Sample records for jaws ii dendritic

  1. The Effect of Solar Irradiated Vibrio cholerae on the Secretion of Pro-Inflammatory Cytokines and Chemokines by the JAWS II Dendritic Cell Line In Vitro

    PubMed Central

    Ssemakalu, Cornelius Cano; Ubomba-Jaswa, Eunice; Motaung, Keolebogile Shirley; Pillay, Michael

    2015-01-01

    The use of solar irradiation to sterilize water prior to its consumption has resulted in the reduction of water related illnesses in waterborne disease endemic communities worldwide. Currently, research on solar water disinfection (SODIS) has been directed towards understanding the underlying mechanisms through which solar irradiation inactivates the culturability of microorganisms in water, enhancement of the disinfection process, and the health impact of SODIS water consumption. However, the immunological consequences of SODIS water consumption have not been explored. In this study, we investigated the effect that solar irradiated V. cholerae may have had on the secretion of cytokines and chemokines by the JAWS II dendritic cell line in vitro. The JAWS II dendritic cell line was stimulated with the different strains of V. cholerae that had been: (i) prepared in PBS, (ii) inactivated through a combination of heat and chemical, (iii) solar irradiated, and (iv) non-solar irradiated, in bottled water. As controls, LPS (1 μg/ml) and CTB (1 μg/ml) were used as stimulants. After 48 hours of stimulation the tissue culture media from each treatment was qualitatively and quantitatively analysed for the presence of IL-1α, IL-1β, IL-6, IL-7, IL-10, IL-12p40, IL-12p70, IL-15, MIP-1α, MIP-1β, MIP-2, RANTES, TNF-α, IL-23 and IL-27. Results showed that solar irradiated cultures of V. cholerae induced dendritic cells to secrete significant (p<0.05) levels of pro-inflammatory cytokines in comparison to the unstimulated dendritic cells. Furthermore, the amount of pro-inflammatory cytokines secreted by the dendritic cells in response to solar irradiated cultures of V. cholerae was not as high as observed in treatments involving non-solar irradiated cultures of V. cholerae or LPS. Our results suggest that solar irradiated microorganisms are capable of inducing the secretion of pro-inflammatory cytokines and chemokines. This novel finding is key towards understanding the

  2. EF24 suppresses maturation and inflammatory response in dendritic cells.

    PubMed

    Vilekar, Prachi; Awasthi, Shanjana; Natarajan, Aravindan; Anant, Shrikant; Awasthi, Vibhudutta

    2012-07-01

    Synthetic curcuminoid EF24 was studied for its effect on the maturation and inflammatory response in murine bone marrow derived immortalized JAWS II dendritic cells (DCs). EF24 reduced the expression of LPS-induced MHC class II, CD80 and CD86 molecules. It also abrogated the appearance of dendrites, a typical characteristic of mature DCs. These effects were accompanied by the inhibition of LPS-induced activation of transcription factor nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB). Simultaneous reduction of pro-inflammatory cytokines [tumor necrosis factor (TNF)-α, IL-6] both at the mRNA and secreted levels was also observed. To investigate the dependency of LPS effects on MyD88 adaptor protein, we transfected JAWS II DCs with dominant negative MyD88 plasmid construct (MyD88-DN). EF24 reduced NF-κB activity and TNF-α secretion in a MyD88-dependent manner. These results suggest that EF24 modulates DCs by suppressing their maturation and reducing the secretion of inflammatory cytokines. Further, it appears that EF24 acts at or upstream of MyD88 in the LPS-TLR4/MyD88/NF-κB pathway.

  3. EF24 suppresses maturation and inflammatory response in dendritic cells

    PubMed Central

    Vilekar, Prachi; Natarajan, Aravindan; Anant, Shrikant

    2012-01-01

    Synthetic curcuminoid EF24 was studied for its effect on the maturation and inflammatory response in murine bone marrow derived immortalized JAWS II dendritic cells (DCs). EF24 reduced the expression of LPS-induced MHC class II, CD80 and CD86 molecules. It also abrogated the appearance of dendrites, a typical characteristic of mature DCs. These effects were accompanied by the inhibition of LPS-induced activation of transcription factor nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB). Simultaneous reduction of pro-inflammatory cytokines [tumor necrosis factor (TNF)-α, IL-6] both at the mRNA and secreted levels was also observed. To investigate the dependency of LPS effects on MyD88 adaptor protein, we transfected JAWS II DCs with dominant negative MyD88 plasmid construct (MyD88-DN). EF24 reduced NF-κB activity and TNF-α secretion in a MyD88-dependent manner. These results suggest that EF24 modulates DCs by suppressing their maturation and reducing the secretion of inflammatory cytokines. Further, it appears that EF24 acts at or upstream of MyD88 in the LPS-TLR4/MyD88/NF-κB pathway. PMID:22378503

  4. Vesicular glutamate transporter 1 (VGLUT1)- and VGLUT2-immunopositive axon terminals on the rat jaw-closing and jaw-opening motoneurons.

    PubMed

    Park, Sook Kyung; Ko, Sang Jin; Paik, Sang Kyoo; Rah, Jong-Cheol; Lee, Kea Joo; Bae, Yong Chul

    2018-02-23

    To provide information on the glutamatergic synapses on the trigeminal motoneurons, which may be important for understanding the mechanism of control of jaw movements, we investigated the distribution of vesicular glutamate transporter (VGLUT)1-immunopositive (+) and VGLUT2 + axon terminals (boutons) on the rat jaw-closing (JC) and jaw-opening (JO) motoneurons, and their morphological determinants of synaptic strength by retrograde tracing, electron microscopic immunohistochemistry, and quantitative ultrastructural analysis. We found that (1) the large majority of VGLUT + boutons on JC and JO motoneurons were VGLUT2+, (2) the density of VGLUT1 + boutons terminating on JC motoneurons was significantly higher than that on JO motoneurons, (3) the density of VGLUT1 + boutons terminating on non-primary dendrites of JC motoneurons was significantly higher than that on somata or primary dendrites, whereas the density of VGLUT2 + boutons was not significantly different between JC and JO motoneurons and among various compartments of the postsynaptic neurons, and (4) the bouton volume, mitochondrial volume, and active zone area of the VGLUT1 + boutons forming synapses on JC motoneurons were significantly bigger than those of VGLUT2 + boutons. These findings suggest that JC and JO motoneurons receive glutamatergic input primarily from VGLUT2-expressing intrinsic neurons (premotoneurons), and may be controlled differently by neurons in the trigeminal mesencephalic nucleus and by glutamatergic premotoneurons.

  5. Adoptively transferred dendritic cells restore primary cell-mediated inflammatory competence to acutely malnourished weanling mice.

    PubMed

    Hillyer, Lyn; Whitley, Charlene; Olver, Amy; Webster, Michelle; Steevels, Tessa; Woodward, Bill

    2008-02-01

    Immune depression associated with prepubescent malnutrition underlies a staggering burden of infection-related morbidity. This investigation centered on dendritic cells as potentially decisive in this phenomenon. C57BL/6J mice, initially 19 days old, had free access for 14 days to a complete diet or to a low-protein formulation that induced wasting deficits of protein and energy. Mice were sensitized by i.p. injection of sheep red blood cells on day 9, at which time one-half of the animals in each dietary group received a simultaneous injection of 10(6) syngeneic dendritic cells (JAWS II). All mice were challenged with the immunizing antigen in the right hind footpad on day 13, and the 24-hour delayed hypersensitivity response was assessed as percentage increase in footpad thickness. The low-protein diet reduced the inflammatory immune response, but JAWS cells, which exhibited immature phenotypic and functional characteristics, increased the response of both the malnourished group and the controls. By contrast, i.p. injection of 10(6) syngeneic T cells did not influence the inflammatory immune response of mice subjected to the low-protein protocol. Antigen-presenting cell numbers limited primary inflammatory cell-mediated competence in this model of wasting malnutrition, an outcome that challenges the prevailing multifactorial model of malnutrition-associated immune depression. Thus, a new dendritic cell-centered perspective emerges regarding the cellular mechanism underlying immune depression in acute pediatric protein and energy deficit.

  6. Treatment with cyclophosphamide supported by various dendritic cell-based vaccines induces diversification in CD4+ T cell response against MC38 colon carcinoma

    PubMed Central

    WOJAS-TUREK, JUSTYNA; SZCZYGIEŁ, AGNIESZKA; KICIELIŃSKA, JAGODA; ROSSOWSKA, JOANNA; PIASECKI, EGBERT; PAJTASZ-PIASECKA, ELŻBIETA

    2016-01-01

    The present study shows that an application of cyclophosphamide (CY) supported by dendritic cell (DC)-based vaccines affected differentiation of the activity of CD4+ T cell subpopulations accompanied by an alteration in CD8+ cell number. Vaccines were composed of bone marrow-derived DCs activated with tumor cell lysate (BM-DC/TAgTNF-α) and/or genetically modified DCs of JAWS II line (JAWS II/ Neo or JAWS II/IL-2 cells). Compared to untreated or CY-treated mice, the combined treatment of MC38 colon carcinoma-bearing mice resulted in significant tumor growth inhibition associated with an increase in influx of CD4+ and CD8+ T cells into tumor tissue. Whereas, the division of these cell population in spleen was not observed. Depending on the nature of DC-based vaccines and number of their applications, both tumor infiltrating cells and spleen cells were able to produce various amount of IFN-γ, IL-4 and IL-10 after mitogenic ex vivo stimulation. The administration of CY followed by BM-DC/TAgTNF-α and genetically modified JAWS II cells, increased the percentage of CD4+T-bet+ and CD4+GATA3+ cells and decreased the percentage of CD4+RORγt+ and CD4+FoxP3+ lymphocytes. However, the most intensive response against tumor was noted after the ternary treatment with CY + BM-DC/TAgTNF-α + JAWS II/IL-2 cells. Thus, the administration of various DC-based vaccines was responsible for generation of the diversified antitumor response. These findings demonstrate that the determination of the size of particular CD4+ T cell subpopulations may become a prognostic factor and be the basis for future development of anticancer therapy. PMID:26648160

  7. The morphology and electrical geometry of rat jaw-elevator motoneurones.

    PubMed Central

    Moore, J A; Appenteng, K

    1991-01-01

    1. The aim of this work was to quantify both the morphology and electrical geometry of the dendritic trees of jaw-elevator motoneurones. To do this we have made intracellular recordings from identified motoneurones in anaesthetized rats, determined their membrane properties and then filled them with horseradish peroxidase by ionophoretic ejection. Four neurones were subsequently fully reconstructed and the lengths and diameters of all the dendritic segments measured. 2. The mean soma diameter was 25 microns and values of mean dendritic length for individual cells ranged from 514 to 773 microns. Dendrites branched on average 9.1 times to produce 10.2 end-terminations. Dendritic segments could be represented as constant diameter cylinders between branch points. Values of dendritic surface area ranged from 1.08 to 2.52 x 10(5) microns 2 and values of dendritic to total surface area from 98 to 99%. 3. At branch points the ratio of the summed diameters of the daughter dendrites to the 3/2 power against the parent dendrite to the 3/2 power was exactly 1.0. Therefore the individual branch points could be collapsed into a single cylinder. Furthermore for an individual dendrite the diameter of this cylinder remained constant with increasing electrical distance from the soma. Thus individual dendrites can be represented electrically as cylinders of constant diameter. 4. However dendrites of a given neurone terminated at different electrical distances from the soma. The equivalent-cylinder diameter of the combined dendritic tree remained constant over the proximal half and then showed a pronounced reduction over the distal half. The reduction in equivalent diameter could be ascribed to the termination of dendrites at differing electrical distances from the soma. Therefore the complete dendritic tree of these motoneurones is best represented as a cylinder over the proximal half of their electrical length but as a cone over the distal half. PMID:1804966

  8. Cell migration and antigen capture are antagonistic processes coupled by myosin II in dendritic cells

    PubMed Central

    Chabaud, Mélanie; Heuzé, Mélina L.; Bretou, Marine; Vargas, Pablo; Maiuri, Paolo; Solanes, Paola; Maurin, Mathieu; Terriac, Emmanuel; Le Berre, Maël; Lankar, Danielle; Piolot, Tristan; Adelstein, Robert S.; Zhang, Yingfan; Sixt, Michael; Jacobelli, Jordan; Bénichou, Olivier; Voituriez, Raphaël; Piel, Matthieu; Lennon-Duménil, Ana-Maria

    2015-01-01

    The immune response relies on the migration of leukocytes and on their ability to stop in precise anatomical locations to fulfil their task. How leukocyte migration and function are coordinated is unknown. Here we show that in immature dendritic cells, which patrol their environment by engulfing extracellular material, cell migration and antigen capture are antagonistic. This antagonism results from transient enrichment of myosin IIA at the cell front, which disrupts the back-to-front gradient of the motor protein, slowing down locomotion but promoting antigen capture. We further highlight that myosin IIA enrichment at the cell front requires the MHC class II-associated invariant chain (Ii). Thus, by controlling myosin IIA localization, Ii imposes on dendritic cells an intermittent antigen capture behaviour that might facilitate environment patrolling. We propose that the requirement for myosin II in both cell migration and specific cell functions may provide a general mechanism for their coordination in time and space. PMID:26109323

  9. The Dendritic Cell Major Histocompatibility Complex II (MHC II) Peptidome Derives from a Variety of Processing Pathways and Includes Peptides with a Broad Spectrum of HLA-DM Sensitivity*

    PubMed Central

    Clement, Cristina C.; Becerra, Aniuska; Yin, Liusong; Zolla, Valerio; Huang, Liling; Merlin, Simone; Follenzi, Antonia; Shaffer, Scott A.; Stern, Lawrence J.; Santambrogio, Laura

    2016-01-01

    The repertoire of peptides displayed in vivo by MHC II molecules derives from a wide spectrum of proteins produced by different cell types. Although intracellular endosomal processing in dendritic cells and B cells has been characterized for a few antigens, the overall range of processing pathways responsible for generating the MHC II peptidome are currently unclear. To determine the contribution of non-endosomal processing pathways, we eluted and sequenced over 3000 HLA-DR1-bound peptides presented in vivo by dendritic cells. The processing enzymes were identified by reference to a database of experimentally determined cleavage sites and experimentally validated for four epitopes derived from complement 3, collagen II, thymosin β4, and gelsolin. We determined that self-antigens processed by tissue-specific proteases, including complement, matrix metalloproteases, caspases, and granzymes, and carried by lymph, contribute significantly to the MHC II self-peptidome presented by conventional dendritic cells in vivo. Additionally, the presented peptides exhibited a wide spectrum of binding affinity and HLA-DM susceptibility. The results indicate that the HLA-DR1-restricted self-peptidome presented under physiological conditions derives from a variety of processing pathways. Non-endosomal processing enzymes add to the number of epitopes cleaved by cathepsins, altogether generating a wider peptide repertoire. Taken together with HLA-DM-dependent and-independent loading pathways, this ensures that a broad self-peptidome is presented by dendritic cells. This work brings attention to the role of “self-recognition” as a dynamic interaction between dendritic cells and the metabolic/catabolic activities ongoing in every parenchymal organ as part of tissue growth, remodeling, and physiological apoptosis. PMID:26740625

  10. Disturbed jaw behavior in whiplash-associated disorders during rhythmic jaw movements.

    PubMed

    Häggman-Henrikson, B; Zafar, H; Eriksson, P-O

    2002-11-01

    As shown previously, "functional jaw movements" are the result of coordinated activation of jaw as well as neck muscles, leading to simultaneous movements in the temporomandibular, atlanto-occipital, and cervical spine joints. In this study, the effect of neck trauma on natural jaw function was evaluated in 12 individuals suffering from whiplash-associated disorders (WAD). Spatiotemporal characteristics of mandibular and concomitant head movements were evaluated for three different modes of rhythmic jaw activities: self-paced continuous maximal jaw-opening/-closing movements, paced continuous maximal jaw-opening/-closing movements at 50 cycles/minute, and unilateral chewing. Compared with healthy subjects, the WAD group showed smaller magnitude and altered coordination pattern (a change in temporal relations) of mandibular and head movements. In conclusion, these results show that neck trauma can derange integrated jaw and neck behavior, and underline the functional coupling between the jaw and head-neck motor systems.

  11. Jaw1/LRMP has a role in maintaining nuclear shape via interaction with SUN proteins.

    PubMed

    Kozono, Takuma; Tadahira, Kazuko; Okumura, Wataru; Itai, Nao; Tamura-Nakano, Miwa; Dohi, Taeko; Tonozuka, Takashi; Nishikawa, Atsushi

    2018-06-06

    Jaw1/LRMP is characterized as a type II integral membrane protein that is localized to endoplasmic reticulum (ER), however, its physiological functions have been poorly understood. An alignment of amino acid sequence of Jaw1 with KASH proteins, outer nuclear membrane proteins, revealed that Jaw1 has a partial homology to the KASH domain. Here, we show that the function of Jaw1 is to maintain nuclear shape in mouse melanoma cell line. The siRNA-mediated knockdown of Jaw1 caused a severe defect in nuclear shape, and the defect was rescued by ectopic expression of siRNA-resistant Jaw1. Since co-immunoprecipitation assay indicates that Jaw1 interacts with SUN proteins that are inner nuclear proteins and microtubules, this study suggests that Jaw1 has a role in maintaining nuclear shape via interactions with SUN proteins and microtubules.

  12. Masticatory motor patterns in ungulates: a quantitative assessment of jaw-muscle coordination in goats, alpacas and horses.

    PubMed

    Williams, Susan H; Vinyard, Christopher J; Wall, Christine E; Hylander, William L

    2007-04-01

    We investigated patterns of jaw-muscle coordination during rhythmic mastication in three species of ungulates displaying the marked transverse jaw movements typical of many large mammalian herbivores. In order to quantify consistent motor patterns during chewing, electromyograms were recorded from the superficial masseter, deep masseter, posterior temporalis and medial pterygoid muscles of goats, alpacas and horses. Timing differences between muscle pairs were evaluated in the context of an evolutionary model of jaw-muscle function. In this model, the closing and food reduction phases of mastication are primarily controlled by two distinct muscle groups, triplet I (balancing-side superficial masseter and medial pterygoid and working-side posterior temporalis) and triplet II (working-side superficial masseter and medial pterygoid and balancing-side posterior temporalis), and the asynchronous activity of the working- and balancing-side deep masseters. The three species differ in the extent to which the jaw muscles are coordinated as triplet I and triplet II. Alpacas, and to a lesser extent, goats, exhibit the triplet pattern whereas horses do not. In contrast, all three species show marked asynchrony of the working-side and balancing-side deep masseters, with jaw closing initiated by the working-side muscle and the balancing-side muscle firing much later during closing. However, goats differ from alpacas and horses in the timing of the balancing-side deep masseter relative to the triplet II muscles. This study highlights interspecific differences in the coordination of jaw muscles to influence transverse jaw movements and the production of bite force in herbivorous ungulates.

  13. Jaw and Order

    ERIC Educational Resources Information Center

    Mooshammer, Christine; Hoole, Philip; Geumann, Anja

    2007-01-01

    It is well-accepted that the jaw plays an active role in influencing vowel height. The general aim of the current study is to further investigate the extent to which the jaw is active in producing consonantal distinctions, with specific focus on coronal consonants. Therefore, tongue tip and jaw positions are compared for the German coronal…

  14. Human cytomegalovirus alters localization of MHC class II and dendrite morphology in mature Langerhans cells.

    PubMed

    Lee, Andrew W; Hertel, Laura; Louie, Ryan K; Burster, Timo; Lacaille, Vashti; Pashine, Achal; Abate, Davide A; Mocarski, Edward S; Mellins, Elizabeth D

    2006-09-15

    Hemopoietic stem cell-derived mature Langerhans-type dendritic cells (LC) are susceptible to productive infection by human CMV (HCMV). To investigate the impact of infection on this cell type, we examined HLA-DR biosynthesis and trafficking in mature LC cultures exposed to HCMV. We found decreased surface HLA-DR levels in viral Ag-positive as well as in Ag-negative mature LC. Inhibition of HLA-DR was independent of expression of unique short US2-US11 region gene products by HCMV. Indeed, exposure to UV-inactivated virus, but not to conditioned medium from infected cells, was sufficient to reduce HLA-DR on mature LC, implicating particle binding/penetration in this effect. Reduced surface levels reflected an altered distribution of HLA-DR because total cellular HLA-DR was not diminished. Accumulation of HLA-DR was not explained by altered cathepsin S activity. Mature, peptide-loaded HLA-DR molecules were retained within cells, as assessed by the proportion of SDS-stable HLA-DR dimers. A block in egress was implicated, as endocytosis of surface HLA-DR was not increased. Immunofluorescence microscopy corroborated the intracellular retention of HLA-DR and revealed markedly fewer HLA-DR-positive dendritic projections in infected mature LC. Unexpectedly, light microscopic analyses showed a dramatic loss of the dendrites themselves and immunofluorescence revealed that cytoskeletal elements crucial for the formation and maintenance of dendrites are disrupted in viral Ag-positive cells. Consistent with these dendrite effects, HCMV-infected mature LC exhibit markedly reduced chemotaxis in response to lymphoid chemokines. Thus, HCMV impedes MHC class II molecule trafficking, dendritic projections, and migration of mature LC. These changes likely contribute to the reduced activation of CD4+ T cells by HCMV-infected mature LC.

  15. Dendritic solidification. I - Analysis of current theories and models. II - A model for dendritic growth under an imposed thermal gradient

    NASA Technical Reports Server (NTRS)

    Laxmanan, V.

    1985-01-01

    A critical review of the present dendritic growth theories and models is presented. Mathematically rigorous solutions to dendritic growth are found to rely on an ad hoc assumption that dendrites grow at the maximum possible growth rate. This hypothesis is found to be in error and is replaced by stability criteria which consider the conditions under which a dendrite tip advances in a stable fashion in a liquid. The important elements of a satisfactory model for dendritic solidification are summarized and a theoretically consistent model for dendritic growth under an imposed thermal gradient is proposed and described. The model is based on the modification of an analysis due to Burden and Hunt (1974) and predicts correctly in all respects, the transition from a dendritic to a planar interface at both very low and very large growth rates.

  16. Dendritic growth of undercooled nickel-tin. I, II

    NASA Technical Reports Server (NTRS)

    Wu, Y.; Piccone, T. J.; Shiohara, Y.; Flemings, M. C.

    1987-01-01

    A comparison is made between high speed cinematography and optical temperature measurements of the solidification of an undercooled Ni-25 wt pct Sn alloy. The first part of this study notes that solidification during the recalescence period at all undercoolings studied occurred in the form of a dendritelike front moving across the sample surface, and that the growth velocities observed agree with calculation results for the dendrite growth model of Lipton et al. (1986); it is concluded that the coarse structure observed comprises an array of much finer, solute-controlled dendrites. In the second part, attention is given to the solidification of levitated metal samples within a transparent glass medium for the cases of two undercooled Ni-Sn alloys, one of which is eutectic and another hypoeutectic. The data obtained suggest a solidification model involving dendrites of very fine structure growing into the melt at temperatures near the bulk undercooling temperature.

  17. Functional Morphology of Eunicidan (Polychaeta) Jaws

    NASA Astrophysics Data System (ADS)

    Clemo, W. C.; Dorgan, K. M.

    2016-02-01

    Polychaetes exhibit diverse feeding strategies and diets, with some species possessing hardened teeth or jaws of varying complexity. Species in the order Eunicida have complex, rigidly articulated jaws consisting of multiple pairs of maxillae and a pair of mandibles. While all Eunicida possess this general jaw structure, a number of characteristics of the jaw parts vary considerably among families. These differences, described for fossilized and extant species' jaws, were used to infer evolutionary relationships, but current phylogeny shows that jaw structures that are similar among several families are convergent. Little has been done, however, to relate jaw functional morphology and feeding behavior to diet. To explore these relationships, we compared the jaw kinematics of two taxa with similar but evolutionarily convergent jaw structures: Diopatra (Onuphidae) and Lumbrineris (Lumbrineridae). Diopatra species are tube-dwelling and predominantly herbivorous, whereas Lumbrineris species are burrowing carnivores. Jaw kinematics were observed and analyzed by filming individuals biting or feeding and tracking tooth movements in videos. Differences in jaw structure and kinematics between Diopatra and Lumbrineris can be interpreted to be consistent with their differences in diet. Relating jaw morphology to diet would provide insight into early annelid communities by linking fossil teeth (scolecodonts) to the ecological roles of extant species with similar morphologies.

  18. Corrective Jaw Surgery

    MedlinePlus Videos and Cool Tools

    ... Jaw Surgery Download Download the ebook for further information Corrective jaw, or orthognathic surgery is performed by ... your treatment. Correction of Common Dentofacial Deformities ​ ​ The information provided here is not intended as a substitute ...

  19. Sella size and jaw bases - Is there a correlation???

    PubMed

    Neha; Mogra, Subraya; Shetty, Vorvady Surendra; Shetty, Siddarth

    2016-01-01

    Sella turcica is an important cephalometric structure and attempts have been made in the past to correlate its dimensions to the malocclusion. However, no study has so far compared the size of sella to the jaw bases that determine the type of malocclusion. The present study was undertaken to find out any such correlation if it exists. Lateral cephalograms of 110 adults consisting of 40 Class I, 40 Class II, and 30 Class III patients were assessed for the measurement of sella length, width, height, and area. The maxillary length, mandibular ramus height, and body length were also measured. The sella dimensions were compared among three malocclusion types by one-way ANOVA. Pearson correlation was calculated between the jaw size and sella dimensions. Furthermore, the ratio of jaw base lengths and sella area were calculated. Mean sella length, width and area were found to be greatest in Class III, followed by Class I and least in Class II though the results were not statistically significant. 3 out of 4 measured dimensions of sella, correlated significantly with mandibular ramus and body length each. However, only one dimension of sella showed significant correlation with maxilla. The mandibular ramus and body length show a nearly constant ratio to sella area (0.83-0.85, 0.64-0.65, respectively) in all the three malocclusions. Thus, mandible has a definite and better correlation to the size of sella turcica.

  20. Self-aligning lathe chuck jaws

    DOEpatents

    Not Available

    1980-08-26

    A lathe chuck jaw for a lathe chuck having a radially moving actuator which radially moves the jaw into and out from the workpiece is described. A jaw base part is rigidly connected to the actuator. A jaw shoe part is rotatably attached to the base part. The shoe part has a workpiece-conforming surface which can hold the workpiece. The rotatable attachment of the shoe part allows it to match the general orientation of the workpiece, including a nonlongitudinal orientation due to a workpiece's imperfect shape.

  1. Self-aligning lathe chuck jaws

    DOEpatents

    Peterson, William R.

    1982-01-01

    A lathe chuck jaw for a lathe chuck having a radially moving actuator which radially moves the jaw in to and out from the workpiece. A jaw base part is rigidly connected to the actuator. A jaw shoe part is rotatably attached to the base part. The shoe part has a workpiece-comforming surface which can hold the workpiece. The rotatable attachment of the shoe part allows it to match the general orientation of the workpiece, including a nonlongitudinal orientation due to a workpiece's imperfect shape.

  2. Can dendritic cells see light?

    NASA Astrophysics Data System (ADS)

    Chen, Aaron C.-H.; Huang, Ying-Ying; Sharma, Sulbha K.; Hamblin, Michael R.

    2010-02-01

    There are many reports showing that low-level light/laser therapy (LLLT) can enhance wound healing, upregulate cell proliferation and has anti-apoptotic effects by activating intracellular protective genes. In the field of immune response study, it is not known with any certainty whether light/laser is proinflammatory or anti-inflammatory. Increasingly in recent times dendritic cells have been found to play an important role in inflammation and the immunological response. In this study, we try to look at the impact of low level near infrared light (810-nm) on murine bone-marrow derived dendritic cells. Changes in surface markers, including MHC II, CD80 and CD11c and the secretion of interleukins induced by light may provide additional evidence to reveal the mystery of how light affects the maturation of dendritic cells as well how these light-induced mature dendritic cells would affect the activation of adaptive immune response.

  3. Successful treatment of open jaw and jaw deviation dystonia with botulinum toxin using a simple intraoral approach.

    PubMed

    Moscovich, Mariana; Chen, Zhongxing Peng; Rodriguez, Ramon

    2015-03-01

    Oromandibular dystonia (OMD) is a focal dystonia that involves the mouth, jaw, and/or tongue. It can be classified as idiopathic, tardive dystonia or secondary to other neurological disorders and subdivided into jaw opening, jaw closing, jaw deviation and lip pursing. The muscles involved in jaw opening dystonia are usually the digastrics and lateral pterygoids. It is known that the lateral pterygoids may be approached both internally and externally. The external approach is the most common; however neurologists experienced in treating patients with botulinum toxin can safely and with no extra cost perform the intraoral procedure. We report our experience in the treatment of jaw opening and jaw deviation dystonia using the intraoral injection approach. Eight patients were selected from the University of Florida with a clinical diagnosis of open jaw/jaw deviation dystonia. All of them were injected with onabotulinum toxin A using the internal approach and the clinical global impression scale was applied. The mean age of the patients was 67 (standard deviation [SD] 10.2) years, with a disease duration of 10.2 (SD 7.7) years and the mean distance they traveled to our institution was 448 km (278 miles). After treatment, six patients scored as very much improved in the clinical global impression scale and two patients scored as much improved. Only one patient reported an adverse event of nasal speech following one of the injections that improved after 4 weeks. Botulinum toxin injections for open jaw/jaw deviation dystonia can be safely performed with the intraoral approach without the need of special devices other than electromyography. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. [Jaws of amphibians and reptiles].

    PubMed

    Tanimoto, Masahiro

    2005-04-01

    Big jaws of amphibians and reptiles are mainly treated in this article. In amphibians enlarged skulls are for the big jaw in contrast with human's skulls for the brain. For example, famous fossils of Homo diluvii testis are ones of salamanders in fact. In reptiles, mosasaur jaws and teeth and their ecology are introduced for instance.

  5. Broken or dislocated jaw

    MedlinePlus

    ... broken or dislocated jaw requires prompt medical attention. Emergency symptoms include difficulty breathing or heavy bleeding. ... safety equipment, such as a helmet when playing football, or using ... can prevent or minimize some injuries to the face or jaw.

  6. Dendritic Growth Morphologies in Al-Zn Alloys—Part II: Phase-Field Computations

    NASA Astrophysics Data System (ADS)

    Dantzig, J. A.; Di Napoli, Paolo; Friedli, J.; Rappaz, M.

    2013-12-01

    In Part I of this article, the role of the Zn content in the development of solidification microstructures in Al-Zn alloys was investigated experimentally using X-ray tomographic microscopy. The transition region between dendrites found at low Zn content and dendrites found at high Zn content was characterized by textured seaweed-type structures. This Dendrite Orientation Transition (DOT) was explained by the effect of the Zn content on the weak anisotropy of the solid-liquid interfacial energy of Al. In order to further support this interpretation and to elucidate the growth mechanisms of the complex structures that form in the DOT region, a detailed phase-field study exploring anisotropy parameters' space is presented in this paper. For equiaxed growth, our results essentially recapitulate those of Haxhimali et al.[1] in simulations for pure materials. We find distinct regions of the parameter space associated with and dendrites, separated by a region where hyperbranched dendrites are observed. In simulations of directional solidification, we find similar behavior at the extrema, but in this case, the anisotropy parameters corresponding to the hyperbranched region produce textured seaweeds. As noted in the experimental work reported in Part I, these structures are actually dendrites that prefer to grow misaligned with respect to the thermal gradient direction. We also show that in this region, the dendrites grow with a blunted tip that oscillates and splits, resulting in an oriented trunk that continuously emits side branches in other directions. We conclude by making a correlation between the alloy composition and surface energy anisotropy parameters.

  7. 21 CFR 872.2060 - Jaw tracking device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.2060 Jaw tracking device. (a) Jaw tracking device... Controls Guidance Document: Dental Sonography and Jaw Tracking Devices.” [68 FR 67367, Dec. 2, 2003] ...

  8. Swiveling Lathe Jaw Concept for Holding Irregular Pieces

    NASA Technical Reports Server (NTRS)

    David, J.

    1966-01-01

    Clamp holds irregularly shaped pieces in lathe chuck without damage and eliminates excessive time in selecting optimum mounting. Interchangeable jaws ride in standard jaw slots but swivel so that the jaw face bears evenly against the workpiece regardless of contour. The jaws can be used on both engine and turret lathes.

  9. 21 CFR 872.2060 - Jaw tracking device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Jaw tracking device. 872.2060 Section 872.2060 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.2060 Jaw tracking device. (a) Jaw tracking device...

  10. 21 CFR 872.2060 - Jaw tracking device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Jaw tracking device. 872.2060 Section 872.2060 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.2060 Jaw tracking device. (a) Jaw tracking device...

  11. 21 CFR 872.2060 - Jaw tracking device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Jaw tracking device. 872.2060 Section 872.2060 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.2060 Jaw tracking device. (a) Jaw tracking device...

  12. 21 CFR 872.2060 - Jaw tracking device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Jaw tracking device. 872.2060 Section 872.2060 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.2060 Jaw tracking device. (a) Jaw tracking device...

  13. Slow-pressor angiotensin II hypertension and concomitant dendritic NMDA receptor trafficking in estrogen receptor beta-containing neurons of the mouse hypothalamic paraventricular nucleus are sex and age dependent

    PubMed Central

    Marques-Lopes, Jose; Van Kempen, Tracey; Waters, Elizabeth M.; Pickel, Virginia M.; Iadecola, Costantino; Milner, Teresa A.

    2014-01-01

    The incidence of hypertension increases after menopause. Similar to humans, “slow-pressor” doses of angiotensin II (AngII) increase blood pressure in young males, but not in young female mice. However, AngII increases blood pressure in aged female mice, paralleling reproductive hormonal changes. These changes could influence receptor trafficking in central cardiovascular circuits and contribute to hypertension. Increased post-synaptic NMDA receptor activity in the hypothalamic paraventricular nucleus (PVN) is crucial for the sympathoexcitation driving AngII hypertension. Estrogen receptors beta (ERβ) are present in PVN neurons. We tested the hypothesis that changes in ovarian hormones with age promote susceptibility to AngII hypertension, and influence NMDA receptor NR1 subunit trafficking in ERβ-containing PVN neurons. Transgenic mice expressing enhanced green fluorescent protein (EGFP) in ERβ-containing cells were implanted with osmotic minipumps delivering AngII (600 ng/kg/min) or saline for 2 weeks. AngII increased blood pressure in 2 month-old males and 18 month-old females, but not in 2 month-old females. By electron microscopy, NR1-silver-intensified immunogold (SIG) was mainly in ERβ-EGFP dendrites. At baseline, NR1-SIG density was greater in 2 month-old females than in 2 month-old males or 18 month-old females. After AngII infusion, NR1-SIG density was decreased in 2 month-old females, but increased in 2 month-old males and 18 month-old females. These findings suggest that, in young female mice, NR1 density is decreased in ERβ-PVN dendrites thus reducing NMDA receptor activity and preventing hypertension. Conversely, in young males and aged females, NR1 density is upregulated in ERβ-PVN dendrites and ultimately leads to the neurohumoral dysfunction driving hypertension. PMID:24639345

  14. Experimental masseter muscle pain alters jaw-neck motor strategy.

    PubMed

    Wiesinger, B; Häggman-Henrikson, B; Hellström, F; Wänman, A

    2013-08-01

    A functional integration between the jaw and neck regions has been demonstrated during normal jaw function. The effect of masseter muscle pain on this integrated motor behaviour in man is unknown. The aim of this study was to investigate the effect of induced masseter muscle pain on jaw-neck movements during a continuous jaw opening-closing task. Sixteen healthy men performed continuous jaw opening-closing movements to a target position, defined as 75% of the maximum jaw opening. Each subject performed two trials without pain (controls) and two trials with masseter muscle pain, induced with hypertonic saline as a single injection. Simultaneous movements of the mandible and the head were registered with a wireless optoelectronic three-dimensional recording system. Differences in movement amplitudes between trials were analysed with Friedman's test and corrected Wilcoxon matched pairs test. The head movement amplitudes were significantly larger during masseter muscle pain trials compared with control. Jaw movement amplitudes did not differ significantly between any of the trials after corrected Wilcoxon tests. The ratio between head and jaw movement amplitudes was significantly larger during the first pain trial compared with control. Experimental masseter muscle pain in humans affected integrated jaw-neck movements by increasing the neck component during continuous jaw opening-closing tasks. The findings indicate that pain can alter the strategy for jaw-neck motor control, which further underlines the functional integration between the jaw and neck regions. This altered strategy may have consequences for development of musculoskeletal pain in the jaw and neck regions. © 2012 European Federation of International Association for the Study of Pain Chapters.

  15. Evaluation of the pair-culture effect in Ophyryotrocha puerilis (Polychaeta: Dorvilleidae). II. Conditions for the moult of the upper jaw

    NASA Astrophysics Data System (ADS)

    Kegel, B.; Pfannenstiel, H.-D.

    1983-06-01

    The conditions for moult of the upper jaw of Ophryotrocha puerilis were determined in isolated individuals and in groups of various sizes. The frequency of formation of the complicated upper jaw in both isolated individuals and in groups varies to a considerable extent. Although formation of the upper jaw and sex reversal normally are associated processes, the relationship of these two processes is not very well understood. Histological investigations at the light microscopic level demonstrate that the dental apparatus is an elaboration of the ectodermal stomodaeum which is considered to be a highly specialized part of the cuticle in the pharyngeal region of the gut.

  16. Deranged jaw-neck motor control in whiplash-associated disorders.

    PubMed

    Eriksson, Per-Olof; Zafar, Hamayun; Häggman-Henrikson, Birgitta

    2004-02-01

    Recent findings of simultaneous and well coordinated head-neck movements during single as well as rhythmic jaw opening-closing tasks has led to the conclusion that 'functional jaw movements' are the result of activation of jaw as well as neck muscles, leading to simultaneous movements in the temporomandibular, atlanto-occipital and cervical spine joints. It can therefore be assumed that disease or injury to any of these joint systems would disturb natural jaw function. To test this hypothesis, amplitudes, temporal coordination, and spatiotemporal consistency of concomitant mandibular and head-neck movements during single maximal jaw opening-closing tasks were analysed in 25 individuals suffering from whiplash-associated disorders (WAD) using optoelectronic movement recording technique. In addition, the relative durations for which the head position was equal to, leading ahead of, or lagging behind the mandibular position during the entire jaw opening-closing cycle were determined. Compared with healthy individuals, the WAD group showed smaller amplitudes, and changed temporal coordination between mandibular and head-neck movements. No divergence from healthy individuals was found for the spatiotemporal consistency or for the analysis during the entire jaw opening-closing cycle. These findings in the WAD group of a 'faulty', but yet consistent, jaw-neck behavior may reflect a basic importance of linked control of the jaw and neck sensory-motor systems. In conclusion, the present results suggest that neck injury is associated with deranged control of mandibular and head-neck movements during jaw opening-closing tasks, and therefore might compromise natural jaw function.

  17. Myoelectric manifestations of jaw elevator muscle fatigue and recovery in healthy and TMD subjects.

    PubMed

    Castroflorio, T; Falla, D; Tartaglia, G M; Sforza, C; Deregibus, A

    2012-09-01

    The effects of muscle pain and fatigue on the control of jaw elevator muscles are not well known. Furthermore, the myoelectric manifestations of fatigue and recovery from fatigue in the masticatory muscles are not reported in literature. The main aims of this study were (i) to evaluate the possible use of surface electromyography (sEMG) as an objective measure of fatigue of the jaw elevator muscles, (ii) to compare the myoelectric manifestations of fatigue in the temporalis anterior and masseter muscles bilaterally, (iii) to assess recovery of the investigated muscles after an endurance test and (iv) to compare fatigue and recovery of the jaw elevator muscles in healthy subjects and patients with muscle-related temporomandibular disorders (TMD). The study was performed on twenty healthy volunteers and eighteen patients with muscle-related TMD. An intra-oral compressive-force sensor was used to measure the voluntary contraction forces close to the intercuspal position and to provide visual feedback of submaximal forces to the subject. Surface EMG signals were recorded with linear electrode arrays during isometric contractions at 20%, 40%, 60% and 80% of the maximum voluntary contraction force, during an endurance test and during the recovery phase. The results showed that (i) the slope of the mean power spectral frequency (MNF) and the initial average rectified value (ARV) could be used to monitor fatigue of the jaw elevators, (ii) the temporalis anterior and masseter muscle show the same myoelectric manifestations of fatigue and recovery and (iii) the initial values of MNF and ARV were lower in patients with muscle-related TMD. The assessment of myoelectric manifestations of fatigue in the masticatory muscles may assist in the clinical assessment of TMDs. © 2012 Blackwell Publishing Ltd.

  18. The expression and function of cathepsin E in dendritic cells.

    PubMed

    Chain, Benjamin M; Free, Paul; Medd, Patrick; Swetman, Claire; Tabor, Alethea B; Terrazzini, Nadia

    2005-02-15

    Cathepsin E is an aspartic proteinase that has been implicated in Ag processing within the class II MHC pathway. In this study, we document the presence of cathepsin E message and protein in human myeloid dendritic cells, the preeminent APCs of the immune system. Cathepsin E is found in a perinuclear compartment, which is likely to form part of the endoplasmic reticulum, and also a peripheral compartment just beneath the cell membrane, with a similar distribution to that of Texas Red-dextran within 2 min of endocytosis. To investigate the function of cathepsin E in processing, a new soluble targeted inhibitor was synthesized by linking the microbial aspartic proteinase inhibitor pepstatin to mannosylated BSA via a cleavable disulfide linker. This inhibitor was shown to block cathepsin D/E activity in cell-free assays and within dendritic cells. The inhibitor blocked the ability of dendritic cells from wild-type as well as cathepsin D-deficient mice to present intact OVA, but not an OVA-derived peptide, to cognate T cells. The data therefore support the hypothesis that cathepsin E has an important nonredundant role in the class II MHC Ag processing pathway within dendritic cells.

  19. Appraisal of jaw swellings in a Nigerian tertiary healthcare facility.

    PubMed

    Lasisi, Taye J; Adisa, Akinyele O; Olusanya, Adeola A

    2013-02-01

    The mandible and maxilla can be the site of myriads of lesions that may be categorized as neoplastic, cystic, reactive and infective or inflammatory. Literature reviewing jaw swellings in an amalgamated fashion are uncommon, probably because aetiologies for these swellings are varied. However, to appreciate their relative relationship, it is essential to evaluate the clinico-pathologic profile of jaw swellings. The aim of this appraisal is to describe the array of jaw swellings seen at our hospital from 1990 to 2011, to serve as a reference database. Biopsy records of all histologically diagnosed cases of jaw swellings seen at the department of Oral Pathology, University College Hospital between January 1990 and December 2011 were retrieved, coded and inputted into SPSS version 20. Data on prevalence, age, sex, site and histological diagnosis were analysed descriptively for each category of jaw swellings. All patients below 16 years were regarded as children. A total of 638 jaw swellings were recorded in the 22-year study period. The Non Odontogenic Tumours (NOT) were the commonest, accounting for 46.2% of all jaw swellings. Odontogenic Tumours (OT) formed 45% of all adult jaw swelling while it formed 25.2% in children and adolescents. Ameloblastoma was the commonest while the most common NOT was ossifying fibroma (OF). Chronic osteomyelitis of the jaws was about 6 times commoner in adult females than males and mostly involved the mandible. The most common malignant jaw swelling was Burkitts' lymphoma (BL) that was about 7 times more in children than adults. Osteogenic sarcoma was the most common malignancy in adults. Jaw swellings are extensively varied in types and pattern of occurrence. This study has categorized jaw swellings in a simple but comprehensive fashion to allow for easy referencing in local and international data acquisition and epidemiological comparison. Key words:Jaw swellings, odontogenic, Nigeria.

  20. Morphological characterization of rat entorhinal neurons in vivo: soma-dendritic structure and axonal domains.

    PubMed

    Lingenhöhl, K; Finch, D M

    1991-01-01

    We used in vivo intracellular labeling with horseradish peroxidase in order to study the soma-dendritic morphology and axonal projections of rat entorhinal neurons. The cells responded to hippocampal stimulation with inhibitory postsynaptic potentials, and thus likely received direct or indirect hippocampal input. All cells (n = 24) showed extensive dendritic domains that extended in some cases for more than 1 mm. The dendrites of layer II neurons were largely restricted to layers I and II or layers I-III, while the dendrites of deeper cells could extend through all cortical layers. Computed 3D rotations showed that the basilar dendrites of deep pyramids extended roughly parallel to the cortical layering, and that they were mostly confined to the layer containing the soma and layers immediately adjacent. Total dendritic lengths averaged 9.8 mm +/- 3.8 (SD), and ranged from 5 mm to more than 18 mm. Axonal processes could be visualized in 21 cells. Most of these showed axonal branching within the entorhinal cortex, sometimes extensive. Efferent axonal domains were reconstructed in detail in 3 layer II stellate cells. All 3 projected axons across the subicular complex to the dentate gyrus. One of these cells showed an extensive net-like axonal domain that also projected to several other structures, including the hippocampus proper, subicular complex, and the amygdalo-piriform transition area. The axons of layer III and IV cells projected to the angular bundle, where they continued in a rostral direction. In contrast to the layer II, III and IV cells, no efferent axonal branches leaving the entorhinal cortex could be visualized in 5 layer V neurons. The data indicate that entorhinal neurons can integrate input from a considerable volume of entorhinal cortex by virtue of their extensive dendritic domains, and provide a further basis for specifying the layers in which cells receive synaptic input. The extensive axonal branching pattern seen in most of the cells would

  1. Jaw-phonatory coordination in chronic developmental stuttering.

    PubMed

    Loucks, Torrey M J; De Nil, Luc F; Sasisekaran, Jayanthi

    2007-01-01

    A deficiency in sensorimotor integration in a person who stutters may be a factor in the pathophysiology of developmental stuttering. To test oral sensorimotor function in adults who stutter, we used a task that requires the coordination of a jaw-opening movement with phonation onset. The task was adapted from previous limb coordination studies, which show that movement coordination depends on intact proprioception. We hypothesized that adult stutterers would show deficient jaw-phonatory coordination relative to control participants. The task required initiation of phonation as a jaw-opening movement passed through a narrow spatial target. Target amplitude and jaw movement speed were varied. The stuttering group showed significantly higher movement error and spatial variability in jaw-phonatory coordination compared to the control group, but group differences in movement velocity or duration were not found. The aberrant jaw-phonatory coordination of the stuttering participants suggests that stuttering is associated with an oral proprioceptive limitation, although, the findings are also consistent with a motor control deficit. As a result of this activity, reader will (1) learn about a hypothesis and evidence supporting the view that a sensorimotor deficit contributes to chronic developmental stuttering and (2) will obtain information about the role of proprioception in multi-articulatory coordination and how it can be tested using an oral-phonatory coordination task.

  2. Frequent jaw-face pain in chronic Whiplash-Associated Disorders.

    PubMed

    Häggman-Henrikson, Birgitta; Grönqvist, Johan; Eriksson, Per-Olof

    2011-01-01

    Chronic Whiplash-Associated Disorders (WAD) present with frequent pain in the neck, head and shoulder regions but the presence of frequent jaw-face pain is unclear. The aim of the study was to investigate the frequency of jaw-face pain, pain in other regions, and general symptoms in chronic WAD patients. Fifty whiplash-patients and 50 healthy age- and sex-matched controls were examined by questionnaire for pain in the jaw-face, pain in other regions and other symptoms. In contrast to healthy, a majority of the WAD patients (88%) reported frequent pain in the jaw-face, in addition to frequent pain in the neck (100%), shoulders (94%), head (90%) and back (72%). The WAD patients also reported stiffness and numbness in the jaw-face region, and frequent general symptoms such as balance problems, stress and sleep disturbances. The result suggests that frequent pain in the jaw-face can be part of the spectrum of symptoms in chronic WAD.The finding of self-reported numbness in the jaw-face indicates disturbed trigeminal nerve function and merits further investigation. We conclude that assessment of WAD should include pain in the jaw-face region. A multidisciplinary rehabilitation program including dentists, preferably specialized in the area of orofacial pain, should be advocated after whiplash injury.

  3. Bisphosphonate Therapy (and Osteonecrosis of the Jaw)

    MedlinePlus

    ... or other invasive dental procedures, a phenomenon called osteonecrosis of the jaw (see Right and note area ... doctors agree that there is an association between osteonecrosis of the jaw and bisphosphonates, although the drugs ...

  4. Self-aligning fixture used in lathe chuck jaw refacing

    NASA Technical Reports Server (NTRS)

    Linn, C. C.

    1965-01-01

    Self-aligning tool positions and rigidly holds lathe chuck jaws for refacing and truing of the clamping surface. The jaws clamp the fixture in the manner of clamping a workpiece. The fixture can be modified to accommodate four-jawed checks.

  5. Dendritic mRNA targeting and translation.

    PubMed

    Kindler, Stefan; Kreienkamp, Hans-Jürgen

    2012-01-01

    Selective targeting of specific mRNAs into neuronal dendrites and their locally regulated translation at particular cell contact sites contribute to input-specific synaptic plasticity. Thus, individual synapses become decision-making units, which control gene expression in a spatially restricted and nucleus-independent manner. Dendritic targeting of mRNAs is achieved by active, microtubule-dependent transport. For this purpose, mRNAs are packaged into large ribonucleoprotein (RNP) particles containing an array of trans-acting RNA-binding proteins. These are attached to molecular motors, which move their RNP cargo into dendrites. A variety of proteins may be synthesized in dendrites, including signalling and scaffold proteins of the synapse and neurotransmitter receptors. In some cases, such as the alpha subunit of the calcium/calmodulin-dependent protein kinase II (αCaMKII) and the activity-regulated gene of 3.1 kb (Arg3.1, also referred to as activity-regulated cDNA, Arc), their local synthesis at synapses can modulate long-term changes in synaptic efficiency. Local dendritic translation is regulated by several signalling cascades including Akt/mTOR and Erk/MAP kinase pathways, which are triggered by synaptic activity. More recent findings show that miRNAs also play an important role in protein synthesis at synapses. Disruption of local translation control at synapses, as observed in the fragile X syndrome (FXS) and its mouse models and possibly also in autism spectrum disorders, interferes with cognitive abilities in mice and men.

  6. Lipidated promiscuous peptide augments the expression of MHC-II molecules on dendritic cells and activates T cells

    PubMed Central

    Gowthaman, Uthaman; Rai, Pradeep K.; Zeng, Weiguang; Jackson, David C.; Agrewala, Javed N.

    2013-01-01

    Background & objectives: In spite of the fact that BCG is the most widely used vaccine, tuberculosis (TB) continues to be a major killer disease in TB-endemic regions. Recently, many emerging evidences from the published literature indicate the role of environmental mycobacteria in blocking the processing and presentation of BCG antigens and thereby impairing with suboptimal generation of protective T cells. To surmount this problem associated with BCG, we constructed a novel lipopeptide (L91) by conjugating a promiscuous peptide consisting of CD4+ T-helper epitope of sequence of 91-110 of 16 kDa antigen of Mycobacterium tuberculosis to Pam2Cys, an agonist of Toll-like receptor-2. Methods: Mice were immunized subcutaneously with 20 nmol of L91, followed by a booster with 10 nmol, after an interval of 21 days of primary immunization. Animals were sacrificed after seven days of post-booster immunization. L91 induced immune response was characterized by the expression of MHC-II and CD74 on the surface of dendritic cells (DCs) by flowcytometry. Cytokines (IL-4, IL-10, IFN-γ) secretion and anti-peptide antibodies were measured by ELISA. Results: Self-adjuvanting lipopeptide vaccine (L91) was directly bound to MHC-II molecules and without requiring extensive processing for its presentation to T cells. It stimulated and activated dendritic cells and augmented the expression of MHC-II molecules. Further, it activated effector CD4 T cells to mainly secrete interferon (IFN)-γ but not interleukin (IL)-4 and IL-10. L91 did not elicit anti-peptide antibodies. Interpretation & conclusions: The findings suggest that L91 evokes maturation and upregulation of MHC class II molecules and promotes better antigen presentation and, therefore, optimum activation of T cells. L91 mainly induces effector Th1 cells, as evidenced by predominant release of IFN-γ, consequently can mount favourable immune response against M. tuberculosis. As L91 does not provoke the generation of anti

  7. The relationships among jaw-muscle fiber architecture, jaw morphology, and feeding behavior in extant apes and modern humans.

    PubMed

    Taylor, Andrea B; Vinyard, Christopher J

    2013-05-01

    The jaw-closing muscles are responsible for generating many of the forces and movements associated with feeding. Muscle physiologic cross-sectional area (PCSA) and fiber length are two architectural parameters that heavily influence muscle function. While there have been numerous comparative studies of hominoid and hominin craniodental and mandibular morphology, little is known about hominoid jaw-muscle fiber architecture. We present novel data on masseter and temporalis internal muscle architecture for small- and large-bodied hominoids. Hominoid scaling patterns are evaluated and compared with representative New- (Cebus) and Old-World (Macaca) monkeys. Variation in hominoid jaw-muscle fiber architecture is related to both absolute size and allometry. PCSAs scale close to isometry relative to jaw length in anthropoids, but likely with positive allometry in hominoids. Thus, large-bodied apes may be capable of generating both absolutely and relatively greater muscle forces compared with smaller-bodied apes and monkeys. Compared with extant apes, modern humans exhibit a reduction in masseter PCSA relative to condyle-M1 length but retain relatively long fibers, suggesting humans may have sacrificed relative masseter muscle force during chewing without appreciably altering muscle excursion/contraction velocity. Lastly, craniometric estimates of PCSAs underestimate hominoid masseter and temporalis PCSAs by more than 50% in gorillas, and overestimate masseter PCSA by as much as 30% in humans. These findings underscore the difficulty of accurately estimating jaw-muscle fiber architecture from craniometric measures and suggest models of fossil hominin and hominoid bite forces will be improved by incorporating architectural data in estimating jaw-muscle forces. Copyright © 2013 Wiley Periodicals, Inc.

  8. Jaw-Dropping: Functional Variation in the Digastric Muscle in Bats.

    PubMed

    Curtis, Abigail A; Santana, Sharlene E

    2018-02-01

    Diet and feeding behavior in mammals is strongly linked to the morphology of their feeding apparatus. Cranio-muscular morphology determines how wide, forcefully, and quickly the jaw can be opened or closed, which limits the size and material properties of the foods that a mammal can eat. Most studies of feeding performance in mammals have focused on skull form and jaw muscles involved in generating bite force, but few explore how jaw abduction is related to feeding performance. In this study, we explored how the morphology of the digastric muscle, the primary jaw abducting muscle in mammals, and its jaw lever mechanics are related to diet in morphologically diverse noctilionoid bats. Results showed that insectivorous bats have strong digastric muscles associated with proportionally long jaws, which suggests these species can open their jaws quickly and powerfully during prey capture and chewing. Short snouted frugivorous bats exhibit traits that would enable them to open their jaws proportionally wider to accommodate the large fruits that they commonly feed on. Our results support the hypothesis that digastric muscle and jaw morphology are correlated with diet in bats, and that our results may also apply to other groups of mammals. Anat Rec, 301:279-290, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  9. Additively manufactured sub-periosteal jaw implants.

    PubMed

    Mommaerts, M Y

    2017-07-01

    Severe bone atrophy jeopardizes the success of endosseous implants. This technical note aims to present the innovative concept of additively manufactured sub-periosteal jaw implants (AMSJIs). Digital datasets of the patient's jaws and wax trial in occlusion are used to segment the bone and dental arches, for the design of a sub-periosteal frame and abutments in the optimal location related to the dental arch and for the design of the suprastructure. The implants and suprastructure are three-dimensionally (3D) printed in titanium alloy. The provisional denture is 3D-printed in polymer. AMSJIs offer an alternative approach for patients with extreme jaw bone atrophy. This report refers to the use of this technique for full maxillary rehabilitation, but partial defects in either jaw and extended post-resection defects may also be approached using the same technique. This customized, prosthesis-driven reverse-engineering approach avoids bone grafting and provides immediate functional restoration with one surgical session. Copyright © 2017 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  10. Effects of Jaw Clenching and Jaw Alignment Mouthpiece Use on Force Production During Vertical Jump and Isometric Clean Pull.

    PubMed

    Allen, Charles R; Fu, Yang-Chieh; Cazas-Moreno, Vanessa; Valliant, Melinda W; Gdovin, Jacob R; Williams, Charles C; Garner, John C

    2018-01-01

    Allen, CR, Fu, Y-C, Cazas-Moreno, V, Valliant, MW, Gdovin, JR, Williams, CC, and Garner, JC. Effects of jaw clenching and jaw alignment mouthpiece use on force production during vertical jump and isometric clean pull. J Strength Cond Res 32(1): 237-243, 2018-This study examined the effects of jaw clenching, a self-adapted, jaw-repositioning mouthpiece on force production during maximum countermovement vertical jump and maximum isometric midthigh clean pull assessments in an attempt to determine any ergogenic effect attributable to clenching, jaw-repositioning mouthpiece use, or the combination of both. Thirty-six male subjects performed vertical jump and isometric clean pull assessments from a force platform under various mouthpiece and clench conditions. A 3 × 2 (mouthpiece × clench) repeated-measures analysis of variance was conducted to analyze each of the following force production variables for both assessments: peak force, normalized peak force, and rate of force development. In addition, jump height was analyzed for the vertical jump. Results revealed improvements in peak force (F1,35 = 15.84, p ≤ 0.001, (Equation is included in full-text article.)= 0.31), normalized peak force (F1,35 = 16.28, p ≤ 0.001, (Equation is included in full-text article.)= 0.32), and rate of force development (F1,35 = 12.89, p = 0.001, (Equation is included in full-text article.)= 0.27) during the isometric clean pull assessment when participants maximally clenched their jaw, regardless of mouthpiece condition. There were no statistically significant differences in jump height, peak force, normalized peak force, or rate of force development during the vertical jump for any treatment condition. This study supports previous research demonstrating that the implementation of remote voluntary contractions such as jaw clenching can lead to concurrent activation potentiation and a resulting ergogenic effect during activities involving and requiring high-force production.

  11. The virtual craniofacial patient: 3D jaw modeling and animation.

    PubMed

    Enciso, Reyes; Memon, Ahmed; Fidaleo, Douglas A; Neumann, Ulrich; Mah, James

    2003-01-01

    In this paper, we present new developments in the area of 3D human jaw modeling and animation. CT (Computed Tomography) scans have traditionally been used to evaluate patients with dental implants, assess tumors, cysts, fractures and surgical procedures. More recently this data has been utilized to generate models. Researchers have reported semi-automatic techniques to segment and model the human jaw from CT images and manually segment the jaw from MRI images. Recently opto-electronic and ultrasonic-based systems (JMA from Zebris) have been developed to record mandibular position and movement. In this research project we introduce: (1) automatic patient-specific three-dimensional jaw modeling from CT data and (2) three-dimensional jaw motion simulation using jaw tracking data from the JMA system (Zebris).

  12. Th-1 polarization is regulated by dendritic-cell comparison of MHC class I and class II antigens

    PubMed Central

    Xing, Dongxia; Li, Sufang; Robinson, Simon N.; Yang, Hong; Steiner, David; Komanduri, Krishna V.; Shpall, Elizabeth J.

    2009-01-01

    In the control of T-helper type I (Th-1) polarization, dendritic cells (DCs) must interpret a complex array of stimuli, many of which are poorly understood. Here we demonstrate that Th-1 polarization is heavily influenced by DC-autonomous phenomena triggered by the loading of DCs with antigenically matched major histocompatibility complex (MHC) class I and class II determinants, that is, class I and II peptide epitopes exhibiting significant amino acid sequence overlap (such as would be physiologically present during infectious processes requiring Th-1 immunity for clearance). Data were derived from 13 independent antigenic models including whole-cell systems, single-protein systems, and 3 different pairs of overlapping class I and II binding epitopes. Once loaded with matched class I and II antigens, these “Th-1 DCs” exhibited differential cytokine secretion and surface marker expression, a distinct transcriptional signature, and acquired the ability to enhance generation of CD8+ T lymphocytes. Mechanistically, tRNA-synthetases were implicated as components of a putative sensor complex involved in the comparison of class I and II epitopes. These data provide rigorous conceptual explanations for the process of Th-1 polarization and the antigenic specificity of cognate T-cell help, enhance the understanding of Th-1 responses, and should contribute to the formulation of more effective vaccination strategies. PMID:19171878

  13. Mechanical coupling between transsynaptic N-cadherin adhesions and actin flow stabilizes dendritic spines

    PubMed Central

    Chazeau, Anaël; Garcia, Mikael; Czöndör, Katalin; Perrais, David; Tessier, Béatrice; Giannone, Grégory; Thoumine, Olivier

    2015-01-01

    The morphology of neuronal dendritic spines is a critical indicator of synaptic function. It is regulated by several factors, including the intracellular actin/myosin cytoskeleton and transcellular N-cadherin adhesions. To examine the mechanical relationship between these molecular components, we performed quantitative live-imaging experiments in primary hippocampal neurons. We found that actin turnover and structural motility were lower in dendritic spines than in immature filopodia and increased upon expression of a nonadhesive N-cadherin mutant, resulting in an inverse relationship between spine motility and actin enrichment. Furthermore, the pharmacological stimulation of myosin II induced the rearward motion of actin structures in spines, showing that myosin II exerts tension on the actin network. Strikingly, the formation of stable, spine-like structures enriched in actin was induced at contacts between dendritic filopodia and N-cadherin–coated beads or micropatterns. Finally, computer simulations of actin dynamics mimicked various experimental conditions, pointing to the actin flow rate as an important parameter controlling actin enrichment in dendritic spines. Together these data demonstrate that a clutch-like mechanism between N-cadherin adhesions and the actin flow underlies the stabilization of dendritic filopodia into mature spines, a mechanism that may have important implications in synapse initiation, maturation, and plasticity in the developing brain. PMID:25568337

  14. Morphometric assessment of pterosaur jaw disparity

    NASA Astrophysics Data System (ADS)

    Navarro, Charlie A.; Martin-Silverstone, Elizabeth; Stubbs, Thomas L.

    2018-04-01

    Pterosaurs were a successful group of Mesozoic flying reptiles. They were the first vertebrate group to achieve powered flight and varied enormously in morphology and ecology, occupying a variety of niches and developing specialized feeding strategies. Ecomorphological principles suggest this variation should be reflected by great morphological diversity in the lower jaw, given that the mandible served as the primary apparatus for prey acquisition. Here we present the first study of mandibular shape disparity in pterosaurs and aim to characterize major aspects of variation. We use a combination of geometric morphometric approaches, incorporating both outline analysis using elliptical Fourier analysis and semi-landmark approaches. Our results show that morphological convergence is prevalent and many pterosaurs, belonging to diverse dietary groups and subclades, overlap in morphospace and possessed relatively simple `rod-shaped' jaws. There is no clear trend of size distributions in pterosaur mandibular morphospace, and larger forms are widely distributed. Additionally, there is limited functional signal within pterosaur lower jaw morphospace. Instead, the development of a large anterior ventral crest represents the major component of disparity. This suggests that a socio-sexual trait was a key driver for innovation in pterosaur lower jaw shape.

  15. Morphometric assessment of pterosaur jaw disparity.

    PubMed

    Navarro, Charlie A; Martin-Silverstone, Elizabeth; Stubbs, Thomas L

    2018-04-01

    Pterosaurs were a successful group of Mesozoic flying reptiles. They were the first vertebrate group to achieve powered flight and varied enormously in morphology and ecology, occupying a variety of niches and developing specialized feeding strategies. Ecomorphological principles suggest this variation should be reflected by great morphological diversity in the lower jaw, given that the mandible served as the primary apparatus for prey acquisition. Here we present the first study of mandibular shape disparity in pterosaurs and aim to characterize major aspects of variation. We use a combination of geometric morphometric approaches, incorporating both outline analysis using elliptical Fourier analysis and semi-landmark approaches. Our results show that morphological convergence is prevalent and many pterosaurs, belonging to diverse dietary groups and subclades, overlap in morphospace and possessed relatively simple 'rod-shaped' jaws. There is no clear trend of size distributions in pterosaur mandibular morphospace, and larger forms are widely distributed. Additionally, there is limited functional signal within pterosaur lower jaw morphospace. Instead, the development of a large anterior ventral crest represents the major component of disparity. This suggests that a socio-sexual trait was a key driver for innovation in pterosaur lower jaw shape.

  16. Morphometric assessment of pterosaur jaw disparity

    PubMed Central

    Navarro, Charlie A.; Martin-Silverstone, Elizabeth

    2018-01-01

    Pterosaurs were a successful group of Mesozoic flying reptiles. They were the first vertebrate group to achieve powered flight and varied enormously in morphology and ecology, occupying a variety of niches and developing specialized feeding strategies. Ecomorphological principles suggest this variation should be reflected by great morphological diversity in the lower jaw, given that the mandible served as the primary apparatus for prey acquisition. Here we present the first study of mandibular shape disparity in pterosaurs and aim to characterize major aspects of variation. We use a combination of geometric morphometric approaches, incorporating both outline analysis using elliptical Fourier analysis and semi-landmark approaches. Our results show that morphological convergence is prevalent and many pterosaurs, belonging to diverse dietary groups and subclades, overlap in morphospace and possessed relatively simple ‘rod-shaped’ jaws. There is no clear trend of size distributions in pterosaur mandibular morphospace, and larger forms are widely distributed. Additionally, there is limited functional signal within pterosaur lower jaw morphospace. Instead, the development of a large anterior ventral crest represents the major component of disparity. This suggests that a socio-sexual trait was a key driver for innovation in pterosaur lower jaw shape. PMID:29765665

  17. Jaw symptoms and signs and the connection to cranial cervical symptoms and post-traumatic stress during the first year after a whiplash trauma.

    PubMed

    Severinsson, Yvonne; Bunketorp, Olle; Wenneberg, Bengt

    2010-01-01

    To estimate the prevalence of jaw symptoms and signs during the first year after a neck sprain in a car collision. Further, to determine their relationships to the localisation and grade of the initial neck symptoms and signs, headache, post-traumatic stress and crash characteristics. One hundred and forty-six adult subjects and crash characteristics were prospectively investigated in an in-depth study during 1997-2001. Head, neck, and jaw symptoms and signs were recorded within 5 weeks and after 1 year. Acute post-traumatic stress was estimated with the Impact of Event Scale-Revised (IES-R). Jaw symptoms were initially reported by three men (5%) and three women (4%), and subsequently developed in eight women (10%) during the following year. Jaw signs were noted initially in 53 subjects (37%) and in 28 subjects (24%) after 1 year, without difference between sexes, and more often after low-speed impacts. Headache in females, cranial cervical symptoms, pronounced neck problems, post-traumatic stress and whiplash-associated disorders (WAD) grade II-III after rear-end impacts were related to jaw signs during the acute phase. After 1 year, jaw signs were related to residual neck problems, headache and post-traumatic stress. Jaw symptoms are seldom reported during the acute phase after a whiplash trauma. Women more often than men develop jaw symptoms during the first year. Jaw symptoms and signs may develop also after low-speed impacts, especially after rear-end collisions. Jaw symptoms and signs should be observed after whiplash trauma, especially in those with headache, pronounced neck problems, cranial neck symptoms and post-traumatic stress.

  18. Introduction to the JAWS Program

    NASA Technical Reports Server (NTRS)

    Mccarthy, John

    1987-01-01

    The JAWS Project is the Joint Airport Weather Studies project conceived in 1980 jointly between the National Center for Atmospheric Research and the Univ. of Chicago. The objectives of the program are threefold: (1) Basic scientific characterization of the microbursts and the statistics of microbursts occurrence; (2) Detection and warning, using the Low Level Wind Shear Alert System (LLWSAS) operation and performance; and (3) Doppler radar and airborne systems. These goals and the operation of the JAWS system in general are discussed in detail.

  19. The evolutionary origin of jaw yaw in mammals

    PubMed Central

    Grossnickle, David M.

    2017-01-01

    Theria comprises all but three living mammalian genera and is one of the most ecologically pervasive clades on Earth. Yet, the origin and early history of therians and their close relatives (i.e., cladotherians) remains surprisingly enigmatic. A critical biological function that can be compared among early mammal groups is mastication. Morphometrics and modeling analyses of the jaws of Mesozoic mammals indicate that cladotherians evolved musculoskeletal anatomies that increase mechanical advantage during jaw rotation around a dorsoventrally-oriented axis (i.e., yaw) while decreasing the mechanical advantage of jaw rotation around a mediolaterally-oriented axis (i.e., pitch). These changes parallel molar transformations in early cladotherians that indicate their chewing cycles included significant transverse movement, likely produced via yaw rotation. Thus, I hypothesize that cladotherian molar morphologies and musculoskeletal jaw anatomies evolved concurrently with increased yaw rotation of the jaw during chewing cycles. The increased transverse movement resulting from yaw rotation may have been a crucial evolutionary prerequisite for the functionally versatile tribosphenic molar morphology, which underlies the molars of all therians and is retained by many extant clades. PMID:28322334

  20. Multiple developmental mechanisms regulate species-specific jaw size

    PubMed Central

    Fish, Jennifer L.; Sklar, Rachel S.; Woronowicz, Katherine C.; Schneider, Richard A.

    2014-01-01

    Variation in jaw size during evolution has been crucial for the adaptive radiation of vertebrates, yet variation in jaw size during development is often associated with disease. To test the hypothesis that early developmental events regulating neural crest (NC) progenitors contribute to species-specific differences in size, we investigated mechanisms through which two avian species, duck and quail, achieve their remarkably different jaw size. At early stages, duck exhibit an anterior shift in brain regionalization yielding a shorter, broader, midbrain. We find no significant difference in the total number of pre-migratory NC; however, duck concentrate their pre-migratory NC in the midbrain, which contributes to an increase in size of the post-migratory NC population allocated to the mandibular arch. Subsequent differences in proliferation lead to a progressive increase in size of the duck mandibular arch relative to that of quail. To test the role of pre-migratory NC progenitor number in regulating jaw size, we reduced and augmented NC progenitors. In contrast to previous reports of regeneration by NC precursors, we find that neural fold extirpation results in a loss of NC precursors. Despite this reduction in their numbers, post-migratory NC progenitors compensate, producing a symmetric and normal-sized jaw. Our results suggest that evolutionary modification of multiple aspects of NC cell biology, including NC allocation within the jaw primordia and NC-mediated proliferation, have been important to the evolution of jaw size. Furthermore, our finding of NC post-migratory compensatory mechanisms potentially extends the developmental time frame for treatments of disease or injury associated with NC progenitor loss. PMID:24449843

  1. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor

    PubMed Central

    1992-01-01

    Antigen-presenting, major histocompatibility complex (MHC) class II- rich dendritic cells are known to arise from bone marrow. However, marrow lacks mature dendritic cells, and substantial numbers of proliferating less-mature cells have yet to be identified. The methodology for inducing dendritic cell growth that was recently described for mouse blood now has been modified to MHC class II- negative precursors in marrow. A key step is to remove the majority of nonadherent, newly formed granulocytes by gentle washes during the first 2-4 d of culture. This leaves behind proliferating clusters that are loosely attached to a more firmly adherent "stroma." At days 4-6 the clusters can be dislodged, isolated by 1-g sedimentation, and upon reculture, large numbers of dendritic cells are released. The latter are readily identified on the basis of their distinct cell shape, ultrastructure, and repertoire of antigens, as detected with a panel of monoclonal antibodies. The dendritic cells express high levels of MHC class II products and act as powerful accessory cells for initiating the mixed leukocyte reaction. Neither the clusters nor mature dendritic cells are generated if macrophage colony-stimulating factor rather than granulocyte/macrophage colony-stimulating factor (GM-CSF) is applied. Therefore, GM-CSF generates all three lineages of myeloid cells (granulocytes, macrophages, and dendritic cells). Since > 5 x 10(6) dendritic cells develop in 1 wk from precursors within the large hind limb bones of a single animal, marrow progenitors can act as a major source of dendritic cells. This feature should prove useful for future molecular and clinical studies of this otherwise trace cell type. PMID:1460426

  2. Jaw-muscle fiber architecture in tufted capuchins favors generating relatively large muscle forces without compromising jaw gape.

    PubMed

    Taylor, Andrea B; Vinyard, Christopher J

    2009-12-01

    Tufted capuchins (sensu lato) are renowned for their dietary flexibility and capacity to exploit hard and tough objects. Cebus apella differs from other capuchins in displaying a suite of craniodental features that have been functionally and adaptively linked to their feeding behavior, particularly the generation and dissipation of relatively large jaw forces. We compared fiber architecture of the masseter and temporalis muscles between C. apella (n=12) and two "untufted" capuchins (C. capucinus, n=3; C. albifrons, n=5). These three species share broadly similar diets, but tufted capuchins occasionally exploit mechanically challenging tissues. We tested the hypothesis that tufted capuchins exhibit architectural properties of their jaw muscles that facilitate relatively large forces including relatively greater physiologic cross-sectional areas (PCSA), more pinnate fibers, and lower ratios of mass to tetanic tension (Mass/P(0)). Results show some evidence supporting these predictions, as C. apella has relatively greater superficial masseter and temporalis PCSAs, significantly so only for the temporalis following Bonferroni adjustment. Capuchins did not differ in pinnation angle or Mass/P(0). As an architectural trade-off between maximizing muscle force and muscle excursion/contraction velocity, we also tested the hypothesis that C. apella exhibits relatively shorter muscle fibers. Contrary to our prediction, there are no significant differences in relative fiber lengths between tufted and untufted capuchins. Therefore, we attribute the relatively greater PCSAs in tufted capuchins primarily to their larger muscle masses. These findings suggest that relatively large jaw-muscle PCSAs can be added to the suite of masticatory features that have been functionally linked to the exploitation of a more resistant diet by C. apella. By enlarging jaw-muscle mass to increase PCSA, rather than reducing fiber lengths and increasing pinnation, tufted capuchins appear to have

  3. Translocation of CaMKII to dendritic microtubules supports the plasticity of local synapses

    PubMed Central

    Lemieux, Mado; Labrecque, Simon; Tardif, Christian; Labrie-Dion, Étienne; LeBel, Éric

    2012-01-01

    The processing of excitatory synaptic inputs involves compartmentalized dendritic Ca2+ oscillations. The downstream signaling evoked by these local Ca2+ transients and their impact on local synaptic development and remodeling are unknown. Ca2+/calmodulin-dependent protein kinase II (CaMKII) is an important decoder of Ca2+ signals and mediator of synaptic plasticity. In addition to its known accumulation at spines, we observed with live imaging the dynamic recruitment of CaMKII to dendritic subdomains adjacent to activated synapses in cultured hippocampal neurons. This localized and transient enrichment of CaMKII to dendritic sites coincided spatially and temporally with dendritic Ca2+ transients. We show that it involved an interaction with microtubular elements, required activation of the kinase, and led to localized dendritic CaMKII autophosphorylation. This process was accompanied by the adjacent remodeling of spines and synaptic AMPA receptor insertion. Replacement of endogenous CaMKII with a mutant that cannot translocate within dendrites lessened this activity-dependent synaptic plasticity. Thus, CaMKII could decode compartmental dendritic Ca2+ transients to support remodeling of local synapses. PMID:22965911

  4. Specification of jaw identity by the Hand2 transcription factor

    PubMed Central

    Funato, Noriko; Kokubo, Hiroki; Nakamura, Masataka; Yanagisawa, Hiromi; Saga, Yumiko

    2016-01-01

    Acquisition of the lower jaw (mandible) was evolutionarily important for jawed vertebrates. In humans, syndromic craniofacial malformations often accompany jaw anomalies. The basic helix-loop-helix transcription factor Hand2, which is conserved among jawed vertebrates, is expressed in the neural crest in the mandibular process but not in the maxillary process of the first branchial arch. Here, we provide evidence that Hand2 is sufficient for upper jaw (maxilla)-to-mandible transformation by regulating the expression of homeobox transcription factors in mice. Altered Hand2 expression in the neural crest transformed the maxillae into mandibles with duplicated Meckel’s cartilage, which resulted in an absence of the secondary palate. In Hand2-overexpressing mutants, non-Hox homeobox transcription factors were dysregulated. These results suggest that Hand2 regulates mandibular development through downstream genes of Hand2 and is therefore a major determinant of jaw identity. Hand2 may have influenced the evolutionary acquisition of the mandible and secondary palate. PMID:27329940

  5. Jaw muscles in older overdenture patients.

    PubMed

    Newton, James P; McManus, Frank C; Menhenick, Stephen

    2004-03-01

    To determine, using computer tomography (CT), whether the retention of a small number of teeth in the older adult used to support overdentures could affect the cross-sectional area (CSA) and X-ray density of two jaw closing muscles. Cross-sectional study of a group of older patients subdivided into dentate, edentulous and those wearing overdentures supported by two to five teeth. The sample consisted of 24 subjects aged 55-68 years. CSA and X-ray density of two jaw closing muscles, masseter and medial pterygoid were measured and evaluated using CT. There were no significant differences between left and right jaw muscles, but the CSA of the masseter muscles were significantly larger than the medial pterygoid muscles. The CSA of the masseter and medial pterygoid muscles was significantly smaller in edentulous subjects compared with dentate subjects but no significant difference was observed between subjects wearing overdentures and those with a natural dentition. No significant differences were observed with the X-ray density between different muscles or dental states. The retention of a small number of teeth in the older adult used to support overdentures appears to sustain the CSA of two jaw closing muscles and therefore could enhance these patients' masticatory ability compared with those who were edentulous.

  6. Fine morphology of the jaw apparatus of Puncturella noachina (Fissurellidae, Vetigastropoda).

    PubMed

    Vortsepneva, Elena; Ivanov, Dmitry; Purschke, Günter; Tzetlin, Alexander

    2014-07-01

    Jaws of various kinds occur in virtually all groups of Mollusca, except for Polyplacophora and Bivalvia. Molluscan jaws are formed by the buccal epithelium and either constitute a single plate, a paired formation or a serial structure. Buccal ectodermal structures in gastropods are rather different. They can be nonrenewable or having final growth, like the hooks in Clione (Gastropoda, Gymnosomata). In this case, they are formed by a single cell. Conversely, they can be renewable during the entire life span and in this case they are formed by a set of cells, like the formation of the radula. The fine structure of the jaws was studied in the gastropod Puncturella noachina. The jaw is situated in the buccal cavity and consists of paired elongated cuticular plates. On the anterior edge of each cuticular plate there are numerous longitudinally oriented rodlets disposed over the entire jaw surface and immersed into a cuticular matrix. The jaw can be divided into four zones situated successively toward the anterior edge: 1) the posterior area: the zone of formation of the thick cuticle covering the entire jaw and forming the electron-dense outer layer of the jaw plate; 2) the zone of rodlet formation; 3) the zone of rodlet arrangement; and 4) the anterior zone: the free scraping edge of the plate, or the erosion zone. In the general pattern of jaw formation, Puncturella noachina resembles Testudinalia tessulata (Patellogastropoda) studied previously. The basis of the jaw is a cuticular plate formed by the activity of the strongly developed microvillar apparatus of the gnathoepithelium. However, the mechanism of renewal of the jaw anterior part in P. noachina is much more complex as its scraping edge consists not just of a thick cuticular matrix rather than of a system of denticles being the projecting endings of rodlets. © 2014 Wiley Periodicals, Inc.

  7. The effects of forehead and neck position on esthetics of class I, II and III profiles.

    PubMed

    Salehi, Parisa; Oshagh, Morteza; Aleyasin, Zeinab S; Pakshir, Hamid Reza

    2014-01-01

    All parts of the face, other than jaw relationships, should be considered in orthodontic treatment planning. The role of forehead and neck in facial esthetics is well known; however, the majority of conventional facial analysis methods have not considered them. Neck and forehead may confer mutual effects on equilibrium and on esthetics of other facial components, and may change the overall convexity/concavity view of the profile. Therefore, the aim of this study was to assess the effect of anteroposterior position of the forehead and neck on the esthetics of skeletal class I, II and III jaw relationships using profile silhouettes. Class II and III jaw relationships were constructed on the silhouette of a class I normal profile by altering the mandibular position. Retruded, normal and protruded positions were also applied for the forehead and neck. Three hundred Iranian laypeople (150 men, 150 women) scored the esthetics of profile silhouettes from 1 to 7. Half of the participants were told to consider the profiles as a man, and the other half were told to consider them as a woman. Data were analyzed using non-parametric methods. Class I jaw relation was found to be the most beautiful profile followed by class II and III respectively. Esthetics of different positions of the neck and forehead were significantly different (P < 0.05). In subjects with a normal neck and forehead position, and those with a retruded neck, the best esthetic relationship was class I, and the worst was class III. For protruded foreheads, the best jaw relationship was class II for females and class I for males, and the worst was class III for both. In a retruded forehead position, the most preferred jaw relationship was class I, and the worst was class II. For profiles with a protruded neck, the best esthetics was found to be in class III jaw relationship, and the worst was in class II. There was a small difference in scoring for male and female profiles (P < 0.05); there were also small

  8. Epidemiology of the sarcomas of the jaws in a Peruvian population

    PubMed Central

    Sacsaquispe-Contreras, Sonia J.; Morales-Vadillo, Rafael; Sánchez Lihón, Juvenal

    2012-01-01

    Objective: Analysis of the clinical characteristics of patients with Sarcomas of the Jaws treated in the “Instituto Nacional de Enfermedades Neoplasicas. Dr. Eduardo Caceres Graziani” from 1952-2007. Study Design: Review of 155 clinical records of patients with Sarcomas of the Jaws and record of age, gender, size, location, clinical symptoms and signs, histopathological diagnoses and type of treatment. The data obtained were analyzed by means of Student’s statistical t-test, Fisher and Friedman’s test. Results: Analysis of 155 Sarcomas of the Jaws. The average age of patients was 36.8 years old (range: 1-80 years); the female gender was the most frequent (52.9%); the average tumor size was 5.5 cm; in upper jaw 54.84% occurred and 45.16% in the lower jaw; the predominant sign was facial asymmetry (87.74%) and the predominant symptom: pain (63.23%). The most frequent diagnosis was Osteosarcoma 50.3% followed by Chondrosarcoma 18%. Surgery plus radiation therapy was the treatment type of choice with 21.94% of cases. Conclusion: The results of this study demonstrate the delayed diagnosis and facial asymmetry and pain appear as the most important events for the diagnosis of Sarcomas of the Jaws. Key words: Sarcoma, jaw, jaw neoplasms, mouth neoplasms. PMID:22143684

  9. [Size of lower jaw as an early indicator of skeletal class III development].

    PubMed

    Stojanović, Zdenka; Nikodijević, Angelina; Udovicić, Bozidar; Milić, Jasmina; Nikolić, Predrag

    2008-08-01

    Malocclusion of skeletal class III is a complex abnormality, with a characteristic sagital position of the lower jaw in front of the upper one. A higher level of prognatism of the lower jaw in relation to the upper one can be the consequence of its excessive length. The aim of this study was to find the differences in the length of the lower jaw in the children with skeletal class III and the children with normal sagital interjaw relation (skeletal class I) in the period of mixed dentition. After clinical and x-ray diagnostics, profile tele-x-rays of the head were analyzed in 60 examinees with mixed dentition, aged from 6 to 12 years. The examinees were divided into two groups: group 1--the children with skeletal class III and group 2--the children with skeletal class I. The length of the lower jaw, upper jaw and cranial base were measured. The proportional relations between the lengths measured within each group were established and the level of difference in the lengths measured and their proportions between the groups were estimated. No significant difference between the groups was found in the body length, ramus and the total length of the lower jaw. Proportional relation between the body length and the length of the lower jaw ramus and proportional relation between the forward cranial base and the lower jaw body were not significantly different. A significant difference was found in proportional relations of the total length of the lower jaw with the total lengths of cranial base and the upper jaw and proportional relation of the length of the lower and upper jaw body. Of all the analyzed parameters, the following were selected as the early indicators of the development of skeletal class III on the lower jaw: greater total length of the lower jaw, proportional to the total lengths of cranial base and theupper jaw, as well as greater length of the lower jaw body, proportional to the length of the upper jaw body.

  10. Evolutionary Trends in the Jaw Adductor Mechanics of Ornithischian Dinosaurs.

    PubMed

    Nabavizadeh, Ali

    2016-03-01

    Jaw mechanics in ornithischian dinosaurs have been widely studied for well over a century. Most of these studies, however, use only one or few taxa within a given ornithischian clade as a model for feeding mechanics across the entire clade. In this study, mandibular mechanical advantages among 52 ornithischian genera spanning all subclades are calculated using 2D lever arm methods. These lever arm calculations estimate the effect of jaw shape and difference in adductor muscle line of action on relative bite forces along the jaw. Results show major instances of overlap between taxa in tooth positions at which there was highest mechanical advantage. A relatively low bite force is seen across the tooth row among thyreophorans (e.g., stegosaurs and ankylosaurs), with variation among taxa. A convergent transition occurs from a more evenly distributed bite force along the jaw in basal ornithopods and basal marginocephalians to a strong distal bite force in hadrosaurids and ceratopsids, respectively. Accordingly, adductor muscle vector angles show repeated trends from a mid-range caudodorsal orientation in basal ornithischians to a decrease in vector angles indicating more caudally oriented jaw movements in derived taxa (e.g., derived thyreophorans, basal ornithopods, lambeosaurines, pachycephalosaurs, and derived ceratopsids). Analyses of hypothetical jaw morphologies were also performed, indicating that both the coronoid process and lowered jaw joint increase moment arm length therefore increasing mechanical advantage of the jaw apparatus. Adaptive trends in craniomandibular anatomy show that ornithischians evolved more complex feeding apparatuses within different clades as well as morphological convergences between clades. © 2016 Wiley Periodicals, Inc.

  11. Space exploration by dendritic cells requires maintenance of myosin II activity by IP3 receptor 1

    PubMed Central

    Solanes, Paola; Heuzé, Mélina L; Maurin, Mathieu; Bretou, Marine; Lautenschlaeger, Franziska; Maiuri, Paolo; Terriac, Emmanuel; Thoulouze, Maria-Isabel; Launay, Pierre; Piel, Matthieu; Vargas, Pablo; Lennon-Duménil, Ana-Maria

    2015-01-01

    Dendritic cells (DCs) patrol the interstitial space of peripheral tissues. The mechanisms that regulate their migration in such constrained environment remain unknown. We here investigated the role of calcium in immature DCs migrating in confinement. We found that they displayed calcium oscillations that were independent of extracellular calcium and more frequently observed in DCs undergoing strong speed fluctuations. In these cells, calcium spikes were associated with fast motility phases. IP3 receptors (IP3Rs) channels, which allow calcium release from the endoplasmic reticulum, were identified as required for immature DCs to migrate at fast speed. The IP3R1 isoform was further shown to specifically regulate the locomotion persistence of immature DCs, that is, their capacity to maintain directional migration. This function of IP3R1 results from its ability to control the phosphorylation levels of myosin II regulatory light chain (MLC) and the back/front polarization of the motor protein. We propose that by upholding myosin II activity, constitutive calcium release from the ER through IP3R1 maintains DC polarity during migration in confinement, facilitating the exploration of their environment. PMID:25637353

  12. Space exploration by dendritic cells requires maintenance of myosin II activity by IP3 receptor 1.

    PubMed

    Solanes, Paola; Heuzé, Mélina L; Maurin, Mathieu; Bretou, Marine; Lautenschlaeger, Franziska; Maiuri, Paolo; Terriac, Emmanuel; Thoulouze, Maria-Isabel; Launay, Pierre; Piel, Matthieu; Vargas, Pablo; Lennon-Duménil, Ana-Maria

    2015-03-12

    Dendritic cells (DCs) patrol the interstitial space of peripheral tissues. The mechanisms that regulate their migration in such constrained environment remain unknown. We here investigated the role of calcium in immature DCs migrating in confinement. We found that they displayed calcium oscillations that were independent of extracellular calcium and more frequently observed in DCs undergoing strong speed fluctuations. In these cells, calcium spikes were associated with fast motility phases. IP₃ receptors (IP₃Rs) channels, which allow calcium release from the endoplasmic reticulum, were identified as required for immature DCs to migrate at fast speed. The IP₃R1 isoform was further shown to specifically regulate the locomotion persistence of immature DCs, that is, their capacity to maintain directional migration. This function of IP₃R1 results from its ability to control the phosphorylation levels of myosin II regulatory light chain (MLC) and the back/front polarization of the motor protein. We propose that by upholding myosin II activity, constitutive calcium release from the ER through IP₃R1 maintains DC polarity during migration in confinement, facilitating the exploration of their environment. © 2015 Institut Curie/Inserm. Published under the terms of the CC BY NC ND 4.0 license.

  13. Activity-dependent trafficking of lysosomes in dendrites and dendritic spines.

    PubMed

    Goo, Marisa S; Sancho, Laura; Slepak, Natalia; Boassa, Daniela; Deerinck, Thomas J; Ellisman, Mark H; Bloodgood, Brenda L; Patrick, Gentry N

    2017-08-07

    In neurons, lysosomes, which degrade membrane and cytoplasmic components, are thought to primarily reside in somatic and axonal compartments, but there is little understanding of their distribution and function in dendrites. Here, we used conventional and two-photon imaging and electron microscopy to show that lysosomes traffic bidirectionally in dendrites and are present in dendritic spines. We find that lysosome inhibition alters their mobility and also decreases dendritic spine number. Furthermore, perturbing microtubule and actin cytoskeletal dynamics has an inverse relationship on the distribution and motility of lysosomes in dendrites. We also find trafficking of lysosomes is correlated with synaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptors. Strikingly, lysosomes traffic to dendritic spines in an activity-dependent manner and can be recruited to individual spines in response to local activation. These data indicate the position of lysosomes is regulated by synaptic activity and thus plays an instructive role in the turnover of synaptic membrane proteins. © 2017 Goo et al.

  14. Activity-dependent trafficking of lysosomes in dendrites and dendritic spines

    PubMed Central

    Sancho, Laura; Slepak, Natalia; Boassa, Daniela; Deerinck, Thomas J.; Ellisman, Mark H.

    2017-01-01

    In neurons, lysosomes, which degrade membrane and cytoplasmic components, are thought to primarily reside in somatic and axonal compartments, but there is little understanding of their distribution and function in dendrites. Here, we used conventional and two-photon imaging and electron microscopy to show that lysosomes traffic bidirectionally in dendrites and are present in dendritic spines. We find that lysosome inhibition alters their mobility and also decreases dendritic spine number. Furthermore, perturbing microtubule and actin cytoskeletal dynamics has an inverse relationship on the distribution and motility of lysosomes in dendrites. We also find trafficking of lysosomes is correlated with synaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid–type glutamate receptors. Strikingly, lysosomes traffic to dendritic spines in an activity-dependent manner and can be recruited to individual spines in response to local activation. These data indicate the position of lysosomes is regulated by synaptic activity and thus plays an instructive role in the turnover of synaptic membrane proteins. PMID:28630145

  15. Lip line changes in Class III facial asymmetry patients after orthodontic camouflage treatment, one-jaw surgery, and two-jaw surgery: A preliminary study.

    PubMed

    Lee, Gung-Chol; Yoo, Jo-Kwang; Kim, Seong-Hun; Moon, Cheol-Hyun

    2017-03-01

    To evaluate the effects of orthodontic camouflage treatment (OCT), one-jaw surgery, and two-jaw surgery on the correction of lip line cant (LLC) and to examine factors affecting the correction of LLC in Class III craniofacial asymmetry patients. A sample of 30 Class III craniofacial asymmetry patients was divided into OCT (n = 10), one-jaw surgery (n = 10), and two-jaw surgery (n = 10) groups such that the pretreatment LLC was similar in each group. Pretreatment and posttreatment cone-beam computed tomography scans were used to measure dental and skeletal parameters and LLC. Pretreatment and posttreatment measurements were compared within groups and between groups. Pearson's correlation tests and multiple regression analyses were performed to investigate factors affecting the amount and rate of LLC correction. The average LLC correction was 1.00° in the one-jaw surgery group, and in the two-jaw surgery group, it was 1.71°. In the OCT group it was -0.04°, which differed statistically significantly from the LLC correction in the other two groups. The amount and rate of LLC correction could be explained by settling of skeletal discrepancies or LLC at pretreatment with goodness of fit percentages of approximately 82% and 41%, respectively. Orthognathic surgery resulted in significant correction of LLC in Class III craniofacial asymmetry patients, while OCT did not.

  16. Immunological Characterization of Whole Tumour Lysate-Loaded Dendritic Cells for Cancer Immunotherapy

    PubMed Central

    Ottobrini, Luisa; Biasin, Mara; Borelli, Manuela; Lucignani, Giovanni; Trabattoni, Daria; Clerici, Mario

    2016-01-01

    Introduction Dendritic cells play a key role as initiators of T-cell responses, and even if tumour antigen-loaded dendritic cells can induce anti-tumour responses, their efficacy has been questioned, suggesting a need to enhance immunization strategies. Matherials & Methods We focused on the characterization of bone marrow-derived dendritic cells pulsed with whole tumour lysate (TAA-DC), as a source of known and unknown antigens, in a mouse model of breast cancer (MMTV-Ras). Dendritic cells were evaluated for antigen uptake and for the expression of MHC class I/II and costimulatory molecules and markers associated with maturation. Results Results showed that antigen-loaded dendritic cells are characterized by a phenotypically semi-mature/mature profile and by the upregulation of genes involved in antigen presentation and T-cell priming. Activated dendritic cells stimulated T-cell proliferation and induced the production of high concentrations of IL-12p70 and IFN-γ but only low levels of IL-10, indicating their ability to elicit a TH1-immune response. Furthermore, administration of Antigen loaded-Dendritic Cells in MMTV-Ras mice evoked a strong anti-tumour response in vivo as demonstrated by a general activation of immunocompetent cells and the release of TH1 cytokines. Conclusion Data herein could be useful in the design of antitumoral DC-based therapies, showing a specific activation of immune system against breast cancer. PMID:26795765

  17. Orthodontic treatment-induced temporal alteration of jaw-opening reflex excitability.

    PubMed

    Sasaki, Au; Hasegawa, Naoya; Adachi, Kazunori; Sakagami, Hiroshi; Suda, Naoto

    2017-10-01

    The impairment of orofacial motor function during orthodontic treatment needs to be addressed, because most orthodontic patients experience pain and motor excitability would be affected by pain. In the present study, the temporal alteration of the jaw-opening reflex excitability was investigated to determine if orthodontic treatment affects orofacial motor function. The excitability of jaw-opening reflex evoked by electrical stimulation on the gingiva and recorded bilaterally in the anterior digastric muscles was evaluated at 1 (D1), 3 (D3), and 7 days (D7) after orthodontic force application to the teeth of right side; morphological features (e.g., osteoclast genesis and tooth movement) were also evaluated. To clarify the underlying mechanism of orthodontic treatment-induced alteration of orofacial motor excitability, analgesics were administrated for 1 day. At D1 and D3, orthodontic treatment significantly decreased the threshold for inducing the jaw-opening reflex but significantly increased the threshold at D7. Other parameters of the jaw-opening reflex were also evaluated (e.g., latency, duration and area under the curve of anterior digastric muscles activity), and only the latency of the D1 group was significantly different from that of the other groups. Temporal alteration of the jaw-opening reflex excitability was significantly correlated with changes in morphological features. Aspirin (300 mg·kg -1 ·day -1 ) significantly increased the threshold for inducing the jaw-opening reflex, whereas a lower dose (75-150 mg·kg -1 ·day -1 ) of aspirin or acetaminophen (300 mg·kg -1 ·day -1 ) failed to alter the jaw-opening reflex excitability. These results suggest that an increase of the jaw-opening reflex excitability can be induced acutely by orthodontic treatment, possibly through the cyclooxygenase activation. NEW & NOTEWORTHY It is well known that motor function is affected by pain, but the effect of orthodontic treatment-related pain on the trigeminal

  18. SU-F-E-19: A Novel Method for TrueBeam Jaw Calibration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corns, R; Zhao, Y; Huang, V

    2016-06-15

    Purpose: A simple jaw calibration method is proposed for Varian TrueBeam using an EPID-Encoder combination that gives accurate fields sizes and a homogeneous junction dose. This benefits clinical applications such as mono-isocentric half-beam block breast cancer or head and neck cancer treatment with junction/field matching. Methods: We use EPID imager with pixel size 0.392 mm × 0.392 mm to determine the radiation jaw position as measured from radio-opaque markers aligned with the crosshair. We acquire two images with different symmetric field sizes and record each individual jaw encoder values. A linear relationship between each jaw’s position and its encoder valuemore » is established, from which we predict the encoder values that produce the jaw positions required by TrueBeam’s calibration procedure. During TrueBeam’s jaw calibration procedure, we move the jaw with the pendant to set the jaw into position using the predicted encoder value. The overall accuracy is under 0.1 mm. Results: Our in-house software analyses images and provides sub-pixel accuracy to determine field centre and radiation edges (50% dose of the profile). We verified the TrueBeam encoder provides a reliable linear relationship for each individual jaw position (R{sup 2}>0.9999) from which the encoder values necessary to set jaw calibration points (1 cm and 19 cm) are predicted. Junction matching dose inhomogeneities were improved from >±20% to <±6% using this new calibration protocol. However, one technical challenge exists for junction matching, if the collimator walkout is large. Conclusion: Our new TrueBeam jaw calibration method can systematically calibrate the jaws to crosshair within sub-pixel accuracy and provides both good junction doses and field sizes. This method does not compensate for a larger collimator walkout, but can be used as the underlying foundation for addressing the walkout issue.« less

  19. Pediatric jaw fractures: indications for open reduction.

    PubMed

    Krausen, A S; Samuel, M

    1979-01-01

    Jaw fractures in children are generally managed without major surgical intervention. Closed reduction usually is sufficient to restore normal anatomy and function. The one inviolate principle is early treatment. During the past three years, four pediatric jaw fractures that required open reduction were treated. This mode of treatment was necessitated by the limitations imposed by pediatric dental anatomy and by the type of fractures encountered. In at least 24 months of follow-up, no dental problems have been seen.

  20. Independently evolved upper jaw protrusion mechanisms show convergent hydrodynamic function in teleost fishes.

    PubMed

    Staab, Katie Lynn; Holzman, Roi; Hernandez, L Patricia; Wainwright, Peter C

    2012-05-01

    A protrusible upper jaw has independently evolved multiple times within teleosts and has been implicated in the success of two groups in particular: Acanthomorpha and Cypriniformes. We use digital particle image velocimetry (DPIV) to compare suction feeding flow dynamics in a representative of each of these clades: goldfish and bluegill. Using DPIV, we contrast the spatial pattern of flow, the temporal relationship between flow and head kinematics, and the contribution of jaw protrusion to the forces exerted on prey. As expected, the spatial patterns of flow were similar in the two species. However, goldfish were slower to reach maximal kinematic excursions, and were more flexible in the relative timing of jaw protrusion, other jaw movements and suction flows. Goldfish were also able to sustain flow speeds for a prolonged period of time as compared with bluegill, in part because goldfish generate lower peak flow speeds. In both species, jaw protrusion increased the force exerted on the prey. However, slower jaw protrusion in goldfish resulted in less augmentation of suction forces. This difference in force exerted on prey corresponds with differences in trophic niches and feeding behavior of the two species. The bluegill uses powerful suction to capture insect larvae whereas the goldfish uses winnowing to sort through detritus and sediment. The kinethmoid of goldfish may permit jaw protrusion that is independent of lower jaw movement, which could explain the ability of goldfish to decouple suction flows (due to buccal expansion) from upper jaw protrusion. Nevertheless, our results show that jaw protrusion allows both species to augment the force exerted on prey, suggesting that this is a fundamental benefit of jaw protrusion to suction feeders.

  1. Does induced masseter muscle pain affect integrated jaw-neck movements similarly in men and women?

    PubMed

    Wiesinger, Birgitta; Häggman-Henrikson, Birgitta; Hellström, Fredrik; Englund, Erling; Wänman, Anders

    2016-12-01

    Normal jaw opening-closing involves simultaneous jaw and head-neck movements. We previously showed that, in men, integrated jaw-neck movements during jaw function are altered by induced masseter muscle pain. The aim of this study was to investigate possible sex-related differences in integrated jaw-neck movements following experimental masseter muscle pain. We evaluated head-neck and jaw movements in 22 healthy women and 16 healthy men in a jaw opening-closing task. The participants performed one control trial and one trial with masseter muscle pain induced by injection of hypertonic saline. Jaw and head movements were registered using a three-dimensional optoelectronic recording system. There were no significant sex-related differences in jaw and head movement amplitudes. Head movement amplitudes were significantly greater in the pain trials for both men and women. The proportional involvement of the neck motor system during jaw movements increased in pain trials for 13 of 16 men and for 18 of 22 women. Thus, acute pain may alter integrated jaw-neck movements, although, given the similarities between men and women, this interaction between acute pain and motor behaviour does not explain sex differences in musculoskeletal pain in the jaw and neck regions. © 2016 Eur J Oral Sci.

  2. Motor-Evoked Pain Increases Force Variability in Chronic Jaw Pain.

    PubMed

    Wang, Wei-En; Roy, Arnab; Misra, Gaurav; Archer, Derek B; Ribeiro-Dasilva, Margarete C; Fillingim, Roger B; Coombes, Stephen A

    2018-06-01

    Musculoskeletal pain changes how people move. Although experimental pain is associated with increases in the variability of motor output, it is not clear whether motor-evoked pain in clinical conditions is also associated with increases in variability. In the current study, we measured jaw force production during a visually guided force paradigm in which individuals with chronic jaw pain and control subjects produced force at 2% of their maximum voluntary contraction (low target force level) and at 15% of their maximum voluntary contraction (high target force level). State measures of pain were collected before and after each trial. Trait measures of pain intensity and pain interference, self-report measures of jaw function, and measures of depression, anxiety, and fatigue were also collected. We showed that the chronic jaw pain group exhibited greater force variability compared with controls irrespective of the force level, whereas the accuracy of force production did not differ between groups. Furthermore, predictors of force variability shifted from trait measures of pain intensity and pain interference at the low force level to state measures of pain intensity at the high force level. Our observations show that motor-evoked jaw pain is associated with increases in force variability that are predicted by a combination of trait measures and state measures of pain intensity and pain interference. Chronic jaw pain is characterized by increases in variability during force production, which can be predicted by pain intensity and pain interference. This report could help clinicians better understand the long-term consequences of chronic jaw pain on the motor system. Copyright © 2018 The American Pain Society. Published by Elsevier Inc. All rights reserved.

  3. Spectral characteristics of speech with fixed jaw displacements

    NASA Astrophysics Data System (ADS)

    Solomon, Nancy P.; Makashay, Matthew J.; Munson, Benjamin

    2004-05-01

    During speech, movements of the mandible and the tongue are interdependent. For some research purposes, the mandible may be constrained to ensure independent tongue motion. To examine specific spectral characteristics of speech with different jaw positions, ten normal adults produced sentences with multiple instances of /t/, /s/, /squflg/, /i/, /ai/, and /squflgi/. Talkers produced stimuli with the jaw free to vary, and while gently biting on 2- and 5-mm bite blocks unilaterally. Spectral moments of /s/ and /squflg/ frication and /t/ bursts differed such that mean spectral energy decreased, and diffuseness and skewness increased with bite blocks. The specific size of the bite block had minimal effect on these results, which were most consistent for /s/. Formant analysis for the vocoids revealed lower F2 frequency in /i/ and at the end of the transition in /ai/ when bite blocks were used; F2 slope for diphthongs was not sensitive to differences in jaw position. Two potential explanations for these results involve the physical presence of the bite blocks in the lateral oral cavity, and the oromotor system's ability to compensate for fixed jaw displacements. [Work supported by NIDCD R03-DC06096.

  4. An Ancient Gene Network Is Co-opted for Teeth on Old and New Jaws

    PubMed Central

    Fraser, Gareth J; Hulsey, C. Darrin; Bloomquist, Ryan F; Uyesugi, Kristine; Manley, Nancy R; Streelman, J. Todd

    2009-01-01

    Vertebrate dentitions originated in the posterior pharynx of jawless fishes more than half a billion years ago. As gnathostomes (jawed vertebrates) evolved, teeth developed on oral jaws and helped to establish the dominance of this lineage on land and in the sea. The advent of oral jaws was facilitated, in part, by absence of hox gene expression in the first, most anterior, pharyngeal arch. Much later in evolutionary time, teleost fishes evolved a novel toothed jaw in the pharynx, the location of the first vertebrate teeth. To examine the evolutionary modularity of dentitions, we asked whether oral and pharyngeal teeth develop using common or independent gene regulatory pathways. First, we showed that tooth number is correlated on oral and pharyngeal jaws across species of cichlid fishes from Lake Malawi (East Africa), suggestive of common regulatory mechanisms for tooth initiation. Surprisingly, we found that cichlid pharyngeal dentitions develop in a region of dense hox gene expression. Thus, regulation of tooth number is conserved, despite distinct developmental environments of oral and pharyngeal jaws; pharyngeal jaws occupy hox-positive, endodermal sites, and oral jaws develop in hox-negative regions with ectodermal cell contributions. Next, we studied the expression of a dental gene network for tooth initiation, most genes of which are similarly deployed across the two disparate jaw sites. This collection of genes includes members of the ectodysplasin pathway, eda and edar, expressed identically during the patterning of oral and pharyngeal teeth. Taken together, these data suggest that pharyngeal teeth of jawless vertebrates utilized an ancient gene network before the origin of oral jaws, oral teeth, and ectodermal appendages. The first vertebrate dentition likely appeared in a hox-positive, endodermal environment and expressed a genetic program including ectodysplasin pathway genes. This ancient regulatory circuit was co-opted and modified for teeth in oral

  5. Synovial sarcoma of the jaw in a dog.

    PubMed

    Griffith, J W; Frey, R A; Sharkey, F E

    1987-05-01

    A case of synovial sarcoma of the jaw with pulmonary metastasis is described in a dog. It appears to be a rare or underdiagnosed neoplasm in animals and not previously reported in the jaw. Its diagnostic microscopic features are the biphasic cellular pattern and cleft formations. It may otherwise resemble haemangiopericytoma, malignant fibrous histiocytoma, reticulum cell sarcoma, fibrosarcoma, or giant-cell tumour of soft tissue.

  6. The characters of Palaeozoic jawed vertebrates

    PubMed Central

    Brazeau, Martin D; Friedman, Matt

    2014-01-01

    Newly discovered fossils from the Silurian and Devonian periods are beginning to challenge embedded perceptions about the origin and early diversification of jawed vertebrates (gnathostomes). Nevertheless, an explicit cladistic framework for the relationships of these fossils relative to the principal crown lineages of the jawed vertebrates (osteichthyans: bony fishes and tetrapods; chondrichthyans: sharks, batoids, and chimaeras) remains elusive. We critically review the systematics and character distributions of early gnathostomes and provide a clearly stated hierarchy of synapomorphies covering the jaw-bearing stem gnathostomes and osteichthyan and chondrichthyan stem groups. We show that character lists, designed to support the monophyly of putative groups, tend to overstate their strength and lack cladistic corroboration. By contrast, synapomorphic hierarchies are more open to refutation and must explicitly confront conflicting evidence. Our proposed synapomorphy scheme is used to evaluate the status of the problematic fossil groups Acanthodii and Placodermi, and suggest profitable avenues for future research. We interpret placoderms as a paraphyletic array of stem-group gnathostomes, and suggest what we regard as two equally plausible placements of acanthodians: exclusively on the chondrichthyan stem, or distributed on both the chondrichthyan and osteichthyan stems. PMID:25750460

  7. Turtle Functions Downstream of Cut in Differentially Regulating Class Specific Dendrite Morphogenesis in Drosophila

    PubMed Central

    Sulkowski, Mikolaj J.; Iyer, Srividya Chandramouli; Kurosawa, Mathieu S.; Iyer, Eswar Prasad R.; Cox, Daniel N.

    2011-01-01

    Background Dendritic morphology largely determines patterns of synaptic connectivity and electrochemical properties of a neuron. Neurons display a myriad diversity of dendritic geometries which serve as a basis for functional classification. Several types of molecules have recently been identified which regulate dendrite morphology by acting at the levels of transcriptional regulation, direct interactions with the cytoskeleton and organelles, and cell surface interactions. Although there has been substantial progress in understanding the molecular mechanisms of dendrite morphogenesis, the specification of class-specific dendritic arbors remains largely unexplained. Furthermore, the presence of numerous regulators suggests that they must work in concert. However, presently, few genetic pathways regulating dendrite development have been defined. Methodology/Principal Findings The Drosophila gene turtle belongs to an evolutionarily conserved class of immunoglobulin superfamily members found in the nervous systems of diverse organisms. We demonstrate that Turtle is differentially expressed in Drosophila da neurons. Moreover, MARCM analyses reveal Turtle acts cell autonomously to exert class specific effects on dendritic growth and/or branching in da neuron subclasses. Using transgenic overexpression of different Turtle isoforms, we find context-dependent, isoform-specific effects on mediating dendritic branching in class II, III and IV da neurons. Finally, we demonstrate via chromatin immunoprecipitation, qPCR, and immunohistochemistry analyses that Turtle expression is positively regulated by the Cut homeodomain transcription factor and via genetic interaction studies that Turtle is downstream effector of Cut-mediated regulation of da neuron dendrite morphology. Conclusions/Significance Our findings reveal that Turtle proteins differentially regulate the acquisition of class-specific dendrite morphologies. In addition, we have established a transcriptional regulatory

  8. Surgical treatment of jaw osteonecrosis in "Krokodil" drug addicted patients.

    PubMed

    Poghosyan, Yuri M; Hakobyan, Koryun A; Poghosyan, Anna Yu; Avetisyan, Eduard K

    2014-12-01

    Retrospective study of jaw osteonecrosis treatment in patients using the "Krokodil" drug from 2009 to 2013. On the territory of the former USSR countries there is widespread use of a self-produced drug called "Krokodil". Codeine containing analgesics ("Sedalgin", "Pentalgin" etc), red phosphorus (from match boxes) and other easily acquired chemical components are used for synthesis of this drug, which used intravenously. Jaw osteonecrosis develops as a complication in patients who use "Krokodil". The main feature of this disease is jawbone exposure in the oral cavity. Surgery is the main method for the treatment of jaw osteonecrosis in patients using "Krokodil". 40 "Krokodil" drug addict patients with jaw osteonecrosis were treated. Involvement of maxilla was found in 11 patients (27.5%), mandible in 21 (52.5%), both jaws in 8 (20%) patients. 35 Lesions were found in 29 mandibles and 21 lesions in 19 maxillas. Main factors of treatment success are: cessation of "Krokodil" use in the pre- (minimum 1 month) and postoperative period and osteonecrosis area resection of a minimum of 0.5 cm beyond the visible borders of osteonecrosis towards the healthy tissues. Surgery was not delayed until sequestrum formation. In the mandible marginal or segmental resection (with or without TMJ exarticulation) was performed. After surgery recurrence of disease was seen in 8 (23%) cases in the mandible, with no cases of recurrence in the maxilla. According to our experience in this case series, surgery is the main method for the treatment of jaw osteonecrosis in patients using "Krokodil". Cessation of drug use and jaw resection minimize the rate of recurrences in such patients. Copyright © 2014 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  9. Pain and Disability in the Jaw and Neck Region following Whiplash Trauma.

    PubMed

    Häggman-Henrikson, B; Lampa, E; Marklund, S; Wänman, A

    2016-09-01

    The relationship between whiplash trauma and chronic orofacial pain is unclear, especially with regard to the time elapsed from trauma to development of orofacial pain. The aim was to analyze prevalence of jaw pain and disability, as well as the relationship between pain and disability in the jaw and neck regions in the early nonchronic stage after whiplash trauma. In this case-control study, 70 individuals (40 women, 30 men, mean age 35.5 y) who visited an emergency department with neck pain following a car accident were examined within 3 wk of trauma (group 1) and compared with 70 individuals (42 women, 28 men, mean age 33.8 y), who declined to attend a clinical examination but agreed to fill in questionnaires (group 2). The 2 case groups were compared with a matched control group of 70 individuals (42 women, 28 men, mean age 37.6 y) without a history of neck trauma. All participants completed questionnaires regarding jaw pain and dysfunction, rating pain intensity in jaw and neck regions on the Numerical Rating Scale, the Neck Disability Index, and Jaw Disability Checklist. Compared with controls, individuals with a recent whiplash trauma reported more jaw pain and dysfunction. Furthermore, there was a moderate positive correlation between jaw and neck pain ratings for group 1 (r = 0.61, P < 0.0001) and group 2 (r = 0.59, P < 0.0001). In the logistic regression analysis, cases showed higher odds ratios (range, 6.1 to 40.8) for jaw and neck pain and disability compared with controls. Taken together, the results show that individuals with a recent whiplash trauma report more jaw pain and disability compared with controls without a history of neck trauma. Furthermore, the correlation between jaw and neck pain intensity implies that intensity of neck pain in the acute stage after whiplash trauma might be a possible risk factor also for development of chronic orofacial pain. © International & American Associations for Dental Research 2016.

  10. WASp-dependent actin cytoskeleton stability at the dendritic cell immunological synapse is required for extensive, functional T cell contacts.

    PubMed

    Malinova, Dessislava; Fritzsche, Marco; Nowosad, Carla R; Armer, Hannah; Munro, Peter M G; Blundell, Michael P; Charras, Guillaume; Tolar, Pavel; Bouma, Gerben; Thrasher, Adrian J

    2016-05-01

    The immunological synapse is a highly structured and molecularly dynamic interface between communicating immune cells. Although the immunological synapse promotes T cell activation by dendritic cells, the specific organization of the immunological synapse on the dendritic cell side in response to T cell engagement is largely unknown. In this study, confocal and electron microscopy techniques were used to investigate the role of dendritic cell actin regulation in immunological synapse formation, stabilization, and function. In the dendritic cell-restricted absence of the Wiskott-Aldrich syndrome protein, an important regulator of the actin cytoskeleton in hematopoietic cells, the immunological synapse contact with T cells occupied a significantly reduced surface area. At a molecular level, the actin network localized to the immunological synapse exhibited reduced stability, in particular, of the actin-related protein-2/3-dependent, short-filament network. This was associated with decreased polarization of dendritic cell-associated ICAM-1 and MHC class II, which was partially dependent on Wiskott-Aldrich syndrome protein phosphorylation. With the use of supported planar lipid bilayers incorporating anti-ICAM-1 and anti-MHC class II antibodies, the dendritic cell actin cytoskeleton organized into recognizable synaptic structures but interestingly, formed Wiskott-Aldrich syndrome protein-dependent podosomes within this area. These findings demonstrate that intrinsic dendritic cell cytoskeletal remodeling is a key regulatory component of normal immunological synapse formation, likely through consolidation of adhesive interaction and modulation of immunological synapse stability. © The Author(s).

  11. Somato-dendritic Synaptic Plasticity and Error-backpropagation in Active Dendrites

    PubMed Central

    Schiess, Mathieu; Urbanczik, Robert; Senn, Walter

    2016-01-01

    In the last decade dendrites of cortical neurons have been shown to nonlinearly combine synaptic inputs by evoking local dendritic spikes. It has been suggested that these nonlinearities raise the computational power of a single neuron, making it comparable to a 2-layer network of point neurons. But how these nonlinearities can be incorporated into the synaptic plasticity to optimally support learning remains unclear. We present a theoretically derived synaptic plasticity rule for supervised and reinforcement learning that depends on the timing of the presynaptic, the dendritic and the postsynaptic spikes. For supervised learning, the rule can be seen as a biological version of the classical error-backpropagation algorithm applied to the dendritic case. When modulated by a delayed reward signal, the same plasticity is shown to maximize the expected reward in reinforcement learning for various coding scenarios. Our framework makes specific experimental predictions and highlights the unique advantage of active dendrites for implementing powerful synaptic plasticity rules that have access to downstream information via backpropagation of action potentials. PMID:26841235

  12. Tubulation of class II MHC compartments is microtubule dependent and involves multiple endolysosomal membrane proteins in primary dendritic cells.

    PubMed

    Vyas, Jatin M; Kim, You-Me; Artavanis-Tsakonas, Katerina; Love, J Christopher; Van der Veen, Annemarthe G; Ploegh, Hidde L

    2007-06-01

    Immature dendritic cells (DCs) capture exogenous Ags in the periphery for eventual processing in endolysosomes. Upon maturation by TLR agonists, DCs deliver peptide-loaded class II MHC molecules from these compartments to the cell surface via long tubular structures (endolysosomal tubules). The nature and rules that govern the movement of these DC compartments are unknown. In this study, we demonstrate that the tubules contain multiple proteins including the class II MHC molecules and LAMP1, a lysosomal resident protein, as well as CD63 and CD82, members of the tetraspanin family. Endolysosomal tubules can be stained with acidotropic dyes, indicating that they are extensions of lysosomes. However, the proper trafficking of class II MHC molecules themselves is not necessary for endolysosomal tubule formation. DCs lacking MyD88 can also form endolysosomal tubules, demonstrating that MyD88-dependent TLR activation is not necessary for the formation of this compartment. Endolysosomal tubules in DCs exhibit dynamic and saltatory movement, including bidirectional travel. Measured velocities are consistent with motor-based movement along microtubules. Indeed, nocodazole causes the collapse of endolysosomal tubules. In addition to its association with microtubules, endolysosomal tubules follow the plus ends of microtubules as visualized in primary DCs expressing end binding protein 1 (EB1)-enhanced GFP.

  13. Aluminum chloride induces neuroinflammation, loss of neuronal dendritic spine and cognition impairment in developing rat.

    PubMed

    Cao, Zheng; Yang, Xu; Zhang, Haiyang; Wang, Haoran; Huang, Wanyue; Xu, Feibo; Zhuang, Cuicui; Wang, Xiaoguang; Li, Yanfei

    2016-05-01

    Aluminum (Al) is present in the daily life of humans, and the incidence of Al contamination increased in recent years. Long-term excessive Al intake induces neuroinflammation and cognition impairment. Neuroinflammation alter density of dendritic spine, which, in turn, influence cognition function. However, it is unknown whether increased neuroinflammation is associated with altered density of dendritic spine in Al-treated rats. In the present study, AlCl3 was orally administrated to rat at 50, 150 and 450 mg/kg for 90d. We examined the effects of AlCl3 on the cognition function, density of dendritic spine in hippocampus of CA1 and DG region and the mRNA levels of IL-1β, IL-6, TNF-α, MHC II, CX3CL1 and BNDF in developing rat. These results showed exposure to AlCl3 lead to increased mRNA levels of IL-1β, IL-6, TNF-α and MCH II, decreased mRNA levels of CX3CL1 and BDNF, decreased density of dendritic spine and impaired learning and memory in developing rat. Our results suggest AlCl3 can induce neuroinflammation that may result in loss of spine, and thereby leads to learning and memory deficits. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Jaw tremor as a physiological biomarker of bruxism.

    PubMed

    Laine, C M; Yavuz, Ş U; D'Amico, J M; Gorassini, M A; Türker, K S; Farina, D

    2015-09-01

    To determine if sleep bruxism is associated with abnormal physiological tremor of the jaw during a visually-guided bite force control task. Healthy participants and patients with sleep bruxism were given visual feedback of their bite force and asked to trace triangular target trajectories (duration=20s, peak force <35% maximum voluntary force). Bite force control was quantified in terms of the power spectra of force fluctuations, masseter EMG activity, and force-to-EMG coherence. Patients had greater jaw force tremor at ∼8 Hz relative to controls, along with increased masseter EMG activity and force-to-EMG coherence in the same frequency range. Patients also showed lower force-to-EMG coherence at low frequencies (<3 Hz), but greater coherence at high frequencies (20-40 Hz). Finally, patients had greater 6-10 Hz force tremor during periods of descending vs. ascending force, while controls showed no difference in tremor with respect to force dynamics. Patients with bruxism have abnormal jaw tremor when engaged in a visually-guided bite force task. Measurement of jaw tremor may aid in the detection/evaluation of bruxism. In light of previous literature, our results also suggest that bruxism is marked by abnormal or mishandled peripheral feedback from the teeth. Copyright © 2015. Published by Elsevier Ireland Ltd.

  15. Web-dendritic ribbon growth

    NASA Technical Reports Server (NTRS)

    Hilborn, R. B., Jr.; Faust, J. W., Jr.

    1976-01-01

    A web furnace was constructed for pulling dendritic-web samples. The effect of changes in the furnace thermal geometry on the growth of dendritic-web was studied. Several attempts were made to grow primitive dendrites for use as the dendritic seed crystals for web growth and to determine the optimum twin spacing in the dendritic seed crystal for web growth. Mathematical models and computer programs were used to determine the thermal geometries in the susceptor, crucible melt, meniscus, and web. Several geometries were determined for particular furnace geometries and growth conditions. The information obtained was used in conjunction with results from the experimental growth investigations in order to achieve proper conditions for sustained pulling of two dendrite web ribbons. In addition, the facilities for obtaining the following data were constructed: twin spacing, dislocation density, web geometry, resistivity, majority charge carrier type, and minority carrier lifetime.

  16. Digital impression and jaw relation record for the fabrication of CAD/CAM custom tray.

    PubMed

    Kanazawa, Manabu; Iwaki, Maiko; Arakida, Toshio; Minakuchi, Shunsuke

    2018-03-16

    This article describes the protocol of a digital impression technique to make an impression and recording of the jaw relationship of edentulous patients for the fabrication of CAD/CAM custom tray using computer-aided design and manufacturing (CAD/CAM) technology. Scan the maxillary and mandibular edentulous jaws using an intraoral scanner. Scan the silicone jig with the maxillary and mandibular jaws while keeping the jig between the jaws. Import the standard tessellation language data of the maxillary and mandibular jaws and jig to make a jaw relation record and fabricate custom trays (CAD/CAM trays) using a rapid prototyping system. Make a definitive impression of the maxillary and mandibular jaws using the CAD/CAM trays. Digitalization of the complete denture fabrication process can simplify the complicated treatment and laboratory process of conventional methods In addition, the proposed method enables quality control regardless of the operator's experience and technique. Copyright © 2018. Published by Elsevier Ltd.

  17. Masticatory jaw movement of Exaeretodon argentinus (Therapsida: Cynodontia) inferred from its dental microwear

    PubMed Central

    Yamada, Eisuke; Kubo, Mugino O.

    2017-01-01

    Dental microwear of four postcanine teeth of Exaeretodon argentinus was analyzed using both two dimensional (2D) and three dimensional (3D) methods to infer their masticatory jaw movements. Results of both methods were congruent, showing that linear microwear features (scratches) were well aligned and mostly directed to the antero-posterior direction in all four teeth examined. These findings support the palinal masticatory jaw movement, which was inferred in previous studies based on the observation of gross morphology of wear facets. In contrast, the lack of detection of lateral scratches confirmed the absence of the lateral jaw movement that was also proposed by a previous study. Considering previous microwear studies on cynodonts, palinal jaw movements observed in Exaeretodon evolved within cynognathian cynodonts from the fully orthal jaw movement of its basal member. Although there are currently only three studies of dental microwear of non-mammalian cynodonts including the present study, microwear analysis is a useful tool for the reconstruction of masticatory jaw movement and its future application to various cynodonts will shed light on the evolutionary process of jaw movement towards the mammalian condition in more detail. PMID:29186178

  18. Kinematic analysis of jaw function in children following traumatic brain injury.

    PubMed

    Loh, E W L; Goozée, J V; Murdoch, B E

    2005-07-01

    To investigate jaw movements in children following traumatic brain injury (TBI) during speech using electromagnetic articulography (EMA). Jaw movements of two non-dysarthric children (aged 12.75 and 13.08 years) who had sustained a TBI were recorded using the AG-100 EMA system (Carstens Medizineletronik) during word-initial consonant productions. Mean quantitative kinematic parameters and coefficient of variation (variability) values were calculated and individually compared to the mean values obtained by a group of six control children (mean age 12.57 years, SD 1.52). The two children with TBI exhibited word-initial consonant jaw movement durations that were comparable to the control children, with sub-clinical reductions in speed being offset by reduced distances. Differences were observed between the two children in jaw kinematic variability, with one child exhibiting increased variability, while the other child demonstrated reduced or comparable variability compared to the control group. Possible sub-clinical impairments of jaw movement for speech were exhibited by two children who had sustained a TBI, providing insight into the consequences of TBI on speech motor control development.

  19. Developmental evidence for serial homology of the vertebrate jaw and gill arch skeleton

    PubMed Central

    Gillis, J. Andrew; Modrell, Melinda S.; Baker, Clare V. H.

    2013-01-01

    Gegenbaur’s classical hypothesis of jaw-gill arch serial homology is widely cited, but remains unsupported by either paleontological evidence (e.g. a series of fossils reflecting the stepwise transformation of a gill arch into a jaw) or developmental genetic data (e.g. shared molecular mechanisms underlying segment identity in the mandibular, hyoid and gill arch endoskeletons). Here we show that nested expression of Dlx genes – the “Dlx code” that specifies upper and lower jaw identity in mammals and teleosts – is a primitive feature of the mandibular, hyoid and gill arches of jawed vertebrates. Using fate-mapping techniques, we demonstrate that the principal dorsal and ventral endoskeletal segments of the jaw, hyoid and gill arches of the skate Leucoraja erinacea derive from molecularly equivalent mesenchymal domains of combinatorial Dlx gene expression. Our data suggest that vertebrate jaw, hyoid and gill arch cartilages are serially homologous, and were primitively patterned dorsoventrally by a common Dlx blueprint. PMID:23385581

  20. Stress-driven lithium dendrite growth mechanism and dendrite mitigation by electroplating on soft substrates

    NASA Astrophysics Data System (ADS)

    Wang, Xu; Zeng, Wei; Hong, Liang; Xu, Wenwen; Yang, Haokai; Wang, Fan; Duan, Huigao; Tang, Ming; Jiang, Hanqing

    2018-03-01

    Problems related to dendrite growth on lithium-metal anodes such as capacity loss and short circuit present major barriers to next-generation high-energy-density batteries. The development of successful lithium dendrite mitigation strategies is impeded by an incomplete understanding of the Li dendrite growth mechanisms, and in particular, Li-plating-induced internal stress in Li metal and its effect on Li growth morphology are not well addressed. Here, we reveal the enabling role of plating residual stress in dendrite formation through depositing Li on soft substrates and a stress-driven dendrite growth model. We show that dendrite growth is mitigated on such soft substrates through surface-wrinkling-induced stress relaxation in the deposited Li film. We demonstrate that this dendrite mitigation mechanism can be utilized synergistically with other existing approaches in the form of three-dimensional soft scaffolds for Li plating, which achieves higher coulombic efficiency and better capacity retention than that for conventional copper substrates.

  1. Dendritic excitability modulates dendritic information processing in a purkinje cell model.

    PubMed

    Coop, Allan D; Cornelis, Hugo; Santamaria, Fidel

    2010-01-01

    Using an electrophysiological compartmental model of a Purkinje cell we quantified the contribution of individual active dendritic currents to processing of synaptic activity from granule cells. We used mutual information as a measure to quantify the information from the total excitatory input current (I(Glu)) encoded in each dendritic current. In this context, each active current was considered an information channel. Our analyses showed that most of the information was encoded by the calcium (I(CaP)) and calcium activated potassium (I(Kc)) currents. Mutual information between I(Glu) and I(CaP) and I(Kc) was sensitive to different levels of excitatory and inhibitory synaptic activity that, at the same time, resulted in the same firing rate at the soma. Since dendritic excitability could be a mechanism to regulate information processing in neurons we quantified the changes in mutual information between I(Glu) and all Purkinje cell currents as a function of the density of dendritic Ca (g(CaP)) and Kca (g(Kc)) conductances. We extended our analysis to determine the window of temporal integration of I(Glu) by I(CaP) and I(Kc) as a function of channel density and synaptic activity. The window of information integration has a stronger dependence on increasing values of g(Kc) than on g(CaP), but at high levels of synaptic stimulation information integration is reduced to a few milliseconds. Overall, our results show that different dendritic conductances differentially encode synaptic activity and that dendritic excitability and the level of synaptic activity regulate the flow of information in dendrites.

  2. A Vibrating Jaw Crusher with Auteresonant Electric Motor Drive of Swinging Movement

    NASA Astrophysics Data System (ADS)

    Zagrivniy, E. A.; Poddubniy, D. A.

    2018-01-01

    The article relates to a vibrating jaw crusher with pendulum vibrating exciter auteresonant electric motor drive and with elastic element rational force distribution, with limited peak-to-peak swing. Its design and its math model are presented. Also disclosed is the operating principle of a vibrating jaw crusher and the control algorithm for controlling the crushing jaw for maintaining the operating mode at resonant frequency.

  3. [Odontogenic and nonodontogenic jaw cysts: experience in 25 cases].

    PubMed

    Ağir, Hakan; Sen, Cenk; Işil, Eda; Unal, Ciğdem; Ustündağ, Emre; Keskin, Gürkan

    2008-01-01

    We retrospectively evaluated the patients with jaw cysts treated at our center. The study included 25 patients (14 males, 11 females; mean age 33+/-19 years; range 7 to 69 years) who underwent surgery for odontogenic or nonodontogenic jaw cysts. The most common presentation was a swelling in the jaw with or without dental problems. Involvement was in the mandible in 18 patients, and in the maxilla in seven patients. The lesions consisted of eight radicular, six dentigerous, two nasoalveolar, two globulomaxillary cysts, and three keratocysts. Four patients had gingival, nasopalatine, residual, and median mandibular cysts, respectively. Marsupialization, curettage, extensive burring, enucleation, or marginal resection were performed depending on pre- and intraoperative findings. The defects were repaired with a corticocancellous iliac bone block graft in three patients and cancellous iliac bone chips in five patients. During a mean follow-up of 14 months (range 12 to 46 months), recurrence was seen in only one patient with a keratocyst. A good preoperative assessment, complete removal of the cystic lesion, and close radiographic follow-up are essential for a successful outcome in jaw cysts. In selected cases, reconstruction of the defects with autogenous corticocancellous iliac bone graft yields highly satisfactory results.

  4. The speech focus position effect on jaw-finger coordination in a pointing task.

    PubMed

    Rochet-Capellan, Amélie; Laboissière, Rafael; Galván, Arturo; Schwartz, Jean-Luc

    2008-12-01

    This article investigates jaw-finger coordination in a task involving pointing to a target while naming it with a CVCV (e.g., /papa/) versus CVCV (e.g., /papa/) word. According to the authors' working hypothesis, the pointing apex (gesture extremum) would be synchronized with the apex of the jaw-opening gesture corresponding to the stressed syllable. Jaw and finger motions were recorded using Optotrak (Northern Digital, Waterloo, Ontario, Canada). The effects of stress position on jaw-finger coordination were tested across different target positions (near vs. far) and different consonants in the target word (/t/ vs. /p/). Twenty native Portuguese Brazilian speakers participated in the experiment (all conditions). Jaw response starts earlier, and finger-target alignment period is longer for CVCV words than for CVCV ones. The apex of the jaw-opening gesture for the stressed syllable appears synchronized with the onset of the finger-target alignment period (corresponding to the pointing apex) for CVCV words and with the offset of that period for CVCV words. For both stress conditions, the stressed syllable occurs within the finger-target alignment period because of tight finger-jaw coordination. This result is interpreted as evidence for an anchoring of the speech deictic site (part of speech that shows) in the pointing gesture.

  5. Electronic speckle-pattern interferometry (ESPI) applied to the study of mechanical behavior of human jaws

    NASA Astrophysics Data System (ADS)

    Roman, Juan F.; Moreno de las Cuevas, Vincente; Salgueiro, Jose R.; Suarez, David; Fernandez, Paula; Gallas, Mercedes; Blanchard, Alain

    1996-01-01

    The study of the mechanical behavior of the human jaw during chewing is helpful in several specific medical fields that cover the maxillo-facial area. In this work, electronic speckle pattern interferometry has been applied to study dead jaw bones under external stress which simulates the deformations induced during chewing. Fringes obtained after subtraction of two images of the jaw, the image of the relaxed jaw and that of the jaw under stress, give us information about the most stressed zones. The interferometric analysis proposed here is attractive as it can be done in real time with the jaw under progressive stress. Image processing can be applied for improving the quality of fringes. This research can be of help in orthognathic surgery, for example in diagnosis and treatment of fractured jaws, in oral surgery, and in orthodontics because it would help us to know the stress dispersion when we insert an osseointegrated implant or place an orthodontic appliance, respectively. Studying fragments of human jaw some results about its elasticity and flexibility were obtained.

  6. Dendritic Alloy Solidification Experiment (DASE)

    NASA Technical Reports Server (NTRS)

    Beckermann, C.; Karma, A.; Steinbach, I.; deGroh, H. C., III

    2001-01-01

    A space experiment, and supporting ground-based research, is proposed to study the microstructural evolution in free dendritic growth from a supercooled melt of the transparent model alloy succinonitrile-acetone (SCN-ACE). The research is relevant to equiaxed solidification of metal alloy castings. The microgravity experiment will establish a benchmark for testing of equiaxed dendritic growth theories, scaling laws, and models in the presence of purely diffusive, coupled heat and solute transport, without the complicating influences of melt convection. The specific objectives are to: determine the selection of the dendrite tip operating state, i.e. the growth velocity and tip radius, for free dendritic growth of succinonitrile-acetone alloys; determine the growth morphology and sidebranching behavior for freely grown alloy dendrites; determine the effects of the thermal/solutal interactions in the growth of an assemblage of equiaxed alloy crystals; determine the effects of melt convection on the free growth of alloy dendrites; measure the surface tension anisotropy strength of succinon itrile -acetone alloys establish a theoretical and modeling framework for the experiments. Microgravity experiments on equiaxed dendritic growth of alloy dendrites have not been performed in the past. The proposed experiment builds on the Isothermal Dendritic Growth Experiment (IDGE) of Glicksman and coworkers, which focused on the steady growth of a single crystal from pure supercooled melts (succinonitrile and pivalic acid). It also extends the Equiaxed Dendritic Solidification Experiment (EDSE) of the present investigators, which is concerned with the interactions and transients arising in the growth of an assemblage of equiaxed crystals (succinonitrile). However, these experiments with pure substances are not able to address the issues related to coupled heat and solute transport in growth of alloy dendrites.

  7. Building Finite Element Models to Investigate Zebrafish Jaw Biomechanics.

    PubMed

    Brunt, Lucy H; Roddy, Karen A; Rayfield, Emily J; Hammond, Chrissy L

    2016-12-03

    Skeletal morphogenesis occurs through tightly regulated cell behaviors during development; many cell types alter their behavior in response to mechanical strain. Skeletal joints are subjected to dynamic mechanical loading. Finite element analysis (FEA) is a computational method, frequently used in engineering that can predict how a material or structure will respond to mechanical input. By dividing a whole system (in this case the zebrafish jaw skeleton) into a mesh of smaller 'finite elements', FEA can be used to calculate the mechanical response of the structure to external loads. The results can be visualized in many ways including as a 'heat map' showing the position of maximum and minimum principal strains (a positive principal strain indicates tension while a negative indicates compression. The maximum and minimum refer the largest and smallest strain). These can be used to identify which regions of the jaw and therefore which cells are likely to be under particularly high tensional or compressional loads during jaw movement and can therefore be used to identify relationships between mechanical strain and cell behavior. This protocol describes the steps to generate Finite Element models from confocal image data on the musculoskeletal system, using the zebrafish lower jaw as a practical example. The protocol leads the reader through a series of steps: 1) staining of the musculoskeletal components, 2) imaging the musculoskeletal components, 3) building a 3 dimensional (3D) surface, 4) generating a mesh of Finite Elements, 5) solving the FEA and finally 6) validating the results by comparison to real displacements seen in movements of the fish jaw.

  8. Dendritic branching angles of pyramidal cells across layers of the juvenile rat somatosensory cortex.

    PubMed

    Leguey, Ignacio; Bielza, Concha; Larrañaga, Pedro; Kastanauskaite, Asta; Rojo, Concepción; Benavides-Piccione, Ruth; DeFelipe, Javier

    2016-09-01

    The characterization of the structural design of cortical microcircuits is essential for understanding how they contribute to function in both health and disease. Since pyramidal neurons represent the most abundant neuronal type and their dendritic spines constitute the major postsynaptic elements of cortical excitatory synapses, our understanding of the synaptic organization of the neocortex largely depends on the available knowledge regarding the structure of pyramidal cells. Previous studies have identified several apparently common rules in dendritic geometry. We study the dendritic branching angles of pyramidal cells across layers to further shed light on the principles that determine the geometric shapes of these cells. We find that the dendritic branching angles of pyramidal cells from layers II-VI of the juvenile rat somatosensory cortex suggest common design principles, despite the particular morphological and functional features that are characteristic of pyramidal cells in each cortical layer. J. Comp. Neurol. 524:2567-2576, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. [Osteonecrosis of the jaws and bisphosphonates].

    PubMed

    Junod, A F; Carrel, J-P; Richter, M; Vogt-Ferrier, N

    2005-11-02

    Widely prescribed, bisphosphonates inhibit bone resorption. They are not metabolised and have long half-lives. Two cases of osteonecrosis of the jaws have recently been attributed to bisphosphonates at the University Hospital of Geneva. The recent literature reveals more than a hundred similar cases throughout the world. Bone exposure appears spontaneously or after dental care. Treatment of the osteonecrosis is controversial and cure very difficult. This pathology is usually seen in patients on chemotherapy, steroids and i.v. bisphosphonates, but is sometimes seen with low-dose p.o. bisphosphonates. In view of the strong association between bisphosphonate therapy and osteonecrosis of the jaw, specialists have recommended dental and oral evaluation during bisphosphonate therapy as well as for several years after drug discontinuation.

  10. Physiologic Development of Tongue-Jaw Coordination from Childhood to Adulthood

    ERIC Educational Resources Information Center

    Cheng, Hei Yan; Murdoch, Bruce E.; Goozee, Justine V.; Scott, Dion

    2007-01-01

    Purpose: This investigation aimed to examine the development of tongue-jaw coordination during speech from childhood to adolescence. Method: Electromagnetic articulography was used to track tongue and jaw motion in 48 children and adults (aged 6-38 years) during productions of /t/ and /k/ embedded in sentences. Results: The coordinative…

  11. Constancy and variability in cortical structure. A study on synapses and dendritic spines in hedgehog and monkey.

    PubMed

    Schüz, A; Demianenko, G P

    1995-01-01

    Synapses and dendritic spines were investigated in the parietal cortex of the hedgehog (Erinaceus europaeus) and the monkey (Macaca mulatta). There was no significant difference in the density of synapses between the two species (14 synapses/100 microns2 in the hedgehog, 15/100 microns2 in the monkey), neither in the size of the synaptic junctions, in the proportion of Type I and Type II synapses (8-10% were of Type II in the hedgehog, 10-14% in the monkey) nor in the proportion of perforated synapses (8% in the hedgehog, 5% in the monkey). The only striking difference at the electron microscopic level concerned the frequency of synapses in which the postsynaptic profile was deeply indented into the presynaptic terminal. Such synapses were 10 times more frequent in the monkey. Dendritic spines were investigated in Golgi-preparations. The density of spines along dendrites was similar in both species. The results are discussed with regard to connectivity in the cortex of small and large brains.

  12. Dendritic growth model of multilevel marketing

    NASA Astrophysics Data System (ADS)

    Pang, James Christopher S.; Monterola, Christopher P.

    2017-02-01

    Biologically inspired dendritic network growth is utilized to model the evolving connections of a multilevel marketing (MLM) enterprise. Starting from agents at random spatial locations, a network is formed by minimizing a distance cost function controlled by a parameter, termed the balancing factor bf, that weighs the wiring and the path length costs of connection. The paradigm is compared to an actual MLM membership data and is shown to be successful in statistically capturing the membership distribution, better than the previously reported agent based preferential attachment or analytic branching process models. Moreover, it recovers the known empirical statistics of previously studied MLM, specifically: (i) a membership distribution characterized by the existence of peak levels indicating limited growth, and (ii) an income distribution obeying the 80 - 20 Pareto principle. Extensive types of income distributions from uniform to Pareto to a "winner-take-all" kind are also modeled by varying bf. Finally, the robustness of our dendritic growth paradigm to random agent removals is explored and its implications to MLM income distributions are discussed.

  13. Comparative jaw muscle anatomy in kangaroos, wallabies, and rat-kangaroos (marsupialia: macropodoidea).

    PubMed

    Warburton, Natalie Marina

    2009-06-01

    The jaw muscles were studied in seven genera of macropodoid marsupials with diets ranging from mainly fungi in Potorous to grass in Macropus. Relative size, attachments, and lamination within the jaw adductor muscles varied between macropodoid species. Among macropodine species, the jaw adductor muscle proportions vary with feeding type. The relative mass of the masseter is roughly consistent, but grazers and mixed-feeders (Macropus and Lagostrophus) had relatively larger medial pterygoids and smaller temporalis muscles than the browsers (Dendrolagus, Dorcopsulus, and Setonix). Grazing macropods show similar jaw muscle proportions to "ungulate-grinding" type placental mammals. The internal architecture of the jaw muscles also varies between grazing and browsing macropods, most significantly, the anatomy of the medial pterygoid muscle. Potoroines have distinctly different jaw muscle proportions to macropodines. The masseter muscle group, in particular, the superficial masseter is enlarged, while the temporalis group is relatively reduced. Lagostrophus fasciatus is anatomically distinct from other macropods with respect to its masticatory muscle anatomy, including enlarged superficial medial pterygoid and deep temporalis muscles, an anteriorly inflected masseteric process, and the shape of the mandibular condyle. The enlarged triangular pterygoid process of the sphenoid bone, in particular, is distinctive of Lagsotrophus. (c) 2009 Wiley-Liss, Inc.

  14. Role of stag beetle jaw bending and torsion in grip on rivals.

    PubMed

    Goyens, Jana; Dirckx, Joris; Piessen, Maxim; Aerts, Peter

    2016-01-01

    In aggressive battles, the extremely large male stag beetle jaws have to withstand strongly elevated bite forces. We found several adaptations of the male Cyclommatus metallifer jaw morphology for enhanced robustness that conspecific females lack. As a result, males improve their grip on opponents and they maintain their safety factor (5.2-7.2) at the same level as that of females (6.8), despite their strongly elevated bite muscle force (3.9 times stronger). Males have a higher second moment of area and torsion constant than females, owing to an enhanced cross-sectional area and shape. These parameters also increase faster with increasing bending moment towards the jaw base in males than in females. Male jaws are more bending resistant against the bite reaction force than against perpendicular forces (which remain lower in battles). Because of the triangular cross section of the male jaw base, it twists more easily than it bends. This torsional flexibility creates a safety system against overload that, at the same time, secures a firm grip on rivals. We found no structural mechanical function of the large teeth halfway along the male jaws. Therefore, it appears that the main purpose of these teeth is a further improvement of grip on rivals. © 2016 The Author(s).

  15. Role of stag beetle jaw bending and torsion in grip on rivals

    PubMed Central

    Goyens, Jana; Dirckx, Joris; Piessen, Maxim; Aerts, Peter

    2016-01-01

    In aggressive battles, the extremely large male stag beetle jaws have to withstand strongly elevated bite forces. We found several adaptations of the male Cyclommatus metallifer jaw morphology for enhanced robustness that conspecific females lack. As a result, males improve their grip on opponents and they maintain their safety factor (5.2–7.2) at the same level as that of females (6.8), despite their strongly elevated bite muscle force (3.9 times stronger). Males have a higher second moment of area and torsion constant than females, owing to an enhanced cross-sectional area and shape. These parameters also increase faster with increasing bending moment towards the jaw base in males than in females. Male jaws are more bending resistant against the bite reaction force than against perpendicular forces (which remain lower in battles). Because of the triangular cross section of the male jaw base, it twists more easily than it bends. This torsional flexibility creates a safety system against overload that, at the same time, secures a firm grip on rivals. We found no structural mechanical function of the large teeth halfway along the male jaws. Therefore, it appears that the main purpose of these teeth is a further improvement of grip on rivals. PMID:26763329

  16. Tubulation of Class II MHC Compartments Is Microtubule Dependent and Involves Multiple Endolysosomal Membrane Proteins in Primary Dendritic Cells1

    PubMed Central

    Vyas, Jatin M.; Kim, You-Me; Artavanis-Tsakonas, Katerina; Love, J. Christopher; Van der Veen, Annemarthe G.; Ploegh, Hidde L.

    2009-01-01

    Immature dendritic cells (DCs) capture exogenous Ags in the periphery for eventual processing in endolysosomes. Upon maturation by TLR agonists, DCs deliver peptide-loaded class II MHC molecules from these compartments to the cell surface via long tubular structures (endolysosomal tubules). The nature and rules that govern the movement of these DC compartments are unknown. In this study, we demonstrate that the tubules contain multiple proteins including the class II MHC molecules and LAMP1, a lysosomal resident protein, as well as CD63 and CD82, members of the tetraspanin family. Endolysosomal tubules can be stained with acidotropic dyes, indicating that they are extensions of lysosomes. However, the proper trafficking of class II MHC molecules themselves is not necessary for endolysosomal tubule formation. DCs lacking MyD88 can also form endolysosomal tubules, demonstrating that MyD88-dependent TLR activation is not necessary for the formation of this compartment. Endolysosomal tubules in DCs exhibit dynamic and saltatory movement, including bidirectional travel. Measured velocities are consistent with motor-based movement along microtubules. Indeed, nocodazole causes the collapse of endolysosomal tubules. In addition to its association with microtubules, endolysosomal tubules follow the plus ends of microtubules as visualized in primary DCs expressing end binding protein 1 (EB1)-enhanced GFP. PMID:17513769

  17. Microtubule nucleation and organization in dendrites

    PubMed Central

    Delandre, Caroline; Amikura, Reiko; Moore, Adrian W.

    2016-01-01

    ABSTRACT Dendrite branching is an essential process for building complex nervous systems. It determines the number, distribution and integration of inputs into a neuron, and is regulated to create the diverse dendrite arbor branching patterns characteristic of different neuron types. The microtubule cytoskeleton is critical to provide structure and exert force during dendrite branching. It also supports the functional requirements of dendrites, reflected by differential microtubule architectural organization between neuron types, illustrated here for sensory neurons. Both anterograde and retrograde microtubule polymerization occur within growing dendrites, and recent studies indicate that branching is enhanced by anterograde microtubule polymerization events in nascent branches. The polarities of microtubule polymerization events are regulated by the position and orientation of microtubule nucleation events in the dendrite arbor. Golgi outposts are a primary microtubule nucleation center in dendrites and share common nucleation machinery with the centrosome. In addition, pre-existing dendrite microtubules may act as nucleation sites. We discuss how balancing the activities of distinct nucleation machineries within the growing dendrite can alter microtubule polymerization polarity and dendrite branching, and how regulating this balance can generate neuron type-specific morphologies. PMID:27097122

  18. Jaw-opening reflex and corticobulbar motor excitability changes during quiet sleep in non-human primates.

    PubMed

    Yao, Dongyuan; Lavigne, Gilles J; Lee, Jye-Chang; Adachi, Kazunori; Sessle, Barry J

    2013-02-01

    To test the hypothesis that the reflex and corticobulbar motor excitability of jaw muscles is reduced during sleep. Polysomnographic recordings in the electrophysiological study. University sleep research laboratories. The reflex and corticobulbar motor excitability of jaw muscles was determined during the quiet awake state (QW) and quiet sleep (QS) in monkeys (n = 4). During QS sleep, compared to QW periods, both tongue stimulation-evoked jaw-opening reflex peak and root mean square amplitudes were significantly decreased with stimulations at 2-3.5 × thresholds (P < 0.001). The jaw-opening reflex latency during sleep was also significantly longer than during QW. Intracortical microstimulation (ICMS) within the cortical masticatory area induced rhythmic jaw movements at a stable threshold (≤ 60 μA) during QW; but during QS, ICMS failed to induce any rhythmic jaw movements at the maximum ICMS intensity used, although sustained jaw-opening movements were evoked at significantly increased threshold (P < 0.001) in one of the monkeys. Similarly, during QW, ICMS within face primary motor cortex induced orofacial twitches at a stable threshold (≤ 35 μA), but the ICMS thresholds were elevated during QS. Soon after the animal awoke, rhythmic jaw movements and orofacial twitches could be evoked at thresholds similar to those before QS. The results suggest that the excitability of reflex and corticobulbar-evoked activity in the jaw motor system is depressed during QS.

  19. Description of the lower jaws of Baculites from the Upper Cretaceous U.S. Western Interior

    NASA Astrophysics Data System (ADS)

    Larson, Neal L.; Landman, Neil H.

    2017-03-01

    We report the discovery of lower jaws of Baculites (Ammonoidea) from the Upper Cretaceous U.S. Western Interior. In the lower Campanian Smoky Hill Chalk Member of the Niobrara Chalk of Kansas, most of the jaws occur as isolated elements. Based on their age, they probably belong to Baculites sp. (smooth). They conform to the description of rugaptychus, and are ornamented with coarse rugae on their ventral side. One specimen is preserved inside a small fecal pellet that was probably produced by a fish. Another specimen occurs inside in a crushed body chamber near the aperture and is probably in situ. Three small structures are present immediately behind the jaw and may represent the remains of the gills. In the lower Maastrichtian Pierre Shale of Wyoming, two specimens of Baculites grandis contain lower jaws inside their body chambers, and are probably in situ. In both specimens, the jaws are oriented at an acute angle to the long axis of the shell, with their anterior ends pointing toward the dorsum. One of the jaws is folded into a U-shape, which probably approximates the shape of the jaw during life. Based on the measurements of the jaws and the shape of the shell, the jaws could not have touched the sides of the shell even if they were splayed out, implying that they could not have effectively served as opercula. Instead, in combination with the upper jaws and radula, they constituted the buccal apparatus that collected and conveyed food to the esophagus.

  20. An examination of the degrees of freedom of human jaw motion in speech and mastication.

    PubMed

    Ostry, D J; Vatikiotis-Bateson, E; Gribble, P L

    1997-12-01

    The kinematics of human jaw movements were assessed in terms of the three orientation angles and three positions that characterize the motion of the jaw as a rigid body. The analysis focused on the identification of the jaw's independent movement dimensions, and was based on an examination of jaw motion paths that were plotted in various combinations of linear and angular coordinate frames. Overall, both behaviors were characterized by independent motion in four degrees of freedom. In general, when jaw movements were plotted to show orientation in the sagittal plane as a function of horizontal position, relatively straight paths were observed. In speech, the slopes and intercepts of these paths varied depending on the phonetic material. The vertical position of the jaw was observed to shift up or down so as to displace the overall form of the sagittal plane motion path of the jaw. Yaw movements were small but independent of pitch, and vertical and horizontal position. In mastication, the slope and intercept of the relationship between pitch and horizontal position were affected by the type of food and its size. However, the range of variation was less than that observed in speech. When vertical jaw position was plotted as a function of horizontal position, the basic form of the path of the jaw was maintained but could be shifted vertically. In general, larger bolus diameters were associated with lower jaw positions throughout the movement. The timing of pitch and yaw motion differed. The most common pattern involved changes in pitch angle during jaw opening followed by a phase predominated by lateral motion (yaw). Thus, in both behaviors there was evidence of independent motion in pitch, yaw, horizontal position, and vertical position. This is consistent with the idea that motions in these degrees of freedom are independently controlled.

  1. Effect of different head-neck-jaw postures on cervicocephalic kinesthetic sense.

    PubMed

    Zafar, H; Alghadir, A H; Iqbal, Z A

    2017-12-01

    To investigate the effect of different induced head-neck-jaw postures on head-neck relocation error among healthy subjects. 30 healthy adult male subjects participated in this study. Cervicocephalic kinesthetic sense was measured while standing, habitual sitting, habitual sitting with clenched jaw and habitual sitting with forward head posture during right rotation, left rotation, flexion and extension using kinesthetic sensibility test. Head-neck relocation error was least while standing, followed by habitual sitting, habitual sitting with forward head posture and habitual sitting with jaw clenched. However, there was no significant difference in error between different tested postures during all the movements. To the best of our knowledge, this is the first study to see the effect of different induced head-neck-jaw postures on head-neck position sense among healthy subjects. Assuming a posture for a short duration of time doesn't affect head-neck relocation error in normal healthy subjects.

  2. Alendronate-associated osteonecrosis of the jaws: A review of the main topics

    PubMed Central

    Paiva-Fonseca, Felipe; Santos-Silva, Alan R.; Della-Coletta, Ricardo; Vargas, Pablo A.

    2014-01-01

    Bisphosphonates is a group of inorganic pyrophosphates analogues that suppress bone resorption by inducing osteoclast inactivation, being frequently used for management of diseases affecting bone metabolism, bone metastases and bone tumors. However, since 2003 many cases describing the presence of necrotic bone exposures in the jaws have been described in patients receiving these drugs, what represent a significant complication of bisphosphonates treatment. The overall incidence of bisphosphonate-related osteonecrosis of the jaws is low, ranging from 0.7% to 12%, mainly observed in those patients receiving intravenously treatment. Osteonecrosis of the jaws associated to oral bisphosphonate, particularly alendronate, has also been reported by a number of authors. Considering that alendronate is one of the most used drugs worldwide, specially for treatment of osteoporosis, a better understanding of osteonecrosis of the jaws related to its use and how to manage these patients is extremely important. Therefore, in the current manuscript the authors aim to review the most important topics related to this pathological presentation. Key words:Bisphosphonates, alendronate, bisphosphonate-related osteonecrosis of the jaws, osteonecrosis. PMID:23986020

  3. Postmating sexual selection and the enigmatic jawed genitalia of Callosobruchus subinnotatus

    PubMed Central

    Rönn, Johanna Liljestrand; Schilthuizen, Menno; Arnqvist, Göran

    2017-01-01

    ABSTRACT Insect genitalia exhibit rapid divergent evolution. Truly extraordinary structures have evolved in some groups, presumably as a result of postmating sexual selection. To increase our understanding of this phenomenon, we studied the function of one such structure. The male genitalia of Callosobruchus subinnotatus (Coleoptera: Bruchinae) contain a pair of jaw-like structures with unknown function. Here, we used phenotypic engineering to ablate the teeth on these jaws. We then experimentally assessed the effects of ablation of the genital jaws on mating duration, ejaculate weight, male fertilization success and female fecundity, using a double-mating experimental design. We predicted that copulatory wounding in females should be positively related to male fertilization success; however, we found no significant correlation between genital tract scarring in females and male fertilization success. Male fertilization success was, however, positively related to the amount of ejaculate transferred by males and negatively related to female ejaculate dumping. Ablation of male genital jaws did not affect male relative fertilization success but resulted in a reduction in female egg production. Our results suggest that postmating sexual selection in males indeed favors these genital jaws, not primarily through an elevated relative success in sperm competition but by increasing female egg production. PMID:28583926

  4. A novel whole tooth-in-jaw-bone culture of rat molars: morphological, immunohistochemical, and laser capture microdissection analysis.

    PubMed

    Chokechanachaisakul, Uraiwan; Kaneko, Tomoatsu; Yamanaka, Yusuke; Okiji, Takashi; Suda, Hideaki

    2012-10-01

    In conventional whole-tooth culture systems, limitation exists regarding maintenance of the vitality of the dental pulp, because this tissue is encased in rigid dentin walls that hinder nutrition supply. We here report a whole tooth-in-jaw-bone culture system of rat mandibular first molars, where transcardiac perfusion with culture medium was carried out before placement of the jaw bone into culture medium, aiming to facilitate longer time preservation of the dental pulp tissue. Following 7 days of culture, the pulp tissues were analyzed by histology and immunohistochemistry to ED2 (antiresident macrophage). ED2-positive macrophages were also analyzed for their Class II MHC, interleukin-6 (IL-6), and p53 mRNA expression levels by means of immune-laser capture microdissection (immune-LCM). Dentin sialophosphoprotein (DSPP) mRNA expression in odontobalstic layer was also examined by LCM. Teeth cultured following saline-perfusion and nonperfusion served as cultured controls. Normal teeth also served as noncultured controls. Histological examination demonstrated that the structure of the pulp tissue was well preserved in the medium-perfused explants in contrast to the cultured control groups. The Class II MHC, IL-6, and p53 mRNA expression levels of ED2-positive cells and DSPP expression levels of odontoblastic layer tissues in the pulp of medium-perfused explants were not significantly different from those in the noncultured normal teeth. In conclusion, the structural integrity and mRNA expression in the pulp were maintained at the in vivo level in the ex vivo whole tooth-in-jaw-bone culture system. The system may lay the foundation for studies aiming at defining further histological and molecular mechanism of the pulp. Copyright © 2012 Wiley Periodicals, Inc.

  5. Nak regulates localization of clathrin sites in higher-order dendrites to promote local dendrite growth.

    PubMed

    Yang, Wei-Kang; Peng, Yu-Huei; Li, Hsun; Lin, Hsiu-Chen; Lin, Yu-Ching; Lai, Tzu-Ting; Suo, Hsien; Wang, Chien-Hsiang; Lin, Wei-Hsiang; Ou, Chan-Yen; Zhou, Xin; Pi, Haiwei; Chang, Henry C; Chien, Cheng-Ting

    2011-10-20

    During development, dendrites arborize in a field several hundred folds of their soma size, a process regulated by intrinsic transcription program and cell adhesion molecule (CAM)-mediated interaction. However, underlying cellular machineries that govern distal higher-order dendrite extension remain largely unknown. Here, we show that Nak, a clathrin adaptor-associated kinase, promotes higher-order dendrite growth through endocytosis. In nak mutants, both the number and length of higher-order dendrites are reduced, which are phenocopied by disruptions of clathrin-mediated endocytosis. Nak interacts genetically with components of the endocytic pathway, colocalizes with clathrin puncta, and is required for dendritic localization of clathrin puncta. More importantly, these Nak-containing clathrin structures preferentially localize to branching points and dendritic tips that are undergoing active growth. We present evidence that the Drosophila L1-CAM homolog Neuroglian is a relevant cargo of Nak-dependent internalization, suggesting that localized clathrin-mediated endocytosis of CAMs facilitates the extension of nearby higher-order dendrites. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Zoledronate Effects on Systemic and Jaw Osteopenias in Ovariectomized Periostin-Deficient Mice

    PubMed Central

    Bonnet, Nicolas; Lesclous, Philippe; Saffar, Jean Louis; Ferrari, Serge

    2013-01-01

    Osteoporosis and periodontal disease (PD) are frequently associated in the elderly, both concurring to the loss of jaw alveolar bone and finally of teeth. Bisphosphonates improve alveolar bone loss but have also been associated with osteonecrosis of the jaw (ONJ), particularly using oncological doses of zoledronate. The effects and therapeutic margin of zoledronate on jaw bone therefore remain uncertain. We reappraised the efficacy and safety of Zoledronate (Zol) in ovariectomized (OVX) periostin (Postn)-deficient mice, a unique genetic model of systemic and jaw osteopenia. Compared to vehicle, Zol 1M (100 µg/kg/month) and Zol 1W (100 µg/kg/week) for 3 months both significantly improved femur BMD, trabecular bone volume on tissue volume (BV/TV) and cortical bone volume in both OVX Postn+/+ and Postn−/− (all p<0.01). Zol 1M and Zol 1W also improved jaw alveolar and basal BV/TV, although the highest dose (Zol 1W) was less efficient, particularly in Postn−/−. Zol decreased osteoclast number and bone formation indices, i.e. MAR, MPm/BPm and BFR, independently in Postn−/− and Postn+/+, both in the long bones and in deep jaw alveolar bone, without differences between Zol doses. Zol 1M and Zol 1W did not reactivate inflammation nor increase fibrous tissue in the bone marrow of the jaw, whereas the distance between the root and the enamel of the incisor (DRI) remained high in Postn−/− vs Postn+/+ confirming latent inflammation and lack of crestal alveolar bone. Zol 1W and Zol 1M decreased osteocyte numbers in Postn−/− and Postn+/+ mandible, and Zol 1W increased the number of empty lacunae in Postn−/−, however no areas of necrotic bone were observed. These results demonstrate that zoledronate improves jaw osteopenia and suggest that in Postn−/− mice, zoledronate is not sufficient to induce bone necrosis. PMID:23505553

  7. Jaw-Opening Reflex and Corticobulbar Motor Excitability Changes During Quiet Sleep in Non-Human Primates

    PubMed Central

    Yao, Dongyuan; Lavigne, Gilles J.; Lee, Jye-Chang; Adachi, Kazunori; Sessle, Barry J.

    2013-01-01

    Study Objective: To test the hypothesis that the reflex and corticobulbar motor excitability of jaw muscles is reduced during sleep. Design: Polysomnographic recordings in the electrophysiological study. Setting: University sleep research laboratories. Participants and Interventions: The reflex and corticobulbar motor excitability of jaw muscles was determined during the quiet awake state (QW) and quiet sleep (QS) in monkeys (n = 4). Measurements and Results: During QS sleep, compared to QW periods, both tongue stimulation-evoked jaw-opening reflex peak and root mean square amplitudes were significantly decreased with stimulations at 2-3.5 × thresholds (P < 0.001). The jaw-opening reflex latency during sleep was also significantly longer than during QW. Intracortical microstimulation (ICMS) within the cortical masticatory area induced rhythmic jaw movements at a stable threshold (≤ 60 μA) during QW; but during QS, ICMS failed to induce any rhythmic jaw movements at the maximum ICMS intensity used, although sustained jaw-opening movements were evoked at significantly increased threshold (P < 0.001) in one of the monkeys. Similarly, during QW, ICMS within face primary motor cortex induced orofacial twitches at a stable threshold (≤ 35 μA), but the ICMS thresholds were elevated during QS. Soon after the animal awoke, rhythmic jaw movements and orofacial twitches could be evoked at thresholds similar to those before QS. Conclusions: The results suggest that the excitability of reflex and corticobulbar-evoked activity in the jaw motor system is depressed during QS. Citation: Yao D; Lavigne GJ; Lee JC; Adachi K; Sessle BJ. Jaw-opening reflex and corticobulbar motor excitability changes during quiet sleep in non-human primates. SLEEP 2013;36(2):269-280. PMID:23372275

  8. Successful Isothermal Dendritic Growth Experiment (IDGE) Proves Current Theories of Dendritic Solidification are Flawed

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The scientific objective of the Isothermal Dendritic Growth Experiment (IDGE) is to test fundamental assumptions about dendritic solidification of molten materials. "Dendrites"-- from the ancient Greek word for tree--are tiny branching structures that form inside molten metal alloys when they solidify during manufacturing. The size, shape, and orientation of the dendrites have a major effect on the strength, ductility (ability to be molded or shaped), and usefulness of an alloy. Nearly all of the cast metal alloys used in everyday products (such as automobiles and airplanes) are composed of thousands to millions of tiny dendrites. Gravity, present on Earth, causes convection currents in molten alloys that disturb dendritic solidification and make its precise study impossible. In space, gravity is negated by the orbiting of the space shuttle. Consequently, IDGE (which was conducted on the space shuttle) gathered the first precise data regarding undisturbed dendritic solidification. IDGE is a microgravity materials science experiment that uses an apparatus which was designed, built, tested, and operated by people from the NASA Lewis Research Center. This experiment was conceived by the principal investigator, Professor Martin E. Glicksman, from Rensselaer Polytechnic Institute in Troy, New York. The experiment was a team effort of Lewis civil servants, contractors from Aerospace Design & Fabrication Inc. (ADF), and personnel at Rensselaer.

  9. Effect of different head-neck-jaw postures on cervicocephalic kinesthetic sense

    PubMed Central

    Zafar, Hamayun; Alghadir, Ahmad H.; Iqbal, Zaheen A.

    2017-01-01

    Objectives: To investigate the effect of different induced head-neck-jaw postures on head-neck relocation error among healthy subjects. Methods: 30 healthy adult male subjects participated in this study. Cervicocephalic kinesthetic sense was measured while standing, habitual sitting, habitual sitting with clenched jaw and habitual sitting with forward head posture during right rotation, left rotation, flexion and extension using kinesthetic sensibility test. Results: Head-neck relocation error was least while standing, followed by habitual sitting, habitual sitting with forward head posture and habitual sitting with jaw clenched. However, there was no significant difference in error between different tested postures during all the movements. Conclusions: To the best of our knowledge, this is the first study to see the effect of different induced head-neck-jaw postures on head-neck position sense among healthy subjects. Assuming a posture for a short duration of time doesn’t affect head-neck relocation error in normal healthy subjects. PMID:29199196

  10. Analysis of different therapeutic protocols for osteonecrosis of the jaw associated with oral and intravenous bisphpsphonates

    PubMed Central

    Bermúdez-Bejarano, Elena-Beatriz; Serrera-Figallo, María-Ángeles; Gutiérrez-Corrales, Aida; Romero-Ruiz, Manuel-María; Castillo-de-Oyagüe, Raquel; Gutiérrez-Pérez, José-Luis; Machuca-Portillo, Guillermo

    2017-01-01

    Introduction Chemotherapy-associated osteonecrosis of the jaw caused by bisphosphonates is an exposure of necrotic bone with more than eight weeks of evolution that is attributable to bisphosphonates and no prior radiation therapy. Its etiopathogenesis remains unknown, although there are two hypotheses that may explain it: the drug’s mechanism of action, and the risk factors that can lead to osteonecrosis. There is a wide range of treatment options for managing chemotherapy-associated osteonecrosis of the jaw, from conservative treatments to surgical procedures of varying levels of invasiveness, which are sometimes supplemented with adjuvant therapies. Objectives The objective of this article is to group the therapeutic options for osteonecrosis of the jaw (ONJ) into seven different protocols and to evaluate their effectiveness in relation to stage of ONJ. Material and Methods A literature review was carried out in PubMed following the PRISMA criteria. A total of 47 were collected after compiling a series of variables that define ONJ, applied treatments, and the clinical results obtained. Results and Discussion The 47 articles selected have a low to average estimated risk of bias and are of moderate to good quality. According to the data obtained, Protocol 3 (conservative treatment, clinical and radiological follow-up, minimally invasive surgical treatment, and adjuvant therapies) is the most favorable approach for ONJ lesions caused by oral bisphosphonates. For lesions caused by intravenous bisphosphonates, Protocol 2 (conservative treatment, clinical and radiological follow-up, minimally invasive surgical treatment, and no adjuvant therapies) is the best approach. When comparing the different stages of ONJ, Protocol 1 (conservative treatment, clinical and radiological follow-up) promotes better healing of Stage 1 ONJ lesions caused by orally administered bisphosphonates, and Protocol 3 is recommended for Stage II. For ONJ lesions attributable to intravenous

  11. Description of the chimaerid jaw and its phylogenetic origins.

    PubMed

    Grogan, Eileen D; Lund, Richard; Didier, Dominique

    1999-01-01

    Anatomical delineation of the holocephalan palatoquadrate has proven to be difficult and, so, has been an extensively debated topic as it relates to the evolutionary derivation of jaws, modes of jaw suspension, and the interrelationships of the hondrichthyes (Elasmobranchii and Holocephali). Embryological analyses of the chimaerid jaw and cranium are presented to provide an anatomical description of the palatoquadrate in modern chimaerids. The palatoquadrate fuses, anteriorly, to the nasal capsule early in development. This marks the first point of contact between the mandibular arch and cranium. Orbitonasal canal foramina delineate the dorsal palatoquadrate margin. The posteriormost margin is marked by fusion of the upper jaw with trabecular and parachordal cartilages in the region of the efferent eudobranchial artery foramen and by a suborbitally positioned basitrabecular cartilage. This basitrabecula generates a subocular shelf as it fuses medially to the parachordal cartilage and posteriorly to the postorbital wall and cranial otic process. The results of these analyses are related to morphological studies of Paleozoic chondrichthyan fishes, particularly the autodiastylic paraselachians that represent morphological intermediates to selachians and holocephalans. The paraselachian basitrabecular, which was mechanically fundamental to stabilizing the free autodiastylic upper jaw and a hyoid operculum, is shown to correlate with the suborbital basitrabecular of today's chimaerids. Further analyses of both extant and fossil data permit us to conclude that the primordial chondrichthyan palatoquadrate did not extend posteriorly to include a palatoquadrate-derived otic process. Rather, the posteriormost extent of this element is primitively found within the limits of the orbit and is demarcated by the highly conserved basitrabecular element. The collective analyses support autodiastyly as the ancestral condition from which all fundamental suspensorial states are

  12. Phylotranscriptomic consolidation of the jawed vertebrate timetree.

    PubMed

    Irisarri, Iker; Baurain, Denis; Brinkmann, Henner; Delsuc, Frédéric; Sire, Jean-Yves; Kupfer, Alexander; Petersen, Jörn; Jarek, Michael; Meyer, Axel; Vences, Miguel; Philippe, Hervé

    2017-09-01

    Phylogenomics is extremely powerful but introduces new challenges as no agreement exists on "standards" for data selection, curation and tree inference. We use jawed vertebrates (Gnathostomata) as model to address these issues. Despite considerable efforts in resolving their evolutionary history and macroevolution, few studies have included a full phylogenetic diversity of gnathostomes and some relationships remain controversial. We tested a novel bioinformatic pipeline to assemble large and accurate phylogenomic datasets from RNA sequencing and find this phylotranscriptomic approach successful and highly cost-effective. Increased sequencing effort up to ca. 10Gbp allows recovering more genes, but shallower sequencing (1.5Gbp) is sufficient to obtain thousands of full-length orthologous transcripts. We reconstruct a robust and strongly supported timetree of jawed vertebrates using 7,189 nuclear genes from 100 taxa, including 23 new transcriptomes from previously unsampled key species. Gene jackknifing of genomic data corroborates the robustness of our tree and allows calculating genome-wide divergence times by overcoming gene sampling bias. Mitochondrial genomes prove insufficient to resolve the deepest relationships because of limited signal and among-lineage rate heterogeneity. Our analyses emphasize the importance of large curated nuclear datasets to increase the accuracy of phylogenomics and provide a reference framework for the evolutionary history of jawed vertebrates.

  13. Effects of aging and sarcopenia on tongue pressure and jaw-opening force.

    PubMed

    Machida, Nami; Tohara, Haruka; Hara, Koji; Kumakura, Ayano; Wakasugi, Yoko; Nakane, Ayako; Minakuchi, Shunsuke

    2017-02-01

    Aging and sarcopenia reduce not only body strength, but also the strength of swallowing muscles. We examined how aging and sarcopenia affect tongue pressure and jaw-opening force. A total of 97 older adults (97 men, mean age 78.5 ± 6.6 years; 100 women, mean age 77.8 ± 6.2 years) were enrolled. Classification of sarcopenia was based on the Criteria of Asian Working Group for Sarcopenia. To investigate which variable between aging and sarcopenia was a significant independent variable on tongue pressure and jaw-opening force, multivariate linear regression analysis was carried out. The mean tongue pressure was 26.3 ± 7.8 kPa in men and 24.6 ± 7.2 kPa in women. The mean jaw-opening force was 6.3 ± 1.6 kg in men and 5.2 ± 1.3 kg in women. Tongue pressure in men, aging and sarcopenia were significant independent variables, whereas only sarcopenia was a significant independent variable in women. Jaw-opening force in men and sarcopenia were significant independent variables, whereas neither aging nor sarcopenia were significant independent variables in women. We found different characteristics in the effects of aging and sarcopenia based on site and sex. We suggested that aging decreased tongue pressure more than jaw-opening force, and affected men more than women. Sarcopenia affected tongue pressure and jaw-opening force, with the exception of jaw-opening force in women. Considering these characteristics is useful to predict the decline of swallowing function, and provide appropriate interventions preventing dysphagia. Geriatr Gerontol Int 2017; 17: 295-301. © 2016 Japan Geriatrics Society.

  14. [Jaw osteosarcomas].

    PubMed

    Steve, M; Ernenwein, D; Chaine, A; Bertolus, C; Goudot, P; Ruhin-Poncet, B

    2011-11-01

    Osteosarcoma (OS) is the most frequent bone malignant tumor. It is usually found on long bones, 5 to 10% are located on jaws, accounting for 0.5 to 1% of all facial tumors. There is little published data which concerns only few patients. Our aim was to study retrospectively cases of facial bone OS in adults, and to compare our results with published data to suggest an optimal management scheme. Thirty-three patients were managed for an OS, from January 1997 to January 2007. Fourteen patients with a maxillary and mandibular OS, treated in first-intention in our unit, were included. The following data were analyzed: age; personal history; circumstance of discovery; clinical, functional, and physical signs; loco-regional extension and metastasis radiological investigation. The histological slides were systematically reviewed. The protocol, therapeutic outcome, and follow-up were studied. The mean age at diagnosis was 43. Swelling was the most frequent functional sign. The mean delay before management was 3.4 months. The most frequent radiological presentation was a lytic and hyperdense image. The diagnosis was suggested after CT scan in 57.1% of cases. The biopsy was correlated to the anatomopathological analysis in 78.6% of cases. The most common treatment was surgical exeresis completed by chemotherapy. The 5-year survival rate was 50%. Jaw OS are specific because of their localization and specific bone ultrastructure. Their management remains controversial: should they be managed like limb OS or treated more specifically? Neoadjuvant chemotherapy, even if it delays exeresis for 3 months, seems to stop the growth or reduce the tumor. An early anatomopathological analysis of the surgical piece determines adjuvant therapy. The negative prognostic factors are: maxillary localization because of limited exeresis margins, tumoral size, and osteoblastic sub-type. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  15. Unfinished Business: Evolution of the MHC and the Adaptive Immune System of Jawed Vertebrates.

    PubMed

    Kaufman, Jim

    2018-04-26

    The major histocompatibility complex (MHC) is a large genetic region with many genes, including the highly polymorphic classical class I and II genes that play crucial roles in adaptive as well as innate immune responses. The organization of the MHC varies enormously among jawed vertebrates, but class I and II genes have not been found in other animals. How did the MHC arise, and are there underlying principles that can help us to understand the evolution of the MHC? This review considers what it means to be an MHC and the potential importance of genome-wide duplication, gene linkage, and gene coevolution for the emergence and evolution of an adaptive immune system. Then it considers what the original antigen-specific receptor and MHC molecule might have looked like, how peptide binding might have evolved, and finally the importance of adaptive immunity in general.

  16. Direct demonstration of persistent Na+ channel activity in dendritic processes of mammalian cortical neurones

    PubMed Central

    Magistretti, Jacopo; Ragsdale, David S; Alonso, Angel

    1999-01-01

    Single Na+ channel activity was recorded in patch-clamp, cell-attached experiments performed on dendritic processes of acutely isolated principal neurones from rat entorhinal-cortex layer II. The distances of the recording sites from the soma ranged from ≈20 to ≈100 μm.Step depolarisations from holding potentials of −120 to −100 mV to test potentials of −60 to +10 mV elicited Na+ channel openings in all of the recorded patches (n= 16).In 10 patches, besides transient Na+ channel openings clustered within the first few milliseconds of the depolarising pulses, prolonged and/or late Na+ channel openings were also regularly observed. This ‘persistent’ Na+ channel activity produced net inward, persistent currents in ensemble-average traces, and remained stable over the entire duration of the experiments (≈9 to 30 min).Two of these patches contained <= 3 channels. In these cases, persistent Na+ channel openings could be attributed to the activity of one single channel.The voltage dependence of persistent-current amplitude in ensemble-average traces closely resembled that of whole-cell, persistent Na+ current expressed by the same neurones, and displayed the same characteristic low threshold of activation.Dendritic, persistent Na+ channel openings had relatively high single-channel conductance (≈20 pS), similar to what is observed for somatic, persistent Na+ channels.We conclude that a stable, persistent Na+ channel activity is expressed by proximal dendrites of entorhinal-cortex layer II principal neurones, and can contribute a significant low-threshold, persistent Na+ current to the dendritic processing of excitatory synaptic inputs. PMID:10601494

  17. Orientations of dendritic growth during solidification

    NASA Astrophysics Data System (ADS)

    Lee, Dong Nyung

    2017-03-01

    Dendrites are crystalline forms which grow far from the limit of stability of the plane front and adopt an orientation which is as close as possible to the heat flux direction. Dendritic growth orientations for cubic metals, bct Sn, and hcp Zn, can be controlled by thermal conductivity, Young's modulus, and surface energy. The control factors have been elaborated. Since the dendrite is a single crystal, its properties such as thermal conductivity that influences the heat flux direction, the minimum Young's modulus direction that influences the strain energy minimization, and the minimum surface energy plane that influences the crystal/liquid interface energy minimization have been proved to control the dendritic growth direction. The dendritic growth directions of cubic metals are determined by the minimum Young's modulus direction and/or axis direction of symmetry of the minimum crystal surface energy plane. The dendritic growth direction of bct Sn is determined by its maximum thermal conductivity direction and the minimum surface energy plane normal direction. The primary dendritic growth direction of hcp Zn is determined by its maximum thermal conductivity direction and the minimum surface energy plane normal direction and the secondary dendrite arm direction of hcp Zn is normal to the primary dendritic growth direction.

  18. Myofiber turnover is used to retrofit frog jaw muscles during metamorphosis.

    PubMed

    Alley, K E

    1989-01-01

    Metamorphic reorganization of the head in anuran amphibians entails abrupt restructuring of the jaw complex as larval feeding structures are transformed into their adult configurations. In this morphometric study, light microscopy wa used to analyze the larval maturation and metamorphic transfiguration of the adductor jaw muscles in the leopard frog (Rana pipiens). Larval jaw muscles, first established during embryogenesis, continue to grow by fiber addition until prometamorphosis, stage XII. Thereafter, fiber number remains stable but additional muscle growth continues by hypertrophy of the individual fibers until metamorphic climax. During metamorphic stages XIX-XXIII, a complete involution of all larval myofibers occurs. Simultaneously, within the same muscle beds, a second wave of myogenesis produces myoblasts which are the precursors of adult jaw myofibers. New muscle fibers continue to be added to these muscles well after the completion of metamorphosis; however, the total duration of the postmetamorphic myogenic period has not been defined. These observations provide clear evidence that the entir population of primary myofibers used in larval oral activity disappears from the adductor muscle beds and is replaced by a second wave of myogenesis commencing during climax. These findings indicate that the adductor jaw muscles are prepared for adult feeding by a complicated cellular process that retrofits existing muscle beds with a completely new complement of myofibers.

  19. Wake measurements of a dechirper jaw with nonzero tilt angle

    NASA Astrophysics Data System (ADS)

    Bane, Karl; Guetg, Marc; Lutman, Alberto

    2018-05-01

    The RadiaBeam/SLAC dechirper at the Linac Coherent Light Source (LCLS) is being used as a fast kicker, by inducing transverse wakefields, to, e.g., facilitate Fresh-slice, two-color laser operation. The dechirper jaws are independently adjustable at both ends, and it is difficult to avoid leaving residual (longitudinal) tilt in them during setup. In this report we develop a model independent method of removing unknown tilt in a jaw. In addition, for a short uniform bunch passing by a single dechirper plate, we derive an explicit analytical formula for the transverse wake kick as function of average plate offset and tilt angle. We perform wake kick measurements for the different dechirper jaws of the RadiaBeam/SLAC dechirper, and find that the agreement between measurement and theory is excellent.

  20. Regulation of dendrite growth and maintenance by exocytosis

    PubMed Central

    Peng, Yun; Lee, Jiae; Rowland, Kimberly; Wen, Yuhui; Hua, Hope; Carlson, Nicole; Lavania, Shweta; Parrish, Jay Z.; Kim, Michael D.

    2015-01-01

    ABSTRACT Dendrites lengthen by several orders of magnitude during neuronal development, but how membrane is allocated in dendrites to facilitate this growth remains unclear. Here, we report that Ras opposite (Rop), the Drosophila ortholog of the key exocytosis regulator Munc18-1 (also known as STXBP1), is an essential factor mediating dendrite growth. Neurons with depleted Rop function exhibit reduced terminal dendrite outgrowth followed by primary dendrite degeneration, suggestive of differential requirements for exocytosis in the growth and maintenance of different dendritic compartments. Rop promotes dendrite growth together with the exocyst, an octameric protein complex involved in tethering vesicles to the plasma membrane, with Rop–exocyst complexes and exocytosis predominating in primary dendrites over terminal dendrites. By contrast, membrane-associated proteins readily diffuse from primary dendrites into terminals, but not in the reverse direction, suggesting that diffusion, rather than targeted exocytosis, supplies membranous material for terminal dendritic growth, revealing key differences in the distribution of materials to these expanding dendritic compartments. PMID:26483382

  1. Neocortical layers I and II of the hedgehog (Erinaceus europaeus). I. Intrinsic organization.

    PubMed

    Valverde, F; Facal-Valverde, M V

    1986-01-01

    The intrinsic organization and interlaminar connections in neocortical layers I and II have been studied in adult hedgehogs (Erinaceus europaeus) using the Golgi method. Layer I contains a dense plexus of horizontal fibers, the terminal dendritic bouquets of pyramidal cells of layer II and of underlying layers, and varieties of intrinsic neurons. Four main types of cells were found in layer I. Small horizontal cells represent most probably persisting foetal horizontal cells described for other mammals. Large horizontal cells, tufted cells, and spinous horizontal cells were also found in this layer. Layer II contains primitive pyramidal cells representing the most outstanding feature of the neocortex of the hedgehog. Most pyramidal cells in layer II have two, three or more apical dendrites, richly covered by spines predominating over the basal dendrites. These cells resemble pyramidal cells found in the piriform cortex, hippocampus and other olfactory areas. It is suggested that the presence of these neurons reflects the retention of a primitive character in neocortical evolution. Cells with intrinsic axons were found among pyramidal cells in layer II. These have smooth dendrites penetrating layer I and local axons forming extremely complex terminal arborizations around the bodies and proximal dendritic portions of pyramidal cells. They most probably effect numerous axo-somatic contacts resembling basket cells. The similarity of some axonal terminals with the chandelier type of axonal arborization is discussed. Other varieties of cells located in deep cortical layers and having ascending axons for layers I and II were also studied. It is concluded that the two first neocortical layers represent a level of important integration in this primitive mammal.

  2. Compression force on the upper jaw during neonatal intubation: mannequin study.

    PubMed

    Doreswamy, Srinivasa Murthy; Almannaei, Khaled; Fusch, Chris; Shivananda, Sandesh

    2015-03-01

    Neonatal intubation is a technically challenging procedure, and pressure-related injuries to surrounding structures have been reported. The primary objective of this study was to determine the pressure exerted on the upper jaw during tracheal intubation using a neonatal mannequin. Multidisciplinary care providers working at a neonatal intensive care unit were requested to intubate a neonatal mannequin using the standard laryngoscope and 3.0-mm (internal diameter) endotracheal tube. Compression force exerted was measured by using pressure-sensitive film taped on the upper jaw before every intubation attempt. Pressure, area under pressure and time taken to intubate were compared between the different types of health-care professionals. Thirty care providers intubated the mannequin three times each. Pressure impressions were observed on the developer film after every intubation attempt (n = 90). The mean pressure exerted during intubation across all health-care providers was 568 kPa (SD 78). The mean area placed under pressure was 142 mm(2) (SD 45), and the mean time taken for intubation was 14.7 s (SD 4.3). There was no difference in pressure exerted on the upper jaw between frequent and less frequent intubators. It was found that pressure greater than 400 kPa was inadvertently applied on the upper jaw during neonatal intubation, far exceeding the 250 kPa shown to cause tissue injury in animal models. The upper jaw is exposed to a significant compression force during intubation. Although such exposure is brief, it has the potential to cause tissue injury. Contact of the laryngoscope blade with the upper jaw occurred in all intubation attempts with the currently used design of laryngoscope. © 2014 The Authors. Journal of Paediatrics and Child Health © 2014 Paediatrics and Child Health Division (Royal Australasian College of Physicians).

  3. Expression of Msx-1 is suppressed in bisphosphonate associated osteonecrosis related jaw tissue-etiopathology considerations respecting jaw developmental biology-related unique features

    PubMed Central

    2010-01-01

    Background Bone-destructive disease treatments include bisphosphonates and antibodies against the osteoclast differentiator, RANKL (aRANKL); however, osteonecrosis of the jaw (ONJ) is a frequent side-effect. Current models fail to explain the restriction of bisphosphonate (BP)-related and denosumab (anti-RANKL antibody)-related ONJ to jaws. Msx-1 is exclusively expressed in craniofacial structures and pivotal to cranial neural crest (CNC)-derived periodontal tissue remodeling. We hypothesised that Msx-1 expression might be impaired in bisphosphonate-related ONJ. The study aim was to elucidate Msx-1 and RANKL-associated signal transduction (BMP-2/4, RANKL) in ONJ-altered and healthy periodontal tissue. Methods Twenty ONJ and twenty non-BP exposed periodontal samples were processed for RT-PCR and immunohistochemistry. An automated staining-based alkaline phosphatase-anti-alkaline phosphatase method was used to measure the stained cells:total cell-number ratio (labelling index, Bonferroni adjustment). Real-time RT-PCR was performed on ONJ-affected and healthy jaw periodontal samples (n = 20 each) to quantitatively compare Msx-1, BMP-2, RANKL, and GAPDH mRNA levels. Results Semi-quantitative assessment of the ratio of stained cells showed decreased Msx-1 and RANKL and increased BMP-2/4 (all p < 0.05) expression in ONJ-adjacent periodontal tissue. ONJ tissue also exhibited decreased relative gene expression for Msx-1 (p < 0.03) and RANKL (p < 0.03) and increased BMP-2/4 expression (p < 0.02) compared to control. Conclusions These results explain the sclerotic and osteopetrotic changes of periodontal tissue following BP application and substantiate clinical findings of BP-related impaired remodeling specific to periodontal tissue. RANKL suppression substantiated the clinical finding of impaired bone remodelling in BP- and aRANKL-induced ONJ-affected bone structures. Msx-1 suppression in ONJ-adjacent periodontal tissue suggested a bisphosphonate-related impairment in

  4. Expression of Msx-1 is suppressed in bisphosphonate associated osteonecrosis related jaw tissue-etiopathology considerations respecting jaw developmental biology-related unique features.

    PubMed

    Wehrhan, Falk; Hyckel, Peter; Ries, Jutta; Stockmann, Phillip; Nkenke, Emeka; Schlegel, Karl A; Neukam, Friedrich W; Amann, Kerstin

    2010-10-13

    Bone-destructive disease treatments include bisphosphonates and antibodies against the osteoclast differentiator, RANKL (aRANKL); however, osteonecrosis of the jaw (ONJ) is a frequent side-effect. Current models fail to explain the restriction of bisphosphonate (BP)-related and denosumab (anti-RANKL antibody)-related ONJ to jaws. Msx-1 is exclusively expressed in craniofacial structures and pivotal to cranial neural crest (CNC)-derived periodontal tissue remodeling. We hypothesised that Msx-1 expression might be impaired in bisphosphonate-related ONJ. The study aim was to elucidate Msx-1 and RANKL-associated signal transduction (BMP-2/4, RANKL) in ONJ-altered and healthy periodontal tissue. Twenty ONJ and twenty non-BP exposed periodontal samples were processed for RT-PCR and immunohistochemistry. An automated staining-based alkaline phosphatase-anti-alkaline phosphatase method was used to measure the stained cells:total cell-number ratio (labelling index, Bonferroni adjustment). Real-time RT-PCR was performed on ONJ-affected and healthy jaw periodontal samples (n = 20 each) to quantitatively compare Msx-1, BMP-2, RANKL, and GAPDH mRNA levels. Semi-quantitative assessment of the ratio of stained cells showed decreased Msx-1 and RANKL and increased BMP-2/4 (all p < 0.05) expression in ONJ-adjacent periodontal tissue. ONJ tissue also exhibited decreased relative gene expression for Msx-1 (p < 0.03) and RANKL (p < 0.03) and increased BMP-2/4 expression (p < 0.02) compared to control. These results explain the sclerotic and osteopetrotic changes of periodontal tissue following BP application and substantiate clinical findings of BP-related impaired remodeling specific to periodontal tissue. RANKL suppression substantiated the clinical finding of impaired bone remodelling in BP- and aRANKL-induced ONJ-affected bone structures. Msx-1 suppression in ONJ-adjacent periodontal tissue suggested a bisphosphonate-related impairment in cellular differentiation that occurred

  5. Interactions with Astroglia Influence the Shape of the Developing Dendritic Arbor and Restrict Dendrite Growth Independent of Promoting Synaptic Contacts

    PubMed Central

    Farley, Jennifer R.; Sterritt, Jeffrey R.; Crane, Andrés B.; Wallace, Christopher S.

    2017-01-01

    Astroglia play key roles in the development of neurons, ranging from regulating neuron survival to promoting synapse formation, yet basic questions remain about whether astrocytes might be involved in forming the dendritic arbor. Here, we used cultured hippocampal neurons as a simple in vitro model that allowed dendritic growth and geometry to be analyzed quantitatively under conditions where the extent of interactions between neurons and astrocytes varied. When astroglia were proximal to neurons, dendrites and dendritic filopodia oriented toward them, but the general presence of astroglia significantly reduced overall dendrite growth. Further, dendritic arbors in partial physical contact with astroglia developed a pronounced pattern of asymmetrical growth, because the dendrites in direct contact were significantly smaller than the portion of the arbor not in contact. Notably, thrombospondin, the astroglial factor shown previously to promote synapse formation, did not inhibit dendritic growth. Thus, while astroglia promoted the formation of presynaptic contacts onto dendrites, dendritic growth was constrained locally within a developing arbor at sites where dendrites contacted astroglia. Taken together, these observations reveal influences on spatial orientation of growth as well as influences on morphogenesis of the dendritic arbor that have not been previously identified. PMID:28081563

  6. Statistical analysis of dendritic spine distributions in rat hippocampal cultures

    PubMed Central

    2013-01-01

    Background Dendritic spines serve as key computational structures in brain plasticity. Much remains to be learned about their spatial and temporal distribution among neurons. Our aim in this study was to perform exploratory analyses based on the population distributions of dendritic spines with regard to their morphological characteristics and period of growth in dissociated hippocampal neurons. We fit a log-linear model to the contingency table of spine features such as spine type and distance from the soma to first determine which features were important in modeling the spines, as well as the relationships between such features. A multinomial logistic regression was then used to predict the spine types using the features suggested by the log-linear model, along with neighboring spine information. Finally, an important variant of Ripley’s K-function applicable to linear networks was used to study the spatial distribution of spines along dendrites. Results Our study indicated that in the culture system, (i) dendritic spine densities were "completely spatially random", (ii) spine type and distance from the soma were independent quantities, and most importantly, (iii) spines had a tendency to cluster with other spines of the same type. Conclusions Although these results may vary with other systems, our primary contribution is the set of statistical tools for morphological modeling of spines which can be used to assess neuronal cultures following gene manipulation such as RNAi, and to study induced pluripotent stem cells differentiated to neurons. PMID:24088199

  7. Electrical Advantages of Dendritic Spines

    PubMed Central

    Gulledge, Allan T.; Carnevale, Nicholas T.; Stuart, Greg J.

    2012-01-01

    Many neurons receive excitatory glutamatergic input almost exclusively onto dendritic spines. In the absence of spines, the amplitudes and kinetics of excitatory postsynaptic potentials (EPSPs) at the site of synaptic input are highly variable and depend on dendritic location. We hypothesized that dendritic spines standardize the local geometry at the site of synaptic input, thereby reducing location-dependent variability of local EPSP properties. We tested this hypothesis using computational models of simplified and morphologically realistic spiny neurons that allow direct comparison of EPSPs generated on spine heads with EPSPs generated on dendritic shafts at the same dendritic locations. In all morphologies tested, spines greatly reduced location-dependent variability of local EPSP amplitude and kinetics, while having minimal impact on EPSPs measured at the soma. Spine-dependent standardization of local EPSP properties persisted across a range of physiologically relevant spine neck resistances, and in models with variable neck resistances. By reducing the variability of local EPSPs, spines standardized synaptic activation of NMDA receptors and voltage-gated calcium channels. Furthermore, spines enhanced activation of NMDA receptors and facilitated the generation of NMDA spikes and axonal action potentials in response to synaptic input. Finally, we show that dynamic regulation of spine neck geometry can preserve local EPSP properties following plasticity-driven changes in synaptic strength, but is inefficient in modifying the amplitude of EPSPs in other cellular compartments. These observations suggest that one function of dendritic spines is to standardize local EPSP properties throughout the dendritic tree, thereby allowing neurons to use similar voltage-sensitive postsynaptic mechanisms at all dendritic locations. PMID:22532875

  8. Differential polarization of cortical pyramidal neuron dendrites through weak extracellular fields

    PubMed Central

    Obermayer, Klaus

    2018-01-01

    The rise of transcranial current stimulation (tCS) techniques have sparked an increasing interest in the effects of weak extracellular electric fields on neural activity. These fields modulate ongoing neural activity through polarization of the neuronal membrane. While the somatic polarization has been investigated experimentally, the frequency-dependent polarization of the dendritic trees in the presence of alternating (AC) fields has received little attention yet. Using a biophysically detailed model with experimentally constrained active conductances, we analyze the subthreshold response of cortical pyramidal cells to weak AC fields, as induced during tCS. We observe a strong frequency resonance around 10-20 Hz in the apical dendrites sensitivity to polarize in response to electric fields but not in the basal dendrites nor the soma. To disentangle the relative roles of the cell morphology and active and passive membrane properties in this resonance, we perform a thorough analysis using simplified models, e.g. a passive pyramidal neuron model, simple passive cables and reconstructed cell model with simplified ion channels. We attribute the origin of the resonance in the apical dendrites to (i) a locally increased sensitivity due to the morphology and to (ii) the high density of h-type channels. Our systematic study provides an improved understanding of the subthreshold response of cortical cells to weak electric fields and, importantly, allows for an improved design of tCS stimuli. PMID:29727454

  9. Detection of zinc translocation into apical dendrite of CA1 pyramidal neuron after electrical stimulation.

    PubMed

    Suh, Sang Won

    2009-02-15

    Translocation of the endogenous cation zinc from presynaptic terminals to postsynaptic neurons after brain insult has been implicated as a potential neurotoxic event. Several studies have previously demonstrated that a brief electrical stimulation is sufficient to induce the translocation of zinc from presynaptic vesicles into the cytoplasm (soma) of postsynaptic neurons. In the present work I have extended those findings in three ways: (i) providing evidence that zinc translocation occurs into apical dendrites, (ii) presenting data that there is an apparent translocation into apical dendrites when only a zinc-containing synaptic input is stimulated, and (iii) presenting data that there is no zinc translocation into apical dendrite of ZnT3 KO mice following electrical stimulation. Hippocampal slices were preloaded with the "trappable" zinc fluorescent probe, Newport Green. After washout, a single apical dendrite in the stratum radiatum of hippocampal CA1 area was selected and focused on. Burst stimulation (100Hz, 500microA, 0.2ms, monopolar) was delivered to either the adjacent Schaffer-collateral inputs (zinc-containing) or to the adjacent temporo-ammonic inputs (zinc-free) to the CA1 dendrites. Stimulation of the Schaffer collaterals increased the dendritic fluorescence, which was blocked by TTX, low-Ca medium, or the extracellular zinc chelator, CaEDTA. Stimulation of the temporo-ammonic pathway caused no significant rise in the fluorescence. Genetic depletion of vesicular zinc by ZnT3 KO showed no stimulation-induced apical dendrite zinc rise. The present study provides evidence that synaptically released zinc translocates into postsynaptic neurons through the apical dendrites of CA1 pyramidal neurons during physiological synaptic activity.

  10. Hyperparathyroidism-jaw tumour syndrome detected by aggressive generalized osteitis fibrosa cystica.

    PubMed

    Guerrouani, Alae; Rzin, Abdelkader; El Khatib, Karim

    2013-01-01

    Severe hyperparathyroidism can affect bone metabolism and be in the origine of multiple brown tumours (generalized osteitis fibrosa cystica). When associated with fibro-ossifying tumours of the jaw, it realizes a rare genetic syndrome referred as Hyperparathyroidism-jaw tumour HPT-JT. We report the case of a patient we treated for HPT-JT, and literature review.

  11. Directional selection has shaped the oral jaws of Lake Malawi cichlid fishes.

    PubMed

    Albertson, R Craig; Streelman, J Todd; Kocher, Thomas D

    2003-04-29

    East African cichlid fishes represent one of the most striking examples of rapid and convergent evolutionary radiation among vertebrates. Models of ecological speciation would suggest that functional divergence in feeding morphology has contributed to the origin and maintenance of cichlid species diversity. However, definitive evidence for the action of natural selection has been missing. Here we use quantitative genetics to identify regions of the cichlid genome responsible for functionally important shape differences in the oral jaw apparatus. The consistent direction of effects for individual quantitative trait loci suggest that cichlid jaws and teeth evolved in response to strong, divergent selection. Moreover, several chromosomal regions contain a disproportionate number of quantitative trait loci, indicating a prominent role for pleiotropy or genetic linkage in the divergence of this character complex. Of particular interest are genomic intervals with concerted effects on both the length and height of the lower jaw. Coordinated changes in this area of the oral jaw apparatus are predicted to have direct consequences for the speed and strength of jaw movement. Taken together, our results imply that the rapid and replicative nature of cichlid trophic evolution is the result of directional selection on chromosomal packages that encode functionally linked aspects of the craniofacial skeleton.

  12. The Rise of Jaw Protrusion in Spiny-Rayed Fishes Closes the Gap on Elusive Prey.

    PubMed

    Bellwood, David R; Goatley, Christopher H R; Bellwood, Orpha; Delbarre, Daniel J; Friedman, Matt

    2015-10-19

    Jaw protrusion is one of the most important innovations in vertebrate feeding over the last 400 million years [1, 2]. Protrusion enables a fish to rapidly decrease the distance between itself and its prey [2, 3]. We assessed the evolution and functional implications of jaw protrusion in teleost fish assemblages from shallow coastal seas since the Cretaceous. By examining extant teleost fishes, we identified a robust morphological predictor of jaw protrusion that enabled us to predict the extent of jaw protrusion in fossil fishes. Our analyses revealed increases in both average and maximum jaw protrusion over the last 100 million years, with a progressive increase in the potential impact of fish predation on elusive prey. Over this period, the increase in jaw protrusion was initially driven by a taxonomic restructuring of fish assemblages, with an increase in the proportion of spiny-rayed fishes (Acanthomorpha), followed by an increase in the extent of protrusion within this clade. By increasing the ability of fishes to catch elusive prey [2, 4], jaw protrusion is likely to have fundamentally changed the nature of predator-prey interactions and may have contributed to the success of the spiny-rayed fishes, the dominant fish clade in modern oceans [5]. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Maintenance of weight loss in obese patients after jaw wiring.

    PubMed Central

    Garrow, J S; Gardiner, G T

    1981-01-01

    In treatment of obesity restriction of food intake is necessary to achieve good results. Various operations have been devised to prevent patients overeating, but in this study jaw wiring was used to limit food intake. This procedure produces weight loss in obese patients but when the wires are removed the weight is usually regained. This report studied a group of patients whose weight loss was maintained after the wires were removed. A nylon cord fastened round the waist of the patient after weight reduction was found to act as a psychological barrier to weight gain. Seven patients were followed for 4-14 months after removal of jaw wires and regained a mean of only 5.6 kg of the 31.8 kg lost while their jaws were wired. This procedure compares favourably with other treatments for severe obesity. PMID:6783203

  14. SU-G-BRA-14: Dose in a Rigidly Moving Phantom with Jaw and MLC Compensation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chao, E; Lucas, D

    Purpose: To validate dose calculation for a rigidly moving object with jaw motion and MLC shifts to compensate for the motion in a TomoTherapy™ treatment delivery. Methods: An off-line version of the TomoTherapy dose calculator was extended to perform dose calculations for rigidly moving objects. A variety of motion traces were added to treatment delivery plans, along with corresponding jaw compensation and MLC shift compensation profiles. Jaw compensation profiles were calculated by shifting the jaws such that the center of the treatment beam moved by an amount equal to the motion in the longitudinal direction. Similarly, MLC compensation profiles weremore » calculated by shifting the MLC leaves by an amount that most closely matched the motion in the transverse direction. The same jaw and MLC compensation profiles were used during simulated treatment deliveries on a TomoTherapy system, and film measurements were obtained in a rigidly moving phantom. Results: The off-line TomoTherapy dose calculator accurately predicted dose profiles for a rigidly moving phantom along with jaw motion and MLC shifts to compensate for the motion. Calculations matched film measurements to within 2%/1 mm. Jaw and MLC compensation substantially reduced the discrepancy between the delivered dose distribution and the calculated dose with no motion. For axial motion, the compensated dose matched the no-motion dose within 2%/1mm. For transverse motion, the dose matched within 2%/3mm (approximately half the width of an MLC leaf). Conclusion: The off-line TomoTherapy dose calculator accurately computes dose delivered to a rigidly moving object, and accurately models the impact of moving the jaws and shifting the MLC leaf patterns to compensate for the motion. Jaw tracking and MLC leaf shifting can effectively compensate for the dosimetric impact of motion during a TomoTherapy treatment delivery.« less

  15. Anti-resorptive osteonecrosis of the jaws: facts forgotten, questions answered, lessons learned.

    PubMed

    Carlson, Eric R; Schlott, Benjamin J

    2014-05-01

    Osteonecrosis of the jaws associated with bisphosphonate and other anti-resorptive medications (ARONJ) has historically been a poorly understood disease process in terms of its pathophysiology, prevention and treatment since it was originally described in 2003. In association with its original discovery 11 years ago, non-evidence based speculation of these issues have been published in the international literature and are currently being challenged. A critical analysis of cancer patients with ARONJ, for example, reveals that their osteonecrosis is nearly identical to that of cancer patients who are naive to anti-resorptive medications. In addition, osteonecrosis of the jaws is not unique to patients exposed to anti-resorptive medications, but is also seen in patients with osteomyelitis and other pathologic processes of the jaws. This article represents a review of facts forgotten, questions answered, and lessons learned in general regarding osteonecrosis of the jaws. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. The Isothermal Dendritic Growth Experiment

    NASA Technical Reports Server (NTRS)

    Glicksman, M. E.; Koss, M. B.; Malarik, D. C.

    1998-01-01

    The growth of dendrites is one of the commonly observed forms of solidification encountered when metals and alloys freeze under low thermal gradients, as occurs in most casting and welding processes. In engineering alloys, the details of the dendritic morphology directly relates to important material responses and properties. Of more generic interest, dendritic growth is also an archetypical problem in morphogenesis, where a complex pattern evolves from simple starting conditions. Thus, the physical understanding and mathematical description of how dendritic patterns emerge during the growth process are of interest to both scientists and engineers. The Isothermal Dendritic Growth Experiment (IDGE) is a basic science experiment designed to measure, for a fundamental test of theory, the kinetics and morphology of dendritic growth without complications induced by gravity-driven convection. The IDGE, a collaboration between Rensselaer Polytechnic Institute, in Troy NY, and NASA's Lewis Research Center (LeRC) was developed over a ten year period from a ground-based research program into a space flight experiment. Important to the success of this flight experiment was provision of in situ near-real-time teleoperations during the spaceflight experiment.

  17. Dendritic Kv3.3 potassium channels in cerebellar purkinje cells regulate generation and spatial dynamics of dendritic Ca2+ spikes.

    PubMed

    Zagha, Edward; Manita, Satoshi; Ross, William N; Rudy, Bernardo

    2010-06-01

    Purkinje cell dendrites are excitable structures with intrinsic and synaptic conductances contributing to the generation and propagation of electrical activity. Voltage-gated potassium channel subunit Kv3.3 is expressed in the distal dendrites of Purkinje cells. However, the functional relevance of this dendritic distribution is not understood. Moreover, mutations in Kv3.3 cause movement disorders in mice and cerebellar atrophy and ataxia in humans, emphasizing the importance of understanding the role of these channels. In this study, we explore functional implications of this dendritic channel expression and compare Purkinje cell dendritic excitability in wild-type and Kv3.3 knockout mice. We demonstrate enhanced excitability of Purkinje cell dendrites in Kv3.3 knockout mice, despite normal resting membrane properties. Combined data from local application pharmacology, voltage clamp analysis of ionic currents, and assessment of dendritic Ca(2+) spike threshold in Purkinje cells suggest a role for Kv3.3 channels in opposing Ca(2+) spike initiation. To study the physiological relevance of altered dendritic excitability, we measured [Ca(2+)](i) changes throughout the dendritic tree in response to climbing fiber activation. Ca(2+) signals were specifically enhanced in distal dendrites of Kv3.3 knockout Purkinje cells, suggesting a role for dendritic Kv3.3 channels in regulating propagation of electrical activity and Ca(2+) influx in distal dendrites. These findings characterize unique roles of Kv3.3 channels in dendrites, with implications for synaptic integration, plasticity, and human disease.

  18. Fragile X Mental Retardation Protein and Dendritic Local Translation of the Alpha Subunit of the Calcium/Calmodulin-Dependent Kinase II Messenger RNA Are Required for the Structural Plasticity Underlying Olfactory Learning.

    PubMed

    Daroles, Laura; Gribaudo, Simona; Doulazmi, Mohamed; Scotto-Lomassese, Sophie; Dubacq, Caroline; Mandairon, Nathalie; Greer, Charles August; Didier, Anne; Trembleau, Alain; Caillé, Isabelle

    2016-07-15

    In the adult brain, structural plasticity allowing gain or loss of synapses remodels circuits to support learning. In fragile X syndrome, the absence of fragile X mental retardation protein (FMRP) leads to defects in plasticity and learning deficits. FMRP is a master regulator of local translation but its implication in learning-induced structural plasticity is unknown. Using an olfactory learning task requiring adult-born olfactory bulb neurons and cell-specific ablation of FMRP, we investigated whether learning shapes adult-born neuron morphology during their synaptic integration and its dependence on FMRP. We used alpha subunit of the calcium/calmodulin-dependent kinase II (αCaMKII) mutant mice with altered dendritic localization of αCaMKII messenger RNA, as well as a reporter of αCaMKII local translation to investigate the role of this FMRP messenger RNA target in learning-dependent structural plasticity. Learning induces profound changes in dendritic architecture and spine morphology of adult-born neurons that are prevented by ablation of FMRP in adult-born neurons and rescued by an metabotropic glutamate receptor 5 antagonist. Moreover, dendritically translated αCaMKII is necessary for learning and associated structural modifications and learning triggers an FMRP-dependent increase of αCaMKII dendritic translation in adult-born neurons. Our results strongly suggest that FMRP mediates structural plasticity of olfactory bulb adult-born neurons to support olfactory learning through αCaMKII local translation. This reveals a new role for FMRP-regulated dendritic local translation in learning-induced structural plasticity. This might be of clinical relevance for the understanding of critical periods disruption in autism spectrum disorder patients, among which fragile X syndrome is the primary monogenic cause. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  19. [Phenotypes of dendritic cells in central lymph of healthy rabbits and during correction of experimental atherosclerosis].

    PubMed

    Kuznetsov, A V

    1992-09-01

    Dendritic cells of central lymph of rabbits have been identified according to the form of the cell body, characteristics of formation and branchiness of its processes in health, in atherosclerosis, its correction with radon, polyphenol preparations made of Sanguisorba officinalis and in combination of the latter. Two main types of dendritic cells have been distinguished. Type I is characterized by a rounded body with clear outlines, protrusions and one compact process. Such cells are often found in lymph of intact animals. Type II has a cell body of various forms with two and more compact or branching processes. This type is mainly detected in atherosclerosis and its correction. The prevalence of the above phenotypes of dendritic cells is attributed to the response of the immune system to atherosclerosis and its correction.

  20. Actinomyces osteomyelitis in bisphosphonate-related osteonecrosis of the jaw (BRONJ): the missing link?

    PubMed

    De Ceulaer, J; Tacconelli, E; Vandecasteele, S J

    2014-11-01

    Bisphosphonate-related osteonecrosis of the jaw (BRONJ) is a rare complication of bisphosphonate treatment characterized by the development of exposed, necrotic bone in the jaw with inflammatory signs. The pathogenesis of BRONJ is not yet fully understood. This review analyzes the evidence supporting the hypothesis that BRONJ may be considered as a bisphosphonate-induced Actinomyces infection of the jaw according to the modified Koch's postulates. The main arguments relies on the following factors: (1) the high prevalence of isolation of Actinomyces from bone BRONJ lesions (73.2 % in retrospective series); (2) the similar pathological appearance of BRONJ and Actinomyces osteomyelitis in most studies, although BRONJ lesions without inflammation have been reported; (3) the high incidence of events that disrupt the normal mucosal barrier as a necessary trigger to develop BRONJ in bisphosphonate-exposed patients; (4) the predilection of bisphosphonate-induced osteonecrosis for the bones of the jaws; and (5) the favorable response of BRONJ on treatment that is active on Actinomyces. If BRONJ confirms to be a bisphosphonate-induced Actinomyces osteomyelitis of the jaw, this has major consequences for the prevention and treatment of this condition.

  1. Interaction of gold nanoparticles and nickel(II) sulfate affects dendritic cell maturation.

    PubMed

    Deville, Sarah; Baré, Birgit; Piella, Jordi; Tirez, Kristof; Hoet, Peter; Monopoli, Marco P; Dawson, Kenneth A; Puntes, Victor F; Nelissen, Inge

    2016-12-01

    Despite many investigations have focused on the pristine toxicity of gold nanoparticles (GNPs), little is known about the outcome of co-exposure and interaction of GNPs with heavy metals which can possibly detoxify or potentiate them. Here, the combined exposure of nickel (II) sulfate (NiSO 4 ) and GNPs on the maturation response of dendritic cells (DCs) was explored. Exposure to GNPs or NiSO 4 separately induced cell activation. When cells were exposed to a mixture of both, however, the observed cell activation pattern indicated a competitive rather than an additive effect of both inducers with levels similar to those induced by NiSO 4 alone. Quantification of the GNP uptake by DCs demonstrated a significant decrease in intracellular gold content during co-incubation with NiSO 4 . An extensive physiochemical characterization was performed to determine the interaction between GNPs and NiSO 4 in the complex physiological media using nanoparticle tracking analyses, disc centrifugation, UV-visible spectroscopy, ICP-MS analyses, zeta potential measurements, electron microscopy, and proteomics. Although GNPs and NiSO 4 did not directly interact with each other, the presence of NiSO 4 in the physiological media resulted in changes in GNPs' charge and their associated protein corona (content and composition), which may contribute to a decreased cellular uptake of GNPs and sustaining the nickel-induced DC maturation. The presented results provide new insights in the interaction of heavy metals and NPs in complex physiological media. Moreover, this study highlights the necessity of mixture toxicology, since these combined exposures are highly relevant for human subjection to NPs and risk assessment of nanomaterials.

  2. Heterogeneous conservation of Dlx paralog co-expression in jawed vertebrates.

    PubMed

    Debiais-Thibaud, Mélanie; Metcalfe, Cushla J; Pollack, Jacob; Germon, Isabelle; Ekker, Marc; Depew, Michael; Laurenti, Patrick; Borday-Birraux, Véronique; Casane, Didier

    2013-01-01

    The Dlx gene family encodes transcription factors involved in the development of a wide variety of morphological innovations that first evolved at the origins of vertebrates or of the jawed vertebrates. This gene family expanded with the two rounds of genome duplications that occurred before jawed vertebrates diversified. It includes at least three bigene pairs sharing conserved regulatory sequences in tetrapods and teleost fish, but has been only partially characterized in chondrichthyans, the third major group of jawed vertebrates. Here we take advantage of developmental and molecular tools applied to the shark Scyliorhinus canicula to fill in the gap and provide an overview of the evolution of the Dlx family in the jawed vertebrates. These results are analyzed in the theoretical framework of the DDC (Duplication-Degeneration-Complementation) model. The genomic organisation of the catshark Dlx genes is similar to that previously described for tetrapods. Conserved non-coding elements identified in bony fish were also identified in catshark Dlx clusters and showed regulatory activity in transgenic zebrafish. Gene expression patterns in the catshark showed that there are some expression sites with high conservation of the expressed paralog(s) and other expression sites with events of paralog sub-functionalization during jawed vertebrate diversification, resulting in a wide variety of evolutionary scenarios within this gene family. Dlx gene expression patterns in the catshark show that there has been little neo-functionalization in Dlx genes over gnathostome evolution. In most cases, one tandem duplication and two rounds of vertebrate genome duplication have led to at least six Dlx coding sequences with redundant expression patterns followed by some instances of paralog sub-functionalization. Regulatory constraints such as shared enhancers, and functional constraints including gene pleiotropy, may have contributed to the evolutionary inertia leading to high

  3. Regulation of eye and jaw colouration in three-spined stickleback Gasterosteus aculeatus.

    PubMed

    Franco-Belussi, L; De Oliveira, C; Sköld, H N

    2018-03-25

    Fish can change their skin and eye colour for background matching and signalling. Males of Gasterosteus aculeatus develop ornamental blue eyes and a red jaw during the reproductive season, colours that are further enhanced during courtship. Here, the effects of different hormones on physiological colour changes in the eyes and jaws of male and female G. aculeatus were investigated in vitro. In an in vivo experiment, G. aculeatus were injected with a receptor blocker of a pivotal hormone (noradrenaline) that controls colour change. In males, noradrenaline had aggregating effects on melanophore and erythrophore pigments resulting in blue eyes and a pale jaw, whereas melanocyte-concentrating hormone (MCH) and melatonin resulted in a pale jaw only. When noradrenalin was combined with melanocyte stimulating hormone (MSH) or prolactin, the jaw became red, while the eyes remained blue. In vivo injection of yohimbine, an alpha-2 adrenoreceptor blocker, resulted in dispersion of melanophore pigment in the eyes and inhibited the blue colouration. Altogether, the data suggest that noradrenalin has a pivotal role in the short-term enhancement of the ornamental colouration of male G. aculeatus, potentially together with MSH or prolactin. This study also found a sex difference in the response to MCH, prolactin and melatonin, which may result from different appearance strategies in males, versus the more cryptic females. © 2018 The Fisheries Society of the British Isles.

  4. Bisphosphonates and osteonecrosis of the jaw.

    PubMed

    Shannon, Jodi; Shannon, John; Modelevsky, Steven; Grippo, Anne A

    2011-12-01

    Bisphosphonates are used worldwide as a successful treatment for people with osteoporosis, which is the major underlying cause of fractures in postmenopausal women and older adults. These agents are successful at increasing bone mass and bone trabecular thickness, decreasing the risk of fracture, and decreasing bone pain, enabling individuals to have better quality of life. Bisphosphonates are also used to treat multiple myeloma, bone metastasis, and Paget's disease; however, bisphosphonate treatment may result in negative side effects, including osteonecrosis of the jaw (ONJ). ONJ involves necrotic, exposed bone in the jaw, pain, possible secondary infection, swelling, painful lesions, and various dysesthesias, although less-severe cases may be asymptomatic. First-generation bisphosphonates, which do not contain nitrogen, are metabolized into a nonfunctional, cytotoxic analogue of adenosine triphosphate and cause osteoclast death by starvation. Second-generation bisphosphonates are nitrogen-containing agents; these inhibit osteoclast vesicular trafficking, membrane ruffling, morphology, and cytoskeletal arrangement by inhibiting farnesyl diphosphate synthase in the mevalonate pathway. Physicians treating older adults with osteoporosis and cancer should work together with dental practitioners, pharmacists, and other clinicians to inform individuals receiving bisphosphonates of their possible side effects and to suggest precautionary steps that may minimize the risk of osteonecrosis, particularly of the jaw. These include practicing good oral hygiene; scheduling regular dental examinations and cleanings; and cautioning people who are scheduling treatment for periodontal disease, oral and maxillofacial therapy, endodontics, implant placement, restorative dentistry, and prosthodontics. Recommendations for management of people with ONJ include an oral rinse, such as chlorhexidine, and antibiotics. © 2011, Copyright the Authors Journal compilation © 2011, The American

  5. Active Dendrites Enhance Neuronal Dynamic Range

    PubMed Central

    Gollo, Leonardo L.; Kinouchi, Osame; Copelli, Mauro

    2009-01-01

    Since the first experimental evidences of active conductances in dendrites, most neurons have been shown to exhibit dendritic excitability through the expression of a variety of voltage-gated ion channels. However, despite experimental and theoretical efforts undertaken in the past decades, the role of this excitability for some kind of dendritic computation has remained elusive. Here we show that, owing to very general properties of excitable media, the average output of a model of an active dendritic tree is a highly non-linear function of its afferent rate, attaining extremely large dynamic ranges (above 50 dB). Moreover, the model yields double-sigmoid response functions as experimentally observed in retinal ganglion cells. We claim that enhancement of dynamic range is the primary functional role of active dendritic conductances. We predict that neurons with larger dendritic trees should have larger dynamic range and that blocking of active conductances should lead to a decrease in dynamic range. PMID:19521531

  6. Medication-related osteonecrosis of the jaw. Introduction of a new modified experimental model.

    PubMed

    Curra, Cláudia; Cardoso, Camila Lopes; Ferreira, Osny; Curi, Marcos Martins; Matsumoto, Mariza Akemi; Cavenago, Bruno Cavalini; Santos, Pâmela Letícia Dos; Santiago, Joel Ferreira

    2016-05-01

    To evaluate a modified experimental model for medication-related osteonecrosis of the jaw (MRONJ) through the upper right central incisor extraction followed by intravenous bisphosphonate administration. Forty five rats underwent the upper right central incisor tooth extraction were divided in 2 groups: Group I - experimental group, 30 rats received an intravenous administration protocol of zoledronic acid 35μg/kg into the tail vein every two weeks, totalizing four administrations, during eight weeks of administration, previously the extraction, and Group II - control group, 15 rats didn't received any medication before extraction. The groups were subdivided in postoperative periods: 14/28/42 days. Clinical analysis and microtomography were performed to verify the presence of osteonecrosis. In addition, descritive histological analysis of hematoxylin-eosin stained sections was performed to evaluate the presence of osteonecrosis or necrotic foci. Twelve (40%) rats, from experimental group, showed clinical signs of MRONJ (p=0.005), however, all samples showed imaginologic findings like osteolysis and loss of integrity of the cellular walls (p≤0.001). Microscopic evaluation revealed osteonecrosis areas with microbial colonies and inflammatory infiltrate (p≤0.001). In the control group, all animals presented the chronology of a normal wound healing. The presence of medication-related osteonecrosis of the jaw after maxillary central incisor extraction in rats. This new experimental model may be considered an option for the study of MRONJ.

  7. In situ transmission electron microscopy of lead dendrites and lead ions in aqueous solution.

    PubMed

    White, Edward R; Singer, Scott B; Augustyn, Veronica; Hubbard, William A; Mecklenburg, Matthew; Dunn, Bruce; Regan, Brian C

    2012-07-24

    An ideal technique for observing nanoscale assembly would provide atomic-resolution images of both the products and the reactants in real time. Using a transmission electron microscope we image in situ the electrochemical deposition of lead from an aqueous solution of lead(II) nitrate. Both the lead deposits and the local Pb(2+) concentration can be visualized. Depending on the rate of potential change and the potential history, lead deposits on the cathode in a structurally compact layer or in dendrites. In both cases the deposits can be removed and the process repeated. Asperities that persist through many plating and stripping cycles consistently nucleate larger dendrites. Quantitative digital image analysis reveals excellent correlation between changes in the Pb(2+) concentration, the rate of lead deposition, and the current passed by the electrochemical cell. Real-time electron microscopy of dendritic growth dynamics and the associated local ionic concentrations can provide new insight into the functional electrochemistry of batteries and related energy storage technologies.

  8. Effects of antidepressant drugs on synaptic protein levels and dendritic outgrowth in hippocampal neuronal cultures.

    PubMed

    Seo, Mi Kyoung; Lee, Chan Hong; Cho, Hye Yeon; Lee, Jung Goo; Lee, Bong Ju; Kim, Ji Eun; Seol, Wongi; Kim, Young Hoon; Park, Sung Woo

    2014-04-01

    The alteration of hippocampal plasticity has been proposed to play a critical role in both the pathophysiology and treatment of depression. In this study, the ability of different classes of antidepressant drugs (escitalopram, fluoxetine, paroxetine, sertraline, imipramine, tranylcypromine, and tianeptine) to mediate the expression of synaptic proteins and dendritic outgrowth in rat hippocampal neurons was investigated under toxic conditions induced by B27 deprivation, which causes hippocampal cell death. Postsynaptic density protein-95 (PSD-95), brain-derived neurotrophic factor (BDNF), and synaptophysin (SYP) levels were evaluated using Western blot analyses. Additionally, dendritic outgrowth was examined to determine whether antidepressant drugs affect the dendritic morphology of hippocampal neurons in B27-deprived cultures. Escitalopram, fluoxetine, paroxetine, sertraline, imipramine, tranylcypromine, and tianeptine significantly prevented B27 deprivation-induced decreases in levels of PSD-95, BDNF, and SYP. Moreover, the independent application of fluoxetine, paroxetine, and sertraline significantly increased levels of BDNF under normal conditions. All antidepressant drugs significantly increased the total outgrowth of hippocampal dendrites under B27 deprivation. Specific inhibitors of calcium/calmodulin kinase II (CaMKII), KN-93, protein kinase A (PKA), H-89, or phosphatidylinositol 3-kinase (PI3K), LY294002, significantly decreased the effects of antidepressant drugs on dendritic outgrowth, whereas this effect was observed only with tianeptine for the PI3K inhibitor. Taken together, these results suggest that certain antidepressant drugs can enhance synaptic protein levels and encourage dendritic outgrowth in hippocampal neurons. Furthermore, effects on dendritic outgrowth likely require CaMKII, PKA, or PI3K signaling pathways. The observed effects may be may be due to chronic treatment with antidepressant drugs. Copyright © 2013 Elsevier Ltd. All rights

  9. Central xanthoma of the jaw in association with Noonan syndrome.

    PubMed

    Olson, Nicholas J; Addante, Rocco R; de Abreu, Francine B; Memoli, Vincent A

    2018-05-01

    Xanthomas are histiocytic lesions of the skin, soft tissue and bone and are generally considered to be reactive in nature. When they arise in the bones of the jaw, they are referred to as central xanthomas. New evidence supports the hypothesis that central xanthomas are a separate and distinct entity from their extragnathic counterparts. Noonan syndrome (NS) is an autosomal dominant disorder that has been associated with giant cell lesions which also commonly occur in the jaw. We present a case of a 15year-old-male with NS who presented with a radiolucent lesion of the mandible that on excision, was found to be a central xanthoma. Although giant cell lesions have been well described in NS, xanthomas of the jaw have not been reported. We will also discuss the entities that must be excluded prior to making a diagnosis of central xanthoma, as this can affect both treatment and follow up. Copyright © 2018. Published by Elsevier Inc.

  10. Intravital imaging of dendritic spine plasticity

    PubMed Central

    Sau Wan Lai, Cora

    2014-01-01

    Abstract Dendritic spines are the postsynaptic part of most excitatory synapses in the mammalian brain. Recent works have suggested that the structural and functional plasticity of dendritic spines have been associated with information coding and memories. Advances in imaging and labeling techniques enable the study of dendritic spine dynamics in vivo. This perspective focuses on intravital imaging studies of dendritic spine plasticity in the neocortex. I will introduce imaging tools for studying spine dynamics and will further review current findings on spine structure and function under various physiological and pathological conditions. PMID:28243511

  11. The Effect of Jaw Position on Measures of Tongue Strength and Endurance

    ERIC Educational Resources Information Center

    Solomon, Nancy Pearl; Munson, Benjamin

    2004-01-01

    Assessment of tongue strength and endurance is common in research and clinical contexts. It is unclear whether the results reveal discrete function by the tongue or combined abilities of the tongue and jaw. One way to isolate the movement of the tongue is to constrain the jaw kinematically by using a bite block. In this study, 10 neurologically…

  12. Treatment with chemotherapy and dendritic cells pulsed with multiple Wilms' tumor 1 (WT1)-specific MHC class I/II-restricted epitopes for pancreatic cancer.

    PubMed

    Koido, Shigeo; Homma, Sadamu; Okamoto, Masato; Takakura, Kazuki; Mori, Masako; Yoshizaki, Shinji; Tsukinaga, Shintaro; Odahara, Shunichi; Koyama, Seita; Imazu, Hiroo; Uchiyama, Kan; Kajihara, Mikio; Arakawa, Hiroshi; Misawa, Takeyuki; Toyama, Yoichi; Yanagisawa, Satoru; Ikegami, Masahiro; Kan, Shin; Hayashi, Kazumi; Komita, Hideo; Kamata, Yuko; Ito, Masaki; Ishidao, Takefumi; Yusa, Sei-Ichi; Shimodaira, Shigetaka; Gong, Jianlin; Sugiyama, Haruo; Ohkusa, Toshifumi; Tajiri, Hisao

    2014-08-15

    We performed a phase I trial to investigate the safety, clinical responses, and Wilms' tumor 1 (WT1)-specific immune responses following treatment with dendritic cells (DC) pulsed with a mixture of three types of WT1 peptides, including both MHC class I and II-restricted epitopes, in combination with chemotherapy. Ten stage IV patients with pancreatic ductal adenocarcinoma (PDA) and 1 patient with intrahepatic cholangiocarcinoma (ICC) who were HLA-positive for A*02:01, A*02:06, A*24:02, DRB1*04:05, DRB1*08:03, DRB1*15:01, DRB1*15:02, DPB1*05:01, or DPB1*09:01 were enrolled. The patients received one course of gemcitabine followed by biweekly intradermal vaccinations with mature DCs pulsed with MHC class I (DC/WT1-I; 2 PDA and 1 ICC), II (DC/WT1-II; 1 PDA), or I/II-restricted WT1 peptides (DC/WT1-I/II; 7 PDA), and gemcitabine. The combination therapy was well tolerated. WT1-specific IFNγ-producing CD4(+) T cells were significantly increased following treatment with DC/WT1-I/II. WT1 peptide-specific delayed-type hypersensitivity (DTH) was detected in 4 of the 7 patients with PDA vaccinated with DC/WT1-I/II and in 0 of the 3 patients with PDA vaccinated with DC/WT1-I or DC/WT1-II. The WT1-specific DTH-positive patients showed significantly improved overall survival (OS) and progression-free survival (PFS) compared with the negative control patients. In particular, all 3 patients with PDA with strong DTH reactions had a median OS of 717 days. The activation of WT1-specific immune responses by DC/WT1-I/II combined with chemotherapy may be associated with disease stability in advanced pancreatic cancer. ©2014 American Association for Cancer Research.

  13. DEPENDENCE OF MORPHOMETRIC PARAMETERS OF THE DENTAL OCCLUSION ON THE TYPE OF THE LOWER JAW GROWTH IN CHILDREN WITH CLASS II1 DENTOFACIAL ANOMALIES WHO LINE IN THE NORTHERN UKRAINE.

    PubMed

    Galich, L V; Kuroedova, V; Lakhtin, Yu; Galich, L B; Moskalenko, P

    2017-03-01

    The aim of the work was to study the structure of dentofacial anomalies in children and adolescents in Sumy city and Sumy oblast, to identify dentoalveolar morphological peculiarities of the occlusion in 10-13 years old patients with class ІІ1 anomalies according to Angle's classification with different types of lower jaw bone growth. A retrospective analysis of 2236 outpatient dental cards of urban and rural patients with orthodontic pathology was conducted. Patients were divided into three age groups: 6-9 years old (early mixed occlusion) - 592 children; 10-13 years old (late mixed occlusion) - 1180 children; over 13 years old (permanent occlusion) - 464 persons; besides 76 patients with class ІІ1 anomalies according to Angle's classification aged 10-13 years were examined. To determine the type of lower jaw growth, the children underwent orthopantomographic examination, diagnostic models were made and biometric indicators were calculated to determine the severity of the morphological changes. It was established that anomalies of individual teeth and dental curve dominated in all age groups (71.24%). Among the occlusion anomalies, a large part falls to class ІІ anomalies according to Angle's classification (19.18%). A third of these patients have a neutral type of lower jaw growth (36.84±5.53%), horizontal and vertical types of growth reach 18.42±4.47% and 19.74±4.56%, respectively. The combination of neutral and vertical type of growth of the lower jaw occurs in 1.7 times more than the combination of neutral and horizontal. The most pronounced morphological changes were observed in the group of patients with a horizontal type of lower jaw growth. When planning treatment and prophylactic measures among patients of the orthodontic profile, it is necessary to take into account the peculiarities of both the prevalence of pathology in the region and the morphological changes of different severity in the dental curves of the jaws.

  14. Biomechanical analysis of the influence of friction in jaw joint disorders.

    PubMed

    Koolstra, J H

    2012-01-01

    Increased friction due to impaired lubrication in the jaw joint has been considered as one of the possible causes for internal joint disorders. A very common internal disorder in the jaw joint is an anteriorly dislocated articular disc. This is generally considered to contribute to the onset of arthritic injuries. Increase of friction as caused by impairment of lubrication is suspected to be a possible cause for such a disorder. The influence of friction was addressed by analysis of its effects on tensions and deformations of the cartilaginous structures in the jaw joint using computational biomechanical analysis. Jaw open-close movements were simulated while in one or two compartments of the right joint friction was applied in the articular contact. The left joint was treated as the healthy control. The simulations predicted that friction primarily causes increased shear stress in the articular cartilage layers, but hardly in the articular disc. This suggests that impaired lubrication may facilitate deterioration of the cartilage-subchondral bone unit of the articular surfaces. The results further suggest that increased friction is not a plausible cause for turning a normally functioning articular disc into an anteriorly dislocated one. Copyright © 2011 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  15. Divergent Effects of Dendritic Cells on Pancreatitis

    DTIC Science & Technology

    2015-09-01

    role of dendritic cells in pancreatitis. Dendritic cells are professional antigen presenting cells which initiate innate and adaptive immune... Lymphoid -tissue-specific homing of bone- marrow-derived dendritic cells . Blood. 113:6638–6647. http://dx.doi .org/10.1182/blood-2009-02-204321 Dapito...Award Number: W81XWH-12-1-0313 TITLE: Divergent Effects of Dendritic Cells on Pancreatitis PRINCIPAL INVESTIGATOR: Dr. George Miller

  16. Cross-bridge kinetics of fast and slow fibres of cat jaw and limb muscles: correlations with myosin subunit composition.

    PubMed

    Hoh, Joseph F Y; Li, Zhao-Bo; Qin, Han; Hsu, Michael K H; Rossmanith, Gunther H

    2007-01-01

    Mechanical properties of the jaw-closing muscles of the cat are poorly understood. These muscles are known to differ in myosin and fibre type compositions from limb muscles. This work aims to correlate mechanical properties of single fibres in cat jaw and limb muscles with their myosin subunit compositions. The stiffness minimum frequency, f(min), which reflects isometric cross-bridge kinetics, was measured in Ca(2+)-activated glycerinated fast and slow fibres from cat jaw and limb muscles for temperatures ranging between 15 and 30 degrees C by mechanical perturbation analysis. At 15 degrees C, f(min) was 0.5 Hz for limb-slow fibres, 4-6 Hz for jaw-slow fibres, and 10-13 Hz for limb-fast and jaw-fast fibres. The activation energy for f(min) obtained from the slope of the Arrhenius plot for limb-slow fibres was 30-40% higher than values for the other three types of fibres. SDS-PAGE and western blotting using highly specific antibodies verified that limb-fast fibres contained IIA or IIX myosin heavy chain (MyHC). Jaw-fast fibres expressed masticatory MyHC while both jaw-fast and jaw-slow fibres expressed masticatory myosin light chains (MLCs). The nucleotide sequences of the 3' ends of the slow MyHC cDNAs isolated from cat masseter and soleus cDNA libraries showed identical coding and 3'-untranslated regions, suggesting that jaw-slow and limb-slow fibres express the same slow MyHC gene. We conclude that the isometric cross-bridge cycling kinetics of jaw-fast and limb-fast fibres detected by f(min) are indistinguishable in spite of differences in MyHC and light chain compositions. However, jaw-slow fibres, in which the same slow MyHCs are found in combination with MLCs of the jaw type, show enhanced cross-bridge cycling kinetics and reduced activation energy for cross-bridge detachment.

  17. Does evolutionary innovation in pharyngeal jaws lead to rapid lineage diversification in labrid fishes?

    PubMed Central

    2009-01-01

    Background Major modifications to the pharyngeal jaw apparatus are widely regarded as a recurring evolutionary key innovation that has enabled adaptive radiation in many species-rich clades of percomorph fishes. However one of the central predictions of this hypothesis, that the acquisition of a modified pharyngeal jaw apparatus will be positively correlated with explosive lineage diversification, has never been tested. We applied comparative methods to a new time-calibrated phylogeny of labrid fishes to test whether diversification rates shifted at two scales where major pharyngeal jaw innovations have evolved: across all of Labridae and within the subclade of parrotfishes. Results Diversification patterns within early labrids did not reflect rapid initial radiation. Much of modern labrid diversity stems from two recent rapid diversification events; one within julidine fishes and the other with the origin of the most species-rich clade of reef-associated parrotfishes. A secondary pharyngeal jaw innovation was correlated with rapid diversification within the parrotfishes. However diversification rate shifts within parrotfishes are more strongly correlated with the evolution of extreme dichromatism than with pharyngeal jaw modifications. Conclusion The temporal lag between pharyngeal jaw modifications and changes in diversification rates casts doubt on the key innovation hypothesis as a simple explanation for much of the richness seen in labrids and scarines. Although the possession of a secondarily modified PJA was correlated with increased diversification rates, this pattern is better explained by the evolution of extreme dichromatism (and other social and behavioral characters relating to sexual selection) within Scarus and Chlorurus. The PJA-innovation hypothesis also fails to explain the most dominant aspect of labrid lineage diversification, the radiation of the julidines. We suggest that pharyngeal jaws might have played a more important role in enabling

  18. Trigeminal and telencephalic projections to jaw and other upper vocal tract premotor neurons in songbirds: sensorimotor circuitry for beak movements during singing.

    PubMed

    Wild, J M; Krützfeldt, N E O

    2012-02-15

    During singing in songbirds, the extent of beak opening, like the extent of mouth opening in human singers, is partially correlated with the fundamental frequency of the sounds emitted. Since song in songbirds is under the control of "the song system" (a collection of interconnected forebrain nuclei dedicated to the learning and production of song), it might be expected that beak movements during singing would also be controlled by this system. However, direct neural connections between the telencephalic output of the song system and beak muscle motor neurons in the brainstem are conspicuous by their absence, leaving unresolved the question of how beak movements are affected during singing. By using standard tract tracing methods, we sought to answer this question by defining beak premotor neurons and examining their afferent projections. In the caudal medulla, jaw premotor cell bodies were located adjacent to the terminal field of the output of the song system, into which many premotor neurons extended their dendrites. The premotor neurons also received a novel input from the trigeminal ganglion and an overlapping input from a lateral arcopallial component of a trigeminal sensorimotor circuit that traverses the forebrain. The ganglionic input in songbirds, which is not present in doves and pigeons that vocalize with a closed beak, may modulate the activity of beak premotor neurons in concert with the output of the song system. These inputs to jaw premotor neurons could, together, affect beak movements as a means of modulating filter properties of the upper vocal tract during singing. Copyright © 2011 Wiley-Liss, Inc.

  19. Trigeminal and Telencephalic Projections to Jaw and Other Upper Vocal Tract Premotor Neurons in Songbirds: Sensorimotor Circuitry for Beak Movements During Singing

    PubMed Central

    Wild, J.M.; Krützfeldt, N.E.O.

    2014-01-01

    During singing in songbirds, the extent of beak opening, like the extent of mouth opening in human singers, is partially correlated with the fundamental frequency of the sounds emitted. Since song in songbirds is under the control of “the song system” (a collection of interconnected forebrain nuclei dedicated to the learning and production of song), it might be expected that beak movements during singing would also be controlled by this system. However, direct neural connections between the telencephalic output of the song system and beak muscle motor neurons in the brainstem are conspicuous by their absence, leaving unresolved the question of how beak movements are affected during singing. By using standard tract tracing methods, we sought to answer this question by defining beak premotor neurons and examining their afferent projections. In the caudal medulla, jaw premotor cell bodies were located adjacent to the terminal field of the output of the song system, into which many premotor neurons extended their dendrites. The premotor neurons also received a novel input from the trigeminal ganglion and an overlapping input from a lateral arcopallial component of a trigeminal sensorimotor circuit that traverses the forebrain. The ganglionic input in songbirds, which is not present in doves and pigeons that vocalize with a closed beak, may modulate the activity of beak premotor neurons in concert with the output of the song system. These inputs to jaw premotor neurons could, together, affect beak movements as a means of modulating filter properties of the upper vocal tract during singing. PMID:21858818

  20. FGF and TGFβ signaling link form and function during jaw development and evolution.

    PubMed

    Woronowicz, Katherine C; Gline, Stephanie E; Herfat, Safa T; Fields, Aaron J; Schneider, Richard A

    2018-05-16

    How does form arise during development and change during evolution? How does form relate to function, and what enables embryonic structures to presage their later use in adults? To address these questions, we leverage the distinct functional morphology of the jaw in duck, chick, and quail. In connection with their specialized mode of feeding, duck develop a secondary cartilage at the tendon insertion of their jaw adductor muscle on the mandible. An equivalent cartilage is absent in chick and quail. We hypothesize that species-specific jaw architecture and mechanical forces promote secondary cartilage in duck through the differential regulation of FGF and TGFβ signaling. First, we perform transplants between chick and duck embryos and demonstrate that the ability of neural crest mesenchyme (NCM) to direct the species-specific insertion of muscle and the formation of secondary cartilage depends upon the amount and spatial distribution of NCM-derived connective tissues. Second, we quantify motility and build finite element models of the jaw complex in duck and quail, which reveals a link between species-specific jaw architecture and the predicted mechanical force environment. Third, we investigate the extent to which mechanical load mediates FGF and TGFβ signaling in the duck jaw adductor insertion, and discover that both pathways are mechano-responsive and required for secondary cartilage formation. Additionally, we find that FGF and TGFβ signaling can also induce secondary cartilage in the absence of mechanical force or in the adductor insertion of quail embryos. Thus, our results provide novel insights on molecular, cellular, and biomechanical mechanisms that couple musculoskeletal form and function during development and evolution. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  1. An antiarch placoderm shows that pelvic girdles arose at the root of jawed vertebrates

    PubMed Central

    Zhu, Min; Yu, Xiaobo; Choo, Brian; Wang, Junqing; Jia, Liantao

    2012-01-01

    Almost all gnathostomes or jawed vertebrates (including osteichthyans, chondrichthyans, ‘acanthodians’ and most placoderms) possess paired pectoral and pelvic fins. To date, it has generally been believed that antiarch placoderms (extinct armoured jawed fishes from the Silurian–Devonian periods) lacked pelvic fins. The putative absence of pelvic fins is a key character bearing on the monophyly or paraphyly of placoderms. It also has far-reaching implications for studying the sequence of origin of pelvic girdles versus that of movable jaws in the course of vertebrate evolution. Parayunnanolepis xitunensis represents the only example of a primitive antiarch with extensive post-thoracic preservation, and its original description has been cited as confirming the primitive lack of pelvic fins in early antiarchs. Here, we present a revised description of Parayunnanolepis and offer the first unambiguous evidence for the presence of pelvic girdles in antiarchs. As antiarchs are placed at the base of the gnathostome radiation in several recent studies, our finding shows that all jawed vertebrates (including antiarch placoderms) primitively possess both pectoral and pelvic fins and that the pelvic fins did not arise within gnathostomes at a point subsequent to the origin of jaws. PMID:22219394

  2. From atomistic interfaces to dendritic patterns

    NASA Astrophysics Data System (ADS)

    Galenko, P. K.; Alexandrov, D. V.

    2018-01-01

    Transport processes around phase interfaces, together with thermodynamic properties and kinetic phenomena, control the formation of dendritic patterns. Using the thermodynamic and kinetic data of phase interfaces obtained on the atomic scale, one can analyse the formation of a single dendrite and the growth of a dendritic ensemble. This is the result of recent progress in theoretical methods and computational algorithms calculated using powerful computer clusters. Great benefits can be attained from the development of micro-, meso- and macro-levels of analysis when investigating the dynamics of interfaces, interpreting experimental data and designing the macrostructure of samples. The review and research articles in this theme issue cover the spectrum of scales (from nano- to macro-length scales) in order to exhibit recently developing trends in the theoretical analysis and computational modelling of dendrite pattern formation. Atomistic modelling, the flow effect on interface dynamics, the transition from diffusion-limited to thermally controlled growth existing at a considerable driving force, two-phase (mushy) layer formation, the growth of eutectic dendrites, the formation of a secondary dendritic network due to coalescence, computational methods, including boundary integral and phase-field methods, and experimental tests for theoretical models-all these themes are highlighted in the present issue. This article is part of the theme issue `From atomistic interfaces to dendritic patterns'.

  3. Simulation of dendritic growth reveals necessary and sufficient parameters to describe the shapes of dendritic trees

    NASA Astrophysics Data System (ADS)

    Trottier, Olivier; Ganguly, Sujoy; Bowne-Anderson, Hugo; Liang, Xin; Howard, Jonathon

    For the last 120 years, the development of neuronal shapes has been of great interest to the scientific community. Over the last 30 years, significant work has been done on the molecular processes responsible for dendritic development. In our ongoing research, we use the class IV sensory neurons of the Drosophila melanogaster larva as a model system to understand the growth of dendritic arbors. Our main goal is to elucidate the mechanisms that the neuron uses to determine the shape of its dendritic tree. We have observed the development of the class IV neuron's dendritic tree in the larval stage and have concluded that morphogenesis is defined by 3 distinct processes: 1) branch growth, 2) branching and 3) branch retraction. As the first step towards understanding dendritic growth, we have implemented these three processes in a computational model. Our simulations are able to reproduce the branch length distribution, number of branches and fractal dimension of the class IV neurons for a small range of parameters.

  4. Two-argument total scatter factor for small fields simultaneously collimated by MLC and jaws: application to stereotactic radiosurgery and radiotherapy

    NASA Astrophysics Data System (ADS)

    Han, Zhaohui; Friesen, Scott; Hacker, Fred; Zygmanski, Piotr

    2018-01-01

    Direct use of the total scatter factor (S tot) for independent monitor unit (MU) calculations can be a good alternative approach to the traditional separate treatment of head/collimator scatter (S c) and phantom scatter (S p), especially for stereotactic small fields under the simultaneous collimation of secondary jaws and tertiary multileaf collimators (MLC). We have carried out the measurement of S tot in water for field sizes down to 0.5  ×  0.5 cm2 on a Varian TrueBeam STx medical linear accelerator (linac) equipped with high definition MLCs. Both the jaw field size (c) and MLC field size (s) significantly impact the linac output factors, especially when c \\gg s and s is small (e.g. s  <  5 cm). The combined influence of MLC and jaws gives rise to a two-argument dependence of the total scatter factor, S tot(c,s), which is difficult to functionally decouple. The (c,s) dependence can be conceived as a set of s-dependent functions (‘branches’) defined on domain [s min, s max  =  c] for a given jaw size of c. We have also developed a heuristic model of S tot to assist the clinical implementation of the measured S tot data for small field dosimetry. The model has two components: (i) empirical fit formula for the s-dependent branches and (ii) interpolation scheme between the branches. The interpolation scheme preserves the characteristic shape of the measured branches and effectively transforms the measured trapezoidal domain in (c,s) plane to a rectangular domain to facilitate easier two-dimensional interpolation to determine S tot for arbitrary (c,s) combinations. Both the empirical fit and interpolation showed good agreement with experimental validation data.

  5. Convection Effects in Three-dimensional Dendritic Growth

    NASA Technical Reports Server (NTRS)

    Lu, Yili; Beckermann, C.; Karma, A.

    2003-01-01

    A phase-field model is developed to simulate free dendritic growth coupled with fluid flow for a pure material in three dimensions. The preliminary results presented here illustrate the strong influence of convection on the three-dimensional (3D) dendrite growth morphology. The detailed knowledge of the flow and temperature fields in the melt around the dendrite from the simulations allows for a detailed understanding of the convection effects on dendritic growth.

  6. A dolphin lower jaw is a hydroacoustic antenna of the traveling wave

    NASA Astrophysics Data System (ADS)

    Ryabov, Vyacheslav A.

    2003-10-01

    The purpose of the work is the analysis of a possible function of mental foramens as channels through which the echo passes in the lower jaw fat body and the determination of a role of channels and a skull in formation of the directivity of the dolphin echolocation hearing. Concrete problems were studying of the lower jaw morphology, modeling and calculation of a dolphin, tursiops truncatus p., echolocation hearing beam pattern. The outcomes of the work indicate those morphological structures of the lower jaw; the left and right half represents two hydroacoustic receiving antennas of the traveling wave type, TWA farther. The mental foramens of a dolphin lower jaw represent nonequidistant array of waveguide delay lines, and determine the phase and amplitude distribution of each of the antenna's array. The beam pattern of the echolocation hearing was calculated with the usage of the TWA model, and the allowance of flat sound wave diffraction. The beam pattern shape is naturally determined by the echolocation hearing functionality. It is equally well adapted both for echolocation and for pulses echo detection. A steepness of the bearing characteristic is estimated; it reaches 0.7 dB per degree.

  7. Beam feasibility study of a collimator with in-jaw beam position monitors

    NASA Astrophysics Data System (ADS)

    Wollmann, Daniel; Nosych, Andriy A.; Valentino, Gianluca; Aberle, Oliver; Aßmann, Ralph W.; Bertarelli, Alessandro; Boccard, Christian; Bruce, Roderik; Burkart, Florian; Calvo, Eva; Cauchi, Marija; Dallocchio, Alessandro; Deboy, Daniel; Gasior, Marek; Jones, Rhodri; Kain, Verena; Lari, Luisella; Redaelli, Stefano; Rossi, Adriana

    2014-12-01

    At present, the beam-based alignment of the LHC collimators is performed by touching the beam halo with both jaws of each collimator. This method requires dedicated fills at low intensities that are done infrequently and makes this procedure time consuming. This limits the operational flexibility, in particular in the case of changes of optics and orbit configuration in the experimental regions. The performance of the LHC collimation system relies on the machine reproducibility and regular loss maps to validate the settings of the collimator jaws. To overcome these limitations and to allow a continuous monitoring of the beam position at the collimators, a design with jaw-integrated Beam Position Monitors (BPMs) was proposed and successfully tested with a prototype (mock-up) collimator in the CERN SPS. Extensive beam experiments allowed to determine the achievable accuracy of the jaw alignment for single and multi-turn operation. In this paper, the results of these experiments are discussed. The non-linear response of the BPMs is compared to the predictions from electromagnetic simulations. Finally, the measured alignment accuracy is compared to the one achieved with the present collimators in the LHC.

  8. Contribution of jaw muscle size and craniofacial morphology to human bite force magnitude.

    PubMed

    Raadsheer, M C; van Eijden, T M; van Ginkel, F C; Prahl-Andersen, B

    1999-01-01

    The existence of an interaction among bite force magnitude, jaw muscle size (e.g., cross-sectional area, thickness), and craniofacial morphology is widely accepted. Bite force magnitude depends on the size of the jaw muscles and the lever arm lengths of bite force and muscle forces, which in turn are dictated by craniofacial morphology. In this study, the relative contributions of craniofacial morphology and jaw muscle thickness to the bite force magnitude were studied. In 121 adult individuals, both magnitude and direction of the maximal voluntary bite force were registered. Craniofacial dimensions were measured by anthropometrics and from lateral radiographs. The thicknesses of the masseter, temporal, and digastric muscles were registered by ultrasonography. After a factor analysis was applied to the anthropometric and cephalometric dimensions, the correlation between bite force magnitude, on the one hand, and the "craniofacial factors" and jaw muscle thicknesses, on the other, was assessed by stepwise multiple regression. Fifty-eight percent of the bite force variance could be explained. From the jaw muscles, only the thickness of the masseter muscle correlated significantly with bite force magnitude. Bite force magnitude also correlated significantly positively with vertical and transverse facial dimensions and the inclination of the midface, and significantly negatively with mandibular inclination and occlusal plane inclination. The contribution of the masseter muscle to the variation in bite force magnitude was higher than that of the craniofacial factors.

  9. Masseter muscular weakness affects temporomandibular synovitis induced by jaw opening in growing rats.

    PubMed

    Ozaki, Miho; Kaneko, Sawa; Soma, Kunimichi

    2008-09-01

    To evaluate the influence of impaired masseter function during growth on the development of temporomandibular synovitis. Sixteen 3-week-old male Wistar rats were classified into four groups. The first group served as control; and in the second group, jaw opening was forced for 3 hours when the rats were 9 weeks old. In the third and fourth groups, the masseter muscles were bilaterally resected at 3 weeks of age, and the rats in the fourth group were additionally forced to open their jaw at 9 weeks of age. All rats were sacrificed at 9 weeks. Temporomandibular joint (TMJ) tissue samples were processed for histology, and evaluated for cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expressions by immunohistochemistry to examine the inflammatory changes in the synovial membrane. The control group showed noninflammatory changes. In the jaw-opening group, vascular dilation and weak COX-2 immunoreactivity were induced by jaw opening in the synovium. In the masseter-resection group, the masseter-resected rats exhibited moderate synovial changes while in the resection with opening group, the masseter-resected rats revealed more significant inflammatory changes including synovial hyperplasia, dilated vasculature, fibrin deposits, and intense immunoreactivity for COX-2 and iNOS, all caused by jaw opening. These results suggest that masseter activity in the growth period is an important factor in the induction of temporomandibular synovitis.

  10. Lactoferrin modulation of BCG-infected dendritic cell functions

    PubMed Central

    Hwang, Shen-An

    2009-01-01

    Lactoferrin, an 80-kDa iron-binding protein with immune modulating properties, is a unique adjuvant component able to enhance efficacy of the existing Mycobacterium bovis Bacillus Calmette Guerin (BCG) vaccine to protect against murine model of tuberculosis. Although identified as having effects on macrophage presentation events, lactoferrin's capability to modulate dendritic cells (DCs) function when loaded with BCG antigens has not been previously recognized. In this study, the potential of lactoferrin to modulate surface expression of MHC II, CD80, CD86 and CD40 from bone marrow-derived dendritic cells (BMDCs) was examined. Generally, lactoferrin decreased pro-inflammatory cytokines [tumor necrosis factor (TNF)-α, IL-6 and IL-12p40] and chemokines [macrophage inflammatory protein (MIP)-1α and MIP-2] and increased regulatory cytokine, transforming growth factor-β1 and a T-cell chemotatic factor, monocyte chemotactic protein-1, from uninfected or BCG-infected BMDCs. Culturing BCG-infected BMDCs with lactoferrin also enhanced their ability to respond to IFN-γ activation through up-regulation of maturation markers: MHC I, MHC II and the ratio of CD86:CD80 surface expression. Furthermore, lactoferrin-exposed BCG-infected DCs increased stimulation of BCG-specific CD3+CD4+ splenocytes, as defined by increasing IFN-γ production. Finally, BCG-/lactoferrin-vaccinated mice possessed an increased pool of BCG antigen-specific IFN-γ producing CD3+CD4+CD62L− splenocytes. These studies suggest a mechanism in which lactoferrin may exert adjuvant activity by enhancing DC function to promote generation of antigen-specific T cells. PMID:19692539

  11. Jaw muscle fiber type distribution in Hawaiian gobioid stream fishes: histochemical correlations with feeding ecology and behavior.

    PubMed

    Maie, Takashi; Meister, Andrew B; Leonard, Gerald L; Schrank, Gordon D; Blob, Richard W; Schoenfuss, Heiko L

    2011-12-01

    Differences in fiber type distribution in the axial muscles of Hawaiian gobioid stream fishes have previously been linked to differences in locomotor performance, behavior, and diet across species. Using ATPase assays, we examined fiber types of the jaw opening sternohyoideus muscle across five species, as well as fiber types of three jaw closing muscles (adductor mandibulae A1, A2, and A3). The jaw muscles of some species of Hawaiian stream gobies contained substantial red fiber components. Some jaw muscles always had greater proportions of white muscle fibers than other jaw muscles, independent of species. In addition, comparing across species, the dietary generalists (Awaous guamensis and Stenogobius hawaiiensis) had a lower proportion of white muscle fibers in all jaw muscles than the dietary specialists (Lentipes concolor, Sicyopterus stimpsoni, and Eleotris sandwicensis). Among Hawaiian stream gobies, generalist diets may favor a wider range of muscle performance, provided by a mix of white and red muscle fibers, than is typical of dietary specialists, which may have a higher proportion of fast-twitch white fibers in jaw muscles to help meet the demands of rapid predatory strikes or feeding in fast-flowing habitats. Copyright © 2011 Elsevier GmbH. All rights reserved.

  12. Vertical solidification of dendritic binary alloys

    NASA Technical Reports Server (NTRS)

    Heinrich, J. C.; Felicelli, S.; Poirier, D. R.

    1991-01-01

    Three numerical techniques are employed to analyze the influence of thermosolutal convection on defect formation in directionally solidified (DS) alloys. The finite-element models are based on the Boussinesq approximation and include the plane-front model and two plane-front models incorporating special dendritic regions. In the second model the dendritic region has a time-independent volume fraction of liquid, and in the last model the dendritic region evolves as local conditions dictate. The finite-element models permit the description of nonlinear thermosolutal convection by treating the dendritic regions as porous media with variable porosities. The models are applied to lead-tin alloys including DS alloys, and severe segregation phenomena such as freckles and channels are found to develop in the DS alloys. The present calculations and the permeability functions selected are shown to predict behavior in the dendritic regions that qualitatively matches that observed experimentally.

  13. Double lead spiral platen parallel jaw end effector

    NASA Technical Reports Server (NTRS)

    Beals, David C.

    1989-01-01

    The double lead spiral platen parallel jaw end effector is an extremely powerful, compact, and highly controllable end effector that represents a significant improvement in gripping force and efficiency over the LaRC Puma (LP) end effector. The spiral end effector is very simple in its design and has relatively few parts. The jaw openings are highly predictable and linear, making it an ideal candidate for remote control. The finger speed is within acceptable working limits and can be modified to meet the user needs; for instance, greater finger speed could be obtained by increasing the pitch of the spiral. The force relaxation is comparable to the other tested units. Optimization of the end effector design would involve a compromise of force and speed for a given application.

  14. Statistics from the Operation of the Low-Level Wind Shear Alert System (LLWAS) during the Joint Airport Weather Studies (JAWS) Project.

    DTIC Science & Technology

    1984-12-01

    AD-RI59 367 STATISTICS FROM THE OPERATION OF THE LOW-LEVEL WIND I/i SHEAR ALERT SYSTEM (L..(U) NATIONAL CENTER FOR ATOMSPHERIC RESEARCH BOULDER CO...NATIONAL BUREAU OF STANDARDS-1963A % % Oh b DOT/FAAIPM-84132 Statistics from the Operation of the Program Engineering Low-Level Wind Shear Alert System and...The Operation of The Low-Level Wind December 1984 Shear Alert System (LLWAS) During The JAWS Project: 6. Performing Organization Code An Interim Report

  15. Microbursts in JAWS depicted by Doppler radars, PAM, and aerial photographs

    NASA Technical Reports Server (NTRS)

    Fujita, T. T.; Wakimoto, R. M.

    1983-01-01

    Preliminary results obtained from the JAWS (Joint Airport Weather Studies) Project near Denver, Colorado in the spring and summer of 1982 using Doppler radar, PAM, and aerial photography are presented. The definitions of the microburst phenomenon are discussed, and statistics comparing NIMROD (Northern Illinois Meteorological Research On Downbursts) for the Midwest region are compared with JAWS for the High Plains region. Possible parent clouds of the microburst are considered, and an analysis of a macroburst/microburst event on July 14, 1982 is presented.

  16. The Evolution of Dendrite Morphology during Isothermal Coarsening

    NASA Technical Reports Server (NTRS)

    Alkemper, Jens; Mendoza, Roberto; Kammer, Dimitris; Voorhees, Peter W.

    2003-01-01

    Dendrite coarsening is a common phenomenon in casting processes. From the time dendrites are formed until the inter-dendritic liquid is completely solidified dendrites are changing shape driven by variations in interfacial curvature along the dendrite and resulting in a reduction of total interfacial area. During this process the typical length-scale of the dendrite can change by orders of magnitude and the final microstructure is in large part determined by the coarsening parameters. Dendrite coarsening is thus crucial in setting the materials parameters of ingots and of great commercial interest. This coarsening process is being studied in the Pb-Sn system with Sn-dendrites undergoing isothermal coarsening in a Pb-Sn liquid. Results are presented for samples of approximately 60% dendritic phase, which have been coarsened for different lengths of times. Presented are three-dimensional microstructures obtained by serial-sectioning and an analysis of these microstructures with regard to interface orientation and interfacial curvatures. These graphs reflect the evolution of not only the microstructure itself, but also of the underlying driving forces of the coarsening process. As a visualization of the link between the microstructure and the driving forces a three-dimensional microstructure with the interfaces colored according to the local interfacial mean curvature is shown.

  17. Critical role of the tumor suppressor tuberous sclerosis complex 1 in dendritic cell activation of CD4 T cells by promoting MHC class II expression via IRF4 and CIITA.

    PubMed

    Pan, Hongjie; O'Brien, Thomas F; Wright, Gabriela; Yang, Jialong; Shin, Jinwook; Wright, Kenneth L; Zhong, Xiao-Ping

    2013-07-15

    Dendritic cell (DC) maturation is characterized by upregulation of cell-surface MHC class II (MHC-II) and costimulatory molecules, and production of a variety of cytokines that can shape both innate and adaptive immunity. Paradoxically, transcription of the MHC-II genes, as well as its activator, CIITA, is rapidly silenced during DC maturation. The mechanisms that control CIITA/MHC-II expression and silencing have not been fully understood. We report in this article that the tumor suppressor tuberous sclerosis complex 1 (TSC1) is a critical regulator of DC function for both innate and adaptive immunity. Its deficiency in DCs results in increased mammalian target of rapamycin (mTOR) complex 1 but decreased mTORC2 signaling, altered cytokine production, impaired CIITA/MHC-II expression, and defective Ag presentation to CD4 T cells after TLR4 stimulation. We demonstrate further that IFN regulatory factor 4 can directly bind to CIITA promoters, and decreased IFN regulatory factor 4 expression is partially responsible for decreased CIITA/MHC-II expression in TSC1-deficient DCs. Moreover, we identify that CIITA/MHC-II silencing during DC maturation requires mTOR complex 1 activity. Together, our data reveal unexpected roles of TSC1/mTOR that control multifaceted functions of DCs.

  18. The Speech Focus Position Effect on Jaw-Finger Coordination in a Pointing Task

    ERIC Educational Resources Information Center

    Rochet-Capellan, Amelie; Laboissiere, Rafael; Galvan, Arturo; Schwartz, Jean-Luc

    2008-01-01

    Purpose: This article investigates jaw-finger coordination in a task involving pointing to a target while naming it with a 'CVCV (e.g., /'papa/) versus CV'CV (e.g., /pa'pa/) word. According to the authors' working hypothesis, the pointing apex (gesture extremum) would be synchronized with the apex of the jaw-opening gesture corresponding to the…

  19. The Physiologic Development of Speech Motor Control: Lip and Jaw Coordination

    PubMed Central

    Green, Jordan R.; Moore, Christopher A.; Higashikawa, Masahiko; Steeve, Roger W.

    2010-01-01

    This investigation was designed to describe the development of lip and jaw coordination during speech and to evaluate the potential influence of speech motor development on phonologic development. Productions of syllables containing bilabial consonants were observed from speakers in four age groups (i.e., 1-year-olds, 2-year-olds, 6-year-olds, and young adults). A video-based movement tracking system was used to transduce movement of the upper lip, lower lip, and jaw. The coordinative organization of these articulatory gestures was shown to change dramatically during the first several years of life and to continue to undergo refinement past age 6. The present results are consistent with three primary phases in the development of lip and jaw coordination for speech: integration, differentiation, and refinement. Each of these developmental processes entails the existence of distinct coordinative constraints on early articulatory movement. It is suggested that these constraints will have predictable consequences for the sequence of phonologic development. PMID:10668666

  20. Influence of botulinum toxin on rabbit jaw muscle activity and anatomy.

    PubMed

    Korfage, J A M; Wang, Jeffrey; Lie, S H J T J; Langenbach, Geerling E J

    2012-05-01

    Muscles can adapt their fiber properties to accommodate to new conditions. We investigated the extent to which a decrease in muscle activation can cause an adaptation of fiber properties in synergistic and antagonistic jaw muscles. Three months after the injection of botulinum toxin type A in one masseter (anterior or posterior) muscle changes in fiber type composition and fiber cross-sectional areas in jaw muscles were studied at the microscopic level. The injected masseter showed a steep increase in myosin type IIX fibers, whereas fast fibers decreased by about 50% in size. Depending on the injection site, both synergistic and antagonistic muscles showed a significant increase in the size of their fast IIA fibers, sometimes combined with an increased number of IIX fibers. Silencing the activity in the masseter not only causes changes in the fibers of the injected muscle but also leads to changes in other jaw muscles. Copyright © 2012 Wiley Periodicals, Inc.

  1. Reduction of conventional dendritic cells during Plasmodium infection is dependent on activation induced cell death by type I and II interferons.

    PubMed

    Tamura, Takahiko; Kimura, Kazumi; Yui, Katsuyuki; Yoshida, Shigeto

    2015-12-01

    Dendritic cells (DCs) play critical roles in innate and adaptive immunity and in pathogenesis during the blood stage of malaria infection. The mechanisms underlying DC homeostasis during malaria infection are not well understood. In this study, the numbers of conventional DCs (cDCs) and plasmacytoid DCs (pDCs) in the spleens after lethal rodent malaria infection were examined, and were found to be significantly reduced. Concomitant with up-regulation of maturation-associated molecules, activation of caspase-3 was significantly increased, suggesting induction of cell death. Studies using neutralizing antibody and gene-deficient mice showed that type I and II interferons were critically involved in activation induced cell death of cDCs during malaria infection. These results demonstrate that DCs rapidly disappeared following IFN-mediated DC activation, and that homeostasis of DCs was significantly impaired during malaria infection. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Molecular phylogenetics and diversification of trap-jaw ants in the genera Anochetus and Odontomachus (Hymenoptera: Formicidae).

    PubMed

    Larabee, Fredrick J; Fisher, Brian L; Schmidt, Chris A; Matos-Maraví, Pável; Janda, Milan; Suarez, Andrew V

    2016-10-01

    Ants in the genera Anochetus and Odontomachus belong to one of the largest clades in the subfamily Ponerinae, and are one of four lineages of ants possessing spring-loaded "trap-jaws." Here we present results from the first global species-level molecular phylogenetic analysis of these trap-jaw ants, reconstructed from one mitochondrial, one ribosomal RNA, and three nuclear protein-coding genes. Bayesian and likelihood analyses strongly support reciprocal monophyly for the genera Anochetus and Odontomachus. Additionally, we found strong support for seven trap-jaw ant clades (four in Anochetus and three in Odontomachus) mostly concordant with geographic distribution. Ambiguity remains concerning the closest living non-trap-jaw ant relative of the Anochetus+Odontomachus clade, but Bayes factor hypothesis testing strongly suggests that trap-jaw ants evolved from a short mandible ancestor. Ponerine trap-jaw ants originated in the early Eocene (52.5Mya) in either South America or Southeast Asia, where they have radiated rapidly in the last 30million years, and subsequently dispersed multiple times to Africa and Australia. These results will guide future taxonomic work on the group and act as a phylogenetic framework to study the macroevolution of extreme ant mouthpart specialization. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Ternary eutectic dendrites: Pattern formation and scaling properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rátkai, László; Szállás, Attila; Pusztai, Tamás

    2015-04-21

    Extending previous work [Pusztai et al., Phys. Rev. E 87, 032401 (2013)], we have studied the formation of eutectic dendrites in a model ternary system within the framework of the phase-field theory. We have mapped out the domain in which two-phase dendritic structures grow. With increasing pulling velocity, the following sequence of growth morphologies is observed: flat front lamellae → eutectic colonies → eutectic dendritesdendrites with target pattern → partitionless dendrites → partitionless flat front. We confirm that the two-phase and one-phase dendrites have similar forms and display a similar scaling of the dendrite tip radius with themore » interface free energy. It is also found that the possible eutectic patterns include the target pattern, and single- and multiarm spirals, of which the thermal fluctuations choose. The most probable number of spiral arms increases with increasing tip radius and with decreasing kinetic anisotropy. Our numerical simulations confirm that in agreement with the assumptions of a recent analysis of two-phase dendrites [Akamatsu et al., Phys. Rev. Lett. 112, 105502 (2014)], the Jackson-Hunt scaling of the eutectic wavelength with pulling velocity is obeyed in the parameter domain explored, and that the natural eutectic wavelength is proportional to the tip radius of the two-phase dendrites. Finally, we find that it is very difficult/virtually impossible to form spiraling two-phase dendrites without anisotropy, an observation that seems to contradict the expectations of Akamatsu et al. Yet, it cannot be excluded that in isotropic systems, two-phase dendrites are rare events difficult to observe in simulations.« less

  4. Dendrite preventing separator for secondary lithium batteries

    NASA Technical Reports Server (NTRS)

    Shen, David H. (Inventor); Surampudi, Subbarao (Inventor); Huang, Chen-Kuo (Inventor); Halpert, Gerald (Inventor)

    1993-01-01

    Dendrites are prevented from shorting a secondary lithium battery by use of a first porous separator, such as porous polypropylene, adjacent to the lithium anode that is unreactive with lithium and a second porous fluoropolymer separator between the cathode and the first separator, such as polytetrafluoroethylene, that is reactive with lithium. As the tip of a lithium dendrite contacts the second separator, an exothermic reaction occurs locally between the lithium dendrite and the fluoropolymer separator. This results in the prevention of the dendrite propagation to the cathode.

  5. Dendrite preventing separator for secondary lithium batteries

    NASA Technical Reports Server (NTRS)

    Shen, David H. (Inventor); Surampudi, Subbarao (Inventor); Huang, Chen-Kuo (Inventor); Halpert, Gerald (Inventor)

    1995-01-01

    Dendrites are prevented from shorting a secondary lithium battery by use of a first porous separator such as porous polypropylene adjacent the lithium anode that is unreactive with lithium and a second porous fluoropolymer separator between the cathode and the first separator such as polytetrafluoroethylene that is reactive with lithium. As the tip of a lithium dendrite contacts the second separator, an exothermic reaction occurs locally between the lithium dendrite and the fluoropolymer separator. This results in the prevention of the dendrite propagation to the cathode.

  6. Method of inhibiting dislocation generation in silicon dendritic webs

    DOEpatents

    Spitznagel, John A.; Seidensticker, Raymond G.; McHugh, James P.

    1990-11-20

    A method of tailoring the heat balance of the outer edge of the dendrites adjacent the meniscus to produce thinner, smoother dendrites, which have substantially less dislocation sources contiguous with the dendrites, by changing the view factor to reduce radiation cooling or by irradiating the dendrites with light from a quartz lamp or a laser to raise the temperature of the dendrites.

  7. Coding and decoding with dendrites.

    PubMed

    Papoutsi, Athanasia; Kastellakis, George; Psarrou, Maria; Anastasakis, Stelios; Poirazi, Panayiota

    2014-02-01

    Since the discovery of complex, voltage dependent mechanisms in the dendrites of multiple neuron types, great effort has been devoted in search of a direct link between dendritic properties and specific neuronal functions. Over the last few years, new experimental techniques have allowed the visualization and probing of dendritic anatomy, plasticity and integrative schemes with unprecedented detail. This vast amount of information has caused a paradigm shift in the study of memory, one of the most important pursuits in Neuroscience, and calls for the development of novel theories and models that will unify the available data according to some basic principles. Traditional models of memory considered neural cells as the fundamental processing units in the brain. Recent studies however are proposing new theories in which memory is not only formed by modifying the synaptic connections between neurons, but also by modifications of intrinsic and anatomical dendritic properties as well as fine tuning of the wiring diagram. In this review paper we present previous studies along with recent findings from our group that support a key role of dendrites in information processing, including the encoding and decoding of new memories, both at the single cell and the network level. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Dendritic mechanisms underlying the coupling of the dendritic with the axonal action potential initiation zone of adult rat layer 5 pyramidal neurons

    PubMed Central

    Larkum, M E; Zhu, J J; Sakmann, B

    2001-01-01

    Double, triple and quadruple whole-cell voltage recordings were made simultaneously from different parts of the apical dendritic arbor and the soma of adult layer 5 (L5) pyramidal neurons. We investigated the membrane mechanisms that support the conduction of dendritic action potentials (APs) between the dendritic and axonal AP initiation zones and their influence on the subsequent AP pattern. The duration of the current injection to the distal dendritic initiation zone controlled the degree of coupling with the axonal initiation zone and the AP pattern. Two components of the distally evoked regenerative potential were pharmacologically distinguished: a rapidly rising peak potential that was TTX sensitive and a slowly rising plateau-like potential that was Cd2+ and Ni2+ sensitive and present only with longer-duration current injection. The amplitude of the faster forward-propagating Na+-dependent component and the amplitude of the back-propagating AP fell into two classes (more distinctly in the forward-propagating case). Current injection into the dendrite altered propagation in both directions. Somatic current injections that elicited single Na+ APs evoked bursts of Na+ APs when current was injected simultaneously into the proximal apical dendrite. The mechanism did not depend on dendritic Na+–Ca2+ APs. A three-compartment model of a L5 pyramidal neuron is proposed. It comprises the distal dendritic and axonal AP initiation zones and the proximal apical dendrite. Each compartment contributes to the initiation and to the pattern of AP discharge in a distinct manner. Input to the three main dendritic arbors (tuft dendrites, apical oblique dendrites and basal dendrites) has a dominant influence on only one of these compartments. Thus, the AP pattern of L5 pyramids reflects the laminar distribution of synaptic activity in a cortical column. PMID:11389204

  9. Streptococcus suis Serotype 2 Infection Impairs Interleukin-12 Production and the MHC-II-Restricted Antigen Presentation Capacity of Dendritic Cells

    PubMed Central

    Letendre, Corinne; Auger, Jean-Philippe; Lemire, Paul; Galbas, Tristan; Gottschalk, Marcelo; Thibodeau, Jacques; Segura, Mariela

    2018-01-01

    Streptococcus suis is an important swine pathogen and emerging zoonotic agent. Encapsulated strains of S. suis modulate dendritic cell (DC) functions, leading to poorly activated CD4+ T cells. However, the antigen presentation ability of S. suis-stimulated DCs has not been investigated yet. In this work, we aimed to characterize the antigen presentation profiles of S. suis-stimulated DCs, both in vitro and in vivo. Upon direct activation in vitro, S. suis-stimulated murine bone marrow-derived DCs (bmDCs) preserved their antigen capture/processing capacities. However, they showed delayed kinetics of MHC-II expression compared to lipopolysaccharide-stimulated bmDCs. Meanwhile, splenic DCs from infected mice exhibited a compromised MHC-II expression, despite an appropriate expression of maturation markers. To identify potential interfering mechanisms, Class II Major Histocompatibility Complex Transactivator (CIITA) and membrane-associated RING-CH (MARCH)1/8 transcription were studied. S. suis-stimulated DCs maintained low levels of CIITA at early time points, both in vitro and in vivo, which could limit their ability to increase MHC-II synthesis. S. suis-stimulated DCs also displayed sustained/upregulated levels of MARCH1/8, thus possibly leading to MHC-II lysosomal degradation. The bacterial capsular polysaccharide played a partial role in this modulation. Finally, interleukin (IL)-12p70 production was inhibited in splenic DCs from infected mice, a profile compatible with DC indirect activation by pro-inflammatory compounds. Consequently, these cells induced lower levels of IL-2 and TNF-α in an antigen-specific CD4+ T cell presentation assay and blunted T cell CD25 expression. It remains unclear at this stage whether these phenotypical and transcriptional modulations observed in response to S. suis in in vivo infections are part of a bacterial immune evasion strategy or rather a feature common to systemic inflammatory response-inducing agents. However, it appears

  10. The relationship between jaw-opening force and the cross-sectional area of the suprahyoid muscles in healthy elderly.

    PubMed

    Kajisa, E; Tohara, H; Nakane, A; Wakasugi, Y; Hara, K; Yamaguchi, K; Yoshimi, K; Minakuchi, S

    2018-03-01

    We conducted a clinical cross-sectional study to examine the relationship between jaw-opening force and the cross-sectional area of the suprahyoid muscles and whole skeletal muscle mass. Subjects were healthy 39 males and 51 females without dysphagia and sarcopenia, aged 65 years and older. Jaw-opening force was measured three times using a jaw-opening sthenometer; the maximum of these three was taken as the measurement value. The cross-sectional area of the geniohyoid and anterior belly of the digastric muscles were evaluated using ultrasonography. The skeletal muscle mass index, gait speed and grip strength were evaluated according to the diagnostic criteria of the Asian Working Group for Sarcopenia. For each sex, a multiple regression analysis determined the factors that affect jaw-opening force. Jaw-opening force was associated with the cross-sectional area of the geniohyoid muscle in males (regression coefficient [β] = 0.441, 95% confidence interval [CI] = 14.28-56.09) and females (β = 0.28, 95% CI = 3.10-54.57). Furthermore, in females only, jaw-opening force was associated with the skeletal muscle mass index (β = 0.40, 95% CI = 3.67-17.81). In contrast, jaw-opening force was not associated with the cross-sectional area of the anterior belly of the digastric muscle in either sex. In healthy elderly males and females, jaw-opening force was positively associated with the cross-sectional area of the geniohyoid muscle. However, the jaw-opening force was positively associated with the skeletal muscle mass index only in females. © 2017 John Wiley & Sons Ltd.

  11. Comparison of Performance Characteristics of Oval Cup Forceps Versus Serrated Jaw Forceps in Gastric Biopsy.

    PubMed

    Sussman, Daniel A; Deshpande, Amar R; Shankar, Uday; Barkin, Jodie A; Medina, Ana Maria; Poppiti, Robert J; Cubeddu, Luigi X; Barkin, Jamie S

    2016-08-01

    Obtaining quality endoscopic biopsy specimens is vital in making successful histological diagnoses. The influence of forceps cup shape and size on quality of biopsy specimens is unclear. To identify whether oval cup or two different serrated jaw biopsy forceps could obtain specimens of superior size. Secondary endpoints were tissue adequacy, depth of tissue acquisition, and crush artifact. A single-center, prospective, pathologist-masked, randomized controlled trial was performed. In total 136 patients with a clinical indication for esophagogastroduodenoscopy with biopsy were randomized to receive serial biopsies with a large-capacity serrated forceps with jaw diameter 2.2 mm (SER1) and either a large-capacity oval forceps with jaw diameter 2.4 mm (OVL) or large-capacity serrated biopsy forceps with jaw diameter 2.4 mm (SER2) in two parallel groups. SER2 provided significantly larger specimens than did the other forceps (SER2 3.26 ± 1.09 vs. SER1 2.92 ± 0.88 vs. OVL 2.92 ± 0.76; p = 0.026), with an average size difference of 0.34 mm greater with SER2 compared to SER1 and OVL. OVL provided significantly deeper biopsies compared to SER1 and SER2 (p = 0.02), with 31 % of OVL biopsies reaching the submucosa. SER2 had significantly less crush artifact than SER1 and OVL (p < 0.0001). Serrated forceps provided larger samples compared to oval jaw forceps of the same size, with SER2 providing the largest specimen size. Oval cup forceps had deeper penetration of epithelium, while the larger jaw diameter serrated jaw forceps had less crush artifact. All three forceps provided specimens adequate for diagnostic purposes.

  12. Morphology and mechanics of the teeth and jaws of white-spotted bamboo sharks (Chiloscyllium plagiosum).

    PubMed

    Ramsay, Jason B; Wilga, Cheryl D

    2007-08-01

    The teeth of white-spotted bamboo sharks (Chiloscyllium plagiosum) are used to clutch soft-bodied prey and crush hard prey; however, the dual function is not evident from tooth morphology alone. Teeth exhibit characteristics that are in agreement with a clutching-type tooth morphology that is well suited for grasping and holding soft-bodied prey, but not for crushing hard prey. The dual role of this single tooth morphology is facilitated by features of the dental ligament and jaw joint. Tooth attachment is flexible and elastic, allowing movement in both sagittal and frontal planes. During prey capture spike-like tooth cusps pierce the flesh of soft prey, thereby preventing escape. When processing prey harder than the teeth can pierce the teeth passively depress, rotating inward towards the oral cavity such that the broader labial faces of the teeth are nearly parallel to the surface of the jaws and form a crushing surface. Movement into the depressed position increases the tooth surface area contacting prey and decreases the total stress applied to the tooth, thereby decreasing the risk of structural failure. This action is aided by a jaw joint that is ventrally offset from the occlusal planes of the jaws. The offset joint position allows many teeth to contact prey simultaneously and orients force vectors at contact points between the jaws and prey in a manner that shears or rolls prey between the jaws during a bite, thus, aiding in processing while reducing forward slip of hard prey from the mouth. Together the teeth, dental ligament, and jaws form an integrated system that may be beneficial to the feeding ecology of C. plagiosum, allowing for a diet that includes prey of varying hardness and elusiveness. (c) 2007 Wiley-Liss, Inc.

  13. EMA assessment of tongue-jaw co-ordination during speech in dysarthria following traumatic brain injury.

    PubMed

    Bartle, Carly J; Goozée, Justine V; Scott, Dion; Murdoch, Bruce E; Kuruvilla, Mili

    2006-05-01

    To investigate the spatio-timing aspects of tongue-jaw co-ordination during speech in individuals with traumatic brain injury (TBI). It was hypothesized that both timing and spatial co-ordination would be affected by TBI. A group comparison design wherein Mann-Whitney U-tests were used to compare non-neurologically impaired individuals with individuals with TBI. Nine non-neurologically impaired adults and nine adults with TBI were involved in the study. Electromagnetic articulography (EMA) was used to track tongue and jaw movement during /t/ and /k/, embedded in sentence and syllable stimuli. Analysis of group data did not reveal a significant difference in spatio-timing tongue-jaw co-ordination between the control group and TBI group. On an individual basis, a proportion of individuals with TBI differed from non-neurologically impaired participants with regard to articulatory order and percentage of jaw contribution to /t/. EMA assessment results supported perceptual data; those adults who presented with severe articulatory disturbances exhibited the most deviant spatio-timing tongue-jaw co-ordination patterns. This finding could provide a new and specific direction for treatment, directed at combined movement patterns.

  14. Sagittal Plane Kinematics of the Jaw and Hyolingual Apparatus During Swallowing in Macaca mulatta

    PubMed Central

    Iriarte-Diaz, Jose; Arce-McShane, Fritzie; Orsbon, Courtney P.; Brown, Kevin A.; Eastment, McKenna; Avivi-Arber, Limor; Sessle, Barry J.; Inoue, Makoto; Hatsopoulos, Nicholas G.; Ross, Callum F.

    2018-01-01

    Studies of mechanisms of feeding behavior are important in a society where aging- and disease-related feeding disorders are increasingly prevalent. It is important to evaluate the clinical relevance of animal models of the disease and the control. Our present study quantifies macaque hyolingual and jaw kinematics around swallowing cycles to determine the extent to which macaque swallowing resembles that of humans. One female and one male adult Macaca mulatta were trained to feed in a primate chair. Videofluoroscopy was used to record kinematics in a sagittal view during natural feeding on solid food, and the kinematics of the hyoid bone, thyroid cartilage, mandibular jaw, and anterior-, middle-, and posterior-tongue. Jaw gape cycles were defined by consecutive maximum gapes, and the kinematics of the swallow cycles were compared with those of the two consecutive non-swallow cycles preceding and succeeding the swallow cycles. Although there are size differences between macaques and humans, and macaques have shorter durations of jaw gape cycles and hyoid and thyroid upward movements, there are several important similarities between our macaque data and human data reported in the literature: (1) The durations of jaw gape cycles during swallow cycles are longer than those of non-swallow cycles as a result of an increased duration of the jaw-opening phase; (2) Hyoid and thyroid upward movement is linked with a posterior tongue movement and is faster during swallow than non-swallow cycles; (3) Tongue elevation propagates from anterior to posterior during swallow and non-swallow cycles. These findings suggest that macaques can be a useful experimental model for human swallowing studies. PMID:28528492

  15. Self-heating–induced healing of lithium dendrites

    NASA Astrophysics Data System (ADS)

    Li, Lu; Basu, Swastik; Wang, Yiping; Chen, Zhizhong; Hundekar, Prateek; Wang, Baiwei; Shi, Jian; Shi, Yunfeng; Narayanan, Shankar; Koratkar, Nikhil

    2018-03-01

    Lithium (Li) metal electrodes are not deployable in rechargeable batteries because electrochemical plating and stripping invariably leads to growth of dendrites that reduce coulombic efficiency and eventually short the battery. It is generally accepted that the dendrite problem is exacerbated at high current densities. Here, we report a regime for dendrite evolution in which the reverse is true. In our experiments, we found that when the plating and stripping current density is raised above ~9 milliamperes per square centimeter, there is substantial self-heating of the dendrites, which triggers extensive surface migration of Li. This surface diffusion heals the dendrites and smoothens the Li metal surface. We show that repeated doses of high-current-density healing treatment enables the safe cycling of Li-sulfur batteries with high coulombic efficiency.

  16. Bisphosphonates and oral pathology II. Osteonecrosis of the jaws: review of the literature before 2005.

    PubMed

    Estefanía Fresco, Ruth; Ponte Fernández, Ruth; Aguirre Urizar, José Manuel

    2006-11-01

    Bisphosphonates are bone-turnover modulating drugs which are used in the management of a number of bone diseases ranging from osteoporosis to neoplasic pathology-associated osteolysis. In the last years a number of cases of osteonecrosis of the jaws associated with these drugs have been reported. In this review we analyze the cases published in the literature indexed from 2003 to December 2005. During this period 246 cases were reported, being more frequently associated with women in the sixth decade of life. More frequently associated bisphosphonates were the nitrogenated bisphosphonates (pamidronate, zolendronic acid) and the most common oral antecedent was a dental extraction. Nevertheless more than 25% of the cases were spontaneous. The most frequent site was the mandible and most of the cases presented clinical evidence of bone exposure and pain. Different treatments have been proposed with different antibiotic therapies with or without surgery, showing in general terms an uncertain prognosis with low healing rates.

  17. [Positional accuracy and quality assurance of Backup JAWs required for volumetric modulated arc therapy].

    PubMed

    Tatsumi, Daisaku; Nakada, Ryosei; Ienaga, Akinori; Yomoda, Akane; Inoue, Makoto; Ichida, Takao; Hosono, Masako

    2012-01-01

    The tolerance of the Backup diaphragm (Backup JAW) setting in Elekta linac was specified as 2 mm according to the AAPM TG-142 report. However, the tolerance and the quality assurance procedure for volumetric modulated arc therapy (VMAT) was not provided. This paper describes positional accuracy and quality assurance procedure of the Backup JAWs required for VMAT. It was found that a gap-width error of the Backup JAW by a sliding window test needed to be less than 1.5 mm for prostate VMAT delivery. It was also confirmed that the gap-widths had been maintained with an error of 0.2 mm during the past one year.

  18. Induction of dendritic spines by β2-containing nicotinic receptors.

    PubMed

    Lozada, Adrian F; Wang, Xulong; Gounko, Natalia V; Massey, Kerri A; Duan, Jingjing; Liu, Zhaoping; Berg, Darwin K

    2012-06-13

    Glutamatergic synapses are located mostly on dendritic spines in the adult nervous system. The spines serve as postsynaptic compartments, containing components that mediate and control the synaptic signal. Early in development, when glutamatergic synapses are initially forming, waves of excitatory activity pass through many parts of the nervous system and are driven in part by a class of heteropentameric β2-containing nicotinic acetylcholine receptors (β2*-nAChRs). These β2*-nAChRs are widely distributed and, when activated, can depolarize the membrane and elevate intracellular calcium levels in neurons. We show here that β2*-nAChRs are essential for acquisition of normal numbers of dendritic spines during development. Mice constitutively lacking the β2-nAChR gene have fewer dendritic spines than do age-matched wild-type mice at all times examined. Activation of β2*-nAChRs by nicotine either in vivo or in organotypic slice culture quickly elevates the number of spines. RNA interference studies both in vivo and in organotypic culture demonstrate that the β2*-nAChRs act in a cell-autonomous manner to increase the number of spines. The increase depends on intracellular calcium and activation of calcium, calmodulin-dependent protein kinase II. Absence of β2*-nAChRs in vivo causes a disproportionate number of glutamatergic synapses to be localized on dendritic shafts, rather than on spines as occurs in wild type. This shift in synapse location is found both in the hippocampus and cortex, indicating the breadth of the effect. Because spine synapses differ from shaft synapses in their signaling capabilities, the shift observed is likely to have significant consequences for network function.

  19. Biomechanical calculation of human TM joint loading with jaw opening.

    PubMed

    Kuboki, T; Takenami, Y; Maekawa, K; Shinoda, M; Yamashita, A; Clark, G T

    2000-11-01

    A three-dimensional, static mathematical calculation of the stomatognathic system was done to predict total temporomandibular joint (TMJ) loading at different levels of jaw opening. The model assumed that muscle forces acting on the mandible could be simulated by a combination of contractile components (CCs) and elastic components (ECs) and that static equilibrium existed within the body of the mandible. The model also imposed the constraint that any generated joint reaction force would act on the centre of the condyle. The results of the model demonstrated that under all conditions of opening and for all values of the elastic modulus selected, the forces between the TMJ condyle and the articular eminence were compressive in nature. The compressive force magnitude increased from 2.7 to 27.6 N incrementally as the jaw opened from 10 to 40 mm. Overall data in this study indicated that the TMJ tissues undergo low levels of compression at open positions up to 40 mm. Finally, the condition of trismus (increased jaw closing activation with opening) was simulated, the joint reaction force at 20 mm opening increased from 7.7 to 64.9 N with only a 20% activation of the closers.

  20. Analysis of feeding function and jaw stability in bedridden elderly.

    PubMed

    Tamura, Fumiyo; Mizukami, Miki; Ayano, Rika; Mukai, Yoshiharu

    2002-01-01

    The purpose of this study was to analyze the relationship between jaw stability and the feeding function of 53 bedridden elderly dysphagic patients. Investigations included a questionnaire on daily life activities and meals, oral examinations, functional tests for feeding ability, and assessments of feeding function during the meal. The results of intraoral examination of this patient population for jaw stability revealed that 34.0% of individuals had posterior support for occlusion regardless of whether they had natural teeth or dentures. Thus, the number classified as having mandibular stability (ST) was 18 and that with no mandibular stability (NST) was 35. In a Repetitive Saliva Swallowing Test (RSST), 83.3% of the NST group and 40.0% of the ST group were unable to swallow more than 3 times within 30 seconds. In a water swallowing test, 91.4% of the NST of group was unable to swallow 15 mL of water by a single swallow, while 40.0% of ST group was capable. The results suggest that jaw stabilization by occlusion with the posterior teeth or dental prosthetics is important to feeding function, particularly swallowing.

  1. Orchestration of transplantation tolerance by regulatory dendritic cell therapy or in-situ targeting of dendritic cells.

    PubMed

    Morelli, Adrian E; Thomson, Angus W

    2014-08-01

    Extensive research in murine transplant models over the past two decades has convincingly demonstrated the ability of regulatory dendritic cells (DCregs) to promote long-term allograft survival. We review important considerations regarding the source of therapeutic DCregs (donor or recipient) and their mode of action, in-situ targeting of DCregs, and optimal therapeutic regimens to promote DCreg function. Recent studies have defined protocols and mechanisms whereby ex-vivo-generated DCregs of donor or recipient origin subvert allogeneic T-cell responses and promote long-term organ transplant survival. Particular interest has focused on how donor antigen is acquired, processed and presented by autologous dendritic cells, on the stability of DCregs, and on in-situ targeting of dendritic cells to promote their tolerogenic function. New evidence of the therapeutic efficacy of DCregs in a clinically relevant nonhuman primate organ transplant model and production of clinical grade DCregs support early evaluation of DCreg therapy in human graft recipients. We discuss strategies currently used to promote dendritic cell tolerogenicity, including DCreg therapy and in-situ targeting of dendritic cells, with a view to improved understanding of underlying mechanisms and identification of the most promising strategies for therapeutic application.

  2. Dendrites of medial olivocochlear neurons in mouse.

    PubMed

    Brown, M C; Levine, J L

    2008-06-12

    Stains for acetylcholinesterase (AChE) and retrograde labeling with Fluorogold (FG) were used to study olivocochlear neurons and their dendritic patterns in mice. The two methods gave similar results for location and number of somata. The total number of medial olivocochlear (MOC) neurons in the ventral nucleus of the trapezoid body (VNTB) is about 170 per side. An additional dozen large olivocochlear neurons are located in the dorsal periolivary nucleus (DPO). Dendrites of all of these neurons are long and extend in all directions from the cell bodies, a pattern that contrasts with the sharp frequency tuning of their responses. For VNTB neurons, there were greater numbers of dendrites directed medially than laterally and those directed medially were longer (on average, 25-50% longer). Dendrite extensions were most pronounced for neurons located in the rostral portion of the VNTB. When each dendrite from a single neuron was represented as a vector, and all the vectors summed, the result was also skewed toward the medial direction. DPO neurons, however, had more symmetric dendrites that projected into more dorsal parts of the trapezoid body, suggesting that this small group of olivocochlear neurons has very different physiological properties. Dendrites of both types of neurons were somewhat elongated rostrally, about 20% longer than those directed caudally. These results can be interpreted as extensions of dendrites of olivocochlear neurons toward their synaptic inputs: medially to meet crossing fibers from the cochlear nucleus that are part of the MOC reflex pathway, and rostrally to meet descending inputs from higher centers.

  3. Evolution of Muscle Activity Patterns Driving Motions of the Jaw and Hyoid during Chewing in Gnathostomes

    PubMed Central

    Konow, Nicolai; Herrel, Anthony; Ross, Callum F.; Williams, Susan H.; German, Rebecca Z.; Sanford, Christopher P. J.; Gintof, Chris

    2011-01-01

    Although chewing has been suggested to be a basal gnathostome trait retained in most major vertebrate lineages, it has not been studied broadly and comparatively across vertebrates. To redress this imbalance, we recorded EMG from muscles powering anteroposterior movement of the hyoid, and dorsoventral movement of the mandibular jaw during chewing. We compared muscle activity patterns (MAP) during chewing in jawed vertebrate taxa belonging to unrelated groups of basal bony fishes and artiodactyl mammals. Our aim was to outline the evolution of coordination in MAP. Comparisons of activity in muscles of the jaw and hyoid that power chewing in closely related artiodactyls using cross-correlation analyses identified reorganizations of jaw and hyoid MAP between herbivores and omnivores. EMG data from basal bony fishes revealed a tighter coordination of jaw and hyoid MAP during chewing than seen in artiodactyls. Across this broad phylogenetic range, there have been major structural reorganizations, including a reduction of the bony hyoid suspension, which is robust in fishes, to the acquisition in a mammalian ancestor of a muscle sling suspending the hyoid. These changes appear to be reflected in a shift in chewing MAP that occurred in an unidentified anamniote stem-lineage. This shift matches observations that, when compared with fishes, the pattern of hyoid motion in tetrapods is reversed and also time-shifted relative to the pattern of jaw movement. PMID:21705368

  4. Optimizing Hybrid Occlusion in Face-Jaw-Teeth Transplantation: A Preliminary Assessment of Real-Time Cephalometry as Part of the Computer-Assisted Planning and Execution Workstation for Craniomaxillofacial Surgery.

    PubMed

    Murphy, Ryan J; Basafa, Ehsan; Hashemi, Sepehr; Grant, Gerald T; Liacouras, Peter; Susarla, Srinivas M; Otake, Yoshito; Santiago, Gabriel; Armand, Mehran; Gordon, Chad R

    2015-08-01

    The aesthetic and functional outcomes surrounding Le Fort-based, face-jaw-teeth transplantation have been suboptimal, often leading to posttransplant class II/III skeletal profiles, palatal defects, and "hybrid malocclusion." Therefore, a novel technology-real-time cephalometry-was developed to provide the surgical team instantaneous, intraoperative knowledge of three-dimensional dentoskeletal parameters. Mock face-jaw-teeth transplantation operations were performed on plastic and cadaveric human donor/recipient pairs (n = 2). Preoperatively, cephalometric landmarks were identified on donor/recipient skeletons using segmented computed tomographic scans. The computer-assisted planning and execution workstation tracked the position of the donor face-jaw-teeth segment in real time during the placement/inset onto recipient, reporting pertinent hybrid cephalometric parameters from any movement of donor tissue. The intraoperative data measured through real-time cephalometry were compared to posttransplant measurements for accuracy assessment. In addition, posttransplant cephalometric relationships were compared to planned outcomes to determine face-jaw-teeth transplantation success. Compared with postoperative data, the real-time cephalometry-calculated intraoperative measurement errors were 1.37 ± 1.11 mm and 0.45 ± 0.28 degrees for the plastic skull and 2.99 ± 2.24 mm and 2.63 ± 1.33 degrees for the human cadaver experiments. These results were comparable to the posttransplant relations to planned outcome (human cadaver experiment, 1.39 ± 1.81 mm and 2.18 ± 1.88 degrees; plastic skull experiment, 1.06 ± 0.63 mm and 0.53 ± 0.39 degrees). Based on this preliminary testing, real-time cephalometry may be a valuable adjunct for adjusting and measuring "hybrid occlusion" in face-jaw-teeth transplantation and other orthognathic surgical procedures.

  5. Mechanisms underlying subunit independence in pyramidal neuron dendrites

    PubMed Central

    Behabadi, Bardia F.; Mel, Bartlett W.

    2014-01-01

    Pyramidal neuron (PN) dendrites compartmentalize voltage signals and can generate local spikes, which has led to the proposal that their dendrites act as independent computational subunits within a multilayered processing scheme. However, when a PN is strongly activated, back-propagating action potentials (bAPs) sweeping outward from the soma synchronize dendritic membrane potentials many times per second. How PN dendrites maintain the independence of their voltage-dependent computations, despite these repeated voltage resets, remains unknown. Using a detailed compartmental model of a layer 5 PN, and an improved method for quantifying subunit independence that incorporates a more accurate model of dendritic integration, we first established that the output of each dendrite can be almost perfectly predicted by the intensity and spatial configuration of its own synaptic inputs, and is nearly invariant to the rate of bAP-mediated “cross-talk” from other dendrites over a 100-fold range. Then, through an analysis of conductance, voltage, and current waveforms within the model cell, we identify three biophysical mechanisms that together help make independent dendritic computation possible in a firing neuron, suggesting that a major subtype of neocortical neuron has been optimized for layered, compartmentalized processing under in-vivo–like spiking conditions. PMID:24357611

  6. New insights into dinosaur jaw muscle anatomy.

    PubMed

    Holliday, Casey M

    2009-09-01

    Jaw muscles are key components of the head and critical to testing hypotheses of soft-tissue homology, skull function, and evolution. Dinosaurs evolved an extraordinary diversity of cranial forms adapted to a variety of feeding behaviors. However, disparate evolutionary transformations in head shape and function among dinosaurs and their living relatives, birds and crocodylians, impair straightforward reconstructions of muscles, and other important cephalic soft tissues. This study presents the osteological correlates and inferred soft tissue anatomy of the jaw muscles and relevant neurovasculature in the temporal region of the dinosaur head. Hypotheses of jaw muscle homology were tested across a broad range archosaur and sauropsid taxa to more accurately infer muscle attachments in the adductor chambers of non-avian dinosaurs. Many dinosaurs likely possessed m. levator pterygoideus, a trait shared with lepidosaurs but not extant archosaurs. Several major clades of dinosaurs (e.g., Ornithopoda, Ceratopsidae, Sauropoda) eliminated the epipterygoid, thus impacting interpretations of m. pseudotemporalis profundus. M. pseudotemporalis superficialis most likely attached to the caudoventral surface of the laterosphenoid, a trait shared with extant archosaurs. Although mm. adductor mandibulae externus profundus and medialis likely attached to the caudal half of the dorsotemporal fossa and coronoid process, clear osteological correlates separating the individual bellies are rare. Most dinosaur clades possess osteological correlates indicative of a pterygoideus ventralis muscle that attaches to the lateral surface of the mandible, although the muscle may have extended as far as the jugal in some taxa (e.g., hadrosaurs, tyrannosaurs). The cranial and mandibular attachments of mm adductor mandibulae externus superficialis and adductor mandibulae posterior were consistent across all taxa studied. These new data greatly increase the interpretive resolution of head anatomy in

  7. Jaw-Phonatory Coordination in Chronic Developmental Stuttering

    ERIC Educational Resources Information Center

    Loucks, Torrey M. J.; De Nil, Luc F.; Sasisekaran, Jayanthi

    2007-01-01

    A deficiency in sensorimotor integration in a person who stutters may be a factor in the pathophysiology of developmental stuttering. To test oral sensorimotor function in adults who stutter, we used a task that requires the coordination of a jaw-opening movement with phonation onset. The task was adapted from previous limb coordination studies,…

  8. Golgi-type I and Golgi-type II neurons in the ventral anterior thalamic nucleus of the adult human: morphological features and quantitative analysis.

    PubMed

    Al-Hussain Bani Hani, Saleh M; El-Dwairi, Qasim A; Bataineh, Ziad M; Al-Haidari, Mohammad S; Al-Alami, Jamil

    2008-05-01

    The morphological and quantitative features of neurons in the adult human ventral anterior thalamic nucleus were studied in Golgi preparations. Two neuronal types were found and their quantitative features were studied. Golgi-type I neurons were medium to large cells with dense dendritic trees and dendritic protrusions and short hair-like appendages. They have somatic mean diameter of 30.8 microm (+/-9.4, n = 85). They have an average 100.3 dendritic branches, 48.97 dendritic branching points, and 58.85 dendritic tips. The mean diameters of their primary, secondary, and tertiary dendrites were 3.1 microm (+/-1, n = 80), 1.85 microm (+/-0.8, n = 145), and 1.5 microm (+/-0.4, n = 160), respectively. Golgi-type II neurons were small to medium cells with few sparsely branching dendrites and dendritic stalked appendages with or without terminal swellings. They have somatic mean diameters of 22.2 microm (+/-5.8, n = 120). They have an average 33.76 dendritic branches, 16.49 dendritic branching points, and 21.97 dendritic tips. The mean diameters of their primary, secondary, and tertiary dendrites were 1.6 microm (+/-0.86, n = 70), 1.15 microm (+/-0.55, n = 118), and 1 microm (+/-0.70, n = 95), respectively. These quantitative data may form the basis for further quantitative studies involving aging or some degenerative diseases that may affect cell bodies and/or dendritic trees of the Golgi-type I and/or Golgi-type II thalamic neurons.

  9. Radiolucent rim as a possible diagnostic aid for differentiating jaw lesions

    PubMed Central

    Mortazavi, Hamed; Rahmani, Somayeh; Jafari, Soudeh; Parvaei, Parvin

    2015-01-01

    In this study, we formulate a new proposal that complements previous classifications in order to assist dental practitioners in performing a differential diagnosis based on patients' radiographs. We used general search engines and specialized databases such as Google Scholar, PubMed, PubMed Central, MedLine Plus, Science Direct, Scopus, and well-recognized textbooks to find relevant studies by using keywords such as "jaw disease," "jaw lesions," "radiolucent rim," "radiolucent border," and "radiolucent halo." More than 200 articles were found, of which 70 were broadly relevant to the topic. We ultimately included 50 articles that were closely related to the topic of interest. When the relevant data were compiled, the following eight lesions were identified as having a radiolucent rim: periapical cemento-osseous dysplasia, focal cemento-osseous dysplasia, florid cemento-osseous dysplasia, cemento-ossifying fibroma, osteoid osteoma, osteoblastoma, odontoma, and cementoblastoma. We propose a novel subcategory, jaw lesions with a radiolucent rim, which includes eight entities. The implementation of this new category can help improve the diagnoses that dental practitioners make based on patients' radiographs. PMID:26730374

  10. Development of the trigeminal motor neurons in parrots: implications for the role of nervous tissue in the evolution of jaw muscle morphology.

    PubMed

    Tokita, Masayoshi; Nakayama, Tomoki

    2014-02-01

    Vertebrates have succeeded to inhabit almost every ecological niche due in large part to the anatomical diversification of their jaw complex. As a component of the feeding apparatus, jaw muscles carry a vital role for determining the mode of feeding. Early patterning of the jaw muscles has been attributed to cranial neural crest-derived mesenchyme, however, much remains to be understood about the role of nonneural crest tissues in the evolution and diversification of jaw muscle morphology. In this study, we describe the development of trigeminal motor neurons in a parrot species with the uniquely shaped jaw muscles and compare its developmental pattern to that in the quail with the standard jaw muscles to uncover potential roles of nervous tissue in the evolution of vertebrate jaw muscles. In parrot embryogenesis, the motor axon bundles are detectable within the muscular tissue only after the basic shape of the muscular tissue has been established. This supports the view that nervous tissue does not primarily determine the spatial pattern of jaw muscles. In contrast, the trigeminal motor nucleus, which is composed of somata of neurons that innervate major jaw muscles, of parrot is more developed compared to quail, even in embryonic stage where no remarkable interspecific difference in both jaw muscle morphology and motor nerve branching pattern is recognized. Our data suggest that although nervous tissue may not have a large influence on initial patterning of jaw muscles, it may play an important role in subsequent growth and maintenance of muscular tissue and alterations in cranial nervous tissue development may underlie diversification of jaw muscle morphology. Copyright © 2013 Wiley Periodicals, Inc.

  11. A Comparison between Growth Morphology of "Eutectic" Cells/Dendrites and Single-Phase Cells/Dendrites

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.; Raj, S. V.; Locci, I. E.

    2003-01-01

    Directionally solidified (DS) intermetallic and ceramic-based eutectic alloys with an in-situ composite microstructure containing finely distributed, long aspect ratio, fiber, or plate reinforcements are being seriously examined for several advanced aero-propulsion applications. In designing these alloys, additional solutes need to be added to the base eutectic composition in order to improve heir high-temperature strength, and provide for adequate toughness and resistance to environmental degradation. Solute addition, however, promotes instability at the planar liquid-solid interface resulting in the formation of two-phase eutectic "colonies." Because morphology of eutectic colonies is very similar to the single-phase cells and dendrites, the stability analysis of Mullins and Sekerka has been extended to describe their formation. Onset of their formation shows a good agreement with this approach; however, unlike the single-phase cells and dendrites, there is limited examination of their growth speed dependence of spacing, morphology, and spatial distribution. The purpose of this study is to compare the growth speed dependence of the morphology, spacing, and spatial distribution of eutectic cells and dendrites with that for the single-phase cells and dendrites.

  12. SNAP-25 requirement for dendritic growth of hippocampal neurons.

    PubMed

    Grosse, G; Grosse, J; Tapp, R; Kuchinke, J; Gorsleben, M; Fetter, I; Höhne-Zell, B; Gratzl, M; Bergmann, M

    1999-06-01

    Structure and dimension of the dendritic arbor are important determinants of information processing by the nerve cell, but mechanisms and molecules involved in dendritic growth are essentially unknown. We investigated early mechanisms of dendritic growth using mouse fetal hippocampal neurons in primary culture, which form processes during the first week in vitro. We detected a key component of regulated exocytosis, SNAP-25 (synaptosomal associated protein of 25 kDa), in axons and axonal terminals as well as in dendrites identified by the occurrence of the dendritic markers transferrin receptor and MAP2. Selective inactivation of SNAP-25 by botulinum neurotoxin A (BoNTA) resulted in inhibition of axonal growth and of vesicle recycling in axonal terminals. In addition, dendritic growth of hippocampal pyramidal and granule neurons was significantly inhibited by BoNTA. In contrast, cleavage of synaptobrevin by tetanus toxin had an effect on neither axonal nor dendritic growth. Our observations indicate that SNAP-25, but not synaptobrevin, is involved in constitutive axonal growth and dendrite formation by hippocampal neurons.

  13. The Complete Reconfiguration of Dendritic Gold

    NASA Astrophysics Data System (ADS)

    Paneru, Govind; Flanders, Bret

    2014-03-01

    Reconfigurability-by-design is an important strategy in modern materials science, as materials with this capability could potentially be used to confer hydrophobic, lipophobic, or anti-corrosive character to substrates in a regenerative manner. The present work extends the directed electrochemical nanowire assembly (DENA) methodology, which is a technique that employs alternating voltages to grow single crystalline metallic nanowires and nano-dendrites from simple salt solutions, to enable the complete dissolution of macroscopic arrays of metallic dendrites following their growth. Our main finding is that structural reconfiguration of dendritic gold is induced by changes in the MHz-level frequencies of voltages that are applied to the dendrites. Cyclic voltammetry and micro-Raman spectroscopy have been used to show that dendritic gold grows and dissolves by the same chemical mechanisms as bulk gold. Hence, the redox chemistry that occurs at the crystal-solution interface is no different than the established electrochemistry of gold. What differs in this process and allows for reconfiguration to occur is the diffusive behavior of the gold chloride molecules in the solution adjacent to the interface. We will present a simple model that captures the physics of this behavior.

  14. Universal features of dendrites through centripetal branch ordering

    PubMed Central

    Effenberger, Felix; Muellerleile, Julia

    2017-01-01

    Dendrites form predominantly binary trees that are exquisitely embedded in the networks of the brain. While neuronal computation is known to depend on the morphology of dendrites, their underlying topological blueprint remains unknown. Here, we used a centripetal branch ordering scheme originally developed to describe river networks—the Horton-Strahler order (SO)–to examine hierarchical relationships of branching statistics in reconstructed and model dendritic trees. We report on a number of universal topological relationships with SO that are true for all binary trees and distinguish those from SO-sorted metric measures that appear to be cell type-specific. The latter are therefore potential new candidates for categorising dendritic tree structures. Interestingly, we find a faithful correlation of branch diameters with centripetal branch orders, indicating a possible functional importance of SO for dendritic morphology and growth. Also, simulated local voltage responses to synaptic inputs are strongly correlated with SO. In summary, our study identifies important SO-dependent measures in dendritic morphology that are relevant for neural function while at the same time it describes other relationships that are universal for all dendrites. PMID:28671947

  15. The earliest herbivorous marine reptile and its remarkable jaw apparatus.

    PubMed

    Chun, Li; Rieppel, Olivier; Long, Cheng; Fraser, Nicholas C

    2016-05-01

    Newly discovered fossils of the Middle Triassic reptile Atopodentatus unicus call for a radical reassessment of its feeding behavior. The skull displays a pronounced hammerhead shape that was hitherto unknown. The long, straight anterior edges of both upper and lower jaws were lined with batteries of chisel-shaped teeth, whereas the remaining parts of the jaw rami supported densely packed needle-shaped teeth forming a mesh. The evidence indicates a novel feeding mechanism wherein the chisel-shaped teeth were used to scrape algae off the substrate, and the plant matter that was loosened was filtered from the water column through the more posteriorly positioned tooth mesh. This is the oldest record of herbivory within marine reptiles.

  16. The earliest herbivorous marine reptile and its remarkable jaw apparatus

    PubMed Central

    Chun, Li; Rieppel, Olivier; Long, Cheng; Fraser, Nicholas C.

    2016-01-01

    Newly discovered fossils of the Middle Triassic reptile Atopodentatus unicus call for a radical reassessment of its feeding behavior. The skull displays a pronounced hammerhead shape that was hitherto unknown. The long, straight anterior edges of both upper and lower jaws were lined with batteries of chisel-shaped teeth, whereas the remaining parts of the jaw rami supported densely packed needle-shaped teeth forming a mesh. The evidence indicates a novel feeding mechanism wherein the chisel-shaped teeth were used to scrape algae off the substrate, and the plant matter that was loosened was filtered from the water column through the more posteriorly positioned tooth mesh. This is the oldest record of herbivory within marine reptiles. PMID:27386529

  17. Ebola virus infection induces irregular dendritic cell gene expression.

    PubMed

    Melanson, Vanessa R; Kalina, Warren V; Williams, Priscilla

    2015-02-01

    Filoviruses subvert the human immune system in part by infecting and replicating in dendritic cells (DCs). Using gene arrays, a phenotypic profile of filovirus infection in human monocyte-derived DCs was assessed. Monocytes from human donors were cultured in GM-CSF and IL-4 and were infected with Ebola virus Kikwit variant for up to 48 h. Extracted DC RNA was analyzed on SuperArray's Dendritic and Antigen Presenting Cell Oligo GEArray and compared to uninfected controls. Infected DCs exhibited increased expression of cytokine, chemokine, antiviral, and anti-apoptotic genes not seen in uninfected controls. Significant increases of intracellular antiviral and MHC I and II genes were also noted in EBOV-infected DCs. However, infected DCs failed to show any significant difference in co-stimulatory T-cell gene expression from uninfected DCs. Moreover, several chemokine genes were activated, but there was sparse expression of chemokine receptors that enabled activated DCs to home to lymph nodes. Overall, statistically significant expression of several intracellular antiviral genes was noted, which may limit viral load but fails to stop replication. EBOV gene expression profiling is of vital importance in understanding pathogenesis and devising novel therapeutic treatments such as small-molecule inhibitors.

  18. Small vertical changes in jaw relation affect motor unit recruitment in the masseter.

    PubMed

    Terebesi, S; Giannakopoulos, N N; Brüstle, F; Hellmann, D; Türp, J C; Schindler, H J

    2016-04-01

    Strategies for recruitment of masseter muscle motor units (MUs), provoked by constant bite force, for different vertical jaw relations have not previously been investigated. The objective of this study was to analyse the effect of small changes in vertical jaw relation on MU recruitment behaviour in different regions of the masseter during feedback-controlled submaximum biting tasks. Twenty healthy subjects (mean age: 24·6 ± 2·4 years) were involved in the investigation. Intra-muscular electromyographic (EMG) activity of the right masseter was recorded in different regions of the muscle. MUs were identified by the use of decomposition software, and root-mean-square (RMS) values were calculated for each experimental condition. Six hundred and eleven decomposed MUs with significantly (P < 0·001) different jaw relation-specific recruitment behaviour were organised into localised MU task groups. MUs with different task specificity in seven examined tasks were observed. The RMS EMG values obtained from the different recording sites were also significantly (P < 0·01) different between tasks. Overall MU recruitment was significantly (P < 0·05) greater in the deep masseter than in the superficial muscle. The number of recruited MUs and the RMS EMG values decreased significantly (P < 0·01) with increasing jaw separation. This investigation revealed differential MU recruitment behaviour in discrete subvolumes of the masseter in response to small changes in vertical jaw relations. These fine-motor skills might be responsible for its excellent functional adaptability and might also explain the successful management of temporomandibular disorder patients by somatic intervention, in particular by the use of oral splints. © 2015 John Wiley & Sons Ltd.

  19. Toolmarks made by lathe chuck jaws.

    PubMed

    Finkelstein, Nir; Aronson, Ayal; Tsach, Tsadok

    2017-06-01

    This paper presents a forensic method to evidentially tie a workpiece with a specific lathe. Examining using this method can prove or exclude a connection between the two. The importance of this method is mostly due to the growing trend among lawbreakers of manufacturing improvised firearm parts using machining processes. This method is based on comparing jaw impressions made by the chuck on a workpiece. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Dosimetric effect on pediatric conformal treatment plans using dynamic jaw with Tomotherapy HDA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Eun Young, E-mail: eyhan@uams.edu; Kim, Dong-Wook; Zhang, Xin

    It is important to minimize the radiation dose delivered to healthy tissues in pediatric cancer treatment because of the risk of secondary malignancies. Tomotherapy HDA provides a dynamic jaw (DJ) delivery mode that creates a sharper penumbra at the craniocaudal ends of a target in addition to a fixed jaw (FJ) delivery mode. The purpose of this study was to evaluate its dosimetric effect on the pediatric cancer cases. We included 6 pediatric cases in this study. The dose profiles and plan statistics—target dose conformity, uniformity, organ-at-risk (OAR) mean dose, beam-on time, and integral dose—were compared for each case. Consequently,more » the target dose coverage and uniformity were similar for different jaw settings. The OAR dose sparing depended on its relative location to the target and disease sites. For example, in the head and neck cancer cases, the brain stem dose using DJ 2.5 was reduced by more than two-fold (2.4 Gy vs. 6.3 Gy) than that obtained with FJ 2.5. The integral dose with DJ 2.5 decreased by more than 9% compared with that with FJ 2.5. Thus, using dynamic jaw in pediatric cases could be critical to reduce a probability of a secondary malignancy.« less

  1. Laminar Differences in Dendritic Structure of Pyramidal Neurons in the Juvenile Rat Somatosensory Cortex.

    PubMed

    Rojo, Concepción; Leguey, Ignacio; Kastanauskaite, Asta; Bielza, Concha; Larrañaga, Pedro; DeFelipe, Javier; Benavides-Piccione, Ruth

    2016-06-01

    Pyramidal cell structure varies between different cortical areas and species, indicating that the cortical circuits that these cells participate in are likely to be characterized by different functional capabilities. Structural differences between cortical layers have been traditionally reported using either the Golgi method or intracellular labeling, but the structure of pyramidal cells has not previously been systematically analyzed across all cortical layers at a particular age. In the present study, we investigated the dendritic architecture of complete basal arbors of pyramidal neurons in layers II, III, IV, Va, Vb, and VI of the hindlimb somatosensory cortical region of postnatal day 14 rats. We found that the characteristics of basal dendritic morphologies are statistically different in each cortical layer. The variations in size and branching pattern that exist between pyramidal cells of different cortical layers probably reflect the particular functional properties that are characteristic of the cortical circuit in which they participate. This new set of complete basal dendritic arbors of 3D-reconstructed pyramidal cell morphologies across each cortical layer will provide new insights into interlaminar information processing in the cerebral cortex. © The Author 2016. Published by Oxford University Press.

  2. Brain activity associated with memory and cognitive function during jaw-tapping movement in healthy subjects using functional magnetic resonance imaging.

    PubMed

    Cho, Seung-Yeon; Shin, Ae-Sook; Na, Byung-Jo; Jahng, Geon-Ho; Park, Seong-Uk; Jung, Woo-Sang; Moon, Sang-Kwan; Park, Jung-Mi

    2013-06-01

    To determine whether jaw-tapping movement, a classically described as an indication of personal well-being and mental health, stimulates the memory and the cognitive regions of the brain and is associated with improved brain performance. Twelve healthy right-handed female subjects completed the study. Each patient performed a jaw-tapping task and an n-back task during functional magnetic resonance imaging (fMRI). The subjects were trained to carry out the jaw-tapping movement at home twice a day for 4 weeks. The fMRI was repeated when they returned. During the first and second jaw-tapping session, both sides of precentral gyrus and the right middle frontal gyrus (BA 6) were activated. And during the second session of the jaw-tapping task, parts of frontal lobe and temporal lobe related to memory function were more activated. In addition, the total percent task accuracy in n-back task significantly increased after 4 weeks of jawtapping movement. After jaw-tapping training for 4 weeks, brain areas related to memory showed significantly increased blood oxygen level dependent signals. Jaw-tapping movement might be a useful exercise for stimulating the memory and cognitive regions of the brain.

  3. The Trophic Life Cycle Stage of the Opportunistic Fungal Pathogen Pneumocystis murina Hinders the Ability of Dendritic Cells To Stimulate CD4+ T Cell Responses

    PubMed Central

    Evans, Heather M.; Simpson, Andrew; Shen, Shu; Stromberg, Arnold J.; Pickett, Carol L.

    2017-01-01

    ABSTRACT The life cycle of the opportunistic fungal pathogen Pneumocystis murina consists of a trophic stage and an ascus-like cystic stage. Infection with the cyst stage induces proinflammatory immune responses, while trophic forms suppress the cytokine response to multiple pathogen-associated molecular patterns (PAMPs), including β-glucan. A targeted gene expression assay was used to evaluate the dendritic cell response following stimulation with trophic forms alone, with a normal mixture of trophic forms and cysts, or with β-glucan. We demonstrate that stimulation with trophic forms downregulated the expression of multiple genes normally associated with the response to infection, including genes encoding transcription factors. Trophic forms also suppressed the expression of genes related to antigen processing and presentation, including the gene encoding the major histocompatibility complex (MHC) class II transactivator, CIITA. Stimulation of dendritic cells with trophic forms, but not a mixture of trophic forms and cysts, reduced the expression of MHC class II and the costimulatory molecule CD40 on the surface of the cells. These defects in the expression of MHC class II and costimulatory molecules corresponded with a reduced capacity for trophic form-loaded dendritic cells to stimulate CD4+ T cell proliferation and polarization. These data are consistent with the delayed innate and adaptive responses previously observed in immunocompetent mice inoculated with trophic forms compared to responses in mice inoculated with a mixture of trophic forms and cysts. We propose that trophic forms broadly inhibit the ability of dendritic cells to fulfill their role as antigen-presenting cells. PMID:28694293

  4. Dendritic ion channelopathy in acquired epilepsy

    PubMed Central

    Poolos, Nicholas P.; Johnston, Daniel

    2012-01-01

    Summary Ion channel dysfunction or “channelopathy” is a proven cause of epilepsy in the relatively uncommon genetic epilepsies with Mendelian inheritance. But numerous examples of acquired channelopathy in experimental animal models of epilepsy following brain injury have also been demonstrated. Our understanding of channelopathy has grown due to advances in electrophysiology techniques that have allowed the study of ion channels in the dendrites of pyramidal neurons in cortex and hippocampus. The apical dendrites of pyramidal neurons comprise the vast majority of neuronal surface membrane area, and thus the majority of the neuronal ion channel population. Investigation of dendritic ion channels has demonstrated remarkable plasticity in ion channel localization and biophysical properties in epilepsy, many of which produce hyperexcitability and may contribute to the development and maintenance of the epileptic state. Here we review recent advances in dendritic physiology and cell biology, and their relevance to epilepsy. PMID:23216577

  5. Optimizing Hybrid Occlusion in Face-Jaw-Teeth Transplantation: A Preliminary Assessment of Real-Time Cephalometry as Part of the Computer-Assisted Planning and Execution Workstation for Craniomaxillofacial Surgery

    PubMed Central

    Murphy, Ryan J.; Basafa, Ehsan; Hashemi, Sepehr; Grant, Gerald T.; Liacouras, Peter; Susarla, Srinivas M.; Otake, Yoshito; Santiago, Gabriel; Armand, Mehran; Gordon, Chad R.

    2016-01-01

    Background The aesthetic and functional outcomes surrounding Le Fort–based, face-jaw-teeth transplantation have been suboptimal, often leading to posttransplant class II/III skeletal profiles, palatal defects, and “hybrid malocclusion.” Therefore, a novel technology—real-time cephalometry—was developed to provide the surgical team instantaneous, intraoperative knowledge of three-dimensional dentoskeletal parameters. Methods Mock face-jaw-teeth transplantation operations were performed on plastic and cadaveric human donor/recipient pairs (n = 2). Preoperatively, cephalometric landmarks were identified on donor/recipient skeletons using segmented computed tomographic scans. The computer-assisted planning and execution workstation tracked the position of the donor face-jaw-teeth segment in real time during the placement/inset onto recipient, reporting pertinent hybrid cephalometric parameters from any movement of donor tissue. The intraoperative data measured through real-time cephalometry were compared to posttransplant measurements for accuracy assessment. In addition, posttransplant cephalometric relationships were compared to planned outcomes to determine face-jaw-teeth transplantation success. Results Compared with postoperative data, the real-time cephalometry–calculated intraoperative measurement errors were 1.37 ± 1.11 mm and 0.45 ± 0.28 degrees for the plastic skull and 2.99 ± 2.24 mm and 2.63 ± 1.33 degrees for the human cadaver experiments. These results were comparable to the posttransplant relations to planned outcome (human cadaver experiment, 1.39 ± 1.81 mm and 2.18 ± 1.88 degrees; plastic skull experiment, 1.06 ± 0.63 mm and 0.53 ± 0.39 degrees). Conclusion Based on this preliminary testing, real-time cephalometry may be a valuable adjunct for adjusting and measuring “hybrid occlusion” in face-jaw-teeth transplantation and other orthognathic surgical procedures. PMID:26218382

  6. Scaling and Accommodation of Jaw Adductor Muscles in Canidae

    PubMed Central

    Kemp, Graham J.; Jeffery, Nathan

    2016-01-01

    ABSTRACT The masticatory apparatus amongst closely related carnivoran species raises intriguing questions about the interplay between allometry, function, and phylogeny in defining interspecific variations of cranial morphology. Here we describe the gross structure of the jaw adductor muscles of several species of canid, and then examine how the muscles are scaled across the range of body sizes, phylogenies, and trophic groups. We also consider how the muscles are accommodated on the skull, and how this is influenced by differences of endocranial size. Data were collected for a suite of morphological metrics, including body mass, endocranial volume, and muscle masses and we used geometric morphometric shape analysis to reveal associated form changes. We find that all jaw adductor muscles scale isometrically against body mass, regardless of phylogeny or trophic group, but that endocranial volume scales with negative allometry against body mass. These findings suggest that head shape is partly influenced by the need to house isometrically scaling muscles on a neurocranium scaling with negative allometry. Principal component analysis suggests that skull shape changes, such as the relatively wide zygomatic arches and large sagittal crests seen in species with higher body masses, allow the skull to accommodate a relative enlargement of the jaw adductors compared with the endocranium. Anat Rec, 299:951–966, 2016. © 2016 The Authors The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology Published by Wiley Periodicals, Inc. PMID:27103346

  7. Ameloblastomatous Change in Radicular Cyst of The Jaw in a Nigerian Population.

    PubMed

    Omoregie, F O; Sede, M A; Ojo, A M

    2015-06-01

    To determine the incidence, age, gender, jaw-sites and subtypes of radicular cyst, and to determine the incidence of ameloblastomatous change in radicular cyst in a Nigerian population. A 10-year retrospective analysis of all diagnosed orofacial lesions in the Department of Oral Pathology and Medicine, University of Benin Teaching Hospital, Benin City, Nigeria. From the 785 diagnosed orofacial lesions within the study period; there were 54 (6.9%) cases of radicular cysts of the jaws. The peak age group was the 3(rd) decade (n=23, 42.6%) with a mean age of 31 ± 1.7 years. There were 29 (53.7%) males and 25 (46.3%) females, giving a ratio of 1.2:1. The mandible was the commonest jaw-site (n=32, 59.3%). There were 12 (22.2%) cases of periapical cyst which were significantly associated with anterior maxillary site (n=8, 14.8%) [p=0.001]. Seven (13.0%) cases of cystic ameloblastoma were diagnosed among the radicular cysts, with a predilection of the lesions for 3(rd) and 4(th) decades of life (n=6, 11.1%), and posterior mandible (n=5, 9.3%). This study showed a low incidence of radicular cyst of the jaw among orofacial lesions and a relatively higher incidence of ameloblastomatous change in radicular cyst compared to previous reports. Immuno-histochemical examination is recommended to differentiate radicular cyst with ameloblastomatous-like change from cystic ameloblastoma arising from radicular cyst.

  8. Input transformation by dendritic spines of pyramidal neurons

    PubMed Central

    Araya, Roberto

    2014-01-01

    In the mammalian brain, most inputs received by a neuron are formed on the dendritic tree. In the neocortex, the dendrites of pyramidal neurons are covered by thousands of tiny protrusions known as dendritic spines, which are the major recipient sites for excitatory synaptic information in the brain. Their peculiar morphology, with a small head connected to the dendritic shaft by a slender neck, has inspired decades of theoretical and more recently experimental work in an attempt to understand how excitatory synaptic inputs are processed, stored and integrated in pyramidal neurons. Advances in electrophysiological, optical and genetic tools are now enabling us to unravel the biophysical and molecular mechanisms controlling spine function in health and disease. Here I highlight relevant findings, challenges and hypotheses on spine function, with an emphasis on the electrical properties of spines and on how these affect the storage and integration of excitatory synaptic inputs in pyramidal neurons. In an attempt to make sense of the published data, I propose that the raison d'etre for dendritic spines lies in their ability to undergo activity-dependent structural and molecular changes that can modify synaptic strength, and hence alter the gain of the linearly integrated sub-threshold depolarizations in pyramidal neuron dendrites before the generation of a dendritic spike. PMID:25520626

  9. The effects of Candida albicans cell wall protein fraction on dendritic cell maturation.

    PubMed

    Roudbary, Maryam; Roudbar Mohammadi, Shahla; Bozorgmehr, Mahmood; Moazzeni, Seyed Mohammad

    2009-06-01

    Candida albicans is a member of the normal human microflora. C. albicans cell wall is composed of several protein and carbohydrate components which have been shown to play a crucial role in C. albicans interaction with the host immune system. Major components of C. albican cell wall are carbohydrates such as mannans, beta glucans and chitins, and proteins that partially modulate the host immune responses. Dendritic cells (DC), as the most important antigen-presenting cells of the immune system, play a critical role in inducing immune responses against different pathogens. We investigated the effect of the cell wall protein fraction (CPF) of C. albicans on DC maturation. The CPF of C. albicans cells was extracted by a lysis buffer containing sodium dodecyl sulphate, 2-mercaptoethanol and phosphate-buffered saline. The extract was dialyzed and its protein pattern was evaluated by electrophoresis. Dendritic cells were purified from Balb/c mice spleens through a three-step method including mononuclear cell separation, as well as 2-h and overnight cultures. The purified CPF was added at different concentrations to DC. The purity and maturation status of DC were determined by flow cytometry using monoclonal antibodies against CD11c, MHC-II, CD40 and CD86. Treatment of DC with 10 microg/ml of CPF increased the expression of maturation markers including MHC-II, CD86 and CD40 on DC compared to the control group. In this study we used C. albicans CPF with the molecular weight of 40-45 kDa for pulsing and maturation of dendritic cells. Since according to our results CPF significantly increased the expression of maturation markers on DC, we suggest that CPF may act as an efficient immunomodulator, or may be used as a potential adjuvant to boost the host immune system against infections.

  10. Postural stability and the influence of concurrent muscle activation--Beneficial effects of jaw and fist clenching.

    PubMed

    Ringhof, Steffen; Leibold, Timo; Hellmann, Daniel; Stein, Thorsten

    2015-10-01

    Recent studies reported on the potential benefits of submaximum clenching of the jaw on human postural control in upright unperturbed stance. However, it remained unclear whether these effects might also be observed among active controls. The purpose of the present study, therefore, was to comparatively examine the influence of concurrent muscle activation in terms of submaximum clenching of the jaw and submaximum clenching of the fists on postural stability. Posturographic analyses were conducted with 17 healthy young adults on firm and foam surfaces while either clenching the jaw (JAW) or clenching the fists (FIST), whereas habitual standing served as the control condition (CON). Both submaximum tasks were performed at 25% maximum voluntary contraction, assessed, and visualized in real time by means of electromyography. Statistical analyses revealed that center of pressure (COP) displacements were significantly reduced during JAW and FIST, but with no differences between both concurrent clenching activities. Further, a significant increase in COP displacements was observed for the foam as compared to the firm condition. The results showed that concurrent muscle activation significantly improved postural stability compared with habitual standing, and thus emphasize the beneficial effects of jaw and fist clenching for static postural control. It is suggested that concurrent activities contribute to the facilitation of human motor excitability, finally increasing the neural drive to the distal muscles. Future studies should evaluate whether elderly or patients with compromised postural control might benefit from these physiological responses, e.g., in the form of a reduced risk of falling. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. The evolution of jaw protrusion mechanics is tightly coupled to bentho-pelagic divergence in damselfishes (Pomacentridae).

    PubMed

    Cooper, W James; Carter, Casey B; Conith, Andrew J; Rice, Aaron N; Westneat, Mark W

    2017-02-15

    Most species-rich lineages of aquatic organisms have undergone divergence between forms that feed from the substrate (benthic feeding) and forms that feed from the water column (pelagic feeding). Changes in trophic niche are frequently accompanied by changes in skull mechanics, and multiple fish lineages have evolved highly specialized biomechanical configurations that allow them to protrude their upper jaws toward the prey during feeding. Damselfishes (family Pomacentridae) are an example of a species-rich lineage with multiple trophic morphologies and feeding ecologies. We sought to determine whether bentho-pelagic divergence in the damselfishes is tightly coupled to changes in jaw protrusion ability. Using high-speed video recordings and kinematic analysis, we examined feeding performance in 10 species that include three examples of convergence on herbivory, three examples of convergence on omnivory and two examples of convergence on planktivory. We also utilized morphometrics to characterize the feeding morphology of an additional 40 species that represent all 29 damselfish genera. Comparative phylogenetic analyses were then used to examine the evolution of trophic morphology and biomechanical performance. We find that pelagic-feeding damselfishes (planktivores) are strongly differentiated from extensively benthic-feeding species (omnivores and herbivores) by their jaw protrusion ability, upper jaw morphology and the functional integration of upper jaw protrusion with lower jaw abduction. Most aspects of cranial form and function that separate these two ecological groups have evolved in correlation with each other and the evolution of the functional morphology of feeding in damselfishes has involved repeated convergence in form, function and ecology. © 2017. Published by The Company of Biologists Ltd.

  12. Jaw Dysfunction Is Associated with Neck Disability and Muscle Tenderness in Subjects with and without Chronic Temporomandibular Disorders

    PubMed Central

    Silveira, A.; Gadotti, I. C.; Armijo-Olivo, S.; Biasotto-Gonzalez, D. A.; Magee, D.

    2015-01-01

    Purpose. Tender points in the neck are common in patients with temporomandibular disorders (TMD). However, the correlation among neck disability, jaw dysfunction, and muscle tenderness in subjects with TMD still needs further investigation. This study investigated the correlation among neck disability, jaw dysfunction, and muscle tenderness in subjects with and without chronic TMD. Participants. Forty females between 19 and 49 years old were included in this study. There were 20 healthy controls and 20 subjects who had chronic TMD and neck disability. Methods. Subjects completed the neck disability index and the limitations of daily functions in TMD questionnaires. Tenderness of the masticatory and cervical muscles was measured using an algometer. Results. The correlation between jaw disability and neck disability was significantly high (r = 0.915, P < 0.05). The correlation between level of muscle tenderness in the masticatory and cervical muscles with jaw dysfunction and neck disability showed fair to moderate correlations (r = 0.32–0.65). Conclusion. High levels of muscle tenderness in upper trapezius and temporalis muscles correlated with high levels of jaw and neck dysfunction. Moreover, high levels of neck disability correlated with high levels of jaw disability. These findings emphasize the importance of considering the neck and its structures when evaluating and treating patients with TMD. PMID:25883963

  13. Jaw dysfunction is associated with neck disability and muscle tenderness in subjects with and without chronic temporomandibular disorders.

    PubMed

    Silveira, A; Gadotti, I C; Armijo-Olivo, S; Biasotto-Gonzalez, D A; Magee, D

    2015-01-01

    Tender points in the neck are common in patients with temporomandibular disorders (TMD). However, the correlation among neck disability, jaw dysfunction, and muscle tenderness in subjects with TMD still needs further investigation. This study investigated the correlation among neck disability, jaw dysfunction, and muscle tenderness in subjects with and without chronic TMD. Participants. Forty females between 19 and 49 years old were included in this study. There were 20 healthy controls and 20 subjects who had chronic TMD and neck disability. Subjects completed the neck disability index and the limitations of daily functions in TMD questionnaires. Tenderness of the masticatory and cervical muscles was measured using an algometer. The correlation between jaw disability and neck disability was significantly high (r = 0.915, P < 0.05). The correlation between level of muscle tenderness in the masticatory and cervical muscles with jaw dysfunction and neck disability showed fair to moderate correlations (r = 0.32-0.65). High levels of muscle tenderness in upper trapezius and temporalis muscles correlated with high levels of jaw and neck dysfunction. Moreover, high levels of neck disability correlated with high levels of jaw disability. These findings emphasize the importance of considering the neck and its structures when evaluating and treating patients with TMD.

  14. Dendritic spines linearize the summation of excitatory potentials

    PubMed Central

    Araya, Roberto; Eisenthal, Kenneth B.; Yuste, Rafael

    2006-01-01

    In mammalian cortex, most excitatory inputs occur on dendritic spines, avoiding dendritic shafts. Although spines biochemically isolate inputs, nonspiny neurons can also implement biochemical compartmentalization; so, it is possible that spines have an additional function. We have recently shown that the spine neck can filter membrane potentials going into and out of the spine. To investigate the potential function of this electrical filtering, we used two-photon uncaging of glutamate and compared the integration of electrical signals in spines vs. dendritic shafts from basal dendrites of mouse layer 5 pyramidal neurons. Uncaging potentials onto spines summed linearly, whereas potentials on dendritic shafts reduced each other's effect. Linear integration of spines was maintained regardless of the amplitude of the response, distance between spines (as close as <2 μm), distance of the spines to the soma, dendritic diameter, or spine neck length. Our findings indicate that spines serve as electrical isolators to prevent input interaction, and thus generate a linear arithmetic of excitatory inputs. Linear integration could be an essential feature of cortical and other spine-laden circuits. PMID:17132736

  15. Dendritic spines linearize the summation of excitatory potentials.

    PubMed

    Araya, Roberto; Eisenthal, Kenneth B; Yuste, Rafael

    2006-12-05

    In mammalian cortex, most excitatory inputs occur on dendritic spines, avoiding dendritic shafts. Although spines biochemically isolate inputs, nonspiny neurons can also implement biochemical compartmentalization; so, it is possible that spines have an additional function. We have recently shown that the spine neck can filter membrane potentials going into and out of the spine. To investigate the potential function of this electrical filtering, we used two-photon uncaging of glutamate and compared the integration of electrical signals in spines vs. dendritic shafts from basal dendrites of mouse layer 5 pyramidal neurons. Uncaging potentials onto spines summed linearly, whereas potentials on dendritic shafts reduced each other's effect. Linear integration of spines was maintained regardless of the amplitude of the response, distance between spines (as close as < 2 microm), distance of the spines to the soma, dendritic diameter, or spine neck length. Our findings indicate that spines serve as electrical isolators to prevent input interaction, and thus generate a linear arithmetic of excitatory inputs. Linear integration could be an essential feature of cortical and other spine-laden circuits.

  16. Dendritic spine dysgenesis in Rett syndrome

    PubMed Central

    Xu, Xin; Miller, Eric C.; Pozzo-Miller, Lucas

    2014-01-01

    Spines are small cytoplasmic extensions of dendrites that form the postsynaptic compartment of the majority of excitatory synapses in the mammalian brain. Alterations in the numerical density, size, and shape of dendritic spines have been correlated with neuronal dysfunction in several neurological and neurodevelopmental disorders associated with intellectual disability, including Rett syndrome (RTT). RTT is a progressive neurodevelopmental disorder associated with intellectual disability that is caused by loss of function mutations in the transcriptional regulator methyl CpG-binding protein 2 (MECP2). Here, we review the evidence demonstrating that principal neurons in RTT individuals and Mecp2-based experimental models exhibit alterations in the number and morphology of dendritic spines. We also discuss the exciting possibility that signaling pathways downstream of brain-derived neurotrophic factor (BDNF), which is transcriptionally regulated by MeCP2, offer promising therapeutic options for modulating dendritic spine development and plasticity in RTT and other MECP2-associated neurodevelopmental disorders. PMID:25309341

  17. Assessment of the increased calcification of the jaw bone with CT-Scan after dental implant placement

    PubMed Central

    2011-01-01

    Purpose This study was performed to evaluate the changes of jaw bone density around the dental implant after placement using computed tomography scan (CT-Scan). Materials and Methods This retrospective study consisted of 30 patients who had lost 1 posterior tooth in maxilla or mandible and installed dental implant. The patients took CT-Scan before and after implant placement. Hounsfield Unit (HU) was measured around the implants and evaluated the difference of HU before and after implant installation. Results The mean HU of jaw bone was 542.436 HU and 764.9 HU before and after implant placement, respectively (p<0.05). The means HUs for male were 632.3 HU and 932.2 HU and those for female 478.2 HU and 645.5 HU before and after implant placement, respectively (p<0.05). Also, the jaw bone with lower density needed longer period for implant procedure and the increased change of HU of jaw bone was less in the cases which needed longer period for osseointegration. Conclusion CT-Scan could be used to assess the change of bone density around dental implants. Bone density around dental implant was increased after placement. The increased rate of bone density could be determined by the quality of jaw bone before implant placement. PMID:21977476

  18. Assessment of the increased calcification of the jaw bone with CT-Scan after dental implant placement.

    PubMed

    Yunus, Barunawaty

    2011-06-01

    This study was performed to evaluate the changes of jaw bone density around the dental implant after placement using computed tomography scan (CT-Scan). This retrospective study consisted of 30 patients who had lost 1 posterior tooth in maxilla or mandible and installed dental implant. The patients took CT-Scan before and after implant placement. Hounsfield Unit (HU) was measured around the implants and evaluated the difference of HU before and after implant installation. The mean HU of jaw bone was 542.436 HU and 764.9 HU before and after implant placement, respectively (p<0.05). The means HUs for male were 632.3 HU and 932.2 HU and those for female 478.2 HU and 645.5 HU before and after implant placement, respectively (p<0.05). Also, the jaw bone with lower density needed longer period for implant procedure and the increased change of HU of jaw bone was less in the cases which needed longer period for osseointegration. CT-Scan could be used to assess the change of bone density around dental implants. Bone density around dental implant was increased after placement. The increased rate of bone density could be determined by the quality of jaw bone before implant placement.

  19. X-ray computed tomography library of shark anatomy and lower jaw surface models.

    PubMed

    Kamminga, Pepijn; De Bruin, Paul W; Geleijns, Jacob; Brazeau, Martin D

    2017-04-11

    The cranial diversity of sharks reflects disparate biomechanical adaptations to feeding. In order to be able to investigate and better understand the ecomorphology of extant shark feeding systems, we created a x-ray computed tomography (CT) library of shark cranial anatomy with three-dimensional (3D) lower jaw reconstructions. This is used to examine and quantify lower jaw disparity in extant shark species in a separate study. The library is divided in a dataset comprised of medical CT scans of 122 sharks (Selachimorpha, Chondrichthyes) representing 73 extant species, including digitized morphology of entire shark specimens. This CT dataset and additional data provided by other researchers was used to reconstruct a second dataset containing 3D models of the left lower jaw for 153 individuals representing 94 extant shark species. These datasets form an extensive anatomical record of shark skeletal anatomy, necessary for comparative morphological, biomechanical, ecological and phylogenetic studies.

  20. Modulation of jaw muscle spindle afferent activity following intramuscular injections with hypertonic saline.

    PubMed

    Ro, J Y; Capra, N F

    2001-05-01

    Transient noxious chemical stimulation of small diameter muscle afferents modulates jaw movement-related responses of caudal brainstem neurons. While it is likely that the effect is mediated from the spindle afferents in the mesencephalic nucleus (Vmes) via the caudally projecting Probst's tract, the mechanisms of pain induced modulations of jaw muscle spindle afferents is not known. In the present study, we tested the hypothesis that jaw muscle nociceptors gain access to muscle spindle afferents in the same muscle via central mechanisms and alter their sensitivity. Thirty-five neurons recorded from the Vmes were characterized as muscle spindle afferents based on their responses to passive jaw movements, muscle palpation, and electrical stimulation of the masseter nerve. Each cell was tested by injecting a small volume (250 microl) of either 5% hypertonic and/or isotonic saline into the receptor-bearing muscle. Twenty-nine units were tested with 5% hypertonic saline, of which 79% (23/29) showed significant modulation of mean firing rates (MFRs) during one or more phases of ramp-and-hold movements. Among the muscle spindle primary-like units (n = 12), MFRs of 4 units were facilitated, five reduced, two showed mixed responses and one unchanged. In secondary-like units (n = 17), MFRs of 9 were facilitated, three reduced and five unchanged. Thirteen units were tested with isotonic saline, of which 77% showed no significant changes of MFRs. Further analysis revealed that the hypertonic saline not only affected the overall output of muscle spindle afferents, but also increased the variability of firing and altered the relationship between afferent signal and muscle length. These results demonstrated that activation of muscle nociceptors significantly affects proprioceptive properties of jaw muscle spindles via central neural mechanisms. The changes can have deleterious effects on oral motor function as well as kinesthetic sensibility.

  1. Transient potentials in dendritic systems of arbitrary geometry.

    PubMed

    Butz, E G; Cowan, J D

    1974-09-01

    A simple graphical calculus is developed that generates analytic solutions for membrane potential transforms at any point on the dendritic tree of neurons with arbitrary dendritic geometries, in response to synaptic "current" inputs. Such solutions permit the computation of transients in neurons with arbitrary geometry and may facilitate analysis of the role of dendrites in such cells.

  2. Bi-stable dendrite in constant electric field: a model analysis.

    PubMed

    Baginskas, A; Gutman, A; Svirskis, G

    1993-03-01

    Some neurons possess dendritic persistent inward current, which is activated during depolarization. Dendrites can be stably depolarized, i.e. they are bi-stable if the net current is inward. A proper method to show the existence of dendritic bi-stability is putting the neuron into the electric field to induce transmembrane potential changes along the dendrites. Here we present analytical and computer simulation of the bi-stable dendrite in the d.c. field. A prominent jump to a depolarization plateau can be seen in the soma upon initial hyperpolarization of its membrane. If a considerable portion of dendrites are parallel to the field it is impossible to switch off the depolarization plateau by changing the direction and the strength of the electric field. There is nothing similar in neurons with ohmic dendrites. The results of the simulation conform to the experimental observations in turtle motoneurons [Hounsgaard J. and Kiehn O. (1993) J. Physiol., Lond. (in press)]; comparison of the theoretical and the experimental results makes semi-quantitative estimation of some electrical parameters of dendrites possible. We propose modifications of the experiment which enable one to measure dendritic length constants and other parameters of stained neurons.

  3. Nanoscale stiffness of individual dendritic molecules and their aggregates

    NASA Astrophysics Data System (ADS)

    Tsukruk, Vladimir V.; Shulha, Hennady; Zhai, Xiaowen

    2003-02-01

    We demonstrate that carefully designed micromapping of the surface stiffness with nanoscale resolution could reveal quantitative data on the elastic properties of compliant, dendritic organic molecules with nanoparticulate dimensions below 3 nm. Much higher elastic modulus was observed for individual, fourth generation dendritic molecules due to their more shape persistent conformation. Large, reversible, elastic deformation is a distinct characteristic of the nanomechanical response observed for individual dendritic molecules. Such a "rubbery" response could be an indication of spatial constraints imposed on vitrification of dendritic molecules tethered to the functionalized interface. Surprisingly, an increased stiffness was also found for the third generation dendritic molecules within long aggregates.

  4. A scaling law derived from optimal dendritic wiring

    PubMed Central

    Cuntz, Hermann; Mathy, Alexandre; Häusser, Michael

    2012-01-01

    The wide diversity of dendritic trees is one of the most striking features of neural circuits. Here we develop a general quantitative theory relating the total length of dendritic wiring to the number of branch points and synapses. We show that optimal wiring predicts a 2/3 power law between these measures. We demonstrate that the theory is consistent with data from a wide variety of neurons across many different species and helps define the computational compartments in dendritic trees. Our results imply fundamentally distinct design principles for dendritic arbors compared with vascular, bronchial, and botanical trees. PMID:22715290

  5. Dendritic Cells and Innate Immunity in Kidney Transplantation

    PubMed Central

    Zhuang, Quan; Lakkis, Fadi G.

    2015-01-01

    Summary This review summarizes emerging concepts related to the roles of dendritic cells and innate immunity in organ transplant rejection. First, it highlights the primary role that recipient, rather than donor, dendritic cells have in rejection and reviews their origin and function in the transplanted kidney. Second, it introduces the novel concept that recognition of allogeneic non-self by host monocytes (referred to here as innate allorecognition) is necessary for initiating rejection by inducing monocyte differentiation into mature, antigen-presenting dendritic cells. Both concepts provide opportunities for preventing rejection by targeting monocytes or dendritic cells. PMID:25629552

  6. Spatially Distributed Dendritic Resonance Selectively Filters Synaptic Input

    PubMed Central

    Segev, Idan; Shamma, Shihab

    2014-01-01

    An important task performed by a neuron is the selection of relevant inputs from among thousands of synapses impinging on the dendritic tree. Synaptic plasticity enables this by strenghtening a subset of synapses that are, presumably, functionally relevant to the neuron. A different selection mechanism exploits the resonance of the dendritic membranes to preferentially filter synaptic inputs based on their temporal rates. A widely held view is that a neuron has one resonant frequency and thus can pass through one rate. Here we demonstrate through mathematical analyses and numerical simulations that dendritic resonance is inevitably a spatially distributed property; and therefore the resonance frequency varies along the dendrites, and thus endows neurons with a powerful spatiotemporal selection mechanism that is sensitive both to the dendritic location and the temporal structure of the incoming synaptic inputs. PMID:25144440

  7. Dosimetric effect on pediatric conformal treatment plans using dynamic jaw with Tomotherapy HDA.

    PubMed

    Han, Eun Young; Kim, Dong-Wook; Zhang, Xin; Penagaricano, Jose; Liang, Xiaoying; Hardee, Matthew; Morrill, Steve; Ratanatharathorn, Vaneerat

    2015-01-01

    It is important to minimize the radiation dose delivered to healthy tissues in pediatric cancer treatment because of the risk of secondary malignancies. Tomotherapy HDA provides a dynamic jaw (DJ) delivery mode that creates a sharper penumbra at the craniocaudal ends of a target in addition to a fixed jaw (FJ) delivery mode. The purpose of this study was to evaluate its dosimetric effect on the pediatric cancer cases. We included 6 pediatric cases in this study. The dose profiles and plan statistics—target dose conformity, uniformity, organ-at-risk (OAR) mean dose, beam-on time, and integral dose—were compared for each case. Consequently, the target dose coverage and uniformity were similar for different jaw settings. The OAR dose sparing depended on its relative location to the target and disease sites. For example, in the head and neck cancer cases, the brain stem dose using DJ 2.5 was reduced by more than two-fold (2.4 Gy vs. 6.3 Gy) than that obtained with FJ 2.5. The integral dose with DJ 2.5 decreased by more than 9% compared with that with FJ 2.5. Thus, using dynamic jaw in pediatric cases could be critical to reduce a probability of a secondary malignancy. Copyright © 2015 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  8. A jaw calibration method to provide a homogeneous dose distribution in the matching region when using a monoisocentric beam split technique.

    PubMed

    Cenizo, E; García-Pareja, S; Galán, P; Bodineau, C; Caudepón, F; Casado, F J

    2011-05-01

    Asymmetric collimators are currently available in most of linear accelerators. They involve a lot of clinical improvements, such as the monoisocentric beam split technique that is more and more used in many external radiotherapy treatments. The tolerance established for each independent jaw positioning is 1 mm. Within this tolerance, a gap or overlap of the collimators up to 2 mm can occur in the half beams matching region, causing dose heterogeneities up to 40%. In order to solve this dosimetric problem, we propose an accurate jaw calibration method based on the Monte Carlo modeling of linac photon beams. Simulating different jaw misalignments, the dose distribution occurring in the matching region for each particular configuration is precisely known, so we can relate the misalignment of the jaws with the maximum heterogeneity produced. From experimental measurements using film dosimetry, and taking into account Monte Carlo results, we obtain the actual misalignment of each jaw. By direct inspection of the readings of the potentiometers that control the position of the jaws, high precision correction can be performed, adjusting the obtained misalignments. In the linac studied, the dose heterogeneity in the junction performed with X jaws (those farther from the source), and 6 MV photon beam was initially over 12%, although each jaw was within the tolerance in position. After jaw calibration, the heterogeneity was reduced to below 3%. With this method, we are able to reduce the positioning accuracy to 0.2 mm. Consequently, the dose distribution in the junction of abutted fields is highly smoothed, achieving the maximum dose heterogeneity to be less than 3%.

  9. Adaptive phenotypic plasticity in the Midas cichlid fish pharyngeal jaw and its relevance in adaptive radiation

    PubMed Central

    2011-01-01

    Background Phenotypic evolution and its role in the diversification of organisms is a central topic in evolutionary biology. A neglected factor during the modern evolutionary synthesis, adaptive phenotypic plasticity, more recently attracted the attention of many evolutionary biologists and is now recognized as an important ingredient in both population persistence and diversification. The traits and directions in which an ancestral source population displays phenotypic plasticity might partly determine the trajectories in morphospace, which are accessible for an adaptive radiation, starting from the colonization of a novel environment. In the case of repeated colonizations of similar environments from the same source population this "flexible stem" hypothesis predicts similar phenotypes to arise in repeated subsequent radiations. The Midas Cichlid (Amphilophus spp.) in Nicaragua has radiated in parallel in several crater-lakes seeded by populations originating from the Nicaraguan Great Lakes. Here, we tested phenotypic plasticity in the pharyngeal jaw of Midas Cichlids. The pharyngeal jaw apparatus of cichlids, a second set of jaws functionally decoupled from the oral ones, is known to mediate ecological specialization and often differs strongly between sister-species. Results We performed a common garden experiment raising three groups of Midas cichlids on food differing in hardness and calcium content. Analyzing the lower pharyngeal jaw-bones we find significant differences between diet groups qualitatively resembling the differences found between specialized species. Observed differences in pharyngeal jaw expression between groups were attributable to the diet's mechanical resistance, whereas surplus calcium in the diet was not found to be of importance. Conclusions The pharyngeal jaw apparatus of Midas Cichlids can be expressed plastically if stimulated mechanically during feeding. Since this trait is commonly differentiated - among other traits - between

  10. Adaptive phenotypic plasticity in the Midas cichlid fish pharyngeal jaw and its relevance in adaptive radiation.

    PubMed

    Muschick, Moritz; Barluenga, Marta; Salzburger, Walter; Meyer, Axel

    2011-04-30

    Phenotypic evolution and its role in the diversification of organisms is a central topic in evolutionary biology. A neglected factor during the modern evolutionary synthesis, adaptive phenotypic plasticity, more recently attracted the attention of many evolutionary biologists and is now recognized as an important ingredient in both population persistence and diversification. The traits and directions in which an ancestral source population displays phenotypic plasticity might partly determine the trajectories in morphospace, which are accessible for an adaptive radiation, starting from the colonization of a novel environment. In the case of repeated colonizations of similar environments from the same source population this "flexible stem" hypothesis predicts similar phenotypes to arise in repeated subsequent radiations. The Midas Cichlid (Amphilophus spp.) in Nicaragua has radiated in parallel in several crater-lakes seeded by populations originating from the Nicaraguan Great Lakes. Here, we tested phenotypic plasticity in the pharyngeal jaw of Midas Cichlids. The pharyngeal jaw apparatus of cichlids, a second set of jaws functionally decoupled from the oral ones, is known to mediate ecological specialization and often differs strongly between sister-species. We performed a common garden experiment raising three groups of Midas cichlids on food differing in hardness and calcium content. Analyzing the lower pharyngeal jaw-bones we find significant differences between diet groups qualitatively resembling the differences found between specialized species. Observed differences in pharyngeal jaw expression between groups were attributable to the diet's mechanical resistance, whereas surplus calcium in the diet was not found to be of importance. The pharyngeal jaw apparatus of Midas Cichlids can be expressed plastically if stimulated mechanically during feeding. Since this trait is commonly differentiated--among other traits--between Midas Cichlid species, its plasticity

  11. Modification of dendritic development.

    PubMed

    Feria-Velasco, Alfredo; del Angel, Alma Rosa; Gonzalez-Burgos, Ignacio

    2002-01-01

    Since 1890 Ramón y Cajal strongly defended the theory that dendrites and their processes and spines had a function of not just nutrient transport to the cell body, but they had an important conductive role in neural impulse transmission. He extensively discussed and supported this theory in the Volume 1 of his extraordinary book Textura del Sistema Nervioso del Hombre y de los Vertebrados. Also, Don Santiago significantly contributed to a detailed description of the various neural components of the hippocampus and cerebral cortex during development. Extensive investigation has been done in the last Century related to the functional role of these complex brain regions, and their association with learning, memory and some limbic functions. Likewise, the organization and expression of neuropsychological qualities such as memory, exploratory behavior and spatial orientation, among others, depend on the integrity and adequate functional activity of the cerebral cortex and hippocampus. It is known that brain serotonin synthesis and release depend directly and proportionally on the availability of its precursor, tryptophan (TRY). By using a chronic TRY restriction model in rats, we studied their place learning ability in correlation with the dendritic spine density of pyramidal neurons in field CA1 of the hippocampus during postnatal development. We have also reported alterations in the maturation pattern of the ability for spontaneous alternation and task performance evaluating short-term memory, as well as adverse effects on the density of dendritic spines of hippocampal CA1 field pyramidal neurons and on the dendritic arborization and the number of dendritic spines of pyramidal neurons from the third layer of the prefrontal cortex using the same model of TRY restriction. The findings obtained in these studies employing a modified Golgi method, can be interpreted as a trans-synaptic plastic response due to understimulation of serotoninergic receptors located in the

  12. Interfacial wave theory for dendritic structure of a growing needle crystal. I - Local instability mechanism. II - Wave-emission mechanism at the turning point

    NASA Technical Reports Server (NTRS)

    Xu, Jian-Jun

    1989-01-01

    The complicated dendritic structure of a growing needle crystal is studied on the basis of global interfacial wave theory. The local dispersion relation for normal modes is derived in a paraboloidal coordinate system using the multiple-variable-expansion method. It is shown that the global solution in a dendrite growth process incorporates the morphological instability factor and the traveling wave factor.

  13. Dendritic cells in Barrett's esophagus and esophageal adenocarcinoma.

    PubMed

    Bobryshev, Yuri V; Tran, Dinh; Killingsworth, Murray C; Buckland, Michael; Lord, Reginald V N

    2009-01-01

    Like other premalignant conditions that develop in the presence of chronic inflammation, the development and progression of Barrett's esophagus is associated with the development of an immune response, but how this immune response is regulated is poorly understood. A comprehensive literature search failed to find any report of the presence of dendritic cells in Barrett's intestinal metaplasia and esophageal adenocarcinoma and this prompted our study. We used immunohistochemical staining and electron microscopy to examine whether dendritic cells are present in Barrett's esophagus and esophageal adenocarcinoma. Immunohistochemical staining with CD83, a specific marker for dendritic cells, was performed on paraffin-embedded sections of Barrett's intestinal metaplasia (IM, n = 12), dysplasia (n = 11) and adenocarcinoma (n = 14). CD83+ cells were identified in the lamina propria surrounding intestinal type glands in Barrett's IM, dysplasia, and cancer tissues. Computerized quantitative analysis showed that the numbers of dendritic cells were significantly higher in cancer tissues. Double immunostaining with CD83, CD20, and CD3, and electron microscopy demonstrated that dendritic cells are present in Barrett's esophagus and form clusters with T cells and B cells directly within the lamina propria. These findings demonstrate that dendritic cells are present in Barrett's tissues, with a significant increase in density in adenocarcinoma compared to benign Barrett's esophagus. Dendritic cells may have a role in the pathogenesis and immunotherapy treatment of Barrett's esophagus and adenocarcinoma.

  14. Processing system of jaws tomograms for pathology identification and surgical guide modeling

    NASA Astrophysics Data System (ADS)

    Putrik, M. B.; Lavrentyeva, Yu. E.; Ivanov, V. Yu.

    2015-11-01

    The aim of the study is to create an image processing system, which allows dentists to find pathological resorption and to build surgical guide surface automatically. X-rays images of jaws from cone beam tomography or spiral computed tomography are the initial data for processing. One patient's examination always includes up to 600 images (or tomograms), that's why the development of processing system for fast automation search of pathologies is necessary. X-rays images can be useful not for only illness diagnostic but for treatment planning too. We have studied the case of dental implantation - for successful surgical manipulations surgical guides are used. We have created a processing system that automatically builds jaw and teeth boundaries on the x-ray image. After this step, obtained teeth boundaries used for surgical guide surface modeling and jaw boundaries limit the area for further pathologies search. Criterion for the presence of pathological resorption zones inside the limited area is based on statistical investigation. After described actions, it is possible to manufacture surgical guide using 3D printer and apply it in surgical operation.

  15. Transient Potentials in Dendritic Systems of Arbitrary Geometry

    PubMed Central

    Butz, Edward G.; Cowan, Jack D.

    1974-01-01

    A simple graphical calculus is developed that generates analytic solutions for membrane potential transforms at any point on the dendritic tree of neurons with arbitrary dendritic geometries, in response to synaptic “current” inputs. Such solutions permit the computation of transients in neurons with arbitrary geometry and may facilitate analysis of the role of dendrites in such cells. PMID:4416699

  16. Dendritic spine dysgenesis in Autism Related Disorders

    PubMed Central

    Phillips, Mary; Pozzo-Miller, Lucas

    2015-01-01

    The activity-dependent structural and functional plasticity of dendritic spines has led to the long-standing belief that these neuronal compartments are the subcellular sites of learning and memory. Of relevance to human health, central neurons in several neuropsychiatric illnesses, including autism related disorders, have atypical numbers and morphologies of dendritic spines. These so-called dendritic spine dysgeneses found in individuals with autism related disorders are consistently replicated in experimental mouse models. Dendritic spine dysgenesis reflects the underlying synaptopathology that drives clinically relevant behavioral deficits in experimental mouse models, providing a platform for testing new therapeutic approaches. By examining molecular signaling pathways, synaptic deficits, and spine dysgenesis in experimental mouse models of autism related disorders we find strong evidence for mTOR to be a critical point of convergence and promising therapeutic target. PMID:25578949

  17. Basal jawed vertebrate phylogeny inferred from multiple nuclear DNA-coded genes

    PubMed Central

    Kikugawa, Kanae; Katoh, Kazutaka; Kuraku, Shigehiro; Sakurai, Hiroshi; Ishida, Osamu; Iwabe, Naoyuki; Miyata, Takashi

    2004-01-01

    Background Phylogenetic analyses of jawed vertebrates based on mitochondrial sequences often result in confusing inferences which are obviously inconsistent with generally accepted trees. In particular, in a hypothesis by Rasmussen and Arnason based on mitochondrial trees, cartilaginous fishes have a terminal position in a paraphyletic cluster of bony fishes. No previous analysis based on nuclear DNA-coded genes could significantly reject the mitochondrial trees of jawed vertebrates. Results We have cloned and sequenced seven nuclear DNA-coded genes from 13 vertebrate species. These sequences, together with sequences available from databases including 13 jawed vertebrates from eight major groups (cartilaginous fishes, bichir, chondrosteans, gar, bowfin, teleost fishes, lungfishes and tetrapods) and an outgroup (a cyclostome and a lancelet), have been subjected to phylogenetic analyses based on the maximum likelihood method. Conclusion Cartilaginous fishes have been inferred to be basal to other jawed vertebrates, which is consistent with the generally accepted view. The minimum log-likelihood difference between the maximum likelihood tree and trees not supporting the basal position of cartilaginous fishes is 18.3 ± 13.1. The hypothesis by Rasmussen and Arnason has been significantly rejected with the minimum log-likelihood difference of 123 ± 23.3. Our tree has also shown that living holosteans, comprising bowfin and gar, form a monophyletic group which is the sister group to teleost fishes. This is consistent with a formerly prevalent view of vertebrate classification, although inconsistent with both of the current morphology-based and mitochondrial sequence-based trees. Furthermore, the bichir has been shown to be the basal ray-finned fish. Tetrapods and lungfish have formed a monophyletic cluster in the tree inferred from the concatenated alignment, being consistent with the currently prevalent view. It also remains possible that tetrapods are more closely

  18. Malagasy cichlids differentially limit impacts of body shape evolution on oral jaw functional morphology.

    PubMed

    Martinez, Christopher M; Sparks, John S

    2017-09-01

    Patterns of trait covariation, such as integration and modularity, are vital factors that influence the evolution of vertebrate body plans. In functional systems, decoupling of morphological modules buffers functional change in one trait by reducing correlated variation with another. However, for complex morphologies with many-to-one mapping of form to function (MTOM), resistance to functional change may also be achieved by constraining morphological variation within a functionally stable region of morphospace. For this research, we used geometric morphometrics to evaluate the evolution of body shape and its relationship with jaw functional morphology in two independent radiations of endemic Malagasy cichlid (Teleostei: Cichlidae). Our results suggested that the two subfamilies used different strategies to mitigate impacts of body shape variation on a metric of jaw function, maxillary kinematic transmission (MKT): (1) modularity between cranial and postcranial morphologies, and (2) integration of body and jaw evolution, with jaw morphologies varying in a manner that limits change in MKT. This research shows that, unlike modularity, MTOM allows traits to retain strong evolutionary covariation while still reducing impacts on functionality. These results suggest that MTOM, and its influence on the evolution of correlated traits, is likely much more widespread than is currently understood. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  19. Mechanisms for localising calcineurin and CaMKII in dendritic spines.

    PubMed

    Penny, Christopher J; Gold, Matthew G

    2018-05-27

    Calcineurin and calmodulin-dependent protein kinase II (CaMKII) are both highly abundant in neurons, and both are activated by calmodulin at similar Ca 2+ concentrations in the test tube. However, they fulfill opposite functions in dendritic spines, with CaMKII activity driving long-term synaptic potentiation following large influxes of Ca 2+ through NMDA-type glutamate receptors (NMDARs), and calcineurin responding to smaller influxes of Ca 2+ through the same receptors to induce long-term depression. In this review, we explore the notion that precise dynamic localisation of the two enzymes at different sites within dendritic spines is fundamental to this behavior. We describe the structural basis of calcineurin and CaMKII localisation by their interaction with proteins including AKAP79, densin-180, α-actinin, and NMDARs. We then consider how interactions with these proteins likely position calcineurin and CaMKII at different distances from Ca 2+ microdomains emanating from the mouths of NMDARs in order to drive the divergent responses. We also highlight shortcomings in our current understanding of synaptic localisation of these two important signalling enzymes. Copyright © 2017. Published by Elsevier Inc.

  20. Passive dendrites enable single neurons to compute linearly non-separable functions.

    PubMed

    Cazé, Romain Daniel; Humphries, Mark; Gutkin, Boris

    2013-01-01

    Local supra-linear summation of excitatory inputs occurring in pyramidal cell dendrites, the so-called dendritic spikes, results in independent spiking dendritic sub-units, which turn pyramidal neurons into two-layer neural networks capable of computing linearly non-separable functions, such as the exclusive OR. Other neuron classes, such as interneurons, may possess only a few independent dendritic sub-units, or only passive dendrites where input summation is purely sub-linear, and where dendritic sub-units are only saturating. To determine if such neurons can also compute linearly non-separable functions, we enumerate, for a given parameter range, the Boolean functions implementable by a binary neuron model with a linear sub-unit and either a single spiking or a saturating dendritic sub-unit. We then analytically generalize these numerical results to an arbitrary number of non-linear sub-units. First, we show that a single non-linear dendritic sub-unit, in addition to the somatic non-linearity, is sufficient to compute linearly non-separable functions. Second, we analytically prove that, with a sufficient number of saturating dendritic sub-units, a neuron can compute all functions computable with purely excitatory inputs. Third, we show that these linearly non-separable functions can be implemented with at least two strategies: one where a dendritic sub-unit is sufficient to trigger a somatic spike; another where somatic spiking requires the cooperation of multiple dendritic sub-units. We formally prove that implementing the latter architecture is possible with both types of dendritic sub-units whereas the former is only possible with spiking dendrites. Finally, we show how linearly non-separable functions can be computed by a generic two-compartment biophysical model and a realistic neuron model of the cerebellar stellate cell interneuron. Taken together our results demonstrate that passive dendrites are sufficient to enable neurons to compute linearly non

  1. Passive Dendrites Enable Single Neurons to Compute Linearly Non-separable Functions

    PubMed Central

    Cazé, Romain Daniel; Humphries, Mark; Gutkin, Boris

    2013-01-01

    Local supra-linear summation of excitatory inputs occurring in pyramidal cell dendrites, the so-called dendritic spikes, results in independent spiking dendritic sub-units, which turn pyramidal neurons into two-layer neural networks capable of computing linearly non-separable functions, such as the exclusive OR. Other neuron classes, such as interneurons, may possess only a few independent dendritic sub-units, or only passive dendrites where input summation is purely sub-linear, and where dendritic sub-units are only saturating. To determine if such neurons can also compute linearly non-separable functions, we enumerate, for a given parameter range, the Boolean functions implementable by a binary neuron model with a linear sub-unit and either a single spiking or a saturating dendritic sub-unit. We then analytically generalize these numerical results to an arbitrary number of non-linear sub-units. First, we show that a single non-linear dendritic sub-unit, in addition to the somatic non-linearity, is sufficient to compute linearly non-separable functions. Second, we analytically prove that, with a sufficient number of saturating dendritic sub-units, a neuron can compute all functions computable with purely excitatory inputs. Third, we show that these linearly non-separable functions can be implemented with at least two strategies: one where a dendritic sub-unit is sufficient to trigger a somatic spike; another where somatic spiking requires the cooperation of multiple dendritic sub-units. We formally prove that implementing the latter architecture is possible with both types of dendritic sub-units whereas the former is only possible with spiking dendrites. Finally, we show how linearly non-separable functions can be computed by a generic two-compartment biophysical model and a realistic neuron model of the cerebellar stellate cell interneuron. Taken together our results demonstrate that passive dendrites are sufficient to enable neurons to compute linearly non

  2. Dendrite-Free Nanocrystalline Zinc Electrodeposition from an Ionic Liquid Containing Nickel Triflate for Rechargeable Zn-Based Batteries.

    PubMed

    Liu, Zhen; Cui, Tong; Pulletikurthi, Giridhar; Lahiri, Abhishek; Carstens, Timo; Olschewski, Mark; Endres, Frank

    2016-02-18

    Metallic zinc is a promising anode material for rechargeable Zn-based batteries. However, the dendritic growth of zinc has prevented practical applications. Herein it is demonstrated that dendrite-free zinc deposits with a nanocrystalline structure can be obtained by using nickel triflate as an additive in a zinc triflate containing ionic liquid. The formation of a thin layer of Zn-Ni alloy (η- and γ-phases) on the surface and in the initial stages of deposition along with the formation of an interfacial layer on the electrode strongly affect the nucleation and growth of zinc. A well-defined and uniform nanocrystalline zinc deposit with particle sizes of about 25 nm was obtained in the presence of Ni(II) . Further, it is shown that the nanocrystalline Zn exhibits a high cycling stability even after 50 deposition/stripping cycles. This strategy of introducing an inorganic metal salt in ionic liquid electrolytes can be considered as an efficient way to obtain dendrite-free zinc. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Random Positions of Dendritic Spines in Human Cerebral Cortex

    PubMed Central

    Morales, Juan; Benavides-Piccione, Ruth; Dar, Mor; Fernaud, Isabel; Rodríguez, Angel; Anton-Sanchez, Laura; Bielza, Concha; Larrañaga, Pedro; DeFelipe, Javier

    2014-01-01

    Dendritic spines establish most excitatory synapses in the brain and are located in Purkinje cell's dendrites along helical paths, perhaps maximizing the probability to contact different axons. To test whether spine helixes also occur in neocortex, we reconstructed >500 dendritic segments from adult human cortex obtained from autopsies. With Fourier analysis and spatial statistics, we analyzed spine position along apical and basal dendrites of layer 3 pyramidal neurons from frontal, temporal, and cingulate cortex. Although we occasionally detected helical positioning, for the great majority of dendrites we could not reject the null hypothesis of spatial randomness in spine locations, either in apical or basal dendrites, in neurons of different cortical areas or among spines of different volumes and lengths. We conclude that in adult human neocortex spine positions are mostly random. We discuss the relevance of these results for spine formation and plasticity and their functional impact for cortical circuits. PMID:25057209

  4. Random positions of dendritic spines in human cerebral cortex.

    PubMed

    Morales, Juan; Benavides-Piccione, Ruth; Dar, Mor; Fernaud, Isabel; Rodríguez, Angel; Anton-Sanchez, Laura; Bielza, Concha; Larrañaga, Pedro; DeFelipe, Javier; Yuste, Rafael

    2014-07-23

    Dendritic spines establish most excitatory synapses in the brain and are located in Purkinje cell's dendrites along helical paths, perhaps maximizing the probability to contact different axons. To test whether spine helixes also occur in neocortex, we reconstructed >500 dendritic segments from adult human cortex obtained from autopsies. With Fourier analysis and spatial statistics, we analyzed spine position along apical and basal dendrites of layer 3 pyramidal neurons from frontal, temporal, and cingulate cortex. Although we occasionally detected helical positioning, for the great majority of dendrites we could not reject the null hypothesis of spatial randomness in spine locations, either in apical or basal dendrites, in neurons of different cortical areas or among spines of different volumes and lengths. We conclude that in adult human neocortex spine positions are mostly random. We discuss the relevance of these results for spine formation and plasticity and their functional impact for cortical circuits. Copyright © 2014 the authors 0270-6474/14/3410078-07$15.00/0.

  5. Adolescent cocaine exposure simplifies orbitofrontal cortical dendritic arbors

    PubMed Central

    DePoy, Lauren M.; Perszyk, Riley E.; Zimmermann, Kelsey S.; Koleske, Anthony J.; Gourley, Shannon L.

    2014-01-01

    Cocaine and amphetamine remodel dendritic spines within discrete cortico-limbic brain structures including the orbitofrontal cortex (oPFC). Whether dendrite structure is similarly affected, and whether pre-existing cellular characteristics influence behavioral vulnerabilities to drugs of abuse, remain unclear. Animal models provide an ideal venue to address these issues because neurobehavioral phenotypes can be defined both before, and following, drug exposure. We exposed mice to cocaine from postnatal days 31–35, corresponding to early adolescence, using a dosing protocol that causes impairments in an instrumental reversal task in adulthood. We then imaged and reconstructed excitatory neurons in deep-layer oPFC. Prior cocaine exposure shortened and simplified arbors, particularly in the basal region. Next, we imaged and reconstructed orbital neurons in a developmental-genetic model of cocaine vulnerability—the p190rhogap+/– mouse. p190RhoGAP is an actin cytoskeleton regulatory protein that stabilizes dendrites and dendritic spines, and p190rhogap+/– mice develop rapid and robust locomotor activation in response to cocaine. Despite this, oPFC dendritic arbors were intact in drug-naïve p190rhogap+/– mice. Together, these findings provide evidence that adolescent cocaine exposure has long-term effects on dendrite structure in the oPFC, and they suggest that cocaine-induced modifications in dendrite structure may contribute to the behavioral effects of cocaine more so than pre-existing structural abnormalities in this cell population. PMID:25452728

  6. Dendritic spine dysgenesis in autism related disorders.

    PubMed

    Phillips, Mary; Pozzo-Miller, Lucas

    2015-08-05

    The activity-dependent structural and functional plasticity of dendritic spines has led to the long-standing belief that these neuronal compartments are the subcellular sites of learning and memory. Of relevance to human health, central neurons in several neuropsychiatric illnesses, including autism related disorders, have atypical numbers and morphologies of dendritic spines. These so-called dendritic spine dysgeneses found in individuals with autism related disorders are consistently replicated in experimental mouse models. Dendritic spine dysgenesis reflects the underlying synaptopathology that drives clinically relevant behavioral deficits in experimental mouse models, providing a platform for testing new therapeutic approaches. By examining molecular signaling pathways, synaptic deficits, and spine dysgenesis in experimental mouse models of autism related disorders we find strong evidence for mTOR to be a critical point of convergence and promising therapeutic target. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. Theoretical modeling of cellular and dendritic solidification microstructures

    NASA Astrophysics Data System (ADS)

    Song, Younggil

    In this dissertation, we use three-dimensional (3D) phase-field (PF) modeling to investigate (i) 3D solid-liquid interface dynamics observed in microgravity experiments, and (ii) array patterns in a thin-sample geometry. In addition, using the two-dimensional (2D) dendritic-needle-network (DNN) model, we explore (iii) secondary sidebranching dynamics. Recently, solidification experiments are carried out in the DSI (Directional Solidification Insert) of the DECLIC (Device for the study of Critical LIquids and Crystallization) facility aboard the International Space Station (ISS). Thus, the directional solidification experiments are achieved under limited convective currents, and the experimental observations reveal unique dynamics of 3D microstructure in a purely diffusive growth regime. In this directional solidification setup, a temperature field between heat sources could evolve due to two main factors: (i) heat transfer within an adiabatic zone and (ii) latent heat rejection at the interface. These two thermal effects are phenomenologically characterized using a time-dependent thermal shift. In addition, we could quantitatively account for these thermal factors using a numerical calculation of the evolution of temperature field. We introduce these phenomenological and quantitative thermal representations into the PF model. The performed simulations using different thermal descriptions are compared to the experimental measurements from the initial planar interface dynamics to the final spacing selection. The DECLIC-DSI experimental observations exhibit complex grain boundary (GB) dynamics between large grains with a small misorientation. In the observations, several large grains with a small misorientation with respect to the temperature gradient are formed during solidification. Specifically, at a convergent GB, a localized group of misoriented cells penetrates into a nearby grain, which yields the morphological instability of grain boundaries. Remarkably, while

  8. Dendritic release of neurotransmitters

    PubMed Central

    Ludwig, Mike; Apps, David; Menzies, John; Patel, Jyoti C.; Rice, Margaret E.

    2017-01-01

    Release of neuroactive substances by exocytosis from dendrites is surprisingly widespread and is not confined to a particular class of transmitters: it occurs in multiple brain regions, and includes a range of neuropeptides, classical neurotransmitters and signaling molecules such as nitric oxide, carbon monoxide, ATP and arachidonic acid. This review is focused on hypothalamic neuroendocrine cells that release vasopressin and oxytocin and midbrain neurons that release dopamine. For these two model systems, the stimuli, mechanisms and physiological functions of dendritic release have been explored in greater detail than is yet available for other neurons and neuroactive substances. PMID:28135005

  9. [A man with pain in his upper jaw].

    PubMed

    Jaspers, Gijs; van Gool, Lex

    2011-01-01

    A 66-year-old man came to the hospital with pain in the frontal left side of his upper jaw. Pressure along the left nostril could evoke a sharp pain, which radiated upwards. The patient had already consulted several specialists. After extended clinical and radiological investigation a mesiodens was found that gave pressure on the nasopalatine nerve.

  10. Negative dendritic effect on enzymatic hydrolysis of dendrimer conjugates.

    PubMed

    Zhou, Zhengwei; Cong, Mei; Li, Mengyao; Tintaru, Aura; Li, Jia; Yao, Jianhua; Xia, Yi; Peng, Ling

    2018-06-08

    Dendrimers possess intriguing "dendritic effects", which are unique characteristics that stem from the dendrimer generation and size. Here we report a "negative dendritic effect" observed during enzymatic hydrolysis of dendrimer conjugates. Such negative dendritic effects, though rarely reported, may be explored for tailored and generation-dependent drug release.

  11. Effects of the closing speed of stapler jaws on bovine pancreases.

    PubMed

    Chikamoto, Akira; Hashimoto, Daisuke; Ikuta, Yoshiaki; Tsuji, Akira; Abe, Shinya; Hayashi, Hiromitsu; Imai, Katsunori; Nitta, Hidetoshi; Ishiko, Takatoshi; Watanabe, Masayuki; Beppu, Toru; Baba, Hideo

    2014-01-01

    The division of the pancreatic parenchyma using a stapler is important in pancreatic surgery, especially for laparoscopic surgery. However, this procedure has not yet been standardized. We analyzed the effects of the closing speed of stapler jaws using bovine pancreases for each method. Furthermore, we assigned 10 min to the slow compression method, 5 min to the medium-fast compression method, and 30 s to the rapid compression (RC) method. The time allotted to holding (3 min) and dividing (30 s) was equal under each testing situation. We found that the RC method showed a high-pressure tolerance compared with the other two groups (rapid, 126 ± 49.0 mmHg; medium-fast, 55.5 ± 25.8 mmHg; slow, 45.0 ± 15.7 mmHg; p < 0.01), although the histological findings of the cut end were similar. The histological findings of the pancreatic capsule and parenchyma after the compression by staple jaws without firing also were similar. RC may provide an advantage as measured by pressure tolerance. A small series of distal pancreatectomy with a stapler that compares the speed of different stapler jaw closing times is required to prove the feasibility of these results after the confirmation of the advantages of the RC method under various settings.

  12. Visual deprivation alters dendritic bundle architecture in layer 4 of rat visual cortex.

    PubMed

    Gabbott, P L; Stewart, M G

    2012-04-05

    The effect of visual deprivation followed by light exposure on the tangential organisation of dendritic bundles passing through layer 4 of the rat visual cortex was studied quantitatively in the light microscope. Four groups of animals were investigated: (I) rats reared in an environment illuminated normally--group 52 dL; (II) rats reared in the dark until 21 days postnatum (DPN) and subsequently light exposed for 31 days-group 21/31; (III) rats dark reared until 52 DPN and then subsequently light exposed for 3 days--group 3 dL; and (IV) rats totally dark reared until 52 DPN--group 52 DPN. Each group contained five animals. Semithin 0.5-1-μm thick resin-embedded sections were collected from tangential sampling levels through the middle of layer 4 in area 17 and stained with Toluidine Blue. These sections were used to quantitatively analyse the composition and distribution of dendritic clusters in the tangential plane. The key result of this study indicates a significant reduction in the mean number of medium- and small-sized dendritic profiles (diameter less than 2 μm) contributing to clusters in layer 4 of groups 3 dL and 52 dD compared with group 21/31. No differences were detected in the mean number of large-sized dendritic profiles composing a bundle in these experimental groups. Moreover, the mean number of clusters and their tangential distribution in layer 4 did not vary significantly between all four groups. Finally, the clustering parameters were not significantly different between groups 21/31 and the normally reared group 52 dL. This study demonstrates, for the first time, that extended periods of dark rearing followed by light exposure can alter the morphological composition of dendritic bundles in thalamorecipient layer 4 of rat visual cortex. Because these changes occur in the primary region of thalamocortical input, they may underlie specific alterations in the processing of visual information both cortically and subcortically during periods of

  13. Active action potential propagation but not initiation in thalamic interneuron dendrites

    PubMed Central

    Casale, Amanda E.; McCormick, David A.

    2012-01-01

    Inhibitory interneurons of the dorsal lateral geniculate nucleus of the thalamus modulate the activity of thalamocortical cells in response to excitatory input through the release of inhibitory neurotransmitter from both axons and dendrites. The exact mechanisms by which release can occur from dendrites are, however, not well understood. Recent experiments using calcium imaging have suggested that Na/K based action potentials can evoke calcium transients in dendrites via local active conductances, making the back-propagating action potential a candidate for dendritic neurotransmitter release. In this study, we employed high temporal and spatial resolution voltage-sensitive dye imaging to assess the characteristics of dendritic voltage deflections in response to Na/K action potentials in interneurons of the mouse dorsal lateral geniculate nucleus. We found that trains or single action potentials elicited by somatic current injection or local synaptic stimulation led to action potentials that rapidly and actively back-propagated throughout the entire dendritic arbor and into the fine filiform dendritic appendages known to release GABAergic vesicles. Action potentials always appeared first in the soma or proximal dendrite in response to somatic current injection or local synaptic stimulation, and the rapid back-propagation into the dendritic arbor depended upon voltage-gated sodium and TEA-sensitive potassium channels. Our results indicate that thalamic interneuron dendrites integrate synaptic inputs that initiate action potentials, most likely in the axon initial segment, that then back-propagate with high-fidelity into the dendrites, resulting in a nearly synchronous release of GABA from both axonal and dendritic compartments. PMID:22171033

  14. Con-nectin axons and dendrites.

    PubMed

    Beaudoin, Gerard M J

    2006-07-03

    Unlike adherens junctions, synapses are asymmetric connections, usually between axons and dendrites, that rely on various cell adhesion molecules for structural stability and function. Two cell types of adhesion molecules found at adherens junctions, cadherins and nectins, are thought to mediate homophilic interaction between neighboring cells. In this issue, Togashi et al. (see p. 141) demonstrate that the differential localization of two heterophilic interacting nectins mediates the selective attraction of axons and dendrites in cooperation with cadherins.

  15. Dendrites Enable a Robust Mechanism for Neuronal Stimulus Selectivity.

    PubMed

    Cazé, Romain D; Jarvis, Sarah; Foust, Amanda J; Schultz, Simon R

    2017-09-01

    Hearing, vision, touch: underlying all of these senses is stimulus selectivity, a robust information processing operation in which cortical neurons respond more to some stimuli than to others. Previous models assume that these neurons receive the highest weighted input from an ensemble encoding the preferred stimulus, but dendrites enable other possibilities. Nonlinear dendritic processing can produce stimulus selectivity based on the spatial distribution of synapses, even if the total preferred stimulus weight does not exceed that of nonpreferred stimuli. Using a multi-subunit nonlinear model, we demonstrate that stimulus selectivity can arise from the spatial distribution of synapses. We propose this as a general mechanism for information processing by neurons possessing dendritic trees. Moreover, we show that this implementation of stimulus selectivity increases the neuron's robustness to synaptic and dendritic failure. Importantly, our model can maintain stimulus selectivity for a larger range of loss of synapses or dendrites than an equivalent linear model. We then use a layer 2/3 biophysical neuron model to show that our implementation is consistent with two recent experimental observations: (1) one can observe a mixture of selectivities in dendrites that can differ from the somatic selectivity, and (2) hyperpolarization can broaden somatic tuning without affecting dendritic tuning. Our model predicts that an initially nonselective neuron can become selective when depolarized. In addition to motivating new experiments, the model's increased robustness to synapses and dendrites loss provides a starting point for fault-resistant neuromorphic chip development.

  16. Effect of pinching-evoked pain on jaw-stretch reflexes and exteroceptive suppression periods in healthy subjects.

    PubMed

    Biasiotta, A; Peddireddy, A; Wang, K; Romaniello, A; Frati, A; Svensson, P; Arendt-Nielsen, L

    2007-10-01

    To investigate the influence of conditioning cutaneous nociceptive inputs by a new "pinch" model on the jaw-stretch reflex and the exteroceptive suppression periods (ES1 and ES2) in jaw muscles. The jaw-stretch reflex was evoked with the use of a custom-made muscle stretcher and electrical stimuli were used to evoke an early and late exteroceptive suppression period (ES1 and ES2) in the jaw-closing muscles. Electromyographic (EMG) activity was recorded bilaterally from the masseter and temporalis muscles. These brainstem reflexes were recorded in 19 healthy men (28.8+/-1.1 years) during three different conditions: one painful clip applied to the earlobe; one painful clip applied to the nostril, and four painful clips applied simultaneously to the earlobe, nostril, eyebrow, and lower lip. Pain intensity induced by the application of the clips was scored continuously by the subjects on a 100mm visual analogue scale (VAS). The highest VAS pain scores were evoked by placement of four clips (79+/-0.5mm). There was no significant modulation of the jaw-stretch reflex (ANOVAs: P=0.929), the ES1 (P=0.298) or ES2 (P=0.082) in any of the three painful conditions. Intense and tonic cutaneous pain could be elicited by this new "pinch" pain model; however, there was no significant modulation on either excitatory or inhibitory brainstem reflex responses. The novel observation that high-intensity pinch stimuli applied to the craniofacial region fail to modulate two different brainstem reflexes is in contrast to other experimental pain studies documented facilitation of the jaw-stretch reflexes or inhibition of exteroceptive suppression periods. The clinical implication of the present findings is that only some craniofacial pain conditions could be expected to show perturbation of the brainstem reflex responses.

  17. A new 4-dimensional imaging system for jaw tracking.

    PubMed

    Lauren, Mark

    2014-01-01

    A non-invasive 4D imaging system that produces high resolution time-based 3D surface data has been developed to capture jaw motion. Fluorescent microspheres are brushed onto both tooth and soft-tissue areas of the upper and lower arches to be imaged. An extraoral hand-held imaging device, operated about 12 cm from the mouth, captures a time-based set of perspective image triplets of the patch areas. Each triplet, containing both upper and lower arch data, is converted to a high-resolution 3D point mesh using photogrammetry, providing the instantaneous relative jaw position. Eight 3D positions per second are captured. Using one of the 3D frames as a reference, a 4D model can be constructed to describe the incremental free body motion of the mandible. The surface data produced by this system can be registered to conventional 3D models of the dentition, allowing them to be animated. Applications include integration into prosthetic CAD and CBCT data.

  18. Jaw Dysfunction Related to Pterygoid and Masseter Muscle Dosimetry After Radiation Therapy in Children and Young Adults With Head-and-Neck Sarcomas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krasin, Matthew J., E-mail: matthew.krasin@stjude.org; Wiese, Kristin M.; Spunt, Sheri L.

    Purpose: To investigate the relationship between jaw function, patient and treatment variables, and radiation dosimetry of the mandibular muscles and joints in children and young adults receiving radiation for soft-tissue and bone sarcomas. Methods and Materials: Twenty-four pediatric and young adult patients with head-and-neck sarcomas were treated on an institutional review board-approved prospective study of focal radiation therapy for local tumor control. Serial jaw depression measurements were related to radiation dosimetry delivered to the medial and lateral pterygoid muscles, masseter muscles, and temporomandibular joints to generate mathematical models of jaw function. Results: Baseline jaw depression was only influenced by themore » degree of surgical resection. In the first 12 weeks from initiation of radiation, surgical procedures greater than a biopsy, administration of cyclophosphamide containing chemotherapy regimes, and large gross tumor volumes adversely affected jaw depression. Increasing dose to the pterygoid and masseter muscles above 40 Gy predicted loss of jaw function over the full course of follow-up. Conclusions: Clinical and treatment factors are related to initial and subsequent jaw dysfunction. Understanding these complex interactions and the affect of specific radiation doses may help reduce the risk for jaw dysfunction in future children and young adults undergoing radiation therapy for the management of soft-tissue and bone sarcomas.« less

  19. Kinematic Features of Jaw and Lips Distinguish Symptomatic From Presymptomatic Stages of Bulbar Decline in Amyotrophic Lateral Sclerosis.

    PubMed

    Bandini, Andrea; Green, Jordan R; Wang, Jun; Campbell, Thomas F; Zinman, Lorne; Yunusova, Yana

    2018-05-17

    The goals of this study were to (a) classify speech movements of patients with amyotrophic lateral sclerosis (ALS) in presymptomatic and symptomatic phases of bulbar function decline relying solely on kinematic features of lips and jaw and (b) identify the most important measures that detect the transition between early and late bulbar changes. One hundred ninety-two recordings obtained from 64 patients with ALS were considered for the analysis. Feature selection and classification algorithms were used to analyze lip and jaw movements recorded with Optotrak Certus (Northern Digital Inc.) during a sentence task. A feature set, which included 35 measures of movement range, velocity, acceleration, jerk, and area measures of lips and jaw, was used to classify sessions according to the speaking rate into presymptomatic (> 160 words per minute) and symptomatic (< 160 words per minute) groups. Presymptomatic and symptomatic phases of bulbar decline were distinguished with high accuracy (87%), relying only on lip and jaw movements. The best features that allowed detecting the differences between early and later bulbar stages included cumulative path of lower lip and jaw, peak values of velocity, acceleration, and jerk of lower lip and jaw. The results established a relationship between facial kinematics and bulbar function decline in ALS. Considering that facial movements can be recorded by means of novel inexpensive and easy-to-use, video-based methods, this work supports the development of an automatic system for facial movement analysis to help clinicians in tracking the disease progression in ALS.

  20. Experimental muscle pain produces central modulation of proprioceptive signals arising from jaw muscle spindles.

    PubMed

    Capra, N F; Ro, J Y

    2000-05-01

    The aim of the present study was to investigate the effects of intramuscular injection with hypertonic saline, a well-established experimental model for muscle pain, on central processing of proprioceptive input from jaw muscle spindle afferents. Fifty-seven cells were recorded from the medial edge of the subnucleus interpolaris (Vi) and the adjacent parvicellular reticular formation from 11 adult cats. These cells were characterized as central units receiving jaw muscle spindle input based on their responses to electrical stimulation of the masseter nerve, muscle palpation and jaw stretch. Forty-five cells, which were successfully tested with 5% hypertonic saline, were categorized as either dynamic-static (DS) (n=25) or static (S) (n=20) neurons based on their responses to different speeds and amplitudes of jaw movement. Seventy-six percent of the cells tested with an ipsilateral injection of hypertonic saline showed a significant modulation of mean firing rates (MFRs) during opening and/or holding phases. The most remarkable saline-induced change was a significant reduction of MFR during the hold phase in S units (100%, 18/18 modulated). Sixty-nine percent of the DS units (11/16 modulated) also showed significant changes in MFRs limited to the hold phase. However, in the DS neurons, the MFRs increased in seven units and decreased in four units. Finally, five DS neurons showed significant changes of MFRs during both opening and holding phases. Injections of isotonic saline into the ipsilateral masseter muscle had little effect, but hypertonic saline injections made into the contralateral masseter muscle produced similar results to ipsilateral injections with hypertonic saline. These results unequivocally demonstrate that intramuscular injection with an algesic substance, sufficient to produce muscle pain, produces significant changes in the proprioceptive properties of the jaw movement-related neurons. Potential mechanisms involved in saline-induced changes in the

  1. Neutrophils, dendritic cells and Toxoplasma.

    PubMed

    Denkers, Eric Y; Butcher, Barbara A; Del Rio, Laura; Bennouna, Soumaya

    2004-03-09

    Toxoplasma gondii rapidly elicits strong Type 1 cytokine-based immunity. The necessity for this response is well illustrated by the example of IFN-gamma and IL-12 gene knockout mice that rapidly succumb to the effects of acute infection. The parasite itself is skilled at sparking complex interactions in the innate immune system that lead to protective immunity. Neutrophils are one of the first cell types to arrive at the site of infection, and the cells release several proinflammatory cytokines and chemokines in response to Toxoplasma. Dendritic cells are an important source of IL-12 during infection with T. gondii and other microbial pathogens, and they are also specialized for high-level antigen presentation to T lymphocytes. Tachyzoites express at least two types of molecules that trigger innate immune cell cytokine production. One of these involves Toll-like receptor/MyD88 pathways common to many microbial pathogens. The second pathway is less conventional and involves molecular mimicry between a parasite cyclophilin and host CC chemokine receptor 5-binding ligands. Neutrophils, dendritic cells and Toxoplasma work together to elicit the immune response required for host survival. Cytokine and chemokine cross-talk between parasite-triggered neutrophils and dendritic cells results in recruitment, maturation and activation of the latter. Neutrophil-empowered dendritic cells possess properties expected of highly potent antigen presenting cells that drive T helper 1 generation.

  2. SU-F-T-307: Peripheral Dose Comparison Between Static and Dynamic Jaw Tracking On a High Definition MLC System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perez-Andujar, A; Cheung, J; Chuang, C

    Purpose: To investigate the effect of dynamic and static jaw tracking on patient peripheral doses. Materials and Methods: A patient plan with a large sacral metastasis (volume 800cm3, prescription 600cGyx5) was selected for this study. The plan was created using 2-field RapidArc with jaw tracking enabled (Eclipse, V11.0.31). These fields were then exported and edited in MATLAB with static jaw positions using the control point with the largest field size for each respective arc, but preserving the optimized leaf sequences for delivery. These fields were imported back into Eclipse for dose calculation and comparison and copied to a Rando phantommore » for delivery analysis. Points were chosen in the phantom at depth and on the phantom surface at locations outside the primary radiation field, at distances of 12cm, 20cm, and 30cm from the isocenter. Measurements were acquired with OSLDs placed at these positions in the phantom with both the dynamic and static jaw deliveries for comparison. Surface measurements included an additional 1cm bolus over the OSLDs to ensure electron equilibrium. Results: The static jaw deliveries resulted in cumulative jaw-defined field sizes of 17.3% and 17.4% greater area than the dynamic jaw deliveries for each arc. The static jaw plan resulted in very small differences in calculated dose in the treatment planning system ranging from 0–16cGy. The measured dose differences were larger than calculated, but the differences in absolute dose were small. The measured dose differences at depth (surface) between the two deliveries showed an increase for the static jaw delivery of 2.2%(11.4%), 15.6%(20.0%), and 12.7%(12.7%) for distances of 12cm, 20cm, and 30cm, respectively. Eclipse calculates a difference of 0–3.1% for all of these points. The largest absolute dose difference between all points was 6.2cGy. Conclusion: While we demonstrated larger than expected differences in peripheral dose, the absolute dose differences were small.« less

  3. Processing system of jaws tomograms for pathology identification and surgical guide modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Putrik, M. B., E-mail: pmb-88@mail.ru; Ivanov, V. Yu.; Lavrentyeva, Yu. E.

    The aim of the study is to create an image processing system, which allows dentists to find pathological resorption and to build surgical guide surface automatically. X-rays images of jaws from cone beam tomography or spiral computed tomography are the initial data for processing. One patient’s examination always includes up to 600 images (or tomograms), that’s why the development of processing system for fast automation search of pathologies is necessary. X-rays images can be useful not for only illness diagnostic but for treatment planning too. We have studied the case of dental implantation – for successful surgical manipulations surgical guidesmore » are used. We have created a processing system that automatically builds jaw and teeth boundaries on the x-ray image. After this step, obtained teeth boundaries used for surgical guide surface modeling and jaw boundaries limit the area for further pathologies search. Criterion for the presence of pathological resorption zones inside the limited area is based on statistical investigation. After described actions, it is possible to manufacture surgical guide using 3D printer and apply it in surgical operation.« less

  4. Measurement of jaw motion: the proposal of a simple and accurate method.

    PubMed

    Pinheiro, A P; Pereira, A A; Andrade, A O; Bellomo, D

    2011-01-01

    The analysis of jaw movements has long been used as a measure for clinical diagnosis and assessment. A number of strategies are available for monitoring the trajectory; however most of these strategies make use of expensive tools, which are often not available to many clinics in the world. In this context, this research proposes the development of a new tool capable of quantifying the movements of opening/closing, protrusion and laterotrusion of the mandible. These movements are important for the clinical evaluation of both the temporomandibular function and muscles involved in mastication. The proposed system, unlike current commercial systems, employs a low-cost video camera and a computer program, which is used for reconstructing the trajectory of a reflective marker that is fixed on the jaw. In order to illustrate the application of the devised tool a clinical trial was carried out, investigating jaw movements of 10 subjects. The results obtained in this study were compatible with those found in the literature with the advantage of using a low-cost, simple, non-invasive and flexible solution customized for the practical needs of clinics. The average error of the system was less than 1.0%.

  5. Dendritic position is a major determinant of presynaptic strength

    PubMed Central

    de Jong, Arthur P.H.; Schmitz, Sabine K.; Toonen, Ruud F.G.

    2012-01-01

    Different regulatory principles influence synaptic coupling between neurons, including positional principles. In dendrites of pyramidal neurons, postsynaptic sensitivity depends on synapse location, with distal synapses having the highest gain. In this paper, we investigate whether similar rules exist for presynaptic terminals in mixed networks of pyramidal and dentate gyrus (DG) neurons. Unexpectedly, distal synapses had the lowest staining intensities for vesicular proteins vGlut, vGAT, Synaptotagmin, and VAMP and for many nonvesicular proteins, including Bassoon, Munc18, and Syntaxin. Concomitantly, distal synapses displayed less vesicle release upon stimulation. This dependence of presynaptic strength on dendritic position persisted after chronically blocking action potential firing and postsynaptic receptors but was markedly reduced on DG dendrites compared with pyramidal dendrites. These data reveal a novel rule, independent of neuronal activity, which regulates presynaptic strength according to dendritic position, with the strongest terminals closest to the soma. This gradient is opposite to postsynaptic gradients observed in pyramidal dendrites, and different cell types apply this rule to a different extent. PMID:22492722

  6. Musical representation of dendritic spine distribution: a new exploratory tool.

    PubMed

    Toharia, Pablo; Morales, Juan; de Juan, Octavio; Fernaud, Isabel; Rodríguez, Angel; DeFelipe, Javier

    2014-04-01

    Dendritic spines are small protrusions along the dendrites of many types of neurons in the central nervous system and represent the major target of excitatory synapses. For this reason, numerous anatomical, physiological and computational studies have focused on these structures. In the cerebral cortex the most abundant and characteristic neuronal type are pyramidal cells (about 85 % of all neurons) and their dendritic spines are the main postsynaptic target of excitatory glutamatergic synapses. Thus, our understanding of the synaptic organization of the cerebral cortex largely depends on the knowledge regarding synaptic inputs to dendritic spines of pyramidal cells. Much of the structural data on dendritic spines produced by modern neuroscience involves the quantitative analysis of image stacks from light and electron microscopy, using standard statistical and mathematical tools and software developed to this end. Here, we present a new method with musical feedback for exploring dendritic spine morphology and distribution patterns in pyramidal neurons. We demonstrate that audio analysis of spiny dendrites with apparently similar morphology may "sound" quite different, revealing anatomical substrates that are not apparent from simple visual inspection. These morphological/music translations may serve as a guide for further mathematical analysis of the design of the pyramidal neurons and of spiny dendrites in general.

  7. Contribution of sublinear and supralinear dendritic integration to neuronal computations

    PubMed Central

    Tran-Van-Minh, Alexandra; Cazé, Romain D.; Abrahamsson, Therése; Cathala, Laurence; Gutkin, Boris S.; DiGregorio, David A.

    2015-01-01

    Nonlinear dendritic integration is thought to increase the computational ability of neurons. Most studies focus on how supralinear summation of excitatory synaptic responses arising from clustered inputs within single dendrites result in the enhancement of neuronal firing, enabling simple computations such as feature detection. Recent reports have shown that sublinear summation is also a prominent dendritic operation, extending the range of subthreshold input-output (sI/O) transformations conferred by dendrites. Like supralinear operations, sublinear dendritic operations also increase the repertoire of neuronal computations, but feature extraction requires different synaptic connectivity strategies for each of these operations. In this article we will review the experimental and theoretical findings describing the biophysical determinants of the three primary classes of dendritic operations: linear, sublinear, and supralinear. We then review a Boolean algebra-based analysis of simplified neuron models, which provides insight into how dendritic operations influence neuronal computations. We highlight how neuronal computations are critically dependent on the interplay of dendritic properties (morphology and voltage-gated channel expression), spiking threshold and distribution of synaptic inputs carrying particular sensory features. Finally, we describe how global (scattered) and local (clustered) integration strategies permit the implementation of similar classes of computations, one example being the object feature binding problem. PMID:25852470

  8. Three-dimensional reconstruction of teeth and jaws based on segmentation of CT images using watershed transformation.

    PubMed

    Naumovich, S S; Naumovich, S A; Goncharenko, V G

    2015-01-01

    The objective of the present study was the development and clinical testing of a three-dimensional (3D) reconstruction method of teeth and a bone tissue of the jaw on the basis of CT images of the maxillofacial region. 3D reconstruction was performed using the specially designed original software based on watershed transformation. Computed tomograms in digital imaging and communications in medicine format obtained on multispiral CT and CBCT scanners were used for creation of 3D models of teeth and the jaws. The processing algorithm is realized in the stepwise threshold image segmentation with the placement of markers in the mode of a multiplanar projection in areas relating to the teeth and a bone tissue. The developed software initially creates coarse 3D models of the entire dentition and the jaw. Then, certain procedures specify the model of the jaw and cut the dentition into separate teeth. The proper selection of the segmentation threshold is very important for CBCT images having a low contrast and high noise level. The developed semi-automatic algorithm of multispiral and cone beam computed tomogram processing allows 3D models of teeth to be created separating them from a bone tissue of the jaws. The software is easy to install in a dentist's workplace, has an intuitive interface and takes little time in processing. The obtained 3D models can be used for solving a wide range of scientific and clinical tasks.

  9. Jaw lever analysis of Hawaiian gobioid stream fishes: a simulation study of morphological diversity and functional performance.

    PubMed

    Maie, Takashi; Schoenfuss, Heiko L; Blob, Richard W

    2009-08-01

    Differences in feeding behavior and performance among the five native Hawaiian gobioid stream fishes (Sicyopterus stimpsoni, Lentipes concolor, Awaous guamensis, Stenogobius hawaiiensis, and Eleotris sandwicensis) have been proposed based on the skeletal anatomy of their jaws and dietary specialization. However, performance of the feeding apparatus likely depends on the proportions and configurations of the jaw muscles and the arrangement of the jaw skeleton. We used a published mathematical model of muscle function to evaluate potential differences in jaw closing performance and their correlations with morphology among these species. For example, high output force calculated for the adductor mandibulae muscles (A2 and A3) of both A. guamensis and E. sandwicensis matched expectations based on the morphology of these species because these muscles are larger than in the other species. In contrast, Stenogobius hawaiiensis exhibited an alternative morphological strategy for achieving high relative output forces of both A2 and A3, in which the placement and configuration of the muscles conveyed high mechanical advantage despite only moderate cross-sectional areas. These differing anatomical pathways to similar functional performance suggest a pattern of many-to-one mapping of morphology to performance. In addition, a functional differentiation between A2 and A3 was evident for all species, in which A2 was better suited for producing forceful jaw closing and A3 for rapid jaw closing. Thus, the diversity of feeding performance of Hawaiian stream gobies seems to reflect a maintenance of functional breadth through the retention of some primitive traits in combination with novel functional capacities in several species. (c) 2009 Wiley-Liss, Inc.

  10. Asymmetric activation of motor cortex controlling human anterior digastric muscles during speech and target-directed jaw movements.

    PubMed

    Sowman, Paul F; Flavel, Stanley C; McShane, Christie L; Sakuma, Shigemitsu; Miles, Timothy S; Nordstrom, Michael A

    2009-07-01

    Like most of the cranial muscles involved in speech, the trigeminally innervated anterior digastric muscles are controlled by descending corticobulbar projections from the primary motor cortex (M1) of each hemisphere. We hypothesized that changes in corticobulbar M1 excitability during speech production would show a hemispheric asymmetry favoring the left side, which is the dominant hemisphere for language processing in most strongly right handed subjects. Fifteen volunteers aged 24.5+/-5.3 (SD) yr participated. All subjects were strongly right handed as reported by questionnaire. A surface electromyograph (EMG) was recorded bilaterally from digastrics and jaw movement detected by an accelerometer attached to a lower incisor. Focal transcranial magnetic stimulation (TMS) was used to assess corticomotor excitability of the digastric representation in M1 of both hemispheres during four tasks: 1) static isometric contraction of digastrics; 2) speaking a single word; 3) visually guided, nonspeech jaw movement that matched the jaw kinematics recorded during task 2; and 4) reciting a sentence. Background EMG was well matched in all tasks and jaw kinematics were similar around the time of the TMS pulse for tasks 2-4. TMS resting thresholds and digastric muscle-evoked potential (MEP) size during isometric contraction did not differ for TMS over left versus right M1. MEPs elicited by TMS over left, but not right M1 increased in size during speech and nonspeech jaw movement compared with isometric contraction. We conclude that left corticobulbar M1 is preferentially engaged for descending control of digastric muscles during speech and the performance of a rapid jaw movement to match a target kinematic profile.

  11. Hyper-dendritic nanoporous zinc foam anodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chamoun, Mylad; Hertzberg, Benjamin J.; Gupta, Tanya

    The low cost, significant reducing potential, and relative safety of the zinc electrode is a common hope for a reductant in secondary batteries, but it is limited mainly to primary implementation due to shape change. In this work we exploit such shape change for the benefit of static electrodes through the electrodeposition of hyper-dendritic nanoporous zinc foam. Electrodeposition of zinc foam resulted in nanoparticles formed on secondary dendrites in a three-dimensional network with a particle size distribution of 54.1 - 96.0 nm. The nanoporous zinc foam contributed to highly oriented crystals, high surface area and more rapid kinetics in contrastmore » to conventional zinc in alkaline mediums. The anode material presented had a utilization of ~ 88% at full depth-of-discharge at various rates indicating a superb rate-capability. The rechargeability of Zn⁰/Zn²⁺ showed significant capacity retention over 100 cycles at a 40% depth-of-discharge to ensure that the dendritic core structure was imperforated. The dendritic architecture was densified upon charge-discharge cycling and presented superior performance compared to bulk zinc electrodes.« less

  12. Hyper-dendritic nanoporous zinc foam anodes

    DOE PAGES

    Chamoun, Mylad; Hertzberg, Benjamin J.; Gupta, Tanya; ...

    2015-04-24

    The low cost, significant reducing potential, and relative safety of the zinc electrode is a common hope for a reductant in secondary batteries, but it is limited mainly to primary implementation due to shape change. In this work we exploit such shape change for the benefit of static electrodes through the electrodeposition of hyper-dendritic nanoporous zinc foam. Electrodeposition of zinc foam resulted in nanoparticles formed on secondary dendrites in a three-dimensional network with a particle size distribution of 54.1 - 96.0 nm. The nanoporous zinc foam contributed to highly oriented crystals, high surface area and more rapid kinetics in contrastmore » to conventional zinc in alkaline mediums. The anode material presented had a utilization of ~ 88% at full depth-of-discharge at various rates indicating a superb rate-capability. The rechargeability of Zn⁰/Zn²⁺ showed significant capacity retention over 100 cycles at a 40% depth-of-discharge to ensure that the dendritic core structure was imperforated. The dendritic architecture was densified upon charge-discharge cycling and presented superior performance compared to bulk zinc electrodes.« less

  13. Orf virus IL-10 reduces monocyte, dendritic cell and mast cell recruitment to inflamed skin.

    PubMed

    Bennett, Jared R; Lateef, Zabeen; Fleming, Stephen B; Mercer, Andrew A; Wise, Lyn M

    2016-02-02

    Orf virus (ORFV) is a zoonotic parapoxvirus that causes pustular dermatitis of sheep, and occasionally humans. Despite causing sustained infections, ORFV induces only a transient increase in pro-inflammatory signalling and the trafficking of innate immune cells within the skin seems to be impaired. An explanation for this tempered response to ORFV infection may lie in its expression of a homolog of the anti-inflammatory cytokine, interleukin (IL)-10. Using a murine model in which inflammation was induced by bacterial lipopolysaccharide, we examined the effects of the ORFV-IL-10 protein on immune cell trafficking to and from the skin. ORFV-IL-10 limited the recruitment of blood-derived Gr-1(int)/CD11b(int) monocytes, CD11c(+ve)/MHC-II(+ve) dendritic cells and c-kit(+ve)/FcεR1(+ve) mature mast cells into inflamed skin. ORFV-IL-10 also suppressed the activation of CD11c(+ve)/MHC-II(+ve) dendritic cells within the skin, reducing their trafficking to the draining lymph node. These findings suggest that expression of IL-10 by ORFV may contribute to the impaired trafficking of innate immune cells within infected skin. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Bent dendrite growth in undercooled Fe-B alloy melts

    NASA Astrophysics Data System (ADS)

    Karrasch, C.; Volkmann, T.; Valloton, J.; Kolbe, M.; Herlach, DM

    2016-03-01

    Dendritic growth is the main solidification mode in alloy casting. In order to control dendrite growth for materials design from the melt it is important to fully understand the influence of process conditions. This study stands as an experimental note observing bent dendrite growth in Fe-B alloys and suggesting possible explanations as induced by fluid flow, thermal, and concentrational diffusion or impurities. Electromagnetic levitation technique (EML) is used for containerless processing of undercooled melts under 1g and reduced gravity conditions in parabolic flight. Further investigations are needed to find a suitable explanation for the observed bent dendrite growth behaviour.

  15. Distinct Roles for Somatically and Dendritically Synthesized Brain-Derived Neurotrophic Factor in Morphogenesis of Dendritic Spines

    PubMed Central

    Orefice, Lauren L.; Waterhouse, Emily G.; Partridge, John G.; Lalchandani, Rupa R.; Vicini, Stefano

    2013-01-01

    Dendritic spines undergo the processes of formation, maturation, and pruning during development. Molecular mechanisms controlling spine maturation and pruning remain largely unknown. The gene for brain-derived neurotrophic factor (BDNF) produces two pools of mRNA, with either a short or long 3′ untranslated region (3′ UTR). Our previous results show that short 3′ UTR Bdnf mRNA is restricted to cell bodies, whereas long 3′ UTR Bdnf mRNA is also trafficked to dendrites for local translation. Mutant mice lacking long 3′ UTR Bdnf mRNA display normal spines at 3 weeks of age, but thinner and denser spines in adults compared to wild-type littermates. These observations suggest that BDNF translated from long 3′ UTR Bdnf mRNA, likely in dendrites, is required for spine maturation and pruning. In this study, using rat hippocampal neuronal cultures, we found that knocking down long 3′ UTR Bdnf mRNA blocked spine head enlargement and spine elimination, whereas overexpressing long 3′ UTR Bdnf mRNA had the opposite effect. The effect of long 3′ UTR Bdnf mRNA on spine head enlargement and spine elimination was diminished by a human single-nucleotide polymorphism (SNP, rs712442) in its 3′ UTR that inhibited dendritic localization of Bdnf mRNA. Furthermore, we found that overexpression of either Bdnf mRNA increased spine density at earlier time points. Spine morphological alterations were associated with corresponding changes in density, size, and function of synapses. These results indicate that somatically synthesized BDNF promotes spine formation, whereas dendritically synthesized BDNF is a key regulator of spine head growth and spine pruning. PMID:23843530

  16. Surgical Orthodontic Treatment of Severe Skeletal Class II

    PubMed Central

    Alsulaimani, Fahad F.; Al-Sebaei, Maisa O.; Afify, Ahmed R.

    2013-01-01

    This paper describes an adult Saudi male patient who presented with a severe skeletal class II deformity. The case was managed with a combination of presurgical orthodontic treatment followed by a double jaw orthognathic surgery and then another phase of orthodontic treatment for final occlusal detailing. Extraction of the four first premolars was done during the presurgical orthodontic phase of treatment to decompensate upper and lower incisors and to give room for surgical setback of the maxillary anterior segment. Double jaw surgery was performed: bilateral sagittal split ramus osteotomy for 8 mm mandibular advancement combined with three-piece Le Fort I maxillary osteotomy, 6 mm setback of the anterior segment, 8 mm impaction of the maxilla, and 5 mm advancement genioplasty. Although the anteroposterior discrepancy and the facial convexity were so severe, highly acceptable results were obtained, both esthetically as well as occlusally. PMID:23573428

  17. The three-dimensional morphology of growing dendrites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibbs, J. W.; Mohan, K. A.; Gulsoy, E. B.

    The processes controlling the morphology of dendrites have been of great interest to a wide range of communities, since they are examples of an out-of-equilibrium pattern forming system, there is a clear connection with battery failure processes, and their morphology sets the properties of many metallic alloys. We determine the three-dimensional morphology of free growing metallic dendrites using a novel X-ray tomographic technique that improves the temporal resolution by more than an order of magnitude compared to conventional techniques. These measurements show that the growth morphology of metallic dendrites is surprisingly different from that seen in model systems, the morphologymore » is not self-similar with distance back from the tip, and that this morphology can have an unexpectedly strong influence on solute segregation in castings. As a result, these experiments also provide benchmark data that can be used to validate simulations of free dendritic growth.« less

  18. Measuring Lithium Dendritic Growth in Polymer Electrolytes

    NASA Astrophysics Data System (ADS)

    He, Yuping; Downing, Gregory; Wang, Howard

    The nature of Li dendritic growth in polymeric electrolytes for rechargeable batteries has been investigated using simultaneous electrochemical and neutron depth profiling (NDP) measurements. A symmetric sandwich cell of Li / poly(ethyleneoxide) (PEO) : lithium bis(trifluoromethane)sulfonamide (LiTFSI) / Li was used as a model system in this study. Operating the cell at a constant electric current of 0.1 mA, in situ NDP measurements show that after a period of steady Li plating, dendrites start to grow, which eventually short-circuit the sandwich cell. 3D Li mapping reveals heterogeneous lateral distribution of Li over length scales from below a millimeter to centimeters. Most Li in the electrolyte layer resides in dendrites growing from the top electrode, it is observed that dendrites also grow from the bottom electrode, where presumably only Li oxidation reaction occurs. The revelation poses new design and engineering challenges in using Li metal electrode in future development of rechargeable batteries.

  19. The three-dimensional morphology of growing dendrites

    DOE PAGES

    Gibbs, J. W.; Mohan, K. A.; Gulsoy, E. B.; ...

    2015-07-03

    The processes controlling the morphology of dendrites have been of great interest to a wide range of communities, since they are examples of an out-of-equilibrium pattern forming system, there is a clear connection with battery failure processes, and their morphology sets the properties of many metallic alloys. We determine the three-dimensional morphology of free growing metallic dendrites using a novel X-ray tomographic technique that improves the temporal resolution by more than an order of magnitude compared to conventional techniques. These measurements show that the growth morphology of metallic dendrites is surprisingly different from that seen in model systems, the morphologymore » is not self-similar with distance back from the tip, and that this morphology can have an unexpectedly strong influence on solute segregation in castings. As a result, these experiments also provide benchmark data that can be used to validate simulations of free dendritic growth.« less

  20. Evaluation of jaw and neck muscle activities while chewing using EMG-EMG transfer function and EMG-EMG coherence function analyses in healthy subjects.

    PubMed

    Ishii, Tomohiro; Narita, Noriyuki; Endo, Hiroshi

    2016-06-01

    This study aims to quantitatively clarify the physiological features in rhythmically coordinated jaw and neck muscle EMG activities while chewing gum using EMG-EMG transfer function and EMG-EMG coherence function analyses in 20 healthy subjects. The chewing side masseter muscle EMG signal was used as the reference signal, while the other jaw (non-chewing side masseter muscle, bilateral anterior temporal muscles, and bilateral anterior digastric muscles) and neck muscle (bilateral sternocleidomastoid muscles) EMG signals were used as the examined signals in EMG-EMG transfer function and EMG-EMG coherence function analyses. Chewing-related jaw and neck muscle activities were aggregated in the first peak of the power spectrum in rhythmic chewing. The gain in the peak frequency represented the power relationships between jaw and neck muscle activities during rhythmic chewing. The phase in the peak frequency represented the temporal relationships between the jaw and neck muscle activities, while the non-chewing side neck muscle presented a broad range of distributions across jaw closing and opening phases. Coherence in the peak frequency represented the synergistic features in bilateral jaw closing muscles and chewing side neck muscle activities. The coherence and phase in non-chewing side neck muscle activities exhibited a significant negative correlation. From above, the bilateral coordination between the jaw and neck muscle activities is estimated while chewing when the non-chewing side neck muscle is synchronously activated with the jaw closing muscles, while the unilateral coordination is estimated when the non-chewing side neck muscle is irregularly activated in the jaw opening phase. Thus, the occurrence of bilateral or unilateral coordinated features in the jaw and neck muscle activities may correspond to the phase characteristics in the non-chewing side neck muscle activities during rhythmical chewing. Considering these novel findings in healthy subjects, EMG

  1. Quantifying the Number of Discriminable Coincident Dendritic Input Patterns through Dendritic Tree Morphology

    PubMed Central

    Zippo, Antonio G.; Biella, Gabriele E. M.

    2015-01-01

    Current developments in neuronal physiology are unveiling novel roles for dendrites. Experiments have shown mechanisms of non-linear synaptic NMDA dependent activations, able to discriminate input patterns through the waveforms of the excitatory postsynaptic potentials. Contextually, the synaptic clustering of inputs is the principal cellular strategy to separate groups of common correlated inputs. Dendritic branches appear to work as independent discriminating units of inputs potentially reflecting an extraordinary repertoire of pattern memories. However, it is unclear how these observations could impact our comprehension of the structural correlates of memory at the cellular level. This work investigates the discrimination capabilities of neurons through computational biophysical models to extract a predicting law for the dendritic input discrimination capability (M). By this rule we compared neurons from a neuron reconstruction repository (neuromorpho.org). Comparisons showed that primate neurons were not supported by an equivalent M preeminence and that M is not uniformly distributed among neuron types. Remarkably, neocortical neurons had substantially less memory capacity in comparison to those from non-cortical regions. In conclusion, the proposed rule predicts the inherent neuronal spatial memory gathering potentially relevant anatomical and evolutionary considerations about the brain cytoarchitecture. PMID:26100354

  2. Electrolyte-free Amperometric Immunosensor using a Dendritic Nanotip†

    PubMed Central

    Kim, Jong-Hoon; Hiraiwa, Morgan; Lee, Hyun-Boo; Lee, Kyong-Hoon; Cangelosi, Gerard A.; Chung, Jae-Hyun

    2013-01-01

    Electric detection using a nanocomponent may lead to platforms for rapid and simple biosensing. Sensors composed of nanotips or nanodots have been described for highly sensitive amperometry enabled by confined geometry. However, both fabrication and use of nanostructured sensors remain challenging. This paper describes a dendritic nanotip used as an amperometric biosensor for highly sensitive detection of target bacteria. A dendritic nanotip is structured by Si nanowires coated with single-walled carbon nanotubes (SWCNTs) for generation of a high electric field. For reliable measurement using the dendritic structure, Si nanowires were uniformly fabricated by ultraviolet (UV) lithography and etching. The dendritic structure effectively increased the electric current density near the terminal end of the nanotip according to numerical computation. The electrical characteristics of a dendritic nanotip with additional protein layers was studied by cyclic voltammetry and I–V measurement in deionized (DI) water. When the target bacteria dielectrophoretically captured onto a nanotip were bound with fluorescence antibodies, the electric current through DI water decreased. Measurement results were consistent with fluorescence- and electron microscopy. The sensitivity of the amperometry was 10 cfu/sample volume (103 cfu/mL), which was equivalent to the more laborious fluorescence measurement method. The simple configuration of a dendritic nanotip can potentially offer an electrolyte-free detection platform for sensitive and rapid biosensors. PMID:23585927

  3. Electrolyte-free Amperometric Immunosensor using a Dendritic Nanotip.

    PubMed

    Kim, Jong-Hoon; Hiraiwa, Morgan; Lee, Hyun-Boo; Lee, Kyong-Hoon; Cangelosi, Gerard A; Chung, Jae-Hyun

    2013-01-01

    Electric detection using a nanocomponent may lead to platforms for rapid and simple biosensing. Sensors composed of nanotips or nanodots have been described for highly sensitive amperometry enabled by confined geometry. However, both fabrication and use of nanostructured sensors remain challenging. This paper describes a dendritic nanotip used as an amperometric biosensor for highly sensitive detection of target bacteria. A dendritic nanotip is structured by Si nanowires coated with single-walled carbon nanotubes (SWCNTs) for generation of a high electric field. For reliable measurement using the dendritic structure, Si nanowires were uniformly fabricated by ultraviolet (UV) lithography and etching. The dendritic structure effectively increased the electric current density near the terminal end of the nanotip according to numerical computation. The electrical characteristics of a dendritic nanotip with additional protein layers was studied by cyclic voltammetry and I-V measurement in deionized (DI) water. When the target bacteria dielectrophoretically captured onto a nanotip were bound with fluorescence antibodies, the electric current through DI water decreased. Measurement results were consistent with fluorescence- and electron microscopy. The sensitivity of the amperometry was 10 cfu/sample volume (10 3 cfu/mL), which was equivalent to the more laborious fluorescence measurement method. The simple configuration of a dendritic nanotip can potentially offer an electrolyte-free detection platform for sensitive and rapid biosensors.

  4. Evolution of the vertebrate jaw: comparative embryology and molecular developmental biology reveal the factors behind evolutionary novelty

    PubMed Central

    Kuratani, Shigeru

    2004-01-01

    It is generally believed that the jaw arose through the simple transformation of an ancestral rostral gill arch. The gnathostome jaw differentiates from Hox-free crest cells in the mandibular arch, and this is also apparent in the lamprey. The basic Hox code, including the Hox-free default state in the mandibular arch, may have been present in the common ancestor, and jaw patterning appears to have been secondarily constructed in the gnathostomes. The distribution of the cephalic neural crest cells is similar in the early pharyngula of gnathostomes and lampreys, but different cell subsets form the oral apparatus in each group through epithelial–mesenchymal interactions: and this heterotopy is likely to have been an important evolutionary change that permitted jaw differentiation. This theory implies that the premandibular crest cells differentiate into the upper lip, or the dorsal subdivision of the oral apparatus in the lamprey, whereas the equivalent cell population forms the trabecula of the skull base in gnathostomes. Because the gnathostome oral apparatus is derived exclusively from the mandibular arch, the concepts ‘oral’ and ‘mandibular’ must be dissociated. The ‘lamprey trabecula’ develops from mandibular mesoderm, and is not homologous with the gnathostome trabecula, which develops from premandibular crest cells. Thus the jaw evolved as an evolutionary novelty through tissue rearrangements and topographical changes in tissue interactions. PMID:15575882

  5. Intraosseous mucoepidermoid carcinoma: a review of the diagnostic imaging features of four jaw cases.

    PubMed

    Chan, K C; Pharoah, M; Lee, L; Weinreb, I; Perez-Ordonez, B

    2013-01-01

    The purpose of this case series is to present the common features of intraosseous mucoepidermoid carcinoma (IMC) of the jaws in plain film and CT imaging. Two oral and maxillofacial radiologists reviewed and characterized the common features of four biopsy-proven cases of IMC in the jaws in plain film and CT imaging obtained from the files of the Department of Oral Radiology, Faculty of Dentistry, University of Toronto, Toronto, Canada. The common features are a well-defined sclerotic periphery, the presence of internal amorphous sclerotic bone and numerous small loculations, lack of septae bordering many of the loculations, and expansion and perforation of the outer cortical plate with extension into surrounding soft tissue. Other characteristics include tooth displacement and root resorption. The four cases of IMC reviewed have common imaging characteristics. All cases share some diagnostic imaging features with other multilocular-appearing entities of the jaws. However, the presence of amorphous sclerotic bone and malignant characteristics can be useful in the differential diagnosis.

  6. Annual reversible plasticity of feeding structures: cyclical changes of jaw allometry in a sea urchin

    PubMed Central

    Ebert, Thomas A.; Hernández, José Carlos; Clemente, Sabrina

    2014-01-01

    A wide variety of organisms show morphologically plastic responses to environmental stressors but in general these changes are not reversible. Though less common, reversible morphological structures are shown by a range of species in response to changes in predators, competitors or food. Theoretical analysis indicates that reversible plasticity increases fitness if organisms are long-lived relative to the frequency of changes in the stressor and morphological changes are rapid. Many sea urchin species show differences in the sizes of jaws (demi-pyramids) of the feeding apparatus, Aristotle's lantern, relative to overall body size, and these differences have been correlated with available food. The question addressed here is whether reversible changes of relative jaw size occur in the field as available food changes with season. Monthly samples of the North American Pacific coast sea urchin Strongylocentrotus purpuratus were collected from Gregory Point on the Oregon (USA) coast and showed an annual cycle of relative jaw size together with a linear trend from 2007 to 2009. Strongylocentrotus purpuratus is a long-lived species and under field conditions individuals experience multiple episodes of changes in food resources both seasonally and from year to year. Their rapid and reversible jaw plasticity fits well with theoretical expectations. PMID:24500161

  7. Dendrite inhibitor

    DOEpatents

    Miller, William E.

    1989-01-01

    An apparatus for removing dendrites or other crystalline matter from the surface of a liquid in a matter transport process, and an electrolytic cell including such an apparatus. A notch may be provided to allow continuous exposure of the liquid surface, and a bore may be further provided to permit access to the liquid.

  8. The effect of food bolus location on jaw movement smoothness and masticatory efficiency.

    PubMed

    Molenaar, W N B; Gezelle Meerburg, P J; Luraschi, J; Whittle, T; Schimmel, M; Lobbezoo, F; Peck, C C; Murray, G M; Minami, I

    2012-09-01

    Masticatory efficiency in individuals with extensive tooth loss has been widely discussed. However, little is known about jaw movement smoothness during chewing and the effect of differences in food bolus location on movement smoothness and masticatory efficiency. The aim of this study was to determine whether experimental differences in food bolus location (anterior versus posterior) had an effect on masticatory efficiency and jaw movement smoothness. Jaw movement smoothness was evaluated by measuring jerk-cost (calculated from acceleration) with an accelerometer that was attached to the skin of the mentum of 10 asymptomatic subjects, and acceleration was recorded during chewing on two-colour chewing gum, which was used to assessed masticatory efficiency. Chewing was performed under two conditions: posterior chewing (chewing on molars and premolars only) and anterior chewing (chewing on canine and first premolar teeth only). Jerk-cost and masticatory efficiency (calculated as the ratio of unmixed azure colour to the total area of gum, the unmixed fraction) were compared between anterior and posterior chewing with the Wilcoxon signed rank test (two-tailed). Subjects chewed significantly less efficiently during anterior chewing than during posterior chewing (P = 0·0051). There was no significant difference in jerk-cost between anterior and posterior conditions in the opening phase (P = 0·25), or closing phase (P = 0·42). This is the first characterisation of the effect of food bolus location on jaw movement smoothness at the same time as recording masticatory efficiency. The data suggest that anterior chewing decreases masticatory efficiency, but does not influence jerk-cost. © 2012 Blackwell Publishing Ltd.

  9. Intrinsic versus extrinsic controls on the development of calcite dendrite bushes, Shuzhishi Spring, Rehai geothermal area, Tengchong, Yunnan Province, China

    NASA Astrophysics Data System (ADS)

    Jones, Brian; Peng, Xiaotong

    2012-04-01

    In the Rehai geothermal area, located near Tengchong, there is an old succession of crystalline calcite that formed from a spring that is no longer active. The thin-bedded succession, exposed on the south bank of Zaotang River, is formed of three-dimensional dendrite bushes that are up to 6 cm high and 3 cm in diameter with multiple levels of branching. Bedding is defined by color, which ranges from white to gray to almost black and locally accentuated by differential weathering that highlights the branching motif of the dendrites. The succession developed through repeated tripartite growth cycles that involved: Phase I that was characterized by rapid vertical growth of the dendrite bushes with ever-increasing branching; Phase II that developed once growth of the dendrites had almost or totally ceased, and involved an initial phase of etching that was followed by the precipitation of various secondary minerals (sheet calcite, trigonal calcite crystals, hexagonal calcite crystals, hexagonal plates formed of Ca and P, Mn precipitates, Si-Mg reticulate coatings, opal-CT lepispheres) on the branches of the calcite dendrites, and Phase III that involved deposition of detrital quartz, feldspar, clay, and calcite on top of the dendrite bushes. The tripartite growth cycle is attributed primarily to aperiodic cycles in the CO2 content of the spring water that was controlled by subsurface igneous activity rather than climatic controls. High CO2 coupled with rapid CO2 degassing triggered growth of the dendrite bushes. As CO2 levels waned, saturation levels in the spring water decreased and calcite dendrite growth ceased and precipitation of the secondary minerals took place, possibly in the microcosms of microbial mats. Deposition of the detrital sediment was probably related to surface runoff that was triggered by periods of high rainfall. Critically, this study shows that intrinsic factors rather than extrinsic factors (e.g., climate) were the prime control on the

  10. SU-E-T-346: Effect of Jaw Position On Dose to Critical Structures in 3-D Conformal Radiotherapy Treatment of Pancreatic Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paudel, N; Han, E; Liang, X

    Purpose: Three-dimensional conformal therapy remains a valid and widely used modality for pancreatic radiotherapy treatment. It usually meets dose constraints on critical structures. However, careful positioning of collimation jaws can reduce dose to the critical structures. Here we investigate the dosimetric effect of jaw position in MLC-based 3-D conformal treatment planning on critical structures. Methods: We retrospectively selected seven pancreatic cancer patients treated with 3-D conformal radiotherapy. We started with treatment plans (Varian Truebeam LINAC, Eclipse TPS, AAA, 18MV) having both x and y jaws aligned with the farthest extent of the block outline (8mm around PTV). Then we subsequentlymore » moved either both x-jaws or all x and y jaws outwards upto 3 cm in 1 cm increments and investigated their effect on average and maximum dose to neighboring critical structures keeping the same coverage to treatment volume. Results: Lateral displacement of both x-jaws by 1cm each increased kidney and spleen mean dose by as much as 1.7% and 1.3% respectively and superior inferior displacement increased liver, right kidney, stomach and spleen dose by as much as 2.1%, 2%, 5.2% and 1.6% respectively. Displacement of all x and y-jaws away by 1cm increased the mean dose to liver, right kidney, left kidney, bowels, cord, stomach and spleen by as much as 4.9%, 5.9%, 2.1%, 2.8%, 7.4%, 10.4% and 4.2% respectively. Percentage increase in mean dose due to 2 and 3cm jaw displacement increased almost linearly with the displaced distance. Changes in maximum dose were much smaller (mostly negligible) than the changes in mean dose. Conclusion: Collimation jaw position affects dose mostly to critical structures adjacent to it. Though treatment plans with MLCs conforming the block margin usually meet dose constraints to critical structures, keeping jaws all the way in, to the edge of the block reduces dose to the critical structures during radiation treatment.« less

  11. General anesthesia in orthognathic surgeries: does it affect horizontal jaw relations?

    PubMed

    Yaghmaei, Masoud; Ejlali, Masoud; Nikzad, Sekieneh; Sayyedi, Ashraf; Shafaeifard, Shahrouz; Pourdanesh, Fereydoun

    2013-10-01

    The aim of this study was to evaluate the influence of general anesthesia on centric jaw relation (CR) records of orthognathic surgical patients in different postural positions. Fifty patients undergoing orthognathic surgery at Taleghani Hospital (Tehran, Iran) in 2008 were prospectively studied. CR records were obtained in conscious patients in 2 different positions (upright and supine) 1 day before surgery and in the supine position under general anesthesia. The impressions were made and the corresponding casts were mounted on a semiadjustable articulator. Differences were measured to the nearest 0.10 mm using a caliper. Paired t test and a general linear regression model were used for statistical analysis. Fifty patients (27 women and 23 men; mean age, 22.5 ± 3.5 yr) were enrolled. Angle Class I (group I), Class II (group II), and Class III (group III) malocclusions were detected in 16% (n = 8), 54% (n = 27), and 30% (n = 15) of patients, respectively. Although mean changes were smaller than 2 mm, statistically significant differences were found by paired t test in all Angle classification groups. No significant differences were found between the supine and conscious and the supine and unconscious patient positions in groups I and III (P > .05). However, in group II, this difference was statistically significant (P = .001). Regarding the impact of anesthesia on CR records of patients with different Angle classes, this study showed a significant effect, particularly in group II. Assessment of the outcome of interest (difference between the supine and conscious and the upright and conscious positions) versus position after adjustment for Angle class using a general linear regression model showed that the difference was significant only for Angle class (β = +0.29; t = 3.05; P = .003). General anesthesia may not adversely affect the mandibular condylar position in orthognathic patients in a supine position compared with a supine and conscious position. However

  12. Generation of dendrite fragments and their transport from within the mushy zone

    NASA Astrophysics Data System (ADS)

    Liu, Shan

    Five steps have been identified for the grain structure evolution of a casting by an intrinsic mechanism: (i) fragmentation of dendrites in the mushy region; (ii) transport of these dendrite fragments from within this region; (iii) their survival in the bulk liquid; (iv) growth of the survivors; and (v) blockage of the columnar crystal growth front and formation of the equiaxed grains in a casting. Of these, the first two steps remain unclear and are explored in this study. It is found that deceleration of the growth interface leads to fragmentation of side arms from primary stems. This process can be characterized by the Fragmentation Percentage which is related to the magnitude and range of the deceleration, time, and the alloy composition. With decelerations, though temperature gradient at the interface does not change, the dendrite array exhibits important microstructural variations: the dendrite, tip restabilizes rather rapidly (<10 min) and correlates well with the instantaneous tip velocity; and the primary arm spacing restabilization takes ˜5 times longer than the tip readjustment. The difference between the rates of restabilization of the tip radius and primary arm spacing causes slight solute enrichment in the interdendritic region, resulting in side arm detachment. Through a comparative study with the steady state growth process, the magnitude of this solute enrichment is estimated. Further analysis for the dissolution kinetics shows that the excessive solute can only cause a partial dissolution at the neck of a side arm, but this is sufficient to upset the curvature balance between the different sections of a dendritic structure and the continual dissolution at the neck is subsequently driven by the curvature difference until a side arm is detached from the primary stalk. The solidification interface of most castings generally proceeds in a decelerated manner; therefore dendrite fragments already exist in the mushy region. These dendrite fragments can

  13. Dendritic biomimicry: microenvironmental hydrogen-bonding effects on tryptophan fluorescence.

    PubMed

    Koenig, S; Müller, L; Smith, D K

    2001-03-02

    Two series of dendritically modified tryptophan derivatives have been synthesised and their emission spectra measured in a range of different solvents. This paper presents the syntheses of these novel dendritic structures and discusses their emission spectra in terms of both solvent and dendritic effects. In the first series of dendrimers, the NH group of the indole ring is available for hydrogen bonding, whilst in the second series, the indole NH group has been converted to NMe. Direct comparison of the emission wavelengths of analogous NH and NMe derivatives indicates the importance of the Kamlet-Taft solvent beta3 parameter, which reflects the ability of the solvent to accept a hydrogen bond from the NH group, an effect not possible for the NMe series of dendrimers. For the NH dendrimers, the attachment of a dendritic shell to the tryptophan subunit leads to a red shift in emission wavelength. This dendritic effect only operates in non-hydrogen-bonding solvents. For the NMe dendrimers, however, the attachment of a dendritic shell has no effect on the emission spectra of the indole ring. This proves the importance of hydrogen bonding between the branched shell and the indole NH group in causing the dendritic effect. This is the first time a dendritic effect has been unambiguously assigned to individual hydrogen-bonding interactions and indicates that such intramolecular interactions are important in dendrimers, just as they are in proteins. Furthermore, this paper sheds light on the use of tryptophan residues as a probe of the microenvironment within proteins--in particular, it stresses the importance of hydrogen bonds formed by the indole NH group.

  14. Embryology of the lamprey and evolution of the vertebrate jaw: insights from molecular and developmental perspectives.

    PubMed Central

    Kuratani, S; Nobusada, Y; Horigome, N; Shigetani, Y

    2001-01-01

    Evolution of the vertebrate jaw has been reviewed and discussed based on the developmental pattern of the Japanese marine lamprey, Lampetra japonica. Though it never forms a jointed jaw apparatus, the L. japonica embryo exhibits the typical embryonic structure as well as the conserved regulatory gene expression patterns of vertebrates. The lamprey therefore shares the phylotype of vertebrates, the conserved embryonic pattern that appears at pharyngula stage, rather than representing an intermediate evolutionary state. Both gnathostomes and lampreys exhibit a tripartite configuration of the rostral-most crest-derived ectomesenchyme, each part occupying an anatomically equivalent site. Differentiated oral structure becomes apparent in post-pharyngula development. Due to the solid nasohypophyseal plate, the post-optic ectomesenchyme of the lamprey fails to grow rostromedially to form the medial nasal septum as in gnathostomes, but forms the upper lip instead. The gnathostome jaw may thus have arisen through a process of ontogenetic repatterning, in which a heterotopic shift of mesenchyme-epithelial relationships would have been involved. Further identification of shifts in tissue interaction and expression of regulatory genes are necessary to describe the evolution of the jaw fully from the standpoint of evolutionary developmental biology. PMID:11604127

  15. Root canal therapy for the prevention of osteonecrosis of the jaws: an evidence-based clinical update.

    PubMed

    Kyrgidis, Athanassios; Arora, Amit; Lyroudia, Kleoniki; Antoniades, Konstantinos

    2010-12-01

    Osteonecrosis of the jaws is an adverse effect of bone preservation treatment. There is a sufficient body of evidence to associate osteonecrosis of the jaws development with dental extractions and trauma caused from ill-fitting dentures. In this review, we critically appraise available evidence about the clinical efficacy of root canal therapy in patients receiving bisphosphonates.We review a series of theories to explain why endodontic treatment is a safe clinical intervention to prevent osteonecrosis of the jaws in patients receiving bisphosphonates. Root canal therapy could postpone or even eradicate the need for dental extractions of carious teeth in patients on bisphosphonates who may develop osteonecrosis of the jaws. Patients receiving bisphosphonates should be offered the full range of preventive care to reduce their risk to both dental caries and periodontal disease, so that the need for both endodontic therapy and dental extractions will be reduced. Implementing such a strategy would require both practitioner and patient education through the combined efforts of medical and dental societies. Such an approach is justified, as the risk of compromising the oral health of patients on bisphosphonates undertaking endodontic treatment is negligible compared with the benefit from avoiding dental extractions.

  16. Jaw motion during gum-chewing in children with primary dentition.

    PubMed

    Kubota, Naoko; Hayasaki, Haruaki; Saitoh, Issei; Iwase, Yoko; Maruyama, Tomoaki; Inada, Emi; Hasegawa, Hiroko; Yamada, Chiaki; Takemoto, Yoshihiko; Matsumoto, Yuko; Yamasaki, Youichi

    2010-01-01

    This study was undertaken to characterize jaw motion during mastication in children with primary dentition and to compare jaw motion with that in adults. The means and the variances of the traditional parameters for the chewing cycle, i.e., duration, excursive ranges and 3-D distances of travel at the lower incisor, molars and condyles were analyzed and compared in 23 children and 25 female adults. The duration of opening in children was significantly shorter than that of adults. Significant differences between children and adults were observed in lateral and vertical excursion of the incisor, lateral excursion at the molars, and vertical excursion at the condyles. Many of these measurements had larger between-subject and between-cycle variances in children than adults, suggesting that chewing motion in children has not yet matured. The results of this study indicate that chewing motion in children is different from that of adults.

  17. Dendrite inhibitor

    DOEpatents

    Miller, W.E.

    1988-06-07

    An apparatus for removing dendrites or other crystalline matter from the surface of a liquid in a matter transport process, and an electrolytic cell including such an apparatus. A notch may be provided to allow continuous exposure of the liquid surface, and a bore may be further provided to permit access to the liquid. 2 figs.

  18. Nerve Conduction Through Dendrites via Proton Hopping.

    PubMed

    Kier, Lemont B

    2017-01-01

    In our previous studies of nerve conduction conducted by proton hopping, we have considered the axon, soma, synapse and the nodes of Ranvier. The role of proton hopping described the passage of information through each of these units of a typical nerve system. The synapse projects information from the axon to the dendrite and their associated spines. We have invoked the passage of protons via a hopping mechanism to illustrate the continuum of the impulse through the system, via the soma following the dendrites. This is proposed to be a continuum invoked by the proton hopping method. With the proposal of the activity through the dendrites, via proton hopping, a complete model of the nerve function is invoked. At each step to the way, a water pathway is present and is invoked in the proposed model as the carrier of the message via proton hopping. The importance of the dendrites is evident by the presence of a vast number of spines, each possessing the possibility to carry unique messages through the nervous system. With this model of the role of dendrites, functioning with the presence of proton hopping, a complete model of the nerve system is presented. The validity of this model will be available for further studies and models to assess it's validity. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. 2,3,7,8-Tetrachlorodibenzo-p-dioxin toxicity in the zebrafish embryo: altered regional blood flow and impaired lower jaw development.

    PubMed

    Teraoka, Hiroki; Dong, Wu; Ogawa, Shuji; Tsukiyama, Shusaku; Okuhara, Yuji; Niiyama, Masayoshi; Ueno, Naoto; Peterson, Richard E; Hiraga, Takeo

    2002-02-01

    The effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure on regional red blood cell (RBC) perfusion rate, as an index of blood flow, and lower jaw development were investigated quantitatively in zebrafish embryos (Danio rerio) during early development. As revealed by observation of live embryos and alcian-blue staining, TCDD retarded lower jaw development in a concentration-dependent manner with only a minor inhibitory effect on total body length. Both inhibitory effects were significant as early as 60 h postfertilization (hpf), at which time the area of goosecoid (gsc) mRNA expression was clearly reduced in the lower jaw. To examine effects of TCDD on RBC perfusion rate, time-lapse recording was performed using a digital video camera attached to a light microscope. TCDD did not show marked effects on RBC perfusion rate until 72 hpf, when vessel-specific effects emerged. TCDD severely inhibited RBC perfusion rate in intersegmental arteries of the trunk, but only modestly and slightly inhibited RBC perfusion rate in certain vessels of the head such as the central arteries and optic vein. Conversely, at both 72 and 84 hpf, TCDD significantly increased RBC perfusion rate in the hypobranchial artery branching to the lower jaw primordia, and then reduced it at 96 hpf. RBC perfusion rate in all vessels examined in TCDD-exposed embryos was inhibited at 96 hpf. The zebrafish aryl hydrocarbon receptor 2 (zfAhR2) mRNA was strongly expressed in the lower jaw primordia at 48 hpf, and expression of this transcript was augmented by TCDD treatment. Thus, TCDD exposure of the zebrafish embryo has a disruptive effect on local circulation and lower jaw cartilage growth. Initially, TCDD may act directly on the lower jaw primordia to impair lower jaw development. Reductions in hypobranchial RBC perfusion rate occurred well after the initial retardation in lower jaw development had become apparent, and may contribute further to the effect.

  20. Communications: Mechanical Deformation of Dendrites by Fluid Flow

    NASA Technical Reports Server (NTRS)

    Pilling, J.; Hellawell, A.

    1996-01-01

    It is generally accepted that liquid agitation during alloy solidification assists in crystal multiplication, as in dendrite fragmentation and the detachment of side arms in the mushy region of a casting. Even without deliberate stirring by electromagnetic or mechanical means, there is often vigorous interdendritic fluid flow promoted by natural thermosolutal convection. In this analysis, we shall estimate the stress at the root of a secondary dendrite arm of aluminum arising from the action of a flow of molten metal past the dendrite arm.

  1. Bushy sphere dendrites with husk-shaped branches axially spreading out from the core for photo-catalytic oxidation/remediation of toxins.

    PubMed

    Shenashen, Mohamed A; Kawada, Satoshi; Selim, Mahmoud M; Morsy, Wafaa M; Yamaguchi, Hitoshi; Alhamid, Abdulaziz A; Ohashi, Naoki; Ichinose, Izumi; El-Safty, Sherif A

    2017-06-14

    This work describes densely interlinked bushy "tree-like chains" characterized by neatly branched sphere dendrites (bushy sphere dendrites, BSD) with long fan-like, husk-shaped branching paths that extend longitudinally from the core axis of the {110}-exposed plane. We confirmed that the hierarchical dendrite surfaces created bowls of swirled caves along the tree-tube in the mat-like branches. These surfaces had high-index catalytic site facets associated with the formation of ridges/defects on the dominant {110}-top-cover surface. These swirled caves along the branches were completely filled with 50-100 nm poly-CN nano-sphere-fossils with orb-like appearance. Such structural features are key issues of the inherent surface reactivity of a powerful catalyst/trapper, enabling photocatalytic oxidation and trapping of extremely toxic arsenite (AsO 3 3- ) species and photo-induced recovery of arsenate (AsO 4 3- ) products from catalyst surfaces. The light-induced release of produced AsO 4 3- from BSD indicates (i) highly controlled waste collection/management (i.e., recovery), (ii) low cost and ecofriendly photo-adsorbent, (iii) selective trapping of real sample water to produce water-free arsenite species; (iv) multiple reuse cycles of catalysts (i.e., reduced waste volume). Matrixed dendrites, covered with 3D microscopic sphere cores that capture solar-light, trap toxins, and are triggered by light, were designed. These dendrites can withstand indoor and outdoor recovery of toxins from water sources.

  2. Wnt5 and Drl/Ryk Gradients Pattern the Drosophila Olfactory Dendritic Map

    PubMed Central

    Wu, Yuping; Helt, Jay-Christian; Wexler, Emily; Petrova, Iveta M.; Noordermeer, Jasprina N.; Fradkin, Lee G.

    2014-01-01

    During development, dendrites migrate to their correct locations in response to environmental cues. The mechanisms of dendritic guidance are poorly understood. Recent work has shown that the Drosophila olfactory map is initially formed by the spatial segregation of the projection neuron (PN) dendrites in the developing antennal lobe (AL). We report here that between 16 and 30 h after puparium formation, the PN dendrites undergo dramatic rotational reordering to achieve their final glomerular positions. During this period, a novel set of AL-extrinsic neurons express high levels of the Wnt5 protein and are tightly associated with the dorsolateral edge of the AL. Wnt5 forms a dorsolateral-high to ventromedial-low pattern in the antennal lobe neuropil. Loss of Wnt5 prevents the ventral targeting of the dendrites, whereas Wnt5 overexpression disrupts dendritic patterning. We find that Drl/Ryk, a known Wnt5 receptor, is expressed in a dorsolateral-to-ventromedial (DL > VM) gradient by the PN dendrites. Loss of Drl in the PNs results in the aberrant ventromedial targeting of the dendrites, a defect that is suppressed by reduction in Wnt5 gene dosage. Conversely, overexpression of Drl in the PNs results in the dorsolateral targeting of their dendrites, an effect that requires Drl's cytoplasmic domain. We propose that Wnt5 acts as a repulsive guidance cue for the PN dendrites, whereas Drl signaling in the dendrites inhibits Wnt5 signaling. In this way, the precise expression patterns of Wnt5 and Drl orient the PN dendrites allowing them to target their final glomerular positions. PMID:25378162

  3. Determination of capacity of single-toggle jaw crusher, taking into account parameters of kinematics of its working mechanism

    NASA Astrophysics Data System (ADS)

    Golikov, N. S.; Timofeev, I. P.

    2018-05-01

    Efficiency increase of jaw crushers makes the foundation of rational kinematics and stiffening of the elements of the machine possible. Foundation of rational kinematics includes establishment of connection between operation mode parameters of the crusher and its technical characteristics. The main purpose of this research is just to establish such a connection. Therefore this article shows analytical procedure of getting connection between operation mode parameters of the crusher and its capacity. Theoretical, empirical and semi-empirical methods of capacity determination of a single-toggle jaw crusher are given, taking into account physico-mechanical properties of crushed material and kinematics of the working mechanism. When developing a mathematical model, the method of closed vector polygons by V. A. Zinoviev was used. The expressions obtained in the article give an opportunity to solve important scientific and technical problems, connected with finding the rational kinematics of the jaw crusher mechanism, carrying out a comparative assessment of different crushers and giving the recommendations about updating the available jaw crushers.

  4. Manipulation of visible-light polarization with dendritic cell-cluster metasurfaces.

    PubMed

    Fang, Zhen-Hua; Chen, Huan; An, Di; Luo, Chun-Rong; Zhao, Xiao-Peng

    2018-06-26

    Cross-polarization conversion plays an important role in visible light manipulation. Metasurface with asymmetric structure can be used to achieve polarization conversion of linearly polarized light. Based on this, we design a quasi-periodic dendritic metasurface model composed of asymmetric dendritic cells. The simulation indicates that the asymmetric dendritic structure can vertically rotate the polarization direction of the linear polarization wave in visible light. Silver dendritic cell-cluster metasurface samples were prepared by the bottom-up electrochemical deposition. It experimentally proved that they could realize the cross - polarization conversion in visible light. Cross-polarized propagating light is deflected into anomalous refraction channels. Dendritic cell-cluster metasurface with asymmetric quasi-periodic structure conveys significance in cross-polarization conversion research and features extensive practical application prospect and development potential.

  5. 15. NORTH ELEVATION OF UPPER ORE BIN, CHUTE, AND JAW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. NORTH ELEVATION OF UPPER ORE BIN, CHUTE, AND JAW CRUSHER, LOOKING SOUTH FROM END OF CONVEYOR PLATFORM. NOTICE THE THREE ORE BIN CONTROL DOORS, CORRESPONDING TO SEPARATE COMPARTMENTS OF THE BIN. - Skidoo Mine, Park Route 38 (Skidoo Road), Death Valley Junction, Inyo County, CA

  6. Retrospective Audit: Does Prior Assessment by Oral and Maxillofacial Surgeons Reduce the Risk of Osteonecrosis of The Jaw in Patients Receiving Bone-Targeted Therapies for Metastatic Cancers to the Skeleton?--Part II.

    PubMed

    Turner, Bruce; Ali, Sacha; Pati, Jhumur; Nargund, Vinod; Ali, Enamul; Cheng, Leo; Wells, Paula

    2016-01-01

    Men who receive bone-targeted therapy for metastatic prostate cancer are at increased risk of osteonecrosis of the jaw (ONJ). Development of ONJ has been associated with the administration of bone-targeted therapies in association with other risk factors. ONJ can be distressing for a patient because it can cause pain, risk of jaw fracture, body image disturbance, difficultly eating, and difficulty maintaining good oral hygiene. The aim of this article is to report results of an audit of prior assessment by oral and maxillofacial surgeons (OMFS) before initiation of bone-targeted therapies and whether it may reduce the risk of ONJ in patients receiving bone-targeted therapies for advanced cancers.

  7. Effect of the environment on the dendritic morphology of the rat auditory cortex

    PubMed Central

    Bose, Mitali; Muñoz-Llancao, Pablo; Roychowdhury, Swagata; Nichols, Justin A.; Jakkamsetti, Vikram; Porter, Benjamin; Byrapureddy, Rajasekhar; Salgado, Humberto; Kilgard, Michael P.; Aboitiz, Francisco; Dagnino-Subiabre, Alexies; Atzori, Marco

    2010-01-01

    The present study aimed to identify morphological correlates of environment-induced changes at excitatory synapses of the primary auditory cortex (A1). We used the Golgi-Cox stain technique to compare pyramidal cells dendritic properties of Sprague-Dawley rats exposed to different environmental manipulations. Sholl analysis, dendritic length measures, and spine density counts were used to monitor the effects of sensory deafness and an auditory version of environmental enrichment (EE). We found that deafness decreased apical dendritic length leaving basal dendritic length unchanged, whereas EE selectively increased basal dendritic length without changing apical dendritic length. On the contrary, deafness decreased while EE increased spine density in both basal and apical dendrites of A1 layer 2/3 (LII/III) neurons. To determine whether stress contributed to the observed morphological changes in A1, we studied neural morphology in a restraint-induced model that lacked behaviorally relevant acoustic cues. We found that stress selectively decreased apical dendritic length in the auditory but not in the visual primary cortex. Similar to the acoustic manipulation, stress-induced changes in dendritic length possessed a layer specific pattern displaying LII/III neurons from stressed animals with normal apical dendrites but shorter basal dendrites, while infragranular neurons (layers V and VI) displayed shorter apical dendrites but normal basal dendrites. The same treatment did not induce similar changes in the visual cortex, demonstrating that the auditory cortex is an exquisitely sensitive target of neocortical plasticity, and that prolonged exposure to different acoustic as well as emotional environmental manipulation may produce specific changes in dendritic shape and spine density. PMID:19771593

  8. [Florid cemento-osseous dysplasia of the jaws].

    PubMed

    Benazzou, S; Boulaadas, M; El Ayoubi, A; Nazih, N; Essakalli, L; Kzadri, M

    2011-06-01

    Florid cemento-osseous dysplasia is a benign and rare tumor of the jaws. It is more commonly seen in middle-aged black women. Most cases are asymptomatic and are found during routine radiographic examination. We report two complicated cases of florid cemento-osseous dysplasia, one with facial deformity and the other with chronic osteitis. The diagnosis of florid cemento-osseous dysplasia is based on clinical and radiological features. The lesions are commonly bilateral and symmetrical. Copyright © 2011. Published by Elsevier Masson SAS.

  9. Pediatric Odontogenic Cysts of the Jaws.

    PubMed

    Arce, Kevin; Streff, Christopher S; Ettinger, Kyle S

    2016-02-01

    Odontogenic cysts represent a common form of pathology of the jaws, and the natural history, clinicopathologic findings, and appropriate management strategies are important to the oral and maxillofacial surgeon. Odontogenic cysts in the pediatric populations are important pathologic entities given their potential impact on the growth and development of the maxillofacial complex. Inappropriate management strategies can severely affect the form and function of the growing child. Categorizing pediatric odontogenic cysts into inflammatory or developmental causes provides a convenient way of conceptualizing these various entities and helps facilitate the appropriate diagnosis and the subsequent management. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. A dendrite-suppressing composite ion conductor from aramid nanofibres.

    PubMed

    Tung, Siu-On; Ho, Szushen; Yang, Ming; Zhang, Ruilin; Kotov, Nicholas A

    2015-01-27

    Dendrite growth threatens the safety of batteries by piercing the ion-transporting separators between the cathode and anode. Finding a dendrite-suppressing material that combines high modulus and high ionic conductance has long been considered a major technological and materials science challenge. Here we demonstrate that these properties can be attained in a composite made from Kevlar-derived aramid nanofibres assembled in a layer-by-layer manner with poly(ethylene oxide). Importantly, the porosity of the membranes is smaller than the growth area of the dendrites so that aramid nanofibres eliminate 'weak links' where the dendrites pierce the membranes. The aramid nanofibre network suppresses poly(ethylene oxide) crystallization detrimental for ion transport, giving a composite that exhibits high modulus, ionic conductivity, flexibility, ion flux rates and thermal stability. Successful suppression of hard copper dendrites by the composite ion conductor at extreme discharge conditions is demonstrated, thereby providing a new approach for the materials engineering of solid ion conductors.

  11. A dendrite-suppressing composite ion conductor from aramid nanofibres

    NASA Astrophysics Data System (ADS)

    Tung, Siu-On; Ho, Szushen; Yang, Ming; Zhang, Ruilin; Kotov, Nicholas A.

    2015-01-01

    Dendrite growth threatens the safety of batteries by piercing the ion-transporting separators between the cathode and anode. Finding a dendrite-suppressing material that combines high modulus and high ionic conductance has long been considered a major technological and materials science challenge. Here we demonstrate that these properties can be attained in a composite made from Kevlar-derived aramid nanofibres assembled in a layer-by-layer manner with poly(ethylene oxide). Importantly, the porosity of the membranes is smaller than the growth area of the dendrites so that aramid nanofibres eliminate ‘weak links’ where the dendrites pierce the membranes. The aramid nanofibre network suppresses poly(ethylene oxide) crystallization detrimental for ion transport, giving a composite that exhibits high modulus, ionic conductivity, flexibility, ion flux rates and thermal stability. Successful suppression of hard copper dendrites by the composite ion conductor at extreme discharge conditions is demonstrated, thereby providing a new approach for the materials engineering of solid ion conductors.

  12. Golgi-independent secretory trafficking through recycling endosomes in neuronal dendrites and spines

    PubMed Central

    Bowen, Aaron B; Bourke, Ashley M; Hiester, Brian G; Hanus, Cyril

    2017-01-01

    Neurons face the challenge of regulating the abundance, distribution and repertoire of integral membrane proteins within their immense, architecturally complex dendritic arbors. While the endoplasmic reticulum (ER) supports dendritic translation, most dendrites lack the Golgi apparatus (GA), an essential organelle for conventional secretory trafficking. Thus, whether secretory cargo is locally trafficked in dendrites through a non-canonical pathway remains a fundamental question. Here we define the dendritic trafficking itinerary for key synaptic molecules in rat cortical neurons. Following ER exit, the AMPA-type glutamate receptor GluA1 and neuroligin 1 undergo spatially restricted entry into the dendritic secretory pathway and accumulate in recycling endosomes (REs) located in dendrites and spines before reaching the plasma membrane. Surprisingly, GluA1 surface delivery occurred even when GA function was disrupted. Thus, in addition to their canonical role in protein recycling, REs also mediate forward secretory trafficking in neuronal dendrites and spines through a specialized GA-independent trafficking network. PMID:28875935

  13. The biological basis of treating jaw discrepancies: An interplay of mechanical forces and skeletal configuration.

    PubMed

    Karamesinis, Konstantinos; Basdra, Efthimia K

    2018-05-01

    Jaw discrepancies and malrelations affect a large proportion of the general population and their treatment is of utmost significance for individuals' health and quality of life. The aim of their therapy is the modification of aberrant jaw development mainly by targeting the growth potential of the mandibular condyle through its cartilage, and the architectural shape of alveolar bone through a suture type of structure, the periodontal ligament. This targeted treatment is achieved via external mechanical force application by using a wide variety of intraoral and extraoral appliances. Condylar cartilage and sutures exhibit a remarkable plasticity due to the mechano-responsiveness of the chondrocytes and the multipotent mesenchymal cells of the sutures. The tissues respond biologically and adapt to mechanical force application by a variety of signaling pathways and a final interplay between the proliferative activity and the differentiation status of the cells involved. These targeted therapeutic functional alterations within temporo-mandibular joint ultimately result in the enhancement or restriction of mandibular growth, while within the periodontal ligament lead to bone remodeling and change of its architectural structure. Depending on the form of the malrelation presented, the above treatment approaches, in conjunction or separately, lead to the total correction of jaw discrepancies and the achievement of facial harmony and function. Overall, the treatment of craniofacial and jaw anomalies can be seen as an interplay of mechanical forces and adaptations occurring within temporo-mandibular joint and alveolar bone. The aim of the present review is to present up-to-date knowledge on the mechano-biology behind jaw growth modification and alveolar bone remodeling. Furthermore, future molecular targeted therapeutic strategies are discussed aiming at the improvement of mechanically-driven chondrogenesis and osteogenesis. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Thermosolutal convection and macrosegregation in dendritic alloys

    NASA Technical Reports Server (NTRS)

    Poirier, David R.; Heinrich, J. C.

    1993-01-01

    A mathematical model of solidification, that simulates the formation of channel segregates or freckles, is presented. The model simulates the entire solidification process, starting with the initial melt to the solidified cast, and the resulting segregation is predicted. Emphasis is given to the initial transient, when the dendritic zone begins to develop and the conditions for the possible nucleation of channels are established. The mechanisms that lead to the creation and eventual growth or termination of channels are explained in detail and illustrated by several numerical examples. A finite element model is used for the simulations. It uses a single system of equations to deal with the all-liquid region, the dendritic region, and the all-solid region. The dendritic region is treated as an anisotropic porous medium. The algorithm uses the bilinear isoparametric element, with a penalty function approximation and a Petrov-Galerkin formulation. The major task was to develop the solidification model. In addition, other tasks that were performed in conjunction with the modeling of dendritic solidification are briefly described.

  15. Thermosolutal convection during dendritic solidification

    NASA Technical Reports Server (NTRS)

    Heinrich, J. C.; Nandapurkar, P.; Poirier, D. R.; Felicelli, S.

    1989-01-01

    This paper presents a mathematical model for directional solidification of a binary alloy including a dendritic region underlying an all-liquid region. It is assumed initially that there exists a nonconvecting state with planar isotherms and isoconcentrates solidifying at a constant velocity. The stability of this system has been analyzed and nonlinear calculations are performed that show the effect of convection in the solidification process when the system is unstable. Results of calculations for various cases defined by the initial temperature gradient at the dendrite tips and varying strength of the gravitational field are presented for systems involving lead-tin alloys. The results show that the systems are stable for a gravitational constant of 0.0001 g(0) and that convection can be suppressed by appropriate choice of the container's size for higher values of the gravitational constant. It is also concluded that for the lead-tin systems considered, convection in the mushy zone is not significant below the upper 20 percent of the dendritic zone, if al all.

  16. Isothermal dendritic growth: A low gravity experiment

    NASA Technical Reports Server (NTRS)

    Glicksman, M. E.; Hahn, R. C.; Lograsso, T. A.; Rubinstein, E. R.; Selleck, M. E.; Winsa, E.

    1988-01-01

    The Isothermal Dendritic Growth Experiment is an active crystal growth experiment designed to test dendritic growth theory at low undercoolings where convection prohibits such studies at 1 g. The experiment will be essentially autonomous, though limited in-flight interaction through a computer interface is planned. One of the key components of the apparatus will be a crystal growth chamber capable of achieving oriented single crystal dendritic growth. Recent work indicates that seeding the chamber with a crystal of the proper orientation will not, in and of itself, be sufficient to meet this requirement. Additional flight hardware and software required for the STS flight experiment are currently being developed at NASA Lewis Research Center and at Rensselaer Polytechnic Institute.

  17. Spatiotemporal movement variability in ALS: Speaking rate effects on tongue, lower lip, and jaw motor control

    PubMed Central

    Kuruvilla-Dugdale, Mili; Mefferd, Antje

    2017-01-01

    Purpose Although it is frequently presumed that bulbar muscle degeneration in Amyotrophic Lateral Sclerosis (ALS) is associated with progressive loss of speech motor control, empirical evidence is limited. Furthermore, because speaking rate slows with disease progression and rate manipulations are used to improve intelligibility in ALS, this study sought to (i) determine between and within-group differences in articulatory motor control as a result of speaking rate changes and (ii) identify the strength of association between articulatory motor control and speech impairment severity. Method Ten talkers with ALS and 11 healthy controls repeated the target sentence at habitual, fast, and slow rates. The spatiotemporal variability index (STI) was calculated to determine tongue, lower lip, and jaw movement variability. Results During habitual speech, talkers with mild-moderate dysarthria displayed significantly lower tongue and lip movement variability whereas those with severe dysarthria showed greater variability compared to controls. Within-group rate effects were significant only for talkers with ALS. Specifically, lip and tongue movement variability significantly increased during slow speech relative to habitual and fast speech. Finally, preliminary associations between speech impairment severity and movement variability were moderate to strong in talkers with ALS. Conclusion Between-group differences for habitual speech and within-group effects for slow speech replicated previous findings for lower lip and jaw movements. Preliminary findings of moderate to strong associations between speech impairment severity and STI suggest that articulatory variability may vary from pathologically low (possibly indicating articulatory compensation) to pathologically high variability (possibly indicating loss of control) with dysarthria progression in ALS. PMID:28528293

  18. A Retrospective Analysis of Radiographic Jaw Findings in Young Women; Prevalence and Predictors

    PubMed Central

    El Khateeb, Sara M.; Abu-Hammad, Osama; Fadel, Hani; Dar-Odeh, Najla

    2017-01-01

    Aims and Objectives: To determine the prevalence and types of jaw pathologic findings as detected in panoramic radiographs of a sample of young women attending a teaching hospital in Al Madinah Al Munawarah, Saudi Arabia, and to determine the most important factors that predict the occurrence of jaw pathologic findings. Materials and Methods: The electronic clinical files of a representative sample of female patients who attended the outpatient dental clinics were retrieved. Patients were aged 18 to 25 years. Types of pathologic radiographic jaw findings and their prevalence were determined through screening of panoramic radiographs. Data were analyzed using the statistical analysis software [SPSS version 21 (IBM Corp.)]. Multiple linear regression was used to explore the significance of some types of dental lesions as predictor variables for the occurrence of jaw pathologic findings. Results: A total of 190 patients (mean age, 22.4 ± 2.46 years) were included in the study. Periapical lesions, retained roots, and alveolar bone loss were detected in 53.6%, 24.8%, and 17.4% of the participants, respectively. Other odontogenic abnormalities such as supernumerary and impacted teeth (6.4% and 33.7%, respectively) were also detected. Patients' age was found to be a good predictor for alveolar bone loss and number of periapical lesions (P ≤ 0.05). Conclusions: A high prevalence of periapical lesions, retained roots, and alveolar bone loss was found among a sample of young female dental attendees, as shown by their panoramic radiographs. Further studies are needed to explore potential risk factors for such a noticeable trend of poor oral health, and the needed strategies to counteract this trend. PMID:28316945

  19. Hormonal Regulation of Dendritic Cell Differentiation in the Thymus.

    PubMed

    Shirshev, S V; Orlova, E G; Loginova, O A; Nekrasova, I V; Gorbunova, O L; Maslennikova, I L

    2018-06-19

    We studied the effect of hormones estriol, ghrelin, kisspeptin, and chorionic gonadotropin in concentrations corresponding to their content in the peripheral blood in each trimester of pregnancy on the expression of membrane molecules on myeloid and plasmacytoid dendritic cells of the thymus. It was found that thymic myeloid dendritic cells are sensitive to the action of estriol and kisspeptin. Estriol in a concentration of the first trimester of pregnancy reduces the number of myeloid dendritic cells expressing receptor for thymic stromal lymphopoietin (CD11c+TSLP-R + ) and inhibitory molecule B7-H3 (CD11c + CD276 + ). In contrast to estriol, kisspeptin regulates the processes of differentiation of thymic myeloid dendritic cells in concentrations typical of the second-third trimesters and reduced their total number (CD11c + ) and the number of cells expressing TSLP-R (CD11c + TSLP-R + ). Estriol and kisspeptin do not affect the total number of plasmacytoid dendritic cells (CD303 + ) and expression of TSLP-R and CD276 by these cells. Ghrelin and chorionic gonadotropin in the studied concentrations had no significant effect on the total number of thymic myeloid and plasmacytoid dendritic cells and on the expression of membrane molecules of TSLP-R and CD276.

  20. Effect of therapeutic jaw exercise on temporomandibular disorders in individuals with chronic whiplash-associated disorders.

    PubMed

    Klobas, Luciano; Axelsson, Susanna; Tegelberg, Ake

    2006-11-01

    The aim of this study was to investigate the effect of a specific therapeutic jaw exercise on the temporomandibular disorders of patients with chronic whiplash-associated disorders. Ninety-four consecutive patients with whiplash-related conditions were referred to and accepted for a treatment period at a center for functional evaluation and rehabilitation during 2001-2002. The patients followed a program of physical therapy, occupational therapy, and pain management. At the start of their stay, they were examined by a physician specialized in rehabilitation medicine and also by a dentist who performed a functional examination of the stomatognathic system. Of the 93 patients who accepted participation in the study, 55 were diagnosed with temporomandibular disorders and chronic whiplash-associated disorders in accordance with the inclusion criteria. They were randomized into a jaw exercise group (n = 25), who performed specific therapeutic jaw exercises, and a control group (n = 30). Both groups undertook the whiplash rehabilitation program at the center. There were no inter- or intra-group differences in symptoms and signs of temporomandibular disorders at baseline, nor at the 3-week and 6-month follow-ups, except for an increase of maximum active mouth-opening capacity in the control group. In conclusion, the therapeutic jaw exercises, in addition to the regular whiplash rehabilitation program, did not reduce symptoms and signs of temporomandibular disorders in patients with chronic whiplash-associated disorders.

  1. Conditional self-discrimination enhances dendritic spine number and dendritic length at prefrontal cortex and hippocampal neurons of rats.

    PubMed

    Penagos-Corzo, Julio C; Bonilla, Andrea; Rodríguez-Moreno, Antonio; Flores, Gonzalo; Negrete-Díaz, José V

    2015-11-01

    We studied conditional self-discrimination (CSD) in rats and compared the neuronal cytoarchitecture of untrained animals and rats that were trained in self-discrimination. For this purpose, we used thirty 10-week-old male rats were randomized into three groups: one control group and two conditioning groups: a comparison group (associative learning) and an experimental group (self-discrimination). At the end of the conditioning process, the experimental group managed to discriminate their own state of thirst. After the conditioning process, dendritic morphological changes in the pyramidal neurons of the prefrontal cortex and CA1 region of the dorsal hippocampus were evaluated using Golgi-Cox stain method and then analyzed by the Sholl method. Differences were found in total dendritic length and spine density. Animals trained in self-discrimination showed an increase in the dendritic length and the number of dendritic spines of neurons of the prefrontal cortex and CA1 region of the dorsal hippocampus. Our data suggest that conditional self-discrimination improves the connectivity of the prefrontal cortex and dorsal CA1, which has implications for memory and learning processes. © 2015 Wiley Periodicals, Inc.

  2. A fixed-jaw method to protect critical organs during intensity-modulated radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Jiayun; Chen, Xinyuan; Huang, Manni, E-mail: dai_jianrong@163.com

    2014-01-01

    Intensity-modulated radiotherapy (IMRT) plays an important role in cancer radiotherapy. For some patients being treated with IMRT, the extremely low tolerances of critical organs (such as lens, ovaries, and testicles) cannot be met during treatment planning. The aim of this article is to introduce a new planning method to overcome that problem. In current planning practice, jaw positions are automatically set to cover all target volumes by the planning system (e.g., Pinnacle{sup 3} system). Because of such settings, critical organs may be fully blocked by the multileaf collimator (MLC), but they still sit in the field that is shaped bymore » collimator jaws. These critical organs receive doses from the transmission and leakage of MLC leaves. We manually fixed jaw positions to block them to further reduce such doses. This method has been used for different treatment sites in our clinic, and it was thoroughly evaluated in patients with radical hysterectomy plus ovarian transposition after surgery. For each patient, 2 treatment plans were designed with the same optimization parameters: the original plan with automatically chosen jaw positions (called O-plan) and the plan with fixed-jaw positions (named F-plan). In the F-plan, the jaws were manually fixed to block the ovaries. For target coverage, the mean conformity index (CI) of the F-plan (1.28 ± 0.02) was remarkably lower than that of the O-plan (1.53 ± 0.09) (p < 0.05). The F-plan and the O-plan performed similarly in target dose homogeneity. Meanwhile, for the critical organ sparing, the mean dose of both ovaries were much lower in the F-plan than that in the O-plan (p < 0.05). The V{sub 20}, V{sub 30}, and V{sub 40} of bladder were also lower in the F-plan (93.57 ± 1.98, 73.99 ± 5.76, and 42.33 ± 3.7, respectively) than those in the O-plan (97.98 ± 1.11, 85.07 ± 4.04, and 49.71 ± 3.63, respectively) (p < 0.05). The maximum dose to the spinal cord planning organ at risk (OAR) volume (PRV) in the O

  3. Modulating STDP Balance Impacts the Dendritic Mosaic

    PubMed Central

    Iannella, Nicolangelo; Launey, Thomas

    2017-01-01

    The ability for cortical neurons to adapt their input/output characteristics and information processing capabilities ultimately relies on the interplay between synaptic plasticity, synapse location, and the nonlinear properties of the dendrite. Collectively, they shape both the strengths and spatial arrangements of convergent afferent inputs to neuronal dendrites. Recent experimental and theoretical studies support a clustered plasticity model, a view that synaptic plasticity promotes the formation of clusters or hotspots of synapses sharing similar properties. We have previously shown that spike timing-dependent plasticity (STDP) can lead to synaptic efficacies being arranged into spatially segregated clusters. This effectively partitions the dendritic tree into a tessellated imprint which we have called a dendritic mosaic. Here, using a biophysically detailed neuron model of a reconstructed layer 2/3 pyramidal cell and STDP learning, we investigated the impact of altered STDP balance on forming such a spatial organization. We show that cluster formation and extend depend on several factors, including the balance between potentiation and depression, the afferents' mean firing rate and crucially on the dendritic morphology. We find that STDP balance has an important role to play for this emergent mode of spatial organization since any imbalances lead to severe degradation- and in some case even destruction- of the mosaic. Our model suggests that, over a broad range of of STDP parameters, synaptic plasticity shapes the spatial arrangement of synapses, favoring the formation of clustered efficacy engrams. PMID:28649195

  4. Analysis of dendritic spine morphology in cultured CNS neurons.

    PubMed

    Srivastava, Deepak P; Woolfrey, Kevin M; Penzes, Peter

    2011-07-13

    Dendritic spines are the sites of the majority of excitatory connections within the brain, and form the post-synaptic compartment of synapses. These structures are rich in actin and have been shown to be highly dynamic. In response to classical Hebbian plasticity as well as neuromodulatory signals, dendritic spines can change shape and number, which is thought to be critical for the refinement of neural circuits and the processing and storage of information within the brain. Within dendritic spines, a complex network of proteins link extracellular signals with the actin cyctoskeleton allowing for control of dendritic spine morphology and number. Neuropathological studies have demonstrated that a number of disease states, ranging from schizophrenia to autism spectrum disorders, display abnormal dendritic spine morphology or numbers. Moreover, recent genetic studies have identified mutations in numerous genes that encode synaptic proteins, leading to suggestions that these proteins may contribute to aberrant spine plasticity that, in part, underlie the pathophysiology of these disorders. In order to study the potential role of these proteins in controlling dendritic spine morphologies/number, the use of cultured cortical neurons offers several advantages. Firstly, this system allows for high-resolution imaging of dendritic spines in fixed cells as well as time-lapse imaging of live cells. Secondly, this in vitro system allows for easy manipulation of protein function by expression of mutant proteins, knockdown by shRNA constructs, or pharmacological treatments. These techniques allow researchers to begin to dissect the role of disease-associated proteins and to predict how mutations of these proteins may function in vivo.

  5. Changes in Cranial Base Morphology in Class I and Class II Division 1 Malocclusions

    PubMed Central

    Agarwal, Anirudh; Pandey, Harsh; Bajaj, Kamal; Pandey, Lavesh

    2013-01-01

    Introduction: The cranial base plays a key role in craniofacial growth; it helps to integrate spatially and functionally different patterns of growth in various adjoining regions of the skull such as components of the brain, the nasal and oral cavity and the pharynx. The aim of this study was to evaluate the difference in cranial base flexure between skeletal and dental Class I and Class II division 1. Materials & Methods: Lateral cephalometric radiograph, of Class I and Class II with an average growth pattern were analyzed and compared. A total of 103 patients having class I (n=52) and class II (n=51) malocclusion, were taken from Department of Orthodontics, Rajasthan Dental College & Hospital, Jaipur. Cranial base angle (N-S-Ar) and ANB were measured on pre treatment lateral cephalograms. Results: In this study cranial base angle did not show statistically significant difference between the two groups studied. Conclusion: In the assessment of orthodontic problems involving anteroposterior malrelationships of the jaws, the problem is usually the result of size, form and position of the jaw. The present study failed to find any differences in cranial base angle between sagittal malocclusions. How to cite this article: Agarwal A, Pandey H, Bajaj K, Pandey L. Changes in Cranial Base Morphology in Class I and Class II Division 1 Malocclusion. J Int Oral Health 2013; 5(1):39-42. PMID:24155576

  6. Msx-1 is suppressed in bisphosphonate-exposed jaw bone analysis of bone turnover-related cell signalling after bisphosphonate treatment.

    PubMed

    Wehrhan, F; Hyckel, P; Amann, K; Ries, J; Stockmann, P; Schlegel, Ka; Neukam, Fw; Nkenke, E

    2011-05-01

    Bone-destructive disease treatments include bisphosphonates and antibodies against receptor activator for nuclear factor κB ligand (aRANKL). Osteonecrosis of the jaw (ONJ) is a side-effect. Aetiopathology models failed to explain their restriction to the jaw. The osteoproliferative transcription factor Msx-1 is expressed constitutively only in mature jaw bone. Msx-1 expression might be impaired in bisphosphonate-related ONJ. This study compared the expression of Msx-1, Bone Morphogenetic Protein (BMP)-2 and RANKL, in ONJ-affected and healthy jaw bone. An automated immunohistochemistry-based alkaline phosphatase-anti-alkaline phosphatase method was used on ONJ-affected and healthy jaw bone samples (n = 20 each): cell-number ratio (labelling index, Bonferroni adjustment). Real-time RT-PCR was performed to quantitatively compare Msx-1, BMP-2, RANKL and GAPDH mRNA levels. Labelling indices were significantly lower for Msx-1 (P < 0.03) and RANKL (P < 0.003) and significantly higher (P < 0.02) for BMP-2 in ONJ compared with healthy bone. Expression was sevenfold lower (P < 0.03) for Msx-1, 22-fold lower (P < 0.001) for RANKL and eightfold higher (P < 0.02) for BMP-2 in ONJ bone. Msx-1, RANKL suppression and BMP-2 induction were consistent with the bisphosphonate-associated osteopetrosis and impaired bone remodelling in BP- and aRANKL-induced ONJ. Msx-1 suppression suggested a possible explanation of the exclusivity of ONJ in jaw bone. Functional analyses of Msx-1- RANKL interaction during bone remodelling should be performed in the future. © 2011 John Wiley & Sons A/S.

  7. [The clinical and X-ray classification of osteonecrosis of the low jaw].

    PubMed

    Medvedev, Iu A; Basin, E M; Sokolina, I A

    2013-01-01

    To elaborate a clinical and X-ray classification of osteonecrosis of the low jaw in people with desomorphine or pervitin addiction. Ninety-two patients with drug addiction who had undergone orthopantomography, direct frontal X-ray of the skull, and multislice computed tomography, followed by multiplanar and three-dimensional imaging reconstruction were examined. One hundred thirty four X-ray films and 74 computed tomographic images were analyzed. The authors proposed a clinical and X-ray classification of osteonecrosis of the low jaw in people with desomorphine or pervitin addiction and elaborated recommendations for surgical interventions on the basis of the developed classification. The developed clinical and X-ray classification and recommendations for surgical interventions may be used to treat osteonecroses of various etiology.

  8. Bisphosphonate-associated Osteonecrosis of the jaws and endodontic treatment: two case reports.

    PubMed

    Goodell, Gary

    2006-01-01

    Bisphosphonates are commonly used in the management of bone diseases, such as osteoporosis and Paget's disease, and to prevent bone complications and treat malignant hypercalcemia in certain types of cancer. Although this class of drugs has clear evidence of medical efficacy, there are an, increasing number of reports of bisphosphonate-associated osteonecrosis of the jaws that have substantial implications for the patient and for the treating dentist. This article reviews proposed possible mechanisms of bisphosphonate-associated osteonecrosis of the jaws and describes two case reports where non-surgical and surgical root canal treatment were precipitating factors. Recommendations for prevention and treatment of the disease follow. Thorough history-taking and timely consultation with the patient's oral surgeon and oncologist are emphasized.

  9. Indirect Estimates of Jaw Muscle Tension in Children with Suspected Hypertonia, Children with Suspected Hypotonia, and Matched Controls

    ERIC Educational Resources Information Center

    Connaghan, Kathryn P.; Moore, Christopher A.

    2013-01-01

    Purpose: In this study, the authors compared indirect estimates of jaw-muscle tension in children with suspected muscle-tone abnormalities with age- and gender-matched controls. Method: Jaw movement and muscle activation were measured in children (ages 3 years, 11 months, to 10 years) with suspected muscle-tone abnormalities (Down syndrome or…

  10. Equivalence between a generalized dendritic network and a set of one-dimensional networks as a ground of linear dynamics.

    PubMed

    Koda, Shin-ichi

    2015-05-28

    It has been shown by some existing studies that some linear dynamical systems defined on a dendritic network are equivalent to those defined on a set of one-dimensional networks in special cases and this transformation to the simple picture, which we call linear chain (LC) decomposition, has a significant advantage in understanding properties of dendrimers. In this paper, we expand the class of LC decomposable system with some generalizations. In addition, we propose two general sufficient conditions for LC decomposability with a procedure to systematically realize the LC decomposition. Some examples of LC decomposable linear dynamical systems are also presented with their graphs. The generalization of the LC decomposition is implemented in the following three aspects: (i) the type of linear operators; (ii) the shape of dendritic networks on which linear operators are defined; and (iii) the type of symmetry operations representing the symmetry of the systems. In the generalization (iii), symmetry groups that represent the symmetry of dendritic systems are defined. The LC decomposition is realized by changing the basis of a linear operator defined on a dendritic network into bases of irreducible representations of the symmetry group. The achievement of this paper makes it easier to utilize the LC decomposition in various cases. This may lead to a further understanding of the relation between structure and functions of dendrimers in future studies.

  11. Raman Spectroscopic Analyses of Jaw Periosteal Cell Mineralization

    PubMed Central

    Brauchle, Eva; Carvajal Berrio, Daniel; Rieger, Melanie; Schenke-Layland, Katja; Reinert, Siegmar

    2017-01-01

    To achieve safer patient treatments, serum-free cell culture conditions have to be established for cell therapies. In previous studies, we demonstrated that serum-free culture favored the proliferation of MSCA-1+ osteoprogenitors derived from the jaw periosteum. In this study, the in vitro formation of bone-specific matrix by MSCA-1+ jaw periosteal cells (JPCs, 3 donors) was assessed and compared under serum-free and serum-containing media conditions using the marker-free Raman spectroscopy. Based on a standard fluorescence assay, JPCs from one patient were not able to mineralize under serum-containing culture conditions, whereas the other cells showed similar mineralization levels under both conditions. Raman spectra from mineralizing MSCA-1+ JPCs revealed higher levels of hydroxyapatite formation and higher mineral to matrix ratios under serum-free culture conditions. Higher carbonate to phosphate ratios and higher crystallinity in JPCs cultured under serum-containing conditions indicated immature bone formation. Due to reduced collagen production under serum-free conditions, we obtained significant differences in collagen maturity and proline to hydroxyproline ratios compared to serum-free conditions. We conclude that Raman spectroscopy is a useful tool for the assessment and noninvasive monitoring of in vitro mineralization of osteoprogenitor cells. Further studies should extend this knowledge and improve JPC mineralization by optimizing culture conditions. PMID:28232849

  12. Teriparatide and the treatment of bisphosphonate-related osteonecrosis of the jaw: a rat model.

    PubMed

    Ersan, N; van Ruijven, L J; Bronckers, A L J J; Olgaç, V; Ilgüy, D; Everts, V

    2014-01-01

    The objectives of this study were to establish a bisphosphonate-related osteonecrosis of the jaw (BRONJ) rat model and to analyse the effects of teriparatide (TP) on this model. Sprague-Dawley rats were divided into three groups: I-zoledronic acid (ZA, n = 10); II-ZA and teriparatide (ZA + TP, n = 10); III-control (n = 10). Osteonecrosis was induced by administering zoledronic acid to groups ZA and ZA + TP. A week after the injections, rats underwent extraction of the first left mandibular molar. Following a four week period, TP was administered to the ZA + TP group for 28 days. Upon killing, extraction sockets were examined clinically, radiologically and histopathologically. Clinical examination revealed necrotic bone exposure in none of the animals. MicroCT (µCT) examination showed that bone mineral density of the newly formed bone in the extraction socket was lower in the ZA group than in the ZA + TP group (p < 0.05). Histopathological examination revealed that only the ZA and ZA + TP groups developed osteonecrosis, and the osteonecrotic bone area in the ZA group was larger than that in the ZA + TP group (p < 0.05). Tartrate-resistant acid phosphatase (TRAcP) enzyme histochemistry revealed that the number of detached and large osteoclasts were higher in the ZA group than in other groups, whereas the number of apoptotic osteoclasts in both ZA and ZA + TP groups were higher than in the control group (p < 0.05). Our data indicate that bisphosphonate-related osteonecrosis of the jaw model used in the present study is an attractive model to investigate treatment modalities and that TP might be an effective treatment in BRONJ.

  13. CO2-switchable fluorescence of a dendritic polymer and its applications

    NASA Astrophysics Data System (ADS)

    Gao, Chunmei; Lü, Shaoyu; Liu, Mingzhu; Wu, Can; Xiong, Yun

    2015-12-01

    The synthesis and properties of CO2 responsive and fluorescent dendritic polymers, poly(amido amine)/Pluronic F127 (PAMAM/F127), are reported in this paper. The morphologies and sizes of PAMAM/F127 dendritic polymers were investigated by dynamic light scattering (DLS) and transmission electron microscopy (TEM). PAMAM/F127 dendritic polymers showed unimolecular micelle morphologies at low concentrations, and changed to multimolecular micelles at higher concentrations. Additionally, fluorescence spectra and confocal laser scanning microscopy images showed that PAMAM/F127 dendritic polymers exhibited a fluorescent enhancement response to the presence of CO2. Apart from that, the release behavior of PAMAM/F127 gels under simulated body fluids was investigated by choosing curcumin as the hydrophobic drug. The results indicated that PAMAM/F127 dendritic polymers can be used to improve the solubility of curcumin, and the drug released faster in the presence of CO2. Such CO2 responsive fluorescent dendritic polymers are potentially applicable in cellular imaging or drug controlled release.The synthesis and properties of CO2 responsive and fluorescent dendritic polymers, poly(amido amine)/Pluronic F127 (PAMAM/F127), are reported in this paper. The morphologies and sizes of PAMAM/F127 dendritic polymers were investigated by dynamic light scattering (DLS) and transmission electron microscopy (TEM). PAMAM/F127 dendritic polymers showed unimolecular micelle morphologies at low concentrations, and changed to multimolecular micelles at higher concentrations. Additionally, fluorescence spectra and confocal laser scanning microscopy images showed that PAMAM/F127 dendritic polymers exhibited a fluorescent enhancement response to the presence of CO2. Apart from that, the release behavior of PAMAM/F127 gels under simulated body fluids was investigated by choosing curcumin as the hydrophobic drug. The results indicated that PAMAM/F127 dendritic polymers can be used to improve the

  14. Antitumour activity mediated by CD4+ cytotoxic T lymphocytes against MHC class II-negative mouse hepatocellular carcinoma induced by dendritic cell vaccine and interleukin-12.

    PubMed

    Homma, Sadamu; Komita, Hideo; Sagawa, Yukiko; Ohno, Tsuneya; Toda, Gotaro

    2005-08-01

    When BALA/c mice with BNL hepatocellular carcinoma (HCC) were treated with dendritic cells fused with BNL cells (DC/BNL) and recombinant murine interleukin (IL)-12, tumour development was significantly suppressed, whereas treatment with either DC/BNL or IL-12 alone did not show a tumour-suppressive effect. Antitumour activity induced by DC/BNL + IL-12 was abrogated by depletion of CD4+ T cells, but not by depletion of CD8+ T cells or natural killer cells. Splenic CD4+ T cells and CD8+ T cells from DC/BNL-treated mice showed cytotoxic activity against BNL cells after 3 days of incubation with DC/BNL, although BNL cells do not express major histocompatibility complex (MHC) class II molecules even after treatment with interferon (INF)-gamma. Furthermore, CD4+ T cells killed syngeneic-irrelevant CT26 cells and even allogeneic Hepa1-6 cells. This cytotoxicity was blocked by concanamycin A, but not by an anti-Fas ligand (FasL) monoclonal antibody, indicating that cytotoxic activity was mediated by perforin. Immunofluorescence microscopy demonstrated that abundant CD4+ T cells and MHC class II-positive macrophages, but not CD8(+) T cells, had infiltrated tumour tissue in mice treated with DC/BNL + IL-12. Flow cytometric analysis of tumour-infiltrating cells in mice treated with DC/BNL + IL-12 showed increases in CD4+ T cells and MHC class II+ CD11b+ cells but not in CD8+ T cells or MHC class I+ CD11b+ cells. Our results suggest that, in BNL-bearing mice treated with DC/BNL + IL-12, tumour macrophages activated by INF-gamma produced by IL-12-stimulated T cells might present BNL tumour antigens and activate DC/BNL-primed CD4+ cytotoxic T lymphocytes (CTLs) in a MHC class II-dependent manner, leading to perforin-mediated bystander killing of neighbouring MHC class II-negative tumour cells.

  15. Antitumour activity mediated by CD4+ cytotoxic T lymphocytes against MHC class II-negative mouse hepatocellular carcinoma induced by dendritic cell vaccine and interleukin-12

    PubMed Central

    Homma, Sadamu; Komita, Hideo; Sagawa, Yukiko; Ohno, Tsuneya; Toda, Gotaro

    2005-01-01

    When BALA/c mice with BNL hepatocellular carcinoma (HCC) were treated with dendritic cells fused with BNL cells (DC/BNL) and recombinant murine interleukin (IL)-12, tumour development was significantly suppressed, whereas treatment with either DC/BNL or IL-12 alone did not show a tumour-suppressive effect. Antitumour activity induced by DC/BNL + IL-12 was abrogated by depletion of CD4+ T cells, but not by depletion of CD8+ T cells or natural killer cells. Splenic CD4+ T cells and CD8+ T cells from DC/BNL-treated mice showed cytotoxic activity against BNL cells after 3 days of incubation with DC/BNL, although BNL cells do not express major histocompatibility complex (MHC) class II molecules even after treatment with interferon (INF)-γ. Furthermore, CD4+ T cells killed syngeneic-irrelevant CT26 cells and even allogeneic Hepa1-6 cells. This cytotoxicity was blocked by concanamycin A, but not by an anti-Fas ligand (FasL) monoclonal antibody, indicating that cytotoxic activity was mediated by perforin. Immunofluorescence microscopy demonstrated that abundant CD4+ T cells and MHC class II-positive macrophages, but not CD8+ T cells, had infiltrated tumour tissue in mice treated with DC/BNL + IL-12. Flow cytometric analysis of tumour-infiltrating cells in mice treated with DC/BNL + IL-12 showed increases in CD4+ T cells and MHC class II+ CD11b+ cells but not in CD8+ T cells or MHC class I+ CD11b+ cells. Our results suggest that, in BNL-bearing mice treated with DC/BNL + IL-12, tumour macrophages activated by INF-γ produced by IL-12-stimulated T cells might present BNL tumour antigens and activate DC/BNL-primed CD4+ cytotoxic T lymphocytes (CTLs) in a MHC class II-dependent manner, leading to perforin-mediated bystander killing of neighbouring MHC class II-negative tumour cells. PMID:16011514

  16. Pathological and clinical features of primary osseous tumours of the jaw.

    PubMed

    Sarkar, Reena

    2014-11-01

    Primary bone tumors of the jaw are rare. The neoplastic cells in these tumors are the osteoblasts and osteoclasts. The gnathic bone tumors have also been referred to as borderline. The clinicopathologic approach towards these bony lesions have been reviewed.

  17. A description on pharyngeal jaw apparatus and diets of halfbeak fish Zenarchopterus buffonis (Valenciennes 1847) in Malaysian waters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abidin, Diana Atiqah Zainal, E-mail: diana.atiqah@gmail.com; Hashim, Marina; Ghaffar, Mazlan Abd., E-mail: magfish05@yahoo.com

    2015-09-25

    Information on the feeding mechanism and diet of halfbeak fish species in harsh estuarine environment ecosystem is still lacking. The present study investigates the fine structure of pharyngeal jaw apparatus and diets of halfbeak fish Zenarchopterus buffonis. A total of 84 halfbeak fish samples have been collected from the coastal water of Peninsular Malaysia using fishing rod. Scanning electron microscopy was used to examine the micrographs of fine microstructure of the pharyngeal teeth. The fundamental anatomy of pharyngeal jaw apparatus displayed that the upper pharyngeal jaw (third pharyngobranchials) displays larger size of hook-like or tricuspid teeth which was analogous tomore » tricuspid morphology. The lower pharyngeal jaw (fifth ceratobranchial) bears mainly conical teeth and appears triangular shape with two, short projections. The estimated TROPH values (1 − 3.2±0.55) denoted that halfbeak fish were omnivores in nature. The findings of this study was found to be useful as a baseline information for a better representation of the trophic flows associated with large medium and small surface water fishes.« less

  18. A description on pharyngeal jaw apparatus and diets of halfbeak fish Zenarchopterus buffonis (Valenciennes 1847) in Malaysian waters

    NASA Astrophysics Data System (ADS)

    Abidin, Diana Atiqah Zainal; Hashim, Marina; Das, Simon K.; Ghaffar, Mazlan Abd.

    2015-09-01

    Information on the feeding mechanism and diet of halfbeak fish species in harsh estuarine environment ecosystem is still lacking. The present study investigates the fine structure of pharyngeal jaw apparatus and diets of halfbeak fish Zenarchopterus buffonis. A total of 84 halfbeak fish samples have been collected from the coastal water of Peninsular Malaysia using fishing rod. Scanning electron microscopy was used to examine the micrographs of fine microstructure of the pharyngeal teeth. The fundamental anatomy of pharyngeal jaw apparatus displayed that the upper pharyngeal jaw (third pharyngobranchials) displays larger size of hook-like or tricuspid teeth which was analogous to tricuspid morphology. The lower pharyngeal jaw (fifth ceratobranchial) bears mainly conical teeth and appears triangular shape with two, short projections. The estimated TROPH values (1 - 3.2±0.55) denoted that halfbeak fish were omnivores in nature. The findings of this study was found to be useful as a baseline information for a better representation of the trophic flows associated with large medium and small surface water fishes.

  19. An unusual case of osteonecrosis of the jaw associated with dengue fever and periodontitis.

    PubMed

    Indurkar, M S; Sethi, R

    2016-03-01

    Osteonecrosis is a disorder rarely occurring in the jaw. Dengue fever is a common mosquito-borne disease prevalent in many countries including India. The following report presents an interesting case of maxillary osteonecrosis in a middle aged male with a history of dengue infection. We also diagnosed symptoms of chronic periodontitis, which may have potentiated the necrosis. This case report will describe a novel clinical presentation and management of osteonecrosis of the jaw (ONJ) of unknown origin and a possible pathogenesis explaining the association of ONJ with dengue fever and periodontitis. © 2015 Australian Dental Association.

  20. 12. CLOSEUP OF THE CURRENT TRASH RAKELIFTING MECHANISM (CALLED 'JAWS' ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. CLOSE-UP OF THE CURRENT TRASH RAKE-LIFTING MECHANISM (CALLED 'JAWS' BY THE PRESENT OPERATORS), LOOKING WEST. THIS EQUIPMENT WAS REMOVED IN AUTUMN OF 1996. - Washington Water Power Company Post Falls Power Plant, Middle Channel Powerhouse & Dam, West of intersection of Spokane & Fourth Streets, Post Falls, Kootenai County, ID

  1. Rhythmic chewing with oral jaws in teleost fishes: a comparison with amniotes.

    PubMed

    Gintof, Chris; Konow, Nicolai; Ross, Callum F; Sanford, Christopher P J

    2010-06-01

    Intra-oral prey processing (chewing) using the mandibular jaws occurs more extensively among teleost fishes than previously documented. The lack of muscle spindles, gamma-motoneurons and periodontal afferents in fishes makes them useful for testing hypotheses regarding the relationship between these sensorimotor components and rhythmic chewing in vertebrates. Electromyography (EMG) data from the adductor mandibulae (AM) were used to quantify variation in chew cycle duration in the bowfin Amia, three osteoglossomorphs (bony-tongues), four salmonids and one esocid (pike). All species chewed prey using their oral jaw in repetitive trains of between 3 and 30 consecutive chews, a pattern that resembles cyclic chewing in amniote vertebrates. Variance in rhythmicity was compared within and between lineages using coefficients of variation and Levene's test for homogeneity of variance. These comparisons revealed that some teleosts exhibit degrees of rhythmicity that are comparable to mammalian mastication and higher than in lepidosaurs. Moreover, chew cycle durations in fishes, as in mammals, scale positively with mandible length. Chewing among basal teleosts may be rhythmic because it is stereotyped and inflexible, the result of patterned interactions between sensory feedback and a central pattern generator, because the lack of a fleshy tongue renders jaw-tongue coordination unnecessary and/or because stereotyped opening and closing movements are important for controlling fluid flow in the oral cavity.

  2. Effects of dendritic load on the firing frequency of oscillating neurons.

    PubMed

    Schwemmer, Michael A; Lewis, Timothy J

    2011-03-01

    We study the effects of passive dendritic properties on the dynamics of neuronal oscillators. We find that the addition of a passive dendrite can sometimes have counterintuitive effects on firing frequency. Specifically, the addition of a hyperpolarized passive dendritic load can either increase, decrease, or have negligible effects on firing frequency. We use the theory of weak coupling to derive phase equations for "ball-and-stick" model neurons and two-compartment model neurons. We then develop a framework for understanding how the addition of passive dendrites modulates the frequency of neuronal oscillators. We show that the average value of the neuronal oscillator's phase response curves measures the sensitivity of the neuron's firing rate to the dendritic load, including whether the addition of the dendrite causes an increase or decrease in firing frequency. We interpret this finding in terms of to the slope of the neuronal oscillator's frequency-applied current curve. We also show that equivalent results exist for constant and noisy point-source input to the dendrite. We note that the results are not specific to neurons but are applicable to any oscillator subject to a passive load.

  3. Jaw Intraosseous Lesions Biopsied Extracted From 1998 to 2010 in an Iranian Population

    PubMed Central

    Jamshidi, Shokoofeh; Shojaei, Setareh; Roshanaei, Ghodratollah; Modabbernia, Shirin; Bakhtiary, Esmaeel

    2015-01-01

    Background: Jaw bones might be potential locations for different lesions. Differences in prevalence and the type of lesions can help in designing and programming prevention procedures in health care centers. Objectives: The aim of the present study was to evaluate the prevalence of intraosseous lesions in the jaws of patients referred to diagnostic and therapeutic centers in Hamadan during 1990-2010. Patients and Methods: This cross-sectional descriptive analytical study was carried out in Hamadan in 2011. Data sheets of the subjects were used to collect all the data of patients with intraosseous lesions, including their age, gender, location of the lesion, the radiographic view of lesions, and their type and histopathological diagnoses. Data were analyzed with SPSS, using means and frequencies. Results: A total of 284 intraosseous lesions were reported in our study. The mean age of the subjects was 28.8 ± 15.2 years. The lesions were distributed in males and females almost similarly. The most prevalent lesions were cystic lesions (54.58%), manifestations of systemic conditions in jaw bones (18.3%), benign tumors (15.5%), malignant lesions (6.7%), and inflammatory lesions (4.92%), in a descending order. The most common cystic lesion was radicular cyst; the most common manifestation of systemic conditions in jaw bones was central giant cell granuloma; the most common benign tumor was ameloblastoma; the most common malignant lesion was osteosarcoma; and the most common inflammatory lesion was periapical granuloma. Conclusions: Our data provided information on the prevalence and types of intraosseous lesions among an Iranian population. This study provided baseline information to help in designing and programming procedures in health care centers in every community so that preventive therapeutic measures can be adopted. PMID:26328061

  4. Dynamics of action potential backpropagation in basal dendrites of prefrontal cortical pyramidal neurons.

    PubMed

    Zhou, Wen-Liang; Yan, Ping; Wuskell, Joseph P; Loew, Leslie M; Antic, Srdjan D

    2008-02-01

    Basal dendrites of neocortical pyramidal neurons are relatively short and directly attached to the cell body. This allows electrical signals arising in basal dendrites to strongly influence the neuronal output. Likewise, somatic action potentials (APs) should readily propagate back into the basilar dendritic tree to influence synaptic plasticity. Two recent studies, however, determined that sodium APs are severely attenuated in basal dendrites of cortical pyramidal cells, so that they completely fail in distal dendritic segments. Here we used the latest improvements in the voltage-sensitive dye imaging technique (Zhou et al., 2007) to study AP backpropagation in basal dendrites of layer 5 pyramidal neurons of the rat prefrontal cortex. With a signal-to-noise ratio of > 15 and minimal temporal averaging (only four sweeps) we were able to sample AP waveforms from the very last segments of individual dendritic branches (dendritic tips). We found that in short- (< 150 microm) and medium (150-200 microm in length)-range basal dendrites APs backpropagated with modest changes in AP half-width or AP rise-time. The lack of substantial changes in AP shape and dynamics of rise is inconsistent with the AP-failure model. The lack of substantial amplitude boosting of the third AP in the high-frequency burst also suggests that in short- and medium-range basal dendrites backpropagating APs were not severely attenuated. Our results show that the AP-failure concept does not apply in all basal dendrites of the rat prefrontal cortex. The majority of synaptic contacts in the basilar dendritic tree actually received significant AP-associated electrical and calcium transients.

  5. Combined orthodontic and surgical correction of adult skeletal class II with hyperdivergent jaws.

    PubMed

    Abraham, Jiku; Bagchi, Paulami; Gupta, Swati; Gupta, Hemant; Autar, Ram

    2012-01-01

    A case of severe Class II skeletal malocclusion with anterior open bite having vertical growth pattern and matching soft tissue profile is presented. Considering age of the patient and the severity of the malocclusion, it was decided to combine orthodontic treatment with surgery. A 0.022 Roth Pre-adjusted Edgewise Appliance was chosen for the orthodontic correction and Le-Fort 1 differential vertical impaction of maxilla with mandibular autorotation and augmentation genioplasty was considered as the treatment plan. The main aim was to reduce the gummy smile and correct the class II profile.

  6. Dendritic Properties Control Energy Efficiency of Action Potentials in Cortical Pyramidal Cells.

    PubMed

    Yi, Guosheng; Wang, Jiang; Wei, Xile; Deng, Bin

    2017-01-01

    Neural computation is performed by transforming input signals into sequences of action potentials (APs), which is metabolically expensive and limited by the energy available to the brain. The metabolic efficiency of single AP has important consequences for the computational power of the cell, which is determined by its biophysical properties and morphologies. Here we adopt biophysically-based two-compartment models to investigate how dendrites affect energy efficiency of APs in cortical pyramidal neurons. We measure the Na + entry during the spike and examine how it is efficiently used for generating AP depolarization. We show that increasing the proportion of dendritic area or coupling conductance between two chambers decreases Na + entry efficiency of somatic AP. Activating inward Ca 2+ current in dendrites results in dendritic spike, which increases AP efficiency. Activating Ca 2+ -activated outward K + current in dendrites, however, decreases Na + entry efficiency. We demonstrate that the active and passive dendrites take effects by altering the overlap between Na + influx and internal current flowing from soma to dendrite. We explain a fundamental link between dendritic properties and AP efficiency, which is essential to interpret how neural computation consumes metabolic energy and how biophysics and morphologies contribute to such consumption.

  7. The jaw is a second-class lever in Pedetes capensis (Rodentia: Pedetidae)

    PubMed Central

    2017-01-01

    The mammalian jaw is often modelled as a third-class lever for the purposes of biomechanical analyses, owing to the position of the resultant muscle force between the jaw joint and the teeth. However, it has been proposed that in some rodents the jaws operate as a second-class lever during distal molar bites, owing to the rostral position of the masticatory musculature. In particular, the infraorbital portion of the zygomatico-mandibularis (IOZM) has been suggested to be of major importance in converting the masticatory system from a third-class to a second-class lever. The presence of the IOZM is diagnostic of the hystricomorph rodents, and is particularly well-developed in Pedetes capensis, the South African springhare. In this study, finite element analysis (FEA) was used to assess the lever mechanics of the springhare masticatory system, and to determine the function of the IOZM. An FE model of the skull of P. capensis was constructed and loaded with all masticatory muscles, and then solved for biting at each tooth in turn. Further load cases were created in which each masticatory muscle was removed in turn. The analyses showed that the mechanical advantage of the springhare jaws was above one at all molar bites and very close to one during the premolar bite. Removing the IOZM or masseter caused a drop in mechanical advantage at all bites, but affected strain patterns and cranial deformation very little. Removing the ZM had only a small effect on mechanical advantage, but produced a substantial reduction in strain and deformation across the skull. It was concluded that the masticatory system of P. capensis acts as a second class lever during bites along almost the entire cheek tooth row. The IOZM is clearly a major contributor to this effect, but the masseter also has a part to play. The benefit of the IOZM is that it adds force without substantially contributing to strain or deformation of the skull. This may help explain why the hystricomorphous morphology

  8. Suppression of zinc dendrites in zinc electrode power cells

    NASA Technical Reports Server (NTRS)

    Damjanovic, A.; Diggle, J. W.

    1970-01-01

    Addition of various tetraalkyl quarternary ammonium salts, to alkaline zincate electrolyte of cell, prevents formation of zinc dendrites during charging of zinc electrode. Electrode capacity is not impaired and elimination of dendrites prolongs cell life.

  9. A cephalometric analysis of Class II dentate subjects to establish a formula to determine the occlusal plane in Class II edentate subjects: A neo adjunct.

    PubMed

    Sinha, Nikita; Reddy, K Mahendranadh; Gupta, Nidhi; Shastry, Y M

    2017-01-01

    Occlusal plane (OP) differs considerably in participants with skeletal Class I and Class II participants. In this study, cephalometrics has been used to help in the determination of orientation of the OP utilizing the nonresorbable bony anatomic landmarks in skeletal Class II participants and an attempt has been made to predict and examine the OP in individuals with skeletal class II jaw relationship. One hundred dentulous participants with skeletal Class II malocclusion who came to the hospital for correcting their jaw relationship participated in the study. Their right lateral cephalogram was taken using standardized procedures, and all the tracings were manually done by a single trained examiner. The cephalograms which were taken for the diagnostic purpose were utilized for the study, and the patient was not exposed to any unnecessary radiation. The numerical values obtained from the cephalograms were subjected to statistical analysis. Pearson's correlation of <0.001 was considered significant, and a linear regression analysis was performed to determine a formula which would help in the determination of orientation of the OP in Class II edentulous participants. Pearson's correlation coefficient and linear regression analysis were performed, and a high correlation was found between A2 and (A2 + B2)/(B2 + C2) with " r " value of 0.5. A medium correlation was found between D2 and (D2 + E2)/(E2 + F2) with " r " value of 0.42. The formula obtained for posterior reference frame through linear regression equation was y = 0.018* × +0.459 and the formula obtained for anterior reference frame was y1 = 0.011* × 1 + 0.497. It was hypothesized that by substituting these formulae in the cephalogram obtained from the Class II edentate individual, the OP can be obtained and verified. It was concluded that cephalometrics can be useful in examining the orientation of OP in skeletal Class II participants.

  10. Jaws for a spiral-tooth whorl: CT images reveal novel adaptation and phylogeny in fossil Helicoprion

    PubMed Central

    Tapanila, Leif; Pruitt, Jesse; Pradel, Alan; Wilga, Cheryl D.; Ramsay, Jason B.; Schlader, Robert; Didier, Dominique A.

    2013-01-01

    New CT scans of the spiral-tooth fossil, Helicoprion, resolve a longstanding mystery concerning the form and phylogeny of this ancient cartilaginous fish. We present the first three-dimensional images that show the tooth whorl occupying the entire mandibular arch, and which is supported along the midline of the lower jaw. Several characters of the upper jaw show that it articulated with the neurocranium in two places and that the hyomandibula was not part of the jaw suspension. These features identify Helicoprion as a member of the stem holocephalan group Euchondrocephali. Our reconstruction illustrates novel adaptations, such as lateral cartilage to buttress the tooth whorl, which accommodated the unusual trait of continuous addition and retention of teeth in a predatory chondrichthyan. Helicoprion exemplifies the climax of stem holocephalan diversification and body size in Late Palaeozoic seas, a role dominated today by sharks and rays. PMID:23445952

  11. Dendritic Growth of Hard-Sphere Crystals. Experiment 34

    NASA Technical Reports Server (NTRS)

    Russel, W. B.; Chaikin, P. M.; Zhu, Ji-Xiang; Meyer, W. V.; Rogers, R.

    1998-01-01

    Recent observations of the disorder-order transition for colloidal hard spheres under microgravity revealed dendritic crystallites roughly 1-2 mm in size for samples in the coexistence region of the phase diagram. Order-of-magnitude estimates rationalize the absence of large or dendritic crystals under normal gravity and their stability to annealing in microgravity. A linear stability analysis of the Ackerson and Schaetzel model for crystallization of hard spheres establishes the domain of instability for diffusion-limited growth at small supersaturations. The relationship between hard-sphere and molecular crystal growth is established and exploited to relate the predicted linear instability to the well-developed dendrites observed.

  12. Outer membrane protein a of Salmonella enterica serovar Typhimurium activates dendritic cells and enhances Th1 polarization

    PubMed Central

    2010-01-01

    Background Typhoid, which is caused by Salmonella enterica serovar Typhimurium, remains a major health concern worldwide. Multidrug-resistant strains of Salmonella have emerged which exhibit increased survivability and virulence, thus leading to increased morbidity. However, little is known about the protective immune response against this microorganism. The outer membrane protein (Omp)A of bacteria plays an important role in pathogenesis. Results We purified OmpA from S. enterica serovar Typhimurium (OmpA-sal) and characterized the role of OmpA-sal in promoting adaptive and innate immune responses. OmpA-sal functionally activated bone marrow-derived dendritic cells by augmenting expression of CD80, CD86, and major histocompatibility complex classes I and II. Interestingly, OmpA-sal induced production of interferon-γ from T cells in mixed lymphocyte reactions, thus indicating Th1-polarizing capacity. The expression of surface markers and cytokine production in dendritic cells was mediated by the TLR4 signaling pathway in a TLR4 Knock-out system. Conclusions Our findings suggest that OmpA-sal modulates the adaptive immune responses to S. enterica serovar Typhimurium by activating dendritic cells and driving Th1 polarization, which are important properties to consider in the development of effective S. enterica serovar Typhimurium vaccines and immunotherapy adjuvant. PMID:20950448

  13. Cdk5 Regulates Activity-Dependent Gene Expression and Dendrite Development.

    PubMed

    Liang, Zhuoyi; Ye, Tao; Zhou, Xiaopu; Lai, Kwok-On; Fu, Amy K Y; Ip, Nancy Y

    2015-11-11

    The proper growth and arborization of dendrites in response to sensory experience are essential for neural connectivity and information processing in the brain. Although neuronal activity is important for sculpting dendrite morphology, the underlying molecular mechanisms are not well understood. Here, we report that cyclin-dependent kinase 5 (Cdk5)-mediated transcriptional regulation is a key mechanism that controls activity-dependent dendrite development in cultured rat neurons. During membrane depolarization, Cdk5 accumulates in the nucleus to regulate the expression of a subset of genes, including that of the neurotrophin brain-derived neurotrophic factor, for subsequent dendritic growth. Furthermore, Cdk5 function is mediated through the phosphorylation of methyl-CpG-binding protein 2, a key transcriptional repressor that is mutated in the mental disorder Rett syndrome. These findings collectively suggest that the nuclear import of Cdk5 is crucial for activity-dependent dendrite development by regulating neuronal gene transcription during neural development. Neural activity directs dendrite development through the regulation of gene transcription. However, how molecular signals link extracellular stimuli to the transcriptional program in the nucleus remains unclear. Here, we demonstrate that neuronal activity stimulates the translocation of the kinase Cdk5 from the cytoplasmic compartment into the nucleus; furthermore, the nuclear localization of Cdk5 is required for dendrite development in cultured neurons. Genome-wide transcriptome analysis shows that Cdk5 deficiency specifically disrupts activity-dependent gene transcription of bdnf. The action of Cdk5 is mediated through the modulation of the transcriptional repressor methyl-CpG-binding protein 2. Therefore, this study elucidates the role of nuclear Cdk5 in the regulation of activity-dependent gene transcription and dendritic growth. Copyright © 2015 the authors 0270-6474/15/3515127-08$15.00/0.

  14. Concurrence of lower jaw skeletal anomalies in triploid Atlantic salmon (Salmo salar L.) and the effect on growth in freshwater.

    PubMed

    Amoroso, G; Cobcroft, J M; Adams, M B; Ventura, T; Carter, C G

    2016-12-01

    Triploid Atlantic salmon populations are associated with higher prevalence of lower jaw skeletal anomalies affecting fish performance, welfare and value deleteriously. Anomalous lower jaw can be curved downward (LJD), shortened (SJ) or misaligned (MA). Two separate groups of triploid Atlantic salmon (~12 g) with either normal lower jaw (NOR) or SJ were visually assessed four times over three months for presence and concurrence of jaw anomalies (with severity classified) and opercular shortening to understand the relatedness of these anomalous developmental processes. The prevalence of jaw anomalies increased in both groups over time (NOR group - SJ, LJD and MA combined 0-24.5%; SJ group - LJD and MA combined 17-31%). SJ and LJD occurred both independently and concurrently whereas MA exclusively concurred with them. All three anomalies could be concurrent. Severity of both LJD and SJ increased in the SJ group only. Opercular shortening recovery was observed in both groups but at a slower rate in the SJ group. The SJ group specific growth rate (SGR) was significantly (P < 0.05) lower than the NOR group. This study demonstrated the concurrence of SJ, LJD and MA and showed possible deleterious consequences deriving from the conditions. © 2016 John Wiley & Sons Ltd.

  15. Soft-template synthesis of single-crystalline CdS dendrites.

    PubMed

    Niu, Haixia; Yang, Qing; Tang, Kaibin; Xie, Yi; Zhu, Yongchun

    2006-01-01

    The single-crystalline CdS dendrites have been fabricated from the reaction of CdCl2 and thiourea at 180 degrees C, in which glycine was employed as a soft template. The obtained products were explored by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and selected area electronic diffraction. The optical properties of CdS dendrites have been investigated by ultraviolet and visible light (UV-vis) and photoluminescence techniques. The investigations indicated that the dendrites were grown due to the anisotropic properties enhanced by the use of Glycine in the route.

  16. Kinematics and Mechanics analysis of trap-jaw ant Odontomachus monticola

    NASA Astrophysics Data System (ADS)

    Hao, Wenteng; Yao, Guang; Zhang, Xiangyu; Zhang, Deyuan

    2018-03-01

    Trap-jaw ants of the genus Odontomachus exhibit spectacularly rapid predatory and fugitive strikes. In order to reveal the extraordinary impact resistance of the apical teeth material, we analyzed the kinematics and mechanics of the closing mandibles. Odontomachus monticola is an Odontomachus species and extensive in China. We video-recorded jaw-strikes to measure the closing velocity and acceleration. The experimental results showed that O. monticola’s mandibles closed at a highest velocity of 35.42 m/s and a highest acceleration of 750,000 m/s2 within an average duration of 0.16 ms. In addition, in order to measure the strike force, we developed an extraordinary measuring method with poly (vinylidene fluoride) (PVDF) piezoelectric film. First, the dynamic calibration of the PVDF piezoelectric film was conducted, then the calibrated piezoelectric film was struck by O. monticola. Finally, the mandible strike force was calculated according to the calibration result and the output signal. The measurements results demonstrated that the strike force ranges from 102.2 N to 235.2 N, which is impressive contrast with O. monticola’s body weight.

  17. Thermal noise due to surface-charge effects within the Debye layer of endogenous structures in dendrites.

    PubMed

    Poznanski, Roman R

    2010-02-01

    An assumption commonly used in cable theory is revised by taking into account electrical amplification due to intracellular capacitive effects in passive dendritic cables. A generalized cable equation for a cylindrical volume representation of a dendritic segment is derived from Maxwell's equations under assumptions: (i) the electric-field polarization is restricted longitudinally along the cable length; (ii) extracellular isopotentiality; (iii) quasielectrostatic conditions; and (iv) homogeneous medium with constant conductivity and permittivity. The generalized cable equation is identical to Barenblatt's equation arising in the theory of infiltration in fissured strata with a known analytical solution expressed in terms of a definite integral involving a modified Bessel function and the solution to a linear one-dimensional classical cable equation. Its solution is used to determine the impact of thermal noise on voltage attenuation with distance at any particular time. A regular perturbation expansion for the membrane potential about the linear one-dimensional classical cable equation solution is derived in terms of a Green's function in order to describe the dynamics of free charge within the Debye layer of endogenous structures in passive dendritic cables. The asymptotic value of the first perturbative term is explicitly evaluated for small values of time to predict how the slowly fluctuating (in submillisecond range) electric field attributed to intracellular capacitive effects alters the amplitude of the membrane potential. It was found that capacitive effects are almost negligible for cables with electrotonic lengths L>0.5 , contributes up to 10% of the signal for cables with electrotonic lengths in the range between 0.25dendritic cables with both ends sealed are prone to significant neurobiological thermal noise due to

  18. Dendritic Properties Control Energy Efficiency of Action Potentials in Cortical Pyramidal Cells

    PubMed Central

    Yi, Guosheng; Wang, Jiang; Wei, Xile; Deng, Bin

    2017-01-01

    Neural computation is performed by transforming input signals into sequences of action potentials (APs), which is metabolically expensive and limited by the energy available to the brain. The metabolic efficiency of single AP has important consequences for the computational power of the cell, which is determined by its biophysical properties and morphologies. Here we adopt biophysically-based two-compartment models to investigate how dendrites affect energy efficiency of APs in cortical pyramidal neurons. We measure the Na+ entry during the spike and examine how it is efficiently used for generating AP depolarization. We show that increasing the proportion of dendritic area or coupling conductance between two chambers decreases Na+ entry efficiency of somatic AP. Activating inward Ca2+ current in dendrites results in dendritic spike, which increases AP efficiency. Activating Ca2+-activated outward K+ current in dendrites, however, decreases Na+ entry efficiency. We demonstrate that the active and passive dendrites take effects by altering the overlap between Na+ influx and internal current flowing from soma to dendrite. We explain a fundamental link between dendritic properties and AP efficiency, which is essential to interpret how neural computation consumes metabolic energy and how biophysics and morphologies contribute to such consumption. PMID:28919852

  19. Muscarinic regulation of Kenyon cell dendritic arborizations in adult worker honey bees

    PubMed Central

    Dobrin, Scott E.; Herlihy, J. Daniel; Robinson, Gene E.; Fahrbach, Susan E.

    2011-01-01

    The experience of foraging under natural conditions increases the volume of mushroom body neuropil in worker honey bees. A comparable increase in neuropil volume results from treatment of worker honey bees with pilocarpine, an agonist for muscarinic-type cholinergic receptors. A component of the neuropil growth induced by foraging experience is growth of dendrites in the collar region of the calyces. We show here, via analysis of Golgi-impregnated collar Kenyon cells with wedge arborizations, that significant increases in standard measures of dendritic complexity were also found in worker honey bees treated with pilocarpine. This result suggests that signaling via muscarinic-type receptors promotes the increase in Kenyon cell dendritic complexity associated with foraging. Treatment of worker honey bees with scopolamine, a muscarinic inhibitor, inhibited some aspects of dendritic growth. Spine density on the Kenyon cell dendrites varied with sampling location, with the distal portion of the dendritic field having greater total spine density than either the proximal or medial section. This observation may be functionally significant because of the stratified organization of projections from visual centers to the dendritic arborizations of the collar Kenyon cells. Pilocarpine treatment had no effect on the distribution of spines on dendrites of the collar Kenyon cells. PMID:21262388

  20. Avian magnetoreception: elaborate iron mineral containing dendrites in the upper beak seem to be a common feature of birds.

    PubMed

    Falkenberg, Gerald; Fleissner, Gerta; Schuchardt, Kirsten; Kuehbacher, Markus; Thalau, Peter; Mouritsen, Henrik; Heyers, Dominik; Wellenreuther, Gerd; Fleissner, Guenther

    2010-02-16

    The magnetic field sensors enabling birds to extract orientational information from the Earth's magnetic field have remained enigmatic. Our previously published results from homing pigeons have made us suggest that the iron containing sensory dendrites in the inner dermal lining of the upper beak are a candidate structure for such an avian magnetometer system. Here we show that similar structures occur in two species of migratory birds (garden warbler, Sylvia borin and European robin, Erithacus rubecula) and a non-migratory bird, the domestic chicken (Gallus gallus). In all these bird species, histological data have revealed dendrites of similar shape and size, all containing iron minerals within distinct subcellular compartments of nervous terminals of the median branch of the Nervus ophthalmicus. We also used microscopic X-ray absorption spectroscopy analyses to identify the involved iron minerals to be almost completely Fe III-oxides. Magnetite (Fe II/III) may also occur in these structures, but not as a major Fe constituent. Our data suggest that this complex dendritic system in the beak is a common feature of birds, and that it may form an essential sensory basis for the evolution of at least certain types of magnetic field guided behavior.

  1. Dendritic Glutamate Receptor mRNAs Show Contingent Local Hotspot-Dependent Translational Dynamics

    PubMed Central

    Kim, Tae Kyung; Sul, Jai-Yoon; Helmfors, Henrik; Langel, Ulo; Kim, Junhyong; Eberwine, James

    2014-01-01

    SUMMARY Protein synthesis in neuronal dendrites underlies long-term memory formation in the brain. Local translation of reporter mRNAs has demonstrated translation in dendrites at focal points called translational hotspots. Various reports have shown that hundreds to thousands of mRNAs are localized to dendrites, yet the dynamics of translation of multiple dendritic mRNAs has remained elusive. Here, we show that the protein translational activities of two dendritically localized mRNAs are spatiotemporally complex but constrained by the translational hotspots in which they are colocalized. Cotransfection of glutamate receptor 2 (GluR2) and GluR4 mRNAs (engineered to encode different fluorescent proteins) into rat hippocampal neurons demonstrates a heterogeneous distribution of translational hotspots for the two mRNAs along dendrites. Stimulation with s-3,5-dihydroxy-phenylglycine modifies the translational dynamics of both of these RNAs in a complex saturable manner. These results suggest that the translational hotspot is a primary structural regulator of the simultaneous yet differential translation of multiple mRNAs in the neuronal dendrite. PMID:24075992

  2. Chlamydia trachomatis Cellular Exit Alters Interactions with Host Dendritic Cells

    PubMed Central

    Sherrid, Ashley M.

    2017-01-01

    ABSTRACT The strategies utilized by pathogens to exit host cells are an area of pathogenesis which has received surprisingly little attention, considering the necessity of this step for infections to propagate. Even less is known about how exit through these pathways affects downstream host-pathogen interactions and the generation of an immune response. Chlamydia trachomatis exits host epithelial cells through two equally active mechanisms: lysis and extrusion. Studies have characterized the outcome of interactions between host innate immune cells, such as dendritic cells and macrophages, and free, extracellular Chlamydia bacteria, such as those resulting from lysis. Exit via extrusion generates a distinct, host-membrane-bound compartment of Chlamydia separate from the original infected cell. In this study, we assessed the effect of containment within extrusions upon the interaction between Chlamydia and host dendritic cells. Extrusion dramatically affected the outcome of Chlamydia-dendritic cell interactions for both the bacterium and the host cell. Dendritic cells rapidly underwent apoptosis in response to engulfment of an extrusion, while uptake of an equivalent dose of free Chlamydia had no such effect. Containment within an extrusion also prolonged bacterial survival within dendritic cells and altered the initial innate immune signaling by the dendritic cell. PMID:28223346

  3. Synthetic and biogenic magnetite nanoparticles for tracking of stem cells and dendritic cells

    NASA Astrophysics Data System (ADS)

    Schwarz, Sebastian; Fernandes, Fabiana; Sanroman, Laura; Hodenius, Michael; Lang, Claus; Himmelreich, Uwe; Schmitz-Rode, Thomas; Schueler, Dirk; Hoehn, Mathias; Zenke, Martin; Hieronymus, Thomas

    2009-05-01

    Accurate delivery of cells to target organs is critical for success of cell-based therapies with stem cells or immune cells such as antigen-presenting dendritic cells (DC). Labeling with contrast agents before implantation provides a powerful means for monitoring cellular migration using magnetic resonance imaging (MRI). In this study, we investigated the uptake of fully synthesized or bacterial magnetic nanoparticles (MNPs) into hematopoietic Flt3 + stem cells and DC from mouse bone marrow. We show that (i) uptake of both synthetic and biogenic nanoparticles into cells endow magnetic activity and (ii) low numbers of MNP-loaded cells are readily detected by MRI.

  4. Neuroelectric Tuning of Cortical Oscillations by Apical Dendrites in Loop Circuits.

    PubMed

    LaBerge, David; Kasevich, Ray S

    2017-01-01

    Bundles of relatively long apical dendrites dominate the neurons that make up the thickness of the cerebral cortex. It is proposed that a major function of the apical dendrite is to produce sustained oscillations at a specific frequency that can serve as a common timing unit for the processing of information in circuits connected to that apical dendrite. Many layer 5 and 6 pyramidal neurons are connected to thalamic neurons in loop circuits. A model of the apical dendrites of these pyramidal neurons has been used to simulate the electric activity of the apical dendrite. The results of that simulation demonstrated that subthreshold electric pulses in these apical dendrites can be tuned to specific frequencies and also can be fine-tuned to narrow bandwidths of less than one Hertz (1 Hz). Synchronous pulse outputs from the circuit loops containing apical dendrites can tune subthreshold membrane oscillations of neurons they contact. When the pulse outputs are finely tuned, they function as a local "clock," which enables the contacted neurons to synchronously communicate with each other. Thus, a shared tuning frequency can select neurons for membership in a circuit. Unlike layer 6 apical dendrites, layer 5 apical dendrites can produce burst firing in many of their neurons, which increases the amplitude of signals in the neurons they contact. This difference in amplitude of signals serves as basis of selecting a sub-circuit for specialized processing (e.g., sustained attention) within the typically larger layer 6-based circuit. After examining the sustaining of oscillations in loop circuits and the processing of spikes in network circuits, we propose that cortical functioning can be globally viewed as two systems: a loop system and a network system. The loop system oscillations influence the network system's timing and amplitude of pulse signals, both of which can select circuits that are momentarily dominant in cortical activity.

  5. Clinical assessment of the jaw-tracking function in IMRT for a brain tumor

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Young; Kim, Shin-Wook; Choe, Bo-Young; Suh, Tae-Suk; Park, Sung-Kwang; Jo, Sun-Mi; Oh, Won-Yong; Shin, Jung-Wook; Cho, Gyu-Seok; Nam, Sang-Hee; Chung, Jin-Beom; Kim, Jung-Ki; Lee, Young-Kyu

    2015-01-01

    Intensity-modulated radiotherapy (IMRT) improves dose conformity and saves critical organs. IMRT is widely used in cases of head and neck, prostate, and brain cancer due to the close location of the targets to critical structures. However, because IMRT has a larger amount of radiation exposure than 3 dimensional-conformal radiation therapy (3D-CRT), it has disadvantages such as increases in the low dose irradiation to normal tissues and in the accumulated dose for the whole volume due to leakage and transmission of the multi-leaf collimator (MLC). The increased accumulated dose and the larger low dose may increase the occurrence of secondary malignant neoplasms. For these reasons, the jaw-tracking function of the TrueBeam (Varian Medical Systems, Palo Alto, CA) was developed to reduce the leakage and the transmission dose of the MLC with linear accelerators. However, the change in the superficial dose has not been verified with a quantitative analysis of the dose reduction in a brain tumor. Therefore, in the present study, we intended to verify the clinical possibility of utilizing the jaw-tracking function for a brain tumor by comparing treatment plans and superficial doses. To accomplish this, we made three types of original treatment plans using Eclipse11 (Varian Medical Systems, Palo Alto, CA): 1) farther than 2 cm from the organs at risk (OAR); 2) within 2 cm of the OAR; and 3) intersecting with the OAR. Jaw-tracking treatment plans were also made with copies of the original treatment plan using Smart LMC Version 11.0.31 (Varian Medical Systems, Palo Alto, CA). A comparison between the original treatment plans and jaw-tracking treatment plans was performed using the difference of the mean dose and maximum dose to the OARs in cumulative Dose Volume Histogram (DVH). In addition, the dependencies of the effects of transmission and the scattering doses according to jaw motion were assessed through the difference in the surface doses. In the DVH comparison, a

  6. Developmental finite element analysis of cichlid pharyngeal jaws: Quantifying the generation of a key innovation.

    PubMed

    Peterson, Tim; Müller, Gerd B

    2018-01-01

    Advances in imaging and modeling facilitate the calculation of biomechanical forces in biological specimens. These factors play a significant role during ontogenetic development of cichlid pharyngeal jaws, a key innovation responsible for one of the most prolific species diversifications in recent times. MicroCT imaging of radiopaque-stained vertebrate embryos were used to accurately capture the spatial relationships of the pharyngeal jaw apparatus in two cichlid species (Haplochromis elegans and Amatitlania nigrofasciata) for the purpose of creating a time series of developmental stages using finite element models, which can be used to assess the effects of biomechanical forces present in a system at multiple points of its ontogeny. Changes in muscle vector orientations, bite forces, force on the neurocranium where cartilage originates, and stress on upper pharyngeal jaws are analyzed in a comparative context. In addition, microCT scanning revealed the presence of previously unreported cement glands in A. nigrofasciata. The data obtained provide an underrepresented dimension of information on physical forces present in developmental processes and assist in interpreting the role of developmental dynamics in evolution.

  7. Developmental finite element analysis of cichlid pharyngeal jaws: Quantifying the generation of a key innovation

    PubMed Central

    Müller, Gerd B.

    2018-01-01

    Advances in imaging and modeling facilitate the calculation of biomechanical forces in biological specimens. These factors play a significant role during ontogenetic development of cichlid pharyngeal jaws, a key innovation responsible for one of the most prolific species diversifications in recent times. MicroCT imaging of radiopaque-stained vertebrate embryos were used to accurately capture the spatial relationships of the pharyngeal jaw apparatus in two cichlid species (Haplochromis elegans and Amatitlania nigrofasciata) for the purpose of creating a time series of developmental stages using finite element models, which can be used to assess the effects of biomechanical forces present in a system at multiple points of its ontogeny. Changes in muscle vector orientations, bite forces, force on the neurocranium where cartilage originates, and stress on upper pharyngeal jaws are analyzed in a comparative context. In addition, microCT scanning revealed the presence of previously unreported cement glands in A. nigrofasciata. The data obtained provide an underrepresented dimension of information on physical forces present in developmental processes and assist in interpreting the role of developmental dynamics in evolution. PMID:29320528

  8. Synaptic integration in dendrites: exceptional need for speed

    PubMed Central

    Golding, Nace L; Oertel, Donata

    2012-01-01

    Some neurons in the mammalian auditory system are able to detect and report the coincident firing of inputs with remarkable temporal precision. A strong, low-voltage-activated potassium conductance (gKL) at the cell body and dendrites gives these neurons sensitivity to the rate of depolarization by EPSPs, allowing neurons to assess the coincidence of the rising slopes of unitary EPSPs. Two groups of neurons in the brain stem, octopus cells in the posteroventral cochlear nucleus and principal cells of the medial superior olive (MSO), extract acoustic information by assessing coincident firing of their inputs over a submillisecond timescale and convey that information at rates of up to 1000 spikes s−1. Octopus cells detect the coincident activation of groups of auditory nerve fibres by broadband transient sounds, compensating for the travelling wave delay by dendritic filtering, while MSO neurons detect coincident activation of similarly tuned neurons from each of the two ears through separate dendritic tufts. Each makes use of filtering that is introduced by the spatial distribution of inputs on dendrites. PMID:22930273

  9. Lithium dendrite growth through solid polymer electrolyte membranes

    NASA Astrophysics Data System (ADS)

    Harry, Katherine; Schauser, Nicole; Balsara, Nitash

    2015-03-01

    Replacing the graphite-based anode in current batteries with a lithium foil will result in a qualitative increase in the energy density of lithium batteries. The primary reason for not adopting lithium-foil anodes is the formation of dendrites during cell charging. In this study, stop-motion X-ray microtomography experiments were used to directly monitor the growth of lithium dendrites during electrochemical cycling of symmetric lithium-lithium cells with a block copolymer electrolyte. In an attempt to understand the relationship between viscoelastic properties of the electrolyte on dendrite formation, a series of complementary experiments including cell cycling, tomography, ac impedance, and rheology, were conducted above and below the glass transition temperature of the non-conducting poly(styrene) block; the conducting phase is a mixture of rubbery poly(ethylene oxide) and a lithium salt. The tomography experiments enable quantification of the evolution of strain in the block copolymer electrolyte. Our work provides fundamental insight into the dynamics of electrochemical deposition of metallic films in contact with high modulus polymer electrolytes. Rational approaches for slowing down and, perhaps, eliminating dendrite growth are proposed.

  10. Dendrite Model

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Dr. Donald Gilles, the Discipline Scientist for Materials Science in NASA's Microgravity Materials Science and Applications Department, demonstrates to Carl Dohrman a model of dendrites, the branch-like structures found in many metals and alloys. Dohrman was recently selected by the American Society for Metals International as their 1999 ASM International Foundation National Merit Scholar. The University of Illinois at Urbana-Champaign freshman recently toured NASA's materials science facilities at the Marshall Space Flight Center.

  11. Differential excitability and modulation of striatal medium spiny neuron dendrites

    PubMed Central

    Day, Michelle; Wokosin, David; Plotkin, Joshua L.; Tian, Xinyoung; Surmeier, D. James

    2011-01-01

    The loss of striatal dopamine (DA) in Parkinson's disease (PD) models triggers a cell-type specific reduction in the density of dendritic spines in D2 receptor-expressing striatopallidal medium spiny neurons (D2 MSNs). How the intrinsic properties of MSN dendrites, where the vast majority of DA receptors are found, contribute to this adaptation is not clear. To address this question, two-photon laser scanning microscopy (2PLSM) was performed in patch-clamped mouse MSNs identified in striatal slices by expression of green fluorescent protein (eGFP) controlled by DA receptor promoters. These studies revealed that single back-propagating action potentials (bAP) produced more reliable elevations in cytosolic Ca2+ concentration at distal dendritic locations in D2 MSNs than at similar locations in D1 receptor-expressing striatonigral MSNs (D1 MSNs). In both cell types, the dendritic Ca2+ entry elicited by bAPs was enhanced by pharmacological blockade of Kv4, but not Kv1 K+ channels. Local application of DA depressed dendritic bAP-evoked Ca2+ transients, whereas application of ACh increased these Ca2+ transients in D2 MSNs—but not in D1 MSNs. Following DA depletion, bAP-evoked Ca2+ transients were enhanced in distal dendrites and spines in D2 MSNs. Taken together, these results suggest that normally D2 MSN dendrites are more excitable than those of D1 MSNs and that DA depletion exaggerates this asymmetry, potentially contributing to adaptations in PD models. PMID:18987196

  12. Effect of Solute Diffusion on Dendrite Growth in the Molten Pool of Al-Cu Alloy

    NASA Astrophysics Data System (ADS)

    Zhan, Xiaohong; Gu, Cheng; Liu, Yun; Wei, Yanhong

    2017-10-01

    A cellular automaton (CA)-finite difference model is developed to simulate dendrite growth and solute diffusion during solidification process in the molten pool of Al-Cu alloy. In order to explain the interaction between the dendritic growth and solute distribution, a series of CA simulations with different solute diffusion velocity coefficients are carried out. It is concluded that the solute concentration increases with dendrite growing and solute accumulation in the dendrite tip. Converged value of the dendrite tip growth velocity is about 480 μm/s if the mesh size is refined to 2 μm or less. Growth of the primary dendrite and the secondary dendrite is mainly influenced by solute diffusion at the dendrite tips. And growth of secondary and tertiary dendrites is mainly influenced by solute diffusion at interdendrite.

  13. A 3D visualization and simulation of the individual human jaw.

    PubMed

    Muftić, Osman; Keros, Jadranka; Baksa, Sarajko; Carek, Vlado; Matković, Ivo

    2003-01-01

    A new biomechanical three-dimensional (3D) model for the human mandible based on computer-generated virtual model is proposed. Using maps obtained from the special kinds of photos of the face of the real subject, it is possible to attribute personality to the virtual character, while computer animation offers movements and characteristics within the confines of space and time of the virtual world. A simple two-dimensional model of the jaw cannot explain the biomechanics, where the muscular forces through occlusion and condylar surfaces are in the state of 3D equilibrium. In the model all forces are resolved into components according to a selected coordinate system. The muscular forces act on the jaw, along with the necessary force level for chewing as some kind of mandible balance, preventing dislocation and loading of nonarticular tissues. In the work is used new approach to computer-generated animation of virtual 3D characters (called "Body SABA"), using in one object package of minimal costs and easy for operation.

  14. Thermal resilient multiple jaw braze fixture

    DOEpatents

    Ney, Robert; Perrone, Alex J.

    1995-07-11

    A braze fixture has side walls forming a cavity with an opening to receive a stack of parts to be brazed. Sidewalls of the housing have a plurality of bearing receiving openings into which bearing rods or jaws are inserted to align the stacked elements of the workpiece. The housing can also have view ports to allow a visual check of the alignment. Straps or wires around the fixture are selected to have thermal characteristics similar to the thermal characteristics of the workpiece undergoing brazing. The straps or wires make physical contact with the bearing rods thereby causing bearing rods to maintain the workpiece in proper alignment throughout the entire brazing cycle.

  15. Thermal resilient multiple jaw braze fixture

    DOEpatents

    Ney, R.; Perrone, A.J.

    1995-07-11

    A braze fixture has side walls forming a cavity with an opening to receive a stack of parts to be brazed. Sidewalls of the housing have a plurality of bearing receiving openings into which bearing rods or jaws are inserted to align the stacked elements of the workpiece. The housing can also have view ports to allow a visual check of the alignment. Straps or wires around the fixture are selected to have thermal characteristics similar to the thermal characteristics of the workpiece undergoing brazing. The straps or wires make physical contact with the bearing rods thereby causing bearing rods to maintain the workpiece in proper alignment throughout the entire brazing cycle. 9 figs.

  16. Chloride Cotransporters as a Molecular Mechanism underlying Spreading Depolarization-Induced Dendritic Beading.

    PubMed

    Steffensen, Annette B; Sword, Jeremy; Croom, Deborah; Kirov, Sergei A; MacAulay, Nanna

    2015-09-02

    Spreading depolarizations (SDs) are waves of sustained neuronal and glial depolarization that propagate massive disruptions of ion gradients through the brain. SD is associated with migraine aura and recently recognized as a novel mechanism of injury in stroke and brain trauma patients. SD leads to neuronal swelling as assessed in real time with two-photon laser scanning microscopy (2PLSM). Pyramidal neurons do not express aquaporins and thus display low inherent water permeability, yet SD rapidly induces focal swelling (beading) along the dendritic shaft by unidentified molecular mechanisms. To address this issue, we induced SD in murine hippocampal slices by focal KCl microinjection and visualized the ensuing beading of dendrites expressing EGFP by 2PLSM. We confirmed that dendritic beading failed to arise during large (100 mOsm) hyposmotic challenges, underscoring that neuronal swelling does not occur as a simple osmotic event. SD-induced dendritic beading was not prevented by pharmacological interference with the cytoskeleton, supporting the notion that dendritic beading may result entirely from excessive water influx. Dendritic beading was strictly dependent on the presence of Cl(-), and, accordingly, combined blockade of Cl(-)-coupled transporters led to a significant reduction in dendritic beading without interfering with SD. Furthermore, our in vivo data showed a strong inhibition of dendritic beading during pharmacological blockage of these cotransporters. We propose that SD-induced dendritic beading takes place as a consequence of the altered driving forces and thus activity for these cotransporters, which by transport of water during their translocation mechanism may generate dendritic beading independently of osmotic forces. Spreading depolarization occurs during pathological conditions such as stroke, brain injury, and migraine and is characterized as a wave of massive ion translocation between intracellular and extracellular space in association with

  17. Giant cell lesion of the jaw as a presenting feature of Noonan syndrome.

    PubMed

    Sinnott, Bridget P; Patel, Maya

    2018-05-30

    This is a case of a 20-year-old woman who presented with a left jaw mass which was resected and found to be a giant cell granuloma of the mandible. Her history and physical examination were suggestive for Noonan syndrome which was confirmed with genetic testing and the finding of a PTPN11 gene mutation which has rarely been associated with giant cell lesions of the jaw. Given her particular genetic mutation and the presence of a giant cell lesion, we present a case of Noonan-like/multiple giant cell lesion syndrome. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  18. Endothelial cell-derived microparticles induce plasmacytoid dendritic cell maturation: potential implications in inflammatory diseases

    PubMed Central

    Angelot, Fanny; Seillès, Estelle; Biichlé, Sabeha; Berda, Yael; Gaugler, Béatrice; Plumas, Joel; Chaperot, Laurence; Dignat-George, Françoise; Tiberghien, Pierre; Saas, Philippe; Garnache-Ottou, Francine

    2009-01-01

    Background Increased circulating endothelial microparticles, resulting from vascular endothelium dysfunction, and plasmacytoid dendritic cell activation are both encountered in common inflammatory disorders. The aim of our study was to determine whether interactions between endothelial microparticles and plasmacytoid dendritic cells could contribute to such pathologies. Design and Methods Microparticles generated from endothelial cell lines, platelets or activated T cells were incubated with human plasmacytoid dendritic cells sorted from healthy donor blood or with monocyte-derived dendritic cells. Dendritic cell maturation was evaluated by flow cytometry, cytokine secretion as well as naive T-cell activation and polarization. Labeled microparticles were also used to study cellular interactions. Results Endothelial microparticles induced plasmacytoid dendritic cell maturation. In contrast, conventional dendritic cells were resistant to endothelial microparticle-induced maturation. In addition to upregulation of co-stimulatory molecules, endothelial microparticle-matured plasmacytoid dendritic cells secreted inflammatory cytokines (interleukins 6 and 8, but no interferon-α) and also induced allogeneic naive CD4+ T cells to proliferate and to produce type 1 cytokines such as interferon-γ and tumor necrosis factor-α. Endothelial microparticle endocytosis by plasmacytoid dendritic cells appeared to be required for plasmacytoid dendritic cell maturation. Importantly, the ability of endothelial microparticles to induce plasmacytoid dendritic cells to mature was specific as microparticles derived from activated T cells or platelets (the major source of circulating microparticules in healthy subjects) did not induce such plasmacytoid dendritic cell maturation. Conclusions Our data show that endothelial microparticles specifically induce plasmacytoid dendritic cell maturation and production of inflammatory cytokines. This novel activation pathway may be implicated in

  19. Endothelial cell-derived microparticles induce plasmacytoid dendritic cell maturation: potential implications in inflammatory diseases.

    PubMed

    Angelot, Fanny; Seillès, Estelle; Biichlé, Sabeha; Berda, Yael; Gaugler, Béatrice; Plumas, Joel; Chaperot, Laurence; Dignat-George, Françoise; Tiberghien, Pierre; Saas, Philippe; Garnache-Ottou, Francine

    2009-11-01

    Increased circulating endothelial microparticles, resulting from vascular endothelium dysfunction, and plasmacytoid dendritic cell activation are both encountered in common inflammatory disorders. The aim of our study was to determine whether interactions between endothelial microparticles and plasmacytoid dendritic cells could contribute to such pathologies. Microparticles generated from endothelial cell lines, platelets or activated T cells were incubated with human plasmacytoid dendritic cells sorted from healthy donor blood or with monocyte-derived dendritic cells. Dendritic cell maturation was evaluated by flow cytometry, cytokine secretion as well as naive T-cell activation and polarization. Labeled microparticles were also used to study cellular interactions. Endothelial microparticles induced plasmacytoid dendritic cell maturation. In contrast, conventional dendritic cells were resistant to endothelial microparticle-induced maturation. In addition to upregulation of co-stimulatory molecules, endothelial microparticle-matured plasmacytoid dendritic cells secreted inflammatory cytokines (interleukins 6 and 8, but no interferon-alpha) and also induced allogeneic naive CD4(+) T cells to proliferate and to produce type 1 cytokines such as interferon-gamma and tumor necrosis factor-alpha. Endothelial microparticle endocytosis by plasmacytoid dendritic cells appeared to be required for plasmacytoid dendritic cell maturation. Importantly, the ability of endothelial microparticles to induce plasmacytoid dendritic cells to mature was specific as microparticles derived from activated T cells or platelets (the major source of circulating microparticules in healthy subjects) did not induce such plasmacytoid dendritic cell maturation. Our data show that endothelial microparticles specifically induce plasmacytoid dendritic cell maturation and production of inflammatory cytokines. This novel activation pathway may be implicated in various inflammatory disorders and

  20. Effects of over-the-counter jaw-repositioning mouth guards on dynamic balance, flexibility, agility, strength, and power in college-aged male athletes.

    PubMed

    Golem, Devon L; Arent, Shawn M

    2015-02-01

    Improvements in muscular power and anaerobic performance have resulted from the use of jaw-repositioning mouth guards designed with advanced dental techniques. The high cost of such techniques has dissuaded the widespread use. Recently, more affordable, over-the-counter (OTC) jaw-repositioning mouth guards have become available. The primary objective of this study was to examine the effects of 2 OTC jaw-repositioning mouth guards on muscular power and strength performance in college-aged male athletes. It was hypothesized that similar to previous observations with advanced dentistry-designed mouth guards, OTC jaw-repositioning mouth guards would impart positive effects on muscular power but not have any effect on muscular strength. Secondary objectives of this study included the examination of the effects of 2 OTC jaw-repositioning mouth guards on other variables related to athletic performance. Male collegiate athletes (N = 20) participated in 4 separate testing sessions that consisted of assessment of muscular power, dynamic balance, flexibility, agility, and muscular strength. The 4 conditions, 1 per testing session, were assigned in a randomized order and consisted of a no-mouth guard control (CON), a placebo mouth guard, a self-adapted jaw-repositioning mouth guard (SA), and a custom-fitted jaw-repositioning mouth guard (CF). No significant differences were observed between conditions in muscular power (p = 0.78), dynamic balance (p = 0.99), agility (p = 0.22), or muscular strength (p = 0.47). The CF had significantly lower hip flexion than the CON (p = 0.014) and had significantly greater lumbar spine lateral flexion compared with the SA condition (p = 0.054). However, these flexibility differences lack practical relevance as the effect sizes remain very small (ES = -0.27 and -0.14, respectively). In conclusion, the jaw-repositioning technique used in the design of these OTC mouth guards did not affect performance. It is important to note that negative

  1. Dauer-specific dendrite arborization in C. elegans is regulated by KPC-1/Furin.

    PubMed

    Schroeder, Nathan E; Androwski, Rebecca J; Rashid, Alina; Lee, Harksun; Lee, Junho; Barr, Maureen M

    2013-08-19

    Dendrites often display remarkably complex and diverse morphologies that are influenced by developmental and environmental cues. Neuroplasticity in response to adverse environmental conditions entails both hypertrophy and resorption of dendrites. How dendrites rapidly alter morphology in response to unfavorable environmental conditions is unclear. The nematode Caenorhabditis elegans enters into a stress-resistant dauer larval stage in response to an adverse environment. Here we show that the IL2 bipolar sensory neurons undergo dendrite arborization and axon remodeling during dauer development. When dauer larvae are returned to favorable environmental conditions, animals resume reproductive development and IL2 dendritic branches retract, leaving behind remnant branches in postdauer L4 and adult animals. The C. elegans furin homolog KPC-1 is required for dauer IL2 dendritic arborization and dauer-specific nictation behavior. KPC-1 is also necessary for dendritic arborization of PVD and FLP sensory neurons. In mammals, furin is essential, ubiquitously expressed, and associated with numerous pathologies, including neurodegenerative diseases. While broadly expressed in C. elegans neurons and epithelia, KPC-1 acts cell autonomously in IL2 neurons to regulate dauer-specific dendritic arborization and nictation. Neuroplasticity of the C. elegans IL2 sensory neurons provides a paradigm to study stress-induced and reversible dendritic branching, and the role of environmental and developmental cues in this process. The newly discovered role of KPC-1 in dendrite morphogenesis provides insight into the function of proprotein convertases in nervous system development. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Travelling waves in a model of quasi-active dendrites with active spines

    NASA Astrophysics Data System (ADS)

    Timofeeva, Y.

    2010-05-01

    Dendrites, the major components of neurons, have many different types of branching structures and are involved in receiving and integrating thousands of synaptic inputs from other neurons. Dendritic spines with excitable channels can be present in large densities on the dendrites of many cells. The recently proposed Spike-Diffuse-Spike (SDS) model that is described by a system of point hot-spots (with an integrate-and-fire process) embedded throughout a passive tree has been shown to provide a reasonable caricature of a dendritic tree with supra-threshold dynamics. Interestingly, real dendrites equipped with voltage-gated ion channels can exhibit not only supra-threshold responses, but also sub-threshold dynamics. This sub-threshold resonant-like oscillatory behaviour has already been shown to be adequately described by a quasi-active membrane. In this paper we introduce a mathematical model of a branched dendritic tree based upon a generalisation of the SDS model where the active spines are assumed to be distributed along a quasi-active dendritic structure. We demonstrate how solitary and periodic travelling wave solutions can be constructed for both continuous and discrete spine distributions. In both cases the speed of such waves is calculated as a function of system parameters. We also illustrate that the model can be naturally generalised to an arbitrary branched dendritic geometry whilst remaining computationally simple. The spatio-temporal patterns of neuronal activity are shown to be significantly influenced by the properties of the quasi-active membrane. Active (sub- and supra-threshold) properties of dendrites are known to vary considerably among cell types and animal species, and this theoretical framework can be used in studying the combined role of complex dendritic morphologies and active conductances in rich neuronal dynamics.

  3. Modeling of Dendritic Evolution of Continuously Cast Steel Billet with Cellular Automaton

    NASA Astrophysics Data System (ADS)

    Wang, Weiling; Ji, Cheng; Luo, Sen; Zhu, Miaoyong

    2018-02-01

    In order to predict the dendritic evolution during the continuous steel casting process, a simple mechanism to connect the heat transfer at the macroscopic scale and the dendritic growth at the microscopic scale was proposed in the present work. As the core of the across-scale simulation, a two-dimensional cell automaton (CA) model with a decentered square algorithm was developed and parallelized. Apart from nucleation undercooling and probability, a temperature gradient was introduced to deal with the columnar-to-equiaxed transition (CET) by considering its variation during continuous casting. Based on the thermal history, the dendritic evolution in a 4 mm × 40 mm region near the centerline of a SWRH82B steel billet was predicted. The influences of the secondary cooling intensity, superheat, and casting speed on the dendritic structure of the billet were investigated in detail. The results show that the predicted equiaxed dendritic solidification of Fe-5.3Si alloy and columnar dendritic solidification of Fe-0.45C alloy are consistent with in situ experimental results [Yasuda et al. Int J Cast Metals Res 22:15-21 (2009); Yasuda et al. ISIJ Int 51:402-408 (2011)]. Moreover, the predicted dendritic arm spacing and CET location agree well with the actual results in the billet. The primary dendrite arm spacing of columnar dendrites decreases with increasing secondary cooling intensity, or decreasing superheat and casting speed. Meanwhile, the CET is promoted as the secondary cooling intensity and superheat decrease. However, the CET is not influenced by the casting speed, owing to the adjusting of the flow rate of secondary spray water. Compared with the superheat and casting speed, the secondary cooling intensity can influence the cooling rate and temperature gradient in deeper locations, and accordingly exerts a more significant influence on the equiaxed dendritic structure.

  4. Pro-inflammatory Cytokine Expression of Spleen Dendritic Cells in Mouse Toxoplasmosis

    PubMed Central

    Nam, Ho-Woo; Ahn, Hye-Jin

    2011-01-01

    Dendritic cells have been known as a member of strong innate immune cells against infectious organelles. In this study, we evaluated the cytokine expression of splenic dendritic cells in chronic mouse toxoplasmosis by tissue cyst-forming Me49 strain and demonstrated the distribution of lymphoid dendritic cells by fluorescence-activated cell sorter (FACS). Pro-inflammatory cytokines, such as IL-1α, IL-1β, IL-6, and IL-10 increased rapidly at week 1 post-infection (PI) and peaked at week 3 PI. Serum IL-10 level followed the similar patterns. FACS analysis showed that the number of CD8α+/CD11c+ splenic dendritic cells increased at week 1 and peaked at week 3 PI. In conclusion, mouse splenic dendritic cells showed early and rapid cytokine changes and may have important protective roles in early phases of murine toxoplasmosis. PMID:21738265

  5. Somato-dendritic synapses in the nucleus reticularis thalami of the rat.

    PubMed

    Csillik, B; Pálfi, A; Gulya, K; Mihály, A; Knyihár-Csillik, Elizabeth

    2002-01-01

    In the reticular nucleus of the rat thalamus, about 30% of the synapses are brought about by the perikarya of parvalbumin-immunopositive neurons, which establish somato-dendritic synapses with large dendrites of nerve cells of specific thalamic nuclei. Although the parvalbumin-immunopositive presynaptic structures bear resemblance to goblet-like or calyciform axonal endings, electron microscopic immunocytochemistry and in situ hybridization revealed that these structures are parts of the perikaryal cytoplasm studded with synaptic vesicles. In about 15% of the somato-dendritic synapses, axons are seen to be in synaptic contact with the parvalbumin-immunoreactive perikaryon. Double immunohistochemical staining revealed that the parvalbumin immunoreactive presynaptic perikarya and dendrites contained GABA. It is assumed that the peculiar somato-dendritic synaptic complexes subserve the goal of filtration of impulses arriving at the reticular nucleus from various thalamic nuclei, thus processing them for further sampling.

  6. Dendritic cells and follicular dendritic cells express a novel ligand for CD38 which influences their maturation and antibody responses

    PubMed Central

    Wykes, Michelle N; Beattie, Lynette; MacPherson, Gordon G; Hart, Derek N

    2004-01-01

    CD38 is a cell surface molecule with ADP-ribosyl cyclase activity, which is predominantly expressed on lymphoid and myeloid cells. CD38 has a significant role in B-cell function as some anti-CD38 antibodies can deliver potent growth and differentiation signals, but the ligand that delivers this signal in mice is unknown. We used a chimeric protein of mouse CD38 and human immunogobulin G (IgG) (CD38-Ig) to identify a novel ligand for murine CD38 (CD38L) on networks of follicular dendritic cells (FDCs) as well as dendritic cells (DCs) in the spleen. Flow-cytometry found that all DC subsets expressed cytoplasmic CD38L but only fresh ex vivo CD11c+ CD11b− DCs had cell surface CD38L. Anti-CD38 antibody blocked the binding of CD38-Ig to CD38L, confirming the specificity of detection. CD38-Ig immuno-precipitated ligands of 66 and 130 kDa. Functional studies found that CD38-Ig along with anti-CD40 and anti-major histocompatibility complex (MHC) class II antibody provided maturation signals to DCs in vitro. When CD38-Ig was administered in vivo with antigen, IgG2a responses were significantly reduced, suggesting that B and T cells expressing CD38 may modulate the isotype of antibodies produced through interaction with CD38L on DCs. CD38-Ig also expanded FDC networks when administered in vivo. In conclusion, this study has identified a novel ligand for CD38 which has a role in functional interactions between lymphocytes and DCs or FDCs. PMID:15500618

  7. Dendritic cells and follicular dendritic cells express a novel ligand for CD38 which influences their maturation and antibody responses.

    PubMed

    Wykes, Michelle N; Beattie, Lynette; Macpherson, Gordon G; Hart, Derek N

    2004-11-01

    CD38 is a cell surface molecule with ADP-ribosyl cyclase activity, which is predominantly expressed on lymphoid and myeloid cells. CD38 has a significant role in B-cell function as some anti-CD38 antibodies can deliver potent growth and differentiation signals, but the ligand that delivers this signal in mice is unknown. We used a chimeric protein of mouse CD38 and human immunogobulin G (IgG) (CD38-Ig) to identify a novel ligand for murine CD38 (CD38L) on networks of follicular dendritic cells (FDCs) as well as dendritic cells (DCs) in the spleen. Flow-cytometry found that all DC subsets expressed cytoplasmic CD38L but only fresh ex vivo CD11c+ CD11b- DCs had cell surface CD38L. Anti-CD38 antibody blocked the binding of CD38-Ig to CD38L, confirming the specificity of detection. CD38-Ig immuno-precipitated ligands of 66 and 130 kDa. Functional studies found that CD38-Ig along with anti-CD40 and anti-major histocompatibility complex (MHC) class II antibody provided maturation signals to DCs in vitro. When CD38-Ig was administered in vivo with antigen, IgG2a responses were significantly reduced, suggesting that B and T cells expressing CD38 may modulate the isotype of antibodies produced through interaction with CD38L on DCs. CD38-Ig also expanded FDC networks when administered in vivo. In conclusion, this study has identified a novel ligand for CD38 which has a role in functional interactions between lymphocytes and DCs or FDCs.

  8. Three-Dimensional Dendrite Growth Within the Shrouds of Single Crystal Blades of a Nickel-Based Superalloy

    NASA Astrophysics Data System (ADS)

    Wang, Fu; Wu, Zining; Huang, Can; Ma, Dexin; Jakumeit, Jürgen; Bührig-Polaczek, Andreas

    2017-12-01

    The effect of withdrawal rates on the three-dimensional dendrite growth within the shrouds of single crystal blades during directional solidification was studied by both experiments and numerical simulations. The results showed that at given withdrawal rates, the dendrite pattern within the shrouds comprised three zones: primary dendrite zone, secondary dendrite spread zone, and a higher-order dendrite branched zone. With increasing withdrawal rate, the average primary dendrite arm spacing in the primary dendrite zone and the average secondary dendrite arm spacings in both the secondary dendrite spread zone and the higher-order dendrite branched zone were reduced. Independent of the variation in withdrawal rate, two analogous dendrite growth routes were observed within the shrouds of the employed blade geometry. These routes originated from the primary dendrites in the primary dendrite zone and filled in the shrouds by directly spreading secondary or successively branching higher-order dendrites. Except for a withdrawal rate of 6 mm min-1, these dendrites impinged at the shroud's highest extremity and could be explained by the simulated moving isotherms. As the withdrawal rate was increased to 2.5 mm min-1, undercooling and contraction stress-related equiaxed grains were observed in the interdendritic region at the lowest shroud extremity. With increasing withdrawal rate, the amount of the defects was increased. Since the defects destroy the integrity of single crystal blades, the solidification condition within the shroud should be controlled to avoid their occurrence. Along the dendrite growth route, an accumulated misorientation of the dendrites was observed. At the same positions, this accumulation increased with increasing withdrawal rate.

  9. The Covidien LigaSure Maryland Jaw Device.

    PubMed

    Zaidi, Nisar; Glover, Anthony R; Sidhu, Stanley B

    2015-03-01

    Since its invention nearly 20 years ago, the Covidien LigaSure device along with its ForceTriad generator has dominated the Electrothermal Bipolar Vessel Sealing market. The LigaSure was used for surgical procedures, both open and laparoscopic. The purpose of this review is to provide evidence of the safety and utility of the LigaSure device compared to more traditional means of hemostasis and its ultrasonic competitor, particularly in laparoscopic applications. We will provide evidence related to electrothermal bipolar vessel sealing in general and look specifically at Covidien's newest product, the LigaSure Maryland Jaw Device.

  10. A dendrite-autonomous mechanism for direction selectivity in retinal starburst amacrine cells.

    PubMed

    Hausselt, Susanne E; Euler, Thomas; Detwiler, Peter B; Denk, Winfried

    2007-07-01

    Detection of image motion direction begins in the retina, with starburst amacrine cells (SACs) playing a major role. SACs generate larger dendritic Ca(2+) signals when motion is from their somata towards their dendritic tips than for motion in the opposite direction. To study the mechanisms underlying the computation of direction selectivity (DS) in SAC dendrites, electrical responses to expanding and contracting circular wave visual stimuli were measured via somatic whole-cell recordings and quantified using Fourier analysis. Fundamental and, especially, harmonic frequency components were larger for expanding stimuli. This DS persists in the presence of GABA and glycine receptor antagonists, suggesting that inhibitory network interactions are not essential. The presence of harmonics indicates nonlinearity, which, as the relationship between harmonic amplitudes and holding potential indicates, is likely due to the activation of voltage-gated channels. [Ca(2+)] changes in SAC dendrites evoked by voltage steps and monitored by two-photon microscopy suggest that the distal dendrite is tonically depolarized relative to the soma, due in part to resting currents mediated by tonic glutamatergic synaptic input, and that high-voltage-activated Ca(2+) channels are active at rest. Supported by compartmental modeling, we conclude that dendritic DS in SACs can be computed by the dendrites themselves, relying on voltage-gated channels and a dendritic voltage gradient, which provides the spatial asymmetry necessary for direction discrimination.

  11. Maintenance of dendritic spine morphology by partitioning-defective 1b through regulation of microtubule growth.

    PubMed

    Hayashi, Kenji; Suzuki, Atsushi; Hirai, Syu-ichi; Kurihara, Yasuyuki; Hoogenraad, Casper C; Ohno, Shigeo

    2011-08-24

    Dendritic spines are postsynaptic structures that receive excitatory synaptic input from presynaptic terminals. Actin and its regulatory proteins play a central role in morphogenesis of dendritic spines. In addition, recent studies have revealed that microtubules are indispensable for the maintenance of mature dendritic spine morphology by stochastically invading dendritic spines and regulating dendritic localization of p140Cap, which is required for actin reorganization. However, the regulatory mechanisms of microtubule dynamics remain poorly understood. Partitioning-defective 1b (PAR1b), a cell polarity-regulating serine/threonine protein kinase, is thought to regulate microtubule dynamics by inhibiting microtubule binding of microtubule-associated proteins. Results from the present study demonstrated that PAR1b participates in the maintenance of mature dendritic spine morphology in mouse hippocampal neurons. Immunofluorescent analysis revealed PAR1b localization in the dendrites, which was concentrated in dendritic spines of mature neurons. PAR1b knock-down cells exhibited decreased mushroom-like dendritic spines, as well as increased filopodia-like dendritic protrusions, with no effect on the number of protrusions. Live imaging of microtubule plus-end tracking proteins directly revealed decreases in distance and duration of microtubule growth following PAR1b knockdown in a neuroblastoma cell line and in dendrites of hippocampal neurons. In addition, reduced accumulation of GFP-p140Cap in dendritic protrusions was confirmed in PAR1b knock-down neurons. In conclusion, the present results suggested a novel function for PAR1b in the maintenance of mature dendritic spine morphology by regulating microtubule growth and the accumulation of p140Cap in dendritic spines.

  12. Dendrite-Free Lithium Deposition via Self-Healing Electrostatic Shield Mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Fei; Xu, Wu; Graff, Gordon L.

    Lithium metal batteries are called the “holy grail” of energy storage systems. However, lithium dendrite growth in these batteries has prevented their practical applications in the last 40 years. Here we show a novel mechanism which can fundamentally change the dendritic morphology of lithium deposition. A low concentration of the second cations (including ions of cesium, rubidium, potassium, and strontium) exhibits an effective reduction potential lower than the standard reduction potential of lithium ions when the chemical activities of these second cations are much lower than that of lithium ions. During lithium deposition, these second cations will form a self-healingmore » electrostatic shield around the initial tip of lithium whenever it is formed. This shield will repel the incoming lithium ions and force them to deposit in the smoother region of the anode so a dendrite-free film is obtained. This mechanism is effective on dendrite prevention in both lithium metal and lithium ion batteries. They may also prevent dendrite growth in other metal batteries and have transformational impact on the smooth deposition in general electrodeposition processes.« less

  13. Choice of biomaterials—Do soft occlusal splints influence jaw-muscle activity during sleep? A preliminary report

    NASA Astrophysics Data System (ADS)

    Arima, Taro; Takeuchi, Tamiyo; Tomonaga, Akio; Yachida, Wataru; Ohata, Noboru; Svensson, Peter

    2012-12-01

    AimThe choice of biomaterials for occlusal splints may significantly influence biological outcome. In dentistry, hard acrylic occlusal splints (OS) have been shown to have a temporary and inhibitory effect on jaw-muscle activity, such as tooth clenching and grinding during sleep, i.e., sleep bruxism (SB). Traditionally, this inhibitory effect has been explained by changes in the intraoral condition rather than the specific effects of changes in occlusion. The aim of this preliminary study was to investigate the effect of another type of occlusal surface, such as a soft-material OS in addition to a hard-type OS in terms of changes in jaw-muscle activity during sleep. Materials and methodsSeven healthy subjects (mean ± SD, six men and one woman: 28.9 ± 2.7 year old), participated in this study. A soft-material OS (ethylene vinyl acetate copolymer) was fabricated for each subject and the subjects used the OS for five continuous nights. The EMG activity during sleep was compared to baseline (no OS). Furthermore, the EMG activity during the use of a hard-type OS (Michigan-type OS, acrylic resin), and hard-type OS combined with contingent electrical stimulation (CES) was compared to baseline values. Each session was separated by at least two weeks (washout). Jaw-muscle activity during sleep was recorded with single-channel ambulatory devices (GrindCare, MedoTech, Herlev, Denmark) in all sessions for five nights. ResultsJaw-muscle activity during sleep was 46.6 ± 29.8 EMG events/hour at baseline and significantly decreased during the hard-type OS (17.4 ± 10.5, P = 0.007) and the hard-type OS + CES (10.8 ± 7.1, P = 0.002), but not soft-material OS (36.3 ± 24.5, P = 0.055). Interestingly, the soft-material OS (coefficient of variance = 98.6 ± 35.3%) was associated with greater night-to-night variations than baseline (39.0 ± 11.8%) and the hard-type OS + CES (53.3 ± 13.7%, P < 0.013). ConclusionThe present pilot study in small sample showed that a soft

  14. Traumatic brain injury causes an FK506-sensitive loss and an overgrowth of dendritic spines in rat forebrain.

    PubMed

    Campbell, John N; Register, David; Churn, Severn B

    2012-01-20

    Traumatic brain injury (TBI) causes both an acute loss of tissue and a progressive injury through reactive processes such as excitotoxicity and inflammation. These processes may worsen neural dysfunction by altering neuronal circuitry beyond the focally-damaged tissue. One means of circuit alteration may involve dendritic spines, micron-sized protuberances of dendritic membrane that support most of the excitatory synapses in the brain. This study used a modified Golgi-Cox technique to track changes in spine density on the proximal dendrites of principal cells in rat forebrain regions. Spine density was assessed at 1 h, 24 h, and 1 week after a lateral fluid percussion TBI of moderate severity. At 1 h after TBI, no changes in spine density were observed in any of the brain regions examined. By 24 h after TBI, however, spine density had decreased in ipsilateral neocortex in layer II and III and dorsal dentate gyrus (dDG). This apparent loss of spines was prevented by a single, post-injury administration of the calcineurin inhibitor FK506. These results, together with those of a companion study, indicate an FK506-sensitive mechanism of dendritic spine loss in the TBI model. Furthermore, by 1 week after TBI, spine density had increased substantially above control levels, bilaterally in CA1 and CA3 and ipsilaterally in dDG. The apparent overgrowth of spines in CA1 is of particular interest, as it may explain previous reports of abnormal and potentially epileptogenic activity in this brain region.

  15. [Experience of systematization on the treatment of patients with upper jaws fractures, during the period 1991-2000].

    PubMed

    Khinkov, D

    2005-01-01

    A retrospecive analysis was done of the 128 patients with fractures in a upper jaw, treated during the period 1991-2000. The treatment of the patients with partial fractures in a alveolar part of maxilla and frontal wall of maxillary sinus, consist of debridement on the open wound, primery stiched and stabilization by arch bar of perspective teeth. In the cases with fractures of tuber maxilla and opening of maxillary sinus they tray to clouse it by Rhermann technique, with or without radical antrothomy by Caldwell-Luc technique. On the patients by total upper jaw fractures they try lead by princip of duble stage fixation: from one side-of intact upper bone structures and the other side-on a mandible. On the cases of upper jaw fractures, combine with barain traums. was treated conservativly - the specialize treatment of facial injures was postpoun until stabilization of brain status.

  16. Tau-Dependent Kv4.2 Depletion and Dendritic Hyperexcitability in a Mouse Model of Alzheimer's Disease

    PubMed Central

    Hall, Alicia M.; Throesch, Benjamin T.; Buckingham, Susan C.; Markwardt, Sean J.; Peng, Yin; Wang, Qin

    2015-01-01

    Neuronal hyperexcitability occurs early in the pathogenesis of Alzheimer's disease (AD) and contributes to network dysfunction in AD patients. In other disorders with neuronal hyperexcitability, dysfunction in the dendrites often contributes, but dendritic excitability has not been directly examined in AD models. We used dendritic patch-clamp recordings to measure dendritic excitability in the CA1 region of the hippocampus. We found that dendrites, more so than somata, of hippocampal neurons were hyperexcitable in mice overexpressing Aβ. This dendritic hyperexcitability was associated with depletion of Kv4.2, a dendritic potassium channel important for regulating dendritic excitability and synaptic plasticity. The antiepileptic drug, levetiracetam, blocked Kv4.2 depletion. Tau was required, as crossing with tau knock-out mice also prevented both Kv4.2 depletion and dendritic hyperexcitability. Dendritic hyperexcitability induced by Kv4.2 deficiency exacerbated behavioral deficits and increased epileptiform activity in hAPP mice. We conclude that increased dendritic excitability, associated with changes in dendritic ion channels including Kv4.2, may contribute to neuronal dysfunction in early stages AD. PMID:25878292

  17. Interactions of Cryptococcus with Dendritic Cells.

    PubMed

    Wozniak, Karen L

    2018-03-15

    The fungal pathogens Cryptococcus neoformans and Cryptococcus gattii can cause life-threatening infections in immune compromised and immune competent hosts. These pathogens enter the host via inhalation, and respiratory tract innate immune cells such as dendritic cells (DCs) are one of the first host cells they encounter. The interactions between Cryptococcus and innate immune cells play a critical role in the progression of disease in the host. This review will focus specifically on the interactions between Cryptococcus and dendritic cells (DCs), including recognition/processing by DCs, effects of immune mediators on DC recruitment and activity, and the potential for DC vaccination against cryptococcosis.

  18. Input-Specific NMDAR-Dependent Potentiation of Dendritic GABAergic Inhibition.

    PubMed

    Chiu, Chiayu Q; Martenson, James S; Yamazaki, Maya; Natsume, Rie; Sakimura, Kenji; Tomita, Susumu; Tavalin, Steven J; Higley, Michael J

    2018-01-17

    Preservation of a balance between synaptic excitation and inhibition is critical for normal brain function. A number of homeostatic cellular mechanisms have been suggested to play a role in maintaining this balance, including long-term plasticity of GABAergic inhibitory synapses. Many previous studies have demonstrated a coupling of postsynaptic spiking with modification of perisomatic inhibition. Here, we demonstrate that activation of NMDA-type glutamate receptors leads to input-specific long-term potentiation of dendritic inhibition mediated by somatostatin-expressing interneurons. This form of plasticity is expressed postsynaptically and requires both CaMKIIα and the β2 subunit of the GABA-A receptor. Importantly, this process may function to preserve dendritic inhibition, as genetic deletion of NMDAR signaling results in a selective weakening of dendritic inhibition. Overall, our results reveal a new mechanism for linking excitatory and inhibitory input in neuronal dendrites and provide novel insight into the homeostatic regulation of synaptic transmission in cortical circuits. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Kidney dendritic cells in acute and chronic renal disease.

    PubMed

    Hochheiser, Katharina; Tittel, André; Kurts, Christian

    2011-06-01

    Dendritic cells are not only the master regulators of adaptive immunity, but also participate profoundly in innate immune responses. Much has been learned about their basic immunological functions and their roles in various diseases. Comparatively little is still known about their role in renal disease, despite their obvious potential to affect immune responses in the kidney, and immune responses that are directed against renal components. Kidney dendritic cells form an abundant network in the renal tubulointerstitium and constantly survey the environment for signs of injury or infection, in order to alert the immune system to the need to initiate defensive action. Recent studies have identified a role for dendritic cells in several murine models of acute renal injury and chronic nephritis. Here we summarize the current knowledge on the role of kidney dendritic cells that has been obtained from the study of murine models of renal disease. © 2010 The Authors. Journal compilation © 2010 Blackwell Publishing Ltd.

  20. [Clinical experience in osteoplastic material Allomatrix-implant and fibrin rich platelets use in surgical treatment of jaw radicular cysts].

    PubMed

    Kuz'minykh, I A

    2009-01-01

    Bones forming optimizators applying in surgical dentistry is an important element of jaw destructive processes successful treatment. Today use of osteoplastic materials on the collagen basis is widely spread. One of this challenge solution is FRP and Allomatrix-implant material applying to jaws during surgery operations. We described clinical investigation phase: the estimation of postoperative and remote results of treatment was carried out.

  1. Somatic spikes regulate dendritic signaling in small neurons in the absence of backpropagating action potentials.

    PubMed

    Myoga, Michael H; Beierlein, Michael; Regehr, Wade G

    2009-06-17

    Somatic spiking is known to regulate dendritic signaling and associative synaptic plasticity in many types of large neurons, but it is unclear whether somatic action potentials play similar roles in small neurons. Here we ask whether somatic action potentials can also influence dendritic signaling in an electrically compact neuron, the cerebellar stellate cell (SC). Experiments were conducted in rat brain slices using a combination of imaging and electrophysiology. We find that somatic action potentials elevate dendritic calcium levels in SCs. There was little attenuation of calcium signals with distance from the soma in SCs from postnatal day 17 (P17)-P19 rats, which had dendrites that averaged 60 microm in length, and in short SC dendrites from P30-P33 rats. Somatic action potentials evoke dendritic calcium increases that are not affected by blocking dendritic sodium channels. This indicates that dendritic signals in SCs do not rely on dendritic sodium channels, which differs from many types of large neurons, in which dendritic sodium channels and backpropagating action potentials allow somatic spikes to control dendritic calcium signaling. Despite the lack of active backpropagating action potentials, we find that trains of somatic action potentials elevate dendritic calcium sufficiently to release endocannabinoids and retrogradely suppress parallel fiber to SC synapses in P17-P19 rats. Prolonged SC firing at physiologically realistic frequencies produces retrograde suppression when combined with low-level group I metabotropic glutamate receptor activation. Somatic spiking also interacts with synaptic stimulation to promote associative plasticity. These findings indicate that in small neurons the passive spread of potential within dendrites can allow somatic spiking to regulate dendritic calcium signaling and synaptic plasticity.

  2. Autocrine action of BDNF on dendrite development of adult-born hippocampal neurons.

    PubMed

    Wang, Liang; Chang, Xingya; She, Liang; Xu, Duo; Huang, Wei; Poo, Mu-ming

    2015-06-03

    Dendrite development of newborn granule cells (GCs) in the dentate gyrus of adult hippocampus is critical for their incorporation into existing hippocampal circuits, but the cellular mechanisms regulating their dendrite development remains largely unclear. In this study, we examined the function of brain-derived neurotrophic factor (BDNF), which is expressed in adult-born GCs, in regulating their dendrite morphogenesis. Using retrovirus-mediated gene transfection, we found that deletion and overexpression of BDNF in adult-born GCs resulted in the reduction and elevation of dendrite growth, respectively. This effect was mainly due to the autocrine rather than paracrine action of BDNF, because deletion of BDNF only in the newborn GCs resulted in dendrite abnormality of these neurons to a similar extent as that observed in conditional knockout (cKO) mice with BDNF deleted in the entire forebrain. Furthermore, selective expression of BDNF in adult-born GCs in BDNF cKO mice fully restored normal dendrite development. The BDNF autocrine action was also required for the development of normal density of spines and normal percentage of spines containing the postsynaptic marker PSD-95, suggesting autocrine BDNF regulation of synaptogenesis. Furthermore, increased dendrite growth of adult-born GCs caused by voluntary exercise was abolished by BDNF deletion specifically in these neurons and elevated dendrite growth due to BDNF overexpression in these neurons was prevented by reducing neuronal activity with coexpression of inward rectifier potassium channels, consistent with activity-dependent autocrine BDNF secretion. Therefore, BDNF expressed in adult-born GCs plays a critical role in dendrite development by acting as an autocrine factor. Copyright © 2015 the authors 0270-6474/15/358384-10$15.00/0.

  3. Neuroelectric Tuning of Cortical Oscillations by Apical Dendrites in Loop Circuits

    PubMed Central

    LaBerge, David; Kasevich, Ray S.

    2017-01-01

    Bundles of relatively long apical dendrites dominate the neurons that make up the thickness of the cerebral cortex. It is proposed that a major function of the apical dendrite is to produce sustained oscillations at a specific frequency that can serve as a common timing unit for the processing of information in circuits connected to that apical dendrite. Many layer 5 and 6 pyramidal neurons are connected to thalamic neurons in loop circuits. A model of the apical dendrites of these pyramidal neurons has been used to simulate the electric activity of the apical dendrite. The results of that simulation demonstrated that subthreshold electric pulses in these apical dendrites can be tuned to specific frequencies and also can be fine-tuned to narrow bandwidths of less than one Hertz (1 Hz). Synchronous pulse outputs from the circuit loops containing apical dendrites can tune subthreshold membrane oscillations of neurons they contact. When the pulse outputs are finely tuned, they function as a local “clock,” which enables the contacted neurons to synchronously communicate with each other. Thus, a shared tuning frequency can select neurons for membership in a circuit. Unlike layer 6 apical dendrites, layer 5 apical dendrites can produce burst firing in many of their neurons, which increases the amplitude of signals in the neurons they contact. This difference in amplitude of signals serves as basis of selecting a sub-circuit for specialized processing (e.g., sustained attention) within the typically larger layer 6-based circuit. After examining the sustaining of oscillations in loop circuits and the processing of spikes in network circuits, we propose that cortical functioning can be globally viewed as two systems: a loop system and a network system. The loop system oscillations influence the network system’s timing and amplitude of pulse signals, both of which can select circuits that are momentarily dominant in cortical activity. PMID:28659768

  4. Monkey extensor digitorum communis motoneuron pool: Proximal dendritic trees and small motoneurons.

    PubMed

    Jenny, Arthur B; Cheney, Paul D; Jenny, Andrew K

    2018-05-14

    Transverse sections of the monkey cervical spinal cord from a previous study (Jenny and Inukai, 1983) were reanalyzed using Neurolucida to create a three-dimensional display of extensor digitorum communis (EDC) motoneurons and proximal dendrites that had been labeled with horse radish peroxidase (HRP). The EDC motoneuron pool was located primarily in the C8 and T1 segments of the spinal cord. Small motoneurons (cell body areas less than 500 μm 2 and presumed to be gamma motoneurons) comprised about ten percent of the motoneurons and were located throughout the length of the motoneuron pool. Most small motoneurons were oblong in shape and had one or two major dendrites originating from the cell body in the transverse plane of section. The majority of the HRP labeled dendritic trees were directed either superiorly, dorsal-medially to the mid zone area between the base of the dorsal horn and the upper portion of the ventral horn, or medially to the ventromedial gray matter. The longer HRP labeled dendrites usually continued in the same radial direction as when originating from the cell body. As such we considered the radial direction of the longer proximal HRP labeled dendrites to be a reasonable estimate of the radial direction of the more distal dendritic tree. Our data suggest that the motoneuron dendritic tree as seen in transverse section has direction-oriented dendrites that extend toward functional terminal regions. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. A novel method for single sample multi-axial nanoindentation of hydrated heterogeneous tissues based on testing great white shark jaws.

    PubMed

    Ferrara, Toni L; Boughton, Philip; Slavich, Eve; Wroe, Stephen

    2013-01-01

    Nanomechanical testing methods that are suitable for a range of hydrated tissues are crucial for understanding biological systems. Nanoindentation of tissues can provide valuable insights into biology, tissue engineering and biomimetic design. However, testing hydrated biological samples still remains a significant challenge. Shark jaw cartilage is an ideal substrate for developing a method to test hydrated tissues because it is a unique heterogeneous composite of both mineralized (hard) and non-mineralized (soft) layers and possesses a jaw geometry that is challenging to test mechanically. The aim of this study is to develop a novel method for obtaining multidirectional nanomechanical properties for both layers of jaw cartilage from a single sample, taken from the great white shark (Carcharodon carcharias). A method for obtaining multidirectional data from a single sample is necessary for examining tissue mechanics in this shark because it is a protected species and hence samples may be difficult to obtain. Results show that this method maintains hydration of samples that would otherwise rapidly dehydrate. Our study is the first analysis of nanomechanical properties of great white shark jaw cartilage. Variation in nanomechanical properties were detected in different orthogonal directions for both layers of jaw cartilage in this species. The data further suggest that the mineralized layer of shark jaw cartilage is less stiff than previously posited. Our method allows multidirectional nanomechanical properties to be obtained from a single, small, hydrated heterogeneous sample. Our technique is therefore suitable for use when specimens are rare, valuable or limited in quantity, such as samples obtained from endangered species or pathological tissues. We also outline a method for tip-to-optic calibration that facilitates nanoindentation of soft biological tissues. Our technique may help address the critical need for a nanomechanical testing method that is applicable

  6. A method of indirect registration of the coordinates of condylar points with a six-degree-of-freedom jaw tracker.

    PubMed

    Huang, B Y; Durrant, C J; Johnson, C W L; Murray, G M

    2002-06-30

    Previous studies have indicated that the location of a condylar point can significantly influence its trajectory. The aim of this investigation was to develop a method of registering the location of radiographically defined condylar points in the coordinate system of a six-degree-of-freedom jaw-tracking device and to determine the accuracy of this method by using a perspex model in one experiment and a dry skull in another. A direct measurement ('the gold standard') of condylar point coordinates in the coordinate system of JAWS3D was done using a three-dimensional (3D) digitizer (MicroScribe-3DX). The indirect measurement used a distributed fiducial marker as the interface between the coordinate system of MicroScribe-3DX (which was used to register the fiducial marker and the JAWS3D coordinate system) and the coordinate system of the CT scans (used to define condyle anatomy and the relation with the fiducial marker). The coordinates of condylar points could then be calculated in the coordinate system of JAWS3D. The results showed that the indirect method could register condylar point coordinates on either side to an accuracy of approximately 0.5 mm.

  7. [Influence of dendritic cell infiltration on prognosis and biologic characteristics of progressing gastric cancer].

    PubMed

    Huang, Hai-li; Wu, Ben-yan; You, Wei-di; Shen, Ming-shi; Wang, Wen-ju

    2003-09-01

    To study the relation between dendritic cell (DC) infiltration and clinicopathologic parameters, biologic characteristics and prognosis of progressing gastric cancer. The development of apoptotic cell death (apoptotic index, AI) in 61 progressing gastric carcinoma tissues was analyzed by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate biotin nick end labeling (TUNEL) method. The PCNA labeling index (PCNA-LI), density of dendritic cells in the tumor were detected by immunohistochemical method by the LSAB kit using antibody against S-100 protein and PC-10. DC infiltration was negatively correlated with lymph node metastasis, clinical stage and PCNA-LI, but positively with AI. The DCs in gastric cancer groups with and without lymph node metastasis were (5.63 +/- 4.37)/HPF and (8.51 +/- 5.57)/HPF with difference significant (P < 0.05). The DC infiltration in I, II, III stage lesions were (11.23 +/- 6.05)/HPF, (6.28 +/- 4.37)/HPF and (5.53 +/- 5.19)/HPF also with differences significant (P < 0.01). The PCNA-LI was significantly higher in the low DC group (57.10% +/- 14.18%) than that of high DC group (48.15% +/- 10.59%, P < 0.01). AI findings were 3.77% +/- 1.26% and 2.95% +/- 1.07% in the high and low DC groups (P < 0.01). A positive correlation was observed between DC infiltration and AI (r = 0.39, P < 0.01) whereas a negative correlation between DC infiltration and PCNA-LI (r = -0.47, P < 0.01). The prognosis of high DC infiltration patients was significantly better than those with low ones. The infiltrating dendritic cells in and around tumor, representing the local immune status of the host, may play an important role in immunological defense mechanism of host versus tumor. Dendritic cells may inhibit the proliferation and induce the apoptosis of the tumor cells, thus affecting the clinical features and improve the prognosis of gastric carcinoma.

  8. Functional Identification of Dendritic Cells in the Teleost Model, Rainbow Trout (Oncorhynchus mykiss)

    PubMed Central

    Bassity, Elizabeth; Clark, Theodore G.

    2012-01-01

    Dendritic cells are specialized antigen presenting cells that bridge innate and adaptive immunity in mammals. This link between the ancient innate immune system and the more evolutionarily recent adaptive immune system is of particular interest in fish, the oldest vertebrates to have both innate and adaptive immunity. It is unknown whether dendritic cells co-evolved with the adaptive response, or if the connection between innate and adaptive immunity relied on a fundamentally different cell type early in evolution. We approached this question using the teleost model organism, rainbow trout (Oncorhynchus mykiss), with the aim of identifying dendritic cells based on their ability to stimulate naïve T cells. Adapting mammalian protocols for the generation of dendritic cells, we established a method of culturing highly motile, non-adherent cells from trout hematopoietic tissue that had irregular membrane processes and expressed surface MHCII. When side-by-side mixed leukocyte reactions were performed, these cells stimulated greater proliferation than B cells or macrophages, demonstrating their specialized ability to present antigen and therefore their functional homology to mammalian dendritic cells. Trout dendritic cells were then further analyzed to determine if they exhibited other features of mammalian dendritic cells. Trout dendritic cells were found to have many of the hallmarks of mammalian DCs including tree-like morphology, the expression of dendritic cell markers, the ability to phagocytose small particles, activation by toll-like receptor-ligands, and the ability to migrate in vivo. As in mammals, trout dendritic cells could be isolated directly from the spleen, or larger numbers could be derived from hematopoietic tissue and peripheral blood mononuclear cells in vitro. PMID:22427987

  9. On the drag of model dendrite fragments at low Reynolds number

    NASA Technical Reports Server (NTRS)

    Zakhem, R.; Weidman, P. D.; Degroh, H. C., III

    1993-01-01

    An experimental study of low Reynolds number drag on laboratory models of dendrite fragments has been conducted. The terminal velocities of the dendrites undergoing free fall along their axis of symmetry were measured in a large Stokes flow facility. Corrections for wall interference give nearly linear drag vs Reynolds number curves. Corrections for both wall interference and inertia effects show that the dendrite Stokes settling velocities are always less than that of a sphere of equal mass and volume. In the Stokes limit, the settling speed ratio is found to correlate well with primary dendrite arm aspect ratio and a second dimensionless shape paremeter which serves as a measure of the fractal-like nature of the dendrite models. These results can be used to estimate equiaxed grain velocities and distance of travel in metal castings. The drag measurements may be used in numerical codes to calculate the movement of grains in a convecting melt in an effort to determine macrosegregation patterns caused by the sink/float mechanism.

  10. Structural and functional plasticity of dendritic spines – root or result of behavior?

    PubMed Central

    Gipson, Cassandra D.; Olive, M. Foster

    2016-01-01

    Dendritic spines are multifunctional integrative units of the nervous system and are highly diverse and dynamic in nature. Both internal and external stimuli influence dendritic spine density and morphology on the order of minutes. It is clear that the structural plasticity of dendritic spines is related to changes in synaptic efficacy, learning and memory, and other cognitive processes. However, it is currently unclear whether structural changes in dendritic spines are primary instigators of changes in specific behaviors, a consequence of behavioral changes, or both. In this review, we first review the basic structure and function of dendritic spines in the brain, as well as laboratory methods to characterize and quantify morphological changes in dendritic spines. We then discuss the existing literature on the temporal and functional relationship between changes in dendritic spines in specific brain regions and changes in specific behaviors mediated by those regions. Although technological advancements have allowed us to better understand the functional relevance of structural changes in dendritic spines that are influenced by environmental stimuli, the role of spine dynamics as an underlying driver or consequence of behavior still remains elusive. We conclude that while it is likely that structural changes in dendritic spines are both instigators and results of behavioral changes, improved research tools and methods are needed to experimentally and directly manipulate spine dynamics in order to more empirically delineate the relationship between spine structure and behavior. PMID:27561549

  11. Double-bromo and extraterminal (BET) domain proteins regulate dendrite morphology and mechanosensory function

    PubMed Central

    Bagley, Joshua A.; Yan, Zhiqiang; Zhang, Wei; Wildonger, Jill

    2014-01-01

    A complex array of genetic factors regulates neuronal dendrite morphology. Epigenetic regulation of gene expression represents a plausible mechanism to control pathways responsible for specific dendritic arbor shapes. By studying the Drosophila dendritic arborization (da) neurons, we discovered a role of the double-bromodomain and extraterminal (BET) family proteins in regulating dendrite arbor complexity. A loss-of-function mutation in the single Drosophila BET protein encoded by female sterile 1 homeotic [fs(1)h] causes loss of fine, terminal dendritic branches. Moreover, fs(1)h is necessary for the induction of branching caused by a previously identified transcription factor, Cut (Ct), which regulates subtype-specific dendrite morphology. Finally, disrupting fs(1)h function impairs the mechanosensory response of class III da sensory neurons without compromising the expression of the ion channel NompC, which mediates the mechanosensitive response. Thus, our results identify a novel role for BET family proteins in regulating dendrite morphology and a possible separation of developmental pathways specifying neural cell morphology and ion channel expression. Since the BET proteins are known to bind acetylated histone tails, these results also suggest a role of epigenetic histone modifications and the “histone code,” in regulating dendrite morphology. PMID:25184680

  12. Double-bromo and extraterminal (BET) domain proteins regulate dendrite morphology and mechanosensory function.

    PubMed

    Bagley, Joshua A; Yan, Zhiqiang; Zhang, Wei; Wildonger, Jill; Jan, Lily Yeh; Jan, Yuh Nung

    2014-09-01

    A complex array of genetic factors regulates neuronal dendrite morphology. Epigenetic regulation of gene expression represents a plausible mechanism to control pathways responsible for specific dendritic arbor shapes. By studying the Drosophila dendritic arborization (da) neurons, we discovered a role of the double-bromodomain and extraterminal (BET) family proteins in regulating dendrite arbor complexity. A loss-of-function mutation in the single Drosophila BET protein encoded by female sterile 1 homeotic [fs(1)h] causes loss of fine, terminal dendritic branches. Moreover, fs(1)h is necessary for the induction of branching caused by a previously identified transcription factor, Cut (Ct), which regulates subtype-specific dendrite morphology. Finally, disrupting fs(1)h function impairs the mechanosensory response of class III da sensory neurons without compromising the expression of the ion channel NompC, which mediates the mechanosensitive response. Thus, our results identify a novel role for BET family proteins in regulating dendrite morphology and a possible separation of developmental pathways specifying neural cell morphology and ion channel expression. Since the BET proteins are known to bind acetylated histone tails, these results also suggest a role of epigenetic histone modifications and the "histone code," in regulating dendrite morphology. © 2014 Bagley et al.; Published by Cold Spring Harbor Laboratory Press.

  13. Modified protocol including topical minocycline in orabase to manage medication-related osteonecrosis of the jaw cases.

    PubMed

    Karasneh, Jumana A; Al-Eryani, Kamal; Clark, Glenn T; Sedghizadeh, Parish P

    2016-10-01

    Management of medication-related osteone-crosis of the jaw (MRONJ) with active infection can be a serious challenge for clinicians. Based on Association of Oral and Maxillofacial Surgeons (AAOMS) recommendations, we have tested a modified treatment protocol using topical minocycline. Five patients diagnosed with stage II or III MRONJ lesions were willing to consent to our protocol. In addition to conventional treatment as suggested by the AAOMS, such as, surgical debridement, chlorhexidine irrigation, and systemic antibiotics, we applied 10% minocycline to the lesions once a week for sustained local antibiotic delivery. All five patients reported pain relief after the first minocycline application. Complete healing occurred in three patients; case three healed completely after the third application, one case continues to improve toward resolution and one withdraws due to other non-relevant medical problem. In this study, we are reporting favorable results using a modified protocol with topical minocycline to treat MRONJ lesions. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Three-dimensional spatial modeling of spines along dendritic networks in human cortical pyramidal neurons

    PubMed Central

    Larrañaga, Pedro; Benavides-Piccione, Ruth; Fernaud-Espinosa, Isabel; DeFelipe, Javier; Bielza, Concha

    2017-01-01

    We modeled spine distribution along the dendritic networks of pyramidal neurons in both basal and apical dendrites. To do this, we applied network spatial analysis because spines can only lie on the dendritic shaft. We expanded the existing 2D computational techniques for spatial analysis along networks to perform a 3D network spatial analysis. We analyzed five detailed reconstructions of adult human pyramidal neurons of the temporal cortex with a total of more than 32,000 spines. We confirmed that there is a spatial variation in spine density that is dependent on the distance to the cell body in all dendrites. Considering the dendritic arborizations of each pyramidal cell as a group of instances of the same observation (the neuron), we used replicated point patterns together with network spatial analysis for the first time to search for significant differences in the spine distribution of basal dendrites between different cells and between all the basal and apical dendrites. To do this, we used a recent variant of Ripley’s K function defined to work along networks. The results showed that there were no significant differences in spine distribution along basal arbors of the same neuron and along basal arbors of different pyramidal neurons. This suggests that dendritic spine distribution in basal dendritic arbors adheres to common rules. However, we did find significant differences in spine distribution along basal versus apical networks. Therefore, not only do apical and basal dendritic arborizations have distinct morphologies but they also obey different rules of spine distribution. Specifically, the results suggested that spines are more clustered along apical than in basal dendrites. Collectively, the results further highlighted that synaptic input information processing is different between these two dendritic domains. PMID:28662210

  15. Three-dimensional spatial modeling of spines along dendritic networks in human cortical pyramidal neurons.

    PubMed

    Anton-Sanchez, Laura; Larrañaga, Pedro; Benavides-Piccione, Ruth; Fernaud-Espinosa, Isabel; DeFelipe, Javier; Bielza, Concha

    2017-01-01

    We modeled spine distribution along the dendritic networks of pyramidal neurons in both basal and apical dendrites. To do this, we applied network spatial analysis because spines can only lie on the dendritic shaft. We expanded the existing 2D computational techniques for spatial analysis along networks to perform a 3D network spatial analysis. We analyzed five detailed reconstructions of adult human pyramidal neurons of the temporal cortex with a total of more than 32,000 spines. We confirmed that there is a spatial variation in spine density that is dependent on the distance to the cell body in all dendrites. Considering the dendritic arborizations of each pyramidal cell as a group of instances of the same observation (the neuron), we used replicated point patterns together with network spatial analysis for the first time to search for significant differences in the spine distribution of basal dendrites between different cells and between all the basal and apical dendrites. To do this, we used a recent variant of Ripley's K function defined to work along networks. The results showed that there were no significant differences in spine distribution along basal arbors of the same neuron and along basal arbors of different pyramidal neurons. This suggests that dendritic spine distribution in basal dendritic arbors adheres to common rules. However, we did find significant differences in spine distribution along basal versus apical networks. Therefore, not only do apical and basal dendritic arborizations have distinct morphologies but they also obey different rules of spine distribution. Specifically, the results suggested that spines are more clustered along apical than in basal dendrites. Collectively, the results further highlighted that synaptic input information processing is different between these two dendritic domains.

  16. Distal gap junctions and active dendrites can tune network dynamics.

    PubMed

    Saraga, Fernanda; Ng, Leo; Skinner, Frances K

    2006-03-01

    Gap junctions allow direct electrical communication between CNS neurons. From theoretical and modeling studies, it is well known that although gap junctions can act to synchronize network output, they can also give rise to many other dynamic patterns including antiphase and other phase-locked states. The particular network pattern that arises depends on cellular, intrinsic properties that affect firing frequencies as well as the strength and location of the gap junctions. Interneurons or GABAergic neurons in hippocampus are diverse in their cellular characteristics and have been shown to have active dendrites. Furthermore, parvalbumin-positive GABAergic neurons, also known as basket cells, can contact one another via gap junctions on their distal dendrites. Using two-cell network models, we explore how distal electrical connections affect network output. We build multi-compartment models of hippocampal basket cells using NEURON and endow them with varying amounts of active dendrites. Two-cell networks of these model cells as well as reduced versions are explored. The relationship between intrinsic frequency and the level of active dendrites allows us to define three regions based on what sort of network dynamics occur with distal gap junction coupling. Weak coupling theory is used to predict the delineation of these regions as well as examination of phase response curves and distal dendritic polarization levels. We find that a nonmonotonic dependence of network dynamic characteristics (phase lags) on gap junction conductance occurs. This suggests that distal electrical coupling and active dendrite levels can control how sensitive network dynamics are to gap junction modulation. With the extended geometry, gap junctions located at more distal locations must have larger conductances for pure synchrony to occur. Furthermore, based on simulations with heterogeneous networks, it may be that one requires active dendrites if phase-locking is to occur in networks formed

  17. Location-dependent excitatory synaptic interactions in pyramidal neuron dendrites.

    PubMed

    Behabadi, Bardia F; Polsky, Alon; Jadi, Monika; Schiller, Jackie; Mel, Bartlett W

    2012-01-01

    Neocortical pyramidal neurons (PNs) receive thousands of excitatory synaptic contacts on their basal dendrites. Some act as classical driver inputs while others are thought to modulate PN responses based on sensory or behavioral context, but the biophysical mechanisms that mediate classical-contextual interactions in these dendrites remain poorly understood. We hypothesized that if two excitatory pathways bias their synaptic projections towards proximal vs. distal ends of the basal branches, the very different local spike thresholds and attenuation factors for inputs near and far from the soma might provide the basis for a classical-contextual functional asymmetry. Supporting this possibility, we found both in compartmental models and electrophysiological recordings in brain slices that the responses of basal dendrites to spatially separated inputs are indeed strongly asymmetric. Distal excitation lowers the local spike threshold for more proximal inputs, while having little effect on peak responses at the soma. In contrast, proximal excitation lowers the threshold, but also substantially increases the gain of distally-driven responses. Our findings support the view that PN basal dendrites possess significant analog computing capabilities, and suggest that the diverse forms of nonlinear response modulation seen in the neocortex, including uni-modal, cross-modal, and attentional effects, could depend in part on pathway-specific biases in the spatial distribution of excitatory synaptic contacts onto PN basal dendritic arbors.

  18. Non-Markovian Model for Transport and Reactions of Particles in Spiny Dendrites

    NASA Astrophysics Data System (ADS)

    Fedotov, Sergei; Méndez, Vicenç

    2008-11-01

    Motivated by the experiments [Santamaria , Neuron 52, 635 (2006)NERNET0896-627310.1016/j.neuron.2006.10.025] that indicated the possibility of subdiffusive transport of molecules along dendrites of cerebellar Purkinje cells, we develop a mesoscopic model for transport and chemical reactions of particles in spiny dendrites. The communication between spines and a parent dendrite is described by a non-Markovian random process and, as a result, the overall movement of particles can be subdiffusive. A system of integrodifferential equations is derived for the particles densities in dendrites and spines. This system involves the spine-dendrite interaction term which describes the memory effects and nonlocality in space. We consider the impact of power-law waiting time distributions on the transport of biochemical signals and mechanism of the accumulation of plasticity-inducing signals inside spines.

  19. Silicon dendritic web material

    NASA Technical Reports Server (NTRS)

    Meier, D. L.; Campbell, R. B.; Sienkiewicz, L. J.; Rai-Choudhury, P.

    1982-01-01

    The development of a low cost and reliable contact system for solar cells and the fabrication of several solar cell modules using ultrasonic bonding for the interconnection of cells and ethylene vinyl acetate as the potting material for module encapsulation are examined. The cells in the modules were made from dendritic web silicon. To reduce cost, the electroplated layer of silver was replaced with an electroplated layer of copper. The modules that were fabricated used the evaporated Ti, Pd, Ag and electroplated Cu (TiPdAg/Cu) system. Adherence of Ni to Si is improved if a nickel silicide can be formed by heat treatment. The effectiveness of Ni as a diffusion barrier to Cu and the ease with which nickel silicide is formed is discussed. The fabrication of three modules using dendritic web silicon and employing ultrasonic bonding for interconnecting calls and ethylene vinyl acetate as the potting material is examined.

  20. Silicon dendritic web material

    NASA Astrophysics Data System (ADS)

    Meier, D. L.; Campbell, R. B.; Sienkiewicz, L. J.; Rai-Choudhury, P.

    1982-03-01

    The development of a low cost and reliable contact system for solar cells and the fabrication of several solar cell modules using ultrasonic bonding for the interconnection of cells and ethylene vinyl acetate as the potting material for module encapsulation are examined. The cells in the modules were made from dendritic web silicon. To reduce cost, the electroplated layer of silver was replaced with an electroplated layer of copper. The modules that were fabricated used the evaporated Ti, Pd, Ag and electroplated Cu (TiPdAg/Cu) system. Adherence of Ni to Si is improved if a nickel silicide can be formed by heat treatment. The effectiveness of Ni as a diffusion barrier to Cu and the ease with which nickel silicide is formed is discussed. The fabrication of three modules using dendritic web silicon and employing ultrasonic bonding for interconnecting calls and ethylene vinyl acetate as the potting material is examined.

  1. D1 Receptors Regulate Dendritic Morphology in Normal and Stressed Prelimbic Cortex

    PubMed Central

    Lin, Grant L.; Borders, Candace B.; Lundewall, Leslie J.; Wellman, Cara L.

    2014-01-01

    Both stress and dysfunction of prefrontal cortex are linked to psychological disorders, and structure and function of medial prefrontal cortex (mPFC) are altered by stress. Chronic restraint stress causes dendritic retraction in the prelimbic region (PL) of mPFC in rats. Dopamine release in mPFC increases during stress, and chronic administration of dopaminergic agonists results in dendritic remodeling. Thus, stress-induced alterations in dopaminergic transmission in PL may contribute to dendritic remodeling. We examined the effects of dopamine D1 receptor (D1R) blockade in PL during daily restraint stress on dendritic morphology in PL. Rats either underwent daily restraint stress (3 h/day, 10 days) or remained unstressed. In each group, rats received daily infusions of either the D1R antagonist SCH23390 or vehicle into PL prior to restraint; unstressed and stressed rats that had not undergone surgery were also examined. On the final day of restraint, rats were euthanized and brains were processed for Golgi histology. Pyramidal neurons in PL were reconstructed and dendritic morphology was quantified. Vehicle-infused stressed rats demonstrated dendritic retraction compared to unstressed rats, and D1R blockade in PL prevented this effect. Moreover, in unstressed rats, D1R blockade produced dendritic retraction. These effects were not due to attenuation of the HPA axis response to acute stress: plasma corticosterone levels in a separate group of rats that underwent acute restraint stress with or without D1R blockade were not significantly different. These findings indicate that dopaminergic transmission in mPFC during stress contributes directly to the stress-induced retraction of apical dendrites, while dopamine transmission in the absence of stress is important in maintaining normal dendritic morphology. PMID:25305546

  2. D1 receptors regulate dendritic morphology in normal and stressed prelimbic cortex.

    PubMed

    Lin, Grant L; Borders, Candace B; Lundewall, Leslie J; Wellman, Cara L

    2015-01-01

    Both stress and dysfunction of prefrontal cortex are linked to psychological disorders, and structure and function of medial prefrontal cortex (mPFC) are altered by stress. Chronic restraint stress causes dendritic retraction in the prelimbic region (PL) of mPFC in rats. Dopamine release in mPFC increases during stress, and chronic administration of dopaminergic agonists results in dendritic remodeling. Thus, stress-induced alterations in dopaminergic transmission in PL may contribute to dendritic remodeling. We examined the effects of dopamine D1 receptor (D1R) blockade in PL during daily restraint stress on dendritic morphology in PL. Rats either underwent daily restraint stress (3h/day, 10 days) or remained unstressed. In each group, rats received daily infusions of either the D1R antagonist SCH23390 or vehicle into PL prior to restraint; unstressed and stressed rats that had not undergone surgery were also examined. On the final day of restraint, rats were euthanized and brains were processed for Golgi histology. Pyramidal neurons in PL were reconstructed and dendritic morphology was quantified. Vehicle-infused stressed rats demonstrated dendritic retraction compared to unstressed rats, and D1R blockade in PL prevented this effect. Moreover, in unstressed rats, D1R blockade produced dendritic retraction. These effects were not due to attenuation of the HPA axis response to acute stress: plasma corticosterone levels in a separate group of rats that underwent acute restraint stress with or without D1R blockade were not significantly different. These findings indicate that dopaminergic transmission in mPFC during stress contributes directly to the stress-induced retraction of apical dendrites, while dopamine transmission in the absence of stress is important in maintaining normal dendritic morphology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Apparatus for growing a dendritic web

    DOEpatents

    Duncan, Charles S.; Piotrowski, Paul A.; Skutch, Maria E.; McHugh, James P.

    1983-06-21

    A melt system including a susceptor-crucible assembly having improved gradient control when melt replenishment is used during dendritic web growth. The improvement lies in the formation of a thermal barrier in the base of the receptor which is in the form of a vertical slot in the region of the susceptor underlying the crucible at the location of a compartmental separator dividing the crucible into a growth compartment and a melt replenishment compartment. The result achieved is a step change in temperature gradient in the melt thereby providing a more uniform temperature in the growth compartment from which the dendritic web is drawn.

  4. Interactions of Cryptococcus with Dendritic Cells

    PubMed Central

    Wozniak, Karen L.

    2018-01-01

    The fungal pathogens Cryptococcus neoformans and Cryptococcus gattii can cause life-threatening infections in immune compromised and immune competent hosts. These pathogens enter the host via inhalation, and respiratory tract innate immune cells such as dendritic cells (DCs) are one of the first host cells they encounter. The interactions between Cryptococcus and innate immune cells play a critical role in the progression of disease in the host. This review will focus specifically on the interactions between Cryptococcus and dendritic cells (DCs), including recognition/processing by DCs, effects of immune mediators on DC recruitment and activity, and the potential for DC vaccination against cryptococcosis. PMID:29543719

  5. Correlation between bone mineral density of jaws and skeletal sites in an Iranian population using dual X-ray energy absorptiometry.

    PubMed

    Esfahanizadeh, Nasrin; Davaie, Sotoudeh; Rokn, A R; Daneshparvar, Hamid Reza; Bayat, Noushin; Khondi, Nasrin; Ajvadi, Sara; Ghandi, Mostafa

    2013-07-01

    The aim of the present study was to evaluate the relationship between the bone density of various regions of jaws and skeletal bones. A total of 110 patients with a mean age of 55.01 ± 10.77 years were selected for the purpose of the present descriptive study. Dual X-ray Energy Absorptiometry (DXA) was carried out to determine bone mineral density (BMD) of the femur and lumbar vertebrae. Then all the subjects underwent DXA of the jaw bones and BMD values were determined at four jaw regions. Data were analyzed by SPSS 16 statistical software, and the correlation between the various BMD values was determined by Pearson's correlation coefficient. The results showed that 42.7% of females had normal BMD values in the femur, and in vertebrae, 20% were osteopenic and 37.3% suffered from osteoporosis, with statistically significant differences in the BMD values of the jaws between the three above-mentioned groups (P < 0.001). There was an increasing tendency toward osteopenia and osteoporosis with age. There was a positive correlation between BMD values of the femur and lumbar vertebrae and those of all the jaw regions under study (P < 0.005). There was a negative correlation (P < 0.01) between age and the BMD values of the femur, lumbar vertebrae and anterior maxilla. The bone density of the maxilla and mandible and presence of osteoporosis or osteopenia in these bones might reflect the same problem in skeletal bones.

  6. Dendritic Spine Pathology in Schizophrenia

    PubMed Central

    Glausier, Jill R.; Lewis, David A.

    2012-01-01

    Schizophrenia is a neurodevelopmental disorder whose clinical features include impairments in perception, cognition and motivation. These impairments reflect alterations in neuronal circuitry within and across multiple brain regions that are due, at least in part, to deficits in dendritic spines, the site of most excitatory synaptic connections. Dendritic spine alterations have been identified in multiple brain regions in schizophrenia, but are best characterized in layer 3 of the neocortex, where pyramidal cell spine density is lower. These spine deficits appear to arise during development, and thus are likely the result of disturbances in the molecular mechanisms that underlie spine formation, pruning, and/or maintenance. Each of these mechanisms may provide insight into novel therapeutic targets for preventing or repairing the alterations in neural circuitry that mediate the debilitating symptoms of schizophrenia. PMID:22546337

  7. Morphology of the jaw, suspensorial, and opercle musculature of Beloniformes and related species (Teleostei: Acanthopterygii), with a special reference to the m. adductor mandibulae complex.

    PubMed

    Werneburg, Ingmar

    2015-01-01

    The taxon Beloniformes represents a heterogeneous group of teleost fishes that show an extraordinary diversity of jaw morphology. I present new anatomical descriptions of the jaw musculature in six selected beloniforms and four closely related species. A reduction of the external jaw adductor (A1) and a changed morphology of the intramandibular musculature were found in many Beloniformes. This might be correlated with the progressively reduced mobility of the upper and lower jaw bones. The needlefishes and sauries, which are characterised by extremely elongated and stiffened jaws, show several derived characters, which in combination enable the capture of fish at high velocity. The ricefishes are characterised by several derived and many plesiomorphic characters that make broad scale comparisons difficult. Soft tissue characters are highly diverse among hemiramphids and flying fishes reflecting the uncertainty about their phylogenetic position and interrelationship. The morphological findings presented herein may help to interpret future phylogenetic analyses using cranial musculature in Beloniformes.

  8. 3D morphology-based clustering and simulation of human pyramidal cell dendritic spines.

    PubMed

    Luengo-Sanchez, Sergio; Fernaud-Espinosa, Isabel; Bielza, Concha; Benavides-Piccione, Ruth; Larrañaga, Pedro; DeFelipe, Javier

    2018-06-13

    The dendritic spines of pyramidal neurons are the targets of most excitatory synapses in the cerebral cortex. They have a wide variety of morphologies, and their morphology appears to be critical from the functional point of view. To further characterize dendritic spine geometry, we used in this paper over 7,000 individually 3D reconstructed dendritic spines from human cortical pyramidal neurons to group dendritic spines using model-based clustering. This approach uncovered six separate groups of human dendritic spines. To better understand the differences between these groups, the discriminative characteristics of each group were identified as a set of rules. Model-based clustering was also useful for simulating accurate 3D virtual representations of spines that matched the morphological definitions of each cluster. This mathematical approach could provide a useful tool for theoretical predictions on the functional features of human pyramidal neurons based on the morphology of dendritic spines.

  9. Dendritic cell and histiocytic neoplasms: biology, diagnosis, and treatment.

    PubMed

    Dalia, Samir; Shao, Haipeng; Sagatys, Elizabeth; Cualing, Hernani; Sokol, Lubomir

    2014-10-01

    Dendritic and histiocytic cell neoplasms are rare malignancies that make up less than 1% of all neoplasms arising in lymph nodes or soft tissues. These disorders have distinctive disease biology, clinical presentations, pathology, and unique treatment options. Morphology and immunohistochemistry evaluation by a hematopathologist remains key for differentiating between these neoplasms. In this review, we describe tumor biology, clinical features, pathology, and treatment of follicular dendritic cell sarcoma, interdigitating dendritic cell sarcoma, indeterminate dendritic cell sarcoma, histiocytic sarcoma, fibroblastic reticular cell tumors, and disseminated juvenile xanthogranuloma. A literature search for articles published between 1990 and 2013 was undertaken. Articles are reviewed and salient findings are systematically described. Patients with dendritic cell and histiocytic neoplasms have distinct but variable clinical presentations; however, because many tumors have recently been recognized, their true incidence is uncertain. Although the clinical features can present in many organs, most occur in the lymph nodes or skin. Most cases are unifocal and solitary presentations have good prognoses with surgical resection. The role of adjuvant therapy in these disorders remains unclear. In cases with disseminated disease, prognosis is poor and data on treatment options are limited, although chemotherapy and referral to a tertiary care center should be considered. Excisional biopsy is the preferred method of specimen collection for tissue diagnosis, and immunohistochemistry is the most important diagnostic method for differentiating these disorders from other entities. Dendritic cell and histiocytic cell neoplasms are rare hematological disorders with variable clinical presentations and prognoses. Immunohistochemistry remains important for diagnosis. Larger pooled analyses or clinical trials are needed to better understand optimal treatment options in these rare

  10. hamlet, a binary genetic switch between single- and multiple- dendrite neuron morphology.

    PubMed

    Moore, Adrian W; Jan, Lily Yeh; Jan, Yuh Nung

    2002-08-23

    The dendritic morphology of neurons determines the number and type of inputs they receive. In the Drosophila peripheral nervous system (PNS), the external sensory (ES) neurons have a single nonbranched dendrite, whereas the lineally related multidendritic (MD) neurons have extensively branched dendritic arbors. We report that hamlet is a binary genetic switch between these contrasting morphological types. In hamlet mutants, ES neurons are converted to an MD fate, whereas ectopic hamlet expression in MD precursors results in transformation of MD neurons into ES neurons. Moreover, hamlet expression induced in MD neurons undergoing dendrite outgrowth drastically reduces arbor branching.

  11. Dendritic and Axonal Wiring Optimization of Cortical GABAergic Interneurons.

    PubMed

    Anton-Sanchez, Laura; Bielza, Concha; Benavides-Piccione, Ruth; DeFelipe, Javier; Larrañaga, Pedro

    2016-10-01

    The way in which a neuronal tree expands plays an important role in its functional and computational characteristics. We aimed to study the existence of an optimal neuronal design for different types of cortical GABAergic neurons. To do this, we hypothesized that both the axonal and dendritic trees of individual neurons optimize brain connectivity in terms of wiring length. We took the branching points of real three-dimensional neuronal reconstructions of the axonal and dendritic trees of different types of cortical interneurons and searched for the minimal wiring arborization structure that respects the branching points. We compared the minimal wiring arborization with real axonal and dendritic trees. We tested this optimization problem using a new approach based on graph theory and evolutionary computation techniques. We concluded that neuronal wiring is near-optimal in most of the tested neurons, although the wiring length of dendritic trees is generally nearer to the optimum. Therefore, wiring economy is related to the way in which neuronal arborizations grow irrespective of the marked differences in the morphology of the examined interneurons.

  12. Dendritic space-filling requires a neuronal type-specific extracellular permissive signal in Drosophila.

    PubMed

    Poe, Amy R; Tang, Lingfeng; Wang, Bei; Li, Yun; Sapar, Maria L; Han, Chun

    2017-09-19

    Neurons sometimes completely fill available space in their receptive fields with evenly spaced dendrites to uniformly sample sensory or synaptic information. The mechanisms that enable neurons to sense and innervate all space in their target tissues are poorly understood. Using Drosophila somatosensory neurons as a model, we show that heparan sulfate proteoglycans (HSPGs) Dally and Syndecan on the surface of epidermal cells act as local permissive signals for the dendritic growth and maintenance of space-filling nociceptive C4da neurons, allowing them to innervate the entire skin. Using long-term time-lapse imaging with intact Drosophila larvae, we found that dendrites grow into HSPG-deficient areas but fail to stay there. HSPGs are necessary to stabilize microtubules in newly formed high-order dendrites. In contrast to C4da neurons, non-space-filling sensory neurons that develop in the same microenvironment do not rely on HSPGs for their dendritic growth. Furthermore, HSPGs do not act by transporting extracellular diffusible ligands or require leukocyte antigen-related (Lar), a receptor protein tyrosine phosphatase (RPTP) and the only known Drosophila HSPG receptor, for promoting dendritic growth of space-filling neurons. Interestingly, another RPTP, Ptp69D, promotes dendritic growth of C4da neurons in parallel to HSPGs. Together, our data reveal an HSPG-dependent pathway that specifically allows dendrites of space-filling neurons to innervate all target tissues in Drosophila .

  13. [Acupuncture combined with magnetic therapy for treatment of temple-jaw joint dysfunction].

    PubMed

    Wang, Xiao-Hui; Zhang, Wen

    2009-04-01

    To compare clinical therapeutic effects of acupuncture combined with magnetic therapy and simple magnetic therapy on temple-jaw joint dysfunction. Eighty-two cases were randomly divided into an observation group (n = 52) and a control group (n = 30). The observation group was treated with acupuncture at Xiaguan (ST 7), Jiache (ST 6), Hegu (LI 4), etc. and AL-2 low frequency electromagnetic comprehensive treatment instrument; the control group was treated with AL-2 low frequency electromagnetic comprehensive treatment instrument. The cured and markedly effective rate of 90.4% in the observation group was significantly better than 66.7% in the control group (P < 0.01), and the total effective rate of 98.1% in the observation group was significantly better than 86.7% in the control group (P < 0.05). The therapeutic effect of acupuncture combined with magnetic therapy is significantly better than that of the simple magnetic therapy on temple-jaw joint dysfunction.

  14. Inhibitory dendrite dynamics as a general feature of the adult cortical microcircuit.

    PubMed

    Chen, Jerry L; Flanders, Genevieve H; Lee, Wei-Chung Allen; Lin, Walter C; Nedivi, Elly

    2011-08-31

    The mammalian neocortex is functionally subdivided into architectonically distinct regions that process various types of information based on their source of afferent input. Yet, the modularity of neocortical organization in terms of cell type and intrinsic circuitry allows afferent drive to continuously reassign cortical map space. New aspects of cortical map plasticity include dynamic turnover of dendritic spines on pyramidal neurons and remodeling of interneuron dendritic arbors. While spine remodeling occurs in multiple cortical regions, it is not yet known whether interneuron dendrite remodeling is common across primary sensory and higher-level cortices. It is also unknown whether, like pyramidal dendrites, inhibitory dendrites respect functional domain boundaries. Given the importance of the inhibitory circuitry to adult cortical plasticity and the reorganization of cortical maps, we sought to address these questions by using two-photon microscopy to monitor interneuron dendritic arbors of thy1-GFP-S transgenic mice expressing GFP in neurons sparsely distributed across the superficial layers of the neocortex. We find that interneuron dendritic branch tip remodeling is a general feature of the adult cortical microcircuit, and that remodeling rates are similar across primary sensory regions of different modalities, but may differ in magnitude between primary sensory versus higher cortical areas. We also show that branch tip remodeling occurs in bursts and respects functional domain boundaries.

  15. Relationships among nocturnal jaw muscle activities, decreased esophageal pH, and sleep positions.

    PubMed

    Miyawaki, Shouichi; Tanimoto, Yuko; Araki, Yoshiko; Katayama, Akira; Imai, Mikako; Takano-Yamamoto, Teruko

    2004-11-01

    The purpose of this study was to examine the relationships among nocturnal jaw muscle activities, decreased esophageal pH, and sleep positions. Twelve adult volunteers, including 4 bruxism patients, participated in this study. Portable pH monitoring, electromyography of the temporal muscle, and audio-video recordings were conducted during the night in the subjects' homes. Rhythmic masticatory muscle activity (RMMA) episodes were observed most frequently, with single short-burst episodes the second most frequent. The frequencies of RMMA, single short-burst, and clenching episodes were significantly higher during decreased esophageal pH episodes than those during other times. Both the electromyography and the decreased esophageal pH episodes were most frequently observed in the supine position. These results suggest that most jaw muscle activities, ie, RMMA, single short-burst, and clenching episodes, occur in relation to gastroesophageal reflux mainly in the supine position.

  16. Interaction between Foxc1 and Fgf8 during Mammalian Jaw Patterning and in the Pathogenesis of Syngnathia

    PubMed Central

    Inman, Kimberly E.; Purcell, Patricia; Kume, Tsutomu; Trainor, Paul A.

    2013-01-01

    Syngnathia (bony fusion of the upper and lower jaw) is a rare human congenital condition, with fewer than sixty cases reported in the literature. Syngnathia typically presents as part of a complex syndrome comprising widespread oral and maxillofacial anomalies, but it can also occur in isolation. Most cartilage, bone, and connective tissue of the head and face is derived from neural crest cells. Hence, congenital craniofacial anomalies are often attributed to defects in neural crest cell formation, survival, migration, or differentiation. The etiology and pathogenesis of syngnathia however remains unknown. Here, we report that Foxc1 null embryos display bony syngnathia together with defects in maxillary and mandibular structures, and agenesis of the temporomandibular joint (TMJ). In the absence of Foxc1, neural crest cell derived osteogenic patterning is affected, as osteoblasts develop ectopically in the maxillary prominence and fuse with the dentary bone. Furthermore, we observed that the craniofacial musculature is also perturbed in Foxc1 null mice, which highlights the complex tissue interactions required for proper jaw development. We present evidence that Foxc1 and Fgf8 genetically interact and that Fgf8 dosage is associated with variation in the syngnathic phenotype. Together our data demonstrates that Foxc1 – Fgf8 signaling regulates mammalian jaw patterning and provides a mechanistic basis for the pathogenesis of syngnathia. Furthermore, our work provides a framework for understanding jaw patterning and the etiology of other congenital craniofacial anomalies, including temporomandibular joint agenesis. PMID:24385915

  17. The stochastic nature of action potential backpropagation in apical tuft dendrites.

    PubMed

    Short, Shaina M; Oikonomou, Katerina D; Zhou, Wen-Liang; Acker, Corey D; Popovic, Marko A; Zecevic, Dejan; Antic, Srdjan D

    2017-08-01

    In cortical pyramidal neurons, backpropagating action potentials (bAPs) supply Ca 2+ to synaptic contacts on dendrites. To determine whether the efficacy of AP backpropagation into apical tuft dendrites is stable over time, we performed dendritic Ca 2+ and voltage imaging in rat brain slices. We found that the amplitude of bAP-Ca 2+ in apical tuft branches was unstable, given that it varied from trial to trial (termed "bAP-Ca 2+ flickering"). Small perturbations in dendritic physiology, such as spontaneous synaptic inputs, channel inactivation, or temperature-induced changes in channel kinetics, can cause bAP flickering. In the tuft branches, the density of Na + and K + channels was sufficient to support local initiation of fast spikelets by glutamate iontophoresis. We quantified the time delay between the somatic AP burst and the peak of dendritic Ca 2+ transient in the apical tuft, because this delay is important for induction of spike-timing dependent plasticity. Depending on the frequency of the somatic AP triplets, Ca 2+ signals peaked in the apical tuft 20-50 ms after the 1st AP in the soma. Interestingly, at low frequency (<20 Hz), the Ca 2+ peaked sooner than at high frequency, because only the 1st AP invaded tuft. Activation of dendritic voltage-gated Ca 2+ channels is sensitive to the duration of the dendritic voltage transient. In apical tuft branches, small changes in the duration of bAP voltage waveforms cause disproportionately large increases in dendritic Ca 2+ influx (bAP-Ca 2+ flickering). The stochastic nature of bAP-Ca 2+ adds a new perspective on the mechanisms by which pyramidal neurons combine inputs arriving at different cortical layers. NEW & NOTEWORTHY The bAP-Ca 2+ signal amplitudes in some apical tuft branches randomly vary from moment to moment. In repetitive measurements, successful AP invasions are followed by complete failures. Passive spread of voltage from the apical trunk into the tuft occasionally reaches the threshold for local

  18. The E3 ligase c-Cbl regulates dendritic cell activation

    PubMed Central

    Chiou, Shin-Heng; Shahi, Payam; Wagner, Ryan T; Hu, Hongbo; Lapteva, Natalia; Seethammagari, Mamatha; Sun, Shao-Cong; Levitt, Jonathan M; Spencer, David M

    2011-01-01

    The activation of innate and adaptive immunity is always balanced by inhibitory signalling mechanisms to maintain tissue integrity. We have identified the E3 ligase c-Cbl––known for its roles in regulating lymphocyte signalling––as a modulator of dendritic cell activation. In c-Cbl-deficient dendritic cells, Toll-like receptor-induced expression of proinflammatory factors, such as interleukin-12, is increased, correlating with a greater potency of dendritic-cell-based vaccines against established tumours. This proinflammatory phenotype is accompanied by an increase in nuclear factor (NF)-κB activity. In addition, c-Cbl deficiency reduces both p50 and p105 levels, which have been shown to modulate the stimulatory function of NF-κB. Our data indicate that c-Cbl has a crucial, RING-domain-dependent role in regulating dendritic cell maturation, probably by facilitating the regulatory function of p105 and/or p50. PMID:21799517

  19. Dendrites are dispensable for basic motoneuron function but essential for fine tuning of behavior.

    PubMed

    Ryglewski, Stefanie; Kadas, Dimitrios; Hutchinson, Katie; Schuetzler, Natalie; Vonhoff, Fernando; Duch, Carsten

    2014-12-16

    Dendrites are highly complex 3D structures that define neuronal morphology and connectivity and are the predominant sites for synaptic input. Defects in dendritic structure are highly consistent correlates of brain diseases. However, the precise consequences of dendritic structure defects for neuronal function and behavioral performance remain unknown. Here we probe dendritic function by using genetic tools to selectively abolish dendrites in identified Drosophila wing motoneurons without affecting other neuronal properties. We find that these motoneuron dendrites are unexpectedly dispensable for synaptic targeting, qualitatively normal neuronal activity patterns during behavior, and basic behavioral performance. However, significant performance deficits in sophisticated motor behaviors, such as flight altitude control and switching between discrete courtship song elements, scale with the degree of dendritic defect. To our knowledge, our observations provide the first direct evidence that complex dendrite architecture is critically required for fine-tuning and adaptability within robust, evolutionarily constrained behavioral programs that are vital for mating success and survival. We speculate that the observed scaling of performance deficits with the degree of structural defect is consistent with gradual increases in intellectual disability during continuously advancing structural deficiencies in progressive neurological disorders.

  20. Feeding ecology underlies the evolution of cichlid jaw mobility.

    PubMed

    Martinez, Christopher M; McGee, Matthew D; Borstein, Samuel R; Wainwright, Peter C

    2018-06-19

    The fish feeding apparatus is among the most diverse functional systems in vertebrates. While morphological and mechanical variation of feeding systems are well studied, we know far less about the diversity of the motions that they produce. We explored patterns of feeding movements in African cichlids from Lakes Malawi and Tanganyika, asking whether the degree of kinesis is associated with dietary habits of species. We used geometric morphometrics to measure feeding kinesis as trajectories of shape change, based on 326 high-speed videos in 56 species. Cranial morphology was significantly related to feeding movements, both of which were distributed along a dietary axis associated with prey evasiveness. Small-mouthed cichlids that feed by scraping algae and detritus from rocks had low kinesis strikes, while large-mouthed species that eat large, evasive prey (fishes and shrimps) generated the greatest kinesis. Despite having higher overall kinesis, comparisons of trajectory shape (linearity) revealed that cichlids that eat mobile prey also displayed more kinematically conserved, or efficient, feeding motions. Our work indicates that prey evasiveness is strongly related to the evolution of cichlid jaw mobility, suggesting that this same relationship may explain the origins and diversity of highly kinetic jaws that characterize the super-radiation of spiny-rayed fishes. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  1. Rapamycin Reverses Status Epilepticus-Induced Memory Deficits and Dendritic Damage

    PubMed Central

    Brewster, Amy L.; Lugo, Joaquin N.; Patil, Vinit V.; Lee, Wai L.; Qian, Yan; Vanegas, Fabiola; Anderson, Anne E.

    2013-01-01

    Cognitive impairments are prominent sequelae of prolonged continuous seizures (status epilepticus; SE) in humans and animal models. While often associated with dendritic injury, the underlying mechanisms remain elusive. The mammalian target of rapamycin complex 1 (mTORC1) pathway is hyperactivated following SE. This pathway modulates learning and memory and is associated with regulation of neuronal, dendritic, and glial properties. Thus, in the present study we tested the hypothesis that SE-induced mTORC1 hyperactivation is a candidate mechanism underlying cognitive deficits and dendritic pathology seen following SE. We examined the effects of rapamycin, an mTORC1 inhibitor, on the early hippocampal-dependent spatial learning and memory deficits associated with an episode of pilocarpine-induced SE. Rapamycin-treated SE rats performed significantly better than the vehicle-treated rats in two spatial memory tasks, the Morris water maze and the novel object recognition test. At the molecular level, we found that the SE-induced increase in mTORC1 signaling was localized in neurons and microglia. Rapamycin decreased the SE-induced mTOR activation and attenuated microgliosis which was mostly localized within the CA1 area. These findings paralleled a reversal of the SE-induced decreases in dendritic Map2 and ion channels levels as well as improved dendritic branching and spine density in area CA1 following rapamycin treatment. Taken together, these findings suggest that mTORC1 hyperactivity contributes to early hippocampal-dependent spatial learning and memory deficits and dendritic dysregulation associated with SE. PMID:23536771

  2. Engineering Dendritic Cells to Enhance Cancer Immunotherapy

    PubMed Central

    Boudreau, Jeanette E; Bonehill, Aude; Thielemans, Kris; Wan, Yonghong

    2011-01-01

    Cancer immunotherapy aims to establish immune-mediated control of tumor growth by priming T-cell responses to target tumor-associated antigens. Three signals are required for T-cell activation: (i) presentation of cognate antigen in self MHC molecules; (ii) costimulation by membrane-bound receptor-ligand pairs; and (iii) soluble factors to direct polarization of the ensuing immune response. The ability of dendritic cells (DCs) to provide all three signals required for T-cell activation makes them an ideal cancer vaccine platform. Several strategies have been developed to enhance and control antigen presentation, costimulation, and cytokine production. In this review, we discuss progress toward developing DC-based cancer vaccines by genetic modification using RNA, DNA, and recombinant viruses. Furthermore, the ability of DC-based vaccines to activate natural killer (NK) and B-cells, and the impact of gene modification strategies on these populations is described. Clinical trials using gene-modified DCs have shown modest results, therefore, further considerations for DC manipulation to enhance their clinical efficacy are also discussed. PMID:21468005

  3. Occurrences of dendritic gold at the McLaughlin Mine hot-spring gold deposit

    NASA Astrophysics Data System (ADS)

    Sherlock, R. L.; Lehrman, N. J.

    1995-06-01

    Two styles of gold dendrites are variably developed at the McLaughlin Mine. The most abundant occurrence is hosted by amber-coloured hydrocarbon-rich opal. Silica likely precipitated from a boiling hydrothermal fluid and complexed with immiscible hydrocarbons forming an amorphous hydrocarbon-silica phase. This phase likely scavenged particulate gold by electrostatic attraction to the hydrocarbon-silica phase. The dendritic nature of the gold is secondary and is the result of dewatering of the amorphous hydrocarbon-silica phase and crystallization of gold into syneresis fractures. The second style of dendritic gold is hosted within vein swarms that focused large volumes of fluid flow. The dendrites occur along with hydrocarbon-rich silica at the upper contact of the vein margins which isolated the dendrites allowing sufficient time for them to grow. In a manner similar to the amber-coloured opal, the dendrites may have formed by scavenging particulate gold by electrostatic attraction to the hydrocarbon-silica phase.

  4. Modeling of convection, temperature distribution and dendritic growth in glass-fluxed nickel melts

    NASA Astrophysics Data System (ADS)

    Gao, Jianrong; Kao, Andrew; Bojarevics, Valdis; Pericleous, Koulis; Galenko, Peter K.; Alexandrov, Dmitri V.

    2017-08-01

    Melt flow is often quoted as the reason for a discrepancy between experiment and theory on dendritic growth kinetics at low undercoolings. But this flow effect is not justified for glass-fluxed melts where the flow field is weaker. In the present work, we modeled the thermal history, flow pattern and dendritic structure of a glass-fluxed nickel sample by magnetohydrodynamics calculations. First, the temperature distribution and flow structure in the molten and undercooled melt were simulated by reproducing the observed thermal history of the sample prior to solidification. Then the dendritic structure and surface temperature of the recalescing sample were simulated. These simulations revealed a large thermal gradient crossing the sample, which led to an underestimation of the real undercooling for dendritic growth in the bulk volume of the sample. By accounting for this underestimation, we recalculated the dendritic tip velocities in the glass-fluxed nickel melt using a theory of three-dimensional dendritic growth with convection and concluded an improved agreement between experiment and theory.

  5. Democracy-independence trade-off in oscillating dendrites and its implications for grid cells.

    PubMed

    Remme, Michiel W H; Lengyel, Máté; Gutkin, Boris S

    2010-05-13

    Dendritic democracy and independence have been characterized for near-instantaneous processing of synaptic inputs. However, a wide class of neuronal computations requires input integration on long timescales. As a paradigmatic example, entorhinal grid fields have been thought to be generated by the democratic summation of independent dendritic oscillations performing direction-selective path integration. We analyzed how multiple dendritic oscillators embedded in the same neuron integrate inputs separately and determine somatic membrane voltage jointly. We found that the interaction of dendritic oscillations leads to phase locking, which sets an upper limit on the timescale for independent input integration. Factors that increase this timescale also decrease the influence that the dendritic oscillations exert on somatic voltage. In entorhinal stellate cells, interdendritic coupling dominates and causes these cells to act as single oscillators. Our results suggest a fundamental trade-off between local and global processing in dendritic trees integrating ongoing signals. Copyright 2010 Elsevier Inc. All rights reserved.

  6. Bayesian Morphological Clock Methods Resurrect Placoderm Monophyly and Reveal Rapid Early Evolution in Jawed Vertebrates.

    PubMed

    King, Benedict; Qiao, Tuo; Lee, Michael S Y; Zhu, Min; Long, John A

    2017-07-01

    The phylogeny of early gnathostomes provides an important framework for understanding one of the most significant evolutionary events, the origin and diversification of jawed vertebrates. A series of recent cladistic analyses have suggested that the placoderms, an extinct group of armoured fish, form a paraphyletic group basal to all other jawed vertebrates. We revised and expanded this morphological data set, most notably by sampling autapomorphies in a similar way to parsimony-informative traits, thus ensuring this data (unlike most existing morphological data sets) satisfied an important assumption of Bayesian tip-dated morphological clock approaches. We also found problems with characters supporting placoderm paraphyly, including character correlation and incorrect codings. Analysis of this data set reveals that paraphyly and monophyly of core placoderms (excluding maxillate forms) are essentially equally parsimonious. The two alternative topologies have different root positions for the jawed vertebrates but are otherwise similar. However, analysis using tip-dated clock methods reveals strong support for placoderm monophyly, due to this analysis favoring trees with more balanced rates of evolution. Furthermore, enforcing placoderm paraphyly results in higher levels and unusual patterns of rate heterogeneity among branches, similar to that generated from simulated trees reconstructed with incorrect root positions. These simulations also show that Bayesian tip-dated clock methods outperform parsimony when the outgroup is largely uninformative (e.g., due to inapplicable characters), as might be the case here. The analysis also reveals that gnathostomes underwent a rapid burst of evolution during the Silurian period which declined during the Early Devonian. This rapid evolution during a period with few articulated fossils might partly explain the difficulty in ascertaining the root position of jawed vertebrates. © The Author(s) 2016. Published by Oxford University

  7. Action potential-independent and pharmacologically unique vesicular serotonin release from dendrites

    PubMed Central

    Colgan, Lesley A.; Cavolo, Samantha L.; Commons, Kathryn G.; Levitan, Edwin S.

    2012-01-01

    Serotonin released within the dorsal raphe nucleus (DR) induces feedback inhibition of serotonin neuron activity and consequently regulates mood-controlling serotonin release throughout the forebrain. Serotonin packaged in vesicles is released in response to action potentials by the serotonin neuron soma and terminals, but the potential for release by dendrites is unknown. Here three-photon (3P) microscopy imaging of endogenous serotonin in living rat brain slice, immunofluorescence and immuno-gold electron microscopy detection of VMAT2 (vesicular monoamine transporter 2) establish the presence of vesicular serotonin within DR dendrites. Furthermore, activation of glutamate receptors is shown to induce vesicular serotonin release from dendrites. However, unlike release from the soma and terminals, dendritic serotonin release is independent of action potentials, relies on L-type Ca2+ channels, is induced preferentially by NMDA, and displays distinct sensitivity to the selective serotonin reuptake inhibitor (SSRI) antidepressant fluoxetine. The unique control of dendritic serotonin release has important implications for DR physiology and the antidepressant action of SSRIs, dihydropyridines and NMDA receptor antagonists. PMID:23136413

  8. APC/CCdh1-Rock2 pathway controls dendritic integrity and memory

    PubMed Central

    Bobo-Jiménez, Verónica; Delgado-Esteban, María; Angibaud, Julie; Sánchez-Morán, Irene; de la Fuente, Antonio; Yajeya, Javier; Nägerl, U. Valentin; Castillo, José; Bolaños, Juan P.

    2017-01-01

    Disruption of neuronal morphology contributes to the pathology of neurodegenerative disorders such as Alzheimer’s disease (AD). However, the underlying molecular mechanisms are unknown. Here, we show that postnatal deletion of Cdh1, a cofactor of the anaphase-promoting complex/cyclosome (APC/C) ubiquitin ligase in neurons [Cdh1 conditional knockout (cKO)], disrupts dendrite arborization and causes dendritic spine and synapse loss in the cortex and hippocampus, concomitant with memory impairment and neurodegeneration, in adult mice. We found that the dendrite destabilizer Rho protein kinase 2 (Rock2), which accumulates in the brain of AD patients, is an APC/CCdh1 substrate in vivo and that Rock2 protein and activity increased in the cortex and hippocampus of Cdh1 cKO mice. In these animals, inhibition of Rock activity, using the clinically approved drug fasudil, prevented dendritic network disorganization, memory loss, and neurodegeneration. Thus, APC/CCdh1-mediated degradation of Rock2 maintains the dendritic network, memory formation, and neuronal survival, suggesting that pharmacological inhibition of aberrantly accumulated Rock2 may be a suitable therapeutic strategy against neurodegeneration. PMID:28396402

  9. Matrix metalloproteinase-9 involvement in the structural plasticity of dendritic spines

    PubMed Central

    Stawarski, Michal; Stefaniuk, Marzena; Wlodarczyk, Jakub

    2014-01-01

    Dendritic spines are the locus for excitatory synaptic transmission in the brain and thus play a major role in neuronal plasticity. The ability to alter synaptic connections includes volumetric changes in dendritic spines that are driven by scaffolds created by the extracellular matrix (ECM). Here, we review the effects of the proteolytic activity of ECM proteases in physiological and pathological structural plasticity. We use matrix metalloproteinase-9 (MMP-9) as an example of an ECM modifier that has recently emerged as a key molecule in regulating the morphology and dysmorphology of dendritic spines that underlie synaptic plasticity and neurological disorders, respectively. We summarize the influence of MMP-9 on the dynamic remodeling of the ECM via the cleavage of extracellular substrates. We discuss its role in the formation, modification, and maintenance of dendritic spines in learning and memory. Finally, we review research that implicates MMP-9 in aberrant synaptic plasticity and spine dysmorphology in neurological disorders, with a focus on morphological abnormalities of dendritic protrusions that are associated with epilepsy. PMID:25071472

  10. Finite Element Analysis of the Cingulata Jaw: An Ecomorphological Approach to Armadillo’s Diets

    PubMed Central

    Serrano-Fochs, Sílvia; De Esteban-Trivigno, Soledad; Marcé-Nogué, Jordi; Fortuny, Josep; Fariña, Richard A.

    2015-01-01

    Finite element analyses (FEA) were applied to assess the lower jaw biomechanics of cingulate xenarthrans: 14 species of armadillos as well as one Pleistocene pampathere (11 extant taxa and the extinct forms Vassallia, Eutatus and Macroeuphractus). The principal goal of this work is to comparatively assess the biomechanical capabilities of the mandible based on FEA and to relate the obtained stress patterns with diet preferences and variability, in extant and extinct species through an ecomorphology approach. The results of FEA showed that omnivorous species have stronger mandibles than insectivorous species. Moreover, this latter group of species showed high variability, including some similar biomechanical features of the insectivorous Tolypeutes matacus and Chlamyphorus truncatus to those of omnivorous species, in agreement with reported diets that include items other than insects. It remains unclear the reasons behind the stronger than expected lower jaw of Dasypus kappleri. On the other hand, the very strong mandible of the fossil taxon Vassallia maxima agrees well with the proposed herbivorous diet. Moreover, Eutatus seguini yielded a stress pattern similar to Vassalia in the posterior part of the lower jaw, but resembling that of the stoutly built Macroeuphractus outesi in the anterior part. The results highlight the need for more detailed studies on the natural history of extant armadillos. FEA proved a powerful tool for biomechanical studies in a comparative framework. PMID:25919313

  11. Slowing down light using a dendritic cell cluster metasurface waveguide

    PubMed Central

    Fang, Z. H.; Chen, H.; Yang, F. S.; Luo, C. R.; Zhao, X. P.

    2016-01-01

    Slowing down or even stopping light is the first task to realising optical information transmission and storage. Theoretical studies have revealed that metamaterials can slow down or even stop light; however, the difficulty of preparing metamaterials that operate in visible light hinders progress in the research of slowing or stopping light. Metasurfaces provide a new opportunity to make progress in such research. In this paper, we propose a dendritic cell cluster metasurface consisting of dendritic structures. The simulation results show that dendritic structure can realise abnormal reflection and refraction effects. Single- and double-layer dendritic metasurfaces that respond in visible light were prepared by electrochemical deposition. Abnormal Goos-Hänchen (GH) shifts were experimentally obtained. The rainbow trapping effect was observed in a waveguide constructed using the dendritic metasurface sample. The incident white light was separated into seven colours ranging from blue to red light. The measured transmission energy in the waveguide showed that the energy escaping from the waveguide was zero at the resonant frequency of the sample under a certain amount of incident light. The proposed metasurface has a simple preparation process, functions in visible light, and can be readily extended to the infrared band and communication wavelengths. PMID:27886279

  12. Calcium transient prevalence across the dendritic arbour predicts place field properties.

    PubMed

    Sheffield, Mark E J; Dombeck, Daniel A

    2015-01-08

    Establishing the hippocampal cellular ensemble that represents an animal's environment involves the emergence and disappearance of place fields in specific CA1 pyramidal neurons, and the acquisition of different spatial firing properties across the active population. While such firing flexibility and diversity have been linked to spatial memory, attention and task performance, the cellular and network origin of these place cell features is unknown. Basic integrate-and-fire models of place firing propose that such features result solely from varying inputs to place cells, but recent studies suggest instead that place cells themselves may play an active role through regenerative dendritic events. However, owing to the difficulty of performing functional recordings from place cell dendrites, no direct evidence of regenerative dendritic events exists, leaving any possible connection to place coding unknown. Using multi-plane two-photon calcium imaging of CA1 place cell somata, axons and dendrites in mice navigating a virtual environment, here we show that regenerative dendritic events do exist in place cells of behaving mice, and, surprisingly, their prevalence throughout the arbour is highly spatiotemporally variable. Furthermore, we show that the prevalence of such events predicts the spatial precision and persistence or disappearance of place fields. This suggests that the dynamics of spiking throughout the dendritic arbour may play a key role in forming the hippocampal representation of space.

  13. Surfactant-assisted synthesis and electrochemical performances of Cu{sub 3}P dendrites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Shuling, E-mail: liusl8888@yahoo.com.cn; Li, Shu; Wang, Jingping

    2012-11-15

    Highlights: ► Dendrite-like Cu{sub 3}P microstructures have been synthesized by a low-temperature method. ► The surfactant SDS was used as template. ► The as-obtained Cu{sub 3}P dendrites exhibit a high first discharge capacity. -- Abstract: Well-defined Cu{sub 3}P hierarchical dendrites were successfully synthesized by a facile and effective surfactant-assisted hydrothermal approach. X-ray powder diffraction (XRD) and scanning electron microscopy (SEM) indicated that the as-obtained Cu{sub 3}P had a well-crystallized hexagonal phase and consisted of a wealth of Cu{sub 3}P dendritic microstructures. A surfactant-assisted growth accompanied by the Ostwald ripening process was proposed for the formation. As anode materials for lithiummore » ion batteries, the electrochemical property of the Cu{sub 3}P dendrites was also examined. The results showed that the initial discharge capacity of the Cu{sub 3}P dendrites exceeded 1300 mA h/g and it still kept at 291 mA h/g after 20 cycles, which might be related to the size of Cu{sub 3}P particles and their assembly structure.« less

  14. Survival, Function, and Complications of Oral Implants Placed in Bone Flaps in Jaw Rehabilitation: A Systematic Review.

    PubMed

    Zhang, Lei; Ding, Qian; Liu, Cunrui; Sun, Yannan; Xie, Qiufei; Zhou, Yongsheng

    2016-01-01

    This systematic review attempted to determine the survival rate of implants placed in bone flaps in jaw rehabilitation and the functional gains and the most common complications related to these implants. An electronic search was undertaken of PubMed, EMBASE, and CNKI records from 1990 through July 2014. Two independent examiners read the titles and abstracts of the results to identify studies that met the inclusion criteria. Subsequently, the reference lists of the selected publications were hand searched. Descriptive statistics were used to report all data related to the survival rate of implants placed in bone flaps in jaw rehabilitation, the functional gains, and complications. A total of 20 studies were included for systematic review without repetition. The mean follow-up time after implant placement ranged from 1.75 to 9.5 years. Within the limitations of available studies, the survival rate of implants placed in bone flaps in jaw rehabilitation ranged from 82.4% to 100%. Of the 20 included studies, 15 reported a survival rate higher than 90%. The cumulative survival rate was 93.2%, with the longest follow-up time being 12.9 years. The most common complications related to these implants were peri-implant bone resorption or peri-implant inflammation, and peri-implant soft tissue proliferation. The main factors associated with the survival rate of implants in bone flaps were reported as time of implant placement and radiotherapy. Despite some persistent soft tissue problems and implant loss, most patients reached a satisfactory functional and esthetic outcome, as evaluated by clinical examination and subjectively by the patients at interview. Implant-supported dental prosthetic rehabilitation in reconstructed jaws improved the quality of life in terms of speech, nutrition, oral competence, and facial appearance. Placement of implants in bone flaps in jaw rehabilitation was demonstrated to be a reliable technique with a high survival rate. Multicentered

  15. Dynamics of cortical dendritic membrane potential and spikes in freely behaving rats.

    PubMed

    Moore, Jason J; Ravassard, Pascal M; Ho, David; Acharya, Lavanya; Kees, Ashley L; Vuong, Cliff; Mehta, Mayank R

    2017-03-24

    Neural activity in vivo is primarily measured using extracellular somatic spikes, which provide limited information about neural computation. Hence, it is necessary to record from neuronal dendrites, which can generate dendritic action potentials (DAPs) in vitro, which can profoundly influence neural computation and plasticity. We measured neocortical sub- and suprathreshold dendritic membrane potential (DMP) from putative distal-most dendrites using tetrodes in freely behaving rats over multiple days with a high degree of stability and submillisecond temporal resolution. DAP firing rates were several-fold larger than somatic rates. DAP rates were also modulated by subthreshold DMP fluctuations, which were far larger than DAP amplitude, indicating hybrid, analog-digital coding in the dendrites. Parietal DAP and DMP exhibited egocentric spatial maps comparable to pyramidal neurons. These results have important implications for neural coding and plasticity. Copyright © 2017, American Association for the Advancement of Science.

  16. Dendritic nonlinearities are tuned for efficient spike-based computations in cortical circuits.

    PubMed

    Ujfalussy, Balázs B; Makara, Judit K; Branco, Tiago; Lengyel, Máté

    2015-12-24

    Cortical neurons integrate thousands of synaptic inputs in their dendrites in highly nonlinear ways. It is unknown how these dendritic nonlinearities in individual cells contribute to computations at the level of neural circuits. Here, we show that dendritic nonlinearities are critical for the efficient integration of synaptic inputs in circuits performing analog computations with spiking neurons. We developed a theory that formalizes how a neuron's dendritic nonlinearity that is optimal for integrating synaptic inputs depends on the statistics of its presynaptic activity patterns. Based on their in vivo preynaptic population statistics (firing rates, membrane potential fluctuations, and correlations due to ensemble dynamics), our theory accurately predicted the responses of two different types of cortical pyramidal cells to patterned stimulation by two-photon glutamate uncaging. These results reveal a new computational principle underlying dendritic integration in cortical neurons by suggesting a functional link between cellular and systems--level properties of cortical circuits.

  17. Quantitative Analysis of Dendritic Cell Haptotaxis.

    PubMed

    Schwarz, Jan; Sixt, Michael

    2016-01-01

    Chemokines are the main guidance cues directing leukocyte migration. Opposed to early assumptions, chemokines do not necessarily act as soluble cues but are often immobilized within tissues, e.g., dendritic cell migration toward lymphatic vessels is guided by a haptotactic gradient of the chemokine CCL21. Controlled assay systems to quantitatively study haptotaxis in vitro are still missing. In this chapter, we describe an in vitro haptotaxis assay optimized for the unique properties of dendritic cells. The chemokine CCL21 is immobilized in a bioactive state, using laser-assisted protein adsorption by photobleaching. The cells follow this immobilized CCL21 gradient in a haptotaxis chamber, which provides three dimensionally confined migration conditions. © 2016 Elsevier Inc. All rights reserved.

  18. Dendritic excitation–inhibition balance shapes cerebellar output during motor behaviour

    PubMed Central

    Jelitai, Marta; Puggioni, Paolo; Ishikawa, Taro; Rinaldi, Arianna; Duguid, Ian

    2016-01-01

    Feedforward excitatory and inhibitory circuits regulate cerebellar output, but how these circuits interact to shape the somatodendritic excitability of Purkinje cells during motor behaviour remains unresolved. Here we perform dendritic and somatic patch-clamp recordings in vivo combined with optogenetic silencing of interneurons to investigate how dendritic excitation and inhibition generates bidirectional (that is, increased or decreased) Purkinje cell output during self-paced locomotion. We find that granule cells generate a sustained depolarization of Purkinje cell dendrites during movement, which is counterbalanced by variable levels of feedforward inhibition from local interneurons. Subtle differences in the dendritic excitation–inhibition balance generate robust, bidirectional changes in simple spike (SSp) output. Disrupting this balance by selectively silencing molecular layer interneurons results in unidirectional firing rate changes, increased SSp regularity and disrupted locomotor behaviour. Our findings provide a mechanistic understanding of how feedforward excitatory and inhibitory circuits shape Purkinje cell output during motor behaviour. PMID:27976716

  19. Correlation between bone mineral density of jaws and skeletal sites in an Iranian population using dual X-ray energy absorptiometry

    PubMed Central

    Esfahanizadeh, Nasrin; Davaie, Sotoudeh; Rokn, A. R.; Daneshparvar, Hamid Reza; Bayat, Noushin; Khondi, Nasrin; Ajvadi, Sara; Ghandi, Mostafa

    2013-01-01

    Background: The aim of the present study was to evaluate the relationship between the bone density of various regions of jaws and skeletal bones. Materials and Methods: A total of 110 patients with a mean age of 55.01 ± 10.77 years were selected for the purpose of the present descriptive study. Dual X-ray Energy Absorptiometry (DXA) was carried out to determine bone mineral density (BMD) of the femur and lumbar vertebrae. Then all the subjects underwent DXA of the jaw bones and BMD values were determined at four jaw regions. Data were analyzed by SPSS 16 statistical software, and the correlation between the various BMD values was determined by Pearson's correlation coefficient. Results: The results showed that 42.7% of females had normal BMD values in the femur, and in vertebrae, 20% were osteopenic and 37.3% suffered from osteoporosis, with statistically significant differences in the BMD values of the jaws between the three above-mentioned groups (P < 0.001). There was an increasing tendency toward osteopenia and osteoporosis with age. There was a positive correlation between BMD values of the femur and lumbar vertebrae and those of all the jaw regions under study (P < 0.005). There was a negative correlation (P < 0.01) between age and the BMD values of the femur, lumbar vertebrae and anterior maxilla. Conclusion: The bone density of the maxilla and mandible and presence of osteoporosis or osteopenia in these bones might reflect the same problem in skeletal bones. PMID:24130580

  20. Thermo-solutal growth of an anisotropic dendrite with six-fold symmetry

    NASA Astrophysics Data System (ADS)

    Alexandrov, D. V.; Galenko, P. K.

    2018-03-01

    A stable growth of dendritic crystal with the six-fold crystalline anisotropy is analyzed in a binary nonisothermal mixture. A selection criterion representing a relationship between the dendrite tip velocity and its tip diameter is derived on the basis of morphological stability analysis and solvability theory. A complete set of nonlinear equations, consisting of the selection criterion and undercooling balance condition, which determines implicit dependencies of the dendrite tip velocity and tip diameter as functions of the total undercooling, is formulated. Exact analytical solutions of these nonlinear equations are found in a parametric form. Asymptotic solutions describing the crystal growth at small Péclet numbers are determined. Theoretical predictions are compared with experimental data obtained for ice dendrites growing in binary water-ethylenglycol solutions as well as in pure water.