontal position. In mastication, the slope and intercept of the relationship between pitch and horizontal position were affected by the type of food and its size. However, the range of variation was less than that observed in speech. When vertical jaw position was plotted as a function of horizontal position, the basic form of the path of the jaw was maintained but could be shifted vertically. In general, larger bolus diameters were associated with lower jaw positions throughout the movement. The timing of pitch and yaw motion differed. The most common pattern involved changes in pitch angle during jaw opening followed by a phase predominated by lateral motion (yaw). Thus, in both behaviors there was evidence of independent motion in pitch, yaw, horizontal position, and vertical position. This is consistent with the idea that motions in these degrees of freedom are independently controlled.

  15. Effect of different head-neck-jaw postures on cervicocephalic kinesthetic sense.

    PubMed

    Zafar, H; Alghadir, A H; Iqbal, Z A

    2017-12-01

    To investigate the effect of different induced head-neck-jaw postures on head-neck relocation error among healthy subjects. 30 healthy adult male subjects participated in this study. Cervicocephalic kinesthetic sense was measured while standing, habitual sitting, habitual sitting with clenched jaw and habitual sitting with forward head posture during right rotation, left rotation, flexion and extension using kinesthetic sensibility test. Head-neck relocation error was least while standing, followed by habitual sitting, habitual sitting with forward head posture and habitual sitting with jaw clenched. However, there was no significant difference in error between different tested postures during all the movements. To the best of our knowledge, this is the first study to see the effect of different induced head-neck-jaw postures on head-neck position sense among healthy subjects. Assuming a posture for a short duration of time doesn't affect head-neck relocation error in normal healthy subjects.

  16. Alendronate-associated osteonecrosis of the jaws: A review of the main topics

    PubMed Central

    Paiva-Fonseca, Felipe; Santos-Silva, Alan R.; Della-Coletta, Ricardo; Vargas, Pablo A.

    2014-01-01

    Bisphosphonates is a group of inorganic pyrophosphates analogues that suppress bone resorption by inducing osteoclast inactivation, being frequently used for management of diseases affecting bone metabolism, bone metastases and bone tumors. However, since 2003 many cases describing the presence of necrotic bone exposures in the jaws have been described in patients receiving these drugs, what represent a significant complication of bisphosphonates treatment. The overall incidence of bisphosphonate-related osteonecrosis of the jaws is low, ranging from 0.7% to 12%, mainly observed in those patients receiving intravenously treatment. Osteonecrosis of the jaws associated to oral bisphosphonate, particularly alendronate, has also been reported by a number of authors. Considering that alendronate is one of the most used drugs worldwide, specially for treatment of osteoporosis, a better understanding of osteonecrosis of the jaws related to its use and how to manage these patients is extremely important. Therefore, in the current manuscript the authors aim to review the most important topics related to this pathological presentation. Key words:Bisphosphonates, alendronate, bisphosphonate-related osteonecrosis of the jaws, osteonecrosis. PMID:23986020

  17. Mandibular angle resection and masticatory muscle hypertrophy - a technical note and morphological optimization.

    PubMed

    Andreishchev, A R; Nicot, R; Ferri, J

    2014-11-01

    Mandibular angle resection is rarely used, but is a highly effective means of correcting facial defects. We report a mandibular angle resection technique associated with the removal of a part of hypertrophic masseter muscles and resection of buccal fat pad. Anatomical reminders: the most important entities are the facial artery and vein, crossing the lower margin of the jaw just in front of the anterior boarder of the masseter muscle and the temporomaxillary vein, passing through the temporomaxillary fossa; preoperative aspects: the preoperative examination included a radiological assessment of the shape and size of the mandibular angle; surgical technique: an intra-oral approach was usually used. The most effective and convenient method for the osteotomy was using a reciprocating saw. This technique allowed achieving a smooth contour of masseter muscles during masticatory movements or at rest. Eleven mandibular angle resections were performed from 2001 to 2009. The surgery was supplemented by remodeling the lower margin of the jaw for 5 other patients. No permanent facial palsy was noted. One patient presented a unilateral long-term loss of sensitivity of the lower lip and chin. This surgical technique if simple even requires using good technical equipment, and observing a set of rules. Using these principles allows simplifying the surgical technique, and decreasing its morbidity. A part of the masseter muscles and the buccal fat pad can sometimes be resected to improve the morphological results. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  18. Developmental studies of the lamprey and hierarchical evolutionary steps towards the acquisition of the jaw

    PubMed Central

    Kuratani, Shigeru

    2005-01-01

    The evolution of animal morphology can be understood as a series of changes in developmental programs. Among vertebrates, some developmental stages are conserved across species, representing particular developmental constraints. One of the most conserved stages is the vertebrate pharyngula, in which similar embryonic morphology is observed and the Hox code is clearly expressed. The oral developmental program also appears to be constrained to some extent, as both its morphology and the the Hox-code-default state of the oropharyngeal region are well conserved between the lamprey and gnathostome embryos. These features do not by themselves explain the evolution of jaws, but should be regarded as a prerequisite for evolutionary diversification of the mandibular arch. By comparing the pharyngula morphology of the lamprey and gnathostomes, it has become clear that the oral pattern is not entirely identical; in particular, the positional differentiation of the rostral ectomesenchyme is shifted between these animals. Therefore, the jaw seems to have arisen as an evolutionary novelty by overriding ancestral constraints, a process in which morphological homologies are partially lost. This change involves the heterotopic shift of tissue interaction, which appears to have been preceded by the transition from monorhiny to diplorhiny, as well as separation of the hypophysis. When gene expression patterns are compared between the lamprey and gnathostomes, cell-autonomously functioning genes tend to be associated with identical cell types or equivalent anatomical domains, whereas growth-factor-encoding genes have changed their expression domains during evolution. Thus, the heterotopic evolution may be based on changes in the regulation of signalling-molecule-encoding genes. PMID:16313390

  19. Postmating sexual selection and the enigmatic jawed genitalia of Callosobruchus subinnotatus

    PubMed Central

    Rönn, Johanna Liljestrand; Schilthuizen, Menno; Arnqvist, Göran

    2017-01-01

    ABSTRACT Insect genitalia exhibit rapid divergent evolution. Truly extraordinary structures have evolved in some groups, presumably as a result of postmating sexual selection. To increase our understanding of this phenomenon, we studied the function of one such structure. The male genitalia of Callosobruchus subinnotatus (Coleoptera: Bruchinae) contain a pair of jaw-like structures with unknown function. Here, we used phenotypic engineering to ablate the teeth on these jaws. We then experimentally assessed the effects of ablation of the genital jaws on mating duration, ejaculate weight, male fertilization success and female fecundity, using a double-mating experimental design. We predicted that copulatory wounding in females should be positively related to male fertilization success; however, we found no significant correlation between genital tract scarring in females and male fertilization success. Male fertilization success was, however, positively related to the amount of ejaculate transferred by males and negatively related to female ejaculate dumping. Ablation of male genital jaws did not affect male relative fertilization success but resulted in a reduction in female egg production. Our results suggest that postmating sexual selection in males indeed favors these genital jaws, not primarily through an elevated relative success in sperm competition but by increasing female egg production. PMID:28583926

  20. Zoledronate Effects on Systemic and Jaw Osteopenias in Ovariectomized Periostin-Deficient Mice

    PubMed Central

    Bonnet, Nicolas; Lesclous, Philippe; Saffar, Jean Louis; Ferrari, Serge

    2013-01-01

    Osteoporosis and periodontal disease (PD) are frequently associated in the elderly, both concurring to the loss of jaw alveolar bone and finally of teeth. Bisphosphonates improve alveolar bone loss but have also been associated with osteonecrosis of the jaw (ONJ), particularly using oncological doses of zoledronate. The effects and therapeutic margin of zoledronate on jaw bone therefore remain uncertain. We reappraised the efficacy and safety of Zoledronate (Zol) in ovariectomized (OVX) periostin (Postn)-deficient mice, a unique genetic model of systemic and jaw osteopenia. Compared to vehicle, Zol 1M (100 µg/kg/month) and Zol 1W (100 µg/kg/week) for 3 months both significantly improved femur BMD, trabecular bone volume on tissue volume (BV/TV) and cortical bone volume in both OVX Postn+/+ and Postn−/− (all p<0.01). Zol 1M and Zol 1W also improved jaw alveolar and basal BV/TV, although the highest dose (Zol 1W) was less efficient, particularly in Postn−/−. Zol decreased osteoclast number and bone formation indices, i.e. MAR, MPm/BPm and BFR, independently in Postn−/− and Postn+/+, both in the long bones and in deep jaw alveolar bone, without differences between Zol doses. Zol 1M and Zol 1W did not reactivate inflammation nor increase fibrous tissue in the bone marrow of the jaw, whereas the distance between the root and the enamel of the incisor (DRI) remained high in Postn−/− vs Postn+/+ confirming latent inflammation and lack of crestal alveolar bone. Zol 1W and Zol 1M decreased osteocyte numbers in Postn−/− and Postn+/+ mandible, and Zol 1W increased the number of empty lacunae in Postn−/−, however no areas of necrotic bone were observed. These results demonstrate that zoledronate improves jaw osteopenia and suggest that in Postn−/− mice, zoledronate is not sufficient to induce bone necrosis. PMID:23505553

  1. Effect of different head-neck-jaw postures on cervicocephalic kinesthetic sense

    PubMed Central

    Zafar, Hamayun; Alghadir, Ahmad H.; Iqbal, Zaheen A.

    2017-01-01

    Objectives: To investigate the effect of different induced head-neck-jaw postures on head-neck relocation error among healthy subjects. Methods: 30 healthy adult male subjects participated in this study. Cervicocephalic kinesthetic sense was measured while standing, habitual sitting, habitual sitting with clenched jaw and habitual sitting with forward head posture during right rotation, left rotation, flexion and extension using kinesthetic sensibility test. Results: Head-neck relocation error was least while standing, followed by habitual sitting, habitual sitting with forward head posture and habitual sitting with jaw clenched. However, there was no significant difference in error between different tested postures during all the movements. Conclusions: To the best of our knowledge, this is the first study to see the effect of different induced head-neck-jaw postures on head-neck position sense among healthy subjects. Assuming a posture for a short duration of time doesn’t affect head-neck relocation error in normal healthy subjects. PMID:29199196

  2. Description of the chimaerid jaw and its phylogenetic origins.

    PubMed

    Grogan, Eileen D; Lund, Richard; Didier, Dominique

    1999-01-01

    Anatomical delineation of the holocephalan palatoquadrate has proven to be difficult and, so, has been an extensively debated topic as it relates to the evolutionary derivation of jaws, modes of jaw suspension, and the interrelationships of the hondrichthyes (Elasmobranchii and Holocephali). Embryological analyses of the chimaerid jaw and cranium are presented to provide an anatomical description of the palatoquadrate in modern chimaerids. The palatoquadrate fuses, anteriorly, to the nasal capsule early in development. This marks the first point of contact between the mandibular arch and cranium. Orbitonasal canal foramina delineate the dorsal palatoquadrate margin. The posteriormost margin is marked by fusion of the upper jaw with trabecular and parachordal cartilages in the region of the efferent eudobranchial artery foramen and by a suborbitally positioned basitrabecular cartilage. This basitrabecula generates a subocular shelf as it fuses medially to the parachordal cartilage and posteriorly to the postorbital wall and cranial otic process. The results of these analyses are related to morphological studies of Paleozoic chondrichthyan fishes, particularly the autodiastylic paraselachians that represent morphological intermediates to selachians and holocephalans. The paraselachian basitrabecular, which was mechanically fundamental to stabilizing the free autodiastylic upper jaw and a hyoid operculum, is shown to correlate with the suborbital basitrabecular of today's chimaerids. Further analyses of both extant and fossil data permit us to conclude that the primordial chondrichthyan palatoquadrate did not extend posteriorly to include a palatoquadrate-derived otic process. Rather, the posteriormost extent of this element is primitively found within the limits of the orbit and is demarcated by the highly conserved basitrabecular element. The collective analyses support autodiastyly as the ancestral condition from which all fundamental suspensorial states are

  3. Phylotranscriptomic consolidation of the jawed vertebrate timetree.

    PubMed

    Irisarri, Iker; Baurain, Denis; Brinkmann, Henner; Delsuc, Frédéric; Sire, Jean-Yves; Kupfer, Alexander; Petersen, Jörn; Jarek, Michael; Meyer, Axel; Vences, Miguel; Philippe, Hervé

    2017-09-01

    Phylogenomics is extremely powerful but introduces new challenges as no agreement exists on "standards" for data selection, curation and tree inference. We use jawed vertebrates (Gnathostomata) as model to address these issues. Despite considerable efforts in resolving their evolutionary history and macroevolution, few studies have included a full phylogenetic diversity of gnathostomes and some relationships remain controversial. We tested a novel bioinformatic pipeline to assemble large and accurate phylogenomic datasets from RNA sequencing and find this phylotranscriptomic approach successful and highly cost-effective. Increased sequencing effort up to ca. 10Gbp allows recovering more genes, but shallower sequencing (1.5Gbp) is sufficient to obtain thousands of full-length orthologous transcripts. We reconstruct a robust and strongly supported timetree of jawed vertebrates using 7,189 nuclear genes from 100 taxa, including 23 new transcriptomes from previously unsampled key species. Gene jackknifing of genomic data corroborates the robustness of our tree and allows calculating genome-wide divergence times by overcoming gene sampling bias. Mitochondrial genomes prove insufficient to resolve the deepest relationships because of limited signal and among-lineage rate heterogeneity. Our analyses emphasize the importance of large curated nuclear datasets to increase the accuracy of phylogenomics and provide a reference framework for the evolutionary history of jawed vertebrates.

  4. [Jaw osteosarcomas].

    PubMed

    Steve, M; Ernenwein, D; Chaine, A; Bertolus, C; Goudot, P; Ruhin-Poncet, B

    2011-11-01

    Osteosarcoma (OS) is the most frequent bone malignant tumor. It is usually found on long bones, 5 to 10% are located on jaws, accounting for 0.5 to 1% of all facial tumors. There is little published data which concerns only few patients. Our aim was to study retrospectively cases of facial bone OS in adults, and to compare our results with published data to suggest an optimal management scheme. Thirty-three patients were managed for an OS, from January 1997 to January 2007. Fourteen patients with a maxillary and mandibular OS, treated in first-intention in our unit, were included. The following data were analyzed: age; personal history; circumstance of discovery; clinical, functional, and physical signs; loco-regional extension and metastasis radiological investigation. The histological slides were systematically reviewed. The protocol, therapeutic outcome, and follow-up were studied. The mean age at diagnosis was 43. Swelling was the most frequent functional sign. The mean delay before management was 3.4 months. The most frequent radiological presentation was a lytic and hyperdense image. The diagnosis was suggested after CT scan in 57.1% of cases. The biopsy was correlated to the anatomopathological analysis in 78.6% of cases. The most common treatment was surgical exeresis completed by chemotherapy. The 5-year survival rate was 50%. Jaw OS are specific because of their localization and specific bone ultrastructure. Their management remains controversial: should they be managed like limb OS or treated more specifically? Neoadjuvant chemotherapy, even if it delays exeresis for 3 months, seems to stop the growth or reduce the tumor. An early anatomopathological analysis of the surgical piece determines adjuvant therapy. The negative prognostic factors are: maxillary localization because of limited exeresis margins, tumoral size, and osteoblastic sub-type. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  5. Wake measurements of a dechirper jaw with nonzero tilt angle

    NASA Astrophysics Data System (ADS)

    Bane, Karl; Guetg, Marc; Lutman, Alberto

    2018-05-01

    The RadiaBeam/SLAC dechirper at the Linac Coherent Light Source (LCLS) is being used as a fast kicker, by inducing transverse wakefields, to, e.g., facilitate Fresh-slice, two-color laser operation. The dechirper jaws are independently adjustable at both ends, and it is difficult to avoid leaving residual (longitudinal) tilt in them during setup. In this report we develop a model independent method of removing unknown tilt in a jaw. In addition, for a short uniform bunch passing by a single dechirper plate, we derive an explicit analytical formula for the transverse wake kick as function of average plate offset and tilt angle. We perform wake kick measurements for the different dechirper jaws of the RadiaBeam/SLAC dechirper, and find that the agreement between measurement and theory is excellent.

  6. Enhancer of Zeste Homolog 2 Induces Pulmonary Artery Smooth Muscle Cell Proliferation

    PubMed Central

    Aljubran, Salman A.; Rajanbabu, Venugopal; Bao, Huynh; Mohapatra, Shyam M.; Lockey, Richard; Kolliputi, Narasaiah

    2012-01-01

    Introduction Pulmonary Arterial Hypertension (PAH) is a progressively devastating disease characterized by excessive proliferation of the Pulmonary Arterial Smooth Muscle Cells (PASMCs). Studies suggest that PAH and cancers share an apoptosis-resistant state featuring excessive cell proliferation. The proliferation of cancer cells is mediated by increased expression of Enhancer of Zeste Homolog 2 (EZH2), a mammalian histone methyltransferase that contributes to the epigenetic silencing of target genes. However, the role of EZH2 in PAH has not been studied. In this study, it is hypothesized that EZH2 could play a role in the proliferation of PASMCs. Methods In the present study, the expression patterns of EZH2 were investigated in normal and hypertensive mouse PASMCs. The effects of EZH2 overexpression on the proliferation of human PASMCs were tested. PASMCs were transfected with EZH2 or GFP using nucleofector system. After transfection, the cells were incubated for 48 hours at 37°C. Proliferation and cell cycle analysis were performed using flow cytometry. Apoptosis of PASMCs was determined using annexin V staining and cell migration was tested by wound healing assay. Results EZH2 protein expression in mouse PASMCs were correlated with an increase in right ventricular systolic pressure and Right Ventricular Hypertrophy (RVH). The overexpression of EZH2 in human PASMCs enhances proliferation, migration, and decrease in the rate of apoptosis when compared to GFP-transfected cells. In the G2/M phase of the EZH2 transfected cells, there was a 3.5 fold increase in proliferation, while there was a significant decrease in the rate of apoptosis of PASMCs, when compared to control. Conclusion These findings suggest that EZH2 plays a role in the migration and proliferation of PASMCs, which is a major hallmark in PAH. It also suggests that EZH2 could play a role in the development of PAH and can serve as a potential target for new therapies for PAH. PMID:22662197

  7. Computer-Aided Design/Computer-Assisted Manufacture-Derived Needle Guide for Injection of Botulinum Toxin into the Lateral Pterygoid Muscle in Patients with Oromandibular Dystonia.

    PubMed

    Yoshida, Kazuya

    2018-01-01

    To evaluate the effectiveness and safety of botulinum toxin administration into the inferior head of the lateral pterygoid muscle of patients with jaw opening dystonia by using a computer-aided design/computer-assisted manufacture (CAD/CAM)-derived needle guide. A total of 17 patients with jaw opening dystonia were enrolled. After the patient's computed tomography (CT) scan was imported and fused with a scan of a plaster cast model of the maxilla, the optimal needle insertion site over the lateral pterygoid muscle was determined using the NobelClinician software. A total of 13 patients were injected both with and without the guide, and 4 patients underwent guided injection alone. The therapeutic effects of botulinum toxin injection and its associated complications were statistically compared between the guided and unguided procedures using paired t test. Botulinum toxin therapy was performed 42 and 32 times with and without the guides, respectively. The needle was easily inserted without any complications in all procedures. There was a significant difference (P < .001) between the mean comprehensive improvements observed with (66.3%) and without (54.4%) the guides. The findings suggest that the use of needle guides during the injection of botulinum toxin into the inferior head of the lateral pterygoid muscle is very useful for aiding the accurate and safe administration of botulinum toxin therapy for jaw opening dystonia.

  8. Compression force on the upper jaw during neonatal intubation: mannequin study.

    PubMed

    Doreswamy, Srinivasa Murthy; Almannaei, Khaled; Fusch, Chris; Shivananda, Sandesh

    2015-03-01

    Neonatal intubation is a technically challenging procedure, and pressure-related injuries to surrounding structures have been reported. The primary objective of this study was to determine the pressure exerted on the upper jaw during tracheal intubation using a neonatal mannequin. Multidisciplinary care providers working at a neonatal intensive care unit were requested to intubate a neonatal mannequin using the standard laryngoscope and 3.0-mm (internal diameter) endotracheal tube. Compression force exerted was measured by using pressure-sensitive film taped on the upper jaw before every intubation attempt. Pressure, area under pressure and time taken to intubate were compared between the different types of health-care professionals. Thirty care providers intubated the mannequin three times each. Pressure impressions were observed on the developer film after every intubation attempt (n = 90). The mean pressure exerted during intubation across all health-care providers was 568 kPa (SD 78). The mean area placed under pressure was 142 mm(2) (SD 45), and the mean time taken for intubation was 14.7 s (SD 4.3). There was no difference in pressure exerted on the upper jaw between frequent and less frequent intubators. It was found that pressure greater than 400 kPa was inadvertently applied on the upper jaw during neonatal intubation, far exceeding the 250 kPa shown to cause tissue injury in animal models. The upper jaw is exposed to a significant compression force during intubation. Although such exposure is brief, it has the potential to cause tissue injury. Contact of the laryngoscope blade with the upper jaw occurred in all intubation attempts with the currently used design of laryngoscope. © 2014 The Authors. Journal of Paediatrics and Child Health © 2014 Paediatrics and Child Health Division (Royal Australasian College of Physicians).

  9. Asymmetric activation of temporalis, masseter, and sternocleidomastoid muscles in temporomandibular disorder patients.

    PubMed

    Ries, Lilian Gerdi Kittel; Alves, Marcelo Correa; Bérzin, Fausto

    2008-01-01

    The aim of this study was to analyze the symmetry of the electromyographic (EMG) activity of the temporalis, masseter, and sternocleidomastoid (SCM) muscles in volunteers divided into a control group and a temporomandibular disorder (TMD) group. The surface EMG recordings were made during mandibular rest position, maximal intercuspal position, and during the chewing cycle. Normalized EMG waves of paired muscles were compared by computing a percentage overlapping coefficient (POC). The difference between the groups and between the static and dynamic clenching tests was analyzed through repeated measures, ANOVA. Symmetry of the temporalis, masseter, and SCM muscles activity was smaller in the TMD group compared to the control group. The mandibular postures were also significantly different among themselves. The asymmetric activation of jaw and neck muscles was interpreted as a compensatory strategy to achieve stability for the mandibular and cervical systems during masticatory function.

  10. Expression of Msx-1 is suppressed in bisphosphonate associated osteonecrosis related jaw tissue-etiopathology considerations respecting jaw developmental biology-related unique features

    PubMed Central

    2010-01-01

    Background Bone-destructive disease treatments include bisphosphonates and antibodies against the osteoclast differentiator, RANKL (aRANKL); however, osteonecrosis of the jaw (ONJ) is a frequent side-effect. Current models fail to explain the restriction of bisphosphonate (BP)-related and denosumab (anti-RANKL antibody)-related ONJ to jaws. Msx-1 is exclusively expressed in craniofacial structures and pivotal to cranial neural crest (CNC)-derived periodontal tissue remodeling. We hypothesised that Msx-1 expression might be impaired in bisphosphonate-related ONJ. The study aim was to elucidate Msx-1 and RANKL-associated signal transduction (BMP-2/4, RANKL) in ONJ-altered and healthy periodontal tissue. Methods Twenty ONJ and twenty non-BP exposed periodontal samples were processed for RT-PCR and immunohistochemistry. An automated staining-based alkaline phosphatase-anti-alkaline phosphatase method was used to measure the stained cells:total cell-number ratio (labelling index, Bonferroni adjustment). Real-time RT-PCR was performed on ONJ-affected and healthy jaw periodontal samples (n = 20 each) to quantitatively compare Msx-1, BMP-2, RANKL, and GAPDH mRNA levels. Results Semi-quantitative assessment of the ratio of stained cells showed decreased Msx-1 and RANKL and increased BMP-2/4 (all p < 0.05) expression in ONJ-adjacent periodontal tissue. ONJ tissue also exhibited decreased relative gene expression for Msx-1 (p < 0.03) and RANKL (p < 0.03) and increased BMP-2/4 expression (p < 0.02) compared to control. Conclusions These results explain the sclerotic and osteopetrotic changes of periodontal tissue following BP application and substantiate clinical findings of BP-related impaired remodeling specific to periodontal tissue. RANKL suppression substantiated the clinical finding of impaired bone remodelling in BP- and aRANKL-induced ONJ-affected bone structures. Msx-1 suppression in ONJ-adjacent periodontal tissue suggested a bisphosphonate-related impairment in

  11. Expression of Msx-1 is suppressed in bisphosphonate associated osteonecrosis related jaw tissue-etiopathology considerations respecting jaw developmental biology-related unique features.

    PubMed

    Wehrhan, Falk; Hyckel, Peter; Ries, Jutta; Stockmann, Phillip; Nkenke, Emeka; Schlegel, Karl A; Neukam, Friedrich W; Amann, Kerstin

    2010-10-13

    Bone-destructive disease treatments include bisphosphonates and antibodies against the osteoclast differentiator, RANKL (aRANKL); however, osteonecrosis of the jaw (ONJ) is a frequent side-effect. Current models fail to explain the restriction of bisphosphonate (BP)-related and denosumab (anti-RANKL antibody)-related ONJ to jaws. Msx-1 is exclusively expressed in craniofacial structures and pivotal to cranial neural crest (CNC)-derived periodontal tissue remodeling. We hypothesised that Msx-1 expression might be impaired in bisphosphonate-related ONJ. The study aim was to elucidate Msx-1 and RANKL-associated signal transduction (BMP-2/4, RANKL) in ONJ-altered and healthy periodontal tissue. Twenty ONJ and twenty non-BP exposed periodontal samples were processed for RT-PCR and immunohistochemistry. An automated staining-based alkaline phosphatase-anti-alkaline phosphatase method was used to measure the stained cells:total cell-number ratio (labelling index, Bonferroni adjustment). Real-time RT-PCR was performed on ONJ-affected and healthy jaw periodontal samples (n = 20 each) to quantitatively compare Msx-1, BMP-2, RANKL, and GAPDH mRNA levels. Semi-quantitative assessment of the ratio of stained cells showed decreased Msx-1 and RANKL and increased BMP-2/4 (all p < 0.05) expression in ONJ-adjacent periodontal tissue. ONJ tissue also exhibited decreased relative gene expression for Msx-1 (p < 0.03) and RANKL (p < 0.03) and increased BMP-2/4 expression (p < 0.02) compared to control. These results explain the sclerotic and osteopetrotic changes of periodontal tissue following BP application and substantiate clinical findings of BP-related impaired remodeling specific to periodontal tissue. RANKL suppression substantiated the clinical finding of impaired bone remodelling in BP- and aRANKL-induced ONJ-affected bone structures. Msx-1 suppression in ONJ-adjacent periodontal tissue suggested a bisphosphonate-related impairment in cellular differentiation that occurred

  12. Hyperparathyroidism-jaw tumour syndrome detected by aggressive generalized osteitis fibrosa cystica.

    PubMed

    Guerrouani, Alae; Rzin, Abdelkader; El Khatib, Karim

    2013-01-01

    Severe hyperparathyroidism can affect bone metabolism and be in the origine of multiple brown tumours (generalized osteitis fibrosa cystica). When associated with fibro-ossifying tumours of the jaw, it realizes a rare genetic syndrome referred as Hyperparathyroidism-jaw tumour HPT-JT. We report the case of a patient we treated for HPT-JT, and literature review.

  13. Directional selection has shaped the oral jaws of Lake Malawi cichlid fishes.

    PubMed

    Albertson, R Craig; Streelman, J Todd; Kocher, Thomas D

    2003-04-29

    East African cichlid fishes represent one of the most striking examples of rapid and convergent evolutionary radiation among vertebrates. Models of ecological speciation would suggest that functional divergence in feeding morphology has contributed to the origin and maintenance of cichlid species diversity. However, definitive evidence for the action of natural selection has been missing. Here we use quantitative genetics to identify regions of the cichlid genome responsible for functionally important shape differences in the oral jaw apparatus. The consistent direction of effects for individual quantitative trait loci suggest that cichlid jaws and teeth evolved in response to strong, divergent selection. Moreover, several chromosomal regions contain a disproportionate number of quantitative trait loci, indicating a prominent role for pleiotropy or genetic linkage in the divergence of this character complex. Of particular interest are genomic intervals with concerted effects on both the length and height of the lower jaw. Coordinated changes in this area of the oral jaw apparatus are predicted to have direct consequences for the speed and strength of jaw movement. Taken together, our results imply that the rapid and replicative nature of cichlid trophic evolution is the result of directional selection on chromosomal packages that encode functionally linked aspects of the craniofacial skeleton.

  14. The Rise of Jaw Protrusion in Spiny-Rayed Fishes Closes the Gap on Elusive Prey.

    PubMed

    Bellwood, David R; Goatley, Christopher H R; Bellwood, Orpha; Delbarre, Daniel J; Friedman, Matt

    2015-10-19

    Jaw protrusion is one of the most important innovations in vertebrate feeding over the last 400 million years [1, 2]. Protrusion enables a fish to rapidly decrease the distance between itself and its prey [2, 3]. We assessed the evolution and functional implications of jaw protrusion in teleost fish assemblages from shallow coastal seas since the Cretaceous. By examining extant teleost fishes, we identified a robust morphological predictor of jaw protrusion that enabled us to predict the extent of jaw protrusion in fossil fishes. Our analyses revealed increases in both average and maximum jaw protrusion over the last 100 million years, with a progressive increase in the potential impact of fish predation on elusive prey. Over this period, the increase in jaw protrusion was initially driven by a taxonomic restructuring of fish assemblages, with an increase in the proportion of spiny-rayed fishes (Acanthomorpha), followed by an increase in the extent of protrusion within this clade. By increasing the ability of fishes to catch elusive prey [2, 4], jaw protrusion is likely to have fundamentally changed the nature of predator-prey interactions and may have contributed to the success of the spiny-rayed fishes, the dominant fish clade in modern oceans [5]. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Maintenance of weight loss in obese patients after jaw wiring.

    PubMed Central

    Garrow, J S; Gardiner, G T

    1981-01-01

    In treatment of obesity restriction of food intake is necessary to achieve good results. Various operations have been devised to prevent patients overeating, but in this study jaw wiring was used to limit food intake. This procedure produces weight loss in obese patients but when the wires are removed the weight is usually regained. This report studied a group of patients whose weight loss was maintained after the wires were removed. A nylon cord fastened round the waist of the patient after weight reduction was found to act as a psychological barrier to weight gain. Seven patients were followed for 4-14 months after removal of jaw wires and regained a mean of only 5.6 kg of the 31.8 kg lost while their jaws were wired. This procedure compares favourably with other treatments for severe obesity. PMID:6783203

  16. SU-G-BRA-14: Dose in a Rigidly Moving Phantom with Jaw and MLC Compensation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chao, E; Lucas, D

    Purpose: To validate dose calculation for a rigidly moving object with jaw motion and MLC shifts to compensate for the motion in a TomoTherapy™ treatment delivery. Methods: An off-line version of the TomoTherapy dose calculator was extended to perform dose calculations for rigidly moving objects. A variety of motion traces were added to treatment delivery plans, along with corresponding jaw compensation and MLC shift compensation profiles. Jaw compensation profiles were calculated by shifting the jaws such that the center of the treatment beam moved by an amount equal to the motion in the longitudinal direction. Similarly, MLC compensation profiles weremore » calculated by shifting the MLC leaves by an amount that most closely matched the motion in the transverse direction. The same jaw and MLC compensation profiles were used during simulated treatment deliveries on a TomoTherapy system, and film measurements were obtained in a rigidly moving phantom. Results: The off-line TomoTherapy dose calculator accurately predicted dose profiles for a rigidly moving phantom along with jaw motion and MLC shifts to compensate for the motion. Calculations matched film measurements to within 2%/1 mm. Jaw and MLC compensation substantially reduced the discrepancy between the delivered dose distribution and the calculated dose with no motion. For axial motion, the compensated dose matched the no-motion dose within 2%/1mm. For transverse motion, the dose matched within 2%/3mm (approximately half the width of an MLC leaf). Conclusion: The off-line TomoTherapy dose calculator accurately computes dose delivered to a rigidly moving object, and accurately models the impact of moving the jaws and shifting the MLC leaf patterns to compensate for the motion. Jaw tracking and MLC leaf shifting can effectively compensate for the dosimetric impact of motion during a TomoTherapy treatment delivery.« less

  17. Anti-resorptive osteonecrosis of the jaws: facts forgotten, questions answered, lessons learned.

    PubMed

    Carlson, Eric R; Schlott, Benjamin J

    2014-05-01

    Osteonecrosis of the jaws associated with bisphosphonate and other anti-resorptive medications (ARONJ) has historically been a poorly understood disease process in terms of its pathophysiology, prevention and treatment since it was originally described in 2003. In association with its original discovery 11 years ago, non-evidence based speculation of these issues have been published in the international literature and are currently being challenged. A critical analysis of cancer patients with ARONJ, for example, reveals that their osteonecrosis is nearly identical to that of cancer patients who are naive to anti-resorptive medications. In addition, osteonecrosis of the jaws is not unique to patients exposed to anti-resorptive medications, but is also seen in patients with osteomyelitis and other pathologic processes of the jaws. This article represents a review of facts forgotten, questions answered, and lessons learned in general regarding osteonecrosis of the jaws. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Actinomyces osteomyelitis in bisphosphonate-related osteonecrosis of the jaw (BRONJ): the missing link?

    PubMed

    De Ceulaer, J; Tacconelli, E; Vandecasteele, S J

    2014-11-01

    Bisphosphonate-related osteonecrosis of the jaw (BRONJ) is a rare complication of bisphosphonate treatment characterized by the development of exposed, necrotic bone in the jaw with inflammatory signs. The pathogenesis of BRONJ is not yet fully understood. This review analyzes the evidence supporting the hypothesis that BRONJ may be considered as a bisphosphonate-induced Actinomyces infection of the jaw according to the modified Koch's postulates. The main arguments relies on the following factors: (1) the high prevalence of isolation of Actinomyces from bone BRONJ lesions (73.2 % in retrospective series); (2) the similar pathological appearance of BRONJ and Actinomyces osteomyelitis in most studies, although BRONJ lesions without inflammation have been reported; (3) the high incidence of events that disrupt the normal mucosal barrier as a necessary trigger to develop BRONJ in bisphosphonate-exposed patients; (4) the predilection of bisphosphonate-induced osteonecrosis for the bones of the jaws; and (5) the favorable response of BRONJ on treatment that is active on Actinomyces. If BRONJ confirms to be a bisphosphonate-induced Actinomyces osteomyelitis of the jaw, this has major consequences for the prevention and treatment of this condition.

  19. Heterogeneous conservation of Dlx paralog co-expression in jawed vertebrates.

    PubMed

    Debiais-Thibaud, Mélanie; Metcalfe, Cushla J; Pollack, Jacob; Germon, Isabelle; Ekker, Marc; Depew, Michael; Laurenti, Patrick; Borday-Birraux, Véronique; Casane, Didier

    2013-01-01

    The Dlx gene family encodes transcription factors involved in the development of a wide variety of morphological innovations that first evolved at the origins of vertebrates or of the jawed vertebrates. This gene family expanded with the two rounds of genome duplications that occurred before jawed vertebrates diversified. It includes at least three bigene pairs sharing conserved regulatory sequences in tetrapods and teleost fish, but has been only partially characterized in chondrichthyans, the third major group of jawed vertebrates. Here we take advantage of developmental and molecular tools applied to the shark Scyliorhinus canicula to fill in the gap and provide an overview of the evolution of the Dlx family in the jawed vertebrates. These results are analyzed in the theoretical framework of the DDC (Duplication-Degeneration-Complementation) model. The genomic organisation of the catshark Dlx genes is similar to that previously described for tetrapods. Conserved non-coding elements identified in bony fish were also identified in catshark Dlx clusters and showed regulatory activity in transgenic zebrafish. Gene expression patterns in the catshark showed that there are some expression sites with high conservation of the expressed paralog(s) and other expression sites with events of paralog sub-functionalization during jawed vertebrate diversification, resulting in a wide variety of evolutionary scenarios within this gene family. Dlx gene expression patterns in the catshark show that there has been little neo-functionalization in Dlx genes over gnathostome evolution. In most cases, one tandem duplication and two rounds of vertebrate genome duplication have led to at least six Dlx coding sequences with redundant expression patterns followed by some instances of paralog sub-functionalization. Regulatory constraints such as shared enhancers, and functional constraints including gene pleiotropy, may have contributed to the evolutionary inertia leading to high

  20. Regulation of eye and jaw colouration in three-spined stickleback Gasterosteus aculeatus.

    PubMed

    Franco-Belussi, L; De Oliveira, C; Sköld, H N

    2018-03-25

    Fish can change their skin and eye colour for background matching and signalling. Males of Gasterosteus aculeatus develop ornamental blue eyes and a red jaw during the reproductive season, colours that are further enhanced during courtship. Here, the effects of different hormones on physiological colour changes in the eyes and jaws of male and female G. aculeatus were investigated in vitro. In an in vivo experiment, G. aculeatus were injected with a receptor blocker of a pivotal hormone (noradrenaline) that controls colour change. In males, noradrenaline had aggregating effects on melanophore and erythrophore pigments resulting in blue eyes and a pale jaw, whereas melanocyte-concentrating hormone (MCH) and melatonin resulted in a pale jaw only. When noradrenalin was combined with melanocyte stimulating hormone (MSH) or prolactin, the jaw became red, while the eyes remained blue. In vivo injection of yohimbine, an alpha-2 adrenoreceptor blocker, resulted in dispersion of melanophore pigment in the eyes and inhibited the blue colouration. Altogether, the data suggest that noradrenalin has a pivotal role in the short-term enhancement of the ornamental colouration of male G. aculeatus, potentially together with MSH or prolactin. This study also found a sex difference in the response to MCH, prolactin and melatonin, which may result from different appearance strategies in males, versus the more cryptic females. © 2018 The Fisheries Society of the British Isles.

  1. Bisphosphonates and osteonecrosis of the jaw.

    PubMed

    Shannon, Jodi; Shannon, John; Modelevsky, Steven; Grippo, Anne A

    2011-12-01

    Bisphosphonates are used worldwide as a successful treatment for people with osteoporosis, which is the major underlying cause of fractures in postmenopausal women and older adults. These agents are successful at increasing bone mass and bone trabecular thickness, decreasing the risk of fracture, and decreasing bone pain, enabling individuals to have better quality of life. Bisphosphonates are also used to treat multiple myeloma, bone metastasis, and Paget's disease; however, bisphosphonate treatment may result in negative side effects, including osteonecrosis of the jaw (ONJ). ONJ involves necrotic, exposed bone in the jaw, pain, possible secondary infection, swelling, painful lesions, and various dysesthesias, although less-severe cases may be asymptomatic. First-generation bisphosphonates, which do not contain nitrogen, are metabolized into a nonfunctional, cytotoxic analogue of adenosine triphosphate and cause osteoclast death by starvation. Second-generation bisphosphonates are nitrogen-containing agents; these inhibit osteoclast vesicular trafficking, membrane ruffling, morphology, and cytoskeletal arrangement by inhibiting farnesyl diphosphate synthase in the mevalonate pathway. Physicians treating older adults with osteoporosis and cancer should work together with dental practitioners, pharmacists, and other clinicians to inform individuals receiving bisphosphonates of their possible side effects and to suggest precautionary steps that may minimize the risk of osteonecrosis, particularly of the jaw. These include practicing good oral hygiene; scheduling regular dental examinations and cleanings; and cautioning people who are scheduling treatment for periodontal disease, oral and maxillofacial therapy, endodontics, implant placement, restorative dentistry, and prosthodontics. Recommendations for management of people with ONJ include an oral rinse, such as chlorhexidine, and antibiotics. © 2011, Copyright the Authors Journal compilation © 2011, The American

  2. Evolution of Axis Specification Mechanisms in Jawed Vertebrates: Insights from a Chondrichthyan

    PubMed Central

    Coolen, Marion; Sauka-Spengler, Tatjana; Nicolle, Delphine; Le-Mentec, Chantal; Lallemand, Yvan; Silva, Corinne Da; Plouhinec, Jean-Louis; Robert, Benoît; Wincker, Patrick; Shi, De-Li; Mazan, Sylvie

    2007-01-01

    The genetic mechanisms that control the establishment of early polarities and their link with embryonic axis specification and patterning seem to substantially diverge across vertebrates. In amphibians and teleosts, the establishment of an early dorso-ventral polarity determines both the site of axis formation and its rostro-caudal orientation. In contrast, amniotes retain a considerable plasticity for their site of axis formation until blastula stages and rely on signals secreted by extraembryonic tissues, which have no clear equivalents in the former, for the establishment of their rostro-caudal pattern. The rationale for these differences remains unknown. Through detailed expression analyses of key development genes in a chondrichthyan, the dogfish Scyliorhinus canicula, we have reconstructed the ancestral pattern of axis specification in jawed vertebrates. We show that the dogfish displays compelling similarities with amniotes at blastula and early gastrula stages, including the presence of clear homologs of the hypoblast and extraembryonic ectoderm. In the ancestral state, these territories are specified at opposite poles of an early axis of bilateral symmetry, homologous to the dorso-ventral axis of amphibians or teleosts, and aligned with the later forming embryonic axis, from head to tail. Comparisons with amniotes suggest that a dorsal expansion of extraembryonic ectoderm, resulting in an apparently radial symmetry at late blastula stages, has taken place in their lineage. The synthesis of these results with those of functional analyses in model organisms supports an evolutionary link between the dorso-ventral polarity of amphibians and teleosts and the embryonic-extraembryonic organisation of amniotes. It leads to a general model of axis specification in gnathostomes, which provides a comparative framework for a reassessment of conservations both among vertebrates and with more distant metazoans. PMID:17440610

  3. Central xanthoma of the jaw in association with Noonan syndrome.

    PubMed

    Olson, Nicholas J; Addante, Rocco R; de Abreu, Francine B; Memoli, Vincent A

    2018-05-01

    Xanthomas are histiocytic lesions of the skin, soft tissue and bone and are generally considered to be reactive in nature. When they arise in the bones of the jaw, they are referred to as central xanthomas. New evidence supports the hypothesis that central xanthomas are a separate and distinct entity from their extragnathic counterparts. Noonan syndrome (NS) is an autosomal dominant disorder that has been associated with giant cell lesions which also commonly occur in the jaw. We present a case of a 15year-old-male with NS who presented with a radiolucent lesion of the mandible that on excision, was found to be a central xanthoma. Although giant cell lesions have been well described in NS, xanthomas of the jaw have not been reported. We will also discuss the entities that must be excluded prior to making a diagnosis of central xanthoma, as this can affect both treatment and follow up. Copyright © 2018. Published by Elsevier Inc.

  4. Positional relationships between the masticatory muscles and their innervating nerves with special reference to the lateral pterygoid and the midmedial and discotemporal muscle bundles of temporalis

    PubMed Central

    AKITA, KEIICHI; SHIMOKAWA, TAKASHI; SATO, TATSUO

    2000-01-01

    For an accurate assessment of jaw movement, it is crucial to understand the comprehensive formation of the masticatory muscles with special reference to the relationship to the disc of the temporomandibular joint. Detailed dissection was performed on 26 head halves of 14 Japanese cadavers in order to obtain precise anatomical information of the positional relationships between the masticatory muscles and the branches of the mandibular nerve. After complete removal of the bony elements, the midmedial muscle bundle in all specimens and the discotemporal muscle bundle in 6 specimens, derivatives of the temporalis, which insert into the disc were observed. On the anterior area of the articular capsule and the disc of the temporomandibular joint, the upper head of the lateral pterygoid, the midmedial muscle bundle of temporalis and the discotemporal bundle of temporalis were attached mediolaterally, and in 3 specimens the posterosuperior margin of the zygomaticomandibularis was attached to the anterolateral area of the disc. It is suggested that these muscles and muscle bundles contribute to various mandibular movements. Although various patterns of the positional relationships between the muscles and muscle bundles and the their innervating nerves are observed in the present study, relative positional relationships of the muscles and muscle bundles and of nerves of the mandibular nerve are consistent. A possible scheme of the developmental formation of the masticatory muscles based on the findings of the positional relationships between the muscles and the nerves is presented. PMID:11005720

  5. The Effect of Jaw Position on Measures of Tongue Strength and Endurance

    ERIC Educational Resources Information Center

    Solomon, Nancy Pearl; Munson, Benjamin

    2004-01-01

    Assessment of tongue strength and endurance is common in research and clinical contexts. It is unclear whether the results reveal discrete function by the tongue or combined abilities of the tongue and jaw. One way to isolate the movement of the tongue is to constrain the jaw kinematically by using a bite block. In this study, 10 neurologically…

  6. Implantation of In Vitro Tissue Engineered Muscle Repair Constructs and Bladder Acellular Matrices Partially Restore In Vivo Skeletal Muscle Function in a Rat Model of Volumetric Muscle Loss Injury

    DTIC Science & Technology

    2014-01-01

    thickness abdominal wall defects. Tissue Eng 12, 1929, 2006. 7. Gamba, P.G., Conconi, M.T., Lo Piccolo, R., Zara , G., Spi nazzi, R., and Parnigotto... Zara , G., Sabatti, M., Marzaro, M., et al. Homologous muscle acellular matrix seeded with autologous myoblasts as a tissue engineering approach to

  7. Biomechanical analysis of the influence of friction in jaw joint disorders.

    PubMed

    Koolstra, J H

    2012-01-01

    Increased friction due to impaired lubrication in the jaw joint has been considered as one of the possible causes for internal joint disorders. A very common internal disorder in the jaw joint is an anteriorly dislocated articular disc. This is generally considered to contribute to the onset of arthritic injuries. Increase of friction as caused by impairment of lubrication is suspected to be a possible cause for such a disorder. The influence of friction was addressed by analysis of its effects on tensions and deformations of the cartilaginous structures in the jaw joint using computational biomechanical analysis. Jaw open-close movements were simulated while in one or two compartments of the right joint friction was applied in the articular contact. The left joint was treated as the healthy control. The simulations predicted that friction primarily causes increased shear stress in the articular cartilage layers, but hardly in the articular disc. This suggests that impaired lubrication may facilitate deterioration of the cartilage-subchondral bone unit of the articular surfaces. The results further suggest that increased friction is not a plausible cause for turning a normally functioning articular disc into an anteriorly dislocated one. Copyright © 2011 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  8. Restricted Mandibular Movement Attributed to Ossification of Mandibular Depressors and Medial Pterygoid Muscles in Patients With Fibrodysplasia Ossificans Progressiva: A Report of 3 Cases.

    PubMed

    Okuno, Tetsuko; Suzuki, Hitoshi; Inoue, Akio; Kusukawa, Jingo

    2017-09-01

    Fibrodysplasia ossificans progressiva (FOP) is an extremely rare genetic condition characterized by congenital malformation and progressive heterotopic ossification (HO) caused by a recurrent single nucleotide substitution at position 617 in the ACVR1 gene. As the condition progresses, HO leads to joint ankylosis, breathing difficulties, and mouth-opening restriction, and it can shorten the patient's lifespan. This report describes 3 cases of FOP confirmed by genetic testing in patients with restricted mouth opening. Each patient presented a different onset and degree of jaw movement restriction. The anatomic ossification site of the mandibular joint was examined in each patient using reconstructed computed tomographic (CT) images and 3-dimensional reconstructed CT (3D-CT) images. A 29-year-old woman complained of jaw movement restriction since 13 years of age. 3D-CT image of the mandibular joint showed an osseous bridge, formed by the mandibular depressors that open the mouth, between the hyoid bone and the mentum of the mandible. A 39-year-old man presented with jaw movement restriction that developed at 3 years of age after a mouth injury. 3D-CT image of the jaw showed ankylosis of the jaw from ossification of the mandibular depressors that was worse than in patient 1. CT images showed no HO findings of the masticatory muscles. To the authors' knowledge, these are the first 2 case descriptions of the anatomic site of ankylosis involving HO of the mandibular depressors in the jaw resulting from FOP. In contrast, a 62-year-old bedridden woman with an interincisal distance longer than 10 mm (onset, 39 years of age) had no HO of the mandibular depressors and slight HO of the medial pterygoid muscle on the right and left sides. These findings suggest that restricted mouth opening varies according to the presence or absence of HO of the mandibular depressors. Copyright © 2017. Published by Elsevier Inc.

  9. Inferring the Diets of Extinct Giant Lemurs from Osteological Correlates of Muscle Dimensions.

    PubMed

    Perry, Jonathan M G

    2018-02-01

    The jaw adductor muscles of extinct mammals are often reconstructed to elucidate paleoecological relationships and to make broad comparisons among taxa. Muscle lever arms, bite load arms, muscle dimensions, and gape are often also reconstructed to better understand feeding. Several different approaches to these and related goals are discussed here. A protocol for reconstructing muscle dimensions and bite force using biomechanically informative skull measurements and osteological proxies of muscle dimensions is described and applied to a case study of subfossil Malagasy lemurs. The results of this case study show that most subfossil lemurs emphasized the masseter and medial pterygoid muscles over the temporalis. This supports the inference that these extinct lemurs depended heavily on tough food like leaves. Exceptions include signals of hard-object feeding in Archaeolemur that vary between A. majori and A. edwardsi. Reconstructions of soft-tissue and function are important for understanding past ecological relationships. Even those based on well-supported osteological proxies from extant analogues have limitations for making precise inferences. Anat Rec, 301:343-362, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  10. Does evolutionary innovation in pharyngeal jaws lead to rapid lineage diversification in labrid fishes?

    PubMed Central

    2009-01-01

    Background Major modifications to the pharyngeal jaw apparatus are widely regarded as a recurring evolutionary key innovation that has enabled adaptive radiation in many species-rich clades of percomorph fishes. However one of the central predictions of this hypothesis, that the acquisition of a modified pharyngeal jaw apparatus will be positively correlated with explosive lineage diversification, has never been tested. We applied comparative methods to a new time-calibrated phylogeny of labrid fishes to test whether diversification rates shifted at two scales where major pharyngeal jaw innovations have evolved: across all of Labridae and within the subclade of parrotfishes. Results Diversification patterns within early labrids did not reflect rapid initial radiation. Much of modern labrid diversity stems from two recent rapid diversification events; one within julidine fishes and the other with the origin of the most species-rich clade of reef-associated parrotfishes. A secondary pharyngeal jaw innovation was correlated with rapid diversification within the parrotfishes. However diversification rate shifts within parrotfishes are more strongly correlated with the evolution of extreme dichromatism than with pharyngeal jaw modifications. Conclusion The temporal lag between pharyngeal jaw modifications and changes in diversification rates casts doubt on the key innovation hypothesis as a simple explanation for much of the richness seen in labrids and scarines. Although the possession of a secondarily modified PJA was correlated with increased diversification rates, this pattern is better explained by the evolution of extreme dichromatism (and other social and behavioral characters relating to sexual selection) within Scarus and Chlorurus. The PJA-innovation hypothesis also fails to explain the most dominant aspect of labrid lineage diversification, the radiation of the julidines. We suggest that pharyngeal jaws might have played a more important role in enabling

  11. An antiarch placoderm shows that pelvic girdles arose at the root of jawed vertebrates

    PubMed Central

    Zhu, Min; Yu, Xiaobo; Choo, Brian; Wang, Junqing; Jia, Liantao

    2012-01-01

    Almost all gnathostomes or jawed vertebrates (including osteichthyans, chondrichthyans, ‘acanthodians’ and most placoderms) possess paired pectoral and pelvic fins. To date, it has generally been believed that antiarch placoderms (extinct armoured jawed fishes from the Silurian–Devonian periods) lacked pelvic fins. The putative absence of pelvic fins is a key character bearing on the monophyly or paraphyly of placoderms. It also has far-reaching implications for studying the sequence of origin of pelvic girdles versus that of movable jaws in the course of vertebrate evolution. Parayunnanolepis xitunensis represents the only example of a primitive antiarch with extensive post-thoracic preservation, and its original description has been cited as confirming the primitive lack of pelvic fins in early antiarchs. Here, we present a revised description of Parayunnanolepis and offer the first unambiguous evidence for the presence of pelvic girdles in antiarchs. As antiarchs are placed at the base of the gnathostome radiation in several recent studies, our finding shows that all jawed vertebrates (including antiarch placoderms) primitively possess both pectoral and pelvic fins and that the pelvic fins did not arise within gnathostomes at a point subsequent to the origin of jaws. PMID:22219394

  12. Interpretation of fusimotor activity in cat masseter nerve during reflex jaw movements.

    PubMed Central

    Gottlieb, S; Taylor, A

    1983-01-01

    Simultaneous recordings were made from fusimotor axons in the central ends of filaments of the masseter nerve, and from masseter and temporalis spindle afferents in the mesencephalic nucleus of the fifth cranial nerve in lightly anaesthetized cats. Fusimotor and alpha-motor units in the masseter nerve were differentiated on the basis of their response to passive ramp and hold stretches applied to the jaw. Spindle afferents were identified as primary or secondary according to their dynamic index after administration of suxamethonium. The activity of a given fusimotor unit during reflex movements of the jaw followed one of two distinct patterns: so-called 'tonic' units showed a general increase in activity during a movement, without detailed relation to lengthening or shortening, while 'modulated' units displayed a striking modulation of their activity with shortening, and were usually silent during subsequent lengthening. Comparison of the simultaneously recorded fusimotor and spindle afferent activity suggests that modulated units may be representative of a population of static fusimotor neurones, and tonic units of a population of dynamic fusimotor neurones. In these lightly anaesthetized animals, both primary and secondary spindle afferents showed increased firing during muscle shortening as well as during lengthening. This increase during shortening is not usually seen in conscious animals and reasons are given for the view that it is due to greater depression of alpha-motor activity than of static fusimotor activity during anaesthesia. The results are discussed in relation to the theories of 'alpha-gamma co-activation' and of 'servo-assistance'; and it is suggested that static fusimotor neurones provide a 'temporal template' of the intended movement, while dynamic fusimotor neurones set the required dynamic sensitivity to deviations from the intended movement pattern. PMID:6229627

  13. Alterations in Masticatory Muscle Activation in People with Persistent Neck Pain Despite the Absence of Orofacial Pain or Temporomandibular Disorders.

    PubMed

    Testa, Marco; Geri, Tommaso; Gizzi, Leonardo; Petzke, Frank; Falla, Deborah

    2015-01-01

    To assess whether patients with persistent neck pain display evidence of altered masticatory muscle behavior during a jaw-clenching task, despite the absence of orofacial pain or temporomandibular disorders. Ten subjects with persistent, nonspecific neck pain and 10 age- and sex-matched healthy controls participated. Maximal voluntary contractions (MVCs) of unilateral jaw clenching followed by 5-second submaximal contractions at 10%, 30%, 50%, and 70% MVC were recorded by two flexible force transducers positioned between the first molar teeth. Task performance was quantified by mean distance and offset error from the reference target force as error indices, and standard deviation of force was used as an index of force steadiness. Electromyographic (EMG) activity was recorded bilaterally from the masseter muscle with 13 X 5 grids of electrodes and from the anterior temporalis with bipolar electrodes. Normalized EMG root mean square (RMS) was computed for each location of the grid to form a map of the EMG amplitude distribution, and the average normalized RMS was determined for the bipolar acquisition. Between-group differences were analyzed with the Kruskal Wallis analysis of variance. Task performance was similar in patients and controls. However, patients displayed greater masseter EMG activity bilaterally at higher force levels (P<.05). This study has provided novel evidence of altered motor control of the jaw in people with neck pain despite the absence of orofacial pain or temporomandibular disorders.

  14. EBF proteins participate in transcriptional regulation of Xenopus muscle development.

    PubMed

    Green, Yangsook Song; Vetter, Monica L

    2011-10-01

    EBF proteins have diverse functions in the development of multiple lineages, including neurons, B cells and adipocytes. During Drosophila muscle development EBF proteins are expressed in muscle progenitors and are required for muscle cell differentiation, but there is no known function of EBF proteins in vertebrate muscle development. In this study, we examine the expression of ebf genes in Xenopus muscle tissue and show that EBF activity is necessary for aspects of Xenopus skeletal muscle development, including somite organization, migration of hypaxial muscle anlagen toward the ventral abdomen, and development of jaw muscle. From a microarray screen, we have identified multiple candidate targets of EBF activity with known roles in muscle development. The candidate targets we have verified are MYOD, MYF5, M-Cadherin and SEB-4. In vivo overexpression of the ebf2 and ebf3 genes leads to ectopic expression of these candidate targets, and knockdown of EBF activity causes downregulation of the endogenous expression of the candidate targets. Furthermore, we found that MYOD and MYF5 are likely to be direct targets. Finally we show that MYOD can upregulate the expression of ebf genes, indicating the presence of a positive feedback loop between EBF and MYOD that we find to be important for maintenance of MYOD expression in Xenopus. These results suggest that EBF activity is important for both stabilizing commitment and driving aspects of differentiation in Xenopus muscle cells. Copyright © 2010 Elsevier Inc. All rights reserved.

  15. A dolphin lower jaw is a hydroacoustic antenna of the traveling wave

    NASA Astrophysics Data System (ADS)

    Ryabov, Vyacheslav A.

    2003-10-01

    The purpose of the work is the analysis of a possible function of mental foramens as channels through which the echo passes in the lower jaw fat body and the determination of a role of channels and a skull in formation of the directivity of the dolphin echolocation hearing. Concrete problems were studying of the lower jaw morphology, modeling and calculation of a dolphin, tursiops truncatus p., echolocation hearing beam pattern. The outcomes of the work indicate those morphological structures of the lower jaw; the left and right half represents two hydroacoustic receiving antennas of the traveling wave type, TWA farther. The mental foramens of a dolphin lower jaw represent nonequidistant array of waveguide delay lines, and determine the phase and amplitude distribution of each of the antenna's array. The beam pattern of the echolocation hearing was calculated with the usage of the TWA model, and the allowance of flat sound wave diffraction. The beam pattern shape is naturally determined by the echolocation hearing functionality. It is equally well adapted both for echolocation and for pulses echo detection. A steepness of the bearing characteristic is estimated; it reaches 0.7 dB per degree.

  16. Beam feasibility study of a collimator with in-jaw beam position monitors

    NASA Astrophysics Data System (ADS)

    Wollmann, Daniel; Nosych, Andriy A.; Valentino, Gianluca; Aberle, Oliver; Aßmann, Ralph W.; Bertarelli, Alessandro; Boccard, Christian; Bruce, Roderik; Burkart, Florian; Calvo, Eva; Cauchi, Marija; Dallocchio, Alessandro; Deboy, Daniel; Gasior, Marek; Jones, Rhodri; Kain, Verena; Lari, Luisella; Redaelli, Stefano; Rossi, Adriana

    2014-12-01

    At present, the beam-based alignment of the LHC collimators is performed by touching the beam halo with both jaws of each collimator. This method requires dedicated fills at low intensities that are done infrequently and makes this procedure time consuming. This limits the operational flexibility, in particular in the case of changes of optics and orbit configuration in the experimental regions. The performance of the LHC collimation system relies on the machine reproducibility and regular loss maps to validate the settings of the collimator jaws. To overcome these limitations and to allow a continuous monitoring of the beam position at the collimators, a design with jaw-integrated Beam Position Monitors (BPMs) was proposed and successfully tested with a prototype (mock-up) collimator in the CERN SPS. Extensive beam experiments allowed to determine the achievable accuracy of the jaw alignment for single and multi-turn operation. In this paper, the results of these experiments are discussed. The non-linear response of the BPMs is compared to the predictions from electromagnetic simulations. Finally, the measured alignment accuracy is compared to the one achieved with the present collimators in the LHC.

  17. Double lead spiral platen parallel jaw end effector

    NASA Technical Reports Server (NTRS)

    Beals, David C.

    1989-01-01

    The double lead spiral platen parallel jaw end effector is an extremely powerful, compact, and highly controllable end effector that represents a significant improvement in gripping force and efficiency over the LaRC Puma (LP) end effector. The spiral end effector is very simple in its design and has relatively few parts. The jaw openings are highly predictable and linear, making it an ideal candidate for remote control. The finger speed is within acceptable working limits and can be modified to meet the user needs; for instance, greater finger speed could be obtained by increasing the pitch of the spiral. The force relaxation is comparable to the other tested units. Optimization of the end effector design would involve a compromise of force and speed for a given application.

  18. The diaphragm: two physiological muscles in one

    PubMed Central

    Pickering, Mark; Jones, James FX

    2002-01-01

    To the respiratory physiologist or anatomist the diaphragm muscle is of course the prime mover of tidal air. However, gastrointestinal physiologists are becoming increasingly aware of the value of this muscle in helping to stop gastric contents from refluxing into the oesophagus. The diaphragm should be viewed as two distinct muscles, crural and costal, which act in synchrony throughout respiration. However, the activities of these two muscular regions can diverge during certain events such as swallowing and emesis. In addition, transient crural muscle relaxations herald the onset of spontaneous acid reflux episodes. Studying the motor control of this muscular barrier may help elucidate the mechanism of these episodes. In the rat, the phrenic nerve divides into three branches before entering the diaphragm, and it is possible to sample single neuronal activity from the crural and costal branches. This review will discuss our recent findings with regard to the type of motor axons running in the phrenic nerve of the rat. In addition, we will outline our ongoing search for homologous structures in basal vertebrate groups. In particular, the pipid frogs (e.g. the African clawed frog, Xenopus laevis) possess a muscular band around the oesophagus that appears to be homologous to the mammalian crural diaphragm. This structure does not appear to interact directly with the respiratory apparatus, and could suggest a role for this region of the diaphragm, which was not originally respiratory. PMID:12430954

  19. Microbursts in JAWS depicted by Doppler radars, PAM, and aerial photographs

    NASA Technical Reports Server (NTRS)

    Fujita, T. T.; Wakimoto, R. M.

    1983-01-01

    Preliminary results obtained from the JAWS (Joint Airport Weather Studies) Project near Denver, Colorado in the spring and summer of 1982 using Doppler radar, PAM, and aerial photography are presented. The definitions of the microburst phenomenon are discussed, and statistics comparing NIMROD (Northern Illinois Meteorological Research On Downbursts) for the Midwest region are compared with JAWS for the High Plains region. Possible parent clouds of the microburst are considered, and an analysis of a macroburst/microburst event on July 14, 1982 is presented.

  20. Changing partners: moving from non-homologous to homologous centromere pairing in meiosis

    PubMed Central

    Stewart, Mara N.; Dawson, Dean S.

    2010-01-01

    Reports of centromere pairing in early meiotic cells have appeared sporadically over the past thirty years. Recent experiments demonstrate that early centromere pairing occurs between non-homologous centromeres. As meiosis proceeds, centromeres change partners, becoming arranged in homologous pairs. Investigations of these later centromere pairs indicate that paired homologous centromeres are actively associated rather than positioned passively, side-by-side. Meiotic centromere pairing has been observed in organisms as diverse as mice, wheat and yeast, indicating that non-homologous centromere pairing in early meiosis and active homologous centromere pairing in later meiosis might be themes in meiotic chromosome behavior. Moreover, such pairing could have previously unrecognized roles in mediating chromosome organization or architecture that impact meiotic segregation fidelity. PMID:18804891

  1. The Speech Focus Position Effect on Jaw-Finger Coordination in a Pointing Task

    ERIC Educational Resources Information Center

    Rochet-Capellan, Amelie; Laboissiere, Rafael; Galvan, Arturo; Schwartz, Jean-Luc

    2008-01-01

    Purpose: This article investigates jaw-finger coordination in a task involving pointing to a target while naming it with a 'CVCV (e.g., /'papa/) versus CV'CV (e.g., /pa'pa/) word. According to the authors' working hypothesis, the pointing apex (gesture extremum) would be synchronized with the apex of the jaw-opening gesture corresponding to the…

  2. The Physiologic Development of Speech Motor Control: Lip and Jaw Coordination

    PubMed Central

    Green, Jordan R.; Moore, Christopher A.; Higashikawa, Masahiko; Steeve, Roger W.

    2010-01-01

    This investigation was designed to describe the development of lip and jaw coordination during speech and to evaluate the potential influence of speech motor development on phonologic development. Productions of syllables containing bilabial consonants were observed from speakers in four age groups (i.e., 1-year-olds, 2-year-olds, 6-year-olds, and young adults). A video-based movement tracking system was used to transduce movement of the upper lip, lower lip, and jaw. The coordinative organization of these articulatory gestures was shown to change dramatically during the first several years of life and to continue to undergo refinement past age 6. The present results are consistent with three primary phases in the development of lip and jaw coordination for speech: integration, differentiation, and refinement. Each of these developmental processes entails the existence of distinct coordinative constraints on early articulatory movement. It is suggested that these constraints will have predictable consequences for the sequence of phonologic development. PMID:10668666

  3. Molecular phylogenetics and diversification of trap-jaw ants in the genera Anochetus and Odontomachus (Hymenoptera: Formicidae).

    PubMed

    Larabee, Fredrick J; Fisher, Brian L; Schmidt, Chris A; Matos-Maraví, Pável; Janda, Milan; Suarez, Andrew V

    2016-10-01

    Ants in the genera Anochetus and Odontomachus belong to one of the largest clades in the subfamily Ponerinae, and are one of four lineages of ants possessing spring-loaded "trap-jaws." Here we present results from the first global species-level molecular phylogenetic analysis of these trap-jaw ants, reconstructed from one mitochondrial, one ribosomal RNA, and three nuclear protein-coding genes. Bayesian and likelihood analyses strongly support reciprocal monophyly for the genera Anochetus and Odontomachus. Additionally, we found strong support for seven trap-jaw ant clades (four in Anochetus and three in Odontomachus) mostly concordant with geographic distribution. Ambiguity remains concerning the closest living non-trap-jaw ant relative of the Anochetus+Odontomachus clade, but Bayes factor hypothesis testing strongly suggests that trap-jaw ants evolved from a short mandible ancestor. Ponerine trap-jaw ants originated in the early Eocene (52.5Mya) in either South America or Southeast Asia, where they have radiated rapidly in the last 30million years, and subsequently dispersed multiple times to Africa and Australia. These results will guide future taxonomic work on the group and act as a phylogenetic framework to study the macroevolution of extreme ant mouthpart specialization. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. The Effect of Two Maxillary Splint Occlusal Guidance Patterns on the Electromyographic Activity of the Jaw Closing Muscles.

    DTIC Science & Technology

    1986-05-01

    used for paired t-test analysis of mean total muscle performance for the two guidance patterns and for an analysis of variance among the four muscle...45 C. Collection of Data............................ 46 D. Analysis of Data.............................. 53 IV. RESULTS...to recent incorporation of computer analysis of the muscle electromyographic (EMG) activity (Hannam, 1977). But a lack of understanding continues to

  5. Desmin and nerve terminal expression during embryonic development of the lateral pterygoid muscle in mice.

    PubMed

    Yamamoto, Masahito; Shinomiya, Takashi; Kishi, Asuka; Yamane, Shigeki; Umezawa, Takashi; Ide, Yoshinobu; Abe, Shinichi

    2014-09-01

    In adults, the lateral pterygoid muscle (LPM) is usually divided into the upper and lower head, between which the buccal nerve passes. Recent investigations have demonstrated foetal developmental changes in the topographical relationship between the human LPM and buccal nerve. However, as few studies have investigated this issue, we clarified the expression of desmin and nerve terminal distribution during embryonic development of the LPM in mice. We utilized immunohistochemical staining and reverse transcription chain reaction (RT-PCR) to clarify the expression of desmin and nerve terminal distribution. We observed weak expression of desmin in the LPM at embryonic day (ED) 11, followed by an increase in expression from embryonic days 12-15. In addition, starting at ED 12, we observed preferential accumulation of desmin in the vicinity of the myotendinous junction, a trend that did not change up to ED 15. Nerve terminal first appeared at ED 13 and formed regularly spaced linear arrays at the centre of the muscle fibre by ED 15. The results of immunohistochemical staining agreed with those of RT-PCR analysis. We found that desmin accumulated in the vicinity of the myotendinous junction starting at ED 12, prior to the onset of jaw movement. We speculate that the accumulation of desmin is due to factors other than mechanical stress experienced during early muscle contraction. Meanwhile, the time point at which nerve terminals first appeared roughly coincided with the onset of jaw movement. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Comparison of Performance Characteristics of Oval Cup Forceps Versus Serrated Jaw Forceps in Gastric Biopsy.

    PubMed

    Sussman, Daniel A; Deshpande, Amar R; Shankar, Uday; Barkin, Jodie A; Medina, Ana Maria; Poppiti, Robert J; Cubeddu, Luigi X; Barkin, Jamie S

    2016-08-01

    Obtaining quality endoscopic biopsy specimens is vital in making successful histological diagnoses. The influence of forceps cup shape and size on quality of biopsy specimens is unclear. To identify whether oval cup or two different serrated jaw biopsy forceps could obtain specimens of superior size. Secondary endpoints were tissue adequacy, depth of tissue acquisition, and crush artifact. A single-center, prospective, pathologist-masked, randomized controlled trial was performed. In total 136 patients with a clinical indication for esophagogastroduodenoscopy with biopsy were randomized to receive serial biopsies with a large-capacity serrated forceps with jaw diameter 2.2 mm (SER1) and either a large-capacity oval forceps with jaw diameter 2.4 mm (OVL) or large-capacity serrated biopsy forceps with jaw diameter 2.4 mm (SER2) in two parallel groups. SER2 provided significantly larger specimens than did the other forceps (SER2 3.26 ± 1.09 vs. SER1 2.92 ± 0.88 vs. OVL 2.92 ± 0.76; p = 0.026), with an average size difference of 0.34 mm greater with SER2 compared to SER1 and OVL. OVL provided significantly deeper biopsies compared to SER1 and SER2 (p = 0.02), with 31 % of OVL biopsies reaching the submucosa. SER2 had significantly less crush artifact than SER1 and OVL (p < 0.0001). Serrated forceps provided larger samples compared to oval jaw forceps of the same size, with SER2 providing the largest specimen size. Oval cup forceps had deeper penetration of epithelium, while the larger jaw diameter serrated jaw forceps had less crush artifact. All three forceps provided specimens adequate for diagnostic purposes.

  7. Morphology and mechanics of the teeth and jaws of white-spotted bamboo sharks (Chiloscyllium plagiosum).

    PubMed

    Ramsay, Jason B; Wilga, Cheryl D

    2007-08-01

    The teeth of white-spotted bamboo sharks (Chiloscyllium plagiosum) are used to clutch soft-bodied prey and crush hard prey; however, the dual function is not evident from tooth morphology alone. Teeth exhibit characteristics that are in agreement with a clutching-type tooth morphology that is well suited for grasping and holding soft-bodied prey, but not for crushing hard prey. The dual role of this single tooth morphology is facilitated by features of the dental ligament and jaw joint. Tooth attachment is flexible and elastic, allowing movement in both sagittal and frontal planes. During prey capture spike-like tooth cusps pierce the flesh of soft prey, thereby preventing escape. When processing prey harder than the teeth can pierce the teeth passively depress, rotating inward towards the oral cavity such that the broader labial faces of the teeth are nearly parallel to the surface of the jaws and form a crushing surface. Movement into the depressed position increases the tooth surface area contacting prey and decreases the total stress applied to the tooth, thereby decreasing the risk of structural failure. This action is aided by a jaw joint that is ventrally offset from the occlusal planes of the jaws. The offset joint position allows many teeth to contact prey simultaneously and orients force vectors at contact points between the jaws and prey in a manner that shears or rolls prey between the jaws during a bite, thus, aiding in processing while reducing forward slip of hard prey from the mouth. Together the teeth, dental ligament, and jaws form an integrated system that may be beneficial to the feeding ecology of C. plagiosum, allowing for a diet that includes prey of varying hardness and elusiveness. (c) 2007 Wiley-Liss, Inc.

  8. Functional condition of masseters muscles of patients with class ?? subdivision.

    PubMed

    Kuroyedova, Vera D; Makarova, Alexandra N; Chicor, Tatyana A

    Main functional characteristics of masticator muscles in patients with class ?? malocclusions is activity dominance of m. temporalis in comparison with m. ?asseter. We have not found datum about functional status of the masticators in patients with class II subdivision. The purpose of our study was to investigate the functional characteristics of m. ?asseter, m. temporalis in adult patients with class II subdivision malocclusion. There have been carried out the surface electromyographic study of m. masseter, m. temporalis in 17 adult patients with class II subdivision. It was realized quantitative analysis of 271 electromyogram, it was determined the average bioelectric activity, index activity, symmetry and torsion index. It was observed predominance of the bioelectrical activity of m. temporales on m. masseter for all persons with class II subdivision. Bioelectrical activity for m. masseter was bigger on side of distal ratio and for m. temporales on side of neutral ratio. In class ?? subdivision right, the mandible was deviated to the left side and in class ?? subdivision left is deviated to the right side. Thus, rotational moment generated during compression of the jaws, causes deviation of the lower jaw to the side, with a neutral molar ratio. During voluntary chewing bioelectrical activity of m. masseter and m. temporalis was higher in the right side. In accordance with the functional condition of the masticatory muscles of class II subdivision is characterized with functional features of distal occlusion.

  9. EMA assessment of tongue-jaw co-ordination during speech in dysarthria following traumatic brain injury.

    PubMed

    Bartle, Carly J; Goozée, Justine V; Scott, Dion; Murdoch, Bruce E; Kuruvilla, Mili

    2006-05-01

    To investigate the spatio-timing aspects of tongue-jaw co-ordination during speech in individuals with traumatic brain injury (TBI). It was hypothesized that both timing and spatial co-ordination would be affected by TBI. A group comparison design wherein Mann-Whitney U-tests were used to compare non-neurologically impaired individuals with individuals with TBI. Nine non-neurologically impaired adults and nine adults with TBI were involved in the study. Electromagnetic articulography (EMA) was used to track tongue and jaw movement during /t/ and /k/, embedded in sentence and syllable stimuli. Analysis of group data did not reveal a significant difference in spatio-timing tongue-jaw co-ordination between the control group and TBI group. On an individual basis, a proportion of individuals with TBI differed from non-neurologically impaired participants with regard to articulatory order and percentage of jaw contribution to /t/. EMA assessment results supported perceptual data; those adults who presented with severe articulatory disturbances exhibited the most deviant spatio-timing tongue-jaw co-ordination patterns. This finding could provide a new and specific direction for treatment, directed at combined movement patterns.

  10. Sagittal Plane Kinematics of the Jaw and Hyolingual Apparatus During Swallowing in Macaca mulatta

    PubMed Central

    Iriarte-Diaz, Jose; Arce-McShane, Fritzie; Orsbon, Courtney P.; Brown, Kevin A.; Eastment, McKenna; Avivi-Arber, Limor; Sessle, Barry J.; Inoue, Makoto; Hatsopoulos, Nicholas G.; Ross, Callum F.

    2018-01-01

    Studies of mechanisms of feeding behavior are important in a society where aging- and disease-related feeding disorders are increasingly prevalent. It is important to evaluate the clinical relevance of animal models of the disease and the control. Our present study quantifies macaque hyolingual and jaw kinematics around swallowing cycles to determine the extent to which macaque swallowing resembles that of humans. One female and one male adult Macaca mulatta were trained to feed in a primate chair. Videofluoroscopy was used to record kinematics in a sagittal view during natural feeding on solid food, and the kinematics of the hyoid bone, thyroid cartilage, mandibular jaw, and anterior-, middle-, and posterior-tongue. Jaw gape cycles were defined by consecutive maximum gapes, and the kinematics of the swallow cycles were compared with those of the two consecutive non-swallow cycles preceding and succeeding the swallow cycles. Although there are size differences between macaques and humans, and macaques have shorter durations of jaw gape cycles and hyoid and thyroid upward movements, there are several important similarities between our macaque data and human data reported in the literature: (1) The durations of jaw gape cycles during swallow cycles are longer than those of non-swallow cycles as a result of an increased duration of the jaw-opening phase; (2) Hyoid and thyroid upward movement is linked with a posterior tongue movement and is faster during swallow than non-swallow cycles; (3) Tongue elevation propagates from anterior to posterior during swallow and non-swallow cycles. These findings suggest that macaques can be a useful experimental model for human swallowing studies. PMID:28528492

  11. Vesicular glutamate transporter 1 (VGLUT1)- and VGLUT2-immunopositive axon terminals on the rat jaw-closing and jaw-opening motoneurons.

    PubMed

    Park, Sook Kyung; Ko, Sang Jin; Paik, Sang Kyoo; Rah, Jong-Cheol; Lee, Kea Joo; Bae, Yong Chul

    2018-02-23

    To provide information on the glutamatergic synapses on the trigeminal motoneurons, which may be important for understanding the mechanism of control of jaw movements, we investigated the distribution of vesicular glutamate transporter (VGLUT)1-immunopositive (+) and VGLUT2 + axon terminals (boutons) on the rat jaw-closing (JC) and jaw-opening (JO) motoneurons, and their morphological determinants of synaptic strength by retrograde tracing, electron microscopic immunohistochemistry, and quantitative ultrastructural analysis. We found that (1) the large majority of VGLUT + boutons on JC and JO motoneurons were VGLUT2+, (2) the density of VGLUT1 + boutons terminating on JC motoneurons was significantly higher than that on JO motoneurons, (3) the density of VGLUT1 + boutons terminating on non-primary dendrites of JC motoneurons was significantly higher than that on somata or primary dendrites, whereas the density of VGLUT2 + boutons was not significantly different between JC and JO motoneurons and among various compartments of the postsynaptic neurons, and (4) the bouton volume, mitochondrial volume, and active zone area of the VGLUT1 + boutons forming synapses on JC motoneurons were significantly bigger than those of VGLUT2 + boutons. These findings suggest that JC and JO motoneurons receive glutamatergic input primarily from VGLUT2-expressing intrinsic neurons (premotoneurons), and may be controlled differently by neurons in the trigeminal mesencephalic nucleus and by glutamatergic premotoneurons.

  12. [Positional accuracy and quality assurance of Backup JAWs required for volumetric modulated arc therapy].

    PubMed

    Tatsumi, Daisaku; Nakada, Ryosei; Ienaga, Akinori; Yomoda, Akane; Inoue, Makoto; Ichida, Takao; Hosono, Masako

    2012-01-01

    The tolerance of the Backup diaphragm (Backup JAW) setting in Elekta linac was specified as 2 mm according to the AAPM TG-142 report. However, the tolerance and the quality assurance procedure for volumetric modulated arc therapy (VMAT) was not provided. This paper describes positional accuracy and quality assurance procedure of the Backup JAWs required for VMAT. It was found that a gap-width error of the Backup JAW by a sliding window test needed to be less than 1.5 mm for prostate VMAT delivery. It was also confirmed that the gap-widths had been maintained with an error of 0.2 mm during the past one year.

  13. Homologous and Homologous like Microwave Solar Radio Bursts

    NASA Astrophysics Data System (ADS)

    Trevisan, R. H.; Sawant, H. S.; Kalman, B.; Gesztelyi, L.

    1990-11-01

    ABSTRACT. Solar radio observations at 1.6 GHz were carried out in the month of July, 1985 by using 13.7 m diameter Itapetinga antenna with time resolution of 3 ms. Homologous Bursts, with total duration of about couple of seconds and repeated by some seconds were observed associated with Homologous H- flares. These H- flares were having periodicities of about 40 min. Observed long periodicities were attributed to oscillation of prominences, and small periods were attributed to removal of plasma from the field interaction zone. Also observed are "Homologous-Like" bursts. These bursts are double peak bursts with same time profile repeating in time. In addition to this, the ratio of the total duration of the bursts to time difference in the peaks of bursts remain constant. Morphological studies of these bursts have been presented. Keq tuoit : SUN-BURSTS - SUN-FLARE

  14. Analysis of feeding function and jaw stability in bedridden elderly.

    PubMed

    Tamura, Fumiyo; Mizukami, Miki; Ayano, Rika; Mukai, Yoshiharu

    2002-01-01

    The purpose of this study was to analyze the relationship between jaw stability and the feeding function of 53 bedridden elderly dysphagic patients. Investigations included a questionnaire on daily life activities and meals, oral examinations, functional tests for feeding ability, and assessments of feeding function during the meal. The results of intraoral examination of this patient population for jaw stability revealed that 34.0% of individuals had posterior support for occlusion regardless of whether they had natural teeth or dentures. Thus, the number classified as having mandibular stability (ST) was 18 and that with no mandibular stability (NST) was 35. In a Repetitive Saliva Swallowing Test (RSST), 83.3% of the NST group and 40.0% of the ST group were unable to swallow more than 3 times within 30 seconds. In a water swallowing test, 91.4% of the NST of group was unable to swallow 15 mL of water by a single swallow, while 40.0% of ST group was capable. The results suggest that jaw stabilization by occlusion with the posterior teeth or dental prosthetics is important to feeding function, particularly swallowing.

  15. Muscle-specific CRISPR/Cas9 dystrophin gene editing ameliorates pathophysiology in a mouse model for Duchenne muscular dystrophy

    PubMed Central

    Bengtsson, Niclas E.; Hall, John K.; Odom, Guy L.; Phelps, Michael P.; Andrus, Colin R.; Hawkins, R. David; Hauschka, Stephen D.; Chamberlain, Joel R.; Chamberlain, Jeffrey S.

    2017-01-01

    Gene replacement therapies utilizing adeno-associated viral (AAV) vectors hold great promise for treating Duchenne muscular dystrophy (DMD). A related approach uses AAV vectors to edit specific regions of the DMD gene using CRISPR/Cas9. Here we develop multiple approaches for editing the mutation in dystrophic mdx4cv mice using single and dual AAV vector delivery of a muscle-specific Cas9 cassette together with single-guide RNA cassettes and, in one approach, a dystrophin homology region to fully correct the mutation. Muscle-restricted Cas9 expression enables direct editing of the mutation, multi-exon deletion or complete gene correction via homologous recombination in myogenic cells. Treated muscles express dystrophin in up to 70% of the myogenic area and increased force generation following intramuscular delivery. Furthermore, systemic administration of the vectors results in widespread expression of dystrophin in both skeletal and cardiac muscles. Our results demonstrate that AAV-mediated muscle-specific gene editing has significant potential for therapy of neuromuscular disorders. PMID:28195574

  16. Jaw-Phonatory Coordination in Chronic Developmental Stuttering

    ERIC Educational Resources Information Center

    Loucks, Torrey M. J.; De Nil, Luc F.; Sasisekaran, Jayanthi

    2007-01-01

    A deficiency in sensorimotor integration in a person who stutters may be a factor in the pathophysiology of developmental stuttering. To test oral sensorimotor function in adults who stutter, we used a task that requires the coordination of a jaw-opening movement with phonation onset. The task was adapted from previous limb coordination studies,…

  17. Radiolucent rim as a possible diagnostic aid for differentiating jaw lesions

    PubMed Central

    Mortazavi, Hamed; Rahmani, Somayeh; Jafari, Soudeh; Parvaei, Parvin

    2015-01-01

    In this study, we formulate a new proposal that complements previous classifications in order to assist dental practitioners in performing a differential diagnosis based on patients' radiographs. We used general search engines and specialized databases such as Google Scholar, PubMed, PubMed Central, MedLine Plus, Science Direct, Scopus, and well-recognized textbooks to find relevant studies by using keywords such as "jaw disease," "jaw lesions," "radiolucent rim," "radiolucent border," and "radiolucent halo." More than 200 articles were found, of which 70 were broadly relevant to the topic. We ultimately included 50 articles that were closely related to the topic of interest. When the relevant data were compiled, the following eight lesions were identified as having a radiolucent rim: periapical cemento-osseous dysplasia, focal cemento-osseous dysplasia, florid cemento-osseous dysplasia, cemento-ossifying fibroma, osteoid osteoma, osteoblastoma, odontoma, and cementoblastoma. We propose a novel subcategory, jaw lesions with a radiolucent rim, which includes eight entities. The implementation of this new category can help improve the diagnoses that dental practitioners make based on patients' radiographs. PMID:26730374

  18. Spatiotemporal movement variability in ALS: Speaking rate effects on tongue, lower lip, and jaw motor control

    PubMed Central

    Kuruvilla-Dugdale, Mili; Mefferd, Antje

    2017-01-01

    Purpose Although it is frequently presumed that bulbar muscle degeneration in Amyotrophic Lateral Sclerosis (ALS) is associated with progressive loss of speech motor control, empirical evidence is limited. Furthermore, because speaking rate slows with disease progression and rate manipulations are used to improve intelligibility in ALS, this study sought to (i) determine between and within-group differences in articulatory motor control as a result of speaking rate changes and (ii) identify the strength of association between articulatory motor control and speech impairment severity. Method Ten talkers with ALS and 11 healthy controls repeated the target sentence at habitual, fast, and slow rates. The spatiotemporal variability index (STI) was calculated to determine tongue, lower lip, and jaw movement variability. Results During habitual speech, talkers with mild-moderate dysarthria displayed significantly lower tongue and lip movement variability whereas those with severe dysarthria showed greater variability compared to controls. Within-group rate effects were significant only for talkers with ALS. Specifically, lip and tongue movement variability significantly increased during slow speech relative to habitual and fast speech. Finally, preliminary associations between speech impairment severity and movement variability were moderate to strong in talkers with ALS. Conclusion Between-group differences for habitual speech and within-group effects for slow speech replicated previous findings for lower lip and jaw movements. Preliminary findings of moderate to strong associations between speech impairment severity and STI suggest that articulatory variability may vary from pathologically low (possibly indicating articulatory compensation) to pathologically high variability (possibly indicating loss of control) with dysarthria progression in ALS. PMID:28528293

  19. Homology of vanadium oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasyutinskii, N.A.

    1987-05-01

    The authors examine the homology of vanadium oxide and note that data on the existence of phases and homogeneity limits in the V-O system are very contradictory. A graphical illustration shows the homologous series of vanadium oxides. The predominant part of the discrete formations in the system V-O is characterized by integral stoichiometry and forms six homologous series. It is found that homologous series of vanadium oxides are not only a basis for systematization of such oxides, but also may serve as a means for predicting the composition of new phases, limits of homogeneity, their structure, and properties.

  20. The earliest herbivorous marine reptile and its remarkable jaw apparatus.

    PubMed

    Chun, Li; Rieppel, Olivier; Long, Cheng; Fraser, Nicholas C

    2016-05-01

    Newly discovered fossils of the Middle Triassic reptile Atopodentatus unicus call for a radical reassessment of its feeding behavior. The skull displays a pronounced hammerhead shape that was hitherto unknown. The long, straight anterior edges of both upper and lower jaws were lined with batteries of chisel-shaped teeth, whereas the remaining parts of the jaw rami supported densely packed needle-shaped teeth forming a mesh. The evidence indicates a novel feeding mechanism wherein the chisel-shaped teeth were used to scrape algae off the substrate, and the plant matter that was loosened was filtered from the water column through the more posteriorly positioned tooth mesh. This is the oldest record of herbivory within marine reptiles.

  1. The earliest herbivorous marine reptile and its remarkable jaw apparatus

    PubMed Central

    Chun, Li; Rieppel, Olivier; Long, Cheng; Fraser, Nicholas C.

    2016-01-01

    Newly discovered fossils of the Middle Triassic reptile Atopodentatus unicus call for a radical reassessment of its feeding behavior. The skull displays a pronounced hammerhead shape that was hitherto unknown. The long, straight anterior edges of both upper and lower jaws were lined with batteries of chisel-shaped teeth, whereas the remaining parts of the jaw rami supported densely packed needle-shaped teeth forming a mesh. The evidence indicates a novel feeding mechanism wherein the chisel-shaped teeth were used to scrape algae off the substrate, and the plant matter that was loosened was filtered from the water column through the more posteriorly positioned tooth mesh. This is the oldest record of herbivory within marine reptiles. PMID:27386529

  2. Expression of forkhead box transcription factor genes Foxp1 and Foxp2 during jaw development.

    PubMed

    Cesario, Jeffry M; Almaidhan, Asma A; Jeong, Juhee

    2016-03-01

    Development of the face is regulated by a large number of genes that are expressed in temporally and spatially specific patterns. While significant progress has been made on characterizing the genes that operate in the oral region of the face, those regulating development of the aboral (lateral) region remain largely unknown. Recently, we discovered that transcription factors LIM homeobox (LHX) 6 and LHX8, which are key regulators of oral development, repressed the expression of the genes encoding forkhead box transcription factors, Foxp1 and Foxp2, in the oral region. To gain insights into the potential role of the Foxp genes in region-specific development of the face, we examined their expression patterns in the first pharyngeal arch (primordium for the jaw) of mouse embryos at a high spatial and temporal resolution. Foxp1 and Foxp2 were preferentially expressed in the aboral and posterior parts of the first pharyngeal arch, including the developing temporomandibular joint. Through double immunofluorescence and double fluorescent RNA in situ hybridization, we found that Foxp1 was expressed in the progenitor cells for the muscle, bone, and connective tissue. Foxp2 was expressed in subsets of bone and connective tissue progenitors but not in the myoblasts. Neither gene was expressed in the dental mesenchyme nor in the oral half of the palatal shelf undergoing extensive growth and morphogenesis. Together, we demonstrated for the first time that Foxp1 and Foxp2 are expressed during craniofacial development. Our data suggest that the Foxp genes may regulate development of the aboral and posterior regions of the jaw. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Centronuclear myopathy related to dynamin 2 mutations: Clinical, morphological, muscle imaging and genetic features of an Italian cohort

    PubMed Central

    Catteruccia, Michela; Fattori, Fabiana; Codemo, Valentina; Ruggiero, Lucia; Maggi, Lorenzo; Tasca, Giorgio; Fiorillo, Chiara; Pane, Marika; Berardinelli, Angela; Verardo, Margherita; Bragato, Cinzia; Mora, Marina; Morandi, Lucia; Bruno, Claudio; Santoro, Lucio; Pegoraro, Elena; Mercuri, Eugenio; Bertini, Enrico; D’Amico, Adele

    2013-01-01

    Mutations in dynamin 2 (DNM2) gene cause autosomal dominant centronuclear myopathy and occur in around 50% of patients with centronuclear myopathy. We report clinical, morphological, muscle imaging and genetic data of 10 unrelated Italian patients with centronuclear myopathy related to DNM2 mutations. Our results confirm the clinical heterogeneity of this disease, underlining some peculiar clinical features, such as severe pulmonary impairment and jaw contracture that should be considered in the clinical follow-up of these patients. Muscle MRI showed a distinct pattern of involvement, with predominant involvement of soleus and tibialis anterior in the lower leg muscles, followed by hamstring muscles and adductor magnus at thigh level and gluteus maximus. The detection of three novel DNM2 mutations and the first case of somatic mosaicism further expand the genetic spectrum of the disease. PMID:23394783

  4. Toolmarks made by lathe chuck jaws.

    PubMed

    Finkelstein, Nir; Aronson, Ayal; Tsach, Tsadok

    2017-06-01

    This paper presents a forensic method to evidentially tie a workpiece with a specific lathe. Examining using this method can prove or exclude a connection between the two. The importance of this method is mostly due to the growing trend among lawbreakers of manufacturing improvised firearm parts using machining processes. This method is based on comparing jaw impressions made by the chuck on a workpiece. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Dosimetric effect on pediatric conformal treatment plans using dynamic jaw with Tomotherapy HDA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Eun Young, E-mail: eyhan@uams.edu; Kim, Dong-Wook; Zhang, Xin

    It is important to minimize the radiation dose delivered to healthy tissues in pediatric cancer treatment because of the risk of secondary malignancies. Tomotherapy HDA provides a dynamic jaw (DJ) delivery mode that creates a sharper penumbra at the craniocaudal ends of a target in addition to a fixed jaw (FJ) delivery mode. The purpose of this study was to evaluate its dosimetric effect on the pediatric cancer cases. We included 6 pediatric cases in this study. The dose profiles and plan statistics—target dose conformity, uniformity, organ-at-risk (OAR) mean dose, beam-on time, and integral dose—were compared for each case. Consequently,more » the target dose coverage and uniformity were similar for different jaw settings. The OAR dose sparing depended on its relative location to the target and disease sites. For example, in the head and neck cancer cases, the brain stem dose using DJ 2.5 was reduced by more than two-fold (2.4 Gy vs. 6.3 Gy) than that obtained with FJ 2.5. The integral dose with DJ 2.5 decreased by more than 9% compared with that with FJ 2.5. Thus, using dynamic jaw in pediatric cases could be critical to reduce a probability of a secondary malignancy.« less

  6. Brain activity associated with memory and cognitive function during jaw-tapping movement in healthy subjects using functional magnetic resonance imaging.

    PubMed

    Cho, Seung-Yeon; Shin, Ae-Sook; Na, Byung-Jo; Jahng, Geon-Ho; Park, Seong-Uk; Jung, Woo-Sang; Moon, Sang-Kwan; Park, Jung-Mi

    2013-06-01

    To determine whether jaw-tapping movement, a classically described as an indication of personal well-being and mental health, stimulates the memory and the cognitive regions of the brain and is associated with improved brain performance. Twelve healthy right-handed female subjects completed the study. Each patient performed a jaw-tapping task and an n-back task during functional magnetic resonance imaging (fMRI). The subjects were trained to carry out the jaw-tapping movement at home twice a day for 4 weeks. The fMRI was repeated when they returned. During the first and second jaw-tapping session, both sides of precentral gyrus and the right middle frontal gyrus (BA 6) were activated. And during the second session of the jaw-tapping task, parts of frontal lobe and temporal lobe related to memory function were more activated. In addition, the total percent task accuracy in n-back task significantly increased after 4 weeks of jawtapping movement. After jaw-tapping training for 4 weeks, brain areas related to memory showed significantly increased blood oxygen level dependent signals. Jaw-tapping movement might be a useful exercise for stimulating the memory and cognitive regions of the brain.

  7. Patterns of postnatal ontogeny of the skull and lower jaw of snakes as revealed by micro-CT scan data and three-dimensional geometric morphometrics.

    PubMed

    Palci, Alessandro; Lee, Michael S Y; Hutchinson, Mark N

    2016-12-01

    We compared the head skeleton (skull and lower jaw) of juvenile and adult specimens of five snake species [Anilios (=Ramphotyphlops) bicolor, Cylindrophis ruffus, Aspidites melanocephalus, Acrochordus arafurae, and Notechis scutatus] and two lizard outgroups (Ctenophorus decresii, Varanus gilleni). All major ontogenetic changes observed were documented both qualitatively and quantitatively. Qualitative comparisons were based on high-resolution micro-CT scanning of the specimens, and detailed quantitative analyses were performed using three-dimensional geometric morphometrics. Two sets of landmarks were used, one for accurate representation of the intraspecific transformations of each skull and jaw configuration, and the other for comparison between taxa. Our results document the ontogenetic elaboration of crests and processes for muscle attachment (especially for cervical and adductor muscles); negative allometry in the braincase of all taxa; approximately isometric growth of the snout of all taxa except Varanus and Anilios (positively allometric); and positive allometry in the quadrates of the macrostomatan snakes Aspidites, Acrochordus and Notechis, but also, surprisingly, in the iguanian lizard Ctenophorus. Ontogenetic trajectories from principal component analysis provide evidence for paedomorphosis in Anilios and peramorphosis in Acrochordus. Some primitive (lizard-like) features are described for the first time in the juvenile Cylindrophis. Two distinct developmental trajectories for the achievement of the macrostomatan (large-gaped) condition in adult snakes are documented, driven either by positive allometry of supratemporal and quadrate (in pythons), or of quadrate alone (in sampled caenophidians); this is consistent with hypothesised homoplasy in this adaptive complex. Certain traits (e.g. shape of coronoid process, marginal tooth counts) are more stable throughout postnatal ontogeny than others (e.g. basisphenoid keel), with implications for their

  8. Somitic origin of the medial border of the mammalian scapula and its homology to the avian scapula blade.

    PubMed

    Valasek, Petr; Theis, Susanne; Krejci, Eliska; Grim, Milos; Maina, Flavio; Shwartz, Yulia; Otto, Anthony; Huang, Ruijin; Patel, Ketan

    2010-04-01

    The scapula is the main skeletal element of the pectoral girdle allowing muscular fixation of the forelimb to the axial skeleton. The vertebrate limb skeleton has traditionally been considered to develop from the lateral plate mesoderm, whereas the musculature originates from the axial somites. However, in birds, the scapular blade has been shown to develop from the somites. We investigated whether a somitic contribution was also present in the mammalian scapula. Using genetic lineage-tracing techniques, we show that the medial border of the mammalian scapula develops from somitic cells. The medial scapula border serves as the attachment site of girdle muscles (serratus anterior, rhomboidei and levator scapulae). We show that the development of these muscles is independent of the mechanism that controls the formation of all other limb muscles. We suggest that these muscles be specifically referred to as medial girdle muscles. Our results establish the avian scapular blade and medial border of the mammalian scapula as homologous structures as they share the same developmental origin.

  9. Sella size and jaw bases - Is there a correlation???

    PubMed

    Neha; Mogra, Subraya; Shetty, Vorvady Surendra; Shetty, Siddarth

    2016-01-01

    Sella turcica is an important cephalometric structure and attempts have been made in the past to correlate its dimensions to the malocclusion. However, no study has so far compared the size of sella to the jaw bases that determine the type of malocclusion. The present study was undertaken to find out any such correlation if it exists. Lateral cephalograms of 110 adults consisting of 40 Class I, 40 Class II, and 30 Class III patients were assessed for the measurement of sella length, width, height, and area. The maxillary length, mandibular ramus height, and body length were also measured. The sella dimensions were compared among three malocclusion types by one-way ANOVA. Pearson correlation was calculated between the jaw size and sella dimensions. Furthermore, the ratio of jaw base lengths and sella area were calculated. Mean sella length, width and area were found to be greatest in Class III, followed by Class I and least in Class II though the results were not statistically significant. 3 out of 4 measured dimensions of sella, correlated significantly with mandibular ramus and body length each. However, only one dimension of sella showed significant correlation with maxilla. The mandibular ramus and body length show a nearly constant ratio to sella area (0.83-0.85, 0.64-0.65, respectively) in all the three malocclusions. Thus, mandible has a definite and better correlation to the size of sella turcica.

  10. Ameloblastomatous Change in Radicular Cyst of The Jaw in a Nigerian Population.

    PubMed

    Omoregie, F O; Sede, M A; Ojo, A M

    2015-06-01

    To determine the incidence, age, gender, jaw-sites and subtypes of radicular cyst, and to determine the incidence of ameloblastomatous change in radicular cyst in a Nigerian population. A 10-year retrospective analysis of all diagnosed orofacial lesions in the Department of Oral Pathology and Medicine, University of Benin Teaching Hospital, Benin City, Nigeria. From the 785 diagnosed orofacial lesions within the study period; there were 54 (6.9%) cases of radicular cysts of the jaws. The peak age group was the 3(rd) decade (n=23, 42.6%) with a mean age of 31 ± 1.7 years. There were 29 (53.7%) males and 25 (46.3%) females, giving a ratio of 1.2:1. The mandible was the commonest jaw-site (n=32, 59.3%). There were 12 (22.2%) cases of periapical cyst which were significantly associated with anterior maxillary site (n=8, 14.8%) [p=0.001]. Seven (13.0%) cases of cystic ameloblastoma were diagnosed among the radicular cysts, with a predilection of the lesions for 3(rd) and 4(th) decades of life (n=6, 11.1%), and posterior mandible (n=5, 9.3%). This study showed a low incidence of radicular cyst of the jaw among orofacial lesions and a relatively higher incidence of ameloblastomatous change in radicular cyst compared to previous reports. Immuno-histochemical examination is recommended to differentiate radicular cyst with ameloblastomatous-like change from cystic ameloblastoma arising from radicular cyst.

  11. The evolution of jaw protrusion mechanics is tightly coupled to bentho-pelagic divergence in damselfishes (Pomacentridae).

    PubMed

    Cooper, W James; Carter, Casey B; Conith, Andrew J; Rice, Aaron N; Westneat, Mark W

    2017-02-15

    Most species-rich lineages of aquatic organisms have undergone divergence between forms that feed from the substrate (benthic feeding) and forms that feed from the water column (pelagic feeding). Changes in trophic niche are frequently accompanied by changes in skull mechanics, and multiple fish lineages have evolved highly specialized biomechanical configurations that allow them to protrude their upper jaws toward the prey during feeding. Damselfishes (family Pomacentridae) are an example of a species-rich lineage with multiple trophic morphologies and feeding ecologies. We sought to determine whether bentho-pelagic divergence in the damselfishes is tightly coupled to changes in jaw protrusion ability. Using high-speed video recordings and kinematic analysis, we examined feeding performance in 10 species that include three examples of convergence on herbivory, three examples of convergence on omnivory and two examples of convergence on planktivory. We also utilized morphometrics to characterize the feeding morphology of an additional 40 species that represent all 29 damselfish genera. Comparative phylogenetic analyses were then used to examine the evolution of trophic morphology and biomechanical performance. We find that pelagic-feeding damselfishes (planktivores) are strongly differentiated from extensively benthic-feeding species (omnivores and herbivores) by their jaw protrusion ability, upper jaw morphology and the functional integration of upper jaw protrusion with lower jaw abduction. Most aspects of cranial form and function that separate these two ecological groups have evolved in correlation with each other and the evolution of the functional morphology of feeding in damselfishes has involved repeated convergence in form, function and ecology. © 2017. Published by The Company of Biologists Ltd.

  12. Masticatory muscle architecture in the Laotian rock rat Laonastes aenigmamus (Mammalia, Rodentia): new insights into the evolution of hystricognathy.

    PubMed

    Hautier, Lionel; Saksiri, Soonchan

    2009-10-01

    We present the first descriptive comparison of the skull, mandible and jaw muscles of the recently recovered Laotian rock rat Laonastes aenigmamus. The gross anatomy of five specimens captured in Laos and internal architecture of the jaw musculature were studied using dissections. The following muscles are described: temporal, masseter, pterygoids, digastric, mylohyoid, geniohyoid and transverse mandibular. The description of the masticatory apparatus of L. aenigmamus offers a rare opportunity to assess the order of establishment of the morphological characters during the evolution of Ctenohystrica. Striking convergences have occurred during the evolution of Diatomyidae and L. aenigmamus presents a unique combination of myological features that corresponds to a mixture of sciurognathous and hystricognathous characters. If L. aenigmamus is a sciurognathous rodent, we have to assume that it independently acquired a pars reflexa of the superficial masseter. We show for the first time that the development of this pars reflexa has occurred several times during the evolution of Ctenohystrica and can no longer be considered a synapomorphic feature of 'Hystricognathi'. These results bring new insights into the evolution of hystricognathy and have profound implications for the interpretation of the fossil record of early hystricognath rodents.

  13. Assessment of the increased calcification of the jaw bone with CT-Scan after dental implant placement

    PubMed Central

    2011-01-01

    Purpose This study was performed to evaluate the changes of jaw bone density around the dental implant after placement using computed tomography scan (CT-Scan). Materials and Methods This retrospective study consisted of 30 patients who had lost 1 posterior tooth in maxilla or mandible and installed dental implant. The patients took CT-Scan before and after implant placement. Hounsfield Unit (HU) was measured around the implants and evaluated the difference of HU before and after implant installation. Results The mean HU of jaw bone was 542.436 HU and 764.9 HU before and after implant placement, respectively (p<0.05). The means HUs for male were 632.3 HU and 932.2 HU and those for female 478.2 HU and 645.5 HU before and after implant placement, respectively (p<0.05). Also, the jaw bone with lower density needed longer period for implant procedure and the increased change of HU of jaw bone was less in the cases which needed longer period for osseointegration. Conclusion CT-Scan could be used to assess the change of bone density around dental implants. Bone density around dental implant was increased after placement. The increased rate of bone density could be determined by the quality of jaw bone before implant placement. PMID:21977476

  14. Assessment of the increased calcification of the jaw bone with CT-Scan after dental implant placement.

    PubMed

    Yunus, Barunawaty

    2011-06-01

    This study was performed to evaluate the changes of jaw bone density around the dental implant after placement using computed tomography scan (CT-Scan). This retrospective study consisted of 30 patients who had lost 1 posterior tooth in maxilla or mandible and installed dental implant. The patients took CT-Scan before and after implant placement. Hounsfield Unit (HU) was measured around the implants and evaluated the difference of HU before and after implant installation. The mean HU of jaw bone was 542.436 HU and 764.9 HU before and after implant placement, respectively (p<0.05). The means HUs for male were 632.3 HU and 932.2 HU and those for female 478.2 HU and 645.5 HU before and after implant placement, respectively (p<0.05). Also, the jaw bone with lower density needed longer period for implant procedure and the increased change of HU of jaw bone was less in the cases which needed longer period for osseointegration. CT-Scan could be used to assess the change of bone density around dental implants. Bone density around dental implant was increased after placement. The increased rate of bone density could be determined by the quality of jaw bone before implant placement.

  15. X-ray computed tomography library of shark anatomy and lower jaw surface models.

    PubMed

    Kamminga, Pepijn; De Bruin, Paul W; Geleijns, Jacob; Brazeau, Martin D

    2017-04-11

    The cranial diversity of sharks reflects disparate biomechanical adaptations to feeding. In order to be able to investigate and better understand the ecomorphology of extant shark feeding systems, we created a x-ray computed tomography (CT) library of shark cranial anatomy with three-dimensional (3D) lower jaw reconstructions. This is used to examine and quantify lower jaw disparity in extant shark species in a separate study. The library is divided in a dataset comprised of medical CT scans of 122 sharks (Selachimorpha, Chondrichthyes) representing 73 extant species, including digitized morphology of entire shark specimens. This CT dataset and additional data provided by other researchers was used to reconstruct a second dataset containing 3D models of the left lower jaw for 153 individuals representing 94 extant shark species. These datasets form an extensive anatomical record of shark skeletal anatomy, necessary for comparative morphological, biomechanical, ecological and phylogenetic studies.

  16. Object-oriented Persistent Homology

    PubMed Central

    Wang, Bao; Wei, Guo-Wei

    2015-01-01

    Persistent homology provides a new approach for the topological simplification of big data via measuring the life time of intrinsic topological features in a filtration process and has found its success in scientific and engineering applications. However, such a success is essentially limited to qualitative data classification and analysis. Indeed, persistent homology has rarely been employed for quantitative modeling and prediction. Additionally, the present persistent homology is a passive tool, rather than a proactive technique, for classification and analysis. In this work, we outline a general protocol to construct object-oriented persistent homology methods. By means of differential geometry theory of surfaces, we construct an objective functional, namely, a surface free energy defined on the data of interest. The minimization of the objective functional leads to a Laplace-Beltrami operator which generates a multiscale representation of the initial data and offers an objective oriented filtration process. The resulting differential geometry based object-oriented persistent homology is able to preserve desirable geometric features in the evolutionary filtration and enhances the corresponding topological persistence. The cubical complex based homology algorithm is employed in the present work to be compatible with the Cartesian representation of the Laplace-Beltrami flow. The proposed Laplace-Beltrami flow based persistent homology method is extensively validated. The consistence between Laplace-Beltrami flow based filtration and Euclidean distance based filtration is confirmed on the Vietoris-Rips complex for a large amount of numerical tests. The convergence and reliability of the present Laplace-Beltrami flow based cubical complex filtration approach are analyzed over various spatial and temporal mesh sizes. The Laplace-Beltrami flow based persistent homology approach is utilized to study the intrinsic topology of proteins and fullerene molecules. Based on a

  17. Dosimetric effect on pediatric conformal treatment plans using dynamic jaw with Tomotherapy HDA.

    PubMed

    Han, Eun Young; Kim, Dong-Wook; Zhang, Xin; Penagaricano, Jose; Liang, Xiaoying; Hardee, Matthew; Morrill, Steve; Ratanatharathorn, Vaneerat

    2015-01-01

    It is important to minimize the radiation dose delivered to healthy tissues in pediatric cancer treatment because of the risk of secondary malignancies. Tomotherapy HDA provides a dynamic jaw (DJ) delivery mode that creates a sharper penumbra at the craniocaudal ends of a target in addition to a fixed jaw (FJ) delivery mode. The purpose of this study was to evaluate its dosimetric effect on the pediatric cancer cases. We included 6 pediatric cases in this study. The dose profiles and plan statistics—target dose conformity, uniformity, organ-at-risk (OAR) mean dose, beam-on time, and integral dose—were compared for each case. Consequently, the target dose coverage and uniformity were similar for different jaw settings. The OAR dose sparing depended on its relative location to the target and disease sites. For example, in the head and neck cancer cases, the brain stem dose using DJ 2.5 was reduced by more than two-fold (2.4 Gy vs. 6.3 Gy) than that obtained with FJ 2.5. The integral dose with DJ 2.5 decreased by more than 9% compared with that with FJ 2.5. Thus, using dynamic jaw in pediatric cases could be critical to reduce a probability of a secondary malignancy. Copyright © 2015 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  18. A jaw calibration method to provide a homogeneous dose distribution in the matching region when using a monoisocentric beam split technique.

    PubMed

    Cenizo, E; García-Pareja, S; Galán, P; Bodineau, C; Caudepón, F; Casado, F J

    2011-05-01

    Asymmetric collimators are currently available in most of linear accelerators. They involve a lot of clinical improvements, such as the monoisocentric beam split technique that is more and more used in many external radiotherapy treatments. The tolerance established for each independent jaw positioning is 1 mm. Within this tolerance, a gap or overlap of the collimators up to 2 mm can occur in the half beams matching region, causing dose heterogeneities up to 40%. In order to solve this dosimetric problem, we propose an accurate jaw calibration method based on the Monte Carlo modeling of linac photon beams. Simulating different jaw misalignments, the dose distribution occurring in the matching region for each particular configuration is precisely known, so we can relate the misalignment of the jaws with the maximum heterogeneity produced. From experimental measurements using film dosimetry, and taking into account Monte Carlo results, we obtain the actual misalignment of each jaw. By direct inspection of the readings of the potentiometers that control the position of the jaws, high precision correction can be performed, adjusting the obtained misalignments. In the linac studied, the dose heterogeneity in the junction performed with X jaws (those farther from the source), and 6 MV photon beam was initially over 12%, although each jaw was within the tolerance in position. After jaw calibration, the heterogeneity was reduced to below 3%. With this method, we are able to reduce the positioning accuracy to 0.2 mm. Consequently, the dose distribution in the junction of abutted fields is highly smoothed, achieving the maximum dose heterogeneity to be less than 3%.

  19. Adaptive phenotypic plasticity in the Midas cichlid fish pharyngeal jaw and its relevance in adaptive radiation

    PubMed Central

    2011-01-01

    Background Phenotypic evolution and its role in the diversification of organisms is a central topic in evolutionary biology. A neglected factor during the modern evolutionary synthesis, adaptive phenotypic plasticity, more recently attracted the attention of many evolutionary biologists and is now recognized as an important ingredient in both population persistence and diversification. The traits and directions in which an ancestral source population displays phenotypic plasticity might partly determine the trajectories in morphospace, which are accessible for an adaptive radiation, starting from the colonization of a novel environment. In the case of repeated colonizations of similar environments from the same source population this "flexible stem" hypothesis predicts similar phenotypes to arise in repeated subsequent radiations. The Midas Cichlid (Amphilophus spp.) in Nicaragua has radiated in parallel in several crater-lakes seeded by populations originating from the Nicaraguan Great Lakes. Here, we tested phenotypic plasticity in the pharyngeal jaw of Midas Cichlids. The pharyngeal jaw apparatus of cichlids, a second set of jaws functionally decoupled from the oral ones, is known to mediate ecological specialization and often differs strongly between sister-species. Results We performed a common garden experiment raising three groups of Midas cichlids on food differing in hardness and calcium content. Analyzing the lower pharyngeal jaw-bones we find significant differences between diet groups qualitatively resembling the differences found between specialized species. Observed differences in pharyngeal jaw expression between groups were attributable to the diet's mechanical resistance, whereas surplus calcium in the diet was not found to be of importance. Conclusions The pharyngeal jaw apparatus of Midas Cichlids can be expressed plastically if stimulated mechanically during feeding. Since this trait is commonly differentiated - among other traits - between

  20. Adaptive phenotypic plasticity in the Midas cichlid fish pharyngeal jaw and its relevance in adaptive radiation.

    PubMed

    Muschick, Moritz; Barluenga, Marta; Salzburger, Walter; Meyer, Axel

    2011-04-30

    Phenotypic evolution and its role in the diversification of organisms is a central topic in evolutionary biology. A neglected factor during the modern evolutionary synthesis, adaptive phenotypic plasticity, more recently attracted the attention of many evolutionary biologists and is now recognized as an important ingredient in both population persistence and diversification. The traits and directions in which an ancestral source population displays phenotypic plasticity might partly determine the trajectories in morphospace, which are accessible for an adaptive radiation, starting from the colonization of a novel environment. In the case of repeated colonizations of similar environments from the same source population this "flexible stem" hypothesis predicts similar phenotypes to arise in repeated subsequent radiations. The Midas Cichlid (Amphilophus spp.) in Nicaragua has radiated in parallel in several crater-lakes seeded by populations originating from the Nicaraguan Great Lakes. Here, we tested phenotypic plasticity in the pharyngeal jaw of Midas Cichlids. The pharyngeal jaw apparatus of cichlids, a second set of jaws functionally decoupled from the oral ones, is known to mediate ecological specialization and often differs strongly between sister-species. We performed a common garden experiment raising three groups of Midas cichlids on food differing in hardness and calcium content. Analyzing the lower pharyngeal jaw-bones we find significant differences between diet groups qualitatively resembling the differences found between specialized species. Observed differences in pharyngeal jaw expression between groups were attributable to the diet's mechanical resistance, whereas surplus calcium in the diet was not found to be of importance. The pharyngeal jaw apparatus of Midas Cichlids can be expressed plastically if stimulated mechanically during feeding. Since this trait is commonly differentiated--among other traits--between Midas Cichlid species, its plasticity

  1. Processing system of jaws tomograms for pathology identification and surgical guide modeling

    NASA Astrophysics Data System (ADS)

    Putrik, M. B.; Lavrentyeva, Yu. E.; Ivanov, V. Yu.

    2015-11-01

    The aim of the study is to create an image processing system, which allows dentists to find pathological resorption and to build surgical guide surface automatically. X-rays images of jaws from cone beam tomography or spiral computed tomography are the initial data for processing. One patient's examination always includes up to 600 images (or tomograms), that's why the development of processing system for fast automation search of pathologies is necessary. X-rays images can be useful not for only illness diagnostic but for treatment planning too. We have studied the case of dental implantation - for successful surgical manipulations surgical guides are used. We have created a processing system that automatically builds jaw and teeth boundaries on the x-ray image. After this step, obtained teeth boundaries used for surgical guide surface modeling and jaw boundaries limit the area for further pathologies search. Criterion for the presence of pathological resorption zones inside the limited area is based on statistical investigation. After described actions, it is possible to manufacture surgical guide using 3D printer and apply it in surgical operation.

  2. Stem cell antigen-1 in skeletal muscle function.

    PubMed

    Bernstein, Harold S; Samad, Tahmina; Cholsiripunlert, Sompob; Khalifian, Saami; Gong, Wenhui; Ritner, Carissa; Aurigui, Julian; Ling, Vivian; Wilschut, Karlijn J; Bennett, Stephen; Hoffman, Julien; Oishi, Peter

    2013-08-15

    Stem cell antigen-1 (Sca-1) is a member of the Ly-6 multigene family encoding highly homologous, glycosyl-phosphatidylinositol-anchored membrane proteins. Sca-1 is expressed on muscle-derived stem cells and myogenic precursors recruited to sites of muscle injury. We previously reported that inhibition of Sca-1 expression stimulated myoblast proliferation in vitro and regulated the tempo of muscle repair in vivo. Despite its function in myoblast expansion during muscle repair, a role for Sca-1 in normal, post-natal muscle has not been thoroughly investigated. We systematically compared Sca-1-/- (KO) and Sca-1+/+ (WT) mice and hindlimb muscles to elucidate the tissue, contractile, and functional effects of Sca-1 in young and aging animals. Comparison of muscle volume, fibrosis, myofiber cross-sectional area, and Pax7+ myoblast number showed little differences between ages or genotypes. Exercise protocols, however, demonstrated decreased stamina in KO versus WT mice, with young KO mice achieving results similar to aging WT animals. In addition, KO mice did not improve with practice, while WT animals demonstrated conditioning over time. Surprisingly, myomechanical analysis of isolated muscles showed that KO young muscle generated more force and experienced less fatigue. However, KO muscle also demonstrated incomplete relaxation with fatigue. These findings suggest that Sca-1 is necessary for muscle conditioning with exercise, and that deficient conditioning in Sca-1 KO animals becomes more pronounced with age.

  3. Basal jawed vertebrate phylogeny inferred from multiple nuclear DNA-coded genes

    PubMed Central

    Kikugawa, Kanae; Katoh, Kazutaka; Kuraku, Shigehiro; Sakurai, Hiroshi; Ishida, Osamu; Iwabe, Naoyuki; Miyata, Takashi

    2004-01-01

    Background Phylogenetic analyses of jawed vertebrates based on mitochondrial sequences often result in confusing inferences which are obviously inconsistent with generally accepted trees. In particular, in a hypothesis by Rasmussen and Arnason based on mitochondrial trees, cartilaginous fishes have a terminal position in a paraphyletic cluster of bony fishes. No previous analysis based on nuclear DNA-coded genes could significantly reject the mitochondrial trees of jawed vertebrates. Results We have cloned and sequenced seven nuclear DNA-coded genes from 13 vertebrate species. These sequences, together with sequences available from databases including 13 jawed vertebrates from eight major groups (cartilaginous fishes, bichir, chondrosteans, gar, bowfin, teleost fishes, lungfishes and tetrapods) and an outgroup (a cyclostome and a lancelet), have been subjected to phylogenetic analyses based on the maximum likelihood method. Conclusion Cartilaginous fishes have been inferred to be basal to other jawed vertebrates, which is consistent with the generally accepted view. The minimum log-likelihood difference between the maximum likelihood tree and trees not supporting the basal position of cartilaginous fishes is 18.3 ± 13.1. The hypothesis by Rasmussen and Arnason has been significantly rejected with the minimum log-likelihood difference of 123 ± 23.3. Our tree has also shown that living holosteans, comprising bowfin and gar, form a monophyletic group which is the sister group to teleost fishes. This is consistent with a formerly prevalent view of vertebrate classification, although inconsistent with both of the current morphology-based and mitochondrial sequence-based trees. Furthermore, the bichir has been shown to be the basal ray-finned fish. Tetrapods and lungfish have formed a monophyletic cluster in the tree inferred from the concatenated alignment, being consistent with the currently prevalent view. It also remains possible that tetrapods are more closely

  4. Malagasy cichlids differentially limit impacts of body shape evolution on oral jaw functional morphology.

    PubMed

    Martinez, Christopher M; Sparks, John S

    2017-09-01

    Patterns of trait covariation, such as integration and modularity, are vital factors that influence the evolution of vertebrate body plans. In functional systems, decoupling of morphological modules buffers functional change in one trait by reducing correlated variation with another. However, for complex morphologies with many-to-one mapping of form to function (MTOM), resistance to functional change may also be achieved by constraining morphological variation within a functionally stable region of morphospace. For this research, we used geometric morphometrics to evaluate the evolution of body shape and its relationship with jaw functional morphology in two independent radiations of endemic Malagasy cichlid (Teleostei: Cichlidae). Our results suggested that the two subfamilies used different strategies to mitigate impacts of body shape variation on a metric of jaw function, maxillary kinematic transmission (MKT): (1) modularity between cranial and postcranial morphologies, and (2) integration of body and jaw evolution, with jaw morphologies varying in a manner that limits change in MKT. This research shows that, unlike modularity, MTOM allows traits to retain strong evolutionary covariation while still reducing impacts on functionality. These results suggest that MTOM, and its influence on the evolution of correlated traits, is likely much more widespread than is currently understood. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  5. Hoffmann's syndrome with unusually long duration: Report on clinical, laboratory and muscle imaging findings in two cases

    PubMed Central

    Nalini, Atchayaram; Govindaraju, C.; Kalra, Pramila; Kadukar, Prashanth

    2014-01-01

    Two adult men presented with the rare Hoffmann's syndrome (HS). Case 1: A 35-year-old male patient had progressive stiffness of lower limbs of 13 years and generalized muscle hypertrophy and myalgia of 3 years duration. Had periorbital edema, dry skin, generalized muscle hypertrophy and spastic dysarthria with hoarseness. Muscle power was normal. Jaw jerk and deep tendon reflexes were exaggerated. Case 2: A 24-year-old male patient presented with muscle hypertrophy from childhood, slowness in motor activities and hearing impairment. For 6 months, he had severe muscle pains, cramps and further increase in hypertrophy. He had yellow tinged, dry skin, hoarseness of voice, gross muscle hypertrophy and minimal weakness. Both had markedly elevated serum creatine kinase (CK) levels and high thyroid stimulating hormone, low free triiodothyronine and free thyroxine levels. Levothyroxine treatment demonstrated remarkable reduction in muscle bulk at 2 months in both and no symptoms at 6 months. Magnetic resonance imaging of lower limbs in both cases revealed almost identical features with involvement of the muscles of posterior and adductor compartment of thighs and posterior and lateral compartments of the legs. Differential diagnosis of long duration muscle pseudohypertrophy and elevated CK levels should include HS. PMID:25024579

  6. MEAT SCIENCE AND MUSCLE BIOLOGY SYMPOSIUM

    PubMed Central

    Bi, P.; Kuang, S.

    2012-01-01

    Stem cell niche plays a critical role in regulating the behavior and function of adult stem cells that underlie tissue growth, maintenance, and regeneration. In the skeletal muscle, stem cells, called satellite cells, contribute to postnatal muscle growth and hypertrophy, and thus, meat production in agricultural animals. Satellite cells are located adjacent to mature muscle fibers underneath a sheath of basal lamina. Microenvironmental signals from extracellular matrix mediated by the basal lamina and from the host myofiber both impinge on satellite cells to regulate their activity. Furthermore, several types of muscle interstitial cells, including intramuscular preadipocytes and connective tissue fibroblasts, have recently been shown to interact with satellite cells and actively regulate the growth and regeneration of postnatal skeletal muscles. From this regard, interstitial adipogenic cells are not only important for marbling and meat quality, but also represent an additional cellular component of the satellite cell niche. At the molecular level, these interstitial cells may interact with satellite cells through cell surface ligands, such as delta-like 1 homolog (Dlk1) protein whose overexpression is thought to be responsible for muscle hypertrophy in callipyge sheep. In fact, extracellular Dlk1 protein has been shown to promote the myogenic differentiation of satellite cells. Understanding the cellular and molecular mechanisms within the stem cell niche that regulate satellite cell differentiation and maintain muscle homeostasis may lead to promising approaches to optimizing muscle growth and composition, thus improving meat production and quality. PMID:22100594

  7. A myostatin inhibitor (propeptide-Fc) increases muscle mass and muscle fiber size in aged mice but does not increase bone density or bone strength.

    PubMed

    Arounleut, Phonepasong; Bialek, Peter; Liang, Li-Fang; Upadhyay, Sunil; Fulzele, Sadanand; Johnson, Maribeth; Elsalanty, Mohammed; Isales, Carlos M; Hamrick, Mark W

    2013-09-01

    Loss of muscle and bone mass with age are significant contributors to falls and fractures among the elderly. Myostatin deficiency is associated with increased muscle mass in mice, dogs, cows, sheep and humans, and mice lacking myostatin have been observed to show increased bone density in the limb, spine, and jaw. Transgenic overexpression of myostatin propeptide, which binds to and inhibits the active myostatin ligand, also increases muscle mass and bone density in mice. We therefore sought to test the hypothesis that in vivo inhibition of myostatin using an injectable myostatin propeptide (GDF8 propeptide-Fc) would increase both muscle mass and bone density in aged (24 mo) mice. Male mice were injected weekly (20 mg/kg body weight) with recombinant myostatin propeptide-Fc (PRO) or vehicle (VEH; saline) for four weeks. There was no difference in body weight between the two groups at the end of the treatment period, but PRO treatment significantly increased mass of the tibialis anterior muscle (+ 7%) and increased muscle fiber diameter of the extensor digitorum longus (+ 16%) and soleus (+ 6%) muscles compared to VEH treatment. Bone volume relative to total volume (BV/TV) of the femur calculated by microCT did not differ significantly between PRO- and VEH-treated mice, and ultimate force (Fu), stiffness (S), toughness (U) measured from three-point bending tests also did not differ significantly between groups. Histomorphometric assays also revealed no differences in bone formation or resorption in response to PRO treatment. These data suggest that while developmental perturbation of myostatin signaling through either gene knockout or transgenic inhibition may alter both muscle and bone mass in mice, pharmacological inhibition of myostatin in aged mice has a more pronounced effect on skeletal muscle than on bone. © 2013. Published by Elsevier Inc. All rights reserved.

  8. [A man with pain in his upper jaw].

    PubMed

    Jaspers, Gijs; van Gool, Lex

    2011-01-01

    A 66-year-old man came to the hospital with pain in the frontal left side of his upper jaw. Pressure along the left nostril could evoke a sharp pain, which radiated upwards. The patient had already consulted several specialists. After extended clinical and radiological investigation a mesiodens was found that gave pressure on the nasopalatine nerve.

  9. Effects of the closing speed of stapler jaws on bovine pancreases.

    PubMed

    Chikamoto, Akira; Hashimoto, Daisuke; Ikuta, Yoshiaki; Tsuji, Akira; Abe, Shinya; Hayashi, Hiromitsu; Imai, Katsunori; Nitta, Hidetoshi; Ishiko, Takatoshi; Watanabe, Masayuki; Beppu, Toru; Baba, Hideo

    2014-01-01

    The division of the pancreatic parenchyma using a stapler is important in pancreatic surgery, especially for laparoscopic surgery. However, this procedure has not yet been standardized. We analyzed the effects of the closing speed of stapler jaws using bovine pancreases for each method. Furthermore, we assigned 10 min to the slow compression method, 5 min to the medium-fast compression method, and 30 s to the rapid compression (RC) method. The time allotted to holding (3 min) and dividing (30 s) was equal under each testing situation. We found that the RC method showed a high-pressure tolerance compared with the other two groups (rapid, 126 ± 49.0 mmHg; medium-fast, 55.5 ± 25.8 mmHg; slow, 45.0 ± 15.7 mmHg; p < 0.01), although the histological findings of the cut end were similar. The histological findings of the pancreatic capsule and parenchyma after the compression by staple jaws without firing also were similar. RC may provide an advantage as measured by pressure tolerance. A small series of distal pancreatectomy with a stapler that compares the speed of different stapler jaw closing times is required to prove the feasibility of these results after the confirmation of the advantages of the RC method under various settings.

  10. The Drosophila muscle LIM protein, Mlp84B, cooperates with D-titin to maintain muscle structural integrity.

    PubMed

    Clark, Kathleen A; Bland, Jennifer M; Beckerle, Mary C

    2007-06-15

    Muscle LIM protein (MLP) is a cytoskeletal LIM-only protein expressed in striated muscle. Mutations in human MLP are associated with cardiomyopathy; however, the molecular mechanism by which MLP functions is not established. A Drosophila MLP homolog, mlp84B, displays many of the same features as the vertebrate protein, illustrating the utility of the fly for the study of MLP function. Animals lacking Mlp84B develop into larvae with a morphologically intact musculature, but the mutants arrest during pupation with impaired muscle function. Mlp84B displays muscle-specific expression and is a component of the Z-disc and nucleus. Preventing nuclear retention of Mlp84B does not affect its function, indicating that Mlp84B site of action is likely to be at the Z-disc. Within the Z-disc, Mlp84B is colocalized with the N-terminus of D-titin, a protein crucial for sarcomere organization and stretch mechanics. The mlp84B mutants phenotypically resemble weak D-titin mutants. Furthermore, reducing D-titin activity in the mlp84B background leads to pronounced enhancement of the mlp84B muscle defects and loss of muscle structural integrity. The genetic interactions between mlp84B and D-titin reveal a role for Mlp84B in maintaining muscle structural integrity that was not obvious from analysis of the mlp84B mutants themselves, and suggest Mlp84B and D-titin cooperate to stabilize muscle sarcomeres.

  11. The head and neck muscles of the serval and tiger: homologies, evolution, and proposal of a mammalian and a veterinary muscle ontology.

    PubMed

    Diogo, Rui; Pastor, Francisco; De Paz, Felix; Potau, Josep M; Bello-Hellegouarch, Gaëlle; Ferrero, Eva M; Fisher, Rebecca E

    2012-12-01

    Here we describe the head and neck muscles of members of the two extant felid subfamilies (Leptailurus serval: Felinae; Panthera tigris: Pantherinae) and compare these muscles with those of other felids, other carnivorans (e.g., domestic dogs), other eutherian mammals (e.g., rats, tree-shrews and modern humans), and noneutherian mammals including monotremes. Another major goal of the article is to discuss and help clarify nomenclatural discrepancies found in the Nomina Anatomica Veterinaria and in veterinary atlases and textbooks that use cats and dogs as models to understand the anatomy of domestic mammals and to stress differences with modern humans. We propose a unifying nomenclature that is expanded to all the head and neck muscles and to all mammalian taxa in order to help build veterinary and mammalian muscle ontologies. Our observations and comparisons and the specific use of this nomenclature point out that felids such as tigers and servals and other carnivorans such as dogs have more facial muscle structures related to the mobility of both the auricular and orbital regions than numerous other mammals, including modern humans, which might be the result of an ancient adaptation related to the remarkable predatory capacities of carnivorans. Interestingly, the skeletal differences, mainly concerning the hyoid apparatus, pharynx, and larynx, that are likely associated with the different types of vocalizations seen in the Felinae (mainly purring) and Pantherinae (mainly roaring) are not accompanied by clear differences in the musculature connected to these structures in the feline L. serval and the pantherine P. tigris. Copyright © 2012 Wiley Periodicals, Inc.

  12. A new 4-dimensional imaging system for jaw tracking.

    PubMed

    Lauren, Mark

    2014-01-01

    A non-invasive 4D imaging system that produces high resolution time-based 3D surface data has been developed to capture jaw motion. Fluorescent microspheres are brushed onto both tooth and soft-tissue areas of the upper and lower arches to be imaged. An extraoral hand-held imaging device, operated about 12 cm from the mouth, captures a time-based set of perspective image triplets of the patch areas. Each triplet, containing both upper and lower arch data, is converted to a high-resolution 3D point mesh using photogrammetry, providing the instantaneous relative jaw position. Eight 3D positions per second are captured. Using one of the 3D frames as a reference, a 4D model can be constructed to describe the incremental free body motion of the mandible. The surface data produced by this system can be registered to conventional 3D models of the dentition, allowing them to be animated. Applications include integration into prosthetic CAD and CBCT data.

  13. Somitic origin of the medial border of the mammalian scapula and its homology to the avian scapula blade

    PubMed Central

    Valasek, Petr; Theis, Susanne; Krejci, Eliska; Grim, Milos; Maina, Flavio; Shwartz, Yulia; Otto, Anthony; Huang, Ruijin; Patel, Ketan

    2010-01-01

    The scapula is the main skeletal element of the pectoral girdle allowing muscular fixation of the forelimb to the axial skeleton. The vertebrate limb skeleton has traditionally been considered to develop from the lateral plate mesoderm, whereas the musculature originates from the axial somites. However, in birds, the scapular blade has been shown to develop from the somites. We investigated whether a somitic contribution was also present in the mammalian scapula. Using genetic lineage-tracing techniques, we show that the medial border of the mammalian scapula develops from somitic cells. The medial scapula border serves as the attachment site of girdle muscles (serratus anterior, rhomboidei and levator scapulae). We show that the development of these muscles is independent of the mechanism that controls the formation of all other limb muscles. We suggest that these muscles be specifically referred to as medial girdle muscles. Our results establish the avian scapular blade and medial border of the mammalian scapula as homologous structures as they share the same developmental origin. PMID:20136669

  14. Kinematic Features of Jaw and Lips Distinguish Symptomatic From Presymptomatic Stages of Bulbar Decline in Amyotrophic Lateral Sclerosis.

    PubMed

    Bandini, Andrea; Green, Jordan R; Wang, Jun; Campbell, Thomas F; Zinman, Lorne; Yunusova, Yana

    2018-05-17

    The goals of this study were to (a) classify speech movements of patients with amyotrophic lateral sclerosis (ALS) in presymptomatic and symptomatic phases of bulbar function decline relying solely on kinematic features of lips and jaw and (b) identify the most important measures that detect the transition between early and late bulbar changes. One hundred ninety-two recordings obtained from 64 patients with ALS were considered for the analysis. Feature selection and classification algorithms were used to analyze lip and jaw movements recorded with Optotrak Certus (Northern Digital Inc.) during a sentence task. A feature set, which included 35 measures of movement range, velocity, acceleration, jerk, and area measures of lips and jaw, was used to classify sessions according to the speaking rate into presymptomatic (> 160 words per minute) and symptomatic (< 160 words per minute) groups. Presymptomatic and symptomatic phases of bulbar decline were distinguished with high accuracy (87%), relying only on lip and jaw movements. The best features that allowed detecting the differences between early and later bulbar stages included cumulative path of lower lip and jaw, peak values of velocity, acceleration, and jerk of lower lip and jaw. The results established a relationship between facial kinematics and bulbar function decline in ALS. Considering that facial movements can be recorded by means of novel inexpensive and easy-to-use, video-based methods, this work supports the development of an automatic system for facial movement analysis to help clinicians in tracking the disease progression in ALS.

  15. SU-F-T-307: Peripheral Dose Comparison Between Static and Dynamic Jaw Tracking On a High Definition MLC System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perez-Andujar, A; Cheung, J; Chuang, C

    Purpose: To investigate the effect of dynamic and static jaw tracking on patient peripheral doses. Materials and Methods: A patient plan with a large sacral metastasis (volume 800cm3, prescription 600cGyx5) was selected for this study. The plan was created using 2-field RapidArc with jaw tracking enabled (Eclipse, V11.0.31). These fields were then exported and edited in MATLAB with static jaw positions using the control point with the largest field size for each respective arc, but preserving the optimized leaf sequences for delivery. These fields were imported back into Eclipse for dose calculation and comparison and copied to a Rando phantommore » for delivery analysis. Points were chosen in the phantom at depth and on the phantom surface at locations outside the primary radiation field, at distances of 12cm, 20cm, and 30cm from the isocenter. Measurements were acquired with OSLDs placed at these positions in the phantom with both the dynamic and static jaw deliveries for comparison. Surface measurements included an additional 1cm bolus over the OSLDs to ensure electron equilibrium. Results: The static jaw deliveries resulted in cumulative jaw-defined field sizes of 17.3% and 17.4% greater area than the dynamic jaw deliveries for each arc. The static jaw plan resulted in very small differences in calculated dose in the treatment planning system ranging from 0–16cGy. The measured dose differences were larger than calculated, but the differences in absolute dose were small. The measured dose differences at depth (surface) between the two deliveries showed an increase for the static jaw delivery of 2.2%(11.4%), 15.6%(20.0%), and 12.7%(12.7%) for distances of 12cm, 20cm, and 30cm, respectively. Eclipse calculates a difference of 0–3.1% for all of these points. The largest absolute dose difference between all points was 6.2cGy. Conclusion: While we demonstrated larger than expected differences in peripheral dose, the absolute dose differences were small.« less

  16. Trapezius muscle activity in using ordinary and ergonomically designed dentistry chairs.

    PubMed

    Haddad, O; Sanjari, M A; Amirfazli, A; Narimani, R; Parnianpour, M

    2012-04-01

    Most dentists complain of musculoskeletal disorders which can be caused by prolonged static posture, lack of suitable rest and other physical and psychological problems. We evaluated a chair with a new ergonomic design which incorporated forward leaning chest and arm supports. The chair was evaluated in the laboratory during task simulation and EMG analysis on 12 students and subjectively assessed by 30 professional dentists using an 18-item questionnaire. EMG activity of right and left trapezius muscles for 12 male students with no musculoskeletal disorders was measured while simulating common tasks like working on the teeth of the lower jaw. Normalized EMG data showed significant reduction (p<0.05) in all EMG recordings of the trapezius muscle. Dentists also unanimously preferred the ergonomically designed chair. Such ergonomically designed chairs should be introduced as early as possible in student training before bad postural habits are acquired.

  17. Processing system of jaws tomograms for pathology identification and surgical guide modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Putrik, M. B., E-mail: pmb-88@mail.ru; Ivanov, V. Yu.; Lavrentyeva, Yu. E.

    The aim of the study is to create an image processing system, which allows dentists to find pathological resorption and to build surgical guide surface automatically. X-rays images of jaws from cone beam tomography or spiral computed tomography are the initial data for processing. One patient’s examination always includes up to 600 images (or tomograms), that’s why the development of processing system for fast automation search of pathologies is necessary. X-rays images can be useful not for only illness diagnostic but for treatment planning too. We have studied the case of dental implantation – for successful surgical manipulations surgical guidesmore » are used. We have created a processing system that automatically builds jaw and teeth boundaries on the x-ray image. After this step, obtained teeth boundaries used for surgical guide surface modeling and jaw boundaries limit the area for further pathologies search. Criterion for the presence of pathological resorption zones inside the limited area is based on statistical investigation. After described actions, it is possible to manufacture surgical guide using 3D printer and apply it in surgical operation.« less

  18. Jaw symptoms and signs and the connection to cranial cervical symptoms and post-traumatic stress during the first year after a whiplash trauma.

    PubMed

    Severinsson, Yvonne; Bunketorp, Olle; Wenneberg, Bengt

    2010-01-01

    To estimate the prevalence of jaw symptoms and signs during the first year after a neck sprain in a car collision. Further, to determine their relationships to the localisation and grade of the initial neck symptoms and signs, headache, post-traumatic stress and crash characteristics. One hundred and forty-six adult subjects and crash characteristics were prospectively investigated in an in-depth study during 1997-2001. Head, neck, and jaw symptoms and signs were recorded within 5 weeks and after 1 year. Acute post-traumatic stress was estimated with the Impact of Event Scale-Revised (IES-R). Jaw symptoms were initially reported by three men (5%) and three women (4%), and subsequently developed in eight women (10%) during the following year. Jaw signs were noted initially in 53 subjects (37%) and in 28 subjects (24%) after 1 year, without difference between sexes, and more often after low-speed impacts. Headache in females, cranial cervical symptoms, pronounced neck problems, post-traumatic stress and whiplash-associated disorders (WAD) grade II-III after rear-end impacts were related to jaw signs during the acute phase. After 1 year, jaw signs were related to residual neck problems, headache and post-traumatic stress. Jaw symptoms are seldom reported during the acute phase after a whiplash trauma. Women more often than men develop jaw symptoms during the first year. Jaw symptoms and signs may develop also after low-speed impacts, especially after rear-end collisions. Jaw symptoms and signs should be observed after whiplash trauma, especially in those with headache, pronounced neck problems, cranial neck symptoms and post-traumatic stress.

  19. Three-dimensional reconstruction of teeth and jaws based on segmentation of CT images using watershed transformation.

    PubMed

    Naumovich, S S; Naumovich, S A; Goncharenko, V G

    2015-01-01

    The objective of the present study was the development and clinical testing of a three-dimensional (3D) reconstruction method of teeth and a bone tissue of the jaw on the basis of CT images of the maxillofacial region. 3D reconstruction was performed using the specially designed original software based on watershed transformation. Computed tomograms in digital imaging and communications in medicine format obtained on multispiral CT and CBCT scanners were used for creation of 3D models of teeth and the jaws. The processing algorithm is realized in the stepwise threshold image segmentation with the placement of markers in the mode of a multiplanar projection in areas relating to the teeth and a bone tissue. The developed software initially creates coarse 3D models of the entire dentition and the jaw. Then, certain procedures specify the model of the jaw and cut the dentition into separate teeth. The proper selection of the segmentation threshold is very important for CBCT images having a low contrast and high noise level. The developed semi-automatic algorithm of multispiral and cone beam computed tomogram processing allows 3D models of teeth to be created separating them from a bone tissue of the jaws. The software is easy to install in a dentist's workplace, has an intuitive interface and takes little time in processing. The obtained 3D models can be used for solving a wide range of scientific and clinical tasks.

  20. Intraosseous mucoepidermoid carcinoma: a review of the diagnostic imaging features of four jaw cases.

    PubMed

    Chan, K C; Pharoah, M; Lee, L; Weinreb, I; Perez-Ordonez, B

    2013-01-01

    The purpose of this case series is to present the common features of intraosseous mucoepidermoid carcinoma (IMC) of the jaws in plain film and CT imaging. Two oral and maxillofacial radiologists reviewed and characterized the common features of four biopsy-proven cases of IMC in the jaws in plain film and CT imaging obtained from the files of the Department of Oral Radiology, Faculty of Dentistry, University of Toronto, Toronto, Canada. The common features are a well-defined sclerotic periphery, the presence of internal amorphous sclerotic bone and numerous small loculations, lack of septae bordering many of the loculations, and expansion and perforation of the outer cortical plate with extension into surrounding soft tissue. Other characteristics include tooth displacement and root resorption. The four cases of IMC reviewed have common imaging characteristics. All cases share some diagnostic imaging features with other multilocular-appearing entities of the jaws. However, the presence of amorphous sclerotic bone and malignant characteristics can be useful in the differential diagnosis.

  1. Annual reversible plasticity of feeding structures: cyclical changes of jaw allometry in a sea urchin

    PubMed Central

    Ebert, Thomas A.; Hernández, José Carlos; Clemente, Sabrina

    2014-01-01

    A wide variety of organisms show morphologically plastic responses to environmental stressors but in general these changes are not reversible. Though less common, reversible morphological structures are shown by a range of species in response to changes in predators, competitors or food. Theoretical analysis indicates that reversible plasticity increases fitness if organisms are long-lived relative to the frequency of changes in the stressor and morphological changes are rapid. Many sea urchin species show differences in the sizes of jaws (demi-pyramids) of the feeding apparatus, Aristotle's lantern, relative to overall body size, and these differences have been correlated with available food. The question addressed here is whether reversible changes of relative jaw size occur in the field as available food changes with season. Monthly samples of the North American Pacific coast sea urchin Strongylocentrotus purpuratus were collected from Gregory Point on the Oregon (USA) coast and showed an annual cycle of relative jaw size together with a linear trend from 2007 to 2009. Strongylocentrotus purpuratus is a long-lived species and under field conditions individuals experience multiple episodes of changes in food resources both seasonally and from year to year. Their rapid and reversible jaw plasticity fits well with theoretical expectations. PMID:24500161

  2. The effect of food bolus location on jaw movement smoothness and masticatory efficiency.

    PubMed

    Molenaar, W N B; Gezelle Meerburg, P J; Luraschi, J; Whittle, T; Schimmel, M; Lobbezoo, F; Peck, C C; Murray, G M; Minami, I

    2012-09-01

    Masticatory efficiency in individuals with extensive tooth loss has been widely discussed. However, little is known about jaw movement smoothness during chewing and the effect of differences in food bolus location on movement smoothness and masticatory efficiency. The aim of this study was to determine whether experimental differences in food bolus location (anterior versus posterior) had an effect on masticatory efficiency and jaw movement smoothness. Jaw movement smoothness was evaluated by measuring jerk-cost (calculated from acceleration) with an accelerometer that was attached to the skin of the mentum of 10 asymptomatic subjects, and acceleration was recorded during chewing on two-colour chewing gum, which was used to assessed masticatory efficiency. Chewing was performed under two conditions: posterior chewing (chewing on molars and premolars only) and anterior chewing (chewing on canine and first premolar teeth only). Jerk-cost and masticatory efficiency (calculated as the ratio of unmixed azure colour to the total area of gum, the unmixed fraction) were compared between anterior and posterior chewing with the Wilcoxon signed rank test (two-tailed). Subjects chewed significantly less efficiently during anterior chewing than during posterior chewing (P = 0·0051). There was no significant difference in jerk-cost between anterior and posterior conditions in the opening phase (P = 0·25), or closing phase (P = 0·42). This is the first characterisation of the effect of food bolus location on jaw movement smoothness at the same time as recording masticatory efficiency. The data suggest that anterior chewing decreases masticatory efficiency, but does not influence jerk-cost. © 2012 Blackwell Publishing Ltd.

  3. SU-E-T-346: Effect of Jaw Position On Dose to Critical Structures in 3-D Conformal Radiotherapy Treatment of Pancreatic Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paudel, N; Han, E; Liang, X

    Purpose: Three-dimensional conformal therapy remains a valid and widely used modality for pancreatic radiotherapy treatment. It usually meets dose constraints on critical structures. However, careful positioning of collimation jaws can reduce dose to the critical structures. Here we investigate the dosimetric effect of jaw position in MLC-based 3-D conformal treatment planning on critical structures. Methods: We retrospectively selected seven pancreatic cancer patients treated with 3-D conformal radiotherapy. We started with treatment plans (Varian Truebeam LINAC, Eclipse TPS, AAA, 18MV) having both x and y jaws aligned with the farthest extent of the block outline (8mm around PTV). Then we subsequentlymore » moved either both x-jaws or all x and y jaws outwards upto 3 cm in 1 cm increments and investigated their effect on average and maximum dose to neighboring critical structures keeping the same coverage to treatment volume. Results: Lateral displacement of both x-jaws by 1cm each increased kidney and spleen mean dose by as much as 1.7% and 1.3% respectively and superior inferior displacement increased liver, right kidney, stomach and spleen dose by as much as 2.1%, 2%, 5.2% and 1.6% respectively. Displacement of all x and y-jaws away by 1cm increased the mean dose to liver, right kidney, left kidney, bowels, cord, stomach and spleen by as much as 4.9%, 5.9%, 2.1%, 2.8%, 7.4%, 10.4% and 4.2% respectively. Percentage increase in mean dose due to 2 and 3cm jaw displacement increased almost linearly with the displaced distance. Changes in maximum dose were much smaller (mostly negligible) than the changes in mean dose. Conclusion: Collimation jaw position affects dose mostly to critical structures adjacent to it. Though treatment plans with MLCs conforming the block margin usually meet dose constraints to critical structures, keeping jaws all the way in, to the edge of the block reduces dose to the critical structures during radiation treatment.« less

  4. Durophagy in sharks: feeding mechanics of the hammerhead Sphyrna tiburo.

    PubMed

    Wilga, C D; Motta, P J

    2000-09-01

    This study investigates the motor pattern and head movements during feeding of a durophagus shark, the bonnethead Sphyrna tiburo, using electromyography and simultaneous high-speed video. Sphyrna tiburo feeds almost exclusively on hard-shelled crabs, with shrimp and fish taken occasionally. It captures crabs by ram feeding, then processes or reduces the prey by crushing it between molariform teeth, finally transporting the prey by suction for swallowing. The prey-crushing mechanism is distinct from that of ram or bite capture and suction transport. This crushing mechanism is accomplished by altering the duration of jaw adductor muscle activity and modifying jaw kinematics by the addition of a second jaw-closing phase. In crushing events, motor activity of the jaw adductor muscles continues (biting of the prey occurs as the jaws close and continues after the jaws have closed) throughout a second jaw-closing phase, unlike capture and transport events during which motor activity (biting) ceases at jaw closure. Sphyrna tiburo is able to take advantage of a resource (hard prey) that is not readily available to most sharks by utilizing a suite of durophagous characteristics: molariform teeth, a modified jaw protrusor muscle, altered jaw adductor activity and modified jaw kinematics. Sphyrna tiburo is a specialist feeder on crab prey as demonstrated by the lack of differences in kinematic or motor patterns when offered prey of differing hardness and its apparent lack of ability to modulate its behavior when feeding on other prey. Functional patterns are altered and coupled with modifications in dental and jaw morphology to produce diverse crushing behaviors in elasmobranchs.

  5. Embryology of the lamprey and evolution of the vertebrate jaw: insights from molecular and developmental perspectives.

    PubMed Central

    Kuratani, S; Nobusada, Y; Horigome, N; Shigetani, Y

    2001-01-01

    Evolution of the vertebrate jaw has been reviewed and discussed based on the developmental pattern of the Japanese marine lamprey, Lampetra japonica. Though it never forms a jointed jaw apparatus, the L. japonica embryo exhibits the typical embryonic structure as well as the conserved regulatory gene expression patterns of vertebrates. The lamprey therefore shares the phylotype of vertebrates, the conserved embryonic pattern that appears at pharyngula stage, rather than representing an intermediate evolutionary state. Both gnathostomes and lampreys exhibit a tripartite configuration of the rostral-most crest-derived ectomesenchyme, each part occupying an anatomically equivalent site. Differentiated oral structure becomes apparent in post-pharyngula development. Due to the solid nasohypophyseal plate, the post-optic ectomesenchyme of the lamprey fails to grow rostromedially to form the medial nasal septum as in gnathostomes, but forms the upper lip instead. The gnathostome jaw may thus have arisen through a process of ontogenetic repatterning, in which a heterotopic shift of mesenchyme-epithelial relationships would have been involved. Further identification of shifts in tissue interaction and expression of regulatory genes are necessary to describe the evolution of the jaw fully from the standpoint of evolutionary developmental biology. PMID:11604127

  6. Root canal therapy for the prevention of osteonecrosis of the jaws: an evidence-based clinical update.

    PubMed

    Kyrgidis, Athanassios; Arora, Amit; Lyroudia, Kleoniki; Antoniades, Konstantinos

    2010-12-01

    Osteonecrosis of the jaws is an adverse effect of bone preservation treatment. There is a sufficient body of evidence to associate osteonecrosis of the jaws development with dental extractions and trauma caused from ill-fitting dentures. In this review, we critically appraise available evidence about the clinical efficacy of root canal therapy in patients receiving bisphosphonates.We review a series of theories to explain why endodontic treatment is a safe clinical intervention to prevent osteonecrosis of the jaws in patients receiving bisphosphonates. Root canal therapy could postpone or even eradicate the need for dental extractions of carious teeth in patients on bisphosphonates who may develop osteonecrosis of the jaws. Patients receiving bisphosphonates should be offered the full range of preventive care to reduce their risk to both dental caries and periodontal disease, so that the need for both endodontic therapy and dental extractions will be reduced. Implementing such a strategy would require both practitioner and patient education through the combined efforts of medical and dental societies. Such an approach is justified, as the risk of compromising the oral health of patients on bisphosphonates undertaking endodontic treatment is negligible compared with the benefit from avoiding dental extractions.

  7. Jaw motion during gum-chewing in children with primary dentition.

    PubMed

    Kubota, Naoko; Hayasaki, Haruaki; Saitoh, Issei; Iwase, Yoko; Maruyama, Tomoaki; Inada, Emi; Hasegawa, Hiroko; Yamada, Chiaki; Takemoto, Yoshihiko; Matsumoto, Yuko; Yamasaki, Youichi

    2010-01-01

    This study was undertaken to characterize jaw motion during mastication in children with primary dentition and to compare jaw motion with that in adults. The means and the variances of the traditional parameters for the chewing cycle, i.e., duration, excursive ranges and 3-D distances of travel at the lower incisor, molars and condyles were analyzed and compared in 23 children and 25 female adults. The duration of opening in children was significantly shorter than that of adults. Significant differences between children and adults were observed in lateral and vertical excursion of the incisor, lateral excursion at the molars, and vertical excursion at the condyles. Many of these measurements had larger between-subject and between-cycle variances in children than adults, suggesting that chewing motion in children has not yet matured. The results of this study indicate that chewing motion in children is different from that of adults.

  8. Dielectric elastomer actuators for facial expression

    NASA Astrophysics Data System (ADS)

    Wang, Yuzhe; Zhu, Jian

    2016-04-01

    Dielectric elastomer actuators have the advantage of mimicking the salient feature of life: movements in response to stimuli. In this paper we explore application of dielectric elastomer actuators to artificial muscles. These artificial muscles can mimic natural masseter to control jaw movements, which are key components in facial expressions especially during talking and singing activities. This paper investigates optimal design of the dielectric elastomer actuator. It is found that the actuator with embedded plastic fibers can avert electromechanical instability and can greatly improve its actuation. Two actuators are then installed in a robotic skull to drive jaw movements, mimicking the masseters in a human jaw. Experiments show that the maximum vertical displacement of the robotic jaw, driven by artificial muscles, is comparable to that of the natural human jaw during speech activities. Theoretical simulations are conducted to analyze the performance of the actuator, which is quantitatively consistent with the experimental observations.

  9. 2,3,7,8-Tetrachlorodibenzo-p-dioxin toxicity in the zebrafish embryo: altered regional blood flow and impaired lower jaw development.

    PubMed

    Teraoka, Hiroki; Dong, Wu; Ogawa, Shuji; Tsukiyama, Shusaku; Okuhara, Yuji; Niiyama, Masayoshi; Ueno, Naoto; Peterson, Richard E; Hiraga, Takeo

    2002-02-01

    The effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure on regional red blood cell (RBC) perfusion rate, as an index of blood flow, and lower jaw development were investigated quantitatively in zebrafish embryos (Danio rerio) during early development. As revealed by observation of live embryos and alcian-blue staining, TCDD retarded lower jaw development in a concentration-dependent manner with only a minor inhibitory effect on total body length. Both inhibitory effects were significant as early as 60 h postfertilization (hpf), at which time the area of goosecoid (gsc) mRNA expression was clearly reduced in the lower jaw. To examine effects of TCDD on RBC perfusion rate, time-lapse recording was performed using a digital video camera attached to a light microscope. TCDD did not show marked effects on RBC perfusion rate until 72 hpf, when vessel-specific effects emerged. TCDD severely inhibited RBC perfusion rate in intersegmental arteries of the trunk, but only modestly and slightly inhibited RBC perfusion rate in certain vessels of the head such as the central arteries and optic vein. Conversely, at both 72 and 84 hpf, TCDD significantly increased RBC perfusion rate in the hypobranchial artery branching to the lower jaw primordia, and then reduced it at 96 hpf. RBC perfusion rate in all vessels examined in TCDD-exposed embryos was inhibited at 96 hpf. The zebrafish aryl hydrocarbon receptor 2 (zfAhR2) mRNA was strongly expressed in the lower jaw primordia at 48 hpf, and expression of this transcript was augmented by TCDD treatment. Thus, TCDD exposure of the zebrafish embryo has a disruptive effect on local circulation and lower jaw cartilage growth. Initially, TCDD may act directly on the lower jaw primordia to impair lower jaw development. Reductions in hypobranchial RBC perfusion rate occurred well after the initial retardation in lower jaw development had become apparent, and may contribute further to the effect.

  10. Determination of capacity of single-toggle jaw crusher, taking into account parameters of kinematics of its working mechanism

    NASA Astrophysics Data System (ADS)

    Golikov, N. S.; Timofeev, I. P.

    2018-05-01

    Efficiency increase of jaw crushers makes the foundation of rational kinematics and stiffening of the elements of the machine possible. Foundation of rational kinematics includes establishment of connection between operation mode parameters of the crusher and its technical characteristics. The main purpose of this research is just to establish such a connection. Therefore this article shows analytical procedure of getting connection between operation mode parameters of the crusher and its capacity. Theoretical, empirical and semi-empirical methods of capacity determination of a single-toggle jaw crusher are given, taking into account physico-mechanical properties of crushed material and kinematics of the working mechanism. When developing a mathematical model, the method of closed vector polygons by V. A. Zinoviev was used. The expressions obtained in the article give an opportunity to solve important scientific and technical problems, connected with finding the rational kinematics of the jaw crusher mechanism, carrying out a comparative assessment of different crushers and giving the recommendations about updating the available jaw crushers.

  11. Dietary Correlates of Primate Masticatory Muscle Fiber Architecture.

    PubMed

    Hartstone-Rose, Adam; Deutsch, Ashley R; Leischner, Carissa L; Pastor, Francisco

    2018-02-01

    Analyses of masticatory muscle architecture-specifically fascicle length (FL; a correlate of muscle stretch and contraction speed) and physiological cross-sectional area (PCSA; a correlate of force)-reveal soft-tissue dietary adaptations. For instance, consumers of large, soft foods are expected to have relatively long FL, while consumers of obdurate foods are expected to have relatively high PCSA. Unfortunately, only a few studies have analyzed these variables across large primate samples-an order of particular interest because it is our own. Previous studies found that, in strepsirrhines, force variables (PCSA and muscle masses; MM) scale with isometry or slight positive allometry, while the body size corrected FL residuals correlate with food sizes. However, a study of platyrrhines using different methods (in which the authors physically cut muscles between fascicles) found very different trends: negative allometry for both the stretch and force variables. Here, we apply the methods used in the strepsirrhine study (chemical dissection of fascicles to ensure full length measurements) to reevaluate these trends in platyrrhines and extend this research to include catarrhines. Our results conform to the previous strepsirrhine trends: there is no evidence of negative allometry in platyrrhines. Rather, in primates broadly and catarrhines specifically, MM and PCSA scale with isometry or positive allometry. When examining size-adjusted variables, it is clear that fascicle lengths (especially those of the temporalis muscle) correlate with diet: species that consume soft, larger, foods have longer masticatory fiber lengths which would allow them to open their jaws to wider gape angles. Anat Rec, 301:311-324, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  12. 15. NORTH ELEVATION OF UPPER ORE BIN, CHUTE, AND JAW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. NORTH ELEVATION OF UPPER ORE BIN, CHUTE, AND JAW CRUSHER, LOOKING SOUTH FROM END OF CONVEYOR PLATFORM. NOTICE THE THREE ORE BIN CONTROL DOORS, CORRESPONDING TO SEPARATE COMPARTMENTS OF THE BIN. - Skidoo Mine, Park Route 38 (Skidoo Road), Death Valley Junction, Inyo County, CA

  13. Two new species of shovel-jaw carp Onychostoma (Teleostei: Cyprinidae) from southern Vietnam.

    PubMed

    Hoang, Huy Duc; Pham, Hung Manh; Tran, Ngan Trong

    2015-05-22

    Two new species of large shovel-jaw carps in the genus Onychostoma are described from the upper Krong No and middle Dong Nai drainages of the Langbiang Plateau in southern Vietnam. These new species are known from streams in montane mixed pine and evergreen forests between 140 and 1112 m. Their populations are isolated in the headwaters of the upper Sre Pok River of the Mekong basin and in the middle of the Dong Nai basin. Both species are differentiated from their congeners by a combination of the following characters: transverse mouth opening width greater than head width, 14-17 predorsal scales, caudal-peduncle length 3.9-4.2 times in SL, no barbels in adults and juveniles, a strong serrated last simple ray of the dorsal fin, and small eye diameter (20.3-21.5% HL). Onychostoma krongnoensis sp. nov. is differentiated from Onychostoma dongnaiensis sp. nov. by body depth (4.0 vs. 3.2 times in SL), predorsal scale number (14-17 vs. 14-15), dorsal-fin length (4.5 vs. 4.2 times in SL), caudal-peduncle length (3.9 vs. 4.2 times in SL), colour in life (dark vs. bright), and by mitochondrial DNA (0.2% sequence divergence). Molecular evidence indicates that both species are members of Onychostoma and are distinct from all congeners sampled (uncorrected sequence divergences at the 16S rRNA gene of >2.0% for all Onychostoma for which homologous 16S rRNA sequences are available).

  14. [Florid cemento-osseous dysplasia of the jaws].

    PubMed

    Benazzou, S; Boulaadas, M; El Ayoubi, A; Nazih, N; Essakalli, L; Kzadri, M

    2011-06-01

    Florid cemento-osseous dysplasia is a benign and rare tumor of the jaws. It is more commonly seen in middle-aged black women. Most cases are asymptomatic and are found during routine radiographic examination. We report two complicated cases of florid cemento-osseous dysplasia, one with facial deformity and the other with chronic osteitis. The diagnosis of florid cemento-osseous dysplasia is based on clinical and radiological features. The lesions are commonly bilateral and symmetrical. Copyright © 2011. Published by Elsevier Masson SAS.

  15. Pediatric Odontogenic Cysts of the Jaws.

    PubMed

    Arce, Kevin; Streff, Christopher S; Ettinger, Kyle S

    2016-02-01

    Odontogenic cysts represent a common form of pathology of the jaws, and the natural history, clinicopathologic findings, and appropriate management strategies are important to the oral and maxillofacial surgeon. Odontogenic cysts in the pediatric populations are important pathologic entities given their potential impact on the growth and development of the maxillofacial complex. Inappropriate management strategies can severely affect the form and function of the growing child. Categorizing pediatric odontogenic cysts into inflammatory or developmental causes provides a convenient way of conceptualizing these various entities and helps facilitate the appropriate diagnosis and the subsequent management. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. The biological basis of treating jaw discrepancies: An interplay of mechanical forces and skeletal configuration.

    PubMed

    Karamesinis, Konstantinos; Basdra, Efthimia K

    2018-05-01

    Jaw discrepancies and malrelations affect a large proportion of the general population and their treatment is of utmost significance for individuals' health and quality of life. The aim of their therapy is the modification of aberrant jaw development mainly by targeting the growth potential of the mandibular condyle through its cartilage, and the architectural shape of alveolar bone through a suture type of structure, the periodontal ligament. This targeted treatment is achieved via external mechanical force application by using a wide variety of intraoral and extraoral appliances. Condylar cartilage and sutures exhibit a remarkable plasticity due to the mechano-responsiveness of the chondrocytes and the multipotent mesenchymal cells of the sutures. The tissues respond biologically and adapt to mechanical force application by a variety of signaling pathways and a final interplay between the proliferative activity and the differentiation status of the cells involved. These targeted therapeutic functional alterations within temporo-mandibular joint ultimately result in the enhancement or restriction of mandibular growth, while within the periodontal ligament lead to bone remodeling and change of its architectural structure. Depending on the form of the malrelation presented, the above treatment approaches, in conjunction or separately, lead to the total correction of jaw discrepancies and the achievement of facial harmony and function. Overall, the treatment of craniofacial and jaw anomalies can be seen as an interplay of mechanical forces and adaptations occurring within temporo-mandibular joint and alveolar bone. The aim of the present review is to present up-to-date knowledge on the mechano-biology behind jaw growth modification and alveolar bone remodeling. Furthermore, future molecular targeted therapeutic strategies are discussed aiming at the improvement of mechanically-driven chondrogenesis and osteogenesis. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. The homeobox gene Msx in development and transdifferentiation of jellyfish striated muscle.

    PubMed

    Galle, Sabina; Yanze, Nathalie; Seipel, Katja

    2005-01-01

    Bilaterian Msx homeobox genes are generally expressed in areas of cell proliferation and in association with multipotent progenitor cells. Likewise, jellyfish Msx is expressed in progenitor cells of the developing entocodon, a cell layer giving rise to the striated and smooth muscles of the medusa. However, in contrast to the bilaterian homologs, Msx gene expression is maintained at high levels in the differentiated striated muscle of the medusa in vivo and in vitro. This tissue exhibits reprogramming competence. Upon induction, the Msx gene is immediately switched off in the isolated striated muscle undergoing transdifferentiation, to be upregulated again in the emerging smooth muscle cells which, in a stem cell like manner, undergo quantal cell divisions producing two cell types, a proliferating smooth muscle cell and a differentiating nerve cell. This study indicates that the Msx protein may be a key component of the reprogramming machinery responsible for the extraordinary transdifferentation and regeneration potential of striated muscle in the hydrozoan jellyfish.

  18. A Retrospective Analysis of Radiographic Jaw Findings in Young Women; Prevalence and Predictors

    PubMed Central

    El Khateeb, Sara M.; Abu-Hammad, Osama; Fadel, Hani; Dar-Odeh, Najla

    2017-01-01

    Aims and Objectives: To determine the prevalence and types of jaw pathologic findings as detected in panoramic radiographs of a sample of young women attending a teaching hospital in Al Madinah Al Munawarah, Saudi Arabia, and to determine the most important factors that predict the occurrence of jaw pathologic findings. Materials and Methods: The electronic clinical files of a representative sample of female patients who attended the outpatient dental clinics were retrieved. Patients were aged 18 to 25 years. Types of pathologic radiographic jaw findings and their prevalence were determined through screening of panoramic radiographs. Data were analyzed using the statistical analysis software [SPSS version 21 (IBM Corp.)]. Multiple linear regression was used to explore the significance of some types of dental lesions as predictor variables for the occurrence of jaw pathologic findings. Results: A total of 190 patients (mean age, 22.4 ± 2.46 years) were included in the study. Periapical lesions, retained roots, and alveolar bone loss were detected in 53.6%, 24.8%, and 17.4% of the participants, respectively. Other odontogenic abnormalities such as supernumerary and impacted teeth (6.4% and 33.7%, respectively) were also detected. Patients' age was found to be a good predictor for alveolar bone loss and number of periapical lesions (P ≤ 0.05). Conclusions: A high prevalence of periapical lesions, retained roots, and alveolar bone loss was found among a sample of young female dental attendees, as shown by their panoramic radiographs. Further studies are needed to explore potential risk factors for such a noticeable trend of poor oral health, and the needed strategies to counteract this trend. PMID:28316945

  19. Effect of therapeutic jaw exercise on temporomandibular disorders in individuals with chronic whiplash-associated disorders.

    PubMed

    Klobas, Luciano; Axelsson, Susanna; Tegelberg, Ake

    2006-11-01

    The aim of this study was to investigate the effect of a specific therapeutic jaw exercise on the temporomandibular disorders of patients with chronic whiplash-associated disorders. Ninety-four consecutive patients with whiplash-related conditions were referred to and accepted for a treatment period at a center for functional evaluation and rehabilitation during 2001-2002. The patients followed a program of physical therapy, occupational therapy, and pain management. At the start of their stay, they were examined by a physician specialized in rehabilitation medicine and also by a dentist who performed a functional examination of the stomatognathic system. Of the 93 patients who accepted participation in the study, 55 were diagnosed with temporomandibular disorders and chronic whiplash-associated disorders in accordance with the inclusion criteria. They were randomized into a jaw exercise group (n = 25), who performed specific therapeutic jaw exercises, and a control group (n = 30). Both groups undertook the whiplash rehabilitation program at the center. There were no inter- or intra-group differences in symptoms and signs of temporomandibular disorders at baseline, nor at the 3-week and 6-month follow-ups, except for an increase of maximum active mouth-opening capacity in the control group. In conclusion, the therapeutic jaw exercises, in addition to the regular whiplash rehabilitation program, did not reduce symptoms and signs of temporomandibular disorders in patients with chronic whiplash-associated disorders.

  20. A fixed-jaw method to protect critical organs during intensity-modulated radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Jiayun; Chen, Xinyuan; Huang, Manni, E-mail: dai_jianrong@163.com

    2014-01-01

    Intensity-modulated radiotherapy (IMRT) plays an important role in cancer radiotherapy. For some patients being treated with IMRT, the extremely low tolerances of critical organs (such as lens, ovaries, and testicles) cannot be met during treatment planning. The aim of this article is to introduce a new planning method to overcome that problem. In current planning practice, jaw positions are automatically set to cover all target volumes by the planning system (e.g., Pinnacle{sup 3} system). Because of such settings, critical organs may be fully blocked by the multileaf collimator (MLC), but they still sit in the field that is shaped bymore » collimator jaws. These critical organs receive doses from the transmission and leakage of MLC leaves. We manually fixed jaw positions to block them to further reduce such doses. This method has been used for different treatment sites in our clinic, and it was thoroughly evaluated in patients with radical hysterectomy plus ovarian transposition after surgery. For each patient, 2 treatment plans were designed with the same optimization parameters: the original plan with automatically chosen jaw positions (called O-plan) and the plan with fixed-jaw positions (named F-plan). In the F-plan, the jaws were manually fixed to block the ovaries. For target coverage, the mean conformity index (CI) of the F-plan (1.28 ± 0.02) was remarkably lower than that of the O-plan (1.53 ± 0.09) (p < 0.05). The F-plan and the O-plan performed similarly in target dose homogeneity. Meanwhile, for the critical organ sparing, the mean dose of both ovaries were much lower in the F-plan than that in the O-plan (p < 0.05). The V{sub 20}, V{sub 30}, and V{sub 40} of bladder were also lower in the F-plan (93.57 ± 1.98, 73.99 ± 5.76, and 42.33 ± 3.7, respectively) than those in the O-plan (97.98 ± 1.11, 85.07 ± 4.04, and 49.71 ± 3.63, respectively) (p < 0.05). The maximum dose to the spinal cord planning organ at risk (OAR) volume (PRV) in the O

  1. Homologous Recombination—Experimental Systems, Analysis and Significance

    PubMed Central

    Kuzminov, Andrei

    2014-01-01

    Homologous recombination is the most complex of all recombination events that shape genomes and produce material for evolution. Homologous recombination events are exchanges between DNA molecules in the lengthy regions of shared identity, catalyzed by a group of dedicated enzymes. There is a variety of experimental systems in E. coli and Salmonella to detect homologous recombination events of several different kinds. Genetic analysis of homologous recombination reveals three separate phases of this process: pre-synapsis (the early phase), synapsis (homologous strand exchange) and post-synapsis (the late phase). In E. coli, there are at least two independent pathway of the early phase and at least two independent pathways of the late phase. All this complexity is incongruent with the originally ascribed role of homologous recombination as accelerator of genome evolution: there is simply not enough duplication and repetition in enterobacterial genomes for homologous recombination to have a detectable evolutionary role, and therefore not enough selection to maintain such a complexity. At the same time, the mechanisms of homologous recombination are uniquely suited for repair of complex DNA lesions called chromosomal lesions. In fact, the two major classes of chromosomal lesions are recognized and processed by the two individual pathways at the early phase of homologous recombination. It follows, therefore, that homologous recombination events are occasional reflections of the continual recombinational repair, made possible in cases of natural or artificial genome redundancy. PMID:26442506

  2. The effect of transcutaneous application of carbon dioxide (CO{sub 2}) on skeletal muscle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oe, Keisuke; Ueha, Takeshi; Sakai, Yoshitada, E-mail: sakai.yoshitada@gm.himeji-du.ac.jp

    2011-04-01

    Highlights: {yields} PGC-1{alpha} is up-regulated as a result of exercise such as mitochondrial biogenesis and muscle fiber-type switching, and up-regulation of VEGF. {yields} We demonstrated transcutaneous application of CO{sub 2} up-regulated the gene expression of PGC-1{alpha}, SIRT1 and VEGF, and instance of muscle fiber switching. {yields} Transcutaneous application of CO{sub 2} may cause similar effect to aerobic exercise in skeletal muscle. -- Abstract: In Europe, carbon dioxide therapy has been used for cardiac disease and skin problems for a long time. However there have been few reports investigating the effects of carbon dioxide therapy on skeletal muscle. Peroxisome proliferators-activated receptormore » (PPAR)-gamma coactivator-1 (PGC-1{alpha}) is up-regulated as a result of exercise and mediates known responses to exercise, such as mitochondrial biogenesis and muscle fiber-type switching, and neovascularization via up-regulation of vascular endothelial growth factor (VEGF). It is also known that silent mating type information regulation 2 homologs 1 (SIRT1) enhances PGC-1{alpha}-mediated muscle fiber-type switching. Previously, we demonstrated transcutaneous application of CO{sub 2} increased blood flow and a partial increase of O{sub 2} pressure in the local tissue known as the Bohr effect. In this study, we transcutaneously applied CO{sub 2} to the lower limbs of rats, and investigated the effect on the fast muscle, tibialis anterior (TA) muscle. The transcutaneous CO{sub 2} application caused: (1) the gene expression of PGC-1{alpha}, silent mating type information regulation 2 homologs 1 (SIRT1) and VEGF, and increased the number of mitochondria, as proven by real-time PCR and immunohistochemistry, (2) muscle fiber switching in the TA muscle, as proven by isolation of myosin heavy chain and ATPase staining. Our results suggest the transcutaneous application of CO{sub 2} may have therapeutic potential for muscular strength recovery resulting from

  3. Homology of the Fifth Epibranchial and Accessory Elements of the Ceratobranchials among Gnathostomes: Insights from the Development of Ostariophysans

    PubMed Central

    Carvalho, Murilo; Bockmann, Flávio Alicino; de Carvalho, Marcelo Rodrigues

    2013-01-01

    Epibranchials are among the main dorsal elements of the gill basket in jawed vertebrates (Gnathostomata). Among extant fishes, chondrichthyans most resemble the putative ancestral condition as all branchial arches possess every serially homologous piece. In osteichthyans, a primitive rod-like epibranchial 5, articulated to ceratobranchial 5, is absent. Instead, epibranchial 5 of many actinopterygians is here identified as an accessory element attached to ceratobranchial 4. Differences in shape and attachment of epibranchial 5 in chondrichthyans and actinopterygians raised suspicions about their homology, prompting us to conduct a detailed study of the morphology and development of the branchial basket of three ostariophysans (Prochilodus argenteus, Characiformes; Lophiosilurus alexandri and Pseudoplatystoma corruscans, Siluriformes). Results were interpreted within a phylogenetic context of major gnathostome lineages. Developmental series strongly suggest that the so-called epibranchial 5 of actinopterygians does not belong to the epal series because it shares the same chondroblastic layer with ceratobranchial 4 and its ontogenetic emergence is considerably late. This neomorphic structure is called accessory element of ceratobranchial 4. Its distribution among gnathostomes indicates it is a teleost synapomorphy, occurring homoplastically in Polypteriformes, whereas the loss of the true epibranchial 5 is an osteichthyan synapomorphy. The origin of the accessory element of ceratobranchial 4 appears to have occurred twice in osteichthyans, but it may have a single origin; in this case, the accessory element of ceratobranchial 4 would represent a remnant of a series of elements distally attached to ceratobranchials 1–4, a condition totally or partially retained in basal actinopterygians. Situations wherein a structure is lost while a similar neomorphic element is present may lead to erroneous homology assessments; these can be avoided by detailed morphological and

  4. Msx-1 is suppressed in bisphosphonate-exposed jaw bone analysis of bone turnover-related cell signalling after bisphosphonate treatment.

    PubMed

    Wehrhan, F; Hyckel, P; Amann, K; Ries, J; Stockmann, P; Schlegel, Ka; Neukam, Fw; Nkenke, E

    2011-05-01

    Bone-destructive disease treatments include bisphosphonates and antibodies against receptor activator for nuclear factor κB ligand (aRANKL). Osteonecrosis of the jaw (ONJ) is a side-effect. Aetiopathology models failed to explain their restriction to the jaw. The osteoproliferative transcription factor Msx-1 is expressed constitutively only in mature jaw bone. Msx-1 expression might be impaired in bisphosphonate-related ONJ. This study compared the expression of Msx-1, Bone Morphogenetic Protein (BMP)-2 and RANKL, in ONJ-affected and healthy jaw bone. An automated immunohistochemistry-based alkaline phosphatase-anti-alkaline phosphatase method was used on ONJ-affected and healthy jaw bone samples (n = 20 each): cell-number ratio (labelling index, Bonferroni adjustment). Real-time RT-PCR was performed to quantitatively compare Msx-1, BMP-2, RANKL and GAPDH mRNA levels. Labelling indices were significantly lower for Msx-1 (P < 0.03) and RANKL (P < 0.003) and significantly higher (P < 0.02) for BMP-2 in ONJ compared with healthy bone. Expression was sevenfold lower (P < 0.03) for Msx-1, 22-fold lower (P < 0.001) for RANKL and eightfold higher (P < 0.02) for BMP-2 in ONJ bone. Msx-1, RANKL suppression and BMP-2 induction were consistent with the bisphosphonate-associated osteopetrosis and impaired bone remodelling in BP- and aRANKL-induced ONJ. Msx-1 suppression suggested a possible explanation of the exclusivity of ONJ in jaw bone. Functional analyses of Msx-1- RANKL interaction during bone remodelling should be performed in the future. © 2011 John Wiley & Sons A/S.

  5. [The clinical and X-ray classification of osteonecrosis of the low jaw].

    PubMed

    Medvedev, Iu A; Basin, E M; Sokolina, I A

    2013-01-01

    To elaborate a clinical and X-ray classification of osteonecrosis of the low jaw in people with desomorphine or pervitin addiction. Ninety-two patients with drug addiction who had undergone orthopantomography, direct frontal X-ray of the skull, and multislice computed tomography, followed by multiplanar and three-dimensional imaging reconstruction were examined. One hundred thirty four X-ray films and 74 computed tomographic images were analyzed. The authors proposed a clinical and X-ray classification of osteonecrosis of the low jaw in people with desomorphine or pervitin addiction and elaborated recommendations for surgical interventions on the basis of the developed classification. The developed clinical and X-ray classification and recommendations for surgical interventions may be used to treat osteonecroses of various etiology.

  6. Bisphosphonate-associated Osteonecrosis of the jaws and endodontic treatment: two case reports.

    PubMed

    Goodell, Gary

    2006-01-01

    Bisphosphonates are commonly used in the management of bone diseases, such as osteoporosis and Paget's disease, and to prevent bone complications and treat malignant hypercalcemia in certain types of cancer. Although this class of drugs has clear evidence of medical efficacy, there are an, increasing number of reports of bisphosphonate-associated osteonecrosis of the jaws that have substantial implications for the patient and for the treating dentist. This article reviews proposed possible mechanisms of bisphosphonate-associated osteonecrosis of the jaws and describes two case reports where non-surgical and surgical root canal treatment were precipitating factors. Recommendations for prevention and treatment of the disease follow. Thorough history-taking and timely consultation with the patient's oral surgeon and oncologist are emphasized.

  7. Raman Spectroscopic Analyses of Jaw Periosteal Cell Mineralization

    PubMed Central

    Brauchle, Eva; Carvajal Berrio, Daniel; Rieger, Melanie; Schenke-Layland, Katja; Reinert, Siegmar

    2017-01-01

    To achieve safer patient treatments, serum-free cell culture conditions have to be established for cell therapies. In previous studies, we demonstrated that serum-free culture favored the proliferation of MSCA-1+ osteoprogenitors derived from the jaw periosteum. In this study, the in vitro formation of bone-specific matrix by MSCA-1+ jaw periosteal cells (JPCs, 3 donors) was assessed and compared under serum-free and serum-containing media conditions using the marker-free Raman spectroscopy. Based on a standard fluorescence assay, JPCs from one patient were not able to mineralize under serum-containing culture conditions, whereas the other cells showed similar mineralization levels under both conditions. Raman spectra from mineralizing MSCA-1+ JPCs revealed higher levels of hydroxyapatite formation and higher mineral to matrix ratios under serum-free culture conditions. Higher carbonate to phosphate ratios and higher crystallinity in JPCs cultured under serum-containing conditions indicated immature bone formation. Due to reduced collagen production under serum-free conditions, we obtained significant differences in collagen maturity and proline to hydroxyproline ratios compared to serum-free conditions. We conclude that Raman spectroscopy is a useful tool for the assessment and noninvasive monitoring of in vitro mineralization of osteoprogenitor cells. Further studies should extend this knowledge and improve JPC mineralization by optimizing culture conditions. PMID:28232849

  8. Sexually dimorphic venom proteins in long-jawed orb-weaving spiders (Tetragnatha) comprise novel gene families

    PubMed Central

    Zobel-Thropp, Pamela A.; Bulger, Emily A.; Cordes, Matthew H.J.; Binford, Greta J.; Gillespie, Rosemary G.

    2018-01-01

    Venom has been associated with the ecological success of many groups of organisms, most notably reptiles, gastropods, and arachnids. In some cases, diversification has been directly linked to tailoring of venoms for dietary specialization. Spiders in particular are known for their diverse venoms and wide range of predatory behaviors, although there is much to learn about scales of variation in venom composition and function. The current study focuses on venom characteristics in different sexes within a species of spider. We chose the genus Tetragnatha (Tetragnathidae) because of its unusual courtship behavior involving interlocking of the venom delivering chelicerae (i.e., the jaws), and several species in the genus are already known to have sexually dimorphic venoms. Here, we use transcriptome and proteome analyses to identify venom components that are dimorphic in Tetragnatha versicolor. We present cDNA sequences including unique, male-specific high molecular weight proteins that have remote, if any, detectable similarity to known venom components in spiders or other venomous lineages and have no detectable homologs in existing databases. While the function of these proteins is not known, their presence in association with the cheliceral locking mechanism during mating together with the presence of prolonged male-male mating attempts in a related, cheliceral-locking species (Doryonychus raptor) lacking the dimorphism suggests potential for a role in sexual communication. PMID:29876146

  9. Effects of incisor extraction on jaw and tongue motor representations within face sensorimotor cortex of adult rats.

    PubMed

    Avivi-Arber, Limor; Lee, Jye-Chang; Sessle, Barry J

    2010-04-01

    Loss of teeth is associated with changes in somatosensory inputs and altered patterns of mastication, but it is unclear whether tooth loss is associated with changes in motor representations within face sensorimotor cortex of rats. We used intracortical microstimulation (ICMS) and recordings of cortically evoked muscle electromyographic (EMG) activities to test whether changes occur in the ICMS-defined motor representations of the left and right jaw muscles [masseter, anterior digastric (LAD, RAD)] and tongue muscle [genioglossus (GG)] within the cytoarchitectonically defined face primary motor cortex (face-M1) and adjacent face primary somatosensory cortex (face-S1) 1 week following extraction of the right mandibular incisor in anesthetized (ketamine-HCl) adult male Sprague-Dawley rats. Under local and general anesthesia, an "extraction" group (n = 8) received mucoalveolar bone surgery and extraction of the mandibular right incisor. A "sham-extraction" group (n = 6) received surgery with no extraction. A "naive" group (n = 6) had neither surgery nor extraction. Data were compared by using mixed-model repeated-measures ANOVA. Dental extraction was associated with a significantly increased number of sites within face-M1 and face-S1 from which ICMS evoked RAD EMG activities, a lateral shift of the RAD and LAD centers of gravity within face-M1, shorter onset latencies of ICMS-evoked GG activities within face-M1 and face-S1, and an increased number of sites within face-M1 from which ICMS simultaneously evoked RAD and GG activities. Our novel findings suggest that dental extraction may be associated with significant neuroplastic changes within the rat's face-M1 and adjacent face-S1 that may be related to the animal's ability to adapt to the altered oral state. (c) 2009 Wiley-Liss, Inc.

  10. Fivebranes and 3-manifold homology

    NASA Astrophysics Data System (ADS)

    Gukov, Sergei; Putrov, Pavel; Vafa, Cumrun

    2017-07-01

    Motivated by physical constructions of homological knot invariants, we study their analogs for closed 3-manifolds. We show that fivebrane compactifications provide a universal description of various old and new homological invariants of 3-manifolds. In terms of 3d/3d correspondence, such invariants are given by the Q-cohomology of the Hilbert space of partially topologically twisted 3d N=2 theory T[ M 3] on a Riemann surface with defects. We demonstrate this by concrete and explicit calculations in the case of monopole/Heegaard Floer homology and a 3-manifold analog of Khovanov-Rozansky link homology. The latter gives a categorification of Chern-Simons partition function. Some of the new key elements include the explicit form of the S-transform and a novel connection between categorification and a previously mysterious role of Eichler integrals in Chern-Simons theory.

  11. Pathological and clinical features of primary osseous tumours of the jaw.

    PubMed

    Sarkar, Reena

    2014-11-01

    Primary bone tumors of the jaw are rare. The neoplastic cells in these tumors are the osteoblasts and osteoclasts. The gnathic bone tumors have also been referred to as borderline. The clinicopathologic approach towards these bony lesions have been reviewed.

  12. A description on pharyngeal jaw apparatus and diets of halfbeak fish Zenarchopterus buffonis (Valenciennes 1847) in Malaysian waters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abidin, Diana Atiqah Zainal, E-mail: diana.atiqah@gmail.com; Hashim, Marina; Ghaffar, Mazlan Abd., E-mail: magfish05@yahoo.com

    2015-09-25

    Information on the feeding mechanism and diet of halfbeak fish species in harsh estuarine environment ecosystem is still lacking. The present study investigates the fine structure of pharyngeal jaw apparatus and diets of halfbeak fish Zenarchopterus buffonis. A total of 84 halfbeak fish samples have been collected from the coastal water of Peninsular Malaysia using fishing rod. Scanning electron microscopy was used to examine the micrographs of fine microstructure of the pharyngeal teeth. The fundamental anatomy of pharyngeal jaw apparatus displayed that the upper pharyngeal jaw (third pharyngobranchials) displays larger size of hook-like or tricuspid teeth which was analogous tomore » tricuspid morphology. The lower pharyngeal jaw (fifth ceratobranchial) bears mainly conical teeth and appears triangular shape with two, short projections. The estimated TROPH values (1 − 3.2±0.55) denoted that halfbeak fish were omnivores in nature. The findings of this study was found to be useful as a baseline information for a better representation of the trophic flows associated with large medium and small surface water fishes.« less

  13. A description on pharyngeal jaw apparatus and diets of halfbeak fish Zenarchopterus buffonis (Valenciennes 1847) in Malaysian waters

    NASA Astrophysics Data System (ADS)

    Abidin, Diana Atiqah Zainal; Hashim, Marina; Das, Simon K.; Ghaffar, Mazlan Abd.

    2015-09-01

    Information on the feeding mechanism and diet of halfbeak fish species in harsh estuarine environment ecosystem is still lacking. The present study investigates the fine structure of pharyngeal jaw apparatus and diets of halfbeak fish Zenarchopterus buffonis. A total of 84 halfbeak fish samples have been collected from the coastal water of Peninsular Malaysia using fishing rod. Scanning electron microscopy was used to examine the micrographs of fine microstructure of the pharyngeal teeth. The fundamental anatomy of pharyngeal jaw apparatus displayed that the upper pharyngeal jaw (third pharyngobranchials) displays larger size of hook-like or tricuspid teeth which was analogous to tricuspid morphology. The lower pharyngeal jaw (fifth ceratobranchial) bears mainly conical teeth and appears triangular shape with two, short projections. The estimated TROPH values (1 - 3.2±0.55) denoted that halfbeak fish were omnivores in nature. The findings of this study was found to be useful as a baseline information for a better representation of the trophic flows associated with large medium and small surface water fishes.

  14. Cranial muscles in amphibians: development, novelties and the role of cranial neural crest cells

    PubMed Central

    Schmidt, Jennifer; Piekarski, Nadine; Olsson, Lennart

    2013-01-01

    -otic paraxial mesoderm in amphibians, to determine developmental causes underlying the complicated changes in cranial muscle development and architecture within amphibians, and in particular how the novel mouth apparatus in frog tadpoles evolved. This will also form a foundation for further research into the molecular mechanisms that regulate rostral head morphogenesis. Our empirical studies are discussed within a theoretical framework concerned with the evolutionary origin and developmental basis of novel anatomical structures in general. We argue that a common developmental origin is not a fool-proof guide to homology, and that a view that sees only structures without homologs as novel is too restricted, because novelties must be produced by changes in the same framework of developmental processes. At the level of developmental processes and mechanisms, novel structures are therefore likely to have homologs, and we need to develop a hierarchical concept of novelty that takes this into account. PMID:22780231

  15. Skeletal muscle O-GlcNAc transferase is important for muscle energy homeostasis and whole-body insulin sensitivity.

    PubMed

    Shi, Hao; Munk, Alexander; Nielsen, Thomas S; Daughtry, Morgan R; Larsson, Louise; Li, Shize; Høyer, Kasper F; Geisler, Hannah W; Sulek, Karolina; Kjøbsted, Rasmus; Fisher, Taylor; Andersen, Marianne M; Shen, Zhengxing; Hansen, Ulrik K; England, Eric M; Cheng, Zhiyong; Højlund, Kurt; Wojtaszewski, Jørgen F P; Yang, Xiaoyong; Hulver, Matthew W; Helm, Richard F; Treebak, Jonas T; Gerrard, David E

    2018-05-01

    Given that cellular O-GlcNAcylation levels are thought to be real-time measures of cellular nutrient status and dysregulated O-GlcNAc signaling is associated with insulin resistance, we evaluated the role of O-GlcNAc transferase (OGT), the enzyme that mediates O-GlcNAcylation, in skeletal muscle. We assessed O-GlcNAcylation levels in skeletal muscle from obese, type 2 diabetic people, and we characterized muscle-specific OGT knockout (mKO) mice in metabolic cages and measured energy expenditure and substrate utilization pattern using indirect calorimetry. Whole body insulin sensitivity was assessed using the hyperinsulinemic euglycemic clamp technique and tissue-specific glucose uptake was subsequently evaluated. Tissues were used for histology, qPCR, Western blot, co-immunoprecipitation, and chromatin immunoprecipitation analyses. We found elevated levels of O-GlcNAc-modified proteins in obese, type 2 diabetic people compared with well-matched obese and lean controls. Muscle-specific OGT knockout mice were lean, and whole body energy expenditure and insulin sensitivity were increased in these mice, consistent with enhanced glucose uptake and elevated glycolytic enzyme activities in skeletal muscle. Moreover, enhanced glucose uptake was also observed in white adipose tissue that was browner than that of WT mice. Interestingly, mKO mice had elevated mRNA levels of Il15 in skeletal muscle and increased circulating IL-15 levels. We found that OGT in muscle mediates transcriptional repression of Il15 by O-GlcNAcylating Enhancer of Zeste Homolog 2 (EZH2). Elevated muscle O-GlcNAc levels paralleled insulin resistance and type 2 diabetes in humans. Moreover, OGT-mediated signaling is necessary for proper skeletal muscle metabolism and whole-body energy homeostasis, and our data highlight O-GlcNAcylation as a potential target for ameliorating metabolic disorders. Copyright © 2018 The Authors. Published by Elsevier GmbH.. All rights reserved.

  16. An unusual case of osteonecrosis of the jaw associated with dengue fever and periodontitis.

    PubMed

    Indurkar, M S; Sethi, R

    2016-03-01

    Osteonecrosis is a disorder rarely occurring in the jaw. Dengue fever is a common mosquito-borne disease prevalent in many countries including India. The following report presents an interesting case of maxillary osteonecrosis in a middle aged male with a history of dengue infection. We also diagnosed symptoms of chronic periodontitis, which may have potentiated the necrosis. This case report will describe a novel clinical presentation and management of osteonecrosis of the jaw (ONJ) of unknown origin and a possible pathogenesis explaining the association of ONJ with dengue fever and periodontitis. © 2015 Australian Dental Association.

  17. 12. CLOSEUP OF THE CURRENT TRASH RAKELIFTING MECHANISM (CALLED 'JAWS' ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. CLOSE-UP OF THE CURRENT TRASH RAKE-LIFTING MECHANISM (CALLED 'JAWS' BY THE PRESENT OPERATORS), LOOKING WEST. THIS EQUIPMENT WAS REMOVED IN AUTUMN OF 1996. - Washington Water Power Company Post Falls Power Plant, Middle Channel Powerhouse & Dam, West of intersection of Spokane & Fourth Streets, Post Falls, Kootenai County, ID

  18. Jaw Intraosseous Lesions Biopsied Extracted From 1998 to 2010 in an Iranian Population

    PubMed Central

    Jamshidi, Shokoofeh; Shojaei, Setareh; Roshanaei, Ghodratollah; Modabbernia, Shirin; Bakhtiary, Esmaeel

    2015-01-01

    Background: Jaw bones might be potential locations for different lesions. Differences in prevalence and the type of lesions can help in designing and programming prevention procedures in health care centers. Objectives: The aim of the present study was to evaluate the prevalence of intraosseous lesions in the jaws of patients referred to diagnostic and therapeutic centers in Hamadan during 1990-2010. Patients and Methods: This cross-sectional descriptive analytical study was carried out in Hamadan in 2011. Data sheets of the subjects were used to collect all the data of patients with intraosseous lesions, including their age, gender, location of the lesion, the radiographic view of lesions, and their type and histopathological diagnoses. Data were analyzed with SPSS, using means and frequencies. Results: A total of 284 intraosseous lesions were reported in our study. The mean age of the subjects was 28.8 ± 15.2 years. The lesions were distributed in males and females almost similarly. The most prevalent lesions were cystic lesions (54.58%), manifestations of systemic conditions in jaw bones (18.3%), benign tumors (15.5%), malignant lesions (6.7%), and inflammatory lesions (4.92%), in a descending order. The most common cystic lesion was radicular cyst; the most common manifestation of systemic conditions in jaw bones was central giant cell granuloma; the most common benign tumor was ameloblastoma; the most common malignant lesion was osteosarcoma; and the most common inflammatory lesion was periapical granuloma. Conclusions: Our data provided information on the prevalence and types of intraosseous lesions among an Iranian population. This study provided baseline information to help in designing and programming procedures in health care centers in every community so that preventive therapeutic measures can be adopted. PMID:26328061

  19. DNA Repair: The Search for Homology.

    PubMed

    Haber, James E

    2018-05-01

    The repair of chromosomal double-strand breaks (DSBs) by homologous recombination is essential to maintain genome integrity. The key step in DSB repair is the RecA/Rad51-mediated process to match sequences at the broken end to homologous donor sequences that can be used as a template to repair the lesion. Here, in reviewing research about DSB repair, I consider the many factors that appear to play important roles in the successful search for homology by several homologous recombination mechanisms. See also the video abstract here: https://youtu.be/vm7-X5uIzS8. © 2018 WILEY Periodicals, Inc.

  20. Fivebranes and 3-manifold homology

    DOE PAGES

    Gukov, Sergei; Putrov, Pavel; Vafa, Cumrun

    2017-07-14

    Motivated by physical constructions of homological knot invariants, we study their analogs for closed 3-manifolds. We show that vebrane compacti cations provide a universal description of various old and new homological invariants of 3-manifolds. In terms of 3d/3d correspondence, such invariants are given by the Q-cohomology of the Hilbert space of partially topologically twisted 3d N = 2 theory T[M 3] on a Riemann surface with defects. We demonstrate this by concrete and explicit calculations in the case of monopole/Heegaard Floer homology and a 3-manifold analog of Khovanov-Rozansky link homology. The latter gives a categori cation of Chern-Simons partition function.more » Finally, some of the new key elements include the explicit form of the S-transform and a novel connection between categori cation and a previously mysterious role of Eichler integrals in Chern-Simons theory.« less

  1. Jaws for a spiral-tooth whorl: CT images reveal novel adaptation and phylogeny in fossil Helicoprion

    PubMed Central

    Tapanila, Leif; Pruitt, Jesse; Pradel, Alan; Wilga, Cheryl D.; Ramsay, Jason B.; Schlader, Robert; Didier, Dominique A.

    2013-01-01

    New CT scans of the spiral-tooth fossil, Helicoprion, resolve a longstanding mystery concerning the form and phylogeny of this ancient cartilaginous fish. We present the first three-dimensional images that show the tooth whorl occupying the entire mandibular arch, and which is supported along the midline of the lower jaw. Several characters of the upper jaw show that it articulated with the neurocranium in two places and that the hyomandibula was not part of the jaw suspension. These features identify Helicoprion as a member of the stem holocephalan group Euchondrocephali. Our reconstruction illustrates novel adaptations, such as lateral cartilage to buttress the tooth whorl, which accommodated the unusual trait of continuous addition and retention of teeth in a predatory chondrichthyan. Helicoprion exemplifies the climax of stem holocephalan diversification and body size in Late Palaeozoic seas, a role dominated today by sharks and rays. PMID:23445952

  2. Effect of hypnosis on masseter EMG recorded during the 'resting' and a slightly open jaw posture.

    PubMed

    Al-Enaizan, N; Davey, K J; Lyons, M F; Cadden, S W

    2015-11-01

    The aim of this experimental study was to determine whether minimal levels of electromyographic activity in the masseter muscle are altered when individuals are in a verified hypnotic state. Experiments were performed on 17 volunteer subjects (8 male, 9 female) all of whom gave informed consent. The subjects were dentate and had no symptoms of pain or masticatory dysfunction. Surface electromyograms (EMGs) were made from the masseter muscles and quantified by integration following full-wave rectification and averaging. The EMGs were obtained (i) with the mandible in 'resting' posture; (ii) with the mandible voluntarily lowered (but with the lips closed); (iii) during maximum voluntary clenching (MVC). The first two recordings were made before, during and after the subjects were in a hypnotic state. Susceptibility to hypnosis was assessed with Spiegel's eye-roll test, and the existence of the hypnotic state was verified by changes in ventilatory pattern. On average, EMG levels expressed as percentages of MVC were less: (i) when the jaw was deliberately lowered as opposed to being in the postural position: (ii) during hypnosis compared with during the pre- and post-hypnotic periods. However, analysis of variance followed by post hoc tests with multiple comparison corrections (Bonferroni) revealed that only the differences between the level during hypnosis and those before and after hypnosis were statistically significant (P < 0·05). As the level of masseter EMG when the mandible was in 'resting' posture was reduced by hypnosis, it appears that part of that EMG is of biological origin. © 2015 John Wiley & Sons Ltd.

  3. Evidence for existence of trunk-limb neural interaction in the corticospinal pathway.

    PubMed

    Sasaki, Atsushi; Milosevic, Matija; Sekiguchi, Hirofumi; Nakazawa, Kimitaka

    2018-03-06

    In humans, trunk muscles have an essential role in postural control as well as walking. However, little is known about the mechanisms of interaction with different muscles, especially related to how trunk muscles interact with the limbs. Contraction of muscles can modulate the corticospinal excitability not only of the contracted muscle, but also of other muscles even in the remote segments of the body. However, "remote effect" mechanism has only been examined for inter-limb interactions. The aim of our current study was to test if there are trunk-limb interactions in the corticospinal pathways. We examined corticospinal excitability of: (a) trunk muscles at rest when hands, legs and jaw muscles were contracted and; (b) hand, leg, and jaw muscles at rest when trunk muscles were contracted. We measured motor evoked potentials elicited using transcranial magnetic stimulation in the rectus abdominis, flexor digitorum superficialis, masseter, tibialis anterior muscles under the following experimental conditions: (1) participants remained relaxed (Rest); (2) during trunk contraction (Trunk); (3) during bilateral hand clenching (Hands); (4) during jaw clenching (Jaw); and (5) during bilateral ankle dorsiflexion (Legs). Each condition was performed at three different stimulation intensities and conditions were randomized between participants. We found that voluntary contraction of trunk muscle facilitated the corticospinal excitability of upper-limb and lower-limb muscles during rest state. Furthermore, voluntary contraction of upper-limb muscle also facilitated the corticospinal excitability of trunk muscles during rest state. Overall, these results suggest the existence of trunk-limb interaction in the corticospinal pathway, which is likely depended on proximity of the trunk and limb representation in the motor cortex. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. The importance of accurate muscle modelling for biomechanical analyses: a case study with a lizard skull

    PubMed Central

    Gröning, Flora; Jones, Marc E. H.; Curtis, Neil; Herrel, Anthony; O'Higgins, Paul; Evans, Susan E.; Fagan, Michael J.

    2013-01-01

    Computer-based simulation techniques such as multi-body dynamics analysis are becoming increasingly popular in the field of skull mechanics. Multi-body models can be used for studying the relationships between skull architecture, muscle morphology and feeding performance. However, to be confident in the modelling results, models need to be validated against experimental data, and the effects of uncertainties or inaccuracies in the chosen model attributes need to be assessed with sensitivity analyses. Here, we compare the bite forces predicted by a multi-body model of a lizard (Tupinambis merianae) with in vivo measurements, using anatomical data collected from the same specimen. This subject-specific model predicts bite forces that are very close to the in vivo measurements and also shows a consistent increase in bite force as the bite position is moved posteriorly on the jaw. However, the model is very sensitive to changes in muscle attributes such as fibre length, intrinsic muscle strength and force orientation, with bite force predictions varying considerably when these three variables are altered. We conclude that accurate muscle measurements are crucial to building realistic multi-body models and that subject-specific data should be used whenever possible. PMID:23614944

  5. Alcohol homologation

    DOEpatents

    Wegman, Richard W.; Moloy, Kenneth G.

    1988-01-01

    A process for the homologation of an alkanol by reaction with synthesis gas in contact with a system containing rhodium atom, ruthenium atom, iodine atom and a bis(diorganophosphino) alkane to selectivity produce the next higher homologue.

  6. Live imaging of muscle histolysis in Drosophila metamorphosis.

    PubMed

    Kuleesha, Yadav; Puah, Wee Choo; Wasser, Martin

    2016-05-04

    The contribution of programmed cell death (PCD) to muscle wasting disorders remains a matter of debate. Drosophila melanogaster metamorphosis offers the opportunity to study muscle cell death in the context of development. Using live cell imaging of the abdomen, two groups of larval muscles can be observed, doomed muscles that undergo histolysis and persistent muscles that are remodelled and survive into adulthood. To identify and characterize genes that control the decision between survival and cell death of muscles, we developed a method comprising in vivo imaging, targeted gene perturbation and time-lapse image analysis. Our approach enabled us to study the cytological and temporal aspects of abnormal cell death phenotypes. In a previous genetic screen for genes controlling muscle size and cell death in metamorphosis, we identified gene perturbations that induced cell death of persistent or inhibit histolysis of doomed larval muscles. RNA interference (RNAi) of the genes encoding the helicase Rm62 and the lysosomal Cathepsin-L homolog Cysteine proteinase 1 (Cp1) caused premature cell death of persistent muscle in early and mid-pupation, respectively. Silencing of the transcriptional co-repressor Atrophin inhibited histolysis of doomed muscles. Overexpression of dominant-negative Target of Rapamycin (TOR) delayed the histolysis of a subset of doomed and induced ablation of all persistent muscles. RNAi of AMPKα, which encodes a subunit of the AMPK protein complex that senses AMP and promotes ATP formation, led to loss of attachment and a spherical morphology. None of the perturbations affected the survival of newly formed adult muscles, suggesting that the method is useful to find genes that are crucial for the survival of metabolically challenged muscles, like those undergoing atrophy. The ablation of persistent muscles did not affect eclosion of adult flies. Live imaging is a versatile approach to uncover gene functions that are required for the survival of

  7. Concurrence of lower jaw skeletal anomalies in triploid Atlantic salmon (Salmo salar L.) and the effect on growth in freshwater.

    PubMed

    Amoroso, G; Cobcroft, J M; Adams, M B; Ventura, T; Carter, C G

    2016-12-01

    Triploid Atlantic salmon populations are associated with higher prevalence of lower jaw skeletal anomalies affecting fish performance, welfare and value deleteriously. Anomalous lower jaw can be curved downward (LJD), shortened (SJ) or misaligned (MA). Two separate groups of triploid Atlantic salmon (~12 g) with either normal lower jaw (NOR) or SJ were visually assessed four times over three months for presence and concurrence of jaw anomalies (with severity classified) and opercular shortening to understand the relatedness of these anomalous developmental processes. The prevalence of jaw anomalies increased in both groups over time (NOR group - SJ, LJD and MA combined 0-24.5%; SJ group - LJD and MA combined 17-31%). SJ and LJD occurred both independently and concurrently whereas MA exclusively concurred with them. All three anomalies could be concurrent. Severity of both LJD and SJ increased in the SJ group only. Opercular shortening recovery was observed in both groups but at a slower rate in the SJ group. The SJ group specific growth rate (SGR) was significantly (P < 0.05) lower than the NOR group. This study demonstrated the concurrence of SJ, LJD and MA and showed possible deleterious consequences deriving from the conditions. © 2016 John Wiley & Sons Ltd.

  8. Primary structure, expression and chromosomal locus of a human homolog of rat ERK3.

    PubMed

    Meloche, S; Beatty, B G; Pellerin, J

    1996-10-03

    We report the cloning and characterization of a human cDNA encoding a novel homolog of rat extracellular signal-regulated kinase 3 (ERK3). The cDNA encodes a predicted protein of 721 amino acids which shares 92% amino acid identity with rat ERK3 over their shared length. Interestingly, the human protein contains a unique extension of 178 amino acids at its carboxy terminal extremity. The human ERK3 protein also displays various degrees of homology to other members of the MAP kinases family, but does not contain the typical TXY regulatory motif between subdomains VII and VIII. Northern blot analysis revealed that ERK3 mRNA is widely distributed in human tissues, with the highest expression detected in skeletal muscle. The human ERK3 gene was mapped by fluorescence in situ hybridization to chromosome 15q21, a region associated with chromosomal abnormalities in acute nonlymphoblastic leukemias. This information should prove valuable in designing studies to define the cellular function of the ERK3 protein kinase.

  9. Kinematics and Mechanics analysis of trap-jaw ant Odontomachus monticola

    NASA Astrophysics Data System (ADS)

    Hao, Wenteng; Yao, Guang; Zhang, Xiangyu; Zhang, Deyuan

    2018-03-01

    Trap-jaw ants of the genus Odontomachus exhibit spectacularly rapid predatory and fugitive strikes. In order to reveal the extraordinary impact resistance of the apical teeth material, we analyzed the kinematics and mechanics of the closing mandibles. Odontomachus monticola is an Odontomachus species and extensive in China. We video-recorded jaw-strikes to measure the closing velocity and acceleration. The experimental results showed that O. monticola’s mandibles closed at a highest velocity of 35.42 m/s and a highest acceleration of 750,000 m/s2 within an average duration of 0.16 ms. In addition, in order to measure the strike force, we developed an extraordinary measuring method with poly (vinylidene fluoride) (PVDF) piezoelectric film. First, the dynamic calibration of the PVDF piezoelectric film was conducted, then the calibrated piezoelectric film was struck by O. monticola. Finally, the mandible strike force was calculated according to the calibration result and the output signal. The measurements results demonstrated that the strike force ranges from 102.2 N to 235.2 N, which is impressive contrast with O. monticola’s body weight.

  10. Inhibition of the AMP-activated protein kinase-α2 accentuates agonist-induced vascular smooth muscle contraction and high blood pressure in mice.

    PubMed

    Wang, Shuangxi; Liang, Bin; Viollet, Benoit; Zou, Ming-Hui

    2011-05-01

    The aim of the present study was to determine the effects and molecular mechanisms by which AMP-activated protein kinase (AMPK) regulates smooth muscle contraction and blood pressure in mice. In cultured human vascular smooth muscle cells, we observed that activation of AMPK by 5-aminoimidazole-4-carboxamide 1-β-d-ribofuranoside inhibited agonist-induced phosphorylation of myosin light chain (MLC) and myosin phosphatase targeting subunit 1 (MYPT1). Conversely, AMPK inhibition with pharmacological or genetic means potentiated agonist-induced the phosphorylation of MLC and MYPT1, whereas it inhibited both Ras homolog gene family member A and Rho-associated kinase activity. In addition, AMPK activation or Rho-associated kinase inhibition with Y27632 abolished agonist-induced phosphorylation of MLC and MYPT1. Gene silencing of p190-guanosine triphosphatase-activating protein abolished the effects of AMPK activation on MLC, MYPT1, and Ras homolog gene family member A in human smooth muscle cells. Ex vivo analyses revealed that agonist-induced contractions of the mesenteric artery and aortas were stronger in both AMPKα1(-/-) and AMPKα2(-/-) knockout mice than in wild-type mice. Inhibition of Rho-associated kinase with Y27632 normalized agonist-induced contractions of AMPKα1(-/-) and AMPKα2(-/-) vessels. AMPKα2(-/-) mice had higher blood pressure along with decreased serine phosphorylation of p190-guanosine triphosphatase-activating protein. Finally, inhibition of the Ras homolog gene family member A/Rho-associated kinase pathway with Y27632, which suppressed MYPT1 and MLC phosphorylation, lowered blood pressure in AMPKα2(-/-) mice. In conclusion, AMPK decreases vascular smooth muscle cell contractility by inhibiting p190-GTP-activating protein-dependent Ras homolog gene family member A activation, indicating that AMPK may be a new therapeutic target in lowering high blood pressure.

  11. Predicting a double mutant in the twilight zone of low homology modeling for the skeletal muscle voltage-gated sodium channel subunit beta-1 (Nav1.4 β1)

    PubMed Central

    Scior, Thomas; Paiz-Candia, Bertin; Islas, Ángel A.; Sánchez-Solano, Alfredo; Millan-Perez Peña, Lourdes; Mancilla-Simbro, Claudia; Salinas-Stefanon, Eduardo M.

    2015-01-01

    The molecular structure modeling of the β1 subunit of the skeletal muscle voltage-gated sodium channel (Nav1.4) was carried out in the twilight zone of very low homology. Structural significance can per se be confounded with random sequence similarities. Hence, we combined (i) not automated computational modeling of weakly homologous 3D templates, some with interfaces to analogous structures to the pore-bearing Nav1.4 α subunit with (ii) site-directed mutagenesis (SDM), as well as (iii) electrophysiological experiments to study the structure and function of the β1 subunit. Despite the distant phylogenic relationships, we found a 3D-template to identify two adjacent amino acids leading to the long-awaited loss of function (inactivation) of Nav1.4 channels. This mutant type (T109A, N110A, herein called TANA) was expressed and tested on cells of hamster ovary (CHO). The present electrophysiological results showed that the double alanine substitution TANA disrupted channel inactivation as if the β1 subunit would not be in complex with the α subunit. Exhaustive and unbiased sampling of “all β proteins” (Ig-like, Ig) resulted in a plethora of 3D templates which were compared to the target secondary structure prediction. The location of TANA was made possible thanks to another “all β protein” structure in complex with an irreversible bound protein as well as a reversible protein–protein interface (our “Rosetta Stone” effect). This finding coincides with our electrophysiological data (disrupted β1-like voltage dependence) and it is safe to utter that the Nav1.4 α/β1 interface is likely to be of reversible nature. PMID:25904995

  12. Predicting a double mutant in the twilight zone of low homology modeling for the skeletal muscle voltage-gated sodium channel subunit beta-1 (Nav1.4 β1).

    PubMed

    Scior, Thomas; Paiz-Candia, Bertin; Islas, Ángel A; Sánchez-Solano, Alfredo; Millan-Perez Peña, Lourdes; Mancilla-Simbro, Claudia; Salinas-Stefanon, Eduardo M

    2015-01-01

    The molecular structure modeling of the β1 subunit of the skeletal muscle voltage-gated sodium channel (Nav1.4) was carried out in the twilight zone of very low homology. Structural significance can per se be confounded with random sequence similarities. Hence, we combined (i) not automated computational modeling of weakly homologous 3D templates, some with interfaces to analogous structures to the pore-bearing Nav1.4 α subunit with (ii) site-directed mutagenesis (SDM), as well as (iii) electrophysiological experiments to study the structure and function of the β1 subunit. Despite the distant phylogenic relationships, we found a 3D-template to identify two adjacent amino acids leading to the long-awaited loss of function (inactivation) of Nav1.4 channels. This mutant type (T109A, N110A, herein called TANA) was expressed and tested on cells of hamster ovary (CHO). The present electrophysiological results showed that the double alanine substitution TANA disrupted channel inactivation as if the β1 subunit would not be in complex with the α subunit. Exhaustive and unbiased sampling of "all β proteins" (Ig-like, Ig) resulted in a plethora of 3D templates which were compared to the target secondary structure prediction. The location of TANA was made possible thanks to another "all β protein" structure in complex with an irreversible bound protein as well as a reversible protein-protein interface (our "Rosetta Stone" effect). This finding coincides with our electrophysiological data (disrupted β1-like voltage dependence) and it is safe to utter that the Nav1.4 α/β1 interface is likely to be of reversible nature.

  13. Clinical assessment of the jaw-tracking function in IMRT for a brain tumor

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Young; Kim, Shin-Wook; Choe, Bo-Young; Suh, Tae-Suk; Park, Sung-Kwang; Jo, Sun-Mi; Oh, Won-Yong; Shin, Jung-Wook; Cho, Gyu-Seok; Nam, Sang-Hee; Chung, Jin-Beom; Kim, Jung-Ki; Lee, Young-Kyu

    2015-01-01

    Intensity-modulated radiotherapy (IMRT) improves dose conformity and saves critical organs. IMRT is widely used in cases of head and neck, prostate, and brain cancer due to the close location of the targets to critical structures. However, because IMRT has a larger amount of radiation exposure than 3 dimensional-conformal radiation therapy (3D-CRT), it has disadvantages such as increases in the low dose irradiation to normal tissues and in the accumulated dose for the whole volume due to leakage and transmission of the multi-leaf collimator (MLC). The increased accumulated dose and the larger low dose may increase the occurrence of secondary malignant neoplasms. For these reasons, the jaw-tracking function of the TrueBeam (Varian Medical Systems, Palo Alto, CA) was developed to reduce the leakage and the transmission dose of the MLC with linear accelerators. However, the change in the superficial dose has not been verified with a quantitative analysis of the dose reduction in a brain tumor. Therefore, in the present study, we intended to verify the clinical possibility of utilizing the jaw-tracking function for a brain tumor by comparing treatment plans and superficial doses. To accomplish this, we made three types of original treatment plans using Eclipse11 (Varian Medical Systems, Palo Alto, CA): 1) farther than 2 cm from the organs at risk (OAR); 2) within 2 cm of the OAR; and 3) intersecting with the OAR. Jaw-tracking treatment plans were also made with copies of the original treatment plan using Smart LMC Version 11.0.31 (Varian Medical Systems, Palo Alto, CA). A comparison between the original treatment plans and jaw-tracking treatment plans was performed using the difference of the mean dose and maximum dose to the OARs in cumulative Dose Volume Histogram (DVH). In addition, the dependencies of the effects of transmission and the scattering doses according to jaw motion were assessed through the difference in the surface doses. In the DVH comparison, a

  14. Alcohol homologation

    DOEpatents

    Wegman, R.W.; Moloy, K.G.

    1988-02-23

    A process is described for the homologation of an alkanol by reaction with synthesis gas in contact with a system containing rhodium atom, ruthenium atom, iodine atom and a bis(diorganophosphino) alkane to selectivity produce the next higher homologue.

  15. A 3D visualization and simulation of the individual human jaw.

    PubMed

    Muftić, Osman; Keros, Jadranka; Baksa, Sarajko; Carek, Vlado; Matković, Ivo

    2003-01-01

    A new biomechanical three-dimensional (3D) model for the human mandible based on computer-generated virtual model is proposed. Using maps obtained from the special kinds of photos of the face of the real subject, it is possible to attribute personality to the virtual character, while computer animation offers movements and characteristics within the confines of space and time of the virtual world. A simple two-dimensional model of the jaw cannot explain the biomechanics, where the muscular forces through occlusion and condylar surfaces are in the state of 3D equilibrium. In the model all forces are resolved into components according to a selected coordinate system. The muscular forces act on the jaw, along with the necessary force level for chewing as some kind of mandible balance, preventing dislocation and loading of nonarticular tissues. In the work is used new approach to computer-generated animation of virtual 3D characters (called "Body SABA"), using in one object package of minimal costs and easy for operation.

  16. Thermal resilient multiple jaw braze fixture

    DOEpatents

    Ney, Robert; Perrone, Alex J.

    1995-07-11

    A braze fixture has side walls forming a cavity with an opening to receive a stack of parts to be brazed. Sidewalls of the housing have a plurality of bearing receiving openings into which bearing rods or jaws are inserted to align the stacked elements of the workpiece. The housing can also have view ports to allow a visual check of the alignment. Straps or wires around the fixture are selected to have thermal characteristics similar to the thermal characteristics of the workpiece undergoing brazing. The straps or wires make physical contact with the bearing rods thereby causing bearing rods to maintain the workpiece in proper alignment throughout the entire brazing cycle.

  17. Thermal resilient multiple jaw braze fixture

    DOEpatents

    Ney, R.; Perrone, A.J.

    1995-07-11

    A braze fixture has side walls forming a cavity with an opening to receive a stack of parts to be brazed. Sidewalls of the housing have a plurality of bearing receiving openings into which bearing rods or jaws are inserted to align the stacked elements of the workpiece. The housing can also have view ports to allow a visual check of the alignment. Straps or wires around the fixture are selected to have thermal characteristics similar to the thermal characteristics of the workpiece undergoing brazing. The straps or wires make physical contact with the bearing rods thereby causing bearing rods to maintain the workpiece in proper alignment throughout the entire brazing cycle. 9 figs.

  18. Giant cell lesion of the jaw as a presenting feature of Noonan syndrome.

    PubMed

    Sinnott, Bridget P; Patel, Maya

    2018-05-30

    This is a case of a 20-year-old woman who presented with a left jaw mass which was resected and found to be a giant cell granuloma of the mandible. Her history and physical examination were suggestive for Noonan syndrome which was confirmed with genetic testing and the finding of a PTPN11 gene mutation which has rarely been associated with giant cell lesions of the jaw. Given her particular genetic mutation and the presence of a giant cell lesion, we present a case of Noonan-like/multiple giant cell lesion syndrome. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  19. Evaluation of mirrored muscle activity in patients with Complex Regional Pain Syndrome.

    PubMed

    Bank, Paulina J M; Peper, C Lieke E; Marinus, Johan; Beek, Peter J; van Hilten, Jacobus J

    2014-10-01

    Motor dysfunction in Complex Regional Pain Syndrome (CRPS) has been associated with bilateral changes in central motor processing, suggesting abnormal coupling between the affected and unaffected limb. We evaluated the occurrence of involuntary muscle activity in a limb during voluntary movements of the contralateral limb (i.e., mirror activity) in unilaterally affected patients to examine disinhibition of contralateral motor activity in CRPS. Mirror activity was examined during unimanual rhythmic flexion-extension movements of the wrist through in-depth analysis of electromyography recordings from the passive arm in 20 CRPS patients and 40 controls. The number of mirror-epochs was comparable for both arms in both CRPS patients and controls. Mirror-epochs in the affected arm of patients were comparable to those in controls. Mirror-epochs in the unaffected arm were shorter and showed less resemblance (in terms of rhythm and timing) to activity of the homologous muscle in the moving arm compared to mirror-epochs in controls. No evidence for disinhibition of contralateral motor activity was found during unimanual movement. Although motor dysfunction in CRPS has been associated with bilateral changes in cortical motor processing, the present findings argue against disinhibition of interhemispheric projections to homologous muscles in the contralateral limb during unimanual movement. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  20. Effects of over-the-counter jaw-repositioning mouth guards on dynamic balance, flexibility, agility, strength, and power in college-aged male athletes.

    PubMed

    Golem, Devon L; Arent, Shawn M

    2015-02-01

    Improvements in muscular power and anaerobic performance have resulted from the use of jaw-repositioning mouth guards designed with advanced dental techniques. The high cost of such techniques has dissuaded the widespread use. Recently, more affordable, over-the-counter (OTC) jaw-repositioning mouth guards have become available. The primary objective of this study was to examine the effects of 2 OTC jaw-repositioning mouth guards on muscular power and strength performance in college-aged male athletes. It was hypothesized that similar to previous observations with advanced dentistry-designed mouth guards, OTC jaw-repositioning mouth guards would impart positive effects on muscular power but not have any effect on muscular strength. Secondary objectives of this study included the examination of the effects of 2 OTC jaw-repositioning mouth guards on other variables related to athletic performance. Male collegiate athletes (N = 20) participated in 4 separate testing sessions that consisted of assessment of muscular power, dynamic balance, flexibility, agility, and muscular strength. The 4 conditions, 1 per testing session, were assigned in a randomized order and consisted of a no-mouth guard control (CON), a placebo mouth guard, a self-adapted jaw-repositioning mouth guard (SA), and a custom-fitted jaw-repositioning mouth guard (CF). No significant differences were observed between conditions in muscular power (p = 0.78), dynamic balance (p = 0.99), agility (p = 0.22), or muscular strength (p = 0.47). The CF had significantly lower hip flexion than the CON (p = 0.014) and had significantly greater lumbar spine lateral flexion compared with the SA condition (p = 0.054). However, these flexibility differences lack practical relevance as the effect sizes remain very small (ES = -0.27 and -0.14, respectively). In conclusion, the jaw-repositioning technique used in the design of these OTC mouth guards did not affect performance. It is important to note that negative

  1. Mechanics of biting in great white and sandtiger sharks.

    PubMed

    Ferrara, T L; Clausen, P; Huber, D R; McHenry, C R; Peddemors, V; Wroe, S

    2011-02-03

    Although a strong correlation between jaw mechanics and prey selection has been demonstrated in bony fishes (Osteichthyes), how jaw mechanics influence feeding performance in cartilaginous fishes (Chondrichthyes) remains unknown. Hence, tooth shape has been regarded as a primary predictor of feeding behavior in sharks. Here we apply Finite Element Analysis (FEA) to examine form and function in the jaws of two threatened shark species, the great white (Carcharodon carcharias) and the sandtiger (Carcharias taurus). These species possess characteristic tooth shapes believed to reflect dietary preferences. We show that the jaws of sandtigers and great whites are adapted for rapid closure and generation of maximum bite force, respectively, and that these functional differences are consistent with diet and dentition. Our results suggest that in both taxa, insertion of jaw adductor muscles on a central tendon functions to straighten and sustain muscle fibers to nearly orthogonal insertion angles as the mouth opens. We argue that this jaw muscle arrangement allows high bite forces to be maintained across a wider range of gape angles than observed in mammalian models. Finally, our data suggest that the jaws of sub-adult great whites are mechanically vulnerable when handling large prey. In addition to ontogenetic changes in dentition, further mineralization of the jaws may be required to effectively feed on marine mammals. Our study is the first comparative FEA of the jaws for any fish species. Results highlight the potential of FEA for testing previously intractable questions regarding feeding mechanisms in sharks and other vertebrates. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. The Covidien LigaSure Maryland Jaw Device.

    PubMed

    Zaidi, Nisar; Glover, Anthony R; Sidhu, Stanley B

    2015-03-01

    Since its invention nearly 20 years ago, the Covidien LigaSure device along with its ForceTriad generator has dominated the Electrothermal Bipolar Vessel Sealing market. The LigaSure was used for surgical procedures, both open and laparoscopic. The purpose of this review is to provide evidence of the safety and utility of the LigaSure device compared to more traditional means of hemostasis and its ultrasonic competitor, particularly in laparoscopic applications. We will provide evidence related to electrothermal bipolar vessel sealing in general and look specifically at Covidien's newest product, the LigaSure Maryland Jaw Device.

  3. Trigeminal and telencephalic projections to jaw and other upper vocal tract premotor neurons in songbirds: sensorimotor circuitry for beak movements during singing.

    PubMed

    Wild, J M; Krützfeldt, N E O

    2012-02-15

    During singing in songbirds, the extent of beak opening, like the extent of mouth opening in human singers, is partially correlated with the fundamental frequency of the sounds emitted. Since song in songbirds is under the control of "the song system" (a collection of interconnected forebrain nuclei dedicated to the learning and production of song), it might be expected that beak movements during singing would also be controlled by this system. However, direct neural connections between the telencephalic output of the song system and beak muscle motor neurons in the brainstem are conspicuous by their absence, leaving unresolved the question of how beak movements are affected during singing. By using standard tract tracing methods, we sought to answer this question by defining beak premotor neurons and examining their afferent projections. In the caudal medulla, jaw premotor cell bodies were located adjacent to the terminal field of the output of the song system, into which many premotor neurons extended their dendrites. The premotor neurons also received a novel input from the trigeminal ganglion and an overlapping input from a lateral arcopallial component of a trigeminal sensorimotor circuit that traverses the forebrain. The ganglionic input in songbirds, which is not present in doves and pigeons that vocalize with a closed beak, may modulate the activity of beak premotor neurons in concert with the output of the song system. These inputs to jaw premotor neurons could, together, affect beak movements as a means of modulating filter properties of the upper vocal tract during singing. Copyright © 2011 Wiley-Liss, Inc.

  4. Stent-induced flow disturbances in the ipsilateral external carotid artery following internal carotid artery stenting: a temporary cause of jaw claudication.

    PubMed

    Giurgea, Georgiana-Aura; Haumer, Markus; Mlekusch, Irene; Sabeti-Sandor, Schila; Dick, Petra; Schillinger, Martin; Minar, Erich; Mlekusch, Wolfgang

    2017-07-01

    We hypothesize that stenting of the internal carotid artery can immediately impede blood flow to the external carotid artery by either plaque shift or stent coverage of the ostium, and thereby cause ischemic symptoms like ipsilateral jaw claudication. Thirty-three patients with high-grade asymptomatic stenosis of the internal carotid artery who underwent endovascular treatment were examined by ultrasound of the external carotid artery and performed an exercise test by chewing chewing gum synchronously to an electronic metronome for 3 min. Tests were performed before, the day after, and 1 week after the stenting procedure. Claudication time was defined as the timespan until occurrence of pain of the masseter muscle and/or chewing dyssynchrony to the metronome for more than 15 s. Ten patients with an isolated, atherosclerotic stenosis of the external carotid artery served as controls. A significantly reduced claudication time (in seconds) was recorded in patients who underwent carotid artery stenting compared to baseline values; median 89 (interquartile range, IQR, 57 to 124) vs. median 180 (IQR 153 to 180; p < 0.001). By categorization of the flow velocity at the external carotid artery into faster or slower as 200 cm/sec, the effect was even accentuated. Stenting values showed improvement 1 week after but did not return to baseline levels. No respective changes were found in controls. Stenting of the internal carotid artery lead to ipsilateral flow deterioration at the external carotid artery resulting in temporary jaw claudication. This impairment attenuated over the time and was significantly reduced after 1 week.

  5. Trigeminal and Telencephalic Projections to Jaw and Other Upper Vocal Tract Premotor Neurons in Songbirds: Sensorimotor Circuitry for Beak Movements During Singing

    PubMed Central

    Wild, J.M.; Krützfeldt, N.E.O.

    2014-01-01

    During singing in songbirds, the extent of beak opening, like the extent of mouth opening in human singers, is partially correlated with the fundamental frequency of the sounds emitted. Since song in songbirds is under the control of “the song system” (a collection of interconnected forebrain nuclei dedicated to the learning and production of song), it might be expected that beak movements during singing would also be controlled by this system. However, direct neural connections between the telencephalic output of the song system and beak muscle motor neurons in the brainstem are conspicuous by their absence, leaving unresolved the question of how beak movements are affected during singing. By using standard tract tracing methods, we sought to answer this question by defining beak premotor neurons and examining their afferent projections. In the caudal medulla, jaw premotor cell bodies were located adjacent to the terminal field of the output of the song system, into which many premotor neurons extended their dendrites. The premotor neurons also received a novel input from the trigeminal ganglion and an overlapping input from a lateral arcopallial component of a trigeminal sensorimotor circuit that traverses the forebrain. The ganglionic input in songbirds, which is not present in doves and pigeons that vocalize with a closed beak, may modulate the activity of beak premotor neurons in concert with the output of the song system. These inputs to jaw premotor neurons could, together, affect beak movements as a means of modulating filter properties of the upper vocal tract during singing. PMID:21858818

  6. Evolving the Concept of Homology

    ERIC Educational Resources Information Center

    Naples, Virginia L.; Miller, Jon S.

    2009-01-01

    Understanding homology is fundamental to learning about evolution. The present study shows an exercise that can be varied in complexity, for which students compile research illustrating the fate of homologous fish skull elements, and assemble a mural to serve as a learning aid. The skull of the most primitive living Actinopterygian (bony fish),…

  7. Evaluation of the pair-culture effect in Ophyryotrocha puerilis (Polychaeta: Dorvilleidae). II. Conditions for the moult of the upper jaw

    NASA Astrophysics Data System (ADS)

    Kegel, B.; Pfannenstiel, H.-D.

    1983-06-01

    The conditions for moult of the upper jaw of Ophryotrocha puerilis were determined in isolated individuals and in groups of various sizes. The frequency of formation of the complicated upper jaw in both isolated individuals and in groups varies to a considerable extent. Although formation of the upper jaw and sex reversal normally are associated processes, the relationship of these two processes is not very well understood. Histological investigations at the light microscopic level demonstrate that the dental apparatus is an elaboration of the ectodermal stomodaeum which is considered to be a highly specialized part of the cuticle in the pharyngeal region of the gut.

  8. From fish to modern humans--comparative anatomy, homologies and evolution of the pectoral and forelimb musculature.

    PubMed

    Diogo, R; Abdala, V; Aziz, M A; Lonergan, N; Wood, B A

    2009-05-01

    In a recent study Diogo & Abdala [(2007) J Morphol 268, 504-517] reported the results of the first part of a research project on the comparative anatomy, homologies and evolution of the pectoral muscles of osteichthyans (bony fish and tetrapods). That report mainly focused on actinopterygian fish but also compared these fish with certain non-mammalian sarcopterygians. This study, which reports the second part of the research project, focuses mainly on sarcopterygians and particularly on how the pectoral and forelimb muscles have evolved during the transitions from sarcopterygian fish and non-mammalian tetrapods to monotreme and therian mammals and humans. The data obtained by our own dissections of all the pectoral and forelimb muscles of representative members of groups as diverse as sarcopterygian fish, amphibians, reptiles, monotremes and therian mammals such as rodents, tree-shrews, colugos and primates, including humans, are compared with the information available in the literature. Our observations and comparisons clearly stress that, with regard to the number of pectoral and forelimb muscles, the most striking transition within sarcopterygian evolutionary history was that leading to the origin of tetrapods. Whereas extant sarcopterygian fish have an abductor and adductor of the fin and a largely undifferentiated hypaxial and epaxial musculature, extant salamanders such as Ambystoma have more than 40 pectoral and forelimb muscles. There is no clear increase in the number of pectoral and forelimb muscles within the evolutionary transition that led to the origin of mammals and surely not to that leading to the origin of primates and humans.

  9. Electromyographic analysis of the masseter and buccinator muscles with the pro-fono facial exerciser use in bruxers.

    PubMed

    Jardini, Renata S R; Ruiz, Lydia S R; Moysés, Maria A A

    2006-01-01

    The aim of this study was to evaluate the efficiency of the Pró-Fono Facial Exerciser (Pró-Fono Productos Especializados para Fonoaudiologia Ltda., Barueri/SP, Brazil) to decrease bruxism, as well as the correlation between the masseter and the buccinator muscles using electromyography (EMG). In this study, 39 individuals ranging from 23 to 48 years of age were selected from a dental school and then underwent surface EMG at three different periods of time: 0, 10, and 70 days. They were divided into a normal control group, a bruxer control group (without device), and an experimental bruxer group who used the device. The bruxer group showed a greater masseter EMG amplitude when compared to the normal group, while the experimental group had deceased activity with a reduction in symptoms. The buccinator EMG spectral analysis of the experimental bruxist group showed asynchronous contractions of the masseter muscle (during jaw opening) after using the Pró-Fono Facial Exerciser. The normal group also showed asynchronous contractions. Upon correlation of the data between these muscles, the inference is that there is a reduction in bruxism when activating the buccinator muscle.

  10. Molecular Architecture of Muscles in an Acoel and Its Evolutionary Implications

    PubMed Central

    CHIODIN, MARTA; ACHATZ, JOHANNES G.; WANNINGER, ANDREAS; MARTINEZ, PEDRO

    2011-01-01

    We have characterized the homologs of an actin, a troponin I, and a tropomyosin gene in the acoel Symsagittifera roscoffensis. These genes are expressed in muscles and most likely coexpressed in at least a subset of them. In addition, and for the first time for Acoela, we have produced a species-specific muscular marker, an antibody against the tropomyosin protein. We have followed tropomyosin gene and protein expression during postembryonic development and during the posterior regeneration of amputated adults, showing that preexisting muscle fibers contribute to the wound closure. The three genes characterized in this study interact in the striated muscles of vertebrates and invertebrates, where troponin I and tropomyosin are key regulators of the contraction of the sarcomere. S. roscoffensis and all other acoels so far described have only smooth muscles, but the molecular architecture of these is the same as that of striated fibers of other bilaterians. Given the proposed basal position of acoels within the Bilateria, we suggest that sarcomeric muscles arose from a smooth muscle type, which had the molecular repertoire of striated musculature already in place. We discuss this model in a broad comparative perspective. PMID:21538843

  11. Cranial muscle development in the model organism ambystoma mexicanum: implications for tetrapod and vertebrate comparative and evolutionary morphology and notes on ontogeny and phylogeny.

    PubMed

    Ziermann, Janine M; Diogo, Rui

    2013-07-01

    There is still confusion about the homology of several cranial muscles in salamanders with those of other vertebrates. This is true, in part, because of the fact that many muscles present in early ontogeny of amphibians disappear during development and specifically during metamorphosis. Resolving this confusion is important for the understanding of the comparative and evolutionary morphology of vertebrates and tetrapods because amphibians are the phylogenetically most plesiomorphic tetrapods, concerning for example their myology, and include two often used model organisms, Xenopus laevis (anuran) and Ambystoma mexicanum (urodele). Here we provide the first detailed report of the cranial muscle development in axolotl from early ontogenetic stages to the adult stage. We describe different and complementary types of general muscle morphogenetic gradients in the head: from anterior to posterior, from lateral to medial, and from origin to insertion. Furthermore, even during the development of neotenic salamanders such as axolotls, various larval muscles become indistinct, contradicting the commonly accepted view that during ontogeny the tendency is mostly toward the differentiation of muscles. We provide an updated comparison between these muscles and the muscles of other vertebrates, a discussion of the homologies and evolution, and show that the order in which the muscles appear during axolotl ontogeny is in general similar to their appearance in phylogeny (e.g. differentiation of adductor mandibulae muscles from one anlage to four muscles), with only a few remarkable exceptions, as for example the dilatator laryngis that appears evolutionary later but in the development before the intermandibularis. Copyright © 2013 Wiley Periodicals, Inc.

  12. [Experience of systematization on the treatment of patients with upper jaws fractures, during the period 1991-2000].

    PubMed

    Khinkov, D

    2005-01-01

    A retrospecive analysis was done of the 128 patients with fractures in a upper jaw, treated during the period 1991-2000. The treatment of the patients with partial fractures in a alveolar part of maxilla and frontal wall of maxillary sinus, consist of debridement on the open wound, primery stiched and stabilization by arch bar of perspective teeth. In the cases with fractures of tuber maxilla and opening of maxillary sinus they tray to clouse it by Rhermann technique, with or without radical antrothomy by Caldwell-Luc technique. On the patients by total upper jaw fractures they try lead by princip of duble stage fixation: from one side-of intact upper bone structures and the other side-on a mandible. On the cases of upper jaw fractures, combine with barain traums. was treated conservativly - the specialize treatment of facial injures was postpoun until stabilization of brain status.

  13. Is fast fiber innervation responsible for increased acetylcholinesterase activity in reinnervating soleus muscles?

    NASA Technical Reports Server (NTRS)

    Misulis, K. E.; Dettbarn, W. D.

    1985-01-01

    An investigation was conducted as to whether the predominantly slow SOL, which is low in AChE activity, is initially reinnervated by axons that originally innervated fast muscle fibers with high AChE activity, such as those of the EDL. Local denervation of the SOL in the guinea pig was performed because this muscle is composed solely of slow (type I) fibers; thereby virtually eliminating the possibility of homologous muscle fast fiber innervation. The overshoot in this preparation was qualitatively similar to that seen with distal denervation in the guinea pig and local and distal denervation in the rat. Thus, initial fast fiber innvervation is not responsible for the patterns of change in AChE activity seen with reinnervation in the SOL. It is concluded that the neural control of AChe is different in these two muscles and may reflect specific differences in the characteristics of AChE regulation in fast and slow muscle.

  14. A Symplectic Instanton Homology via Traceless Character Varieties

    NASA Astrophysics Data System (ADS)

    Horton, Henry T.

    Since its inception, Floer homology has been an important tool in low-dimensional topology. Floer theoretic invariants of 3-manifolds tend to be either gauge theoretic or symplecto-geometric in nature, and there is a general philosophy that each gauge theoretic Floer homology should have a corresponding symplectic Floer homology and vice-versa. In this thesis, we construct a Lagrangian Floer invariant for any closed, oriented 3-manifold Y (called the symplectic instanton homology of Y and denoted SI(Y)) which is conjecturally equivalent to a Floer homology defined using a certain variant of Yang-Mills gauge theory. The crucial ingredient for defining SI( Y) is the use of traceless character varieties in the symplectic setting, which allow us to avoid the debilitating technical hurdles present when one attempts to define a symplectic version of instanton Floer homologies. Floer theories are also expected to roughly satisfy the axioms of a topological quantum field theory (TQFT), and furthermore Dehn surgeries on knots should induce exact triangles of Floer homologies. Following a strategy used by Ozsvath and Szabo in the context of Heegaard Floer homology, we prove that our theory is functorial with respect to connected 4-dimensional cobordisms, so that cobordisms induce homomorphisms between symplectic instanton homologies. By studying the effect of Dehn surgeries on traceless character varieties, we establish a surgery exact triangle using work of Seidel that relates the geometry of Lefschetz fibrations with exact triangles in Lagrangian Floer theory. We further prove that Dehn surgeries on a link L in a 3-manifold Y induce a spectral sequence of symplectic instanton homologies - the E2-page is isomorphic to a direct sum of symplectic instanton homologies of all possible combinations of 0- and 1-surgeries on the components of L, and the spectral sequence converges to SI(Y). For the branched double cover Sigma(L) of a link L in S3, we show there is a link surgery

  15. [Clinical experience in osteoplastic material Allomatrix-implant and fibrin rich platelets use in surgical treatment of jaw radicular cysts].

    PubMed

    Kuz'minykh, I A

    2009-01-01

    Bones forming optimizators applying in surgical dentistry is an important element of jaw destructive processes successful treatment. Today use of osteoplastic materials on the collagen basis is widely spread. One of this challenge solution is FRP and Allomatrix-implant material applying to jaws during surgery operations. We described clinical investigation phase: the estimation of postoperative and remote results of treatment was carried out.

  16. A novel method for single sample multi-axial nanoindentation of hydrated heterogeneous tissues based on testing great white shark jaws.

    PubMed

    Ferrara, Toni L; Boughton, Philip; Slavich, Eve; Wroe, Stephen

    2013-01-01

    Nanomechanical testing methods that are suitable for a range of hydrated tissues are crucial for understanding biological systems. Nanoindentation of tissues can provide valuable insights into biology, tissue engineering and biomimetic design. However, testing hydrated biological samples still remains a significant challenge. Shark jaw cartilage is an ideal substrate for developing a method to test hydrated tissues because it is a unique heterogeneous composite of both mineralized (hard) and non-mineralized (soft) layers and possesses a jaw geometry that is challenging to test mechanically. The aim of this study is to develop a novel method for obtaining multidirectional nanomechanical properties for both layers of jaw cartilage from a single sample, taken from the great white shark (Carcharodon carcharias). A method for obtaining multidirectional data from a single sample is necessary for examining tissue mechanics in this shark because it is a protected species and hence samples may be difficult to obtain. Results show that this method maintains hydration of samples that would otherwise rapidly dehydrate. Our study is the first analysis of nanomechanical properties of great white shark jaw cartilage. Variation in nanomechanical properties were detected in different orthogonal directions for both layers of jaw cartilage in this species. The data further suggest that the mineralized layer of shark jaw cartilage is less stiff than previously posited. Our method allows multidirectional nanomechanical properties to be obtained from a single, small, hydrated heterogeneous sample. Our technique is therefore suitable for use when specimens are rare, valuable or limited in quantity, such as samples obtained from endangered species or pathological tissues. We also outline a method for tip-to-optic calibration that facilitates nanoindentation of soft biological tissues. Our technique may help address the critical need for a nanomechanical testing method that is applicable

  17. A method of indirect registration of the coordinates of condylar points with a six-degree-of-freedom jaw tracker.

    PubMed

    Huang, B Y; Durrant, C J; Johnson, C W L; Murray, G M

    2002-06-30

    Previous studies have indicated that the location of a condylar point can significantly influence its trajectory. The aim of this investigation was to develop a method of registering the location of radiographically defined condylar points in the coordinate system of a six-degree-of-freedom jaw-tracking device and to determine the accuracy of this method by using a perspex model in one experiment and a dry skull in another. A direct measurement ('the gold standard') of condylar point coordinates in the coordinate system of JAWS3D was done using a three-dimensional (3D) digitizer (MicroScribe-3DX). The indirect measurement used a distributed fiducial marker as the interface between the coordinate system of MicroScribe-3DX (which was used to register the fiducial marker and the JAWS3D coordinate system) and the coordinate system of the CT scans (used to define condyle anatomy and the relation with the fiducial marker). The coordinates of condylar points could then be calculated in the coordinate system of JAWS3D. The results showed that the indirect method could register condylar point coordinates on either side to an accuracy of approximately 0.5 mm.

  18. Functional variation of neck muscles and their relation to feeding style in Tyrannosauridae and other large theropod dinosaurs.

    PubMed

    Snively, Eric; Russell, Anthony P

    2007-08-01

    Reconstructed neck muscles of large theropod dinosaurs suggest influences on feeding style that paralleled variation in skull mechanics. In all examined theropods, the head dorsiflexor m. transversospinalis capitis probably filled in the posterior dorsal concavity of the neck, for a more crocodilian- than avian-like profile in this region. The tyrannosaurine tyrannosaurids Daspletosaurus and Tyrannosaurus had relatively larger moment arms for latero-flexion by m. longissimus capitis superficialis and m. complexus than albertosaurine tyrannosaurids, and longer dorsiflexive moment arms for m. complexus. Areas of dorsiflexor origination are significantly larger relative to neck length in adult Tyrannosaurus rex than in other tyrannosaurids, suggesting relatively large muscle cross-sections and forces. Tyrannosaurids were not particularly specialized for neck ventro-flexion. In contrast, the hypothesis that Allosaurus co-opted m. longissimus capitis superficialis for ventro-flexion is strongly corroborated. Ceratosaurus had robust insertions for the ventro-flexors m. longissimus capitis profundus and m. rectus capitis ventralis. Neck muscle morphology is consistent with puncture-and-pull and powerful shake feeding in tyrannosaurids, relatively rapid strikes in Allosaurus and Ceratosaurus, and ventroflexive augmentation of weaker jaw muscle forces in the non tyrannosaurids. (c) 2007 Wiley-Liss, Inc.

  19. Fibrosarcoma of the jaws: two cases of primary tumors with intraosseous growth.

    PubMed

    Angiero, Francesca; Rizzuti, Tommaso; Crippa, Rolando; Stefani, Michele

    2007-01-01

    Fibrosarcoma (FS) is a malignant mesenchymal neoplasm of the fibroblasts that rarely affects the oral cavity. Two cases of primary FS of the jaws with intraosseous growth (2 men, aged 53 and 71 years) are described. Microscopically, in one case the tumor showed an intense proliferation of spindle-shaped cells, varying little in size and shape and arranged in parallel bands, partly crossing each other, with significant mitotic activity and nuclear pleomorphism; the second case was characterized by low cellularity comprising spindle-shaped cells, deposited in a variably fibrous and myxoid stroma. On immunohistochemistry, cells in both cases were strongly immunoreactive for MIB-1 and vimentin, focally positive for CD68, and negative for S-100 protein, pancytokeratin, HMB45, CD34, desmin, smooth muscle actin (SMA) and epithelial membrane antigen (EMA). Based on clinical, histological and immunohistochemical findings, the final diagnosis was FS in the first case, myxofibrosarcoma in the second. Treatment was radical surgery with mandibular reconstruction. After two years, the first patient displayed multiple metastases and died during the third year after the initial diagnosis; the second patient was still alive and doing well five years after treatment. We discuss the differential diagnosis versus other forms of sarcoma, examining the morphological appearance that is frequently very similar, the immunohistochemical expression of MIB-1, vimentin, S-100, CD-34, CD68, EMA, as well as conventional clinicopathological features that may help to distinguish FS from other sarcomas.

  20. Correlation between bone mineral density of jaws and skeletal sites in an Iranian population using dual X-ray energy absorptiometry.

    PubMed

    Esfahanizadeh, Nasrin; Davaie, Sotoudeh; Rokn, A R; Daneshparvar, Hamid Reza; Bayat, Noushin; Khondi, Nasrin; Ajvadi, Sara; Ghandi, Mostafa

    2013-07-01

    The aim of the present study was to evaluate the relationship between the bone density of various regions of jaws and skeletal bones. A total of 110 patients with a mean age of 55.01 ± 10.77 years were selected for the purpose of the present descriptive study. Dual X-ray Energy Absorptiometry (DXA) was carried out to determine bone mineral density (BMD) of the femur and lumbar vertebrae. Then all the subjects underwent DXA of the jaw bones and BMD values were determined at four jaw regions. Data were analyzed by SPSS 16 statistical software, and the correlation between the various BMD values was determined by Pearson's correlation coefficient. The results showed that 42.7% of females had normal BMD values in the femur, and in vertebrae, 20% were osteopenic and 37.3% suffered from osteoporosis, with statistically significant differences in the BMD values of the jaws between the three above-mentioned groups (P < 0.001). There was an increasing tendency toward osteopenia and osteoporosis with age. There was a positive correlation between BMD values of the femur and lumbar vertebrae and those of all the jaw regions under study (P < 0.005). There was a negative correlation (P < 0.01) between age and the BMD values of the femur, lumbar vertebrae and anterior maxilla. The bone density of the maxilla and mandible and presence of osteoporosis or osteopenia in these bones might reflect the same problem in skeletal bones.

  1. Differential effects of repetitive oral administration of monosodium glutamate on interstitial glutamate concentration and muscle pain sensitivity.

    PubMed

    Shimada, Akiko; Baad-Hansen, Lene; Castrillon, Eduardo; Ghafouri, Bijar; Stensson, Niclas; Gerdle, Björn; Ernberg, Malin; Cairns, Brian; Svensson, Peter; Svensson Odont, Peter

    2015-02-01

    The aim of this study was to determine the relationship of high daily monosodium glutamate (MSG) consumption with glutamate concentrations in jaw muscle, saliva, and serum, and muscle pain sensitivity in healthy participants. A randomized, double-blinded, placebo-controlled study was conducted to investigate the effect of repetitive consumption of high-dose MSG on glutamate concentration in the masseter muscles measured by microdialysis and muscle pain sensitivity. In five contiguous experimental daily sessions, 32 healthy participants drank MSG (150 mg/kg) or NaCl (24 mg/kg) diluted with a 400 mL soda. The concentrations of glutamate before and after the ingestion were assessed in dialysate and plasma samples on the first and last days. Saliva glutamate concentration was assessed every day. Pressure pain threshold, pressure pain tolerance, autonomic parameters (heart rate, systolic and diastolic blood pressures) and reported side effects also were assessed. No significant change was noted in the baseline concentration of glutamate in the masseter muscle, blood, or saliva, but the peak concentration in the masseter muscle increased significantly between day 1 and 5. A statistically significant increase in systolic and diastolic blood pressures after MSG administration was observed, as well as a significantly higher frequency of reports of nausea and headache in the MSG group. No robust effect of MSG on muscle sensitivity was found. Interstitial glutamate concentration in the masseter muscle is not highly disturbed by excessive repetitive intake of MSG in healthy man. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. From fish to modern humans – comparative anatomy, homologies and evolution of the pectoral and forelimb musculature

    PubMed Central

    Diogo, R; Abdala, V; Aziz, M A; Lonergan, N; Wood, B A

    2009-01-01

    In a recent study Diogo & Abdala [(2007) JMorphol268, 504–517] reported the results of the first part of a research project on the comparative anatomy, homologies and evolution of the pectoral muscles of osteichthyans (bony fish and tetrapods). That report mainly focused on actinopterygian fish but also compared these fish with certain non-mammalian sarcopterygians. This study, which reports the second part of the research project, focuses mainly on sarcopterygians and particularly on how the pectoral and forelimb muscles have evolved during the transitions from sarcopterygian fish and non-mammalian tetrapods to monotreme and therian mammals and humans. The data obtained by our own dissections of all the pectoral and forelimb muscles of representative members of groups as diverse as sarcopterygian fish, amphibians, reptiles, monotremes and therian mammals such as rodents, tree-shrews, colugos and primates, including humans, are compared with the information available in the literature. Our observations and comparisons clearly stress that, with regard to the number of pectoral and forelimb muscles, the most striking transition within sarcopterygian evolutionary history was that leading to the origin of tetrapods. Whereas extant sarcopterygian fish have an abductor and adductor of the fin and a largely undifferentiated hypaxial and epaxial musculature, extant salamanders such as Ambystoma have more than 40 pectoral and forelimb muscles. There is no clear increase in the number of pectoral and forelimb muscles within the evolutionary transition that led to the origin of mammals and surely not to that leading to the origin of primates and humans. PMID:19438764

  3. Morphology of the jaw, suspensorial, and opercle musculature of Beloniformes and related species (Teleostei: Acanthopterygii), with a special reference to the m. adductor mandibulae complex.

    PubMed

    Werneburg, Ingmar

    2015-01-01

    The taxon Beloniformes represents a heterogeneous group of teleost fishes that show an extraordinary diversity of jaw morphology. I present new anatomical descriptions of the jaw musculature in six selected beloniforms and four closely related species. A reduction of the external jaw adductor (A1) and a changed morphology of the intramandibular musculature were found in many Beloniformes. This might be correlated with the progressively reduced mobility of the upper and lower jaw bones. The needlefishes and sauries, which are characterised by extremely elongated and stiffened jaws, show several derived characters, which in combination enable the capture of fish at high velocity. The ricefishes are characterised by several derived and many plesiomorphic characters that make broad scale comparisons difficult. Soft tissue characters are highly diverse among hemiramphids and flying fishes reflecting the uncertainty about their phylogenetic position and interrelationship. The morphological findings presented herein may help to interpret future phylogenetic analyses using cranial musculature in Beloniformes.

  4. [Acupuncture combined with magnetic therapy for treatment of temple-jaw joint dysfunction].

    PubMed

    Wang, Xiao-Hui; Zhang, Wen

    2009-04-01

    To compare clinical therapeutic effects of acupuncture combined with magnetic therapy and simple magnetic therapy on temple-jaw joint dysfunction. Eighty-two cases were randomly divided into an observation group (n = 52) and a control group (n = 30). The observation group was treated with acupuncture at Xiaguan (ST 7), Jiache (ST 6), Hegu (LI 4), etc. and AL-2 low frequency electromagnetic comprehensive treatment instrument; the control group was treated with AL-2 low frequency electromagnetic comprehensive treatment instrument. The cured and markedly effective rate of 90.4% in the observation group was significantly better than 66.7% in the control group (P < 0.01), and the total effective rate of 98.1% in the observation group was significantly better than 86.7% in the control group (P < 0.05). The therapeutic effect of acupuncture combined with magnetic therapy is significantly better than that of the simple magnetic therapy on temple-jaw joint dysfunction.

  5. Interaction between Foxc1 and Fgf8 during Mammalian Jaw Patterning and in the Pathogenesis of Syngnathia

    PubMed Central

    Inman, Kimberly E.; Purcell, Patricia; Kume, Tsutomu; Trainor, Paul A.

    2013-01-01

    Syngnathia (bony fusion of the upper and lower jaw) is a rare human congenital condition, with fewer than sixty cases reported in the literature. Syngnathia typically presents as part of a complex syndrome comprising widespread oral and maxillofacial anomalies, but it can also occur in isolation. Most cartilage, bone, and connective tissue of the head and face is derived from neural crest cells. Hence, congenital craniofacial anomalies are often attributed to defects in neural crest cell formation, survival, migration, or differentiation. The etiology and pathogenesis of syngnathia however remains unknown. Here, we report that Foxc1 null embryos display bony syngnathia together with defects in maxillary and mandibular structures, and agenesis of the temporomandibular joint (TMJ). In the absence of Foxc1, neural crest cell derived osteogenic patterning is affected, as osteoblasts develop ectopically in the maxillary prominence and fuse with the dentary bone. Furthermore, we observed that the craniofacial musculature is also perturbed in Foxc1 null mice, which highlights the complex tissue interactions required for proper jaw development. We present evidence that Foxc1 and Fgf8 genetically interact and that Fgf8 dosage is associated with variation in the syngnathic phenotype. Together our data demonstrates that Foxc1 – Fgf8 signaling regulates mammalian jaw patterning and provides a mechanistic basis for the pathogenesis of syngnathia. Furthermore, our work provides a framework for understanding jaw patterning and the etiology of other congenital craniofacial anomalies, including temporomandibular joint agenesis. PMID:24385915

  6. Feeding ecology underlies the evolution of cichlid jaw mobility.

    PubMed

    Martinez, Christopher M; McGee, Matthew D; Borstein, Samuel R; Wainwright, Peter C

    2018-06-19

    The fish feeding apparatus is among the most diverse functional systems in vertebrates. While morphological and mechanical variation of feeding systems are well studied, we know far less about the diversity of the motions that they produce. We explored patterns of feeding movements in African cichlids from Lakes Malawi and Tanganyika, asking whether the degree of kinesis is associated with dietary habits of species. We used geometric morphometrics to measure feeding kinesis as trajectories of shape change, based on 326 high-speed videos in 56 species. Cranial morphology was significantly related to feeding movements, both of which were distributed along a dietary axis associated with prey evasiveness. Small-mouthed cichlids that feed by scraping algae and detritus from rocks had low kinesis strikes, while large-mouthed species that eat large, evasive prey (fishes and shrimps) generated the greatest kinesis. Despite having higher overall kinesis, comparisons of trajectory shape (linearity) revealed that cichlids that eat mobile prey also displayed more kinematically conserved, or efficient, feeding motions. Our work indicates that prey evasiveness is strongly related to the evolution of cichlid jaw mobility, suggesting that this same relationship may explain the origins and diversity of highly kinetic jaws that characterize the super-radiation of spiny-rayed fishes. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  7. Bayesian Morphological Clock Methods Resurrect Placoderm Monophyly and Reveal Rapid Early Evolution in Jawed Vertebrates.

    PubMed

    King, Benedict; Qiao, Tuo; Lee, Michael S Y; Zhu, Min; Long, John A

    2017-07-01

    The phylogeny of early gnathostomes provides an important framework for understanding one of the most significant evolutionary events, the origin and diversification of jawed vertebrates. A series of recent cladistic analyses have suggested that the placoderms, an extinct group of armoured fish, form a paraphyletic group basal to all other jawed vertebrates. We revised and expanded this morphological data set, most notably by sampling autapomorphies in a similar way to parsimony-informative traits, thus ensuring this data (unlike most existing morphological data sets) satisfied an important assumption of Bayesian tip-dated morphological clock approaches. We also found problems with characters supporting placoderm paraphyly, including character correlation and incorrect codings. Analysis of this data set reveals that paraphyly and monophyly of core placoderms (excluding maxillate forms) are essentially equally parsimonious. The two alternative topologies have different root positions for the jawed vertebrates but are otherwise similar. However, analysis using tip-dated clock methods reveals strong support for placoderm monophyly, due to this analysis favoring trees with more balanced rates of evolution. Furthermore, enforcing placoderm paraphyly results in higher levels and unusual patterns of rate heterogeneity among branches, similar to that generated from simulated trees reconstructed with incorrect root positions. These simulations also show that Bayesian tip-dated clock methods outperform parsimony when the outgroup is largely uninformative (e.g., due to inapplicable characters), as might be the case here. The analysis also reveals that gnathostomes underwent a rapid burst of evolution during the Silurian period which declined during the Early Devonian. This rapid evolution during a period with few articulated fossils might partly explain the difficulty in ascertaining the root position of jawed vertebrates. © The Author(s) 2016. Published by Oxford University

  8. Shear-wave sonoelastography for assessing masseter muscle hardness in comparison with strain sonoelastography: study with phantoms and healthy volunteers.

    PubMed

    Ariji, Yoshiko; Nakayama, Miwa; Nishiyama, Wataru; Nozawa, Michihito; Ariji, Eiichiro

    2016-01-01

    Objectives Shear-wave sonoelastography is expected to facilitate low operator dependency, high reproducibility and quantitative evaluation, whereas there are few reports on available normative values of in vivo tissue in head and neck fields. The purpose of this study was to examine the reliabilities on measuring hardness using shear-wave sonoelastography and to clarify normal values of masseter muscle hardness in healthy volunteers. Methods Phantoms with known hardness ranging from 20 to 140 kPa were scanned with shear-wave sonoelastography, and inter- and intraoperator reliabilities were examined compared with strain sonoelastography. The relationships between the actual and measured hardness were analyzed. The masseter muscle hardness in 30 healthy volunteers was measured using shear-wave sonoelastography. The inter- and intraoperator intraclass correlation coefficients were almost perfect. Strong correlations were seen between the actual and measured hardness. The mean hardness of the masseter muscles in healthy volunteers was 42.82 ± 5.56 kPa at rest and 53.36 ± 8.46 kPa during jaw clenching. The hardness measured with shear-wave sonoelastography showed high-level reliability. Shear-wave sonoelastography may be suitable for evaluation of the masseter muscles.

  9. Finite Element Analysis of the Cingulata Jaw: An Ecomorphological Approach to Armadillo’s Diets

    PubMed Central

    Serrano-Fochs, Sílvia; De Esteban-Trivigno, Soledad; Marcé-Nogué, Jordi; Fortuny, Josep; Fariña, Richard A.

    2015-01-01

    Finite element analyses (FEA) were applied to assess the lower jaw biomechanics of cingulate xenarthrans: 14 species of armadillos as well as one Pleistocene pampathere (11 extant taxa and the extinct forms Vassallia, Eutatus and Macroeuphractus). The principal goal of this work is to comparatively assess the biomechanical capabilities of the mandible based on FEA and to relate the obtained stress patterns with diet preferences and variability, in extant and extinct species through an ecomorphology approach. The results of FEA showed that omnivorous species have stronger mandibles than insectivorous species. Moreover, this latter group of species showed high variability, including some similar biomechanical features of the insectivorous Tolypeutes matacus and Chlamyphorus truncatus to those of omnivorous species, in agreement with reported diets that include items other than insects. It remains unclear the reasons behind the stronger than expected lower jaw of Dasypus kappleri. On the other hand, the very strong mandible of the fossil taxon Vassallia maxima agrees well with the proposed herbivorous diet. Moreover, Eutatus seguini yielded a stress pattern similar to Vassalia in the posterior part of the lower jaw, but resembling that of the stoutly built Macroeuphractus outesi in the anterior part. The results highlight the need for more detailed studies on the natural history of extant armadillos. FEA proved a powerful tool for biomechanical studies in a comparative framework. PMID:25919313

  10. Survival, Function, and Complications of Oral Implants Placed in Bone Flaps in Jaw Rehabilitation: A Systematic Review.

    PubMed

    Zhang, Lei; Ding, Qian; Liu, Cunrui; Sun, Yannan; Xie, Qiufei; Zhou, Yongsheng

    2016-01-01

    This systematic review attempted to determine the survival rate of implants placed in bone flaps in jaw rehabilitation and the functional gains and the most common complications related to these implants. An electronic search was undertaken of PubMed, EMBASE, and CNKI records from 1990 through July 2014. Two independent examiners read the titles and abstracts of the results to identify studies that met the inclusion criteria. Subsequently, the reference lists of the selected publications were hand searched. Descriptive statistics were used to report all data related to the survival rate of implants placed in bone flaps in jaw rehabilitation, the functional gains, and complications. A total of 20 studies were included for systematic review without repetition. The mean follow-up time after implant placement ranged from 1.75 to 9.5 years. Within the limitations of available studies, the survival rate of implants placed in bone flaps in jaw rehabilitation ranged from 82.4% to 100%. Of the 20 included studies, 15 reported a survival rate higher than 90%. The cumulative survival rate was 93.2%, with the longest follow-up time being 12.9 years. The most common complications related to these implants were peri-implant bone resorption or peri-implant inflammation, and peri-implant soft tissue proliferation. The main factors associated with the survival rate of implants in bone flaps were reported as time of implant placement and radiotherapy. Despite some persistent soft tissue problems and implant loss, most patients reached a satisfactory functional and esthetic outcome, as evaluated by clinical examination and subjectively by the patients at interview. Implant-supported dental prosthetic rehabilitation in reconstructed jaws improved the quality of life in terms of speech, nutrition, oral competence, and facial appearance. Placement of implants in bone flaps in jaw rehabilitation was demonstrated to be a reliable technique with a high survival rate. Multicentered

  11. Cis-regulation of the amphioxus engrailed gene: insights into evolution of a muscle-specific enhancer.

    PubMed

    Beaster-Jones, Laura; Schubert, Michael; Holland, Linda Z

    2007-08-01

    To gain insights into the relation between evolution of cis-regulatory DNA and evolution of gene function, we identified tissue-specific enhancers of the engrailed gene of the basal chordate amphioxus (Branchiostoma floridae) and compared their ability to direct expression in both amphioxus and its nearest chordate relative, the tunicate Ciona intestinalis. In amphioxus embryos, the native engrailed gene is expressed in three domains - the eight most anterior somites, a few cells in the central nervous system (CNS) and a few ectodermal cells. In contrast, in C. intestinalis, in which muscle development is highly divergent, engrailed expression is limited to the CNS. To characterize the tissue-specific enhancers of amphioxus engrailed, we first showed that 7.8kb of upstream DNA of amphioxus engrailed directs expression to all three domains in amphioxus that express the native gene. We then identified the amphioxus engrailed muscle-specific enhancer as the 1.2kb region of upstream DNA with the highest sequence identity to the mouse en-2 jaw muscle enhancer. This amphioxus enhancer directed expression to both the somites in amphioxus and to the larval muscles in C. intestinalis. These results show that even though expression of the native engrailed has apparently been lost in developing C. intestinalis muscles, they express the transcription factors necessary to activate transcription from the amphioxus engrailed enhancer, suggesting that gene networks may not be completely disrupted if an individual component is lost.

  12. The OGCleaner: filtering false-positive homology clusters.

    PubMed

    Fujimoto, M Stanley; Suvorov, Anton; Jensen, Nicholas O; Clement, Mark J; Snell, Quinn; Bybee, Seth M

    2017-01-01

    Detecting homologous sequences in organisms is an essential step in protein structure and function prediction, gene annotation and phylogenetic tree construction. Heuristic methods are often employed for quality control of putative homology clusters. These heuristics, however, usually only apply to pairwise sequence comparison and do not examine clusters as a whole. We present the Orthology Group Cleaner (the OGCleaner), a tool designed for filtering putative orthology groups as homology or non-homology clusters by considering all sequences in a cluster. The OGCleaner relies on high-quality orthologous groups identified in OrthoDB to train machine learning algorithms that are able to distinguish between true-positive and false-positive homology groups. This package aims to improve the quality of phylogenetic tree construction especially in instances of lower-quality transcriptome assemblies. https://github.com/byucsl/ogcleaner CONTACT: sfujimoto@gmail.comSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. Gentle Masking of Low-Complexity Sequences Improves Homology Search

    PubMed Central

    Frith, Martin C.

    2011-01-01

    Detection of sequences that are homologous, i.e. descended from a common ancestor, is a fundamental task in computational biology. This task is confounded by low-complexity tracts (such as atatatatatat), which arise frequently and independently, causing strong similarities that are not homologies. There has been much research on identifying low-complexity tracts, but little research on how to treat them during homology search. We propose to find homologies by aligning sequences with “gentle” masking of low-complexity tracts. Gentle masking means that the match score involving a masked letter is , where is the unmasked score. Gentle masking slightly but noticeably improves the sensitivity of homology search (compared to “harsh” masking), without harming specificity. We show examples in three useful homology search problems: detection of NUMTs (nuclear copies of mitochondrial DNA), recruitment of metagenomic DNA reads to reference genomes, and pseudogene detection. Gentle masking is currently the best way to treat low-complexity tracts during homology search. PMID:22205972

  14. Correlation between bone mineral density of jaws and skeletal sites in an Iranian population using dual X-ray energy absorptiometry

    PubMed Central

    Esfahanizadeh, Nasrin; Davaie, Sotoudeh; Rokn, A. R.; Daneshparvar, Hamid Reza; Bayat, Noushin; Khondi, Nasrin; Ajvadi, Sara; Ghandi, Mostafa

    2013-01-01

    Background: The aim of the present study was to evaluate the relationship between the bone density of various regions of jaws and skeletal bones. Materials and Methods: A total of 110 patients with a mean age of 55.01 ± 10.77 years were selected for the purpose of the present descriptive study. Dual X-ray Energy Absorptiometry (DXA) was carried out to determine bone mineral density (BMD) of the femur and lumbar vertebrae. Then all the subjects underwent DXA of the jaw bones and BMD values were determined at four jaw regions. Data were analyzed by SPSS 16 statistical software, and the correlation between the various BMD values was determined by Pearson's correlation coefficient. Results: The results showed that 42.7% of females had normal BMD values in the femur, and in vertebrae, 20% were osteopenic and 37.3% suffered from osteoporosis, with statistically significant differences in the BMD values of the jaws between the three above-mentioned groups (P < 0.001). There was an increasing tendency toward osteopenia and osteoporosis with age. There was a positive correlation between BMD values of the femur and lumbar vertebrae and those of all the jaw regions under study (P < 0.005). There was a negative correlation (P < 0.01) between age and the BMD values of the femur, lumbar vertebrae and anterior maxilla. Conclusion: The bone density of the maxilla and mandible and presence of osteoporosis or osteopenia in these bones might reflect the same problem in skeletal bones. PMID:24130580

  15. Contrast-enhanced multidetector computerized tomography for odontogenic cysts and cystic-appearing tumors of the jaws: is it useful?

    PubMed

    Kakimoto, Naoya; Chindasombatjaroen, Jira; Tomita, Seiki; Shimamoto, Hiroaki; Uchiyama, Yuka; Hasegawa, Yoko; Kishino, Mitsunobu; Murakami, Shumei; Furukawa, Souhei

    2013-01-01

    The purpose of this study was to investigate the usefulness of computerized tomography (CT), particularly contrast-enhanced CT, in differentiation of jaw cysts and cystic-appearing tumors. We retrospectively analyzed contrast-enhanced CT images of 90 patients with odontogenic jaw cysts or cystic-appearing tumors. The lesion size and CT values were measured and the short axis to long axis (S/L) ratio, contrast enhancement (CE) ratio, and standard deviation ratio were calculated. The lesion size and the S/L ratio of keratocystic odontogenic tumors were significantly different from those of radicular cysts and follicular cysts. There were no significant differences in the CE ratio among the lesions. Multidetector CT provided diagnostic information about the size of odontogenic cysts and cystic-appearing tumors of the jaws that was related to the lesion type, but showed no relation between CE ratio and the type of these lesions. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Molecular characterization of an adiponectin receptor homolog in the white leg shrimp, Litopenaeus vannamei

    PubMed Central

    Kim, Ah Ran; Alam, Md Jobaidul; Yoon, Tae-ho; Lee, Soo Rin; Park, Hyun; Kim, Doo-Nam; An, Doo-Hae; Lee, Jae-Bong; Lee, Chung Il

    2016-01-01

    Adiponectin (AdipoQ) and its receptors (AdipoRs) are strongly related to growth and development of skeletal muscle, as well as glucose and lipid metabolism in vertebrates. Herein we report the identification of the first full-length cDNA encoding an AdipoR homolog (Liv-AdipoR) from the decapod crustacean Litopenaeus vannamei using a combination of next generation sequencing (NGS) technology and bioinformatics analysis. The full-length Liv-AdipoR (1,245 bp) encoded a protein that exhibited the canonical seven transmembrane domains (7TMs) and the inversed topology that characterize members of the progestin and adipoQ receptor (PAQR) family. Based on the obtained sequence information, only a single orthologous AdipoR gene appears to exist in arthropods, whereas two paralogs, AdipoR1 and AdipoR2, have evolved in vertebrates. Transcriptional analysis suggested that the single Liv-AdipoR gene appears to serve the functions of two mammalian AdipoRs. At 72 h after injection of 50 pmol Liv-AdipoR dsRNA (340 bp) into L. vannamei thoracic muscle and deep abdominal muscle, transcription levels of Liv-AdipoR decreased by 93% and 97%, respectively. This confirmed optimal conditions for RNAi of Liv-AdipoR. Knockdown of Liv-AdipoR resulted in significant changes in the plasma levels of ammonia, 3-methylhistine, and ornithine, but not plasma glucose, suggesting that that Liv-AdipoR is important for maintaining muscle fibers. The chronic effect of Liv-AdipoR dsRNA injection was increased mortality. Transcriptomic analysis showed that 804 contigs were upregulated and 212 contigs were downregulated by the knockdown of Liv-AdipoR in deep abdominal muscle. The significantly upregulated genes were categorized as four main functional groups: RNA-editing and transcriptional regulators, molecular chaperones, metabolic regulators, and channel proteins. PMID:27478708

  17. Investigating homology between proteins using energetic profiles.

    PubMed

    Wrabl, James O; Hilser, Vincent J

    2010-03-26

    Accumulated experimental observations demonstrate that protein stability is often preserved upon conservative point mutation. In contrast, less is known about the effects of large sequence or structure changes on the stability of a particular fold. Almost completely unknown is the degree to which stability of different regions of a protein is generally preserved throughout evolution. In this work, these questions are addressed through thermodynamic analysis of a large representative sample of protein fold space based on remote, yet accepted, homology. More than 3,000 proteins were computationally analyzed using the structural-thermodynamic algorithm COREX/BEST. Estimated position-specific stability (i.e., local Gibbs free energy of folding) and its component enthalpy and entropy were quantitatively compared between all proteins in the sample according to all-vs.-all pairwise structural alignment. It was discovered that the local stabilities of homologous pairs were significantly more correlated than those of non-homologous pairs, indicating that local stability was indeed generally conserved throughout evolution. However, the position-specific enthalpy and entropy underlying stability were less correlated, suggesting that the overall regional stability of a protein was more important than the thermodynamic mechanism utilized to achieve that stability. Finally, two different types of statistically exceptional evolutionary structure-thermodynamic relationships were noted. First, many homologous proteins contained regions of similar thermodynamics despite localized structure change, suggesting a thermodynamic mechanism enabling evolutionary fold change. Second, some homologous proteins with extremely similar structures nonetheless exhibited different local stabilities, a phenomenon previously observed experimentally in this laboratory. These two observations, in conjunction with the principal conclusion that homologous proteins generally conserved local stability, may

  18. Feeding behavior, diet, and the functional consequences of jaw form in orangutans, with implications for the evolution of Pongo.

    PubMed

    Taylor, Andrea B

    2006-04-01

    Orangutans are amongst the most craniometrically variable of the extant great apes, yet there has been no attempt to explicitly link this morphological variation with observed differences in behavioral ecology. This study explores the relationship between feeding behavior, diet, and mandibular morphology in orangutans. All orangutans prefer ripe, pulpy fruit when available. However, some populations of Bornean orangutans (Pongo pygmaeus morio and P. p. wurmbii) rely more heavily on bark and relatively tough vegetation during periods of low fruit yield than do Sumatran orangutans (Pongo abelii). I tested the hypothesis that Bornean orangutans exhibit structural features of the mandible that provide greater load resistance abilities to masticatory and incisal forces. Compared to P. abelii, P. p. morio exhibits greater load resistance abilities as reflected in a relatively deeper mandibular corpus, deeper and wider mandibular symphysis, and relatively greater condylar area. P. p. wurmbii exhibits most of these same morphologies, and in all comparisons is either comparable in jaw proportions to P. p. morio, or intermediate between P. p. morio and P. abelii. These data indicate that P. p. morio and P. p. wurmbii are better suited to resisting large and/or frequent jaw loads than P. abelii. Using these results, I evaluated mandibular morphology in P. p. pygmaeus, a Bornean orangutan population whose behavioral ecology is poorly known. Pongo p. pygmaeus generally exhibits relatively greater load resistance capabilities than P. abelii, but less than P. p. morio. These results suggest that P. p. pygmaeus may consume greater amounts of tougher and/or more obdurate foods than P. abelii, and that consumption of such foods may intensify amongst Bornean orangutan populations. Finally, data from this study are used to evaluate variation in craniomandibular morphology in Khoratpithecus piriyai, possibly the earliest relative of Pongo from the late Miocene of Thailand, and the late

  19. Comparison of rhythmic masticatory muscle activity during non-rapid eye movement sleep in guinea pigs and humans.

    PubMed

    Kato, Takafumi; Toyota, Risa; Haraki, Shingo; Yano, Hiroyuki; Higashiyama, Makoto; Ueno, Yoshio; Yano, Hiroshi; Sato, Fumihiko; Yatani, Hirofumi; Yoshida, Atsushi

    2017-09-27

    Rhythmic masticatory muscle activity can be a normal variant of oromotor activity, which can be exaggerated in patients with sleep bruxism. However, few studies have tested the possibility in naturally sleeping animals to study the neurophysiological mechanisms of rhythmic masticatory muscle activity. This study aimed to investigate the similarity of cortical, cardiac and electromyographic manifestations of rhythmic masticatory muscle activity occurring during non-rapid eye movement sleep between guinea pigs and human subjects. Polysomnographic recordings were made in 30 freely moving guinea pigs and in eight healthy human subjects. Burst cycle length, duration and activity of rhythmic masticatory muscle activity were compared with those for chewing. The time between R-waves in the electrocardiogram (RR interval) and electroencephalogram power spectrum were calculated to assess time-course changes in cardiac and cortical activities in relation to rhythmic masticatory muscle activity. In animals, in comparison with chewing, rhythmic masticatory muscle activity had a lower burst activity, longer burst duration and longer cycle length (P < 0.05), and greater variabilities were observed (P < 0.05). Rhythmic masticatory muscle activity occurring during non-rapid eye movement sleep [median (interquartile range): 5.2 (2.6-8.9) times per h] was preceded by a transient decrease in RR intervals, and was accompanied by a transient decrease in delta elelctroencephalogram power. In humans, masseter bursts of rhythmic masticatory muscle activity were characterized by a lower activity, longer duration and longer cycle length than those of chewing (P < 0.05). Rhythmic masticatory muscle activity during non-rapid eye movement sleep [1.4 (1.18-2.11) times per h] was preceded by a transient decrease in RR intervals and an increase in cortical activity. Rhythmic masticatory muscle activity in animals had common physiological components representing transient arousal

  20. From fish to modern humans--comparative anatomy, homologies and evolution of the head and neck musculature.

    PubMed

    Diogo, R; Abdala, V; Lonergan, N; Wood, B A

    2008-10-01

    In a recent paper Diogo (2008) reported the results of the first part of an investigation of the comparative anatomy, homologies and evolution of the head and neck muscles of osteichthyans (bony fish + tetrapods). That report mainly focused on actinopterygian fish, but also compared these fish with certain non-mammalian sarcopterygians. The present paper focuses mainly on sarcopterygians, and particularly on how the head and neck muscles have evolved during the transitions from sarcopterygian fish and non-mammalian tetrapods to monotreme and therian mammals, including modern humans. The data obtained from our dissections of the head and neck muscles of representative members of sarcopterygian fish, amphibians, reptiles, monotremes and therian mammals, such as rodents, tree-shrews, colugos and primates, including modern humans, are compared with the information available in the literature. Our observations and comparisons indicate that the number of mandibular and true branchial muscles (sensu this work) present in modern humans is smaller than that found in mammals such as tree-shrews, rats and monotremes, as well as in reptiles such as lizards. Regarding the pharyngeal musculature, there is an increase in the number of muscles at the time of the evolutionary transition leading to therian mammals, but there was no significant increase during the transition leading to the emergence of higher primates and modern humans. The number of hypobranchial muscles is relatively constant within the therian mammals we examined, although in this case modern humans have more muscles than other mammals. The number of laryngeal and facial muscles in modern humans is greater than that found in most other therian taxa. Interestingly, modern humans possess peculiar laryngeal and facial muscles that are not present in the majority of the other mammalian taxa; this seems to corroborate the crucial role played by vocal communication and by facial expressions in primate and especially in

  1. A Biomechanical Modeling Study of the Effects of the Orbicularis Oris Muscle and Jaw Posture on Lip Shape

    ERIC Educational Resources Information Center

    Stavness, Ian; Nazari, Mohammad Ali; Perrier, Pascal; Demolin, Didier; Payan, Yohan

    2013-01-01

    Purpose: The authors' general aim is to use biomechanical models of speech articulators to explore how possible variations in anatomical structure contribute to differences in articulatory strategies and phone systems across human populations. Specifically, they investigated 2 issues: (a) the link between lip muscle anatomy and variability in…

  2. Homological scaffolds of brain functional networks

    PubMed Central

    Petri, G.; Expert, P.; Turkheimer, F.; Carhart-Harris, R.; Nutt, D.; Hellyer, P. J.; Vaccarino, F.

    2014-01-01

    Networks, as efficient representations of complex systems, have appealed to scientists for a long time and now permeate many areas of science, including neuroimaging (Bullmore and Sporns 2009 Nat. Rev. Neurosci. 10, 186–198. (doi:10.1038/nrn2618)). Traditionally, the structure of complex networks has been studied through their statistical properties and metrics concerned with node and link properties, e.g. degree-distribution, node centrality and modularity. Here, we study the characteristics of functional brain networks at the mesoscopic level from a novel perspective that highlights the role of inhomogeneities in the fabric of functional connections. This can be done by focusing on the features of a set of topological objects—homological cycles—associated with the weighted functional network. We leverage the detected topological information to define the homological scaffolds, a new set of objects designed to represent compactly the homological features of the correlation network and simultaneously make their homological properties amenable to networks theoretical methods. As a proof of principle, we apply these tools to compare resting-state functional brain activity in 15 healthy volunteers after intravenous infusion of placebo and psilocybin—the main psychoactive component of magic mushrooms. The results show that the homological structure of the brain's functional patterns undergoes a dramatic change post-psilocybin, characterized by the appearance of many transient structures of low stability and of a small number of persistent ones that are not observed in the case of placebo. PMID:25401177

  3. Musculoskeletal anatomy of the pelvic fin of Polypterus: implications for phylogenetic distribution and homology of pre- and postaxial pelvic appendicular muscles.

    PubMed

    Molnar, Julia L; Johnston, Peter S; Esteve-Altava, Borja; Diogo, Rui

    2017-04-01

    As a member of the most basal clade of extant ray-finned fishes (actinopterygians) and of one of the most basal clades of osteichthyans (bony fishes + tetrapods), Polypterus can provide insights into the ancestral anatomy of both ray-finned and lobe-finned fishes, including those that gave rise to tetrapods. The pectoral fin of Polypterus has been well described but, surprisingly, neither the bones nor the muscles of the pelvic fin are well known. We stained and dissected the pelvic fin of Polypterus senegalus and Polypterus delhezi to offer a detailed description of its musculoskeletal anatomy. In addition to the previously described adductor and abductor muscles, we found preaxial and postaxial muscles similar to those in the pectoral fin of members of this genus. The presence of pre- and postaxial muscles in both the pectoral and pelvic fins of Polypterus, combined with recent descriptions of similar muscles in the lobe-finned fishes Latimeria and Neoceratodus, suggests that they were present in the most recent common ancestor of bony fishes. These results have crucial implications for the evolution of appendicular muscles in both fish and tetrapods. © 2016 Anatomical Society.

  4. Mechanical constraint from growing jaw facilitates mammalian dental diversity

    PubMed Central

    Renvoisé, Elodie; Kavanagh, Kathryn D.; Lazzari, Vincent; Häkkinen, Teemu J.; Rice, Ritva; Pantalacci, Sophie; Salazar-Ciudad, Isaac; Jernvall, Jukka

    2017-01-01

    Much of the basic information about individual organ development comes from studies using model species. Whereas conservation of gene regulatory networks across higher taxa supports generalizations made from a limited number of species, generality of mechanistic inferences remains to be tested in tissue culture systems. Here, using mammalian tooth explants cultured in isolation, we investigate self-regulation of patterning by comparing developing molars of the mouse, the model species of mammalian research, and the bank vole. A distinct patterning difference between the vole and the mouse molars is the alternate cusp offset present in the vole. Analyses of both species using 3D reconstructions of developing molars and jaws, computational modeling of cusp patterning, and tooth explants cultured with small braces show that correct cusp offset requires constraints on the lateral expansion of the developing tooth. Vole molars cultured without the braces lose their cusp offset, and mouse molars cultured with the braces develop a cusp offset. Our results suggest that cusp offset, which changes frequently in mammalian evolution, is more dependent on the 3D support of the developing jaw than other aspects of tooth shape. This jaw–tooth integration of a specific aspect of the tooth phenotype indicates that organs may outsource specific aspects of their morphology to be regulated by adjacent body parts or organs. Comparative studies of morphologically different species are needed to infer the principles of organogenesis. PMID:28808032

  5. Bloom DNA Helicase Facilitates Homologous Recombination between Diverged Homologous Sequences*

    PubMed Central

    Kikuchi, Koji; Abdel-Aziz, H. Ismail; Taniguchi, Yoshihito; Yamazoe, Mitsuyoshi; Takeda, Shunichi; Hirota, Kouji

    2009-01-01

    Bloom syndrome caused by inactivation of the Bloom DNA helicase (Blm) is characterized by increases in the level of sister chromatid exchange, homologous recombination (HR) associated with cross-over. It is therefore believed that Blm works as an anti-recombinase. Meanwhile, in Drosophila, DmBlm is required specifically to promote the synthesis-dependent strand anneal (SDSA), a type of HR not associating with cross-over. However, conservation of Blm function in SDSA through higher eukaryotes has been a matter of debate. Here, we demonstrate the function of Blm in SDSA type HR in chicken DT40 B lymphocyte line, where Ig gene conversion diversifies the immunoglobulin V gene through intragenic HR between diverged homologous segments. This reaction is initiated by the activation-induced cytidine deaminase enzyme-mediated uracil formation at the V gene, which in turn converts into abasic site, presumably leading to a single strand gap. Ig gene conversion frequency was drastically reduced in BLM−/− cells. In addition, BLM−/− cells used limited donor segments harboring higher identity compared with other segments in Ig gene conversion event, suggesting that Blm can promote HR between diverged sequences. To further understand the role of Blm in HR between diverged homologous sequences, we measured the frequency of gene targeting induced by an I-SceI-endonuclease-mediated double-strand break. BLM−/− cells showed a severer defect in the gene targeting frequency as the number of heterologous sequences increased at the double-strand break site. Conversely, the overexpression of Blm, even an ATPase-defective mutant, strongly stimulated gene targeting. In summary, Blm promotes HR between diverged sequences through a novel ATPase-independent mechanism. PMID:19661064

  6. [Imaging analysis of jaw defects reparation with antigen-extracted porcine cancellous bone].

    PubMed

    Chen, Xufeng; Lu, Lihong; Feng, Zhiqiang; Yin, Zhongda; Lai, Renfa

    2017-12-01

    At present, most of the bone xenograft for clinical application comes from bovine. In recent years, many studies have been done on the clinical application of porcine xenograft bone. The goal of this study was to evaluate the effect of canine mandibular defects reparation with antigen-extracted porcine cancellous bone by imaging examination. Four dogs' bilateral mandibular defects were created, with one side repaired with autologous bone (set as control group) while the other side repaired with antigen-extracted porcine cancellous bone (set as experimental group). Titanium plates and titanium screws were used for fixation. Cone beam computed tomography (CBCT), computed tomography (CT), single-photon emission computed tomography (SPECT) were undertaken at week 12 and 24 postoperatively, and SPECT and CT images were fused. The results demonstrated that the remodeling of antigen-extracted porcine cancellous bone was slower than that of autologous bone, but it can still be used as scaffold for jaw defects. The results in this study provide a new choice for materials required for clinical reparation of jaw defects.

  7. Actinomyces israelii in osteoradionecrosis of the jaws. Histopathologic and immunocytochemical study of five cases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Happonen, R.P.; Viander, M.; Pelliniemi, L.

    1983-06-01

    Five surgically treated patients with osteoradionecrosis of the jaws are presented. The clinical history of the disease varied from 3 to 17 years. In three cases the progression of the disease was enhanced by surgical procedures performed in the irradiated area causing exfoliation of the premaxillary area in one case and spontaneous mandibular fracture in two cases. Actinomyces israelii was demonstrated in tissue sections of all five cases by using FITC-labeled specific antiserum and additionally with peroxidase-antiperoxidase method in one case. Candida was found in histologic sections of three cases. Radiation damage in the oral soft tissues and jawbones makesmore » the atmosphere favorable for anaerobic microorganisms. The present results indicate that the role of A. israelii in the pathogenesis of osteoradionecrosis of the jaws has not been fully appreciated.« less

  8. Tocopherol and tocotrienol homologs in parenteral lipid emulsions

    PubMed Central

    Xu, Zhidong; Harvey, Kevin A; Pavlina, Thomas M; Zaloga, Gary P; Siddiqui, Rafat A

    2015-01-01

    Parenteral lipid emulsions, which are made of oils from plant and fish sources, contain different types of tocopherols and tocotrienols (vitamin E homologs). The amount and types of vitamin E homologs in various lipid emulsions vary considerably and are not completely known. The objective of this analysis was to develop a quantitative method to determine levels of all vitamin E homologs in various lipid emulsions. An HPLC system was used to measure vitamin E homologs using a Pinnacle DB Silica normal phase column and an isocratic, n-hexane:1,4 dioxane (98:2) mobile phase. An optimized protocol was used to report vitamin E homolog concentrations in soybean oil-based (Intralipid®, Ivelip®, Lipofundin® N, Liposyn® III, and Liposyn® II), medium- and long-chain fatty acid-based (Lipofundin®, MCT and Structolipid®), olive oil-based (ClinOleic®), and fish oil-based (Omegaven®) and mixture of these oils-based (SMOFlipid®, Lipidem®) commercial parenteral lipid emulsions. Total content of all vitamin E homologs varied greatly between different emulsions, ranging from 57.9 to 383.9 µg/mL. Tocopherols (α, β, γ, δ) were the predominant vitamin E homologs for all emulsions, with tocotrienol content < 0.3%. In all of the soybean emulsions, except for Lipofundin® N, the predominant vitamin E homolog was γ-tocopherol, which ranged from 57–156 µg/mL. ClinOleic® predominantly contained α-tocopherol (32 µg/mL), whereas α-tocopherol content in Omegaven® was higher than most of the other lipid emulsions (230 µg/mL). Practical applications The information on the types and quantity of vitamin E homologs in various lipid emulsions will be extremely useful to physicians and healthcare personnel in selecting appropriate lipid emulsions that are exclusively used in patients with inadequate gastrointestinal function, including hospitalized and critically ill patients. Some emulsions may require vitamin E supplementation in order to meet minimal human requirements

  9. Jaw osteonecrosis related to bisphosphonate therapy: a severe secondary disorder.

    PubMed

    Dannemann, C; Grätz, K W; Riener, M O; Zwahlen, R A

    2007-04-01

    Bisphosphonate-related osteonecrosis of the jaws (BON), first described in 2003, is gaining importance due to the increasing indication spectrum of bisphosphonate therapy [S. Takeyama, M. Ito, H. Shinoda, A novel bisphosphonate, TRK-530, for periodontitis, Bone 38 (2006) 31-31; M. Tagil, A. W-Dahl, J. Astrand, D. Little, S. Toksvig-Larsen, Decreasing the catabolic response by a single bisphosphonate infusion shortens the healing time in hemicallotasis operations, Bone 38 (2006) 84-85; E. Rodriguez, M.C. Duran, L.M. Rodriguez, R. Ros, M.R. Aleman, M. Rodriguez-Gaspar, A.M. Lopez, E. Garcia-Valdecasas, F. Santolaria, Intravenous (IV) bisphosphonates for osteopenic cancer survivor women: an alternative treatment, Bone 38 (2006) 72-73; D.G. Little, K. Ward, P. Kiely, M.C. Bellemore, J. Briody, C.T. Cowell, Bisphosphonate rescue in distraction osteogenesis: a case series, Bone 38 (2006) 80-80; R. Marx, Pamidronate (Aredia) and zoledronate (Zometa) induced avascular necrosis of the jaws: a growing epidemic, J. Oral Maxillofac. Surg. 61 (2003) 1115-1118]. BON patients suffering from varying bony defects and symptoms are extremely restricted in their quality of life. Due to a limited knowledge of the aetiology of BON efficient evidence-based treatment strategies are lacking. Until now 23 patients with bisphosphonate-related osteonecrosis have been admitted to the Department of Cranio-Maxillofacial Surgery of the University of Zurich. A complete history has been recorded. All patients underwent clinical and radiographic examination. CT scans and MRI have been performed in selected cases. All patients had in common that, before signs of BON were observed, a local traumatic incidence had occurred. All patients showed signs of infection which could be remarkably reduced by antibacterial treatment. Furthermore, the period of bisphosphonate treatment was found to be one of the significant factors causing bisphosphonate-related osteonecrosis of the jaws. The aetiology of BON

  10. [Osteonecrosis of the jaws (ONJ) associated to antiresorptive treatment].

    PubMed

    Larsson Wexell, Cecilia; Kjellman, Anders; Akre, Olof

    2018-05-25

    Osteonecrosis of the jaws (ONJ) has been associated to antiresorptive treatment and is an increasing problem all over the world. ONJ is a severe adverse effect of antiresorptive treatment with bisphosphonate and denosumab used for treatment of osteoporosis, metastases from certain malignant conditions and as an adjuvant treatment in postmenopausal women with breast cancer, and of treatment with certain chemotherapeutic drugs. In this paper the epidemiology, symptoms, diagnostic features, clinical findings, and treatment are reviewed. Guidelines are presented for dental treatment, surgery and referral of patients on antiresorptive treatment.

  11. Do patients with chronic unilateral orofacial pain due to a temporomandibular disorder show increased attending to somatosensory input at the painful side of the jaw?

    PubMed

    Van Damme, Stefaan; Vanden Bulcke, Charlotte; Van Den Berghe, Linda; Poppe, Louise; Crombez, Geert

    2018-01-01

    Patients with chronic orofacial pain due to temporomandibular disorders (TMD) display alterations in somatosensory processing at the jaw, such as amplified perception of tactile stimuli, but the underlying mechanisms remain unclear. This study investigated one possible explanation, namely hypervigilance, and tested if TMD patients with unilateral pain showed increased attending to somatosensory input at the painful side of the jaw. TMD patients with chronic unilateral orofacial pain ( n  = 20) and matched healthy volunteers ( n  = 20) performed a temporal order judgment (TOJ) task indicated which one of two tactile stimuli, presented on each side of the jaw, they had perceived first. TOJ methodology allows examining spatial bias in somatosensory processing speed. Furthermore, after each block of trials, the participants rated the perceived intensity of tactile stimuli separately for both sides of the jaw. Finally, questionnaires assessing pain catastrophizing, fear-avoidance beliefs, and pain vigilance, were completed. TMD patients tended to perceive tactile stimuli at the painful jaw side as occurring earlier in time than stimuli at the non-painful side but this effect did not reach conventional levels of significance ( p  = .07). In the control group, tactile stimuli were perceived as occurring simultaneously. Secondary analyses indicated that the magnitude of spatial bias in the TMD group is positively associated with the extent of fear-avoidance beliefs. Overall, intensity ratings of tactile stimuli were significantly higher in the TMD group than in the control group, but there was no significant difference between the painful and non-painful jaw side in the TMD patients. The hypothesis that TMD patients with chronic unilateral orofacial pain preferentially attend to somatosensory information at the painful side of the jaw was not statistically supported, although lack of power could not be ruled out as a reason for this. The findings are discussed within

  12. Intraosseous embolotherapy of central arteriovenous malformations in the jaw: long-term experience with 8 cases.

    PubMed

    Liu, Denggao; Ma, Xuchen; Zhao, Fuyun; Zhang, Jianguo

    2009-11-01

    To investigate the long-term effects of direct intraosseous histoacryl embolotherapy on central arteriovenous malformations (AVMs) of the jaw. Eight patients with central AVMs of the jaw (3 in the maxilla and 5 in the mandible) were treated with direct intraosseous histoacryl injection. These AVMs exhibited cystic radiolucency, with (n = 5) or without (n = 3) honeycombed component. On angiography, all the AVMs exhibited a large intraosseous nidus with multiple suppliers and drainages. The intraosseous lesions were percutaneously punctured with an 18- to 20-gauge needle, and NBCA diluted 30% to 40% with iodized oil was injected during venous compression. Postembolic arteriograms showed that all the AVMs were completely or nearly completely devascularized after single or multiple injections at the initial treatment. The follow-up period ranged from 3 to 8 years. Two AVMs experienced postembolic curettage and were anatomically cured. Three AVMs were anatomically cured after 1 to 3 sessions of embolotherapy. The other 3 AVMs were clinically cured after 1 (n = 2) to 4 (n = 1) sessions of embolotherapy. There were no procedure-related severe complications. Direct intraosseous glue embolotherapy can be a simple and safe technique for endovascular management of central AVMs in the jaw and is particularly effective in an emergency. Complete reossification of the intraosseous nidus can be anticipated if a complete occlusion is obtained.

  13. Analysis of a Caenorhabditis elegans Twist homolog identifies conserved and divergent aspects of mesodermal patterning

    PubMed Central

    Harfe, Brian D.; Gomes, Ana Vaz; Kenyon, Cynthia; Liu, Jun; Krause, Michael; Fire, Andrew

    1998-01-01

    Mesodermal development is a multistep process in which cells become increasingly specialized to form specific tissue types. In Drosophila and mammals, proper segregation and patterning of the mesoderm involves the bHLH factor Twist. We investigated the activity of a Twist-related factor, CeTwist, during Caenorhabditis elegans mesoderm development. Embryonic mesoderm in C. elegans derives from a number of distinct founder cells that are specified during the early lineages; in contrast, a single blast cell (M) is responsible for all nongonadal mesoderm formation during postembryonic development. Using immunofluorescence and reporter fusions, we determined the activity pattern of the gene encoding CeTwist. No activity was observed during specification of mesodermal lineages in the early embryo; instead, the gene was active within the M lineage and in a number of mesodermal cells with nonstriated muscle fates. A role for CeTwist in postembryonic mesodermal cell fate specification was indicated by ectopic expression and genetic interference assays. These experiments showed that CeTwist was responsible for activating two target genes normally expressed in specific subsets of nonstriated muscles derived from the M lineage. In vitro and in vivo assays suggested that CeTwist cooperates with the C. elegans E/Daughterless homolog in directly activating these targets. The two target genes that we have studied, ceh-24 and egl-15, encode an NK-2 class homeodomain and an FGF receptor (FGFR) homolog, respectively. Twist activates FGFR and NK-homeodomain target genes during mesodermal patterning of Drosophila and similar target interactions have been proposed to modulate mesenchymal growth during closure of the vertebrate skull. These results suggest the possibility that a conserved pathway may be used for diverse functions in mesodermal specification. PMID:9716413

  14. Is Virtual Surgical Planning in Orthognathic Surgery Faster Than Conventional Planning? A Time and Workflow Analysis of an Office-Based Workflow for Single- and Double-Jaw Surgery.

    PubMed

    Steinhuber, Thomas; Brunold, Silvia; Gärtner, Catherina; Offermanns, Vincent; Ulmer, Hanno; Ploder, Oliver

    2018-02-01

    The purpose of this study was to measure and compare the working time for virtual surgical planning (VSP) in orthognathic surgery in a largely office-based workflow in comparison with conventional surgical planning (CSP) regarding the type of surgery, staff involved, and working location. This prospective cohort study included patients treated with orthognathic surgery from May to December 2016. For each patient, both CSP with manual splint fabrication and VSP with fabrication of computer-aided design-computer-aided manufacturing splints were performed. The predictor variables were planning method (CSP or VSP) and type of surgery (single or double jaw), and the outcome was time. Descriptive and analytic statistics, including analysis of variance for repeated measures, were computed. The sample was composed of 40 patients (25 female and 15 male patients; mean age, 24.6 years) treated with single-jaw surgery (n = 18) or double-jaw surgery (n = 22). The mean times for planning single-jaw surgery were 145.5 ± 11.5 minutes for CSP and 109.3 ± 10.8 minutes for VSP, and those for planning double-jaw surgery were 224.1 ± 11.2 minutes and 149.6 ± 15.3 minutes, respectively. Besides the expected result that the working time was shorter for single-versus double-jaw surgery (P < .001), it was shown that VSP shortened the working time significantly versus CSP (P < .001). The reduction of time through VSP was relatively stronger for double-jaw surgery (P < .001 for interaction). All differences between CSP and VSP regarding profession (except for the surgeon's time investment) and location were statistically significant (P < .01). The surgeon's time to plan single-jaw surgery was 37.0 minutes for CSP and 41.2 minutes for VSP; for double-jaw surgery, it was 53.8 minutes and 53.6 minutes, respectively. Office-based VSP for orthognathic surgery was significantly faster for single- and double-jaw surgery. The time investment of the surgeon was equal

  15. 3D-model building of the jaw impression

    NASA Astrophysics Data System (ADS)

    Ahmed, Moumen T.; Yamany, Sameh M.; Hemayed, Elsayed E.; Farag, Aly A.

    1997-03-01

    A novel approach is proposed to obtain a record of the patient's occlusion using computer vision. Data acquisition is obtained using intra-oral video cameras. The technique utilizes shape from shading to extract 3D information from 2D views of the jaw, and a novel technique for 3D data registration using genetic algorithms. The resulting 3D model can be used for diagnosis, treatment planning, and implant purposes. The overall purpose of this research is to develop a model-based vision system for orthodontics to replace traditional approaches. This system will be flexible, accurate, and will reduce the cost of orthodontic treatments.

  16. Assessment of the Survival of Dental Implants in Irradiated Jaws Following Treatment of Oral Cancer: A Retrospective Study

    PubMed Central

    Rana, Meenakshi Chauhan; Solanki, Swati; Pujari, Sudarshan C; Shaw, Eisha; Sharma, Swati; Anand, Abhishek; Singh, Harkanwal Preet

    2016-01-01

    Background: In patients undergoing head and neck surgery for various pathologic conditions, implants are one of the best restorative options and are increasing widely used. Therefore, we evaluated the success of dental implants in the irradiated jaws of patients following treatment of oral cancer oral cancer treated patients. Materials and Methods: Data of oral cancer treated patients was collected retrospectively from 2002 to 2008. We took 46 oral cancer treated patients in which implants were placed in irradiated jaws for rehabilitation. Results: It was found that out of 162 dental implants placed, 52 failed. Furthermore, there was no variation in the implant survival rate in between both the jaws. Radiation dose of <50 Gy units also showed significantly increased amount of implant survival rate. Conclusions: Implant survival is multifactorial and depends upon a number of factors like level of radiation exposure in that area, time gap between last radiation doses etc., Further research is required in this field to improve the esthetics and quality of life of cancer treated patients. PMID:27843270

  17. SU-F-E-20: A Mathematical Model of Linac Jaw Calibration Integrated with Collimator Walkout

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Y; Corns, R; Huang, V

    2016-06-15

    Purpose: Accurate jaw calibration is possible, but it does not necessarily achieve good junctions because of collimator rotation walkout. We developed a mathematical model seeking to pick an origin for calibration that minimizes the collimator walkout effect. Methods: We use radioopaque markers aligned with crosshair on the EPID to determine the collimator walkout at collimator angles 0°, 90° and 270°. We can accurately calibrate jaws to any arbitrary origin near the radiation field centre. While the absolute position of an origin moves with the collimator walkout, its relative location to the crosshair is an invariant. We studied two approaches tomore » select an optimal origin. One approach seeks to bring all three origin locations (0°–90°–270°) as close as possible by minimizing the perimeter of the triangle formed by these points. The other approach focuses on the gap for 0°–90° junctions. Results: Our perimeter cost function has two variables and non-linear behaviour. Generally, it does not have zero-perimeter-length solution which leads to perfect jaw matches. The zero solution can only be achieved, if the collimator rotates about a single fixed axis. In the second approach, we can always get perfect 0°–0° and 0°–90° junctions, because we ignore the 0°–270° situation. For our TrueBeams, both techniques for selecting an origin improved junction dose inhomogeneities to less than ±6%. Conclusion: Our model considers the general jaw matching with collimator rotations and proposes two potential solutions. One solution optimizes the junction gaps by considering all three collimator angles while the other only considers 0°–90°. The first solution will not give perfect matching, but can be clinically acceptable with minimized collimator walkout effect, while the second can have perfect junctions at the expense of the 0°–270° junctions. Different clinics might choose between these two methods basing on their clinical practices.« less

  18. Adaptable piezoelectric hemispherical composite strips using a scalable groove technique for a self-powered muscle monitoring system.

    PubMed

    Alluri, Nagamalleswara Rao; Vivekananthan, Venkateswaran; Chandrasekhar, Arunkumar; Kim, Sang-Jae

    2018-01-18

    Contrary to traditional planar flexible piezoelectric nanogenerators (PNGs), highly adaptable hemispherical shape-flexible piezoelectric composite strip (HS-FPCS) based PNGs are required to harness/measure non-linear surface motions. Therefore, a feasible, cost-effective and less-time consuming groove technique was developed to fabricate adaptable HS-FPCSs with multiple lengths. A single HS-CSPNG generates 130 V/0.8 μA and can also work as a self-powered muscle monitoring system (SP-MMS) to measure maximum human body part movements, i.e., spinal cord, throat, jaw, elbow, knee, foot stress, palm hand/finger force and inhale/exhale breath conditions at a time or at variable time intervals.

  19. DNA Strand Exchange and RecA Homologs in Meiosis

    PubMed Central

    Brown, M. Scott; Bishop, Douglas K.

    2015-01-01

    Homology search and DNA strand–exchange reactions are central to homologous recombination in meiosis. During meiosis, these processes are regulated such that the probability of choosing a homolog chromatid as recombination partner is enhanced relative to that of choosing a sister chromatid. This regulatory process occurs as homologous chromosomes pair in preparation for assembly of the synaptonemal complex. Two strand–exchange proteins, Rad51 and Dmc1, cooperate in regulated homology search and strand exchange in most organisms. Here, we summarize studies on the properties of these two proteins and their accessory factors. In addition, we review current models for the assembly of meiotic strand–exchange complexes and the possible mechanisms through which the interhomolog bias of recombination partner choice is achieved. PMID:25475089

  20. Detecting false positive sequence homology: a machine learning approach.

    PubMed

    Fujimoto, M Stanley; Suvorov, Anton; Jensen, Nicholas O; Clement, Mark J; Bybee, Seth M

    2016-02-24

    Accurate detection of homologous relationships of biological sequences (DNA or amino acid) amongst organisms is an important and often difficult task that is essential to various evolutionary studies, ranging from building phylogenies to predicting functional gene annotations. There are many existing heuristic tools, most commonly based on bidirectional BLAST searches that are used to identify homologous genes and combine them into two fundamentally distinct classes: orthologs and paralogs. Due to only using heuristic filtering based on significance score cutoffs and having no cluster post-processing tools available, these methods can often produce multiple clusters constituting unrelated (non-homologous) sequences. Therefore sequencing data extracted from incomplete genome/transcriptome assemblies originated from low coverage sequencing or produced by de novo processes without a reference genome are susceptible to high false positive rates of homology detection. In this paper we develop biologically informative features that can be extracted from multiple sequence alignments of putative homologous genes (orthologs and paralogs) and further utilized in context of guided experimentation to verify false positive outcomes. We demonstrate that our machine learning method trained on both known homology clusters obtained from OrthoDB and randomly generated sequence alignments (non-homologs), successfully determines apparent false positives inferred by heuristic algorithms especially among proteomes recovered from low-coverage RNA-seq data. Almost ~42 % and ~25 % of predicted putative homologies by InParanoid and HaMStR respectively were classified as false positives on experimental data set. Our process increases the quality of output from other clustering algorithms by providing a novel post-processing method that is both fast and efficient at removing low quality clusters of putative homologous genes recovered by heuristic-based approaches.

  1. Accuracy of Intraoral Digital Impressions for Whole Upper Jaws, Including Full Dentitions and Palatal Soft Tissues.

    PubMed

    Gan, Ning; Xiong, Yaoyang; Jiao, Ting

    2016-01-01

    Intraoral digital impressions have been stated to meet the clinical requirements for some teeth-supported restorations, though fewer evidences were proposed for larger scanning range. The aim of this study was to compare the accuracy (trueness and precision) of intraoral digital impressions for whole upper jaws, including the full dentitions and palatal soft tissues, as well as to determine the effect of different palatal vault height or arch width on accuracy of intraoral digital impressions. Thirty-two volunteers were divided into three groups according to the palatal vault height or arch width. Each volunteer received three scans with TRIOS intraoral scanner and one conventional impression of whole upper jaw. Three-dimensional (3D) images digitized from conventional gypsum casts by a laboratory scanner were chose as the reference models. All datasets were imported to a specific software program for 3D analysis by "best fit alignment" and "3D compare" process. Color-coded deviation maps showed qualitative visualization of the deviations. For the digital impressions for palatal soft tissues, trueness was (130.54±33.95)μm and precision was (55.26±11.21)μm. For the digital impressions for upper full dentitions, trueness was (80.01±17.78)μm and precision was (59.52±11.29)μm. Larger deviations were found between intraoral digital impressions and conventional impressions in the areas of palatal soft tissues than that in the areas of full dentitions (p<0.001). Precision of digital impressions for palatal soft tissues was slightly better than that for full dentitions (p = 0.049). There was no significant effect of palatal vault height on accuracy of digital impressions for palatal soft tissues (p>0.05), but arch width was found to have a significant effect on precision of intraoral digital impressions for full dentitions (p = 0.016). A linear correlation was found between arch width and precision of digital impressions for whole upper jaws (r = 0.326, p = 0

  2. Osteonecrosis of the jaw: effect of bisphosphonate type, local concentration, and acidic milieu on the pathomechanism.

    PubMed

    Otto, Sven; Pautke, Christoph; Opelz, Christine; Westphal, Ines; Drosse, Inga; Schwager, Joanna; Bauss, Frieder; Ehrenfeld, Michael; Schieker, Matthias

    2010-11-01

    Osteonecrosis of the jaw has been reported in patients receiving high doses of intravenous nitrogen-containing bisphosphonates (N-BPs) because of malignant disease. The exact pathomechanisms have been elusive and questions of paramount importance remain unanswered. Recent studies have indicated toxic effects of bisphosphonates on different cell types, apart from osteoclast inhibition. Multipotent stem cells play an important role in the processes of wound healing and bone regeneration, which seem to be especially impaired in the jaws of patients receiving high doses of N-BPs. Therefore, the aim of the present study was to investigate the effects of different bisphosphonate derivatives and dose levels combined with varying pH levels on the mesenchymal stem cells in vitro. The effect of 2 N-BPs (zoledronate and ibandronate) and 1 non-N-BP (clodronate) on immortalized mesenchymal stem cells was tested at different concentrations, reflecting 1, 3, and 6 months and 1, 3, 5, and 10 years of exposure to standard oncology doses of the 2 N-BPs and equimolar concentrations of clodronate at different pH values (7.4, 7.0, 6.7, and 6.3). Cell viability and activity were analyzed using a WST assay. Cell motility was investigated using scratch wound assays and visualized using time-lapse microscopy. Both types of bisphosphonates revealed remarkable differences. Zoledronate and ibandronate showed a dose- and pH-dependent cellular toxicity. Increasing concentrations of both N-BPs and an acidic milieu led to a significant decrease in cell viability and activity (P < .01), with more pronounced effects for zoledronate. Equimolar concentrations of clodronate did not affect the cell survival or activity significantly, apart from the effect of pH reduction itself, which was also detectable in the patients in the control group who did not receive bisphosphonates. Our results have shown that high concentrations of N-BPs and a local acidic milieu, which is commonly present in infections of

  3. Accuracy of Intraoral Digital Impressions for Whole Upper Jaws, Including Full Dentitions and Palatal Soft Tissues

    PubMed Central

    Gan, Ning; Xiong, Yaoyang; Jiao, Ting

    2016-01-01

    Intraoral digital impressions have been stated to meet the clinical requirements for some teeth-supported restorations, though fewer evidences were proposed for larger scanning range. The aim of this study was to compare the accuracy (trueness and precision) of intraoral digital impressions for whole upper jaws, including the full dentitions and palatal soft tissues, as well as to determine the effect of different palatal vault height or arch width on accuracy of intraoral digital impressions. Thirty-two volunteers were divided into three groups according to the palatal vault height or arch width. Each volunteer received three scans with TRIOS intraoral scanner and one conventional impression of whole upper jaw. Three-dimensional (3D) images digitized from conventional gypsum casts by a laboratory scanner were chose as the reference models. All datasets were imported to a specific software program for 3D analysis by "best fit alignment" and "3D compare" process. Color-coded deviation maps showed qualitative visualization of the deviations. For the digital impressions for palatal soft tissues, trueness was (130.54±33.95)μm and precision was (55.26±11.21)μm. For the digital impressions for upper full dentitions, trueness was (80.01±17.78)μm and precision was (59.52±11.29)μm. Larger deviations were found between intraoral digital impressions and conventional impressions in the areas of palatal soft tissues than that in the areas of full dentitions (p<0.001). Precision of digital impressions for palatal soft tissues was slightly better than that for full dentitions (p = 0.049). There was no significant effect of palatal vault height on accuracy of digital impressions for palatal soft tissues (p>0.05), but arch width was found to have a significant effect on precision of intraoral digital impressions for full dentitions (p = 0.016). A linear correlation was found between arch width and precision of digital impressions for whole upper jaws (r = 0.326, p = 0

  4. Platelet Lysate: The Better Choice for Jaw Periosteal Cell Mineralization

    PubMed Central

    Wanner, Yvonne; Umrath, Felix; Waidmann, Marc; Reinert, Siegmar

    2017-01-01

    Previously, we demonstrated a high quality of minerals formed by serum-free cultured jaw periosteal cells (JPCs) by Raman spectroscopy but the mineralization extent was not satisfactory. In the present study, we analyzed the proliferation and mineralization potential of human platelet lysate- (hPL-) cultured JPCs in comparison to that of FCS-cultured JPCs. By cell impedance measurements, we detected significantly higher population doubling times of PL-cultured JPCs in comparison to FCS-cultured JPCs. However, this result was not based on lower proliferation activities but on diminished cell sizes which JPCs develop under PL cultivation. The measurements of the metabolic activities clearly showed significantly higher cell proliferation rates under PL culturing. Equivalent levels of the mesenchymal cell markers CD29, CD45, CD73, CD90, and CD105 were detected, but there were significantly increased MSCA-1 levels under PL cultivation. While JPCs only occasionally mineralize under FCS culture conditions, the mineralization potential was significantly stronger under PL cultivation. Moreover, in 4 of 5 analyzed patient cells, the addition of dexamethasone was proved no longer necessary for strong mineralization of PL-cultured JPCs. We conclude that in vitro cultivation of JPCs with platelet lysate is a suitable alternative to FCS culture conditions and a powerful tool for the development of high-quality TE constructs using jaw periosteal cells. PMID:29391870

  5. Platelet Lysate: The Better Choice for Jaw Periosteal Cell Mineralization.

    PubMed

    Wanner, Yvonne; Umrath, Felix; Waidmann, Marc; Reinert, Siegmar; Alexander, Dorothea

    2017-01-01

    Previously, we demonstrated a high quality of minerals formed by serum-free cultured jaw periosteal cells (JPCs) by Raman spectroscopy but the mineralization extent was not satisfactory. In the present study, we analyzed the proliferation and mineralization potential of human platelet lysate- (hPL-) cultured JPCs in comparison to that of FCS-cultured JPCs. By cell impedance measurements, we detected significantly higher population doubling times of PL-cultured JPCs in comparison to FCS-cultured JPCs. However, this result was not based on lower proliferation activities but on diminished cell sizes which JPCs develop under PL cultivation. The measurements of the metabolic activities clearly showed significantly higher cell proliferation rates under PL culturing. Equivalent levels of the mesenchymal cell markers CD29, CD45, CD73, CD90, and CD105 were detected, but there were significantly increased MSCA-1 levels under PL cultivation. While JPCs only occasionally mineralize under FCS culture conditions, the mineralization potential was significantly stronger under PL cultivation. Moreover, in 4 of 5 analyzed patient cells, the addition of dexamethasone was proved no longer necessary for strong mineralization of PL-cultured JPCs. We conclude that in vitro cultivation of JPCs with platelet lysate is a suitable alternative to FCS culture conditions and a powerful tool for the development of high-quality TE constructs using jaw periosteal cells.

  6. Convergent evolution of hemoglobin switching in jawed and jawless vertebrates.

    PubMed

    Rohlfing, Kim; Stuhlmann, Friederike; Docker, Margaret F; Burmester, Thorsten

    2016-02-01

    During development, humans and other jawed vertebrates (Gnathostomata) express distinct hemoglobin genes, resulting in different hemoglobin tetramers. Embryonic and fetal hemoglobin have higher oxygen affinities than the adult hemoglobin, sustaining the oxygen demand of the developing organism. Little is known about the expression of hemoglobins during development of jawless vertebrates (Agnatha). We identified three hemoglobin switches in the life cycle of the sea lamprey. Three hemoglobin genes are specifically expressed in the embryo, four genes in the filter feeding larva (ammocoete), and nine genes correspond to the adult hemoglobin chains. During the development from the parasitic to the reproductive adult, the composition of hemoglobin changes again, with a massive increase of chain aHb1. A single hemoglobin chain is expressed constitutively in all stages. We further showed the differential expression of other globin genes: Myoglobin 1 is most highly expressed in the reproductive adult, myoglobin 2 expression peaks in the larva. Globin X1 is restricted to the embryo; globin X2 was only found in the reproductive adult. Cytoglobin is expressed at low levels throughout the life cycle. Because the hemoglobins of jawed and jawless vertebrates evolved independently from a common globin ancestor, hemoglobin switching must also have evolved convergently in these taxa. Notably, the ontogeny of sea lamprey hemoglobins essentially recapitulates their phylogeny, with the embryonic hemoglobins emerging first, followed by the evolution of larval and adult hemoglobins.

  7. Weak homology of elliptical galaxies.

    NASA Astrophysics Data System (ADS)

    Bertin, G.; Ciotti, L.; Del Principe, M.

    2002-04-01

    Studies of the Fundamental Plane of early-type galaxies, from small to intermediate redshifts, are generally carried out under the guiding principle that the Fundamental Plane reflects the existence of an underlying mass-luminosity relation for such galaxies, in a scenario where galaxies are homologous systems in dynamical equilibrium. In this paper we re-examine the question of whether a systematic non-homology could be partly responsible for the correlations that define the Fundamental Plane. We start by studying a small set of objects characterized by photometric profiles that have been pointed out to deviate significantly from the standard R1/4 law. For these objects we confirm that a generic R1/n law, with n a free parameter, can provide superior fits (the best-fit value of n can be lower than 2.5 or higher than 10), better than those that can be obtained by a pure R1/4 law, by an R1/4 + exponential model, and by other dynamically justified self-consistent models. Therefore, strictly speaking, elliptical galaxies should not be considered homologous dynamical systems. Still, a case for weak homology, useful for the interpretation of the Fundamental Plane, could be made if the best-fit parameter n, as often reported, correlates with galaxy luminosity L, provided the underlying dynamical structure also follows a systematic trend with luminosity. We demonstrate that this statement may be true even in the presence of significant scatter in the correlation n(L). Preliminary indications provided by a set of ``data points" associated with a sample of 14 galaxies suggest that neither the strict homology nor the constant stellar mass-to-light solution are a satisfactory explanation of the observed Fundamental Plane. These conclusions await further extensions and clarifications, because the class of low-luminosity early-type galaxies, which contribute significantly to the Fundamental Plane, falls outside the simple dynamical framework considered here and because

  8. Shear-wave sonoelastography for assessing masseter muscle hardness in comparison with strain sonoelastography: study with phantoms and healthy volunteers

    PubMed Central

    Nakayama, Miwa; Nishiyama, Wataru; Nozawa, Michihito

    2016-01-01

    Objectives Shear-wave sonoelastography is expected to facilitate low operator dependency, high reproducibility and quantitative evaluation, whereas there are few reports on available normative values of in vivo tissue in head and neck fields. The purpose of this study was to examine the reliabilities on measuring hardness using shear-wave sonoelastography and to clarify normal values of masseter muscle hardness in healthy volunteers. Methods Phantoms with known hardness ranging from 20 to 140 kPa were scanned with shear-wave sonoelastography, and inter- and intraoperator reliabilities were examined compared with strain sonoelastography. The relationships between the actual and measured hardness were analyzed. The masseter muscle hardness in 30 healthy volunteers was measured using shear-wave sonoelastography. Results: The inter- and intraoperator intraclass correlation coefficients were almost perfect. Strong correlations were seen between the actual and measured hardness. The mean hardness of the masseter muscles in healthy volunteers was 42.82 ± 5.56 kPa at rest and 53.36 ± 8.46 kPa during jaw clenching. Conclusions: The hardness measured with shear-wave sonoelastography showed high-level reliability. Shear-wave sonoelastography may be suitable for evaluation of the masseter muscles. PMID:26624000

  9. Porcine MYF6 gene: sequence, homology analysis, and variation in the promoter region.

    PubMed

    Wyszyńska-Koko, J; Kurył, J

    2004-01-01

    MYF6 gene codes for the bHLH transcription factor belonging to MyoD family. Its expression accompanies the processes of differentiation and maturation of myotubes during embriogenesis and continues on a relatively high level after birth, affecting the muscle phenotype. The porcine MYF6 gene was amplified and sequenced and compared with MYF6 gene sequences of other species. The amino acid sequence was deduced and an interspecies homology analysis was performed. Myf-6 protein shows a high conservation among species of 99 and 97% identity when comparing pig with cow and human, respectively, and of 93% when comparing pig with mouse and rat. The single nucleotide polymorphism (SNP) was revealed within the promoter region, which appeared to be T --> C transition recognized by a MspI restriction enzyme.

  10. Homology of pendrin, sodium-iodide symporter and apical iodide transporter.

    PubMed

    Benvenga, Salvatore; Guarneri, Fabrizio

    2018-06-01

    We observed local homology between human pendrin and sodium/iodide symporter (NIS), that was absent in the NIS-homologous sodium/monocarboxylate transporter or apical iodide transporter (AIT) which, however, does not transport iodide. Thus, we analyzed the full proteins. They shared 63 identical and 66 similar residues (overall homology 14.4%, but 21% when omitting intervening sequences of 15 or more residues). Pendrin was more homologous to NIS (25%) than AIT (20%), particularly in the STAS domain (sulfate transporter and antisigma factor antagonist). Homology was concentrated in 11 segments, with 3/11 involving the STAS domain. In 9/11, homology was greater with NIS (45-58.3%) than with AIT (8.3-42.3%); in 4 of these 9 segments, homology was comparable to or greater than that between NIS and AIT (8.3-52.6%). Pendrin residues which are mutated in Pendred's syndrome are identical to those in the aligned position of NIS and AIT. Hypothyroidism-associated pendrin mutations almost always fall within 4/11 segments. These are the first data that show homology between pendrin and NIS, and topographic relationships between pendrin mutations and the hypothyroid phenotype of PDS.

  11. Automatic repositioning of jaw segments for three-dimensional virtual treatment planning of orthognathic surgery.

    PubMed

    Santos, Rodrigo Mologni Gonçalves Dos; De Martino, José Mario; Passeri, Luis Augusto; Attux, Romis Ribeiro de Faissol; Haiter Neto, Francisco

    2017-09-01

    To develop a computer-based method for automating the repositioning of jaw segments in the skull during three-dimensional virtual treatment planning of orthognathic surgery. The method speeds up the planning phase of the orthognathic procedure, releasing surgeons from laborious and time-consuming tasks. The method finds the optimal positions for the maxilla, mandibular body, and bony chin in the skull. Minimization of cephalometric differences between measured and standard values is considered. Cone-beam computed tomographic images acquired from four preoperative patients with skeletal malocclusion were used for evaluating the method. Dentofacial problems of the four patients were rectified, including skeletal malocclusion, facial asymmetry, and jaw discrepancies. The results show that the method is potentially able to be used in routine clinical practice as support for treatment-planning decisions in orthognathic surgery. Copyright © 2017 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  12. Osteonecrosis of the jaw (ONJ) in patients who receive Bone Targeting Agents (BTAs): the power of e-learning.

    PubMed

    Nicolatou-Galitis, Ourania; Migliorati, Cesar

    2018-01-01

    The definition, pathobiology and risk factors of ONJ in cancer patients who receive BTAs are discussed in the recent ecancer module for osteonecrosis of the jaw (http://ecancer.org/education/module/276-osteonecrosis-of-the-jaw.php). ONJ prevention, early diagnosis and management are presented. The critical question of the performance of dental extraction, during BTA therapy, as indicated with the recent studies, is supported. The importance of the collaboration between dental and oncology professionals and the patients is highlighted and can be achieved through appropriate education. The ecancer modules are valuable tools for successful e-learning in medical oncology education, including ONJ.

  13. Osteomalacia: the missing link in the pathogenesis of bisphosphonate-related osteonecrosis of the jaws?

    PubMed

    Bedogni, Alberto; Saia, Giorgia; Bettini, Giordana; Tronchet, Anita; Totola, Andrea; Bedogni, Giorgio; Tregnago, Paolo; Valenti, Maria Teresa; Bertoldo, Francesco; Ferronato, Giuseppe; Nocini, Pier Francesco; Blandamura, Stella; Dalle Carbonare, Luca

    2012-01-01

    Bisphosphonate-related osteonecrosis of the jaw (BRONJ) is a well-documented adverse event from treatment with nitrogen-containing bisphosphonates (NBPs). During a preliminary histomorphometric study aimed at assessing the rate of bone remodeling in the jaws of patients with surgically resected BRONJ, we found a defect of bone mineralization (unpublished data). We hypothesized that osteomalacia could be a risk factor for BRONJ in patients taking NBPs. Therefore, we looked for static and dynamic histomorphometric evidence of osteomalacia in biopsies from subjects with and without BRONJ. This case-control study used histomorphometric analysis of bone specimens of patients using NBPs (22 patients with BRONJ and 21 patients without BRONJ) who required oral surgical interventions for the treatment/prevention of osteonecrosis. Patients were given tetracycline hydrochloride according to a standardized protocol before taking bone biopsies from their jaws. Biopsies with evidence of osteomyelitis or necrosis at histology were excluded from the study. Osteomalacia was defined as a mineralization lag time >100 days, a corrected mean osteoid thickness >12.5 mm, and an osteoid volume >10%. In all, 77% of patients with BRONJ were osteomalacic compared with 5% of patients without BRONJ, according to histomorphometry. Because osteomalacia was found almost exclusively in NBP users with BRONJ, this is likely to be a generalized process in which the use of NBPs further deteriorates mechanisms of bone repair. Osteomalacia represents a new and previously unreported risk factor for disease development. This finding may contribute to a better understanding of the pathogenesis of this disease and help with the development of strategies to increase the safety of NBP administration.

  14. Statistical Inference for Porous Materials using Persistent Homology.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moon, Chul; Heath, Jason E.; Mitchell, Scott A.

    2017-12-01

    We propose a porous materials analysis pipeline using persistent homology. We rst compute persistent homology of binarized 3D images of sampled material subvolumes. For each image we compute sets of homology intervals, which are represented as summary graphics called persistence diagrams. We convert persistence diagrams into image vectors in order to analyze the similarity of the homology of the material images using the mature tools for image analysis. Each image is treated as a vector and we compute its principal components to extract features. We t a statistical model using the loadings of principal components to estimate material porosity, permeability,more » anisotropy, and tortuosity. We also propose an adaptive version of the structural similarity index (SSIM), a similarity metric for images, as a measure to determine the statistical representative elementary volumes (sREV) for persistence homology. Thus we provide a capability for making a statistical inference of the uid ow and transport properties of porous materials based on their geometry and connectivity.« less

  15. Comparative homology agreement search: An effective combination of homology-search methods

    PubMed Central

    Alam, Intikhab; Dress, Andreas; Rehmsmeier, Marc; Fuellen, Georg

    2004-01-01

    Many methods have been developed to search for homologous members of a protein family in databases, and the reliability of results and conclusions may be compromised if only one method is used, neglecting the others. Here we introduce a general scheme for combining such methods. Based on this scheme, we implemented a tool called comparative homology agreement search (chase) that integrates different search strategies to obtain a combined “E value.” Our results show that a consensus method integrating distinct strategies easily outperforms any of its component algorithms. More specifically, an evaluation based on the Structural Classification of Proteins database reveals that, on average, a coverage of 47% can be obtained in searches for distantly related homologues (i.e., members of the same superfamily but not the same family, which is a very difficult task), accepting only 10 false positives, whereas the individual methods obtain a coverage of 28–38%. PMID:15367730

  16. The genetic architecture of novel trophic specialists: larger effect sizes are associated with exceptional oral jaw diversification in a pupfish adaptive radiation.

    PubMed

    Martin, Christopher H; Erickson, Priscilla A; Miller, Craig T

    2017-01-01

    The genetic architecture of adaptation is fundamental to understanding the mechanisms and constraints governing diversification. However, most case studies focus on loss of complex traits or parallel speciation in similar environments. It is still unclear how the genetic architecture of these local adaptive processes compares to the architecture of evolutionary transitions contributing to morphological and ecological novelty. Here, we identify quantitative trait loci (QTL) between two trophic specialists in an excellent case study for examining the origins of ecological novelty: a sympatric radiation of pupfishes endemic to San Salvador Island, Bahamas, containing a large-jawed scale-eater and a short-jawed molluscivore with a skeletal nasal protrusion. These specialized niches and trophic traits are unique among over 2000 related species. Measurements of the fitness landscape on San Salvador demonstrate multiple fitness peaks and a larger fitness valley isolating the scale-eater from the putative ancestral intermediate phenotype of the generalist, suggesting that more large-effect QTL should contribute to its unique phenotype. We evaluated this prediction using an F2 intercross between these specialists. We present the first linkage map for pupfishes and detect significant QTL for sex and eight skeletal traits. Large-effect QTL contributed more to enlarged scale-eater jaws than the molluscivore nasal protrusion, consistent with predictions from the adaptive landscape. The microevolutionary genetic architecture of large-effect QTL for oral jaws parallels the exceptional diversification rates of oral jaws within the San Salvador radiation observed over macroevolutionary timescales and may have facilitated exceptional trophic novelty in this system. © 2016 John Wiley & Sons Ltd.

  17. Homologous prominence non-radial eruptions: A case study

    NASA Astrophysics Data System (ADS)

    Duchlev, P.; Koleva, K.; Madjarska, M. S.; Dechev, M.

    2016-10-01

    The present study provides important details on homologous eruptions of a solar prominence that occurred in active region NOAA 10904 on 2006 August 22. We report on the pre-eruptive phase of the homologous feature as well as the kinematics and the morphology of a forth from a series of prominence eruptions that is critical in defining the nature of the previous consecutive eruptions. The evolution of the overlying coronal field during homologous eruptions is discussed and a new observational criterion for homologous eruptions is provided. We find a distinctive sequence of three activation periods each of them containing pre-eruptive precursors such as a brightening and enlarging of the prominence body followed by small surge-like ejections from its southern end observed in the radio 17 GHz. We analyse a fourth eruption that clearly indicates a full reformation of the prominence after the third eruption. The fourth eruption although occurring 11 h later has an identical morphology, the same angle of propagation with respect to the radial direction, as well as similar kinematic evolution as the previous three eruptions. We find an important feature of the homologous eruptive prominence sequence that is the maximum height increase of each consecutive eruption. The present analysis establishes that all four eruptions observed in Hα are of confined type with the third eruption undergoing a thermal disappearance during its eruptive phase. We suggest that the observation of the same direction of the magnetic flux rope (MFR) ejections can be consider as an additional observational criterion for MFR homology. This observational indication for homologous eruptions is important, especially in the case of events of typical or poorly distinguishable morphology of eruptive solar phenomena.

  18. Proteomic analysis of laser capture microscopy purified myotendinous junction regions from muscle sections

    PubMed Central

    2014-01-01

    The myotendinous junction is a specialized structure of the muscle fibre enriched in mechanosensing complexes, including costameric proteins and core elements of the z-disc. Here, laser capture microdissection was applied to purify membrane regions from the myotendinous junctions of mouse skeletal muscles, which were then processed for proteomic analysis. Sarcolemma sections from the longitudinal axis of the muscle fibre were used as control for the specificity of the junctional preparation. Gene ontology term analysis of the combined lists indicated a statistically significant enrichment in membrane-associated proteins. The myotendinous junction preparation contained previously uncharacterized proteins, a number of z-disc costameric ligands (e.g., actinins, capZ, αB cristallin, filamin C, cypher, calsarcin, desmin, FHL1, telethonin, nebulin, titin and an enigma-like protein) and other proposed players of sarcomeric stretch sensing and signalling, such as myotilin and the three myomesin homologs. A subset were confirmed by immunofluorescence analysis as enriched at the myotendinous junction, suggesting that laser capture microdissection from muscle sections is a valid approach to identify novel myotendinous junction players potentially involved in mechanotransduction pathways. PMID:25071420

  19. Structure-activity relationships of polyphenols to prevent lipid oxidation in pelagic fish muscle.

    PubMed

    Pazos, Manuel; Iglesias, Jacobo; Maestre, Rodrigo; Medina, Isabel

    2010-10-27

    The influence of polymerization (number of monomers) and galloylation (content of esterified gallates) of oligomeric catechins (proanthocyanidins) on their effectiveness to prevent lipid oxidation in pelagic fish muscle was evaluated. Non-galloylated oligomers of catechin with diverse mean polymerization (1.9-3.4 monomeric units) were extracted from pine (Pinus pinaster) bark. Homologous fractions with galloylation ranging from 0.25 to <1 gallate group per molecule were obtained from grape (Vitis vinifera) and witch hazel (Hamamelis virginiana). The results showed the convenience of proanthocyanidins with medium size (2-3 monomeric units) and low galloylation degree (0.15-0.25 gallate group/molecule) to inhibit lipid oxidation in pelagic fish muscle. These optimal structural characteristics of proanthocyanidins were similar to those lately reported in fish oil-in-water emulsions using phosphatidylcholine as emulsifier. This finding suggests that the antioxidant behavior of polyphenols in muscle-based foods can be mimicked in emulsions prepared with phospholipids as emulsifier agents. The present data give relevant information to achieve an optimum use of polyphenols in pelagic fish muscle.

  20. Tumor malignancy is engaged to prokaryotic homolog toolbox.

    PubMed

    Fernandes, Janaina; Guedes, Patrícia G; Lage, Celso Luiz S; Rodrigues, Juliany Cola F; Lage, Claudia de Alencar S

    2012-04-01

    Cancer cells display high proliferation rates and survival provided by high glycolysis, chemoresistance and radioresistance, metabolic features that appear to be activated with malignancy, and seemed to have arisen as early in evolution as in unicellular/prokaryotic organisms. Based on these assumptions, we hypothesize that aggressive phenotypes found in malignant cells may be related to acquired unicellular behavior, launched within a tumor when viral and prokaryotic homologs are overexpressed performing likely robust functions. The ensemble of these expressed viral and prokaryotic close homologs in the proteome of a tumor tissue gives them advantage over normal cells. To assess the hypothesis validity, sequences of human proteins involved in apoptosis, energetic metabolism, cell mobility and adhesion, chemo- and radio-resistance were aligned to homologs present in other life forms, excluding all eukaryotes, using PSI-BLAST, with further corroboration from data available in the literature. The analysis revealed that selected sequences of proteins involved in apoptosis and tumor suppression (as p53 and pRB) scored non-significant (E-value>0.001) with prokaryotic homologs; on the other hand, human proteins involved in cellular chemo- and radio-resistance scored highly significant with prokaryotic and viral homologs (as catalase, E-value=zero). We inferred that such upregulated and/or functionally activated proteins in aggressive malignant cells represent a toolbox of modern human homologs evolved from a similar key set that have granted survival of ancient prokaryotes against extremely harsh environments. According to what has been discussed along this analysis, high mutation rates usually hit hotspots in important conserved protein domains, allowing uncontrolled expansion of more resistant, death-evading malignant clones. That is the case of point mutations in key viral proteins affording viruses escape to chemotherapy, and human homologs of such retroviral

  1. Impaired positioning of the gape in whiplash-associated disorders.

    PubMed

    Zafar, Hamayun; Nordh, Erik; Eriksson, Per-Olof

    2006-01-01

    We have previously introduced a new concept for natural jaw function suggesting that "functional jaw movements" are the result of coordinated jaw and neck muscle activation, leading to simultaneous movements in the temporomandibular, atlanto-occipital and cervical spine joints. Thus, jaw function requires a healthy state of both the jaw and the neck motor systems. The aim of this study was to examine the positioning of the gape in space during maximal jaw opening at fast and slow speed in healthy as well as whiplash-associated disorders (WAD) individuals. A wireless optoelectronic technique for three-dimensional movement recording was used. Subjects were seated in an upright position, with back support up to the mid-scapular level without headrest. The position of the gape in space was defined as the vertical midpoint position of the gape at maximal jaw opening (MP). In healthy, the MP generally coincided with the reference position at the start of jaw opening. In the WAD group, the MP was significantly lower than the reference position. No sex or speed related differences were found. The results suggest that both the width and orientation of the gape in space relies on coordinated jaw and neck muscle activation and mandibular and head-neck movements. This study also suggests an association between neck pain and dysfunction following trauma, and reduced width and impaired positioning of the gape in space. Finally, the MP seems to be a useful marker in evaluation of the functional state of the jaw-neck motor system.

  2. A suitable device for cystic lesions close to the tooth-bearing areas of the jaws.

    PubMed

    Costa, Fábio Wildson Gurgel; Carvalho, Francisco Samuel Rodrigues; Chaves, Filipe Nobre; Soares, Eduardo Costa Studart

    2014-01-01

    Different devices for decompression of cystic lesions of the jaw have been described in the literature. Although there are no rigorous rules for choosing a particular design or method, the choice depends on situational needs. Although minor, most techniques are associated with certain difficulties and complications, such as the need for long-term monitoring, inappropriate decompression tube size, soft tissue trauma, suture dehiscence, soft tissue invagination, dislodgement, and malpositioning of the tube into the lesion. These complications may have a negative impact on the level of treatment acceptance, especially when devices are used over long periods. The aim of this study was to present a new suitable device for cystic lesions close to tooth-bearing areas of the jaws. Copyright © 2014 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  3. THE INFLUENCE OF LEXICAL FACTORS ON VOWEL DISTINCTIVENESS: EFFECTS OF JAW POSITIONING.

    PubMed

    Munson, Benjamin; Solomon, Nancy Pearl

    2016-11-01

    The phonetic characteristics of words are influenced by lexical characteristics, including word frequency and phonological neighborhood density (Baese-Berke & Goldrick, 2009; Wright, 2004). In our previous research, we replicated this effect with neurologically healthy young adults (Munson & Solomon, 2004). In research with the same set of participants, we showed that speech sounded less natural when produced with bite blocks than with an unconstrained jaw (Solomon, Makashay, & Munson, 2016). The current study combined these concepts to examine whether a bite-block perturbation exaggerated or reduced the effects of lexical factors on normal speech. Ten young adults produced more challenging lexical stimuli (i.e. infrequent words with many phonological neighbors) with shorter vowels and more disperse F1/F2 spaces than less challenging words (i.e. frequent words with few phonological neighbors). This difference was exaggerated when speaking with a 10-mm bite block, though the interaction between jaw positioning and lexical competition did not achieve statistical significance. Results indicate that talkers alter vowel characteristics in response both to biomechanical and linguistic demands, and that the effect of lexical characteristics is robust to the articulatory reorganization required for successful bite-block compensation.

  4. Frequency of awake bruxism behaviours in the natural environment. A 7-day, multiple-point observation of real-time report in healthy young adults.

    PubMed

    Bracci, A; Djukic, G; Favero, L; Salmaso, L; Guarda-Nardini, L; Manfredini, D

    2018-06-01

    The aim of this study was to assess awake bruxism (AB) behaviours in a sample of healthy young adults using a smartphone-based application for a real-time report (ie, ecological momentary assessment [EMA], also called experience sampling method [ESM]). Forty-six dental students used a smartphone application that sent 15 alerts at random intervals during the day for 1 week to collect AB self-reports. They had to answer on time by tapping on the display icon that refers to their current condition of jaw muscles: relaxed; teeth contact; teeth clenching; teeth grinding; jaw clenching without teeth contact (ie, bracing). The average frequency of relaxed jaw muscles, as a percentage of answers over the 7 days, was 71.7%. Teeth contact (14.5%) and jaw clenching (10.0%) were the most frequent AB behaviours. No significant gender differences were detected. Interindividual differences were quite relevant, but the overall frequency was in general only moderately variable from day-to-day. Coefficient of variation (CV) was low for the condition "relaxed jaw muscles" (0.44). At the individual level, teeth contact was the most prevalent behaviour, with a 39.1%-52.2% proportion of subjects reporting it at least once a day. During a 7-day observation period, the frequency of real-time report of AB behaviours in a sample of healthy young adults was 28.3%. The low daily variability in the average frequency value for the relaxed jaw muscles condition suggests that EMA may be a reliable strategy to get deeper into the epidemiology of oral behaviours. This investigation introduced EMA principles to the study of AB and provided data on the frequency of AB behaviours in young adults that could be compared to populations with risk/associated factors and possible clinical consequences. © 2018 John Wiley & Sons Ltd.

  5. Variation in the shape and mechanical performance of the lower jaws in ceratopsid dinosaurs (Ornithischia, Ceratopsia).

    PubMed

    Maiorino, Leonardo; Farke, Andrew A; Kotsakis, Tassos; Teresi, Luciano; Piras, Paolo

    2015-11-01

    Ceratopsidae represents a group of quadrupedal herbivorous dinosaurs that inhabited western North America and eastern Asia during the Late Cretaceous. Although horns and frills of the cranium are highly variable across species, the lower jaw historically has been considered to be relatively conservative in morphology. Here, the lower jaws from 58 specimens representing 21 ceratopsoid taxa were sampled, using geometric morphometrics and 2D finite element analysis (FEA) to explore differences in morphology and mechanical performance across Ceratopsoidea (the clade including Ceratopsidae, Turanoceratops and Zuniceratops). Principal component analyses and non-parametric permuted manovas highlight Triceratopsini as a morphologically distinct clade within the sample. A relatively robust and elongate dentary, a larger and more elongated coronoid process, and a small and dorso-ventrally compressed angular characterize this clade, as well as the absolutely larger size. By contrast, non-triceratopsin chasmosaurines, Centrosaurini and Pachyrhinosaurini have similar morphologies to each other. Zuniceratops and Avaceratops are distinct from other taxa. No differences in size between Pachyrhinosaurini and Centrosaurini are recovered using non-parametric permuted anovas. Structural performance, as evaluated using a 2D FEA, is similar across all groups as measured by overall stress, with the exception of Triceratopsini. Shape, size and stress are phylogenetically constrained. A longer dentary as well as a long coronoid process result in a lower jaw that is reconstructed as relatively much more stressed in triceratopsins. © 2015 Anatomical Society.

  6. Determining the sub-cellular localization of proteins within Caenorhabditis elegans body wall muscle.

    PubMed

    Meissner, Barbara; Rogalski, Teresa; Viveiros, Ryan; Warner, Adam; Plastino, Lorena; Lorch, Adam; Granger, Laure; Segalat, Laurent; Moerman, Donald G

    2011-01-01

    Determining the sub-cellular localization of a protein within a cell is often an essential step towards understanding its function. In Caenorhabditis elegans, the relatively large size of the body wall muscle cells and the exquisite organization of their sarcomeres offer an opportunity to identify the precise position of proteins within cell substructures. Our goal in this study is to generate a comprehensive "localizome" for C. elegans body wall muscle by GFP-tagging proteins expressed in muscle and determining their location within the cell. For this project, we focused on proteins that we know are expressed in muscle and are orthologs or at least homologs of human proteins. To date we have analyzed the expression of about 227 GFP-tagged proteins that show localized expression in the body wall muscle of this nematode (e.g. dense bodies, M-lines, myofilaments, mitochondria, cell membrane, nucleus or nucleolus). For most proteins analyzed in this study no prior data on sub-cellular localization was available. In addition to discrete sub-cellular localization we observe overlapping patterns of localization including the presence of a protein in the dense body and the nucleus, or the dense body and the M-lines. In total we discern more than 14 sub-cellular localization patterns within nematode body wall muscle. The localization of this large set of proteins within a muscle cell will serve as an invaluable resource in our investigation of muscle sarcomere assembly and function.

  7. Multiple prismatic calcium phosphate layers in the jaws of present-day sharks (Chondrichthyes; Selachii).

    PubMed

    Dingerkus, G; Séret, B; Guilbert, E

    1991-01-15

    Jaws of large individuals, over 2 m in total length, of the shark species Carcharodon carcharias (great white shark) and Isurus oxyrinchus (mako shark) of the family Lamnidae, and Galeocerdo cuvieri (tiger shark) and Carcharhinus leucas (bull shark) of the family Carcharhinidae were found to have multiple, up to five, layers of prismatic calcium phosphate surrounding the cartilages. Smaller individuals of these species and other known species of living chondrichthyans have only one layer of prismatic calcium phosphate surrounding the cartilages, as also do most species of fossil chondrichthyans. Two exceptions are the fossil shark genera Xenacanthus and Tamiobatis. Where it is found in living forms, this multiple layered calcification does not appear to be phylogenetic, as it appears to be lacking in other lamnid and carcharhinid genera and species. Rather it appears to be functional, only appearing in larger individuals and species of these two groups, and hence may be necessary to strengthen the jaw cartilages of such individuals for biting.

  8. Standardized classification unsuitable for spontaneous reporting: the example of osteonecrosis of the jaw.

    PubMed

    de Boissieu, Paul; Trenque, Thierry

    2015-07-01

    This study assessed the impact of using a standardized definition of bisphosphonate-related osteonecrosis of the jaw (BRONJ) in the analysis of a spontaneous reporting database. All notifications of osteonecrosis of the jaw (ONJ) in the French National Pharmacovigilance Database as of 31 December 2013 were analyzed. First, we considered all reports of ONJ with bisphosphonates as BRONJ. Second, we applied the 2014 definition of BRONJ from the American Association of Oral and Maxillofacial Surgeons (AAOMS), retaining only bisphosphonates as antiresorptive medication. In the absence of any one of these criteria, or missing data, cases were not considered as BRONJ. The first analysis found 158 cases of ONJ, among which 153 were associated with bisphosphonate use. The second analysis identified only 43 cases of BRONJ (28.1%). The definition of BRONJ as laid down by the AAOMS is not suitable for use in spontaneous reporting database. The use of the AAOMS definition alone should be avoided, as it leads to the exclusion of over 70% of cases. When cases of ONJ are identified, all results should be presented including confirmed and excluded cases.

  9. Force and Strength Analysis of the Reel with Jaw of Torsion-bar Spring

    NASA Astrophysics Data System (ADS)

    Ma, Ke; Liu, Weiqi; Wang, Jiawei; Gu, Le

    2017-06-01

    Structure characteristics and working principle of the reel with jaw of torsion-bar spring are introduced. The reel can not only eliminate the leakage risks of hydraulic jaw, but also reduce the investment cost of enterprises and improve the surface quality of the products. The static analysis of mandrel, sector plate and oblique wedge were conducted, and the main data of stress distribution and deformation were obtained, which provide a reliable theoretical basis for the design and optimization of the reel. The research results show that the external support has a great effect on the stress and deformation of the mandrel. With the increase of the weight of steel stress increases, the drum deformation increases, but the analysis of the position of maximum stress, can be obtained to drum stress and deformation is the main reason of excessive bending moment caused by heavy steel rolls. The bending moment and deformation can be reduced significantly at the end of the steel coil, which can effectively improve the service life of the drum.

  10. Jaw Function in Smilodon fatalis: A Reevaluation of the Canine Shear-Bite and a Proposal for a New Forelimb-Powered Class 1 Lever Model

    PubMed Central

    Brown, Jeffrey G.

    2014-01-01

    The jaw function of Smilodon fatalis has long been a source of debate. Although modern-day lions subdue large prey through the use of a suffocating throat bite, the dramatically elongated maxillary canines of S. fatalis suggest an alternative bite mechanism. The current literature favors a “canine shear-bite,” in which the depression of the cranium by the ventral neck flexors assists the mandibular adductors in closing the jaws. Although the model makes intuitive sense and appears to be supported by scientific data, the mechanical feasibility of “neck-powered” biting has not been experimentally demonstrated. In the present study, the computer-assisted manipulation of digitized images of a high-quality replica of an S. fatalis neck and skull shows that a rotation of the cranium by the ventral neck flexors will not result in jaw closure. Instead, the cranium and mandible rotate ventrally together (at the atlantooccipital joint), and the jaws remain in an open configuration. The only manner by which rotation of the cranium can simultaneously result in jaw closure is by an anterior rotation at the temporomandibular joint. Based on this finding, the author proposes a new Class 1 lever mechanism for S. fatalis jaw function. In this model, the mandible is immobilized against the neck of the prey and a dorsally directed force from the extension of the forelimbs rotates the cranium anteriorly at the temporomandibular joint. The maxillary canines pierce the prey’s neck and assist in clamping the ventral neck structures. The model is based on a maximum gape angle of approximately 90° and incorporates a secondary virtual point of rotation located slightly anteroventral to the temporomandibular joint. The Class 1 Lever Model is mechanically feasible, consistent with current data on S. fatalis anatomy and ecology, and may provide a basis for similar studies on other fossil taxa. PMID:25272032

  11. SMAD signaling drives heart and muscle dysfunction in a Drosophila model of muscular dystrophy.

    PubMed

    Goldstein, Jeffery A; Kelly, Sean M; LoPresti, Peter P; Heydemann, Ahlke; Earley, Judy U; Ferguson, Edwin L; Wolf, Matthew J; McNally, Elizabeth M

    2011-03-01

    Loss-of-function mutations in the genes encoding dystrophin and the associated membrane proteins, the sarcoglycans, produce muscular dystrophy and cardiomyopathy. The dystrophin complex provides stability to the plasma membrane of striated muscle during muscle contraction. Increased SMAD signaling due to activation of the transforming growth factor-β (TGFβ) pathway has been described in muscular dystrophy; however, it is not known whether this canonical TGFβ signaling is pathogenic in the muscle itself. Drosophila deleted for the γ/δ-sarcoglycan gene (Sgcd) develop progressive muscle and heart dysfunction and serve as a model for the human disorder. We used dad-lacZ flies to demonstrate the signature of TGFβ activation in response to exercise-induced injury in Sgcd null flies, finding that those muscle nuclei immediately adjacent to muscle injury demonstrate high-level TGFβ signaling. To determine the pathogenic nature of this signaling, we found that partial reduction of the co-SMAD Medea, homologous to SMAD4, or the r-SMAD, Smox, corrected both heart and muscle dysfunction in Sgcd mutants. Reduction in the r-SMAD, MAD, restored muscle function but interestingly not heart function in Sgcd mutants, consistent with a role for activin but not bone morphogenic protein signaling in cardiac dysfunction. Mammalian sarcoglycan null muscle was also found to exhibit exercise-induced SMAD signaling. These data demonstrate that hyperactivation of SMAD signaling occurs in response to repetitive injury in muscle and heart. Reduction of this pathway is sufficient to restore cardiac and muscle function and is therefore a target for therapeutic reduction.

  12. SMAD signaling drives heart and muscle dysfunction in a Drosophila model of muscular dystrophy

    PubMed Central

    Goldstein, Jeffery A.; Kelly, Sean M.; LoPresti, Peter P.; Heydemann, Ahlke; Earley, Judy U.; Ferguson, Edwin L.; Wolf, Matthew J.; McNally, Elizabeth M.

    2011-01-01

    Loss-of-function mutations in the genes encoding dystrophin and the associated membrane proteins, the sarcoglycans, produce muscular dystrophy and cardiomyopathy. The dystrophin complex provides stability to the plasma membrane of striated muscle during muscle contraction. Increased SMAD signaling due to activation of the transforming growth factor-β (TGFβ) pathway has been described in muscular dystrophy; however, it is not known whether this canonical TGFβ signaling is pathogenic in the muscle itself. Drosophila deleted for the γ/δ-sarcoglycan gene (Sgcd) develop progressive muscle and heart dysfunction and serve as a model for the human disorder. We used dad-lacZ flies to demonstrate the signature of TGFβ activation in response to exercise-induced injury in Sgcd null flies, finding that those muscle nuclei immediately adjacent to muscle injury demonstrate high-level TGFβ signaling. To determine the pathogenic nature of this signaling, we found that partial reduction of the co-SMAD Medea, homologous to SMAD4, or the r-SMAD, Smox, corrected both heart and muscle dysfunction in Sgcd mutants. Reduction in the r-SMAD, MAD, restored muscle function but interestingly not heart function in Sgcd mutants, consistent with a role for activin but not bone morphogenic protein signaling in cardiac dysfunction. Mammalian sarcoglycan null muscle was also found to exhibit exercise-induced SMAD signaling. These data demonstrate that hyperactivation of SMAD signaling occurs in response to repetitive injury in muscle and heart. Reduction of this pathway is sufficient to restore cardiac and muscle function and is therefore a target for therapeutic reduction. PMID:21138941

  13. Evolution of Metapostnotum in Flat Wasps (Hymenoptera, Bethylidae): Implications for Homology Assessments in Chrysidoidea.

    PubMed

    Kawada, Ricardo; Lanes, Geane O; Azevedo, Celso O

    2015-01-01

    Some authors in the past based their conclusions about the limits of the metapostnotum of Chrysidoidea based on the position of the mesophragmo-metaphragmal muscle, rather than aspects of the skeleton and musculature associated with the metapectal-propodeal complex. The latter character system suggests another interpretation of the metapostnotum delimitation. Given this scenario, the main goal of this work is to present a new perspective on the metapostnotum in Chrysidoidea, especially Bethylidae, helping to resolve questions related to the evolution of the metapostnotum. This is based on homologies established by associating of insertion points of ph2-ph3 and ph3-T2 muscles with the delimitation of the respective sclerite the muscles insert into. Our results indicate that, according the position of the metaphragmal muscles, the metapostnotum in Bethylidae is medially expanded in the propodeal disc and has different forms of configuration. Internally, the limits of the metapostnotum can be tracked by the shape of the mesopostnotum, and vice versa. Thus, the anteromedian area of the propodeal disc sensu Evans was reinterpreted in the current study as the metapostnotum. In conjunction with associated structures, we provide evidence to clarify the relationships between the families within Chrysidoidea, although certain families like Embolemidae, Dryinidae and Chrysididae exhibit extreme modifications of the condition found in Aculeata, as observed in Bethylidae. We review the terminology used to describe anatomical features on the metapectal-propodeal complex in Bethylidae in general, and provide a list of recommended terms in accordance with the online Hymenoptera Anatomy Ontology. The morphology of the studied subfamilies are illustrated. Studies that focus on a single structure, across a larger number of taxa, are more insightful and present specific questions that can contribute to broader issues, thus providing a better understanding of the morphology and

  14. Metagenomic gene annotation by a homology-independent approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Froula, Jeff; Zhang, Tao; Salmeen, Annette

    2011-06-02

    Fully understanding the genetic potential of a microbial community requires functional annotation of all the genes it encodes. The recently developed deep metagenome sequencing approach has enabled rapid identification of millions of genes from a complex microbial community without cultivation. Current homology-based gene annotation fails to detect distantly-related or structural homologs. Furthermore, homology searches with millions of genes are very computational intensive. To overcome these limitations, we developed rhModeller, a homology-independent software pipeline to efficiently annotate genes from metagenomic sequencing projects. Using cellulases and carbonic anhydrases as two independent test cases, we demonstrated that rhModeller is much faster than HMMERmore » but with comparable accuracy, at 94.5percent and 99.9percent accuracy, respectively. More importantly, rhModeller has the ability to detect novel proteins that do not share significant homology to any known protein families. As {approx}50percent of the 2 million genes derived from the cow rumen metagenome failed to be annotated based on sequence homology, we tested whether rhModeller could be used to annotate these genes. Preliminary results suggest that rhModeller is robust in the presence of missense and frameshift mutations, two common errors in metagenomic genes. Applying the pipeline to the cow rumen genes identified 4,990 novel cellulases candidates and 8,196 novel carbonic anhydrase candidates.In summary, we expect rhModeller to dramatically increase the speed and quality of metagnomic gene annotation.« less

  15. Comparative anatomy, homologies and evolution of the pectoral and forelimb musculature of tetrapods with special attention to extant limbed amphibians and reptiles

    PubMed Central

    Abdala, Virginia; Diogo, Rui

    2010-01-01

    The main aim of the present work is to synthesize the information obtained from our dissections of the pectoral and forelimb muscles of representative members of the major extant taxa of limbed amphibians and reptiles and from our review of the literature, in order to provide an account of the comparative anatomy, homologies and evolution of these muscles in the Tetrapoda. The pectoral and forelimb musculature of all these major taxa conform to a general pattern that seems to have been acquired very early in the evolutionary history of tetrapods. Although some muscles are missing in certain taxa, and a clear departure from this general pattern is obviously present in derived groups such as birds, the same overall configuration is easily distinguishable in these taxa. Among the most notable anatomical differences between the groups, one that seems to have relevant evolutionary and functional implications, concerns the distal insertion points of the forearm musculature. In tetrapods, the muscles of the radial and ulnar complexes of the forearm are pleisomorphically mainly inserted onto the radius/ulna or onto the more proximal carpal bones, but in mammals some of these muscles insert more distally onto bones such as the metacarpals. Interestingly, a similar trend towards a more distal insertion of these muscles is also found in some non-mammalian tetrapod taxa, such as some anurans (e.g. Phyllomedusa). This may be correlated with the acquisition of more subtle digital movement abilities in these latter taxa. PMID:20807270

  16. Marshall Grazing Incidence X-ray Spectrometer (MaGIXS) Slit-Jaw Imaging System

    NASA Astrophysics Data System (ADS)

    Wilkerson, P.; Champey, P. R.; Winebarger, A. R.; Kobayashi, K.; Savage, S. L.

    2017-12-01

    The Marshall Grazing Incidence X-ray Spectrometer is a NASA sounding rocket payload providing a 0.6 - 2.5 nm spectrum with unprecedented spatial and spectral resolution. The instrument is comprised of a novel optical design, featuring a Wolter1 grazing incidence telescope, which produces a focused solar image on a slit plate, an identical pair of stigmatic optics, a planar diffraction grating and a low-noise detector. When MaGIXS flies on a suborbital launch in 2019, a slit-jaw camera system will reimage the focal plane of the telescope providing a reference for pointing the telescope on the solar disk and aligning the data to supporting observations from satellites and other rockets. The telescope focuses the X-ray and EUV image of the sun onto a plate covered with a phosphor coating that absorbs EUV photons, which then fluoresces in visible light. This 10-week REU project was aimed at optimizing an off-axis mounted camera with 600-line resolution NTSC video for extremely low light imaging of the slit plate. Radiometric calculations indicate an intensity of less than 1 lux at the slit jaw plane, which set the requirement for camera sensitivity. We selected a Watec 910DB EIA charge-coupled device (CCD) monochrome camera, which has a manufacturer quoted sensitivity of 0.0001 lux at F1.2. A high magnification and low distortion lens was then identified to image the slit jaw plane from a distance of approximately 10 cm. With the selected CCD camera, tests show that at extreme low-light levels, we achieve a higher resolution than expected, with only a moderate drop in frame rate. Based on sounding rocket flight heritage, the launch vehicle attitude control system is known to stabilize the instrument pointing such that jitter does not degrade video quality for context imaging. Future steps towards implementation of the imaging system will include ruggedizing the flight camera housing and mounting the selected camera and lens combination to the instrument structure.

  17. Comparison of isometric contractile properties of the tongue muscles in three species of frogs, Litoria caerulea, Dyscophus guinetti, and Bufo marinus.

    PubMed

    Peters, S E; Nishikawa, K C

    1999-11-01

    Previous studies show that anurans feed in at least three different ways. Basal frogs have a broad tongue that shortens during protraction and emerges only a short distance from the mouth. Some frogs have long, narrow tongues that elongate dramatically due primarily to inertia from mouth opening, which is transferred to the tongue. A few species have a hydrostatic mechanism that produces tongue elongation during protraction. This functional diversity occurs among frogs that share the same two pairs of tongue muscles. Our study compares the isometric contractile properties of these tongue muscles among three frog species that represent each feeding mechanism. Nerves to the paired protractors and retractors were stimulated electrically in each species to record the force properties, contraction speeds, and fatigabilites of these muscles. Few differences were found in the isometric contractile properties of tongue muscles, and the greatest differences were found in the retractors, not the protractors. We propose that the unique arrangement of the tongue muscles in frogs results in a retractor that may also be coactivated with the protractor in order to produce normal tongue protraction. Inertial effects from body, head, and jaw movements, along with clear differences that we found in passive resistance of the tongues to elongation, may explain much of the behavioral variation in tongue use among species. Copyright 1999 Wiley-Liss, Inc.

  18. Myozenin: An α-actinin- and γ-filamin-binding protein of skeletal muscle Z lines

    PubMed Central

    Takada, Fumio; Woude, Douglas L. Vander; Tong, Hui-Qi; Thompson, Terri G.; Watkins, Simon C.; Kunkel, Louis M.; Beggs, Alan H.

    2001-01-01

    To better understand the structure and function of Z lines, we used sarcomeric isoforms of α-actinin and γ-filamin to screen a human skeletal muscle cDNA library for interacting proteins by using the yeast two-hybrid system. Here we describe myozenin (MYOZ), an α-actinin- and γ-filamin-binding Z line protein expressed predominantly in skeletal muscle. Myozenin is predicted to be a 32-kDa, globular protein with a central glycine-rich domain flanked by α-helical regions with no strong homologies to any known genes. The MYOZ gene has six exons and maps to human chromosome 10q22.1-q22.2. Northern blot analysis demonstrated that this transcript is expressed primarily in skeletal muscle with significantly lower levels of expression in several other tissues. Antimyozenin antisera stain skeletal muscle in a sarcomeric pattern indistinguishable from that seen by using antibodies for α-actinin, and immunogold electron microscopy confirms localization specifically to Z lines. Thus, myozenin is a skeletal muscle Z line protein that may be a good candidate gene for limb-girdle muscular dystrophy or other neuromuscular disorders. PMID:11171996

  19. Development of Flight Slit-Jaw Optics for Chromospheric Lyman-Alpha SpectroPolarimeter

    NASA Technical Reports Server (NTRS)

    Kubo, Masahito; Suematsu, Yoshinori; Kano, Ryohei; Bando, Takamasa; Hara, Hirohisa; Narukage, Noriyuki; Katsukawa, Yukio; Ishikawa, Ryoko; Ishikawa, Shin-nosuke; Kobiki, Toshihiko; hide

    2015-01-01

    In sounding rocket experiment CLASP, I have placed a slit a mirror-finished around the focal point of the telescope. The light reflected by the mirror surface surrounding the slit is then imaged in Slit-jaw optical system, to obtain the alpha-ray Lyman secondary image. This image, not only to use the real-time image in rocket flight rocket oriented direction selection, and also used as a scientific data showing the spatial structure of the Lyman alpha emission line intensity distribution and solar chromosphere around the observation area of the polarimetric spectroscope. Slit-jaw optical system is a two off-axis mirror unit part including a parabolic mirror and folding mirror, Lyman alpha transmission filter, the optical system magnification 1x consisting camera. The camera is supplied from the United States, and the other was carried out fabrication and testing in all the Japanese side. Slit-jaw optical system, it is difficult to access the structure, it is necessary to install the low place clearance. Therefore, influence the optical performance, the fine adjustment is necessary optical elements are collectively in the form of the mirror unit. On the other hand, due to the alignment of the solar sensor in the US launch site, must be removed once the Lyman alpha transmission filter holder including a filter has a different part from the mirror unit. In order to make the structure simple, stray light measures Aru to concentrate around Lyman alpha transmission filter. To overcome the difficulties of performing optical alignment in Lyman alpha wavelength absorbed by the atmosphere, it was planned following four steps in order to reduce standing time alignment me. 1: is measured in advance refractive index at Lyman alpha wavelength of Lyman alpha transmission filter (121.567nm), to prepare a visible light Firuwo having the same optical path length in the visible light (630nm). 2: The mirror structure CLASP before mounting unit standing, dummy slit and camera standing

  20. Development of Flight Slit-Jaw Optics for Chromospheric Lyman-Alpha SpectroPolarimeter

    NASA Technical Reports Server (NTRS)

    Kubo, Masahito; Suematsu, Yoshinori; Kano, Ryohei; Bando, Takamasa; Hara, Hirohisa; Narukage, Noriyuki; Katsukawa, Yukio; Ishikawa, Ryoko; Ishikawa, Shin-nosuke; Kobiki, Toshihiko; hide

    2015-01-01

    In sounding rocket experiment CLASP, I have placed a slit a mirror-finished around the focal point of the telescope. The light reflected by the mirror surface surrounding the slit is then imaged in Slit-jaw optical system, to obtain the a-ray Lyman secondary image. This image, not only to use the real-time image in rocket flight rocket oriented direction selection, and also used as a scientific data showing the spatial structure of the Lyman alpha emission line intensity distribution and solar chromosphere around the observation area of the polarimetric spectroscope. Slit-jaw optical system is a two off-axis mirror unit part including a parabolic mirror and folding mirror, Lyman alpha transmission filter, the optical system magnification 1x consisting camera. The camera is supplied from the United States, and the other was carried out fabrication and testing in all the Japanese side. Slit-jaw optical system, it is difficult to access the structure, it is necessary to install the low place clearance. Therefore, influence the optical performance, the fine adjustment is necessary optical elements are collectively in the form of the mirror unit. On the other hand, due to the alignment of the solar sensor in the US launch site, must be removed once the Lyman alpha transmission filter holder including a filter has a different part from the mirror unit. In order to make the structure simple, stray light measures Aru to concentrate around Lyman alpha transmission filter. To overcome the difficulties of performing optical alignment in Lyman alpha wavelength absorbed by the atmosphere, it was planned 'following four steps in order to reduce standing time alignment me. 1. is measured in advance refractive index at Lyman alpha wavelength of Lyman alpha transmission filter (121.567nm), to prepare a visible light Firuwo having the same optical path length in the visible light (630nm).2. The mirror structure CLASP before mounting unit standing, dummy slit and camera standing

  1. Osteomalacia: The Missing Link in the Pathogenesis of Bisphosphonate-Related Osteonecrosis of the Jaws?

    PubMed Central

    Saia, Giorgia; Bettini, Giordana; Tronchet, Anita; Totola, Andrea; Bedogni, Giorgio; Tregnago, Paolo; Valenti, Maria Teresa; Bertoldo, Francesco; Ferronato, Giuseppe; Nocini, Pier Francesco; Blandamura, Stella; Dalle Carbonare, Luca

    2012-01-01

    Background. Bisphosphonate-related osteonecrosis of the jaw (BRONJ) is a well-documented adverse event from treatment with nitrogen-containing bisphosphonates (NBPs). During a preliminary histomorphometric study aimed at assessing the rate of bone remodeling in the jaws of patients with surgically resected BRONJ, we found a defect of bone mineralization (unpublished data). We hypothesized that osteomalacia could be a risk factor for BRONJ in patients taking NBPs. Therefore, we looked for static and dynamic histomorphometric evidence of osteomalacia in biopsies from subjects with and without BRONJ. Methods. This case-control study used histomorphometric analysis of bone specimens of patients using NBPs (22 patients with BRONJ and 21 patients without BRONJ) who required oral surgical interventions for the treatment/prevention of osteonecrosis. Patients were given tetracycline hydrochloride according to a standardized protocol before taking bone biopsies from their jaws. Biopsies with evidence of osteomyelitis or necrosis at histology were excluded from the study. Osteomalacia was defined as a mineralization lag time >100 days, a corrected mean osteoid thickness >12.5 mm, and an osteoid volume >10%. Results. In all, 77% of patients with BRONJ were osteomalacic compared with 5% of patients without BRONJ, according to histomorphometry. Because osteomalacia was found almost exclusively in NBP users with BRONJ, this is likely to be a generalized process in which the use of NBPs further deteriorates mechanisms of bone repair. Conclusions. Osteomalacia represents a new and previously unreported risk factor for disease development. This finding may contribute to a better understanding of the pathogenesis of this disease and help with the development of strategies to increase the safety of NBP administration. PMID:22723507

  2. The value of maximum jaw motion measurements for distinguishing between common temporomandibular disorder subgroups.

    PubMed

    Masumi, S; Kim, Y J; Clark, G T

    2002-05-01

    The purpose of this study was to determine if mandibular motion measurements could be used to distinguish between common temporomandibular disorder (TMD) subgroups that were established on the basis of only clinical signs and symptoms. Patients were 41 consecutive TMD clinic patients (31 women and 10 men). These patients were divided into 6 typical TMD subgroups. The subgroups were patients with (1) arthromyalgia, (2) arthromyalgia with disk condyle incoordination, (3) disk condyle incoordination only, (4) osteoarthritis, (5) suspected disk displacement without reduction, or (6) other diagnoses. There were no subjects in the other-diagnosis subgroup and only 1 subject with suspected disk displacement without reduction who was dropped without further consideration. The data for mean age showed that the osteoarthritis subgroup (n = 12) was statistically older (17 years) than the disk-condyle-incoordination-only subgroup (n = 11). The mean age of the other 2 groups, arthromyalgia (n = 11) and arthromyalgia with disk condyle incoordination (n = 6), was between the osteoarthritis and the disk-condyle-incoordination-only subgroups. For the 4 TMD subgroups whose data were analyzed, the mean differences between similar jaw opening measurements ranged from 6 to 8 mm with a standard deviation of approximately 8 to 10 mm. The mean left lateral motions were 0.5 to 1.3 mm larger than observed on the right. The widest mean jaw opening (56 mm) occurred in the disk-condyle-incoordination-only group. These differences were not found to be statistically significant. Analysis of opening, lateral and protrusive jaw motion data showed these measurements could not reliably differentiate between patients with osteoarthritis, arthromyalgia, arthromyalgia with disk condyle incoordination and disk condyle incoordination only.

  3. Haemangiopericytoma of the jaw.

    PubMed

    Wushou, Alimujiang; Bai, Xiu Feng; Qi, Hong; Xu, Zhe; Zheng, Jun; Li, Gang

    2014-07-01

    Haemangiopericytoma (HPC) is a vascular tumour which originates in the pericytes of vessels and therefore it may occur at any site, but it is very uncommon in the jaw. From January 2000 to December 2011, a retrospective analysis of nine consecutive patients with HPCJ was performed. There were five patients with a primary tumour and four patients with a recurrent tumour. Of the nine patients, eight were male and one female. Their ages ranged from 23 years to 51 years, with a median age of 38 years. The tumours were located in the mandible in six patients and in maxilla in three cases. The median course of disease was 7.6 months (range 2-12 months). All patients underwent surgery. Two patients had postoperative adjuvant radiotherapy, and two cases were given postoperative adjuvant chemotherapy. The median follow-up period was 49 months (10-101 months). One patient suffered from lumbar metastasis, while another case had metastasis at local and multiple distant sites, and eventually died. There was no local recurrence or metastasis in other seven cases. HPCJ are rare and the clinical characteristics are not specific. The first choice of treatment is radical surgery. Adjuvant radiotherapy may be effective to improve the prognosis of HPCJ. Copyright © 2013 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  4. DNA sequence alignment by microhomology sampling during homologous recombination

    PubMed Central

    Qi, Zhi; Redding, Sy; Lee, Ja Yil; Gibb, Bryan; Kwon, YoungHo; Niu, Hengyao; Gaines, William A.; Sung, Patrick

    2015-01-01

    Summary Homologous recombination (HR) mediates the exchange of genetic information between sister or homologous chromatids. During HR, members of the RecA/Rad51 family of recombinases must somehow search through vast quantities of DNA sequence to align and pair ssDNA with a homologous dsDNA template. Here we use single-molecule imaging to visualize Rad51 as it aligns and pairs homologous DNA sequences in real-time. We show that Rad51 uses a length-based recognition mechanism while interrogating dsDNA, enabling robust kinetic selection of 8-nucleotide (nt) tracts of microhomology, which kinetically confines the search to sites with a high probability of being a homologous target. Successful pairing with a 9th nucleotide coincides with an additional reduction in binding free energy and subsequent strand exchange occurs in precise 3-nt steps, reflecting the base triplet organization of the presynaptic complex. These findings provide crucial new insights into the physical and evolutionary underpinnings of DNA recombination. PMID:25684365

  5. Chimeric mitochondrial minichromosomes of the human body louse, Pediculus humanus: evidence for homologous and non-homologous recombination.

    PubMed

    Shao, Renfu; Barker, Stephen C

    2011-02-15

    The mitochondrial (mt) genome of the human body louse, Pediculus humanus, consists of 18 minichromosomes. Each minichromosome is 3 to 4 kb long and has 1 to 3 genes. There is unequivocal evidence for recombination between different mt minichromosomes in P. humanus. It is not known, however, how these minichromosomes recombine. Here, we report the discovery of eight chimeric mt minichromosomes in P. humanus. We classify these chimeric mt minichromosomes into two groups: Group I and Group II. Group I chimeric minichromosomes contain parts of two different protein-coding genes that are from different minichromosomes. The two parts of protein-coding genes in each Group I chimeric minichromosome are joined at a microhomologous nucleotide sequence; microhomologous nucleotide sequences are hallmarks of non-homologous recombination. Group II chimeric minichromosomes contain all of the genes and the non-coding regions of two different minichromosomes. The conserved sequence blocks in the non-coding regions of Group II chimeric minichromosomes resemble the "recombination repeats" in the non-coding regions of the mt genomes of higher plants. These repeats are essential to homologous recombination in higher plants. Our analyses of the nucleotide sequences of chimeric mt minichromosomes indicate both homologous and non-homologous recombination between minichromosomes in the mitochondria of the human body louse. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Reevaluating Musculoskeletal Linkages in Suction-Feeding Fishes with X-Ray Reconstruction of Moving Morphology (XROMM).

    PubMed

    Camp, Ariel L; Brainerd, Elizabeth L

    2015-07-01

    Suction-feeding fishes encompass a vast diversity of morphologies and ecologies, but during feeding they all rely on musculoskeletal linkages and levers to transform the shortening of muscle into 3D expansion of the mouth cavity. To relate the shape of these skeletal elements to their function in expansion of the mouth, four-bar linkage models have been developed and widely used in studies of ecology, evolution, and development. However, we have lacked the ability to test the predictions of these 2D linkage models against the actual 3D motions of fishes' skulls. A new imaging method, X-ray Reconstruction of Moving Morphology (XROMM), now makes it possible to measure 3D skeletal motions relative to other bones within the head and relative to the fish's body, and thereby to examine directly the proposed linkages. We used XROMM to examine the opercular linkage, in which shortening of the levator operculi muscle is hypothesized to retract the operculum, and thereby the interoperculum and interoperculomandibular ligament to generate depression of the lower jaw about the quadratomandibular joint. XROMM animations of suction strikes in largemouth bass revealed that the operculum is indeed retracted relative to the suspensorium as the levator operculi muscle shortens and the jaw depresses. However, the four-bar model of this linkage overestimates the depression of the jaw by nearly a factor of two. Therefore, caution should be used in interpreting and applying the predictions of this linkage model. When we measured kinematics relative to the fish's body, we found that the operculum was relatively stable, whereas the suspensorium was elevated along with the neurocranium, pushing the quadratomandibular joint forward to produce depression of the jaw. Thus, it is the epaxial muscles elevating the neurocranium that powers depression of the jaw through the opercular linkage. However, the levator operculi muscle plays a crucial role in stabilizing the operculum to allow elevation

  7. The history of the homology concept and the "Phylogenetisches Symposium".

    PubMed

    Hossfeld, Uwe; Olsson, Lennart

    2005-11-01

    The homology concept has had a long and varied history, starting out as a geometrical term in ancient Greece. Here we describe briefly how a typological use of homology to designate organs and body parts in the same position anatomically in different organisms was changed by Darwin's theory of evolution into a phylogenetic concept. We try to indicate the diversity of opinions on how to define and test for homology that has prevailed historically, before the important books by Hennig (1950. Grundzüge einer Theorie der Phylogenetischen Systematik. Deutscher Zentralverlag, Berlin) and Remane (1952. Die Grundlagen des Natürlichen Systems, der Vergleichenden Anatomie und der Phylogenetik. Geest & Portig, Leipzig) brought more rigor into both the debate on homology and into the usage of the term homology among systematists. Homology as a theme has recurred repeatedly throughout the history of the "Phylogenetisches Symposium" and we give a very brief overview of the different aspects of homology that have been discussed at specific symposia over the last 48 years. We also honour the fact that the 2004 symposium was held in Jena by pointing to the roles played by biologists active in Jena, such as Ernst Haeckel and Carl Gegenbaur, in starting the development towards a homology concept concordant with an evolutionary world view. As historians of biology, we emphasize the importance of major treatises on homology and its history that may be little read by systematists active today, and have sometimes also received less attention by historians of biology than they deserve. Prominent among these are the works of Dietrich Starck, who also happened to be both a student, and later a benefactor, of systematics at Jena University.

  8. Dynamic finite element simulation of dental prostheses during chewing using muscle equivalent force and trajectory approaches.

    PubMed

    Razaghi, Reza; Biglari, Hasan; Karimi, Alireza

    2017-05-01

    The long-term application of dental prostheses inside the bone has a narrow relation to its biomechanical performance. Chewing is the most complicated function of a dental implant as it implements different forces to the implant at various directions. Therefore, a suitable holistic modelling of the jaw bone, implant, food, muscles, and their forces would be deemed significant to figure out the durability as well as functionality of a dental implant while chewing. So far, two approaches have been proposed to employ the muscle forces into the Finite Element (FE) models, i.e. Muscle Equivalent Force (MEF) and trajectory. This study aimed at propounding a new three-dimensional dynamic FE model based on two muscle forces modelling approaches in order to investigate the stresses and deformations in the dental prosthesis as well as maxillary bone during the time of chewing a cornflakes bio. The results revealed that both contact and the maximum von Mises stress in the implant and bones for trajectory approach considerably exceed those of the MEF. The maximum stresses, moreover, are located around the neck of implant which should be both clinically and structurally strong enough to functionally maintain the bone-implant interface. In addition, a higher displacement due to compressive load is observed for the implant head in trajectory approach. The results suggest the benefits provided by trajectory approach since MEF approach would significantly underestimate the stresses and deformations in both the dental prosthesis and bones.

  9. Functional anatomy and kinematics of the oral jaw system during terrestrial feeding in Periophthalmus barbarus.

    PubMed

    Michel, Krijn B; Adriaens, Dominique; Aerts, Peter; Dierick, Manuel; Wassenbergh, Sam Van

    2014-10-01

    The Atlantic mudskipper, Periophthalmus barbarus, is an amphibious fish that successfully overcomes the numerous physical challenges of capturing prey in a terrestrial environment. However, it is unclear what changes in the morphology and function of the feeding apparatus contribute to the mudskipper's successful transition from aquatic to terrestrial capture of prey. In particular, how does the mudskipper achieve effective prehension of land-based prey using its percomorph feeding apparatus? To address that question, we performed a morphological analysis of the feeding apparatus of P. barbarus based on microcomputed tomography scanning, histological sectioning, and dissections as well as a kinematic analysis based on high-speed video and X-ray video to quantify the movements of the oral jaw apparatus elements. Our results show that the neurocranium remains in a fixed position relative to the pectoral girdle as the fish pivots over its pectoral fins toward the prey. The premaxilla rotates dorsally and protrudes downward over the prey. The dentary is rotated ventrally over an angle of 120°, which is facilitated by an intramandibular joint. These motions of the neurocranium, premaxilla, and dentary reorient the mouth aperture so it is parallel to the substrate, thereby allowing the jaws to be placed over the prey. The prey is grabbed between the oral teeth or scooped into the mouth primarily via rapid closing motion of the lower jaw. This analysis of P. barbarus clarifies the morphological and kinematic characteristics required by fish to become successful terrestrial feeders at the environmental transition between water and land. © 2014 Wiley Periodicals, Inc.

  10. Conditional Loss of Pten in Myogenic Progenitors Leads to Postnatal Skeletal Muscle Hypertrophy but Age-Dependent Exhaustion of Satellite Cells.

    PubMed

    Yue, Feng; Bi, Pengpeng; Wang, Chao; Li, Jie; Liu, Xiaoqi; Kuang, Shihuan

    2016-11-22

    Skeletal muscle stem cells (satellite cells [SCs]) are normally maintained in a quiescent (G 0 ) state. Muscle injury not only activates SCs locally, but also alerts SCs in distant uninjured muscles via circulating factors. The resulting G Alert SCs are adapted to regenerative cues and regenerate injured muscles more efficiently, but whether they provide any long-term benefits to SCs is unknown. Here, we report that embryonic myogenic progenitors lacking the phosphatase and tensin homolog (Pten) exhibit enhanced proliferation and differentiation, resulting in muscle hypertrophy but fewer SCs in adult muscles. Interestingly, Pten null SCs are predominantly in the G Alert state, even in the absence of an injury. The G Alert SCs are deficient in self-renewal and subjected to accelerated depletion during regeneration and aging and fail to repair muscle injury in old mice. Our findings demonstrate a key requirement of Pten in G 0 entry of SCs and provide functional evidence that prolonged G Alert leads to stem cell depletion and regenerative failure. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  11. Homologies in Physics and Astrophysics

    NASA Astrophysics Data System (ADS)

    Bartlett, David F.; Cumalat, J. P.

    2012-01-01

    The genes of humans and chimpanzees are homologs. These genes are - in large measure - identical. From this detailed observation, we naturally suppose that both species evolved from a common ancestor. In particle physics the ordinary observed particles and their superymmetric partners are thought to be homologs, generated by a common "ancestor” , the Higgs particle. Experiments at CERN currently are testing this comfortable analogy of physics with biology. Neither the Higgs boson nor any supersymmetric particle has yet been found. We speculate that a variety of objects are homologs - evidence of an as yet undeveloped quantum theory of gravity to replace Dark Matter. A purely astronomical homology is the Vc - σ o relation which places nearly spherical elliptical galaxies just above well-formed spirals (SA & SB). Here the asymptotically- flat, circular velocity Vc is observed to be between 1 and 2 times the central bulge velocity dispersion σo over the range 60 km/s< σo <400 km/s (Ferrarese 2002, Fig 3). The Vc - σ o relation is difficult to explain with self-consistent equilibrium galaxy models (Courteau et al 2007). Here we give an explanation based on the Sinusoidal Potential, a non-Newtonian potential in which φ =-GM Cos[ko r]/r and ko=2 π /400 pc. We relate the lower limit of 60 km/s to the thermal velocity of protons at the” Broadhurst/Hirano & Hartnett” lookback redshift Z=105.6. This is the redshift where what was 400 pc then expands to 128 h-1 Mpc today. Further, at this Z the temperature of the universe was close to the Hartree Energy of 2 times 13.6 eV, an energy where protons have an rms speed of about 60 km/s.

  12. Bite force estimation and the fiber architecture of felid masticatory muscles.

    PubMed

    Hartstone-Rose, Adam; Perry, Jonathan M G; Morrow, Caroline J

    2012-08-01

    Increasingly, analyses of craniodental dietary adaptations take into account mechanical properties of foods. However, masticatory muscle fiber architecture has been described for relatively few lineages, even though an understanding of the scaling of this anatomy can yield important information about adaptations for stretch and strength in the masticatory system. Data on the mandibular adductors of 28 specimens from nine species of felids representing nearly the entire body size range of the family allow us to evaluate the influence of body size and diet on the masticatory apparatus within this lineage. Masticatory muscle masses scale isometrically, tending toward positive allometry, with body mass and jaw length. This allometry becomes significant when the independent variable is a geometric mean of cranial variables. For all three body size proxies, the physiological cross-sectional area and predicted bite forces scale with significant positive allometry. Average fiber lengths (FL) tend toward negative allometry though with wide confidence intervals resulting from substantial scatter. We believe that these FL residuals are affected by dietary signals within the sample; though the mechanical properties of felid diets are relatively similar across species, the most durophagous species in our sample (the jaguar) appears to have relatively higher force production capabilities. The more notable dietary trend in our sample is the relationship between FL and relative prey size: felid species that predominantly consume relatively small prey have short masticatory muscle fibers, and species that regularly consume relatively large prey have relatively long fibers. This suggests an adaptive signal related to gape. Copyright © 2012 Wiley Periodicals, Inc.

  13. Changes in jaw muscle activity and the physical properties of foods with different textures during chewing behaviors.

    PubMed

    Iguchi, Hiroko; Magara, Jin; Nakamura, Yuki; Tsujimura, Takanori; Ito, Kayoko; Inoue, Makoto

    2015-12-01

    This study aimed to investigate how the activity of the masseter (Mas) and suprahyoid (Hyoid) muscles is influenced by the physical properties of food, how changes in the rheological properties of food differ between different foods during the process of food reduction, and how different salivary flow rates affect bolus-making capability during masticatory behavior in healthy humans. Ten healthy adults participated in this study. Electromyographic (EMG) recordings were obtained from the Mas and Hyoid muscles, and 15 g of steamed rice and rice cake was prepared as test foods. In the ingestion test, the subjects were asked to eat each food in their usual manner. The chewing duration, number of chewing cycles before the first swallow, Mas and Hyoid EMG activity, and chewing cycle time were compared between the foods. Total chewing duration was divided into three substages: early, middle, and late; chewing cycle time and EMG activity per chewing cycle of each substage were compared between the foods and among the substages. In the spitting test, the rheological properties of the bolus at the end of each substage were compared between the foods and among the substages. Finally, stimulated salivary flow rates were measured and the relationships between salivary flow rate and chewing duration, EMG activity, and changes in physical food characteristics were investigated. There were significant differences in total chewing duration and the number of chewing cycles, but not in chewing cycle time, between the foods, which had similar hardness values. The EMG activity levels of the Mas and Hyoid per chewing cycle for the rice cake were significantly greater than for the steamed rice throughout the recording periods. While Mas activity did not change among the substages during chewing, Hyoid EMG activity decreased as chewing progressed. Chewing cycle time also gradually decreased as chewing progressed. The hardness of both foods initially increased, then gradually decreased

  14. Molecular Phylogenetics and the Perennial Problem of Homology.

    PubMed

    Inkpen, S Andrew; Doolittle, W Ford

    2016-12-01

    The concept of homology has a long history, during much of which the issue has been how to reconcile similarity and common descent when these are not coextensive. Although thinking molecular phylogeneticists have learned not to say "percent homology," the problems are deeper than that and unresolved.

  15. Association between masseter muscle activity levels recorded during sleep and signs and symptoms of temporomandibular disorders in healthy young adults.

    PubMed

    Baba, Kazuyoshi; Haketa, Tadasu; Sasaki, Yoshiyuki; Ohyama, Takashi; Clark, Glenn T

    2005-01-01

    To examine whether any signs and symptoms of temporomandibular disorders were significantly associated with masseter muscle activity levels during sleep. One hundred three healthy adult subjects (age range, 22 to 32 years) participated in the study. They were asked to fill out questionnaires, undergo a calibrated clinical examination of their jaws and teeth, and perform 6 consecutive nightly masseter electromyographic (EMG) recordings with a portable EMG recording system in their home. The EMG data were considered dependent variables, while the questionnaire and examination data were considered independent variables. Multiple stepwise linear regression analysis was utilized to assess possible associations between these variables. Both gender and joint sound scores were significantly related to the duration of EMG activity. None of the other independent variables were found to be related to any of the muscle activity variables. The results suggest that both gender and clicking are significantly related to duration of masseter EMG activity during sleep.

  16. Nucleic Acid Homologies Among Oxidase-Negative Moraxella Species

    PubMed Central

    Johnson, John L.; Anderson, Robert S.; Ordal, Erling J.

    1970-01-01

    The deoxyribonucleic acid (DNA) base composition and DNA homologies of more than 40 strains of oxidase-negative Moraxella species were determined. These bacteria have also been identified as belonging to the Mima-Herellea-Acinetobacter group and the Bacterium anitratum group, as well as to several other genera including Achromobacter and Alcaligenes. The DNA base content of these strains ranged from 40 to 46% guanine plus cytosine. DNA–DNA competition experiments distinguished five groups whose members were determined by showing 50% or more homology to one of the reference strains: B. anitratum type B5W, Achromobacter haemolyticus var. haemolyticus, Alcaligenes haemolysans, Achromobacter metalcaligenes, and Moraxella lwoffi. A sixth group comprised those strains showing less than 50% homology to any of the reference strains. Negligible homology was found between strains of oxidase-negative and oxidase-positive Moraxella species in DNA–DNA competition experiments. However, evidence of a distant relationship between the two groups was obtained in competition experiments by using ribosomal ribonucleic acid. PMID:5413826

  17. Recombination, Pairing, and Synapsis of Homologs during Meiosis

    PubMed Central

    Zickler, Denise; Kleckner, Nancy

    2015-01-01

    Recombination is a prominent feature of meiosis in which it plays an important role in increasing genetic diversity during inheritance. Additionally, in most organisms, recombination also plays mechanical roles in chromosomal processes, most notably to mediate pairing of homologous chromosomes during prophase and, ultimately, to ensure regular segregation of homologous chromosomes when they separate at the first meiotic division. Recombinational interactions are also subject to important spatial patterning at both early and late stages. Recombination-mediated processes occur in physical and functional linkage with meiotic axial chromosome structure, with interplay in both directions, before, during, and after formation and dissolution of the synaptonemal complex (SC), a highly conserved meiosis-specific structure that links homolog axes along their lengths. These diverse processes also are integrated with recombination-independent interactions between homologous chromosomes, nonhomology-based chromosome couplings/clusterings, and diverse types of chromosome movement. This review provides an overview of these diverse processes and their interrelationships. PMID:25986558

  18. Accuracy of virtual surgical planning in two-jaw orthognathic surgery: comparison of planned and actual results.

    PubMed

    Zhang, Nan; Liu, Shuguang; Hu, Zhiai; Hu, Jing; Zhu, Songsong; Li, Yunfeng

    2016-08-01

    This study aims to evaluate the accuracy of virtual surgical planning in two-jaw orthognathic surgery via quantitative comparison of preoperative planned and postoperative actual skull models. Thirty consecutive patients who required two-jaw orthognathic surgery were included. A composite skull model was reconstructed by using Digital Imaging and Communications in Medicine (DICOM) data from spiral computed tomography (CT) and STL (stereolithography) data from surface scanning of the dental arch. LeFort I osteotomy of the maxilla and bilateral sagittal split ramus osteotomy (of the mandible were simulated by using Dolphin Imaging 11.7 Premium (Dolphin Imaging and Management Solutions, Chatsworth, CA). Genioplasty was performed, if indicated. The virtual plan was then transferred to the operation room by using three-dimensional (3-D)-printed surgical templates. Linear and angular differences between virtually simulated and postoperative skull models were evaluated. The virtual surgical planning was successfully transferred to actual surgery with the help of 3-D-printed surgical templates. All patients were satisfied with the postoperative facial profile and occlusion. The overall mean linear difference was 0.81 mm (0.71 mm for the maxilla and 0.91 mm for the mandible); and the overall mean angular difference was 0.95 degrees. Virtual surgical planning and 3-D-printed surgical templates facilitated the diagnosis, treatment planning, and accurate repositioning of bony segments in two-jaw orthognathic surgery. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Transjugular liver biopsy with use of the shark jaw needle: diagnostic yield, complications, and cost-effectiveness.

    PubMed

    Psooy, B J; Clark, T W; Beecroft, J R; Malatjalian, D

    2001-01-01

    Obtaining transjugular liver biopsy specimens with use of single-use needle systems is expensive, whereas biopsy specimens obtained with use of reusable needle systems are frequently associated with inadequate core specimens. The authors report their experience with the reusable Cook Shark Jaw biopsy needle, including diagnostic yield, complications, and cost-effectiveness. A retrospective audit was performed of a cohort of 134 patients who underwent 136 transjugular liver biopsies with use of a reusable 16-gauge Shark Jaw needle during a 30-month period. Specimen adequacy and complication rates were assessed and direct costs of expendable components calculated. Cost-effectiveness was expressed as cost-per-successful biopsy. Biopsies were technically successful in 126 of 136 (93%) patients, with diagnostic histologic core specimens obtained in 124 of 126 (98%) patients, for an overall success rate of 91%. Complications included capsular penetration in six (4.4%) patients, cardiac arrhythmia in two (1.5%) patients, and puncture site hematoma or bleeding in 10 (7.4%) patients. Three tract embolizations were performed for capsular penetration. No instances of subcapsular hematoma, hemoperitoneum, or sepsis occurred, and no deaths were attributed to the procedure. The cost of expendable components totaled $103 per biopsy, corresponding to a cost-effectiveness of $113/successful biopsy. Transjugular liver biopsy specimens obtained with use of the Shark Jaw needle have a diagnostic yield comparable to those obtained with use of single-use biopsy systems, at a substantially lower cost with no increase in serious complications.

  20. Periodontal Tissues, Maxillary Jaw Bone, and Tooth Regeneration Approaches: From Animal Models Analyses to Clinical Applications

    PubMed Central

    Batool, Fareeha; Strub, Marion; Petit, Catherine; Bugueno, Isaac Maximiliano; Bornert, Fabien; Clauss, François; Kuchler-Bopp, Sabine; Benkirane-Jessel, Nadia

    2018-01-01

    This review encompasses different pre-clinical bioengineering approaches for periodontal tissues, maxillary jaw bone, and the entire tooth. Moreover, it sheds light on their potential clinical therapeutic applications in the field of regenerative medicine. Herein, the electrospinning method for the synthesis of polycaprolactone (PCL) membranes, that are capable of mimicking the extracellular matrix (ECM), has been described. Furthermore, their functionalization with cyclosporine A (CsA), bone morphogenetic protein-2 (BMP-2), or anti-inflammatory drugs’ nanoreservoirs has been demonstrated to induce a localized and targeted action of these molecules after implantation in the maxillary jaw bone. Firstly, periodontal wound healing has been studied in an induced periodontal lesion in mice using an ibuprofen-functionalized PCL membrane. Thereafter, the kinetics of maxillary bone regeneration in a pre-clinical mouse model of surgical bone lesion treated with BMP-2 or BMP-2/Ibuprofen functionalized PCL membranes have been analyzed by histology, immunology, and micro-computed tomography (micro-CT). Furthermore, the achievement of innervation in bioengineered teeth has also been demonstrated after the co-implantation of cultured dental cell reassociations with a trigeminal ganglia (TG) and the cyclosporine A (CsA)-loaded poly(lactic-co-glycolic acid) (PLGA) scaffold in the jaw bone. The prospective clinical applications of these different tissue engineering approaches could be instrumental in the treatment of various periodontal diseases, congenital dental or cranio-facial bone anomalies, and post-surgical complications. PMID:29772691

  1. Bisphosphonate-related osteonecrosis of the jaw: an Italian post-marketing surveillance analysis.

    PubMed

    Parretta, Elisabetta; Sottosanti, Laura; Sportiello, Liberata; Rafaniello, Concetta; Potenza, Simona; D'Amato, Salvatore; González-González, Rocio; Rossi, Francesco; Colella, Giuseppe; Capuano, Annalisa

    2014-09-01

    Although bisphosphonate (BP)-related osteonecrosis of the jaw (BRONJ) is well recognized, little is known about it in terms of pathophysiology, epidemiology or management. We analyzed all suspected BRONJ reports sent to the Italian Pharmacovigilance Adverse Event Spontaneous Reporting System (Rete Nazionale Farmacovigilanza [RNF]) to determine their pattern and add new information about this relevant issue. All suspected BRONJ sent to the RNF between 2003 and 2011 were retrieved. After a case-by-case assessment procedure, we analyzed BP type, BP exposure time and time since last use. Between 2003 and 2011, 555 reports of osteonecrosis of the jaw (ONJ) after BP administration were recorded in the RNF. These events occurred mostly in patients affected by cancer (77.84%) in which zoledronate was the most frequently suspected BP. Most patients experienced ONJ after long-term use of the drug (median time of BP exposure being between 1.3 and 8.8 years). Interestingly, 139 (25.05%) cases of ONJ occurred between 2 and 121 months after BP withdrawal. This study shows that BRONJ can occur much earlier than hitherto reported, adds new data on BRONJ onset following ibandronate treatment and reveals that patients who cease BP-based therapy develop ONJ, raising the question of post-treatment monitoring strategies.

  2. Digastric Muscle Phenotypes of the Ts65Dn Mouse Model of Down Syndrome

    PubMed Central

    Connor, Nadine P.

    2016-01-01

    Down syndrome is frequently associated with complex difficulties in oromotor development, feeding, and swallowing. However, the muscle phenotypes underlying these deficits are unclear. We tested the hypotheses that the Ts65Dn mouse model of DS has significantly altered myosin heavy chain (MyHC) isoform profiles of the muscles involved in feeding and swallowing, as well as reductions in the speed of these movements during behavioral assays. SDS-PAGE, immunofluorescence, and qRT-PCR were used to assess MyHC isoform expression in pertinent muscles, and functional feeding and swallowing performance were quantified through videofluoroscopy and mastication assays. We found that both the anterior digastric (ADG) and posterior digastric (PDG) muscles in 11-day old and 5–6 week old Ts65Dn groups showed significantly lower MyHC 2b protein levels than in age-matched euploid control groups. In videofluoroscopic and videotape assays used to quantify swallowing and mastication performance, 5–6 week old Ts65Dn and euploid controls showed similar swallow rates, inter-swallow intervals, and mastication rates. In analysis of adults, 10–11 week old Ts65Dn mice revealed significantly less MyHC 2b mRNA expression in the posterior digastric, but not the anterior digastric muscle as compared with euploid controls. Analysis of MyHC 2b protein levels across an adult age range (10–53 weeks of age) revealed lower levels of MyHC 2b protein in the PDG of Ts65Dn than in euploids, but similar levels of MyHC 2b in the ADG. Cumulatively, these results indicate biochemical differences in some, but not all, muscles involved in swallowing and jaw movement in Ts65Dn mice that manifest early in post-natal development, and persist into adulthood. These findings suggest potential utility of this model for future investigations of the mechanisms of oromotor difficulties associated with Down syndrome. PMID:27336944

  3. Development of soft robots using dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Godaba, Hareesh; Wang, Yuzhe; Cao, Jiawei; Zhu, Jian

    2016-04-01

    Soft robots are gaining in popularity due to their unique attributes such as low weight, compliance, flexibility and diverse range in motion types. This paper illustrates soft robots and actuators which are developed using dielectric elastomer. These developments include a jellyfish robot, a worm like robot and artificial muscle actuators for jaw movement in a robotic skull. The jellyfish robot which employs a bulged dielectric elastomer membrane has been demonstrated too generate thrust and buoyant forces and can move effectively in water. The artificial muscle for jaw movement employs a pure shear configuration and has been shown to closely mimic the jaw motion while chewing or singing a song. Thee inchworm robot, powered by dielectric elastomer actuator can demonstrate stable movement in one-direction.

  4. Homologous pairing and chromosome dynamics in meiosis and mitosis.

    PubMed

    McKee, Bruce D

    2004-03-15

    Pairing of homologous chromosomes is an essential feature of meiosis, acting to promote high levels of recombination and to ensure segregation of homologs. However, homologous pairing also occurs in somatic cells, most regularly in Dipterans such as Drosophila, but also to a lesser extent in other organisms, and it is not known how mitotic and meiotic pairing relate to each other. In this article, I summarize results of recent molecular studies of pairing in both mitosis and meiosis, focusing especially on studies using fluorescent in situ hybridization (FISH) and GFP-tagging of single loci, which have allowed investigators to assay the pairing status of chromosomes directly. These approaches have permitted the demonstration that pairing occurs throughout the cell cycle in mitotic cells in Drosophila, and that the transition from mitotic to meiotic pairing in spermatogenesis is accompanied by a dramatic increase in pairing frequency. Similar approaches in mammals, plants and fungi have established that with few exceptions, chromosomes enter meiosis unpaired and that chromosome movements involving the telomeric, and sometimes centromeric, regions often precede the onset of meiotic pairing. The possible roles of proteins involved in homologous recombination, synapsis and sister chromatid cohesion in homolog pairing are discussed with an emphasis on those for which mutant phenotypes have permitted an assessment of effects on homolog pairing. Finally, I consider the question of the distribution and identity of chromosomal pairing sites, using recent data to evaluate possible relationships between pairing sites and other chromosomal sites, such as centromeres, telomeres, promoters and heterochromatin. I cite evidence that may point to a relationship between matrix attachment sites and homologous pairing sites.

  5. Quantitative Contributions of the Muscles of the Tongue, Floor-of-Mouth, Jaw, and Velum to Tongue-to-Palate Pressure Generation

    ERIC Educational Resources Information Center

    Palmer, Phyllis M.; Jaffe, Debra M.; McCulloch, Timothy M.; Finnegan, Eileen M.; Van Daele, Douglas J.; Luschei, Erich S.

    2008-01-01

    Purpose: The purpose of this investigation was to evaluate the relationship between tongue-to-palate pressure and the electromyography (EMG) measured from the mylohyoid, anterior belly of the digastric, geniohyoid, medial pterygoid, velum, genioglossus, and intrinsic tongue muscles. Methods: Seven healthy adults performed tongue-to-palate pressure…

  6. Teleman localization of Hochschild homology in a singular setting

    NASA Astrophysics Data System (ADS)

    Brasselet, J.-P.; Legrand, A.

    2009-09-01

    The aim of this paper is to generalize the Hochschild-Kostant-Rosenberg theorem to the case of singular varieties, more precisely, to manifolds with boundary and to varieties with isolated singularities. In these situations, we define suitable algebras of functions and study the localization of the corresponding Hochschild homology. The tool we use is the Teleman localization process. In the case of isolated singularities, the closed Hochschild homology corresponds to the intersection complex which relates the objects defined here to intersection homology.

  7. Comparative anatomy, homologies and evolution of the pectoral and forelimb musculature of tetrapods with special attention to extant limbed amphibians and reptiles.

    PubMed

    Abdala, Virginia; Diogo, Rui

    2010-11-01

    The main aim of the present work is to synthesize the information obtained from our dissections of the pectoral and forelimb muscles of representative members of the major extant taxa of limbed amphibians and reptiles and from our review of the literature, in order to provide an account of the comparative anatomy, homologies and evolution of these muscles in the Tetrapoda. The pectoral and forelimb musculature of all these major taxa conform to a general pattern that seems to have been acquired very early in the evolutionary history of tetrapods. Although some muscles are missing in certain taxa, and a clear departure from this general pattern is obviously present in derived groups such as birds, the same overall configuration is easily distinguishable in these taxa. Among the most notable anatomical differences between the groups, one that seems to have relevant evolutionary and functional implications, concerns the distal insertion points of the forearm musculature. In tetrapods, the muscles of the radial and ulnar complexes of the forearm are pleisomorphically mainly inserted onto the radius/ulna or onto the more proximal carpal bones, but in mammals some of these muscles insert more distally onto bones such as the metacarpals. Interestingly, a similar trend towards a more distal insertion of these muscles is also found in some non-mammalian tetrapod taxa, such as some anurans (e.g. Phyllomedusa). This may be correlated with the acquisition of more subtle digital movement abilities in these latter taxa. © 2010 The Authors. Journal of Anatomy © 2010 Anatomical Society of Great Britain and Ireland.

  8. Decorated Heegaard Diagrams and Combinatorial Heegaard Floer Homology

    NASA Astrophysics Data System (ADS)

    Hammarsten, Carl

    Heegaard Floer homology is a collection of invariants for closed oriented three-manifolds, introduced by Ozsvath and Szabo in 2001. The simplest version is defined as the homology of a chain complex coming from a Heegaard diagram of the three manifold. In the original definition, the differentials count the number of points in certain moduli spaces of holomorphic disks, which are hard to compute in general. More recently, Sarkar and Wang (2006) and Ozsvath, Stipsicz and Szabo, (2009) have determined combinatorial methods for computing this homology with Z2 coefficients. Both methods rely on the construction of very specific Heegaard diagrams for the manifold, which are generally very complicated. Given a decorated Heegaard diagram H for a closed oriented 3-manifold Y, that is a Heegaard diagram together with a collection of embedded paths satisfying certain criteria, we describe a combinatorial recipe for a chain complex CF'[special character omitted]( H). If H satisfies some technical constraints we show that this chain complex is homotopically equivalent to the Heegaard Floer chain complex CF[special character omitted](H) and hence has the Heegaard Floer homology HF[special character omitted](Y) as its homology groups. Using branched spines we give an algorithm to construct a decorated Heegaard diagram which satisfies the necessary technical constraints for every closed oriented Y. We present this diagram graphically in the form of a strip diagram.

  9. Advances in Homology Protein Structure Modeling

    PubMed Central

    Xiang, Zhexin

    2007-01-01

    Homology modeling plays a central role in determining protein structure in the structural genomics project. The importance of homology modeling has been steadily increasing because of the large gap that exists between the overwhelming number of available protein sequences and experimentally solved protein structures, and also, more importantly, because of the increasing reliability and accuracy of the method. In fact, a protein sequence with over 30% identity to a known structure can often be predicted with an accuracy equivalent to a low-resolution X-ray structure. The recent advances in homology modeling, especially in detecting distant homologues, aligning sequences with template structures, modeling of loops and side chains, as well as detecting errors in a model, have contributed to reliable prediction of protein structure, which was not possible even several years ago. The ongoing efforts in solving protein structures, which can be time-consuming and often difficult, will continue to spur the development of a host of new computational methods that can fill in the gap and further contribute to understanding the relationship between protein structure and function. PMID:16787261

  10. The Long Adventurous Journey of Rhombic Lip Cells in Jawed Vertebrates: A Comparative Developmental Analysis

    PubMed Central

    Wullimann, Mario F.; Mueller, Thomas; Distel, Martin; Babaryka, Andreas; Grothe, Benedikt; Köster, Reinhard W.

    2011-01-01

    This review summarizes vertebrate rhombic lip and early cerebellar development covering classic approaches up to modern developmental genetics which identifies the relevant differential gene expression domains and their progeny. Most of this information is derived from amniotes. However, progress in anamniotes, particularly in the zebrafish, has recently been made. The current picture suggests that rhombic lip and cerebellar development in jawed vertebrates (gnathostomes) share many characteristics. Regarding cerebellar development, these include a ptf1a expressing ventral cerebellar proliferation (VCP) giving rise to Purkinje cells and other inhibitory cerebellar cell types, and an atoh1 expressing upper rhombic lip giving rise to an external granular layer (EGL, i.e., excitatory granule cells) and an early ventral migration into the anterior rhombencephalon (cholinergic nuclei). As for the lower rhombic lip (LRL), gnathostome commonalities likely include the formation of precerebellar nuclei (mossy fiber origins) and partially primary auditory nuclei (likely convergently evolved) from the atoh1 expressing dorsal zone. The fate of the ptf1a expressing ventral LRL zone which gives rise to (excitatory cells of) the inferior olive (climbing fiber origin) and (inhibitory cells of ) cochlear nuclei in amniotes, has not been determined in anamniotes. Special for the zebrafish in comparison to amniotes is the predominant origin of anamniote excitatory deep cerebellar nuclei homologs (i.e., eurydendroid cells) from ptf1a expressing VCP cells, the sequential activity of various atoh1 paralogs and the incomplete coverage of the subpial cerebellar plate with proliferative EGL cells. Nevertheless, the conclusion that a rhombic lip and its major derivatives evolved with gnathostome vertebrates only and are thus not an ancestral craniate character complex is supported by the absence of a cerebellum (and likely absence of its afferent and efferent nuclei) in jawless fishes PMID

  11. Two cases of multiple ossifying fibromas in the jaws

    PubMed Central

    2014-01-01

    Background The clinicopathologic characteristics of multiple ossifying fibroma (OF) are unclear due to the condition’s rarity, making diagnosis challenging. Sporadic multiple OFs must be distinguished from hyperparathyroidism-jaw tumour syndrome (HPT-JT) related OF and other fibro-osseous lesions. Methods Multiple OF cases were identified from ossifying fibroma cases. Clinical data including age, sex, anatomic site, radiographic features, clinical impression, treatment and available follow-up data as well as serum calcium, phosphorus, and parathyroid hormone (PTH) were recorded. GNAS and HRPT2 genetic mutations were examined in the two present cases. Case reports of sporadic multiple ossifying fibroma and HPT-JT-related OF were also reviewed. Results The two present cases were confirmed as sporadic multiple OF, with no genetic GNAS and HRPT2 mutations found. The incidence of sporadic multiple ossifying fibroma was 2.0% (2/102). The total 18 sporadic multiform OF cases were characterized as followed: 13 (72.2%) female; 5 (27.8%) male; mean age 28.6 years; 2/16 (11.1%) cases only in the mandible; 4/18 (22.2%) cases only in the maxilla; and 12/18 (66.7%) cases in both the maxilla and mandible. Radiographically, the lesions were radiolucent in 5/18 (27.8%) cases and mixed density in 13/18 (72.2%) cases. Along with 24 cases of HPT-JT related OF were reviewed, sixteen (66.7%) patients were diagnosed with a single lesion, and 8 patients (33.3%) were diagnosed with multiple jaw lesions. Conclusions Sporadic multiple OFs are very rare, but must be distinguished from HPT-JT related OF. We strongly recommend that patients diagnosed with multiple ossifying fibromas receive serum PTH testing and mutation screening of HRPT2. Virtual slides http://www.diagnosticpathology.diagnomx.eu/vs/1194507146115753 PMID:24678936

  12. Nuclear ARP2/3 drives DNA break clustering for homology-directed repair.

    PubMed

    Schrank, Benjamin R; Aparicio, Tomas; Li, Yinyin; Chang, Wakam; Chait, Brian T; Gundersen, Gregg G; Gottesman, Max E; Gautier, Jean

    2018-06-20

    DNA double-strand breaks repaired by non-homologous end joining display limited DNA end-processing and chromosomal mobility. By contrast, double-strand breaks undergoing homology-directed repair exhibit extensive processing and enhanced motion. The molecular basis of this movement is unknown. Here, using Xenopus laevis cell-free extracts and mammalian cells, we establish that nuclear actin, WASP, and the actin-nucleating ARP2/3 complex are recruited to damaged chromatin undergoing homology-directed repair. We demonstrate that nuclear actin polymerization is required for the migration of a subset of double-strand breaks into discrete sub-nuclear clusters. Actin-driven movements specifically affect double-strand breaks repaired by homology-directed repair in G2 cell cycle phase; inhibition of actin nucleation impairs DNA end-processing and homology-directed repair. By contrast, ARP2/3 is not enriched at double-strand breaks repaired by non-homologous end joining and does not regulate non-homologous end joining. Our findings establish that nuclear actin-based mobility shapes chromatin organization by generating repair domains that are essential for homology-directed repair in eukaryotic cells.

  13. [Characteristics of opening movement in patients with unilateral mastication].

    PubMed

    Jia, Ling; Wang, Yun; Wang, Mengya

    2016-08-01

    To analyze characteristics of mandibular movement in patients with unilateral mastication.
 Undergraduate students in oral medicine from Grade 2011 and 2012 in Wannan Medical College were enrolled for this study by cluster sampling method, which include 30 people with unilateral mastication and 30 people with bilateral mastication. The surface electromyogram (sEMG) of masseter muscle and anterovent of digastric muscle were recorded and the trajectory of mandibular incisor point was recorded simultaneously in the maximum opening and closing movement. The results were analyzed by SPSS 19.0 software.
 Average electrical peak of left anterior digastric muscle and right anterior digastric muscle in the unilateral chewing group was lower than that in the bilateral chewing group (P<0.05). The jaw tangent point trajectory was separate in the unilateral chewing group. There were significant differences at the opening type between the 2 groups. The vertical displacement and the sagittal displacement in the unilateral chewing group were significantly lower than those in the bilateral chewing group (P<0.01). There was significant positive correlation between the average peak potential of masseter muscle and displacement on the right side.
 Average electrical peak of left masseter muscle, left anterior digastric muscle, and right anterior digastric muscle decreases in the unilateral chewing group. Jaw tracking in most people deflects to the working side. Opening and closing jaw tracking is separate in 50% unilateral chewing individuals with the decreased opening degree. Unilateral chewing leads to changes in muscle performance accompanied by trajectory anomalies.

  14. Homology groups for particles on one-connected graphs

    NASA Astrophysics Data System (ADS)

    MaciÄ Żek, Tomasz; Sawicki, Adam

    2017-06-01

    We present a mathematical framework for describing the topology of configuration spaces for particles on one-connected graphs. In particular, we compute the homology groups over integers for different classes of one-connected graphs. Our approach is based on some fundamental combinatorial properties of the configuration spaces, Mayer-Vietoris sequences for different parts of configuration spaces, and some limited use of discrete Morse theory. As one of the results, we derive the closed-form formulae for ranks of the homology groups for indistinguishable particles on tree graphs. We also give a detailed discussion of the second homology group of the configuration space of both distinguishable and indistinguishable particles. Our motivation is the search for new kinds of quantum statistics.

  15. Developmental odontogenic cysts of jaws: a clinical study of 245 cases.

    PubMed

    Yazdani, Javad; Kahnamouii, Shiva Solahaye

    2009-01-01

    The aim of this study was to investigate the relative frequency of developmental odontogenic cysts in an Iranian population. In this study 245 cysts from both jaws, treated in the Faculty of Dentistry at Tabriz University of Medical Sciences during a 10-year period from 1998 to 2008, were analyzed in order to evaluate the incidence of such cysts. We had permission from all the patients. Case histories of 65% of male and 35% of female patients were analyzed. The age of the patients varied from 14 to 64 years, with an average of 33.21 ± 10.89. In this 10-year study of odontogenic cysts, 97 cases were developmental odontogenic cysts with the following inci-dence: dentigerous cyst, 44%; odontogenic keratocyst, 36%; primordial cyst, 9%; Gorlin cyst, 2%; lateral periodontal cyst, 3%; eruption cyst, 3%; and gingival cyst, 3% (adults 2%, infants 1%). A total of 60% of the cysts were found in the mandible and 40% in the maxilla. Regarding the mandible, the molar region was involved in 47% of the cases, premolar region in 33% and anterior region in 20% (total = 100%). Regarding the maxilla, the canine-to-canine region was involved in 52% of the cases, premolar region in 20% and molar region in 28% (total = 100%). An important finding in this study was the fact that 39% of the jaw cysts were developmental odontogenic cysts and the most common developmental odontogenic cysts were dentigerous cyst and OKC (odontogenic keratocyst).

  16. Extracting DNA from 'jaws': high yield and quality from archived tiger shark (Galeocerdo cuvier) skeletal material.

    PubMed

    Nielsen, E E; Morgan, J A T; Maher, S L; Edson, J; Gauthier, M; Pepperell, J; Holmes, B J; Bennett, M B; Ovenden, J R

    2017-05-01

    Archived specimens are highly valuable sources of DNA for retrospective genetic/genomic analysis. However, often limited effort has been made to evaluate and optimize extraction methods, which may be crucial for downstream applications. Here, we assessed and optimized the usefulness of abundant archived skeletal material from sharks as a source of DNA for temporal genomic studies. Six different methods for DNA extraction, encompassing two different commercial kits and three different protocols, were applied to material, so-called bio-swarf, from contemporary and archived jaws and vertebrae of tiger sharks (Galeocerdo cuvier). Protocols were compared for DNA yield and quality using a qPCR approach. For jaw swarf, all methods provided relatively high DNA yield and quality, while large differences in yield between protocols were observed for vertebrae. Similar results were obtained from samples of white shark (Carcharodon carcharias). Application of the optimized methods to 38 museum and private angler trophy specimens dating back to 1912 yielded sufficient DNA for downstream genomic analysis for 68% of the samples. No clear relationships between age of samples, DNA quality and quantity were observed, likely reflecting different preparation and storage methods for the trophies. Trial sequencing of DNA capture genomic libraries using 20 000 baits revealed that a significant proportion of captured sequences were derived from tiger sharks. This study demonstrates that archived shark jaws and vertebrae are potential high-yield sources of DNA for genomic-scale analysis. It also highlights that even for similar tissue types, a careful evaluation of extraction protocols can vastly improve DNA yield. © 2016 John Wiley & Sons Ltd.

  17. Primary homologies of the circumorbital bones of snakes.

    PubMed

    Palci, Alessandro; Caldwell, Michael W

    2013-09-01

    Some snakes have two circumorbital ossifications that in the current literature are usually referred to as the postorbital and supraorbital. We review the arguments that have been proposed to justify this interpretation and provide counter-arguments that reject those conjectures of primary homology based on the observation of 32 species of lizards and 81 species of snakes (both extant and fossil). We present similarity arguments, both topological and structural, for reinterpretation of the primary homologies of the dorsal and posterior orbital ossifications of snakes. Applying the test of similarity, we conclude that the posterior orbital ossification of snakes is topologically consistent as the homolog of the lacertilian jugal, and that the dorsal orbital ossification present in some snakes (e.g., pythons, Loxocemus, and Calabaria) is the homolog of the lacertilian postfrontal. We therefore propose that the terms postorbital and supraorbital should be abandoned as reference language for the circumorbital bones of snakes, and be replaced with the terms jugal and postfrontal, respectively. The primary homology claim for the snake "postorbital" fails the test of similarity, while the term "supraorbital" is an unnecessary and inaccurate application of the concept of a neomorphic ossification, for an element that passes the test of similarity as a postfrontal. This reinterpretation of the circumorbital bones of snakes is bound to have important repercussions for future phylogenetic analyses and consequently for our understanding of the origin and evolution of snakes. Copyright © 2013 Wiley Periodicals, Inc.

  18. Flexible piezoelectric energy harvesting from jaw movements

    NASA Astrophysics Data System (ADS)

    Delnavaz, Aidin; Voix, Jérémie

    2014-10-01

    Piezoelectric fiber composites (PFC) represent an interesting subset of smart materials that can function as sensor, actuator and energy converter. Despite their excellent potential for energy harvesting, very few PFC mechanisms have been developed to capture the human body power and convert it into an electric current to power wearable electronic devices. This paper provides a proof of concept for a head-mounted device with a PFC chin strap capable of harvesting energy from jaw movements. An electromechanical model based on the bond graph method is developed to predict the power output of the energy harvesting system. The optimum resistance value of the load and the best stretch ratio in the strap are also determined. A prototype was developed and tested and its performances were compared to the analytical model predictions. The proposed piezoelectric strap mechanism can be added to all types of head-mounted devices to power small-scale electronic devices such as hearing aids, electronic hearing protectors and communication earpieces.

  19. Induction of homologous recombination in Saccharomyces cerevisiae.

    PubMed

    Simon, J R; Moore, P D

    1988-09-01

    We have investigated the effects of UV irradiation of Saccharomyces cerevisiae in order to distinguish whether UV-induced recombination results from the induction of enzymes required for homologous recombination, or the production of substrate sites for recombination containing regions of DNA damage. We utilized split-dose experiments to investigate the induction of proteins required for survival, gene conversion, and mutation in a diploid strain of S. cerevisiae. We demonstrate that inducing doses of UV irradiation followed by a 6 h period of incubation render the cells resistant to challenge doses of UV irradiation. The effects of inducing and challenge doses of UV irradiation upon interchromosomal gene conversion and mutation are strictly additive. Using the yeast URA3 gene cloned in non-replicating single- and double-stranded plasmid vectors that integrate into chromosomal genes upon transformation, we show that UV irradiation of haploid yeast cells and homologous plasmid DNA sequences each stimulate homologous recombination approximately two-fold, and that these effects are additive. Non-specific DNA damage has little effect on the stimulation of homologous recombination, as shown by studies in which UV-irradiated heterologous DNA was included in transformation/recombination experiments. We further demonstrate that the effect of competing single- and double-stranded heterologous DNA sequences differs in UV-irradiated and unirradiated cells, suggesting an induction of recombinational machinery in UV-irradiated S. cerevisiae cells.

  20. Worst case estimation of homology design by convex analysis

    NASA Technical Reports Server (NTRS)

    Yoshikawa, N.; Elishakoff, Isaac; Nakagiri, S.

    1998-01-01

    The methodology of homology design is investigated for optimum design of advanced structures. for which the achievement of delicate tasks by the aid of active control system is demanded. The proposed formulation of homology design, based on the finite element sensitivity analysis, necessarily requires the specification of external loadings. The formulation to evaluate the worst case for homology design caused by uncertain fluctuation of loadings is presented by means of the convex model of uncertainty, in which uncertainty variables are assigned to discretized nodal forces and are confined within a conceivable convex hull given as a hyperellipse. The worst case of the distortion from objective homologous deformation is estimated by the Lagrange multiplier method searching the point to maximize the error index on the boundary of the convex hull. The validity of the proposed method is demonstrated in a numerical example using the eleven-bar truss structure.