Sample records for jaxa japan aerospace

  1. JAXA's Space Exploration Scenario

    NASA Astrophysics Data System (ADS)

    Sato, N. S.

    2018-04-01

    Japan Aerospace Exploration Agency (JAXA) has been studying space exploration scenario, including human exploration for Japan since 2015, which encompasses goals, knowledge gap assessment, and architecture. assessment, and technology roadmap.

  2. Inflight-Event_JAXA-Fukui-Space-Expo

    NASA Image and Video Library

    2018-02-26

    SPACE STATION CREW MEMBER DISCUSSES LIFE IN SPACE WITH JAPANESE STUDENTS------ Aboard the International Space Station, Expedition 54 Flight Engineer Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) discussed life and research on the orbital laboratory during an in-flight educational event Feb. 23 with Japanese students attending the International Symposium of Space Technology and Science in Fukui Prefecture, Japan. Kanai, who will remain in orbit through early June, recently became the fourth Japanese astronaut in history to conduct a spacewalk.

  3. JAXA_PAOEvent_KanaiProject_2018_096_1115__636932

    NASA Image and Video Library

    2018-04-09

    SPACE STATION CREW MEMBER DISCUSSES LIFE IN SPACE WITH JAPANESE STUDENTS---- Aboard the International Space Station, Expedition 55 Flight Engineer Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) discussed life and research on the orbital outpost during an in-flight question and answer session April 2 with students at the Yoshikawa City Child Center in Japan. Kanai is in the midst of a six-month mission on the station.

  4. STS-131 crew member and JAXA astronaut Naoko Yamazaki

    NASA Image and Video Library

    2010-01-12

    JSC2010-E-008557 (12 Jan. 2010) --- Japan Aerospace Exploration Agency (JAXA) astronaut Naoko Yamazaki, STS-131 mission specialist, participates in a Thermal Protection System (TPS) Orbiter Boom Sensor System (OBSS) training session in the Jake Garn Simulation and Training Facility at NASA?s Johnson Space Center.

  5. STS-131 crew member and JAXA astronaut Naoko Yamazaki

    NASA Image and Video Library

    2010-01-12

    JSC2010-E-008556 (12 Jan. 2010) --- Japan Aerospace Exploration Agency (JAXA) astronaut Naoko Yamazaki, STS-131 mission specialist, participates in a Thermal Protection System (TPS) Orbiter Boom Sensor System (OBSS) training session in the Jake Garn Simulation and Training Facility at NASA?s Johnson Space Center.

  6. STS-131 crew member and JAXA astronaut Naoko Yamazaki

    NASA Image and Video Library

    2010-01-12

    JSC2010-E-008553 (12 Jan. 2010) --- Japan Aerospace Exploration Agency (JAXA) astronaut Naoko Yamazaki, STS-131 mission specialist, participates in a Thermal Protection System (TPS) Orbiter Boom Sensor System (OBSS) training session in the Jake Garn Simulation and Training Facility at NASA?s Johnson Space Center.

  7. E55_Inflight_JAXA_Makuhari_2018_0502_1104_647867

    NASA Image and Video Library

    2018-05-03

    SPACE STATION CREW MEMBER DISCUSSES LIFE IN SPACE WITH JAPANESE ENTHUSIASTS------- Aboard the International Space Station, Expedition 55 Flight Engineer Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) discussed life and research on the complex during an in-flight event with students and space enthusiasts gathered at a science exposition in Makuhari New City, Japan May 2. Kanai is in the final month of a six-month mission on the orbital outpost.

  8. STS-131 crew member and JAXA astronaut Naoko Yamazaki training SSRMS PROF

    NASA Image and Video Library

    2010-01-15

    JSC2010-E-009784 (15 Jan. 2010) --- Japan Aerospace Exploration Agency (JAXA) astronaut Naoko Yamazaki, STS-131 mission specialist, participates in a simulation exercise using the Space Station Remote Manipulator System (SSRMS) simulator in the Avionics Systems Laboratory at NASA?s Johnson Space Center.

  9. NASA + JAXA = Partners in Space

    NASA Image and Video Library

    2017-02-12

    NASA announced the continuation of the successful collaboration with the Japan Aerospace Exploration Agency (JAXA) with the recent signing of an agreement to encourage scientists from both countries to use International Space Station hardware located in both countries’ laboratories. JAXA’s Tetesuya Sakashita, the science integration manager for JAXA’s “Kibo” laboratory module, talks about plans to expand on investigations in microgravity including inviting more countries to participate in this unique orbiting laboratory. To learn more about this new program of cooperation, check out this recent article posted at NASA.gov.

  10. STS-131 crew member and JAXA astronaut Naoko Yamazaki training SSRMS PROF

    NASA Image and Video Library

    2010-01-15

    JSC2010-E-009785 (15 Jan. 2010) --- Japan Aerospace Exploration Agency (JAXA) astronaut Naoko Yamazaki, STS-131 mission specialist, participates in a simulation exercise using the Space Station Remote Manipulator System (SSRMS) simulator in the Avionics Systems Laboratory at NASA?s Johnson Space Center. Crew instructor Joseph M. Nguyen assisted Yamazaki.

  11. STS-131 crew member and JAXA astronaut Naoko Yamazaki training SSRMS PROF

    NASA Image and Video Library

    2010-01-15

    JSC2010-E-009787 (15 Jan. 2010) --- Japan Aerospace Exploration Agency (JAXA) astronaut Naoko Yamazaki, STS-131 mission specialist, participates in a simulation exercise using the Space Station Remote Manipulator System (SSRMS) simulator in the Avionics Systems Laboratory at NASA?s Johnson Space Center. Crew instructor Joseph M. Nguyen assisted Yamazaki.

  12. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, technicians begin pre-assembly measurements on the Japanese Experiment Module (JEM). Developed by the Japan Aerospace Exploration Agency (JAXA), the JEM will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-11-05

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, technicians begin pre-assembly measurements on the Japanese Experiment Module (JEM). Developed by the Japan Aerospace Exploration Agency (JAXA), the JEM will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  13. Research and Development on In-Situ Measurement Sensors for Micro-Meteoroid and Small Space Debris at JAXA

    NASA Astrophysics Data System (ADS)

    Kitazawa, Y.; Matsumoto, H.; Okudaira, O.; Kimoto, Y.; Hanada, T.; Faure, P.; Akahoshi, Y.; Hattori, M.; Karaki, A.; Sakurai, A.; Funakoshi, K.; Yasaka, T.

    2013-08-01

    The Japan Aerospace Exploration Agency (JAXA) has been conducting R&D into in-situ sensors for measuring micro-meteoroid and small-sized debris (MMSD) since the 1980s. Research into active sensors started with the meteoroid observation experiment conducted using the HITEN (MUSES-A) satellite that ISAS/JAXA launched in 1990. The main purpose behind the start of passive collector research was SOCCER, a late-80s Japan-US mission that was designed to capture cometary dust and then return to the Earth. Although this mission was cancelled, the research outcomes were employed in a JAXA mission for the return of MMSD samples using calibrated aerogel and involving the space shuttle and the International Space Station. Many other important activities have been undertaken as well, and the knowledge they have generated has contributed to JAXA's development of a new type of active dust sensor. This paper reports on the R&D conducted at JAXA into in-situ MMSD measurement sensors.

  14. E55_Inflight_JAXA_Gifu_Prefecture__2018_0529_1112_659069

    NASA Image and Video Library

    2018-05-30

    SPACE STATION CREW MEMBER DISCUSSES LIFE IN SPACE WITH JAPANESE STUDENTS--- Aboard the International Space Station, Expedition 55 Flight Engineer Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) discussed life and space on the orbital outpost during an in-flight educational event May 29 with students gathered at the Gifu Prefecture Air and Space Museum in Japan. Kanai is in the final week of his six month mission on the complex, headed for a landing in a Russian Soyuz spacecraft June 3 on the south central steppe of Kazakhstan.

  15. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, a technician takes readings for pre-assembly measurements on the Japanese Experiment Module (JEM). Developed by the Japan Aerospace Exploration Agency (JAXA), the JEM will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-11-05

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, a technician takes readings for pre-assembly measurements on the Japanese Experiment Module (JEM). Developed by the Japan Aerospace Exploration Agency (JAXA), the JEM will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  16. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, technicians take readings for pre-assembly measurements on the Japanese Experiment Module (JEM). Developed by the Japan Aerospace Exploration Agency (JAXA), the JEM will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-11-05

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, technicians take readings for pre-assembly measurements on the Japanese Experiment Module (JEM). Developed by the Japan Aerospace Exploration Agency (JAXA), the JEM will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  17. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, the Japanese Experiment Module (JEM) rests on a workstand during pre-assembly measurement activities. Developed by the Japan Aerospace Exploration Agency (JAXA), the JEM will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-11-05

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, the Japanese Experiment Module (JEM) rests on a workstand during pre-assembly measurement activities. Developed by the Japan Aerospace Exploration Agency (JAXA), the JEM will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  18. jsc2017e136101 - At the Gagarin Cosmonaut Training Center in Star City, Russia, Expedition 54-55 crewmembers Norishige Kanai of the Japan Aerospace Agency (JAXA, left), Anton Shkaplerov of the Russian Federal Space Agency (Roscosmos, center) and Scott Tin

    NASA Image and Video Library

    2017-12-04

    jsc2017e136101 - At the Gagarin Cosmonaut Training Center in Star City, Russia, Expedition 54-55 crewmembers Norishige Kanai of the Japan Aerospace Agency (JAXA, left), Anton Shkaplerov of the Russian Federal Space Agency (Roscosmos, center) and Scott Tingle of NASA (right) answer reporters’ questions Dec. 4 prior to their departure for their launch site at the Baikonur Cosmodrome in Kazakhstan. They are scheduled to launch Dec. 17 on the Soyuz MS-07 spacecraft for a five-month mission on the International Space Station...Andrey Shelepin/Gagarin Cosmonaut Training Center.

  19. JAXA PAO VIP Event 3318_624493_hires

    NASA Image and Video Library

    2018-03-05

    SPACE STATION CREW DISCUSSES LIFE IN SPACE WITH JAPANESE OFFICIALS --------------------------------------------------------- Aboard the International Space Station, Expedition 55 Commander Anton Shkaplerov of Roscosmos and Flight Engineers Scott Tingle of NASA and Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) discussed life and research on the orbital laboratory during an in-flight question and answer session March 3 with Japanese space officials and policy ministers attending the International Space Explorers Forum (ISEF-2) in Tokyo. The trio is in the midst of a five-and-a-half-month mission on the station.

  20. E55_Inflight_JAXA_Tenku_2018_0426_1159_645182

    NASA Image and Video Library

    2018-04-26

    SPACE STATION CREW MEMBER DISCUSSES LIFE IN SPACE WITH JAPANESE STUDENTS-----Aboard the International Space Station, Expedition 55 Flight Engineer Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) discussed life and research on the orbital outpost during an in-flight event April 26 with students gathered in Tokyo at an engineering and science exposition. Kanai arrived on the station for a six-month mission last December and is scheduled to return to Earth on June 3.

  1. jsc2017e136060 - On a snowy night at Red Square in Moscow, Expedition 54-55 crewmember Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) lays flowers at the Kremlin Wall where Russian space icons are interred in traditional pre-launch cerem

    NASA Image and Video Library

    2017-11-30

    jsc2017e136060 - On a snowy night at Red Square in Moscow, Expedition 54-55 crewmember Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) lays flowers at the Kremlin Wall where Russian space icons are interred in traditional pre-launch ceremonies Nov. 30. Kanai, Scott Tingle of NASA and Anton Shkaplerov of the Russian Federal Space Agency (Roscosmos) will launch from the Baikonur Cosmodrome in Kazakhstan on the Soyuz MS-07 spacecraft Dec. 17 for a five-month mission on the International Space Station...Andrey Shelepin/Gagarin Cosmonaut Training Center.

  2. jsc2017e136049 - At the Gagarin Cosmonaut Training Center in Star City, Russia, Expedition 54-55 prime crewmember Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) listens to a reporter’s question during a crew news conference Nov. 30. Ka

    NASA Image and Video Library

    2017-11-30

    jsc2017e136049 - At the Gagarin Cosmonaut Training Center in Star City, Russia, Expedition 54-55 prime crewmember Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) listens to a reporter’s question during a crew news conference Nov. 30. Kanai, Anton Shkaplerov of the Russian Federal Space Agency (Roscosmos) and Scott Tingle of NASA will launch Dec. 17 on the Soyuz MS-07 spacecraft from the Baikonur Cosmodrome in Kazakhstan for a five-month mission on the International Space Station...Andrey Shelepin/Gagarin Cosmonaut Training Center.

  3. jsc2017e135207 - At the Gagarin Cosmonaut Training Center in Star City, Russia, Expedition 54-55 prime crewmember Norishige Kanai of the Japan Aerospace Exploration Space Agency (JAXA) listens to a reporters’ question Nov. 29 as part of the crew’s fin

    NASA Image and Video Library

    2017-11-29

    jsc2017e135207 - At the Gagarin Cosmonaut Training Center in Star City, Russia, Expedition 54-55 prime crewmember Norishige Kanai of the Japan Aerospace Exploration Space Agency (JAXA) listens to a reporters’ question Nov. 29 as part of the crew’s final qualification exam activities. Kanai, Scott Tingle of NASA and Anton Shkaplerov of the Russian Federal Space Agency (Roscosmos) will launch Dec. 17 on the Soyuz MS-07 spacecraft from the Baikonur Cosmodrome in Kazakhstan for a five-month mission on the International Space Station...NASA/Elizabeth Weissinger.

  4. KENNEDY SPACE CENTER, FLA. - The Japanese Experiment Module (JEM) is moved on its workstand in the Space Station Processing Facility. The JEM will undergo pre-assembly measurements. Developed by the Japan Aerospace Exploration Agency (JAXA), the JEM will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-11-05

    KENNEDY SPACE CENTER, FLA. - The Japanese Experiment Module (JEM) is moved on its workstand in the Space Station Processing Facility. The JEM will undergo pre-assembly measurements. Developed by the Japan Aerospace Exploration Agency (JAXA), the JEM will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  5. jsc2017e136098 - At the Gagarin Cosmonaut Training Center in Star City, Russia, Expedition 54-55 crewmembers Norishige Kanai of the Japan Aerospace Agency (JAXA, left), Anton Shkaplerov of the Russian Federal Space Agency (Roscosmos, center) and Scott Tin

    NASA Image and Video Library

    2017-12-04

    jsc2017e136098 - At the Gagarin Cosmonaut Training Center in Star City, Russia, Expedition 54-55 crewmembers Norishige Kanai of the Japan Aerospace Agency (JAXA, left), Anton Shkaplerov of the Russian Federal Space Agency (Roscosmos, center) and Scott Tingle of NASA (right) pose for pictures in front of a statue of Vladimir Lenin Dec. 4 prior to their departure for their launch site at the Baikonur Cosmodrome in Kazakhstan. They are scheduled to launch Dec. 17 on the Soyuz MS-07 spacecraft for a five-month mission on the International Space Station...Andrey Shelepin/Gagarin Cosmonaut Training Center.

  6. Emergency medical support system for extravehicular activity training held at weightless environment test building (WETS) of the Japan Aerospace Exploration Agency (JAXA) : future prospects and a look back over the past decade.

    PubMed

    Nakajima, Isao; Tachibana, Masakazu; Ohashi, Noriyoshi; Imai, Hiroshi; Asari, Yasushi; Matsuyama, Shigenori

    2011-12-01

    The Japan Aerospace Exploration Agency (JAXA) provides extravehicular activity (EVA) training to astronauts in a weightless environment test building (WETS) located in Tsukuba City. For EVA training, Tsukuba Medial Center Hospital (TMCH) has established an emergency medical support system, serving as operations coordinator. Taking the perspective of emergency physicians, this paper provides an overview of the medical support system and examines its activities over the past decade as well as future issues. Fortunately, no major accident has occurred during the past 10 years of NBS. Minor complaints (external otitis, acute otitis media, transient dizziness, conjunctival inflammation, upper respiratory inflammation, dermatitis, abraded wounds, etc.) among the support divers have been addressed onsite by attending emergency physicians. Operations related to the medical support system at the WETS have proceeded smoothly for the former NASDA and continue to proceed without event for JAXA, providing safe, high-quality emergency medical services. If an accident occurs at the WETS, transporting the patient by helicopter following initial treatment by emergency physicians can actually exacerbate symptoms, since the procedure exposes a patient who was recently within a hyperbaric environment to the low-pressure environment involved in air transportation. If a helicopter is used, the flight altitude should be kept as low as possible by taking routes over the river.

  7. jsc2017e137338 - At the Cosmonaut Hotel crew quarters in Baikonur, Kazakhstan, Expedition 54-55 prime crewmember Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) tries his hand at a game of billiards Dec. 11 during a break in pre-launch tr

    NASA Image and Video Library

    2017-12-11

    jsc2017e137338 - At the Cosmonaut Hotel crew quarters in Baikonur, Kazakhstan, Expedition 54-55 prime crewmember Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) tries his hand at a game of billiards Dec. 11 during a break in pre-launch training while backup crewmember Jeanette Epps of NASA looks on. Kanai, Scott Tingle of NASA and Anton Shkaplerov of the Russian Federal Space Agency (Roscosmos) will launch Dec. 17 on the Soyuz MS-07 spacecraft from the Baikonur Cosmodrome for a five month mission on the International Space Station...Andrey Shelepin / Gagarin Cosmonaut Training Center.

  8. JAXA protein crystallization in space: ongoing improvements for growing high-quality crystals

    PubMed Central

    Takahashi, Sachiko; Ohta, Kazunori; Furubayashi, Naoki; Yan, Bin; Koga, Misako; Wada, Yoshio; Yamada, Mitsugu; Inaka, Koji; Tanaka, Hiroaki; Miyoshi, Hiroshi; Kobayashi, Tomoyuki; Kamigaichi, Shigeki

    2013-01-01

    The Japan Aerospace Exploration Agency (JAXA) started a high-quality protein crystal growth project, now called JAXA PCG, on the International Space Station (ISS) in 2002. Using the counter-diffusion technique, 14 sessions of experiments have been performed as of 2012 with 580 proteins crystallized in total. Over the course of these experiments, a user-friendly interface framework for high accessibility has been constructed and crystallization techniques improved; devices to maximize the use of the microgravity environment have been designed, resulting in some high-resolution crystal growth. If crystallization conditions were carefully fixed in ground-based experiments, high-quality protein crystals grew in microgravity in many experiments on the ISS, especially when a highly homogeneous protein sample and a viscous crystallization solution were employed. In this article, the current status of JAXA PCG is discussed, and a rational approach to high-quality protein crystal growth in microgravity based on numerical analyses is explained. PMID:24121350

  9. Data Dissemination System Status and Plan for Jaxa's Earth Observation Satellite Data

    NASA Astrophysics Data System (ADS)

    Fuda, M.; Miura, S.

    2012-12-01

    1. INTRODUCTION JAXA is Japan's national aerospace agency and responsible for research, technology development and the launch of satellites into orbit, and is involved in many more advanced missions, such as asteroid exploration and possible manned exploration of the Moon. Since 1978, JAXA started to disseminate earth observation data acquired by satellites to researchers and those data scene became more than two Million scenes in 2011. This paper focuses on the status and future plan for JAXA's Data Dissemination System for those data. 2. STATUS JAXA is Japan's national aerospace agency and responsible for research, technology development and the launch of satellites into orbit. In October 1978, JAXA opened the Earth Observation Center (EOC) and started to archive and disseminate earth observation data acquired by multiple satellites. 2.1. Target data Currently, the disseminated data includes "JAXA's satellite/sensor data" and "non-JAXA's satellite/sensor data", as shown in Table 2-1. In 2011, the total disseminated data scene became more than two Million scenes. 2.2. Data Dissemination Guideline The JAXA basic data dissemination guideline is a free for researchers and specific agencies. JAXA has two approaches for dissemination. One is that the data is distributed for specific agencies by Mission Operation Systems (MOS). Each project has its own MOS, for example, GCOM-W1 has a GCOM-W1 MOS. Another is that the data is disseminated for many researchers by Data Distribution Systems. Now JAXA has three Data Distribution systems, EOIS, AUIG and GCOM-W1DPSS. Table 2-1 : Disseminated earth observation data from JAXA's facility Satellite Sensor Processing Level ALOS AVNIR-2 Level 1 PRISM Level 1 PALSAR Level 1 TRMM PR Level 1, 2, 3 CMB Level 1, 2, 3 TMI Level 1, 2, 3 VIR Level 1, 2, 3 Aqua AMSR-E Level 1, 2, 3 ADEOS-II AMSR Level 1, 2, 3 GLI-1km Level 1, 2, 3 GLI-250m Level 1, 2, 3 JERS-1 OSW Level 0, 1, 2 OVN Level 0, 1, 2, 5 SAR Level 1, 2 ADEOS AVNIR Level 1 OCTS

  10. Research on TRMM and GPM Through Collaboration Between JAXA & NASA

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.

    2003-01-01

    The Japan Aerospace Exploration Agency (JAXA) is conducting joint research with the Communications Research Laboratory (CRL) and the National Aeronautics and Space Administration (NASA) on a new constellation satellite observation project called Global Precipitation Measurement (GPM), the main satellite of which is planned for launch in 2008 by JAXA. This GPM project was proposed as a follow-up mission to the Tropical Rainfall Measuring Mission (TRMM) by both the Japanese and American sides based on the unparalleled scientific success of TRMM. A major reason for TRMM's success was the use of the worlds first spaceborne rain radar, the Precipitation Radar (PR) system developed by the National Space Development Agency of Japan (NASDA, now JAXA) and CRL. Measurements from this instrument have ushered in many new scientific findings and have opened a new era of precipitation measuring from space. GPM is an ambitious project which will produce accurate and frequent global observations of precipitation (both rain and snow) made possible by replacing TRMM with a new core satellite carrying an advanced radar-radiometer system, and serving as the centerpiece for a constellation of some eight (8) additional satellites being provided through international cooperation. The core satellite is to be flown up to high latitudes (inclined some 65-70 degrees), and will carry a dual-frequency precipitation radar (DPR) that will be newly developed by JAXA and CRL, along with a large aperture, extended frequency-range passive microwave radiometer being provided by NASA. Each constellation satellite will also carry some type of multi-channel passive microwave radiometer whose rain estimates will be calibrated and referenced to those made by the core satellite, producing for the first time fully-global, continuous, and bias-free precipitation datasets. GPM data will be delivered in near-realtime, taking a major step toward the operational use of precipitation information for model

  11. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, STS-114 crew members look at the tiles underneath Atlantis. From left (in flight suits) are Mission Specialists Stephen Robinson and Andy Thomas, Commander Eileen Collins and, at right, Mission Specialist Soichi Noguchi, who is with the Japan Aerospace Exploration Agency, JAXA. Accompanying them is Glenda Laws, EVA Task Leader, with United Space Alliance at Johnson Space Center. The STS-114 crew is at KSC to take part in crew equipment and orbiter familiarization.

    NASA Image and Video Library

    2003-10-30

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, STS-114 crew members look at the tiles underneath Atlantis. From left (in flight suits) are Mission Specialists Stephen Robinson and Andy Thomas, Commander Eileen Collins and, at right, Mission Specialist Soichi Noguchi, who is with the Japan Aerospace Exploration Agency, JAXA. Accompanying them is Glenda Laws, EVA Task Leader, with United Space Alliance at Johnson Space Center. The STS-114 crew is at KSC to take part in crew equipment and orbiter familiarization.

  12. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, STS-114 crew members look at the tiles underneath Atlantis. From center, left to right (in uniform), are Pilot James Kelly, Mission Specialist Soichi Noguchi, Mission Specialists Wendy Lawrence and Stephen Robinson. Accompanying them at left Glenda Laws, EVA Task Leader, with United Space Alliance at Johnson Space Center. Noguchi is with the Japan Aerospace Exploration Agency, JAXA. The STS-114 crew is at KSC to take part in crew equipment and orbiter familiarization.

    NASA Image and Video Library

    2003-10-30

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, STS-114 crew members look at the tiles underneath Atlantis. From center, left to right (in uniform), are Pilot James Kelly, Mission Specialist Soichi Noguchi, Mission Specialists Wendy Lawrence and Stephen Robinson. Accompanying them at left Glenda Laws, EVA Task Leader, with United Space Alliance at Johnson Space Center. Noguchi is with the Japan Aerospace Exploration Agency, JAXA. The STS-114 crew is at KSC to take part in crew equipment and orbiter familiarization.

  13. KENNEDY SPACE CENTER, FLA. - Members of the STS-114 crew look over flight equipment in the Orbiter Processing Facility. From left are Glenda Laws, EVA Task Leader, with United Space Alliance at Johnson Space Center, Mission Specialists Soichi Noguchi, Andy Thomas, Charles Camarda and Wendy Lawrence. Noguchi is with the Japan Aerospace Exploration Agency, JAXA. Not seen are Mission Commander Eileen Collins, Pilot James Kelly and Mission Specialist Stephen Robinson. The STS-114 crew is at KSC to take part in crew equipment and orbiter familiarization.

    NASA Image and Video Library

    2003-10-30

    KENNEDY SPACE CENTER, FLA. - Members of the STS-114 crew look over flight equipment in the Orbiter Processing Facility. From left are Glenda Laws, EVA Task Leader, with United Space Alliance at Johnson Space Center, Mission Specialists Soichi Noguchi, Andy Thomas, Charles Camarda and Wendy Lawrence. Noguchi is with the Japan Aerospace Exploration Agency, JAXA. Not seen are Mission Commander Eileen Collins, Pilot James Kelly and Mission Specialist Stephen Robinson. The STS-114 crew is at KSC to take part in crew equipment and orbiter familiarization.

  14. Recent results of the Global Precipitation Measurement (GPM) mission in Japan

    NASA Astrophysics Data System (ADS)

    Kubota, Takuji; Oki, Riko; Furukawa, Kinji; Kaneko, Yuki; Yamaji, Moeka; Iguchi, Toshio; Takayabu, Yukari

    2017-04-01

    The Global Precipitation Measurement (GPM) mission is an international collaboration to achieve highly accurate and highly frequent global precipitation observations. The GPM mission consists of the GPM Core Observatory jointly developed by U.S. and Japan and Constellation Satellites that carry microwave radiometers and provided by the GPM partner agencies. The GPM Core Observatory, launched on February 2014, carries the Dual-frequency Precipitation Radar (DPR) by the Japan Aerospace Exploration Agency (JAXA) and the National Institute of Information and Communications Technology (NICT). JAXA develops the DPR Level 1 algorithm, and the NASA-JAXA Joint Algorithm Team develops the DPR Level 2 and DPR-GMI combined Level2 algorithms. The Japan Meteorological Agency (JMA) started the DPR assimilation in the meso-scale Numerical Weather Prediction (NWP) system on March 24 2016. This was regarded as the world's first "operational" assimilation of spaceborne radar data in the NWP system of meteorological agencies. JAXA also develops the Global Satellite Mapping of Precipitation (GSMaP), as national product to distribute hourly and 0.1-degree horizontal resolution rainfall map. The GSMaP near-real-time version (GSMaP_NRT) product is available 4-hour after observation through the "JAXA Global Rainfall Watch" web site (http://sharaku.eorc.jaxa.jp/GSMaP) since 2008. The GSMaP_NRT product gives higher priority to data latency than accuracy, and has been used by various users for various purposes, such as rainfall monitoring, flood alert and warning, drought monitoring, crop yield forecast, and agricultural insurance. There is, however, a requirement for shortening of data latency time from GSMaP users. To reduce data latency, JAXA has developed the GSMaP realtime version (GSMaP_NOW) product for observation area of the geostationary satellite Himawari-8 operated by the Japan Meteorological Agency (JMA). GSMaP_NOW product was released to public in November 2, 2015 through the

  15. JAXA-NASA Interoperability Demonstration for Application of DTN Under Simulated Rain Attenuation

    NASA Technical Reports Server (NTRS)

    Suzuki, Kiyoshisa; Inagawa, Shinichi; Lippincott, Jeff; Cecil, Andrew J.

    2014-01-01

    As is well known, K-band or higher band communications in space link segment often experience intermittent disruptions caused by heavy rainfall. In view of keeping data integrity and establishing autonomous operations under such situation, it is important to consider introducing a tolerance mechanism such as Delay/Disruption Tolerant Networking (DTN). The Consultative Committee for Space Data Systems (CCSDS) is studying DTN as part of the standardization activities for space data systems. As a contribution to CCSDS and a feasibility study for future utilization of DTN, Japan Aerospace Exploration Agency (JAXA) and National Aeronautics and Space Administration (NASA) conducted an interoperability demonstration for confirming its tolerance mechanism and capability of automatic operation using Data Relay Test Satellite (DRTS) space link and its ground terminals. Both parties used the Interplanetary Overlay Network (ION) open source software, including the Bundle Protocol, the Licklider Transmission Protocol, and Contact Graph Routing. This paper introduces the contents of the interoperability demonstration and its results.

  16. Planetary Data Archiving Plan at JAXA

    NASA Astrophysics Data System (ADS)

    Shinohara, Iku; Kasaba, Yasumasa; Yamamoto, Yukio; Abe, Masanao; Okada, Tatsuaki; Imamura, Takeshi; Sobue, Shinichi; Takashima, Takeshi; Terazono, Jun-Ya

    After the successful rendezvous of Hayabusa with the small-body planet Itokawa, and the successful launch of Kaguya to the moon, Japanese planetary community has gotten their own and full-scale data. However, at this moment, these datasets are only available from the data sites managed by each mission team. The databases are individually constructed in the different formats, and the user interface of these data sites is not compatible with foreign databases. To improve the usability of the planetary archives at JAXA and to enable the international data exchange smooth, we are investigating to make a new planetary database. Within a coming decade, Japan will have fruitful datasets in the planetary science field, Venus (Planet-C), Mercury (BepiColombo), and several missions in planning phase (small-bodies). In order to strongly assist the international scientific collaboration using these mission archive data, the planned planetary data archive at JAXA should be managed in an unified manner and the database should be constructed in the international planetary database standard style. In this presentation, we will show the current status and future plans of the planetary data archiving at JAXA.

  17. KENNEDY SPACE CENTER, FLA. - Members of the STS-114 crew look over flight equipment in the Orbiter Processing Facility. From left are Mission Commander Eileen Collins; Glenda Laws, EVA Task Leader, with United Space Alliance at Johnson Space Center; and Mission Specialists Soichi Noguchi and Charles Camarda. In the foreground is Mission Specialist Wendy Lawrence. Noguchi is with the Japan Aerospace Exploration Agency, JAXA. Not seen are Pilot James Kelly and Mission Specialists Andy Thomas and Stephen Robinson. The STS-114 crew is at KSC to take part in crew equipment and orbiter familiarization.

    NASA Image and Video Library

    2003-10-30

    KENNEDY SPACE CENTER, FLA. - Members of the STS-114 crew look over flight equipment in the Orbiter Processing Facility. From left are Mission Commander Eileen Collins; Glenda Laws, EVA Task Leader, with United Space Alliance at Johnson Space Center; and Mission Specialists Soichi Noguchi and Charles Camarda. In the foreground is Mission Specialist Wendy Lawrence. Noguchi is with the Japan Aerospace Exploration Agency, JAXA. Not seen are Pilot James Kelly and Mission Specialists Andy Thomas and Stephen Robinson. The STS-114 crew is at KSC to take part in crew equipment and orbiter familiarization.

  18. KENNEDY SPACE CENTER, FLA. - The STS-114 mission crew walks through the Orbiter Processing Facility looking at the tiles underneath Atlantis. From left are Mission Specialists Andy Thomas, Stephen Robinson, Soichi Noguchi and Charles Camarda (pointing); Commander Eileen Collins; and Mission Specialist Wendy Lawrence. At far right Glenda Laws, EVA Task Leader, with United Space Alliance at Johnson Space Center. Not seen is Pilot James Kelly. Noguchi is with the Japan Aerospace Exploration Agency, JAXA. The STS-114 crew is at KSC to take part in crew equipment and orbiter familiarization.

    NASA Image and Video Library

    2003-10-30

    KENNEDY SPACE CENTER, FLA. - The STS-114 mission crew walks through the Orbiter Processing Facility looking at the tiles underneath Atlantis. From left are Mission Specialists Andy Thomas, Stephen Robinson, Soichi Noguchi and Charles Camarda (pointing); Commander Eileen Collins; and Mission Specialist Wendy Lawrence. At far right Glenda Laws, EVA Task Leader, with United Space Alliance at Johnson Space Center. Not seen is Pilot James Kelly. Noguchi is with the Japan Aerospace Exploration Agency, JAXA. The STS-114 crew is at KSC to take part in crew equipment and orbiter familiarization.

  19. jsc2017e137337 - At the Cosmonaut Hotel crew quarters in Baikonur, Kazakhstan, Expedition 54-55 prime crewmember Scott Tingle of NASA plays a game of chess Dec. 11 during a break in his pre-launch training. Tingle, Norishige Kanai of the Japan Aerospace E

    NASA Image and Video Library

    2017-12-11

    jsc2017e137337 - At the Cosmonaut Hotel crew quarters in Baikonur, Kazakhstan, Expedition 54-55 prime crewmember Scott Tingle of NASA plays a game of chess Dec. 11 during a break in his pre-launch training. Tingle, Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) and Anton Shkaplerov of the Russian Federal Space Agency (Roscosmos) will launch Dec. 17 on the Soyuz MS-07 spacecraft from the Baikonur Cosmodrome for a five month mission on the International Space Station...Andrey Shelepin / Gagarin Cosmonaut Training Center.

  20. jsc2017e136059 - On a snowy night at Red Square in Moscow, Expedition 54-55 crewmembers Anton Shkaplerov of the Russian Federal Space Agency (Roscosmos, left), Scott Tingle of NASA (center) and Norishige Kanai of the Japan Aerospace Exploration Agency (JA

    NASA Image and Video Library

    2017-11-30

    jsc2017e136059 - On a snowy night at Red Square in Moscow, Expedition 54-55 crewmembers Anton Shkaplerov of the Russian Federal Space Agency (Roscosmos, left), Scott Tingle of NASA (center) and Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA, right) pose for pictures in front of St. Basil’s Cathedral in traditional pre-launch ceremonies Nov. 30. They will launch from the Baikonur Cosmodrome in Kazakhstan on the Soyuz MS-07 spacecraft Dec. 17 for a five-month mission on the International Space Station...Andrey Shelepin/Gagarin Cosmonaut Training Center.

  1. Japan's efforts to promote global health using satellite remote sensing data from the Japan Aerospace Exploration Agency for prediction of infectious diseases and air quality.

    PubMed

    Igarashi, Tamotsu; Kuze, Akihiko; Sobue, Shinichi; Yamamoto, Aya; Yamamoto, Kazuhide; Oyoshi, Kei; Imaoka, Keiji; Fukuda, Toru

    2014-12-01

    In this paper we review the status of new applications research of the Japanese Aerospace Exploration Agency (JAXA) for global health promotion using information derived from Earth observation data by satellites in cooperation with inter-disciplinary collaborators. Current research effort at JAXA to promote global public health is focused primarily on the use of remote sensing to address two themes: (i) prediction models for malaria and cholera in Kenya, Africa; and (ii) air quality assessment of small, particulate matter (PM2.5), nitrogen dioxide (NO2) and ozone (O3). Respiratory and cardivascular diseases constitute cross-boundary public health risk issues on a global scale. The authors report here on results of current of a collaborative research to call attention to the need to take preventive measures against threats to public health using newly arising remote sensing information from space.

  2. jsc2017e136056 - On a snowy night at Red Square in Moscow, Expedition 54-55 crewmembers Scott Tingle of NASA (left), Anton Shkaplerov of the Russian Federal Space Agency (Roscosmos, center) and Norishige Kanai of the Japan Aerospace Exploration Agency (JA

    NASA Image and Video Library

    2017-11-30

    jsc2017e136056 - On a snowy night at Red Square in Moscow, Expedition 54-55 crewmembers Scott Tingle of NASA (left), Anton Shkaplerov of the Russian Federal Space Agency (Roscosmos, center) and Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA, right) pose for pictures at the Kremlin Wall where Russian space icons are interred in traditional pre-launch ceremonies Nov. 30. They will launch from the Baikonur Cosmodrome in Kazakhstan on the Soyuz MS-07 spacecraft Dec. 17 for a five-month mission on the International Space Station...Andrey Shelepin/Gagarin Cosmonaut Training Center.

  3. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-23

    Tourist photograph themselves in astronaut space suites next to a cardboard cutout of Japan Aerospace Exploration Agency (JAXA) Astronaut Akihiko Hoshide at the visitor's center of the Tanegashima Space Center (TNSC), Sunday, Feb. 23, 2014, Tanegashima Island, Japan. A Japanese H-IIA rocket carrying the NASA-Japan Aerospace Exploration Agency (JAXA), Global Precipitation Measurement (GPM) Core Observatory is planned for launch from the space center on Feb. 28, 2014. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  4. Expedition 39 Soyuz TMA-11M Landing

    NASA Image and Video Library

    2014-05-14

    Japan Aerospace Exploration Agency (JAXA) President Naoki Okumura, background left, looks on as a boxes of Karaganda chocolates is presented to Expedition 39 Commander Koichi Wakata of the Japan Aerospace Exploration Agency (JAXA), Soyuz Commander Mikhail Tyurin of Roscosmos, and Flight Engineer Rick Mastracchio of NASA at a welcome ceremony, Wednesday, May 14, 2014 at the Karaganda Airport in Kazakhstan. Wakata, Tyurin and Mastracchio returned to Earth after more than six months onboard the International Space Station where they served as members of the Expedition 38 and 39 crews. Photo Credit: (NASA/Bill Ingalls)

  5. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-22

    A sign with a model of the Japanese H-IIB rocket welcomes visitors to Minamitane Town, one of only a few small towns located outside of the Japan Aerospace Exploration Agency’s (JAXA) Tanegashima Space Center (TNSC), where the launch of an H-IIA rocket carrying the Global Precipitation Measurement (GPM) Core Observatory will take place in the next week, Saturday, Feb. 22, 2014, Tanegashima Island, Japan. The NASA-Japan Aerospace Exploration Agency (JAXA) GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  6. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-22

    Roadside flags welcome the NASA team and visitors to Minamitame Town, one of only a few small towns located outside of the Japan Aerospace Exploration Agency’s (JAXA) Tanegashima Space Center (TNSC), where the launch of an H-IIA rocket carrying the Global Precipitation Measurement (GPM) Core Observatory will take place in the next week, Saturday, Feb. 22, 2014, Tanegashima Island, Japan. The NASA-Japan Aerospace Exploration Agency (JAXA) GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. The launch is planned for Feb. 28, 2014. Photo Credit: (NASA/Bill Ingalls)

  7. A Review of Recent RLV Research Activities in Japan

    NASA Astrophysics Data System (ADS)

    Sasaki, Makoto; Watanabe, Atsutaro

    2004-02-01

    Researches on reusable launch vehicle (RLV) in Japan have been conducted mainly by the three space agencies: the National Space Development Agency of Japan (NASDA), the National Aerospace Laboratory of Japan (NAL) and the Institute of Space and Astronautical Science (ISAS). HOPE-X program by NASDA/NAL, spaceplane/scramjet related researches by NAL, and development studies of ATREX engine and small reusable vehicle testing (RVT) by ISAS are such major activities. After the consecutive launch failures of NASDA's H-II and ISAS's M-V rockets in 1999-2000, it was concluded that more intensive efforts should be concentrated on the reliability improvement of those major expendable vehicles and that RLV related researches should be promoted to establish fundamental technologies essential to future RLV. In past two years, NASDA succeeded in five consecutive launches of new H-IIA, and ISAS successfully resumed the launch of M-V. As for RLV researches, considerable progress has been achieved in the high speed flight demonstration (HSFD) tests of HOPE-X program, scramjet tests of Mach 4 to 8 by NAL, and ATREX engine and small RVT tests by ISAS. The current three space agencies will be merged into one in October 2003 to establish a new organization named Japan Aerospace Exploration Agency (JAXA). It is expected that the above research activities will be also merged to promote a higher-level research program on RLV.

  8. Expedition_55_Inflight_Japan_VIP_Event_May_31_2018_659970

    NASA Image and Video Library

    2018-05-31

    SPACE STATION CREW MEMBER DISCUSSES LIFE IN SPACE WITH JAPANESE OFFICIALS AND STUDENTS----- Aboard the International Space Station, Expedition 55 Flight Engineer Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) discussed life and space on the orbital outpost during an in-flight event May 31 with Japanese officials and students gathered at the National Museum for Emerging Sciences and Innovation in Tokyo. A portion of the event was devoted to questions from students from the Fukushima region of Japan which suffered a significant nuclear power plant accident in March 2011 initiated by a tsunami in the wake of a major earthquake. Kanai is in the final week of his six month mission on the complex, headed for a landing in a Russian Soyuz spacecraft June 3 on the south central steppe of Kazakhstan.

  9. Expedition 54 Soyuz Docking

    NASA Image and Video Library

    2017-12-19

    Japan Aerospace Exploration Agency (JAXA) International Space Station Program Manager Koichi Wakata speaks with the Expedition 54 crew from the Moscow Mission Control Center in Korolev, Russia a few hours after the Soyuz MS-07 docked to the International Space Station on Tuesday, Dec. 19, 2017. Hatches were opened at 5:55 a.m. EST and Anton Shkaplerov of Roscosmos, Scott Tingle of NASA, and Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) joined Expedition 54 Commander Alexander Misurkin of Roscosmos and crewmates Mark Vande Hei and Joe Acaba of NASA aboard the orbiting laboratory. Photo Credit: (NASA/Joel Kowsky)

  10. Early Results from the Global Precipitation Measurement (GPM) Mission in Japan

    NASA Astrophysics Data System (ADS)

    Kachi, Misako; Kubota, Takuji; Masaki, Takeshi; Kaneko, Yuki; Kanemaru, Kaya; Oki, Riko; Iguchi, Toshio; Nakamura, Kenji; Takayabu, Yukari N.

    2015-04-01

    The Global Precipitation Measurement (GPM) mission is an international collaboration to achieve highly accurate and highly frequent global precipitation observations. The GPM mission consists of the GPM Core Observatory jointly developed by U.S. and Japan and Constellation Satellites that carry microwave radiometers and provided by the GPM partner agencies. The Dual-frequency Precipitation Radar (DPR) was developed by the Japan Aerospace Exploration Agency (JAXA) and the National Institute of Information and Communications Technology (NICT), and installed on the GPM Core Observatory. The GPM Core Observatory chooses a non-sun-synchronous orbit to carry on diurnal cycle observations of rainfall from the Tropical Rainfall Measuring Mission (TRMM) satellite and was successfully launched at 3:37 a.m. on February 28, 2014 (JST), while the Constellation Satellites, including JAXA's Global Change Observation Mission (GCOM) - Water (GCOM-W1) or "SHIZUKU," are launched by each partner agency sometime around 2014 and contribute to expand observation coverage and increase observation frequency JAXA develops the DPR Level 1 algorithm, and the NASA-JAXA Joint Algorithm Team develops the DPR Level 2 and DPR-GMI combined Level2 algorithms. JAXA also develops the Global Rainfall Map (GPM-GSMaP) algorithm, which is a latest version of the Global Satellite Mapping of Precipitation (GSMaP), as national product to distribute hourly and 0.1-degree horizontal resolution rainfall map. Major improvements in the GPM-GSMaP algorithm is; 1) improvements in microwave imager algorithm based on AMSR2 precipitation standard algorithm, including new land algorithm, new coast detection scheme; 2) Development of orographic rainfall correction method for warm rainfall in coastal area (Taniguchi et al., 2012); 3) Update of database, including rainfall detection over land and land surface emission database; 4) Development of microwave sounder algorithm over land (Kida et al., 2012); and 5) Development

  11. View of Expedition 32 FE Hoshide during HTV3 Ingress

    NASA Image and Video Library

    2012-07-28

    ISS032-E-011406 (28 July 2012) --- Japan Aerospace Exploration Agency (JAXA) astronaut Aki Hoshide, Expedition 32 flight engineer, using a Russian AK-1M absorber, samples the air in the newly attached JAXA H-II Transfer Vehicle (HTV-3) docked to the International Space Station?s Harmony node.

  12. Expedition 54 Soyuz Docking

    NASA Image and Video Library

    2017-12-19

    Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) is seen after the opening of the hatches between the Soyuz MS-07 spacecraft and the International Space Station on the screens in the Moscow Mission Control Center in Korolev, Russia a few hours after the Soyuz MS-07 docked to the International Space Station on Tuesday, Dec. 19, 2017. Hatches were opened at 5:55 a.m. EST and Shkaplerov, Scott Tingle of NASA, and Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) joined Expedition 54 Commander Alexander Misurkin of Roscosmos and crewmates Mark Vande Hei and Joe Acaba of NASA aboard the orbiting laboratory. Photo Credit: (NASA/Joel Kowsky)

  13. NASA Curation Preparation for Ryugu Sample Returned by JAXA's Hayabusa2 Mission

    NASA Technical Reports Server (NTRS)

    Nakamura-Messenger, Keiko; Righter, Kevin; Snead, Christopher J.; McCubbin, Francis M.; Pace, Lisa F.; Zeigler, Ryan A.; Evans, Cindy

    2017-01-01

    The NASA OSIRIS-REx and JAXA Hayabusa2 missions to near-Earth asteroids Bennu and Ryugu share similar mission goals of understanding the origins of primitive, organic-rich asteroids. Under an agreement between JAXA and NASA, there is an on-going and productive collaboration between science teams of Hayabusa2 and OSIRIS-REx missions. Under this agreement, a portion of each of the returned sample masses will be exchanged between the agencies and the scientific results of their study will be shared. NASA’s portion of the returned Hayabusa2 sample, consisting of 10% of the returned mass, will be jointly separated by NASA and JAXA. The sample will be legally and physically transferred to NASA’s dedicated Hayabusa2 curation facility at Johnson Space Center (JSC) no later than one year after the return of the Hayabusa2 sample to Earth (December 2020). The JSC Hayabusa2 curation cleanroom facility design has now been completed. In the same manner, JAXA will receive 0.5% of the total returned OSIRIS-REx sample (minimum required sample to return 60 g, maximum sample return capacity of 2 kg) from the rest of the specimen. No later than one year after the return of the OSIRIS-REx sample to Earth (September 2023), legal, physical, and permanent custody of this sample subset will be transferred to JAXA, and the sample subset will be brought to JAXA’s Extraterrestrial Sample Curation Center (ESCuC) at Institute of Space and Astronautical Science, Sagamihara City Japan.

  14. Unpiloted Japanese Kounotori HTV-2 Transfer Vehicle

    NASA Image and Video Library

    2011-01-27

    ISS026-E-020844 (27 Jan. 2011) --- The unpiloted Japanese Kounotori2 H-II Transfer Vehicle (HTV2) approaches the International Space Station. The Japan Aerospace Exploration Agency (JAXA) launched HTV2 aboard an H-IIB rocket from the Tanegashima Space Center in southern Japan at 12:37 a.m. (EST) (2:27 p.m. Japan time) on Jan. 22, 2011. HTV2 is the second unpiloted cargo ship launched by JAXA to the station and will deliver more than four tons of food and supplies to the station and its crew members.

  15. Unpiloted Japanese Kounotori HTV-2 Transfer Vehicle

    NASA Image and Video Library

    2011-01-27

    ISS026-E-020916 (27 Jan. 2011) --- The unpiloted Japanese Kounotori2 H-II Transfer Vehicle (HTV2) approaches the International Space Station. The Japan Aerospace Exploration Agency (JAXA) launched HTV2 aboard an H-IIB rocket from the Tanegashima Space Center in southern Japan at 12:37 a.m. (EST) (2:27 p.m. Japan time) on Jan. 22, 2011. HTV2 is the second unpiloted cargo ship launched by JAXA to the station and will deliver more than four tons of food and supplies to the space station and its crew members.

  16. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-21

    The sun sets just outside the Japan Aerospace Exploration Agency’s (JAXA) Tanegashima Space Center (TNSC) a week ahead of the planned launch of an H-IIA rocket carrying the Global Precipitation Measurement (GPM) Core Observatory, Friday, Feb. 21, 2014, Tanegashima Island, Japan. The NASA-JAXA GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  17. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-21

    The Takesaki Observation Center is seen at the Japan Aerospace Exploration Agency’s (JAXA) Tanegashima Space Center (TNSC) a week ahead of the planned launch of an H-IIA rocket carrying the Global Precipitation Measurement (GPM) Core Observatory, Friday, Feb. 21, 2014, Tanegashima Island, Japan. The NASA-JAXA GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  18. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-21

    The entrance sign to the Japan Aerospace Exploration Agency’s (JAXA) Tanegashima Space Center (TNSC) is seen a week ahead of the planned launch of an H-IIA rocket carrying the Global Precipitation Measurement (GPM) Core Observatory, Friday, Feb. 21, 2014, Tanegashima Island, Japan. The NASA-JAXA GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  19. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-21

    The launch pads at the Japan Aerospace Exploration Agency’s (JAXA) Tanegashima Space Center are seen a week ahead of the planned launch of an H-IIA rocket carrying the Global Precipitation Measurement (GPM) Core Observatory, Friday, Feb. 21, 2014, Tanegashima Island, Japan. The NASA-JAXA GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  20. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-22

    A sign guides travelers to the Japan Aerospace Exploration Agency’s (JAXA) Tanegashima Space Center (TNSC), Saturday, Feb. 22, 2014, Tanegashima Island, Japan. A launch of an H-IIA rocket carrying the Global Precipitation Measurement (GPM) Core Observatory is planned for Feb. 28, 2014 from the space center. The NASA-JAXA GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  1. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-21

    A light house and weather station is seen at the Japan Aerospace Exploration Agency’s (JAXA) Tanegashima Space Center (TNSC) a week ahead of the planned launch of an H-IIA rocket carrying the Global Precipitation Measurement (GPM) Core Observatory, Friday, Feb. 21, 2014, Tanegashima Island, Japan. The NASA-JAXA GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  2. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-21

    Topiary shaped into the logo of the Japan Aerospace Exploration Agency (JAXA) is seen at the Tanegashima Space Center (TNSC) a week ahead of the planned launch of an H-IIA rocket carrying the Global Precipitation Measurement (GPM) Core Observatory, Friday, Feb. 21, 2014, Tanegashima Island, Japan. The NASA-JAXA GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  3. FACET Cell installation in Solution Crystallization Observation Facility (SCOF) in the JEM Pressurized Module (JPM)

    NASA Image and Video Library

    2009-04-02

    ISS018-E-044460 (2 April 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 18/19 flight engineer, works in the Kibo laboratory of the International Space Station.

  4. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-28

    Caroline Kennedy, U.S. Ambassador Extraordinary and Plenipotentiary to Japan, congratulated both NASA and the Japan Aerospace Exploration Agency (JAXA) Global Precipitation Measurement (GPM) Core Observatory teams and noted it was an example of over 40 years of strong U.S. and Japan relations, Friday Feb. 28, 2014, Tanegashima Space Center (TNSC) Tanegashima, Japan. The Ambassador witnessed the launch of a Japanese H-IIA rocket carrying the NASA-JAXA, GPM Core Observatory. The GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  5. Unpiloted Japanese Kounotori HTV-2 Transfer Vehicle

    NASA Image and Video Library

    2011-01-27

    ISS026-E-020887 (27 Jan. 2011) --- Backdropped by a colorful part of Earth, the unpiloted Japanese Kounotori2 H-II Transfer Vehicle (HTV2) approaches the International Space Station. The Japan Aerospace Exploration Agency (JAXA) launched HTV2 aboard an H-IIB rocket from the Tanegashima Space Center in southern Japan at 12:37 a.m. (EST) (2:27 p.m. Japan time) on Jan. 22, 2011. HTV2 is the second unpiloted cargo ship launched by JAXA to the station and will deliver more than four tons of food and supplies to the space station and its crew members.

  6. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-27

    Caroline Bouvier Kennedy, U.S. Ambassador Extraordinary and Plenipotentiary to Japan, right, is welcomed by Japan Aerospace Exploration Agency (JAXA), President, Naoki Okumura, at the Tanegashima Space Center Visitors Center on Thursday, Feb. 27, 2014, Tanegashima, Japan. The Ambassador is visiting the space center and hopes to witness the planned launch of a Japanese H-IIA rocket carrying the NASA-JAXA, Global Precipitation Measurement (GPM) Core Observatory. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  7. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-27

    Caroline Bouvier Kennedy, U.S. Ambassador Extraordinary and Plenipotentiary to Japan, center, tours the Tanegashima Space Center, Visitors Center with Japan Aerospace Exploration Agency (JAXA), President, Naoki Okumura, right, on Thursday, Feb. 27, 2014, Tanegashima, Japan. The Ambassador visiting the space center and hopes to witness the planned launch of a Japanese H-IIA rocket carrying the NASA-JAXA, Global Precipitation Measurement (GPM) Core Observatory. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  8. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-27

    Caroline Kennedy, U.S. Ambassador Extraordinary and Plenipotentiary to Japan, right, is welcomed by Japan Aerospace Exploration Agency (JAXA), President, Naoki Okumura, at the Tanegashima Space Center Visitors Center on Thursday, Feb. 27, 2014, Tanegashima, Japan. The Ambassador is visiting the space center and hopes to witness the planned launch of a Japanese H-IIA rocket carrying the NASA-JAXA, Global Precipitation Measurement (GPM) Core Observatory. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  9. Unpiloted Japanese Kounotori HTV-2 Transfer Vehicle

    NASA Image and Video Library

    2011-01-27

    ISS026-E-020850 (27 Jan. 2011) --- Backdropped by a cloud-covered part of Earth, the unpiloted Japanese Kounotori2 H-II Transfer Vehicle (HTV2) approaches the International Space Station. The Japan Aerospace Exploration Agency (JAXA) launched HTV2 aboard an H-IIB rocket from the Tanegashima Space Center in southern Japan at 12:37 a.m. (EST) (2:27 p.m. Japan time) on Jan. 22, 2011. HTV2 is the second unpiloted cargo ship launched by JAXA to the station and will deliver more than four tons of food and supplies to the space station and its crew members.

  10. ILLUMA-T (Integrated LCRD LEO User Modem and Amplifier Terminal) Payload

    NASA Technical Reports Server (NTRS)

    Seas, Antonios; Gonnsen, Zachary; Yarnall, Timothy

    2018-01-01

    Presentation on ILLUMA-T (Integrated LCRD LEO User Modem and Amplifier Terminal) Payload at the Japanese Experiment Module (JEM) External Payload Interface Coordination Meeting on May 9, 2018 at the Japan Aerospace Exploration Agency (JAXA) in Tsukuba, Japan. Meeting to discuss details of installing payload on JEM.

  11. Noguchi works on JEMRMS Limp Mode Transfer during Expedition 22

    NASA Image and Video Library

    2010-03-10

    ISS022-E-089775 (10 March 2010) --- Japan Aerospace Exploration Agency (JAXA) astronaut Soichi Noguchi, Expedition 22 flight engineer, uses a computer in the Kibo laboratory of the International Space Station.

  12. Noguchi conducts BioLab WAICO-2 Experiment

    NASA Image and Video Library

    2010-05-10

    ISS023-E-042460 (10 May 2010) --- Japan Aerospace Exploration Agency (JAXA) astronaut Soichi Noguchi, Expedition 23 flight engineer, uses a computer in the Columbus laboratory of the International Space Station.

  13. Noguchi uses laptop computer in the Node 2 during Expedition 22

    NASA Image and Video Library

    2010-01-19

    ISS022-E-030641 (19 Jan. 2010) --- Japan Aerospace Exploration Agency (JAXA) astronaut Soichi Noguchi, Expedition 22 flight engineer, uses a computer in the Harmony node of the International Space Station.

  14. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-21

    A full size model of an H-II rocket is seen at the Japan Aerospace Exploration Agency’s (JAXA) Tanegashima Space Center (TNSC) visitors center a week ahead of the planned launch of an H-IIA rocket carrying the Global Precipitation Measurement (GPM) Core Observatory, Friday, Feb. 21, 2014, Tanegashima Island, Japan. The NASA-JAXA GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  15. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-22

    A roadside sign announces the upcoming launch of an H-IIA rocket carrying the Global Precipitation Measurement (GPM) Core Observatory, Saturday, Feb. 22, 2014, Minamitane Town, Tanegashima Island, Japan. Once launched from the Japan Aerospace Exploration Agency’s (JAXA) Tanegashima Space Center (TNSC) the NASA-JAXA GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. The launch is planned for Feb. 28, 2014. Photo Credit: (NASA/Bill Ingalls)

  16. EVA 3

    NASA Image and Video Library

    2005-08-03

    S114-E-6893 (3 August 2005) --- Astronaut Soichi Noguchi, STS-114 mission specialist representing Japan Aerospace Exploration Agency (JAXA), participates in the mission’;s third session of extravehicular activity (EVA).

  17. EVA 3

    NASA Image and Video Library

    2005-08-03

    S114-E-6897 (3 August 2005) --- Astronaut Soichi Noguchi, STS-114 mission specialist representing Japan Aerospace Exploration Agency (JAXA), participates in the mission’;s third session of extravehicular activity (EVA).

  18. KSC-08pd0819

    NASA Image and Video Library

    2008-03-26

    CAPE CANAVERAL, Fla. --- NASA Administrator Mike Griffin poses for a portrait with representatives of the Japan Aerospace Exploration Agency, or JAXA, under space shuttle Endeavour. On the left is JAXA Director Kuniaki Shiraki, and on the right is JAXA Vice President Kaoru Mamiya. JAXA is one of NASA's international partners in the development and operation of the International Space Station. The shuttle landed on Runway 15 at Kennedy Space Center's Shuttle Landing Facility at the end of the STS-123 mission, a 16-day flight to the International Space Station. This was the 16th night landing at Kennedy. The main landing gear touched down at 8:39:08 p.m. EDT. The nose landing gear touched down at 8:39:17 p.m. and wheel stop was at 8:40:41 p.m. The mission completed nearly 6.6 million miles. The landing was on the second opportunity after the first was waved off due to unstable weather in the Kennedy Space Center area. The STS-123 mission delivered the first segment of the Japan Aerospace Exploration Agency's Kibo laboratory and the Canadian Space Agency's two-armed robotic system, known as Dextre. Photo credit: NASA/Kim Shiflett

  19. Wakata in Node 2

    NASA Image and Video Library

    2009-06-30

    ISS020-E-016151 (30 June 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 20 flight engineer, enters data in a computer in the Harmony node of the International Space Station.

  20. Research and Development on In-Situ Measurement Sensors for Micro-Meteoroid and Small Space Debris at JAXA

    NASA Astrophysics Data System (ADS)

    Kitazawa, Yukihito; Matsumoto, Haruhisa; Okudaira, Osamu; Kimoto, Yugo; Hanada, Toshiya; Akahoshi, Yasuhiro; Pauline, Faure; Sakurai, Akira; Funakoshi, Kunihiro; Yasaka, Testuo

    2015-04-01

    The history of Japanese R&D into in-situ sensors for micro-meteoroid and orbital debris (MMOD) measurements is neither particularly long nor short. Research into active sensors started for the meteoroid observation experiment on the HITEN (MUSES-A) satellite of ISAS/JAXA launched in 1990, which had MDC (Munich Dust Counter) on-board sensors for micro meteoroid measurement. This was a collaboration between Technische Universität München and ISAS/JAXA. The main purpose behind the start of passive sensor research was SOCCOR, a late 80's Japan-US mission that planned to capture cometary dust and return to the Earth. Although this mission was canceled, the research outcomes were employed in a JAXA micro debris sample return mission using calibrated aerogel involving the Space Shuttle and the International Space Station. There have been many other important activities apart from the above, and the knowledge generated from them has contributed to JAXA's development of a new type of active dust sensor. JAXA and its partners have been developing a simple in-situ active dust sensor of a new type to detect dust particles ranging from a hundred micrometers to several millimeters. The distribution and flux of the debris in the size range are not well understood and is difficult to measure using ground observations. However, it is important that the risk caused by such debris is assessed. In-situ measurement of debris in this size range is useful for 1) verifying meteoroid and debris environment models, 2) verifying meteoroid and debris environment evolution models, and 3) the real time detection of explosions, collisions and other unexpected orbital events. Multitudes of thin, conductive copper strips are formed at a fine pitch of 100 um on a film 12.5 um thick of nonconductive polyimide. An MMOD particle impact is detected when one or more strips are severed by being perforated by such an impact. This sensor is simple to produce and use and requires almost no calibration as

  1. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-22

    The NASA Global Precipitation Measurement (GPM) Core Observatory team is seen during an all-day launch simulation for GPM at the Spacecraft Test and Assembly Building 2 (STA2), Saturday, Feb. 22, 2014, Tanegashima Space Center (TNSC), Tanegashima Island, Japan. Japan Aerospace Exploration Agency (JAXA) plans to launch an H-IIA rocket carrying the GPM Core Observatory on Feb. 28, 2014. The NASA-JAXA GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  2. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-22

    A small roadside park honoring spaceflight is seen in Minamitane Town, Saturday Feb. 22, 2014, Tanegashima Island, Japan. Minamitane Town is located not far from the Japan Aerospace Exploration Agency’s (JAXA) Tanegashima Space Center (TNSC), where the launch of an H-IIA rocket carrying the Global Precipitation Measurement (GPM) Core Observatory is planned for Feb. 28, 2014. The NASA-JAXA GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  3. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-22

    Space themed signs are seen along the roads to and from the Japan Aerospace Exploration Agency’s (JAXA) Tanegashima Space Center (TNSC), Saturday, Feb. 22, 2014, Tanegashima Island, Japan. A launch of an H-IIA rocket carrying the Global Precipitation Measurement (GPM) Core Observatory is planned for Feb. 28, 2014 from the space center. The NASA-JAXA GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  4. ISS Expedition 54-55 Docking, Hatch Opening and Welcome Activities

    NASA Image and Video Library

    2017-12-19

    After launching Dec. 17 in their Soyuz MS-07 spacecraft from the Baikonur Cosmodrome in Kazakhstan, Expedition 54-55 Soyuz Commander Anton Shkaplerov of Roscosmos and Flight Engineers Scott Tingle of NASA and Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) arrived at the International Space Station Dec. 19 to complete a two-day journey, docking their vehicle to the Rassvet module on the Russian segment of the complex. A few hours after docking their Soyuz MS-07 spacecraft to the International Space Station, Expedition 54-55 Soyuz Commander Anton Shkaplerov of Roscosmos and Flight Engineers Scott Tingle of NASA and Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA), opened hatches and were greeted by station Commander Alexander Misurkin of Roscosmos and Flight Engineers Joe Acaba and Mark Vande Hei of NASA.

  5. Wakata with Food packets in Node 1

    NASA Image and Video Library

    2009-06-03

    ISS020-E-006349 (3 June 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 20 flight engineer, holds chopsticks near two food containers floating freely in Unity node of the International Space Station.

  6. ARC-2011-ACD11-0016-006

    NASA Image and Video Library

    2011-02-03

    The 14 member 2009 class of NASA astronauts, Japan Aerospace Explortion Agency (JAXA) astronauts and Canadian Space Agency astronauts visit Ames Research Center. Pete Worden, Ames Center Director joins the candidates during the round table.

  7. JPM ITCS fill,TCA L gas trap

    NASA Image and Video Library

    2009-07-07

    ISS020-E-017812 (7 July 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 20 flight engineer, works with the Fluid Control Pump Assembly (FCPA) in the Kibo laboratory on the International Space Station.

  8. Wakata in JPM with CBEF

    NASA Image and Video Library

    2009-07-09

    ISS020-E-020276 (9 July 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 20 flight engineer, works at the Cell Biology Experiment Facility (CBEF) in the Kibo laboratory of the International Space Station.

  9. Wakata and Barratt in Node 2

    NASA Image and Video Library

    2009-06-01

    ISS020-E-006212 (1 June 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata (left) and NASA astronaut Michael Barratt, both Expedition 20 flight engineers, work in the Harmony node of the International Space Station.

  10. Barratt and Wakata in Node 2

    NASA Image and Video Library

    2009-06-14

    ISS020-E-008964 (14 June 2009) --- NASA astronaut Michael Barratt (left) and Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, both Expedition 20 flight engineers, work in the Harmony node of the International Space Station.

  11. Barratt and Wakata in Node 2

    NASA Image and Video Library

    2009-06-14

    ISS020-E-008958 (14 June 2009) --- NASA astronaut Michael Barratt (left) and Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, both Expedition 20 flight engineers, work in the Harmony node of the International Space Station.

  12. Barratt and Wakata in Node 2

    NASA Image and Video Library

    2009-06-14

    ISS020-E-008956 (14 June 2009) --- NASA astronaut Michael Barratt (left) and Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, both Expedition 20 flight engineers, work in the Harmony node of the International Space Station.

  13. Wakata with MSG

    NASA Image and Video Library

    2009-05-16

    ISS019-E-017344 (16 May 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 19/20 flight engineer, works with the Microgravity Science Glovebox (MSG) in the Columbus laboratory of the International Space Station.

  14. Wakata with MSG

    NASA Image and Video Library

    2009-05-16

    ISS019-E-017342 (16 May 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 19/20 flight engineer, works with the Microgravity Science Glovebox (MSG) in the Columbus laboratory of the International Space Station.

  15. Wakata during 33P Progress unpacking

    NASA Image and Video Library

    2009-05-13

    ISS019-E-016481 (13 May 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 19/20 flight engineer, is pictured with fresh tomatoes and apples in the Zvezda Service Module of the International Space Station.

  16. Wakata with Purified Recycled water

    NASA Image and Video Library

    2009-05-23

    ISS019-E-019380 (22 May 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 19/20 flight engineer, squeezes a bubble out of his beverage container in the Destiny laboratory of the International Space Station.

  17. Group Combustion Module (GCM) Installation

    NASA Image and Video Library

    2016-09-27

    ISS049e011638 (09/27/2016) --- Expedition 49 crewmember Takuya Onishi of JAXA works on the setup of the Group Combustion Module (GCM) inside the Japanese Experiment Module. The GCM will be used to house the Group Combustion experiment from the Japan Aerospace Exploration Agency (JAXA) to test a theory that fuel sprays change from partial to group combustion as flames spread across a cloud of droplets.

  18. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-26

    A daruma doll is seen on the desk of Masahiro Kojima, GPM Dual-frequency Precipitation Radar project manager, Japan Aerospace Exploration Agency (JAXA), at the Tanegashima Space Cener's Range Control Center (RCC), Wednesday, Feb. 26, 2014, Tanegashima, Japan. One eye of the daruma doll is colored in when a goal is set and the second eye is colored in at the completion of the goal. JAXA plans to launch an H-IIA rocket carrying the NASA-JAXA, Global Precipitation Measurement (GPM) Core Observatory from the space center on Feb. 28, 2014. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  19. Wakata prepares for Surface Sample Kit (SSK) Collection/Incubation

    NASA Image and Video Library

    2009-04-29

    ISS019-E-012393 (29 April 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 19/20 flight engineer, is pictured near a Microbial Air Sampler floating freely in the Kibo laboratory of the International Space Station.

  20. Hoshide in intra-deck hatch

    NASA Image and Video Library

    2008-06-01

    S124-E-005419 (1 June 2008) --- Japan Aerospace Exploration Agency (JAXA) astronaut Akihiko Hoshide, STS-124 mission specialist, smiles for a photo while in the hatch which connects the flight deck and middeck of Space Shuttle Discovery.

  1. Food Stowage in Node 2 Harmony

    NASA Image and Video Library

    2009-04-04

    ISS018-E-044614 (4 April 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 18/19 flight engineer, is pictured near food and drink containers floating freely in the Harmony node of the International Space Station.

  2. Doi looks through food locker in the MDDK during STS-123 mission

    NASA Image and Video Library

    2008-03-11

    S123-E-005126 (11 March 2008) --- Japan Aerospace Exploration Agency (JAXA) astronaut Takao Doi, STS-123 mission specialist, prepares a meal at the galley on the middeck of Space Shuttle Endeavour late in flight day one activities.

  3. Wakata wearing Penguin-3 suit in JPM

    NASA Image and Video Library

    2009-07-12

    ISS020-E-019078 (12 July 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 20 flight engineer, is pictured wearing the Penguin-3 antigravity pressure/stress suit in the Kibo laboratory of the International Space Station.

  4. Wakata on CEVIS

    NASA Image and Video Library

    2009-06-08

    ISS020-E-007607 (8 June 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 20 flight engineer, exercises on the Cycle Ergometer with Vibration Isolation System (CEVIS) in the Destiny laboratory of the International Space Station.

  5. Wakata on Cycle Ergometer in Lab

    NASA Image and Video Library

    2009-05-30

    ISS020-E-005790 (30 May 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 20 flight engineer, exercises on the Cycle Ergometer with Vibration Isolation System (CEVIS) in the Destiny laboratory of the International Space Station.

  6. Wakata exercises with Advanced Resistive Exercise Device (ARED) in Node 1 Unity

    NASA Image and Video Library

    2009-04-04

    ISS018-E-044585 (4 April 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 18/19 flight engineer, exercises using the advanced Resistive Exercise Device (aRED) in the Unity node of the International Space Station.

  7. Wakata exercises with Advanced Resistive Exercise Device (ARED) in Node 1 Unity

    NASA Image and Video Library

    2009-04-04

    ISS018-E-044576 (4 April 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 18/19 flight engineer, exercises using the advanced Resistive Exercise Device (aRED) in the Unity node of the International Space Station.

  8. DomeGene Sample Removal from Cell Biology Experiment Facility (CBEF)

    NASA Image and Video Library

    2009-03-28

    ISS018-E-044268 (28 March 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 18/19 flight engineer, works on an experiment at the Saibo biological experiment rack in the Kibo laboratory of the International Space Station.

  9. Wakata on Cycle Ergometer with Vibration Isolation System (CEVIS)

    NASA Image and Video Library

    2009-03-30

    ISS018-E-043723 (30 March 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 18/19 flight engineer, exercises on the Cycle Ergometer with Vibration Isolation System (CEVIS) in the Destiny laboratory of the International Space Station.

  10. Wakata with GLACIER in U.S. Lab

    NASA Image and Video Library

    2009-06-15

    ISS020-E-010016 (15 June 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 20 flight engineer, works with the General Laboratory Active Cryogenic ISS Experiment Refrigerator (GLACIER) in the Destiny laboratory of the International Space Station.

  11. Wakata with GLACIER in U.S. Lab

    NASA Image and Video Library

    2009-06-15

    ISS020-E-010017 (15 June 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 20 flight engineer, works with the General Laboratory Active Cryogenic ISS Experiment Refrigerator (GLACIER) in the Destiny laboratory of the International Space Station.

  12. HTV3 Approach and Grapple

    NASA Image and Video Library

    2012-07-27

    ISS032-E-010834 (27 July 2012) --- The International Space Station’s Canadarm2 grapples the unpiloted Japan Aerospace Exploration Agency (JAXA) H-II Transfer Vehicle (HTV-3) as it approaches the station. NASA astronaut Joe Acaba and Japan Aerospace Exploration Agency astronaut Aki Hoshide, both Expedition 32 flight engineers, used the station's robotic arm to capture and berth the HTV-3 to the Earth-facing port of the station's Harmony node. The attachment was completed at 10:34 a.m. (EDT) on July 27, 2012.

  13. HTV3 Approach and Grapple

    NASA Image and Video Library

    2012-07-27

    ISS032-E-010832 (27 July 2012) --- The International Space Station’s Canadarm2 grapples the unpiloted Japan Aerospace Exploration Agency (JAXA) H-II Transfer Vehicle (HTV-3) as it approaches the station. NASA astronaut Joe Acaba and Japan Aerospace Exploration Agency astronaut Aki Hoshide, both Expedition 32 flight engineers, used the station's robotic arm to capture and berth the HTV-3 to the Earth-facing port of the station's Harmony node. The attachment was completed at 10:34 a.m. (EDT) on July 27, 2012.

  14. Status of Animal Experiments on International Space Station, and Animal Care Activities in Japan

    NASA Astrophysics Data System (ADS)

    Izumi, Ryutaro; Ishioka, Noriaki; Yumoto, Akane; Ito, Isao; Shirakawa, Masaki

    We would like to introduce animal experiments status on International Space Station (ISS) of Japan. Aquatic Habitat (AQH) was launched at 2012 July, by H-II Transfer Vehicle (HTV, ‘Kounotori’) from Tanegashima island in Japan, which could house small fish (Medaka, or Zebrafish) at most three months. First experiment using AQH was carried out for two months from Oct. 26, 2012, and second experiment would start from February, 2014. Mice housing hardware is now under development. For animal care activities, current topic in Japan is self-estimation for animal experiment status by each institute, and to open the result for public. JAXA conducted self-estimation of fiscal year 2011 (from 2011 April until 2012 March) for the first time, and would continue every fiscal year. JAXA already have its own animal care regulation, under animal care law and policy in Japan, and also referred COSPAR animal care guideline. And this year, JAXA made handbook for animal experiments in space (only Japanese).

  15. DomeGene Sample Removal from Cell Biology Experiment Facility (CBEF)

    NASA Image and Video Library

    2009-03-28

    ISS018-E-044235 (28 March 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 18/19 flight engineer, works on an experiment at the Ryutai fluid science experiment rack in the Kibo laboratory of the International Space Station.

  16. Wakata with water bubble in Node 2

    NASA Image and Video Library

    2009-06-16

    ISS020-E-011077 (16 June 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 20 flight engineer, squeezes a water bubble out of his beverage container, showing his image refracted, in the Harmony node of the International Space Station.

  17. Wakata with water bubble in Node 2

    NASA Image and Video Library

    2009-06-16

    ISS020-E-011068 (16 June 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 20 flight engineer, squeezes a water bubble out of his beverage container, showing his image refracted, in the Harmony node of the International Space Station.

  18. Wakata with TVIS in Service module

    NASA Image and Video Library

    2009-04-23

    ISS019-E-009824 (23 April 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 19/20 flight engineer, performs in-flight maintenance on the Treadmill Vibration Isolation System (TVIS) in the Zvezda Service Module of the International Space Station.

  19. Wakata during TVIS maintenance

    NASA Image and Video Library

    2009-04-21

    ISS019-E-008758 (21 April 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 19/20 flight engineer, performs in-flight maintenance on the Treadmill Vibration Isolation System (TVIS) in the Zvezda Service Module of the International Space Station.

  20. Wakata with TVIS in Service module

    NASA Image and Video Library

    2009-04-23

    ISS019-E-009853 (23 April 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 19/20 flight engineer, performs in-flight maintenance on the Treadmill Vibration Isolation System (TVIS) in the Zvezda Service Module of the International Space Station.

  1. CWSA (Condensate Water Separator Assembly)

    NASA Image and Video Library

    2009-05-14

    ISS019-E-016029 (14 May 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 19/20 flight engineer, performs in-flight maintenance on the Condensate Water Separator Assembly (CWSA) in the Columbus laboratory of the International Space Station.

  2. Gorie looks at crew procedures in the aft FD during STS-123 mission

    NASA Image and Video Library

    2008-03-13

    S123-E-005634 (13 March 2008) --- NASA astronaut Dominic Gorie (right), STS-123 commander; and Japan Aerospace Exploration Agency (JAXA) astronaut Takao Doi, mission specialist, are pictured on the flight deck of Space Shuttle Endeavour during flight day three activities.

  3. WHC Maintenance

    NASA Image and Video Library

    2009-04-28

    ISS019-E-011464 (28 April 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 19/20 flight engineer, performs in-flight maintenance on the waste and hygiene compartment located in the Destiny laboratory of the International Space Station.

  4. WHC Maintenance

    NASA Image and Video Library

    2009-04-28

    ISS019-E-011471 (28 April 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 19/20 flight engineer, performs in-flight maintenance on the waste and hygiene compartment located in the Destiny laboratory of the International Space Station.

  5. FSS (Fluid Servicer System) from the Kibo module to the ESA COL

    NASA Image and Video Library

    2009-07-08

    ISS020-E-017933 (8 July 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 20 flight engineer, works with the Fluid Servicing System (FSS) and the Fluid Control Pump Assembly (FCPA) in the Columbus laboratory of the International Space Station.

  6. Noguchi with a Water Drop

    NASA Image and Video Library

    2010-04-19

    ISS023-E-025091 (19 April 2010) --- Japan Aerospace Exploration Agency (JAXA) astronaut Soichi Noguchi, Expedition 23 flight engineer, watches a water bubble float freely between him and the camera, showing his image refracted, in the Kibo laboratory of the International Space Station.

  7. Wakata with water bubble in Node 2

    NASA Image and Video Library

    2009-06-16

    ISS020-E-011082 (16 June 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 20 flight engineer, watches a water bubble float freely between him and the camera, showing his image refracted, in the Harmony node of the International Space Station.

  8. Wakata and Barratt with cameras at SM window

    NASA Image and Video Library

    2009-04-19

    ISS019-E-008935 (19 April 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata (left) and NASA astronaut Michael Barratt, both Expedition 19/20 flight engineers, use still cameras at a window in the Zvezda Service Module of the International Space Station.

  9. Wakata haircut in the Service Module (SM)

    NASA Image and Video Library

    2009-04-04

    ISS018-E-044602 (4 April 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 18/19 flight engineer, trims his hair in the Zarya module of the International Space Station, using scissors and a vacuum device to garner freshly cut hair.

  10. Wakata haircut in the Service Module (SM)

    NASA Image and Video Library

    2009-04-04

    ISS018-E-044607 (4 April 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 18/19 flight engineer, returns scissors and hair clippers to their storage bag after trimming his hair in the Zarya module of the International Space Station.

  11. Wakata in the MDDK during STS-127

    NASA Image and Video Library

    2009-07-28

    S127-E-009756 (28 July 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, STS-127 mission specialist, is pictured near a lithium hydroxide (LiOH) canister floating freely on the middeck of Space Shuttle Endeavour during flight day 14 activities.

  12. Expedition 52 Red Square Visit

    NASA Image and Video Library

    2017-07-10

    Expedition 52 backup crew member Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) lays roses at the site where Russian space icons are interred as part of traditional pre-launch ceremonies, Monday, July 10, 2017 in Moscow. Photo Credit: (NASA/Bill Ingalls)

  13. Expedition 32 Crew Members monitor HTV-3 Approach

    NASA Image and Video Library

    2012-07-27

    ISS032-E-010681 (27 July 2012) --- NASA astronaut Joe Acaba (with still camera) and Japan Aerospace Exploration Agency astronaut Aki Hoshide, both Expedition 32 flight engineers, are pictured in the International Space Station’s Cupola as the unpiloted Japan Aerospace Exploration Agency (JAXA) H-II Transfer Vehicle (HTV-3) approaches the station. Hoshide and Acaba used the station's Canadarm2 robotic arm to capture and berth the HTV-3 to the Earth-facing port of the station's Harmony node. The attachment was completed at 10:34 a.m. (EDT) on July 27, 2012.

  14. Expedition 32 FE Hoshide poses for a photo in the Cupola

    NASA Image and Video Library

    2012-07-27

    ISS032-E-010583 (27 July 2012) --- Japan Aerospace Exploration Agency astronaut Aki Hoshide is pictured near the windows in the International Space Station?s Cupola as the unpiloted Japan Aerospace Exploration Agency (JAXA) H-II Transfer Vehicle (HTV-3) approaches the station. Hoshide and NASA astronaut Joe Acaba (out of frame), both Expedition 32 flight engineers, used the station's Canadarm2 robotic arm to capture and berth the HTV-3 to the Earth-facing port of the station's Harmony node. The attachment was completed at 10:34 a.m. (EDT) on July 27, 2012.

  15. Expedition 32 FE Acaba poses for a photo in the Cupola

    NASA Image and Video Library

    2012-07-27

    ISS032-E-010613 (27 July 2012) --- NASA astronaut Joe Acaba is pictured in the International Space Station?s Cupola as the unpiloted Japan Aerospace Exploration Agency (JAXA) H-II Transfer Vehicle (HTV-3) approaches the station. Acaba and Japan Aerospace Exploration Agency astronaut Aki Hoshide (out of frame), both Expedition 32 flight engineers, used the station's Canadarm2 robotic arm to capture and berth the HTV-3 to the Earth-facing port of the station's Harmony node. The attachment was completed at 10:34 a.m. (EDT) on July 27, 2012.

  16. View of HTV3 grappled by SSRMS

    NASA Image and Video Library

    2012-07-27

    ISS032-E-010436 (27 July 2012) --- As seen through a window in the Cupola, the International Space Station’s Canadarm2 grapples the unpiloted Japan Aerospace Exploration Agency (JAXA) H-II Transfer Vehicle (HTV-3) as it approaches the station. NASA astronaut Joe Acaba and Japan Aerospace Exploration Agency astronaut Aki Hoshide, both Expedition 32 flight engineers, used the station's robotic arm to capture and berth the HTV-3 to the Earth-facing port of the station's Harmony node. The attachment was completed at 10:34 a.m. (EDT) on July 27, 2012.

  17. Expedition 32 Crew Members in the Cupola during HTV3 Approach

    NASA Image and Video Library

    2012-07-27

    ISS032-E-010605 (27 July 2012) --- Japan Aerospace Exploration Agency astronaut Aki Hoshide (left) and NASA astronaut Joe Acaba, both Expedition 32 flight engineers, are pictured near the windows in the International Space Station?s Cupola as the unpiloted Japan Aerospace Exploration Agency (JAXA) H-II Transfer Vehicle (HTV-3) approaches the station. Hoshide and Acaba used the station's Canadarm2 robotic arm to capture and berth the HTV-3 to the Earth-facing port of the station's Harmony node. The attachment was completed at 10:34 a.m. (EDT) on July 27, 2012.

  18. Expedition 32 Crew Members monitor HTV-3 Approach

    NASA Image and Video Library

    2012-07-27

    ISS032-E-010672 (27 July 2012) --- NASA astronaut Joe Acaba (foreground) and Japan Aerospace Exploration Agency astronaut Aki Hoshide, both Expedition 32 flight engineers, are pictured in the International Space Station’s Cupola as the unpiloted Japan Aerospace Exploration Agency (JAXA) H-II Transfer Vehicle (HTV-3) approaches the station. Hoshide and Acaba used the station's Canadarm2 robotic arm to capture and berth the HTV-3 to the Earth-facing port of the station's Harmony node. The attachment was completed at 10:34 a.m. (EDT) on July 27, 2012.

  19. Expedition 32 FE Hoshide poses for a photo in the Cupola

    NASA Image and Video Library

    2012-07-27

    ISS032-E-010615 (27 July 2012) --- Japan Aerospace Exploration Agency astronaut Aki Hoshide is pictured in the Cupola of the International Space Station during rendezvous operations with the unpiloted Japan Aerospace Exploration Agency (JAXA) H-II Transfer Vehicle (HTV-3). Hoshide and NASA astronaut Joe Acaba (out of frame), both Expedition 32 flight engineers, used the station's Canadarm2 robotic arm to capture and berth the HTV-3 to the Earth-facing port of the station's Harmony node. The attachment was completed at 10:34 a.m. (EDT) on July 27, 2012.

  20. HTV3 Approach

    NASA Image and Video Library

    2012-07-27

    ISS032-E-010609 (27 July 2012) --- As seen through windows in the Cupola, the station's Canadarm2 robotic arm moves toward the unpiloted Japan Aerospace Exploration Agency (JAXA) H-II Transfer Vehicle (HTV-3) as it approaches the International Space Station. NASA astronaut Joe Acaba and Japan Aerospace Exploration Agency astronaut Aki Hoshide, both Expedition 32 flight engineers, used the station's robotic arm to capture and berth the HTV-3 to the Earth-facing port of the station's Harmony node. The attachment was completed at 10:34 a.m. (EDT) on July 27, 2012.

  1. Experimental Study of Slat Noise from 30P30N Three-Element High-Lift Airfoil in JAXA Hard-Wall Low-Speed Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Murayama, Mitsuhiro; Nakakita, Kazuyuki; Yamamoto, Kazuomi; Ura, Hiroki; Ito, Yasushi; Choudhari, Meelan M.

    2014-01-01

    Aeroacoustic measurements associated with noise radiation from the leading edge slat of the canonical, unswept 30P30N three-element high-lift airfoil configuration have been obtained in a 2 m x 2 m hard-wall wind tunnel at the Japan Aerospace Exploration Agency (JAXA). Performed as part of a collaborative effort on airframe noise between JAXA and the National Aeronautics and Space Administration (NASA), the model geometry and majority of instrumentation details are identical to a NASA model with the exception of a larger span. For an angle of attack up to 10 degrees, the mean surface Cp distributions agree well with free-air computational fluid dynamics predictions corresponding to a corrected angle of attack. After employing suitable acoustic treatment for the brackets and end-wall effects, an approximately 2D noise source map is obtained from microphone array measurements, thus supporting the feasibility of generating a measurement database that can be used for comparison with free-air numerical simulations. Both surface pressure spectra obtained via KuliteTM transducers and the acoustic spectra derived from microphone array measurements display a mixture of a broad band component and narrow-band peaks (NBPs), both of which are most intense at the lower angles of attack and become progressively weaker as the angle of attack is increased. The NBPs exhibit a substantially higher spanwise coherence in comparison to the broadband portion of the spectrum and, hence, confirm the trends observed in previous numerical simulations. Somewhat surprisingly, measurements show that the presence of trip dots between the stagnation point and slat cusp enhances the NBP levels rather than mitigating them as found in a previous experiment.

  2. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-22

    NASA GPM Safety Quality and Assurance, Shirley Dion, and, NASA GPM Quality and Assurance, Larry Morgan, monitor the all-day launch simulation for the Global Precipitation Measurement (GPM) Core Observatory at the Spacecraft Test and Assembly Building 2 (STA2), Saturday, Feb. 22, 2014, Tanegashima Space Center (TNSC), Tanegashima Island, Japan. Japan Aerospace Exploration Agency (JAXA) plans to launch an H-IIA rocket carrying the GPM Core Observatory on Feb. 28, 2014. The NASA-JAXA GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  3. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-22

    A roadside sign shows visitors of Minamitane Town various locations for activities, including the viewing of rocket launches from the Japan Aerospace Exploration Agency’s (JAXA) Tanegashima Space Center (TNSC), where the launch of an H-IIA rocket carrying the Global Precipitation Measurement (GPM) Core Observatory is scheduled to take place in the next week, Saturday, Feb. 22, 2014, Minamitane Town, Tanegashima Island, Japan. The NASA-JAXA GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Launch is planned for Feb. 28, 2014. Photo Credit: (NASA/Bill Ingalls)

  4. Doi looks at food packages in the FWD MDDK during Joint Operations

    NASA Image and Video Library

    2008-03-15

    S123-E-006367 (15 March 2008) --- Japan Aerospace Exploration Agency (JAXA) astronaut Takao Doi, STS-123 mission specialists, looks over his choices of beverages and snacks at the galley on the middeck of Space Shuttle Endeavour while docked with the International Space Station.

  5. Expedition 54-55 Crew Launches to the Space Station

    NASA Image and Video Library

    2017-12-17

    Expedition 54-55 Soyuz Commander Anton Shkaplerov of Roscosmos and Flight Engineers Scott Tingle of NASA and Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) launched to space on the Russian Soyuz MS-07 spacecraft on Dec. 17 from the Baikonur Cosmodrome in Kazakhstan.

  6. Wakata haircut in the Service Module (SM)

    NASA Image and Video Library

    2009-04-04

    ISS018-E-044596 (4 April 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 18/19 flight engineer, trims his hair in the Zarya module of the International Space Station, using hair clippers fashioned with a vacuum device to garner freshly cut hair.

  7. iss019e013266

    NASA Image and Video Library

    2009-05-03

    ISS019-E-013266 (3 May 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 19/20 flight engineer, trims his hair in a crew compartment on the International Space Station, using hair clippers fashioned with a vacuum device to garner freshly cut hair.

  8. Fan filter cleaning on the CHeCS AAA in the US Lab

    NASA Image and Video Library

    2009-05-05

    ISS019-E-013710 (5 May 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 19/20 flight engineer, cleans a fan filter on the Crew Health Care System Avionics Air Assembly (CHeCS AAA) in the Destiny laboratory of the International Space Station.

  9. Poindexter and Yamazaki with LIOH Canisters

    NASA Image and Video Library

    2010-04-13

    S131-E-009609 (13 April 2010) --- NASA astronaut Alan Poindexter, STS-131 commander; and Japan Aerospace Exploration Agency (JAXA) astronaut Naoko Yamazaki, mission specialist, work with lithium hydroxide (LiOH) canisters on space shuttle Discovery’s middeck while docked with the International Space Station.

  10. Poindexter and Yamazaki with LIOH Canisters

    NASA Image and Video Library

    2010-04-13

    S131-E-009607 (13 April 2010) --- NASA astronaut Alan Poindexter, STS-131 commander; and Japan Aerospace Exploration Agency (JAXA) astronaut Naoko Yamazaki, mission specialist, work with lithium hydroxide (LiOH) canisters on space shuttle Discovery’s middeck while docked with the International Space Station.

  11. Kazbek Fit Check in the Soyuz TMA-11M

    NASA Image and Video Library

    2014-03-14

    ISS39-E-001422 (14 March 2014) --- Expedition 39 Commander Koichi Wakata of the Japan Aerospace Exploration Agency (JAXA) is photographed during a fit check of the Kazbek couches in the Soyuz TMA-11M spacecraft, which is docked to the International Space Station.

  12. Gorie and Doi look over crew procedures on aft FD of Space Shuttle Endeavour

    NASA Image and Video Library

    2008-03-13

    S123-E-006512 (13 March 2008) --- NASA astronaut Dominic Gorie (right), STS-123 commander, and Japan Aerospace Exploration Agency (JAXA) astronaut Takao Doi, mission specialist, look over checklists on the flight deck of Space Shuttle Endeavour while docked with the International Space Station.

  13. Access to Japanese aerospace-related scientific and technical information: The NASA Aerospace Database

    NASA Technical Reports Server (NTRS)

    Hoetker, Glenn P.; Lahr, Thomas F.

    1993-01-01

    With Japan's growing R&D strength in aerospace-related fields, it is increasingly important for U.S. researchers to be aware of Japanese advances. However, several factors make it difficult to do so. After reviewing the diffusion of aerospace STI in Japan, four factors which make it difficult for U.S. researchers to gather this information are discussed: language, the human network, information scatter, and document acquisition. NASA activities to alleviate these difficulties are described, beginning with a general overview of the NASA STI Program. The effects of the new National Level Agreement between NASA and NASDA are discussed.

  14. Current Status of Japan's Activity for GPM/DPR and Global Rainfall Map algorithm development

    NASA Astrophysics Data System (ADS)

    Kachi, M.; Kubota, T.; Yoshida, N.; Kida, S.; Oki, R.; Iguchi, T.; Nakamura, K.

    2012-04-01

    The Global Precipitation Measurement (GPM) mission is composed of two categories of satellites; 1) a Tropical Rainfall Measuring Mission (TRMM)-like non-sun-synchronous orbit satellite (GPM Core Observatory); and 2) constellation of satellites carrying microwave radiometer instruments. The GPM Core Observatory carries the Dual-frequency Precipitation Radar (DPR), which is being developed by the Japan Aerospace Exploration Agency (JAXA) and the National Institute of Information and Communications Technology (NICT), and microwave radiometer provided by the National Aeronautics and Space Administration (NASA). GPM Core Observatory will be launched in February 2014, and development of algorithms is underway. DPR Level 1 algorithm, which provides DPR L1B product including received power, will be developed by the JAXA. The first version was submitted in March 2011. Development of the second version of DPR L1B algorithm (Version 2) will complete in March 2012. Version 2 algorithm includes all basic functions, preliminary database, HDF5 I/F, and minimum error handling. Pre-launch code will be developed by the end of October 2012. DPR Level 2 algorithm has been developing by the DPR Algorithm Team led by Japan, which is under the NASA-JAXA Joint Algorithm Team. The first version of GPM/DPR Level-2 Algorithm Theoretical Basis Document was completed on November 2010. The second version, "Baseline code", was completed in January 2012. Baseline code includes main module, and eight basic sub-modules (Preparation module, Vertical Profile module, Classification module, SRT module, DSD module, Solver module, Input module, and Output module.) The Level-2 algorithms will provide KuPR only products, KaPR only products, and Dual-frequency Precipitation products, with estimated precipitation rate, radar reflectivity, and precipitation information such as drop size distribution and bright band height. It is important to develop algorithm applicable to both TRMM/PR and KuPR in order to

  15. Hollow Cathode Studies for the Next Generation Ion Engines in JAXA

    NASA Astrophysics Data System (ADS)

    Ohkawa, Yasushi; Hayakawa, Yukio; Yoshida, Hideki; Miyazaki, Katsuhiro; Kitamura, Shoji; Kajiwara, Kenichi

    The current status of experimental studies of hollow cathodes for the next-generation ion engines in the Aerospace Research and Development Directorate, JAXA is described. One of the topics on the hollow cathode studies is a life test of a discharge cathode. The keeper disk, orifice plate, and cathode tube of this discharge cathode are made of "high density graphite," which possesses much higher tolerance to ion impingement compared with conventional metal materials. The life test had started in March 2006 and the cumulative operation time reached 15,600 hours in April 2008. No severe degradation has been found both in the operation voltages and electrodes so far, and the test is favorably in progress. In addition to the life test of the discharge cathode, some experiments for design optimization of neutralizer cathodes have been performed. A life test of the neutralizer cathode is being started in June 2008.

  16. Space Station Crew Member Discusses Life in Space with Japanese Students

    NASA Image and Video Library

    2018-01-08

    Aboard the International Space Station, Expedition 54 Flight Engineer Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) discussed life and research on the complex during an in-flight educational event Jan. 8 with students gathered at the Hamagin Space Technology Museum in Japan. Kanai launched to the station last month and is in the midst of a six-month mission on the orbital laboratory.

  17. HydroTrop

    NASA Image and Video Library

    2010-10-18

    ISS025-E-007772 (18 Oct. 2010) --- NASA astronaut Shannon Walker, Expedition 25 flight engineer, works with the Japan Aerospace Exploration Agency (JAXA) experiment HydroTropi (Hydrotropism & Auxin-Inducible Gene Expression in Roots Grown under Microgravity Conditions) in the Kibo laboratory of the International Space Station.

  18. HydroTrop

    NASA Image and Video Library

    2010-10-18

    ISS025-E-007774 (18 Oct. 2010) --- NASA astronaut Shannon Walker, Expedition 25 flight engineer, works with the Japan Aerospace Exploration Agency (JAXA) experiment HydroTropi (Hydrotropism & Auxin-Inducible Gene Expression in Roots Grown under Microgravity Conditions) in the Kibo laboratory of the International Space Station.

  19. HydroTrop

    NASA Image and Video Library

    2010-10-18

    ISS025-E-007780 (18 Oct. 2010) --- NASA astronaut Shannon Walker, Expedition 25 flight engineer, works with the Japan Aerospace Exploration Agency (JAXA) experiment HydroTropi (Hydrotropism & Auxin-Inducible Gene Expression in Roots Grown under Microgravity Conditions) in the Kibo laboratory of the International Space Station.

  20. ITCS coolant refill

    NASA Image and Video Library

    2009-06-23

    ISS020-E-013930 (23 June 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 20 flight engineer, works with the Fluid Control Pump Assembly (FCPA), which is a part of the Internal Thermal Control System (ITCS) in the Destiny laboratory on the International Space Station.

  1. ITCS FSS

    NASA Image and Video Library

    2009-06-23

    ISS020-E-013974 (23 June 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 20 flight engineer, works with the Fluid Control Pump Assembly (FCPA), which is a part of the Internal Thermal Control System (ITCS) in the Destiny laboratory on the International Space Station.

  2. ITCS coolant refill

    NASA Image and Video Library

    2009-06-23

    ISS020-E-013937 (23 June 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 20 flight engineer, works with the Fluid Control Pump Assembly (FCPA), which is a part of the Internal Thermal Control System (ITCS) in the Destiny laboratory on the International Space Station.

  3. Yamazaki and water bubble

    NASA Image and Video Library

    2010-04-12

    S131-E-009282 (12 April 2010) --- Japan Aerospace Exploration Agency (JAXA) astronaut Naoko Yamazaki, STS-131 mission specialist, squeezes a water bubble out of her beverage container, showing her image refracted, on the middeck of space shuttle Discovery while docked with the International Space Station.

  4. Expedition 32 Crew Members pose for a photo in the Cupola

    NASA Image and Video Library

    2012-07-27

    ISS032-E-010701 (27 July 2012) --- NASA astronauts Sunita Williams and Joe Acaba (center), along with Japan Aerospace Exploration Agency astronaut Aki Hoshide, all Expedition 32 flight engineers, are pictured in the International Space Station’s Cupola following the rendezvous with the unpiloted Japan Aerospace Exploration Agency (JAXA) H-II Transfer Vehicle (HTV-3). Hoshide and Acaba used the station's Canadarm2 robotic arm to capture and berth the HTV-3 to the Earth-facing port of the station's Harmony node. The attachment was completed at 10:34 a.m. (EDT) on July 27, 2012.

  5. View of HTV3 grappled by SSRMS

    NASA Image and Video Library

    2012-07-27

    ISS032-E-010443 (27 July 2012) --- Backdropped by Earth’s horizon and the blackness of space, the International Space Station’s Canadarm2 grapples the unpiloted Japan Aerospace Exploration Agency (JAXA) H-II Transfer Vehicle (HTV-3) as it approaches the station. NASA astronaut Joe Acaba and Japan Aerospace Exploration Agency astronaut Aki Hoshide, both Expedition 32 flight engineers, used the station's robotic arm to capture and berth the HTV-3 to the Earth-facing port of the station's Harmony node. The attachment was completed at 10:34 a.m. (EDT) on July 27, 2012.

  6. Expedition 32 Crew Members pose for a photo in the Cupola

    NASA Image and Video Library

    2012-07-27

    ISS032-E-010700 (27 July 2012) --- NASA astronauts Sunita Williams and Joe Acaba (center), along with Japan Aerospace Exploration Agency astronaut Aki Hoshide, all Expedition 32 flight engineers, are pictured in the International Space Station’s Cupola following the rendezvous with the unpiloted Japan Aerospace Exploration Agency (JAXA) H-II Transfer Vehicle (HTV-3). Hoshide and Acaba used the station's Canadarm2 robotic arm to capture and berth the HTV-3 to the Earth-facing port of the station's Harmony node. The attachment was completed at 10:34 a.m. (EDT) on July 27, 2012.

  7. jsc2011e029164

    NASA Image and Video Library

    2011-03-26

    JSC2011-E-029164 (26 March 2011) --- In the HTV mission control room at the Tsukuba Space Center in Japan, some colorful new decoration appeared atop several of the consoles. The origami cranes were distributed in the control rooms in both Houston and Japan. Meantime the Expedition 27 crew onboard the International Space Station joined them in paying tribute to the Japanese population who suffered from the March 11 earthquake and tsunami. Photo credit: Japan Aerospace Exploration Agency (JAXA)

  8. Overview of the Novel Intelligent JAXA Active Rotor Program

    NASA Technical Reports Server (NTRS)

    Saito, Shigeru; Kobiki, Noboru; Tanabe, Yasutada; Johnson, Wayne; Yamauchi, Gloria K.; Young, Larry A.

    2010-01-01

    The Novel Intelligent JAXA Active Rotor (NINJA Rotor) program is a cooperative effort between JAXA and NASA, involving a test of a JAXA pressure-instrumented, active-flap rotor in the 40- by 80-Foot Wind Tunnel at Ames Research Center. The objectives of the program are to obtain an experimental database of a rotor with active flaps and blade pressure instrumentation, and to use that data to develop analyses to predict the aerodynamic and aeroacoustic performance of rotors with active flaps. An overview of the program is presented, including a description of the rotor and preliminary pretest calculations.

  9. Noguchi at JPM window during Expedition 22

    NASA Image and Video Library

    2010-03-12

    ISS022-E-091518 (12 March 2010) --- Japan Aerospace Exploration Agency (JAXA) astronaut Soichi Noguchi, Expedition 22 flight engineer, looks through a window in the Kibo laboratory of the International Space Station. The Japanese robotic Small Fine Arm (SFA), also known as ?Ko-bot?, is visible through the window.

  10. Wakata works with InSPACE hardware

    NASA Image and Video Library

    2009-07-13

    ISS020-E-019099 (13 July 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 20 flight engineer, works with the Investigating the Structure of Paramagnetic Aggregates from Colloidal Emulsions (InSPACE) experiment in the Microgravity Science Glovebox (MSG) in the Columbus laboratory of the International Space Station.

  11. Wakata works with InSPACE hardware

    NASA Image and Video Library

    2009-07-14

    ISS020-E-020303 (14 July 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 20 flight engineer, works with the Investigating the Structure of Paramagnetic Aggregates from Colloidal Emulsions (InSPACE) experiment in the Microgravity Science Glovebox (MSG) in the Columbus laboratory of the International Space Station.

  12. Yamazaki and water bubble

    NASA Image and Video Library

    2010-04-12

    S131-E-009285 (12 April 2010) --- Japan Aerospace Exploration Agency (JAXA) astronaut Naoko Yamazaki, STS-131 mission specialist, watches a water bubble float freely between her and the camera, showing her image refracted, on the middeck of space shuttle Discovery while docked with the International Space Station.

  13. PZEh-MO-8/Body Mass Measurement in Service Module

    NASA Image and Video Library

    2009-05-06

    ISS019-E-014222 (6 May 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 19/20 flight engineer, uses the IM mass measurement device to perform the PZEh-MO-8/Body Mass Measurement Russian biomedical routine assessments in the Zvezda Service Module of the International Space Station.

  14. Noguchi uses BMMD in SM

    NASA Image and Video Library

    2010-05-26

    ISS023-E-052104 (26 May 2010) --- Japan Aerospace Exploration Agency (JAXA) astronaut Soichi Noguchi, Expedition 23 flight engineer, uses the IM mass measurement device to perform the PZEh-MO-8/Body Mass Measurement Russian biomedical routine assessments in the Zvezda Service Module of the International Space Station.

  15. PZEh-MO-8/Body Mass Measurement

    NASA Image and Video Library

    2009-06-30

    ISS020-E-015853 (30 June 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 20 flight engineer, uses the IM mass measurement device to perform the PZEh-MO-8/Body Mass Measurement Russian biomedical routine assessments in the Zvezda Service Module of the International Space Station.

  16. PZEh-MO-8/Body Mass Measurement in Service Module

    NASA Image and Video Library

    2009-05-06

    ISS019-E-014216 (6 May 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 19/20 flight engineer, uses the IM mass measurement device to perform the PZEh-MO-8/Body Mass Measurement Russian biomedical routine assessments in the Zvezda Service Module of the International Space Station.

  17. Foreman, Behnken, and Doi in the MDDK during Expedition 16 / STS-123 Joint Operations

    NASA Image and Video Library

    2008-03-18

    S123-E-007123 (18 March 2008) --- Japan Aerospace Exploration Agency (JAXA) astronaut Takao Doi (top right), NASA astronauts Robert L. Behnken (top left) and Mike Foreman, all STS-123 mission specialists, are pictured on the middeck of Space Shuttle Endeavour while docked with the International Space Station.

  18. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-27

    A Japanese H-IIA rocket with the NASA-Japan Aerospace Exploration Agency (JAXA), Global Precipitation Measurement (GPM) Core Observatory onboard, is seen on launch pad 1 of the Tanegashima Space Center, Friday, Feb. 28, 2014, Tanegashima, Japan. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  19. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-28

    A Japanese H-IIA rocket with the NASA-Japan Aerospace Exploration Agency (JAXA), Global Precipitation Measurement (GPM) Core Observatory onboard, is seen on launch pad 1 of the Tanegashima Space Center, Friday, Feb. 28, 2014, Tanegashima, Japan. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  20. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-27

    A Japanese H-IIA rocket with the NASA-Japan Aerospace Exploration Agency (JAXA), Global Precipitation Measurement (GPM) Core Observatory onboard is seen on launch pad 1 of the Tanegashima Space Center, Thursday, Feb. 27, 2014, Tanegashima, Japan. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  1. Development of a global LAI estimation algorithm for JAXA's new earth observation satellite sensor, GCOM-C/SGLI

    NASA Astrophysics Data System (ADS)

    Ono, Y.; Murakami, H.; Kobayashi, H.; Nasahara, K. N.; Kajiwara, K.; Honda, Y.

    2014-12-01

    Leaf Area Index (LAI) is defined as the one-side green leaf area per unit ground surface area. Global LAI products, such as MOD15 (Terra&Aqua/MODIS) and CYCLOPES (SPOT/VEGETATION) are used for many global terrestrial carbon models. Japan Aerospace eXploration Agency (JAXA) is planning to launch GCOM-C (Global Change Observation Mission-Climate) which carries SGLI (Second-generation GLobal Imager) in the Japanese Fiscal Year 2017. SGLI has the features, such as 17-channel from near ultraviolet to thermal infrared, 250-m spatial resolution, polarization, and multi-angle (nadir and ±45-deg. along-track slant) observation. In the GCOM-C/SGLI land science team, LAI is scheduled to be generated from GCOM-C/SGLI observation data as a standard product (daily 250-m). In extisting algorithms, LAI is estimated by the reverse analysis of vegetation radiative transfer models (RTMs) using multi-spectral and mono-angle observation data. Here, understory layer in vegetation RTMs is assumed by plane parallel (green leaves + soil) which set up arbitrary understroy LAI. However, actual understory consists of various elements, such as green leaves, dead leaves, branches, soil, and snow. Therefore, if understory in vegetation RTMs differs from reality, it will cause an error of LAI to estimate. This report describes an algorithm which estimates LAI in consideration of the influence of understory using GCOM-C/SGLI multi-spectral and multi-angle observation data.

  2. ITCS coolant refill

    NASA Image and Video Library

    2009-06-23

    ISS020-E-013939 (23 June 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 20 flight engineer, uses a computer while working with the Fluid Control Pump Assembly (FCPA), which is a part of the Internal Thermal Control System (ITCS) in the Destiny laboratory on the International Space Station.

  3. Expedition 28 Preflight

    NASA Image and Video Library

    2011-06-07

    Expedition 28 JAXA (Japan Aerospace Exploration Agency) Flight Engineer Satoshi Furukawa places a mission sticker on the inside wall of the prime crew bus on the eve of his launch to the International Space Station, Tuesday, June 7, 2011 at the Baikonur Cosmodrome in Kazakhstan. Photo Credit: (NASA/Roscosmos/Andrey Shelepin)

  4. International R&M/Safety Cooperation Lessons Learned Between NASA and JAXA

    NASA Technical Reports Server (NTRS)

    Fernandez, Rene; Havenhill, Maria T.; Zampino, Edward J.; Kiefer, Dwayne E.

    2013-01-01

    Presented are a number of important experiences gained and lessons learned from the collaboration of the National Aeronautics and Space Administration (NASA) and the Japanese Aerospace Exploration Agency (JAXA) on the CoNNeCT (Communications, Navigation, and Networking re-Configurable Testbed) project. Both space agencies worked on the CoNNeCT Project to design, assemble, test, integrate, and launch a communications testbed facility mounted onto the International Space Station (ISS) truss. At the 2012 RAMS, two papers about CoNNeCT were presented: one on Ground Support Equipment Reliability & System Safety, and the other one on combined application of System Safety & Reliability for the flight system. In addition to the logistics challenges present when two organizations are on the opposite side of the world, there is also a language barrier. The language barrier encompasses not only the different alphabet, it encompasses the social interactions; these were addressed by techniques presented in the paper. The differences in interpretation and application of Spaceflight Requirements will be discussed in this paper. Although many, but definitely not all, of JAXA's Spaceflight Requirements were inspired by NASA, there were significant and critically important differences in how they were interpreted and applied. This paper intends to summarize which practices worked and which did not for an international collaborative effort so that future missions may benefit from our experiences. The CoNNeCT flight system has been successfully assembled, integrated, tested, shipped, launched and installed on the ISS without incident. This demonstrates that the steps taken to facilitate international understanding, communication, and coordination were successful and warrant discussion as lessons learned.

  5. Biochemical and Molecular Biological Analyses of space-flown nematodes in Japan, the First International Caenorhabditis elegans Experiment (ICE-First)

    PubMed Central

    Higashibata, Akira; Higashitani, Atsushi; Adachi, Ryota; Kagawa, Hiroaki; Honda, Shuji; Honda, Yoko; Higashitani, Nahoko; Sasagawa, Yohei; Miyazawa, Yutaka; Szewczyk, Nathaniel J.; Conley, Catharine A.; Fujimoto, Nobuyoshi; Fukui, Keiji; Shimazu, Toru; Kuriyama, Kana; Ishioka, Noriaki

    2008-01-01

    The first International Caenorhabditis elegans Experiment (ICE-First) was carried out using a Russian Soyuz spacecraft from April 19-30, 2004. This experiment was a part of the program of the DELTA (Dutch Expedition for Life science Technology and Atmospheric research) mission, and the space agencies that participate in the International Space Station (ISS) program formed international research teams. A Japanese research team that conducted by Japan aerospace Exploration Agency (JAXA) investigated the following aspects of the organism: (1) whether meiotic chromosomal dynamics and apoptosis in the germ cells were normal under microgravity conditions, (2) the effect of the space flight on muscle cell development, and (3) the effect of the space flight on protein aggregation. In this article, we summarize the results of these biochemical and molecular biological analyses. PMID:19513185

  6. KSC-06pd1684

    NASA Image and Video Library

    2006-07-28

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Japan Aerospace Exploration Agency (JAXA) technicians install piping insulation on the Japanese Experiment Module (JEM). The JEM, developed by JAXA for use on the International Space Station, is named Kibo -- which means "hope" in Japanese -- and will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. Research conducted in Kibo will focus on space medicine, biology, Earth observations, material production, biotechnology and communications. Photo credit: NASA/Amanda Diller

  7. KSC-06pd1685

    NASA Image and Video Library

    2006-07-28

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Japan Aerospace Exploration Agency (JAXA) technicians install piping insulation on the Japanese Experiment Module (JEM). The JEM, developed by JAXA for use on the International Space Station, is named Kibo -- which means "hope" in Japanese -- and will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. Research conducted in Kibo will focus on space medicine, biology, Earth observations, material production, biotechnology and communications. Photo credit: NASA/Amanda Diller

  8. KSC-06pd1682

    NASA Image and Video Library

    2006-07-28

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, a Japan Aerospace Exploration Agency (JAXA) technician inspects the wiring on the Japanese Experiment Module (JEM). The JEM, developed by JAXA for use on the International Space Station, is named Kibo -- which means "hope" in Japanese -- and will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. Research conducted in Kibo will focus on space medicine, biology, Earth observations, material production, biotechnology and communications. Photo credit: NASA/Amanda Diller

  9. KSC-06pd1683

    NASA Image and Video Library

    2006-07-28

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Japan Aerospace Exploration Agency (JAXA) technicians inspect the wiring on the Japanese Experiment Module (JEM). The JEM, developed by JAXA for use on the International Space Station, is named Kibo -- which means "hope" in Japanese -- and will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. Research conducted in Kibo will focus on space medicine, biology, Earth observations, material production, biotechnology and communications. Photo credit: NASA/Amanda Diller

  10. Greenhouse gases observation from space: overview of TANSO and GOSAT

    NASA Astrophysics Data System (ADS)

    Hamazaki, Takashi

    2017-11-01

    Japan Aerospace Exploration Agency (JAXA) is developing Greenhouse gases Observing Satellite (GOSAT). GOSAT is the first satellite to monitor the columnar density of carbon dioxide and methane operationally from space. The GOSAT is the joint endeavor with JAXA, National Institute for Environmental Studies and Ministry of the Environment. The GOSAT will be launched with the H-IIA launch vehicle in early 2009. This paper shows the overview of GOSAT and its mission instrument, TANSO. Mission objectives, sensor and satellite design, its performance and summary of ground test results are also provided.

  11. DomeGene Experiment at Cell Biology Experiment Facility (CBEF) in JPM

    NASA Image and Video Library

    2009-03-18

    ISS018-E-040985 (18 March 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 18 flight engineer, uses a computer at the Japanese Remote Manipulator System (JEM-RMS) work station in the Kibo laboratory of the International Space Station while Space Shuttle Discovery (STS-119) remains docked with the station.

  12. DomeGene Experiment at Cell Biology Experiment Facility (CBEF) in JPM

    NASA Image and Video Library

    2009-03-18

    ISS018-E-040986 (18 March 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 18 flight engineer, uses a computer at the Japanese Remote Manipulator System (JEM-RMS) work station in the Kibo laboratory of the International Space Station while Space Shuttle Discovery (STS-119) remains docked with the station.

  13. Wakata uses Treadmill Vibration Isolation and Stabilization (TVIS)

    NASA Image and Video Library

    2009-03-22

    ISS018-E-042662 (22 March 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 18 flight engineer, equipped with a bungee harness, exercises on the Treadmill Vibration Isolation System (TVIS) in the Zvezda Service Module of the International Space Station while Space Shuttle Discovery (STS-119) remains docked with the station.

  14. Wakata and Thirsk with GLACIER in U.S. Lab

    NASA Image and Video Library

    2009-06-15

    ISS020-E-010018 (15 June 2009) --- Canadian Space Agency astronaut Robert Thirsk and Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata (partially out of frame at right), both Expedition 20 flight engineers, work with the General Laboratory Active Cryogenic ISS Experiment Refrigerator (GLACIER) in the Destiny laboratory of the International Space Station.

  15. Russian State Commission Meeting and Final ISS Expedition 54-55 Crew News Conference

    NASA Image and Video Library

    2017-12-16

    In preparation for launch, the final meeting between the Russian State Commission and the crew of International Space Station Expedition 54-55 meets in Baikonur, Kazakhstan. Prime crew members are Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA), Anton Shkaplerov the Russian Federal Space Agency (Roscosmos) and Scott Tingle of NASA.

  16. EVA 3

    NASA Image and Video Library

    2004-08-03

    S114-E-6856 (3 August 2005) --- Backdropped by the blackness of space, astronaut Soichi Noguchi, STS-114 mission specialist representing the Japan Aerospace Exploration Agency (JAXA), traverses along the P6 truss near the arrays on the international space station during the mission’s third session of extravehicular activity (EVA).

  17. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-27

    A Japanese H-IIA rocket carrying the NASA-Japan Aerospace Exploration Agency (JAXA), Global Precipitation Measurement (GPM) Core Observatory is seen as it rolls out to launch pad 1 of the Tanegashima Space Center, Thursday, Feb. 27, 2014, Tanegashima, Japan. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  18. Noguchi in the JPM during Expedition 22

    NASA Image and Video Library

    2010-01-15

    ISS022-E-026221 (15 Jan. 2010) --- Japan Aerospace Exploration Agency (JAXA) astronaut Soichi Noguchi, Expedition 22 flight engineer, services the Fluid Physics Experiment Facility/Marangoni Surface (FPEF MS) Core hardware in the Kibo laboratory of the International Space Station. The Marangoni convection experiment in the FPEF examines fluid tension flow in micro-G.

  19. Noguchi removes the FPEF MI in the JPM during Expedition 22

    NASA Image and Video Library

    2010-01-11

    ISS022-E-020897 (11 Jan. 2010) --- Japan Aerospace Exploration Agency (JAXA) astronaut Soichi Noguchi, Expedition 22 flight engineer, works with Fluid Physics Experiment Facility/Marangoni Surface (FPEF MS) Core hardware in the Kibo laboratory of the International Space Station. The Marangoni convection experiment in the FPEF examines fluid tension flow in micro-G.

  20. Noguchi removes the FPEF MI in the JPM during Expedition 22

    NASA Image and Video Library

    2010-01-11

    ISS022-E-020894 (11 Jan. 2010) --- Japan Aerospace Exploration Agency (JAXA) astronaut Soichi Noguchi, Expedition 22 flight engineer, works with Fluid Physics Experiment Facility/Marangoni Surface (FPEF MS) Core hardware in the Kibo laboratory of the International Space Station. The Marangoni convection experiment in the FPEF examines fluid tension flow in micro-G.

  1. Noguchi removes the FPEF MI in the JPM during Expedition 22

    NASA Image and Video Library

    2010-01-11

    ISS022-E-020895 (11 Jan. 2010) --- Japan Aerospace Exploration Agency (JAXA) astronaut Soichi Noguchi, Expedition 22 flight engineer, works with Fluid Physics Experiment Facility/Marangoni Surface (FPEF MS) Core hardware in the Kibo laboratory of the International Space Station. The Marangoni convection experiment in the FPEF examines fluid tension flow in micro-G.

  2. Noguchi in the JPM during Expedition 22

    NASA Image and Video Library

    2010-01-14

    ISS022-E-025474 (14 Jan. 2010) --- Japan Aerospace Exploration Agency (JAXA) astronaut Soichi Noguchi, Expedition 22 flight engineer, services the Fluid Physics Experiment Facility/Marangoni Surface (FPEF MS) Core hardware in the Kibo laboratory of the International Space Station. The Marangoni convection experiment in the FPEF examines fluid tension flow in micro-G.

  3. Expedition 52 Red Square Visit

    NASA Image and Video Library

    2017-07-10

    Expedition 52 backup crew members Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA), left, Alexander Misurkin of Roscosmos, center, and Mark Vande Hei of NASA lay roses at the site where Russian space icons are interred as part of traditional pre-launch ceremonies, Monday, July 10, 2017 in Moscow. Photo Credit: (NASA/Bill Ingalls)

  4. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-27

    A Japanese H-IIA rocket carrying the NASA-Japan Aerospace Exploration Agency (JAXA), Global Precipitation Measurement (GPM) Core Observatory is seen in this 10 second exposure as it rolls out to launch pad 1 of the Tanegashima Space Center, Thursday, Feb. 27, 2014, Tanegashima, Japan. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  5. Google Moon Press Conference

    NASA Image and Video Library

    2009-07-19

    Yoshinori Yoshimura, a respresentative from the Japan Aerospace Exploration Agency (JAXA), speaks during a press conference, Monday, July 20, 2009, announcing the launch of Moon in Google Earth, an immersive 3D atlas of the Moon, accessible within Google Earth 5.0, Monday, July 20, 2009, at the Newseum in Washington. Photo Credit: (NASA/Bill Ingalls)

  6. Contribution of L-band SAR to systematic global mangrove monitoring

    Treesearch

    Richard Lucas; Lias-Maria Rebelo; Lola Fatoyinbo; Ake Rosenqvist; Takuya Itoh; Masanobu Shimada; Marc Simard; Pedro Walfir Souza-Filho; Nathan Thomas; Carl Trettin; Arnon Accad; Joao Carreiras; Lammert Hilarides

    2014-01-01

    Information on the status of and changes in mangroves is required for national and international policy development, implementation and evaluation. To support these requirements, a component of the Japan Aerospace Exploration Agency’s (JAXA) Kyoto and Carbon (K&C) initiative has been to design and develop capability for a Global Mangrove Watch (GMW) that routinely...

  7. Crew in U.S. laboratory

    NASA Image and Video Library

    2005-08-05

    S114-E-7127 (5 August 2005) --- Three STS-114 crewmembers work at various tasks in the Destiny laboratory of the International Space Station while Space Shuttle Discovery was docked to the Station. From the left are astronauts Stephen K. Robinson, Soichi Noguchi representing Japan Aerospace Exploration Agency (JAXA), both mission specialists; and James M. Kelly, pilot.

  8. MSG in the Columbus Laboratory during Expedition 22

    NASA Image and Video Library

    2010-01-28

    ISS022-E-041766 (28 Jan. 2010) --- Japan Aerospace Exploration Agency (JAXA) astronaut Soichi Noguchi, Expedition 22 flight engineer, works with the European Space Agency (ESA) science payload Selectable Optical Diagnostics Instrument / Influence of Vibration on Diffusion in Liquids (SODI/IVIDIL) hardware in the Microgravity Science Glovebox (MSG) facility located in the Columbus laboratory of the International Space Station.

  9. MSG in the Columbus Laboratory during Expedition 22

    NASA Image and Video Library

    2010-01-28

    ISS022-E-041767 (28 Jan. 2010) --- Japan Aerospace Exploration Agency (JAXA) astronaut Soichi Noguchi, Expedition 22 flight engineer, works with the European Space Agency (ESA) science payload Selectable Optical Diagnostics Instrument / Influence of Vibration on Diffusion in Liquids (SODI/IVIDIL) hardware in the Microgravity Science Glovebox (MSG) facility located in the Columbus laboratory of the International Space Station.

  10. MSG in the Columbus Laboratory during Expedition 22

    NASA Image and Video Library

    2010-01-28

    ISS022-E-041769 (28 Jan. 2010) --- Japan Aerospace Exploration Agency (JAXA) astronaut Soichi Noguchi, Expedition 22 flight engineer, works with the European Space Agency (ESA) science payload Selectable Optical Diagnostics Instrument / Influence of Vibration on Diffusion in Liquids (SODI/IVIDIL) hardware in the Microgravity Science Glovebox (MSG) facility located in the Columbus laboratory of the International Space Station.

  11. Wakata uses Advanced Resistive Exercise Device (ARED) in Node 1 Unity

    NASA Image and Video Library

    2009-03-22

    ISS018-E-042651 (22 March 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 18 flight engineer, uses the short bar for the advanced Resistive Exercise Device (aRED) equipment to perform upper body strengthening pull-ups in the Unity node of the International Space Station while Space Shuttle Discovery (STS-119) remains docked with the station.

  12. Impacts of Early Summer Eurasian Snow Cover Change on Atmospheric Circulation in Northern Mid-Latitudes

    NASA Astrophysics Data System (ADS)

    Nozawa, T.

    2016-12-01

    Recently, Japan Aerospace Exploration Agency (JAXA) has developed a new long-term snow cover extent (SCE) product using Advanced Very High Resolution Radiometer (AVHRR) and Moderate Resolution Imaging Spectroradiometer (MODIS) data spanning from 1980's to date. This new product (JAXA/SCE) has higher spatial resolution and smaller commission error compared with traditional SCE dataset of National Oceanic and Atmospheric Administration (NOAA/SCE). Continuity of the algorithm is another strong point in JAXA/SCE. According to the new JAXA/SCE dataset, the Eurasian SCE has been significantly retreating since 1980's, especially in late spring and early summer. Here, we investigate impacts of early summer Eurasian snow cover change on atmospheric circulation in Northern mid-latitudes, especially over the East Asia, using the new JAXA/SCE dataset and a few reanalysis data. We will present analyzed results on relationships between early summer SCE anomaly over the Eurasia and changes in atmospheric circulations such as upper level zonal jets (changes in strength, positions, etc.) over the East Asia.

  13. Mission X in Japan, an Education Outreach Program Featuring Astronautical Specialties and Knowledge

    NASA Astrophysics Data System (ADS)

    Niihori, Maki; Yamada, Shin; Matsuo, Tomoaki; Nakao, Reiko; Nakazawa, Takashi; Kamiyama, Yoshito; Takeoka, Hajime; Matsumoto, Akiko; Ohshima, Hiroshi; Mukai, Chiaki

    In the science field, disseminating new information to the public is becoming increasingly important, since it can aid a deeper understanding of scientific significance and increase the number of future scientists. As part of our activities, we at the Japan Aerospace Exploration Agency (JAXA) Space Biomedical Research Office, started work to focus on education outreach featuring space biomedical research. In 2010, we launched the Mission X education program in Japan, named after “Mission X: Train Like an Astronaut” (hereinafter called “Mission X”), mainly led by NASA and European Space Agency (ESA). Mission X is an international public outreach program designed to encourage proper nutrition and exercise and teaching young people to live and eat like astronauts. We adopted Mission X's standpoint, and modified the program based on the originals to suit Japanese culture and the students' grade. Using astronauts as examples, this mission can motivate and educate students to instill and adopt good nutrition and physical fitness as life-long practices.Here we introduce our pilot mission of the “Mission X in Japan” education program, which was held in early 2011. We are continuing the education/public outreach to promote the public understanding of science and contribute to science education through lectures on astronautical specialties and knowledge.

  14. KSC-08pd0541

    NASA Image and Video Library

    2008-02-25

    KENNEDY SPACE CENTER, FLA. -- STS-123 Mission Specialist Takao Doi suits up for the launch dress rehearsal, culmination of the terminal countdown demonstration test, or TCDT. Doi represents the Japan Aerospace Exploration Agency, or JAXA. The TCDT provides astronauts and ground crews with an opportunity to participate in various simulated countdown activities, including equipment familiarization and emergency training. Space shuttle Endeavour is targeted to launch March 11 at 2:28 a.m. EDT on the 16-day STS-123 mission to the International Space Station. Endeavour and its crew will deliver the first section of the Japan Aerospace Exploration Agency's Kibo laboratory and the Canadian Space Agency's two-armed robotic system, Dextre. Photo credit: NASA/Kim Shiflett

  15. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-23

    The Tanegashima Space Center (TNSC) lighthouse is seen on Sunday, Feb. 23, 2014, Tanegashima Island, Japan. A Japanese H-IIA rocket carrying the NASA-Japan Aerospace Exploration Agency (JAXA), Global Precipitation Measurement (GPM) Core Observatory is planned for launch from the space center on Feb. 28, 2014. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  16. Noguchi during STORMM Reflector Relocation

    NASA Image and Video Library

    2010-04-16

    S131-E-010335 (16 April 2010) --- Japan Aerospace Exploration Agency (JAXA) astronaut Soichi Noguchi, Expedition 23 flight engineer, works to relocate a reflective element on the PMA-2 docking target in support of the Sensor Test for Orion Relative Navigation Risk Mitigation (STORRM) on the International Space Station while space shuttle Discovery (STS-131) remains docked with the station.

  17. Space Station Crew Member Discusses Life in Space with Reporters

    NASA Image and Video Library

    2018-01-05

    Aboard the International Space Station, Expedition 54 Flight Engineer Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) discussed life and research on the orbital laboratory during an in-flight question and answer session Jan. 5 with Japanese reporters gathered at JAXA’s offices in Tokyo. Kanai is in the third week of a planned six-month mission on the complex.

  18. STS-131 crew training during FFT CCTV Lighting 91019 ( Lights Out).

    NASA Image and Video Library

    2009-11-16

    JSC2009-E-240951 (16 Nov. 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Naoko Yamazaki (foreground) and NASA astronaut Stephanie Wilson, both STS-131 mission specialists, participate in a Full Fuselage Trainer (FFT) mock-up training session in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center. United Space Alliance (USA) instructor David L. Williams assisted the crew members.

  19. HTV3 Approach

    NASA Image and Video Library

    2012-07-27

    ISS032-E-010428 (27 July 2012) --- The unpiloted Japan Aerospace Exploration Agency (JAXA) H-II Transfer Vehicle (HTV-3) approaches the International Space Station. The Japan Aerospace Exploration Agency launched HTV-3 aboard an H-IIB launch vehicle from the Tanegashima Space Center in southern Japan at 10:06 p.m. EDT July 20 (11:06 a.m. July 21, Japan time). The HTV is bringing 7,000 pounds of cargo including food and clothing for the crew members, an aquatic habitat experiment, a remote-controlled Earth-observation camera for environmental studies, a catalytic reactor for the station’s water regeneration system and a Japanese cooling water recirculation pump. The vehicle will remain at the space station until Sept. 6 when, like its predecessors, it will be detached from the Harmony node by Canadarm2 and released for a fiery re-entry over the Pacific Ocean.

  20. HTV-3 Approach

    NASA Image and Video Library

    2012-07-27

    ISS032-E-009997 (27 July 2012) --- The unpiloted Japan Aerospace Exploration Agency (JAXA) H-II Transfer Vehicle (HTV-3) approaches the International Space Station. The Japan Aerospace Exploration Agency launched HTV-3 aboard an H-IIB launch vehicle from the Tanegashima Space Center in southern Japan at 10:06 p.m. EDT July 20 (11:06 a.m. July 21, Japan time). The HTV is bringing 7,000 pounds of cargo including food and clothing for the crew members, an aquatic habitat experiment, a remote-controlled Earth-observation camera for environmental studies, a catalytic reactor for the station?s water regeneration system and a Japanese cooling water recirculation pump. The vehicle will remain at the space station until Sept. 6 when, like its predecessors, it will be detached from the Harmony node by Canadarm2 and released for a fiery re-entry over the Pacific Ocean.

  1. HTV-3 Approach

    NASA Image and Video Library

    2012-07-27

    ISS032-E-010006 (27 July 2012) --- The unpiloted Japan Aerospace Exploration Agency (JAXA) H-II Transfer Vehicle (HTV-3) approaches the International Space Station. The Japan Aerospace Exploration Agency launched HTV-3 aboard an H-IIB launch vehicle from the Tanegashima Space Center in southern Japan at 10:06 p.m. EDT July 20 (11:06 a.m. July 21, Japan time). The HTV is bringing 7,000 pounds of cargo including food and clothing for the crew members, an aquatic habitat experiment, a remote-controlled Earth-observation camera for environmental studies, a catalytic reactor for the station?s water regeneration system and a Japanese cooling water recirculation pump. The vehicle will remain at the space station until Sept. 6 when, like its predecessors, it will be detached from the Harmony node by Canadarm2 and released for a fiery re-entry over the Pacific Ocean.

  2. HTV3 Approach

    NASA Image and Video Library

    2012-07-27

    ISS032-E-010819 (27 July 2012) --- The unpiloted Japan Aerospace Exploration Agency (JAXA) H-II Transfer Vehicle (HTV-3) approaches the International Space Station. The Japan Aerospace Exploration Agency launched HTV-3 aboard an H-IIB launch vehicle from the Tanegashima Space Center in southern Japan at 10:06 p.m. EDT July 20 (11:06 a.m. July 21, Japan time). The HTV is bringing 7,000 pounds of cargo including food and clothing for the crew members, an aquatic habitat experiment, a remote-controlled Earth-observation camera for environmental studies, a catalytic reactor for the station’s water regeneration system and a Japanese cooling water recirculation pump. The vehicle will remain at the space station until Sept. 6 when, like its predecessors, it will be detached from the Harmony node by Canadarm2 and released for a fiery re-entry over the Pacific Ocean.

  3. HTV3 Approach

    NASA Image and Video Library

    2012-07-27

    ISS032-E-010399 (27 July 2012) --- The unpiloted Japan Aerospace Exploration Agency (JAXA) H-II Transfer Vehicle (HTV-3) approaches the International Space Station. The Japan Aerospace Exploration Agency launched HTV-3 aboard an H-IIB launch vehicle from the Tanegashima Space Center in southern Japan at 10:06 p.m. EDT July 20 (11:06 a.m. July 21, Japan time). The HTV is bringing 7,000 pounds of cargo including food and clothing for the crew members, an aquatic habitat experiment, a remote-controlled Earth-observation camera for environmental studies, a catalytic reactor for the station’s water regeneration system and a Japanese cooling water recirculation pump. The vehicle will remain at the space station until Sept. 6 when, like its predecessors, it will be detached from the Harmony node by Canadarm2 and released for a fiery re-entry over the Pacific Ocean.

  4. HTV3 Approach

    NASA Image and Video Library

    2012-07-27

    ISS032-E-010386 (27 July 2012) --- The unpiloted Japan Aerospace Exploration Agency (JAXA) H-II Transfer Vehicle (HTV-3) approaches the International Space Station. The Japan Aerospace Exploration Agency launched HTV-3 aboard an H-IIB launch vehicle from the Tanegashima Space Center in southern Japan at 10:06 p.m. EDT July 20 (11:06 a.m. July 21, Japan time). The HTV is bringing 7,000 pounds of cargo including food and clothing for the crew members, an aquatic habitat experiment, a remote-controlled Earth-observation camera for environmental studies, a catalytic reactor for the station’s water regeneration system and a Japanese cooling water recirculation pump. The vehicle will remain at the space station until Sept. 6 when, like its predecessors, it will be detached from the Harmony node by Canadarm2 and released for a fiery re-entry over the Pacific Ocean.

  5. HTV-3 Approach

    NASA Image and Video Library

    2012-07-27

    ISS032-E-010005 (27 July 2012) --- The unpiloted Japan Aerospace Exploration Agency (JAXA) H-II Transfer Vehicle (HTV-3) approaches the International Space Station. The Japan Aerospace Exploration Agency launched HTV-3 aboard an H-IIB launch vehicle from the Tanegashima Space Center in southern Japan at 10:06 p.m. EDT July 20 (11:06 a.m. July 21, Japan time). The HTV is bringing 7,000 pounds of cargo including food and clothing for the crew members, an aquatic habitat experiment, a remote-controlled Earth-observation camera for environmental studies, a catalytic reactor for the station?s water regeneration system and a Japanese cooling water recirculation pump. The vehicle will remain at the space station until Sept. 6 when, like its predecessors, it will be detached from the Harmony node by Canadarm2 and released for a fiery re-entry over the Pacific Ocean.

  6. HTV3 Approach

    NASA Image and Video Library

    2012-07-27

    ISS032-E-010392 (27 July 2012) --- The unpiloted Japan Aerospace Exploration Agency (JAXA) H-II Transfer Vehicle (HTV-3) approaches the International Space Station. The Japan Aerospace Exploration Agency launched HTV-3 aboard an H-IIB launch vehicle from the Tanegashima Space Center in southern Japan at 10:06 p.m. EDT July 20 (11:06 a.m. July 21, Japan time). The HTV is bringing 7,000 pounds of cargo including food and clothing for the crew members, an aquatic habitat experiment, a remote-controlled Earth-observation camera for environmental studies, a catalytic reactor for the station’s water regeneration system and a Japanese cooling water recirculation pump. The vehicle will remain at the space station until Sept. 6 when, like its predecessors, it will be detached from the Harmony node by Canadarm2 and released for a fiery re-entry over the Pacific Ocean.

  7. HTV3 Approach

    NASA Image and Video Library

    2012-07-27

    ISS032-E-010758 (27 July 2012) --- The unpiloted Japan Aerospace Exploration Agency (JAXA) H-II Transfer Vehicle (HTV-3) approaches the International Space Station. The Japan Aerospace Exploration Agency launched HTV-3 aboard an H-IIB launch vehicle from the Tanegashima Space Center in southern Japan at 10:06 p.m. EDT July 20 (11:06 a.m. July 21, Japan time). The HTV is bringing 7,000 pounds of cargo including food and clothing for the crew members, an aquatic habitat experiment, a remote-controlled Earth-observation camera for environmental studies, a catalytic reactor for the station’s water regeneration system and a Japanese cooling water recirculation pump. The vehicle will remain at the space station until Sept. 6 when, like its predecessors, it will be detached from the Harmony node by Canadarm2 and released for a fiery re-entry over the Pacific Ocean.

  8. Contamination control research activities for space optics in JAXA RANDD

    NASA Astrophysics Data System (ADS)

    Kimoto, Y.

    2017-11-01

    Contamination control research activities for space optics projects in JAXA R&D are described. More accurate contamination control techniques are requested because of intensified recent science mission requirements. One approach to control the contamination effects is analysis by software. JAXA has been developing a contamination analytical tool "J-SPICE" (Japanese Spacecraft Induced Contamination analysis software) as well as experiment facilities to improve the J-SPICE. A reflection model in J-SPICE has been experimentally verified and outgassing model data has been acquired by a facility. JAXA has developed a facility which could determine the influence of the contamination at a specific wavelength by combining a vacuum chamber with an I-R spectrometer and performed an experiment to inspect the effect of baking. Space material exposure experiment results reveal the actual thickness of the contamination layer in ISS orbit.

  9. KSC-2009-4342

    NASA Image and Video Library

    2009-07-31

    CAPE CANAVERAL, Fla. – Japan Aerospace Exploration Agency, or JAXA, President Keiji Tachikawa signs an agreement defining the terms of cooperation between NASA and JAXA on the Global Precipitation Measurement, or GPM, mission. The ceremony took place July 30 at the Kennedy Space Center Visitor Complex, Fla. Through the agreement, NASA is responsible for the GPM core observatory spacecraft bus, the GPM Microwave Imager, or GMI, carried by it, and a second GMI to be flown on a partner-provided Low-Inclination Observatory. JAXA will supply the Dual-frequency Precipitation Radar for the core observatory, an H-IIA rocket for the core observatory's launch in July 2013, and data from a conical-scanning microwave imager on the upcoming Global Change Observation Mission satellite. Photo credit: NASA/Jack Pfaller

  10. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-26

    Chief officers from Mitsubishi Heavy Industries, Ltd., the Japan Aerospace Exploration Agency (JAXA) and NASA met on Wednesday, Feb. 26, 2014 in the Range Control Center (RCC) of the Tanegashima Space Center, Japan, to review the readiness of the Global Precipitation Measurement (GPM) Core Observatory for launch. The spacecraft is scheduled to launch aboard an H-IIA rocket early on the morning of Feb. 28 Japan time. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  11. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-23

    A jogger runs past a sign welcoming NASA and other visitors to Minamitane Town on Sunday, Feb. 23, 2014, Tanegashima Island, Japan. A Japanese H-IIA rocket carrying the NASA-Japan Aerospace Exploration Agency (JAXA), Global Precipitation Measurement (GPM) Core Observatory is planned for launch from the space center on Feb. 28, 2014. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  12. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-22

    A daruma doll is seen amongst the NASA GPM Mission launch team in the Spacecraft Test and Assembly Building 2 (STA2) during the all-day launch simulation for the Global Precipitation Measurement (GPM) Core Observatory, Saturday, Feb. 22, 2014, Tanegashima Space Center (TNSC), Tanegashima Island, Japan. One eye of the daruma doll is colored in when a goal is set, in this case a successful launch of GPM, and the second eye is colored in at the completion of the goal. Japan Aerospace Exploration Agency (JAXA) plans to launch an H-IIA rocket carrying the GPM Core Observatory on Feb. 28, 2014. The NASA-JAXA GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  13. KSC-08pd0545

    NASA Image and Video Library

    2008-02-25

    KENNEDY SPACE CENTER, FLA. -- STS-123 Mission Specialist Takao Doi tries on his helmet during suitup for the launch dress rehearsal, culmination of the terminal countdown demonstration test, or TCDT. Doi represents the Japan Aerospace Exploration Agency, or JAXA. The TCDT provides astronauts and ground crews with an opportunity to participate in various simulated countdown activities, including equipment familiarization and emergency training. Space shuttle Endeavour is targeted to launch March 11 at 2:28 a.m. EDT on the 16-day STS-123 mission to the International Space Station. Endeavour and its crew will deliver the first section of the Japan Aerospace Exploration Agency's Kibo laboratory and the Canadian Space Agency's two-armed robotic system, Dextre. Photo credit: NASA/Kim Shiflett

  14. KSC-08pd0544

    NASA Image and Video Library

    2008-02-25

    KENNEDY SPACE CENTER, FLA. -- STS-123 Mission Specialist Takao Doi is helped with his boots during suitup for the launch dress rehearsal, culmination of the terminal countdown demonstration test, or TCDT. Doi represents the Japan Aerospace and Exploration Agency, or JAXA. The TCDT provides astronauts and ground crews with an opportunity to participate in various simulated countdown activities, including equipment familiarization and emergency training. Space shuttle Endeavour is targeted to launch March 11 at 2:28 a.m. EDT on the 16-day STS-123 mission to the International Space Station. Endeavour and its crew will deliver the first section of the Japan Aerospace Exploration Agency's Kibo laboratory and the Canadian Space Agency's two-armed robotic system, Dextre. Photo credit: NASA/Kim Shiflett

  15. Additive Manufacturing (AM) Activities and Non-Destructive Evaluation (NDE) at GSFC

    NASA Technical Reports Server (NTRS)

    Jones, Justin S.

    2017-01-01

    NASA personnel will be meeting with a delegation from the Japan Aerospace Exploration Agency (JAXA) Office of Safety and Mission Assurance (OSMA) at Langley Research Center on 2217 through 3217. The purpose of the meeting is a technical interchange between NASA and JAXA to discuss Non-Destructive Evaluation (NDE) of Additive Manufacturing (AM) parts and the HALT process (relates to accelerated life testing). The visitors will be a small group of Japanese citizens. Goddard Space Flight Center (GSFC) has been asked to participate in the meeting, either in person or via teleconference. This presentation covers NDE efforts at GSFC and provides a cursory overview of AM and lab capabilities.

  16. Skvortsov and Noguchi with Matroshka-2 Kibo Hardware

    NASA Image and Video Library

    2010-05-04

    ISS023-E-031576 (4 May 2010) --- Russian cosmonaut Alexander Skvortsov (left) and Japan Aerospace Exploration Agency (JAXA) astronaut Soichi Noguchi, both Expedition 23 flight engineers, work with the European Matroshka-R Phantom experiment in the Kibo laboratory of the International Space Station. Matroshka, the name for the traditional Russian set of nestling dolls, is an antroph-amorphous model of a human torso designed for radiation studies.

  17. MDCA (Multi-user Drop Combustion Apparatus) operations

    NASA Image and Video Library

    2009-05-12

    ISS019-E-015912 (12 May 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 19/20 flight engineer, works on the Combustion Integrated Rack (CIR) Multi-user Drop Combustion Apparatus (MDCA) in the Destiny laboratory of the International Space Station. Wakata removed and replaced one fuel reservoir, which required temporary opening the front end cap and removing the fuel supply bypass Quick Disconnect (QD).

  18. MDCA (Multi-user Drop Combustion Apparatus) operations

    NASA Image and Video Library

    2009-05-12

    ISS019-E-015906 (12 May 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 19/20 flight engineer, works on the Combustion Integrated Rack (CIR) Multi-user Drop Combustion Apparatus (MDCA) in the Destiny laboratory of the International Space Station. Wakata removed and replaced one fuel reservoir, which required temporary opening the front end cap and removing the fuel supply bypass Quick Disconnect (QD).

  19. MDCA (Multi-user Drop Combustion Apparatus) operations

    NASA Image and Video Library

    2009-05-12

    ISS019-E-015910(12 May 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 19/20 flight engineer, works on the Combustion Integrated Rack (CIR) Multi-user Drop Combustion Apparatus (MDCA) in the Destiny laboratory of the International Space Station. Wakata removed and replaced one fuel reservoir, which required temporary opening the front end cap and removing the fuel supply bypass Quick Disconnect (QD).

  20. HTV3 Approach

    NASA Image and Video Library

    2012-07-27

    ISS032-E-010425 (27 July 2012) --- The unpiloted Japan Aerospace Exploration Agency (JAXA) H-II Transfer Vehicle (HTV-3) is photographed from a window in the Cupola by an Expedition 32 crew member as it approaches the International Space Station. The Japan Aerospace Exploration Agency launched HTV-3 aboard an H-IIB launch vehicle from the Tanegashima Space Center in southern Japan at 10:06 p.m. EDT July 20 (11:06 a.m. July 21, Japan time). The HTV is bringing 7,000 pounds of cargo including food and clothing for the crew members, an aquatic habitat experiment, a remote-controlled Earth-observation camera for environmental studies, a catalytic reactor for the station’s water regeneration system and a Japanese cooling water recirculation pump. The vehicle will remain at the space station until Sept. 6 when, like its predecessors, it will be detached from the Harmony node by Canadarm2 and released for a fiery re-entry over the Pacific Ocean.

  1. HTV3 Approach

    NASA Image and Video Library

    2012-07-27

    ISS032-E-010430 (27 July 2012) --- The Canadarm2 moves toward the unpiloted Japan Aerospace Exploration Agency (JAXA) H-II Transfer Vehicle (HTV-3) as it approaches the International Space Station. The Japan Aerospace Exploration Agency launched HTV-3 aboard an H-IIB launch vehicle from the Tanegashima Space Center in southern Japan at 10:06 p.m. EDT July 20 (11:06 a.m. July 21, Japan time). The HTV is bringing 7,000 pounds of cargo including food and clothing for the crew members, an aquatic habitat experiment, a remote-controlled Earth-observation camera for environmental studies, a catalytic reactor for the station’s water regeneration system and a Japanese cooling water recirculation pump. The vehicle will remain at the space station until Sept. 6 when, like its predecessors, it will be detached from the Harmony node by Canadarm2 and released for a fiery re-entry over the Pacific Ocean.

  2. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-23

    A surfer navigates the waters in front of the Tanegashima Space Center (TNSC) launch pads on Sunday, Feb. 23, 2014, Tanegashima Island, Japan. A Japanese H-IIA rocket carrying the NASA-Japan Aerospace Exploration Agency (JAXA), Global Precipitation Measurement (GPM) Core Observatory is planned for launch from the space center on Feb. 28, 2014. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  3. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-23

    A rocket is seen at the entrance to the visitor's center of the Tanegashima Space Center (TNSC), Sunday, Feb. 23, 2014, Tanegashima Island, Japan. A Japanese H-IIA rocket carrying the NASA-Japan Aerospace Exploration Agency (JAXA), Global Precipitation Measurement (GPM) Core Observatory is planned for launch from the space center on Feb. 28, 2014. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  4. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-23

    A car drives on the twisty roads that hug the coast line of the Tanegashima Space Center (TNSC) on Sunday, Feb. 23, 2014, Tanegashima Island, Japan. A Japanese H-IIA rocket carrying the NASA-Japan Aerospace Exploration Agency (JAXA), Global Precipitation Measurement (GPM) Core Observatory is planned for launch from the space center on Feb. 28, 2014. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  5. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-23

    Envelopes with stamps depicting various space missions are shown at the visitor's center of the Tanegashima Space Center (TNSC), Sunday, Feb. 23, 2014, Tanegashima Island, Japan. A Japanese H-IIA rocket carrying the NASA-Japan Aerospace Exploration Agency (JAXA), Global Precipitation Measurement (GPM) Core Observatory is planned for launch from the space center on Feb. 28, 2014. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  6. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-21

    A sign at an overlook, named Rocket Hill, helps viewers identify the various facilities of the Tanegashima Space Center (TNSC), including launch pad 1 that will be used Feb. 28, 2014 for the launch of an H-IIA rocket carrying the Global Precipitation Measurement (GPM) Core Observatory, Friday, Feb. 21, 2014, Tanegashima Island, Japan. The NASA-Japan Aerospace Exploration Agency (JAXA) GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  7. HTV-4 undocking

    NASA Image and Video Library

    2013-09-04

    ISS036-E-039553 (04 Sept. 2013) --- One of the Expedition 36 crew members aboard the International Space Station took this picture of the Japanese HTV-4 unmanned cargo spacecraft, backdropped against clouds, following its unberthing and release from the orbital outpost. HTV-4, after backing away from the flying complex, headed for re-entry into Earth's atmosphere, burning upon re-entry. HTV-4 was launched by Japan?s Aerospace Exploration Agency (JAXA) on Aug. 4 of this year in order to bring up supplies for the astronauts and cosmonauts onboard the station.

  8. HTV-4 undocking

    NASA Image and Video Library

    2013-09-04

    ISS036-E-039541 (04 Sept. 2013) --- One of the Expedition 36 crew members aboard the International Space Station took this picture of the Japanese HTV-4 unmanned cargo spacecraft, backdropped against clouds, following its unberthing and release from the orbital outpost. HTV-4, after backing away from the flying complex, headed for re-entry into Earth's atmosphere, burning upon re-entry. HTV-4 was launched by Japan?s Aerospace Exploration Agency (JAXA) on Aug. 4 of this year in order to bring up supplies for the astronauts and cosmonauts onboard the station.

  9. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-23

    A building designed to look like a space shuttle is seen a few kilometers outside of the Tanegashima Space Center (TNSC), Sunday, Feb. 23, 2014, Tanegashima Island, Japan. A Japanese H-IIA rocket carrying the NASA-Japan Aerospace Exploration Agency (JAXA), Global Precipitation Measurement (GPM) Core Observatory is planned for launch from the space center on Feb. 28, 2014. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  10. KSC-2009-4344

    NASA Image and Video Library

    2009-07-31

    CAPE CANAVERAL, Fla. – NASA Administrator Charles Bolden (left) and Japan Aerospace Exploration Agency, or JAXA, President Keiji Tachikawa pose for photographers after signing an agreement defining the terms of cooperation between NASA and JAXA on the Global Precipitation Measurement, or GPM, mission. The ceremony took place July 30 at the Kennedy Space Center Visitor Complex, Fla. Through the agreement, NASA is responsible for the GPM core observatory spacecraft bus, the GPM Microwave Imager, or GMI, carried by it, and a second GMI to be flown on a partner-provided Low-Inclination Observatory. JAXA will supply the Dual-frequency Precipitation Radar for the core observatory, an H-IIA rocket for the core observatory's launch in July 2013, and data from a conical-scanning microwave imager on the upcoming Global Change Observation Mission satellite. Photo credit: NASA/Jack Pfaller

  11. Development of Spaceborne Radar Simulator by NICT and JAXA using JMA Cloud-resolving Model

    NASA Astrophysics Data System (ADS)

    Kubota, T.; Eito, H.; Aonashi, K.; Hashimoto, A.; Iguchi, T.; Hanado, H.; Shimizu, S.; Yoshida, N.; Oki, R.

    2009-12-01

    We are developing synthetic spaceborne radar data toward a simulation of the Dual-frequency Precipitation Radar (DPR) aboard the Global Precipitation Measurement (GPM) core-satellite. Our purposes are a production of test-bed data for higher level DPR algorithm developers, in addition to a diagnosis of a cloud resolving model (CRM). To make the synthetic data, we utilize the CRM by the Japan Meteorological Agency (JMA-NHM) (Ikawa and Saito 1991, Saito et al. 2006, 2007), and the spaceborne radar simulation algorithm by the National Institute of Information and Communications Technology (NICT) and the Japan Aerospace Exploration Agency (JAXA) named as the Integrated Satellite Observation Simulator for Radar (ISOSIM-Radar). The ISOSIM-Radar simulates received power data in a field of view of the spaceborne radar with consideration to a scan angle of the radar (Oouchi et al. 2002, Kubota et al. 2009). The received power data are computed with gaseous and hydrometeor attenuations taken into account. The backscattering and extinction coefficients are calculated assuming the Mie approximation for all species. The dielectric constants for solid particles are computed by the Maxwell-Garnett model (Bohren and Battan 1982). Drop size distributions are treated in accordance with those of the JMA-NHM. We assume a spherical sea surface, a Gaussian antenna pattern, and 49 antenna beam directions for scan angles from -17 to 17 deg. in the PR. In this study, we report the diagnosis of the JMA-NHM with reference to the TRMM Precipitation Radar (PR) and CloudSat Cloud Profiling Radar (CPR) using the ISOSIM-Radar from the view of comparisons in cloud microphysics schemes of the JMA-NHM. We tested three kinds of explicit bulk microphysics schemes based on Lin et al. (1983), that is, three-ice 1-moment scheme, three-ice 2-moment scheme (Eito and Aonashi 2009), and newly developed four-ice full 2-moment scheme (Hashimoto 2008). The hydrometeor species considered here are rain, graupel

  12. GPM Launch Day at NASA Goddard (Feb. 27, 2014)

    NASA Image and Video Library

    2014-02-27

    The Daruma doll is a symbol of good luck and in Japan is often given as a gift for encouragement to reach a goal. When the goal is set, one eye is colored in. When the goal is achieved, the other eye is colored. An identical doll sits in the control room at the Japan Aerospace Agency’s (JAXA) Tanegashima Space Center, leading up to the launch of the joint NASA-JAXA Global Precipitation Measurement mission’s Core Observatory. Credit: NASA's Goddard Space Flight Center/Debbie McCallum GPM's Core Observatory is poised for launch from the Japan Aerospace Exploration Agency's Tanegashima Space Center, scheduled for the afternoon of Feb. 27, 2014 (EST). GPM is a joint venture between NASA and the Japan Aerospace Exploration Agency. The GPM Core Observatory will link data from a constellation of current and planned satellites to produce next-generation global measurements of rainfall and snowfall from space. The GPM mission is the first coordinated international satellite network to provide near real-time observations of rain and snow every three hours anywhere on the globe. The GPM Core Observatory anchors this network by providing observations on all types of precipitation. The observatory's data acts as the measuring stick by which partner observations can be combined into a unified data set. The data will be used by scientists to study climate change, freshwater resources, floods and droughts, and hurricane formation and tracking. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  13. To ignite the passion in children's hearts - Role and effect of space education, issues and consideration

    NASA Astrophysics Data System (ADS)

    Kojima, Ayami

    2016-10-01

    It is obvious that Space Education is very important for sustainable space development as children are going to lead the new era of space development. The Japan Aerospace Exploration Agency (thereafter called ;JAXA;) believes that all children hold 3 spirits which are ;Curiosity;, ;Adventure; and ;Craftsmanship;. We have been trying to ignite children's spirits toward nature, life and the universe with the effective use of space subjects and materials since the establishment of the JAXA Space Education Center in 2005. Studying about space is not limited to STEM, but can be applied to all subjects including social studies, music, and home economics. JAXA successfully coordinates more than 100 school classes in various subjects all over Japan each year. In geography, students learned geographical features of mountain ranges from images taken by JAXA's land observing satellite, while wearing 3D glasses so that they felt as if they were watching it from space. In home economics, students discussed and came up with ideas for new space food menu items considering nutrition and preservability. One of the ideas has been selected as Japanese Space Food. Nowadays, the numbers of school collaborations are stable and cover various subjects. Therefore JAXA cooperated with SHINSEI elementary school as a model school of space education. This elementary school introduced space studies in all grade's education guidelines in this school year. JAXA and SHINSEI elementary school are going to revise and analyze how students have been changed through this effort in March. We also focus on ;Teacher Training; by holding JAXA-Teachers seminars all over Japan and more than 1000 teachers take this seminar every year. By studying a questionnaire survey taken from teacher seminars, it has been clarified that most of teachers realized space can be applied not only for astronomy but also in various subjects. They evaluate JAXA's effort for broadening their horizons. However most of teachers do

  14. The 2004 NASA Aerospace Battery Workshop

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Topics covered include: Super NiCd(TradeMark) Energy Storage for Gravity Probe-B Relativity Mission; Hubble Space Telescope 2004 Battery Update; The Development of Hermetically Sealed Aerospace Nickel-Metal Hydride Cell; Serial Charging Test on High Capacity Li-Ion Cells for the Orbiter Advanced Hydraulic Power System; Cell Equalization of Lithium-Ion Cells; The Long-Term Performance of Small-Cell Batteries Without Cell-Balancing Electronics; Identification and Treatment of Lithium Battery Cell Imbalance under Flight Conditions; Battery Control Boards for Li-Ion Batteries on Mars Exploration Rovers; Cell Over Voltage Protection and Balancing Circuit of the Lithium-Ion Battery; Lithium-Ion Battery Electronics for Aerospace Applications; Lithium-Ion Cell Charge Control Unit; Lithium Ion Battery Cell Bypass Circuit Test Results at the U.S. Naval Research Laboratory; High Capacity Battery Cell By-Pass Switches: High Current Pulse Testing of Lithium-Ion; Battery By-Pass Switches to Verify Their Ability to Withstand Short-Circuits; Incorporation of Physics-Based, Spatially-Resolved Battery Models into System Simulations; A Monte Carlo Model for Li-Ion Battery Life Projections; Thermal Behavior of Large Lithium-Ion Cells; Thermal Imaging of Aerospace Battery Cells; High Rate Designed 50 Ah Li-Ion Cell for LEO Applications; Evaluation of Corrosion Behavior in Aerospace Lithium-Ion Cells; Performance of AEA 80 Ah Battery Under GEO Profile; LEO Li-Ion Battery Testing; A Review of the Feasibility Investigation of Commercial Laminated Lithium-Ion Polymer Cells for Space Applications; Lithium-Ion Verification Test Program; Panasonic Small Cell Testing for AHPS; Lithium-Ion Small Cell Battery Shorting Study; Low-Earth-Orbit and Geosynchronous-Earth-Orbit Testing of 80 Ah Batteries under Real-Time Profiles; Update on Development of Lithium-Ion Cells for Space Applications at JAXA; Foreign Comparative Technology: Launch Vehicle Battery Cell Testing; 20V, 40 Ah Lithium Ion Polymer

  15. Wakata with Fresh Fruit in the Cupola

    NASA Image and Video Library

    2014-04-01

    ISS039-E-008095 (1 April 2014) --- Expedition 39 Commander Koichi Wakata, representing the Japan Aerospace Exploration Agency (JAXA), seems very elated that three new members of the crew have brought up food and supplies, especially fresh fruit, as depicted in this photo -- among the first sets of imagery documented with all six Expedition 39 crew members onboard the International Space Station. Wakata is in the orbiting outpost's Cupola module.

  16. Expedition 54 Press Conference

    NASA Image and Video Library

    2017-12-16

    Expedition 54 flight engineer Scott Tingle is seen in quarantine, behind glass, during a press conference, Saturday, Dec. 16, 2017 at the Cosmonaut Hotel in Baikonur, Kazakhstan. Tingle, Soyuz Commander Anton Shkaplerov of Roscosmos, and flight engineer Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) are scheduled to launch to the International Space Station aboard the Soyuz spacecraft from the Baikonur Cosmodrome on December 17. Photo Credit: (NASA/Joel Kowsky)

  17. Space Station Crew Members Discuss Life in Space with Indiana Students

    NASA Image and Video Library

    2018-01-11

    Aboard the International Space Station, Expedition 54 Flight Engineers Mark Vande Hei of NASA and Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) discussed aspects of life and research during an in-flight educational event Jan. 11 with students gathered at the Children’s Museum in Indianapolis. Vande Hei is scheduled to return to Earth in late February, while Kanai will remain on station until early June.

  18. iss032e025361

    NASA Image and Video Library

    2012-09-05

    ISS032-E-025361 (5 Sept. 2012) --- Having doffed the outer layer of their Extravehicular Mobility Unit (EMU) spacesuits, Expedition 32 Flight Engineers Sunita Williams of NASA and Akihiko Hoshide of the Japan Aerospace Exploration Agency (JAXA) flex their muscles, celebrating success on their just-completed spacewalk, the second extravehicular activity for them in less than a week. They are still sporting their EMU thermal underwear in the Unity Node 1.

  19. STS-114 Media Day at the NBL

    NASA Image and Video Library

    2005-02-24

    JSC2005-E-07617 (24 February 2005) --- Astronaut Soichi Noguchi, STS-114 mission specialist representing Japan Aerospace Exploration Agency (JAXA), attired in a training version of the Extravehicular Mobility Unit (EMU) spacesuit, gives a “;thumbs up”; signal prior to being submerged in the waters of the Neutral Buoyancy Laboratory (NBL) near Johnson Space Center. This training session occurred during STS-114 Media Day at the NBL.

  20. Next Space Station Crew Prepares for Mission

    NASA Image and Video Library

    2017-12-01

    B-roll footage includes various pre-launch training activities of Expedition 54-55, featuring Soyuz Commander Anton Shkaplerov of Roscosmos and Flight Engineers Scott Tingle of NASA and Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA), as they prepare for their mission to the International Space Station. The trio will launch to the station aboard a Soyuz spacecraft on Dec. 17 from the Baikonur Cosmodrome in Kazakhstan.

  1. Expedition 52 Red Square Visit

    NASA Image and Video Library

    2017-07-10

    Expedition 52 backup crew members Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA), left, Alexander Misurkin of Roscosmos, center, and Mark Vande Hei of NASA pose for a photograph in front of Saint Basil's Cathedral as they visited Red Square to lay roses at the site where Russian space icons are interred as part of traditional pre-launch ceremonies, Monday, July 10, 2017 in Moscow. Photo Credit: (NASA/Bill Ingalls)

  2. Hayabusa Asteroidal Sample Preliminary Examination Team (HASPET) and the Astromaterial Curation Facility at JAXA/ISAS

    NASA Astrophysics Data System (ADS)

    Yano, H.; Fujiwara, A.

    After the successful launch in May 2003, the Hayabusa (MUSES-C) mission of JAXA/ISAS will collect surface materials (e.g., regolith) of several hundred mg to several g in total from the S-type near Earth asteroid (25143) Itokawa in late 2005 and bring them back to ground laboratories in the summer of 2007. The retrieved samples will be given initial analysis at the JAXA/ISAS astromaterial curation facility, which is currently in the preparation for its construction, by the Hayabusa Asteroidal Sample Preliminary Examination Team (HASPET). HASPET is consisted of the ISAS Hayabusa team, the international partners from NASA and Australia and all-Japan meteoritic scientists to be selected as outsourcing parts of the initial analyses. The initial analysis to characterize general aspects of returned samples can consume only 15 % of its total mass and must complete the whole analyses including the database building before international AO for detailed analyses within the maximum of 1 year. Confident exercise of non-destructive, micro-analyses whenever possible are thus vital for the HASPET analysis. In the purpose to survey what kinds and levels of micro-analysis techniques in respective fields, from major elements and mineralogy to trace and isotopic elements and organics, are available in Japan at present, ISAS has conducted the HASPET open competitions in 2000-01 and 2004. The initial evaluation was made by multiple domestic peer reviews. Applicants were then provided two kinds of unknown asteroid sample analogs in order to conduct proposed analysis with self-claimed amount of samples in self-claimed duration. After the completion of multiple, international peer reviews, the Selection Committee compiled evaluations and recommended the finalists of each round. The final members of the HASPET will be appointed about 2 years prior to the Earth return. Then they will conduct a test-run of the whole initial analysis procedures at the ISAS astromaterial curation facility and

  3. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 26: The relationship between technology policy and scientific and technical information within the US and Japanese aerospace industries

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1993-01-01

    Government technology policy has nurtured the growth of the aerospace industry which is vital to both the U.S. and Japanese economies. Japanese technology policy differs significantly from U.S. technology policy, however, particularly with respect to the production, transfer, and use of scientific and technical information (STI). In this paper, we discuss the unique position of the aerospace industry in the U.S. and Japan, U.S. and Japanese aerospace policy, and the role of STI in the process of aerospace innovation. The information-seeking behaviors of U.S. and Japanese aerospace engineers and scientists are compared. The authors advocate the development of innovation-adoption technology and STI policy goals for U.S. aerospace and the inclusion of an aerospace knowledge diffusion transfer system with an 'active' component for scanning and acquiring foreign aerospace technology and STI.

  4. Expedition 32 Press Conference

    NASA Image and Video Library

    2012-07-13

    Quarantined Expedition 32 JAXA (Japan Aerospace Exploration Agency) Flight Engineer Akihiko Hoshide answers reporters questions from behind glass during a prelaunch press conference held at the Cosmonaut Hotel on Friday, July 13, 2012 in Baikonur, Kazakhstan. The launch of the Soyuz spacecraft with Hoshide, Soyuz Commander Yuri Malenchenko, and NASA Flight Engineer Sunita Williams is scheduled for 8:40 a.m. local time on Sunday, July 15. Photo Credit (NASA/Carla Cioffi)

  5. Expedition 54 Press Conference

    NASA Image and Video Library

    2017-12-16

    Expedition 54 Soyuz Commander Anton Shkaplerov of Roscosmos is seen in quarantine, behind glass, during a press conference, Saturday, Dec. 16, 2017 at the Cosmonaut Hotel in Baikonur, Kazakhstan. Shkaplerov, flight engineer Scott Tingle of NASA, and flight engineer Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) are scheduled to launch to the International Space Station aboard the Soyuz spacecraft from the Baikonur Cosmodrome on December 17. Photo Credit: (NASA/Joel Kowsky)

  6. Wakata in JPM

    NASA Image and Video Library

    2009-06-01

    ISS020-E-005881 (1 June 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 20 flight engineer, conducts the current periodic humidity check on the Cell Biology Experiment Facility (CBEF) in the Saibo Rack in the Kibo laboratory of the International Space Station. Wakata opened the facility’s door for wiping up any condensation inside the micro-G & 1G section, if present, and also secured floating fan mesh with Kapton tape.

  7. STS-131 crew during VR Lab MSS/EVAB SUPT3 Team 91016 training

    NASA Image and Video Library

    2009-09-25

    JSC2009-E-214346 (25 Sept. 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Naoko Yamazaki, STS-131 mission specialist, uses the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of her duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare the entire team for dealing with space station elements.

  8. STS-131 crew during VR Lab MSS/EVAB SUPT3 Team 91016 training

    NASA Image and Video Library

    2009-09-25

    JSC2009-E-214328 (25 Sept. 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Naoko Yamazaki, STS-131 mission specialist, uses the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of her duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare the entire team for dealing with space station elements.

  9. Exp55_Inflight_KYW-TV_2018_072_1355_627718

    NASA Image and Video Library

    2018-03-13

    SPACE STATION CREW MEMBERS DISCUSS LIFE IN SPACE WITH PHILADELPHIA MEDIA----- Aboard the International Space Station, Expedition 55 Flight Engineers Scott Tingle of NASA and Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) discussed life and research on the complex during an in-flight interview March 13 with KYW-TV in Philadelphia. Tingle and Kanai are in the midst of a five-and-a-half month mission on the orbital outpost.

  10. PAO Event with Newsweek 3119_624023_hires

    NASA Image and Video Library

    2018-03-02

    SPACE STATION CREW MEMBERS DISCUSS LIFE IN SPACE WITH NEWSWEEK MAGAZINE ------------------------------------------------------------------ Aboard the International Space Station, Expedition 55 Flight Engineers Scott Tingle of NASA and Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) discussed life and research aboard the orbital outpost during an in-flight question and answer session March 1 with Newsweek Magazine. Tingle and Kanai are in the midst of a five-and-a-half-month mission on the station.

  11. Electrostatic Levitation Furnace for the ISS

    NASA Technical Reports Server (NTRS)

    Murakami, Keiji; Koshikawa, Naokiyo; Shibasaki, Kohichi; Ishikawa, Takehiko; Okada, Junpei; Takada, Tetsuya; Arai, Tatsuya; Fujino, Naoki; Yamaura, Yukiko

    2012-01-01

    JAXA (Japan Aerospace Exploration Agency) has just started the development of Electrostatic Levitation Furnace to be launched in 2014 for the ISS. This furnace can control the sample position with electrostatic force and heat it above 2000 degree Celsius using semiconductor laser from four different directions. The announcement of Opportunity will be issued soon for this furnace. In this paper, we will show the specifications of this furnace and also the development schedule

  12. Expedition 32 Soyuz Rocket Rollout

    NASA Image and Video Library

    2012-07-12

    A russian space engineer waves hello as the Soyuz TMA-05M is rolled to its launch pad at the Baikonur Cosmodrome in Kazakhstan, Thursday, July 12, 2012. The launch of the Soyuz spacecraft with Expedition 32 Soyuz Commander Yuri Malenchenko, NASA Flight Engineer Sunita Williams and JAXA (Japan Aerospace Exploration Agency) Flight Engineer Akihiko Hoshide is scheduled for the morning of Sunday, July 15, local time. Photo Credit (NASA/Carla Cioffi)

  13. Improving Arctic Sea Ice Edge Forecasts by Assimilating High Horizontal Resolution Sea Ice Concentration Data into the US Navy’s Ice Forecast Systems

    DTIC Science & Technology

    2016-06-13

    Global Ocean Forecast System 3.1 also showed a substantial improvement in ice edge location over a system using the SSMIS sea ice concentration product... Global Ocean Fore- cast System (GOFS 3.1). Prior to 2 February 2015, the ice concentration fields from both ACNFS and GOFS 3.1 had been updated with...Scanning Radiometer (AMSR2) on the Japan Aerospace Exploration Agency (JAXA) Global Change Observation Mission – Water (GCOM-W) platform became available

  14. Expedition 29 Landing

    NASA Image and Video Library

    2011-11-22

    Expedition 29 Commander Mike Fossum is seen in a traditional Kazakhstan hat gifted to him during a welcome ceremony at the Kustanay Airport in Kazakhstan on Tuesday, Nov. 22, 2011. NASA Astronaut Fossum, Russian Cosmonaut Sergei Volkov and JAXA (Japan Aerospace Exploration Agency) Astronaut Satoshi Furukawa returned from more than five months onboard the International Space Station where they served as members of the Expedition 28 and 29 crews. Photo Credit: (NASA/Bill Ingalls)

  15. KENNEDY SPACE CENTER, FLA. - Members of the STS-114 crew spend time becoming familiar with Shuttle and mission equipment. Mission Specialists Soichi Noguchi (left) and Andrew Thomas (center) look at an engine eyelet, which serves as part of the thermal protection system on an orbiter. Noguchi is with the Japanese Aerospace Exploration Agency (JAXA). The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment and the external stowage platform to the International Space Station.

    NASA Image and Video Library

    2004-03-05

    KENNEDY SPACE CENTER, FLA. - Members of the STS-114 crew spend time becoming familiar with Shuttle and mission equipment. Mission Specialists Soichi Noguchi (left) and Andrew Thomas (center) look at an engine eyelet, which serves as part of the thermal protection system on an orbiter. Noguchi is with the Japanese Aerospace Exploration Agency (JAXA). The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment and the external stowage platform to the International Space Station.

  16. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-23

    Shrubs and flowers in the shape of a space shuttle, star and planet are seen just outside the visitor's center of the Tanegashima Space Center (TNSC), Sunday, Feb. 23, 2014, Tanegashima Island, Japan. A Japanese H-IIA rocket carrying the NASA-Japan Aerospace Exploration Agency (JAXA), Global Precipitation Measurement (GPM) Core Observatory is planned for launch from the space center on Feb. 28, 2014. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  17. HTV-4 undocking

    NASA Image and Video Library

    2013-09-04

    ISS036-E-039501 (04 Sept. 2013) --- One of the Expedition 36 crew members aboard the International Space Station took this picture of the Japanese HTV-4 unmanned cargo spacecraft, backdropped against a land mass on Earth, following its unberthing but just prior to its release from the orbital outpost's Canadarm2. HTV-4, after backing away from the flying complex, headed for re-entry into Earth's atmosphere, burning upon re-entry. HTV-4 was launched by Japan?s Aerospace Exploration Agency (JAXA) on Aug. 4 of this year in order to bring up supplies for the astronauts and cosmonauts onboard the station.

  18. HTV-4 undocking

    NASA Image and Video Library

    2013-09-04

    ISS036-E-039523 (04 Sept. 2013) --- One of the Expedition 36 crew members aboard the International Space Station took this picture of the Japanese HTV-4 unmanned cargo spacecraft, backdropped against a land mass on Earth, following its unberthing but just prior to its release from the orbital outpost. HTV-4, after backing away from the flying complex, headed for re-entry into Earth's atmosphere, burning upon re-entry. HTV-4 was launched by Japan?s Aerospace Exploration Agency (JAXA) on Aug. 4 of this year in order to bring up supplies for the astronauts and cosmonauts onboard the station.

  19. HTV-4 undocking

    NASA Image and Video Library

    2013-09-04

    ISS036-E-039563 (04 Sept. 2013) --- One of the Expedition 36 crew members aboard the International Space Station took this picture of the Japanese HTV-4 unmanned cargo spacecraft, surrounded by the darkness of space, following its unberthing and release from the orbital outpost. HTV-4, after backing away from the flying complex, headed for re-entry into Earth's atmosphere, burning upon re-entry. HTV-4 was launched by Japan?s Aerospace Exploration Agency (JAXA) on Aug. 4 of this year in order to bring up supplies for the astronauts and cosmonauts onboard the station.

  20. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-23

    A NASA Global Precipitation Measurement (GPM) mission shirt is seen drying in the mid-day sun outside the Sun Pearl Hotel where many of the NASA GPM team are staying, Sunday, Feb. 23, 2014, Tanegashima Island, Japan. A Japanese H-IIA rocket carrying the NASA-Japan Aerospace Exploration Agency (JAXA), Global Precipitation Measurement (GPM) Core Observatory is planned for launch from the space center on Feb. 28, 2014. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  1. NASA/DoD Aerospace Knowledge Diffusion Research Project. XXVI - The relationship between technology policy and scientific and technical information within the U.S. and Japanese aerospace industries

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Lahr, Tom; Hoetker, Glenn

    1993-01-01

    Government technology policy has nurtured the growth of the aerospace industry, which is vital to both the U.S. and Japanese economies. Japanese technology policy differs significantly from U.S. technology policy, however, particularly with respect to the production, transfer, and use of scientific and technical information (STI). In this paper, we discuss the unique position of the aerospace industry in the U.S. and Japan, U.S. and Japanese aerospace policy, and the role of STI in the process of aerospace innovation. The information-seeking behaviors of U.S. and Japanese aerospace engineers and scientists are compared. The authors advocate the development of innovation-adoption technology and STI policy goals for U.S. aerospace and the inclusion of an aerospace knowledge diffusion transfer system with an 'active' component for scanning and acquiring foreign aerospace technology and STI.

  2. PIXEL: Japanese InSAR community for crustal deformation research

    NASA Astrophysics Data System (ADS)

    Furuya, M.; Shimada, M.; Ozawa, T.; Fukushima, Y.; Aoki, Y.; Miyagi, Y.; Kitagawa, S.

    2007-12-01

    In anticipation of the launch of ALOS (Advanced Land Observation Satellite) by JAXA (Japan Aerospace eXploration Agency), and in order to expand and bolster the InSAR community for crustal deformation research in Japan, a couple of scientists established a consortium, PIXEL, in November 2005 in a completely bottom-up fashion. PIXEL stands for Palsar Interferometry Consortium to Study our Evolving Land. Formally, it is a research contract between JAXA and Earthquake Research Institute (ERI), University of Tokyo. As ERI is a shared institute of the Japanese universities and research institutes, every scientist at all Japanese universities and institutes can participate in this consortium. The activity of PIXEL includes information exchange by mailing list, tutorial workshop for InSAR software, research workshop, and PALSAR data sharing. After the launch of ALOS, we have already witnessed several earthquakes and volcanic activities using PALSAR interferometry. We will briefly show and digest some of those observation results.

  3. Induced Contamination Predictions for JAXA's MPAC&SEED Devices

    NASA Technical Reports Server (NTRS)

    Steagall, Courtney; Smith, Kendall; Huang, Alvin; Soares, Carlos; Mikatarian, Ron

    2008-01-01

    Externally mounted ISS payloads are exposed to the induced ISS environment, including material outgassing and thruster plume contamination. The Boeing Space Environments Team developed analytical and semiempirical models to predict material outgassing and thruster plume induced contamination. JAXA s SM/MPAC&SEED experiment provides an unique opportunity to compare induced contamination predications with measurements. Analysis results are qualitatively consistent with XPS measurements. Calculated depth of contamination within a factor of 2-3 of measured contamination. Represents extremely good agreement, especially considering long duration of experiment and number of outgassing sources. Despite XPS limitations in quantifying plume contamination, the measured and predicted results are of similar scale for the wake-facing surfaces. JAXA s JEM/MPAC&SEED experiment will also be exposed to induced contamination due to JEM and ISS hardware. Predicted material outgassing induced contamination to JEM/MPAC&SEED ranges from 44 to 262 (depending on surface temperature) for a 3 year exposure duration.

  4. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 25: The impact of language and culture on technical communication in Japan

    NASA Technical Reports Server (NTRS)

    Kohl, John R.; Barclay, Rebecca O.; Pinelli, Thomas E.; Keene, Michael L.; Kennedy, John M.

    1993-01-01

    One of the most significant developments in the field of technical communication during the 1980's and 1990's has been a growing interest in international technical communication, including technical communication in Japan. This article provides insights into aspects of the Japanese language and culture that affect Japanese technical communication practices. These insights are then used to interpret and report the results of a survey of Japanese aerospace engineers and scientists concerning the kinds of communication products they produce, the kinds they use, and the specific recommendation they would offer to designers of academic programs in technical communication.

  5. NASA/DoD Aerospace Knowledge Diffusion Research Project. XXV - The impact of language and culture on technical communication in Japan

    NASA Technical Reports Server (NTRS)

    Kohl, John R.; Barclay, Rebecca O.; Pinelli, Thomas E.; Keene, Michael L.; Kennedy, John M.

    1993-01-01

    One of the most significant developments in the field of technical communication during the 1980s and 1990s has been a growing interest in international technical communication, including technical communication in Japan. This article provides insights into aspects of the Japanese language and culture that affect Japanese technical communication practices. The authors then use these insights to interpret and report the results of a survey of Japanese aerospace engineers and scientists concerning the kinds of communication products they produce, the kinds they use, and the specific recommendations they would offer to designers of academic programs in technical communication.

  6. Expedition 32 Press Conference

    NASA Image and Video Library

    2012-07-13

    Quarantined Expedition 32 JAXA (Japan Aerospace Exploration Agency) Flight Engineer Akihiko Hoshide, left, answers reporters questions from behind glass during a prelaunch press conference held at the Cosmonaut Hotel on Friday, July 13, 2012 in Baikonur, Kazakhstan. Seated next to him is Soyuz Commander Yuri Malenchenko. The launch of the Soyuz spacecraft with Hoshide, Malenchenko, and NASA Flight Engineer Sunita Williams is scheduled for 8:40 a.m. local time on Sunday, July 15. Photo Credit (NASA/Carla Cioffi)

  7. Exp.55_Facebook_Live_2018_106_1657_641445

    NASA Image and Video Library

    2018-04-17

    SPACE STATION CREW MEMBERS DISCUSS THE VIEW OF EARTH FROM ORBIT-------------- Aboard the International Space Station, Expedition 55 Flight Engineers Drew Feustel of NASA and Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) discussed the view of Earth from orbit and other Earth observation topics for Earth Day as part of a Facebook Live in-flight event April 16. Kanai has been in orbit since last December while Feustel arrived on the station a month ago.

  8. Expedition 39 Crewmembers Inflight Portrait

    NASA Image and Video Library

    2014-04-11

    ISS039-E-011175 (11 April 2014) --- Inside the Zvezda service module on the Earth-orbiting International Space Station, the six Expedition 39 crew members face the camera during a call with Russian President Vladimir Putin. From left to right are NASA astronauts Rick Mastracchio and Steve Swanson, both flight engineers; Commander Koichi Wakata of the Japan Aerospace Exploration Agency (JAXA), and cosmonauts Alexander Skvortsov, Mikhail Tyurin and Oleg Artemyev, all flight engineers with Russia's Federal Space Agency (Roscosmos).

  9. Expedition 39 Crewmembers Inflight Portrait

    NASA Image and Video Library

    2014-04-11

    ISS039-E-011174 (11 April 2014) --- Inside the Zvezda service module on the Earth-orbiting International Space Station, the six Expedition 39 crew members face the camera during a call with Russian President Vladimir Putin. From left to right are NASA astronauts Rick Mastracchio and Steve Swanson, both flight engineers; Commander Koichi Wakata of the Japan Aerospace Exploration Agency (JAXA), and cosmonauts Alexander Skvortsov, Mikhail Tyurin and Oleg Artemyev, all flight engineers with Russia's Federal Space Agency (Roscosmos).

  10. Expedition_55_Education_Event_HL_Suverkrup_Elementary_2018_061_1530_624314

    NASA Image and Video Library

    2018-03-02

    SPACE STATION CREW MEMBERS DISCUSS LIFE IN SPACE WITH ARIZONA STUDENTS------ Aboard the International Space Station, Expedition 55 Flight Engineers Scott Tingle of NASA and Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) discussed life and research aboard the orbital outpost during an in-flight educational event March 2 with students at the HL Suverkrup Elementary School in Yuma, Arizona. Tingle and Kanai are in the midst of a five-and-a-half-month mission on the station.

  11. Wakata and Thirsk with MELFI in KIBO

    NASA Image and Video Library

    2009-06-15

    ISS020-E-010021 (15 June 2009) --- Canadian Space Agency astronaut Robert Thirsk (left) and Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, both Expedition 20 flight engineers, prepare to put samples in the Minus Eighty Laboratory Freezer for ISS (MELFI) in the Kibo laboratory of the International Space Station. Samples were taken as part of the Nutritional Status Assessment (Nutrition) with Repository experiment, a study done by NASA to date of human physiologic changes during long-duration spaceflight.

  12. Space Station Crew Members Discuss Life in Space with the Media

    NASA Image and Video Library

    2018-01-03

    Aboard the International Space Station, Expedition 54 Flight Engineers Mark Vande Hei and Scott Tingle of NASA and Flight Engineer Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) discussed life and research on the complex during a pair of in-flight interviews Jan. 3 with KMSP-TV, Minneapolis and the Voice of America. Vande Hei has been on board the station since September, while Tingle and Kanai are in the third week of a planned six-month mission.

  13. Expedition 33 Soyuz Landing

    NASA Image and Video Library

    2012-11-19

    Expedition 33 Flight Engineer Akihiko Hoshide of JAXA (Japan Aerospace Exploration Agency) waves hello in a chair outside the Soyuz Capsule after he and Commander Sunita Williams of NASA, and Flight Engineer Yuri Malenchenko of ROSCOSMOS (Russian Federal Space Agency), landed their Soyuz spacecraft in a remote area outside the town of Arkalyk, Kazakhstan, on Monday, Nov. 19, 2012. Williams, Hoshide and Malenchenko returned from four months onboard the International Space Station. Photo Credit: (NASA/GCTC/Andrey Shelepin)

  14. Crew Meal in Node 1 Unity

    NASA Image and Video Library

    2010-04-14

    S131-E-010222 (14 April 2010) --- A fish-eye lens attached to an electronic still camera was used to capture this image of STS-131 and Expedition 23 crew members in the Unity node of the International Space Station while space shuttle Discovery remains docked with the station. Pictured are NASA astronauts Rick Mastracchio, Tracy Caldwell Dyson, Clayton Anderson and T.J. Creamer; along with Russian cosmonaut Oleg Kotov and Japan Aerospace Exploration Agency (JAXA) astronaut Soichi Noguchi.

  15. JAXA astronaut and Expedition 28 crew member Satoshi Furukawa

    NASA Image and Video Library

    2010-09-17

    PHOTO DATE: 09-17-10 LOCATION: Bldg. 9NW - ISS Mockups SUBJECT: JAXA astronaut and Expedition 28 crew member Satoshi Furukawa during P HRF Integ Cardio Integration Ops training WORK ORDER: 02810-BS__HRFSATOSHI_09-17-10 PHOTOGRAPHER: BILL STAFFORD

  16. A framework for combining multiple soil moisture retrievals based on maximizing temporal correlation

    NASA Astrophysics Data System (ADS)

    Kim, Seokhyeon; Parinussa, Robert M.; Liu, Yi. Y.; Johnson, Fiona M.; Sharma, Ashish

    2015-08-01

    A method for combining two microwave satellite soil moisture products by maximizing the temporal correlation with a reference data set has been developed. The method was applied to two global soil moisture data sets, Japan Aerospace Exploration Agency (JAXA) and Land Parameter Retrieval Model (LPRM), retrieved from the Advanced Microwave Scanning Radiometer 2 observations for the period 2012-2014. A global comparison revealed superior results of the combined product compared to the individual products against the reference data set of ERA-Interim volumetric water content. The global mean temporal correlation coefficient of the combined product with this reference was 0.52 which outperforms the individual JAXA (0.35) as well as the LPRM (0.45) product. Additionally, the performance was evaluated against in situ observations from the International Soil Moisture Network. The combined data set showed a significant improvement in temporal correlation coefficients in the validation compared to JAXA and minor improvements for the LPRM product.

  17. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 21: Technological innovation and technical communications: Their place in aerospace engineering curricula. A survey of European, Japanese, and US Aerospace Engineers and Scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Holland, Maurita Peterson; Keene, Michael L.; Kennedy, John M.

    1991-01-01

    Aerospace engineers and scientists from Western Europe, Japan, and the United States were surveyed as part of the NASA/DoD Aerospace Knowledge Diffusion Research Project. Questionnaires were used to solicit their opinions regarding the following: (1) the importance of technical communications to their profession; (2) the use and production of technical communications; and (3) their views about the appropriate content of an undergraduate course in technical communications. The ability to communicate technical information effectively was very important to the aerospace engineers and scientists who participated in the study. A considerable portion of their working week is devoted to using and producing technical information. The types of technical communications used and produced varied within and among the three groups. The type of technical communication product used and produced appears to be related to respondents' professional duties. Respondents from the three groups made similar recommendations regarding the principles, mechanics, and on-the-job communications to be included in an undergraduate technical communications course for aerospace majors.

  18. Current Status of Japanese Global Precipitation Measurement (GPM) Research Project

    NASA Astrophysics Data System (ADS)

    Kachi, Misako; Oki, Riko; Kubota, Takuji; Masaki, Takeshi; Kida, Satoshi; Iguchi, Toshio; Nakamura, Kenji; Takayabu, Yukari N.

    2013-04-01

    The Global Precipitation Measurement (GPM) mission is a mission led by the Japan Aerospace Exploration Agency (JAXA) and the National Aeronautics and Space Administration (NASA) under collaboration with many international partners, who will provide constellation of satellites carrying microwave radiometer instruments. The GPM Core Observatory, which carries the Dual-frequency Precipitation Radar (DPR) developed by JAXA and the National Institute of Information and Communications Technology (NICT), and the GPM Microwave Imager (GMI) developed by NASA. The GPM Core Observatory is scheduled to be launched in early 2014. JAXA also provides the Global Change Observation Mission (GCOM) 1st - Water (GCOM-W1) named "SHIZUKU," as one of constellation satellites. The SHIZUKU satellite was launched in 18 May, 2012 from JAXA's Tanegashima Space Center, and public data release of the Advanced Microwave Scanning Radiometer 2 (AMSR2) on board the SHIZUKU satellite was planned that Level 1 products in January 2013, and Level 2 products including precipitation in May 2013. The Japanese GPM research project conducts scientific activities on algorithm development, ground validation, application research including production of research products. In addition, we promote collaboration studies in Japan and Asian countries, and public relations activities to extend potential users of satellite precipitation products. In pre-launch phase, most of our activities are focused on the algorithm development and the ground validation related to the algorithm development. As the GPM standard products, JAXA develops the DPR Level 1 algorithm, and the NASA-JAXA Joint Algorithm Team develops the DPR Level 2 and the DPR-GMI combined Level2 algorithms. JAXA also develops the Global Rainfall Map product as national product to distribute hourly and 0.1-degree horizontal resolution rainfall map. All standard algorithms including Japan-US joint algorithm will be reviewed by the Japan-US Joint

  19. KSC-08pd0519

    NASA Image and Video Library

    2008-02-24

    KENNEDY SPACE CENTER, FLA. -- On NASA Kennedy Space Center's Launch Pad 39A, STS-123 Mission Specialist Takao Doi looks over the payload in space shuttle Endeavour's payload bay. Doi represents the Japan Aerospace and Exploration Agency, or JAXA. He and other STS-123 crew members are at Kennedy for a full launch dress rehearsal, known as the terminal countdown demonstration test, or TCDT. The TCDT provides astronauts and ground crews with an opportunity to participate in various simulated countdown activities, including equipment familiarization and emergency training. Endeavour is targeted to launch March 11 at 2:28 a.m. EDT on the 16-day STS-123 mission to the International Space Station. Endeavour and its crew will deliver the first section of the Japan Aerospace Exploration Agency's Kibo laboratory and the Canadian Space Agency's two-armed robotic system, Dextre. Photo credit: NASA/Kim Shiflett

  20. Advanced composites in Japan

    NASA Technical Reports Server (NTRS)

    Diefendorf, R. Judd; Hillig, William G.; Grisaffe, Salvatore J.; Pipes, R. Byron; Perepezko, John H.; Sheehan, James E.

    1994-01-01

    The JTEC Panel on Advanced Composites surveyed the status and future directions of Japanese high-performance ceramic and carbon fibers and their composites in metal, intermetallic, ceramic, and carbon matrices. Because of a strong carbon and fiber industry, Japan is the leader in carbon fiber technology. Japan has initiated an oxidation-resistant carbon/carbon composite program. With its outstanding technical base in carbon technology, Japan should be able to match present technology in the U.S. and introduce lower-cost manufacturing methods. However, the panel did not see any innovative approaches to oxidation protection. Ceramic and especially intermetallic matrix composites were not yet receiving much attention at the time of the panel's visit. There was a high level of monolithic ceramic research and development activity. High temperature monolithic intermetallic research was just starting, but notable products in titanium aluminides had already appeared. Matrixless ceramic composites was one novel approach noted. Technologies for high temperature composites fabrication existed, but large numbers of panels or parts had not been produced. The Japanese have selected aerospace as an important future industry. Because materials are an enabling technology for a strong aerospace industry, Japan initiated an ambitious long-term program to develop high temperature composites. Although just starting, its progress should be closely monitored in the U.S.

  1. Expedition 54 Press Conference

    NASA Image and Video Library

    2017-12-16

    Expedition 54 backup crew member Sergey Prokopev is seen in quarantine, behind glass, during a press conference, Saturday, Dec. 16, 2017 at the Cosmonaut Hotel in Baikonur, Kazakhstan. Expedition 54 prime crew members Soyuz Commander Anton Shkaplerov of Roscosmos, flight engineer Scott Tingle of NASA, and flight engineer Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) are scheduled to launch to the International Space Station aboard the Soyuz spacecraft from the Baikonur Cosmodrome on December 17. Photo Credit: (NASA/Joel Kowsky)

  2. Expedition 54 Press Conference

    NASA Image and Video Library

    2017-12-16

    Expedition 54 prime crew members flight engineer Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA), left, Soyuz Commander Anton Shkaplerov of Roscosmos, center, and flight engineer Scott Tingle of NASA, left, are seen in quarantine, behind glass, during a press conference, Saturday, Dec. 16, 2017 at the Cosmonaut Hotel in Baikonur, Kazakhstan. Kanai, Shkaplerov, and Tingle are scheduled to launch to the International Space Station aboard the Soyuz spacecraft from the Baikonur Cosmodrome on December 17. Photo Credit: (NASA/Joel Kowsky)

  3. Expedition_55_Education_Event_Monta_Loma_Elementary_2018_061_1715_624334

    NASA Image and Video Library

    2018-03-02

    SPACE STATION CREW MEMBERS DISCUSS LIFE IN SPACE WITH CALIFORNIA STUDENTS----- Aboard the International Space Station, Expedition 55 Flight Engineers Scott Tingle of NASA and Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) discussed life and research aboard the orbital outpost during an in-flight educational event March 2 with students at the Monta Loma Elementary School in Mountain View, California. Tingle and Kanai are in the midst of a five-and-a-half-month mission on the station.

  4. HTV-4 Re-entry camera 1 card 1.

    NASA Image and Video Library

    2013-09-07

    ISS036-E-041384 (7 Sept. 2013) --- A stationary camera onboard the International Space Station took this picture of the Japanese HTV-4 cargo spacecraft as it entered Earth’s atmosphere on Sept. 7, subsequently burning up. HTV-4 was launched by Japan's Aerospace Exploration Agency (JAXA) on Aug. 4 of this year in order to bring up supplies for the astronauts and cosmonauts onboard the station, and after spending a month docked to the orbital outpost, it was released on Sept. 4.

  5. Cassidy, Barratt and Wakata in Airlock

    NASA Image and Video Library

    2009-07-27

    ISS020-E-025693 (27 July 2009) --- Attired in his Extravehicular Mobility Unit (EMU) spacesuit, astronaut Christopher Cassidy, STS-127 mission specialist, is pictured in the Quest Airlock of the International Space Station as the mission's fifth and final session of extravehicular activity (EVA) draws to a close. Astronaut Michael Barratt, Expedition 20 flight engineer, photographs the EMU gloves worn by Cassidy while Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, mission specialist, assists with the doffing of the spacesuit.

  6. KSC-92PC-1538

    NASA Image and Video Library

    1992-07-18

    CAPE CANAVERAL, Fla. -- At Cape Canaveral Air Force Station's Launch Complex 17, Pad A, technicians encapsulate the Geotail spacecraft upper and attached Payload Assist Module-D upper stage lower in the protective payload fairing. Geotail and secondary payload Diffuse Ultraviolet Experiment DUVE are scheduled for launch about the Delta II rocket on July 24. The GEOTAIL mission is a collaborative project undertaken by the Institute of Space and Astronautical Science ISAS, Japan Aerospace Exploration Agency JAXA and NASA. Photo Credit: NASA

  7. Space Station Crew Discusses Life in Space with a Media Outlet

    NASA Image and Video Library

    2017-12-26

    Aboard the International Space Station, Expedition 54 Flight Engineers Mark Vande Hei, Joe Acaba and Scott Tingle of NASA and Flight Engineer Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) discussed their mission and life and research on orbit during an in-flight interview Dec. 26 with the online media outlet, Mic. Tingle ad Kanai recently arrived at the station for a six-month mission, joining Vande Hei and Acaba, who have lived on the orbital laboratory since September.

  8. Expedition 52 Red Square Visit

    NASA Image and Video Library

    2017-07-10

    Expedition 52 flight engineers Paolo Nespoli of ESA, left, Randy Bresnik of NASA, Sergey Ryazanskiy of Roscosmos, and backup crew members, Alexander Misurkin of Roscosmos, Mark Vande Hei of NASA, and Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA), right, pose for a group photograph in Red Square after having laid roses at the site where Russian space icons are interred as part of traditional pre-launch ceremonies, Monday, July 10, 2017 in Moscow. Photo Credit: (NASA/Bill Ingalls)

  9. EXP55_Inflight_NPR_1A_2018_072_1720_627775

    NASA Image and Video Library

    2018-03-14

    SPACE STATION CREW MEMBERS DISCUSS LIFE IN SPACE WITH NPR------------------------- Aboard the International Space Station, Expedition 55 Flight Engineers Scott Tingle of NASA and Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) discussed life and research on the complex during an in-flight interview March 13 with National Public Radio’s 1A Program that is broadcast on WAMU-FM, Washington, D.C. Tingle and Kanai are in the midst of a five-and-a-half month mission on the orbital outpost.

  10. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-26

    Members of the weather team prepare reports for the Global Precipitation Measurement (GPM) Core Observatory Launch Readiness Review (LRR) with Chief officers from Mitsubishi Heavy Industries, Ltd., the Japan Aerospace Exploration Agency (JAXA), and NASA, on Wednesday, Feb. 26, 2014 at Tanegashima Space Center, Japan. The GPM spacecraft is scheduled to launch aboard an H-IIA rocket early on the morning of Feb. 28 Japan time. At the meeting in the space center's Range Control Center, all preparations to date were reviewed and approval was given to proceed with launch on schedule. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  11. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-26

    Art Azarbarzin, NASA Global Precipitation Measurement (GPM) project manager, left, participates in the GPM Launch Readiness Review (LRR) along with Chief officers from Mitsubishi Heavy Industries, Ltd., and the Japan Aerospace Exploration Agency (JAXA) on Wednesday, Feb. 26, 2014 at Tanegashima Space Center, Japan. The spacecraft is scheduled to launch aboard an H-IIA rocket early on the morning of Feb. 28 Japan time. At the meeting in the space center's Range Control Center, all preparations to date were reviewed and approval was given to proceed with launch on schedule. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  12. Requirements and design structure for Surya Satellite-1

    NASA Astrophysics Data System (ADS)

    Steven, H.; Huzain, M. F.

    2018-05-01

    Currently, there are various references on the manufacture of nanosatellite specifications weighing 1KG - 10KG.The Surya Satellite-1 is the first nanosatellite made by universities in Indonesia. The Surya Satellite-1 team gets a launch offer from Japan Aerospace Exploration Agency (JAXA) and, all the nanosatellites manufacturer racers at ICD (Interface Control Document) obtained from JAXA. The formation of the Satellite-1 Surya framework is also based on the provisions of JAXA. The various specifications and requirements specified by the JAXA space agency consisting of specific specifications such as the mass of nanosatellite 1U (10cm x 10cm x 11.65cm) size of at least 0.13KG and a maximum of 1.33KG, with the determination of a gravity point not exceeding 2 cm from the nanosatellite geometry center point. In the case of preventing solar radiation in space, there is a requirement that the structure of satellite structures on hard black anodization should be more than 10 meters in the surface of the satellite structure. In terms of detail, the satellite structure is a black hard anodized aluminum after its manufacturing process derived from the MIL-A-8625 document, type 3.

  13. KSC-2009-4341

    NASA Image and Video Library

    2009-07-31

    CAPE CANAVERAL, Fla. – NASA Administrator Charles Bolden (left) and Japan Aerospace Exploration Agency, or JAXA, President Keiji Tachikawa sign an agreement defining the terms of cooperation between the agencies on the Global Precipitation Measurement, or GPM, mission. The ceremony took place July 30 at the Kennedy Space Center Visitor Complex, Fla. Through the agreement, NASA is responsible for the GPM core observatory spacecraft bus, the GPM Microwave Imager, or GMI, carried by it, and a second GMI to be flown on a partner-provided Low-Inclination Observatory. JAXA will supply the Dual-frequency Precipitation Radar for the core observatory, an H-IIA rocket for the core observatory's launch in July 2013, and data from a conical-scanning microwave imager on the upcoming Global Change Observation Mission satellite. Photo credit: NASA/Jack Pfaller

  14. Technological Innovation and Technical Communications: Their Place in Aerospace Engineering Curricula. A Survey of European, Japanese and US Aerospace Engineers and Scientists.

    ERIC Educational Resources Information Center

    Pinelli, Thomas E.; And Others

    1991-01-01

    Reports on results from 260 aerospace engineers and scientists in United States, Europe, and Japan regarding their opinions about professional importance of technical communications; generation and utilization of technical communications; and relevant content of an undergraduate course in technical communications. The fields of cryogenics,…

  15. Japanese H-IIA rocket

    NASA Image and Video Library

    2013-11-14

    The Japanese H-IIA rocket will be launching the GPM Core Observatory into orbit in 2014. Credit: JAXA The Global Precipitation Measurement (GPM) mission is an international partnership co-led by NASA and the Japan Aerospace Exploration Agency (JAXA) that will provide next-generation global observations of precipitation from space. GPM will study global rain, snow and ice to better understand our climate, weather, and hydrometeorological processes. As of Novermber 2013 the GPM Core Observatory is in the final stages of testing at NASA Goddard Space Flight Center. The satellite will be flown to Japan in the fall of 2013 and launched into orbit on an HII-A rocket in early 2014. For more on the GPM mission, visit gpm.gsfc.nasa.gov/. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  16. Introduction of JAXA Lunar and Planetary Exploration Data Analysis Group: Landing Site Analysis for Future Lunar Polar Exploration Missions

    NASA Astrophysics Data System (ADS)

    Otake, H.; Ohtake, M.; Ishihara, Y.; Masuda, K.; Sato, H.; Inoue, H.; Yamamoto, M.; Hoshino, T.; Wakabayashi, S.; Hashimoto, T.

    2018-04-01

    JAXA established JAXA Lunar and Planetary Exploration Data Analysis Group (JLPEDA) at 2016. Our group has been analyzing lunar and planetary data for various missions. Here, we introduce one of our activities.

  17. Williams installs CBEF Cell Mechanosensing Humidifier

    NASA Image and Video Library

    2016-04-01

    ISS047e032018 (04/01/2016) --- NASA astronaut Jeff Williams works to install the Cell Biology Experiment Facility (CBEF) Cell Mechanosensing Humidifier. Cell Mechanosensing is a Japan Aerospace Exploration Agency (JAXA) investigation that identifies gravity sensors in skeletal muscle cells to develop countermeasures to muscle atrophy, a key space health issue. Scientists believe that the lack of mechanical stress from gravity causes tension fluctuations in the plasma membrane of skeletal muscle cells which changes the expression of key proteins and genes, and allows muscles to atrophy.

  18. Wakata and Thirsk with MELFI in KIBO

    NASA Image and Video Library

    2009-06-15

    ISS020-E-010028 (15 June 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 20 flight engineer, returns a dewar tray to the Minus Eighty Laboratory Freezer for ISS (MELFI) after inserting biological samples into the trays in the Kibo laboratory of the International Space Station. Samples were taken as part of the Nutritional Status Assessment (Nutrition) with Repository experiment, a study done by NASA to date of human physiologic changes during long-duration spaceflight. Canadian Space Agency astronaut Robert Thirsk, flight engineer, assisted Wakata.

  19. Antonelli and Wakata at hatch of Crew Lock

    NASA Image and Video Library

    2009-03-21

    S119-E-006956 (21 March 2009) --- NASA astronaut Tony Antonelli (left), STS-119 pilot; and Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 18 flight engineer, are pictured in the Quest Airlock of the International Space Station while Space Shuttle Discovery remains docked with the station. They are about to open the hatch for Steve Swanson and Joseph Acaba, mission specialists, as they return to the station’s Quest Airlock as the mission’s second session of extravehicular activity (EVA) draws to a close.

  20. Fundoscopy Exam

    NASA Image and Video Library

    2015-08-05

    ISS044E033352 (08/05/2015) --- NASA astronaut Scott Kelly (left) assists Japan Aerospace Exploration Agency (JAXA) astronaut Kimiya Yui (right) with measurements for the ongoing Ocular Health study. Yui is seen operating a device called a Fundoscope which is used to take images of the retinal surface of an astronaut’s eye. Ocular Health is gathering data on crew visual health during and after long-duration space station missions to characterize how living in microgravity can affect the visual, vascular and central nervous systems.

  1. Noguchi Takes Photos in the Cupola

    NASA Image and Video Library

    2010-02-19

    S130-E-010383 (19 Feb. 2010) --- Expedition 22 flight engineer Soichi Noguchi, Japan Aerospace Exploration Agency (JAXA) astronaut, takes photos through Window 5 in the Cupola aboard the International Space Station during Expedition 22 joint operations with the visiting STS-130 astronauts. One of the shuttle astronauts took this picture. Since the camera sports a large lens for this exercise, Noguchi is more than likely focusing in on a geographic site on Earth, as part of an ongoing Earth observations program. Photo credit: NASA

  2. Change of Command ceremony

    NASA Image and Video Library

    2015-09-05

    ISS044E086857 (09/05/2015) --- Cosmonaut Gennady Padalka (center in red shirt) handed command of the International Space Station to NASA astronaut Scott Kelly (front left with microphone) on Sept. 5, 2015. In the background the rest of the space station crew was on hand (from left to right): ESA(European Space Agency) astronaut Andreas Mogensen (back), Russian cosmonauts Mikhail Kornienko, Sergey Volkov and Oleg Kononenko, Kazakh cosmonaut Aidyn Aimbetov, Japan Aerospace Exploration Agency (JAXA) astronaut Kimiya Yui and NASA astronaut Kjell Lindgren.

  3. STS-114 Media Day at the NBL

    NASA Image and Video Library

    2005-02-24

    JSC2005-E-07623 (24 February 2005) --- Astronaut Stephen K. Robinson and Japan Aerospace Exploration Agency (JAXA) astronaut Soichi Noguchi (partially obscured), both STS-114 mission specialists, are about to be submerged in the waters of the Neutral Buoyancy Laboratory (NBL) near the Johnson Space Center (JSC). Noguchi and Robinson are wearing training versions of the Extravehicular Mobility Unit (EMU) spacesuit. Divers are in the water to assist the crewmembers during this training session, which occurred during STS-114 Media Day at the NBL.

  4. View of HTV3 berthed to Node 2

    NASA Image and Video Library

    2012-07-27

    ISS032-E-010473 (27 July 2012) --- The unpiloted Japan Aerospace Exploration Agency (JAXA) H-II Transfer Vehicle (HTV-3) is featured in this image photographed by an Expedition 32 crew member shortly after the HTV-3 was berthed to the Earth-facing port of the International Space Station's Harmony node using the Canadarm2 robotic arm. The attachment was completed at 10:34 a.m. (EDT) on July 27, 2012. Earth?s horizon and the blackness of space provide the backdrop for the scene.

  5. View of HTV3 berthed to Node 2

    NASA Image and Video Library

    2012-07-27

    ISS032-E-010464 (27 July 2012) --- The unpiloted Japan Aerospace Exploration Agency (JAXA) H-II Transfer Vehicle (HTV-3) is featured in this image photographed by an Expedition 32 crew member shortly after the HTV-3 was berthed to the Earth-facing port of the International Space Station's Harmony node using the Canadarm2 robotic arm. The attachment was completed at 10:34 a.m. (EDT) on July 27, 2012. Earth?s horizon and the blackness of space provide the backdrop for the scene.

  6. View of HTV3 berthed to Node 2

    NASA Image and Video Library

    2012-07-27

    ISS032-E-010476 (27 July 2012) --- The unpiloted Japan Aerospace Exploration Agency (JAXA) H-II Transfer Vehicle (HTV-3) is featured in this image photographed by an Expedition 32 crew member shortly after the HTV-3 was berthed to the Earth-facing port of the International Space Station's Harmony node using the Canadarm2 robotic arm. The attachment was completed at 10:34 a.m. (EDT) on July 27, 2012. Earth?s horizon and the blackness of space provide the backdrop for the scene.

  7. STS-123 and Expedition 16 crewmembers in the SM during Joint Operations

    NASA Image and Video Library

    2008-03-19

    S123-E-007259 (19 March 2008) --- The STS-123 and Expedition 16 crewmembers share a meal near the galley in the Zvezda Service Module of the International Space Station while Space Shuttle Endeavour is docked with the station. Pictured (from the left) are European Space Agency (ESA) astronaut Leopold Eyharts, STS-123 mission specialist; NASA astronauts Dominic Gorie, STS-123 commander; Gregory H. Johnson (partially obscured), STS-123 pilot; Robert L. Behnken and Japan Aerospace Exploration Agency (JAXA) astronaut Takao Doi, both STS-123 mission specialists.

  8. STS-123 and Expedition 16 crewmembers eating in the SM during Joint Operations

    NASA Image and Video Library

    2008-03-19

    S123-E-007231 (19 March 2008) --- The STS-123 and Expedition 16 crewmembers share a meal near the galley in the Zvezda Service Module of the International Space Station while Space Shuttle Endeavour is docked with the station. Pictured (from the left) are European Space Agency (ESA) astronaut Leopold Eyharts, STS-123 mission specialist; NASA astronauts Dominic Gorie, STS-123 commander; Gregory H. Johnson, STS-123 pilot; Robert L. Behnken and Japan Aerospace Exploration Agency (JAXA) astronaut Takao Doi, both STS-123 mission specialists.

  9. Expedition 39 Soyuz TMA-11M Landing

    NASA Image and Video Library

    2014-05-14

    Ground personnel race to the landing site as the Soyuz TMA-11M spacecraft lands with Expedition 39 Commander Koichi Wakata of the Japan Aerospace Exploration Agency (JAXA), Soyuz Commander Mikhail Tyurin of Roscosmos, and Flight Engineer Rick Mastracchio of NASA near the town of Zhezkazgan, Kazakhstan on Wednesday, May 14, 2014. Wakata, Tyurin and Mastracchio returned to Earth after more than six months onboard the International Space Station where they served as members of the Expedition 38 and 39 crews. Photo Credit: (NASA/Bill Ingalls)

  10. The survey on data format of Earth observation satellite data at JAXA.

    NASA Astrophysics Data System (ADS)

    Matsunaga, M.; Ikehata, Y.

    2017-12-01

    JAXA's earth observation satellite data are distributed by a portal web site for search and deliver called "G-Portal". Users can download the satellite data of GPM, TRMM, Aqua, ADEOS-II, ALOS (search only), ALOS-2 (search only), MOS-1, MOS-1b, ERS-1 and JERS-1 from G-Portal. However, these data formats are different by each satellite like HDF4, HDF5, NetCDF4, CEOS, etc., and which formats are not familiar to new data users. Although the HDF type self-describing format is very convenient and useful for big dataset information, old-type format product is not readable by open GIS tool nor apply OGC standard. Recently, the satellite data are widely used to be applied to the various needs such as disaster, earth resources, monitoring the global environment, Geographic Information System(GIS) and so on. In order to remove a barrier of using Earth Satellite data for new community users, JAXA has been providing the format-converted product like GeoTIFF or KMZ. In addition, JAXA provides format conversion tool itself. We investigate the trend of data format for data archive, data dissemination and data utilization, then we study how to improve the current product format for various application field users and make a recommendation for new product.

  11. Facts about the Eastern Japan Great Earthquake of March 2011

    NASA Astrophysics Data System (ADS)

    Moriyama, T.

    2011-12-01

    The 2011 great earthquake was a magnitude 9.0 Mw undersea megathrust earthquake off the coast of Japan that occurred early morning UTC on Friday, 11 March 2011, with the epicenter approximately 70 kilometres east of the Oshika Peninsula of Tohoku and the hypocenter at an underwater depth of approximately 32 km. It was the most powerful known earthquake to have hit Japan, and one of the five most powerful earthquakes in the world overall since modern record keeping began in 1900. The earthquake triggered extremely destructive tsunami waves of up to 38.9 metres that struck Tohoku Japan, in some cases traveling up to 10 km inland. In addition to loss of life and destruction of infrastructure, the tsunami caused a number of nuclear accidents, primarily the ongoing level 7 meltdowns at three reactors in the Fukushima I Nuclear Power Plant complex, and the associated evacuation zones affecting hundreds of thousands of residents. The Japanese National Police Agency has confirmed 1,5457 deaths, 5,389 injured, and 7,676 people missing across eighteen prefectures, as well as over 125,000 buildings damaged or destroyed. JAXA carried out ALOS emergency observation just after the earthquake occured, and acquired more than 400 scenes over the disaster area. The coseismic interferogram by InSAR analysis cleary showing the epicenter of the earthquake and land surface deformation over Tohoku area. By comparison of before and after satellite images, the large scale damaged area by tunami are extracted. These images and data can access via JAXA website and also GEO Tohoku oki event supersite website.

  12. HTV-4 undocking

    NASA Image and Video Library

    2013-09-04

    ISS036-E-039525 (04 Sept. 2013) --- One of the Expedition 36 crew members aboard the International Space Station took this picture showing part of the Japanese HTV-4 unmanned cargo spacecraft, backdropped against countries in northern Africa, following its unberthing from the orbital outpost. HTV-4, after backing away from the flying complex, headed for re-entry into Earth's atmosphere, burning upon re-entry. The Strait of Gibraltar, where the Atlantic Ocean and the Mediterranean Sea meet, is in the upper left quadrant of the photo. HTV-4 was launched by Japan?s Aerospace Exploration Agency (JAXA) on Aug. 4 of this year in order to bring up supplies for the astronauts and cosmonauts onboard the station.

  13. Unpiloted Japanese Kounotori HTV-2 Transfer Vehicle

    NASA Image and Video Library

    2011-01-27

    ISS026-E-021017 (27 Jan. 2011) --- The unpiloted Japanese Kounotori2 H-II Transfer Vehicle (HTV2) approaches the International Space Station, delivering more than four tons of food and supplies to the space station and its crew members. The Japan Aerospace Exploration Agency (JAXA) launched HTV2 aboard an H-IIB rocket from the Tanegashima Space Center in southern Japan at 12:37 a.m. (EST) (2:27 p.m. Japan time) on Jan. 22, 2011. NASA astronaut Catherine (Cady) Coleman and European Space Agency astronaut Paolo Nespoli, both Expedition 26 flight engineers, used the station’s robotic Canadarm2 to attach the HTV2 to the Earth-facing port of the Harmony node. The attachment was completed at 9:51 a.m. (EST) on Jan. 27, 2011.

  14. jsc2017e136052 - At the Gagarin Cosmonaut Training Center in Star City, Russia, Expedition 54-55 prime crewmember Scott Tingle of NASA listens to a reporter’s question during a crew news conference Nov. 30. Tingle, Anton Shkaplerov of the Russian Federa

    NASA Image and Video Library

    2017-11-30

    jsc2017e136052 - At the Gagarin Cosmonaut Training Center in Star City, Russia, Expedition 54-55 prime crewmember Scott Tingle of NASA listens to a reporter’s question during a crew news conference Nov. 30. Tingle, Anton Shkaplerov of the Russian Federal Space Agency (Roscosmos), and Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA), will launch Dec. 17 on the Soyuz MS-07 spacecraft from the Baikonur Cosmodrome in Kazakhstan for a five-month mission on the International Space Station...Andrey Shelepin/Gagarin Cosmonaut Training Center..

  15. jsc2017e137344 - At the Cosmonaut Hotel crew quarters in Baikonur, Kazakhstan, Expedition 54-55 prime crewmember Anton Shkaplerov of the Russian Federal Space Agency (Roscosmos) tries his hand at a game of billiards Dec. 11 during a break in pre-launch tr

    NASA Image and Video Library

    2017-12-11

    jsc2017e137344 - At the Cosmonaut Hotel crew quarters in Baikonur, Kazakhstan, Expedition 54-55 prime crewmember Anton Shkaplerov of the Russian Federal Space Agency (Roscosmos) tries his hand at a game of billiards Dec. 11 during a break in pre-launch training. Shkaplerov, Scott Tingle of NASA and Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) will launch Dec. 17 on the Soyuz MS-07 spacecraft from the Baikonur Cosmodrome for a five month mission on the International Space Station...Andrey Shelepin / Gagarin Cosmonaut Training Center.

  16. Space Station Crew Members Discuss Life in Space with Massachusetts Students

    NASA Image and Video Library

    2018-01-19

    Aboard the International Space Station, Expedition 54 Flight Engineers Joe Acaba and Scott Tingle of NASA and Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) discussed life and research on the complex during an in-flight educational event Jan. 19 with students gathered at the Christa McAuliffe Challenger Center at Framingham State University in Massachusetts. Acaba is scheduled to return to Earth in late February to wrap up a five-and-a-half month mission, while Tingle and Kanai will remain on the station until early June.

  17. First Solar Power Sail Demonstration by IKAROS

    NASA Astrophysics Data System (ADS)

    Mori, Osamu; Sawada, Hirotaka; Funase, Ryu; Morimoto, Mutsuko; Endo, Tatsuya; Yamamoto, Takayuki; Tsuda, Yuichi; Kawakatsu, Yasuhiro; Kawaguchi, Jun'ichiro; Miyazaki, Yasuyuki; Shirasawa, Yoji; Demonstration Team; Solar Sail Working Group, Ikaros

    The Japan Aerospace Exploration Agency (JAXA) will make the world's first solar power sail craft demonstration of photon propulsion and thin film solar power generation during its interplanetary cruise by IKAROS (Interplanetary Kite-craft Accelerated by Radiation Of the Sun). The spacecraft deploys and spans a membrane of 20 meters in diameter taking the advantage of the spin centrifugal force. The spacecraft weighs approximately 310kg, launched together with the agency's Venus Climate Orbiter, AKATSUKI in May 2010. This will be the first actual solar sail flying an interplanetary voyage.

  18. Swanson signs Mission Patch in A/L

    NASA Image and Video Library

    2014-05-13

    ISS039-E-020710 (13 May 2014) --- NASA astronaut Steve Swanson, Expedition 39 flight engineer about to become Expedition 40 commander, signs a wall in the Quest airlock of the International Space Station after mounting his crew patch, continuing a tradition of station crew members who have participated in space walks on their respective flights. A short time later, Swanson took over command of the orbital outpost upon the departure of Expedition 39 Commander Koichi Wakata of the Japan Aerospace Exploration Agency (JAXA) and Flight Engineers Mikhail Tyurin of Roscosmos and Rick Mastracchio of NASA.

  19. KSC-06pd1686

    NASA Image and Video Library

    2006-07-28

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, processing continues on the Japanese Experiment Module (JEM) for its flight to the International Space Station (ISS). The JEM, developed by the Japan Aerospace Exploration Agency (JAXA) for installation on the ISS, is named Kibo -- which means "hope" in Japanese -- and will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. Research conducted in Kibo will focus on space medicine, biology, Earth observations, material production, biotechnology and communications. Photo credit: NASA/Amanda Diller

  20. KSC-06pd1687

    NASA Image and Video Library

    2006-07-28

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, the Japanese Experiment Module (JEM) awaits its flight to the International Space Station (ISS). The JEM, developed by the Japan Aerospace Exploration Agency (JAXA) for installation on the ISS, is named Kibo -- which means "hope" in Japanese -- and will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. Research conducted in Kibo will focus on space medicine, biology, Earth observations, material production, biotechnology and communications. Photo credit: NASA/Amanda Diller

  1. Wakata and Thirsk with MELFI in KIBO

    NASA Image and Video Library

    2009-06-15

    ISS020-E-010025 (15 June 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 20 flight engineer, removes a dewar tray from the Minus Eighty Laboratory Freezer for ISS (MELFI) in order to insert biological samples into the trays in the Kibo laboratory of the International Space Station. Samples were taken as part of the Nutritional Status Assessment (Nutrition) with Repository experiment, a study done by NASA to date of human physiologic changes during long-duration spaceflight. Canadian Space Agency astronaut Robert Thirsk, flight engineer, assisted Wakata.

  2. Soyuz-MS-07_Farewell-Hatch-Closure_June-3-2018_660949

    NASA Image and Video Library

    2018-06-04

    Expedition 55 Crew Lands Safely in Kazakhstan to Complete Almost Six Months In Space------ Expedition 55 Commander Anton Shkaplerov of Roscosmos and Flight Engineers Scott Tingle of NASA and Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) landed safely near the town of Dzhezkazgan, Kazakhstan June 3 after bidding farewell to their colleagues on the complex and undocking their Soyuz MS-07 spacecraft from the Rassvet Module on the International Space Station. The trio spent almost six months in space conducting research and operational work in support of the station.

  3. Expedition 23 Docking

    NASA Image and Video Library

    2010-04-03

    The crew of Expedition 23 are seen on a large TV screen in the Russian Mission Control Center in Korolev, Russia, Sunday, April 4, 2010, shortly after the Soyuz TMA-18 spacecraft docked to the International Space Station and delivered Expedition 23 Flight Engineers Alexander Skvortsov, Mikhail Kornienko and Tracy Caldwell Dyson. Clockwise from top right are NASA astronaut TJ Creamer, NASA astronaut Tracy Caldwell Dyson, Russian cosmonaut Alexander Skvortsov, Russian cosmonaut Mikhail Kornienko, JAXA (Japan Aerospace Exploration Agency) astronaut Soichi Noguchi and Expedition 23 commander Russian cosmonaut Oleg Kotov . Photo Credit: (NASA/Carla Cioffi)

  4. Expedition 22 Change of Command in the U.S. Laboratory

    NASA Image and Video Library

    2010-03-17

    ISS022-E-100364 (17 March 2010) --- Crew members aboard the International Space Station are pictured in the Destiny laboratory during the ceremony of Changing-of-Command from Expedition 22 to Expedition 23. Pictured from the right are NASA astronauts Jeffrey Williams, Expedition 22 commander; and T.J. Creamer, Expedition 22/23 flight engineer; Russian cosmonauts Oleg Kotov, Expedition 22 flight engineer and Expedition 23 commander; and Maxim Suraev, Expedition 22 flight engineer. Not pictured is Japan Aerospace Exploration Agency (JAXA) astronaut Soichi Noguchi, Expedition 22/23 flight engineer.

  5. Expedition 33 Soyuz Landing

    NASA Image and Video Library

    2012-11-19

    Girls in traditional Kazakh dress smile after welcoming home Expedition 33 crew members; Commander Sunita Williams of NASA, and Flight Engineers Yuri Malenchenko of ROSCOSMOS (Russian Federal Space Agency), and Akihiko Hoshide of JAXA (Japan Aerospace Exploration Agency) at the Kustanay Airport in Kazakhstan a few hours after the Expedition 33 crew landed their Soyuz spacecraft in a remote area outside the town of Arkalyk, Kazakhstan, on Monday, Nov. 19, 2012. Williams, Hoshide and Malenchenko returned from four months onboard the International Space Station. Photo Credit: (NASA/Bill Ingalls)

  6. STS-114 Homecoming Ceremony

    NASA Image and Video Library

    2005-08-10

    JSC2005-E-33356 (10 August 2005) --- U.S. Senator Kay Bailey Hutchison (R.-Texas) speaks to a crowd on hand at Ellington Field’s Hangar 276 near Johnson Space Center (JSC) during the STS-114 crew return ceremonies. Seated (from the left) are NASA Administrator Michael Griffin; astronauts Eileen M. Collins, commander; James M. Kelly, pilot; Soichi Noguchi, mission specialist representing Japan Aerospace Exploration Agency (JAXA); Stephen K. Robinson, mission specialist. Not pictured are astronauts Andrew S. W. Thomas, Wendy B. Lawrence and Charles J. Camarda, mission specialists.

  7. jsc2017e136054 - On a snowy night at Red Square in Moscow, Expedition 54-55 crewmember Anton Shkaplerov of the Russian Federal Space Agency (Roscosmos) lays flowers at the Kremlin Wall where Russian space icons are interred in traditional pre-launch cerem

    NASA Image and Video Library

    2017-11-30

    jsc2017e136054 - On a snowy night at Red Square in Moscow, Expedition 54-55 crewmember Anton Shkaplerov of the Russian Federal Space Agency (Roscosmos) lays flowers at the Kremlin Wall where Russian space icons are interred in traditional pre-launch ceremonies Nov. 30. Shkaplerov, Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) and Scott Tingle of NASA will launch from the Baikonur Cosmodrome in Kazakhstan on the Soyuz MS-07 spacecraft Dec. 17 for a five-month mission on the International Space Station...Andrey Shelepin/Gagarin Cosmonaut Training Center.

  8. jsc2017e136058 - On a snowy night at Red Square in Moscow, Expedition 54-55 crewmember Scott Tingle of NASA lays flowers at the Kremlin Wall where Russian space icons are interred in traditional pre-launch ceremonies Nov. 30. Tingle, Anton Shkaplerov of t

    NASA Image and Video Library

    2017-11-30

    jsc2017e136058 - On a snowy night at Red Square in Moscow, Expedition 54-55 crewmember Scott Tingle of NASA lays flowers at the Kremlin Wall where Russian space icons are interred in traditional pre-launch ceremonies Nov. 30. Tingle, Anton Shkaplerov of the Russian Federal Space Agency (Roscosmos) and Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) will launch from the Baikonur Cosmodrome in Kazakhstan on the Soyuz MS-07 spacecraft Dec. 17 for a five-month mission on the International Space Station...Andrey Shelepin/Gagarin Cosmonaut Training Center.

  9. Expedition 33 Soyuz Landing

    NASA Image and Video Library

    2012-11-19

    Crowds of officials, family and media gather as Expedition 33 Flight Engineer Yuri Malenchenko of ROSCOSMOS (Russian Federal Space Agency) is welcomed home at the Chkalovsky Airport in Star City, Russia several hours after he, Commander Sunita Williams of NASA, and Flight Engineer Akihiko Hoshide of JAXA (Japan Aerospace Exploration Agency), landed their Soyuz spacecraft in a remote area outside the town of Arkalyk, Kazakhstan, on Monday, Nov. 19, 2012. Williams, Hoshide and Malenchenko returned from four months onboard the International Space Station. Photo Credit: (NASA/Bill Ingalls)

  10. Expedition 33 Soyuz Landing

    NASA Image and Video Library

    2012-11-19

    Pilots look out from the cockpit and watch as Expedition 33 Flight Engineer Yuri Malenchenko of ROSCOSMOS (Russian Federal Space Agency) is welcomed home at the Chkalovsky Airport in Star City, Russia by officials and his family after he, Commander Sunita Williams of NASA, and Flight Engineer Akihiko Hoshide of JAXA (Japan Aerospace Exploration Agency), landed their Soyuz spacecraft in a remote area outside the town of Arkalyk, Kazakhstan, on Monday, Nov. 19, 2012. Williams, Hoshide and Malenchenko returned from four months onboard the International Space Station. Photo Credit: (NASA/Bill Ingalls)

  11. Expedition 33 Soyuz Landing

    NASA Image and Video Library

    2012-11-19

    Expedition 33 Commander Sunita Williams of NASA rests during a helicopter flight back to Kustanany, Kazakhstan while nurse Raxana Batsmanova and Chief of the NASA Astronaut Office Bob Behnken look on just a a few hours after Williams and Flight Engineers Yuri Malenchenko of ROSCOSMOS (Russian Federal Space Agency), and Akihiko Hoshide of JAXA (Japan Aerospace Exploration Agency), landed their Soyuz spacecraft in a remote area outside the town of Arkalyk, Kazakhstan, on Monday, Nov. 19, 2012. Williams, Hoshide and Malenchenko returned from four months onboard the International Space Station. Photo Credit: (NASA/Bill Ingalls)

  12. iss032e025592

    NASA Image and Video Library

    2012-09-09

    ISS032-E-025592 (9 Sept. 2012) --- Partially obstructed by the HTV-3 (H-II Transfer Vehicle) of the Japan Aerospace Exploration Agency (JAXA), Tropical Storm Leslie is clearly seen in the Atlantic Ocean on Sept. 9, 2012, as photographed by one of the Expedition 32 crew members aboard the Cupola of the International Space Station. At the time of the photo Leslie was centered near 33.4 degrees north latitude and 62.1degrees west longitude (approximately 175 miles east-northeast of Bermuda) moving northward at 14

  13. jsc2010e060725

    NASA Image and Video Library

    2010-04-29

    JSC2010-E-060725 (29 April 2010) --- The members of the STS-131 Ascent flight control team and crew members pose for a group portrait in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Bryan Lunney and NASA astronaut Alan Poindexter, commander, (left center) stand on the second row. Additional crew members pictured are NASA astronauts James P. Dutton Jr., pilot; Clayton Anderson, Dorothy Metcalf-Lindenburger, Stephanie Wilson, Rick Mastracchio and Japan Aerospace Exploration Agency (JAXA) astronaut Naoko Yamazaki, all mission specialists.

  14. jsc2017e137339 - At the Cosmonaut Hotel crew quarters in Baikonur, Kazakhstan, Expedition 54-55 prime crewmember Scott Tingle of NASA tests his vestibular skills on a rotating chair Dec. 11 as part of his pre-launch training. Tingle, Norishige Kanai of th

    NASA Image and Video Library

    2017-12-11

    jsc2017e137339 - At the Cosmonaut Hotel crew quarters in Baikonur, Kazakhstan, Expedition 54-55 prime crewmember Scott Tingle of NASA tests his vestibular skills on a rotating chair Dec. 11 as part of his pre-launch training. Tingle, Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) and Anton Shkaplerov of the Russian Federal Space Agency (Roscosmos) will launch Dec. 17 on the Soyuz MS-07 spacecraft from the Baikonur Cosmodrome for a five month mission on the International Space Station...Andrey Shelepin / Gagarin Cosmonaut Training Center.

  15. Tile survey taken during EVA 3

    NASA Image and Video Library

    2005-08-03

    S114-E-6376 (3 August 2005) --- A close-up view of a portion of the thermal protection tiles on Space Shuttle Discovery’s underside is featured in this image photographed by astronaut Stephen K. Robinson (out of frame), STS-114 mission specialist, during the mission’s third session of extravehicular activities (EVA). While perched on a Space Station truss, astronaut Soichi Noguchi (background), mission specialist representing Japan Aerospace Exploration Agency (JAXA), acts as observer and communication relay station between fellow spacewalker Robinson and astronaut Andrew S. W. Thomas aboard Discovery.

  16. An Optimization Code for Nonlinear Transient Problems of a Large Scale Multidisciplinary Mathematical Model

    NASA Astrophysics Data System (ADS)

    Takasaki, Koichi

    This paper presents a program for the multidisciplinary optimization and identification problem of the nonlinear model of large aerospace vehicle structures. The program constructs the global matrix of the dynamic system in the time direction by the p-version finite element method (pFEM), and the basic matrix for each pFEM node in the time direction is described by a sparse matrix similarly to the static finite element problem. The algorithm used by the program does not require the Hessian matrix of the objective function and so has low memory requirements. It also has a relatively low computational cost, and is suited to parallel computation. The program was integrated as a solver module of the multidisciplinary analysis system CUMuLOUS (Computational Utility for Multidisciplinary Large scale Optimization of Undense System) which is under development by the Aerospace Research and Development Directorate (ARD) of the Japan Aerospace Exploration Agency (JAXA).

  17. Aerospace Community. Aerospace Education I.

    ERIC Educational Resources Information Center

    Mickey, V. V.

    This book, one in the series on Aerospace Education I, emphasizes the two sides of aerospace--military aerospace and civilian aerospace. Chapter 1 includes a brief discussion on the organization of Air Force bases and missile sites in relation to their missions. Chapter 2 examines the community services provided by Air Force bases. The topics…

  18. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 29: A comparison of the technical communications practices of Japanese and US aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1994-01-01

    As part of Phase 4 of the NASA/DoD Aerospace Knowledge Diffusion Research Project, two studies were conducted that investigated the technical communications practices of Japanese and U.S. aerospace engineers and scientists. Both studies have the same seven objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communications to their profession; second, to determine the use and production of technical communications by aerospace engineers and scientists; third; to seek their views about the appropriate content of an undergraduate course in technical communications; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line data bases; fifth, to determine the use and importance of computer and information technology to them; sixth, to determine their use of electronic networks; and seventh, to determine their use of foreign and domestically produced technical reports. A self-administered questionnaire was distributed to aerospace engineers and scientists in Japan and at the NASA Ames Research Center and the NASA Langley Research Center. The completion rates for the Japanese and U.S. surveys were 85 and 61 percent, respectively. Responses of the Japanese and U.S. participants to selected questions are presented in this report.

  19. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 46: Technical communications in aerospace: A comparison across four countries

    NASA Technical Reports Server (NTRS)

    Kennedy, John M.; Pinelli, Thomas E.; Hecht, Laura Frye; Barclay, Rebecca O.

    1995-01-01

    In this paper we describe the preliminary analysis of four groups of aerospace engineering and science students -- student members of the American Institute of Aeronautics and Astronautics (AIAA) and students from universities in Japan, Russia, and Great Britain. We compare: (1) the demographic characteristics of the students; (2) factors that affected their career decision; (3) their career goals and aspirations; (4) their training in technical communication; and (5) their training in techniques for finding and using aerospace scientific and technical information (STI). Many employers in the US aerospace industry think there is a need for increased training of engineering students in technical communication. Engineers in the US and other countries believe that technical communication skills are critical for engineers' professional success. All students in our study agree about the importance of technical communication training for professional success, yet relatively few are happy with the instruction they receive. Overall, we conclude that additional instruction in technical communication and accessing STI would make it easier for students to achieve their career goals.

  20. Validation of the GCOM-W SCA and JAXA soil moisture algorithms

    USDA-ARS?s Scientific Manuscript database

    Satellite-based remote sensing of soil moisture has matured over the past decade as a result of the Global Climate Observing Mission-Water (GCOM-W) program of JAXA. This program has resulted in improved algorithms that have been supported by rigorous validation. Access to the products and the valida...

  1. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 28: The technical communication practices of aerospace engineering and science students: Results of the phase 4 cross-national surveys

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Hecht, Laura M.; Barclay, Rebecca O.; Kennedy, John M.

    1994-01-01

    This report describes similarities and differences between undergraduate and graduate aerospace engineering and science students in the context of two general aspects of the educational experience. First, we explore the extent to which students differ regarding the factors that lead to the choice of becoming an aerospace engineer or a scientist, current satisfaction with that choice, and career-related goals and objectives. Second, we look at the technical communication skills, practices, habits, and training of aerospace engineering and science students. The reported data were obtained from a survey of students enrolled in aerospace engineering and science programs at universities in India, Japan, Russia, and the United Kingdom. The surveys were undertaken as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. Data are reported for the following categories: student demographics; skill importance, skill training, and skill helpfulness; collaborative writing; computer and information technology use and importance, use of electronic networks; use and importance of libraries and library services; use and importance of information sources and products; use of foreign language technical reports; and foreign language (reading and speaking) skills.

  2. JC2Sat-FF : An International Collaboration Nano-Sat Project Overview of the System Analyses and Design

    NASA Astrophysics Data System (ADS)

    Yoshihara, K.; van Mierlo, M.; Ng, A.; Shankar Kumar, B.; De Ruiter, A.; Komatsu, Y.; Horiguchi, H.; Hashimoto, H.

    2008-08-01

    This paper introduces the Japan Canada Joint Collaboration Satellites - Formation Flying (JC2Sat-FF) project. JC2Sat-FF is a joint project between the Canadian Space Agency (CSA) and the Japan Aerospace Exploration Agency (JAXA) with the end goal of building, launching and operating two 20kg- class nanosatellites for technical demonstration of formation flight (FF) using differential drag technique, relative navigation using commercial off-the-shelf (COTS) dual band GPS receivers and far infra-red radiance measurement. A unique aspect of this project is that the two JC2Sats are developed by a united small team consisting of engineers and researchers from both agencies. Technical exchange in this international team gives stimulation to the members and generates a synergistic effect for the project.

  3. Structure design of the telescope for Small-JASMINE program

    NASA Astrophysics Data System (ADS)

    Utsunomiya, Shin; Yasuda, Susumu; Yano, Taihei; Niwa, Yoshito; Kobayashi, Yukiyasu; Kashima, Shingo; Goda, Naoteru; Yamada, Yoshiyuki

    2014-08-01

    Small-JASMINE program (Japan Astrometry Satellite Mission for INfrared Exploration) is one of applicants for JAXA (Japan Aerospace Exploration Agency) space science missions launched by Epsilon Launch Vehicles, and now being reviewed in the Science Committee of ISAS (Institute of Space and Astronautical Science), JAXA. Telescope of 300 mm aperture diameter will focus to the central region of the Milky Way Galactic. The target of Small-JASMINE is to obtain reliable measurements of extremely small stellar motions with the highest accuracy of 10 μ arcseconds and to provide precise distances and velocities of multitudes of stars up to 30,000 light years. Preliminary Structure design of Small- JASMINE has been done and indicates to satisfy all of requirements from the mission requirement, the system requirement, Epsilon Launch conditions and interfaces of the small science satellite standard bus. High margin of weight for the mission allows using all super invar structure that may reduce unforeseen thermal distortion risk especially caused by connection of different materials. Thermal stability of the telescope is a key issue and should be verified in a real model at early stage of the development.

  4. Aerodynamics of High-Lift Configuration Civil Aircraft Model in JAXA

    NASA Astrophysics Data System (ADS)

    Yokokawa, Yuzuru; Murayama, Mitsuhiro; Ito, Takeshi; Yamamoto, Kazuomi

    This paper presents basic aerodynamics and stall characteristics of the high-lift configuration aircraft model JSM (JAXA Standard Model). During research process of developing high-lift system design method, wind tunnel testing at JAXA 6.5m by 5.5m low-speed wind tunnel and Navier-Stokes computation on unstructured hybrid mesh were performed for a realistic configuration aircraft model equipped with high-lift devices, fuselage, nacelle-pylon, slat tracks and Flap Track Fairings (FTF), which was assumed 100 passenger class modern commercial transport aircraft. The testing and the computation aimed to understand flow physics and then to obtain some guidelines for designing a high performance high-lift system. As a result of the testing, Reynolds number effects within linear region and stall region were observed. Analysis of static pressure distribution and flow visualization gave the knowledge to understand the aerodynamic performance. CFD could capture the whole characteristics of basic aerodynamics and clarify flow mechanism which governs stall characteristics even for complicated geometry and its flow field. This collaborative work between wind tunnel testing and CFD is advantageous for improving or has improved the aerodynamic performance.

  5. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 55: Career goals and educational preparation of aerospace engineering and science students: An international perspective

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Kennedy, John M.; Barclay, Rebecca O.

    1995-01-01

    Results are presented of a survey of aerospace engineering and science students conducted in India, Japan, Russia, the United Kingdom, and the United States. The similarities and differences among aerospace engineering and science students from the five countries are examined in the context of two general aspects of educational experience. First, the extent to which students differ regarding the factors that led to the choice of a career in aerospace, their current levels of satisfaction with that choice, and career-related goals and objectives is considered. Second, the importance of certain communications/information-use skills for professional use is examined, as well as the frequency of use and importance of specific information sources and products to meet students' educational needs. Overall, the students who participated in this research remain relatively happy with the choice of a career in aerospace engineering, despite pessimism in some quarters about the future of the industry. Regardless of national identity, aerospace engineering and science students appear to share a similar vision of the profession in terms of their career goals and aspirations. The data also indicate that aerospace engineering and science students are well aware of the importance of communications/information-use skills to professional success and that competency in these skills will help them to be productive members of their profession. Collectively, all of the students appear to use and value similar information sources and products, although some differences appear by country.

  6. Expedition 39 Soyuz TMA-11M Landing

    NASA Image and Video Library

    2014-05-14

    Expedition 39 Flight Engineer Rick Mastracchio of NASA is presented with a box of Karaganda chocolates during a welcome home ceremony, Wednesday, May 14, 2014 at the Karaganda Airport in Kazakhstan. Mastracchio, Expedition 39 Commander Koichi Wakata of the Japan Aerospace Exploration Agency (JAXA), and Soyuz Commander Mikhail Tyurin of Roscosmos landed in their Soyuz TMA-11M spacecraft just a few hours earlier near the town of Zhezkazgan. Wakata, Tyurin and Mastracchio returned to Earth after more than six months onboard the International Space Station where they served as members of the Expedition 38 and 39 crews. Photo Credit: (NASA/Bill Ingalls)

  7. CONSTELLATION Images from other centers - February 2010

    NASA Image and Video Library

    2010-02-08

    JSC2010-E-019461 (8 Feb. 2010) --- STS-131 crew members participate in a training session in an International Space Station mock-up/trainer in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center. Pictured from the left (foreground) are NASA astronaut Stephanie Wilson, Japan Aerospace Exploration Agency (JAXA) astronaut Naoko Yamazaki and NASA astronaut Clayton Anderson, all mission specialists. Pictured from the left (background) are NASA astronauts Alan Poindexter, commander; along with Dorothy Metcalf-Lindenburger and Rick Mastracchio, both mission specialists. Instructor Jeremy Owen (right foreground) assisted the crew members. Not pictured is NASA astronaut James P. Dutton Jr., pilot.

  8. Expedition 18 Group Photo

    NASA Image and Video Library

    2009-03-20

    ISS018-E-041340 (20 March 2009) --- Expedition 18 crewmembers pose for a group photo in the Harmony node of the International Space Station while Space Shuttle Discovery (STS-119) remains docked with the station. From the right are NASA astronaut Michael Fincke, commander; Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata and cosmonaut Yury Lonchakov, both flight engineers; along with NASA astronaut Sandra Magnus, STS-119 mission specialist. Magnus flew to the station on STS-126 to serve as a flight engineer for Expedition 18, and will return to Earth as mission specialist with the STS-119 crew.

  9. Expedition 22 Change of Command in the U.S. Laboratory

    NASA Image and Video Library

    2010-03-17

    ISS022-E-100383 (17 March 2010) --- Crew members aboard the International Space Station are pictured in the Destiny laboratory during the ceremony of Changing-of-Command from Expedition 22 to Expedition 23. Pictured are NASA astronauts Jeffrey Williams (right, holding microphone), Expedition 22 commander; and T.J. Creamer (second right), Expedition 22/23 flight engineer; Russian cosmonauts Oleg Kotov (left), Expedition 22 flight engineer and Expedition 23 commander; and Maxim Suraev (mostly obscured at left background), Expedition 22 flight engineer; along with Japan Aerospace Exploration Agency (JAXA) astronaut Soichi Noguchi, Expedition 22/23 flight engineer.

  10. Expedition 22 Change of Command in the U.S. Laboratory

    NASA Image and Video Library

    2010-03-17

    ISS022-E-100363 (17 March 2010) --- Crew members aboard the International Space Station are pictured in the Destiny laboratory during the ceremony of Changing-of-Command from Expedition 22 to Expedition 23. Pictured are NASA astronauts Jeffrey Williams (right, holding microphone), Expedition 22 commander; and T.J. Creamer (center background), Expedition 22/23 flight engineer; Russian cosmonauts Oleg Kotov (left), Expedition 22 flight engineer and Expedition 23 commander; and Maxim Suraev (bottom), Expedition 22 flight engineer; along with Japan Aerospace Exploration Agency (JAXA) astronaut Soichi Noguchi (mostly out of frame at right), Expedition 22/23 flight engineer.

  11. The OICETS mission

    NASA Astrophysics Data System (ADS)

    Jono, Takashi; Arai, Katsuyoshi

    2017-11-01

    The Optical Inter-orbit Communications Engineering Test Satellite (OICETS) was successfully launched on 23th August 2005 and thrown into a circular orbit at the altitude of 610 km. The main mission is to demonstrate the free-space inter satellite laser communications with the cooperation of the Advanced Relay and Technology Mission (ARTEMIS) geostationary satellite developed by the European Space Agency. This paper presents the overview of the OICETS and laser terminal, a history of international cooperation between Japan Aerospace Exploration Agency (JAXA) and ESA and typical results of the inter-orbit laser communication experiment carried out with ARTEMIS.

  12. jsc2017e136097 - At the Gagarin Cosmonaut Training Center in Star City, Russia, Expedition 54-55 crewmember Anton Shkaplerov of the Russian Federal Space Agency (Roscosmos) waves to well-wishers Dec. 4 as he boards a bus to depart for nearby Chkalovsky Ai

    NASA Image and Video Library

    2017-12-04

    jsc2017e136097 - At the Gagarin Cosmonaut Training Center in Star City, Russia, Expedition 54-55 crewmember Anton Shkaplerov of the Russian Federal Space Agency (Roscosmos) waves to well-wishers Dec. 4 as he boards a bus to depart for nearby Chkalovsky Airfield and a flight to his launch site at the Baikonur Cosmodrome in Kazakhstan. Shkaplerov, Norishige Kanai of the Japan Aerospace Agency (JAXA) and Scott Tingle of NASA will launch Dec. 17 on the Soyuz MS-07 spacecraft for a five-month mission on the International Space Station...Andrey Shelepin/Gagarin Cosmonaut Training Center.

  13. Expedition 39 Soyuz TMA-11M Landing

    NASA Image and Video Library

    2014-05-14

    Family, friends, and government officials wait to welcome home Expedition 39 Soyuz Commander Mikhail Tyurin of Roscosmos at the Chkalovsky airport outside Star City, Russia, Wednesday, May 14, 2014. Tyurin, Expedition 39 Commander Koichi Wakata of the Japan Aerospace Exploration Agency (JAXA), and Flight Engineer Rick Mastracchio of NASA landed in their Soyuz TMA-11M spacecraft earlier in the day near the town of Zhezkazgan, Kazakhstan. Wakata, Tyurin and Mastracchio returned to Earth after more than six months onboard the International Space Station where they served as members of the Expedition 38 and 39 crews. Photo Credit: (NASA/Bill Ingalls)

  14. iss034e067585

    NASA Image and Video Library

    2013-03-12

    ISS034-E-067585 (12 March 2013) --- Inside the Japan Aerospace Exploration Agency's (JAXA) Kibo lab on the Earth-orbiting International Space Station, NASA astronaut Kevin Ford, Expedition 34 commander, conducts a session of the ongoing SPHERES-VERTIGO investigation. SPHERES stands for Synchronized Position Hold, Engage, Reorient Experimental Satellites. Each satellite is an 18-sided polyhedron that is 0.2 meter in diameter and weighs 3.5 kilograms. The prism-shaped device (called Goggles) which is easily seen hooked up to the polyhedron on the right in this picture is called Visual Estimation and Relative Tracking for Inspection of Generic Objects (VERTIGO).

  15. Marshburn conducts the SPHERES VERTIGO Experiment in the JPM

    NASA Image and Video Library

    2013-02-26

    ISS034-E-056096 (26 Feb. 2013) --- Inside the Japan Aerospace Exploration Agency's (JAXA) Kibo lab on the Earth-orbiting International Space Station, NASA astronaut Tom Marshburn conducts a session of the ongoing SPHERES-VERTIGO investigation. SPHERES stands for Synchronized Position Hold, Engage, Reorient Experimental Satellites. Each satellite is an 18-sided polyhedron that is 0.2 meter in diameter and weighs 3.5 kilograms. The prism-shaped device (called Goggles) which is hooked up to the red or forward-most polyhedron in the picture is called Visual Estimation and Relative Tracking for Inspection of Generic Objects (VERTIGO).

  16. Marshburn conducts the SPHERES VERTIGO Experiment in the JPM

    NASA Image and Video Library

    2013-02-26

    ISS034-E-056100 (26 Feb. 2013) --- Inside the Japan Aerospace Exploration Agency's (JAXA) Kibo lab on the Earth-orbiting International Space Station, NASA astronaut Tom Marshburn conducts a session of the ongoing SPHERES-VERTIGO investigation. SPHERES stands for Synchronized Position Hold, Engage, Reorient Experimental Satellites. Each satellite is an 18-sided polyhedron that is 0.2 meter in diameter and weighs 3.5 kilograms. The prism-shaped device (called Goggles) which is hooked up to the red or forward-most polyhedron in the picture is called Visual Estimation and Relative Tracking for Inspection of Generic Objects (VERTIGO).

  17. E55_Inflight_WBFF-TV_2018_117_1259_645702

    NASA Image and Video Library

    2018-04-27

    SPACE STATION CREW MEMBERS DISCUSS LIFE IN SPACE WITH MARYLAND MEDIA Aboard the International Space Station, Expedition 55 Flight Engineers Ricky Arnold of NASA and Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) discussed their respective missions on the orbital complex during an in-flight interview April 27 with WBFF-TV in Baltimore, Maryland. Arnold, who is a Maryland native, arrived on the station a month ago for a six-month mission, while Kanai, who arrived on the outpost last December, is scheduled to return to Earth June 3 to complete his half-year in orbit.

  18. Expedition 54 Soyuz Docking

    NASA Image and Video Library

    2017-12-19

    NASA International Space Station Program Manager Kirk Shireman speaks with the Expedition 54 crew from the Moscow Mission Control Center in Korolev, Russia a few hours after the Soyuz MS-07 docked to the International Space Station on Tuesday, Dec. 19, 2017. Hatches were opened at 5:55 a.m. EST and Anton Shkaplerov of Roscosmos, Scott Tingle of NASA, and Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) joined Expedition 54 Commander Alexander Misurkin of Roscosmos and crewmates Mark Vande Hei and Joe Acaba of NASA aboard the orbiting laboratory. Photo Credit: (NASA/Joel Kowsky)

  19. iss032e025597

    NASA Image and Video Library

    2012-09-09

    ISS032-E-025597 (9 Sept. 2012) --- Partially obstructed by the HTV-3 (H-II Transfer Vehicle) of the Japan Aerospace Exploration Agency (JAXA), Tropical Storm Leslie is clearly seen in the Atlantic Ocean on Sept. 9, 2012, as photographed by one of the Expedition 32 crew members aboard the Cupola of the International Space Station. At the time of the photo Leslie was centered near 33.4 degrees north latitude and 62.1degrees west longitude (approximately 175 miles east-northeast of Bermuda) moving northward at 14 miles per hour with winds of 60 miles per hour.

  20. Japan's electronic packaging technologies

    NASA Technical Reports Server (NTRS)

    Tummala, Rao R.; Pecht, Michael

    1995-01-01

    The JTEC panel found Japan to have significant leadership over the United States in the strategic area of electronic packaging. Many technologies and products once considered the 'heart and soul' of U.S. industry have been lost over the past decades to Japan and other Asian countries. The loss of consumer electronics technologies and products is the most notable of these losses, because electronics is the United States' largest employment sector and is critical for growth businesses in consumer products, computers, automobiles, aerospace, and telecommunications. In the past there was a distinction between consumer and industrial product technologies. While Japan concentrated on the consumer market, the United States dominated the industrial sector. No such distinction is anticipated in the future; the consumer-oriented technologies Japan has dominated are expected to characterize both domains. The future of U.S. competitiveness will, therefore, depend on the ability of the United States to rebuild its technological capabilities in the area of portable electronic packaging.

  1. Aerospace Plane Technology: Research and Development Efforts in Japan and Australia

    DTIC Science & Technology

    1991-10-01

    However, only with the develop- Aerospace Planes ment of better test facility instruments and more trained personnel, together with the renovation and...necessary. Such a rocket booster (the H-IID) would be one of the largest launchers in the world after the Soviet Energia booster and U.S. Titan IV launch

  2. Online access to international aerospace science and technology

    NASA Technical Reports Server (NTRS)

    Lahr, Thomas F.; Harrison, Laurie K.

    1993-01-01

    The NASA Aerospace Database contains over 625,000 foreign R&D documents from 1962 to the present from over 60 countries worldwide. In 1991 over 26,000 new non-U.S. entries were added from a variety of innovative exchange programs. An active international acquisitions effort by the NASA STI Program seeks to increase the percentage of foreign data in the coming years, focusing on Japan, the Commonwealth of Independent States, Western Europe, Australia, and Canada. It also has plans to target China, India, Brazil, and Eastern Europe in the future. The authors detail the resources the NASA Aerospace Database offers in the international arena, the methods used to gather this information, and the STI Program's initiatives for maintaining and expanding the percentage of international information in this database.

  3. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-23

    Minamitane elementary school girls pose for a photo in front of a sign featuring the town's mascot "Chuta-kun", Sunday, Feb. 23, 2014, Tanegashima Island, Japan. The Chuta-kun mascot rides a rocket and has guns on the side of his helmet to show the areas history as the site of the first known contact of Europe and the Japanese, in 1543 and the introduction of the gun. A Japanese H-IIA rocket carrying the NASA-Japan Aerospace Exploration Agency (JAXA), Global Precipitation Measurement (GPM) Core Observatory is planned for launch from the space center on Feb. 28, 2014. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  4. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-27

    A Mitsubishi Heavy Industries (HMI) H-IIA rocket with the NASA-Japan Aerospace Exploration Agency (JAXA), Global Precipitation Measurement (GPM) Core Observatory onboard is during roll out at the Tanegashima Space Center, Thursday, Feb. 27, 2014, Tanegashima, Japan. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Credit: Mitsubishi Heavy Industries, Ltd. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  5. Global Precipitation Measurement (GPM) launch, commissioning, and early operations

    NASA Astrophysics Data System (ADS)

    Neeck, Steven P.; Kakar, Ramesh K.; Azarbarzin, Ardeshir A.; Hou, Arthur Y.

    2014-10-01

    The Global Precipitation Measurement (GPM) mission is an international partnership co-led by NASA and the Japan Aerospace Exploration Agency (JAXA). The mission centers on the GPM Core Observatory and consists of an international network, or constellation, of additional satellites that together will provide next-generation global observations of precipitation from space. The GPM constellation will provide measurements of the intensity and variability of precipitation, three-dimensional structure of cloud and storm systems, the microphysics of ice and liquid particles within clouds, and the amount of water falling to Earth's surface. Observations from the GPM constellation, combined with land surface data, will improve weather forecast models; climate models; integrated hydrologic models of watersheds; and forecasts of hurricanes/typhoons/cylcones, landslides, floods and droughts. The GPM Core Observatory carries an advanced radar/radiometer system and serves as a reference standard to unify precipitation measurements from all satellites that fly within the constellation. The GPM Core Observatory improves upon the capabilities of its predecessor, the NASA-JAXA Tropical Rainfall Measuring Mission (TRMM), with advanced science instruments and expanded coverage of Earth's surface. The GPM Core Observatory carries two instruments, the NASA-supplied GPM Microwave Imager (GMI) and the JAXA-supplied Dual-frequency Precipitation Radar (DPR). The GMI measures the amount, size, intensity and type of precipitation, from heavy-tomoderate rain to light rain and snowfall. The DPR provides three-dimensional profiles and intensities of liquid and solid precipitation. The French Centre National d'Études Spatiales (CNES), the Indian Space Research Organisation (ISRO), the U.S. National Oceanic and Atmospheric Administration (NOAA), the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), and the U.S. Department of Defense are partners with NASA and

  6. Study on JAXA elements for international lunar vicinity mission

    NASA Astrophysics Data System (ADS)

    Imada, Takane; Sato, Naoki

    2014-11-01

    JAXA has commenced technical research for contributing as a part of international partnership for the space exploration in Lunar vicinity. One of the candidates is the cargo transport mission with the combination of Cryogenic Propulsion Stage(s) (CPS) and a transfer vehicle derived from Japanese un-manned vehicle used for ISS. The CPS needs advanced technologies to keep the propellant for long mission duration and they will be useful in further missions beyond moon. This paper reports the profile of the mission, vehicle configurations, and the transport capabilities.

  7. The Aerospace Age. Aerospace Education I.

    ERIC Educational Resources Information Center

    Smith, J. C.

    This book is written for use only in the Air Force ROTC program and cannot be purchased on the open market. The book describes the historical development of aerospace industry. The first chapter contains a brief review of the aerospace environment and the nature of technological changes brought by the aerospace revolution. The following chapter…

  8. Progress developing the JAXA next generation satellite data repository (G-Portal).

    NASA Astrophysics Data System (ADS)

    Ikehata, Y.

    2016-12-01

    JAXA has been operating the "G-Portal" as a repository for search and access data of Earth observation satellite related JAXA since February 2013. The G-Portal handles ten satellites data; GPM, TRMM, Aqua, ADEOS-II, ALOS (search only), ALOS-2 (search only), MOS-1, MOS-1b, ERS-1 and JERS-1. G-Portal plans to import future satellites GCOM-C and EarthCARE. Except for ALOS and ALOS-2, all of these data are open and free. The G-Portal supports web search, catalogue search (CSW and OpenSearch) and direct download by SFTP for data access. However, the G-Portal has some problems about performance and usability. For example, about performance, the G-Portal is based on 10Gbps network and uses scale out architecture. (Conceptual design was reported in AGU fall meeting 2015. (IN23D-1748)) In order to improve those problems, JAXA is developing the next generation repository since February 2016. This paper describes usability problems improvements and challenges towards the next generation system. The improvements and challenges include the following points. Current web interface uses "step by step" design and URL is generated randomly. For that reason, users must see the Web page and click many times to get desired satellite data. So, Web design will be changed completely from "step by step" to "1 page" and URL will be based on REST (REpresentational State Transfer). Regarding direct download, the current method(SFTP) is very hard to use because of anomaly port assign and key-authentication. So, we will support FTP protocol. Additionally, the next G-Portal improve catalogue service. Currently catalogue search is available only to limited users including NASA, ESA and CEOS due to performance and reliability issue, but we will remove this limitation. Furthermore, catalogue search client function will be implemented to take in other agencies satellites catalogue. Users will be able to search satellite data across agencies.

  9. Expedition 18 Group Photo

    NASA Image and Video Library

    2009-03-20

    ISS018-E-041334 (20 March 2009) --- Expedition 18 crewmembers pose for a group photo in the Harmony node of the International Space Station while Space Shuttle Discovery (STS-119) remains docked with the station. From the left (front row) are cosmonaut Yury Lonchakov and Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, both flight engineers. From the left (back row) are NASA astronauts Sandra Magnus, STS-119 mission specialist, and Michael Fincke, commander. Magnus flew to the station on STS-126 to serve as a flight engineer for Expedition 18, and will return to Earth as mission specialist with the STS-119 crew.

  10. Expedition 39 Soyuz TMA-11M Landing

    NASA Image and Video Library

    2014-05-14

    Expedition 39 Soyuz Commander Mikhail Tyurin of Roscosmos, second from left, is welcomed home by family, friends, and government officials at the Chkalovsky airport outside Star City, Russia, Wednesday, May 14, 2014. Tyurin, Expedition 39 Commander Koichi Wakata of the Japan Aerospace Exploration Agency (JAXA), and Flight Engineer Rick Mastracchio of NASA landed in their Soyuz TMA-11M spacecraft earlier in the day near the town of Zhezkazgan, Kazakhstan. Wakata, Tyurin and Mastracchio returned to Earth after more than six months onboard the International Space Station where they served as members of the Expedition 38 and 39 crews. Photo Credit: (NASA/Bill Ingalls)

  11. Expedition 39 Soyuz TMA-11M Landing

    NASA Image and Video Library

    2014-05-14

    Expedition 39 Soyuz Commander Mikhail Tyurin of Roscosmos, left, departs a plane to a crowd of family, friends, and government officials at the Chkalovsky airport outside Star City, Russia, Wednesday, May 14, 2014. Tyurin, Expedition 39 Commander Koichi Wakata of the Japan Aerospace Exploration Agency (JAXA), and Flight Engineer Rick Mastracchio of NASA landed in their Soyuz TMA-11M spacecraft earlier in the day near the town of Zhezkazgan, Kazakhstan. Wakata, Tyurin and Mastracchio returned to Earth after more than six months onboard the International Space Station where they served as members of the Expedition 38 and 39 crews. Photo Credit: (NASA/Bill Ingalls)

  12. STS-114 Discovery's approach for docking

    NASA Image and Video Library

    2005-07-28

    ISS011-E-11258 (28 July 2005) --- View of the Space Shuttle Discovery as photographed during the survey operations performed by the Expedition 11 crew on the International Space Station during the STS-114 R-Bar Pitch Maneuver on Flight Day 3. Discovery docked to the station at 6:18 a.m. (CDT) on Thursday, July 28, 2005. Parts of Switzerland are in the background. Onboard the shuttle were astronauts Eileen M. Collins, STS-114 commander; James M. Kelly, pilot; Andrew S. W. Thomas, Stephen K. Robinson, Wendy B. Lawrence, Charles J. Camarda and Japan Aerospace Exploration Agency (JAXA) astronaut Soichi Noguchi, all mission specialists.

  13. Expedition 55 Soyuz Docking

    NASA Image and Video Library

    2018-03-23

    Icons for the International Space Station and Soyuz MS-08 spacecraft are seen on a tracking map on a screen in the Moscow Mission Control Center as the spacecraft approaches for docking, Friday, March 23, 2018 in Korolev, Russia. The Soyuz MS-08 spacecraft carrying Expedition 55-56 crewmembers Oleg Artemyev of Roscosmos and Ricky Arnold and Drew Feustel of NASA docked at 3:40 p.m. Eastern time (10:40 p.m. Moscow time) on March 23 and joined Expedition 55 Commander Anton Shkaplerov of Roscosmos, Scott Tingle of NASA, and Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA). Photo Credit: (NASA/Joel Kowsky)

  14. Expedition 54 Soyuz Docking

    NASA Image and Video Library

    2017-12-19

    Anton Shkaplerov of Roscosmos is seen after the opening of the hatches between the Soyuz MS-07 spacecraft and the International Space Station on the screens in the Moscow Mission Control Center in Korolev, Russia a few hours after the Soyuz MS-07 docked to the International Space Station on Tuesday, Dec. 19, 2017. Hatches were opened at 5:55 a.m. EST and Shkaplerov, Scott Tingle of NASA, and Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) joined Expedition 54 Commander Alexander Misurkin of Roscosmos and crewmates Mark Vande Hei and Joe Acaba of NASA aboard the orbiting laboratory. Photo Credit: (NASA/Joel Kowsky)

  15. Expedition 55 Soyuz Docking

    NASA Image and Video Library

    2018-03-23

    Guests watch a live view of the International Space Station, as seen by cameras onboard the Soyuz MS-08 spacecraft with Expedition 55-56 crewmembers Oleg Artemyev of Roscosmos and Ricky Arnold and Drew Feustel of NASA, on screens at the Moscow Mission Control Center as the spacecraft approaches for docking, Friday, March 23, 2018 in Korolev, Russia. The Soyuz MS-08 spacecraft carrying Artemyev, Feustel, and Arnold docked at 3:40 p.m. Eastern time (10:40 p.m. Moscow time) and joined Expedition 55 Commander Anton Shkaplerov of Roscosmos, Scott Tingle of NASA, and Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA). Photo Credit: (NASA/Joel Kowsky)

  16. Expedition 55 Soyuz Docking

    NASA Image and Video Library

    2018-03-23

    A live view of the International Space Station, as seen by cameras onboard the Soyuz MS-08 spacecraft with Expedition 55-56 crewmembers Oleg Artemyev of Roscosmos and Ricky Arnold and Drew Feustel of NASA, is seen on screens at the Moscow Mission Control Center as the spacecraft approaches for docking, Friday, March 23, 2018 in Korolev, Russia. The Soyuz MS-08 spacecraft carrying Artemyev, Feustel, and Arnold docked at 3:40 p.m. Eastern time (10:40 p.m. Moscow time) and joined Expedition 55 Commander Anton Shkaplerov of Roscosmos, Scott Tingle of NASA, and Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA). Photo Credit: (NASA/Joel Kowsky)

  17. Expedition 54 Soyuz Docking

    NASA Image and Video Library

    2017-12-19

    Icons for the International Space Station and Soyuz MS-07 spacecraft are seen on a tracking map on a screen in the Moscow Mission Control Center as the spacecraft approaches for docking, Tuesday, Dec. 19, 2017 in Korolev, Russia. The Soyuz MS-07 spacecraft carrying Anton Shkaplerov of Roscosmos, Scott Tingle of NASA, and Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) docked with the International Space Station at 3:39 a.m. EST, Tuesday, Dec. 19 while 250 statute miles over the southern coast of Italy and joined Expedition 54 Commander Alexander Misurkin of Roscosmos, and NASA astronauts Joe Acaba and Mark Vande Hei. Photo Credit: (NASA/Joel Kowsky)

  18. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 5: Aerospace librarians and technical information specialists as information intermediaries: A report of phase 2 activities of the NASA/DOD Aerospace Knowledge Diffusion Research Project

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Kennedy, John M.

    1990-01-01

    The flow of U.S. government-funded and foreign scientific and technical information (STI) through libraries and related facilities to users in government and industry is examined, summarizing preliminary results of Phase 2 of the NASA/DOD Aerospace Knowledge Diffusion Research Project (NAKDRP). The design and objectives of NAKDRP are reviewed; the NAKDRP model of STI transfer among producers, STI intermediaries, surrogates (technical report repositories or clearinghouses), and users is explained and illustrated with diagrams; and particular attention is given to the organization and operation of aerospace libraries. In a survey of North American libraries it was found that 25-30 percent of libraries regularly receive technical reports from ESA and the UK; the corresponding figures for Germany and for France, Sweden, and Japan are 18 and 5 percent, respectively. Also included is a series of bar graphs showing the librarians' assessments of the quality and use of NASA Technical Reports.

  19. Investigation of Endurance Performance of Carbon Nanotube Cathodes

    NASA Astrophysics Data System (ADS)

    Saito, Nanako; Yamagiwa, Yoshiki; Ohkawa, Yasushi; Nishida, Shin-Ichiro; Kitamura, Shoji

    The Aerospace Research and Development Directorate of the Japan Aerospace Exploration Agency (JAXA) is considering a demonstration of electrodynamic tether (EDT) systems in low Earth orbit (LEO). Carbon nanotubes (CNTs) have some advantages as electron sources compared to conventional Spindt type emitters, and so are expected to be useful in EDT systems. Experiments to investigate the durability of CNT cathodes in a space environment had been conducted in a diode mode, but it was found that electron extraction tests, in which the cathode with a gate electrode is used, are necessary to evaluate the endurance of CNTs more accurately. In this paper, we conducted long duration operating tests of a cathode with a gate. It was found that there was almost no change in cathode performance at current densities below 100 A/m2 even after the cathode was operated for over 500 hours in the high vacuum environment.

  20. Prime mission results of the dual-frequency precipitation radar on the global precipitation measurement core spacecraft and the version 5 GPM standard products

    NASA Astrophysics Data System (ADS)

    Furukawa, K.; Nio, T.; Oki, R.; Kubota, T.; Iguchi, T.

    2017-09-01

    The Dual-frequency Precipitation Radar (DPR) on the Global Precipitation Measurement (GPM) core satellite was developed by Japan Aerospace Exploration Agency (JAXA) and National Institute of Information and Communications Technology (NICT). The objective of the GPM mission is to observe global precipitation more frequently and accurately. The GPM core satellite is a joint product of National Aeronautics and Space Administration (NASA), JAXA and NICT. NASA developed the satellite bus and the GPM Microwave Imager (GMI), and JAXA and NICT developed the DPR. The inclination of the GPM core satellite is 65 degrees, and the nominal flight altitude is 407 km. The non-sunsynchronous circular orbit is necessary for measuring the diurnal change of rainfall. The DPR consists of two radars, which are Ku-band precipitation radar (KuPR) and Ka-band precipitation radar (KaPR). GPM core observatory was successfully launched by H2A launch vehicle on Feb. 28, 2014. DPR orbital check out was completed in May 2014. DPR products were released to the public on Sep. 2, 2014 and Normal Observation Operation period was started. JAXA is continuing DPR trend monitoring, calibration and validation operations to confirm that DPR keeps its function and performance on orbit. The results of DPR trend monitoring, calibration and validation show that DPR kept its function and performance on orbit during the 3 years and 2 months prime mission period. The DPR Prime mission period was completed in May 2017. The version 5 GPM products were released to the public in 2017. JAXA confirmed that GPM/DPR total system performance and the GPM version 5 products achieved the success criteria and the performance indicators that were defined for the JAXA GPM/DPR mission.

  1. Slip Distribution of the 2008 Iwate-Miyagi Nairiku, Japan, Earthquake Inverted from PALSAR Data

    NASA Astrophysics Data System (ADS)

    Fukahata, Y.; Fukushima, Y.; Arimoto, M.

    2008-12-01

    On 14 June 2008, the Iwate-Miyagi Nairiku earthquake struck northeast Japan, where active seismicity has been observed under east-west compressional stress fields. According to the Japan Meteorological Agency, the magnitude and the hypocenter depth of the earthquake are 7.2 and 8 km, respectively. The earthquake is considered to have occurred on a west dipping reverse fault with a roughly north-south strike. The earthquake caused significant surface displacements, which were detected by PALSAR, a Synthetic Aperture Radar (SAR) onboard the Advanced Land Observing Satellite (ALOS) employed by the Japan Aerospace Exploration Agency (JAXA). Several pairs of PALSAR images are available to measure the coseismic displacements. InSAR data show up to 1 m of line-of-sight displacements both for ascending and descending paths. The pixel matching method was also used to obtain range and azimuth offset data around the epicentral region, where displacements were too large for the interferometric technique (see Fukushima (this meeting) in detail). We inverted the obtained SAR interferometric and pixel matching data to estimate slip distribution on the fault. Since the geometry of the fault are not well known, the inverse problem is non-linear. If the fault surface is assumed to be a flat plane, however, the non-linearity is weak. Following the method of Fukahata & Wright (2008), we resolved the weak non-linearity based on ABIC (Akaike"fs Bayesian Information Criterion). That is to say, the fault parameters (e.g. strike, dip and location) as well as the weight of smoothing parameter were objectively determined by minimizing ABIC. We first estimated slip distribution by assuming a pure dip slip for simplicity, since it has been reported that the dip slip component is dominant. Then, the optimal fault geometry was dip 26 and strike 203 degrees with the location passing through (140.90E, 38.97N). The maximum slip was more than 8 m and most slips concentrated at shallow depths (< 4 km

  2. JPRS Report, Science and Technology: Europe, German Aerospace Industry Competitiveness.

    DTIC Science & Technology

    1991-05-31

    construction , in which the German aerospace industry is involved (Alpha Jet, Tornado, Jaeger 90), are not directly transferable, since they deal with...INTA 1,500 100 Japan NASDA 938 749 U.S. NASA 23,0003 7,653 1. Planned after completion of construction phase (cun mately 100) 2. Annual average...for five-year construction phase 3. Excluding contractors rently approxi- Source: DLR, DASA III.5 Fiscal Aspects, Subsidies Taxes and duties affect

  3. Global Precipitation Measurement (GPM) Safety Inhibit Timeline Tool

    NASA Technical Reports Server (NTRS)

    Dion, Shirley

    2012-01-01

    The Global Precipitation Measurement (GPM) Observatory is a joint mission under the partnership by National Aeronautics and Space Administration (NASA) and the Japan Aerospace Exploration Agency (JAXA), Japan. The NASA Goddard Space Flight Center (GSFC) has the lead management responsibility for NASA on GPM. The GPM program will measure precipitation on a global basis with sufficient quality, Earth coverage, and sampling to improve prediction of the Earth's climate, weather, and specific components of the global water cycle. As part of the development process, NASA built the spacecraft (built in-house at GSFC) and provided one instrument (GPM Microwave Imager (GMI) developed by Ball Aerospace) JAXA provided the launch vehicle (H2-A by MHI) and provided one instrument (Dual-Frequency Precipitation Radar (DPR) developed by NTSpace). Each instrument developer provided a safety assessment which was incorporated into the NASA GPM Safety Hazard Assessment. Inhibit design was reviewed for hazardous subsystems which included the High Gain Antenna System (HGAS) deployment, solar array deployment, transmitter turn on, propulsion system release, GMI deployment, and DPR radar turn on. The safety inhibits for these listed hazards are controlled by software. GPM developed a "pathfinder" approach for reviewing software that controls the electrical inhibits. This is one of the first GSFC in-house programs that extensively used software controls. The GPM safety team developed a methodology to document software safety as part of the standard hazard report. As part of this process a new tool "safety inhibit time line" was created for management of inhibits and their controls during spacecraft buildup and testing during 1& Tat GSFC and at the Range in Japan. In addition to understanding inhibits and controls during 1& T the tool allows the safety analyst to better communicate with others the changes in inhibit states with each phase of hardware and software testing. The tool was very

  4. Aerospace Environment. Aerospace Education I.

    ERIC Educational Resources Information Center

    Savler, D. S.; Smith, J. C.

    This book is one in the series on Aerospace Education I. It briefly reviews current knowledge of the universe, the earth and its life-supporting atmosphere, and the arrangement of celestial bodies in outer space and their physical characteristics. Chapter 1 includes a brief survey of the aerospace environment. Chapters 2 and 3 examine the…

  5. Military Aerospace. Aerospace Education II.

    ERIC Educational Resources Information Center

    Smith, J. C.

    This book is a revised publication in the series on Aerospace Education II. It describes the employment of aerospace forces, their methods of operation, and some of the weapons and equipment used in combat and combat support activities. The first chapter describes some of the national objectives and policies served by the Air Force in peace and…

  6. Investigating the capabilities of new microwave ALOS-2/PALSAR-2 data for biomass estimation

    NASA Astrophysics Data System (ADS)

    Anh, L. V.; Paull, D. J.; Griffin, A. L.

    2016-10-01

    Most studies indicate that L-band synthetic aperture radar (SAR) has a great capacity to estimate biomass due to its ability to penetrate deeply through canopy layers. Many applications using L-band space-borne data have showcased their own significant contribution in biomass estimation but some limitations still exist. New data have been released recently that are designed to overcome limitations and drawbacks of previous sensor generations. The Japan Aerospace Exploration Agency (JAXA) launched the new sensor ALOS-2 to improve wide and high-resolution observation technologies in order to further meet social and environmental objectives. In the list of priority tasks addressed by JAXA there are experiments utilizing these new data for vegetation biomass distribution measurement. This study, therefore, focused on investigating the capabilities of these new microwave data in above ground biomass (AGB) estimation. The data mode used in this study was a full polarimetric ALOS-2/PALSAR-2 (L-band) scene. The experiment was conducted on a portion of a tropical forest in a Central Highland province in Vietnam.

  7. H-II Transfer Vehicle (HTV) and the Operations Concept for Extravehicular Activity (EVA) Hardware

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda

    2010-01-01

    With the retirement of the Space Shuttle fleet imminent in 2011, a new concept of operations will become reality to meet the transportation challenges of the International Space Station (ISS). The planning associated with the retirement of the Space Shuttle has been underway since the announcement in 2004. Since then, several companies and government entities have had to look for innovative low-cost commercial orbital transportation systems to continue to achieve the objectives of ISS delivery requirements. Several options have been assessed and appear ready to meet the large and demanding delivery requirements of the ISS. Options that have been identified that can facilitate the challenge include the Russian Federal Space Agency's Soyuz and Progress spacecraft, European Space Agency's Automated Transfer Vehicle (ATV), the Japan Aerospace Exploration Agency's (JAXA's) H-II Transfer Vehicle (HTV) and the Boeing Delta IV Heavy (DIV-H). The newest of these options is the JAXA's HTV. This paper focuses on the HTV, mission architecture and operations concept for Extra-Vehicular Activities (EVA) hardware, the associated launch system, and details of the launch operations approach.

  8. H-II Transfer Vehicle (HTV) and the Operations Concept for Extravehicular Activity (EVA) Hardware

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda; Blome, Elizabeth; Tetsuya, Sakashita

    2011-01-01

    With the retirement of the Space Shuttle fleet imminent in 2011, a new operations concept will become reality to meet the transportation challenges of the International Space Station (ISS). The planning associated with the retirement of the Space Shuttle has been underway since the announcement in 2004. Since then, several companies and government entities have had to look for innovative low-cost commercial orbital transportation systems to continue to achieve the objectives of ISS delivery requirements. Several options have been assessed and appear ready to meet the large and demanding delivery requirements of the ISS. Options that have been identified that can facilitate the challenge include the Russian Federal Space Agency's Soyuz and Progress spacecraft, European Space Agency's Automated Transfer Vehicle (ATV), and the Japan Aerospace Exploration Agency's (JAXA s) H-II Transfer Vehicle (HTV). The newest of these options is the JAXA's HTV. This paper focuses on the HTV, mission architecture and operations concept for Extra-Vehicular Activities (EVA) hardware, the associated launch system, and details of the launch operations approach.

  9. Implications of Pb-free microelectronics assembly in aerospace applications

    NASA Technical Reports Server (NTRS)

    Shapiro, A. A.; Bonner, J. K.; Ogunseitan, D.; Saphores, J. D.; Schoenung, J.

    2003-01-01

    The commercial microelectronics industry is rapidly moving to completely Pb-free assembly strategies within the next decade. This trend is being driven by existing and proposed legislation in Europe and in Japan. The microelectronics industry has become truly global, as indicated by major U .S. firms who already adopted Pb-free implementation programs. Among these forward-looking firms are AT&T, IBM, Motorola, HP and Intel to name a few.Following Moore's law, advances in microelectronics are happening very rapidly. In many cases, commercial industry is ahead of the aerospace sector in technology. Progress by commercial industry, along with cost, drives the use of Commercial Off-The-Shelf (COTS) parts for military and space applications. We can thus anticipate that the aerospace industry will, at some point, be forced to use Pb-free components and subsystems as part of their standard business practices. In this paper we attempt to provide a snapshot of the commercial industry trends and how they may impact electronics in the aerospace environment. In addition, we also look at different strategies for implementation. Finally we present data collected on a recent NASA project to focus on finding suitable alternatives to eutectic tin-lead solders and solder pastes. The world is moving toward implementation of environmentally friendly manufacturing techniques. The aerospace industry will be forced to deal with issues related with Pb free assembly, either by availability or legislation. This paper provides some insight into some of the tradeoffs that should be considered.

  10. STS-114 and Expedition 11 Onboard Group Photo

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The seven crew members of the STS-114 mission and two Expedition 11 crew members gather for a group shot in the Destiny Laboratory of the International Space Station (ISS). From the left (front row) are astronauts Andrew S. W. Thomas, mission specialist (MS); Eileen M. Collins, STS-114 commander; Cosmonaut Sergei K. Kriklev, Expedition 11 commander representing Russia's Federal Space Agency; and John L. Phillips, Expedition 11 NASA Space Station officer and flight engineer. From the left (back row) are astronauts Soichi Noguchi, STS-114 MS, representing the Japan Aerospace Exploration Agency (JAXA); James M. Kelly, STS-114 pilot; and Charles J. Camarda, Wendy B. Lawrence, and Stephen K. Robinson, all STS-114 mission specialists.

  11. Successes with the Global Precipitation Measurement (GPM) Mission

    NASA Technical Reports Server (NTRS)

    Skofronick-Jackson, Gail; Huffman, George; Stocker, Erich; Petersen, Walter

    2016-01-01

    Water is essential to our planet Earth. Knowing when, where and how precipitation falls is crucial for understanding the linkages between the Earth's water and energy cycles and is extraordinarily important for sustaining life on our planet during climate change. The Global Precipitation Measurement (GPM) Core Observatory spacecraft launched February 27, 2014, is the anchor to the GPM international satellite mission to unify and advance precipitation measurements from a constellation of research and operational sensors to provide "next-generation" precipitation products. GPM is currently a partnership between NASA and the Japan Aerospace Exploration Agency (JAXA). Status and successes in terms of spacecraft, instruments, retrieval products, validation, and impacts for science and society will be presented. Precipitation, microwave, satellite

  12. STS-114 landing at Edwards Air Force Base

    NASA Image and Video Library

    2005-08-09

    STS114-S-046 (9 August 2005) --- The Space Shuttle Discovery, with its crew of seven astronauts onboard, glides to a pre-dawn landing at Edwards Air Force Base in California. Touchdown occurred at 5:11 a.m. (PDT) August 9, 2005. Astronauts Eileen M. Collins and James M. Kelly, STS-114 commander and pilot, respectively, guided the ship as it made its 17,000 mph descent from space into the morning darkness. The landing concludes a historic 14-day, Return to Flight mission to the International Space Station. Also onboard were astronauts Stephen K. Robinson, Andrew S. W. Thomas, Wendy B. Lawrence, Charles J. Camarda, and Japan Aerospace Exploration Agency (JAXA) astronaut Soichi Noguchi, all mission specialists.

  13. Landing of the STS-114 orbiter Discovery

    NASA Image and Video Library

    2005-08-09

    STS114-S-044 (9 August 2005) --- The Space Shuttle Discovery, with its crew of seven astronauts onboard, glides to a pre-dawn landing at Edwards Air Force Base in California. Touchdown occurred at 5:11 a.m. (PDT) August 9, 2005. Astronauts Eileen M. Collins and James M. Kelly, STS-114 commander and pilot, respectively, guided the ship as it made its 17,000 mph descent from space into the morning darkness. The landing concludes a historic 14-day, Return to Flight mission to the International Space Station. Also onboard were astronauts Stephen K. Robinson, Andrew S. W. Thomas, Wendy B. Lawrence, Charles J. Camarda, and Japan Aerospace Exploration Agency (JAXA) astronaut Soichi Noguchi, all mission specialists.

  14. Landing of the STS-114 orbiter Discovery

    NASA Image and Video Library

    2005-08-09

    STS114-S-042 (9 August 2005) --- The Space Shuttle Discovery, with its crew of seven astronauts onboard, glides to a pre-dawn landing at Edwards Air Force Base in California. Touchdown occurred at 5:11 a.m. (PDT) August 9, 2005. Astronauts Eileen M. Collins and James M. Kelly, STS-114 commander and pilot, respectively, guided the ship as it made its 17,000 mph descent from space into the morning darkness. The landing concludes a historic 14-day, Return to Flight mission to the international space station. Also onboard were astronauts Stephen K. Robinson, Andrew S. W. Thomas, Wendy B. Lawrence, Charles J. Camarda, and Japan Aerospace Exploration Agency (JAXA) astronaut Soichi Noguchi, all mission specialists.

  15. Expedition_55_Post_Landing_Activities_June_4_2018_661449

    NASA Image and Video Library

    2018-06-04

    Expedition 55 Crew Receives a Warm Welcome in Kazakhstan-------- Expedition 55 Commander Anton Shkaplerov of Roscosmos and Flight Engineers Scott Tingle of NASA and Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) were greeted in a traditional ceremony at the airport in Karaganda, Kazakhstan June 3, a few hours after landing in their Soyuz MS-07 spacecraft in Kazakhstan near the town of Dzhezkazgan. After the ceremony, the crew split up, with Shkaplerov returning to his training base in Star City, Russia, while Tingle and Kanai flew back to their homes in Houston on a NASA jet. The trio spent almost six months in space. The footage includes interviews with Tingle at the Karaganda airport.

  16. Three Years of the Global Precipitation Measurement (GPM) Mission

    NASA Technical Reports Server (NTRS)

    Skofronick-Jackson, Gail; Huffman, George; Petersen, Walter

    2017-01-01

    Water is essential to our planet Earth. Knowing when, where and how precipitation falls is crucial for understanding the linkages between the Earth's water and energy cycles and is extraordinarily important for sustaining life on our planet during climate change. The Global Precipitation Measurement (GPM) Core Observatory spacecraft launched February 27, 2014, is the anchor to the GPM international satellite mission to unify and advance precipitation measurements from a constellation of research and operational sensors to provide "next-generation" precipitation products. GPM is currently a partnership between NASA and the Japan Aerospace Exploration Agency (JAXA). Status and successes in terms of spacecraft, instruments, retrieval products, validation, and impacts for science and society will be presented.

  17. Discovery STS-131 Mission Landing

    NASA Image and Video Library

    2010-04-20

    STS131-S-092 (20 April 2010) --- Japanese astronaut Naoko Yamazaki, left, and Dr. Kuniaki Shiraki, Executive Director, Japan Aerospace Exploration Agency (JAXA), talk near the space shuttle Discovery shortly after Discovery and the STS-131 crew landed at the Kennedy Space Center in Cape Canaveral, Fla., on April 20, 2010. NASA astronauts Alan Poindexter, commander; James P. Dutton Jr., pilot; Dorothy Metcalf-Lindenburger, Rick Mastracchio, Stephanie Wilson, Clayton Anderson and Japanese astronaut Naoko Yamazaki, all mission specialists, returned from their 15-day journey of more than 6.2 million miles. The STS-131 mission to the International Space Station delivered science racks, new crew sleeping quarters, equipment and supplies. Photo credit: NASA/Bill Ingalls

  18. Expedition 55 Soyuz Docking

    NASA Image and Video Library

    2018-03-24

    Expedition 55 flight engineer Ricky Arnold of NASA is seen after the hatches were opened between the Soyuz MS-08 spacecraft and the International Space Station on screens at the Moscow Mission Control Center in Korolev, Russia, Saturday, March 24, 2018, a few hours after the Soyuz MS-08 docked to the International Space Station. Hatches were opened at 5:48 p.m. Eastern time on March 23 (12:48 a.m. Moscow time on March 24) and Arnold, Oleg Artemyev of Roscosmos, and Drew Feustel of NASA joined Expedition 55 Commander Anton Shkaplerov of Roscosmos, Scott Tingle of NASA, and Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) onboard the orbiting laboratory. Photo Credit: (NASA/Joel Kowsky)

  19. Expedition 55 Soyuz Docking

    NASA Image and Video Library

    2018-03-24

    Expedition 55 flight engineer Drew Feustel of NASA is seen after the hatches were opened between the Soyuz MS-08 spacecraft and the International Space Station on screens at the Moscow Mission Control Center in Korolev, Russia, Saturday, March 24, 2018, a few hours after the Soyuz MS-08 docked to the International Space Station. Hatches were opened at 5:48 p.m. Eastern time on March 23 (12:48 a.m. Moscow time on March 24) and Feustel, Oleg Artemyev of Roscosmos, and Ricky Arnold of NASA joined Expedition 55 Commander Anton Shkaplerov of Roscosmos, Scott Tingle of NASA, and Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) onboard the orbiting laboratory. Photo Credit: (NASA/Joel Kowsky)

  20. Expedition 54 Soyuz Docking

    NASA Image and Video Library

    2017-12-19

    Scott Tingle of NASA is seen embracing Expedition 54 Commander Alexander Misurkin after the opening of the hatches between the Soyuz MS-07 spacecraft and the International Space Station on the screens in the Moscow Mission Control Center in Korolev, Russia a few hours after the Soyuz MS-07 docked to the International Space Station on Tuesday, Dec. 19, 2017. Hatches were opened at 5:55 a.m. EST and Tingle, Anton Shkaplerov of Roscosmos, and Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) joined Expedition 54 Commander Alexander Misurkin of Roscosmos and crewmates Mark Vande Hei and Joe Acaba of NASA aboard the orbiting laboratory. Photo Credit: (NASA/Joel Kowsky)

  1. jsc2017e136057 - On a snowy night at Red Square Moscow, Expedition 54-55 backup crewmembers Sergey Prokopyev of the Russian Federal Space Agency (Roscosmos, left), Jeanette Epps of NASA (center) and Alexander Gerst of the European Space Agency (right) pay

    NASA Image and Video Library

    2017-11-30

    jsc2017e136057 - On a snowy night at Red Square Moscow, Expedition 54-55 backup crewmembers Sergey Prokopyev of the Russian Federal Space Agency (Roscosmos, left), Jeanette Epps of NASA (center) and Alexander Gerst of the European Space Agency (right) pay homage at the Kremlin Wall where Russian space icons are interred in traditional pre-launch ceremonies Nov. 30. They are backups to Anton Shkaplerov of Roscosmos, Scott Tingle of NASA and Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA), who will launch from the Baikonur Cosmodrome in Kazakhstan on the Soyuz MS-07 spacecraft Dec. 17 for a five-month mission on the International Space Station...Andrey Shelepin/Gagarin Cosmonaut Training Center.

  2. jsc2017e136055 - On a snowy night at Red Square in Moscow, Expedition 54-55 backup crewmember Jeanette Epps of NASA lays flowers at the Kremlin Wall where Russian space icons are interred in traditional pre-launch ceremonies Nov. 30. Looking on are backup

    NASA Image and Video Library

    2017-11-30

    jsc2017e136055 - On a snowy night at Red Square in Moscow, Expedition 54-55 backup crewmember Jeanette Epps of NASA lays flowers at the Kremlin Wall where Russian space icons are interred in traditional pre-launch ceremonies Nov. 30. Looking on are backup crewmembers Sergey Prokopyev of the Russian Federal Space Agency (Roscosmos, left) and Alexander Gerst of the European Space Agency. They are backups to Anton Shkaplerov of Roscosmos, Scott Tingle of NASA and Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA), who will launch from the Baikonur Cosmodrome in Kazakhstan on the Soyuz MS-07 spacecraft Dec. 17 for a five-month mission on the International Space Station...Andrey Shelepin/Gagarin Cosmonaut Training Center.

  3. US_EVA_48_part_1-of-5

    NASA Image and Video Library

    2018-02-20

    Outside the International Space Station, Expedition 54 Flight Engineers Mark Vande Hei of NASA and Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) conducted a spacewalk to move a Latching End Effector, or hand, for the Canadarm2 robotic arm into the Quest airlock that was removed during another excursion last October and to move a degraded end effector replaced during a Jan. 23 spacewalk onto a payload attachment device on the station’s Mobile Base System railcar. The spacewalk was the 208th in station history for assembly, maintenance and upgrades, the fourth in Vande Hei’s career and the first for Kanai, who became only the fourth Japanese astronaut to walk in space.

  4. US_EVA_48_Part_2-of-5

    NASA Image and Video Library

    2018-02-20

    Outside the International Space Station, Expedition 54 Flight Engineers Mark Vande Hei of NASA and Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) conducted a spacewalk to move a Latching End Effector, or hand, for the Canadarm2 robotic arm into the Quest airlock that was removed during another excursion last October and to move a degraded end effector replaced during a Jan. 23 spacewalk onto a payload attachment device on the station’s Mobile Base System railcar. The spacewalk was the 208th in station history for assembly, maintenance and upgrades, the fourth in Vande Hei’s career and the first for Kanai, who became only the fourth Japanese astronaut to walk in space.

  5. Space_Station_Crew_Members_Walk_in_Space_to_Complete_Robotics_Upgrades

    NASA Image and Video Library

    2018-02-16

    Outside the International Space Station, Expedition 54 Flight Engineers Mark Vande Hei of NASA and Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) conducted a spacewalk to move a Latching End Effector, or hand, for the Canadarm2 robotic arm into the Quest airlock that was removed during another excursion last October and to move a degraded end effector replaced during a Jan. 23 spacewalk onto a payload attachment device on the station’s Mobile Base System railcar. The spacewalk was the 208th in station history for assembly, maintenance and upgrades, the fourth in Vande Hei’s career and the first for Kanai, who became only the fourth Japanese astronaut to walk in space.

  6. US_EVA_48_Part_5_of_5

    NASA Image and Video Library

    2018-02-21

    Outside the International Space Station, Expedition 54 Flight Engineers Mark Vande Hei of NASA and Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) conducted a spacewalk to move a Latching End Effector, or hand, for the Canadarm2 robotic arm into the Quest airlock that was removed during another excursion last October and to move a degraded end effector replaced during a Jan. 23 spacewalk onto a payload attachment device on the station’s Mobile Base System railcar. The spacewalk was the 208th in station history for assembly, maintenance and upgrades, the fourth in Vande Hei’s career and the first for Kanai, who became only the fourth Japanese astronaut to walk in space.

  7. E54-55 Change of Command Ceremony_622857_hires

    NASA Image and Video Library

    2018-02-27

    Expedition 54 Crew Hands Over the Space Station to Expedition 55---- The reins of the International Space Station were passed from Alexander Misurkin of Roscosmos to his cosmonaut crewmate Anton Shkaplerov during a ceremony on the orbital laboratory on Feb. 26. Misurkin is returning to Earth with his Expedition 54 crewmates, Mark Vande Hei and Joe Acaba of NASA, in the Soyuz MS-06 spacecraft. They will land on the steppe of Kazakhstan Feb. 28 (Feb. 27, U.S. time) to complete a five-and-a-half-month mission. Shkaplerov remains on the station as commander of Expedition 55 along with Flight Engineers Scott Tingle of NASA and Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA).

  8. US_EVA_48_Part_4_of_5

    NASA Image and Video Library

    2018-02-21

    Outside the International Space Station, Expedition 54 Flight Engineers Mark Vande Hei of NASA and Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) conducted a spacewalk to move a Latching End Effector, or hand, for the Canadarm2 robotic arm into the Quest airlock that was removed during another excursion last October and to move a degraded end effector replaced during a Jan. 23 spacewalk onto a payload attachment device on the station’s Mobile Base System railcar. The spacewalk was the 208th in station history for assembly, maintenance and upgrades, the fourth in Vande Hei’s career and the first for Kanai, who became only the fourth Japanese astronaut to walk in space.

  9. US_EVA_48_Part_3_of_5

    NASA Image and Video Library

    2018-02-21

    Outside the International Space Station, Expedition 54 Flight Engineers Mark Vande Hei of NASA and Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) conducted a spacewalk to move a Latching End Effector, or hand, for the Canadarm2 robotic arm into the Quest airlock that was removed during another excursion last October and to move a degraded end effector replaced during a Jan. 23 spacewalk onto a payload attachment device on the station’s Mobile Base System railcar. The spacewalk was the 208th in station history for assembly, maintenance and upgrades, the fourth in Vande Hei’s career and the first for Kanai, who became only the fourth Japanese astronaut to walk in space.

  10. Women in Aerospace Awards

    NASA Image and Video Library

    2010-10-26

    NASA Langley Aerospace Engineer Jill Lynette Hanna Prince receives the Women in Aerospace Achievement in Aerospace award from North Carolina State Professor Robert Tolson during the Women in Aerospace organization's annual awards ceremony and banquet held at the Ritz-Carlton Hotel in Arlington, VA on Tuesday, Oct. 26, 2010. Four current NASA leaders and one retiree were recognized for their work by Women in Aerospace. The event celebrates women's professional excellence in aerospace and honors women who have made outstanding contributions to the aerospace community. Photo Credit: (NASA/Bill Ingalls)

  11. EDOS Data Capture for ALOS

    NASA Technical Reports Server (NTRS)

    McLemore, Bruce; Cordier, Guy R.; Wood, Terri; Gamst, Harek

    2012-01-01

    In 2008, NASA's Earth Sciences Missions Operations (ESMO) at Goddard Space Flight Center (GSFC) directed the Earth Observing System Data Operations System (EDOS) project to provide a prototype system to assess the feasibility of high rate data capture for the Japan Aerospace Exploration Agency's (JAXA) Advanced Land Observing Satellite (ALOS) spacecraft via NASA's Tracking and Data Relay Satellite System (TDRSS). The key objective of this collaborative effort between NASA and JAXA was to share science data collected over North and South America previously unavailable due to limitations in ALOS downlink capacity. EDOS provided a single system proof-of-concept in 4 months at White Sands TDRS Ground Terminal The system captured 6 ALOS events error-free at 277 Mbps and delivered the data to the Alaska Satellite Facility (ASF) within 3 hours (May/June '08). This paper describes the successful rapid prototyping approach which led to a successful demonstration and agreement between NASA and JAXA for operational support. The design of the operational system will be discussed with emphasis on concurrent high-rate data capture, Level-O processing, real-time display and high-rate delivery with stringent latency requirements. A similar solution was successfully deployed at Svalbard, Norway to support the Suomi NPP launch (October 2011) and capture all X-band data and provide a 30-day backup archive.

  12. Visualization in aerospace research with a large wall display system

    NASA Astrophysics Data System (ADS)

    Matsuo, Yuichi

    2002-05-01

    National Aerospace Laboratory of Japan has built a large- scale visualization system with a large wall-type display. The system has been operational since April 2001 and comprises a 4.6x1.5-meter (15x5-foot) rear projection screen with 3 BARCO 812 high-resolution CRT projectors. The reason we adopted the 3-gun CRT projectors is support for stereoscopic viewing, ease with color/luminosity matching and accuracy of edge-blending. The system is driven by a new SGI Onyx 3400 server of distributed shared-memory architecture with 32 CPUs, 64Gbytes memory, 1.5TBytes FC RAID disk and 6 IR3 graphics pipelines. Software is another important issue for us to make full use of the system. We have introduced some applications available in a multi- projector environment such as AVS/MPE, EnSight Gold and COVISE, and been developing some software tools that create volumetric images with using SGI graphics libraries. The system is mainly used for visualization fo computational fluid dynamics (CFD) simulation sin aerospace research. Visualized CFD results are of our help for designing an improved configuration of aerospace vehicles and analyzing their aerodynamic performances. These days we also use it for various collaborations among researchers.

  13. Micromechanical Machining Processes and their Application to Aerospace Structures, Devices and Systems

    NASA Technical Reports Server (NTRS)

    Friedrich, Craig R.; Warrington, Robert O.

    1995-01-01

    Micromechanical machining processes are those micro fabrication techniques which directly remove work piece material by either a physical cutting tool or an energy process. These processes are direct and therefore they can help reduce the cost and time for prototype development of micro mechanical components and systems. This is especially true for aerospace applications where size and weight are critical, and reliability and the operating environment are an integral part of the design and development process. The micromechanical machining processes are rapidly being recognized as a complementary set of tools to traditional lithographic processes (such as LIGA) for the fabrication of micromechanical components. Worldwide efforts in the U.S., Germany, and Japan are leading to results which sometimes rival lithography at a fraction of the time and cost. Efforts to develop processes and systems specific to aerospace applications are well underway.

  14. Aerospace Medicine

    NASA Technical Reports Server (NTRS)

    Michaud, Vince

    2015-01-01

    NASA Aerospace Medicine overview - Aerospace Medicine is that specialty area of medicine concerned with the determination and maintenance of the health, safety, and performance of those who fly in the air or in space.

  15. Aerospace Meteorology Lessons Learned Relative to Aerospace Vehicle Design and Operations

    NASA Technical Reports Server (NTRS)

    Vaughan, William W.; Anderson, B. Jeffrey

    2004-01-01

    Aerospace Meteorology came into being in the 1950s as the development of rockets for military and civilian usage grew in the United States. The term was coined to identify those involved in the development of natural environment models, design/operational requirements, and environment measurement systems to support the needs of aerospace vehicles, both launch vehicles and spacecraft. It encompassed the atmospheric environment of the Earth, including Earth orbit environments. Several groups within the United States were active in this area, including the Department of Defense, National Aeronautics and Space Administration, and a few of the aerospace industry groups. Some aerospace meteorology efforts were similar to those being undertaken relative to aviation interests. As part of the aerospace meteorology activities a number of lessons learned resulted that produced follow on efforts which benefited from these experiences, thus leading to the rather efficient and technologically current descriptions of terrestrial environment design requirements, prelaunch monitoring systems, and forecast capabilities available to support the development and operations of aerospace vehicles.

  16. Experiment facilities for life science experiments in space.

    PubMed

    Uchida, Satoko

    2004-11-01

    To perform experiments in microgravity environment, there should be many difficulties compared with the experiments on ground. JAXA (Japan Aerospace Exploration Agency) has developed various experiment facilities to perform life science experiments in space, such as Cell Culture Kit, Thermo Electric Incubator, Free Flow Electrophoresis Unit, Aquatic Animal Experiment Unit, and so on. The first experiment facilities were flown on Spacelab-J mission in 1992, and they were improved and modified for the 2nd International Microgravity Laboratory (IML-2) mission in 1994. Based on these experiences, some of them were further improved and flown on another missions. These facilities are continuously being improved for the International Space Station use, where high level functions and automatic operations will be required.

  17. Expedition 29 Landing

    NASA Image and Video Library

    2011-11-22

    Expedition 29 Commander Mike Fossum, right, tosses his hat into the air and comments to Peggy Whitson, NASA Chief of the Astronaut Office, about how strange the effects of gravity feel as they land in a helicopter in Kustanay, Kazakhstan just a few hours after he and Expedition 29 Flight Engineers Sergei Volkov and Satoshi Furukawa landed in their Soyuz TMA-02M capsule in a remote area outside of the town of Arkalyk, Kazakhstan, on Tuesday, Nov. 22, 2011. NASA Astronaut Fossum, Russian Cosmonaut Volkov and JAXA (Japan Aerospace Exploration Agency) Astronaut Furukawa are returning from more than five months onboard the International Space Station where they served as members of the Expedition 28 and 29 crews. Photo Credit: (NASA/Bill Ingalls)

  18. Concept Study on a Flexible Standard Bus for Small Scientific Satellites

    NASA Astrophysics Data System (ADS)

    Fukuda, Seisuke; Sawai, Shujiro; Sakai, Shin-Ichiro; Saito, Hirobumi; Tohma, Takayuki; Takahashi, Junko; Toriumi, Tsuyoshi; Kitade, Kenji

    In this paper, a new standard bus system for a series of small scientific satellites in the Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA) is described. Since each mission proposed for the series has a wide variety of requirements, a lot of efforts are needed to enhance flexibility of the standard bus. Some concepts from different viewpoints are proposed. First, standardization layers concerning satellite configuration, instruments, interfaces, and design methods are defined respectively. Methods of product platform engineering, which classify specifications of the bus system into a core platform, alternative variants, and selectable variants, are also investigated in order to realize a semi-custom-made bus. Furthermore, a tradeoff between integration and modularization architecture is fully considered.

  19. iss032e025603

    NASA Image and Video Library

    2012-09-09

    ISS032-E-025603 (9 Sept. 2012) --- Tropical Storm Leslie is clearly seen in the Atlantic Ocean on Sept. 9, 2012, as photographed by one of the Expedition 32 crew members aboard the Cupola of the International Space Station. At the time of the photo, Leslie was centered near 33.4 degrees north latitude and 62.1 degrees west longitude (approximately 175 miles east-northeast of Bermuda) moving northward at 14 miles per hour with winds of 60 miles per hour. The HTV-3 (H-II Transfer Vehicle) of the Japan Aerospace Exploration Agency (JAXA), which will be disconnected from the orbital outpost and sent to fall into Earth's atmosphere after fully completing its mission, is in the upper left corner.

  20. Women in Aerospace Awards

    NASA Image and Video Library

    2010-10-26

    NASA Headquarters Program Planning Specialist Beth Beck speaks after being given the Women in Aerospace's Aerospace Awareness Award at the organization's annual awards ceremony and banquet held at the Ritz-Carlton Hotel in Arlington, VA on Tuesday, Oct. 26, 2010. Four current NASA leaders and one retiree were recognized for their work by Women in Aerospace. The event celebrates women's professional excellence in aerospace and honors women who have made outstanding contributions to the aerospace community. Photo Credit: (NASA/Bill Ingalls)

  1. Achievements and Future Plan of Interplanetary CubeSats and Micro-Sats in Japan

    NASA Astrophysics Data System (ADS)

    Funase, Ryu

    2016-07-01

    This paper introduces Japanese achievements and future plans of CubeSats and Micro-Sats for deep space exploration. As the first step toward deep space mission by such tiny spacecraft, University of Tokyo and Japan Aerospace Exploration Agency (JAXA) developed the world's first deep space micro-spacecraft PROCYON (Proximate Object Close flYby with Optical Navigation). Its mission objective is to demonstrate a micro-spacecraft bus technology for deep space exploration and proximity flyby to asteroids performing optical measurements. PROCYON was launched into the Earth departure trajectory on December 3, 2014 together with Japanese asteroid sample return mission Hayabusa-2. PROCYON successfully completed the bus system demonstration mission in its interplanetary flight. Currently, Japan is not only pursuing the improvement and utilization of the demonstrated micro-sat deep space bus system with a weight of tens of kg or more for more practical scientific deep space missions, but also trying to develop smaller spacecraft with a weight of less than tens of kg, namely CubeSats, for deep space exploration. We are proposing a self-contained 6U CubeSat mission for the rideshare opportunity on the USA's SLS EM-1 mission, which will fly to a libration orbit around Earth-Moon L2 point and perform scientific observations of the Earth and the Moon. We are also seeking the possibility of CubeSats which is carried by a larger spacecraft to the destination and supports the mission by taking advantage of its low-cost and risk-tolerable feature. As an example of such style of CubeSat missions, we are studying a CubeSat for close observations of an asteroid, which will be carried to the target asteroid by a larger mother spacecraft. This CubeSat is released from the mother spacecraft to make a close flyby for scientific observations, which is difficult to be performed by the mother spacecraft if we consider the risk of the collision to the target asteroid or dust particles ejected

  2. LAVA Simulations for the 3rd AIAA CFD High Lift Prediction Workshop with Body Fitted Grids

    NASA Technical Reports Server (NTRS)

    Jensen, James C.; Stich, Gerrit-Daniel; Housman, Jeffrey A.; Denison, Marie; Kiris, Cetin C.

    2018-01-01

    In response to the 3rd AIAA CFD High Lift Prediction Workshop, the workshop cases were analyzed using Reynolds-averaged Navier-Stokes flow solvers within the Launch Ascent and Vehicle Aerodynamics (LAVA) solver framework. For the workshop cases the advantages and limitations of both overset-structured an unstructured polyhedral meshes were assessed. The workshop included 3 cases: a 2D airfoil validation case, a mesh convergence study using the High Lift Common Research Model, and a nacelle/pylon integration study using the JAXA (Japan Aerospace Exploration Agency) Standard Model. The 2D airfoil case from the workshop is used to verify the implementation of the Spalart-Allmaras turbulence model along with some of its variants within the solver. The High Lift Common Research Model case is used to assess solver performance and accuracy at varying mesh resolutions, as well as identify the minimum mesh fidelity required for LAVA on this class of problem. The JAXA Standard Model case is used to assess the solver's sensitivity to the turbulence model and to compare the structured and unstructured mesh paradigms. These workshop cases have helped establish best practices for high lift flow configurations for the LAVA solver.

  3. Machine Learning Approach to Deconvolution of Thermal Infrared (TIR) Spectrum of Mercury Supporting MERTIS Onboard ESA/JAXA BepiColombo

    NASA Astrophysics Data System (ADS)

    Varatharajan, I.; D'Amore, M.; Maturilli, A.; Helbert, J.; Hiesinger, H.

    2018-04-01

    Machine learning approach to spectral unmixing of emissivity spectra of Mercury is carried out using endmember spectral library measured at simulated daytime surface conditions of Mercury. Study supports MERTIS payload onboard ESA/JAXA BepiColombo.

  4. Aerospace Education - An Overview

    ERIC Educational Resources Information Center

    Journal of Aerospace Education, 1975

    1975-01-01

    Discusses the surge of interest throughout the country in aerospace education and discusses what aerospace education is, the implications in career education and the relevance of aerospace education in the curriculum. (BR)

  5. Basic Aerospace Education Library

    ERIC Educational Resources Information Center

    Journal of Aerospace Education, 1975

    1975-01-01

    Lists the most significant resource items on aerospace education which are presently available. Includes source books, bibliographies, directories, encyclopedias, dictionaries, audiovisuals, curriculum/planning guides, aerospace statistics, aerospace education statistics and newsletters. (BR)

  6. Women in Aerospace Awards

    NASA Image and Video Library

    2010-10-26

    NASA Deputy Administrator Lori Garver speaks after being given the Women in Aerospace's Outstanding Member Award at the organization's annual awards ceremony and banquet held at the Ritz-Carlton Hotel in Arlington, VA on Tuesday, Oct. 26, 2010. Four current NASA leaders and one retiree were recognized for their work by Women in Aerospace. The event celebrates women's professional excellence in aerospace and honors women who have made outstanding contributions to the aerospace community. Photo Credit: (NASA/Bill Ingalls)

  7. Women in Aerospace Awards

    NASA Image and Video Library

    2010-10-26

    NASA's Langley Research Center Lesa Roe speaks after being given the Women in Aerospace's Leadership Award at the organization's annual awards ceremony and banquet held at the Ritz-Carlton Hotel in Arlington, VA on Tuesday, Oct. 26, 2010. Four current NASA leaders and one retiree were recognized for their work by Women in Aerospace. The event celebrates women's professional excellence in aerospace and honors women who have made outstanding contributions to the aerospace community. Photo Credit: (NASA/Bill Ingalls)

  8. Women in Aerospace Awards

    NASA Image and Video Library

    2010-10-26

    NASA's Associate Administrator of the Science Mission Directorate Dr. Edward J. Weiler presents the Women in Aerospace's Lifetime Achievement Award to retired NASA chief astronomer Nancy Grace Roman at the organization's annual awards ceremony and banquet held at the Ritz-Carlton Hotel in Arlington, VA on Tuesday, Oct. 26, 2010. Four current NASA leaders and one retiree were recognized for their work by Women in Aerospace. The event celebrates women's professional excellence in aerospace and honors women who have made outstanding contributions to the aerospace community. Photo Credit: (NASA/Bill Ingalls)

  9. Functionally Graded Materials Database

    NASA Astrophysics Data System (ADS)

    Kisara, Katsuto; Konno, Tomomi; Niino, Masayuki

    2008-02-01

    Functionally Graded Materials Database (hereinafter referred to as FGMs Database) was open to the society via Internet in October 2002, and since then it has been managed by the Japan Aerospace Exploration Agency (JAXA). As of October 2006, the database includes 1,703 research information entries with 2,429 researchers data, 509 institution data and so on. Reading materials such as "Applicability of FGMs Technology to Space Plane" and "FGMs Application to Space Solar Power System (SSPS)" were prepared in FY 2004 and 2005, respectively. The English version of "FGMs Application to Space Solar Power System (SSPS)" is now under preparation. This present paper explains the FGMs Database, describing the research information data, the sitemap and how to use it. From the access analysis, user access results and users' interests are discussed.

  10. STS-114 Discovery's approach for docking

    NASA Image and Video Library

    2005-07-28

    ISS011-E-11219 (28 July 2005) --- Overall view of the Space Shuttle Discovery as photographed during the survey operations performed by the Expedition 11 crew on the International Space Station during the STS-114 R-Bar Pitch Maneuver on Flight Day 3. Discovery docked to the station at 6:18 a.m. (CDT) on Thursday, July 28, 2005 as the two spacecraft orbited over the southern Pacific Ocean west of the South American coast. Onboard the shuttle were astronauts Eileen M. Collins, STS-114 commander; James M. Kelly, pilot; Andrew S. W. Thomas, Stephen K. Robinson, Wendy B. Lawrence, Charles J. Camarda and Japan Aerospace Exploration Agency (JAXA) astronaut Soichi Noguchi, all mission specialists. The Italian-built Raffaello Multi-Purpose Logistics Module (MPLM) is visible in the cargo bay.

  11. Kagawa Satellite “STARS” in Shikoku

    NASA Astrophysics Data System (ADS)

    Nohmi, Masahiro; Yamamoto, Takeshi; Andatsu, Akira; Takagi, Yohei; Nishikawa, Yusuke; Kaneko, Takashi; Kunitom, Daisuke

    The Space Tethered Autonomous Robotic Satellite (STARS) is being developed in Kagawa University, and it will be launched by the H-IIA rocket by Japan Aerospace Exploration Agency (JAXA) in summer 2008. STARS is the first satellite developed in Shikoku, and its specific characteristics are: (i) mother and daughter satellites, which have basic satellite system respectively, and those are launched at the same time; (ii) large space system more than 5m by extending tether; (iii) robotic system, the daughter satellite controls its arm link and the mother satellite controls tether extension. Development of STARS in Kagawa University demonstrates space technology in local community, which has been considered to be a national project. Also, it promotes popularization, enlightenment, and understanding of space technology in local area of the Kagawa prefecture and around it.

  12. KSC-08pd1151

    NASA Image and Video Library

    2008-05-06

    CAPE CANAVERAL, Fla. -- After their arrival at NASA Kennedy Space Center's Shuttle Landing Facility, the crew of space shuttle Discovery's STS-124 mission gather for a group photo. The crew is at Kennedy to take part in the Terminal Countdown Demonstration Test, or TCDT. From left are Mission Specialist Greg Chamitoff, Pilot Ken Ham, Mission Specialist Karen Nyberg, Commander Mark Kelly and Mission Specialists Ron Garan, Mike Fossum and Akihiko Hoshide, who represents the Japan Aerospace Exploration Agency, or JAXA. TCDT is a rehearsal for launch that includes practicing emergency procedures, handling on-orbit equipment, and simulating a launch countdown. On the STS-124 mission, the crew will deliver and install the Japanese Experiment Module – Pressurized Module and Japanese Remote Manipulator System. Discovery's launch is targeted for May 31. Photo credit: NASA/Kim Shiflett

  13. jsc2017e136047 - At the Gagarin Cosmonaut Training Center in Star City, Russia, Expedition 54-55 prime crewmember Anton Shkaplerov of the Russian Federal Space Agency (Roscosmos) signs a ceremonial book Nov. 30 as part of traditional pre-launch ceremonies

    NASA Image and Video Library

    2017-11-30

    jsc2017e136047 - At the Gagarin Cosmonaut Training Center in Star City, Russia, Expedition 54-55 prime crewmember Anton Shkaplerov of the Russian Federal Space Agency (Roscosmos) signs a ceremonial book Nov. 30 as part of traditional pre-launch ceremonies. In the front row from left to right are the prime crewmembers, Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA), Shkaplerov and Scott Tingle of NASA. Looking on in the back row are the backup crewmembers, NASA’s Jeanette Epps, Sergey Prokopyev of Roscosmos and Alexander Gerst of the European Space Agency. Shkaplerov, Tingle and Kanai will launch Dec. 17 on the Soyuz MS-07 spacecraft from the Baikonur Cosmodrome in Kazakhstan for a five-month mission on the International Space Station...Andrey Shelepin/Gagarin Cosmonaut Training Center.

  14. Special methods for aerodynamic-moment calculations from parachute FSI modeling

    NASA Astrophysics Data System (ADS)

    Takizawa, Kenji; Tezduyar, Tayfun E.; Boswell, Cody; Tsutsui, Yuki; Montel, Kenneth

    2015-06-01

    The space-time fluid-structure interaction (STFSI) methods for 3D parachute modeling are now at a level where they can bring reliable, practical analysis to some of the most complex parachute systems, such as spacecraft parachutes. The methods include the Deforming-Spatial-Domain/Stabilized ST method as the core computational technology, and a good number of special FSI methods targeting parachutes. Evaluating the stability characteristics of a parachute based on how the aerodynamic moment varies as a function of the angle of attack is one of the practical analyses that reliable parachute FSI modeling can deliver. We describe the special FSI methods we developed for this specific purpose and present the aerodynamic-moment data obtained from FSI modeling of NASA Orion spacecraft parachutes and Japan Aerospace Exploration Agency (JAXA) subscale parachutes.

  15. The Hinode(Solar-B)Mission: An Overview

    NASA Technical Reports Server (NTRS)

    Kosugi, T.; Matsuzaki, K.; Sakao, T.; Shimizu, T.; Sone, Y.; Tachikawa, S.; Minesugi, K.; Ohnishi, A.; Yamada, T.; Tsuneta, S.; hide

    2007-01-01

    The Hinode satellite (formerly Solar-B) of the Japan Aerospace Exploration Agency's Institute of Space and Astronautical Science (ISAS/JAXA) was successfully launched in September 2006. As the successor to the Yohkoh mission, it aims to understand how magnetic energy is transferred from the photosphere to the upper atmospheres and resulting in explosive energy releases. Hinode is an observatory style mission, with all the instruments being designed and built to work together to address the science aims. There are three instruments onboard: the Solar Optical Telescope (SOT), the EUV Imaging Spectrometer (EIS), and the X-ray Telescope (XRT). This paper overviews the mission, including the satellite, the scientific payload and operations. It will conclude with discussions on how the international science community can participate in the analysis of the mission data.

  16. TLE Balloon experiment campaign carried out on 25 August 2006 in Japan

    NASA Astrophysics Data System (ADS)

    Takahashi, Y.; Chikada, S.; Yoshida, A.; Adachi, T.; Sakanoi, T.

    2006-12-01

    The balloon observation campaign for TLE and lightning study was carried out 25 August 2006 in Japan by Tohoku University, supported by JAXA. The balloon was successfully launched at 18:33 LT at Sanriku Balloon Center of JAXA located in the east coast of northern part of Japan (Iwate prefecture). Three types of scientific payloads were installed at the 1 m-cubic gondola, that is, 3-axis VLF electric filed antenna and receiver (VLFR), 4 video frame CCD cameras (CCDI) and 2-color photometer (PM). The video images were stored in 4 HD video recorders, which have 20GB memories respectively, at 30 frames/sec and VLFR and PM data were put into digital data recorder with 30 GB memory at sampling rate of 100 kHz. The balloon floated at the altitude of 13 km until about 20:30 LT, going eastward and went up to 26 km at a distance of 130 km from the coast. And it went back westward at the altitude of 26 km until midnight. The total observation period is about 5 hours. Most of the equipments worked properly except for one video recorder. Some thunderstorms existed within the direct FOV from the balloon in the range of 400-600 km and more than about 400 lightning flashes were recorded as video images. We confirmed that, at least, one sprite halo was captured by CCDI which occurred in the oceanic thunderstorm at a distance of about 500 km from balloon. This is the first TLE image obtained by a balloon-borne camera. Simultaneous measurements of VLF sferics and lightning/TLE images will clarify the role of intracloud (IC) currents in producing and/or modulating TLEs as well as cloud-to-ground discharges (CG). Especially the effect of horizontal components will be investigated in detail, which cannot be detected on the ground, to explain the unsolved properties of TLEs, such as long time delay of TLE from the timing of stroke and large horizontal displacement between CG and TLEs.

  17. jsc2017e137341 - At the Cosmonaut Hotel crew quarters in Baikonur, Kazakhstan, Expedition 54-55 prime crewmembers Scott Tingle of NASA (left) and Norishige Kanai of the Japan Aerospace Exploration Agency (right) test their vestibular skills on tilt tables

    NASA Image and Video Library

    2017-12-11

    jsc2017e137341 - At the Cosmonaut Hotel crew quarters in Baikonur, Kazakhstan, Expedition 54-55 prime crewmembers Scott Tingle of NASA (left) and Norishige Kanai of the Japan Aerospace Exploration Agency (right) test their vestibular skills on tilt tables Dec. 11 as part of their pre-launch training. Along with Anton Shkaplerov of the Russian Federal Space Agency (Roscosmos), they will launch Dec. 17 on the Soyuz MS-07 spacecraft from the Baikonur Cosmodrome for a five month mission on the International Space Station...Andrey Shelepin / Gagarin Cosmonaut Training Center.

  18. GPM Timeline Inhibits For IT Processing

    NASA Technical Reports Server (NTRS)

    Dion, Shirley K.

    2014-01-01

    The Safety Inhibit Timeline Tool was created as one approach to capturing and understanding inhibits and controls from IT through launch. Global Precipitation Measurement (GPM) Mission, which launched from Japan in March 2014, was a joint mission under a partnership between the National Aeronautics and Space Administration (NASA) and the Japan Aerospace Exploration Agency (JAXA). GPM was one of the first NASA Goddard in-house programs that extensively used software controls. Using this tool during the GPM buildup allowed a thorough review of inhibit and safety critical software design for hazardous subsystems such as the high gain antenna boom, solar array, and instrument deployments, transmitter turn-on, propulsion system release, and instrument radar turn-on. The GPM safety team developed a methodology to document software safety as part of the standard hazard report. As a result of this process, a new tool safety inhibit timeline was created for management of inhibits and their controls during spacecraft buildup and testing during IT at GSFC and at the launch range in Japan. The Safety Inhibit Timeline Tool was a pathfinder approach for reviewing software that controls the electrical inhibits. The Safety Inhibit Timeline Tool strengthens the Safety Analysts understanding of the removal of inhibits during the IT process with safety critical software. With this tool, the Safety Analyst can confirm proper safe configuration of a spacecraft during each IT test, track inhibit and software configuration changes, and assess software criticality. In addition to understanding inhibits and controls during IT, the tool allows the Safety Analyst to better communicate to engineers and management the changes in inhibit states with each phase of hardware and software testing and the impact of safety risks. Lessons learned from participating in the GPM campaign at NASA and JAXA will be discussed during this session.

  19. Life science experiments performed in space in the ISS/Kibo facility and future research plans.

    PubMed

    Ohnishi, Takeo

    2016-08-01

    Over the past several years, current techniques in molecular biology have been used to perform experiments in space, focusing on the nature and effects of space radiation. In the Japanese 'Kibo' facility in the International Space Station (ISS), the Japan Aerospace Exploration Agency (JAXA) has performed five life science experiments since 2009, and two additional experiments are currently in progress. The first life science experiment in space was the 'Rad Gene' project, which utilized two human cultured lymphoblastoid cell lines containing a mutated P53 : gene (m P53 : ) and a parental wild-type P53 : gene (wt P53 : ) respectively. Four parameters were examined: (i) detecting space radiation-induced DSBs by observing γH2AX foci; (ii) observing P53 : -dependent gene expression during space flight; (iii) observing P53 : -dependent gene expression after space flight; and (iv) observing the adaptive response in the two cell lines containing the mutated and wild type P53 : genes after exposure to space radiation. These observations were completed and have been reported, and this paper is a review of these experiments. In addition, recent new information from space-based experiments involving radiation biology is presented here. These experiments involve human cultured cells, silkworm eggs, mouse embryonic stem cells and mouse eggs in various experiments designed by other principal investigators in the ISS/Kibo. The progress of Japanese science groups involved in these space experiments together with JAXA are also discussed here. The Japanese Society for Biological Sciences in Space (JSBSS), the Utilization Committee of Space Environment Science (UCSES) and the Science Council of Japan (ACJ) have supported these new projects and new experimental facilities in ISS/Kibo. Currently, these organizations are proposing new experiments for the ISS through 2024. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and

  20. International Access to Aerospace Information.

    DTIC Science & Technology

    1980-04-01

    data that belong into the category ’reproducible" belong here into the category ’conditions controlled by man" " non reproducible data’ belong into the...SESSION IV - NON -LITERATURE DATA IN AEROSPACE RESEARCH AND DEVELOPMENT THE NUMERIC AEROSPACE DATA: PROBLEMS OF EVALUATION, HANDLING AND DISSEMINATION...34. Sessions III and IV, held on 18 October, were entitled "Problems of Utilization of Aerospace Literature" and " Non -Literature Data in Aerospace and

  1. GPM Vibration Testing

    NASA Image and Video Library

    2013-11-14

    Vibration testing of the horizontal axis of the spacecraft. Credit: NASA/Goddard The Global Precipitation Measurement (GPM) mission is an international partnership co-led by NASA and the Japan Aerospace Exploration Agency (JAXA) that will provide next-generation global observations of precipitation from space. GPM will study global rain, snow and ice to better understand our climate, weather, and hydrometeorological processes. As of Novermber 2013 the GPM Core Observatory is in the final stages of testing at NASA Goddard Space Flight Center. The satellite will be flown to Japan in the fall of 2013 and launched into orbit on an HII-A rocket in early 2014. For more on the GPM mission, visit gpm.gsfc.nasa.gov/. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  2. 25m-resolution Global Mosaic and Forest/Non-Forest map using PALSAR-2 data set

    NASA Astrophysics Data System (ADS)

    Itoh, T.; Shimada, M.; Motooka, T.; Hayashi, M.; Tadono, T.; DAN, R.; Isoguchi, O.; Yamanokuchi, T.

    2017-12-01

    A continuous observation of forests is important as information necessary for monitoring deforestation, climate change and environmental changes i.e. Reducing Emissions from Deforestation and Forest Degradation in Developing Countries (REDD+). Japan Aerospace Exploration Agency (JAXA) is conducting research on forest monitoring using satellite-based L-Band Synthetic Aperture Radars (SARs) continuously. Using the FBD (Fine Beam Dual polarizations) data of the Phased Array type L-band Synthetic Aperture Radar (PALSAR) onboard the Advanced Land Observing Satellite (ALOS), JAXA created the global 25 m-resolution mosaic images and the Forest/Non-Forest (FNF) maps dataset for forest monitoring. SAR can monitor forest areas under all weather conditions, and L-band is highly sensitive to forests and their changes, therefore it is suitable for forest observation. JAXA also created the global 25 m mosaics and FNF maps using ALOS-2/PALSAR-2 launched on 2014 as a successor to ALOS. FNF dataset by PALSAR and PALSAR-2 covers from 2007 to 2010, and from 2015 to 2016, respectively. Therefore, it is possible to monitor forest changes during approx. 10 years. The classification method is combination of the object-based classification and the thresholding of HH and HV polarized images, and the result of FNF was compared with Forest Resource Assessment (FRA, developed by FAO) and their inconsistency is less than 10 %. Also, by comparing with the optical image of Google Earth, rate of coincidence was 80 % or more. We will create PALSAR-2 global mosaics and FNF dataset continuously to contribute global forest monitoring.

  3. Transition Within Leeward Plane of Axisymmetric Bodies at Incidence in Supersonic Flow

    NASA Technical Reports Server (NTRS)

    Tokugawa, Naoko; Choudhari, Meelan; Ishikawa, Hiroaki; Ueda, Yoshine; Fujii, Keisuke; Atobe, Takashi; Li, Fei; Chang, Chau-Lyan; White, Jeffery

    2012-01-01

    Boundary layer transition along the leeward symmetry plane of axisymmetric bodies at nonzero angle of attack in supersonic flow was investigated experimentally and numerically as part of joint research between the Japan Aerospace Exploration Agency (JAXA) and National Aeronautics and Space Administration (NASA). Transition over four axisymmetric bodies (namely, Sears-Haack body, semi-Sears-Haack body, straight cone and flared cone) with different axial pressure gradients was measured in two different facilities with different unit Reynolds numbers. The semi-Sears-Haack body and flared cone were designed at JAXA to broaden the range of axial pressure distributions. For a body shape with an adverse pressure gradient (i.e., flared cone), the experimentally measured transition patterns show an earlier transition location along the leeward symmetry plane in comparison with the neighboring azimuthal locations. For nearly zero pressure gradient (i.e.,straight cone), this feature is only observed at the larger unit Reynolds number. Later transition along the leeward plane was observed for the remaining two body shapes with a favorable pressure gradient. The observed transition patterns are only partially consistent with the numerical predictions based on linear stability analysis. Additional measurements are used in conjunction with the stability computations to explore the phenomenon of leeward line transition and the underlying transition mechanism in further detail.

  4. Environmentally regulated aerospace coatings

    NASA Technical Reports Server (NTRS)

    Morris, Virginia L.

    1995-01-01

    Aerospace coatings represent a complex technology which must meet stringent performance requirements in the protection of aerospace vehicles. Topcoats and primers are used, primarily, to protect the structural elements of the air vehicle from exposure to and subsequent degradation by environmental elements. There are also many coatings which perform special functions, i.e., chafing resistance, rain erosion resistance, radiation and electric effects, fuel tank coatings, maskants, wire and fastener coatings. The scheduled promulgation of federal environmental regulations for aerospace manufacture and rework materials and processes will regulate the emissions of photochemically reactive precursors to smog and air toxics. Aerospace organizations will be required to identify, qualify and implement less polluting materials. The elimination of ozone depleting chemicals (ODC's) and implementation of pollution prevention requirements are added constraints which must be addressed concurrently. The broad categories of operations affected are the manufacture, operation, maintenance, and repair of military, commercial, general aviation, and space vehicles. The federal aerospace regulations were developed around the precept that technology had to be available to support the reduction of organic and air toxic emissions, i.e., the regulations cannot be technology forcing. In many cases, the regulations which are currently in effect in the South Coast Air Quality Management District (SCAQMD), located in Southern California, were used as the baseline for the federal regulations. This paper addresses strategies used by Southern California aerospace organizations to cope with these regulatory impacts on aerospace productions programs. All of these regulatory changes are scheduled for implementation in 1993 and 1994, with varying compliance dates established.

  5. Aerospace Education. NSTA Position Statement

    ERIC Educational Resources Information Center

    National Science Teachers Association (NJ1), 2008

    2008-01-01

    National Science Teachers Association (NSTA) has developed a new position statement, "Aerospace Education." NSTA believes that aerospace education is an important component of comprehensive preK-12 science education programs. This statement highlights key considerations that should be addressed when implementing a high quality aerospace education…

  6. The Global Precipitation Measurement (GPM) Mission: Overview and U.S. Status

    NASA Technical Reports Server (NTRS)

    Hou, Arthur Y.; Azarbarzin, Ardeshir A.; Kakar, Ramesh K.; Neeck, Steven

    2011-01-01

    The Global Precipitation Measurement (GPM) Mission is an international satellite mission specifically designed to unify and advance precipitation measurements from a constellation of research and operational microwave sensors. Building upon the success of the U.S.-Japan Tropical Rainfall Measuring Mission (TRMM), the National Aeronautics and Space Administration (NASA) of the United States and the Japan Aerospace and Exploration Agency (JAXA) will deploy in 2013 a GPM "Core" satellite carrying a KulKa-band Dual-frequency Precipitation Radar (DPR) and a conical-scanning multi-channel (10-183 GHz) GPM Microwave Imager (GMI) to establish a new reference standard for precipitation measurements from space. The combined active/passive sensor measurements will also be used to provide common database for precipitation retrievals from constellation sensors. For global coverage, GPM relies on existing satellite programs and new mission opportunities from a consortium of partners through bilateral agreements with either NASA or JAXA. Each constellation member may have its unique scientific or operational objectives but contributes microwave observations to GPM for the generation and dissemination of unified global precipitation data products. In addition to the DPR and GMI on the Core Observatory, the baseline GPM constellation consists of the following sensors: (1) Special Sensor Microwave Imager/Sounder (SSMIS) instruments on the U.S. Defense Meteorological Satellite Program (DMSP) satellites, (2) the Advanced Microwave Scanning Radiometer- 2 (AMSR-2) on the GCOM-Wl satellite of JAXA, (3) the Multi-Frequency Microwave Scanning Radiometer (MADRAS) and the multi-channel microwave humidity sounder (SAPHIR) on the French-Indian Megha-Tropiques satellite, (4) the Microwave Humidity Sounder (MHS) on the National Oceanic and Atmospheric Administration (NOAA)-19, (5) MHS instruments on MetOp satellites launched by the European Organisation for the Exploitation of Meteorological

  7. Ground-based assessment of JAXA mouse habitat cage unit by mouse phenotypic studies

    PubMed Central

    Shimbo, Miki; Kudo, Takashi; Hamada, Michito; Jeon, Hyojung; Imamura, Yuki; Asano, Keigo; Okada, Risa; Tsunakawa, Yuki; Mizuno, Seiya; Yagami, Ken-ichi; Ishikawa, Chihiro; Li, Haiyan; Shiga, Takashi; Ishida, Junji; Hamada, Juri; Murata, Kazuya; Ishimaru, Tomohiro; Hashimoto, Misuzu; Fukamizu, Akiyoshi; Yamane, Mutsumi; Ikawa, Masahito; Morita, Hironobu; Shinohara, Masahiro; Asahara, Hiroshi; Akiyama, Taishin; Akiyama, Nobuko; Sasanuma, Hiroki; Yoshida, Nobuaki; Zhou, Rui; Wang, Ying-Ying; Ito, Taito; Kokubu, Yuko; Noguchi, Taka-aki K.; Ishimine, Hisako; Kurisaki, Akira; Shiba, Dai; Mizuno, Hiroyasu; Shirakawa, Masaki; Ito, Naoki; Takeda, Shin; Takahashi, Satoru

    2016-01-01

    The Japan Aerospace Exploration Agency developed the mouse Habitat Cage Unit (HCU) for installation in the Cell Biology Experiment Facility (CBEF) onboard the Japanese Experimental Module (“Kibo”) on the International Space Station. The CBEF provides “space-based controls” by generating artificial gravity in the HCU through a centrifuge, enabling a comparison of the biological consequences of microgravity and artificial gravity of 1 g on mice housed in space. Therefore, prior to the space experiment, a ground-based study to validate the habitability of the HCU is necessary to conduct space experiments using the HCU in the CBEF. Here, we investigated the ground-based effect of a 32-day housing period in the HCU breadboard model on male mice in comparison with the control cage mice. Morphology of skeletal muscle, the thymus, heart, and kidney, and the sperm function showed no critical abnormalities between the control mice and HCU mice. Slight but significant changes caused by the HCU itself were observed, including decreased body weight, increased weights of the thymus and gastrocnemius, reduced thickness of cortical bone of the femur, and several gene expressions from 11 tissues. Results suggest that the HCU provides acceptable conditions for mouse phenotypic analysis using CBEF in space, as long as its characteristic features are considered. Thus, the HCU is a feasible device for future space experiments. PMID:26822934

  8. Ground-based assessment of JAXA mouse habitat cage unit by mouse phenotypic studies.

    PubMed

    Shimbo, Miki; Kudo, Takashi; Hamada, Michito; Jeon, Hyojung; Imamura, Yuki; Asano, Keigo; Okada, Risa; Tsunakawa, Yuki; Mizuno, Seiya; Yagami, Ken-Ichi; Ishikawa, Chihiro; Li, Haiyan; Shiga, Takashi; Ishida, Junji; Hamada, Juri; Murata, Kazuya; Ishimaru, Tomohiro; Hashimoto, Misuzu; Fukamizu, Akiyoshi; Yamane, Mutsumi; Ikawa, Masahito; Morita, Hironobu; Shinohara, Masahiro; Asahara, Hiroshi; Akiyama, Taishin; Akiyama, Nobuko; Sasanuma, Hiroki; Yoshida, Nobuaki; Zhou, Rui; Wang, Ying-Ying; Ito, Taito; Kokubu, Yuko; Noguchi, Taka-Aki K; Ishimine, Hisako; Kurisaki, Akira; Shiba, Dai; Mizuno, Hiroyasu; Shirakawa, Masaki; Ito, Naoki; Takeda, Shin; Takahashi, Satoru

    2016-05-20

    The Japan Aerospace Exploration Agency developed the mouse Habitat Cage Unit (HCU) for installation in the Cell Biology Experiment Facility (CBEF) onboard the Japanese Experimental Module ("Kibo") on the International Space Station. The CBEF provides "space-based controls" by generating artificial gravity in the HCU through a centrifuge, enabling a comparison of the biological consequences of microgravity and artificial gravity of 1 g on mice housed in space. Therefore, prior to the space experiment, a ground-based study to validate the habitability of the HCU is necessary to conduct space experiments using the HCU in the CBEF. Here, we investigated the ground-based effect of a 32-day housing period in the HCU breadboard model on male mice in comparison with the control cage mice. Morphology of skeletal muscle, the thymus, heart, and kidney, and the sperm function showed no critical abnormalities between the control mice and HCU mice. Slight but significant changes caused by the HCU itself were observed, including decreased body weight, increased weights of the thymus and gastrocnemius, reduced thickness of cortical bone of the femur, and several gene expressions from 11 tissues. Results suggest that the HCU provides acceptable conditions for mouse phenotypic analysis using CBEF in space, as long as its characteristic features are considered. Thus, the HCU is a feasible device for future space experiments.

  9. Boundary Layer Transition and Trip Effectiveness on an Apollo Capsule in the JAXA High Enthalpy Shock Tunnel (HIEST) Facility

    NASA Technical Reports Server (NTRS)

    Kirk, Lindsay C.; Lillard, Randolph P.; Olejniczak, Joseph; Tanno, Hideyuki

    2015-01-01

    Computational assessments were performed to size boundary layer trips for a scaled Apollo capsule model in the High Enthalpy Shock Tunnel (HIEST) facility at the JAXA Kakuda Space Center in Japan. For stagnation conditions between 2 MJ/kg and 20 MJ/kg and between 10 MPa and 60 MPa, the appropriate trips were determined to be between 0.2 mm and 1.3 mm high, which provided kappa/delta values on the heatshield from 0.15 to 2.25. The tripped configuration consisted of an insert with a series of diamond shaped trips along the heatshield downstream of the stagnation point. Surface heat flux measurements were obtained on a capsule with a 250 mm diameter, 6.4% scale model, and pressure measurements were taken at axial stations along the nozzle walls. At low enthalpy conditions, the computational predictions agree favorably to the test data along the heatshield centerline. However, agreement becomes less favorable as the enthalpy increases conditions. The measured surface heat flux on the heatshield from the HIEST facility was under-predicted by the computations in these cases. Both smooth and tripped configurations were tested for comparison, and a post-test computational analysis showed that kappa/delta values based on the as-measured stagnation conditions ranged between 0.5 and 1.2. Tripped configurations for both 0.6 mm and 0.8 mm trip heights were able to effectively trip the flow to fully turbulent for a range of freestream conditions.

  10. Design of the Recovery Trajectory for JAXA Venus Orbiter Akatsuki

    NASA Astrophysics Data System (ADS)

    Campagnola, Stefano; Kawakatsu, Yasuhiro

    2015-12-01

    Akatsuki ("dawn" in Japanese) is the JAXA Venus orbiter that was scheduled to enter orbit around Venus on Dec. 7 th , 2010. Following the failure of the main engine during the orbit insertion maneuver, the spacecraft escaped Venus on a 200-day orbit around the Sun, only to return in early 2017. This paper presents the design and implementation of the recovery trajectory, which involves perihelion maneuvers to re-encounter Venus in late 2015. Relying only on the onboard propellant, the trajectory rescued the mission by (1) anticipating the beginning of the science phase within the nominal lifetime of the spacecraft, and (2) halving the Δ v requirements for the orbit insertion maneuver. Several trajectories are designed with an innovative use of a technique called non-tangent V-Infinity Leveraging Transfers (VILTs). Candidate solutions are then recomputed in higher fidelity models, and one solution is finally selected for its low Δv requirements and for programmatic reasons. The results of the perihelion maneuver campaign are also presented.

  11. Index of international publications in aerospace medicine.

    DOT National Transportation Integrated Search

    1993-02-01

    The Index of International Publications in Aerospace Medicine is a comprehensive listing of international publications in clinical aerospace medicine, operational aerospace medicine, aerospace physiology, environmental medicine/physiology, diving med...

  12. Index of international publications in aerospace medicine

    DOT National Transportation Integrated Search

    2001-08-01

    The Index of International Publications in Aerospace Medicine is a comprehensive listing of international publications in clinical aerospace medicine, operational aerospace medicine, aerospace physiology, environmental medicine/physiology, diving med...

  13. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 41: Technical communication practices of Dutch and US aerospace engineers and scientists: International perspective on aerospace

    NASA Technical Reports Server (NTRS)

    Barclay, Rebecca O.; Pinelli, Thomas E.; Kennedy, John M.

    1994-01-01

    As part of Phase 4 of the NASA/DOD Aerospace Knowledge Diffusion Research Project, studies were conducted that investigated the technical communications practices of Dutch and U.S. aerospace engineers and scientists. The studies had the following objectives: (1) to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communication to their professions, (2) to determine the use and production of technical communication by aerospace engineers and scientists, (3) to investigate their use of libraries and technical information centers, (4) to investigate their use of and the importance to them of computer and information technology, (5) to examine their use of electronic networks, and (6) to determine their use of foreign and domestically produced technical reports. Self-administered (mail) questionnaires were distributed to Dutch aerospace engineers and scientists at the National Aerospace Laboratory (NLR) in the Netherlands, the NASA Ames Research Center in the U.S., and the NASA Langley Research Center in the U.S. Responses of the Dutch and U.S. participants to selected questions are presented in this paper.

  14. Index of international publications in aerospace medicine.

    DOT National Transportation Integrated Search

    2014-05-01

    The 5th edition of the Index of International Publications in Aerospace Medicine is a comprehensive : listing of international publications in clinical aerospace medicine, operational aerospace medicine, : aerospace physiology, environmental medicine...

  15. Index of International Publications in Aerospace Medicine

    DOT National Transportation Integrated Search

    2007-01-01

    The 3rd edition of theIndex of International Publications in Aerospace Medicine is a comprehensive listing of : international publications in clinical aerospace medicine, operational aerospace medicine, aerospace : physiology, environmental medicine/...

  16. Longterm and spatial variability of Aerosol optical properties measured by sky radiometer in Japan sites

    NASA Astrophysics Data System (ADS)

    Aoki, K.

    2016-12-01

    Aerosols and cloud play an important role in the climate change. We started the long-term monitoring of aerosol and cloud optical properties since 1990's by using sky radiometer (POM-01, 02; Prede Co. Ltd., Japan). We provide the information, in this presentation, on the aerosol optical properties with respect to their temporal and spatial variability in Japan site (ex. Sapporo, Toyama, Kasuga and etc). The global distributions of aerosols have been derived from earth observation satellite and have been simulated in numerical models, which assume optical parameters. However, these distributions are difficult to derive because of variability in time and space. Therefore, Aerosol optical properties were investigated using the measurements from ground-based and ship-borne sky radiometer. The sky radiometer is an automatic instrument that takes observations only in daytime under the clear sky conditions. Observation of diffuse solar intensity interval was made every ten or five minutes by once. The aerosol optical properties were computed using the SKYRAD.pack version 4.2. The obtained Aerosol optical properties (Aerosol optical thickness, Ångström exponent, Single scattering albedo, and etc.) and size distribution volume clearly showed spatial and temporal variability in Japan area. In this study, we present the temporal and spatial variability of Aerosol optical properties at several Japan sites, applied to validation of satellite and numerical models. This project is validation satellite of GCOM-C, JAXA. The GCOM-C satellite scheduled to be launched in early 2017.

  17. Development and verification of hardware for life science experiments in the Japanese Experiment Module "Kibo" on the International Space Station.

    PubMed

    Ishioka, Noriaki; Suzuki, Hiromi; Asashima, Makoto; Kamisaka, Seiichiro; Mogami, Yoshihiro; Ochiai, Toshimasa; Aizawa-Yano, Sachiko; Higashibata, Akira; Ando, Noboru; Nagase, Mutsumu; Ogawa, Shigeyuki; Shimazu, Toru; Fukui, Keiji; Fujimoto, Nobuyoshi

    2004-03-01

    Japan Aerospace Exploration Agency (JAXA) has developed a cell biology experiment facility (CBEF) and a clean bench (CB) as a common hardware in which life science experiments in the Japanese Experiment Module (JEM known as "Kibo") of the International Space Station (ISS) can be performed. The CBEF, a CO2 incubator with a turntable that provides variable gravity levels, is the basic hardware required to carry out the biological experiments using microorganisms, cells, tissues, small animals, plants, etc. The CB provides a closed aseptic operation area for life science and biotechnology experiments in Kibo. A phase contrast and fluorescence microscope is installed inside CB. The biological experiment units (BEU) are designed to run individual experiments using the CBEF and the CB. A plant experiment unit (PEU) and two cell experiment units (CEU type1 and type2) for the BEU have been developed.

  18. Space Station Crew Walks in Space to Conduct Robotics Upgrades

    NASA Image and Video Library

    2018-01-23

    Outside the International Space Station, Expedition 54 Flight Engineers Mark Vande Hei and Scott Tingle of NASA conducted the first spacewalk this year Jan. 23 to replace a degraded latching end effector (LEE) on one end of the Canadarm2 robotic arm. There are two redundant end effectors on each end of the arm used to grapple visiting vehicles and components during a variety of operational activities. The spacewalk was the 206th in support of space station assembly and maintenance, the third in Vande Hei’s career and the first for Tingle. Vande Hei will venture outside the station again Jan. 29 with Flight Engineer Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) to stow a spare latching end effector removed from the robotic arm last October on to the station’s mobile base system rail car for future use.

  19. Aerospace Dermatology

    PubMed Central

    Arora, Sandeep

    2017-01-01

    Evolutionarily, man is a terrestrial mammal, adapted to land. Aviation and now space/microgravity environment, hence, pose new challenges to our physiology. Exposure to these changes affects the human body in acute and chronic settings. Since skin reflects our mental and physical well-being, any change/side effects of this environment shall be detected on the skin. Aerospace industry offers a unique environment with a blend of all possible occupational disorders, encompassing all systems of the body, particularly the skin. Aerospace dermatologists in the near future shall be called upon for their expertise as we continue to push human physiological boundaries with faster and more powerful military aircraft and look to colonize space stations and other planets. Microgravity living shall push dermatology into its next big leap-space, the final frontier. This article discusses the physiological effects of this environment on skin, effect of common dermatoses in aerospace environment, effect of microgravity on skin, and occupational hazards of this industry. PMID:28216729

  20. Aerospace Dermatology.

    PubMed

    Arora, Sandeep

    2017-01-01

    Evolutionarily, man is a terrestrial mammal, adapted to land. Aviation and now space/microgravity environment, hence, pose new challenges to our physiology. Exposure to these changes affects the human body in acute and chronic settings. Since skin reflects our mental and physical well-being, any change/side effects of this environment shall be detected on the skin. Aerospace industry offers a unique environment with a blend of all possible occupational disorders, encompassing all systems of the body, particularly the skin. Aerospace dermatologists in the near future shall be called upon for their expertise as we continue to push human physiological boundaries with faster and more powerful military aircraft and look to colonize space stations and other planets. Microgravity living shall push dermatology into its next big leap-space, the final frontier. This article discusses the physiological effects of this environment on skin, effect of common dermatoses in aerospace environment, effect of microgravity on skin, and occupational hazards of this industry.

  1. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 39: The role of computer networks in aerospace engineering

    NASA Technical Reports Server (NTRS)

    Bishop, Ann P.; Pinelli, Thomas E.

    1994-01-01

    This paper presents selected results from an empirical investigation into the use of computer networks in aerospace engineering. Such networks allow aerospace engineers to communicate with people and access remote resources through electronic mail, file transfer, and remote log-in. The study drew its subjects from private sector, government and academic organizations in the U.S. aerospace industry. Data presented here were gathered in a mail survey, conducted in Spring 1993, that was distributed to aerospace engineers performing a wide variety of jobs. Results from the mail survey provide a snapshot of the current use of computer networks in the aerospace industry, suggest factors associated with the use of networks, and identify perceived impacts of networks on aerospace engineering work and communication.

  2. Aerospace engineering educational program

    NASA Technical Reports Server (NTRS)

    Craft, William; Klett, David; Lai, Steven

    1992-01-01

    The principle goal of the educational component of NASA CORE is the creation of aerospace engineering options in the mechanical engineering program at both the undergraduate and graduate levels. To accomplish this goal, a concerted effort during the past year has resulted in detailed plans for the initiation of aerospace options in both the BSME and MSME programs in the fall of 1993. All proposed new courses and the BSME aerospace option curriculum must undergo a lengthy approval process involving two cirriculum oversight committees (School of Engineering and University level) and three levels of general faculty approval. Assuming approval is obtained from all levels, the options will officially take effect in Fall '93. In anticipation of this, certain courses in the proposed curriculum are being offered during the current academic year under special topics headings so that current junior level students may graduate in May '94 under the BSME aerospace option. The proposed undergraduate aerospace option curriculum (along with the regular mechanical engineering curriculum for reference) is attached at the end of this report, and course outlines for the new courses are included in the appendix.

  3. Women in Aerospace Awards

    NASA Image and Video Library

    2010-10-26

    NASA Administrator Charlie Bolden holds up a photograph showing four female Astronauts onboard the Space Station during his presentation at the Women in Aerospace (WIA) organization's annual awards ceremony and banquet at the Ritz-Carlton Hotel in Arlington, VA on Tuesday, Oct. 26, 2010. Bolden presented Women in Aerospace's Outstanding Member Award to NASA Deputy Administrator Lori Garver, noting her ongoing leadership and participation in Women in Aerospace and her passion and dedication to opening the high frontier of space to the everyday person. Photo Credit: (NASA/Bill Ingalls)

  4. New equipment the ion beam irradiation equipment installed at ISAS / JAXA

    NASA Astrophysics Data System (ADS)

    Nakauchi, Yusuke; Matsumoto, Toru; Asada, Yuma; Abe, Masanao; Tsuchiyama, Akira; Takigawa, Aki; Watanabe, Naoki; Yusuke Nakauchi

    2017-10-01

    Understanding of the space weathering effect by the solar wind implantation is thought to be important for the interpretation of the reflectance spectra on the airless body’s surface [e.g. 1]. It is important to elucidate the space weathering effect by hydrogen ions and helium ions which account for most of solar wind. In particular, it is suggested that the solar wind protons interact with the minerals in the surface layer of the airless bodies to form OH and H2O. To understanding the space weathering effect by solar wind protons will be an important clue to reveal the origin and the abundance of lunar water [e.g. 2].Solar wind consists of 95% protons, 4% helium and other ions [3]. The energy of protons is mainly 1.1 keV and the one of helium ions is mainly 4 keV. Then, we established the ion beam irradiation equipment in ISAS/JAXA. This device consists of a cold cathode ion gun, an ion irradiation chamber, a load lock chamber for specimen preparation and reflection spectrum measurement, and FTIR. The ion sources capable of irradiation are hydrogen and helium which occupy the most of solar wind and it is possible to selectively irradiate each ion with a magnetic separator. The energy can be selected from 500 eV to 5 keV. The ultimate degree of vacuum is about 10-6 Pa. The samples can move between the irradiation chamber and the load lock chamber without being exposed to the air. Moreover, since the nitrogen purge is possible for the optical path of FTIR, the influence of the adsorbed water can be ignored when measuring the reflection spectra.In this presentation, we will report the first results of the performance of ion beam irradiation equipment (e.g. beam current, beam-shape) and the proton irradiation to Sun Carlos olivine.[1] T. Noguchi et al., MPS, 49(2):188-214, 2014. [2] C.M. Pieters et al., Science, 326(5952):568-572, 2009. [3] J.T. Gosling, Encyclopedia of the Solar System (Second Edition), pages 99 -116, 2007. Acknowledgements Part of this work has

  5. Lightning Protection Guidelines for Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Goodloe, C. C.

    1999-01-01

    This technical memorandum provides lightning protection engineering guidelines and technical procedures used by the George C. Marshall Space Flight Center (MSFC) Electromagnetics and Aerospace Environments Branch for aerospace vehicles. The overviews illustrate the technical support available to project managers, chief engineers, and design engineers to ensure that aerospace vehicles managed by MSFC are adequately protected from direct and indirect effects of lightning. Generic descriptions of the lightning environment and vehicle protection technical processes are presented. More specific aerospace vehicle requirements for lightning protection design, performance, and interface characteristics are available upon request to the MSFC Electromagnetics and Aerospace Environments Branch, mail code EL23.

  6. KENNEDY SPACE CENTER, FLA. - STS-114 Mission Specialist Soichi Noguchi, with the Japanese Aerospace Exploration Agency (JAXA), handles equipment that will be used on the mission. He and other crew members are at KSC for equipment familiarization. STS-114 is classified as Logistics Flight 1 to the International Space Station, delivering new supplies and replacing one of the orbital outpost’s Control Moment Gyroscopes (CMGs). STS-114 will also carry a Raffaello Multi-Purpose Logistics Module and the External Stowage Platform-2. The crew is slated to conduct at least three spacewalks: They will demonstrate repair techniques of the Shuttle’s Thermal Protection System, replace the failed CMG with one delivered by the Shuttle, and install the External Stowage Platform.

    NASA Image and Video Library

    2004-01-27

    KENNEDY SPACE CENTER, FLA. - STS-114 Mission Specialist Soichi Noguchi, with the Japanese Aerospace Exploration Agency (JAXA), handles equipment that will be used on the mission. He and other crew members are at KSC for equipment familiarization. STS-114 is classified as Logistics Flight 1 to the International Space Station, delivering new supplies and replacing one of the orbital outpost’s Control Moment Gyroscopes (CMGs). STS-114 will also carry a Raffaello Multi-Purpose Logistics Module and the External Stowage Platform-2. The crew is slated to conduct at least three spacewalks: They will demonstrate repair techniques of the Shuttle’s Thermal Protection System, replace the failed CMG with one delivered by the Shuttle, and install the External Stowage Platform.

  7. KENNEDY SPACE CENTER, FLA. - Dressed in protective suits, STS-114 Mission Specialist Soichi Noguchi, with the Japanese Aerospace Exploration Agency (JAXA), handles equipment that will be used on the mission. He and other crew members are at KSC for equipment familiarization. STS-114 is classified as Logistics Flight 1 to the International Space Station, delivering new supplies and replacing one of the orbital outpost’s Control Moment Gyroscopes (CMGs). STS-114 will also carry a Raffaello Multi-Purpose Logistics Module and the External Stowage Platform-2. The crew is slated to conduct at least three spacewalks: They will demonstrate repair techniques of the Shuttle’s Thermal Protection System, replace the failed CMG with one delivered by the Shuttle, and install the External Stowage Platform.

    NASA Image and Video Library

    2004-01-27

    KENNEDY SPACE CENTER, FLA. - Dressed in protective suits, STS-114 Mission Specialist Soichi Noguchi, with the Japanese Aerospace Exploration Agency (JAXA), handles equipment that will be used on the mission. He and other crew members are at KSC for equipment familiarization. STS-114 is classified as Logistics Flight 1 to the International Space Station, delivering new supplies and replacing one of the orbital outpost’s Control Moment Gyroscopes (CMGs). STS-114 will also carry a Raffaello Multi-Purpose Logistics Module and the External Stowage Platform-2. The crew is slated to conduct at least three spacewalks: They will demonstrate repair techniques of the Shuttle’s Thermal Protection System, replace the failed CMG with one delivered by the Shuttle, and install the External Stowage Platform.

  8. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 12: The diffusion of federally funded aerospace research and development (R/D) and the information seeking behavior of US aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Kennedy, John M.; Barclay, Rebecca O.

    1991-01-01

    In this paper, the diffusion of federally funded aerospace R&D is explored from the perspective of the information-seeking behavior of U.S. aerospace engineers and scientists. The following three assumptions frame this exploration: (1) knowledge production, transfer, and utilization are equally important components of the aerospace R&D process; (2) the diffusion of knowledge resulting from federally funded aerospace R&D is indispensable for the U.S. to remain a world leader in aerospace; and (3) U.S. government technical reports, produced by NASA and DOD, play an important, but as yet undefined, role in the diffusion of federally funded aerospace R&D. A conceptual model for federally funded aerospace knowledge diffusion, one that emphasizes U.S. goverment technical reports, is presented. Data regarding three research questions concerning the information-seeking behavior of U.S. aerospace engineers and scientists are also presented.

  9. Anechoic Chambers: Aerospace Applications. (Latest Citations from the Aerospace Database)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The bibliography contains citations concerning the design, development, performance, and applications of anechoic chambers in the aerospace industry. Anechoic chamber testing equipment, techniques for evaluation of aerodynamic noise, microwave and radio antennas, and other acoustic measurement devices are considered. Shock wave studies on aircraft models and components, electromagnetic measurements, jet flow studies, and antenna radiation pattern measurements for industrial and military aerospace equipment are discussed. (Contains 50-250 citations and includes a subject term index and title list.)

  10. Anechoic Chambers: Aerospace Applications. (Latest Citations from the Aerospace Database)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The bibliography contains citations concerning the design, development, performance, and applications of anechoic chambers in the aerospace industry. Anechoic chamber testing equipment, techniques for evaluation of aerodynamic noise, microwave and radio antennas, and other acoustic measurement devices are considered. Shock wave studies on aircraft models and components, electromagnetic measurements, jet flow studies, and antenna radiation pattern measurements for industrial and military aerospace equipment are discussed. (Contains 50-250 citations and includes a subject term index and title list.)

  11. Welcome to the Ohio Aerospace Institute

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The mission and various programs administered by the Ohio Aerospace Institute, a consortium made up of 9 Ohio Universities, LeRC, and members of the Aerospace Industry are described. The video highlights the following: programs to bring aerospace research to K-12 classrooms; programs to allow graduate students access to laboratory equipment at LeRC; the creation of a statewide television network to link researchers in industry and academia; and focus groups to encourage collaboration between companies in aerospace research.

  12. Aerodynamic aircraft design methods and their notable applications: Survey of the activity in Japan

    NASA Technical Reports Server (NTRS)

    Fujii, Kozo; Takanashi, Susumu

    1991-01-01

    An overview of aerodynamic aircraft design methods and their recent applications in Japan is presented. A design code which was developed at the National Aerospace Laboratory (NAL) and is in use now is discussed, hence, most of the examples are the result of the collaborative work between heavy industry and the National Aerospace Laboratory. A wide variety of applications in transonic to supersonic flow regimes are presented. Although design of aircraft elements for external flows are the main focus, some of the internal flow applications are also presented. Recent applications of the design code, using the Navier Stokes and Euler equations in the analysis mode, include the design of HOPE (a space vehicle) and Upper Surface Blowing (USB) aircraft configurations.

  13. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 64: Culture and Workplace Communications: A Comparison of the Technical Communications Practices of Japanese and US Aerospace Engineers and Scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Sato, Yuko; Barclay, Rebecca O.; Kennedy, John M.

    1997-01-01

    The advent of global markets elevates the role and importance of culture as a mitigating factor in the diffusion of knowledge and technology and in product and process innovation. This is especially true in the large commercial aircraft (LCA) sector where the production and market aspects are becoming increasingly international. As firms expand beyond their national borders, using such methods as risk-sharing partnerships, joint ventures, outsourcing, and alliances, they have to contend with national and corporate cultures. Our focus is on Japan, a program participant in the production of the Boeing Company's 777. The aspects of Japanese culture and workplace communications will be examined: 1.) the influence of Japanese culture on the diffusion of knowledge and technology in aerospace at the national and international levels; 2.) those cultural determinants-the propensity to work together, a willingness to subsume individual interests to a greater good, and an emphasis on consensual decision making-that have a direct bearing on the ability of Japanese firms to form alliances and compete in international markets; 3.) and those cultural determinants thought to influence the information-seeking behaviors and workplace communication practices of Japanese aerospace engineers and scientists. In this article, we report selective results from a survey of Japanese and U.S. aerospace engineers and scientists that focused on workplace communications. Data are presented for the following topics: importance of and time spent communicating information, collaborative writing, need for an undergraduate course in technical communication, use of libraries, use and importance of electronic (computer) networks, and the use and importance of foreign and domestically produced technical reports.

  14. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 60: Culture and Workplace Communications: A Comparison of the Technical Communications Practices of Japanese and US Aerospace Engineers and Scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Sato, Yuko; Barclay, Rebecca O.; Kennedy, John M.

    1997-01-01

    The advent of global markets elevates the role and importance of culture as a mitigating factor in the diffusion of knowledge and technology and in product and process innovation. This is especially true in the Large Commercial Aircraft (LCA) sector where the production and market aspects are becoming increasingly international. As firms expand beyond their national borders, using such methods as risk- sharing partnerships, joint ventures, outsourcing, and alliances, they have to contend with national and corporate cultures. Our focus is on Japan, a 'program participant' in the production of the Boeing Company's 777; the influence of Japanese culture on the diffusion of knowledge and technology in aerospace at the national and international levels; those cultural determinants-the propensity to work together, a willingness to subsume individual interests to a greater good, and an emphasis on consensual decisionmaking-that have a direct bearing on the ability of Japanese firms to form alliances and compete in international markets; and those cultural determinants thought to influence the information- seeking behaviors and workplace communication practices of Japanese aerospace engineers and scientists. In this paper, we report selective results from a survey of Japanese and U.S. aerospace engineers and scientists that focused on workplace communications. Data are presented for the following topics: importance of and time spent communicating information, collaborative writing, need for an undergraduate course in technical communication, use of libraries, use and importance of electronic (computer) networks, and the use and importance of foreign and domestically produced technical reports.

  15. Alert Exchange Process Protocol

    NASA Technical Reports Server (NTRS)

    Groen, Frank

    2015-01-01

    The National Aeronautics and Space Administration of the United States of America (NASA), and the European Space Agency (ESA), and the Japanese Aerospace Exploration Agency (JAXA), acknowledging that NASA, ESA and JAXA have a mutual interest in exchanging Alerts and Alert Status Lists to enhance the information base for each system participant while fortifying the general level of cooperation between the policy agreement subscribers, and each Party will exchange Alert listings on regular basis and detailed Alert information on a need to know basis to the extent permitted by law.

  16. Application and theoretical analysis of the flamelet model for supersonic turbulent combustion flows in the scramjet engine

    NASA Astrophysics Data System (ADS)

    Gao, Zhenxun; Wang, Jingying; Jiang, Chongwen; Lee, Chunhian

    2014-11-01

    In the framework of Reynolds-averaged Navier-Stokes simulation, supersonic turbulent combustion flows at the German Aerospace Centre (DLR) combustor and Japan Aerospace Exploration Agency (JAXA) integrated scramjet engine are numerically simulated using the flamelet model. Based on the DLR combustor case, theoretical analysis and numerical experiments conclude that: the finite rate model only implicitly considers the large-scale turbulent effect and, due to the lack of the small-scale non-equilibrium effect, it would overshoot the peak temperature compared to the flamelet model in general. Furthermore, high-Mach-number compressibility affects the flamelet model mainly through two ways: the spatial pressure variation and the static enthalpy variation due to the kinetic energy. In the flamelet library, the mass fractions of the intermediate species, e.g. OH, are more sensible to the above two effects than the main species such as H2O. Additionally, in the combustion flowfield where the pressure is larger than the value adopted in the generation of the flamelet library or the conversion from the static enthalpy to the kinetic energy occurs, the temperature obtained by the flamelet model without taking compressibility effects into account would be undershot, and vice versa. The static enthalpy variation effect has only little influence on the temperature simulation of the flamelet model, while the effect of the spatial pressure variation may cause relatively large errors. From the JAXA case, it is found that the flamelet model cannot in general be used for an integrated scramjet engine. The existence of the inlet together with the transverse injection scheme could cause large spatial variations of pressure, so the pressure value adopted for the generation of a flamelet library should be fine-tuned according to a pre-simulation of pure mixing.

  17. Aerospace management techniques: Commercial and governmental applications

    NASA Technical Reports Server (NTRS)

    Milliken, J. G.; Morrison, E. J.

    1971-01-01

    A guidebook for managers and administrators is presented as a source of useful information on new management methods in business, industry, and government. The major topics discussed include: actual and potential applications of aerospace management techniques to commercial and governmental organizations; aerospace management techniques and their use within the aerospace sector; and the aerospace sector's application of innovative management techniques.

  18. Inspiring People to Participate in the NameExoWorlds Contest

    NASA Astrophysics Data System (ADS)

    Usuda-Sato, Kumiko; Iizuka, Reiko; Yamaoka, Hitoshi; Agata, Hidehiko

    2015-08-01

    In July 2014 IAU announced the NameExoWorlds contest to give popular names to the selected exoplanets along with their host stars. It is an excellent chance for amateur clubs, school groups, and other non-profit organizations to get interested in the latest astronomical research of exoplanets by participating in the international contest.In Japan the NameExoWorlds Working Group (WG) was organized at the Astronomical Consortium of Japan (ACJ). ACJ consists of astronomical organizations such as Astronomical Society of Japan (ASJ), National Astronomical Observatory of Japan (NAOJ), Japan Aerospace Exploration Agency (JAXA), Japanese Society for Education and Popularization of Astronomy (JSEPA), Japan Planetarium Association (JPA), Japan Public Observatory Society (JAPOS), and Japan Amateur Astronomers Association (JAAA). The WG was led by volunteers from JSEPA and JAAA.We, the WG members, developed the exoplanet.jp website to provide useful information to the public in Japanese language with useful contents: translations of the contest schedule and how to register, how to observe exoplanets, recommended planetary systems by Japanese researchers, downloadable photos and posters, and so on.We also sent updates frequently by e-mail newsletters and twitter so that a lot of Japanese groups feel easy and confortable to register and to vote for the 20 planetary systems they wish to name. Before the deadline of voting for 20 planetary systems on February 15, 2015, 127 Japanese groups completed registration, which account for about one third of the 388 registered groups in the world (as of Feb 15).In our presentation we will report our approaches to inspire Japanese people to participate in the worldwide NameExoWorlds contest.

  19. Earth Observations taken by the Expedition 23 Crew

    NASA Image and Video Library

    2010-05-04

    ISS023-E-032400 (4 May 2010) --- Japan Aerospace Exploration Agency (JAXA) astronaut Soichi Noguchi, Expedition 23 flight engineer, photographed the Mississippi Delta showing the oil slick in the Gulf of Mexico on May 4, 2010. Part of the river delta and nearby Louisiana coast appear dark in the sunglint. This phenomenon is caused by sunlight reflecting off the water surface, in a mirror-like manner, directly back towards the astronaut observer onboard the International Space Station (ISS). The sunglint improves the identification of the oil spill which is creating a different water texture (and therefore a contrast) between the smooth and rougher water of the reflective ocean surface. Other features which cause a change in surface roughness that can be seen in sunglint are wind gusts, naturally occurring oils that will be gathered by and take the form of water currents or wave patterns, and less windy areas behind islands.

  20. Earth Observations taken by the Expedition 23 Crew

    NASA Image and Video Library

    2010-05-04

    ISS023-E-032398 (4 May 2010) --- Japan Aerospace Exploration Agency (JAXA) astronaut Soichi Noguchi, Expedition 23 flight engineer, photographed the Mississippi Delta showing the oil slick in the Gulf of Mexico on May 4, 2010. Part of the river delta and nearby Louisiana coast appear dark in the sunglint. This phenomenon is caused by sunlight reflecting off the water surface, in a mirror-like manner, directly back towards the astronaut observer onboard the International Space Station (ISS). The sunglint improves the identification of the oil spill which is creating a different water texture (and therefore a contrast) between the smooth and rougher water of the reflective ocean surface. Other features which cause a change in surface roughness that can be seen in sunglint are wind gusts, naturally occurring oils that will be gathered by and take the form of water currents or wave patterns, and less windy areas behind islands.